These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

DEMONSTRATION BULLETIN: TEXACO GASIFICATION PROCESS TEXACO, INC.  

EPA Science Inventory

The Texaco Gasification Process (TGP) has operated commercially for nearly 45 years on feeds such as natural gas, liquid petroleum fractions, coal, and petroleum coke. More than 45 plants are either operational or under development in the United States and abroad. Texaco has dev...

2

TEXACO GASIFICATION PROCESS - INNOVATIVE TECHNOLOGY EVALUATION REPORT  

EPA Science Inventory

This report summarizes the evaluation of the Texaco Gasification Process (TGP) conducted under the U.S. Environmental Protection Agency (EPA) Superfund Innovative Technology Evaluation (SITE) Program. The Texaco Gasification Process was developed by Texaco Inc. The TGP is a comm...

3

Texaco gasification process: Innovative technology evaluation report  

SciTech Connect

This report summarizes the evaluation of the Texaco Gasification Process (TGP) conducted under the U.S. Environmental Protection Agency (EPA) Superfund Innovative Technology Evaluation (SITE) Program. The TGP is a commercial gasification process which converts organic materials into syngas, a mixture of hydrogen and carbon monoxide. The feed reacts with a limited amount of oxygen (partial oxidaton) in a refractory-lined reactor at temperatures between 2,200 degrees and 2,650 degrees F and at pressures above 250 pounds per square inch gauge (psig). Texaco reports that the syngas can be processed into high-purity hydrogen, ammonia, methanol, and other chemicals, as well as clean fuel for electric power. The TGP was evaluated under the EPA SITE Program in January 1994 at Texaco`s Montebello Research Laboratory (MRL) in South El Monte, California, located in the greater Los Angeles area. The Demonstration used a soil feed mixture consisting of approximately 20 weight-percent waste soil from the Purity Oil Sales Superfund Site, Fresno, California and 80 weight-percent clean soil. The slurry included coal as a support fuel and was spiked with lead and barium compounds (inorganic heavy metals) and chlorobenzene (volatile organic compound) as the Principal Organic Hazardous Constituent (POHC).

NONE

1995-07-01

4

Coal gasification: Kellogg's coal gasification process  

Microsoft Academic Search

Gasification of coal in a bath of molten sodium carbonate through which ; steam is passed is the basis of the Kellogg Coal Gasification process. The bath ; of moiten salt strongly catalyzes the basic steam- coal reaction permi tting ; essentially complete gasificntion of coal at reduced temperature. The molten ; salt can be used to supply heat to

W. C. Schreiner; G. T. Skaperdas

1973-01-01

5

Chemistry of coal gasification  

Microsoft Academic Search

Coal is a complex solid material containing a mixture of substances that chemically consist mostly of carbon with lesser amounts of hydrogen, oxygen, nitrogen, sulfur, and ash. Gasification is the conversion of solid coal to combustible gases by combining the carbon with additional oxygen and\\/or hydrogen. Although thermal decomposition (pyrolysis) can produce gaseous fuels, they are usually produced by reaction

Vorres

1982-01-01

6

Integrated coal gasification combined cycle  

NASA Astrophysics Data System (ADS)

Features of the integrated coal gasification combined cycle power plants are described against the backdrop of the development and first commercial application of the shell coal gasification process. Focus is on the efficiency and excellent environmental performance of the integrated coal gasification combined power plants. Current IGCC projects are given together with an outline of some of the options for integrating coal gasification with combined cycles and also other applications of synthesis gas.

Richards, P. C.; Wijffels, J.-B.; Zuideveld, P. L.

7

Underground coal gasification. Presentations  

SciTech Connect

The 8 presentations are: underground coal gasification (UCG) and the possibilities for carbon management (J. Friedmann); comparing the economics of UCG with surface gasification technologies (E. Redman); Eskom develops UCG technology project (C. Gross); development and future of UCG in the Asian region (L. Walker); economically developing vast deep Powder River Basin coals with UCG (S. Morzenti); effectively managing UCG environmental issues (E. Burton); demonstrating modelling complexity of environmental risk management; and UCG research at the University of Queensland, Australia (A.Y. Klimenko).

NONE

2007-07-01

8

PNNL Coal Gasification Research  

SciTech Connect

This report explains the goals of PNNL in relation to coal gasification research. The long-term intent of this effort is to produce a syngas product for use by internal Pacific Northwest National Laboratory (PNNL) researchers in materials, catalysts, and instrumentation development. Future work on the project will focus on improving the reliability and performance of the gasifier, with a goal of continuous operation for 4 hours using coal feedstock. In addition, system modifications to increase operational flexibility and reliability or accommodate other fuel sources that can be used for syngas production could be useful.

Reid, Douglas J.; Cabe, James E.; Bearden, Mark D.

