These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Raw materials and energy from coal gasification - The Ruhrchemie\\/Ruhrkohle Texaco coal gasification demonstration facility  

Microsoft Academic Search

Starting with January 1978 the Texaco coal gasification system has produced 52 million cu m synthetic gas, of the composition 54% CO, 34% H, 11% CO2, 0.3% H2S\\/COS, 0.6% N2, and less than 0.1% CH4, from 30,000 tons of coal. The principle and specifications of the Texaco second-generation method, involving high temperatures, high pressures, and the use of powdered coal

B. Cornils; J. Hibbel; P. Ruprecht; J. Langhoff; R. Duerrfeld

1980-01-01

2

Raw materials and energy from coal gasification - The Ruhrchemie/Ruhrkohle Texaco coal gasification demonstration facility  

NASA Astrophysics Data System (ADS)

Starting with January 1978 the Texaco coal gasification system has produced 52 million cu m synthetic gas, of the composition 54% CO, 34% H, 11% CO2, 0.3% H2S/COS, 0.6% N2, and less than 0.1% CH4, from 30,000 tons of coal. The principle and specifications of the Texaco second-generation method, involving high temperatures, high pressures, and the use of powdered coal of any quality in the form of a suspension, are examined in the present paper.

Cornils, B.; Hibbel, J.; Ruprecht, P.; Langhoff, J.; Duerrfeld, R.

1980-10-01

3

DEMONSTRATION BULLETIN: TEXACO GASIFICATION PROCESS TEXACO, INC.  

EPA Science Inventory

The Texaco Gasification Process (TGP) has operated commercially for nearly 45 years on feeds such as natural gas, liquid petroleum fractions, coal, and petroleum coke. More than 45 plants are either operational or under development in the United States and abroad. Texaco has dev...

4

Coal Gasification and Coal Hydrogenation.  

National Technical Information Service (NTIS)

The present state of the development works on the coal gasification and coal hydrogenation processes carried out by the coal producing and engineering companies is presented. The coal gasification projects are the following: Texaco suspended dust gasifica...

1980-01-01

5

TEXACO GASIFICATION PROCESS - INNOVATIVE TECHNOLOGY EVALUATION REPORT  

EPA Science Inventory

This report summarizes the evaluation of the Texaco Gasification Process (TGP) conducted under the U.S. Environmental Protection Agency (EPA) Superfund Innovative Technology Evaluation (SITE) Program. The Texaco Gasification Process was developed by Texaco Inc. The TGP is a comm...

6

U.S. EPA'S EVALUATION OF A TEXACO GASIFICATION TECHNOLOGY  

EPA Science Inventory

Gasification technologies are designed to produce, from carbonaceous organic materials (e.g., coal, oil), a useable mixture of carbon monoxide and hydrogen called synthesis gas, or syngas. yngas could be used to produce power or chemicals. he Texaco Gasification Process (TGP) emp...

7

Gasification of residual materials from coal liquefaction. Type I evaluation of H-coal liquefaction residue from Illinois No. 6 coal as a feedstock for the Texaco Gasification Processes  

SciTech Connect

A laboratory evaluation of a 20-pound sample of Atmospheric Tower Bottoms from the H-Coal liquefaction pilot plant at Catlettsburg, Kentucky was completed at Texaco's Montebello Research Laboratory. The sample, which was obtained from the liquefaction of Illinois No. 6 coal, was judged to be a suitable feedstock for the Texaco Synthesis Gas Generation Process. It can be charged directly to the gasifier at a temperature of about 350/sup 0/F. Based on these results, operating conditions and yields were estimated for gasifying 1000 pounds per hour of molten undiluted residue at 1200 psig.

Robin, A.M.

1981-10-01

8

Texaco -- World leader in IGCC  

SciTech Connect

With more than 120 licensed gasification projects over the past 50 years, Texaco is the world leader in gasification technology. Texaco`s fully commercial and well proven gasification technology can accept a broad range of feedstocks including coal, petroleum coke, heavy oil, light oil, Orimulsion, natural gas and even waste materials. Over the years, plants using Texaco gasification technology have demonstrated an outstanding record of reliable, safe, economical and environmental performance. Since the startup in 1984 of the world`s first commercial scale Integrated Gasification Combined Cycle plant (IGCC), the 120 MW Cool Water plant in Daggett, California (USA) using Texaco gasification technology, Texaco has also been the world leader in IGCC. Today there are 7 publicly announced IGCC projects in various stages of operation, or design/construction which use Texaco gasification technology. Several other projects which have not yet been announced publicly are in various stages of development.

Horton, R.S.; Gardner, J. [Texaco USA (United States)

1997-12-31

9

Coal gasification: Kellogg's coal gasification process  

Microsoft Academic Search

Gasification of coal in a bath of molten sodium carbonate through which ; steam is passed is the basis of the Kellogg Coal Gasification process. The bath ; of moiten salt strongly catalyzes the basic steam- coal reaction permi tting ; essentially complete gasificntion of coal at reduced temperature. The molten ; salt can be used to supply heat to

W. C. Schreiner; G. T. Skaperdas

1973-01-01

10

Plasma gasification of coals  

SciTech Connect

To avoid problems of transporting coal from Siberia to the European part of the Soviet Union, plasma gasification could be used to give methane and liquid methyl fuel which could be transported by pipeline. Plasma-assisted gasification is particularly effective in the case of brown coals. (11 refs.)

Kruzhilin, G.I.; Khudyakov, G.N.; Tselishchev, P.A.

1981-01-01

11

Texaco environmental tests on a 165-tpd Texaco gasifier. Final report  

Microsoft Academic Search

In support of the commercial development of the Texaco Coal Gasification Process, the Electric Power Research Institute has sponsored studies to evaluate environmental characteristics of the process. The first tests were conducted at Texaco's Montebello Research Laboratory Pilot Plant (15 tons per day). To verify the favorable data from these tests, EPRI made arrangements for a run on Illinois No.

W. V. Taylor

1983-01-01

12

Pulverized coal plasma gasification  

Microsoft Academic Search

A number of experiments on the plasma-vapor gasification of brown coals of three types have been carried out using an experimental plant with an electric-arc reactor of the combined type. On the basis of the material and heat balances, process parameters have been obtained: the degree of carbon gasification (?c), the level of sulfur conversion into the gas phase (?s),

R. A. Kalinenko; A. P. Kuznetsov; A. A. Levitsky; V. E. Messerle; Yu. A. Mirokhin; L. S. Polak; Z. B. Sakipov; A. B. Ustimenko

1993-01-01

13

The gasification of coal  

Microsoft Academic Search

Coal gasification entails the treatment of coal with air, oxygen, steam, or CO2, or mixtures of these gases, to yield a combustible gaseous product. The product of primary gasification is usually a mixture of H2, CO, CO2, CH4, inerts (such as nitrogen), and minor amounts of hydrocarbons and impurities. Low Btu gas is produced if an air-steam mixture is used

L. K. Mudge; G. F. Schiefelbein; C. T. Li; R. H. Moore

1974-01-01

14

Hybrid solar coal gasification  

Microsoft Academic Search

The University of New Hampshire is engaged in the research and development of a Gas Recirculation Two Stage Fluidized-Bed Hybrid Coal Gasification System where the heat required for the endothermic reactions of coal, lignite, or biomass with steam for the production of synthesis gas (CO + Hâ) is supplied by solar energy. This paper describes the experimental set-up and discusses

V. K. Mathur; S. Canguly; S. Chaudhary

1983-01-01

15

Mild gasification of coal  

SciTech Connect

The objective of this initial year's mission-oriented multi-year program is to develop a process chemistry data base for the mild gasification of coal with emphasis on eastern bituminous coal. One important objective of this program was to obtain the trends in product formation from different coals as a function of several process variables which included temperature, pressure, coal particle residence time, coal flow rate, type of additives such as lime, limestone, silica flour and ash in a short period of time. This was achieved by a careful development of a test matrix using a fractional factorial statistical design. The equipment used was the Brookhaven National Laboratory (BNL) combination stirred moving-bed, entrained-tubular reactor which is capable of processing 2 to 3 pounds of coal per hour. A Wellmore Kentucky No. 8 bituminous coal, a Pittsburgh No. 8 bituminous coal and a Mississippi lignite with particles having a size of 150 {mu}m or less were selected for this study. The mild gasification experiments were conducted at temperatures from 550{degree} to 650{degree}C at nitrogen sweep gas pressures of 15 to 50 psi and residence times of 0.1 to 2 min. The coal flow rate was 0. 4 to 1.0 lb/hr and the concentration of the lime additives was 0 to 10% by weight of the dry coal feed. All variables were tested at two different levels, low and high, corresponding to the above ranges of the variables. A rapid calculation of the main effects and interactions was made using Yate's algorithm and the significance of the effects was determined from the normal probability plots. 10 refs., 26 figs., 11 tabs.

Sundaram, M.S.; Fallon, P.T.; Steinberg, M.

1989-01-01

16

Coal gasification: Technology status report  

SciTech Connect

The US Department of Energy's (DOE) Morgantown Energy Technology Center (METC) is currently sponsoring research and development (R and D) activities in surface coal gasification. The activities are primarily aimed at exploring and developing flexibility of the coal gasification technology. A wide range of technical needs could then be met for systems that are based on coal gasification. The systems include (1) integrated gasification combined cycle (IGCC) for electric power production, (2) production of synthesis gas, (3) production of value-added coproducts, and (4) production of industrial fuel gas. The R and D projects that are included in the Surface Coal Gasification Program cover a wide spectrum of technology development stages. These projects range from laboratory-scale investigations of a fundamental nature to the engineering-scale process development units (PDU's). In the area of laboratory-scale projects, fundamentals of gasification, gas purification, and gas separation are investigated to understand certain key parameters that will lead to gasification-based systems as the most desired energy alternatives. For the engineering-scale PDU's, novel process concepts are evaluated to obtain critical engineering and process data to translate the concepts into sound engineering designs. In addition, activities in the area of mathematical interpretation of coal gasification and associated gas separation and gas purification technologies are pursued to develop predictive capabilities and to conduct preliminary evaluations of various systems. This report provides comprehensive summaries of major accomplishments of the various projects in the Surface Coal Gasification Program. 5 refs., 18 figs., 4 tabs.

Not Available

1986-12-01

17

Coal gasification vessel  

DOEpatents

A vessel system (10) comprises an outer shell (14) of carbon fibers held in a binder, a coolant circulation mechanism (16) and control mechanism (42) and an inner shell (46) comprised of a refractory material and is of light weight and capable of withstanding the extreme temperature and pressure environment of, for example, a coal gasification process. The control mechanism (42) can be computer controlled and can be used to monitor and modulate the coolant which is provided through the circulation mechanism (16) for cooling and protecting the carbon fiber and outer shell (14). The control mechanism (42) is also used to locate any isolated hot spots which may occur through the local disintegration of the inner refractory shell (46).

Loo, Billy W. (Oakland, CA)

1982-01-01

18

Coal gasification systems engineering and analysis. Volume 1: Executive summary  

NASA Technical Reports Server (NTRS)

Feasibility analyses and systems engineering studies for a 20,000 tons per day medium Btu (MBG) coal gasification plant to be built by TVA in Northern Alabama were conducted. Major objectives were as follows: (1) provide design and cost data to support the selection of a gasifier technology and other major plant design parameters, (2) provide design and cost data to support alternate product evaluation, (3) prepare a technology development plan to address areas of high technical risk, and (4) develop schedules, PERT charts, and a work breakdown structure to aid in preliminary project planning. Volume one contains a summary of gasification system characterizations. Five gasification technologies were selected for evaluation: Koppers-Totzek, Texaco, Lurgi Dry Ash, Slagging Lurgi, and Babcock and Wilcox. A summary of the trade studies and cost sensitivity analysis is included.

1980-01-01

19

Beluga Coal Gasification - ISER  

SciTech Connect

ISER was requested to conduct an economic analysis of a possible 'Cook Inlet Syngas Pipeline'. The economic analysis was incorporated as section 7.4 of the larger report titled: 'Beluga Coal Gasification Feasibility Study, DOE/NETL-2006/1248, Phase 2 Final Report, October 2006, for Subtask 41817.333.01.01'. The pipeline would carry CO{sub 2} and N{sub 2}-H{sub 2} from a synthetic gas plant on the western side of Cook Inlet to Agrium's facility. The economic analysis determined that the net present value of the total capital and operating lifecycle costs for the pipeline ranges from $318 to $588 million. The greatest contributor to this spread is the cost of electricity, which ranges from $0.05 to $0.10/kWh in this analysis. The financial analysis shows that the delivery cost of gas may range from $0.33 to $0.55/Mcf in the first year depending primarily on the price for electricity.

Steve Colt

2008-12-31

20

Coal gasification: A multiple talent  

SciTech Connect

Coal Gasification is on a pressurized route to commercial application. Ground breaking was performed by the Cool Water, Tennessee Eastman and UBE plants. Now several technical and commercial demonstrations are underway not only to show the readiness of the technology for commercial application. Another goal is further developed to reduce costs and to rise efficiency. The main feature of coal gasification is that it transforms a difficult-to-handle fuel into an easy-to-handle one. Through a high efficient gas-turbine cycle-power production becomes easy, efficient and clean. Between gasification and power production several more or less difficult hurdles have to be taken. In the past several studies and R and D work have been performed by Novem as by others to get insight in these steps. Goals were to develop easier, more efficient and less costly performance of the total combination for power production. This paper will give an overview of these studies and developments to be expected. Subjects will be fuel diversification, gas treating and the combination of Integrated Coal Gasification Combined Cycle with several cycle and production of chemical products. As a conclusion a guide will be given on the way to a clean, efficient and commercial acceptable application of coal gasification. A relation to other emerging technologies for power production with coal will be presented.

Schreurs, H.

1996-12-31

21

Coal gasification 2006: roadmap to commercialization  

SciTech Connect

Surging oil and gas prices, combined with supply security and environmental concerns, are prompting power generators and industrial firms to further develop coal gasification technologies. Coal gasification, the process of breaking down coal into its constituent chemical components prior to combustion, will permit the US to more effectively utilize its enormous, low cost coal reserves. The process facilitates lower environmental impact power generation and is becoming an increasingly attractive alternative to traditional generation techniques. The study is designed to inform the reader as to this rapidly evolving technology, its market penetration prospects and likely development. Contents include: Clear explanations of different coal gasification technologies; Emissions and efficiency comparisons with other fuels and technologies; Examples of US and global gasification projects - successes and failures; Commercial development and forecast data; Gasification projects by syngas output; Recommendations for greater market penetration and commercialization; Current and projected gasification technology market shares; and Recent developments including proposals for underground gasification process. 1 app.

NONE

2006-05-15

22

An evaluaton of integrated-gasification-combined-cycle and pulverized-coal-fired steam plants: Volume 2, Sensitivity studies and appendixes: Final report  

Microsoft Academic Search

The Electric Power Research Institute contracted with Bechtel Group, Inc., to provide an evaluation of the performance and costs for a Texaco-based integrated gasification combined cycle (IGCC) power plant as compared to a conventional pulverized coal-fired steam (PCFS) power plant with flue gas desulfurization (FGD). A general set of groundrules was used within which each plant design was optimized. The

J. Pietruszkiewicz; R. J. Milkavich; G. S. Booras; G. O. Thomas; H. Doss

1988-01-01

23

Improved catalysts for carbon and coal gasification  

DOEpatents

This invention relates to improved catalysts for carbon and coal gasification and improved processes for catalytic coal gasification for the production of methane. The catalyst is composed of at least two alkali metal salts and a particulate carbonaceous substrate or carrier is used. 10 figures, 2 tables.

McKee, D.W.; Spiro, C.L.; Kosky, P.G.

1984-05-25

24

COAL GASIFICATION ENVIRONMENTAL DATA SUMMARY: TRACE ELEMENTS  

EPA Science Inventory

The report summarizes trace element measurements made at several coal gasification facilities. Most of the measurements were made as part of EPA's source testing and evaluation program on low- and medium-Btu gasification. The behavior of trace elements is discussed in light of th...

25

Underground Coal Gasification at Tennessee Colony  

E-print Network

The Tennessee Colony In Situ Coal Gasification Project conducted by Basic Resources Inc. is the most recent step in Texas Utilities Company's ongoing research into the utilization of Texas lignite. The project, an application of the Soviet...

Garrard, C. W.

1979-01-01

26

Production of Hydrogen from Underground Coal Gasification  

DOEpatents

A system of obtaining hydrogen from a coal seam by providing a production well that extends into the coal seam; positioning a conduit in the production well leaving an annulus between the conduit and the coal gasification production well, the conduit having a wall; closing the annulus at the lower end to seal it from the coal gasification cavity and the syngas; providing at least a portion of the wall with a bifunctional membrane that serves the dual purpose of providing a catalyzing reaction and selectively allowing hydrogen to pass through the wall and into the annulus; and producing the hydrogen through the annulus.

Upadhye, Ravindra S. (Pleasanton, CA)

2008-10-07

27

WABASH RIVER COAL GASIFICATION REPOWERING PROJECT  

SciTech Connect

The close of 1999 marked the completion of the Demonstration Period of the Wabash River Coal Gasification Repowering Project. This Final Report summarizes the engineering and construction phases and details the learning experiences from the first four years of commercial operation that made up the Demonstration Period under Department of Energy (DOE) Cooperative Agreement DE-FC21-92MC29310. This 262 MWe project is a joint venture of Global Energy Inc. (Global acquired Destec Energy's gasification assets from Dynegy in 1999) and PSI Energy, a part of Cinergy Corp. The Joint Venture was formed to participate in the Department of Energy's Clean Coal Technology (CCT) program and to demonstrate coal gasification repowering of an existing generating unit impacted by the Clean Air Act Amendments. The participants jointly developed, separately designed, constructed, own, and are now operating an integrated coal gasification combined-cycle power plant, using Global Energy's E-Gas{trademark} technology (E-Gas{trademark} is the name given to the former Destec technology developed by Dow, Destec, and Dynegy). The E-Gas{trademark} process is integrated with a new General Electric 7FA combustion turbine generator and a heat recovery steam generator in the repowering of a 1950's-vintage Westinghouse steam turbine generator using some pre-existing coal handling facilities, interconnections, and other auxiliaries. The gasification facility utilizes local high sulfur coals (up to 5.9% sulfur) and produces synthetic gas (syngas), sulfur and slag by-products. The Project has the distinction of being the largest single train coal gasification combined-cycle plant in the Western Hemisphere and is the cleanest coal-fired plant of any type in the world. The Project was the first of the CCT integrated gasification combined-cycle (IGCC) projects to achieve commercial operation.

Unknown

2000-09-01

28

Pressure coal gasification experience in Czechoslovakia  

SciTech Connect

Czechoslovakia's large deposits of brown coal supply the country's three operating pressure gasification plants. The gas produced is suitable for further treatment to provide fuel for household and industrial consumers. Coal gasification is not new to the energy planners in Czechoslovakia. Since 1948, 56 gasifiers have been installed in the three pressure gasification plants currently in operation. The newest and biggest of these plants is at Vresova. The plant processes 5,000 tons of brown coal per day. The locally mined coal used for feed at the Vresova plant has a calorific value of 12 to 14 megajoules per kilogram (52 to 60 Btu's per pound). The gasifiers produce up to 13,000 cubic meters (459,000 cubic feet) per hour of crude gas per gasifier. Gasification technology has been under development in Czechoslovakia since 1945. The country has virtually no oil or natural gas reserves, a fact that emphasizes the importance of coal-based energy. Production of gas from coal in Czechoslovak gasifiers is based on gasification in the fixed bed of a gasifier.

Not Available

1981-03-01

29

Gasification of various coals in molten salts  

SciTech Connect

The utilization of the US coal reserves in a manner which does not add to the existing pollution problem is of utmost importance in the interest of conservation of more valuable natural resources in the national economy. Gasification of coal and generation of clean fuel gas offers one of the most promising approaches to the utilization of coal. It has been assigned a high priority in the US Energy Development Program. Several of the coal gasification processes presently under development are now at the initial pilot plant operation stage. One of these processes is the Rockwell International Molten Salt Coal Gasification Process (Rockgas Process). In this process, the coal is gasified at a temperature of about 1800/sup 0/F and at pressures up to 30 atm by reaction with air in a highly turbulent mixture of molten sodium carbonate containing sodium sulfide, ash, and unreacted carbonaceous material. The sulfur and ash of the coal are retained in the melt, a small stream of which is continuously circulated through a process system for regeneration of the sodium carbonate, removal of the ash, and recovery of elemental sulfur. A molten salt coal gasification process development unit capable of converting 1 ton of coal per hour into low-Btu fuel gas at pressures up to 20 atm is currently undergoing testing under contract to the Department of Energy. Preliminary to the PDU, a considerable amount of laboratory testing took place. These tests were conducted in a bench-scale, 6-in.-dia gasifier in which coals of different rank were continuously gasified in the melt. The tests resulted in a better understanding of the gasification process. The purpose of this paper is to describe these laboratory tests and to discuss some of the chemistry taking place in the gasifier. Emphasis is placed on the effect of coal rank on the chemistry.

Yosim, S.J.; Barclay, K.M.

1980-01-01

30

Solar coal gasification: plant design and economics  

Microsoft Academic Search

The present paper is one further step in developing the concept of Solar Coal Gasification. A plant was layed out and analyzed with the aid of a code that calculates process flows and plant economics. This plant is the simplest, most straight-forward plant and thus the most appropriate for initial analysis. Solar Energy is focused directly on the reacting coal.

W. R. Aiman; C. B. Thorsness; D. W. Gregg

1980-01-01

31

Coal gasification and the power production market  

SciTech Connect

The US electric power production market is experiencing significant changes sparking interest in the current and future alternatives for power production. Coal gasification technology is being marketed to satisfy the needs of the volatile power production industry. Coal gasification is a promising power production process in which solid coal is burned to produce a synthesis gas (syn gas). The syn gas may be used to fuel combustion integrated into a facility producing electric power. Advantages of this technology include efficient power production, low flue gas emissions, flexible fuel utilization, broad capability for facility integration, useful process byproducts, and decreased waste disposal. The primary disadvantages are relatively high capital costs and lack of proven long-term operating experience. Developers of coal gasification intend to improve on these disadvantages and lop a strong position in the power generation market. This paper is a marketing analysis of the partial oxidation coal gasification processes emerging in the US in response to the market factors of the power production industry. A brief history of these processes is presented, including the results of recent projects exploring the feasibility of integrated gasification combined cycle (IGCC) as a power production alternative. The current power generation market factors are discussed, and the status of current projects is presented including projected performance.

Howington, K.; Flandermeyer, G. [Burns and McDonnell Engineering Co., Kansas City, MO (United States)

1995-09-01

32

The Public Perceptions of Underground Coal Gasification (UCG)  

E-print Network

The Public Perceptions of Underground Coal Gasification (UCG): A Pilot Study Simon Shackley #12;The Public Perceptions of Underground Coal Gasification (UCG): A Pilot Study Dr Simon Shackley of Underground Coal Gasification (UCG) in the United Kingdom. The objectives were to identify the main dangers

Watson, Andrew

33

Assessment of advanced coal gasification processes  

SciTech Connect

A technical assessment of the following advanced coal gasification processes is presented: high throughput gasification (HTG) process single stage high mass flux (HMF) process (CS/R) hydrogasification process and the catalytic coal gasification (CCG) process. Each process is evaluated for its potential to produce synthetic natural gas from a bituminous coal. Key similarities, differences, strengths, weaknesses, and potential improvements to each process are identified. The HTG and the HMF gasifiers share similarities with respect to: short residence time (SRT), high throughput rate, slagging, and syngas as the initial raw product gas. The CS/R hydrogasifier is also SRT, but is nonslagging and produces a raw gas high in methane content. The CCG gasifier is a long residence time, catalytic, fluidbed reactor producing all of the raw product methane in the gasifier.

Mccarthy, J.; Ferrall, J.; Charng, T.; Houseman, J.

1981-06-01

34

Continuous Removal of Coal-Gasification Residue  

NASA Technical Reports Server (NTRS)

Continuous-flow hopper processes solid residue from coal gasification, converting it from ashes, cinders, and clinkers to particles size of sand granules. Unit does not require repeated depressurization of lockhopper to admit and release materials. Therefore consumes less energy. Because unit has no airlock valves opened and closed repeatedly on hot, abrasive particles, subjected to lesser wear. Coal-gasification residue flows slowly through pressure-letdown device. Material enters and leaves continuously. Cleanout door on each pressure-letdown chamber allows access for maintenance and emergencies.

Collins, Earl R., Jr.; Suitor, J.; Dubis, D.

1986-01-01

35

Optimum Design of Coal Gasification Plants  

E-print Network

with economizers is recommended for Coal Gasification Combined Cycle to maximize energy efficiency. A water quench mode is suggested for hydrogen production because of the need to adjust the H2O/CO ratio for shift conversion. A partial heat-recovery mode...

Pohani, B. P.; Ray, H. P.; Wen, H.

1982-01-01

36

COAL GASIFICATION ENVIRONMENTAL DATA SUMMARY: ORGANICS  

EPA Science Inventory

The report summarizes the organics data from environmental assessments of several low- and medium-Btu coal gasification processes conducted between 1977 and 1981 under the sponsorship of the U.S. EPA. The data summary focuses on the concentration, composition, and mass flow of or...

37

Novel gas turbine cycles with coal gasification  

Microsoft Academic Search

This paper summarizes the results of a study to devise efficient gas turbine cycles without steam bottoming for use with coal gasification. Substitution of other forms of heat recovery in place of steam bottoming offers a potential cost saving. A novel form of the intercooled-reheat-regenerative cycle was devised with thermal efficiency nearly as high as that of combined cycles. As

S. J. Lehman

1979-01-01

38

An evaluation of integrated-gasification-combined-cycle and pulverized-coal-fired steam plants: Volume 1, Base case studies: Final report  

Microsoft Academic Search

An evaluation of the performance and costs for a Texaco-based integrated gasification combined cycle (IGCC) power plant as compared to a conventional pulverized coal-fired steam (PCFS) power plant with flue gas desulfurization (FGD) is provided. A general set of groundrules was used within which each plant design was optimized. The study incorporated numerous sensitivity cases along with up-to-date operating and

J. Pietruszkiewicz; R. J. Milkavich; G. S. Booras; G. O. Thomas; H. Doss

1988-01-01

39

Low/medium-Btu coal-gasification assessment program for specific sites of two New York utilities  

SciTech Connect

The scope of this study is to investigate the technical and economic aspects of coal gasification to supply low- or medium-Btu gas to the two power plant boilers selected for study. This includes the following major studies (and others described in the text): investigate coals from different regions of the country, select a coal based on its availability, mode of transportation and delivered cost to each power plant site; investigate the effects of burning low- and medium-Btu gas in the selected power plant boilers based on efficiency, rating and cost of modifications and make recommendations for each; and review the technical feasibility of converting the power plant boilers to coal-derived gas. The following two coal gasification processes have been used as the basis for this Study: the Combustion Engineering coal gasification process produces a low-Btu gas at approximately 100 Btu/scf at near atmospheric pressure; and the Texaco coal gasification process produces a medium-Btu gas at 292 Btu/scf at 800 psig. The engineering design and economics of both plants are described. Both plants meet the federal, state, and local environmental requirements for air quality, wastewater, liquid disposal, and ground level disposal of byproduct solids. All of the synthetic gas alternatives result in bus bar cost savings on a yearly basis within a few years of start-up because the cost of gas is assumed to escalate at a lower rate than that of fuel oil, approximately 4 to 5%.

Not Available

1980-12-01

40

Solar coal gasification reactor with pyrolysis gas recycle  

Microsoft Academic Search

Coal (or other carbonaceous matter, such as biomass) is converted into a product gas that is substantially free from hydrocarbons. The coal is fed into a solar reactor and solar energy is directed into the reactor onto coal char, creating a gasification front and a pyrolysis front. A gasification zone is produced well above the coal level within the reactor.

W. R. Aiman; D. W. Gregg

1983-01-01

41

Short Communication Catalytic coal gasification: use of calcium versus potassium*  

E-print Network

Short Communication Catalytic coal gasification: use of calcium versus potassium* Ljubisa R on the gasification in air and 3.1 kPa steam of North Dakota lignitic chars prepared under slow and rapid pyrolysis of calcium is related to its sintering via crystallite growth. (Keywords: coal; gasification; catalysis

42

Fixed-bed gasification research using US coals. Volume 5. Gasification of Stahlman Stoker bituminous coal  

SciTech Connect

A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report is the fifth volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of Stahlman Stoker bituminous coal from Clarion County, PA. The period of the gasification test was April 30 to May 4, 1983. 4 refs., 16 figs., 10 tabs.

Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

1985-03-31

43

Fixed-bed gasification research using US coals. Volume 4. Gasification of Leucite Hills subbituminous coal  

SciTech Connect

A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report is the fourth volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of Leucite Hills subbituminous coal from Sweetwater County, Wyoming. The period of the gasification test was April 11-30, 1983. 4 refs., 23 figs., 27 tabs.

Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

1985-03-31

44

Coal gasification - flexibility for an uncertain future  

SciTech Connect

During the past decade, the electric utility industry has experienced an unprecedented period of dramatic change and uncertainty that has changed the industry and its needs. There is now a need for small, low-cost, fuel-flexible, clean, and reliable plants for both new capacity and emissions retrofit situations. Coal gasification has demonstrated its flexibility to meet this challenge. Reduced economies of scale make smaller new units more feasible, and inherent design features enable lower emissions than for conventional coal-fired units. This emissions-reduction capability also makes gasification a candidate for retrofit applications, requiring the highest levels of emission control. The retrofit capabilities of gasification have been proven at the Cool Water plant and also at the KILnGAS demonstration project. Both projects retrofitted existing, corner-fired boilers for firing coal-derived fuel gas. The Cool Water plant successfully tested the normally natural gas-fired boiler at full load on 100% fuel gas with no boiler derating. The work at KILnGAS was equally successful and showed stable operation as low as 15 to 25% of rated load. Experience at the Cool Water plant provides an excellent example of the low emissions that are possible with gasification.

Schmoe, L.A.; Pietruszkiewicz, J.

1987-01-01

45

The Caterpillar Coal Gasification Facility  

E-print Network

AND BUNKER FREE SPACE IS COLLECTED IN A BAGHOUSE, FE~ER SYSTEM THE FUEL IS FED FROM THE HOPPER INTO THE TOP OF THE GASIFIER RETORT THROUGH AN AUTOMATIC COAL FEEDER SYSTEM. COAL FROM THE (100 TON) TOP BUNKERS FLOWS THROUGH A STEEL INLET COMPARTMENT... AND BUNKER FREE SPACE IS COLLECTED IN A BAGHOUSE, FE~ER SYSTEM THE FUEL IS FED FROM THE HOPPER INTO THE TOP OF THE GASIFIER RETORT THROUGH AN AUTOMATIC COAL FEEDER SYSTEM. COAL FROM THE (100 TON) TOP BUNKERS FLOWS THROUGH A STEEL INLET COMPARTMENT...

Welsh, J.; Coffeen, W. G., III

1983-01-01

46

ENCOAL mild coal gasification project. Annual report  

SciTech Connect

This document is the combination of the fourth quarter report (July--September 1993) and the 1993 annual report for the ENCOAL project. The following pages include the background and process description for the project, brief summaries of the accomplishments for the first three quarters, and a detailed fourth quarter report. Its purpose is to convey the accomplishments and current progress of the project. ENCOAL Corporation, has completed the construction of a mild gasification demonstration plant at Triton Coal Company`s Buckskin Mine near Gillette, Wyoming. The process, using Liquids From Coal (LFC) technology developed by SMC and SGI International, utilizes low-sulfur Powder River Basin coal to produce two new fuels, Process Derived Fuel (PDF) and Coal Derived Liquids (CDL). ENCOAL submitted an application to the US Department of Energy (DOE) in August 1989, soliciting joint funding of the project in the third round of the Clean Coal Technology Program. The project was selected by DOE in December, 1989 and the Cooperative Agreement approved in September, 1990. Construction, commissioning, and start-up of the ENCOAL mild coal gasification facility was completed in June of 1992, and the project is currently in the operations phase. Some plant modifications have been required and are discussed in this report.

Not Available

1993-10-01

47

Shell coal gasification plant (SCGP-1) environmental performance results  

Microsoft Academic Search

Environmental studies in slip-stream process development units at SCGP-1, Shell's advanced coal gasification demonstration plant, located near Houston, Texas, have demonstrated that the gas and water effluents from the Shell Coal Gasification Process (SCGP) are environmentally benign on a broad slate of coals. This report presents the results of those environmental studies. It contains two major subjects, which describe, respectively,

W. V. Bush; D. C. Baker; P. J. A. Tijm

1991-01-01

48

Solar coal gasification reactor with pyrolysis gas recycle  

Microsoft Academic Search

Coal (or other carbonaceous matter, such as biomass) is converted into a duct gas that is substantially free from hydrocarbons. The coal is fed into a solar reactor (10), and solar energy (20) is directed into the reactor onto coal char, creating a gasification front (16) and a pyrolysis front (12). A gasification zone (32) is produced well above the

William R. Aiman; David W. Gregg

1983-01-01

49

Fluidized bed gasification of extracted coal  

DOEpatents

Coal or similar carbonaceous solids are extracted by contacting the solids in an extraction zone with an aqueous solution having a pH above 12.0 at a temperature between 65/sup 0/C and 110/sup 0/C for a period of time sufficient to remove bitumens from the coal into said aqueous solution, and the extracted solids are then gasified at an elevated pressure and temperature in a fluidized bed gasification zone (60) wherein the density of the fluidized bed is maintained at a value above 160 kg/m/sup 3/. In a preferred embodiment of the invention, water is removed from the aqueous solution in order to redeposit the extracted bitumens onto the solids prior to the gasification step. 2 figs., 1 tab.

Aquino, D.C.; DaPrato, P.L.; Gouker, T.R.; Knoer, P.

1984-07-06

50

Catalytic coal gasification for SNG manufacture  

NASA Astrophysics Data System (ADS)

The predevelopment phase of research on the Exxon catalytic coal gasification (CCG) process was completed in early 1978 and included bench-scale research on catalyst recovery and kinetics, the operation of a 6 in. diameter times 30 ft long fluid bed gasifier, and supporting engineering studies. As part of the engineering program, a conceptual design has been developed for a pioneer commercial CCG plant producing SNG from Illinois No. 6 bituminous coal. This paper reviews the status of research and development on the CCG program and describes the conceptual design and economics for the commercial scale CCG plant.

Gallagher, J. E., Jr.; Euker, C. A., Jr.

1980-06-01

51

Fixed-bed gasification research using US coals. Volume 9. Gasification of Elkhorn bituminous coal  

SciTech Connect

A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) group. This report is the ninth volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of Elkhorn bituminous coal. The period of gasificastion test was September 13 to October 12, 1983. 9 refs., 24 figs., 35 tabs.

Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

1985-05-01

52

Surface Gasification Materials Program plan for fiscal years 1985 through 1989. [KRW process, Mountain Fuel Resources Process, KILnGas process, Texaco process, Lurgi process  

SciTech Connect

This program plan for the Department of Energy Surface Gasification Materials Program (SGMP) is intended to identify those research and development needs for materials of construction for coal gasification that are appropriate for funding by the SGMP. The status and plans for research and development activities on the SGMP are discussed. Projects completed in FY 1984, those currently in progress, and those planned for initiation during the period FY 1986 through FY 1989 are discussed. Budget estimates for the projects are also presented. 43 refs., 7 figs., 4 tabs.

Judkins, R.R.; Bradley, R.A.

1985-08-01

53

Wabash River coal gasification repowering project: Public design report  

SciTech Connect

The Wabash River Coal Gasification Repowering Project (the Project), conceived in October of 1990 and selected by the US Department of Energy as a Clean Coal IV demonstration project in September 1991, is expected to begin commercial operations in August of 1995. The Participants, Destec Energy, Inc., (Destec) of Houston, Texas and PSI Energy, Inc., (PSI) of Plainfield, Indiana, formed the Wabash River Coal Gasification Repowering Project Joint Venture (the JV) to participate in the DOE`s Clean Coal Technology (CCT) program by demonstrating the coal gasification repowering of an existing 1950`s vintage generating unit affected by the Clean Air Act Amendments (CAAA). The Participants, acting through the JV, signed the Cooperative Agreement with the DOE in July 1992. The Participants jointly developed, and separately designed, constructed, own, and will operate an integrated coal gasification combined cycle (CGCC) power plant using Destec`s coal gasification technology to repower Unit {number_sign}1 at PSI`s Wabash River Generating Station located in Terre Haute, Indiana. PSI is responsible for the new power generation facilities and modification of the existing unit, while Destec is responsible for the coal gasification plant. The Project demonstrates integration of the pre-existing steam turbine generator, auxiliaries, and coal handling facilities with a new combustion turbine generator/heat recovery steam generator tandem and the coal gasification facilities.

NONE

1995-07-01

54

FUGITIVE EMISSION TESTING AT THE KOSOVO COAL GASIFICATION PLANT  

EPA Science Inventory

The report summarizes results of a test program to characterize fugitive emissions from the Kosovo coal gasification plant in Yugoslavia, a test program implemented by the EPA in response to a need for representative data on the potential environmental impacts of Lurgi coal gasif...

55

Coal Integrated Gasification Fuel Cell System Study  

SciTech Connect

This study analyzes the performance and economics of power generation systems based on Solid Oxide Fuel Cell (SOFC) technology and fueled by gasified coal. System concepts that integrate a coal gasifier with a SOFC, a gas turbine, and a steam turbine were developed and analyzed for plant sizes in excess of 200 MW. Two alternative integration configurations were selected with projected system efficiency of over 53% on a HHV basis, or about 10 percentage points higher than that of the state-of-the-art Integrated Gasification Combined Cycle (IGCC) systems. The initial cost of both selected configurations was found to be comparable with the IGCC system costs at approximately $1700/kW. An absorption-based CO2 isolation scheme was developed, and its penalty on the system performance and cost was estimated to be less approximately 2.7% and $370/kW. Technology gaps and required engineering development efforts were identified and evaluated.

Chellappa Balan; Debashis Dey; Sukru-Alper Eker; Max Peter; Pavel Sokolov; Greg Wotzak

2004-01-31

56

Fixed-bed gasification research using US coals. Volume 10. Gasification of Benton lignite  

SciTech Connect

A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report is the tenth volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of Benton lignite. The period of gasification test was November 1-8, 1983. 16 refs., 22 figs., 19 tabs.

Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

1985-05-01

57

Wastewater treatment manual for coal gasification-combined-cycle power plants  

SciTech Connect

The three-volume Wastewater Treatment Manual for GCC Power Plants presents a programmed methodology for the informed user to conceive and develop, size, and cost a wastewater treatment system for the gasification and gas cleanup areas of an integrated gasification-combined cycle (GCC) power plant. Based on the limited information likely to be available at the conceptual level of GCC project development (e.g., gasifier type and coal analysis), the manual first provides information on how to characterize gasification wastewaters from moving-bed and entrained-flow gasification processes. It then provides information on applicable wastewater discharage standards and effluent reuse criteria as a means of establishing the treatment system performance goals. Given these data, the user is guided through a series of worksheets and examples in the development of one or more conceptual-level process flowsheets for an appropriate wastewater treatment system. Detailed information is provided for 28 wastewater treatment processes that may have applicability in a variety of flowsheet configurations. Another series of worksheets allows the calculation of flow and material balances that permit the conceptual-level sizing of treatment equipment. Order-of-magnitude capital and operating costs are calculated from cost curves based on these sizing criteria. Worksheets also are provided for the calculation of levelized revenue requirements, which affords a relatively fast and easy means by which to compare the costs of alternative process flowsheets. Two annotated samples are provided for the Texaco and Shell gasification processes as a means of fully conveying the manual's methodology. Each sample illustrates the characterization of wastewater sources, the development of a treatment process flowsheet, sizing of the necessary equipment, and the development of cost estimates.

Rosain, R.M.; Davis, M.W.; York, R.J.; Craveoro de Sa, F.A.; Peterson, D.L.; Eis, B.J. (CH2M Hill, Bellevue, WA (United States))

1992-12-01

58

Wastewater treatment manual for coal gasification-combined-cycle power plants  

SciTech Connect

The three-volume Wastewater Treatment Manual for GCC Power Plants presents a programmed methodology for the informed user to conceive and develop, size, and cost a wastewater treatment system for the gasification and gas cleanup areas of an integrated gasification-combined cycle (GCC) power plant. Based on the limited information likely to be available at the conceptual level of GCC project development (e.g., gasifier type and coal analysis), the manual first provides information on how to characterize gasification wastewaters from moving-bed and entrained-flow gasification processes. It then provides information on applicable wastewater discharge standards and effluent reuse criteria as a means of establishing the treatment system performance goals. Given these data, the user is guided through a series of worksheets and examples in the development of one or more conceptual-level process flowsheets for an appropriate wastewater treatment system. Detailed information is provided for 28 wastewater treatment processes that may have applicability in a variety of flowsheet configurations. Another series of worksheets allows the calculation of flow and material balances that permit the conceptual-level sizing of treatment equipment. Order-of-magnitude capital and operating costs are calculated from cost curves based on these sizing criteria. Worksheets also are provided for the calculation of levelized revenue requirements, which affords a relatively fast and easy means by which to compare the costs of altemative process flowsheets. Two annotated examples are provided for the Texaco and Shell gasification processes as a means of fully conveying the manual's methodology. Each example illustrates the characterization of wastewater sources, the development of a treatment process flowsheet, sizing of the necessary equipment, and the development of cost estimates

Rosain, R.M.; Davis, M.W.; York, R.J.; Craveiro de Sa, F.A.; Peterson, D.L.; Eis, B.J. (CH2M Hill, Bellevue, WA (United States))

1992-12-01

59

Coal gasification systems engineering and analysis. Appendix A: Coal gasification catalog  

NASA Technical Reports Server (NTRS)

The scope of work in preparing the Coal Gasification Data Catalog included the following subtasks: (1) candidate system subsystem definition, (2) raw materials analysis, (3) market analysis for by-products, (4) alternate products analysis, (5) preliminary integrated facility requirements. Definition of candidate systems/subsystems includes the identity of and alternates for each process unit, raw material requirements, and the cost and design drivers for each process design.

1980-01-01

60

Fixed-bed gasification research using US coals. Volume 9. Gasification of Elkhorn bituminous coal  

Microsoft Academic Search

A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) group. This

D. Thimsen; R. E. Maurer; A. R. Pooler; D. Pui; B. Liu; D. Kittelson

1985-01-01

61

Fixed-bed gasification research using US coals. Volume 14. Gasification of Kemmerer subbituminous coal  

Microsoft Academic Search

A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) group. This

D. Thimsen; R. E. Maurer; A. R. Pooler; D. Pui; B. Liu; D. Kittelson

1985-01-01

62

Fixed-bed gasification research using US coals. Volume 4. Gasification of Leucite Hills subbituminous coal  

Microsoft Academic Search

A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This

D. Thimsen; R. E. Maurer; A. R. Pooler; D. Pui; B. Liu; D. Kittelson

1985-01-01

63

Fixed-bed gasification research using US coals. Volume 7. Gasification of Piney Tipple bituminous coal  

Microsoft Academic Search

A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This

D. Thimsen; R. E. Maurer; A. R. Pooler; D. Pui; B. Liu; D. Kittelson

1985-01-01

64

Fixed-bed gasification research using US coals. Volume 13. Gasification of Blind Canyon bituminous coal  

Microsoft Academic Search

A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This

D. Thimsen; R. E. Maurer; A. R. Pooler; D. Pui; B. Liu; D. Kittelson

1985-01-01

65

Fixed-bed gasification research using US coals. Volume 5. Gasification of Stahlman Stoker bituminous coal  

Microsoft Academic Search

A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This

D. Thimsen; R. E. Maurer; A. R. Pooler; D. Pui; B. Liu; D. Kittelson

1985-01-01

66

Fixed-bed gasification research using US coals. Volume 15. Gasification of ''fresh'' Rosebud subbituminous coal  

Microsoft Academic Search

A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and government agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) group. This

D. Thimsen; R. E. Maurer; A. R. Pooler; D. Pui; B. Liu; D. Kittelson

1985-01-01

67

Coal gasification. Quarterly report, July-September 1979  

SciTech Connect

The status of 18 coal gasification pilot plants or supporting projects supported by US DOE is reviewed under the following headings: company involved, location, contract number, funding, gasification process, history, process description, flowsheet and progress in the July-September 1979 quarter. (LTN)

None

1980-07-01

68

The suitability of coal gasification in India's energy sector  

E-print Network

Integrated Gasification Combined Cycle (IGCC), an advanced coal-based power generation technology, may be an important technology to help India meet its future power needs. It has the potential to provide higher generating ...

Simpson, Lori Allison

2006-01-01

69

Combustion front propagation in underground coal gasification  

SciTech Connect

Reverse Combustion (RC) enhances coal seam permeability prior to Underground Coal Gasification. Understanding RC is necessary to improve its reliability and economics. A curved RC front propagation model is developed, then solved by high activation energy asymptotics. It explicitly incorporates extinction (stoichiometric and thermal) and tangential heat transport (THT) (convection and conduction). THT arises from variation in combustion front temperature caused by tangential variation in the oxidant gas flux to the channel surface. Front temperature depends only weakly on THT; front velocity is strongly affected, with heat loss slowing propagation. The front propagation speed displays a maximum with respect to gas flux. Combustion promoters speed front propagation; inhibitors slow front propagation. The propagation model is incorporated into 2-D simulations of RC channel evolution utilizing the boundary element method with cubic hermetian elements to solve the flow from gas injection wells through the coal to the convoluted, temporally evolving, channel surface, and through the channel to a gas production well. RC channel propagation is studied using 17 cm diameter subbituminous horizontally drilled coal cores. Sixteen experiments at pressures between 2000 and 3600 kPa, injected gas oxygen contents between 21% and 75%, and flows between 1 and 4 standard liters per minute are described. Similarity analysis led to scaling-down of large RC ({approx}1 m) to laboratory scale ({approx}5 cm). Propagation velocity shows a strong synergistic increase at high levels of oxygen, pressure, and gas flow. Char combustion is observed, leaving ash-filled, irregularly shaped channels. Cracks are observed to penetrate the char zone surrounding the channel cores. 69 refs., 54 figs., 4 tabs.

Dobbs, R.L. II; Krantz, W.B.

1990-10-01

70

Wastewater treatment manual for coal gasification-combined-cycle power plants  

SciTech Connect

The three-volume Wastewater Treatment Manual for GCC Power Plants presents a programmed methodology for the informed user to conceive and develop, size, and cost a wastewater treatment system for the gasification and gas cleanup areas of an integrated gasification-combined cycle (GCC) power plant. Based on the limited information likely to be available at the conceptual level of GCC project development (e.g., gasifier type and coal analysis), the manual first provides information on how to characterize gasification wastewaters from moving-bed and entrained-flow gasification processes. It then provides information on applicable wastewater discharge standards and effluent reuse criteria as a means of establishing the treatment system performance goals. Given these data, the user is guided through a series of worksheets and examples in the development of one or more conceptual-level process flowsheets for an appropriate wastewater treatment system. Detailed information is provided for 28 wastewater treatment processes that may have applicability in a variety of flowsheet configurations. Another series of worksheets allows the calculation of flow and material balances that permit the conceptual-level sizing of treatment equipment. Order-of-magnitude capital and operating costs are calculated from cost curves based on these sizing criteria. Worksheets also are provided for the calculation of levelized revenue requirements, which affords a relatively fast and easy means by which to compare the costs of alternative process flowsheets. Two annotated examples are provided for the Texaco and Shell gasiflcation processes as a means of fully conveying the manual's methodology. Each example illustrates the characterization of wastewater sources, the development of a treatment process flowsheet, sizing of the necessary equipment, and the development of cost estimates.