2010-07-28

9

CATALYTIC GASIFICATION OF COAL USING EUTECTIC SALT MIXTURES  

SciTech Connect

The Gas Research Institute (GRI) estimates that by the year 2010, 40% or more of U.S. gas supply will be provided by supplements including substitute natural gas (SNG) from coal. These supplements must be cost competitive with other energy sources. The first generation technologies for coal gasification e.g. the Lurgi Pressure Gasification Process and the relatively newer technologies e.g. the KBW (Westinghouse) Ash Agglomerating Fluidized-Bed, U-Gas Ash Agglomerating Fluidized-Bed, British Gas Corporation/Lurgi Slagging Gasifier, Texaco Moving-Bed Gasifier, and Dow and Shell Gasification Processes, have several disadvantages. These disadvantages include high severities of gasification conditions, low methane production, high oxygen consumption, inability to handle caking coals, and unattractive economics. Another problem encountered in catalytic coal gasification is deactivation of hydroxide forms of alkali and alkaline earth metal catalysts by oxides of carbon (CO{sub x}). To seek solutions to these problems, a team consisting of Clark Atlanta University (CAU, a Historically Black College and University, HBCU), the University of Tennessee Space Institute (UTSI) and Georgia Institute of Technology (Georgia Tech) proposed to identify suitable low melting eutectic salt mixtures for improved coal gasification. The research objectives of this project were to: Identify appropriate eutectic salt mixture catalysts for coal gasification; Assess agglomeration tendency of catalyzed coal; Evaluate various catalyst impregnation techniques to improve initial catalyst dispersion; Determine catalyst dispersion at high carbon conversion levels; Evaluate effects of major process variables (such as temperature, system pressure, etc.) on coal gasification; Evaluate the recovery, regeneration and recycle of the spent catalysts; and Conduct an analysis and modeling of the gasification process to provide better understanding of the fundamental mechanisms and kinetics of the process.

Dr. Yaw D. Yeboah; Dr. Yong Xu; Dr. Atul Sheth; Dr. Pradeep Agrawal

2001-12-01

10

Coal gasification vessel  

DOEpatents

A vessel system (10) comprises an outer shell (14) of carbon fibers held in a binder, a coolant circulation mechanism (16) and control mechanism (42) and an inner shell (46) comprised of a refractory material and is of light weight and capable of withstanding the extreme temperature and pressure environment of, for example, a coal gasification process. The control mechanism (42) can be computer controlled and can be used to monitor and modulate the coolant which is provided through the circulation mechanism (16) for cooling and protecting the carbon fiber and outer shell (14). The control mechanism (42) is also used to locate any isolated hot spots which may occur through the local disintegration of the inner refractory shell (46).

Loo, Billy W. (Oakland, CA)

1982-01-01

11

Coal gasification systems engineering and analysis. Volume 1: Executive summary  

NASA Technical Reports Server (NTRS)

Feasibility analyses and systems engineering studies for a 20,000 tons per day medium Btu (MBG) coal gasification plant to be built by TVA in Northern Alabama were conducted. Major objectives were as follows: (1) provide design and cost data to support the selection of a gasifier technology and other major plant design parameters, (2) provide design and cost data to support alternate product evaluation, (3) prepare a technology development plan to address areas of high technical risk, and (4) develop schedules, PERT charts, and a work breakdown structure to aid in preliminary project planning. Volume one contains a summary of gasification system characterizations. Five gasification technologies were selected for evaluation: Koppers-Totzek, Texaco, Lurgi Dry Ash, Slagging Lurgi, and Babcock and Wilcox. A summary of the trade studies and cost sensitivity analysis is included.

1980-01-01

12

Beluga Coal Gasification - ISER  

SciTech Connect

ISER was requested to conduct an economic analysis of a possible 'Cook Inlet Syngas Pipeline'. The economic analysis was incorporated as section 7.4 of the larger report titled: 'Beluga Coal Gasification Feasibility Study, DOE/NETL-2006/1248, Phase 2 Final Report, October 2006, for Subtask 41817.333.01.01'. The pipeline would carry CO{sub 2} and N{sub 2}-H{sub 2} from a synthetic gas plant on the western side of Cook Inlet to Agrium's facility. The economic analysis determined that the net present value of the total capital and operating lifecycle costs for the pipeline ranges from $318 to $588 million. The greatest contributor to this spread is the cost of electricity, which ranges from $0.05 to $0.10/kWh in this analysis. The financial analysis shows that the delivery cost of gas may range from $0.33 to $0.55/Mcf in the first year depending primarily on the price for electricity.

Steve Colt

2008-12-31

13

Coal-gasification-process concepts. [Dependence on gasifier pressure  

SciTech Connect

First Generation coal gasification continues to grow with the expansion of Lurgi process to make gasoline in South Africa and SNG in the United States. This moving-bed gasifier is no doubt the leading commercial application of coal gasification. This can probably be attributed to its operation at the elevated pressure that simultaneously increases coal throughput and broadens the utility of the raw Syngas product by lowering its coal. Other Second Generation processes also strive to achieve high pressure operation: Ruhrgas 100 to improve moving-bed gasification at 100 bars; Texaco, Shell, Koppers, and Saarberg-Otto to improve entrained-bed gasification at 20 to 40 bars; and U-GAS and Westinghouse and the pressurized Winkler to improve fluidized-bed operation at 10 to 40 bars. Operation at 20 to 40 bars greatly improves gasifier productivity and significantly broadens the use of the raw Syngas produced by all types of gasifiers. Future commercial trends will include the entrained- and fluidized-bed concepts at 20 to 40 bars while even higher operating pressures will be used for the Lurgi moving-bed concept.

Miller, C.L.; Tarman, P.B.