Rosain, R.M.; Davis, M.W.; York, R.J.; Craveiro de Sa, F.A.; Peterson, D.L.; Eis, B.J. (CH2M Hill, Bellevue, WA (United States))

1992-12-01

71

Start-up method for coal gasification plant  

SciTech Connect

A method is disclosed for initiating operation of a coal gasification plant which includes a gasification reactor and gas cleansing apparatus fabricated in part from materials susceptible to chloride induced stress corrosion cracking the presence of oxygen. The reactor is preheated by combusting a stoichiometric mixture of air and fuel to produce an exhaust gas which is then diluted with steam to produce product gas which contains essentially no free oxygen. The product gas heats the reactor to a temperature profile necessary to maintain autothermic operation of the gasification process while maintaining air oxygen-free environment within the plant apparatus while chlorine is liberated from coal being gasified.

Farnia, K.; Petit, P.J.

1983-04-05

72

The effects of gas-turbine characteristics on integrated gasification combined-cycle power-plant performance  

Microsoft Academic Search

This study examines how gas turbine specifications affect the performance of Integrated Gasification Combined-Cycle (IGCC) power plants. Three gas turbines characterized as current, advanced, and future technology machines (with turbine firing temperatures of 1985 F, 2300 F, and 2500 F, respectively) were simulated in computer models of IGCC plants based on Texaco coal gasification technology. A gas turbine modeling procedure

Johnson

1990-01-01

73

The PSI Energy Wabash River Coal Gasification Repowering Project  

SciTech Connect

This paper discusses the Wabash River Coal Gasification Repowering Project which will develop, design, construct, own, and operate a coal gasification combined cycle (CGCC) power plant. Coal gasification technology will be used to repower one of six units at PSI's Wabash River Generating Station in West Terre Haute, Indiana. The CGCC power plant will produce a nominal 270 net MW of clean, energy efficient, capacity for PSI's customers. In the repowered configuration, PSI and its customers may additionally benefit because of the role this Project could play in PSI's compliance pan under the CAAA regulations. The Project will use locally mined, high sulfur coal. Upon completion, the Project will not only represent the largest CGCC power plant (in operation in the United States), but will also emit lower emissions than most other high sulfur coal-fired power plants.

Bott, J.U. (PSI Energy, Inc., Plainfield, IN (US)); Sundstrom, D.G. (Destec Energy, Inc., Houston, TX (US))

1992-01-01

74

Coal gasification; An alternative energy source is coming of age  

Microsoft Academic Search

This paper reports on concerns over continued U.S. dependence on imported oil, and more importantly, increasing environmental restrictions on conventional power plants that are driving research and development of alternative energy sources. One alternative energy process being developed is coal gasification, which involves converting coal to a synthetic gas by heating it under pressure and burning that gas as a

Valenti

1992-01-01

75

Effects of aquifer interconnection resulting from underground coal gasification  

Microsoft Academic Search

An investigation was conducted to evaluate the effects of aquifer interconnection caused by the collapse of cavities formed in coal seams by two small underground coal gasification experiments in the Powder River Basin, Wyoming. The main objective of the work was to assess the magnitude and extent of changes in the ground-water flow patterns near the sites of the two

R. Stone; E. Raber; A. M. Winslow

2009-01-01

76

Effects of aquifer interconnection resulting from underground coal gasification  

Microsoft Academic Search

Lawrence Livermore National Laboratory evaluated the effects of aquifer interconnection caused by the collapse of cavities formed in coal seams by two small underground coal gasification experiments in the Powder River Basin, Wyoming. Flow models and field measurements were used to show that the water from one or both of the upper aquifers enters the collapse, rubble and flows down

Randolph Stone; Ellen Raber; Alan M. Winslow

1983-01-01

77

Shell coal gasification plant (SCGP-1) environmental performance results  

SciTech Connect

Environmental studies in slip-stream process development units at SCGP-1, Shell's advanced coal gasification demonstration plant, located near Houston, Texas, have demonstrated that the gas and water effluents from the Shell Coal Gasification Process (SCGP) are environmentally benign on a broad slate of coals. This report presents the results of those environmental studies. It contains two major subjects, which describe, respectively, the experiments on gas treating and the experiments on water treating. Gas treatment focused on the performance of aqueous methyldiethanolamine (MDEA) and sulfinol-M. 8 refs., 24 figs., 13 tabs.

Bush, W.V.; Baker, D.C.; Tijm, P.J.A. (Shell Development Co., Houston, TX (United States))

1991-07-01

78

Fixed-bed gasification research using US coals. Volume 6. Gasification of delayed petroleum coke  

SciTech Connect

A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report is the sixth volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of delayed petroleum coke from Pine Bend, MN. The period of the gasification test was June 1-17, 1983. 2 refs., 15 figs., 22 tabs.

Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

1985-05-01

79

Development program to support industrial coal gasification. Quarterly report 1  

SciTech Connect

The Development Program to Support Industrial Coal Gasification is on schedule. The efforts have centered on collecting background information and data, planning, and getting the experimental program underway. The three principal objectives in Task I-A were accomplished. The technical literature was reviewed, the coals and binders to be employed were selected, and tests and testing equipment to be used in evaluating agglomerates were developed. The entire Erie Mining facility design was reviewed and a large portion of the fluidized-bed coal gasification plant design was completed. Much of the work in Task I will be experimental. Wafer-briquette and roll-briquette screening tests will be performed. In Task II, work on the fluidized-bed gasification plant design will be completed and work on a plant design involving entrained-flow gasifiers will be initiated.

None

1982-01-15

80

Fixed-bed gasification research using US coals. Volume 17. Gasification and liquids recovery of four US coals  

SciTech Connect

A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and government agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) group. This report is the seventeenth in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This report describes the gasification and pyrolysis liquids recovery test for four different coals: Illinois No. 6, SUFCO, Indianhead lignite, and Hiawatha. This test series spanned from July 15, 1985, through July 28, 1985. 4 refs., 16 figs., 19 tabs.

Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

1985-12-01

81

Fixed-bed gasification research using US coals. Volume 3. Gasification of Rosebud sub-bituminous coal  

SciTech Connect

A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report is the third volume in a series of documents prepared by Black, Sivalls and Bryson, Incorporated and describes the gasification of Rosebud subbituminous coal during the time period November 2-20, 1982. Test results and data are presented for the gasification of the coal and the operation of a slipstream tar scrubber to cool the gas and remove condensed tar. 5 refs., 29 figs., 18 tabs.

Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

1985-03-31

82

The Role of Oxygen in Coal Gasification  

E-print Network

gasification combined-cycle (IGCC) power generation and methanol synthesis. The potential impact of a non-cryogenic air separation process currently under development is examined based on integration with a high temperature processes....

Klosek, J.; Smith, A. R.; Solomon, J.

83

An improved model for fixed bed coal combustion and gasification  

Microsoft Academic Search

An improved one-dimensional model for countercurrent oxidation and gasification of coal in fixed or slowly moving beds has been developed. The model incorporates an advanced devolatilization submodel that can predict the evolution rates and the yields of individual gas species and tar. A split, back-and-forth, shooting method is implemented to satisfy exactly the boundary conditions for both the feed coal

Predrag T. Radulovic; M. Usman Ghani; L. Douglas Smoot

1995-01-01

84

Highly active catalysts from inexpensive raw materials for coal gasification  

Microsoft Academic Search

The present review article focuses on novel methods of converting inexpensive raw materials to active catalysts for low-temperature coal gasification, which can produce clean fuels and valuable feedstock with high thermal efficiency. Precipitation methods using NH3, urea, and Ca(OH)2 make it possible to prepare active, Cl-free iron catalysts on brown coals from an aqueous solution of FeCl3 as the major

Yasuo Ohtsuka; Kenji Asami

1997-01-01

85

Preparation and gasification of a Thailand coal-water fuel  

SciTech Connect

In response to an inquiry by the Department of Mineral Resources (DMR) in Thailand, the Energy and Environmental Research Center (EERC) prepared a four-task program to assess the responsiveness of Wiang Haeng coal to the temperature and pressure conditions of hot-water drying (HWD). The results indicate that HWD made several improvements in the coal, notably increases in heating value and carbon content and reductions in equilibrium moisture and oxygen content. The equilibrium moisture content decreased from 37.4 wt% for the raw coal to about 20 wt% for the HWD coals. The energy density, determined at 500 cP, indicates an increase from 4450 to 6650 Btu/lb by hydrothermal treatment. Raw and HWD coal were then gasified at various mild gasification conditions of 700 C and 30 psig. The tests indicated that the coal is probably similar to other low-rank coals and will produce high levels of hydrogen and be fairly reactive.

Ness, R.O. Jr.; Anderson, C.M.; Musich, M.A.; Richter, J.J.; Dewall, R.A.; Young, B.C. [Univ. of North Dakota, Grand Forks, ND (United States). Energy and Environmental Research Center; Nakanart, A. [Ministry of Industry, Bangkok (Thailand)

1996-12-31

86

Prospects for high-temperature gasification of coal and sludge  

NASA Astrophysics Data System (ADS)

Results from an experimental research work aimed at studying gasification of carbonized coal and sludge in high-temperature steam are reported. The component composition of the obtained gaseous phase and the results from calculation of carbon conversion rate are given.

Bogomolov, A. R.; Shevyrev, S. A.; Alekseev, M. V.

2013-02-01

87

Experiments on ultrasonic thermometry for wet-ash coal gasification  

Microsoft Academic Search

Ultrasonic thermometry may be a solution for the problem of temperature monitoring of the reactor in a coal gasification plant. The technique offers fast determination of the temperature profile along a line by measurement of the propagation velocity of an ultrasonic signal through a thin massive rod with a number of reflecting nodges. The thermometer rod in a wet ash

K. Schoonderwoerd; R. Hunik

1990-01-01

88

Solar coal-gasification reactor with pyrolysis-gas recycle. [Patent application  

Microsoft Academic Search

Coal (or other carbonaceous matter, such as biomass) is converted into a product gas that is substantially free from hydrocarbons. The coal is fed into a solar reactor, and solar energy is directed into the reactor onto coal char, creating a gasification front and a pyrolysis front. A gasification zone is produced well above the coal level within the reactor.

W. R. Aiman; D. W. Gregg

1981-01-01

89

Integrated coal cleaning, liquefaction, and gasification process  

DOEpatents

Coal is finely ground and cleaned so as to preferentially remove denser ash-containing particles along with some coal. The resulting cleaned coal portion having reduced ash content is then fed to a coal hydrogenation system for the production of desirable hydrocarbon gases and liquid products. The remaining ash-enriched coal portion is gasified to produce a synthesis gas, the ash is removed from the gasifier usually as slag, and the synthesis gas is shift converted with steam and purified to produce the high purity hydrogen needed in the coal hydrogenation system. This overall process increases the utilization of as-mined coal, reduces the problems associated with ash in the liquefaction-hydrogenation system, and permits a desirable simplification of a liquids-solids separation step otherwise required in the coal hydrogenation system.

Chervenak, Michael C. (Pennington, NJ)

1980-01-01

90

Effect of petroleum coke addition on coal gasification  

NASA Astrophysics Data System (ADS)

The main fuel for power generation is combustion of coal and/or natural gas. Natural gas is expensive but clean and less problematic, whereas coal is the reverse of natural gas. Natural gas resources are expected to last until 2020 where else coal has another 200 years expectancy. To replace the natural gas, synthetic gas (syngas) can be used as a substitute fuel. Syngas can be produced using coal as fuel. In this study we blend petcoke, a cheap solid carboneous fuel as an alternative to coal for the production of syngas using a 30 Kwattheat bubbling fluidized bed gasifier. The equivalent ratio (ER) was set at 2.8 and a gasification temperature was maintained between 680 to 710°C by manipulating between the feed flow rates and fluidizing medium. This condition was chosen as it proved to be the optimum based on the work by the same group. Various blend of coal:petcoke between 0 to 100% was analyzed. It was found that a 20:80, petcoke to coal gives a good correlation with 100% coal gasification.

Sinnathambi, Chandra Mohan; Najib, Nur Khadijah Mohamad

2014-10-01

91

Kosova coal gasification plant health effects study: Volume 1, Summary  

SciTech Connect

This is the summary volume of a three-volume report of the Kosova coal gasification plant health effects study. The plant is of the Lurgi type and began commercial operation in 1971. The study was conducted under the auspices of the U.S.-Yugoslav Joint Board for Scientific and Technological Cooperation. It had five overall purposes: (1) Identify potential health risks in the gasification plant and provide information on possible control measures. (2) Use the experience in Kosova as a basis of judging potential health risks and avoiding potential problems at future commercial scale gasification plants in the United States and Yuogoslavia. (3) Acquire information on industrial hygiene practices at an operating commercial scale coal gasification plant. (4) Use the experience in Kosova to contribute to understanding dose-response relationships of exposure to complex organic mixtures. (5) Increase the scientific capabilities of scientists in Kosova in the areas of epidemiology and industrial hygiene. This report introduced the Kosova gasification plant and the study design and summarizes the preliminary studies of 1981 to 1983, the detailed characterization campaign of 1984, the retrospective epidemiology study, ongoing clinical studies, and the successful technology transfer. It presents conclusions and recommendations from the industrial hygiene and epidemiology studies. 18 refs.

Morris, S.C.; Jackson, J.O.; Haxhiu, M.A.

1987-03-01

92

The effects of pressure on coal reactions during pulverised coal combustion and gasification  

Microsoft Academic Search

Advanced clean coal technologies, e.g. power generation from integrated gasification combined cycle (IGCC) and pressurised fluidised bed combustor, have attracted increased interest from the scientific and technological communities over the last few decades. Pressures up to 40atm have been applied to these technologies, which inherently result in an increase in coal throughput, a reduction in pollutant emissions and an enhancement

Terry F. Wall; Gui-su Liu; Hong-wei Wu; Daniel G. Roberts; Kathy E. Benfell; Sushil Gupta; John A. Lucas; David J. Harris

2002-01-01

93

Calderon coal gasification Process Development Unit design and test program  

SciTech Connect

The Process Development Unit (PDU) was designed and constructed to demonstrate the novel Calderon gasification/hot gas cleanup process. in the process, run-of-mine high sulfur coal is first pyrolyzed to recover a rich gas (medium Btu gas), after which the resulting char is subjected to airblown gasification to yield a lean gas (low Btu gas). The process incorporates a proprietary integrated system for the conversion of coal to gases and for the hot cleanup of the gases which removes both particulate and sulfur components of the gaseous products. The yields are: a syngas (CO and H{sub 2} mix) suitable for further conversion to liquid fuel (e.g. methanol/gasoline), and a lean gas suitable to fuel the combustion turbine of a combined cycle power generation plant with very low levels of NO{sub x} (15 ppmv). The fused slag (from the gasified char ash content) and the sulfur recovered during the hot gas cleanup will be sold as by-products. The small quantity of spent sorbent generated will be combined with the coal feed as a fluxing agent for the slag. The small quantity of wastewater from slag drainings and steam generation blowdown will be mixed with the coal feed for disposal. The Calderon gasification/hot gas cleanup, which is a completely closed system, operates at a pressure suitable for combined cycle power generation.

Calderon, A.; Madison, E.; Probert, P.

1992-11-01

94

Calderon coal gasification Process Development Unit design and test program  

SciTech Connect

The Process Development Unit (PDU) was designed and constructed to demonstrate the novel Calderon gasification/hot gas cleanup process. in the process, run-of-mine high sulfur coal is first pyrolyzed to recover a rich gas (medium Btu gas), after which the resulting char is subjected to airblown gasification to yield a lean gas (low Btu gas). The process incorporates a proprietary integrated system for the conversion of coal to gases and for the hot cleanup of the gases which removes both particulate and sulfur components of the gaseous products. The yields are: a syngas (CO and H[sub 2] mix) suitable for further conversion to liquid fuel (e.g. methanol/gasoline), and a lean gas suitable to fuel the combustion turbine of a combined cycle power generation plant with very low levels of NO[sub x] (15 ppmv). The fused slag (from the gasified char ash content) and the sulfur recovered during the hot gas cleanup will be sold as by-products. The small quantity of spent sorbent generated will be combined with the coal feed as a fluxing agent for the slag. The small quantity of wastewater from slag drainings and steam generation blowdown will be mixed with the coal feed for disposal. The Calderon gasification/hot gas cleanup, which is a completely closed system, operates at a pressure suitable for combined cycle power generation.

Calderon, A.; Madison, E.; Probert, P.

1992-01-01

95

Method for gasification of deep, thin coal seams  

DOEpatents

A method of gasification of coal in deep, thin seams by using controlled bending subsidence to confine gas flow to a region close to the unconsumed coal face. The injection point is moved sequentially around the perimeter of a coal removal area from a production well to sweep out the area to cause the controlled bending subsidence. The injection holes are drilled vertically into the coal seam through the overburden or horizontally into the seam from an exposed coal face. The method is particularly applicable to deep, thin seams found in the eastern United States and at abandoned strip mines where thin seams were surface mined into a hillside or down a modest dip until the overburden became too thick for further mining.

Gregg, David W. (Moraga, CA)

1982-01-01

96

Method for gasification of deep, thin coal seams. [DOE patent  

DOEpatents

A method of gasification of coal in deep, thin seams by using controlled bending subsidence to confine gas flow to a region close to the unconsumed coal face is given. The injection point is moved sequentially around the perimeter of a coal removal area from a production well to sweep out the area to cause the controlled bending subsidence. The injection holes are drilled vertically into the coal seam through the overburden or horizontally into the seam from an exposed coal face. The method is particularly applicable to deep, thin seams found in the eastern United States and at abandoned strip mines where thin seams were surface mined into a hillside or down a modest dip until the overburden became too thick for further mining.

Gregg, D.W.

1980-08-29

97

Fixed-bed gasification research using US coals. Volume 6. Gasification of delayed petroleum coke  

Microsoft Academic Search

A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This

D. Thimsen; R. E. Maurer; A. R. Pooler; D. Pui; B. Liu; D. Kittelson

1985-01-01

98

Fixed-bed gasification research using US coals. Volume 10. Gasification of Benton lignite  

Microsoft Academic Search

A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This

D. Thimsen; R. E. Maurer; A. R. Pooler; D. Pui; B. Liu; D. Kittelson

1985-01-01

99

Research in France on Underground Coal Gasification.  

National Technical Information Service (NTIS)

The program of research from 1979 to 1984 corresponds to a budget of 155 million francs and includes theoretical studies, laboratory work and experiments on site. At the depths considered, coal is compact and not permeable. Numerical models of gasificatio...

G. Donat

1983-01-01

100

Oxy-co-gasification of coal and biomass in an integrated gasification combined cycle (IGCC) power plant  

Microsoft Academic Search

Oxy-gasification, or oxygen-blown gasification, enables a clean and efficient use of coal and opens a promising way to CO2 capture. Moreover, oxy-co-gasification with biomass implies the use of a renewable resource and additional CO2 reduction. Proper gasifier operation is a key issue in both techniques. A model of an entrained flow gasifier, validated with nearby 3000 actual steady-state operation data

Antonio Valero; Sergio Usón

2006-01-01

101

Adaptation of CONCHAS-SPRAY to entrained coal gasification studies  

Microsoft Academic Search

The CONCHAS-SPRAY computer code was originally designed to study the coupled fluid dynamics, heat transfer, chemical reactions, and fuel spray dynamics of an engine-cylinder submodel of an internal combustion engine. This report describes the modifications and additions that were made in the physical and chemical submodels of CONCHAS-SPRAY, in order to study entrained coal gasification processes. These include a nonequilibrium

B. J. Daly; W. A. Jr. Stark

1985-01-01

102

The ENCOAL Mild Coal Gasification Project, A DOE Assessment  

SciTech Connect

This report is a post-project assessment of the ENCOAL{reg_sign} Mild Coal Gasification Project, which was selected under Round III of the U.S. Department of Energy (DOE) Clean Coal Technology (CCT) Demonstration Program. The CCT Demonstration Program is a government and industry cofunded technology development effort to demonstrate a new generation of innovative coal utilization processes in a series of commercial-scale facilities. The ENCOAL{reg_sign} Corporation, a wholly-owned subsidiary of Bluegrass Coal Development Company (formerly SMC Mining Company), which is a subsidiary of Ziegler Coal Holding Company, submitted an application to the DOE in August 1989, soliciting joint funding of the project in the third round of the CCT Program. The project was selected by DOE in December 1989, and the Cooperative Agreement (CA) was approved in September 1990. Construction, commissioning, and start-up of the ENCOAL{reg_sign} mild coal gasification facility was completed in June 1992. In October 1994, ENCOAL{reg_sign} was granted a two-year extension of the CA with the DOE, that carried through to September 17, 1996. ENCOAL{reg_sign} was then granted a six-month, no-cost extension through March 17, 1997. Overall, DOE provided 50 percent of the total project cost of $90,664,000. ENCOAL{reg_sign} operated the 1,000-ton-per-day mild gasification demonstration plant at Triton Coal Company's Buckskin Mine near Gillette, Wyoming, for over four years. The process, using Liquids From Coal (LFC{trademark}) technology originally developed by SMC Mining Company and SGI International, utilizes low-sulfur Powder River Basin (PRB) coal to produce two new fuels, Process-Derived Fuel (PDF{trademark}) and Coal-Derived Liquids (CDL{trademark}). The products, as alternative fuel sources, are capable of significantly lowering current sulfur emissions at industrial and utility boiler sites throughout the nation thus reducing pollutants causing acid rain. In support of this overall objective, the following goals were established for the ENCOAL{reg_sign} Project: Provide sufficient quantity of products for full-scale test burns; Develop data for the design of future commercial plants; Demonstrate plant and process performance; Provide capital and O&M cost data; and Support future LFC{trademark} technology licensing efforts. Each of these goals has been met and exceeded. The plant has been in operation for nearly 5 years, during which the LFC{trademark} process has been demonstrated and refined. Fuels were made, successfully burned, and a commercial-scale plant is now under contract for design and construction.

National Energy Technology Laboratory

2002-03-15

103

Fixed-bed gasification research using US coals. Volume 17. Gasification and liquids recovery of four US coals  

Microsoft Academic Search

A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and government agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) group. This

D. Thimsen; R. E. Maurer; A. R. Pooler; D. Pui; B. Liu; D. Kittelson

1985-01-01

104

Fixed-bed gasification research using US coals. Volume 12. Gasification of Absaloka\\/Robinson subbituminous coal  

Microsoft Academic Search

A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial particpants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This

D. Thimsen; R. E. Maurer; A. R. Pooler; D. Pui; B. Liu; D. Kittelson

1985-01-01

105

Fixed-bed gasification research using US coals. Volume 8. Gasification of River King Illinois No. 6 bituminous coal  

Microsoft Academic Search

A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This

D. Thimsen; R. E. Maurer; A. R. Pooler; D. Pui; B. Liu; D. Kittelson

1985-01-01

106

Coal gasification: Direct applications and syntheses of chemicals and fuels: A research needs assessment  

SciTech Connect

The DOE Working Group for an Assessment of Coal-Gasification Research Needs (COGARN - coal gasification advanced research needs) has reviewed and evaluated US programs dealing with coal gasification for a variety of applications. Cost evaluations and environmental-impact assessments formed important components of the deliberations. We have examined in some depth each of the following technologies: coal gasification for electricity generation in combined-cycle systems, coal gasification for the production of synthetic natural gas, coal gasifiers for direct electricity generation in fuel cells, and coal gasification for the production of synthesis gas as a first step in the manufacture of a wide variety of chemicals and fuels. Both catalytic and non-catalytic conversion processes were considered. In addition, we have constructed an orderly, long-range research agenda on coal science, pyrolysis, and partial combustion in order to support applied research and development relating to coal gasification over the long term. The COGARN studies were performed in order to provide an independent assessment of research needs in fuel utilization that involves coal gasification as the dominant or an important component. The findings and research recommendations of COGARN are summarized in this publication.

Penner, S.S.; Alpert, S.B.; Beer, J.M.; Denn, M.; Haag, W.; Magee, R.; Reichl, E.; Rubin, E.S.; Solomon, P.R.; Wender, I.

1987-06-01

107

The BGL coal gasification process -- Applications and status  

SciTech Connect

In 1991 British Gas completed a 15 year program for the development and demonstration of the BGL gasification process for Substitute Natural Gas and power generation. The final two objectives in this program at the Westfield Development Centre of British Gas were to demonstrate the suitability of the BGL gasifier for power generation under utility load requirements using typical UK power station coals and to operate the gasifier at pressures up to 65 bar. The first part of the program was an $18 million joint demonstration with National Power and PowerGen and supported by British Coal, the UK Department of Energy and the European Community which confirmed conclusively in tests spanning 40 days of operation that the full range of available UK power station coals can be gasified at very high efficiency in the BGL Gasifier. The development program then concluded with tests on a new, purpose designed, high pressure gasifier to determine the effect of pressure on gasification performance and operability. The use of the new ABB GT 24/26 gas turbines in BGL IGCC plant is explored and the BGL IGCC project in the US Clean Coal Technology Programme (CCTV) is described briefly.

Davies, H.S.; Vierrath, H.E.; Johnson, K.S.; Kluttz, D.E.

1994-12-31

108

Fixed-bed gasification research using US coals. Volume 11. Gasification of Minnesota peat. [Peat pellets and peat sods  

SciTech Connect

A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a coooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report is the eleventh volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of peat pellets and peat sods during 3 different test periods. 2 refs., 20 figs., 13 tabs.

Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

1985-05-01

109

Vaporization, condensation, and emission of trace elements from coal gasification  

SciTech Connect

The emissions of many trace elements found in coal are regulated under the provisions of the 1990 Clean Air Act Amendments. Because the emission of an element is related to its volatility, minimization of trace element emissions from coal gasification systems requires a thorough understanding of the volatilization and condensation processes. Choosing Illinois No. 6 bituminous coal as a standard, entrained flow gasification experiments were conducted in a laboratory flow reactor under different oxidant-to-fuel ratios. Fly ash particles generated during gasification were sampled, nitrogen-quenched at approximately 10{sup 4} K/s, and size-segregated on-line using a cascade impactor and polycarbonate filter. A carbon trap was used to retain any residual vapors. Examination of the concentration of trace elements in the ash as a function of fly ash particle size revealed the differing extent of volatilization for different elements. For example, greater than 20% of the Se, Zn, and As vaporized under these conditions. In contrast, less than 1% of the U and Cr vaporized. Using these experimental data to define initial conditions, equilibrium calculations were conducted to identify the most probable gas-phase species for the elements Zn, As, and Se. These results were, in turn, sued to set input conditions for experiments designed to assess the feasibility of capturing these three elements with a sorbent at 550--650 C, temperatures associated with high-temperature sulfur removal. These experiments indicated that all three elements could be removed from the gas stream with silicate sorbents, suggesting that coal ash might be an effective sorbent material.

Helble, J.J.; Senior, C.L.; Morency, J.R.

1995-12-31

110

Encoal mild coal gasification project: Commercial plant feasibility study  

SciTech Connect

In order to determine the viability of any Liquids from Coal (LFC) commercial venture, TEK-KOL and its partner, Mitsubishi Heavy Industries (MHI), have put together a technical and economic feasibility study for a commercial-size LFC Plant located at Zeigler Coal Holding Company`s North Rochelle Mine site. This resulting document, the ENCOAL Mild Coal Gasification Plant: Commercial Plant Feasibility Study, includes basic plant design, capital estimates, market assessment for coproducts, operating cost assessments, and overall financial evaluation for a generic Powder River Basin based plant. This document and format closely resembles a typical Phase II study as assembled by the TEK-KOL Partnership to evaluate potential sites for LFC commercial facilities around the world.

NONE

1997-07-01

111

Solar gasification of coal, activated carbon, coke and coal and biomass mixtures  

Microsoft Academic Search

The gasification of subbituminous coal, activated carbon, coke and a mixture of coal and biomass by direct solar irradiation in a solar furnace is investigated. Sunlight concentrated by a 23-kW solar furnace was focused directly on the fuel being gasified in a gravity-fed gasifier through a window in the reactor, and steam or CO2 was passed through the bed to

D. W. Gregg; R. W. Taylor; J. H. Campbell; J. R. Taylor; A. Cotton

1980-01-01

112

Separation of products from mild coal gasification processes  

SciTech Connect

The primary mild coal gasification product mixture containing noncondensible gas, high-boiling hydrocarbon vapors and entrained fines is difficult to process into the desired pure products: gas, liquids, and dry solids. This challenge for mild coal gasification process development has been studied by surveying the technical literature for suitable separations processes and for similar issues in related processes. The choice for a first-stage solids separation step is standard cyclones, arranged in parallel trains for large-volume applications in order to take advantage of the higher separation efficiency of smaller cyclones. However, mild gasification pilot-plant data show entrainment of ultrafine particles for which standard cyclones have poor separation efficiency. A hot secondary solids separation step is needed for the ultrafine entrainment in order to protect the liquid product from excessive amounts of contaminating solids. The secondary solids separation step is similar to many high-temperature flue-gas applications with an important complicating condition: Mild gasifier vapors form coke on surfaces in contact with the vapors. Plugging of the filter medium by coke deposition is concluded to be the main product separation problem for mild gasification. Three approaches to solution of this problem are discussed in the order of preference: (1) a barrier filter medium made of a perforated foil that is easy to regenerate, (2) a high-efficiency cyclone coupled with recycle of a solids-containing tar fraction for coking/cracking in the gasifier, and (3) a granular moving bed filter with regeneration of the bed material. The condensation of oil vapors diluted by noncondensible gas is analyzed thermodynamically, and the conclusion is that existing commercial oil fractionator designs are adequate as long as the vapor stream does not contain excessive amounts of solids. 34 refs., 4 figs.

Wallman, P.H.

1991-09-11

113

COAL GASIFICATION ENVIRONMENTAL DATA SUMMARY: LOW- AND MEDIUM-BTU WASTEWATERS  

EPA Science Inventory

The report is a compilation of environmental characterization data for wastewaters from low- and medium-Btu coal gasification facilities. Fixed-bed, entrained-bed, and ash-agglomerating fluidized-bed coal gasification processes were examined. The fixed-bed gasifiers are the Chapm...

114

Numerical simulation on three-dimensional nonlinear and unstable seepage of fluid in underground coal gasification  

Microsoft Academic Search

Nonlinear seepage movement characteristics of fluid in underground coal gasification (UCG) are studied in this paper. On the basis of a model experiment, via the analysis of seepage field distribution and its change patterns in the process of coal gasification in the gasifier, the mathematical models of three-dimensional unstable and nonlinear seepage are established. The selection method of choosing major

Lanhe Yang

2003-01-01

115

Study on the genotoxicity of 13 mild coal gasification products  

SciTech Connect

Mild gasification of coal is a technology being developed by the United States Department of Energy and private industry with the hope that a cleaner use of coal can help meet future energy needs. The mutagenicity of 13 gasification product samples from various coal mine sources, with different processing conditions and boiling point ranges, was studied using bacteria. The results show that 9 of the 13 composite samples displayed mutagenic activity in the Ames assay. Six mutagenic samples were further fractionated into basic, acidic nonpolar and polar neutral subfractions. All samples displayed mutagenic activity in the Ames assay with S9 in the nonpolar neutral subfraction. Five mutagenic samples were also tested for genotoxicity in three mammalian cell assays. None of the samples tested caused gene mutations in Chinese hamster lung fibroblast (V79) cells in the HGPRT assay system. However, all five samples were found to induce micronuclei and sister chromatid exchange in V79 cells. Chemical characterization of the subfractions indicates that the nonpolar neutral subfractions contain aromatic hydrocarbons. These compounds may be responsible for the genotoxic activity of samples.

Zhong, B.Z.; Robbins, S.; Bryant, D.; Ong, T. [National Institute for Occupational and Health, Morgantown, WV (United States); Ma, J. [West Virginia Univ., Morgantown, WV (United States)

1994-12-31

116

Synthetic fuels: Status of the Great Plains coal gasification project  

SciTech Connect

Sponsors of the Great Plains coal gasification project in North Dakota defaulted on a federal loan in the amount of $1.54 billion. The Department of Energy has obtained title to the Great Plains project and is evaluating proposals from investment banking-type companies to assist it in selling the plant and its assets. This fact sheet highlights recent legal action concerning gas purchase agreements and mortgage foreclosure; the status of the project's sponsors' outstanding liability; DOE's progress in evaluating its options; revenue, expense, production, and plant employment data; capital improvement projects; and plant maintenance issues.

Not Available

1987-01-01

117

A continuous two stage solar coal gasification system  

NASA Astrophysics Data System (ADS)

The characteristics of a two-stage fluidized-bed hybrid coal gasification system to produce syngas from coal, lignite, and peat are described. Devolatilization heat of 823 K is supplied by recirculating gas heated by a solar receiver/coal heater. A second-stage gasifier maintained at 1227 K serves to crack remaining tar and light oil to yield a product free from tar and other condensables, and sulfur can be removed by hot clean-up processes. CO is minimized because the coal is not burned with oxygen, and the product gas contains 50% H2. Bench scale reactors consist of a stage I unit 0.1 m in diam which is fed coal 200 microns in size. A stage II reactor has an inner diam of 0.36 m and serves to gasify the char from stage I. A solar power source of 10 kWt is required for the bench model, and will be obtained from a central receiver with quartz or heat pipe configurations for heat transfer.

Mathur, V. K.; Breault, R. W.; Lakshmanan, S.; Manasse, F. K.; Venkataramanan, V.

118

Mild coal gasification screw pyrolyzer development and design  

SciTech Connect

Our objective is to produce information and design recommendations needed for the development of an efficient continuous process for the mild gasification of caking bituminous coals. We have focused on the development of an externally heated pyrolyzer in which the sticky, reacting coal is conveyed by one or more screws. We have taken a multifaceted approach to forwarding the development of the externally-heated screw pyrolyzer. Small scale process experiments on a 38-mm single screw pyrolyzer have been a major part of our effort. Engineering analyses aimed at producing design and scaleup equations have also been important. Process design recommendations follow from these. We critically review our experimental data and experience, and information from the literature and equipment manufactures for the purpose of making qualitative recommendations for improving practical pyrolyzer design and operation. Benchscale experiments are used to supply needed data and test some preliminary concepts. 6 refs., 4 figs., 1 tab.

Camp, D.W.

1990-08-01

119

Lock hopper values for coal gasification plant service  

NASA Technical Reports Server (NTRS)

Although the operating principle of the lock hopper system is extremely simple, valve applications involving this service for coal gasification plants are likewise extremely difficult. The difficulties center on the requirement of handling highly erosive pulverized coal or char (either in dry or slurry form) combined with the requirement of providing tight sealing against high-pressure (possibly very hot) gas. Operating pressures and temperatures in these applications typically range up to 1600 psi (110bar) and 600F (316C), with certain process requirements going even higher. In addition, and of primary concern, is the need for reliable operation over long service periods with the provision for practical and economical maintenance. Currently available data indicate the requirement for something in the order of 20,000 to 30,000 open-close cycles per year and a desire to operate at least that long without valve failure.

Schoeneweis, E. F.

1977-01-01

120

DIFFUSION COATINGS FOR CORROSION RESISTANT COMPONENTS IN COAL GASIFICATION SYSTEMS  

SciTech Connect

Heat-exchangers, filters, turbines, and other components in integrated coal gasification combined cycle system must withstand demanding conditions of high temperatures and pressure differentials. Under the highly sulfiding conditions of the high temperature coal gas, the performance of components degrade significantly with time unless expensive high alloy materials are used. Deposition of a suitable coating on a low cost alloy may improve is resistance to such sulfidation attack and decrease capital and operating costs. A review of the literature indicates that the corrosion reaction is the competition between oxidation and sulfidation reactions. The Fe- and Ni-based high-temperature alloys are susceptible to sulfidation attack unless they are fortified with high levels of Cr, Al, and Si. To impart corrosion resistance, these elements need not be in the bulk of the alloy and need only be present at the surface layers.

Gopala N. Krishnan; Ripudaman Malhotra; Angel Sanjurjo

2004-05-01

121

Wabash River Coal Gasification Repowering Project. Topical report, July 1992--December 1993  

SciTech Connect

The Wabash River Coal Gasification Repowering Project (WRCGRP, or Wabash Project) is a joint venture of Destec Energy, Inc. of Houston, Texas and PSI Energy, Inc. of Plainfield, Indiana, who will jointly repower an existing 1950 vintage coal-fired steam generating plant with coal gasification combined cycle technology. The Project is located in West Terre Haute, Indiana at PSI`s existing Wabash River Generating Station. The Project will process locally-mined Indiana high-sulfur coal to produce 262 megawatts of electricity. PSI and Destec are participating in the Department of Energy Clean Coal Technology Program to demonstrate coal gasification repowering of an existing generating unit affected by the Clean Air Act Amendments. As a Clean Coal Round IV selection, the project will demonstrate integration of an existing PSI steam turbine generator and auxiliaries, a new combustion turbine generator, heat recovery steam generator tandem, and a coal gasification facility to achieve improved efficiency, reduced emissions, and reduced installation costs. Upon completion in 1995, the Project will not only represent the largest coal gasification combined cycle power plant in the United States, but will also emit lower emissions than other high sulfur coal-fired power plants and will result in a heat rate improvement of approximately 20% over the existing plant configuration. As of the end of December 1993, construction work is approximately 20% complete for the gasification portion of the Project and 25% complete for the power generation portion.

Not Available

1994-01-01

122

Coal gasification: the TOSCOAL process for low temperature coal pyrolysis  

Microsoft Academic Search

In the TOSCOAL process, shale or coal is heated and conveyed up the ; lift pipe by co-current flow with hot flue gas from the ball heater. The ; partially heated feed is then heated to carbonization temperature by direct ; contact with heated ceramic balls in a rotating drum retort. Heat transfer rates ; within the retort are high,

F. B. Carlson; L. H. Hardumian; M. T. Atwood

1973-01-01

123

Computational fluid dynamics modeling of coal gasification in a pressurized spout-fluid bed  

SciTech Connect

Computational fluid dynamics (CFD) modeling, which has recently proven to be an effective means of analysis and optimization of energy-conversion processes, has been extended to coal gasification in this paper. A 3D mathematical model has been developed to simulate the coal gasification process in a pressurized spout-fluid bed. This CFD model is composed of gas-solid hydrodynamics, coal pyrolysis, char gasification, and gas phase reaction submodels. The rates of heterogeneous reactions are determined by combining Arrhenius rate and diffusion rate. The homogeneous reactions of gas phase can be treated as secondary reactions. A comparison of the calculated and experimental data shows that most gasification performance parameters can be predicted accurately. This good agreement indicates that CFD modeling can be used for complex fluidized beds coal gasification processes. 37 refs., 7 figs., 5 tabs.

Zhongyi Deng; Rui Xiao; Baosheng Jin; He Huang; Laihong Shen; Qilei Song; Qianjun Li [Southeast University, Nanjing (China). Key Laboratory of Clean Coal Power Generation and Combustion Technology of Ministry of Education

2008-05-15

124

Design of highly efficient coal-based integrated gasification fuel cell power plants  

Microsoft Academic Search

Integrated gasification fuel cell (IGFC) technology combining coal gasification and solid oxide fuel cell (SOFC) is believed to be the only viable solution to achieving U.S. Department of Energy (DOE)’s performance goal for next generation coal-based power plants, producing electricity at 60% efficiency (coal HHV–AC) while capturing more than 90% of the evolved CO2. Achieving this goal is challenging even

Mu LI; Ashok D. Rao; Jacob Brouwer; G. Scott Samuelsen

2010-01-01

125

DIFFUSION COATINGS FOR CORROSION RESISTANT COMPONENTS IN COAL GASIFICATION SYSTEMS  

SciTech Connect

Heat-exchangers, particle filters, turbines, and other components in integrated coal gasification combined cycle system must withstand the highly sulfiding conditions of the high temperature coal gas over an extended period of time. The performance of components degrades significantly with time unless expensive high alloy materials are used. Deposition of a suitable coating on a low cost alloy may improve is resistance to such sulfidation attack and decrease capital and operating costs. The alloys used in the gasifier service include austenitic and ferritic stainless steels, nickel-chromium-iron alloys, and expensive nickel-cobalt alloys. A review of the literature indicated that the Fe- and Ni-based high-temperature alloys are susceptible to sulfidation attack unless they are fortified with high levels of Cr, Al, and Si. To impart corrosion resistance, these elements need not be in the bulk of the alloy and need only be present at the surface layers. We selected diffusion coatings of Cr and Al, and surface coatings of Si and Ti for the preliminary testing. These coatings will be applied using the fluidized bed chemical vapor deposition technique developed at SRI which is rapid and relatively inexpensive. We have procured coupons of typical alloys used in a gasifier. These coupons will be coated with Cr, Al, Si, and Ti. The samples will be tested in a bench-scale reactor using simulated coal gas compositions. In addition, we will be sending coated samples for insertion in the gas stream of the coal gasifier.

Gopala N. Krishnan; Ripudaman Malhotra; Angel Sanjurjo

2004-05-01

126

Effects of aquifer interconnection resulting from underground coal gasification  

SciTech Connect

Lawrence Livermore National Laboratory evaluated the effects of aquifer interconnection caused by the collapse of cavities formed in coal seams by two small underground coal gasification experiments in the Powder River Basin, Wyoming. Flow models and field measurements were used to show that the water from one or both of the upper aquifers enters the collapse, rubble and flows down to the lowest aquifer (the gasified coal seam) where it flows away from the collapse zones. The investigations showed that the hydraulic conductivity of the collapse rubble is less than that of the aquifers and provides only a moderately permeable interconnection between them, a marked reduction in hydraulic conductivity of the gasified coal seam near the collapse zones restricts the flow in the seam, away from them; changes in the hydraulic head and flow patterns caused by aquifer interconnection extend generally only 60-90 m away from the experiment sites, whereas flow in the uppermost aquifer at one of the sites may be influenced as far away as 122 m. At both sites, the aquifer interconnection allows water from the uppermost (sand) aquifer, which contains the poorest quality water of the 3 aquifers, to enter one or both of the underlying aquifers.

Stone, R.

1983-09-01

127

Costs and technical characteristics of environmental control processes for low-Btu coal gasification plants  

SciTech Connect

Technical characteristics and costs of 25 individual environmental control processes that can be used for treating low-Btu coal gas are given. These processes are chosen from a much larger array of potential environmental control processes because of their likely applicability to low-Btu coal gasification operations and because of the limited scope of this study. The selected processes cover gas treating, by-product recovery, wastewater treating, and particulate recovery operations that are expected to be encountered in coal gasification operations. Although the existence of the Resource Conservtion and Recovery Act of 1976 is recognized, no treatment schemes for solid wastes are evaluated because of the paucity of information in this area. The potential costs of emission controls (by using eight integrated combinations of these 25 environmental control processes) in conceptual low-Btu coal gasification plants are given in an adjunct report titled Evaluation of Eight Environmental Control Systems for Low-Btu Coal Gasification Plants, ORNL-5481.

Singh, S.P.N.; Salmon, R.; Fisher, J.F.; Peterson, G.R.

1980-06-01

128

Status of health and environmental research relative to coal gasification 1976 to the present  

SciTech Connect

Health and environmental research relative to coal gasification conducted by Argonne National Laboratory, the Inhalation Toxicology Research Institute, and Oak Ridge National Laboratory under DOE sponsorship is summarized. The studies have focused on the chemical and toxicological characterization of materials from a range of process streams in five bench-scale, pilot-plant and industrial gasifiers. They also address ecological effects, industrial hygiene, environmental control technology performance, and risk assessment. Following an overview of coal gasification technology and related environmental concerns, integrated summaries of the studies and results in each area are presented and conclusions are drawn. Needed health and environmental research relative to coal gasification is identified.

Wilzbach, K.E.; Reilly, C.A. Jr. (comps.)

1982-10-01

129

ENCOAL mild coal gasification project public design and construction report  

SciTech Connect

This Public Design Report describes the 1000 ton per day ENCOAL mild coal gasification demonstration plant now in operation at the Buckskin Mine near Gillette, Wyoming. The objective of the project is to demonstrate that the proprietary Liquids From Coal (LFC) technology can reliably and economically convert low Btu PRB coal into a superior, high-Btu solid fuel (PDF), and an environmentally attractive low-sulfur liquid fuel (CDL). The Project`s plans also call for the production of sufficient quantities of PDF and CDL to permit utility companies to carry out full scale burn tests. While some process as well as mechanical design was done in 1988, the continuous design effort was started in July 1990. Civil construction was started in October 1990; mechanical erection began in May 1991. Virtually all of the planned design work was completed by July 1991. Most major construction was complete by April 1992 followed by plant testing and commissioning. Plant operation began in late May 1992. This report covers both the detailed design and initial construction aspects of the Project.

NONE

1994-12-01

130

Diffusion Coatings for Corrosion Resistant Components in Coal Gasification Systems  

SciTech Connect

Heat-exchangers, particle filters, turbines, and other components in integrated coal gasification combined cycle system must withstand the highly sulfiding conditions of the high temperature coal gas over an extended period of time. The performance of components degrades significantly with time unless expensive high alloy materials are used. Deposition of a suitable coating on a low cost alloy may improve its resistance to such sulfidation attack and decrease capital and operating costs. The alloys used in the gasifier service include austenitic and ferritic stainless steels, nickel-chromium-iron alloys, and expensive nickel-cobalt alloys. During this reporting period we focused on getting a bench-scale test system to expose alloy coupons to simulated gasifier environment. The test facility was designed to allow about 20 specimen coupons to be exposed simultaneously for an extend period to a simulated coal gas stream at temperatures up to 1000 C. The simulated gas stream contained about 26%H{sub 2}, 39%CO, 17%CO{sub 2}, 1.4% H{sub 2}S and balance steam. We successfully ran a 100+h test with coated and uncoated stainless steel coupons. The tested alloys include SS304, SS316, SS405, SS409, SS410, and IN800. The main finding is that Ti/Ta coating provides excellent protection to SS405 under conditions where uncoated austenitic and ferritic stainless steel alloy coupons are badly corroded. Cr coatings also appear to afford some protection against corrosion.

Gopala N. Krishnan; Ripudaman Malhotra; Esperanza Alvarez; Kai-Hung Lau; Angel Sanjurjo

2005-01-01

131

Utilization of lightweight materials made from coal gasification slags  

SciTech Connect

Praxis is working on a DOE/METC funded project to demonstrate the technical and economic feasibility of making lightweight and ultra- lightweight aggregates from slags left as solid by-products from the coal gasification process. These aggregates are produced by controlled heating of the slags to temperatures ranging between 1600 and 1900{degrees}F. Over 10 tons of expanded slag lightweight aggregates (SLA) were produced using a direct-fired rotary kiln and a fluidized bed calciner with unit weights varying between 20 and 50 lb/ft{sup 3}. The slag-based aggregates are being evaluated at the laboratory scale as substitutes for conventional lightweight aggregates in making lightweight structural concrete, roof tiles, blocks, insulating concrete, and a number of other applications. Based on the laboratory data, large-scale testing will be performed and the durability of the finished products evaluated. Conventional lightweight aggregates made from pyroprocessing expansible shales or clays are produced for $30/ton. The net production costs of SLA are in the range of $22 to $24/ton for large systems (44 t/d) and $26-$30/ton for small systems (220 t/d). Thus, the technology provides a good opportunity for economic use of gasification slags.

NONE

1996-07-08

132

Dynamic simulation of a single-stage entrained flow coal gasifier. Final report  

Microsoft Academic Search

A transient, multidimensional computer model has been developed to simulate the detailed phenomena occurring in the general class of single-stage entrained flow gasification reactors. Application of the computer simulation code has been specifically demonstrated for the Texaco class of gasifiers. The EEF (EPRI Entrained Flow) computer simulation model accounts for the coupled chemistry and turbulent hydrodynamics associated with coal-water slurry

G. P. Schneyer; J. L. Cook; D. H. Jr. Brownell; T. R. Blake

1982-01-01

133

Study of factors affecting syngas quality and their interactions in fluidized bed gasification of lignite coal  

E-print Network

of lignite coal Shayan Karimipour a , Regan Gerspacher b , Rajender Gupta a , Raymond J. Spiteri c. " The syngas quality was defined based on conversion, H2/CO, CH4/H2, yield, and gasifier efficiency. " Low coal 2012 Keywords: Lignite coal Gasification Fluidized bed Design of experiments a b s t r a c t A series

Spiteri, Raymond J.