1982-01-01

14

Coal gasification: A multiple talent  

SciTech Connect

Coal Gasification is on a pressurized route to commercial application. Ground breaking was performed by the Cool Water, Tennessee Eastman and UBE plants. Now several technical and commercial demonstrations are underway not only to show the readiness of the technology for commercial application. Another goal is further developed to reduce costs and to rise efficiency. The main feature of coal gasification is that it transforms a difficult-to-handle fuel into an easy-to-handle one. Through a high efficient gas-turbine cycle-power production becomes easy, efficient and clean. Between gasification and power production several more or less difficult hurdles have to be taken. In the past several studies and R and D work have been performed by Novem as by others to get insight in these steps. Goals were to develop easier, more efficient and less costly performance of the total combination for power production. This paper will give an overview of these studies and developments to be expected. Subjects will be fuel diversification, gas treating and the combination of Integrated Coal Gasification Combined Cycle with several cycle and production of chemical products. As a conclusion a guide will be given on the way to a clean, efficient and commercial acceptable application of coal gasification. A relation to other emerging technologies for power production with coal will be presented.

Schreurs, H.

1996-12-31

15

Coal gasification combined-cycle system analysis. Final report  

SciTech Connect

This report summarizes the results of the second phase of a study involving combustion turbine power plants using coal gasification. The study concentrated on systems integration and the optimization of power plant conceptual designs. In order of importance, the objectives of the study were to: (1) determine potential levels of thermal efficiency for well integrated gasified coal combined cycle (GCC) systems employing current technology combustion turbines and near-commercial, oxygen-blown Texaco gasifiers. (2) Quantify the effects of varying key design parameters of various components on overall plant performance. (3) Project potential levels of performance made possible by using advanced, combustion turbines and advanced gasifiers in well-integrated gasification power plants. To meet these objectives emphasis was placed on effective waste heat management and practicality in synthesizing overall power plant arrangements. Evaluations were confined to thermodynamic analysis and did not include equipment cost estimation. Current technology systems were defined which yielded thermal efficiencies in the range of 35 to 37%. It was found that approximately one percentage point in thermal efficiency could be realized by using either the British Gas Corporation (BGC) slagging, fixed-bed gasifier or the air-blown Texaco gasifier in place of the oxygen-blown Texaco gasifier. Two percentage points were gained by increasing the gas turbine combustor exit temperature about 300/sup 0/F. These results suggest the possibility of approaching 40% in practical future power plants. Cost-effective configurations with such performance levels are expected to offer a more than competitive alternative to conventional coal-fired steam power plants equipped to meet emission standards.

Hamilton, S.; Garow, J.; Lehman, S.J.

1980-04-01

16

Assessment of advanced coal gasification processes  

Microsoft Academic Search

A technical assessment of the following advanced coal gasification processes is presented: high throughput gasification (HTG) process single stage high mass flux (HMF) process (CS\\/R) hydrogasification process and the catalytic coal gasification (CCG) process. Each process is evaluated for its potential to produce synthetic natural gas from a bituminous coal. Key similarities, differences, strengths, weaknesses, and potential improvements to each

John McCarthy; Joseph Ferrall; Thomas Charng; John Houseman

1981-01-01

17

Numerical simulation of coal gasification in entrained flow coal gasifier  

Microsoft Academic Search

This paper presents modeling of a coal gasification reaction, and prediction of gasification performance for an entrained flow coal gasifier. The purposes of this study are to develop an evaluation technique for design and performance optimization of coal gasifiers using a numerical simulation technique, and to confirm the validity of the model. The coal gasification model suggested in this paper

H. Watanabe; M. Otaka

2006-01-01

18

Fifth annual EPRI contractors' conference on coal gasification: proceedings  

SciTech Connect

The Fifth Annual EPRI Contractors' Conference on Coal Gasification was held in Palo Alto October 30 and 31, 1985. Papers were presented in four general areas: utility engineering economic studies; pilot and demonstration plant results; raw-gas cleanup; and environmental and engineering scoping studies. Substantial progress in the commercial implementation of coal gasification occurred during 1984. The 100-MW Texaco integrated-gasification-combined-cycle (IGCC) plant at Southern California Edison's Cool Water site continued to operate extremely well in 1985 following the successful startup in June 1984 (EPRI report AP-4177, the fourth conference proceedings). An average capacity factor of 50% was achieved in 1985. There was also considerable progress in 1985 on commercial coal gasification projects outside the utility industry. The Great Plains Associates 125 M-scfd substitute natural gas plant in Beulah, North Dakota (based on Lurgi dry ash technology) achieved a high operational capacity factor. The plant was taken over by DOE and is continuing to operate well. Nineteen papers have been entered individually into ERA and EDB. (LTN)

Not Available

1986-07-01

19

Environmental benefits of underground coal gasification.  

PubMed

Environmental benefits of underground coal gasification are evaluated. The results showed that through underground coal gasification, gangue discharge is eliminated, sulfur emission is reduced, and the amount of ash, mercury, and tar discharge are decreased. Moreover, effect of underground gasification on underground water is analyzed and CO2 disposal method is put forward. PMID:12046301

Liu, Shu-qin; Liu, Jun-hua; Yu, Li

2002-04-01

20

Catalytic coal gasification process  

Microsoft Academic Search

A carbonaceous feed material, a potassium compound having a relatively poor catalytic activity as compared to that of potassium carbonate, and a sodium or lithium salt are introduced into a gasification reactor. The carbonaceous material is then gasified in the presence of the added potassium and sodium or lithium constituents. The added sodium or lithium salt apparently activates the relatively

R. J. Lang; J. K. Pabst

1982-01-01

21

The potential for adding plastic waste fuel at a coal gasification power plant.  

PubMed

Plastics wastes from a municipal solid waste plant have a high energy content which make it an interesting option for co-processing with coal. The potential for adding plastic waste to a coal fired Texaco IGCC (Integrated Gasification Combined Cycle) power station is examined. The resulting efficiency increases due to the improved gasification qualities of plastic over coal. For the overall economics to be the same as the coal only case, the maximum amount that the power station can afford to spend on preparing the plastic waste for use is similar to the assumed coal cost, plus the avoided landfill cost, minus the transport cost. The location of the power station plays a key role, since this has an effect on the transport costs as well as on the landfill charges. The sensitivity of the economics of co-processing plastic waste with coal for a variety of power station operational parameters is presented. PMID:12201682

Campbell, P E; Evans, R H; McMullan, J T; Williams, B C

2001-12-01

22

Hydrogen from Coal Edward Schmetz  

E-print Network

GenFutureGen Hydrogen Fuel Initiative Hydrogen Fuel Initiative Gasification Fuel Cells Turbines Gasification Fuel Cells-production plant · Hydrogen from Coal Program will coordinate with associated DOE programs in Gasification, Fuel.89 / 0.79 3.98 / 0.54 * Conventional gasification technology assumes Texaco quench gasification; advanced

23

Supplemental studies for anthracite coal gasification to produce fuels and chemicals: NEPGAS Project  

SciTech Connect

Volume 2 contains: (1) comparative evaluations of several coal gasification processes (Westinghouse, Saarberg/Otto, KGN/PVC, Lurgi, Koppers-Totzek, Texaco, Shell-Koppers, BGC Slagging Lurgi, KT/KBW); (2) site conditions, coal sources and characteristics, recommendations for tests with the coal and gasifier selected, and evaluation of other engineering and environmental uncertainties; (3) continuation and update of environmental assessment and information needed for licensing application; (4) commercialization including market assessment, raw material supplies, water requirements, socio-economic factors, recommended plant capacity, economics and financial incentives needed, etc. (LTN)

Not Available

1981-08-24

24

Coal gasification with internal recirculation catalysts  

Microsoft Academic Search

One of the primary economic penalties of many catalytic coal gasification processes is recovery of the added catalysts from the spent char. For example, the EXXON catalytic coal gasification process as presently conceived, requires several stages of digestion with calcium hydroxide to recover potassium from the converted char and then the digestion only recovers between 65 and 85% of the

A. H. Hill; G. L. Anderson; M. R. Ghate; W. Liou

1986-01-01

25

Improved catalysts for carbon and coal gasification  

Microsoft Academic Search

This invention relates to improved catalysts for carbon and coal gasification and improved processes for catalytic coal gasification for the production of methane. The catalyst is composed of at least two alkali metal salts and a particulate carbonaceous substrate or carrier is used. 10 figures, 2 tables.

D. W. McKee; C. L. Spiro; P. G. Kosky

1984-01-01

26

Catalytic coal gasification for SNG production  

Microsoft Academic Search

The catalytic coal gasification process of Exxon for the production of substitute natural gas (SNG) is described. The alkali carbonate catalyst increases the rate of steam gasification, prevents agglomeration when gasifying caking coals, and promotes gas phase methanation equilibrium. The process uses a low gasifier temperature of 650-750 C along with separation of synthesis gas (CO and H2) from the

W. R. Epperly; H. M. Siegel

1976-01-01

27

Process for separating catalytic coal gasification chars  

Microsoft Academic Search

A catalytic coal gasification process is described including the separation of chars containing soluble catalysts produced by the catalytic coal gasification process comprising the steps of: (a) separating the chars by size into three portions, a first char portion having the largest average diameter, a second char portion having the middle average diameter, and a third char portion having the

W. K. Lee; H. W. Wong

1987-01-01

28

Improved catalysts for carbon and coal gasification  

DOEpatents

This invention relates to improved catalysts for carbon and coal gasification and improved processes for catalytic coal gasification for the production of methane. The catalyst is composed of at least two alkali metal salts and a particulate carbonaceous substrate or carrier is used. 10 figures, 2 tables.

McKee, D.W.; Spiro, C.L.; Kosky, P.G.

1984-05-25

29

Apparatus for solar coal gasification  

DOEpatents

Apparatus for using focused solar radiation to gasify coal and other carbonaceous materials is described. Incident solar radiation is focused from an array of heliostats through a window onto the surface of a moving bed of coal, contained within a gasification reactor. The reactor is designed to minimize contact between the window and solids in the reactor. Steam introduced into the gasification reactor reacts with the heated coal to produce gas consisting mainly of carbon monoxide and hydrogen, commonly called synthesis gas, which can be converted to methane, methanol, gasoline, and other useful products. One of the novel features of the invention is the generation of process steam in one embodiment at the rear surface of a secondary mirror used to redirect the focused sunlight. Another novel feature of the invention is the location and arrangement of the array of mirrors on an inclined surface (e.g., a hillside) to provide for direct optical communication of said mirrors and the carbonaceous feed without a secondary redirecting mirror.

Gregg, D.W.