134

Interaction of subsurface waters with the combustion site during underground coal gasification  

Microsoft Academic Search

and important problem determining the expediency of using UCG when mining coal deposits. The main sources of subsurface water pollution during UCG are the combustion site in the coal bed and gasification products, representing a mixture of steam and gas products of complete and incomplete combustion of coal and its thermal decomposition, which can enter substtrface waters and be dissolved

E. V. Dvornikova; E. V. Kreinin

1993-01-01

135

Multizone ultrasonic thermometry with application to coal gasification systems  

SciTech Connect

The decrease of sound velocity with temperature in solid media is utilized in ultrasonic thermometry. A multizone sensor generally consists of a thin rod on which small notches are made to partition the sensor length into various zones. The change of acoustic impedance at the notches causes the sound waves to be partly reflected back, and the measurement of time intervals between the successive pairs of reflected signals provides an indication of the average temperatures in the corresponding zones. This paper addresses the application of ultrasonic senses to temperature profiling in the reactors of coal gasification systems. In particular, results on the sensor development, materials testing, and signal processing are presented. 14 references, 8 figures, 1 table.

Gopalsami, N.; Raptis, A.C.

1984-02-01

136

ANALYSES OF GRAB SAMPLES FROM FIXED-BED COAL GASIFICATION PROCESSES  

EPA Science Inventory

The report gives results of an analytical screening of selected effluent samples from operating coal gasification units. The work was done to aid in planning for future more comprehensive environmental test programs which will be conducted at gasification units both in the U.S. a...

137

Performances Evaluation of Biomass Gasification and Synthetic Gas Co-Firing in Coal-Fired Boiler  

Microsoft Academic Search

Optimum condition of gasification process is the key to biomass utilization and synthetic gas co-firing with coal in boiler. Based on an equilibrium RGibbs reactor model, the performances of biomass gasification, such as exergy efficiency and low heating value of synthetic gas, were evaluated under the conditions of biomass moisture content changing from 10% to 40% in weight and mass

Xiaotao Zhang; Aijun Wang; H. Arellano-Garcia; G. Wozny

2011-01-01

138

Computer modeling of fixed bed underground coal gasification using the permeation method  

Microsoft Academic Search

A two-dimensional computational model has been developed as a pilot study for the multidimensional simulation of fixed bed underground coal gasification (UCG). The analysis is based on the finite element method and incorporates a moving boundary algorithm to model the permeation linked vertical well in a forward gasification mode. In order to account for the motion of the combustion front

E. A. A. Abdel-Hadi; T. R. Hsu

1987-01-01

139

Thermal expansion of slag and fly ash from coal gasification in IGCC power plant  

Microsoft Academic Search

Integrated gasification in combined cycle (IGCC) is an electrical power generation system which is characterized to be a clean coal technology different than conventional process in combustible treatment. IGCC process gives rise to inorganic solid wastes in the form of vitreous slag and fly ashes with singular thermal properties. The gasification of the fuel takes place at high temperature and

M. Aineto; A. Acosta; J. Ma. Rincón; M. Romero

2006-01-01

140

Underground coal gasification: Its potential for long-term supply of sng. Occasional pub  

Microsoft Academic Search

The paper examines the viability of underground coal gasification (UCU) as a future source of substitute natural gas (SNG). The economics of commercial scale UCG technology at a western site is estimated and compared with aboveground gasification and also with an extrapolation of GRI's Baseline Projection for natural gas prices. Although much technical and economic uncertainty exists regarding UCG, the

V. L. Hill; K. B. Burnham; S. P. Barone; J. I. Rosenberg; A. B. Ashby

1984-01-01

141

Preburn versus postburn mineralogical and geochemical characteristics of overburden and coal at the Hanna, Wyoming underground coal gasification site  

SciTech Connect

Hundreds of mineralogic and geochemical tests were done under US Department of Energy contracts on core samples taken from the Hanna underground coal gasification site. These tests included x-ray diffraction studies of minerals in coal ash, overburden rocks, and heat-altered rocks; x-ray fluorescence analyses of oxides in coal ash and heat-altered rocks; semi-quantitative spectrographic analyses of elements in coal, overburden, and heat-altered rocks; chemical analyses of elements and compounds in coal, overburden, and heat-altered rocks and ASTM proximate and ultimate analyses of coal and heat-altered coal. These data sets were grouped, averaged, and analyzed to provide preburn and postburn mineralogic and geochemical characteristics of rock units at the site. Where possible, the changes in characteristics from the preburn to the postburn state are related to underground coal gasification processes. 11 references, 13 figures, 8 tables.

Oliver, R.L.; Youngberg, A.D.

1983-12-01

142

Utilization of solid wastes from the gasification of coal-water slurries  

SciTech Connect

It was found that only fly and bottom ashes are the solid wastes of water-coal slurry gasification in a direct-flow gasifier. The yields and chemical compositions of fly and bottom ashes obtained after the gasification of water-coal slurries prepared using brown (B) and long-flame (D) coals from the Berezovskii and Mokhovskii strip mines (Kansk-Achinsk and Kuznetsk Basins, respectively) were characterized. Based on an analysis of currently available information, the areas of utilization of fly and bottom ashes after water-coal slurry gasification with dry ash removal were summarized. The use of these wastes in the construction of high-ways and earthwork structures (for the parent coals of B and D grades) and in the manufacture of ash concrete (for the parent coal of D grade) is most promising.

M.Y. Shpirt; N.P. Goryunova [Institute for Fossil Fuels, Moscow (Russian Federation)

2009-07-01

143

Fixed-bed gasification research using US coals. Volume 16. Gasification of 2-inch Minnesota peat sods  

Microsoft Academic Search

A single, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scubber used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and government agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) group. This report is

D. Thimsen; R. E. Maurer; A. R. Pooler; D. Pui; B. Liu; D. Kittelson

1985-01-01

144

Recent regulatory experience of low-Btu coal gasification. Volume III. Supporting case studies  

SciTech Connect

The MITRE Corporation conducted a five-month study for the Office of Resource Applications in the Department of Energy on the regulatory requirements of low-Btu coal gasification. During this study, MITRE interviewed representatives of five current low-Btu coal gasification projects and regulatory agencies in five states. From these interviews, MITRE has sought the experience of current low-Btu coal gasification users in order to recommend actions to improve the regulatory process. This report is the third of three volumes. It contains the results of interviews conducted for each of the case studies. Volume 1 of the report contains the analysis of the case studies and recommendations to potential industrial users of low-Btu coal gasification. Volume 2 contains recommendations to regulatory agencies.

Ackerman, E.; Hart, D.; Lethi, M.; Park, W.; Rifkin, S.

1980-02-01

145

Methodology for technology evaluation under uncertainty and its application in advanced coal gasification processes  

E-print Network

Integrated gasification combined cycle (IGCC) technology has attracted interest as a cleaner alternative to conventional coal-fired power generation processes. While a number of pilot projects have been launched to ...

Gong, Bo, Ph. D. Massachusetts Institute of Technology

2011-01-01

146

Applied research and evaluation of process concepts for liquefaction and gasification of western coals. Final report  

SciTech Connect

Fourteen sections, including five subsections, of the final report covering work done between June 1, 1975 to July 31, 1980 on research programs in coal gasification and liquefaction have been entered individually into EDB and ERA. (LTN)

Wiser, W. H.

1980-09-01

147

Hanna, Wyoming underground coal gasification data base. Volume 1. General information and executive summary  

SciTech Connect

This report is part of a seven-volume series on the Hanna, Wyoming, underground coal gasification field tests. Volume 1 is a summary of the project and each of Volumes 2 through 6 describes a particular test. Volume 7 is a compilation. This report covers: (1) history of underground coal gasification leading to the Hanna tests; (2) area characteristics (basic meteorological and socioeconomic data); (3) site selection history; (4) site characteristics; (5) permitting; and (6) executive summary. 5 figs., 15 tabs.

Bartke, T.C.; Fischer, D.D.; King, S.B.; Boyd, R.M.; Humphrey, A.E.

1985-08-01

148

Basic design of the coal gasification systems for Korean IGCC application  

SciTech Connect

Presented is the basic design scheme of coal gasification system as a part of IGCC engineering package. The basic design scheme has sequential design steps for pulverized coal storage bin, lock hoppers, injection vessels, coal/oxidizer burner nozzles, gasifier, preheater, slag discharge hopper and product gas quencher. Each design module is constructed to generate design data and specifications, and is then coupled together with other design modules in computerized system. The present design method was used for small scale coal gasification facility construction with success, and can be applied to perform parametric studies and scale-up analyses that will be helpful for large scale IGCC power plant applications.

Kim, H.T.; Kim, S.W. [Ajou Univ., Suwon (Korea, Republic of). Dept. of Energy; Lee, C. [Univ. of Suwon (Korea, Republic of). Dept. of Mechanical Engineering

1996-12-31

149

Steam-Coal Gasification Using CaO and KOH for in Situ Carbon and Sulfur Capture  

E-print Network

Steam-Coal Gasification Using CaO and KOH for in Situ Carbon and Sulfur Capture Nicholas S. Siefert Virginia 26507, United States ABSTRACT: We present experimental results of coal gasification. Using two different coal types and temperatures between 700 and 900 °C, we studied the effect

Litster, Shawn

150

Mathematical Modeling of Coal Gasification Processes in a Well-Stirred Reactor: Effects of Devolatilization and Moisture Content  

E-print Network

Mathematical Modeling of Coal Gasification Processes in a Well- Stirred Reactor: Effects in coal and biomass play an important role on the gasification performance of these fuels on the syngas composition. The coal conversion time is most sensitive to the heat transfer rates including both

Qiao, Li

151

Experimental studies on gasification of the Shenmu coal char with CO 2 at elevated pressures  

Microsoft Academic Search

The gasification rates of Shenmu coal chars with CO2 were experimentally studied with a pressurized thermo- gravimetric analyzer (PTGA). Shenmu coal is a typical Chinese coal,\\u000a and the coal char was prepared by a fixed-bed reactor in nitrogen at 900 °C. The experiments were carried out in the dynamic\\u000a heating segments from 750 °C to 1,000 °C, and the reaction

Mingmin Wang; Jiansheng Zhang; Shouyu Zhang; Jinhu Wu; Guangxi Yue

2008-01-01

152

Assessment of underground coal gasification in bituminous coals. Volume I. Executive summary. Final report  

SciTech Connect

This report describes the bituminous coal resources of the United States, identifies those resources which are potentially amenable to Underground Coal Gasification (UCG), identifies products and markets in the vicinity of selected target areas, identifies UCG concepts, describes the state of the art of UCG in bituminous coal, and presents three R and D programs for development of the technology to the point of commercial viability. Of the 670 billion tons of bituminous coal remaining in-place as identified by the National Coal Data System, 32.2 billion tons or 4.8% of the total are potentially amenable to UCG technology. The identified amenable resource was located in ten states: Alabama, Colorado, Illinois, Kentucky, New Mexico, Ohio, Oklahoma, Utah, Virginia, and West Virginia. The principal criteria which eliminated 87.3% of the resource was the minimum thickness (42 inches). Three R and D programs were developed using three different concepts at two different sites. Open Borehole, Hydraulic Fracture, and Electrolinking concepts were developed. The total program costs for each concept were not significantly different. The study concludes that much of the historical information based on UCG in bituminous coals is not usable due to the poor siting of the early field tests and a lack of adequate diagnostic equipment. This information gap requires that much of the early work be redone in view of the much improved understanding of the role of geology and hydrology in the process and the recent development of analytical tools and methods.

None

1981-01-01

153

Viability of underground coal gasification in the 'deep coals' of the Powder River Basin, Wyoming  

SciTech Connect

The objective of this work is to evaluate the PRB coal geology, hydrology, infrastructure, environmental and permitting requirements and to analyze the possible UCG projects which could be developed in the PRB. Project economics on the possible UCG configurations are presented to evaluate the viability of UCG. There are an estimated 510 billion tons of sub-bituminous coal in the Powder River Basin (PRB) of Wyoming. These coals are found in extremely thick seams that are up to 200 feet thick. The total deep coal resource in the PRB has a contained energy content in excess of twenty times the total world energy consumption in 2002. However, only approximately five percent of the coal resource is at depths less than 500 feet and of adequate thickness to be extracted by open pit mining. The balance is at depths between 500 and 2,000 feet below the surface. These are the PRB 'deep coals' evaluated for UCG in this report. The coal deposits in the Powder River Basin of Wyoming are thick, laterally continuous, and nearly flat lying. These deposits are ideal for development by Underground Coal Gasification. The thick deep coal seams of the PRB can be harvested using UCG and be protective of groundwater, air resources, and with minimum subsidence. Protection of these environmental values requires correct site selection, site characterization, impact definition, and impact mitigation. The operating 'lessons learned' of previous UCG operations, especially the 'Clean Cavity' concepts developed at Rocky Mountain 1, should be incorporated into the future UCG operations. UCG can be conducted in the PRB with acceptable environmental consequences. The report gives the recommended development components for UCG commercialization. 97 refs., 31 figs., 57 tabs., 1 app.

NONE

2007-06-15

154

Coal-gasification study for Bethlehem Steel Corporation's Sparrows Point facility. Executive summary  

SciTech Connect

Although processes for producing environmentally acceptable gas from coal are available commercially, the lack of commercial operating experience in the United States requires that the pioneer users principally rely on engineering and economic analysis. The uncertainty of costs, operating reliability and retrofit impacts; effect of gas on product quality and plant processes; plant siting and environmental factors; gas distribution costs and safety; regulatory impacts; coal supply and transportation; capital/financing arrangements, etc., are all considerations which must be weighed seriously when considering the use of low/or medium-Btu coal gas as an alternative fuel option. By emphasing site specific applications, we aimed at developing answers to some of these concerns. Construction of an air-blown gasification facility at Sparrows Point to displace purchased heavy fuel oil and natural gas would be technically feasible. Using the capital costs and annual operating costs developed by Gilbert Associates, Bethlehem Steel carried out a financial analysis of the coal gasification project for Sparrows Point. The payback period ranged from 6.9 to 15.7 years for air-blown gasification. Oxygen-blown gasification was not at all attractive. It showed a 20.7 year payback at the most favorable end of the range. Two factors affect whether a steel plant will install coal gasification - availability of purchased fuels and economics. There is little incentive to make large capital expenditures when plentiful quantities of purchased fuels are available. Based on economics, coal gasification cannot be justified: more attractive alternatives for reducing purchased fuels exist at present. After these other projects have been completed, coal gasification might be considered economic at the steel plant.

Not Available

1981-08-01

155

Gasification of coals and of hydrogenation sludge in a steam plasma  

SciTech Connect

The gasification process was investigated for various coals and a hydrogenation slurry of Irsha-Borodinsk coal using a water vapour plasma in different types of reactor. It was found that, in a suitable reactor, the reaction process between the hydrogen in the fuel and the water vapour takes place mainly in the external diffusion regions.

Kolobova, E.A.

1983-01-01

156

Corrosion and Degradation of Test Materials in the BI-GAS Coal-Gasification Pilot Plant.  

National Technical Information Service (NTIS)

Corrosion monitoring of test materials was conducted in the BI-GAS coal gasification pilot plant from 1976 through 1981. Montana Rosebud subbituminous coal was processed at pressures of 750 psia (5175 kPa). Metals were exposed at low to moderate temperatu...

R. Yurkewycz, R. F. Firestone

1982-01-01

157

UTILIZATION OF LIGHTWEIGHT MATERIALS MADE FROM COAL GASIFICATION SLAGS  

SciTech Connect

The integrated-gasification combined-cycle (IGCC) process is an emerging technology that utilizes coal for power generation and production of chemical feedstocks. However, the process generates large amounts of solid waste, consisting of vitrified ash (slag) and some unconverted carbon. In previous projects, Praxis investigated the utilization of ''as-generated'' slags for a wide variety of applications in road construction, cement and concrete production, agricultural applications, and as a landfill material. From these studies, we found that it would be extremely difficult for ''as-generated'' slag to find large-scale acceptance in the marketplace even at no cost because the materials it could replace were abundantly available at very low cost. It was further determined that the unconverted carbon, or char, in the slag is detrimental to its utilization as sand or fine aggregate. It became apparent that a more promising approach would be to develop a variety of value-added products from slag that meet specific industry requirements. This approach was made feasible by the discovery that slag undergoes expansion and forms a lightweight material when subjected to controlled heating in a kiln at temperatures between 1400 and 1700 F. These results confirmed the potential for using expanded slag as a substitute for conventional lightweight aggregates (LWA). The technology to produce lightweight and ultra-lightweight aggregates (ULWA) from slag was subsequently developed by Praxis with funding from the Electric Power Research Institute (EPRI), Illinois Clean Coal Institute (ICCI), and internal resources. The major objectives of the subject project are to demonstrate the technical and economic viability of commercial production of LWA and ULWA from slag and to test the suitability of these aggregates for, various applications. The project goals are to be accomplished in two phases Phase I, comprising the production of LWA and ULWA from slag at the large pilot scale, and Phase II, which involves commercial evaluation of these aggregates in a number of applications.

Unknown

2000-04-24

158

Coal gasification. (Latest citations from the US Patent bibliographic file with exemplary claims). Published Search  

SciTech Connect

The bibliography contains citations of selected patents concerning methods and processes for the gasification of coals. Included are patents for a variety of processes, including fluidized beds, alkali-metal catalytic systems, fixed beds, hot inert heat transfer; and in-situ, pressurized, and steam-iron processes. Topics also include catalyst recovery, desulfurization during gasification, heating methods, pretreatment of coals, heat recovery, electrical power generation, byproduct applications, and pollution control. Liquefaction of coal is examined in a related published bibliography. (Contains 250 citations and includes a subject term index and title list.)

NONE

1995-01-01

159

Coal gasification. (Latest citations from the US Patent bibliographic file with exemplary claims). Published Search  

SciTech Connect

The bibliography contains citations of selected patents concerning methods and processes for the gasification of coals. Included are patents for a variety of processes, including fluidized beds, alkali-metal catalytic systems, fixed beds, hot inert heat transfer; and in-situ, pressurized, and steam-iron processes. Topics also include catalyst recovery, desulfurization during gasification, heating methods, pretreatment of coals, heat recovery, electrical power generation, byproduct applications, and pollution control. Liquefaction of coal is examined in a related published bibliography. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1994-03-01

160

Coal gasification. (Latest citations from the US Patent bibliographic file with exemplary claims). Published Search  

SciTech Connect

The bibliography contains citations of selected patents concerning methods and processes for the gasification of coals. Included are patents for a variety of processes, including fluidized beds, alkali-metal catalytic systems, fixed beds, hot inert heat transfer; and in-situ, pressurized, and steam-iron processes. Topics also include catalyst recovery, desulfurization during gasification, heating methods, pretreatment of coals, heat recovery, electrical power generation, byproduct applications, and pollution control. Liquefaction of coal is examined in a related published bibliography. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1997-06-01

161

Coal-gasification/MHD/steam-turbine combined-cycle (GMS) power generation  

SciTech Connect

The coal-gasification/MHD/steam-turbine combined cycle (GMS) refers to magnetohydrodynamic (MHD) systems in which coal gasification is used to supply a clean fuel (free of mineral matter and sulfur) for combustion in an MHD electrical power plant. Advantages of a clean-fuel system include the elimination of mineral matter or slag from all components other than the coal gasifier and gas cleanup system; reduced wear and corrosion on components; and increased seed recovery resulting from reduced exposure of seed to mineral matter or slag. Efficiencies in some specific GMS power plants are shown to be higher than for a comparably sized coal-burning MHD power plant. The use of energy from the MHD exhaust gas to gasify coal (rather than the typical approach of burning part of the coal) results in these higher efficiencies.

Lytle, J.M.; Marchant, D.D.

1980-11-01

162

Utilization of lightweight materials made from coal gasification slags  

SciTech Connect

The integrated-gasification combined-cycle (IGCC) process is an emerging technology that utilizes coal for power generation and production of chemical feedstocks. However, the process generates large amounts of solid waste, consisting of vitrified ash (slag) and some unconverted carbon. In previous projects, Praxis investigated the utilization of as-generated slags for a wide variety of applications in road construction, cement and concrete production, agricultural applications, and as a landfill material. From these studies, the authors found that it would be extremely difficult for as-generated slag to find large-scale acceptance in the marketplace even at no cost because the materials it could replace were abundantly available at very low cost. It was further determined that the unconverted carbon, or char, in the slag is detrimental to its utilization as sand or fine aggregate. It became apparent that a more promising approach would be to develop a variety of value-added products from slag that meet specific industry requirements. This approach was made feasible by the discovery that slag undergoes expansion and forms a lightweight material when subjected to controlled heating in a kiln at temperatures between 1,400 and 1,700 F. These results confirmed the potential for using expanded slag as a substitute for conventional lightweight aggregates (LWA). The technology to produce lightweight and ultra-lightweight aggregates (ULWA) from slag was subsequently developed by Praxis with funding from the Electric Power Research Institute (EPRI), Illinois Clean Coal Institute (ICCI), and internal resources. The major objectives of the subject project are to demonstrate the technical and economic viability of commercial production of LWA and ULWA from slag and to test the suitability of these aggregates for various applications. The project goals are to be accomplished in two phases: Phase 1, comprising the production of LWA and ULWA from slag at the large pilot scale, and Phase 2, which involves commercial evaluation of these aggregates in a number of applications. Primary funding for the project is provided by DOE's Federal Energy Technology Center (FETC) at Morgantown, with significant cost sharing by Electric Power Research Institute (EPRI) and Illinois Clean Coal Institute (ICCI).

None

1999-12-30

163

Fixed-bed gasification research using US coals. Volume 11. Gasification of Minnesota peat. [Peat pellets and peat sods  

Microsoft Academic Search

A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a coooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This

D. Thimsen; R. E. Maurer; A. R. Pooler; D. Pui; B. Liu; D. Kittelson

1985-01-01

164

In situ coal gasification at the Hoe Creek, Wyoming field site: an overview  

Microsoft Academic Search

The Lawrence Livermore Laboratory is currently involved in the study of in situ coal gasification for the Department of Energy. This is a high risk but potentially promising technology that may see commercial development by the late 1980's. A principal coal source is the group of several thick, deeply-buried, western sub-bituminous coal seams of the Powder River Basin that currently

Ganow

1979-01-01

165

An improved model for fixed-bed coal combustion and gasification: sensitivity analysis and applications  

Microsoft Academic Search

Detailed sensitivity analysis and applications of an improved, comprehensive, one-dimensional model for combustion and gasification of coal in fixed beds, FBED-1, are presented. The effects of the devolatilization, oxidation and gasification submodels on the model predictions are discussed. The product gas compositions predicted by various options for gas-phase chemistry are shown. The effects of five model parameters and one operational

M. Usman Ghani; Predrag T. Radulovic; L. Douglas Smoot

1996-01-01

166

Coal gasification/gas cleanup test facility. Volume 5. Preliminary environmental assessment of the gasification and gas cleaning of North Carolina peat. Final report  

SciTech Connect

The report gives results from test runs at a small pilot-scale coal gasification and gas purification facility using North Carolina peat. Results from the peat gasification are compared with those obtained previously with a New Mexico subbituminous coal. The peat gas produced had slightly more CO and CO2, while the coal gas had slightly more methane. Production of gaseous sulfur species was much less for peat, due largely to the lower sulfur content of the peat itself. Wastewater analyses showed higher concentrations of phenols and other acidic compounds and lower concentrations of PNAs in the peat-derived wastewater than in the coal-derived wastewater. Peat char remaining after gasification was depleted of As, Pb, and Hg to a greater extent than was the coal char. The peat itself contained a substantially higher Hg content than did the coal.

Ferrell, J.K.; Felder, R.M.; Rousseau, R.W.; Purdy, M.J.; Ganesan, S.

1983-10-01

167

Photoassisted electrolysis applied to coal gasification. Quarterly report, 1 July 1982-30 September 1982  

SciTech Connect

The literature search was continued on the electrochemical oxidation and reduction of coal. Humic acids are generated upon oxidation of coal in alkali media. Similar results were reported for the oxidation of coal. The reduction coal in nonaqueous solutions gave reduced coal of various degrees of hydrogenation depending on experimental conditions. These earlier results suggest that a proper combination of electrochemical oxidation and reduction of coal may lead to various classes of derivatized coal including liquid coals. Both CdS and CdSe thin film electrodes were tested for photoassisted coal gasification. Although high photocurrents were observed the electrodes were not stable. To stabilize the electrodes the electrode surface was modified by coating with a conductive organic polymer, which behaves as an electron transfer mediator. Various experiments in this effort are described.

Park, S.M.

1982-01-01

168

Electromagnetic burnfront mapping during A. R. Co. 's 1978 in situ coal gasification project. [Rocky Hill, Wyoming project  

Microsoft Academic Search

High-frequency electromagnetic (HFEM) probing was used to map the position of the burnfront in an underground coal gasification experiment conducted by the Atlantic Richfield Company at Rocky Hill, Wyoming. The coal seam in this experiment was 110 ft thick and approximately 700 ft deep, thicker and deeper than the seam probed during a previous gasification experiment at Hoe Creek, Wyoming.

D. T. Davis; E. F. Laine; R. J. Lytle; J. T. Okada

1979-01-01

169

LLL In Situ Coal Gasification Project. Quarterly progress report, October--December 1977. [Hoe Creek No. 2  

Microsoft Academic Search

The gasification phase of Hoe Creek Coal Gasification Experiment No. 2 at Hoe Creek, Wyoming was carried out. The coal was ignited on Oct. 14, and two reverse-burn links were simultaneously initiated toward the injection well and a dewatering well. Data from traveling thermocouples, fixed thermocouples, and HFEM instrumentation indicated that there were several reverse burn paths near the bottom

D. R. Stephens; K. J. Minkel

1978-01-01

170

Gasification of Irsha-Borodin coal coke by carbon dioxide  

Microsoft Academic Search

Fuel gasification by water vapor, the basis of the technological gasification process, is a complex process accompanied by several secondary reactions. At the present time there is only scanty and contradictory information available on the overall constant of the basic reaction C + H20 ~ CO + H2, while the characteristics of the secondary processes CO + H20 CO s

E. S. Golovina; V. M. Kochan; O. S. Yusim

1989-01-01

171

Carbon formation and metal dusting in advanced coal gasification processes  

SciTech Connect

The product gases generated by coal gasification systems contain high concentrations of CO and, characteristically, have relatively high carbon activities. Accordingly, carbon deposition and metal dusting can potentially degrade the operation of such gasifier systems. Therefore, the product gas compositions of eight representative gasifier systems were examined with respect to the carbon activity of the gases at temperatures ranging from 480 to 1,090 C. Phase stability calculations indicated that Fe{sub 3}C is stable only under very limited thermodynamic conditions and with certain kinetic assumptions and that FeO and Fe{sub 0.877}S tend to form instead of the carbide. As formation of Fe{sub 3}C is a necessary step in the metal dusting of steels, there are numerous gasifier environments where this type of carbon-related degradation will not occur, particularly under conditions associated with higher oxygen and sulfur activities. These calculations also indicated that the removal of H{sub 2}S by a hot-gas cleanup system may have less effect on the formation of Fe{sub 3}C in air-blown gasifier environments, where the iron oxide phase can exist and is unaffected by the removal of sulfur, than in oxygen-blown systems, where iron sulfide provides the only potential barrier to Fe{sub 3}C formation. Use of carbon- and/or low-alloy steels dictates that the process gas composition be such that Fe{sub 3}C cannot form if the potential for metal dusting is to be eliminated. Alternatively, process modifications could include the reintroduction of hydrogen sulfide, cooling the gas to perhaps as low as 400 C and/or steam injection. If higher-alloy steels are used, a hydrogen sulfide-free gas may be processed without concern about carbon deposition and metal dusting.

DeVan, J.H.; Tortorelli, P.F.; Judkins, R.R.; Wright, I.G.

1997-02-01

172

EARLY ENTRANCE CO-PRODUCTION PLANT - DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS  

SciTech Connect

Waste Processors Management, Inc. (WMPI), along with its subcontractors Texaco Power & Gasification (now ChevronTexaco), SASOL Technology Ltd., and Nexant Inc. entered into a Cooperative Agreement DE-FC26-00NT40693 with the U. S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) to assess the technoeconomic viability of building an Early Entrance Co-Production Plant (EECP) in the United States to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co-product. The EECP design includes recovery and gasification of low-cost coal waste (culm) from physical coal cleaning operations and will assess blends of the culm with coal or petroleum coke. The project has three phases. Phase I is the concept definition and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase II is an experimental testing program designed to validate the coal waste mixture gasification performance. Phase III updates the original EECP design based on results from Phase II, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 barrel per day (BPD) coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania. The current report covers the period performance from July 1, 2002 through September 30, 2002.

Unknown

2003-01-01

173

LLNL Underground-Coal-Gasification Project. Quarterly progress report, July-September 1981  

SciTech Connect

We have continued our laboratory studies of forward gasification in small blocks of coal mounted in 55-gal drums. A steam/oxygen mixture is fed into a small hole drilled longitudinally through the center of the block, the coal is ignited near the inlet and burns toward the outlet, and the product gases come off at the outlet. Various diagnostic measurements are made during the course of the burn, and afterward the coal block is split open so that the cavity can be examined. Development work continues on our mathematical model for the small coal block experiments. Preparations for the large block experiments at a coal outcrop in the Tono Basin of Washington State have required steadily increasing effort with the approach of the scheduled starting time for the experiments (Fall 1981). Also in preparation is the deep gasification experiment, Tono 1, planned for another site in the Tono Basin after the large block experiments have been completed. Wrap-up work continues on our previous gasification experiments in Wyoming. Results of the postburn core-drilling program Hoe Creek 3 are presented here. Since 1976 the Soviets have been granted four US patents on various aspects of the underground coal gasification process. These patents are described here, and techniques of special interest are noted. Finally, we include ten abstracts of pertinent LLNL reports and papers completed during the quarter.

Stephens, D.R.; Clements, W. (eds.) [eds.

1981-11-09

174

Concepts of fundamental processes related to gasification of coal. Quarterly progress report, July-September 1981  

SciTech Connect

The research projects are described: (1) single stage catalytic coal gasification is an attractive concept as a direct method of producing high BTU gas from coal. This process involves the introduction of a coal-solvent slurry and hydrogen gas into a fixed bed catalytic reactor, which employs a catalyst high in hydrogenation and cracking activity. Steam may also be added to the system. The gas produced will be principally methane. Thermodynamic calculations indicate that this process is essentially autothermal. Since this process utilizes the heat of methanation to a maximum extent, significant overall energy savings can be achieved over the more conventional multi-stage gasification systems. The primary objective of this research is to optimize the process variables to maximize methane yields. Initially, a sulfided Ni-W/SiO/sub 2/-Al/sub 2/O/sub 3/ catalyst will be used; (2) the demand for molecular hydrogen and for synthesis gas is rapidly increasing. Therefore, an extensive program on steam reforming of aromatic compounds such as benzene, substituted benzenes, naphthalene and other aromatics found in coal and coal-derived liquids (CDL) is being carried out. The combination of coal liquefaction-steam reforming of CDL could prove to be an important alternative to coal gasification for the production of SNG and hydrogen. An objective of this project is to assess the feasibility of this alternative. Potentially, coal liquids could be reformed directly in a single step to high BTU gas.

Wiser, W.H.

1981-12-01

175

ENCOAL Mild Coal Gasification Demonstration Project. Annual report, October 1993--September 1994  

SciTech Connect

ENCOAL Corporation, a wholly-owned subsidiary of SMC Mining Company (formerly Shell Mining Company, now owned by Zeigler Coal Holding Company), has completed the construction and start-up of a mild gasification demonstration plant at Triton Coal Company`s Buckskin Mine near Gillette, Wyoming. The process, using Liquids From Coal (LFC) technology developed by SMC and SGI International, utilizes low-sulfur Powder River Basin coal to produce two new fuels, Process Derived Fuel (PDF) and Coal Derived Liquids (CDL). The LFC technology uses a mild pyrolysis or mild gasification process which involves heating the coal under carefully controlled conditions. The process causes chemical changes in the feed coal in contrast to conventional drying, which leads only to physical changes. Wet subbituminous coal contains considerable water, and conventional drying processes physically remove some of this moisture, causing the heating value to increase. The deeper the coal is physically dried, the higher the heating value and the more the pore structure permanently collapses, preventing resorption of moisture. However, deeply dried Powder River Basin coals exhibit significant stability problems when dried by conventional thermal processes. The LFC process overcomes these stability problems by thermally altering the solid to create PDF and CDL. Several of the major objectives of the ENCOAL Project have now been achieved. The LFC Technology has been essentially demonstrated. Significant quantities of specification CDL have been produced from Buckskin coal. Plant operation in a production mode with respectable availability (approaching 90%) has been demonstrated.

NONE

1995-03-01

176

Entrained-flow dry-bottom gasification of high-ash coals in coal-water slurries  

SciTech Connect

It was shown that the effective use of dry ash removal during entrained-flow gasification of coal-water slurries consists in simplification of the ash storage system and utilization of coal ash, a decrease in the coal demand, a reduction in the atmospheric emissions of noxious substances and particulate matter, and abandonment of the discharge of water used for ash slurry. According to the results of gasification of coal-water slurries (5-10 {mu}m) in a pilot oxygen-blow unit at a carbon conversion of >91%, synthesis gas containing 28.5% CO, 32.5% H{sub 2}, 8.2% CO{sub 2}, 1.5% CH{sub 4}, the rest being nitrogen, was obtained. The fly ash in its chemical composition, particle size, and density meets the requirements of the European standard EN 450 as a cement additive for concrete manufacture.

E.G. Gorlov; V.G. Andrienko; K.B. Nefedov; S.V. Lutsenko; B.K. Nefedov [Institute for Fossil Fuels, Moscow (Russian Federation)

2009-04-15

177

Effects of rank and calcium catalysis on oxygen chemisorption and gasification reactivity of coal chars  

NASA Astrophysics Data System (ADS)

The effects of coal rank and calcium catalysis on oxygen gasification of coal chars have been investigated. Five different coals, from lignite to anthracite were used. Coals were demineralized and a calcium catalyst was deposited on the carbon in different amounts, by ion exchange for lignite and subbituminous coals and by impregnation for the others. Chars from all coals were obtained by both slow and rapid pyrolysis. Oxygen chemisorption studies conducted under conditions far away from gasification and measured oxygen uptakes during gasification revealed that large amounts of oxygen are chemisorbed. The lower the coal rank, the greater the amount of chemisorbed oxygen in both cases. The presence of a calcium catalyst additionally increased the oxygen uptake by solid carbons. The chemisorption tests also showed the influence of diffusion inside the smallest micropores on the kinetics of the process. Reactivity profiles were investigated in detail. Demineralized coal chars showed monotonic, linear increases with burn-off for a broad range of conversion (20-80%). The higher the coal rank, the greater the reactivity increase per unit burn-off. A comparison of reactivities of the demineralized form of coal chars confirmed that the reactivity is affected by diffusion inside the smallest micropores for experiments in the intermediate temperature range, usually 700-800 K. A comparison of reactivities of the calcium-loaded and demineralized coal chars prepared and subsequently reacted at the same conditions has confirmed that the catalytic effect of calcium is the greatest for lower-rank coals, and that it decreases with increasing coal rank. Comparable reactivities for as-received and calcium-loaded lignite and subbituminous char were about two orders of magnitude greater than for a corresponding demineralized char. For higher ranks of coal the effect of calcium loading is smaller than one order of magnitude. For the lower ranks of coal, where calcium is very well dispersed, reactivity profiles are confirmed to be dominated by the catalytic effect. Based on the reactivity and oxygen chemisorption studies, it was concluded that the effect of oxygen diffusion on char reactivity is much greater for higher-rank coals than for lower-rank coals. For the lignite char the diffusion effect is only important at the beginning of gasification and it decreases with increasing burn-off. For the anthracite char it is about 3 times greater at the very low burn-offs than at 85% burn-off. In addition, for demineralized anthracite char this diffusion effect lasts longer in terms of time and conversion.

Piotrowski, Andrzej

178

Coal conversion processes and analysis methodologies for synthetic fuels production. [technology assessment and economic analysis of reactor design for coal gasification  

NASA Technical Reports Server (NTRS)

Information to identify viable coal gasification and utilization technologies is presented. Analysis capabilities required to support design and implementation of coal based synthetic fuels complexes are identified. The potential market in the Southeast United States for coal based synthetic fuels is investigated. A requirements analysis to identify the types of modeling and analysis capabilities required to conduct and monitor coal gasification project designs is discussed. Models and methodologies to satisfy these requirements are identified and evaluated, and recommendations are developed. Requirements for development of technology and data needed to improve gasification feasibility and economies are examined.

1979-01-01

179

Mild gasification of Usibelli coal in an inclined fluidized-bed reactor  

SciTech Connect

Results of mild gasification tests of minus 16-mesh Usibelli coal in an inclined fluidized-bed reactor are described in this report. The minus 16-mesh fraction was separated from the coal by screening. The coal was dried to zero moisture content, and about 2 wt % of the volatiles was removed as gas by partial decarboxylation using a 100-lb/hr inclined fluidized-bed dryer. The dried coal was subjected to mild gasification at maximum temperatures of 1050 to 1250{degrees}F (566 to 677{degrees}C) and feed rates of 7.5 lb/hr while using a once-through flow of carbon dioxide as fluidizing gas in a 1-inch-wide, inclined fluidized-bed reactor. Mild gasification of the dried coal resulted in production of 44 to 56 wt % of the dried coal as char, 10 to 13 wt % as liquids, 17 to 28 wt % as gas, and 8 to 21 wt % as fines. The yield of moisture- and ash-free (MAF) liquids varied from 11.4 to 14.2 wt % of the dried coal feed. Chemical analysis was carried out on these products.

Merriam, N.W.; Thomas, K.P.; Cha, C.Y.

1991-02-01

180

Hydrogen production by high-temperature steam gasification of biomass and coal  

Microsoft Academic Search

High-temperature steam gasification of paper, yellow pine woodchips, and Pittsburgh bituminous coal was investigated in a batch-type flow reactor at temperatures in the range of 700 to 1,200{sup o}C at two different ratios of steam to feedstock molar ratios. Hydrogen yield of 54.7% for paper, 60.2% for woodchips, and 57.8% for coal was achieved on a dry basis, with a

Sangtongam N. Kriengsak; Rafal Buczynski; Jakub Gmurczyk; Ashwani K. Gupta

2009-01-01

181

Advanced development of the combined-cycle plant with integrated coal gasification (IGCC)  

SciTech Connect

The advanced development of certain components and process steps is required although, world-wide a number of activities are carried out for the development of a hard coal-fired combined-cycle power plant with integrated coal gasification and demonstration projects are already available or planned. The named high efficiencies can only be achieved, if the design of components respectively process steps allows an exergetically high energy utilization.

Weinzierl, K. (Vereinigte Elektrizitaetswerke Westfalen AG (VEW), Dortmund (Germany, F.R.))

1990-01-01

182

Effect of pressure on gasification reactivity of three Chinese coals with different ranks  

Microsoft Academic Search

The gasification reactivities of three kinds of different coal ranks (Huolinhe lignite, Shenmu bituminous coal, and Jincheng\\u000a anthracite) with CO2 and H2O was carried out on a self-made pressurized fixed-bed reactor at increased pressures (up to 1.0 MPa). The physicochemical\\u000a characteristics of the chars at various levels of carbon conversion were studied via scanning electron microscopy (SEM), X-ray\\u000a diffraction (XRD),

Chunyu Li; Jiantao Zhao; Yitian Fang; Yang Wang

2010-01-01

183

Enhanced coal gasification heated by unmixed combustion integrated with an hybrid system of SOFC\\/GT  

Microsoft Academic Search

For clean utilization of coal, enhanced gasification by in situ CO2 capture has the advantage that hydrogen production efficiency is increased while no energy is required for CO2 separation. The unmixed fuel process uses a sorbent material as CO2 carrier and consists of three coupled reactors: a coal gasifier where CO2 is captured generating a H2-rich gas that can be

Pilar Lisbona; Luis M. Romeo

2008-01-01

184

Utilization of lightweight materials made from coal gasification slags. Quarterly report, September 15--November 30, 1994  

SciTech Connect

Coal gasification technologies are finding increasing commercial applications for power generation or production of chemical feedstocks. The integrated-gasification-combined-cycle (IGCC) coal conversion process has been demonstrated to be a clean, efficient, and environmentally acceptable method of generating power. However, the gasification process produces relatively large quantities of a solid waste termed slag. Regulatory trends with respect to solid waste disposal, landfill development costs, and public concern make utilization of slag a high-priority issue. Therefore, it is imperative that slag utilization methods be developed, tested, and commercialized in order to offset disposal costs. This project aims to demonstrate the technical and economic viability of the slag utilization technologies developed by Praxis to produce lightweight aggregates (LWA) and ultra-lightweight aggregates (ULWA) from slag in a large-scale pilot operation, followed by total utilization of these aggregates in a number of applications.

NONE

1997-07-01

185

Investigation of tar sand and heavy oil deposits of Wyoming for underground coal gasification applications  

Microsoft Academic Search

A literature review was conducted to identify and evaluate tar sand and heavy oil deposits of Wyoming which are potentially suitable for in situ processing with process heat or combustible gas from underground coal gasification (UCG). The investigation was undertaken as part of a project to develop novel concepts for expanding the role of UCG in maximizing energy recovery from

1985-01-01

186

TREATMENT OF AQUEOUS WASTE STREAMS FROM KRW ENERGY SYSTEMS COAL GASIFICATION TECHNOLOGY  

EPA Science Inventory

The paper gives results of a bench-scale evaluation to determine the extent to which process wastewaters from the KRW Energy Systems coal gasification process are treatable using commercially proven wastewater treatment technology. (NOTE: The process--formerly called the Westingh...

187

Environmental evaluation and restoration plan of the Hoe Creek Underground Coal Gasification Site, Wyoming: Topical report  

Microsoft Academic Search

Three underground coal gasification (UCG) experiments were conducted by Lawrence Livermore National Laboratory (LLNL) at the Hoe Creek Site, Wyoming; the Hoe Creek I experiment was conducted in 1976, the Hoe Creek II experiment in 1977, and the Hoe Creek III experiment in 1979. These experiments have had an impact on the land and groundwater quality at the site, and

W. L. Barteaux; G. L. Berdan; J. Lawrence

1986-01-01

188

Case-study of a coal gasification-based energy supply system for China  

E-print Network

Case-study of a coal gasification-based energy supply system for China Zheng Hongtao Department of Thermal Engineering, Tsinghua University, 100084 Beijing, China Tel: +86-10-62795738; fax: +86, Tsinghua University, 100084 Beijing, China Eric D. Larson Princeton Environmental Institute, Princeton

189

ASSESSMENT OF DISCHARGES FROM SASOL I LURGI-BASED COAL GASIFICATION PLANT  

EPA Science Inventory

The report discusses analytical information, obtained from Sasol I, on the emission and effluent streams analyzed in the normal course of operation and testing. The purpose was to provide EPA with representative information on a commercial-size Lurgi-based coal gasification proje...

190

COAL GASIFICATION ENVIRONMENTAL DATA SUMMARY: SOLID WASTES AND BY-PRODUCT TARS  

EPA Science Inventory

The report, one of several data summary reports on the environmental aspects and pollutants specific to coal gasification, addresses characteristics of solid wastes (ash and cyclone dust) and by-product tars and oils analyzed in nine EPA source tests and evaluation studies and li...

191

VAPOR-PHASE CRACKING AND WET OXIDATION AS POTENTIAL POLLUTANT CONTROL TECHNIQUES FOR COAL GASIFICATION  

EPA Science Inventory

The report gives results of an investigation of two techniques (hydrocracking of heavy organics in the raw gas prior to quency, and wet oxidation of the gasifier condensate) for pollutant control in coal gasification processes. Bench-scale experiments were used to determine rates...

192

The solar thermal gasification of coal — energy conversion efficiency and CO 2 mitigation potential  

Microsoft Academic Search

The steam-gasification of coal (peat, lignite, bituminous, and anthracite) into syngas is investigated using concentrated solar energy as the source of high-temperature process heat. The advantages of the solar- driven process are threefold: (1) the discharge of pollutants is avoided; (2) the gaseous products are not contaminated by combustion byproducts; and (3) the calorific value of the fuel is upgraded.

A. Steinfeld

2003-01-01

193

Solar gasification of biomass using oil shale and coal as candidate materials  

Microsoft Academic Search

Gasification of German oil shale and coal using concentrated solar energy as a heat source is studied in a fixed bed reactor under an argon atmosphere. The reactor allows direct absorption of irradiation resulting in high rates of temperature increase and hence in simultaneous decomposition of organic matter and carbonates present in the shale. Synthesis gases are produced consisting of

Martin Flechsenhar; Christian Sasse

1995-01-01

194

Technology Status Review of Waste\\/Biomass Co-Gasification with Coal  

Microsoft Academic Search

Coal might be co-gasified with waste or biomass for environmental, technical or commercial reasons. It allows larger, more efficient plants than those sized for the biomass grown or waste arisings within a reasonable transport distance; specific operating costs are likely to be lower; and, fuel supply security is assured. This review paper assesses the current status of co-gasification technologies and

Brian Ricketts; Richard Hotchkiss; Bill Livingston; Martin Hall

195

Hanna, Wyoming underground coal gasification data base. Volume 5. Hanna III field test research report  

Microsoft Academic Search

This report is part of a seven-volume series on the Hanna, Wyoming, underground coal gasification field tests. Volume 1 is a summary of the project and each of Volumes 2 through 6 describes a particular test. Volume 7 is a compilation of all the data for the tests in Volumes 2 through 6. Hanna III was conducted during the spring

T. C. Bartke; D. D. Fischer; S. B. King; R. M. Boyd; A. E. Humphrey

1985-01-01

196

Summary of the groundwater monitoring program at the Hanna, Wyoming underground coal gasification test sites  

Microsoft Academic Search

Water quality analyses of groundwaters at the Hanna, Wyoming, underground coal gasification (UCG) test sites comprise part of a continuing monitoring program to assess the impact of UCG on the environment. Collection and analysis of groundwater samples by DOE and various DOE contractor laboratories were initiated in 1974 and intensified in 1980. Samples from 48 wells were tested for 46

S. D. Cooke; R. L. Oliver

1985-01-01

197

Combustion Engineering Integrated Coal Gasification Combined Cycle Repowering Project: Clean Coal Technology Program  

SciTech Connect

On February 22, 1988, DOE issued Program Opportunity Notice (PON) Number-DE-PS01-88FE61530 for Round II of the CCT Program. The purpose of the PON was to solicit proposals to conduct cost-shared ICCT projects to demonstrate technologies that are capable of being commercialized in the 1990s, that are more cost-effective than current technologies, and that are capable of achieving significant reduction of SO[sub 2] and/or NO[sub x] emissions from existing coal burning facilities, particularly those that contribute to transboundary and interstate pollution. The Combustion Engineering (C-E) Integrated Coal Gasification Combined Cycle (IGCC) Repowering Project was one of 16 proposals selected by DOE for negotiation of cost-shared federal funding support from among the 55 proposals that were received in response to the PON. The ICCT Program has developed a three-level strategy for complying with the National Environmental Policy Act (NEPA) that is consistent with the President's Council on Environmental Quality regulations implementing NEPA (40 CFR 1500-1508) and the DOE guidelines for compliance with NEPA (10 CFR 1021). The strategy includes the consideration of programmatic and project-specific environmental impacts during and subsequent to the reject selection process.

Not Available

1992-03-01

198

Multivariable control of Texaco`s Eunice South Gas Plant  

SciTech Connect

A model predictive multivariable controller has been commissioned at Texaco`s Eunice South Gas Plant to increase profits and to provide better overall control of the Cryogenic Demethanizer Unit. The project payback was based on increased recovery of ethane and NGL. The controller has also been successful in maintaining a composition specification at the bottom of the demethanizer column while optimizing operations by pushing the plant to run at its pressure constraints. The South Plant Cryogenic Unit at Texaco`s Eunice complex processes about 100 MMscfd of natural gas from various sources. The demethanizer recovers ethane plus while rejecting methane from the bottom product. The column consists of a top section providing entries for the reflux and expander outlet and a lower section consisting of two packed beds. Cold separator liquids enter near the top of the lower section. Bottom and side reboilers are attached to the lower portion of the column. Residue gas leaves the top and demethanized NGL leaves the bottom of the column. A multivariable control (MVC{reg_sign}) module was installed with the primary objective of increasing ethane recovery by decreasing the column pressure and increasing the pressure differential across the expander unit while maintaining operating constraints with varying inlet conditions. The MVC controller runs in a Pentium{reg_sign} computer operating under SCO{reg_sign} UNIX{reg_sign} and is also attached to the plant ethernet network. The plant has programmable logic controllers (PLC) which are networked to a supervisory control and data acquisition (SCADA) system through pyramid integrators. MVC computes the optimal setpoint to six basic control loops in supervisory mode.