1980-08-04

30

An evaluaton of integrated-gasification-combined-cycle and pulverized-coal-fired steam plants: Volume 2, Sensitivity studies and appendixes: Final report  

Microsoft Academic Search

The Electric Power Research Institute contracted with Bechtel Group, Inc., to provide an evaluation of the performance and costs for a Texaco-based integrated gasification combined cycle (IGCC) power plant as compared to a conventional pulverized coal-fired steam (PCFS) power plant with flue gas desulfurization (FGD). A general set of groundrules was used within which each plant design was optimized. The

J. Pietruszkiewicz; R. J. Milkavich; G. S. Booras; G. O. Thomas; H. Doss

1988-01-01

31

Coal-gasification systems: a guide to status, applications, and economics. Final report  

SciTech Connect

Coal gasification has been the subject of a great deal of study and development worldwide over the past decade. The open literature currently contains bewildering and often inconsistent information concerning the development status and economic viability of coal gasification systems. The Advanced Power Systems Division of EPRI has devoted considerable resources to the development and demonstration of coal gasification technology for ultimate use in electric-power-generation systems. The primary objective of this Guide is to provide current and consistent information concerning the status of commercial development, potential utility applications and EPRI-developed capital and operating costs for coal-gasification technologies that have already been demonstrated at commercial scale as well as for those that are close to commercial practice. Current commercial/developmental status of Lurgi, Koppers-Totzek, Texaco, Shell, British Gas Corporation/Lurgi, KILnGAS, Westinghouse and High Temperature Winkler is discussed. Environmental aspects, thermal performance, reliabiilty and cost information are provided for medium-Btu gas production; retrofitting and repowering existing steam plants; integrated gasification combined cycle (IGCC) systems; low-water-consumption IGCC systems; methanol from coal; once-through methanol production in an IGCC system; and IGCC systems employing advanced, molten-carbonate fuel cells. Finally, for comparison purposes, performance and cost estimates on a consistent basis are provided for coal-fired steam plants; oil-fired steam plants; oil- and gas-fired combined-cycle and combustion-turbine plants. 88 figures, 86 tables.

Simbeck, D.R.; Dickenson, R.L.; Oliver, E.D.

1983-06-01

32

Plasma gasification of coal in different oxidants  

SciTech Connect

Oxidant selection is the highest priority for advanced coal gasification-process development. This paper presents comparative analysis of the Powder River Basin bituminous-coal gasification processes for entrained-flow plasma gasifier. Several oxidants, which might be employed for perspective commercial applications, have been chosen, including air, steam/carbon-dioxide blend, carbon dioxide, steam, steam/air, steam/oxygen, and oxygen. Synthesis gas composition, carbon gasification degree, specific power consumptions, and power efficiency for these processes were determined. The influence of the selected oxidant composition on the gasification-process main characteristics have been investigated.

Matveev, I.B.; Messerle, V.E.; Ustimenko, A.B. [Applied Plasma Technology, Mclean, VA (USA)

2008-12-15

33

Catalytic coal gasification: an emerging technology for SNG  

Microsoft Academic Search

It has long been known that salts of alkali metals catalyze the gasification of coal. In 1971, Exxon Research and Engineering Company discovered that potassium salts added to coal also promote the methanation of coal gasification products. This discovery led to Exxon's Catalytic Coal Gasification (CCG) process. In the CCG process, coal with added potassium salts is gasified in a

R. R. Lessard; R. A. Reitz

1981-01-01

34

Coal gasification in a process development unit  

Microsoft Academic Search

Results obtained from operation of a 40kg\\/h Process Development Unit (PDU) of the Exxon Catalytic Coal Gasification (CCG) process are reported. The unit was operated at commercial design conditions feeding bituminous Illinois No. 6 coal catalyzed with KOH. All reactions necessary to convert coal to methane and CO, the major reaction products, are carried out in a single reactor. Alkali

C. A. Jr. Euker; R. D. Wesselhoft

1981-01-01

35

EFFECT OF UNDERGROUND COAL GASIFICATION ON GROUNDWATER  

EPA Science Inventory

The potential effect of underground coal gasification on groundwater has been examined in a laboratory study. The study was directed at Fruitland Formation subbituminous coal of the San Juan Basin and at the groundwater found in this coal seam. Two wells were drilled into the coa...

36

Apparatus for fixed bed coal gasification  

DOEpatents

An apparatus for fixed-bed coal gasification is described in which coal such as caking coal is continuously pyrolyzed with clump formation inhibited, by combining the coal with a combustible gas and an oxidant, and then continually feeding the pyrolyzed coal under pressure and elevated temperature into the gasification region of a pressure vessel. The materials in the pressure vessel are allowed to react with the gasifying agents in order to allow the carbon contents of the pyrolyzed coal to be completely oxidized. The combustion of gas produced from the combination of coal pyrolysis and gasification involves combining a combustible gas coal and an oxidant in a pyrolysis chamber and heating the components to a temperature of at least 1600.degree. F. The products of coal pyrolysis are dispersed from the pyrolyzer directly into the high temperature gasification region of a pressure vessel. Steam and air needed for gasification are introduced in the pressure vessel and the materials exiting the pyrolyzer flow down through the pressure vessel by gravity with sufficient residence time to allow any carbon to form carbon monoxide. Gas produced from these reactions are then released from the pressure vessel and ash is disposed of.

Sadowski, Richard S. (Greenville, SC)

1992-01-01

37

Fluidized bed catalytic coal gasification process  

Microsoft Academic Search

Coal or similar carbonaceous solids impregnated with gasification catalyst constituents (16) are oxidized by contact with a gas containing between 2 volume percent and 21 volume percent oxygen at a temperature between 50.degree. C. and 250.degree. C. in an oxidation zone (24) and the resultant oxidized, catalyst impregnated solids are then gasified in a fluidized bed gasification zone (44) at

Euker Jr. Charles A; Robert D. Wesselhoft; John J. Dunkleman; Dolores C. Aquino; Toby R. Gouker

1984-01-01

38

Fluidized bed catalytic coal gasification process  

Microsoft Academic Search

Coal or similar carbonaceous solids impregnated with gasification catalyst constituents are oxidized by contact with a gas containing between 2 volume percent and 21 volume percent oxygen at a temperature between 50° C. and 250° C. in an oxidation zone and the resultant oxidized, catalyst impregnated solids are then gasified in a fluidized bed gasification zone at an elevated pressure.

C. A. Jr. Euker; D. C. Aquino; J. J. Dunkleman; T. R. Gouker; R. D. Wesselhoft

1984-01-01

39

Trace element partitioning during coal gasification  

Microsoft Academic Search

The fate of trace element pollutants in integrated gasification combined-cycle (IGCC) systems is closely tied to their volatilization in the gasifier and subsequent condensation or reaction with fine fly ash particles. The results of an experimental bench-scale programme to measure the partitioning of selected trace elements during atmospheric pressure entrained flow gasification of Illinois No. 6 bituminous coal are presented.

Joseph J. Helble; Wahab Mojtahedi; Jussi Lyyrnen; Jorma Jokiniemi; Esko Kauppinen

1996-01-01

40

COAL GASIFICATION ENVIRONMENTAL DATA SUMMARY: TRACE ELEMENTS  

EPA Science Inventory

The report summarizes trace element measurements made at several coal gasification facilities. Most of the measurements were made as part of EPA's source testing and evaluation program on low- and medium-Btu gasification. The behavior of trace elements is discussed in light of th...

41

Underground Coal Gasification at Tennessee Colony  

E-print Network

The Tennessee Colony In Situ Coal Gasification Project conducted by Basic Resources Inc. is the most recent step in Texas Utilities Company's ongoing research into the utilization of Texas lignite. The project, an application of the Soviet...

Garrard, C. W.

1979-01-01

42

Catalysts for carbon and coal gasification  

DOEpatents

Catalyst for the production of methane from carbon and/or coal by means of catalytic gasification. The catalyst compostion containing at least two alkali metal salts. A particulate carbonaceous substrate or carrier is used.

McKee, Douglas W. (Burnt Hills, NY); Spiro, Clifford L. (Scotia, NY); Kosky, Philip G. (Schenectady, NY)

1985-01-01

43

Coal gasification for electric power generation.  

PubMed

The electric utility industry is being severely affected by rapidly escalating gas and oil prices, restrictive environmental and licensing regulations, and an extremely tight money market. Integrated coal gasification combined cycle (IGCC) power plants have the potential to be economically competitive with present commercial coal-fired power plants while satisfying stringent emission control requirements. The current status of gasification technology is discussed and the critical importance of the 100-megawatt Cool Water IGCC demonstration program is emphasized. PMID:17788466

Spencer, D F; Gluckman, M J; Alpert, S B

1982-03-26

44

Coal gasification and the Phenosolvan process  

Microsoft Academic Search

There are a number of commercial coal gasification projects under design in the USA. By 1976-77, two such projects may be coming onstream in New Mexico, each producing 250 million standard cubic feet per day of Substitute Natural Gas (SNG). The gasification of coal produces large amounts of by-product phenol. The New Mexico projects will each involve about 25,000 tons

Beychok

1974-01-01

45

Beluga coal gasification feasibility study  

SciTech Connect

The objective of the study was to determine the economic feasibility of developing and siting a coal-based integrated gasification combined-cycle (IGCC) plant in the Cook Inlet region of Alaska for the co-production of electric power and marketable by-products. The by-products, which may include synthesis gas, Fischer-Tropsch (F-T) liquids, fertilizers such as ammonia and urea, alcohols, hydrogen, nitrogen and carbon dioxide, would be manufactured for local use or for sale in domestic and foreign markets. This report for Phase 1 summarizes the investigation of an IGCC system for a specific industrial setting on the Cook Inlet, the Agrium U.S. Inc. ('Agrium') fertilizer plant in Nikiski, Alaska. Faced with an increase in natural gas price and a decrease in supply, the Agrium is investigating alternatives to gas as feed stock for their plant. This study considered all aspects of the installation and infrastructure, including: coal supply and cost, coal transport costs, delivery routes, feedstock production for fertilizer manufacture, plant steam and power, carbon dioxide (CO{sub 2}) uses, markets for possible additional products, and environmental permit requirements. The Cook Inlet-specific Phase 1 results, reported here, provided insight and information that led to the conclusion that the second study should be for an F-T plant sited at the Usibelli Coal Mine near Healy, Alaska. This Phase 1 case study is for a very specific IGCC system tailored to fit the chemical and energy needs of the fertilizer manufacturing plant. It demonstrates the flexibility of IGCC for a variety of fuel feedstocks depending on plant location and fuel availability, as well as the available variety of gas separation, gas cleanup, and power and steam generation technologies to fit specific site needs. 18 figs., 37 tabs., 6 apps.