Alexander, M.C. [Texaco Exploration and Production Inc., Eunice, NM (United States); Martin, O. [Texaco Exploration and Production Inc., Denver, CO (United States); Basu, U.; Poe, W.A. [Continental Controls, Inc., Houston, TX (United States)

1998-12-31

199

Coal gasification: molten salt processes for sulfur emission control  

Microsoft Academic Search

Two molten salt desulfurization processes are illustrated. ; Precombustion desulfurization of coal takes place in a single vessel. Pulverized ; coal, slurried with molten salt, is allowed to react with a melt that contains an ; agent with an affinity for the sulfurous compounds. The coal collects at the ; top, being less dense than the melt, and is drawn

Glueck

1973-01-01

200

COAL GASIFICATION ENVIRONMENTAL DATA SUMMARY: SULFUR AND NITROGEN SPECIES  

EPA Science Inventory

The report summarizes data on sulfur and nitrogen species from the source test and environmental assessment studies of low- and medium-Btu gasification processes which were sponsored by the EPA between 1977 and 1981. The data are focused on the composition and distribution of the...

201

Assessment of coal gasification/hot gas cleanup based advanced gas turbine systems  

SciTech Connect

The major objectives of the joint SCS/DOE study of air-blown gasification power plants with hot gas cleanup are to: (1) Evaluate various power plant configurations to determine if an air-blown gasification-based power plant with hot gas cleanup can compete against pulverized coal with flue gas desulfurization for baseload expansion at Georgia Power Company's Plant Wansley; (2) determine if air-blown gasification with hot gas cleanup is more cost effective than oxygen-blown IGCC with cold gas cleanup; (3) perform Second-Law/Thermoeconomic Analysis of air-blown IGCC with hot gas cleanup and oxygen-blown IGCC with cold gas cleanup; (4) compare cost, performance, and reliability of IGCC based on industrial gas turbines and ISTIG power island configurations based on aeroderivative gas turbines; (5) compare cost, performance, and reliability of large (400 MW) and small (100 to 200 MW) gasification power plants; and (6) compare cost, performance, and reliability of air-blown gasification power plants using fluidized-bed gasifiers to air-blown IGCC using transport gasification and pressurized combustion.

Not Available

1990-12-01

202

Product Characterization for Entrained Flow Coal/Biomass Co-Gasification  

SciTech Connect

The U.S. Department of Energy‘s National Energy Technology Laboratory (DOE NETL) is exploring affordable technologies and processes to convert domestic coal and biomass resources to high-quality liquid hydrocarbon fuels. This interest is primarily motivated by the need to increase energy security and reduce greenhouse gas emissions in the United States. Gasification technologies represent clean, flexible and efficient conversion pathways to utilize coal and biomass resources. Substantial experience and knowledge had been developed worldwide on gasification of either coal or biomass. However, reliable data on effects of blending various biomass fuels with coal during gasification process and resulting syngas composition are lacking. In this project, GE Global Research performed a complete characterization of the gas, liquid and solid products that result from the co-gasification of coal/biomass mixtures. This work was performed using a bench-scale gasifier (BSG) and a pilot-scale entrained flow gasifier (EFG). This project focused on comprehensive characterization of the products from gasifying coal/biomass mixtures in a high-temperature, high-pressure entrained flow gasifier. Results from this project provide guidance on appropriate gas clean-up systems and optimization of operating parameters needed to develop and commercialize gasification technologies. GE‘s bench-scale test facility provided the bulk of high-fidelity quantitative data under temperature, heating rate, and residence time conditions closely matching those of commercial oxygen-blown entrained flow gasifiers. Energy and Environmental Research Center (EERC) pilot-scale test facility provided focused high temperature and pressure tests at entrained flow gasifier conditions. Accurate matching of syngas time-temperature history during cooling ensured that complex species interactions including homogeneous and heterogeneous processes such as particle nucleation, coagulation, surface condensation, and gas-phase reactions were properly reproduced and lead to representative syngas composition at the syngas cooler outlet. The experimental work leveraged other ongoing GE R&D efforts such as biomass gasification and dry feeding systems projects. Experimental data obtained under this project were used to provide guidance on the appropriate clean-up system(s) and operating parameters to coal and biomass combinations beyond those evaluated under this project.

Maghzi, Shawn; Subramanian, Ramanathan; Rizeq, George; Singh, Surinder; McDermott, John; Eiteneer, Boris; Ladd, David; Vazquez, Arturo; Anderson, Denise; Bates, Noel

2011-09-30

203

Product Characterization for Entrained Flow Coal/Biomass Co-Gasification  

SciTech Connect

The U.S. Department of Energyâ??s National Energy Technology Laboratory (DOE NETL) is exploring affordable technologies and processes to convert domestic coal and biomass resources to high-quality liquid hydrocarbon fuels. This interest is primarily motivated by the need to increase energy security and reduce greenhouse gas emissions in the United States. Gasification technologies represent clean, flexible and efficient conversion pathways to utilize coal and biomass resources. Substantial experience and knowledge had been developed worldwide on gasification of either coal or biomass. However, reliable data on effects of blending various biomass fuels with coal during gasification process and resulting syngas composition are lacking. In this project, GE Global Research performed a complete characterization of the gas, liquid and solid products that result from the co-gasification of coal/biomass mixtures. This work was performed using a bench-scale gasifier (BSG) and a pilot-scale entrained flow gasifier (EFG). This project focused on comprehensive characterization of the products from gasifying coal/biomass mixtures in a high-temperature, high-pressure entrained flow gasifier. Results from this project provide guidance on appropriate gas clean-up systems and optimization of operating parameters needed to develop and commercialize gasification technologies. GEâ??s bench-scale test facility provided the bulk of high-fidelity quantitative data under temperature, heating rate, and residence time conditions closely matching those of commercial oxygen-blown entrained flow gasifiers. Energy and Environmental Research Center (EERC) pilot-scale test facility provided focused high temperature and pressure tests at entrained flow gasifier conditions. Accurate matching of syngas time-temperature history during cooling ensured that complex species interactions including homogeneous and heterogeneous processes such as particle nucleation, coagulation, surface condensation, and gas-phase reactions were properly reproduced and lead to representative syngas composition at the syngas cooler outlet. The experimental work leveraged other ongoing GE R&D efforts such as biomass gasification and dry feeding systems projects. Experimental data obtained under this project were used to provide guidance on the appropriate clean-up system(s) and operating parameters to coal and biomass combinations beyond those evaluated under this project.

Shawn Maghzi; Ramanathan Subramanian; George Rizeq; Surinder Singh; John McDermott; Boris Eiteneer; David Ladd; Arturo Vazquez; Denise Anderson; Noel Bates

2011-09-30

204

Assessment of underground coal gasification in bituminous coals: potential UCG products and markets. Final report, Phase I  

SciTech Connect

The following conclusions were drawn from the study: (1) The US will continue to require new sources of energy fuels and substitutes for petrochemical feedstocks into the foreseeable future. Most of this requirement will be met using coal. However, the cost of mining, transporting, cleaning, and preparing coal, disposing of ash or slag and scrubbing stack gases continues to rise; particularly, in the Eastern US where the need is greatest. UCG avoids these pitfalls and, as such, should be considered a viable alternative to the mining of deeper coals. (2) Of the two possible product gases LBG and MBG, MBG is the most versatile. (3) The most logical use for UCG product in the Eastern US is to generate power on-site using a combined-cycle or co-generation system. Either low or medium Btu gas (LBG or MBG) can be used. (4) UCG should be an option whenever surface gasification is considered; particularly, in areas where deeper, higher sulfur coal is located. (5) There are environmental and social benefits to use of UCG over surface gasification in the Eastern US. (6) A site could be chosen almost anywhere in the Illinois and Ohio area where amenable UCG coal has been determined due to the existence of existing transportation or transmission systems. (7) The technology needs to be demonstrated and the potential economic viability determined at a site in the East-North-Central US which has commercial quantities of amenable bituminous coal before utilities will show significant interest.

None

1982-01-31

205

Effect of pretreatment and additives on boron release during pyrolysis and gasification of coal  

SciTech Connect

Boron is one of the most toxic and highly volatile elements present in coal. As part of a series of studies carried out on coal cleaning to prevent environmental problems and to promote efficient coal utilization processes, the removal of boron by leaching with water and acetic acid has been investigated. The effects of the addition of ash components, that is, SiO{sub 2}, Al{sub 2}O{sub 3}, and CaO on the control of boron release during pyrolysis and gasification were investigated. Here, 20-70% of boron in coal was removed by leaching the coal with water and acetic acid. Boron leached by water and acetic acid was related to the volatiles released from coal in pyrolysis below 1173 K. The addition of ash components such as SiO{sub 2} and Al{sub 2}O{sub 3} was found to be effective in suppressing the release of boron during pyrolysis at temperatures below and above 1173 K, respectively. The addition of CaO to coal was effective in suppressing the release of boron during gasification at 1173 K. 26 refs., 7 figs., 3 tabs.

Yuuki Mochizuki; Katsuyasu Sugawara; Yukio Enda [Akita University, Akita (Japan). Faculty of Engineering and Resources Science

2009-09-15

206

Characterization, extraction, and reuse of coal-gasification solid wastes. Volume 1. Characterization of coal gasification solid wastes. Final report, May 1983-June 1986  

SciTech Connect

Coal gasification, such as that underway at Beulah, ND, results in large quantities of by-product ash that must be either utilized commercially or disposed in landfills. Detailed ash characterization is necessary for either option. Chemical composition (by AAS, ICP and XRF), mineralogy (by XRD and SEM) and thermal analysis (by TGA) were determined for nine fixed-bed low-rank coal (lignite) ash samples prepared over a five-year period in three gasifiers representing a range of operating conditions. The ashes are coarsely granular and show considerable grain-to-grain heterogeneity. They have higher concentrations of Na/sub 2/O, CaO, and MgO and lower concentrations of Al/sub 2/O/sub 3/ and SiO/sub 2/ than bituminous coal ash. Their trace-element concentrations are typical of lignite combustion ashes. Unlike the combustion ashes, the gasification ashes are dominantly crystalline with an assemblage of mineral-like silicates (melilite, merwinite, dicalcium silicates, nepheline, carnegieite, sodalite, feldspars), oxides (periclase, ferrite spinel, quartz) and calcite. Glass phases are rich in sodium aluminosilicate.

McCarthy, G.J.; Stevenson, R.J.; Hassett, D.J.

1988-03-01

207

Retention of arsenic and selenium compounds using limestone in a coal gasification flue gas.  

PubMed

Volatile arsenic and selenium compounds present in coals may cause environmental problems during coal combustion and gasification. A possible way to avoid such problems may be the use of solid sorbents capable of retaining these elements from flue gases in gas cleaning systems. Lime and limestone are materials that are extensively employed for the capture of sulfur during coal processing. Moreover, they have also proven to have good retention characteristics for arsenic and selenium during combustion. The aim of this work was to ascertain whether this sorbent is also useful for retaining arsenic and selenium species in gases produced in coal gasification. The study was carried out in a laboratory-scale reactor in which the sorbent was employed as a fixed bed, using synthetic gas mixtures. In these conditions, retention capacities for arsenic may reach 17 mg g(-1) in a gasification atmosphere free of H2S, whereas the presence of H2S implies a significant decrease in arsenic retention. In the case of selenium, H2S does not influence retention which may reach 65 mg g(-1). Post-retention sorbent characterization, thermal stability, and water solubility tests have shown that chemical reaction is one of the mechanisms responsible for the capture of arsenic and selenium, with Ca(AsO2)2 and CaSe being the main compounds formed. PMID:14968880

Diaz-Somoano, Mercedes; Martinez-Tarazona, M Rosa

2004-02-01

208

High temperature electrochemical separation of H sub 2 S from coal gasification process streams  

SciTech Connect

An advanced process for the separation of hydrogen sulfide from coal gasification product streams through an electrochemical membrane is being developed. H{sub 2}S is removed from the syn-gas stream, split into hydrogen, which enriches the syn-gas, and sulfur, which can be condensed from an inert gas sweep stream. The process allows removal of H{sub 2}S without cooling the gas stream and with negligible pressure loss through the separator. The process is economically attractive by the lack of adsorbents and the lack of a Claus process for sulfur recovery. Research conducted during the present quarter is highlighted, with an emphasis on progress towards the goal of an economically viable H{sub 2}S removal technology for use in coal gasification facilities providing polished fuel for co-generation coal fired electrical power facilities and Molten Carbonate Fuel Cell electrical power facilities. Polishing application of this technology to coal gasification synthesis gas has been demonstrated with H{sub 2}S removals as high as 89.1% recorded. No successful runs with stainless steel housings have yet been achieved. However, since stoichiometric CO{sub 2} removal with stainless steel housings has been achieved, H{sub 2}S removal is achievable.

Winnick, J.

1992-01-01

209

Sulfur emission from Victorian brown coal under pyrolysis, oxy-fuel combustion and gasification conditions.  

PubMed

Sulfur emission from a Victorian brown coal was quantitatively determined through controlled experiments in a continuously fed drop-tube furnace under three different atmospheres: pyrolysis, oxy-fuel combustion, and carbon dioxide gasification conditions. The species measured were H(2)S, SO(2), COS, CS(2), and more importantly SO(3). The temperature (873-1273 K) and gas environment effects on the sulfur species emission were investigated. The effect of residence time on the emission of those species was also assessed under oxy-fuel condition. The emission of the sulfur species depended on the reaction environment. H(2)S, SO(2), and CS(2) are the major species during pyrolysis, oxy-fuel, and gasification. Up to 10% of coal sulfur was found to be converted to SO(3) under oxy-fuel combustion, whereas SO(3) was undetectable during pyrolysis and gasification. The trend of the experimental results was qualitatively matched by thermodynamic predictions. The residence time had little effect on the release of those species. The release of sulfur oxides, in particular both SO(2) and SO(3), is considerably high during oxy-fuel combustion even though the sulfur content in Morwell coal is only 0.80%. Therefore, for Morwell coal utilization during oxy-fuel combustion, additional sulfur removal, or polishing systems will be required in order to avoid corrosion in the boiler and in the CO(2) separation units of the CO(2) capture systems. PMID:23301852

Chen, Luguang; Bhattacharya, Sankar

2013-02-01

210

Characterization of Filter Elements for Service in a Coal Gasification Environment  

SciTech Connect

The Power Systems Development Facility (PSDF) is a joint Department of Energy/Industry sponsored engineering-scale facility for testing advanced coal-based power generation technologies. High temperature, high pressure gas cleaning is critical to many of these advanced technologies. Barrier filter elements that can operate continuously for nearly 9000 hours are required for a successful gas cleaning system for use in commercial power generation. Since late 1999, the Kellogg Brown & Root Transport reactor at the PSDF has been operated in gasification mode. This paper describes the test results for filter elements operating in the Siemens-Westinghouse particle collection device (PCD) with the Transport reactor in gasification mode. Operating conditions in the PCD have varied during gasification operation as described elsewhere in these proceedings (Martin et al, 2002).

Spain, J.D.

2002-09-19

211

CoalFleet RD&D augmentation plan for integrated gasification combined cycle (IGCC) power plants  

SciTech Connect

To help accelerate the development, demonstration, and market introduction of integrated gasification combined cycle (IGCC) and other clean coal technologies, EPRI formed the CoalFleet for Tomorrow initiative, which facilitates collaborative research by more than 50 organizations from around the world representing power generators, equipment suppliers and engineering design and construction firms, the U.S. Department of Energy, and others. This group advised EPRI as it evaluated more than 120 coal-gasification-related research projects worldwide to identify gaps or critical-path activities where additional resources and expertise could hasten the market introduction of IGCC advances. The resulting 'IGCC RD&D Augmentation Plan' describes such opportunities and how they could be addressed, for both IGCC plants to be built in the near term (by 2012-15) and over the longer term (2015-25), when demand for new electric generating capacity is expected to soar. For the near term, EPRI recommends 19 projects that could reduce the levelized cost-of-electricity for IGCC to the level of today's conventional pulverized-coal power plants with supercritical steam conditions and state-of-the-art environmental controls. For the long term, EPRI's recommended projects could reduce the levelized cost of an IGCC plant capturing 90% of the CO{sub 2} produced from the carbon in coal (for safe storage away from the atmosphere) to the level of today's IGCC plants without CO{sub 2} capture. EPRI's CoalFleet for Tomorrow program is also preparing a companion RD&D augmentation plan for advanced-combustion-based (i.e., non-gasification) clean coal technologies (Report 1013221). 7 refs., 30 figs., 29 tabs., 4 apps.

NONE

2007-01-15

212

Encoal mild coal gasification project: Encoal project final report, July 1, 1997--July 31, 1997  

SciTech Connect

This document is the summative report on the ENCOAL Mild Coal Gasification Project. It covers the time period from September 17, 1990, the approval date of the Cooperative Agreement between ENCOAL and the US Department of Energy (DOE), to July 17, 1997, the formal end of DOE participation in the Project. The Cooperative Agreement was the result of an application by ENCOAL to the DOE soliciting joint funding under Round III of the Clean Coal Technology Program. By June 1992, the ENCOAL Plant had been built, commissioned and started up, and in October 1994, ENCOAL was granted a two-year extension, carrying the project through to September 17, 1996. No-cost extensions have moved the Cooperative Agreement end date to July 17, 1997 to allow for completion of final reporting requirements. At its inception, ENCOAL was a subsidiary of Shell Mining Company. In November 1992, Shell Mining Company changed ownership, becoming a subsidiary of Zeigler Coal Holding Company (Zeigler) of Fairview Heights, Illinois. Renamed successively as SMC Mining Company and then Bluegrass Coal Development Company, it remained the parent entity for ENCOAL, which has operated a 1,000-ton/day mild coal gasification demonstration plant near Gillette, Wyoming for nearly 5 years. ENCOAL operates at the Buckskin Mine owned by Triton Coal Company (Triton), another Zeigler subsidiary.

NONE

1997-07-01

213

A study on the impacts of changes in coal quality on the performances of gasification processes and IGCC  

SciTech Connect

This paper describes a study to investigate the impacts of changes in the coal qualities on the performances of gasification processes and IGCC plants. The purpose of this study aims at selecting the most suitable design coal for IGCC in Korea. Among the 22 kinds of imported coals to Korea for the pulverized coal fired power plants, the 4 kinds of coals were evaluated for the final selection. The important selection criteria are the coal quality such as the ash fusion temperature, moisture, volatile, and oxygen contents, heating value, etc., and the other factors affecting on IGCC. The selection of the most economic coal is an important attribute for the IGCC power generation technology. The performances of gasification processes were predicted using the material and energy balance based on the chemical equilibrium model, and compared with the tests results of Coal Gasification Demonstration Plants. The IGCC performances with bituminous and sub-bituminous coal were predicted as well. It is obtained that, among the imported coals to Korea, the bituminous coal is superior to the sub-bituminous coal for IGCC power generation. The economic coal range for IGCC was suggested in this papers.

Ahn, D.H.; Kim, J.J.; Kim, N.H.; Park, H.Y.; Kim, C.Y. [Korea Electric Power Corp., Taejon (Korea, Republic of)

1995-12-31

214

Integration and testing of hot desulfurization and entrained flow gasification for power generation systems  

SciTech Connect

To help achieve the goal of clean, low cost power generation from coal, Texaco submitted an unsolicited proposal in July 1986 to develop and demonstrate the integration of high temperature desulfurization with the Texaco Coal Gasification Process (TCGP). The main goals of the proposed program were: Develop and demonstrate in-situ desulfurization of synthesis gas in an entrained flow gasifier using both air and oxygen gasification. Develop and demonstrate a high efficiency integrated system on a process development unit (PDU) scale which would include coal preparation, gasification, sulfur removal, particle and trace element removal and a gas turbine. In addition, secondary goals were proposed which would help further major research in which DOE/METC was already involved. These were: Test advanced instruments developed by METC for coal conversion processes. Screen alternative high temperature sulfur removal sorbents that could be used external to the gasifier. Development of these sorbents would provide a backup to the in-situ desulfurization approach. Accomplishments to date are presented.

Leininger, T.F.; Robin, A.; Jung, D.Y.; Kassman, J.S.; Wolfenbarger, J.K.; Yang, P.P.

1992-11-01

215

Integration and testing of hot desulfurization and entrained flow gasification for power generation systems. [Zinc titanates  

SciTech Connect

To help achieve the goal of clean, low cost power generation from coal, Texaco submitted an unsolicited proposal in July 1986 to develop and demonstrate the integration of high temperature desulfurization with the Texaco Coal Gasification Process (TCGP). The main goals of the proposed program were: Develop and demonstrate in-situ desulfurization of synthesis gas in an entrained flow gasifier using both air and oxygen gasification. Develop and demonstrate a high efficiency integrated system on a process development unit (PDU) scale which would include coal preparation, gasification, sulfur removal, particle and trace element removal and a gas turbine. In addition, secondary goals were proposed which would help further major research in which DOE/METC was already involved. These were: Test advanced instruments developed by METC for coal conversion processes. Screen alternative high temperature sulfur removal sorbents that could be used external to the gasifier. Development of these sorbents would provide a backup to the in-situ desulfurization approach. Accomplishments to date are presented.

Leininger, T.F.; Robin, A.; Jung, D.Y.; Kassman, J.S.; Wolfenbarger, J.K.; Yang, P.P.

1992-01-01

216

Simulation of a Texaco gasifier. Volume 1. A steady-state model  

Microsoft Academic Search

A steady-state model of a Texaco entrained coal-fired pilot plant gasifier has been developed. In this simple model, the gasifier is represented by a perfectly stirred tank reactor in combination with a plug flow reactor. The model includes both gas and solid phase reactions, interphase mass and energy transfer and wall heat loss. Coal particle size distributions may be used.

A. J. Lupa; H. C. Kliesch

1979-01-01

217

Taguchi approach for co-gasification optimization of torrefied biomass and coal.  

PubMed

This study employs the Taguchi method to approach the optimum co-gasification operation of torrefied biomass (eucalyptus) and coal in an entrained flow gasifier. The cold gas efficiency is adopted as the performance index of co-gasification. The influences of six parameters, namely, the biomass blending ratio, oxygen-to-fuel mass ratio (O/F ratio), biomass torrefaction temperature, gasification pressure, steam-to-fuel mass ratio (S/F ratio), and inlet temperature of the carrier gas, on the performance of co-gasification are considered. The analysis of the signal-to-noise ratio suggests that the O/F ratio is the most important factor in determining the performance and the appropriate O/F ratio is 0.7. The performance is also significantly affected by biomass along with torrefaction, where a torrefaction temperature of 300°C is sufficient to upgrade eucalyptus. According to the recommended operating conditions, the values of cold gas efficiency and carbon conversion at the optimum co-gasification are 80.99% and 94.51%, respectively. PMID:23907063

Chen, Wei-Hsin; Chen, Chih-Jung; Hung, Chen-I

2013-09-01

218

Development of biological coal gasification (MicGAS process)  

SciTech Connect

Laboratory scale studies examining biogasification of Texas lignite at various coal solids loadings have been completed. Bench scale bioreactors are currently being used to scale up the biogasification process to higher coal solids loadings (5% and 10%) Specific observations reported this quarter are that methane production was not curtailed when B-vitamin solution was not added to the biogasification medium and that aeration of Mic-1 did not sufficiently oxidize the medium to eliminate strict anaerobic bacteria including methanogens.

Not Available

1992-10-30

219

COAL CHAR GASIFICATION KINETICS IN A JET-FLUIDIZED BED (COMBUSTION, REACTION, RATE PHENOMENA)  

Microsoft Academic Search

The kinetics of gasification of -10 + 65 mesh coke and coal char with O(,2) and O(,2)-CO(,2) mixtures was studied in a continuous, bench scale, jet-fluidized reactor over a wide range of temperatures (900(DEGREES)C to > 1400(DEGREES)C) and bed depths under atmospheric pressure. The measured specific reaction rates of carbon ranged from 0.01 to 0.1 gram carbon reacting per gram

MING-YUAN KAO

1984-01-01

220

Solar-driven coal gasification in a thermally irradiated packed-bed reactor  

Microsoft Academic Search

Coal gasification for high-quality synthesis gas production is considered using concentrated solar energy as the source of high-temperature process heat. The solar reactor consists of two cavities separated by a radiant emitter plate, with the upper one serving as the solar absorber and the lower one containing the reacting packed bed that shrinks as the reaction progresses. A 5 kW

Nicolas Piatkowski; Aldo Steinfeld

2008-01-01

221

Coal gasification with CO 2 in molten salt for solar thermal\\/chemical energy conversion  

Microsoft Academic Search

Coal gasification with CO2 in Na2CO3–K2CO3 molten salt that was used as thermal storage for gas\\/solid heterogeneous reaction was studied to apply this system for solar thermal\\/chemical energy conversion. The reactions were performed at 1173 K under various CO2 flow rates, weights of the molten salt and Na2CO3\\/K2CO3 ratios. The CO2 gas consumption rate increased with increasing CO2 flow rate,

J Matsunami; S Yoshida; Y Oku; O Yokota; Y Tamaura; M Kitamura

2000-01-01

222

Preliminary market evaluation for gas produced by underground gasification of western coal  

Microsoft Academic Search

This report presents a preliminary market evaluation for gas produced from underground coal gasification in the western United States. The most important market for LBG or IBG from UCG is the electric utility industry. Moreover, there is likely to be an urgent need for the electricity so produced. Because little expansion of hydroelectric plants is expected, thermal plants--nuclear or fossil-fueled--must

D. L. Olsen; A. J. Moll; R. L. Dickenson; C. A. Trexel; G. Crooks; N. R. Teater

1978-01-01

223

Fixed-bed gasification research using US coals. Volume 19. Executive summary  

Microsoft Academic Search

A single-staged, fixed-bed, Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort under the Mining and Industrial Fuel Gas Group (MIFGA). This report is the nineteenth volume in a series of reports describing the atmospheric

D. Thimsen; R. E. Maurer; B. Y. H. Liu; D. Pui; D. Kittelson

1985-01-01

224

Coal gasification systems engineering and analysis. Appendix H: Work breakdown structure  

NASA Technical Reports Server (NTRS)

A work breakdown structure (WBS) is presented which encompasses the multiple facets (hardware, software, services, and other tasks) of the coal gasification program. The WBS is shown to provide the basis for the following: management and control; cost estimating; budgeting and reporting; scheduling activities; organizational structuring; specification tree generation; weight allocation and control; procurement and contracting activities; and serves as a tool for program evaluation.

1980-01-01

225

Characterization and Failure Analysis of Ceramic Filters Utilized for Emission Control Coal Gasification  

Microsoft Academic Search

Advanced integrated gasification combined cycle (IGCC) and pressurized fluidized bed;\\u000acombustion (PFBC) power system requires both hot gas desulfurization and particulate filtration;\\u000ato improve system thermal efficiency and overall performance. Therefore, effective high;\\u000atemperature ceramic filters are indispensable key component in both of the advanced IGCC and;\\u000aPFBC coal based power systems to perform hot gas cleanup work.;\\u000aTo meet

Daniel Mei; Jianren Zhou; Ziaul Huque

1998-01-01

226

High temperature electrochemical separation of H sub 2 S from coal gasification process streams  

Microsoft Academic Search

An advanced process for the separation of hydrogen sulfide from coal gasification product streams through an electrochemical membrane is being developed using the funds from this grant. HâS is removed from the syn-gas stream, split into hydrogen, which enriches the syn-gas, and sulfur, which can be condensed from an inert gas sweep stream. The process allows removal of HâS without

Winnick

1991-01-01

227

High temperature electrochemical separation of H sub 2 S from coal gasification process streams  

Microsoft Academic Search

An advanced process for the separation of hydrogen sulfide from coal gasification product streams through an electrochemical membrane is being developed. HâS is removed from the syn-gas stream, split into hydrogen, which enriches the syn-gas, and sulfur, which can be condensed from an inert gas sweep stream. The process allows removal of HâS without cooling the gas stream and with

Winnick

1992-01-01

228

Development of biological coal gasification (MicGAS process); 14th Quarterly report  

SciTech Connect

Reported here is the progress on the Development of Biological Coal Gasification for DOE contract No. DE-AC21-90MC27226 MOD A006. Task 1, NEPA Compliance and Updated Test Plan has been completed. Progress toward Task 2, Enhanced Methane Production, is reported in the areas of bacterial strain improvement, addition of co-substrates, and low cost nutrient amendment. Conclusions reached as a result of this work are presented. Plans for future work are briefly outlined.

NONE

1993-01-28

229

Modeling of the Coal Gasification Processes in a Hybrid Plasma Torch  

Microsoft Academic Search

The major advantages of plasma treatment systems are cost effectiveness and technical efficiency. A new efficient electrodeless 1-MW hybrid plasma torch for waste disposal and coal gasification is proposed. This product merges several solutions such as the known inductive-type plasma torch, innovative reverse-vortex (RV) reactor and the recently developed nonequilibrium plasma pilot and plasma chemical reactor. With the use of

Igor B. Matveev; Serhiy I. Serbin

2007-01-01

230

Wiang Haeng coal-water fuel preparation and gasification, Thailand - task 39  

SciTech Connect

In response to an inquiry by the Department of Mineral Resources (DMR) in Thailand, the Energy & Environmental Research Center (EERC) prepared a four-task program to assess the responsiveness of Wiang Haeng coal to the temperature and pressure conditions of hot-water drying (HWD). The results indicate that HWD made several improvements in the coal, notably increases (HWD). The results indicate that HWD made several improvements in the coal, notably increases in heating value and carbon content and reductions in equilibrium moisture and oxygen content. The equilibrium moisture content decreased from 37.4 wt% for the raw coal to about 20 wt% for the HWD coals. The energy density for a pumpable coal-water fuel indicates an increase from 4450 to 6650 Btu/lb by hydrothermal treatment. Raw and HWD coal were then gasified at various mild gasification conditions of 700{degrees}C and 30 psig. The tests indicated that the coal is probably similar to other low-rank coals, will produce high levels of hydrogen, and be fairly reactive.

Anderson, C.M.; Musich, M.A.; Young, B.C. [and others

1996-07-01

231

Advances in the development of wire mesh reactor for coal gasification studies - article no. 084102  

SciTech Connect

In an effort to further understand the coal gasification behavior in entrained-flow gasifiers, a high pressure and high temperature wire mesh reactor with new features was recently built. An advanced LABVIEW-based temperature measurement and control system were adapted. Molybdenum wire mesh with aperture smaller than 70 {mu} m and type D thermocouple were used to enable high carbon conversion ({gt}90%) at temperatures {gt}1000 {sup o}C. Gaseous species from wire mesh reactor were quantified using a high sensitivity gas chromatography. The material balance of coal pyrolysis in wire mesh reactor was demonstrated for the first time by improving the volatile's quantification techniques.

Zeng, C.; Chen, L.; Liu, G.; Li, W.H.; Huang, B.M.; Zhu, H.D.; Zhang, B.; Zamansky, V. [GE Global Research Shanghai, Shanghai (China)

2008-08-15

232

High-yield hydrogen production by catalytic gasification of coal or biomass  

SciTech Connect

Gasification of coal or wood, catalyzed by soluble metallic cations to maximize reaction rates and hydrogen yields, offers a potential for large-scale, economical hydrogen production with near-commercial technology. With optimum reaction conditions and catalysts, product gas rich in both hydrogen and methane can be used in fuel cells to produce electricity at efficiencies nearly double those of conventional power plant. If plantation silvaculture techniques can produce wood at a raw energy cost competitive with coal, further enhancement of product gas yields may be possible, with zero net contribution of CO{sub 2} to the atmosphere.

Hauserman, W.B.

1992-01-01

233

Nitrogen mineralization from sludge in an alkaline, saline coal gasification ash environment.  

PubMed

Rehabilitating coal gasification ash dumps by amendment with waste-activated sludge has been shown to improve the physical and chemical properties of ash and to facilitate the establishment of vegetation. However, mineralization of organic N from sludge in such an alkaline and saline medium and the effect that ash weathering has on the process are poorly understood and need to be ascertained to make decisions regarding the suitability of this rehabilitation option. This study investigated the rate and pattern of N mineralization from sludge in a coal gasification ash medium to determine the prevalent inorganic N form in the system and assess the effect of ash weathering on N mineralization. An incubation experiment was performed in which fresh ash, weathered ash, and soil were amended with the equivalent of 90 Mg ha sludge, and N mineralization was evaluated over 63 d. More N (24%) was mineralized in fresh ash than in weathered ash and soil, both of which mineralized 15% of the initial organic N in sludge. More nitrification occurred in soil, and most of the N mineralized in ash was in the form of ammonium, indicating an inhibition of nitrifying organisms in the ash medium and suggesting that, at least initially, plants used for rehabilitation of coal gasification ash dumps will take up N mostly as ammonium. PMID:23673951

Mbakwe, Ikenna; De Jager, Pieter C; Annandale, John G; Matema, Taurai

2013-01-01

234

Subtask 3.16 - Low-Cost Coal-Water Fuel for Entrained-Flow Gasification  

SciTech Connect

The specific objective of this research project is to assess the potential process efficiency and pollution control benefits that may occur by applying the hydrothermal, or hot water-drying, process to low-rank coals as related to entrained-flow gasification systems. Project emphasis is on identifying more efficient coal dewatering and CWF formulation methods prior to gasification. A favorable estimate of incremental cost for integrated hydrothermal drying depends, in part, on increasing the particle size of the feed coal from minus 100 to minus 28 mesh for the purpose of simplifying the slurry concentration process. Two options will be reviewed for dewatering or concentrating the processed slurry: (1) repressurization and then concentration with sieve bends or (2) partial dewatering at system pressure with hydroclones. Both have their own merits, sieve bends being a low-cost alternative, while hydroclone application would not require additional pumping sections prior to gasification. Various CWF samples with different particle-size distributions and solids concentrations will be sent to equipment vendors for application review. Also, EERC cost models will be used to calculate the integral cost of adding the partial dewatering to the hydrothermal technology for a commercial-size facility.

Anderson, C.M.

1997-10-01

235

ENCOAL mild coal gasification demonstration project. Annual report, October 1994--September 1995  

SciTech Connect

This document is the combination of the fourth quarter report (July - September 1995) and the 1995 annual report for the ENCOAL project. The following pages include the background and process description for the project, brief summaries of the accomplishments for the first three quarters, and a detailed fourth quarter report. Its purpose is to convey the accomplishments and current progress of the project. ENCOAL Corporation, a wholly-owned subsidiary of SMC Mining Company (formerly Shell Mining company, now owned by Zeigler Coal Holding Company), has completed the construction and start-up of a mild gasification demonstration plant at Triton Coal Company`s Buckskin Mine near Gillette, Wyoming. The process, using Liquids From Coal (LFC) technology developed by SMC and SGI International, utilizes low-sulfur Powder River Basis coal to produce two new fuels, Process Derived Fuel (PDF) and Coal Derived Liquids (CDL). The products, as alternative fuels sources, are expected to significantly lower current sulfur emissions at industrial and utility boiler sites throughout the nation, thereby reducing pollutants causing acid rain. In the LFC technology, coal is first deeply dried to remove water physically. The temperature is further raised in a second stage which results in decomposition reactions that form the new products. This chemical decomposition (mild gasification) creates gases by cracking reactions from the feed coal. The chemically altered solids are cooled and further processed to make PDF. The gases are cooled, condensing liquids as CDL, and the residual gases are burned in the process for heat. The process release for the ENCOAL plant predicted that one ton of feed coal would yield roughly {1/2} ton of PDF and {1/2} barrel of CDL. By varying plant running conditions, however, it has since been learned that the actual CDL recovery rate may be as much as 15% to 20% above the projections.

NONE

1996-01-01

236

Fixed-bed gasification research using US coals. Volume 1. Program and facility description  

SciTech Connect

The United States Department of Interior, Bureau of Mines, Twin Cities Research Center, Minneapolis, Minnesota is the site of a 6.5 foot diameter Wellman-Galusha gasifier, installed in 1977-1978. This gasifier, combustor/incinerator, and flue gas scrubber system in the past had been operated jointly by Bureau of Mines personnel, personnel from member companies of the Mining and Industrial Fuel Gas Group, and United States Department of Energy personnel-consultants. Numerous tests using a variety of coals have to date been performed. In May of 1982, Black, Sivalls and Bryson, Incorporated (BS and B) was awarded the contract to plan, execute, and report gasification test performance data from this small industrial fixed-bed gasification test facility. BS and B is responsible for program administration, test planning, test execution, and all documentation of program activities and test reports. The University of Minnesota, Particle Technology Laboratory (UMPTL) is subcontractor to BS and B to monitor process parameters, and provide analysis for material inputs and outputs. This report is the initial volume in a series of reports describing the fixed-bed gasification of US coals at the Bureau of Mines, Twin Cities Research Center. A history of the program is given in Section 1 and a thorough description of the facility in Section 2. The operation of the facility is described in Section 3. Monitoring systems and procedures are described in Sections 4 and 5. Data reduction tools are outlined in Section 6. There is no executive summary or conclusions as this volume serves only to describe the research program. Subsequent volumes will detail each gasification test and other pertinent results of the gasification program. 32 references, 23 figures, 15 tables.

Thimsen, D.; Maurer, R.E.; Poole, A.R.; Pui, D.; Liu, B.; Kittleson, D.

1984-10-01

237

The role of catalyst precursor anions in coal gasification  

Microsoft Academic Search

The aims of the proposed project are to enrich our understanding of the roles of various aqueous soluble catalyst precursor anions on the surface electrical properties of coal and to ascertain the influence of the surface charge on the adsorption, dispersion, and activities of calcium and potassium. These goals will be achieved by impregnating a demineralized North Dakota lignite (PSOC

Abotsi; G. M. K

1992-01-01

238

Environmental Permitting of a Low-BTU Coal Gasification Facility  

E-print Network

The high price of natural gas and fuel oil for steam/power generation has alerted industry's decision makers to potentially more economical ways to provide the needed energy. Low-Btu fuel gas produced from coal appears to be an attractive alternate...

Murawczyk, C.; Stewart, J. T.

1983-01-01

239

FATE OF TRACE AND MINOR CONSTITUENTS OF COAL DURING GASIFICATION  

EPA Science Inventory

The report gives results of a study of the fate of selected minor and trace elements of Montana lignite and Illinois No. 6 bituminous coals during development of the HYGAS process. Solid residue samples from various development stages were analyzed. The data indicate that certain...

240

Is Integrated Gasification Combined Cycle with Carbon Capture-Storage the Solution for Conventional Coal Power Plants  

E-print Network

Engineering Management Field Project Is Integrated Gasification Combined Cycle with Carbon Capture-Storage the Solution for Conventional Coal Power Plants By Manish Kundi Fall Semester, 2011 An EMGT Field Project report... Chairperson ____________________________ Michael Katzman Committee Member ____________________________ John Conard Committee Member Date accepted:____________________________ IS IGCC with CCS the Solution for Conventional Coal Power...

Kundi, Manish

2011-12-16

241

Southern cone energy network coal gasification for SNG production and pipeline system feasibility study (Brazil). Volume 2. Export trade information  

SciTech Connect

Part I of the volume reports on the coal gasification plant study performed by the Advanced Technology Division of Fluor Engineers and Constructors, Inc., together with information on coal resources and markets, gas demand, and by-product markets provided by Jaakko Poyry. Jaakko Poyry also supported the study with site, cost, economic, and other required local Brazilian data. Part II of the volume presents the results of Fluor's study of an SNG gas transport and gas distribution system. Also included are the results of an alternate study into barging coal north to a gasification plant located in the Santos area.

Not Available

1992-08-01

242

DESIGN, FABRICATION, ASSEMBLY AND BENCH TESTING OF A TEXACO INFRARED RATIO PYROMETER SYSTEM FOR THE MEASUREMENT OF REACTION CHAMBER TEMPERATURE  

SciTech Connect

Reliable measurement of gasifier reaction chamber temperature is important for the proper operation of slagging, entrained-flow gasification processes. Historically, thermocouples have been used as the main measurement technique, with the temperature inferred from syngas methane concentration being used as a backup measurement. While these have been sufficient for plant operation in many cases, both techniques suffer from limitations. The response time of methane measurements is too slow to detect rapid upset conditions, and thermocouples are subject to long-term drift, as well as slag attack, which eventually leads to failure of the thermocouple. Texaco's Montebello Technology Center (MTC) has developed an infrared ratio pyrometer system for measuring gasifier reaction chamber temperature. This system has a faster response time than both methane and thermocouples, and has been demonstrated to provide reliable temperature measurements for longer periods of time when compared to thermocouples installed in the same MTC gasifier. In addition, the system can be applied to commercial gasifiers without any significant scale-up issues. The major equipment items, the purge system, and the safety shutdown system in a commercial plant are essentially identical to the prototypes at MTC. The desired result of this DOE program is ''a bench-scale prototype, either assembled or with critical components (laboratory) tested in a convincing manner.'' The prototype of the pyrometer system (including gasifier optical access port) that was designed, assembled and tested for this program, has had previous prototypes that have been built and successfully tested under actual coal and coke gasification conditions in three pilot units at MTC. It was the intent of the work performed under the auspices of this program to review and update the existing design, and to fabricate and bench test an updated system that can be field tested in one or more commercial gasifiers during a follow on phase of this program. For all intents and purposes, the development, bench testing and pilot unit testing of this temperature measurement system has already been done, and was mostly a matter of getting the hardware ready for a commercial field test. The benefits of field-testing are (1) Texaco will gain long-term commercial operating experience and (2) commercial gasifier operators will gain confidence that this system can perform reliably under true commercial plant conditions. This work was performed by Texaco at its Montebello Technology Center in South El Monte, California.

Tom Leininger

2001-03-31

243

Molten salt coal gasification process development unit. Phase 1. Volume 2. Commercial plant study. Final report  

SciTech Connect

This report summarizes the results of a test program conducted on the Molten Salt Coal Gasification Process, which included the design, construction, and operation of a Process Development Unit (PDU). This process, coal is gasified by contacting it with air in a turbulent pool of molten sodium carbonate. Sulfur and ash are retained in the melt, and a small stream is continuously removed from the gasifier for regeneration of the salt. The process can handle a wide variety of feed materials, including highly caking coals, and produces a gas relatively free from tars and other impurities. The gasification step is carried out at approximately 1800/sup 0/F. The PDU was designed to process 1 ton per hour of coal at pressures up to 20 atm. It is a completely integrated facility including systems for feeding solids to the gasifier, regenerating sodium carbonate for reuse, and removing sulfur and ash in forms suitable for disposal. Five extended test runs were made. The observed product gas composition was quite close to that predicted on the basis of earlier small-scale tests and thermodynamic considerations. All plant systems were operated in an integrated manner. Test data and discussions regarding plant equipment and process performance are presented. The program also included a commercial plant study which showed the process to be attractive for use in a combined cycle, electric power plant. The report is presented in two volumes, Volume 1, PDU Operations, and Volume 2, Commercial Plant Study.

Not Available

1980-05-01

244

Basic design model of entrained-bed coal gasification system in IGCC power plant  

SciTech Connect

Proposed is the basic design model of entrained-bed coal gasification system, which will be a tool to identify the basic design parameters and the feasible operating range of each component in the system. The present design model is composed of three major design modules for coal/oxidizer burner nozzle, gasifier with refractory, preheater, slag discharge hopper and product gas quenching system. Each design module is constructed by incorporating lumped-mass based design approach with thermochemical data and relevant correlation in order to give the basic design specification of the component, and is then coupled together with other design module. Using the present design model, parametric studies are carried out to investigate the influences of gasification system design variables on the performance parameters of key component, and then scale-up analysis is performed to obtain design data for large scale IGCC (Integrated Gasification Combined Cycle) application. Furthermore, the present model will be combined with the data base of marketable products, from which designer can select the product suitable to the component design specification obtained from design modules.

Kim, H.T.; Kim, S.W.; Lee, C.

1996-12-31

245

Diffusion Coatings for Corrosion-Resistant Components in Coal Gasification Systems  

SciTech Connect

Heat-exchangers, particle filters, turbines, and other components in integrated coal gasification combined cycle system must withstand the highly sulfiding conditions of the high temperature coal gas over an extended period of time. The performance of components degrades significantly with time unless expensive high alloy materials are used. Deposition of a suitable coating on a low-cost alloy may improve its resistance to such sulfidation attack, and decrease capital and operating costs. The alloys used in the gasifier service include austenitic and ferritic stainless steels, nickel-chromium-iron alloys, and expensive nickel-cobalt alloys. The primary activity this period was preparation and presentation of the findings on this project at the Twenty-Third annual Pittsburgh Coal Conference. Dr. Malhotra attended this conference and presented a paper. A copy of his presentation constitutes this quarterly report.

Gopala N. Krishnan; Ripudaman Malhotra; Esperanza Alvarez; Kai-Hung Lau; Jordi Perez Mariano; Angel Sanjurjo

2006-09-30

246

Coal reserves and resources as well as potentials for underground coal gasification in connection with carbon capture and storage (CCS)  

NASA Astrophysics Data System (ADS)

Coal is the energy source with the largest geological availability worldwide. Of all non-renewable energies coal and lignite accounting for 55 % of the reserves and some 76 % of the resources represent the largest potential. Reserves are those geological quantities of a mineral which can currently be mined under technically and economically viable conditions. Resources are those quantities which are either proven but currently not economically recoverable or quantities which can still be expected or explored on the basis of geological findings. The global availability of energy source does not only depend on geological and economic factors. The technical availability, e.g. mining and preparation capacities, the sufficient availability of land and sea-borne transportation as well as transloading capacities and also a political availability are required likewise. The latter may be disturbed by domestic-policy disputes like strikes or unrest or by foreign-policy disputes like embargos, trade conflicts or even tensions and wars in the producing regions. In the energy-economic discussion the reach of fossil primary energies plays a central role with the most important questions being: when will which energy source be exhausted, which impact will future developments have on the energy price, what does the situation of the other energies look like and which alternatives are there? The reach of coal can only be estimated because of the large deposits on the one hand and the uncertain future coal use and demand on the other. The stronger growth of population and the economic catching-up process in the developing and threshold countries will result in a shift of the production and demand centres in the global economy. However, also in case of further increases the geological potential will be sufficient to reliably cover the global coal demand for the next 100 years. The conventional mining of seams at great depths or of thin seams reaches its technical and economic limits. However, these otherwise unprofitable coal deposits can be mined economically by means of underground coal gasification, during which coal is converted into a gaseous product in the deposit. The synthesis gas can be used for electricity generation, as chemical base material or for the production of petrol. This increases the usability of coal resources tremendously. At present the CCS technologies (carbon capture and storage) are a much discussed alternative to other CO2 abatement techniques like efficiency impovements. The capture and subsequent storage of CO2 in the deposits created by the actual underground gasification process seem to be technically feasible.

Ilse, Jürgen

2010-05-01

247

On the influence of the char gasification reactions on NO formation in flameless coal combustion  

SciTech Connect

Flameless combustion is a well known measure to reduce NO{sub x} emissions in gas combustion but has not yet been fully adapted to pulverised coal combustion. Numerical predictions can provide detailed information on the combustion process thus playing a significant role in understanding the basic mechanisms for pollutant formation. In simulations of conventional pulverised coal combustion the gasification by CO{sub 2} or H{sub 2} O is usually omitted since its overall contribution to char oxidation is negligible compared to the oxidation with O{sub 2}. In flameless combustion, however, due to the strong recirculation of hot combustion products, primarily CO{sub 2} and H{sub 2} O, and the thereby reduced concentration of O{sub 2} in the reaction zone the local partial pressures of CO{sub 2} and H{sub 2} O become significantly higher than that for O{sub 2}. Therefore, the char reaction with CO{sub 2} and H{sub 2} O is being reconsidered. This paper presents a numerical study on the importance of these reactions on pollutant formation in flameless combustion. The numerical models used have been validated against experimental data. By varying the wall temperature and the burner excess air ratio, different cases have been investigated and the impact of considering gasification on the prediction of NO formation has been assessed. It was found that within the investigated ranges of these parameters the fraction of char being gasified increases up to 35%. This leads to changes in the local gas composition, primarily CO distribution, which in turn influences NO formation predictions. Considering gasification the prediction of NO emission is up to 40% lower than the predicted emissions without gasification reactions being taken into account. (author)

Stadler, Hannes; Toporov, Dobrin; Foerster, Malte; Kneer, Reinhold [Institute of Heat and Mass Transfer, RWTH Aachen University, Eilfschornsteinstrasse 18, 52056 Aachen (Germany)

2009-09-15

248

Hydrogen separation by ceramic membranes in coal gasification. Final report  

SciTech Connect

The general objective of this project was to develop hydrogen permselective membranes for hydrogen production from coal gas. The project consisted of the following tasks: (i) membrane preparation and characterization, (ii) membrane stability testing, and (iii) analysis and economic evaluation of a membrane-assisted ammonia from coal process. Several oxides (SiO{sub 2}, TiO{sub 2}, Al{sub 2}O{sub 3}, B{sub 2}O{sub 3}) in dense (or nonporous) form were identified to be permselective to hydrogen at elevated temperatures. To obtain reasonable permeance it is necessary that the membrane consists of a thin selective layer of the dense oxide supported on or within the pores of a porous support tube (or plate). Early in the project we chose porous Vycor tubes (5mm ID, 7 mm OD, 40 {Angstrom} mean pore diameter) supplied by Corning Inc. as the membrane support. To form the permselective layer (SiO{sub 2}, TiO{sub 2}, Al{sub 2}O{sub 3}, B{sub 2}O{sub 3}) we employed chemical vapor deposition using the reaction of the chloride (SiCl{sub 4}, etc.) vapor and water vapor at high temperatures. Deposition of the selective layer was carried out in a simple concentric tube reactor comprising the porous support tube surrounded by a wider concentric quartz tube and placed in an electrically heated split tube furnace. In one deposition geometry (the opposing reactants or two-sided geometry) the chloride vapor in nitrogen carrier was passed through the inner tube while the water vapor also in nitrogen carrier was passed in the same direction through the annulus between the two tubes. In the other (two-sided) geometry the chloride-containing stream and the water-containing stream were both passed through the inner tube or both through the annulus.

Gavalas, G.R.

1993-08-01

249

Study of the cavity development during the ``El Tremedal`` underground coal gasification trial at great depth  

SciTech Connect

During the underground coal gasification experiments at Alcorisa, a series of tracer tests using helium as injected material were effected. These tests illustrated the hydrodynamics of the flow profile inside the underground reactor during the main operating periods. The models developed to simulate the flow conditions are based on the material exchange between flowing fluid and a dead zone. The dead zone is represented by a homogeneous porous zone exchanging material with the flowing fluid by diffusion. The reactor volume calculated from the tracer results increases with the cumulative quantity of oxygen injected.

Brasseur, A.; Pirard, J.P. [Univ. of Liege (Belgium). Dept. of Chemical Engineering; Coeeme, A.; Mostade, M.; Pirlot, P. [Institution pour le Developpement de la Gazeification Souterraine, Liege (Belgium)

1998-12-31

250

Coal gasification by CO 2 gas bubbling in molten salt for solar\\/fossil energy hybridization  

Microsoft Academic Search

Coal gasification with CO2 (the Boudouard reaction: C+CO2=2CO, ?rH°=169.2 kJ\\/mol at 1150 K), which can be applied to a solar thermochemical process to convert concentrated solar heat into chemical energy, was conducted in the molten salt medium (eutectic mixture of Na2CO3 and K2CO3, weight ratio=1\\/1) to provide thermal storage. When CO2 gas was bubbled through the molten salt, higher reaction

Jun Matsunami; Shinya Yoshida; Yoshinori Oku; Osamu Yokota; Yutaka Tamaura; Mitsunobu Kitamura

2000-01-01

251

High temperature electrochemical separation of H sub 2 S from coal gasification process streams  

SciTech Connect

An advanced process for the separation of hydrogen sulfide from coal gasification product streams through an electrochemical membrane is being developed using the funds from this grant. H{sub 2}S is removed from the syn-gas stream, split into hydrogen, which enriches the syn-gas, and sulfur, which can be condensed from an inert gas sweep stream. The process allows removal of H{sub 2}S without cooling the gas stream and with neglible pressure loss through the separator. The process is economically attractive by the lack of adsorbents and the lack of a Claus process for sulfur recovery.

Winnick, J.

1991-01-01

252

Steam successful in Texaco's Sour Lake field  

Microsoft Academic Search

Since discovery in 1903, more than 86 million bbl of oil have been produced from the Sour Lake field, approx. one-half by Texaco from its 815-acre fee property. A total of 760 wells have been drilled by Texaco, with 171 of them now being used for production. The reservoir is highly faulted, so steam applications are designed on a sand-by

2009-01-01

253

The potential for underground coal gasification in Indiana. Final report to the Indiana Center for Coal Technology Research (CCTR)  

SciTech Connect

The preliminary feasability assessment analyses the potential for underground coal gasification within Indiana. A review of existing worldwide operations and geological requirements demonstrates that the application of UCG practices in Indiana has very significant potential benefits, but careful analysis of the specific geological conditions, physical and chemical properties of coals, water resources, coupled with an assessment of the state-of-the-art technologies must be conducted to identify potential UCG sites and to determine the feasibility of employing this technology in Indiana. Of particular importance is the relatively small number of active and successful operators of UCG projects around the world and that collaborations with one or two among them could be beneficial for all concerned. There are significant opportunities for economic development that will provide dividends for first movers in the Illinois basin. The report recommends nine 'promising zones' for UCG in two large coal deposits (the Springfield and Seelyville coal beds) in Knox, Gibson, Vanderburgh, Warrick and Posey counties. 69 refs., 10 figs., 6 tabs., 1 app.

John Rupp; Evgeny Shafirovich; Arvind Varma; Maria Mastalerz; Agnieszka Drobniak

2009-03-15

254

High Temperature Electrochemical Polishing of H(2)S from Coal Gasification Process Streams.  

SciTech Connect

An advanced process for the separation of hydrogen sulfide from coal gasification streams through an electrochemical membrane is being perfected. H{sub 2}S is removed from a synthetic gas stream, split into hydrogen, which enriches the exiting syngas, and sulfur, which is condensed downstream from an inert sweep gas stream. The process allows for continuous removal of H{sub 2}S without cooling the gas stream while allowing negligible pressure loss through the separator. Moreover, the process is economically attractive due to the elimination of the need for a Claus process for sulfur recovery. To this extent the project presents a novel concept for improving utilization of coal for more efficient power generation.

Winnick, J.

1997-12-31

255

Molten salt coal gasification process development unit. Phase 1. Volume 1. PDU operations. Final report  

SciTech Connect

This report summarizes the results of a test program conducted on the Molten Salt Coal Gasification Process, which included the design, construction, and operation of a Process Development Unit. In this process, coal is gasified by contacting it with air in a turbulent pool of molten sodium carbonate. Sulfur and ash are retained in the melt, and a small stream is continuously removed from the gasifier for regeneration of sodium carbonate, removal of sulfur, and disposal of the ash. The process can handle a wide variety of feed materials, including highly caking coals, and produces a gas relatively free from tars and other impurities. The gasification step is carried out at approximately 1800/sup 0/F. The PDU was designed to process 1 ton per hour of coal at pressures up to 20 atm. It is a completely integrated facility including systems for feeding solids to the gasifier, regenerating sodium carbonate for reuse, and removing sulfur and ash in forms suitable for disposal. Five extended test runs were made. The observed product gas composition was quite close to that predicted on the basis of earlier small-scale tests and thermodynamic considerations. All plant systems were operated in an integrated manner during one of the runs. The principal problem encountered during the five test runs was maintaining a continuous flow of melt from the gasifier to the quench tank. Test data and discussions regarding plant equipment and process performance are presented. The program also included a commercial plant study which showed the process to be attractive for use in a combined-cycle, electric power plant. The report is presented in two volumes, Volume 1, PDU Operations, and Volume 2, Commercial Plant Study.

Kohl, A.L.

1980-05-01

256

Kosova coal gasification plant health effects study: Volume 2, Industrial hygiene  

SciTech Connect

The occupational health study performed in Obilich, Kosova, Yugoslavia, evaluated the potential health impact of the operation of a commercial-scale coal gasification facility on the workers and on public health. The effect of exposures to various chemical agents in the working environment generated in the coal gasification process was studied in exposed and control worker populations. A detailed assessment of certain workplaces in the generator plant, Phenosolvan plant, and Rectisol plant has been made. The procedures used in performing this study are applicable to studies in any population exposed to a variety of contaminants. Industrial hygiene studies have been performed concurrently with retrospective epidemiological investigations to permit investigators to establish a cause-effect relationship between the presence of chemical substances and health impairments, if such effects should be observed. A questionnaire about occupational exposure to contaminants was administered, taking into account each workplace in the examined population. Epidemiological investigations were directed at determining the incidence of changes in various organs and systems in exposed workers. 47 refs., 12 figs., 63 tabs.

Brandt, M.T.; Jackson, J.O.; Sutcliffe, C.R.; White, O. Jr.; Premuzic, E.T.; Morris, S.C.; Haxhiu, M.A.; Abazi, A.; Jockic, M.; Jonuzi, B.

1987-10-01

257

Groundwater restoration field test at the Hoe Creek underground coal gasification site  

SciTech Connect

Three underground coal gasification burns were conducted at the Hoe Creek Site in the Powder River Basin. Some contaminants were released in the groundwater. The Department of Energy (DOE) analyzed the water from a network of wells. Two million gallons of groundwater were pumped from wells adjacent to the Hoe Creek II underground coal gasification cavity, passed through filters and carbon adsorbers, and reinjected into the cavity. Phenol was the target compound of the water treatment system. The phenol concentration pumped from well WS-10 decreased from 974 parts per billion (ppB) when treatment began on July 2, 1987, to about 200 ppB when treatment ceased on August 29, 1987. Phenol concentrations pumped from well WS-22 fluctuated during the tests, but they decreased to the 150 to 200 ppB range by the time treatment was terminated. The phenol concentration of treated water reinjected into the Hoe Creek II cavity was below detectable limits (less than 20 ppB). Pumping rates were about 18 gallons per minute (gpm) from well WS-10 and 6 to 8 gpm from well WS-22. Hoe Creek is located approximately 20 miles southwest of Gillette, Wyoming. 12 refs., 5 figs., 8 tabs.

Nordin, J.S.; Barrash, W.; Nolan, B.T.

1988-02-01

258

A study of toxic emissions from a coal-fired gasification plant. Final report  

SciTech Connect

Under the Fine Particulate Control/Air Toxics Program, the US Department of Energy (DOE) has been performing comprehensive assessments of toxic substance emissions from coal-fired electric utility units. An objective of this program is to provide information to the US Environmental Protection Agency (EPA) for use in evaluating hazardous air pollutant emissions as required by the Clean Air Act Amendments (CAAA) of 1990. The Electric Power Research Institute (EPRI) has also performed comprehensive assessments of emissions from many power plants and provided the information to the EPA. The DOE program was implemented in two. Phase 1 involved the characterization of eight utility units, with options to sample additional units in Phase 2. Radian was one of five contractors selected to perform these toxic emission assessments.Radian`s Phase 1 test site was at southern Company Service`s Plant Yates, Unit 1, which, as part of the DOE`s Clean Coal Technology Program, was demonstrating the CT-121 flue gas desulfurization technology. A commercial-scale prototype integrated gasification-combined cycle (IGCC) power plant was selected by DOE for Phase 2 testing. Funding for the Phase 2 effort was provided by DOE, with assistance from EPRI and the host site, the Louisiana Gasification Technology, Inc. (LGTI) project This document presents the results of that effort.

NONE

1995-12-01

259

EARLY ENTRANCE CO-PRODUCTION PLANT - DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS  

SciTech Connect

Waste Processors Management, Inc. (WMPI), along with its subcontractors Texaco Power & Gasification, SASOL Technology Ltd., and Nexant Inc. entered into a Cooperative Agreement DE-FC26-00NT40693 with the US Department of Energy (DOE), National Energy Technology Laboratory (NETL) to assess the techno-economic viability of building an Early Entrance Co-Production Plant (EECP) in the US to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co-product. The EECP designs emphasize on recovery and gasification of low-cost coal waste (culm) from coal clean operations and will assess blends of the culm and coal or petroleum coke as feedstocks. The project is being carried out in three phases. Phase I involves definition of concept and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase II consists of an experimental testing program designed to validate the coal waste mixture gasification performance. Phase III involves updating the original EECP design, based on results from Phase II, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 BPD coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania.

Unknown

2001-12-01

260

Steam-Coal Gasification Using CaO and KOH for in Situ Carbon and Sulfur Capture  

SciTech Connect

We present experimental results of coal gasification with and without the addition of calcium oxide and potassium hydroxide as dual-functioning catalyst–capture agents. Using two different coal types and temperatures between 700 and 900 °C, we studied the effect of these catalyst–capture agents on (1) the syngas composition, (2) CO{sub 2} and H{sub 2}S capture, and (3) the steam–coal gasification kinetic rate. The syngas composition from the gasifier was roughly 20% methane, 70% hydrogen, and 10% other species when a CaO/C molar ratio of 0.5 was added. We demonstrated significantly enhanced steam–coal gasification kinetic rates when adding small amounts of potassium hydroxide to coal when operating a CaO–CaCO{sub 3} chemical looping gasification reactor. For example, the steam–coal gasification kinetic rate increased 250% when dry mixing calcium oxide at a Ca/C molar ratio of 0.5 with a sub-bituminous coal, and the kinetic rate increased 1000% when aqueously mixing calcium oxide at a Ca/C molar ratio of 0.5 along with potassium hydroxide at a K/C molar ratio of 0.06. In addition, we conducted multi-cycle studies in which CaCO{sub 3} was calcined by heating to 900 °C to regenerate the CaO, which was then reused in repeated CaO–CaCO{sub 3} cycles. The increased steam–coal gasification kinetics rates for both CaO and CaO + KOH persisted even when the material was reused in six cycles of gasification and calcination. The ability of CaO to capture carbon dioxide decreased roughly 2–4% per CaO–CaCO{sub 3} cycle. We also discuss an important application of this combined gasifier–calciner to electricity generation and selling the purge stream as a precalcined feedstock to a cement kiln. In this scenario, the amount of purge stream required is fixed not by the degradation in the capture ability but rather by the requirements at the cement kiln on the amount of CaSO{sub 4} and ash in the precalcined feedstock.

Siefert, Nicholas S.; Shekhawat, Dushyant; Litster, Shawn; Berry, David, A

2013-08-01

261

Hydrogen production from co-gasification of coal and biomass in supercritical water by continuous flow thermal-catalytic reaction system  

Microsoft Academic Search

Hydrogen is a clean energy carrier. Converting abundant coal sources and green biomass energy into hydrogen effectively and\\u000a without any pollution promotes environmental protection. The co-gasification performance of coal and a model compound of biomass,\\u000a carboxymethylcellulose (CMC) in supercritical water (SCW), were investigated experimentally. The influences of temperature,\\u000a pressure and concentration on hydrogen production from co-gasification of coal and CMC

Qiuhui Yan; Liejin Guo; Xing Liang; Ximin Zhang

2007-01-01

262

Energy analysis of MHD-steam and MHD-gas-steam power plants integrated with coal gasification  

SciTech Connect

The paper presents energy analysis of combined two media (MHD-steam) and three media (MHD-gas-steam) power plants of high efficiency of conversion of chemical energy of fuel into electric energy integrated with coal gasification. The goal of this paper is to show the possibility of obtaining the high efficiency (about 60%) of the conversion of chemical energy of coal into electric energy in combined power plants with the open cycle MHD generators. The base of performed energy analysis are the elaborated mathematical models: of gas generator, of combustion chamber of MHD generator, of MHD channel, of high-temperature heater of oxygen, nitrogen and air, of steam generator and the cycle of steam turbine and of the cycle of gas turbine, and also the computer programmes, elaborated on the base of these models for numerical simulation of the processes of energy conversion in these elements. The elaborated mathematical model of the process of coal gasification for MHD-steam power plants allows to calculate: composition, physical properties and energy parameters of gas produced in the process of coal gasification, the consumption and temperature of gasifying medium and both the chemical and energy efficiency of coal gasification. Gas produced in the process of coal gasification is directed to combustion chamber of MHD generator after desulphurization. The mathematical model of physical, chemical and energy processes in combustion chamber of MHD generator allows to determine the temperature of oxidizer and its enrichment in oxygen necessary to obtain the plasma parameters desired for optimum process of energy conversion in MHD channel. The mathematical model of energy conversion in open cycle MHD channel was presented in paper. This model allows to perform numerical simulation of energy conversion process and to determine optimum parameters of plasma at the inlet to the channel necessary to obtain maximum efficiency of energy conversion.

Zaporowski, B.; Roszkiewicz, J.; Sroka, K. [Poznan Univ. of Technology (Poland)

1995-12-31

263

Characterization of airborne particles at a high-btu coal-gasification pilot plant.  

PubMed

Airborne particles in fugitive emissions have been measured at a slagging fixed-bed coal-gasification pilot plant using lignite. Sampling was conducted during shutdown operations and opening of the gasifier following an aborted startup. Aerosol collected with a Sierra high-volume impactor was subjected to analysis by gas chromatography, mass spectrometry, and scanning electron microscopy; aerosol collected with an Andersen low-volume impactor was subjected to flameless atomic absorption analysis. The data show that the bulk of the trace organic material is associated with small particles: these data are similar to data on ambient air reported in the literature. Particle morphologies resemble those of fly ash from coal combustion, including smooth spheres, vesicular spheres, and crystalline material. Trace element size distributions are bimodal and resemble data for ambient air. Pb-containing particles are generally submicron, while particles containing Al, Fe, and other crustal species are mostly of supermicron size. Aluminum-based aerosol enrichment factors calculated from the lignite composition show that the composition of the aerosol resembles that of the coal, with the exception of modest enrichments of Mg, Na, As, and Pb in the submicron size range. Aerosol enrichment factors based on the earth's crustal composition are somewhat greater than those based on coal composition for several elements, suggesting potential errors in using crustal enrichment data to investigate chemical fractionation during aerosol formation. PMID:24264116

Davidson, C I; Santhanam, S; Stetter, J R; Flotard, R D; Gebert, E

1982-12-01

264

Performance of solid oxide fuel cells operated with coal syngas provided directly from a gasification process  

NASA Astrophysics Data System (ADS)

Solid oxide fuel cells (SOFCs) are being developed for integrated gasification power plants that generate electricity from coal at 50+% efficiency. The interaction of trace metals in coal syngas with Ni-based SOFC anodes is being investigated through thermodynamic analyses and in laboratory experiments, but test data from direct coal syngas exposure are sparsely available. This effort evaluates the significance of performance losses associated with exposure to direct coal syngas. Specimen are operated in a unique mobile test skid that is deployed to the research gasifier at NCCC in Wilsonville, AL. The test skid interfaces with a gasifier slipstream to deliver hot syngas to a parallel array of twelve SOFCs. During the 500 h test period, all twelve cells are monitored for performance at four current densities. Degradation is attributed to syngas exposure and trace material attack on the anode structure that is accelerated at increasing current densities. Cells that are operated at 0 and 125 mA cm-2 degrade at 9.1 and 10.7% per 1000 h, respectively, while cells operated at 250 and 375 mA cm-2 degrade at 18.9 and 16.2% per 1000 h, respectively. Spectroscopic analysis of the anodes showed carbon, sulfur, and phosphorus deposits; no secondary Ni-metal phases were found.

Hackett, Gregory A.; Gerdes, Kirk; Song, Xueyan; Chen, Yun; Shutthanandan, Vaithiyalingam; Engelhard, Mark; Zhu, Zihua; Thevuthasan, Suntharampillai; Gemmen, Randall

2012-09-01

265

Up against Giants: The National Indian Youth Council, the Navajo Nation, and Coal Gasification, 1974-77  

ERIC Educational Resources Information Center

In the spring of 1977, members of the National Indian Youth Council (NIYC), along with the Coalition for Navajo Liberation, barraged the Secretary of the Interior and the chairman of the Navajo Nation with petitions calling for a halt to the proposed construction of several coal gasification plants on the Navajo Reservation in northwestern New…

Shreve, Bradley Glenn

2006-01-01

266

Novel approach to coal gasification using chemically incorporated catalysts (Phase II). Final report, May 1978June 1981  

Microsoft Academic Search

Since 1974, Battelle has been developing a catalytic treatment process that would allow more economic, efficient and reliable utilization of the vast deposits of eastern coals in gasification systems. In order to keep the process simple and economic, a disposable catalyst lime (CaO), was employed. It was found that the effectiveness of low concentrations of CaO was greatly increased by

H. F. Feldmann; H. N. Conkle; H. R. Appelbaum; S. P. Chauhan

1981-01-01

267

Plastic waste elimination by co-gasification with coal and biomass in fluidized bed with air in pilot plant  

Microsoft Academic Search

Treatment of plastic waste by gasification in fluidized bed with air using dolomite as tar cracking catalyst has been studied. The gasifier has a 1 m high bed zone (diameter of 9.2 cm) followed by a 1 m high freeboard (diameter of 15.4 cm). The feedstock is composed of blends of plastic waste with pine wood sawdust and coal at

María P. Aznar; Miguel A. Caballero; Jesús A. Sancho; E. Francés

2006-01-01

268

Comparison of coal IGCC with and without CO 2 capture and storage: Shell gasification with standard vs. partial water quench  

Microsoft Academic Search

This work provides a techno-economic assessment of Shell coal gasification -based IGCC, with and without CO2 capture and storage (CCS), focusing on the comparison between the standard Shell configuration with dry gas quench and syngas coolers versus partial water quench cooling.

Emanuele Martelli; Thomas Kreutz; Stefano Consonni

2009-01-01

269

Acoustic Velocity and Attenuation Measurements in Thin Rods with Application to Temperature Profiling in Coal Gasification Systems  

Microsoft Academic Search

This paper is concerned with the application of ultrasonic thermometry for temperature profiling in the reactors of coal gasification plants. A temperature profiling sensor typically uses a thin rod with several notches to segregate the sensor length into various zones. An acoustic pulse transmitted through the multizone sensor is partially reflected back at each notch, and measurement of the time

N. Gopalsami; A. C. Raptis

1984-01-01

270

Use of criterial equations for predicting the results of the plasma gasification of Irsha-Borodino coal in steam  

SciTech Connect

A comparison has been made of the main indices of the plasma gasification of coal - the conversion of the carbon of the fuel into gaseous products and the specific surface of the solid carbonaceous residue - calculated from criterial equations and obtained experimentally.

Kolobova, E.A.; Krukovskii, V.K.; Popov, V.T.

1984-01-01

271

Utilization of lightweight materials made from coal gasification slags. Quarterly report, September--November 1994  

SciTech Connect

Coal gasification technologies are finding increasing commercial applications for power generation or production of chemical feedstocks. The integrated-gasification-combined-cycle coal conversion process has been demonstrated to be a clean, efficient, and environmentally acceptable method of generating power. However, the gasfication process produces relatively large quantities of a solid waste termed slag. Regulatory trends with respect to solid waste disposal, landfill development costs, and public concern make utilization of slag a high-priority issue. Therefore, it is imperative that slag utilization methods be developed, tested, and commercialized in order to offset disposal costs. In previous projects, Praxis investigated the utilization of ``as-generated`` slags for a wide variety of applications in road construction, cement and concrete production, agricultural applications, and landfill. We determined that it would be extremely difficult for ``as-generated`` slag to find acceptance in the marketplace even at no cost because the materials it could replace were abundantly available at very low cost. It became apparent that a more promising approach would be to develop a variety of value-added products from slag that would meet specific industry requirements. This approach was made feasible by the discovery that slag could be made into a lightweight material by heating it to between 1600 and 1900{degree}F in a kiln, which indicated the potential for using such materials as substitutes for lightweight aggregates. Between 1987 and 1993, the technologies to produce these materials from slag were developed by Praxis with funding from the Electric Power Research Institute, Illinois Clean Coal Institute, and internal resources.

NONE

1994-12-01

272

Control technology assessment for coal gasification and liquefaction processes, CAN-DO Anthracite Coal Gasification Plant, Hazelton, Pennsylvania, 1981. Final report  

SciTech Connect

A survey was conducted at the CAN DO Coal Gasification Facility (SIC-5161), in Hazelton, Pennsylvania on May 28, 1981 to assess control technology and industrial hygiene measures used with the Wellman Galusha gasifier. No formal safety program was in effect. An industrial hygiene support program was being provided by Oak Ridge National Laboratories to assist in protecting employees and to characterize exposures to potential health hazards during startup. Preemployment physical examinations were provided and annual physicals were planned. Monitoring and alarm systems were installed for carbon-monoxide (630080). Industrial hygiene support activities were being conducted to identify other potential safety and health hazards. The author concludes that the management is concerned with providing a safe working environment. Recommendations include: periodic safety meetings; development of emergency procedures; training sessions for management and employees for safety and health related activities; employee participation in safety programs; formation of a safety committee; designation of a clean eating area; escape pack respirators at appropriate locations for emergency use; larger ventilation intake openings; welded joints; hinged poke hole covers; and steam injectors.

Telesca, D.R.

1982-04-01

273

Thermal hydrocracking of coal derived liquid from mild gasification (production of phenols, BTX and naphthalenes)  

SciTech Connect

Coal derived liquid from mild gasification contains more than 40% of alkylphenols with alkylnaphthalenes and a small amount of benzofuran, naphthol and condensed aromatic derivatives. In this study, thermal hydrocracking of the coal derived liquid, and related model compounds have been investigated using a small atmospheric flow apparatus at temperatures of 700--770 C with residence time of 3--10 sec, and hydrogen-to-reactant molar ratio of about 3--10. In the experiments using m-cresol and 2,5-dimethylphenol, dealkylation and dehydroxylation proceeded concurrently with high selectivity in the presence of excess hydrogen. The rates of hydrocracking of m-cresol and 2,5-dimethylphenol were in accordance with first-order rate law with respect to reactant. This indicates that the same kinetic equation for the demethylation of alkylbenzenes can be applied. Rates of demethylation and dehydroxylation for cresols and dimethylphenols have been measured at 700 C by using toluene as an internal reference, and discussed in terms of chemical structure. Thermal hydrocracking of the coal derived liquid produced 20--40 wt% gases and 60--80 wt% liquids. Gaseous products mainly consisted of carbon monoxide and methane with small amounts of C{sub 2} and C{sub 3} hydrocarbon gases. Liquid products, obtained at 770 C, contained 24 wt% of BTX, 40 wt% of phenol and cresols, and 12 wt% of naphthalene and methylnaphthalenes. Yield of useful chemicals, having simple aromatic structure in the liquid product increased with temperature and residence time.

Sato, Yoshiki; Kodera, Yoichi; Kamo, Tohru [National Inst. for Resources and Environment, Tsukuba, Ibaraki (Japan); Kameyama, Mitsuo; Tatsumoto, Katsunobu [Mitsui SRC Development Co., Ltd., Tokyo (Japan); Coolidge, D.W. [ENCOAL Corp., Gillette, WY (United States)

1997-12-31

274

Assessment of a coal-gasification fuel-cell system for utility application  

NASA Astrophysics Data System (ADS)

The technical and economic feasibility of a coal gasification-advanced phosphoric acid fuel cell power plant for electric utility application were defined and assessed. The system design criteria selected reslted in a modular, relatively small sized poer plant that could be configured with a basic building block of approximately 11 MW. A range of coals and lignite was evaluated as the basic feedstock for a low-Btu fixed-bed conventional air-blown coal gasifier. The system included gas processing, cleanup, compression and delivery of sulfur-free hydrogen-rich gas to an advanced phosphoric acid fuel cell. Equipment erection and operating costs, in 1981 dollars, were solicited from American industry for all process sections. The plant was designed and evaluated on the basis of low capital cost, lowest overall heat rate and, as far as possible, with off-the-shelf technology. A 44 MW lignite example plant utilizing the basic building block concept was defined and evaluated for Lincoln, Nebraska, as an example site.

Cronin, P. G.; Murphy, A. J.; Newton, R. J.; Wagner, E. S.

1982-05-01

275

Lawrence Livermore National Laboratory underground coal gasification data base. [US DOE-supported field tests; data  

SciTech Connect

The Department of Energy has sponsored a number of field projects to determine the feasibility of converting the nation's vast coal reserves into a clean efficient energy source via underground coal gasification (UCG). Due to these tests, a significant data base of process information has developed covering a range of coal seams (flat subbituminous, deep flat bituminous and steeply dipping subbituminous) and processing techniques. A summary of all DOE-sponsored tests to data is shown. The development of UCG on a commercial scale requires involvement from both the public and private sectors. However, without detailed process information, accurate assessments of the commercial viability of UCG cannot be determined. To help overcome this problem the DOE has directed the Lawrence Livermore National Laboratory (LLNL) to develop a UCG data base containing raw and reduced process data from all DOE-sponsored field tests. It is our intent to make the data base available upon request to interested parties, to help them assess the true potential of UCG.

Cena, R. J.; Thorsness, C. B.

1981-08-21

276

Hanna, Wyoming underground coal gasification data base. Volume 5. Hanna III field test research report  

SciTech Connect

This report is part of a seven-volume series on the Hanna, Wyoming, underground coal gasification field tests. Volume 1 is a summary of the project and each of Volumes 2 through 6 describes a particular test. Volume 7 is a compilation of all the data for the tests in Volumes 2 through 6. Hanna III was conducted during the spring and summer of 1977. The test involved only two process wells but also had twelve water monitoring wells, eight in the Hanna No. 1 coal seam and four in an aquifer above the coal seam. The test was designed to obtain information regarding the effects of the process on groundwater within the target seam and the overlying aquifer. The site for Hanna III had a low productivity aquifer above the Hanna No. 1 seam. The wells within the seam and the overlying aquifer were placed in such a manner that maximum information on groundwater flow and quality could be obtained. This report covers: (1) site selection and characterization; (2) test objectives; (3) facilities description; (4) pre-operation tests; (5) test operations summary; and (6) post-test activity. 4 refs., 11 figs., 5 tabs.

Bartke, T.C.; Fischer, D.D.; King, S.B.; Boyd, R.M.; Humphrey, A.E.

1985-08-01

277

Phase-equilibria for design of coal-gasification processes: dew points of hot gases containing condensible tars. Final report  

SciTech Connect

This research is concerned with the fundamental physical chemistry and thermodynamics of condensation of tars (dew points) from the vapor phase at advanced temperatures and pressures. Fundamental quantitative understanding of dew points is important for rational design of heat exchangers to recover sensible heat from hot, tar-containing gases that are produced in coal gasification. This report includes essentially six contributions toward establishing the desired understanding: (1) Characterization of Coal Tars for Dew-Point Calculations; (2) Fugacity Coefficients for Dew-Point Calculations in Coal-Gasification Process Design; (3) Vapor Pressures of High-Molecular-Weight Hydrocarbons; (4) Estimation of Vapor Pressures of High-Boiling Fractions in Liquefied Fossil Fuels Containing Heteroatoms Nitrogen or Sulfur; and (5) Vapor Pressures of Heavy Liquid Hydrocarbons by a Group-Contribution Method.

Prausnitz, J.M.

1980-05-01

278

Mild coal gasification: Product separation, pilot-unit support, twin screw heat transfer, and H sub 2 S evolution  

SciTech Connect

Our general objective is to further the development of efficient continuous mild coal gasification processes. Our efforts this year have been in four main areas. A new thrust has been to identify and develop efficient processes to separate the vapor product stream into particulate-free liquid and mist-free gas. We continued work aimed at predicting heat transfer rates (hence throughput) in externally-heated twin-screw pyrolyzers. We sought to provide technical support for the design, installation, startup, and operation of the DOE-sponsored 500 kg/hr twin-screw mild gasification unit at Coal Technology Corporation (CTC). A smaller laboratory effort had the objective of identifying and testing the reaction mechanisms of sulfur species during coal pyrolysis. Detailed subproject objectives are given in their respective sections. 20 refs., 4 figs., 1 tab.

Camp, D.W.; Wallman, P.H.; Coburn, T.T.

1991-08-09

279

Is Nuclear Power Also the Key to Economically Clean Coal Gasification?  

SciTech Connect

Reducing the amount of carbon dioxide emitted to the atmosphere is a major goal and an imperative need for most of the world's nations, even for those nations such as the USA who are not Kyoto Treaty signatories. A response by the current USA administration is to develop a national transportation economy for automobiles based upon efficient, environmentally sound fuel cells. However, hydrogen is a secondary fuel requiring a primary energy source for production. Nuclear power (or renewables such as hydroelectric, wind or solar) must be the source of the primary energy required to produce hydrogen from water, if the overall energy system is to be free of carbon dioxide emissions to the atmosphere. The dissociation of water leaves oxygen as a major byproduct. Currently, there are no existing commercial markets for the large quantities of oxygen that would result from a US transportation economy based upon hydrogen fuel cells. However, Integrated Coal Gasification Combined Cycle (IGCC) power plants operating on pure oxygen for both gasification and combustion produce no greenhouse gas releases. This highly desirable feature results from the combustion output being only water and carbon dioxide. Pure CO{sub 2} can be relatively easily captured and delivered to a sequestration site. Also, hazardous trace metal compounds (e.g., Hg, As, Pb, Sn, Sb, Se, U, Th, etc.) that would ordinarily be emitted to the atmosphere could be captured as solids, for environmentally acceptable disposal. (authors)

Kunze, Jay F.; Martinez-Pardo, David [Idaho State University, 921 South 8th Avenue, Pocatello, Idaho, 83209 (United States); Sandquist, Gary M. [University of Utah, Salt Lake City, UT 84112 (United States)

2006-07-01

280

Na/Ca catalyzation of Illinois coals for gasification. Final technical report, September 1, 1992--August 31, 1993  

SciTech Connect

Gasification for power generation via IGCC processes is expected to become an important market for high sulfur Illinois Basin coals. Fluid-bed gasifiers have significant advantages over entrained flow processes. These advantages include ease of control, large turndown capacity, high thermal efficiency, and moderate oxygen and steam requirements. Three of the most pressing technical problems in fluid-bed gasification of Illinois coals are the caking tendency, high sulfur content, and low carbon conversion and consequent large char recycle required in most systems. This program explores the use of gasification catalysts to attack these three problems. The catalysts are sodium/calcium mixtures. Another advantage of using catalysts is that gasification temperature might be lowered, leading to less expensive materials of construction and a reduction in alkali vaporization. The results of this study indicate that these catalysts can reduce or eliminate the caking of Illinois coals. Loadings below 1 weight % were effective if the catalyst was added by impregnation at low pH (below about 5). An Na/Ca molar ratio of greater than 1 also leads to lower catalyst requirement.

Jha, M.C.; McCormick, R.L. [AMAX Research and Development Center, Golden, CO (United States)

1993-12-31

281

Computer-assisted gas chromatography in the analysis of waste compounds resulting from coal gasification  

SciTech Connect

Newly developed modifications of the coal gasification processes produce greater quantities of unidentified waste compounds. Analysis of these compounds was easier if identification was a matching process. A standard solution of five polynuclear aromatic hydrocarbons was made and each was assigned retention indices values. Known compounds in the six different classes that had been detected by older gas chromatographic methods were analyzed and assigned retention indices values by interpolation from the standards. Unknown samples were then analyzed and the components were also given retention indices values by the same method. Values assigned to unknown compounds were matched with those of known chemicals thereby identifying the unknown substance. Samples containing hundreds of different compounds could now be quickly and accurately identified by a combination of gas chromatography and computer analysis.

Raye, J.

1988-01-01

282

Treatment of coal gasification wastewater using rotating biological contactors. [Total organic carbon  

SciTech Connect

Reuse of coal gasification process water for makeup cooling tower water requires physical, chemical and biological treatment to prevent excessive corrosion and bio-fouling in the tower. Pretreated wastewater contains about 2100 mg/l BOD, 5800 mg/l COD, 2000 mg/l TOC, 560 mg/l ammonia, 30 mg/l cyanide, 190 mg/l thiocyanate, 180 mg/l phenols, and 1700 mg/l hydantoins. Single-stage RBC treatment was effective in biotreatment of this wastewater even though feed strength was highly variable. Removals at a hydraulic loading of 1 gpd were 94% for BOD, 33.8% for COD, 33% for TOC, and 100% for phenols. Ammonia, thiocyanate, cyanide and hydantoins were not removed to any significant degree in this system. 6 references, 10 figures, 4 tables.

Wernberg, K.B.; Strain, J.H.; Turner, C.D.; Gallagher, J.R.

1984-06-01

283

Environmental assessment for the Hoe Creek underground, Coal Gasification Test Site Remediation, Campbell County, Wyoming  

SciTech Connect

The U.S. Department of Energy (DOE) has prepared this EA to assess environmental and human health Issues and to determine potential impacts associated with the proposed Hoe Creek Underground Coal Gasification Test Site Remediation that would be performed at the Hoe Creek site in Campbell County, Wyoming. The Hoe Creek site is located south-southwest of the town of Gillette, Wyoming, and encompasses 71 acres of public land under the stewardship of the Bureau of Land Management. The proposed action identified in the EA is for the DOE to perform air sparging with bioremediation at the Hoe Creek site to remove contaminants resulting from underground coal gasification (UCG) experiments performed there by the DOE in the late 1970s. The proposed action would involve drilling additional wells at two of the UCG test sites to apply oxygen or hydrogen peroxide to the subsurface to volatilize benzene dissolved in the groundwater and enhance bioremediation of non-aqueous phase liquids present in the subsurface. Other alternatives considered are site excavation to remove contaminants, continuation of the annual pump and treat actions that have been used at the site over the last ten years to limit contaminant migration, and the no action alternative. Issues examined in detail in the EA are air quality, geology, human health and safety, noise, soils, solid and hazardous waste, threatened and endangered species, vegetation, water resources, and wildlife. Details of mitigative measures that could be used to limit any detrimental effects resulting from the proposed action or any of the alternatives are discussed, and information on anticipated effects identified by other government agencies is provided.

NONE

1997-10-01

284

Analyzing organic sulfur in coal/char: Integrated mild gasification/XANES methods. Technical report, 1 March--31 May 1994  

SciTech Connect

The overall goal of this study is to improve the understanding of sulfur in coals/chars via the use of combined advanced non-destructive and advanced destructive methods of sulfur analysis. This study combines selective oxidation, analytical pyrolysis, and sulfur X-ray Absorption Near Edge Structure Spectroscopy (XANES) analysis. Samples with a wide variety of sulfur contents, (0.63% to 4.40%) have been prepared for use in this study. This includes steam gasification chars, oxidized coals and desulfurized coals as well of the original unaltered coals. Mild pyrolysis and preliminary XANES data shows that the sulfur chemistry of gasification chars is significantly different from that of the original coals. Mild pyrolysis of the samples that were oxidized with peroxyacetic acid showed that the level of simple thiophene structures observed in the pyrolysis products declines with increasing levels of oxidation. Sulfur XANES spectra of treated samples showed various effects depending on the treatment severity. For the less severely treated samples (demineralization and solvent extraction), the XANES spectra were similar, although not identical, to the untreated coal spectra, whereas the more severe treatments (steam at 450 C; peroxyacetic acid at 25 C) showed preferential oxidation of one or more sulfur-bearing phases in the original coal. Additional samples have recently been examined by XANES and W-band EPR and the data is currently being processed and evaluated.

Palmer, S.R. [Southern Illinois Univ., Carbondale, IL (United States). Dept. of Mechanical Engineering and Energy Processes; Huffman, G.P. [Kentucky Univ., Lexington, KY (United States)

1994-09-01

285

Characterization and failure analysis of ceramic filters utilized for emission control during coal gasification. Topical report, October 1, 1995--September 30, 1996  

SciTech Connect

Ceramic filters for pollutant emission control from coal gasification have been evaluated. The following were investigated: permeability, cleaning, back pulse pressure distribution measurement within candle filter without dust cake, and optimization on back pulse system design.

Huque, Ziaul, Mei, D.; Zhou, J.

1998-12-31

286

Prediction and measurement of entrained flow coal gasification processes. Interim report, September 8, 1981-September 7, 1983  

SciTech Connect

This volume reports interim experimental and theoretical results of the first two years of a three year study of entrained coal gasification with steam and oxygen. The gasifier facility and testing methods were revised and improved. The gasifier was also modified for high pressure operation. Six successful check-out tests at elevated pressure were performed (55, 75, 100, 130, 170, and 215 psig), and 8 successful mapping tests were performed with the Utah bituminous coal at an elevated pressure of 137.5 psig. Also, mapping tests were performed at atmospheric pressure with a Utah bituminous coal (9 tests) and with a Wyoming subbituminous coal (14 tests). The LDV system was used on the cold-flow facility to make additional nonreactive jets mixing measurements (local mean and turbulent velocity) that could be used to help validate the two-dimensional code. The previously completed two-dimensional entrained coal gasification code, PCGC-2, was evaluated through rigorous comparison with cold-flow, pulverized coal combustion, and entrained coal gasification data. Data from this laboratory were primarily used but data from other laboratories were used when available. A complete set of the data used has been compiled into a Data Book which is included as a supplemental volume of this interim report. A revised user's manual for the two-dimensional code has been prepared and is also included as a part of this interim report. Three technical papers based on the results of this study were published or prepared. 107 references, 57 figures, 35 tables.

Hedman, P.O.; Smoot, L.D.; Fletcher, T.H.; Smith, P.J.; Blackham, A.U.

1984-01-31

287

Combined Air Sparge and Bioremediation of an Underground Coal Gasification Site  

SciTech Connect

EG&G Technical Services of West Virginia (TSWV) Inc. is successfully remediating a former underground coal gasification (UCG) test site in northeastern Wyoming. EG&G is demonstrating the effectiveness of combined air sparge and biostimulation technology. This project is being conducted for the U.S. Department of Energy (DOE ) - Morgantown Energy Technology Center (METC), the lease holder of the site. UCG testing from 1976 through 1979 contaminated three water-bearing units at the site with benzene. Previous pump and treat operations at the site showed the presence of a persistent non-dissolved benzene source material. The Felix I coal seam is the most contaminated unit at the site and was the target unit for the initial demonstration. Air sparging was selected to strip dissolved benzene, volatilize the non- dissolved benzene source material, and to provide oxygen for increasing aerobic bacteria populations. Indigenous bacteria populations were stimulated with ammonium phosphate addition. EG&G designed the remediation system to take advantage of the hydrogeologic environment to produce a cost-effective approach to the groundwater remediation. Groundwater pumping was used to manipulate subsurface air flow, nutrient transport, and biomass management. Demonstration operations began on September 29, 1995, and were suspended on April 30, 1996 to begin demonstration expansion. Initial results of the demonstration show substantial reduction in benzene concentrations across the demonstration area. Benzene concentration reductions greater than 80% were observed two months after demonstration operations were suspended.

Covell, J.R.; Thomas, M.H.

1996-12-01

288

Catalytic gasification of coal using eutectic salts: recovery, regeneration, and recycle of spent eutectic catalysts.  

PubMed

Catalyst recovery studies were conducted for gasified chars produced from steam gasification of Illinois #6 coal catalyzed with two different catalyst systems. A ternary (43.5 mol% Li2CO3-31.5 mol% Na2COr-25 mol% K2CO3) and a binary (29 mol% Na2CO3-71 mol% K2CO3) eutectic catalyst system were used for gasifying coal. Various extraction schemes, such as water extraction, H2SO4 extraction, and acetic acid extraction, were evaluated with respect to their extraction efficiencies. Effects of major process variables, such as solvent-to-char ratio, mixing time, temperature, and concentration, on the extraction efficiency were evaluated. A process schematic for the entire catalyst recovery, regeneration, and recycle scheme was developed and the preliminary process economics were determined based on these extraction schemes. H2SO4 extraction was found to be the most desirable. It also turned out to be more attractive than a once-through throwaway system. PMID:12708509

Sheth, Atul C; Sastry, Chandramouli; Yeboah, Yaw D; Xu, Yong; Agarwal, Pradeep

2003-04-01

289

In situ small angle x-ray studies of coal gasification  

SciTech Connect

This report summarizes the progress made the first 12 months of a planned 36 month project on small angle x-ray studies of coal and char pore structure. Model carbon studies have been employed to demonstrate the usefulness of small angle x-ray scattering (SAXS) in monitoring the structural changes in porous carbonaceous materials during gasification. Scattering data from particles gasified to varying levels of conversion show increases in the micropore sizes with conversion. This is also supported by surface area measurements by SAXS showing a maximum at intermediate conversion in agreements with previous studies by conventional means. The application of SAXS to PSOC coal samples is also demonstrated. Existing models for the porous structure have been reviewed and percolation theory has been selected as a consistent framework for both the modelling and the data analysis. This theory will make it possible to describe the porous structure in terms of its geometry and connectivity, rather than being limited to a fixed geometry as in conventional approaches. Two graduate students and the PI have been trained in SAXS and the associated theory. Results from the model carbon studies have been published. 18 references, 9 figures, 2 tables.

Jensen, K F

1983-01-01

290

Novel hydrogen separation device development for coal gasification system applications. Final report  

SciTech Connect

This study was undertaken for the development of a novel Electrochemical Hydrogen Separator (EHS) technology for low-cost hydrogen separation from coal derived gases. Design and operating parameter testing was performed using subscale cells (25 cm{sup 2}). High H{sub 2} purity, >99% is one of the main features of the EHS. It was found that N{sub 2}, CO{sub 2} and CH{sub 4} behave as equivalent inerts; EHS performance is not affected by the balance of feed gas containing these components. This product purity level is not sacrificed by increased H{sub 2} recovery. CO, however, does adversely affect EHS performance and therefore feed stream pretreatment is recommended. Low levels of H{sub 2}S and NH{sub 3} were added to the feed gas stream and it was verified that these impurities did not affect EHS performance. Task 2 demonstrated the scale-up to full size multi-cell module operation while maintaining a stable energy requirement. A 10-cell full-size module (1050 cm{sup 2} cell active area) was operated for over 3,800 hours and gave a stable baseline performance. Several applications for the EHS were investigated. The most economically attractive systems incorporating an EHS contain low pressure, dilute hydrogen streams, such as coal gasification carbonate fuel cell systems, hydrogen plant purification and fluid catalytic cracker units. In addition, secondary hydrogen recovery from PSA or membrane tailstreams using an EHS may increase overall system efficiency.

Not Available

1993-08-01

291

Results of the groundwater restoration project, Hanna Underground Coal Gasification Test Site, Wyoming: Topical report  

SciTech Connect

Underground coal gasification (UCG) experiments conducted during the 1970s at the Department of Energy (DOE) site near Hanna, Wyoming, formed six underground cavities in the Hanna No. 1 coal seam, an aquifer of low permeability. When the first Hanna UCG experiment began in March 1973, researchers had little information about what effects the geologic or hydrologic characteristics of the area might have on the UCG process; likewise, the effects of UCG on the environment were unknown. Since the UCG experiments were completed, dilute concentrations of pyrolysis products and leachates have been detected in groundwater monitoring wells in and near some of the six cavities. Three primary UCG indicator constituents have been measured at elevated concentrations: phenols, TDS, and sulfate. The Hanna III cavity water exceeded the DOE target level for TDS and sulfate, and the Hanna I cavity water exceeded the DOE target level for phenols. The indicated phenols contamination, however, was in groundwater sampled from a well which was previously used as a production well during the experiment. Water pumped during the restoration project and a new well located approximately 10 ft from the old production well was sampled and no elevated phenols concentration was detected. Therefore, the restoration performed on the Hanna I cavity water was not necessary. The restoration was performed, however, because these indications were not available until during the restoration. Locally, various other constituents exceed DOE target levels, but concentrations are very near target levels and are well within livestock use limits. 2 refs., 7 figs., 5 tabs.

Oliver, R.L.