Robert Chaney; Lawrence Van Bibber [Research & Development Solutions (RDS), LLC (United States)

2006-07-15

46

Production of Hydrogen from Underground Coal Gasification  

DOEpatents

A system of obtaining hydrogen from a coal seam by providing a production well that extends into the coal seam; positioning a conduit in the production well leaving an annulus between the conduit and the coal gasification production well, the conduit having a wall; closing the annulus at the lower end to seal it from the coal gasification cavity and the syngas; providing at least a portion of the wall with a bifunctional membrane that serves the dual purpose of providing a catalyzing reaction and selectively allowing hydrogen to pass through the wall and into the annulus; and producing the hydrogen through the annulus.

Upadhye, Ravindra S. (Pleasanton, CA)

2008-10-07

47

Underground coal gasification using oxygen and steam  

SciTech Connect

In this paper, through model experiment of the underground coal gasification, the effects of pure oxygen gasification, oxygen-steam gasification, and moving-point gasification methods on the underground gasification process and gas quality were studied. Experiments showed that H{sub 2} and CO volume fraction in product gas during the pure oxygen gasification was 23.63-30.24% and 35.22-46.32%, respectively, with the gas heating value exceeding 11.00 MJ/m{sup 3}; under the oxygen-steam gasification, when the steam/oxygen ratio stood at 2: 1, gas compositions remained virtually stable and CO + H{sub 2} was basically between 61.66 and 71.29%. Moving-point gasification could effectively improve the changes in the cavity in the coal seams or the effects of roof inbreak on gas quality; the ratio of gas flowing quantity to oxygen supplying quantity was between 3.1:1 and 3.5:1 and took on the linear changes; on the basis of the test data, the reasons for gas quality changes under different gasification conditions were analyzed.

Yang, L.H.; Zhang, X.; Liu, S. [China University of Mining & Technology, Xuzhou (China)

2009-07-01

48

Differences in gasification behaviors and related properties between entrained gasifier fly ash and coal char  

SciTech Connect

In the study, two fly ash samples from Texaco gasifiers were compared to coal char and the physical and chemical properties and reactivity of samples were investigated by scanning electron microscopy (SEM), SEM-energy-dispersive spectrometry (EDS), X-ray diffraction (XRD), N{sub 2} and CO{sub 2} adsorption method, and isothermal thermogravimetric analysis. The main results were obtained. The carbon content of gasified fly ashes exhibited 31-37%, which was less than the carbon content of 58-59% in the feed coal. The fly ashes exhibited higher Brunauer-Emmett-Teller (BET) surface area, richer meso- and micropores, more disordered carbon crystalline structure, and better CO{sub 2} gasification reactivity than coal char. Ashes in fly ashes occurred to agglomerate into larger spherical grains, while those in coal char do not agglomerate. The minerals in fly ashes, especial alkali and alkaline-earth metals, had a catalytic effect on gasification reactivity of fly ash carbon. In the low-temperature range, the gasification process of fly ashes is mainly in chemical control, while in the high-temperature range, it is mainly in gas diffusion control, which was similar to coal char. In addition, the carbon in fly ashes was partially gasified and activated by water vapor and exhibited higher BET surface area and better gasification activity. Consequently, the fact that these carbons in fly ashes from entrained flow gasifiers are reclaimed and reused will be considered to be feasible. 15 refs., 7 figs., 5 tabs.

Jing Gu; Shiyong Wu; Youqing Wu; Ye Li; Jinsheng Gao [East China University of Science and Technology, Shanghai (China). Department of Chemical Engineering for Energy Resources and Key Laboratory of Coal Gasification of Ministry of Education

2008-11-15

49

WABASH RIVER COAL GASIFICATION REPOWERING PROJECT  

SciTech Connect

The close of 1999 marked the completion of the Demonstration Period of the Wabash River Coal Gasification Repowering Project. This Final Report summarizes the engineering and construction phases and details the learning experiences from the first four years of commercial operation that made up the Demonstration Period under Department of Energy (DOE) Cooperative Agreement DE-FC21-92MC29310. This 262 MWe project is a joint venture of Global Energy Inc. (Global acquired Destec Energy's gasification assets from Dynegy in 1999) and PSI Energy, a part of Cinergy Corp. The Joint Venture was formed to participate in the Department of Energy's Clean Coal Technology (CCT) program and to demonstrate coal gasification repowering of an existing generating unit impacted by the Clean Air Act Amendments. The participants jointly developed, separately designed, constructed, own, and are now operating an integrated coal gasification combined-cycle power plant, using Global Energy's E-Gas{trademark} technology (E-Gas{trademark} is the name given to the former Destec technology developed by Dow, Destec, and Dynegy). The E-Gas{trademark} process is integrated with a new General Electric 7FA combustion turbine generator and a heat recovery steam generator in the repowering of a 1950's-vintage Westinghouse steam turbine generator using some pre-existing coal handling facilities, interconnections, and other auxiliaries. The gasification facility utilizes local high sulfur coals (up to 5.9% sulfur) and produces synthetic gas (syngas), sulfur and slag by-products. The Project has the distinction of being the largest single train coal gasification combined-cycle plant in the Western Hemisphere and is the cleanest coal-fired plant of any type in the world. The Project was the first of the CCT integrated gasification combined-cycle (IGCC) projects to achieve commercial operation.