1988-01-01

292

LWA demonstration applications using Illinois coal gasification slag: Phase II. Technical report, 1 March--31 May 1994  

SciTech Connect

The major objective of this project is to demonstrate the suitability of using ultra-lightweight aggregates (ULWA) produced by thermal expansion of solid residues (slag) generated during the gasification of Illinois coals as substitutes for conventional aggregates, which are typically produced by pyroprocessing of perlite ores. To meet this objective, expanded slag aggregates produced from an Illinois coal slag feed in Phase I will be subjected to characterization and applications-oriented testing. Target applications include the following: aggregates in precast products (blocks and rooftiles); construction aggregates (loose fill insulation and insulating concrete); and other applications as identified from evaluation of expanded slag properties. The production of value-added products from slag is aimed at eliminating a solid waste and possibly enhancing the overall economics of the gasification process, especially when the avoided costs of disposal are taken into consideration.

Choudhry, V. [Praxis Engineers, Inc., Milpitas, CA (United States); Steck, P. [Harvey Cement Products, Inc. (United States)

1994-09-01

293

IGDS/TRAP Interface Program (ITIP). Software User Manual (SUM). [network flow diagrams for coal gasification studies  

NASA Technical Reports Server (NTRS)

This specification establishes the requirements, concepts, and preliminary design for a set of software known as the IGDS/TRAP Interface Program (ITIP). This software provides the capability to develop at an Interactive Graphics Design System (IGDS) design station process flow diagrams for use by the NASA Coal Gasification Task Team. In addition, ITIP will use the Data Management and Retrieval System (DMRS) to maintain a data base from which a properly formatted input file to the Time-Line and Resources Analysis Program (TRAP) can be extracted. This set of software will reside on the PDP-11/70 and will become the primary interface between the Coal Gasification Task Team and IGDS, DMRS, and TRAP. The user manual for the computer program is presented.

Jefferys, S.; Johnson, W.; Lewis, R.; Rich, R.

1981-01-01

294

Ground-water hydrologic effects resulting from underground coal gasification experiments at the Hoe Creek Site near Gillette, Wyoming. Interim report, October 1979March 1980  

Microsoft Academic Search

This technical note summarizes our activities, to date, on the research project: Ground-Water Hydrologic Effects Resulting from Underground Coal Gasification Experiments (EPA-IAG-79-D-X0795). The gasified coal seam (Felix No. 2 coal) and two overlying aquifers (Felix No. 1 coal and overlying sand) appear to have become interconnected as a result of roof collapse and subsidence at both Hoe Creek Sites II

E. Raber; R. Stone

1980-01-01

295

Integrated Gasification Combined Cycle (IGCC) demonstration project, Polk Power Station -- Unit No. 1. Annual report, October 1993--September 1994  

SciTech Connect

This describes the Tampa Electric Company`s Polk Power Station Unit 1 (PPS-1) Integrated Gasification Combined Cycle (IGCC) demonstration project which will use a Texaco pressurized, oxygen-blown, entrained-flow coal gasifier to convert approximately 2,300 tons per day of coal (dry basis) coupled with a combined cycle power block to produce a net 250 MW electrical power output. Coal is slurried in water, combined with 95% pure oxygen from an air separation unit, and sent to the gasifier to produce a high temperature, high pressure, medium-Btu syngas with a heat content of about 250 Btu/scf (LHV). The syngas then flows through a high temperature heat recovery unit which cools the syngas prior to its entering the cleanup systems. Molten coal ash flows from the bottom of the high temperature heat recovery unit into a water-filled quench chamber where it solidifies into a marketable slag by-product.

NONE

1995-05-01

296

Fixed-bed gasification research using US coals. Volume 18. Program data summary and correlations. [Câ and Câ hydrocarbons  

Microsoft Academic Search

A single-staged, fixed-bed, Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and government agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas Group (MIFGa). This

D. Thimsen; R. E. Maurer; O. Lannto; D. Pui; R. Yeh

1985-01-01

297

Modeling of multiphase flow and heat transfer in radiant syngas cooler of an entrained-flow coal gasification  

Microsoft Academic Search

A comprehensive model has been developed to analyze the multiphase flow and heat transfer in the radiant syngas cooler (RSC) of an industrial-scale entrained-flow coal gasification. The three-dimensional multiphase flow field and temperature field were reconstructed. The realizable - turbulence model is applied to calculate the gas flow field, while the discrete random walk model is applied to trace the

Guangsuo Yu; Jianjun Ni; Qinfeng Liang; Qinghua Guo; Zhijie Zhou

2009-01-01

298

Geomechanical Analysis of Underground Coal Gasification Reactor Cool Down for Subsequent CO2 Storage  

NASA Astrophysics Data System (ADS)

Underground coal gasification (UCG) is an efficient method for the conversion of conventionally unmineable coal resources into energy and feedstock. If the UCG process is combined with the subsequent storage of process CO2 in the former UCG reactors, a near-zero carbon emission energy source can be realised. This study aims to present the development of a computational model to simulate the cooling process of UCG reactors in abandonment to decrease the initial high temperature of more than 400 °C to a level where extensive CO2 volume expansion due to temperature changes can be significantly reduced during the time of CO2 injection. Furthermore, we predict the cool down temperature conditions with and without water flushing. A state of the art coupled thermal-mechanical model was developed using the finite element software ABAQUS to predict the cavity growth and the resulting surface subsidence. In addition, the multi-physics computational software COMSOL was employed to simulate the cavity cool down process which is of uttermost relevance for CO2 storage in the former UCG reactors. For that purpose, we simulated fluid flow, thermal conduction as well as thermal convection processes between fluid (water and CO2) and solid represented by coal and surrounding rocks. Material properties for rocks and coal were obtained from extant literature sources and geomechanical testings which were carried out on samples derived from a prospective demonstration site in Bulgaria. The analysis of results showed that the numerical models developed allowed for the determination of the UCG reactor growth, roof spalling, surface subsidence and heat propagation during the UCG process and the subsequent CO2 storage. It is anticipated that the results of this study can support optimisation of the preparation procedure for CO2 storage in former UCG reactors. The proposed scheme was discussed so far, but not validated by a coupled numerical analysis and if proved to be applicable it could provide a significant optimisation of the UCG process by means of CO2 storage efficiency. The proposed coupled UCG-CCS scheme allows for meeting EU targets for greenhouse gas emissions and increases the coal yield otherwise impossible to exploit.

Sarhosis, Vasilis; Yang, Dongmin; Kempka, Thomas; Sheng, Yong

2013-04-01

299

Task 3.16 -- Low-cost coal-water fuel for entrained-flow gasification. Semi-annual report, July 1--December 31, 1995  

SciTech Connect

Continued interest in gasification technologies has led to the need for more technological advances in the area of fuel cleanup and fuel feed systems, which invariably affect the other components comprised by gasification systems. Some entrained-flow gasifiers require the fuel to be a slurry form or a coal-water fuel (CWF). Recent technological advances at the Energy and Environmental Research Center (EERC) have led to potential means for improving efficiency and air toxics control for gasifiers that utilize CWF. Highly reactive low-rank coals present an attractive CWF gasification feedstock. Hydrothermally treating low-rank coals allows a CWF to be formulated that has an elevated solids content, which reduces the amount of water fed to the gasifier, thereby decreasing the amount of oxygen needed to gasify the coal. Preliminary measurements show that the process would increase the solids content from 53 to 63 wt%, giving a 20% improvement in energy density. The specific objective of this research project is to assess the potential process efficiency and pollution control benefits that may result from applying the hydrothermal, or hot-water-drying (HWD), process to low-rank coals as related to entrained-flow gasification systems. Project emphasis is on identifying more efficient coal dewatering and CWF formulation methods prior to gasification.

Anderson, C.M.

1998-01-01

300

Survey of tar sand deposits, heavy oil fields, and shallow light oil fields of the United States for underground coal gasification applications  

Microsoft Academic Search

A literature survey was conducted to identify areas of the United States where tar sand deposits, heavy oil fields, or shallow light oil fields might be suitably associated with coal deposits for production of oil by in situ thermal recovery methods using heat derived from underground coal gasification (UCG) processes. The survey is part of a Department of Energy-sponsored program

1986-01-01

301

Overburden characterization and post-burn study of the Hoe Creek, Wyoming underground coal gasification site and comparison with the Hanna, Wyoming site  

Microsoft Academic Search

In 1978 the third test (Hoe Creek III) in a series of underground coal gasification (UCG) experiments was completed at a site south of Gillette, Wyoming. The post-burn study of the geology of the overburden and interlayered rock of the two coal seams affected by the experiment is based on the study of fifteen cores. The primary purpose of the

F. C. Ethridge; L. K. Burns; W. G. Alexander; G. N. II Craig; A. D. Youngberg

1983-01-01

302

Effect of catalysts in the quality of syngas and by-products obtained by co-gasification of coal and wastes. 1. Tars and nitrogen compounds abatement  

Microsoft Academic Search

The aim of this work is to analyse the possibility of using co-gasification technology to process coal mixed with wastes to take profit of its energy content and at the same time to minimize the environmental impact associated with the use of wastes and to diminish the costs of flue gas treatment. The addition to coal of different types of

Filomena Pinto; Helena Lopes; Rui Neto André; I. Gulyurtlu; I. Cabrita

2007-01-01

303

Gas Production Strategy of Underground Coal Gasification Based on Multiple Gas Sources  

PubMed Central

To lower stability requirement of gas production in UCG (underground coal gasification), create better space and opportunities of development for UCG, an emerging sunrise industry, in its initial stage, and reduce the emission of blast furnace gas, converter gas, and coke oven gas, this paper, for the first time, puts forward a new mode of utilization of multiple gas sources mainly including ground gasifier gas, UCG gas, blast furnace gas, converter gas, and coke oven gas and the new mode was demonstrated by field tests. According to the field tests, the existing power generation technology can fully adapt to situation of high hydrogen, low calorific value, and gas output fluctuation in the gas production in UCG in multiple-gas-sources power generation; there are large fluctuations and air can serve as a gasifying agent; the gas production of UCG in the mode of both power and methanol based on multiple gas sources has a strict requirement for stability. It was demonstrated by the field tests that the fluctuations in gas production in UCG can be well monitored through a quality control chart method. PMID:25114953

Tianhong, Duan; Zuotang, Wang; Limin, Zhou; Dongdong, Li

2014-01-01

304

Environmental evaluation and restoration plan of the Hoe Creek Underground Coal Gasification Site, Wyoming: Topical report  

SciTech Connect

Three underground coal gasification (UCG) experiments were conducted by Lawrence Livermore National Laboratory (LLNL) at the Hoe Creek Site, Wyoming; the Hoe Creek I experiment was conducted in 1976, the Hoe Creek II experiment in 1977, and the Hoe Creek III experiment in 1979. These experiments have had an impact on the land and groundwater quality at the site, and the Department of Energy (DOE) has requested that Western Research Institute (WRI) develop and implement a site restoration plan. The purpose of the plan is to restore the site to conditions being negotiated with the Wyoming Department of Environmental Quality (WDEQ). To prepare for developing a plan, WRI compiled background information on the site. The geologic and hydrologic characteristics of the site were determined, and the water quality data were analyzed. Modelling the site was considered and possible restoration methods were examined. Samples were collected and laboratory tests were conducted. WRI then developed and began implementing a field-scale restoration test. 41 refs, 46 figs., 13 tabs.

Barteaux, W.L.; Berdan, G.L.; Lawrence, J.

1986-09-01

305

Corrosion of candidate heat exchanger alloys in complex simulated coal gasification atmospheres at 450 C  

SciTech Connect

In CO-rich coal gasification atmospheres, sulfidation attack of metallic components can cause severe wastage problems. In these highly reducing environments, Si is one of the elements with a high enough affinity for oxygen to enable a silica-rich scale to be formed which may provide reasonable protection of the alloy substrate. In this study, the corrosion behavior of a commercial 12%Cr ferritic alloy is compared with the resistance of a series of specially cast 12%Cr and 12%Cr-12%Ni model alloys having Si levels ranging from 1.3 to 4%. Two higher Cr-Ni austenitic alloys (25%Cr-20%Ni and 20%Cr-32%Ni) have also been tested. Coupons from each material have been exposed to a non-equilibrated CO-based gas mixture containing 0.8% H{sub 2}S for up to 2,000 hours. Weight changes and surface and cross-sectional examinations have been used to measure the kinetics and establish the morphology, type and extent of corrosive degradation.

Norton, J.F.; Maier, M. [European Commission, Petten (Netherlands); Bakker, W.T. [Electric Power Research Inst., Palo Alto, CA (United States)

1997-08-01

306

Modeling of the coal gasification processes in a hybrid plasma torch  

SciTech Connect

The major advantages of plasma treatment systems are cost effectiveness and technical efficiency. A new efficient electrodeless 1-MW hybrid plasma torch for waste disposal and coal gasification is proposed. This product merges several solutions such as the known inductive-type plasma torch, innovative reverse-vortex (RV) reactor and the recently developed nonequilibrium plasma pilot and plasma chemical reactor. With the use of the computational-fluid-dynamics-computational method, preliminary 3-D calculations of heat exchange in a 1-MW plasma generator operating with direct vortex and RV have been conducted at the air flow rate of 100 g/s. For the investigated mode and designed parameters, reduction of the total wall heat transfer for the reverse scheme is about 65 kW, which corresponds to an increase of the plasma generator efficiency by approximately 6.5%. This new hybrid plasma torch operates as a multimode, high power plasma system with a wide range of plasma feedstock gases and turn down ratio, and offers convenient and simultaneous feeding of several additional reagents into the discharge zone.

Matveev, I.B.; Serbin, S.I. [Applied Plasma Technology, Mclean, VA (USA)

2007-12-15

307

Biological removal of organic constituents in quench water from a slagging, fixed-bed coal-gasification pilot plant  

SciTech Connect

This study is part of an effort to assess the efficiency of activated-sludge treatment for removal of organic constituents from high-Btu coal-gasification pilot-plant quench waters. A sample of raw-gas quench water was obtained from the Grand Forks Energy and Technology Center's pilot plant, which employs the slagging, fixed-bed gasification process. The quench water generated in the processing of Indian Head lignite was pretreated to reduce ammonia and alkalinity, and then diluted and subjected to long-term biological treatment, followed by detailed characterization and analysis of organic constituents. The pretreated (influent) and treated (effluent) samples were extracted using a methylene chloride, pH-fractionation method to obtain acid, base, and neutral fractions, which were analyzed by capillary-column gas chromatography/mass spectrometry (GC/MS). Over 99% of the total extractable and chromatographable organic material in the influent acid fraction was composed of phenol and alkylated phenols. Biological treatment removed these compounds almost completely. Major components of the influent base fraction were alkylated pyridines, anilines, aminopyrroles, imidazoles and/or pyrazoles, diazines, and quinolines. Removal efficiency of these compounds ranged between 90 and 100%. The influent neutral fraction was composed mainly of cycloalkanes, cycloalkenes, naphthalene, indole, acetophenone, and benzonitrile. Alkylated benzenes were generally absent. Removal efficiencies of these compounds were generally very good, except for certain alkylated cycloalkanes and cycloalkenes. Results are compared with those of a similar study on HYGAS coal-gasification quench water.

Stamoudis, V C; Luthy, R G

1980-02-01

308

A Brief Review of Viscosity Models for Slag in Coal Gasification  

SciTech Connect

Many researchers have defined the phenomenon of 'slagging' as the deposition of ash in the radiative section of a boiler, while 'fouling' refers to the deposition of ash in the convective-pass region. Among the important parameters affecting ash deposition that need to be studied are ash chemistry, its transport, deposit growth, and strength development; removability of the ash deposit; heat transfer mechanisms; and the mode of operation for boilers. The heat transfer at the walls of a combustor depends on many parameters including ash deposition. This depends on the processes or parameters controlling the impact efficiency and the sticking efficiency. For a slagging combustor or furnace, however, the temperatures are so high that much of the coal particles are melted and the molten layer, in turn, captures more particles as it flows. The main problems with ash deposition are reduced heat transfer in the boiler and corrosion of the tubes. Common ways of dealing with these issues are soot blowing and wall blowing on a routine basis; however, unexpected or uncontrolled depositions can also complicate the situation, and there are always locations inaccessible to the use of such techniques. Studies have indicated that slag viscosity must be within a certain range of temperatures for tapping and the membrane wall to be accessible, for example, between 1300 C and 1500 C, the viscosity is approximately 25 Pa {center_dot} s. As the operating temperature decreases, the slag cools and solid crystals begin to form. In such cases the slag should be regarded as a non-Newtonian suspension, consisting of liquid silicate and crystals. A better understanding of the rheological properties of the slag, such as yield stress and shear-thinning, are critical in determining the optimum operating conditions. To develop an accurate heat transfer model in any type of coal combustion or gasification process, the heat transfer and to some extent the rheological properties of ash and slag, especially in high-temperature environments need to be understood and properly modeled. The viscosity of slag and the thermal conductivity of ash deposits are among two of the most important constitutive parameters that need to be studied. The accurate formulation or representations of the (transport) properties of coal (and biomass for co-firing cases) present a special challenge of modeling efforts in computational fluid dynamics applications. In this report, we first provide a brief review of the various approaches taken by different researchers in formulating or obtaining a slag viscosity model. In general, these models are based on experiments. Since slag behaves as a non-linear fluid, we discuss the constitutive modeling of slag and the important parameters that must be studied.

Massoudi, Mehrdad; Wang, Ping

2011-11-01

309

Image analysis measurements of particle coefficient of restitution for coal gasification applications  

SciTech Connect

New robust Lagrangian computational fluid dynamic (CFD) models are powerful tools that can be used to study the behavior of a diverse population of coal particle sizes, densities, and mineral compositions in entrained gasifiers. By using this approach, the responses of the particles impacting the wall were characterized over a range of velocities (1 to 8 m/s) and incident angles (90 to 20°). Within CFD models, the kinematic coefficient of restitution is the boundary condition defining the particle wall behavior. Four surfaces were studied to simulate the physical conditions of different entrained-flow gasification particle–surface collision scenarios: 1) a flat metal plate 2) a low viscosity silicon adhesive, 3) a high viscosity silicon adhesive, and 4) adhered particles on a flat metal plate with Young's modulus of elasticity ranging from 0.9 to 190 GPa. Entrained flow and drop experiments were conducted with granular coke particles, polyethylene beads and polystyrene pellets. The particle normal and tangential coefficients of restitution were measured using high speed imaging and particle tracking. The measured coefficients of restitution were observed to have a strong dependence on the rebound angles for most of the data. Suitable algebraic expressions for the normal and the tangential component of the coefficient of restitution were developed based upon ANOVA analysis. These expressions quantify the effect of normalized Young's modulus, particle equancy, and relative velocity on the coefficient of restitution. The coefficient of restitution did not have a strong dependence on the particle velocity over the range considered as long as the velocity was above the critical velocity. However, strong correlations were found between the degree of equancy of the particles and the mean coefficient of restitution such that the coefficient of restitution decreased for smaller particle equancies. It was concluded that the degree of equancy and the normalized Young's modulus should be considered in applications such as gasification and other cases involving the impact of non-spherical particles and complex surfaces. Sliding was observed when particles impacted on oblique surfaces; however, the resulting effects were within the range of measurement uncertainties.

Gibson, LaTosha M.; Gopalan, Balaji; Pisupati, Sarma V.; Shadle, Lawrence J.

2013-10-01

310

Evaluation of Biomass Gasification to Produce Reburning Fuel for Coal-Fired Boilers  

EPA Science Inventory

Gasification and reburning testing with biomass and other wastes is of interest to both the U.S. EPA and the Italian Ministry of the Environment & Territory. Gasification systems that use biofuels or wastes as feedstock can provide a clean, efficient source of synthesis gas and p...

311

Evaluation of wood chip gasification to produce reburrn fuel for coal-fired boilers: AWMA  

EPA Science Inventory

Gasification or reburn testing with biomass and other wastes is of interest to both the U.S. Environmental Protection Agency (EPA) and the Italian Ministry of the Environment & Territory (IMET). Gasification systems that use wastes as feedstock should provide a clean, efficient s...

312

Evaluation of wood chip gasification to produce reburn fuel for coal-fired boilers  

EPA Science Inventory

Gasification/reburn testing with biomass and other wastes is of interest to both the U.S. Environmental Protection Agency (EPA) and the Italian Ministry of the Environment & Territory (IMET). Gasification systems that use wastes as feedstock should provide a clean, efficient sour...

313

Laser-absorption sensing of gas composition of products from coal gasification  

NASA Astrophysics Data System (ADS)

A prototype in-situ laser-absorption sensor for the real-time composition measurement (CO, CH4, H2O and CO2) of synthesis gas products of coal gasification (called here syngas) was designed, tested in the laboratory, and demonstrated during field-measurement campaigns in a pilot-scale entrained flow gasifier at the University of Utah and in an engineering-scale, fluidized-bed transport gasifier at the National Carbon Capture Center (NCCC). The prototype design and operation were improved by the lessons learned from each field test. Laser-absorption measurements are problematic in syngas flows because efficient gasifiers operate at elevated pressures (10-50 atm) where absorption transitions are collision broadened and absorption transitions that are isolated at 1 atm become blended into complex features, and because syngas product streams can contain significant particulate, producing significant non-absorption scattering losses of the transmission of laser light. Thus, the prototype sensor used a new wavelength-scanned, wavelength-modulation spectroscopy strategy with 2f-detection and 1f-normalization (WMS-2f/1f) that can provide sensitive absorption measurements of species with spectra blended by collision broadening even in the presence of large non-absorption laser transmission losses (e.g., particulate scattering, beam steering, etc.). The design of the sensor for detection of CO, CH4, H2O and CO2 was optimized for the specific application of syngas monitoring at the output of large-scale gasifiers. Sensor strategies, results and lessons learned from these field measurement campaigns are discussed.

Jeffries, Jay B.; Sur, Ritobrata; Sun, Kai; Hanson, Ronald K.

2014-06-01

314

Utilization of lightweight materials made from coal gasification slags. Quarterly report, June 1--August 31, 1996  

SciTech Connect

Integrated-gasification combined-cycle (IGCC) technology is an emerging technology that utilizes coal for power generation and production of chemical feedstocks. However, the process generates large amounts of solid waste, consisting of vitrified ash (slag) and some unconverted carbon. In previous projects, Praxis investigated the utilization of ``as-generated`` slags for a wide variety of applications in road construction, cement and concrete production, agricultural applications, and as a landfill material. From these studies, we found that it would be extremely difficult for ``as-generated`` slag to find large-scale acceptance in the marketplace even at no cost because the materials it could replace were abundantly available at very low cost. It was further determined that the unconverted carbon, or char, in the slag is detrimental to its utilization as sand or fine aggregate. It became apparent that a more promising approach would be to develop a variety of value-added products from slag that meet specific industry requirements. This approach was made feasible by the discovery that slag undergoes expansion and forms a lightweight material when subjected to controlled heating in a kiln at temperatures between 1400 and 17000F. These results confirmed the potential for using expanded slag as a substitute for conventional lightweight aggregates (LWA). The technology to produce lightweight and ultra-lightweight aggregates (ULWA) from slag was subsequently developed by Praxis. The major objectives of the subject project are to demonstrate the technical and economic viability of commercial production of LWA and ULWA from slag and to test the suitability of these aggregates for various applications. The project goals are to be accomplished in two phases: Phase 1, comprising the production of LWA and ULWA from slag at the large pilot-scale, and Phase 2, which involves commercial evaluation of these aggregates in a number of applications. Accomplishments are described.

NONE

1996-12-31

315

Interaction of iron-copper mixed metal oxide oxygen carriers with simulated synthesis gas derived from steam gasification of coal  

SciTech Connect

The objective of this work was to prepare supported bimetallic Fe–Cu oxygen carriers and to evaluate their performance for the chemical-looping combustion (CLC) process with simulated synthesis gas derived from steam gasification of coal/air. Ten-cycle CLC tests were conducted with Fe–Cu oxygen carriers in an atmospheric thermogravimetric analyzer utilizing simulated synthesis gas derived from the steam gasification of Polish Janina coal and Illinois #6 coal as fuel. The effect of temperature on reaction rates, chemical stability, and oxygen transport capacity were determined. Fractional reduction, fractional oxidation, and global rates of reactions were calculated from the thermogravimetric analysis (TGA) data. The supports greatly affected reaction performance. Data showed that reaction rates and oxygen capacities were stable during the 10-cycle TGA tests for most Fe–Cu/support oxygen carriers. Bimetallic Fe–Cu/support oxygen carriers showed higher reduction rates than Fe-support oxygen carriers. The carriers containing higher Cu content showed better stabilities and better reduction rates. An increase in temperature from 800 °C to 900 °C did not have a significant effect on either the oxygen capacity or the reduction rates with synthesis gas derived from Janina coal. Oxidation reaction was significantly faster than reduction reaction for all supported Fe–Cu oxygen carriers. Carriers with higher Cu content had lower oxidation rates. Ten-cycle TGA data indicated that these oxygen carriers had stable performances at 800–900 °C and might be successfully used up to 900 °C for coal CLC reaction in the presence of steam.

Siriwardane, Ranjani V. [U.S. DOE; Ksepko, Ewelina; Tian, Hanging [URS

2013-01-01

316

Characterization, extraction, and reuse of coal-gasification solid wastes. Volume 3. Technical and economic feasibility of bulk utilization and metal recovery for ashes from an integrated coal-gasification facility. Final report, April 1983-June 1986  

SciTech Connect

Coal-gasification waste products, including those from Lurgi gasification, have different properties from the combustion ashes, especially with respect to mineralogy. To date, comparatively little effort has been directed toward the investigation of bulk utilization or metals extraction. This project was directed towards correction of that deficiency by matching properties of the Great Plains Gasification Plant gasifier ash and the Antelope Valley Power Plant combustion explored: mineral wool; sulfur concrete; high-flexural-strength ceramics; ceramic glazed wall tile and vitrified floor tile; dual concrete replacement; road stabilization; blended cement; and recovery of aluminum. Mineral wool of similar physical character to commercial wool and at lower potential cost was produced using the ashes from the GPGA complex. Sulfur concrete utilizing 80% ash and 20% modified sulfur developed flexural and compressive strengths in excess of 2250 and 6000 psi, respectively. A vitrified ceramic product with flexural strength above 7800 psi was produced from a mixture of 50% AVS scrubber ash 45% sand, and 5% clay. By using a total ash mixture of 26% gasifier ash and 74% combustion ash, a very satisfactory, economical, and durable road-base material was developed. The replacement of up to 50% of the cement in concrete with AVS scrubber ash produces higher strength. A modified lime-soda sinter process for aluminum recovery was developed, but is not economical.

Manz, O.E.; Hassett, D.J.; Laudal, D.L.; Ellman, R.C.

1986-06-01

317

Evaluation of the decolorization of pretreated coal gasification wastewater by the MyCor Process. [P. chrysosponium  

SciTech Connect

Removal of color from pretreated coal gasification wastewater was evaluated using a bench-scale MyCoR Process reactor. In this process the fungus P. chrysosporium is immobilized on a rotating disc. Four experimental runs were completed at different color concentrations to evaluate this system's ability to remove color from the wastewater. Results indicate that color can be removed successfully from GFETC pretreated wastewater. The amount of color removed is dependent on the initial color concentration and the active fungal decolorization lifetime.

George, E.J.; Noceti, R.P.; Dahlberg, M.D.

1986-09-01

318

High Temperature Electrochemical Polishing of H(2)S from Coal Gasification. Quarterly progress report, April 1-June 30, 1997  

SciTech Connect

An advanced process for the separation of hydrogen sulfide from coal gasification streams through an electrochemical membrane is being perfected. H{sub 2}S is removed from a synthetic gas stream, split into hydrogen, which enriches the exiting syngas, and sulfur, which is condensed downstream from an inert sweep gas stream. The process allows for continuous removal of H{sub 2}S without cooling the gas stream while allowing negligible pressure loss through the separator. Moreover, the process is economically attractive due to the elimination of the need for a Claus process for sulfur recovery. To this extent the project presents a novel concept for improving utilization of coal for more efficient power generation.

Winnick, J.

1997-12-31

319

LWA demonstration applications using Illinois coal gasification slag: Phase 2. Technical report, September 1--November 30, 1993  

SciTech Connect

The objectives of this program are to demonstrate the feasibility of producing ultra-lightweight aggregates (ULWA) from solid residues (slag) generated during the gasification of Illinois coals, and to test the products as substitutes for conventional aggregates produced by pyroprocessing of perlite ores. In Phase 1 of this project, Praxis developed a pilotscale production technique and produced a large batch of expanded aggregates from an Illinois coal slag feed. The Phase 2 work focuses on characterization and applications-oriented testing of the expanded slag products as substitutes for conventional ULWAs. Target applications include high-volume uses such as loose fill insulation, insulating concrete, lightweight precast products (blocks), waterproof wallboard, rooftiles, and filtration media. The precast products will be subjected to performance and characterization testing in conjunction with a commercial manufacturer of such products in order to obtain input from a potential user. The production of value-added products from slag will eliminate a solid waste and possibly enhance the overall gasification process economics, especially when the avoided costs of disposal are taken into consideration.

Choudhry, V. [Praxis Engineers, Inc., Milpitas, CA (United States); Steck, P. [Harvey Cement Products, Inc. (United States)

1993-12-31

320

Molten salt coal gasification process development unit, Phase 2. Quarterly technical progress report No. 1, July-September 1980  

SciTech Connect

This represents the first quarterly progress report on Phase 2 of the Molten Salt Coal Gasification Process Development Unit (PDU) Program. Phase 1 of this program started in March 1976 and included the design, construction, and initial operation of a PDU to test the Molten Salt Coal Gasification Process. On July 24, 1980, Phase 2 of the program was initiated. It covers a 1-year operations program utilizing the existing PDU and is planned to include five runs with a targeted total operating time of 9 weeks. The primary activities during the period covered by this report related to preparations for PDU Run 6, the initial run of the Phase 2 program. These activities included restaffing the PDU operations group, reactivation of the facility, and effecting plant modifications and improvements based on an evaluation of previous operation experience. The Melt Withdrawal System which had proven unreliable during the previous runs, was completely redesigned; thermal and flow analyses were performed; new components procured; and assembly initiated. Run 6 which is scheduled for the next report period, is aimed primarily at verifying the adequacy of the redesigned Melt Withdrawal System.

Slater, M.H.

1980-10-01

321

Three Texaco EOR projects seek improved recovery  

SciTech Connect

Texaco USA recently began 3 enhanced oil recovery test projects in an effort to capture additional oil from stubborn reservoirs. Two of the reservoirs are watered out and the third contains relatively viscous oil in a shallow sandstone. If successful, 2 projects will be expanded in the same reservoir; the third method will find application in different but similar reservoirs. The projects are (1) a semicommercial chemical flood in the Benoist sand of the Salem (Illinois) field, abandoned after waterflooding; (2) an in situ combustion project in the Nacatoch sand of Caddo Pine Island field in N.W. Louisiana; (3) a gravity-stable miscible CO/sub 2/ flood in a dipping fault on the Louisiana Gulf Coast. Wells were previously shut in following depletion by natural water drive.

Bleakley, W.B.

1981-11-01

322

EARLY ENTRANCE CO-PRODUCTION PLANT - DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS  

SciTech Connect

Waste Processors Management, Inc. (WMPI), along with its subcontractors Texaco Power & Gasification (now ChevronTexaco), SASOL Technology Ltd., and Nexant Inc. entered into a Cooperative Agreement DE-FC26-00NT40693 with the U. S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) to assess the techno-economic viability of building an Early Entrance Co-Production Plant (EECP) in the United States to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co-product. The EECP design includes recovery and gasification of low-cost coal waste (culm) from physical coal cleaning operations and will assess blends of the culm with coal or petroleum coke. The project has three phases. Phase I is the concept definition and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase II is an experimental testing program designed to validate the coal waste mixture gasification performance. Phase III updates the original EECP design based on results from Phase II, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 barrel per day (BPD) coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania. The current report covers the period performance from July 1, 2003 through September 30, 2003. The DOE/WMPI Cooperative Agreement was modified on May 2003 to expand the project team to include Shell Global Solutions, U.S. and Uhde GmbH as the engineering contractor. The addition of Shell and Uhde strengthen both the technical capability and financing ability of the project. Uhde, as the prime EPC contractor, has the responsibility to develop a LSTK (lump sum turnkey) engineering design package for the EECP leading to the eventual detailed engineering, construction and operation of the proposed concept. Major technical activities during the reporting period include: (1) finalizing contractual agreements between DOE, Uhde and other technology providers, focusing on intellectual-property-right issues, (2) Uhde's preparation of a LSTK project execution plan and other project engineering procedural documents, and (3) Uhde's preliminary project technical concept assessment and trade-off evaluations.

John W. Rich

2003-12-01

323

Removing CO{sub 2} and H{sub 2}S from the gas produced during underground coal gasification (UCG)  

SciTech Connect

The new method of simultaneous disposal of CO{sub 2} and H{sub 2}S in coal gas generated during underground coal gasification (UCG) using industrial waste alkali liquor is put forward and studied for the first time. The rationale of absorption of CO{sub 2} and H{sub 2}S by the alkali liquor is analyzed, and the mass transfer model for the above process is established. The impact of the existence of H{sub 2}S on absorbing CO{sub 2} by the alkali liquor is studied on the basis of the model experiment. Research shows that as the velocity of coal gas increases, the selection coefficient of H{sub 2}S improves, the temperature rises, the selection coefficient of H{sub 2}S deceases, but the removal rate of CO{sub 2} increases. By means of study, it can be found that the removal rate of CO{sub 2} can reach more than 60% under the conditions of the suitable concentration of the alkali liquor and the ratio of liquid to gas, the heat value of underground coal gas can heighten by 12.3%, 17.7%, and over 20%, respectively, when the removal rate of CO{sub 2} is 58%, 80%, and greater than 90%.

Yang, L.; Liu, S.; Yu, L. [China University of Mining and Technology, Xuzhou (China)

2007-07-01

324

Development of a hot gas cleanup system for integrated coal gasification\\/molten carbonate fuel cell power plants. Quarterly progress report, April 1June 30, 1984  

Microsoft Academic Search

Under this program, the Institute of Gas Technology is conducting research in support of the development of both a high-temperature fuel-gas desulfurization process and a new, high-capacity sorbent for the removal of HCl and possibly other contaminants from coal-derived fuel gas at elevated temperatures for use in coal gasification\\/MCFC power plants. The high-temperature fuel-gas desulfurization process being developed by IGT

G. L. Anderson; F. O. Berry

1984-01-01

325

Fixed bed gasification studies on coal-feedlot biomass and coal-chicken litter biomass under batch mode operation  

E-print Network

of the processes for energy conversion of biomass fuels is thermochemical gasification. For the current study, a laboratory scale, 10 kW[th], fixed-bed gasifier (reactor internal diameter 0.15 m, reactor height 0.30 m) facility was built at the Texas A...

Priyadarsan, Soyuz

2012-06-07

326

Research and development on membrane processes for removal of acid gases during coal gasification. Final report, 20 June 1975-19 October 1976  

Microsoft Academic Search

The object of this program was to develop novel and unique membranes for separating acid gases from coal gasification streams. Many candidate membranes, including cationic, hydrophilic, and silicone, were tested. Optimum separation properties were possessed by membranes formulated from crosslinked methyl cellulose coated on polysulfone support films. The observed separation properties were explained theoretically by the solubility of the various

R. J. Petersen; J. E. Cadotte; E. J. Conway; R. H. Forester; M. J. Steuck

1976-01-01

327

Development of a Hot-Gas-Cleanup System for Integrated Coal-Gasification/Molten-Carbonate Fuel-Cell Power Plants. Quarterly Progress Report, April-June 1983.  

National Technical Information Service (NTIS)

The program to develop a hot gas cleanup system for integrated coal gasification/molten carbonate fuel cell power plants is divided into the following six tasks: (1) project plan and design of experiments; (2) exploratory and supporting studies; (3) Desig...

S. E. Lyke, L. J. Sealock, G. L. Roberts

1983-01-01

328

A new approach to the application of the classic methods of physicochemical kinetics in the analysis of the efficiency of plasma technology of coal gasification  

SciTech Connect

This work is devoted to the problem of improving the efficiency of new plasma technologies of coal combustion that have minimum negative environmental impact. In particular, the authors consider a general method of formulating and solving the inverse kinetic problem to elucidate advantages of plasma gasification.

Karpenko, E.I.; Devyatov, B.N. [Kutateladze Inst. of Thermal Physics, Novosibirsk (Russian Federation)

1995-07-01

329

New approach to application of classic methods of physical and chemical kinetics to analysis of efficiency of plasma technology of coal gasification  

SciTech Connect

This report is devoted to the problem of increase of the efficiency of new plasma technology of coal burning providing minimum negative influence to the environment. In particular, common method of statement and solution of inverse kinetic problem allowing to show plasma gasification advantages is represented here.

Carpenko, E.I.; Devaytov, B.N.; Zhukov, M.F. [Institute of Thermophysics, Novosibirsk (Russian Federation)

1995-07-01

330

A comparison of circulating fluidised bed combustion and gasification power plant technologies for processing mixtures of coal, biomass and plastic waste  

Microsoft Academic Search

Environmental regulations concerning emission limitations from the use of fossil fuels in large combustion plants have stimulated interest in biomass for electricity generation.The main objective of the present study was to examine the technical and economic viability of using combustion and gasification of coal mixed with biomass and plastic wastes, with the aim of developing an environmentally acceptable process to

D. R. McIlveen-Wright; F. Pinto; L. Armesto; M. A. Caballero; M. P. Aznar; A. Cabanillas; Y. Huang; C. Franco; I. Gulyurtlu; J. T. McMullan

2006-01-01

331

Numerical and experimental study of gas–particle radiative heat exchange in a fluidized-bed reactor for steam-gasification of coal  

Microsoft Academic Search

A heat transfer numerical model is developed for the steam-gasification of coal in a fluidized bed contained in a quartz tubular reactor that is directly exposed to concentrated thermal radiation. The Monte Carlo method is applied for solving the radiative exchange within the reactor quartz walls, the bed particles, and the gas phase. The reaction kinetics are described by Langmuir–Hinshelwood

P. von Zedtwitz; W. Lipi?ski; A. Steinfeld

2007-01-01

332

Characterizing a lignite formation before and after an underground coal gasification experiment  

E-print Network

at Well 9 dictates high permeability considering the early PRESSURE DRAWBOWR WELL RUIIBER 10 POST-GASIFICATION TARO LIGRITE 144 140 136 132 120 124 1 10 ~V Pn ~ 12$ ptl al. 0th. siepe Change at t 145 0 ~ . 6 ptt/cycle 100 'I 000 Fig, 17... at Well 9 dictates high permeability considering the early PRESSURE DRAWBOWR WELL RUIIBER 10 POST-GASIFICATION TARO LIGRITE 144 140 136 132 120 124 1 10 ~V Pn ~ 12$ ptl al. 0th. siepe Change at t 145 0 ~ . 6 ptt/cycle 100 'I 000 Fig, 17...

Ahmed, Usman

2012-06-07

333

ANALYTICAL METHODS FOR HAZARDOUS ORGANICS IN LIQUID WASTES FROM COAL GASIFICATION AND LIQUEFACTION PROCESSES  

EPA Science Inventory

This study was conducted by the University of Southern California group to provide methods for the analysis of coal liquefaction wastes from coal conversion processing plants. Several methods of preliminary fractionation prior to analysis were considered. The most satisfactory me...

334

Studies of Initial Reaction Steps in the Gasification of Coal: Final Report, October 1983-September 1985.  

National Technical Information Service (NTIS)

This research has utilized matrix isolation FTIR and EPR for characterization of volatilized coal products. Both slow and rapid heating studies were carried out on four coals, Illinois No. 6, Pittsburgh bituminous, Rawhide sub-bituminous and Texas lignite...

C. J. Chu, S. A. Cannon, R. H. Hauge, J. L. Margrave

1985-01-01

335

Testing Kentucky Coal to Set Design Criteria for a Lurgi Gasification Plant  

E-print Network

Tri-State Synfuels Company, in cooperation with the Commonwealth of Kentucky, undertook a comprehensive coal testing program to support the development of an indirect coal liquefaction project. One of the major elements of the program was a...

Roeger, A., III; Jones, J. E., Jr.

1983-01-01

336

Analysis of integrating compressed air energy storage concepts with coal gasification/combined-cycle systems for continuous power production  

SciTech Connect

A previous study sponsored by EPRI concluded that integrating a compressed-air energy storage (CAES) plant with a coal-gasification system (CGS) can reduce the required capacity and cost of the expensive gasification system. The results showed that when compared at an equal plant capacity, the capital cost of the CGS portion of the integrated CAES/CGS plant can be reduced by as much as 30% relative to the same portion of an integrated gasification combined cycle (IGCC) plant. Furthermore, the capital cost of the CAES/CGS.plant, configured as a peaking unit, was found to be slightly lower than that of the base-load IGCC plant. However, the overall economics of the CAES/CGS plant were adversely affected by the low capacity factor of the peak-load service, and ultimately, were found to be less attractive than the IGCC plant. The main objective of this study was to develop and analyze integrated CAES/CGS power plant concepts which provide for continuous (around-the-clock) operation of both the CAES reheat turboexpander train and the CGS facility. The developed concepts also provide utility-load management functions by driving the CAES compressor trains with off-peak electricity supplied through the grid. EPRI contracted with Energy Storage Power Consultants, Inc. (ESPC) to develop conceptual designs, optimized performance characteristics, and preliminary cost data for these CAES/CGS concepts, and to provide a technical and cost comparison to the IGCC plant. The CAES/CGS concepts developed by ESPC for the current study contrast from those of Reference 1.

Nakhamkin, M.; Patel, M.; Andersson, L. (Energy Storage and Power Consultants, Inc., Mountainside, NJ (United States))

1992-12-01

337

High temperature electrochemical separation of H{sub 2}S from coal gasification process streams. Quarterly progress report, April 1, 1992--June 30, 1992  

SciTech Connect

An advanced process for the separation of hydrogen sulfide from coal gasification product streams through an electrochemical membrane is being developed using the funds from this grant. H{sub 2}S is removed from the syn-gas stream, split into hydrogen, which enriches the syn-gas, and sulfur, which can be condensed from an inert gas sweep stream. The process allows removal of H{sub 2}S without cooling the gas stream and with negligible pressure loss through the separator. The process is economically attractive by the lack of adsorbents and the lack of a Claus process for sulfur recovery. Research conducted during the present quarter is here highlighted, with an emphasis on progress towards the goal of an economically viable H{sub 2}S removal technology for use in coal gasification facilities providing polished fuel for co-generation coal fired electrical power facilities and Molten Carbonate Fuel Cell electrical power facilities.

Winnick, J.

1992-10-01

338

Effect of size and density on the thermodynamic predictions of coal particle phase formation during coal gasification  

Microsoft Academic Search

When coal is ground for use in a gasifier, the resulting particles will vary in physical and chemical make-up, in particular, the mineral amount and composition. The resulting ash composition distribution, by particle size and density, of ground Pittsburgh Seam coal was determined. The thermodynamically stable phases were calculated for each particle classification for a range of temperatures, with attention

G. N. Shannon; H. Matsuura; P. Rozelle; R. J. Fruehan; S. Pisupati; S. Sridhar

2009-01-01

339

LWA demonstration applications using Illinois coal gasification slag. Phase 2, [Quarterly] technical report, December 1, 1993--February 28, 1994  

SciTech Connect

The objectives of this program are to demonstrate the feasibility of producing ultra-lightweight aggregates (ULWA) , from solid residues (slag) generated during the gasification of Illinois coals, and to test the products as substitutes for conventional aggregates produced by pyroprocessing of perlite ores. During this reporting period, major accomplishments were the selection of mix designs and test methods for preparation of specimens of expanded slag for testing in precast applications (Task 3) and construction aggregate applications (Task 4). In addition, characterization data (Task 1) were,analyzed, and evaluation of the expanded slag products as substitutes for conventional ULWAs (Task 2) was completed. Potential applications that were identified are: (1) Loose fill insulation; Insulating concrete (roof, floor, and walls); Precast products (blocks and rooftiles). Experimental work during the project is focused on these applications.

Choudhry, V. [Praxis Engineers, Inc., Milpitas, CA (United States); Steck, P. [Harvey Cement Products, Inc. (United States)

1994-06-01

340

Fixed-bed gasification research using US coals. Volume 18. Program data summary and correlations. [C/sub 2/ and C/sub 3/ hydrocarbons  

SciTech Connect

A single-staged, fixed-bed, Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and government agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas Group (MIFGa). This report is the eighteenth volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report summarizes the results of eighteen different gasification tests in which fourteen different fuels were gasified from August 1982 to August 1985. The summaries and analyses reported here include correlations of product yields and compositions with coal analyses and gasifier operating conditions. Also included here are discussions of limitations to throughput, transient response of the gasifier, the grate performance model, and a discussion of electrostatic precipitation in coal gas medium. 25 refs., 41 figs., 6 tabs.

Thimsen, D.; Maurer, R.E.; Lannto, O.; Pui, D.; Yeh, R.

1985-12-01

341

High temperature electrochemical separation of H{sub 2}S from coal gasification process streams. Quarterly progress report, January 1, 1992--March 31, 1992  

SciTech Connect

An advanced process for the separation of hydrogen sulfide from coal gasification product streams through an electrochemical membrane is being developed. H{sub 2}S is removed from the syn-gas stream, split into hydrogen, which enriches the syn-gas, and sulfur, which can be condensed from an inert gas sweep stream. The process allows removal of H{sub 2}S without cooling the gas stream and with negligible pressure loss through the separator. The process is economically attractive by the lack of adsorbents and the lack of a Claus process for sulfur recovery. Research conducted during the present quarter is highlighted, with an emphasis on progress towards the goal of an economically viable H{sub 2}S removal technology for use in coal gasification facilities providing polished fuel for co-generation coal fired electrical power facilities and Molten Carbonate Fuel Cell electrical power facilities. Polishing application of this technology to coal gasification synthesis gas has been demonstrated with H{sub 2}S removals as high as 89.1% recorded. No successful runs with stainless steel housings have yet been achieved. However, since stoichiometric CO{sub 2} removal with stainless steel housings has been achieved, H{sub 2}S removal is achievable.

Winnick, J.

1992-08-01

342

Advanced technology applications for second and third generation coal gasification systems. Appendix  

NASA Technical Reports Server (NTRS)

Sixteen coal conversion processes are described and their projected goals listed. Tables show the reactants used, products derived, typical operating data, and properties of the feed coal. A history of the development of each process is included along with a drawing of the chemical reactor used.

Bradford, R.; Hyde, J. D.; Mead, C. W.

1980-01-01

343

Slurry pumping techniques for feeding high-pressure coal gasification reactors  

NASA Technical Reports Server (NTRS)

Operating experience in pumping coal and coal char slurries at pressures up to 1500 psig is discussed. The design specifications for the mixing tanks, pumps, piping, and slurry heaters are given along with pressure drop and minimum flow velocity data on water-lignite slurries.

Bair, W. G.; Tarman, P. B.

1977-01-01

344

The gasification of coals and of hydrogenation sludge in a steam plasma  

SciTech Connect

The process of gasifying various coals and the hydrogenation sludge of Irsha-Borodino coal in a steam plasma in various types of reactor has been investigated. It has been established that in a direct-jet reactor the reaction of the carbon of the fuel with the steam takes place mainly in the external diffusion region.

Kolobova, E.A.

1983-01-01

345

Biological removal of organic constituents in quench waters from high-Btu coal-gasification pilot plants  

SciTech Connect

Studies were initiated to assess the efficiency of bench-scale, activated-sludge treatment for removal of organic constituents from coal-gasification process effluents. Samples of pilot-plant, raw-gas quench waters were obtained from the HYGAS process of the Institute of Gas Technology and from the slagging, fixed-bed (SFB) process of the Grand Forks Energy Technology Center. The types of coal employed were Bituminous Illinois No. 6 for the HYGAS and Indian Head lignite for the SFB process. These pilot-plant quench waters, while not strictly representative of commercial condensates, were considered useful to evaluate the efficiency of biological oxidation for the removal of organics. Biological-reactor influent and effluent samples were extracted using a methylene chloride pH-fractionation method into acid, base, and neutral fractions, which were analyzed by capillary-column gas-chromatography/mass-spectrometry. Influent acid fractions of both HYGAS and SFB condensates showed that nearly 99% of extractable and chromatographable organic material comprised phenol and alkylated phenols. Activated-sludge treatment removed these compounds almost completely. Removal efficiency of base-fraction organics was generally good, except for certain alkylated pyridines. Removal of neutral-fraction organics was also good, except for certain alkylated benzenes, certain polycyclic aromatic hydrocarbons, and certain cycloalkanes and cycloalkenes, especially at low influent concentrations.

Stamoudis, V C; Luthy, R G

1980-02-01

346

Gasification: A Cornerstone Technology  

ScienceCinema

NETL is a leader in the science and technology of gasification - a process for the conversion of carbon-based materials such as coal into synthesis gas (syngas) that can be used to produce clean electrical energy, transportation fuels, and chemicals efficiently and cost-effectively using domestic fuel resources. Gasification is a cornerstone technology of 21st century zero emissions powerplants

Gary Stiegel

2010-01-08

347

Highly Selective H2 Separation Zeolite Membranes for Coal Gasification Membrane Reactor Applications  

SciTech Connect

Zeolite membranes are thermally, chemically, and mechanically stable. They also have tunable molecular sieving and catalytic ability. These unique properties make zeolite membrane an excellent candidate for use in catalytic membrane reactor applications related to coal conversion and gasification, which need high temperature and high pressure range separation in chemically challenging environment where existing technologies are inefficient or unable to operate. Small pore, good quality, and thin zeolite membranes are needed for highly selective H{sub 2} separation from other light gases (CO{sub 2}, CH{sub 4}, CO). However, zeolite membranes have not been successful for H{sub 2} separation from light gases because the zeolite pores are either too big or the membranes have a large number of defects. The objective of this study is to develop zeolite membranes that are more suitable for H{sub 2} separation. In an effort to tune the size of zeolite pores and/or to decrease the number of defects, medium-pore zeolite B-ZSM-5 (MFI) membranes were synthesized and silylated. Silylation on B-ZSM-5 crystals reduced MFI-zeolite pore volume, but had little effect on CO{sub 2} and CH{sub 4} adsorption. Silylation on B-ZSM-5 membranes increased H{sub 2} selectivity both in single component and in mixtures with CO{sub 2}CO{sub 2}, CH{sub 4}, or N2. Single gas and binary mixtures of H{sub 2}/CO{sub 2} and H{sub 2}/CH{sub 4} were separated through silylated B-ZSM-5 membranes at feed pressures up to 1.7 MPa and temperatures up to 773 K. For one BZSM-5 membrane after silylation, the H2/CO{sub 2} separation selectivity at 473 K increased from 1.4 to 37, whereas the H{sub 2}/CH{sub 4} separation selectivity increased from 1.6 to 33. Hydrogen permeance through a silylated B-ZSM-5 membrane was activated, but the CO{sub 2} and CH4 permeances decreased slightly with temperature in both single gas and in mixtures. Therefore, the H{sub 2} permeance and H{sub 2}/CO{sub 2} and H{sup 2} /CH{sub 4} separation selectivities increased with temperature. At 673 K, the H2 permeance was 1.0x10-7 molxm-2xs-1xPa-1, and the H{sub 2}/CO{sub 2} separation selectivity was 47. Above 673 K, the silylated membrane catalyzed reverse water gas shift reaction and still separated H{sub 2} with high selectivity; and it was thermally stable. However, silylation decreased H{sub 2} permeance more than one order of magnitude. The H{sub 2} separation performance of the silylated B-ZSM-5 membranes depended on the initial membrane quality and acidity, as well as the silane precursors. Increasing the membrane feed pressure also increased the H{sub 2} flux and the H{sub 2} mole fraction in the permeate stream for both mixtures. Another approach used in this study is optimizing the synthesis of small-pore SAPO-34 (CHA) membranes and/or modifying SAPO-34 membranes by silylation or ion exchange. For SAPO-34 membranes, strong CO{sub 2} adsorption inhibited H{sub 2} adsorption and decreased H2 permeances, especially at low temperatures. At 253 K, CO{sub 2}/H{sub 2} separation selectivities of a SAPO-34 membrane were greater than 100 with CO{sub 2} permeances of about 3 x 10-8 mol m-2 s-1 Pa-1. The high reverse-selectivity of the SAPO-34 membranes can minimize H{sub 2} recompression because H{sub 2} remained in the retentate stream at a higher pressure. The CO{sub 2}/H{sub 2} separation selectivity exhibited a maximum with CO{sub 2} feed concentration possibly caused by a maximum in the CO{sub 2}/H{sub 2} sorption selectivity with increased CO{sub 2} partial pressure. The SAPO-34 membrane separated H{sub 2} from CH{sub 4} because CH{sub 4} is close to the SAPO-34 pore size so its diffusivity is much lower than the H{sup 2} diffusivity. The H{sub 2}/CH{sub 4} separation selectivity was almost independent of temperature, pressure, and feed composition. Silylation on SAPO-34 membranes increased H{sup 2}/CH{sub 4} and CO{sub 2}/CH{sub 4} selectivities but did not increase H{sub 2}/CO{sub 2} and H{sub 2}/N{sub 2} selectivities because silylation only blocked defects in SAPO-34 membranes. Hydr

Mei Hong; Richard D. Noble; John L. Falconer

2006-09-24

348

Highly Selective H2 Separation Zeolite Membranes for Coal Gasification Membrane Reactor Applications  

SciTech Connect

Zeolite membranes are thermally, chemically, and mechanically stable. They also have tunable molecular sieving and catalytic ability. These unique properties make zeolite membrane an excellent candidate for use in catalytic membrane reactor applications related to coal conversion and gasification, which need high temperature and high pressure range separation in chemically challenging environment where existing technologies are inefficient or unable to operate. Small pore, good quality, and thin zeolite membranes are needed for highly selective H2 separation from other light gases (CO2, CH4, CO). However, current zeolite membranes have either too big zeolite pores or a large number of defects and have not been successful for H2 separation from light gases. The objective of this study is to develop zeolite membranes that are more suitable for H2 separation. In an effort to tune the size of zeolite pores and/or to decrease the number of defects, medium-pore zeolite B-ZSM-5 (MFI) membranes were synthesized and silylated. Silylation on B-ZSM-5 crystals reduced MFI-zeolite pore volume, but had little effect on CO2 and CH4 adsorption. Silylation on B-ZSM-5 membranes increased H2 selectivity both in single component and in mixtures with CO2, CH4, or N2. Single gas and binary mixtures of H2/CO2 and H2/CH4 were permeated through silylated B-ZSM-5 membranes at feed pressures up to 1.7 MPa and temperatures up to 773 K. For one B-ZSM-5 membrane after silylation, the H2/CO2 separation selectivity at 473 K increased from 1.4 to 37, whereas the H2/CH4 separation selectivity increased from 1.6 to 33. Hydrogen permeance through a silylated BZSM-5 membrane was activated with activation energy of {approx}10 kJ/mol, but the CO2 and CH4 permeances decreased slightly with temperature in both single gas and in mixtures. Therefore, the H2 permeance and H2/CO2 and H2/CH4 separation selectivities increased with temperature. At 673 K, the H2 permeance was 1.0x10-7 mol{center_dot}m-2{center_dot}s-1{center_dot}Pa-1, and the H2/CO2 separation selectivity was 47. Above 673 K, the silylated membrane catalyzed reverse water gas shift reaction and still separated H2 with high selectivity; and it was thermally stable. However, silylation decreased H2 permeance more than one order of magnitude. Increasing the membrane feed pressure increased the H2 flux and the H2 mole fraction in the permeate stream for both H2/CO2 and H2/CH4 mixtures. The H2 separation performance of the silylated B-ZSM-5 membranes depended on the initial membrane quality and acidity, as well as the silane precursors. Another approach used in this study is optimizing the synthesis of small-pore SAPO-34 (CHA) membranes and/or modifying SAPO-34 membranes by silylation or ion exchange. For SAPO-34 membranes, strong CO2 adsorption inhibited H2 adsorption and decreased H2 permeances, especially at low temperatures. At 253 K, CO2/H2 separation selectivities of a SAPO-34 membrane were greater than 100 with CO2 permeances of about 3 x 10-8 mol{center_dot}m-2{center_dot}s-1{center_dot}Pa-1. The high reverse-selectivity of the SAPO-34 membranes can minimize H2 recompression because H2 remained in the retentate stream at a higher pressure. The CO2/H2 separation selectivity exhibited a maximum with CO2 feed concentration possibly caused by a maximum in the CO2/H2 sorption selectivity with increased CO2 partial pressure. The SAPO-34 membrane separated H2 from CH4 because CH4 is close to the SAPO-34 pore size so its diffusivity (ABSTRACT TRUNCATED)

Mei Hong; Richard Noble; John Falconer

2007-09-24

349

Effect of tar fractions from coal gasification on nickel-yttria stabilized zirconia and nickel-gadolinium doped ceria solid oxide fuel cell anode materials  

NASA Astrophysics Data System (ADS)

The allowable tar content in gasification syngas is one of the key questions for the exploitation of the full potential of fuel cell concepts with integrated gasification systems. A better understanding of the interaction between tars and the SOFC anodes which leads to carbon formation and deposition is needed in order to design systems where the extent of gas cleaning operations is minimized. Model tar compounds (toluene, benzene, naphthalene) have been used in experimental studies to represent those arising from biomass/coal gasification. However, the use of toluene as a model tar overestimates the negative impact of a real gasification tar on SOFC anode degradation associated with carbon formation. In the present work, the effect of a gasification tar and its distillation fractions on two commercially available fuel cell anodes, Ni/YSZ (yttria stabilized zirconia) and Ni/CGO (gadolinium doped ceria), is reported. A higher impact of the lighter tar fractions was observed, in terms of more carbon formation on the anodes, in comparison with the whole tar sample. The characterization of the recovered tars after contact with the anode materials revealed a shift towards a heavier molecular weight distribution, reinforcing the view that these fractions have reacted on the anode.

Lorente, E.; Berrueco, C.; Millan, M.; Brandon, N. P.

2013-11-01

350

Coal gasification support studies. Vol. II, Task 2. Studies of fluidized-bed reactors in coal gasification processes. Final report, November 19, 1981-August 15, 1982  

SciTech Connect

The effects of system pressure on solids entrainment and on transport disengaging height (TDH) in gas-solid fluidized beds were experimentally investigated. The specific entrainment rate constant was found to be linearly proportional to the gas density up to a system pressure of 300 psig (a gas density of 1.52 lb/ft/sup 3/). The specific entrainment rate constants from this study were found to lie within the limits of predictions from the existing correlations. TDH was found to increase linearly with both system pressure and gas velocity. The dynamic behavior of gas and solids in an overflow standpipe as a function of several operational variables was also studied. Flow transitions (that is, solids defluidization and gas-flow reversal) were found to be a function of the solids flow rate as well as solids material properties, standpipe aeration, and standpipe geometry. Trends depicting solids defluidization and gas-flow-reversal data are discussed in this report. The effect of distributor design on the tendency of coal char to sinter in fluidized beds was determined. Three distributor configurations were tested at various temperatures, gas velocities, and oxygen concentrations. It was found that there is no difference in using either single- or multiple-nozzle distributors to prevent sintering. A single-nozzle distributor with a concentric annular opening, however, was found to be effective in preventing sintering. The void-gas stripping characteristics of porous solids in standpipes operating in moving packed-bed and fluidized-bed modes were investigated. In this report, the effects of the stripper diameter and stripper-gas injection location on stripping-gas requirements are discussed, and a method of predicting stripping-gas requirements for a porous particle system is presented. 165 figures, 32 tables.

Not Available

1983-06-01

351

Coal gasification pilot plant support studies. Subtask 2-3. Void-gas stripping in coal gasification systems. [e. g. , Removal of oxygen by displacement with nitrogen  

SciTech Connect

An investigation was conducted to: Determine the mechanism of void-gas stripping in a moving packed bed of solids; determine the effect of system parameters on void-gas stripping requirements; and to develop a model for predicting the minimum amount of stripping gas required for a particular design application. The void-gas stripping investigation was carried out with an air-nitrogen gas system. Stripping was conducted in 4, 6, and 8-in. diameter columns with moving beds of sand, siderite, and coal char. The solids flow rate was varied over a wide range. In each test, the stripping gas (i.e., nitrogen) was added to the standpipe to displace the interstitial oxygen in the moving bed of solids. The oxygen concentration in the standpipe was monitored with a diffusion-type oxygen analyzer. The results show that for a downward-moving packed bed, the direction of the void-gas flow in the downcomer to be stripped is important. For void gas initially traveling down (relative to the wall) in the stripping section, stripping-gas requirements could be decreased by: decreasing the solids flow rate, increasing the standpipe diameter, raising the stripping-gas injection point, or increasing the pressure drop in the stripping section. For gas initially traveling up the downcomer relative to the downcomer wall, stripping-gas requirements could be decreased by: increasing the solids flow rate, decreasing the standpipe diameter, lowering the stripping-gas injection point, or decreasing the pressure drop in the stripping section. A model was developed, based on the relative solids-gas velocity in the stripper, to predict stripping-gas requirements for nonporous particles. This model predicted stripping-gas requirements for the sand and siderite material to within 20%.

Not Available

1980-10-01

352

Ceramic filters systems -- Necessary equipment for combined cycles based on coal gasification?  

SciTech Connect

An overview about the development of a hot gas filter technology arranging ceramic candles in a different way compared to competing technologies is shown. This technology has been developed executing an extended research program on PFBC (Pressurized Fluidized Bed Combustion). The same technology is used in gasification applications. The paper describes the benefits resulting from using ceramic candle filters in such processes and describes the available technology. Test results and different configurations using the same basic principles of the filtration process will be shown.

Wedel, G. von; Kalthoff, U. [LLB Lurgi Lentjes Babcock Energietechnik GmbH, Oberhausen (Germany)

1994-12-31

353

Development of biological coal gasification (MicGAS process). Nineth quarterly report, [July--September 1992  

SciTech Connect

Laboratory scale studies examining biogasification of Texas lignite at various coal solids loadings have been completed. Bench scale bioreactors are currently being used to scale up the biogasification process to higher coal solids loadings (5% and 10%) Specific observations reported this quarter are that methane production was not curtailed when B-vitamin solution was not added to the biogasification medium and that aeration of Mic-1 did not sufficiently oxidize the medium to eliminate strict anaerobic bacteria including methanogens.

Not Available

1992-10-30

354

Coal Integrated Gasification Fuel Cell System Study. Pre-Baseline Topical Report for April 2003 to July 2003.  

National Technical Information Service (NTIS)

The pre-baseline configuration for an Integrated Gasification Fuel Cell (IGFC) system has been developed. This case uses current gasification, clean-up, gas turbine, and bottoming cycle technologies together with projected large planar Solid Oxide Fuel Ce...

G. Wotzak, C. Balan, F. Rahman, N. Minh

2003-01-01

355

Co-pyrolysis and co-gasification of coal and biomass in bench-scale fixed-bed and fluidised bed reactors  

Microsoft Academic Search

Tar and total volatile yields from the co-pyrolysis and co-gasification of coal and biomass samples were described (850°C and 1000°C; up to 25bar). Two reactors were used: a fixed-bed reactor providing intimate contact between neighbouring fuel particles and a fluidised-bed reactor designed to provide near total segregation of sample particles. In pyrolysis experiments, neither intimate contact between fuel particles, nor

A.-G Collot; Y Zhuo; D. R Dugwell; R Kandiyoti

1999-01-01

356

Production of gaseous fuel from refuse plastic fuel via co-pyrolysis using low-quality coal and catalytic steam gasification  

Microsoft Academic Search

In this study, refuse plastic fuel (RPF) was copyrolyzed with low-quality coal and was gasified in the presence of a metal\\u000a catalyst and steam. Some metal catalysts, such as Ni, NiO, and Mg, and mixtures of these with base promoters such as Al2O3 and Fe2O3 were employed in the pyrolysis and gasification processes to convert the synthesis gas into more

Ho-Jun Song; Jaehoon Lee; Ankur Gaur; Jong-Jin Park; Jin-Won Park

2010-01-01

357

High temperature electrochemical polishing of HâS from coal gasification process streams. Quarterly progress report, October 1, 1995December 31, 1995  

Microsoft Academic Search

An advanced process for the separation of hydrogen sulfide (HâS) from coal gasification product streams through an electrochemical membrane is being developed. HâS is removed from the syn-gas stream, split into hydrogen, which enriches the exiting syn-gas, and sulfur, which is condensed from an inert sweep gas stream. The process allows removal of HâS without cooling the gas stream and

Winnick

1995-01-01

358

High temperature electrochemical polishing of HâS from coal gasification process stream. Quarterly progress report, January 1, 1995March 31, 1995  

Microsoft Academic Search

An advanced process for the separation of hydrogen sulfide (HâS) from coal gasification product streams through an electrochemical membrane is being developed. HâS is removed from the syn-gas stream, split into hydrogen, which enriches the exiting syn-gas, and sulfur, which is condensed from an inert sweep gas stream. The process allows removal of HâS without cooling the gas stream and

Winnick

1995-01-01

359

High temperature electrochemical separation of HâS from coal gasification process streams. Quarterly progress report, October 1, 1991December 31, 1991  

Microsoft Academic Search

An advanced process for the separation of hydrogen sulfide from coal gasification product streams through an electrochemical membrane is being developed using the funds from this grant. HâS is removed from the syn-gas stream, split into hydrogen, which enriches the syn-gas, and sulfur, which can be condensed from an inert gas sweep stream. The process allows removal of HâS without

Winnick

1991-01-01

360

High temperature electrochemical separation of HâS from coal gasification process streams. Quarterly progress report, January 1, 1992March 31, 1992  

Microsoft Academic Search

An advanced process for the separation of hydrogen sulfide from coal gasification product streams through an electrochemical membrane is being developed. HâS is removed from the syn-gas stream, split into hydrogen, which enriches the syn-gas, and sulfur, which can be condensed from an inert gas sweep stream. The process allows removal of HâS without cooling the gas stream and with

Winnick

1992-01-01

361

High temperature electrochemical separation of HâS from coal gasification process streams. Quarterly progress report, April 1, 1992June 30, 1992  

Microsoft Academic Search

An advanced process for the separation of hydrogen sulfide from coal gasification product streams through an electrochemical membrane is being developed using the funds from this grant. HâS is removed from the syn-gas stream, split into hydrogen, which enriches the syn-gas, and sulfur, which can be condensed from an inert gas sweep stream. The process allows removal of HâS without

Winnick

1992-01-01

362

Kinetic models comparison for steam gasification of coal/biomass blend chars.  

PubMed

The non-isothermal thermogravimetric method (TGA) was applied to different chars produced from lignite (LN), sawdust (SD) and their blends at the different mass ratios in order to investigate their thermal reactivity under steam atmosphere. Through TGA analysis, it was determined that the most prominent interaction between sawdust and lignite occurred at the mass ratio of sawdust/lignite as 1:4, but with further dose of more sawdust into its blends with lignite, the positive interaction deteriorated due to the agglomeration and deactivation of the alkali mineral involved in sawdust at high steam gasification temperature. Through systematic comparison, it could be observed that the random pore model was the most suitable among the three gas-solid reaction models adopted in this research. Finally, rational kinetic parameters were reached from these gas-solid reaction models, which provided a basis for design and operation of the realistic system of co-gasification of lignite and sawdust in this research. PMID:25203234

Xu, Chaofen; Hu, Song; Xiang, Jun; Yang, Haiping; Sun, Lushi; Su, Sheng; Wang, Baowen; Chen, Qindong; He, Limo

2014-11-01

363

Heterogeneous kinetics of coal gasification. Quarterly technical progress report, 1 April 1983-30 June 1983  

SciTech Connect

In the current quarterly technical progress report we present data and results on transient kinetic studies of the steam-char reaction system for activated coconut and lignite chars. These experiments were conducted in a fashion similar to the previous char-CO/sub 2/ studies, under approximately the same experimental conditions. The two principal product species, H/sub 2/ and CO, were monitored using the automatic mass programming system developed especially for this project. In order to perform the steam-char experiments, the original apparatus was modified by the addition of a steam generation/condensate removal system. The steam-char reaction system, being somewhat more complex than the CO/sub 2/-char reaction system, was modeled with a six-parameter, elementary kinetic scheme. The ''effective'' active site concentrations determined from the steam gasification data were of the same order of magnitude, and behaved in a similar fashion, to those obtained for the CO/sub 2/ gasification studies. The implications of this result are briefly discussed. 21 refs., 23 figs., 2 tabs.

Calo, J.M.; Ganapathi, R.

1983-01-01

364

Great Plains coal gasification project. Hearing before the Committee on Energy and Natural Resources, United States Senate, One Hundredth Congress, Second Session, September 12, 1988  

SciTech Connect

The hearing was called to review the announcement by the Department of Energy that it has selected Basin Electric Power Cooperative of Bismarck, North Dakota, as the preferred buyer for the Great Plains Coal Gasification Plant. The plant produces 142 billion standard cubic feet of synthetic natural gas per day from lignite coal plus several byproducts which are marketed. The hearing examines the bids of the finalists, the composition of the trust funds, the status of the siting permits, questions of air quality, employee retirement funds and employee benefits, and the ability of the successful bidder to pursue byproduct development and marketing. Testimony was heard from 7 witnesses.

Not Available

1989-01-01

365

Coal gasification system with a modulated on/off control system  

DOEpatents

A modulated control system is provided for improving regulation of the bed level in a fixed-bed coal gasifier into which coal is fed from a rotary coal feeder. A nuclear bed level gauge using a cobalt source and an ion chamber detector is used to detect the coal bed level in the gasifier. The detector signal is compared to a bed level set point signal in a primary controller which operates in proportional/integral modes to produce an error signal. The error signal is modulated by the injection of a triangular wave signal of a frequency of about 0.0004 Hz and an amplitude of about 80% of the primary deadband. The modulated error signal is fed to a triple-deadband secondary controller which jogs the coal feeder speed up or down by on/off control of a feeder speed change driver such that the gasifier bed level is driven toward the set point while preventing excessive cycling (oscillation) common in on/off mode automatic controllers of this type. Regulation of the bed level is achieved without excessive feeder speed control jogging.

Fasching, George E. (Morgantown, WV)

1984-01-01

366

The role of catalysts precursor anions in coal gasification. Fourth quarterly report  

Microsoft Academic Search

The aims of the proposed project are to enrich our understanding of the roles of various aqueous soluble catalyst precursor anions on the surface electrical properties of coal and to ascertain the influence of the surface charge on the adsorption, dispersion, and activities of calcium and potassium. These goals will be achieved by impregnating a demineralized North Dakota lignite (PSOC

Abotsi; G. M. K

1992-01-01

367

The role of catalyst precursor anions in coal gasification. Fourth quarterly report  

Microsoft Academic Search

The aims of the proposed project are to enrich our understanding of the roles of various aqueous soluble catalyst precursor anions on the surface electrical properties of coal and to ascertain the influence of the surface charge on the adsorption, dispersion, and activities of calcium and potassium. These goals will be achieved by impregnating a demineralized North Dakota lignite (PSOC

Abotsi; G. M. K

1992-01-01

368

PROCESS WASTEWATER TREATABILITY STUDY FOR WESTINGHOUSE FLUIDIZED-BED COAL GASIFICATION  

EPA Science Inventory

The paper discusses a joint program (The U.S. Department of Energy, the Gas Research Institute, and the U.S. Environmental Protection Agency) to develop performance data, design parameters, conceptual designs, and cost estimates for treating wastewaters from a fluidized-bed coal ...

369

THE DEVELOPMENT AND FUTURE OF UNDERGROUND COAL GASIFICATION IN THE AUSTRALASIAN REGION By  

Microsoft Academic Search

million tonnes of coal have been gasified in the USSR, and more than 50 billion m3 of gas has been produced'. This historical work has undoubtedly provided the catalyst for the growing commercial interest in the technology in Western countries. Considerable R & D effort was expended in the US in the 1970's and 1980's, sponsored by the US Government,

L. K. Walker

370

VAPOR/LIQUID EQUILIBRIA OF CONSTITUENTS FROM COAL GASIFICATION IN REFRIGERATED METHANOL  

EPA Science Inventory

The report describes a thermodynamic framework, established for the development of a model of the phase equilibria of mixtures of methanol and the major constituents found in gases produced from coal. Two approaches were used to model the equilibrium behavior: (1) an equation of ...

371

Low-rank coal research: Volume 1, Control technology, liquefaction, and gasification: Final report  

SciTech Connect

Volume I contains articles on SO/sub x//NO/sub x/ control, waste management, low-rank direct liquefaction, hydrogen production from low-rank coals, and advanced wastewater treatment. These articles have been entered individually into EDB and ERA. (LTN)

Weber, G.F.; Collings, M.E.; Schelkoph, G.L.; Steadman, E.N.; Moretti, C.J.; Henke, K.R.; Rindt, J.R.; Hetland, M.D.; Knudson, C.L.; Willson, W.G.

1987-04-01

372

EARLY ENTRANCE CO-PRODUCTION PLANT--DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS  

Microsoft Academic Search

Waste Processors Management, Inc. (WMPI), along with its subcontractors Texaco Power & Gasification (now ChevronTexaco), SASOL Technology Ltd., and Nexant Inc. entered into a Cooperative Agreement DE-FC26-00NT40693 with the U. S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) to assess the technoeconomic viability of building an Early Entrance Co-Production Plant (EECP) in the United States to produce ultra

John W. Rich

2003-01-01

373

Utilization of lightweight materials made from coal gasification slags. Quaterly report, March 1, 1997--May 30, 1997  

SciTech Connect

The integrated-gasification combined-cycle (IGCC) process is an emerging technology that utilizes coal for power generation and production of chemical feedstocks. However, the process generates large amounts of solid waste, consisting of vitrified ash (slag) and some unconverted carbon. In previous projects, Praxis investigated the utilization of {open_quotes}as-generated{close_quotes} slags for a wide variety of applications in road construction, cement and concrete production, agricultural applications, and as a landfill material. From these studies, we found that it would be extremely difficult for {open_quotes}as-generated{close_quotes} slag to find large-scale acceptance in the marketplace even at no cost because the materials it could replace were abundantly available at very low cost. It was further determined that the unconverted carbon, or char, in the slag is detrimental to its utilization as sand or fine aggregate. It became apparent that a more promising approach would be to develop a variety of value-added products from slag that meet specific industry requirements. This approach was made feasible by the discovery that slag undergoes expansion and forms a lightweight material when subjected to controlled heating in a kiln at temperatures between 1400 and 1700{degrees}F. These results confirmed the potential for using expanded slag as a substitute for conventional lightweight aggregates (LWA). The technology to produce lightweight and ultra-lightweight aggregates (ULWA) from slag was subsequently developed by Praxis with funding from the Electric Power Research Institute (EPRI), Illinois Clean Coal Institute (ICCI), and internal resources. The major objectives of the subject project are to demonstrate the technical and economic viability of commercial production of LWA and ULWA from slag and to test the suitability of these aggregates for various applications.

NONE

1998-12-31

374

Chars from gasification of coal and pine activated with K2CO3: acetaminophen and caffeine adsorption from aqueous solutions.  

PubMed

The high carbon contents and low toxicity levels of chars from coal and pine gasification provide an incentive to consider their use as precursors of porous carbons obtained by chemical activation with K2CO3. Given the chars characteristics, previous demineralization and thermal treatments were made, but no improvement on the solids properties was observed. The highest porosity development was obtained with the biomass derived char (Pi). This char sample produced porous materials with preparation yields near 50% along with high porosity development (ABET?1500m(2)g(-1)). For calcinations at 800°C, the control of the experimental conditions allowed the preparation of samples with a micropore system formed almost exclusively by larger micropores. A mesopore network was developed only for samples calcined at 900°C. Kinetic and equilibrium acetaminophen and caffeine adsorption data, showed that the processes obey to a pseudo-second order kinetic equation and to the Langmuir model, respectively. The results of sample Pi/1:3/800/2 outperformed those of the commercial carbons. Acetaminophen adsorption process was ruled by the micropore size distribution of the carbons. The caffeine monolayer capacities suggest a very efficient packing of this molecule in samples presenting monomodal micropore size distribution. The surface chemistry seems to be the determinant factor that controls the affinity of caffeine towards the carbons. PMID:25112917

Galhetas, Margarida; Mestre, Ana S; Pinto, Moisés L; Gulyurtlu, Ibrahim; Lopes, Helena; Carvalho, Ana P

2014-11-01

375

Acoustic velocity and attenuation measurements in thin rods with application to temperature profiling in coal gasification systems  

SciTech Connect

This paper is concerned with the application of ultrasonic thermometry for temperature profiling in the reactors of coal gasification plants. A temperature profiling sensor typically uses a thin rod with several notches to segregate the sensor length into various zones. An acoustic pulse transmitted through the multizone sensor is partially reflected back at each notch, and measurement of the time interval between each pair of the reflected signals provides an indication of the average temperature in the corresponding zone. The main contributions of this paper are (1) delineation of the reflection and transmission phenomenon of sound waves at a notch, (2) development of an improved method of attenuation measurement in single-zone and multizone sensors employing notches, and 3) determination of the acoustic properties, namely, velocity and attenuation of six candidate materials suitable to the gasifier environment in the temperature range from ambient to 1093/sup 0/C. Computer simulation was employed to analyze the reflected signals from the notches, and the simulation results were corroborated at each stage by experiments. 19 references, 6 figures, 2 tables.

Gopalsami, N.; Raptis, A.C.

1984-01-01

376

Study on the effect of heat treatment and gasification on the carbon structure of coal chars and metallurgical cokes using fourier transform Raman spectroscopy  

SciTech Connect

Differences in the development of carbon structures between coal chars and metallurgical cokes during high-temperature reactions have been investigated using Raman spectroscopy. These are important to differentiate between different types of carbons in dust recovered from the top gas of the blast furnace. Coal chars have been prepared from a typical injectant coal under different heat-treatment conditions. These chars reflected the effect of peak temperature, residence time at peak temperature, heating rate and pressure on the evolution of their carbon structures. The independent effect of gasification on the development of the carbon structure of a representative coal char has also been studied. A similar investigation has also been carried out to study the effect of heat-treatment temperature (from 1300 to 2000{sup o}C) and gasification on the carbon structure of a typical metallurgical coke. Two Raman spectral parameters, the intensity ratio of the D band to the G band (I{sub D}/I{sub G}) and the intensity ratio of the valley between D and G bands to the G band (I{sub V}/I{sub G}), have been found useful in assessing changes in carbon structure. An increase in I{sub D}/I{sub G} indicates the growth of basic graphene structural units across the temperature range studied. A decrease in I{sub V}/I{sub G} appears to suggest the elimination of amorphous carbonaceous materials and ordering of the overall carbon structure. The Raman spectral differences observed between coal chars and metallurgical cokes are considered to result from the difference in the time-temperature history between the raw injectant coal and the metallurgical coke and may lay the basis for differentiation between metallurgical coke fines and coal char residues present in the dust carried over the top of the blast furnace. 41 refs., 17 figs., 3 tabs.

S. Dong; P. Alvarez; N. Paterson; D.R. Dugwell; R. Kandiyoti [Imperial College London, London (United Kingdom). Department of Chemical Engineering

2009-03-15

377

Novel Low-Cost Process for the Gasification of Biomass and Low-Rank Coals  

SciTech Connect

Farm Energy envisaged a phased demonstration program, in which a pilot-scale straw gasifier will be installed on a farm. The synthesis gas product will be used to initially (i) generate electricity in a 300 kW diesel generator, and subsequently (ii) used as a feedstock to produce ethanol or mixed alcohols. They were seeking straw gasification and alcohol synthesis technologies that may be implemented on farm-scale. The consortium, along with the USDA ARS station in Corvallis, OR, expressed interest in the dual-bed gasification concept promoted by WRI and Taylor Energy, LLC. This process operated at atmospheric pressure and employed a solids-circulation type oxidation/reduction cycle significantly different from traditional fluidized-bed or up-draft type gasification reactors. The objectives of this project were to perform bench-scale testing to determine technical feasibility of gasifier concept, to characterize the syngas product, and to determine the optimal operating conditions and configuration. We used the bench-scale test data to complete a preliminary design and cost estimate for a 1-2 ton per hour pilot-scale unit that is also appropriate for on-farm scale applications. The gasifier configuration with the 0.375-inch stainless steel balls recirculating media worked consistently and for periods up to six hours of grass feed. The other principle systems like the boiler, the air pump, and feeder device also worked consistently during all feeding operations. Minor hiccups during operation tended to come from secondary systems like the flare or flammable material buildup in the exit piping. Although we did not complete the extended hour tests to 24 or 48 hours due to time and budget constraints, we developed the confidence that the gasifier in its current configuration could handle those tests. At the modest temperatures we operated the gasifier, slagging was not a problem. The solid wastes were dry and low density. The majority of the fixed carbon from the grass ended up in the solid waste collected in the external cyclone. The volatiles were almost all removed in the gasifier. While the average gas heating value of the collected gas products was 50 BTUs/scf or less, addition a of the second gas exit for combustion gases would increase that value by a factor of two or three. Other changes to the current design such as shortening the gasifier body and draft tube would lead to lower air use and shorter heating times. There was no evidence of steam reforming at the current operating temperature. Likewise there was no indication of significant tar production. Reconfiguration of the gasifier at the on farm site may yet yield more significant results that would better qualify this gasifier for small scale biomass operations.

Thomas Barton

2009-03-05

378

An environmentally correct drilling effort - Texaco's Taylorsville Basin Exploration Program  

SciTech Connect

Through the early and mid-1980s, Texaco conducted geophysical, geochemical, and stratigraphic test programs along the Mid-Atlantic Coast of the United States. A drilling program was ultimately focused at the Triassic sediments of the Taylorsville basin straddling the Virginia-Maryland border. Three wildcat wells were drilled between 1989 and 1992. All were dry holes. Although the prospect was a geological disappointment to Texaco, the environmental concern and precaution exhibited throughout the effort stand as testament to a major oil company's ability to conduct operations in an environmentally prudent manner. Although the operations involved only inland drill sites, all locations were extremely close to the Chesapeake Bay, one of the world's most fragile esturial ecosystems. Protective techniques employed included the use of closed freshwater mud systems, protective levee and drainage containment, comprehensive backup and emergency plans, and heightened safety awareness. Texaco also embraced an open policy regarding public education and input. By means of town meetings, public hearings, and thousands of rig visits, Texaco believes it has enhanced the public perception and enthusiasm for exploratory drilling in the Tidewater region.

Weaver, D.R. (Texaco Exploration and Production Inc., New Orleans, LA (United States))

1993-08-01

379

Assessment and comparison of 100-MW coal gasification phosphoric acid fuel cell power plants  

NASA Technical Reports Server (NTRS)

One of the advantages of fuel cell (FC) power plants is fuel versatility. With changes only in the fuel processor, the power plant will be able to accept a variety of fuels. This study was performed to design process diagrams, evaluate performance, and to estimate cost of 100 MW coal gasifier (CG)/phosphoric acid fuel cell (PAFC) power plant systems utilizing coal, which is the largest single potential source of alternate hydrocarbon liquids and gases in the United States, as the fuel. Results of this study will identify the most promising integrated CG/PAFC design and its near-optimal operating conditions. The comparison is based on the performance and cost of electricity which is calculated under consistent financial assumptions.

Lu, Cheng-Yi

1988-01-01

380

Structural features of low-rank coals important in liquefaction, bioconversion and gasification  

SciTech Connect

Molecular weight determinations have been performed using low-angle laser light scattering photometry on derivatives of a series of humic acid macromolecules derived from lignite. The humate derivatives obtained from Beulah lignite by base extraction were shown to have molecular weights ranging from 1.3 x 10/sup 6/ to 4.3 x 10/sup 5/ daltons, low and high yield extractions respectively. Mild oxidation with p-nitroperbenzoic acid gave humic acids with slightly larger molecular weights, again inversely proportional to the yields. The nature of the aliphatic bridging groups in low-rank coals have been investigated by ruthenium tetroxide oxidations using isotope dilution GC/MS methods for analysis of the product carboxylic acids derived from oxidation of the aromatic portions of the coal. 9 refs., 2 tabs.

Olson, E.S.; Diehl, J.W.; Froehlich, M.L.

1986-03-01

381

Assessment and comparison of 100-MW coal gasification phosphoric acid fuel cell power plants  

NASA Astrophysics Data System (ADS)

One of the advantages of fuel cell (FC) power plants is fuel versatility. With changes only in the fuel processor, the power plant will be able to accept a variety of fuels. This study was performed to design process diagrams, evaluate performance, and to estimate cost of 100 MW coal gasifier (CG)/phosphoric acid fuel cell (PAFC) power plant systems utilizing coal, which is the largest single potential source of alternate hydrocarbon liquids and gases in the United States, as the fuel. Results of this study will identify the most promising integrated CG/PAFC design and its near-optimal operating conditions. The comparison is based on the performance and cost of electricity which is calculated under consistent financial assumptions.

Lu, Cheng-Yi

1988-08-01

382

Computer models and simulations of IGCC power plants with Canadian coals  

SciTech Connect

In this paper, three steady state computer models for simulation of IGCC power plants with Shell, Texaco and BGL (British Gas Lurgi) gasifiers will be presented. All models were based on a study by Bechtel for Nova Scotia Power Corporation. They were built by using Advanced System for Process Engineering (ASPEN) steady state simulation software together with Fortran programs developed in house. Each model was integrated from several sections which can be simulated independently, such as coal preparation, gasification, gas cooling, acid gas removing, sulfur recovery, gas turbine, heat recovery steam generation, and steam cycle. A general description of each process, model's overall structure, capability, testing results, and background reference will be given. The performance of some Canadian coals on these models will be discussed as well. The authors also built a computer model of IGCC power plant with Kellogg-Rust-Westinghouse gasifier, however, due to limitation of paper length, it is not presented here.

Zheng, L.; Furimsky, E.

1999-07-01

383

Advanced hybrid gasification facility  

SciTech Connect

The objective of this procurement is to provide a test facility to support early commercialization of advanced fixed-bed coal gasification technology for electric power generation applications. The proprietary CRS Sirrine Engineers, Inc. PyGas{trademark} staged gasifier has been selected as the initial gasifier to be developed under this program. The gasifier is expected to avoid agglomeration when used on caking coals. It is also being designed to crack tar vapors and ammonia, and to provide an environment in which volatilized alkali may react with aluminosilicates in the coal ash thereby minimizing their concentration in the hot raw coal gas passing through the system to the gas turbine. This paper describes a novel, staged, airblown, fixed-bed gasifier designed to solve both through the incorporation of pyrolysis (carbonization) with gasification. It employs a pyrolyzer (carbonizer) to avoid sticky coal agglomeration which occurs in a fixed-bed process when coal is gradually heated through the 400{degrees}F to 900{degrees}F range. In a pyrolyzer, the coal is rapidly heated such that coal tar is immediately vaporized. Gaseous tars are then thermally cracked prior to the completion of the gasification process. During the subsequent endothermic gasification reactions, volatilized alkali can be chemically bound to aluminosilicates in (or added to) the ash. To reduce NOx from fuel home nitrogen, moisture is minimized to control ammonia generation, and HCN in the upper gasifier region is partially oxidized to NO which reacts with NH3/HCN to form N2.

Sadowski, R.S.; Skinner, W.H. [CRS Sirrine, Inc., Greenville, SC (United States); Johnson, S.A. [PSI Technology Co., Andover, MA (United States); Dixit, V.B. [Riley Stoker Corp., Worcester, MA (United States). Riley Research Center

1993-08-01

384

The particulate and vapor phase components of airborne polyaromatic hydrocarbons (PAHs) in coal gasification pilot plants  

E-print Network

Extraction Results. GC-MS ResuIts. HPLC Results. 1V V1 V111 x 30 36 4G 54 59 73 73 G I G Vi1 DISCUSSION. Exper Imental Data. Dlscusslon of Er ror CONCLUSIONS. RECOMMENDATIONS. REFERENCES. APPENDIX A - i'IIOSH CHEMICAL AND ANALYTICAL... BTUISCF ST E A M ASH TARS OILS NH3, FOR LOW 8TU GAS H25 COT CO 3H CH HO CAT F 15 H E 8 TROPSCH 5 Y N THE 515 HYDROCARBON L(CIUIDS ANO GASES L T ION( COA IPREPARA HEAT LIOUID5 COAL ~ GASES CHAR PYROLYSIS I 2 ATM CHAR CLEAN UP GAS...

Brink, Eric Jon

2012-06-07

385

Development of Biological Coal Gasification (MicGAS Process). Topical report, July 1991--February 1993  

SciTech Connect

Laboratory and bench scale reactor research carried out during the report period confirms the feasibility of biomethanation of Texas lignite (TxL) and some other low-rank coals to methane by specifically developed unique anaerobic microbial consortia. The data obtained demonstrates specificity of a particular microbial consortium to a given lignite. Development of a suitable microbial consortium is the key to the success of the process. The Mic-1 consortium was developed to tolerate higher coal loadings of 1 and 5% TxL in comparison to initial loadings of 0.01% and 0.1% TxL. Moreover, the reaction period was reduced from 60 days to 14 to 21 days. The cost of the culture medium for bioconversion was reduced by studying the effect of different growth factors on the biomethanation capability of Mic-1 consortium. Four different bench scale bioreactor configurations, namely Rotating Biological Contactor (RBC), Upflow Fluidized Bed Reactor (UFBR), Trickle Bed Reactor (TBR), and Continuously Stirred Tank Reactor (CSTR) were evaluated for scale up studies. Preliminary results indicated highest biomethanation of TxL by the Mic-1 consortium in the CSTR, and lowest in the trickle bed reactor. However, highest methane production and process efficiency were obtained in the RBC.

Srivastava, K.C.

1993-06-01

386

Development of an Integrated Multi-Contaminant Removal Process Applied to Warm Syngas Cleanup for Coal-Based Advanced Gasification Systems  

SciTech Connect

This project met the objective to further the development of an integrated multi-contaminant removal process in which H2S, NH3, HCl and heavy metals including Hg, As, Se and Cd present in the coal-derived syngas can be removed to specified levels in a single/integrated process step. The process supports the mission and goals of the Department of Energyâ??s Gasification Technologies Program, namely to enhance the performance of gasification systems, thus enabling U.S. industry to improve the competitiveness of gasification-based processes. The gasification program will reduce equipment costs, improve process environmental performance, and increase process reliability and flexibility. Two sulfur conversion concepts were tested in the laboratory under this project, i.e., the solventbased, high-pressure University of California Sulfur Recovery Process â?? High Pressure (UCSRP-HP) and the catalytic-based, direct oxidation (DO) section of the CrystaSulf-DO process. Each process required a polishing unit to meet the ultra-clean sulfur content goals of <50 ppbv (parts per billion by volume) as may be necessary for fuel cells or chemical production applications. UCSRP-HP was also tested for the removal of trace, non-sulfur contaminants, including ammonia, hydrogen chloride, and heavy metals. A bench-scale unit was commissioned and limited testing was performed with simulated syngas. Aspen-Plus®-based computer simulation models were prepared and the economics of the UCSRP-HP and CrystaSulf-DO processes were evaluated for a nominal 500 MWe, coal-based, IGCC power plant with carbon capture. This report covers the progress on the UCSRP-HP technology development and the CrystaSulf-DO technology.

Howard Meyer

2010-11-30

387

An Overview of Coal based  

E-print Network

An Overview of Coal based Integrated Gasification Combined Cycle (IGCC) Technology September 2005. LFEE 2005-002 WP #12;#12;Table of Contents 1 Integrated Gasification Combined Cycle (IGCC.......................................................................... 17 2.1 Gasification

388

Reduced Sulfur in Ashes and Slags from the Gasification of Coals: Availability for Chemical and Microbial Oxidation †  

PubMed Central

This study was initiated to determine if reduced sulfur contained in coal gasifier ash and slag was available for microbial and chemical oxidation because eventual large-quantity landfill disposal of these solid wastes is expected. Continuous application of distilled water to a column containing a high-sulfur-content (4% [wt/wt]) gasifier slag yielded leachates with high sulfate levels (1,300 mg of sulfate liter?1) and low pH values (4.2). At the end of the experiment, a three-tube most-probable-number analysis indicated that the waste contained 1.3 × 107 thiosulfate-oxidizing bacteria per g. Slag samples obtained aseptically from the column produced sulfate under both abiotic and biotic conditions when incubated in a mineral nutrient solution. Both microbial and chemical sulfate syntheses were greatly stimulated by the addition of thiosulfate to the slag-mineral nutrient solution. These results led to a test of microbial versus chemical sulfur oxidation in ashes and slags from five gasification processes. Sulfate production was measured in sterile (autoclaved) and nonsterile suspensions of the solid wastes in a mineral nutrient solution. These ashes and slags varied in sulfur content from 0.3 to 4.0% (wt/wt). Four of these wastes demonstrated both chemical (2.0 to 27 ?g of sulfate g?1 day?1) and microbial (3.1 to 114 ?g of sulfate g?1 day?1) sulfur oxidation. Obvious relationships between sulfur oxidation rate and either sulfur content or particle size distribution of the wastes were not immediately evident. We conclude that the sulfur contained in all but one waste is available for oxidation to sulfuric acid and that microorganisms play a partial role in this process. PMID:16346240

Strayer, Richard F.; Davis, Edward C.

1983-01-01

389

PressurePressure Indiana Coal Characteristics  

E-print Network

TimeTime PressurePressure · Indiana Coal Characteristics · Indiana Coals for Coke · CoalTransportation in Indiana · Coal Slurry Ponds Evaluation · Site Selection for Coal Gasification · Coal-To-Liquids Study, CTL · Indiana Coal Forecasting · Under-Ground Coal Gasification · Benefits of Oxyfuel Combustion · Economic

Fernández-Juricic, Esteban

390

Evaluating the status of the Texaco gasifier  

SciTech Connect

Conclusions after a series of runs at steady state conditions in the pilot plant are: (1) Western Kentucky No. 9 coal (either run-of-mine or washed) can be gasified without pretreatment; (2) other coking bituminous coal may also be able to be gasified without pretreatment; (3) pretreatment is not required to achieve satisfactory ash agglomeration; (4) balanced ash agglomeration with satisfactory removal of the agglomerates has been achieved and stable operation of ash agglomeration is possible during periods of short upset; (5) solutions appear to have been found for prevention of clinkering and sintering by alternative venturi design, modification in the oxygen feed system and increasing the superficial velocity of the gas; (6) under certain circumstances fines recycle has been achieved with stable operation and fluidization; (7) the process can be operated at pressures up to 60 psig without adversely affecting other process parameters; (8) a wide range of operating conditions can be used while maintaining system operability; and (9) in a single test water cooling of the cyclone appears to prevent ash deposition on the cooled surfaces which confirms the experience of Westinghouse with ash deposition prevention in their fluidized bed gasifier. 11 references, 12 tables.

Perry, H.

1981-01-01

391

Chemical and physical stability of refractories for use in coal gasification. Sixteenth quarterly progress report, February 1, 1980-April 30, 1980  

SciTech Connect

Experiments on the corrosion resistance and thermal expansion of refractories for coal gasification plants are reported. The properties of a given castable were basically similar after exposure, regardless of whether the specimens had been immersed in liquid or in contact with saturated vapor. The thermal expansion of several refractories over the temperature range of 20/sup 0/C to 950/sup 0/C, and exposed to the DOE atmosphere of containing 1 vol % H/sub 2/S at 1000 psi, is reported. Some samples were cycled from 465/sup 0/C to 1000/sup 0/C. (LTN)

Fakhr, A.; Lewis, G.L.; Day, D.E.

1980-04-30

392

High temperature electrochemical separation of H{sub 2}S from coal gasification process streams. Quarterly progress report, October 1, 1991--December 31, 1991  

SciTech Connect

An advanced process for the separation of hydrogen sulfide from coal gasification product streams through an electrochemical membrane is being developed using the funds from this grant. H{sub 2}S is removed from the syn-gas stream, split into hydrogen, which enriches the syn-gas, and sulfur, which can be condensed from an inert gas sweep stream. The process allows removal of H{sub 2}S without cooling the gas stream and with neglible pressure loss through the separator. The process is economically attractive by the lack of adsorbents and the lack of a Claus process for sulfur recovery.

Winnick, J.

1991-12-31

393

SLAG CHARACTERIZATION AND REMOVAL USING PULSE DETONATION TECHNOLOGY DURING COAL GASIFICATION  

SciTech Connect

Pulse detonation technology for the purpose of removing slag and fouling deposits in coal-fired utility power plant boilers offers great potential. Conventional slag removal methods including soot blowers and water lances have great difficulties in removing slags especially from the down stream areas of utility power plant boilers. The detonation wave technique, based on high impact velocity with sufficient energy and thermal shock on the slag deposited on gas contact surfaces offers a convenient, inexpensive, yet efficient and effective way to supplement existing slag removal methods. A slight increase in the boiler efficiency, due to more effective ash/deposit removal and corresponding reduction in plant maintenance downtime and increased heat transfer efficiency, will save millions of dollars in operational costs. Reductions in toxic emissions will also be accomplished due to reduction in coal usage. Detonation waves have been demonstrated experimentally to have exceptionally high shearing capability, important to the task of removing slag and fouling deposits. The experimental results describe the parametric study of the input parameters in removing the different types of slag and operating condition. The experimental results show that both the single and multi shot detonation waves have high potential in effectively removing slag deposit from boiler heat transfer surfaces. The results obtained are encouraging and satisfactory. A good indication has also been obtained from the agreement with the preliminary computational fluid dynamics analysis that the wave impacts are more effective in removing slag deposits from tube bundles rather than single tube. This report presents results obtained in effectively removing three different types of slag (economizer, reheater, and air-heater) t a distance of up to 20 cm from the exit of the detonation tube. The experimental results show that the softer slags can be removed more easily. Also closer the slag to the exit of the detonation tube, the better are their removals. Side facing slags are found to shear off without breaking. Wave strength and slag orientation also has different effects on the chipping off of the slag. One of the most important results from this study is the observation that the pressure of the waves plays a vital role in removing slag. The wave frequency is also important after a threshold pressure level is attained.

DR. DANIEL MEI; DR. JIANREN ZHOU; DR. PAUL O. BINEY; DR. ZIAUL HUQUE

1998-07-30

394

Evaluation of the genotoxicity of process stream extracts from a coal gasification system  

SciTech Connect

Extracts of three complex organic environmental mixtures, two from an experimental coal gasifier (a raw gas and a clean gas sample) and one from a coke oven main, were examined for genotoxicity. Three short-term genotoxicity assay systems were used: Ames Salmonella typhimurium reverse mutation assay, Chinese hamster ovary cell/hypoxanthine-guanine phosphoribosyl transferase (CHO/HGPRT) gene locus mutation assay, and the Chinese hamster lung primary culture/sister chromatid exchange (CHL/SCE) assay. Aroclor-1254-induced rat liver homogenate fraction (S-9) was required to observe genotoxicity in both gene locus mutation assays (CHO/HGPRT and Ames). The relative survival of CHO cells exposed to extracts was highest in cells exposed to clean gas samples, with the raw gas sample being the most cytotoxic either with or without the addition of S-9. All three complex mixtures induced sister chromatid exchanges in primary lung cell cultures without the addition of S-9. The relative genotoxicity ranking of the samples varied between the mammalian and prokaryotic assay systems. The results of all three assays indicate that the cleanup process used in the experimental gasifier was effective in decreasing the genotoxic materials in the process stream. These data also reemphasize the necessity of evaluating genotoxicity of complex mixtures in a variety of short-term systems.

Shimizu, R.W.; Benson, J.M.; Li, A.P.; Henderson, R.F.; Brooks, A.L.

1984-01-01

395

Evaluation of the genotoxicity of process stream extracts from a coal gasification system  

SciTech Connect

Extracts of three complex organic environmental mixtures, two from an experimental coal gasifier (a raw gas and a clean gas sample) and one from a coke oven main, were examined for genotoxicity. Three short-term genotoxicity assay systems were used: Ames Salmonella typhimurium reverse mutation assay, Chinese hamster ovary cell/hypoxanthine-guanine phosphoribosyl transferase (CHO/HGPRT) gene locus mutation assay, and the Chinese hamster lung primary culture/sister chromatid exchange (CHL/SCE) assay. Aroclor-1254-induced rat liver homogenate fraction (S-9) was required to observe genotoxicity in both gene locus mutation assays. The relative survival of CHO cells exposed to extracts was highest in cells exposed to clean gas samples, with the raw gas sample being the most cytotoxic either with or without the addition of S-9. All three complex mixtures induced sister chromatid exchanges in primary lung cell cultures without the addition of S-9. The relative genotoxicity ranking of the samples varied between the mammalian and prokaryotic assay systems. Coke oven main extract produced fewer revertants in bacteria than the raw gas sample. However, the coke oven main extract was more genotoxic in the two eukaryotic systems (CHL/SCE and CHO/HGPRT) than was the raw gas sample. The results of all three assays indicate that the cleanup process used in the experimental gasifier was effective in decreasing the genotoxic materials in the process stream. These data also reemphasize the necessity of evaluating genotoxicity of complex mixtures in a variety of short-term systems. 24 references, 3 figures, 2 tables.

Shimizu, R.W.; Benson, J.M.; Li, A.P.; Henderson, R.F.; Brooks, A.L.

1984-01-01

396

Optimization of electricity-methanol coproduction: Configurations of integrated - gasification - combined - cycle/once-through methanol  

SciTech Connect

An attractive alternative providing considerable flexibility in an integrated gasification combined cycle (IGCC) power plant involves plant modification to coproduce methanol and electricity. The methanol, produced continuously and stored during off peak hours, becomes a storable liquid fuel saleable as a by-product or usable as supplemental fuel during peak demand periods. The Once-Through Methanol (OTM) process converts to methanol without shifting into a balanced gas as required by conventional vapor phase. A promising OTM concept involves the liquid-phase methanol (LPMEOH{sup TM}){asterisk} process, particularly suited for use with carbon monoxide (CO) rich coal-derived synthesis gas, which has the potential to produce methanol at lower costs than traditional vapor-phase processes. The purpose of this study was to estimate the cost of methanol coproduced in IGCC/OTM configurations, including baseload and intermediate load following applications. The study developed an OTM design based on the LPMEOH process for a 650 MW Texaco-based IGCC facility load following a design previously developed by Flour. Using a portion of the synthesis gas generated in the gasification plant to coproduce methanol, methanol cost was calculated to maintain the same revenue requirements from power sale (cost of electricity) as the IGCC plant. The report also evaluated incorporation of the LPMEOH unit for load following, and estimated and compared electricity cost with and IGCC-only facility cycled to produce the same base and peak power load for summer and winter ambient conditions. 14 refs., 52 figs., 73 tabs.

Not Available

1990-06-01

397

High temperature electrochemical polishing of H{sub 2}S from coal gasification process streams. Quarterly report, October 1--December 31, 1997  

SciTech Connect

An advanced process for the separation of hydrogen sulfide from coal gasification streams through an electrochemical membrane is being perfected. H{sub 2}S is removed from a synthetic gas stream, split into hydrogen, which enriches the existing syn-gas, and sulfur, which is condensed downstream from an inert sweep gas stream. The process allows for continuous removal of H{sub 2}S without cooling the gas stream while allowing negligible pressure loss through the separator. Moreover, the process is economically attractive due to the elimination of the need for a Claus process for sulfur recovery. To this extent the project presents a novel concept for improving utilization of coal for more efficient power generation. This quarter`s research focused on fabricating LiCoO{sub 2} electrodes and then utilizing them in full cell experiments at 650 C. The cathode showed inefficient porosity to allow mass transfer of the extremely dilute hydrogen sulfide to the electrolyte interface.

Winnick, J.

1998-08-01

398

Clean Coal Technologies  

NSDL National Science Digital Library

This site from the University of Kentucky's Center for Applied Energy Research explains clean coal technologies, including coal-to-liquids, synthetic natural gas, and carbon dioxide emissions. The presentation explores the benefits and processes of clean coal technologies (gasification, coal-to-liquids, synthetic natural gas, carbon capture & sequestration and integrated gasification combined cycle).

2011-03-16

399

Proceedings, twenty-fourth annual international Pittsburgh coal conference  

SciTech Connect

Topics covered include: gasification technologies; coal production and preparation; combustion technologies; environmental control technologies; synthesis of liquid fuels, chemicals, materials and other non-fuel uses of coal; hydrogen from coal; advanced synthesis gas cleanup; coal chemistry, geosciences and resources; Fischer-Tropsch technology; coal and sustainability; global climate change; gasification (including underground gasification); materials, instrumentation and controls; and coal utilisation byproducts.

NONE

2007-07-01

400

Surface Gasification Materials Program. Semiannual Progress Report for the Period Ending September 30, 1982.  

National Technical Information Service (NTIS)

The objective of the Surface Gasification Materials Program is to conduct research and development on materials for application to the specific needs of coal gasification systems. The Program is divided into two subprograms: (1) the Gasification Systems F...

1982-01-01

401

Numerical study on convection diffusion for gasification agent in underground coal gasification (UCG). Part II: determination of model parameters and results analysis  

SciTech Connect

The determination methods of the major model parameters are explained in this article, and the upstream weighted multi-cell balance method is adopted to solve the numerical models established. The author also analyzes and discusses the simulated calculation results, which show that, except for very few points in the loosening zone, where the relative calculation error is comparatively high resulting from the low oxygen concentration, the relative calculation error of other points falls between 8% and 19%. Therefore, the calculation value and the experiment value take on a good conformity. The simulated results indicate that the calculation value of the oxygen concentration is a little bit lower than the experiment one. On top of that, with the prolonging of gasification time, in a high temperature zone the change gradient of oxygen concentration for experimental value is bigger than that of the calculation value. The oxygen concentration is in direct proportion to its distance from the flame working face, i.e., the longer its distance is, the higher the oxygen concentration is; otherwise, the lower the oxygen concentration is.

Yang, L.H.; Ding, Y.M. [China University of Mining and Technology, Xuzhou (China). College of Resources and Geoscience

2009-07-01

402

Coal gasification burner  

SciTech Connect

This patent describes a process for burning hydrocarbon in a combustion zone, comprising: introducing combustion oxygen and the hydrocarbon into a combustion chamber as a central gas flow; surrounding the combustion oxygen with a transpiration gas; and passing at least some of the transpiration gas through a porous metal passage surrounding the combustion oxygen and having a non-constricted part of lower porosity metal next to the combustion zone, the porous metal comprising a compressed powdered metal.

Sternling, C.V.

1988-10-04

403

AMERICAN GEOPHYSICAL UNION v. TEXACO INC., 60 F.3d 913 (2nd Cir. 1994)  

E-print Network

AMERICAN GEOPHYSICAL UNION v. TEXACO INC., 60 F.3d 913 (2nd Cir. 1994) Before: NEWMAN, Chief Judge was not fair use. See American Geophysical Union v. Texaco Inc., 802 F. Supp. 1 (S.D.N.Y. 1992). Though receives at its Beacon research facility is the Journal of Catalysis Page 1 of 29AMERICAN GEOPHYSICAL UNION

Shamos, Michael I.

404

Heterogeneous kinetics of coal gasification. Quarterly technical progress report, 1 February-30 April 1982. [680 to 770/sup 0/C; 8 to 30 atm  

SciTech Connect

The operation of the gradientless reactor system designed to study heterogeneous gas-char reactions under transient conditions was successfully demonstrated. CO/sub 2/ char gasification was studied at temperatures from 680 to 770/sup 0/C and at pressures from 8 to 30 atm. The transient response of the reactor resulting from a step change from inert gas (Ar) to pure CO/sub 2/ is adequately described by a simple, two-step mechanism. The determination of the rate parameters from the transient data was accomplished with the Marquardt optimization code developed for this purpose. For what is believed to be the first time in the same experiment, the active site concentration was uncoupled from the intrinsic rate constants. The active site concentration of the coconut char exhibits an Arrhenius type temperature dependence with an apparent negative activation energy. A preliminary design has been developed for a steam addition system to be used for steam-char gasification studies. This system will be constructed during the next reporting period. Various chars have been generated in a high temperature furnace system from fresh coals. These chars are to be used in the gradientless reactor system to determine the effects of char type on the intrinsic rate parameters and char reactivity.

Calo, J.M.

1982-05-01

405

Utilization of Battelle-treated coal in gasification and combustion processes to control sulfur emissions. Final report  

Microsoft Academic Search

The purpose of the study was to provide an evaluation of the environmental and associated economic advantages of using a coal treated by a process developed by Battelle as a feedstock for: (1) a new partial oxidation\\/combustion process; (2) commercially available fixed-bed gasifiers; and (3) utility combustors. Findings confirm the technical and economic feasibility of using Battelle Treated Coal (BTC)

H. N. Conkle; H. F. Feldmann; A. Levy; E. L. Merryman; D. R. Hopper; O. J. Hahn

1982-01-01

406

Recovery of resins and hydrocarbons by in situ combustion of resinous coals. Part VII: in situ gasification  

Microsoft Academic Search

A liquid resin and a hydrocarbon gas may be recovered from impermeable resinous coals by contact of the coal with steam at 550 to 800°F and 200 to 14,000 lb\\/sq in gage. A porous carbonaceous residue is left, suitable for combustion in situ.

E. M. Craighead; H. Purre

1959-01-01

407

Effects of coal combustion and gasification process contaminants on pulmonary defense mechanisms. 3rd quarter and final progress report  

Microsoft Academic Search

This project has involved the study of the effects of effluents from coal combustion processes on alveolar macrophage function using the rat and rabbit as the experimental animals. A number of alveolar macrophage functions are inhibited by several heavy metals (Cd, Ni, Pb) which are contained in the respirable particulates of coal combustion flyash. Lysosomal enzyme activities and lysosomal enzyme

1979-01-01

408

Characterization, extraction, and reuse of coal-gasification solid wastes. Volume 2. Leaching behavior of fixed-bed gasification ash derived from northern great plains lignite. Final report, May 1983-June 1986  

SciTech Connect

The leaching behavior of eight specimens of fixed-bed lignite-gasification ash, including ash from the Great Plains (GPGA) plant in Beulah, North Dakota, was studied. Four batch leaching tests were used: (1) EPA-EP; (2) a test with synthetic ND groundwater; (3) ASTM D3987-81; (4) long-term (120 day). One GPGA ash was leached according to the draft TCLP protocol. The EPA-EP test leachates from all of the ashes had metal concentrations a factor of ten or more below the values that define a hazardous waste according to the RCRA criteria. The ash specimens were highly alkaline and produced pH's in the range 10-13 during tests 2-4. Leachates from the EPA-EP test had RCRA metal concentrations comparable to, or less than, those derived from combustion ash derived from the same coal. The metal concentrations in leachates from tests 2 and 3 were also well below the RCRA limits. The long-term test used liquid-to-solid ratios of 2:1 and 20:1 and deionized water. During the 120 days, at least 5% of the Na, K, Al, S (as SO4), As, Mo, Se, B, and V in the ash was extracted.

McCarthy, G.J.; Hassett, D.J.; Henke, K.R.; Stevenson, R.J.; Groenewold, G.H.

1986-10-01

409

Development of biological coal gasification (MicGAS process). Final report, May 1, 1990--May 31, 1995  

SciTech Connect

ARCTECH has developed a novel process (MicGAS) for direct, anaerobic biomethanation of coals. Biomethanation potential of coals of different ranks (Anthracite, bitumious, sub-bitumious, and lignites of different types), by various microbial consortia, was investigated. Studies on biogasification of Texas Lignite (TxL) were conducted with a proprietary microbial consortium, Mic-1, isolated from hind guts of soil eating termites (Zootermopsis and Nasutitermes sp.) and further improved at ARCTECH. Various microbial populations of the Mic-1 consortium carry out the multi-step MicGAS Process. First, the primary coal degraders, or hydrolytic microbes, degrade the coal to high molecular weight (MW) compounds. Then acedogens ferment the high MW compounds to low MW volatile fatty acids. The volatile fatty acids are converted to acetate by acetogens, and the methanogens complete the biomethanation by converting acetate and CO{sub 2} to methane.

NONE

1998-12-31

410

High temperature electrochemical polishing of H{sub 2}S from coal gasification process stream. Quarterly progress report, January 1, 1995--March 31, 1995  

SciTech Connect

An advanced process for the separation of hydrogen sulfide (H{sub 2}S) from coal gasification product streams through an electrochemical membrane is being developed. H{sub 2}S is removed from the syn-gas stream, split into hydrogen, which enriches the exiting syn-gas, and sulfur, which is condensed from an inert sweep gas stream. The process allows removal of H{sub 2}S without cooling the gas stream and with negligible pressure loss through the separator. The process is made economically attractive by the lack of need for a Claus process for sulfur recovery. To this extent the project presents a novel concept for improving utilization of coal for more efficient power generation. Past experiments using this concept dealt with identifying removal of 1--2% H{sub 2}S from gases containing only H{sub 2}S in N{sub 2}, simulated natural gas, and simulated coal gas. Data obtained from these experiments resulted in extended studies into electrode kinetics and electrode stability in molten melts. The most recent experiments evaluated the polishing application (removal Of H{sub 2}S below 10 ppm) using the Electrochemical Membrane Separator (EMS). H{sub 2}S removal efficiencies over 90% were achieved at these stringent conditions of low H{sub 2}S concentrations proving the technologies polishing capabilities. Other goals include optimization of cell materials capable of improving cell performance. Once cell materials are defined, cell experiments determining maximum removal capabilities and current efficiencies will be conducted. Also, a model theoretically describing the preferred reduction of H{sub 2}S, the transport of S{sup 2{minus}}, and the competing transport of CO{sub 2} will be investigated. The model should identify the maximum current efficiency for H{sub 2}S removal, depending on variables such as flow rate, temperature, current application, and the total cell potential.

Winnick, J.

1995-08-01

411

Multiphysics modeling of carbon gasification processes in a well-stirred reactor with detailed gas-phase chemistry  

E-print Network

Multiphysics modeling of carbon gasification processes in a well-stirred reactor with detailed gas: Coal gasification Carbon gasification Detailed chemistry Heterogeneous surface reactions Radiation Multi-physics numerical modeling a b s t r a c t Fuel synthesis through coal and biomass gasification

Qiao, Li

412

Method of producing a colloidal fuel from coal and a heavy petroleum fraction. [partial liquefaction of coal in slurry, filtration and gasification of residue  

DOEpatents

A method is provided for combining coal as a colloidal suspension within a heavy petroleum fraction. The coal is broken to a medium particle size and is formed into a slurry with a heavy petroleum fraction such as a decanted oil having a boiling point of about 300 to 550/sup 0/C. The slurry is heated to a temperature of 400 to 500/sup 0/C for a limited time of only about 1 to 5 minutes before cooling to a temperature of less than 300/sup 0/C. During this limited contact time at elevated temperature the slurry can be contacted with hydrogen gas to promote conversion. The liquid phase containing dispersed coal solids is filtered from the residual solids and recovered for use as a fuel or feed stock for other processes. The residual solids containing some carbonaceous material are further processed to provide hydrogen gas and heat for use as required in this process.

Longanbach, J.R.

1981-11-13

413

Slag characterization and removal using pulse detonation for coal gasification. Quarterly research report, January 1, 1996--March 31, 1996  

SciTech Connect

Microbeam Technologies Incorporated (MTI) is working with Prairie View to develop and demonstrate a new method to remove deposits from coal-fired utility boilers. MTI is providing background information on fuel properties, ash formation, ash deposition, and ash removal. In addition, MTI is providing deposits collected from a full scale utility boilers. Ash deposits on fireside heat exchange surfaces of power plants significantly decrease plant efficiency and are aggravated by variability in coal quality. Deposit formation is related to coal quality (chemical and physical characteristics of the inorganic material), system operating conditions, and system design. Variations in coal quality can significantly influence ash deposition on heat transfer surfaces resulting in decreased plant performance and availability. Ash accumulations on heat transfer surfaces require annual or semi-annual shutdowns for cleaning which result in cleaning costs and lost revenues from being off-line. In addition, maintaining slag flow in wet bottom boilers and cyclone-fired boilers can require co-firing of other fuels and outages to remove frozen slag resulting in decreased efficiency and availability. During this reporting period MTI performed analysis of deposits collected from full-scale utility boilers. Deposit samples were obtained from Basin Electric and from Northern States Power (NSP). The analyses were conducted using scanning electron microscopy/microprobe techniques as described in the past quarterly report. The chemical and physical properties of the deposits were determined. The results for sample collected from NSP`s Riverside plant are reported here.

Huque, Z.; Mei, D.; Biney, P.O.; Zhou, J.

1996-03-25

414

Utilization of Illinois coal gasification slags for production of ultra-lightweight aggregates. [Quarterly] technical report, March 1--May 31, 1993  

SciTech Connect

This research is aimed at testing and developing the expansion potential of gasification solid residues (slag) to manufacture ultra-lightweight aggregates (ULWA). Conventional ULWAs are manufactured by pyroprocessing of perlite or vermiculite ores and have unit weights in the range of 5--15 lb/ ft3. These materials are sold for approximately $200/ton (or $1.00/ft3) and have numerous applications including loose fill insulation, insulating concrete, precast products, filtration media, and agricultural applications. In a previous project, Praxis Engineers demonstrated that lightweight aggregates (LWA) with unit weights of 25--55 lb/ ft3 can be produced from Illinois coal slags and used as substitutes for conventional LWAs. In this program, tests are being undertaken in a pilot-scale vertical shaft furnace to identify operating conditions for the expansion of Illinois slags such that the product can be substituted for ULWA. Upon completion of testing, a large batch of expanded slag will be produced for evaluation in various applications, both in this phase and in subsequent Phase II testing. During the initial pilot plant runs using two Illinois slags, expanded products with unit weights of 12.5--26.5 and 20--52 lb/ ft3, respectively, were produced. Efforts are under way to generate products with lower unit weights.

Choudhry, V. [Praxis Engineers, Inc., Milpitas, CA (United States); Zimmerle, T. [Silbrico Corp. (United States)

1993-09-01

415

Effects of silicon and titanium on the corrosion of low-alloy steels in a simulated coal gasification environment at 600 C  

SciTech Connect

Results of corrosion tests carried out on a series of Fe-12% Cr alloys in coal gasification environments t 600 C were studied. Effects of Si and Ti on corrosion resistance were assessed using data obtained from a commercial 12% Cr alloy, type 410 (UNS S41000), three specially cast model 12% Cr alloys containing 2.7% Si with Ti levels of 0%, 0.4% and 0.7%, respectively, and a higher alloy (type 28 [UNS N08028]) heat exchanger steel. Corrosion tests were carried out using simulated dry-feed entrained slagging gasifier gas The gas (64% carbon monoxide [CO], 3.8% carbon dioxide [CO{sub 2}], 0.8% hydrogen sulfide [H{sub 2}S], and balance H{sub 2} [in vol%]) was premixed and passed over the test pieces at a rate high enough to prevent thermodynamic equilibrium achievement. Results showed that Si had a strongly beneficial influence on corrosion resistance. Ti, depending upon the amount added, exerted a positive or negative influence on corrosion resistance and reduced problems associated with workability. The kinetics of corrosion were presented in terms of weight-change and metal-loss measurements, the synergistic influences of Si and Ti were discussed, and corrosion resistance was compared with that exhibited by a commercial 12% Cr steel and type 28, the higher alloy material.

Soler, J.L.J.; Baxter, D.J.; Norton, J.F.

1999-12-01

416

Direct analysis of organic compounds in aqueous by?products from fossil fuel conversion processes: Oil shale retorting, synthane coal gasification and coed coal liquefaction  

Microsoft Academic Search

Whole water samples are injected directly into a gas Chromatograph equipped with a packed Tenax?GC column. Polar compounds are separated with good resolution under the temperature programming conditions employed. The by?product water from oil shale retorting contains carboxylic acids in the homologous series ranging from acetic to decanoic acid. Various amides, cresols and phenol are present in trace amounts. Coal

C. H. Ho; B. R. Clark; M. R. Guerin

1976-01-01

417

GASIFICATION FOR DISTRIBUTED GENERATION  

SciTech Connect

A recent emphasis in gasification technology development has been directed toward reduced-scale gasifier systems for distributed generation at remote sites. The domestic distributed power generation market over the next decade is expected to be 5-6 gigawatts per year. The global increase is expected at 20 gigawatts over the next decade. The economics of gasification for distributed power generation are significantly improved when fuel transport is minimized. Until recently, gasification technology has been synonymous with coal conversion. Presently, however, interest centers on providing clean-burning fuel to remote sites that are not necessarily near coal supplies but have sufficient alternative carbonaceous material to feed a small gasifier. Gasifiers up to 50 MW are of current interest, with emphasis on those of 5-MW generating capacity. Internal combustion engines offer a more robust system for utilizing the fuel gas, while fuel cells and microturbines offer higher electric conversion efficiencies. The initial focus of this multiyear effort was on internal combustion engines and microturbines as more realistic near-term options for distributed generation. In this project, we studied emerging gasification technologies that can provide gas from regionally available feedstock as fuel to power generators under 30 MW in a distributed generation setting. Larger-scale gasification, primarily coal-fed, has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries. Commercial-scale gasification activities are under way at 113 sites in 22 countries in North and South America, Europe, Asia, Africa, and Australia, according to the Gasification Technologies Council. Gasification studies were carried out on alfalfa, black liquor (a high-sodium waste from the pulp industry), cow manure, and willow on the laboratory scale and on alfalfa, black liquor, and willow on the bench scale. Initial parametric tests evaluated through reactivity and product composition were carried out on thermogravimetric analysis (TGA) equipment. These tests were evaluated and then followed by bench-scale studies at 1123 K using an integrated bench-scale fluidized-bed gasifier (IBG) which can be operated in the semicontinuous batch mode. Products from tests were solid (ash), liquid (tar), and gas. Tar was separated on an open chromatographic column. Analysis of the gas product was carried out using on-line Fourier transform infrared spectroscopy (FT-IR). For selected tests, gas was collected periodically and analyzed using a refinery gas analyzer GC (gas chromatograph). The solid product was not extensively analyzed. This report is a part of a search into emerging gasification technologies that can provide power under 30 MW in a distributed generation setting. Larger-scale gasification has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries, and it is probable that scaled-down applications for use in remote areas will become viable. The appendix to this report contains a list, description, and sources of currently available gasification technologies that could be or are being commercially applied for distributed generation. This list was gathered from current sources and provides information about the supplier, the relative size range, and the status of the technology.

Ronald C. Timpe; Michael D. Mann; Darren D. Schmidt

2000-05-01

418

Low/medium Btu coal gasification assessment of central plant for the city of Philadelphia, Pennsylvania. Final report  

SciTech Connect

The objective of this study is to assess the technical and economic feasibility of producing, distributing, selling, and using fuel gas for industrial applications in Philadelphia. The primary driving force for the assessment is the fact that oil users are encountering rapidly escalating fuel costs, and are uncertain about the future availability of low sulfur fuel oil. The situation is also complicated by legislation aimed at reducing oil consumption and by difficulties in assuring a long term supply of natural gas. Early in the gasifier selection study it was decided that the level of risk associated with the gasification process sould be minimal. It was therefore determined that the process should be selected from those commercially proven. The following processes were considered: Lurgi, KT, Winkler, and Wellman-Galusha. From past experience and a knowledge of the characteristics of each gasifier, a list of advantages and disadvantages of each process was formulated. It was concluded that a medium Btu KT gas can be manufactured and distributed at a lower average price than the conservatively projected average price of No. 6 oil, provided that the plant is operated as a base load producer of gas. The methodology used is described, assumptions are detailed and recommendations are made. (LTN)

Not Available

1981-02-01

419

Integrated Gasification Combined Cycle— A Review of IGCC Technology  

Microsoft Academic Search

Over the past three decades, significant efforts have been made toward the development of cleaner and more efficient technology for power generation. Coal gasification technology received a big thrust with the concept of combined cycle power generation. The integration of coal gasification with combined cycle for power generation (IGCC) had the inherent characteristic of gas cleanup and waste minimization, which

MEDHA M. JOSHI; SUNGGYU LEE

1996-01-01

420

76 FR 32951 - Coal Mining Equipment, Technologies and Services Trade Mission to China and Mongolia  

Federal Register 2010, 2011, 2012, 2013

...technology, Integrated Gasification Combined Cycle (IGCC), Ultra Supercritical Power Generation (USPG), Underground Coal Gasification Combined Cycle (UCGCC). Post-combustion: Carbon Capture and Sequestration (CCS), Flue Gas...

2011-06-07

421

Novel single stripper with side-draw to remove ammonia and sour gas simultaneously for coal-gasification wastewater treatment and the industrial implementation  

SciTech Connect

A large amount of wastewater is produced in the Lurgi coal-gasification process with the complex compounds carbon dioxide, ammonia, phenol, etc., which cause a serious environmental problem. In this paper, a novel stripper operated at elevated pressure is designed to improve the pretreatment process. In this technology, two noticeable improvements were established. First, the carbon dioxide and ammonia were removed simultaneously in a single stripper where sour gas (mainly carbon dioxide) is removed from the tower top and the ammonia vapor is drawn from the side and recovered by partial condensation. Second, the ammonia is removed before the phenol recovery to reduce the pH value of the subsequent extraction units, so as the phenol removal performance of the extraction is greatly improved. To ensure the operational efficiency, some key operational parameters are analyzed and optimized though simulation. It is shown that when the top temperature is kept at 40 C and the weight ratio of the side draw to the feed is above 9%, the elevated pressures can ensure the removal efficiency of NH{sub 3} and carbon dioxide and the desired purified water as the bottom product of the unit is obtained. A real industrial application demonstrates the attractiveness of the new technique: it removes 99.9% CO{sub 2} and 99.6% ammonia, compared to known techniques which remove 66.5% and 94.4%, respectively. As a result, the pH value of the wastewater is reduced from above 9 to below 7. This ensures that the phenol removal ratio is above 93% in the following extraction units. The operating cost is lower than that of known techniques, and the operation is simplified.

Feng, D.C.; Yu, Z.J.; Chen, Y.; Qian, Y. [South China University of Technology, Ghangzhou (China). School of Chemical Engineering

2009-06-15

422

Utilization of Illinois coal gasification slags for production of ultra-lightweight aggregates. Final technical report, September 1, 1992--August 31, 1993  

SciTech Connect

This research was aimed at testing and developing the expansion potential of solid residues (slag) from gasification of Illinois coals to manufacture ultra-lightweight aggregates (ULWA). Conventional ULWAs are manufactured by pyroprocessing perlite or vermiculite ores and have unit weights in the 5--12 lb/ ft{sup 3} range. These materials sell for approximately $200/ton ($1.00/ft{sup 3}) and have numerous applications. The incentive for this effort was based on previous experimental results in which lightweight aggregates (LWA) with unit weights of 25--55 lb/ft{sup 3} were produced from Illinois slag using a direct-fired furnace. In this program, bench-scale expansion tests conducted with two Illinois coal slags resulted in product unit weights of 12 and 18.5 lb/ ft{sup 3}, thus confirming the feasibility of producing ULWA from Illinois slags. During initial pilot vertical shaft furnace test runs, two Illinois slags were expanded to generate products with unit weights of 12.5--26.5 and 20--52 lb/ ft{sup 3}. Further attempts to lower the product unit weights resulted in fusion of the slag. This problem could be overcome by methods including surface treatment of the slag, blending the slag with other materials, or utilization of indirect firing methods. To lower the product unit weights, an indirect-fired horizontal shaft furnace was used and products with unit weights of 12.4--52.0 lb/ft{sup 3} were generated, thus indicating that this method can be used to produce a wide range of expanded products. A large batch of expanded slag was produced using an 18-in. diameter x 12-ft long indirect-fired pilot furnace. A sample from this batch was characterized. Specimens of insulating concrete made from expanded slag had a unit weight 43.3 lb/ft{sup 3} and thermal conductivity of 1.34 Btu-in./h/ft{sup 2}/{degrees}F. This compares well with a value of 1. 2 Btu-in./h/ft{sup 2}/{degrees}F for insulating concrete of a similar weight made from perlite, as per ASTM C 332-82.

Choudhry, V. [Praxis Engineers, Inc., Milpitas, CA (United States); Zimmerle, T. [Silbrico Corp. (United States)

1993-12-31

423

Development of biological coal gasification (MicGAS Process). Fifteenth quarterly report, [January 1, 1994--March 31, 1994  

SciTech Connect

Maximum methane production was obtained in the experimental vials that contained 0.2% SNTM supplemented with 10 mM sodium citrate and 1% TxL (144 cc), while in the control vials CH{sub 4} production was only 58 cc. The conversion efficiency was 24%. This clearly shows citrate to be an important mediator for the formation of acetate (main precursor for CH{sub 4} formation) in the glyoxylate cycle, on the one hand, and as a sequestering agent, on the other. These results further indicate that citrate can, be successfully used as co-substrate for enhancement of the TxL biogasification process. The results obtained reconfirmed our hypothesis that the metals (such as Fe{sup 3+}, Mn{sup 2+}, Mg{sup 2+}, CO{sup 2+}, Zr{sup 2+}, etc., present in the coal structure) are chelated/sequestered by the addition of citrate. Mass balance calculations show that this increase in CH{sup 4} production is due to the biomethanation of TxL and not because of the chemical conversion of co-substrate(s) to CH{sub 4} (Table 1). The effect of sodium citrate on biomethanation of TXL from the first experiment ``Effect of co-substrate addition No. 1`` was reconfirmed in this experiment. The peak in acetate concentration (1317 ppm) on day 7 was followed by a rapid conversion of this precursor to CH{sub 4} (Figure 16). The VFA data obtained from both experiments (``Effect of co-substrate addition No. 1 and No. 2``) confirms the hypothesis that citrate and methanol can significantly enhance the biomethanation of TxL (Figure 17).

Srivastava, K.C.

1994-04-26

424

Coal.  

ERIC Educational Resources Information Center

Principle work of 23 state geological surveys is summarized. Work includes mapping/estimating coal resources, centralizing data in National Coal Resources Data System through cooperative programs, exploration drilling, and others. Comments on U.S. Geological Survey activities, coal-related conferences/meetings, and industry research activities are…

Brant, Russell A.; Glass, Gary B.

1983-01-01

425

The Texaco Copyright Case: Step Two on the Way to the Supreme Court.  

ERIC Educational Resources Information Center

Reviews developments in the Texaco v. American Geophysical Union copyright case that involves photocopying scientific journal articles for researchers. Highlights include the Copyright Clearance Center role; fair use; purpose of the use, i.e., commercial or nonprofit; the nature of the copyrighted work; amount copied; and effect on the potential…

Ebbinghouse, Carol

1995-01-01

426

Comparison of Shell, Texaco, BGL and KRW gasifiers as part of IGCC plant computer simulations  

Microsoft Academic Search

The performances of four IGCC plants employing Shell, Texaco, BGL and KRW gasifiers were simulated using ASPEN Plus software for three different feeds. Performance analyses and comparisons of all four IGCC plants were performed based on the established data bank from the simulation. Discussions were focused on gas compositions, gasifier selection and overall performance.

Ligang Zheng; Edward Furinsky

2005-01-01

427

Geologic factors influencing reservoir performance at Texaco's Salem Tertiary recovery project, Marion County, Illinois  

Microsoft Academic Search

A detalied lithologic reservoir study was conducted to aid Texaco personnel in designing and monitoring an experimental surfactant-polymer flood in the Mississippian Benoist Sandstone, one of several producing formations in the Salem field of south-central Illinois. The Benoist Sandstone is one of several Late Mississippian deltaic sandstone units deposited in the subsiding Illinois basin. These sandstones are bounded above and

H. M. Dahl; C. A. Callender; P. A. Schroeder

1983-01-01

428

Gasification Product Improvement Facility (GPIF)  

SciTech Connect

The objective is to provide a test facility to support early commercialization of advanced fixed-bed coal gasification technology electric power generation applications. The proprietary CRS Sirrine Engineers, Inc. PyGas{trademark} staged gasifier has been selected as the initial gasifier to be developed under this program. The gasifier is expected to avoid agglomeration when used on caking coals. It is also being designed to crack tar vapors and ammonia, and to provide an environment in which volatilized alkali may condense onto aluminosilicates in the coal ash thereby minimizing their exiting with the hot raw coal gas and passing through the system to the gas turbine. The management plan calls for a three phased program. The initial phase (Phase 1), includes the CRS Sinine Engineers, Inc. proprietary gasification invention called PyGas{trademark}, necessary coal and limestone receiving/storage/reclaim systems to allow closely metered coal and limestone to be fed into the gasifier for testing. The coal gas is subsequently piped to and combusted in an existing burner of the Monongahela Power Fort Martin Generating Station Unit No. 2. Continuous gasification process steam is generated by a small GPIF packaged boiler using light oil fuel at startup, and by switching from light oil to coal gas after startup. The major peripheral equipment such as foundations, process water system, ash handling, ash storage silo, emergency vent pipe, building, lavatory, electrical interconnect, control room, provisions for Phases II & III, and control system are all included in Phase I. A future hot gas cleanup unit conceptualized to be a zinc ferrite based fluidized bed process constitutes the following phase (Phase H). The final phase (Phase III) contemplates the addition of a combustion turbine and generator set sized to accommodate the parasitic load of the entire system.

Sadowski, R.S.; Brooks, K.S.; Skinner, W.H.; Brown, M.J.

1992-11-01

429

Gasification Product Improvement Facility (GPIF)  

SciTech Connect

The objective is to provide a test facility to support early commercialization of advanced fixed-bed coal gasification technology electric power generation applications. The proprietary CRS Sirrine Engineers, Inc. PyGas[trademark] staged gasifier has been selected as the initial gasifier to be developed under this program. The gasifier is expected to avoid agglomeration when used on caking coals. It is also being designed to crack tar vapors and ammonia, and to provide an environment in which volatilized alkali may condense onto aluminosilicates in the coal ash thereby minimizing their exiting with the hot raw coal gas and passing through the system to the gas turbine. The management plan calls for a three phased program. The initial phase (Phase 1), includes the CRS Sinine Engineers, Inc. proprietary gasification invention called PyGas[trademark], necessary coal and limestone receiving/storage/reclaim systems to allow closely metered coal and limestone to be fed into the gasifier for testing. The coal gas is subsequently piped to and combusted in an existing burner of the Monongahela Power Fort Martin Generating Station Unit No. 2. Continuous gasification process steam is generated by a small GPIF packaged boiler using light oil fuel at startup, and by switching from light oil to coal gas after startup. The major peripheral equipment such as foundations, process water system, ash handling, ash storage silo, emergency vent pipe, building, lavatory, electrical interconnect, control room, provisions for Phases II III, and control system are all included in Phase I. A future hot gas cleanup unit conceptualized to be a zinc ferrite based fluidized bed process constitutes the following phase (Phase H). The final phase (Phase III) contemplates the addition of a combustion turbine and generator set sized to accommodate the parasitic load of the entire system.

Sadowski, R.S.; Brooks, K.S.; Skinner, W.H.; Brown, M.J.

1992-01-01

430

Degradation of pyrene, benz[a]anthracene, and benzo[a]pyrene by Mycobacterium sp. strain RJGII-135, isolated from a former coal gasification site.  

PubMed Central

The degradation of three polycyclic aromatic hydrocarbons (PAH), pyrene (PYR), benz[a]anthracene (BAA), and benzo[a]pyrene (BaP), by Mycobacterium sp. strain RJGII-135 was studied. The bacterium was isolated from an abandoned coal gasification site soil by analog enrichment techniques and found to mineralize [14C]PYR. Further degradation studies with PYR showed three metabolites formed by Mycobacterium sp. strain RJGII-135, including 4,5-phenanthrene-dicarboxylic acid not previously isolated, 4-phenanthrene-carboxylic acid, and 4,5-pyrene-dihydrodiol. At least two dihydrodiols, 5,6-BAA-dihydrodiol and 10,11-BAA-dihydrodiol, were confirmed by high-resolution mass spectral and fluorescence analyses as products of the biodegradation of BAA by Mycobacterium sp. strain RJGII-135. Additionally, a cleavage product of BAA was also isolated. Mass spectra and fluorescence data support two different routes for the degradation of BaP by Mycobacterium sp. strain RJGII-135. The 7,8-BaP-dihydrodiol and three cleavage products of BaP, including 4,5-chrysene-dicarboxylic acid and a dihydro-pyrene-carboxylic acid metabolite, have been isolated and identified as degradation products formed by Mycobacterium sp. strain RJGII-135. These latter results represent the first example of the isolation of BaP ring fission products formed by a bacterial isolate. We propose that while this bacterium appears to attack only one site of the PYR molecule, it is capable of degrading different sites of the BAA and BaP molecules, and although the sites of attack may be different, the ability of this bacterium to degrade these PAH is well supported. The proposed pathways for biodegradation of these compounds by this Mycobacterium sp. strain RJGII-135 support the dioxygenase enzymatic processes reported previously for other bacteria. Microorganisms like Mycobacterium sp. strain RJGII-135 will be invaluable in attaining the goal of remediation of sites containing mixtures of these PAH. PMID:8572690

Schneider, J; Grosser, R; Jayasimhulu, K; Xue, W; Warshawsky, D

1996-01-01

431

Behaviour of calcium-containing minerals in the mechanism towards in situ CO 2 capture during gasification  

Microsoft Academic Search

Mineral matter transformation and the behavior of mineral matter in the coal during gasification, provide more information on the suitability of a specific coal source for combustion or gasification purposes. Therefore, the chemistry and mineral interactions have to be understood in order to determine the suitability for fixed bed gasification purposes with regards to mineral matter transformations and slagging properties.Although

J. C. van Dyk; F. B. Waanders; K. Hack

2008-01-01

432

Coal processing and pollution control. [Glossary included  

Microsoft Academic Search

This book discusses the principles behind coal technology rather than just detailing processes and equipment. Chapters are presented on the supply and demand outlook; coal deposits of the US and their coal properties; coal mining techniques, costs, and environmental controls; coal transportation systems; coal preparation and cleaning; pyrolysis processes; gasification; liquefaction; combustion; air emissions; particulate control; flue gas desulfurization; acid

Edgar

1983-01-01

433

Sensitivity of Fischer-Tropsch Synthesis and Water-Gas Shift Catalysts to Poisons from High-Temperature High-Pressure Entrained-Flow (EF) Oxygen-Blown Gasifier Gasification of Coal/Biomass Mixtures  

SciTech Connect

The successful adaptation of conventional cobalt and iron-based Fischer-Tropsch synthesis catalysts for use in converting biomass-derived syngas hinges in part on understanding their susceptibility to byproducts produced during the biomass gasification process. With the possibility that oil production will peak in the near future, and due to concerns in maintaining energy security, the conversion of biomass-derived syngas and syngas derived from coal/biomass blends to Fischer-Tropsch synthesis products to liquid fuels may provide a sustainable path forward, especially considering if carbon sequestration can be successfully demonstrated. However, one current drawback is that it is unknown whether conventional catalysts based on iron and cobalt will be suitable without proper development because, while ash, sulfur compounds, traces of metals, halide compounds, and nitrogen-containing chemicals will likely be lower in concentration in syngas derived from mixtures of coal and biomass (i.e., using an entrained-flow oxygen-blown gasifier) than solely from coal, other byproducts may be present in higher concentrations. The current project examines the impact of a number of potential byproducts of concern from the gasification of biomass process, including compounds containing alkali chemicals like the chlorides of sodium and potassium. In the second year, researchers from the University of Kentucky Center for Applied Energy Research (UK-CAER) continued the project by evaluating the sensitivity of a commercial iron-chromia high temperature water-gas shift catalyst (WGS) to a number of different compounds, including KHCO{sub 3}, NaHCO{sub 3}, HCl, HBr, HF, H{sub 2}S, NH{sub 3}, and a combination of H{sub 2}S and NH{sub 3}. Cobalt and iron-based Fischer-Tropsch synthesis (FT) catalysts were also subjected to a number of the same compounds in order to evaluate their sensitivities.

Burtron Davis; Gary Jacobs; Wenping Ma; Khalid Azzam; Dennis Sparks; Wilson Shafer

2010-09-30

434

Proceedings, twenty-five annual international Pittsburgh coal conference  

SciTech Connect

The conference theme was 'coal - energy, environment and sustainable development'. The topics covered energy and environmental issues, and technologies related to coal and its byproducts. These included: gasification, hydrogen from coal, combustion technologies, coal production and preparation, synthesis of liquid fuels, gas turbines and fuel cells for synthesis gas and hydrogen applications, coal chemistry and geosciences, global climate change, underground coal gasification, environmental control technologies, and coal utilization byproducts.

NONE

2008-07-01

435

Gasoline from coal in the state of Illinois: feasibility study. Volume I. Design. [KBW gasification process, ICI low-pressure methanol process and Mobil M-gasoline process  

SciTech Connect

Volume 1 describes the proposed plant: KBW gasification process, ICI low-pressure methanol process and Mobil M-gasoline process, and also with ancillary processes, such as oxygen plant, shift process, RECTISOL purification process, sulfur recovery equipment and pollution control equipment. Numerous engineering diagrams are included. (LTN)

Not Available

1980-01-01

436

Regulatory and legislative status of coal-water pipelines  

Microsoft Academic Search

The advantages of coal slurry pipelines are pointed out, quoting recent economic and technical studies of U.S. coal slurry pipeline potential. The importance of coal pipelines to increase coal export considerably is emphasized. The usefulness of coal pipelines for siting coal gasification projects far away from mine operations is stressed. Energy and economic benefits and environmental aspects of coal slurry

Eatman

1981-01-01

437

Integration and testing of hot desulfurization and entrained-flow gasification for power generation systems  

SciTech Connect

The objective of this project was to support Texaco's effort to develop the zinc titanate hot-gas desulfurization process for gases produced from their oxygen-blown coal gasifier by answering two key questions that had remained unanswered to date. These questions were: Will chloride in the coal gas affect the performance of the sorbent Where would the chloride end up following sulfidation and regeneration Previously, Research Triangle Institute (RTI) completed a bench-scale test series, under a subcontract to Texaco, Inc., for their contract with the US Department of Energy/Morgantown Energy Technology Center (DOE/METC), in which zinc titanate was shown to be a highly promising sorbent for desulfurizing the Texaco O[sub 2]-blown simulated coal gas. The next step was to evaluate the effect of coal gas contaminants, particularly chloride, on the sorbent. No tests have been carried out in the past that evaluate the effect of chloride on zinc titanate. If ZnO in the sorbent reacts with the chloride, zinc chloride may form which may evaporate causing accelerated zinc loss. Zinc chloride may revert back to the oxide during oxidative regeneration. This may be enhanced in the presence of steam. This report provides results of a three-test series which was designed to give some definitive answers about the fate of chloride in the hot-gas desulfurization process and the effect of chloride on the performance of zinc titanate.

Gangwal, S.K.; Paar, T.M.; McMichael, W.J.

1991-09-01

438

Biomass characterization and reduced order modeling of mixed-feedstock gasification  

E-print Network

There has been much effort to characterize and model coal for use in combustion and gasification. This work seeks to delineate the differences and similarities between biomass and coal, with emphasis on the state of the ...

Chapman, Alex J. (Alex Jacob)

2011-01-01

439

Mineral matter transformation during Sasol-Lurgi fixed bed dry bottom gasification – utilization of HT-XRD and FactSage modelling  

Microsoft Academic Search

Coal is generally accepted to be a heterogeneous resource where coal properties can vary extensively between geographical sites or within a mine. However, detail coal characteristics are essential to predict gasification performance. Mineral matter transformation and slag formation are specific properties of a coal source that provide more information on the suitability for combustion or gasification purposes. Therefore, the chemistry

J. C. van Dyk; S. Melzer; A. Sobiecki

2006-01-01

440

Hydrothermal dewatering of brown coal and catalytic hydrothermal gasification of the organic compounds dissolving in the water using a novel Ni\\/carbon catalyst  

Microsoft Academic Search

Brown coals will continue to be important energy resources in the near future, but their high water contents, which sometimes exceed 50wt%, and their low calorific values restrict their utilization. Development of an efficient treatment method for dewatering and upgrading is desired to utilize brown coals on a large scale. Hydrothermal treatment is believed to be a promising treatment method

Hiroyuki Nakagawa; Akio Namba; Marc Böhlmann; Kouichi Miura

2004-01-01