Unknown

2000-09-01

50

Scientific breakthrough cuts coal gasification costs  

SciTech Connect

An Illinois scientist believes he has found a way to help coal gasification power plants like the Wabash River plant in Terre Haute, Ind., remove sulfur emissions while significantly cutting capital costs and increasing power plant revenues. Jim Swisher, E&A Associates chief scientist and partner, expects to know for sure very soon when seven tons of his zinc titanate pellets-a sulfur absorber that can be cleaned and reused perhaps 1,000 times-receive long-term performance testing at a General Electric coal gasifier in Schenectady, NY. Coal gasification, one of the nation`s most promising clean coal technologies, turns high-sulfur coal into low-sulfur coal gas. The problem with the process is that the coal gas, which is produced at temperatures that exceed 2,300 F, must be cooled to room temperature (about 70 F) before the sulfur can be removed.

Swisher, J.

1996-10-01

51

Catalytic Coal Gasification: An Emerging Technology  

Microsoft Academic Search

Catalytic coal gasification is being developed as a more efficient and less costly approach to producing methane from coal. With a potassium catalyst all the reactions can take place at one temperature, so that endothermic and exothermic reactions can be integrated in a single reactor. A key aspect of the concept involves continuous recycling of product carbon monoxide and hydrogen

Robert L. Hirsch; John E. Gallagher; Richard R. Lessard; Robert D. Wesselhoft

1982-01-01

52

Catalytic coal gasification: an emerging technology  

Microsoft Academic Search

Catalytic coal gasification is being developed as a more efficient and less costly approach to producing methane from coal. With a potassium catalyst all the reactions can take place at one temperature, so that endothermic and exothermic reactions can be integrated in a single reactor. A key aspect of the concept involves continuous recycling of product carbon monoxide and hydrogen

R. R. Lessard; J. E. Jr. Gallagher; R. D. Wesselhoft

1982-01-01

53

Gasification of low-rank coals: technology status and recent research  

SciTech Connect

Technology for gasification of low-rank coals includes processes that are commercially available as well as some that are being developed. Commercial Lurgi technology is being utilized by the Great Plains Gasification Associates (GPGA) to convert North Dakota lignite to high-Btu pipeline gas. Technically, this project has been quite successful in its design, construction, startup and initial operating phases. An advanced version of the Lurgi fixed bed gasifier, which operates in a slagging mode rather than dry bottom, is being offered commercially by British Gas Corporation (BGC). Independently, the US Department of Energy (DOE), at the University of North Dakota Energy Research Center (UNDERC), has successfully operated a 24-ton/day slagging fixed-bed gasifier on lignite. One key aspect of this fixed-bed gasification technology - wastewater treatment - has been the subject of significant recent research sponsored by DOE. As part of this program, UNDERC has conducted pilot and bench scale studies on treatment of process water from fixed-bed gasification of lignite, and on reuse of the treated water in a cooling tower. With DOE funding, UNDERC has developed a process that can produce concentrated fuel slurries from low-rank coals by hydrothermal treatment. In a project funded by the Electric Power Research Institute, UNDERC is adapting this process for use with the Texaco gasifier. Another low-rank coal gasification research project being conducted at UNDERC with DOE funding aims to take advantage of the high reactivity, moisture content, and alkali content of these coals to produce hydrogen in a low-cost catalytic gasification process. UNDERC's kinetic studies of steam/char gasification in the presence of sodium or potassium catalysts have shown that conversion rates for lignites are significantly higher than those reported for high-rank coal. 28 refs., 5 figs., 7 tabs.

Wiltsee, G.A.; Willson, W.G.

1985-01-01

54

Coal properties and system operating parameters for underground coal gasification  

SciTech Connect

Through the model experiment for underground coal gasification, the influence of the properties for gasification agent and gasification methods on underground coal gasifier performance were studied. The results showed that pulsating gasification, to some extent, could improve gas quality, whereas steam gasification led to the production of high heating value gas. Oxygen-enriched air and backflow gasification failed to improve the quality of the outlet gas remarkably, but they could heighten the temperature of the gasifier quickly. According to the experiment data, the longitudinal average gasification rate along the direction of the channel in the gasifying seams was 1.212 m/d, with transverse average gasification rate 0.069 m/d. Experiment indicated that, for the oxygen-enriched steam gasification, when the steam/oxygen ratio was 2:1, gas compositions remained stable, with H{sub 2} + CO content virtually standing between 60% and 70% and O{sub 2} content below 0.5%. The general regularities of the development of the temperature field within the underground gasifier and the reasons for the changes of gas quality were also analyzed. The 'autopneumatolysis' and methanization reaction existing in the underground gasification process were first proposed.

Yang, L. [China University of Mining & Technology, Xuzhou (China)

2008-07-01

55

Evaluation of coal-gasification - combustion-turbine power plants emphasizing low water consumption  

SciTech Connect

A cost and performance study was made of several integrated power plants using coal gasification technology now in advanced development and combustion turbines for power generation. The principal emphasis was placed on studying plants using air cooling and comparing costs and performance of those plants with water-cooled coal gasification-combined-cycle (GCC) and conventional coal-fired power plants. The major objective was to determine whether cost and performance penalties would be prohibitive for air-cooled plants that use yet-to-be-developed coal gasifiers and commercially available combustion turbines for topping cycle power. The results indicate the following: air-cooled GCC plants using conceptual designs of either the Texaco or the British Gas Corporation (BGC) slaging gasifier could have coal-to-net electric power efficiencies equivalent to that of a water-cooled conventional coal-fired plant; the air-cooled GCC plants could produce electricity at busbar cost 1 to 3 mills per kWh (1980 dollars) less than busbar cost in a water-cooled conventional plant and only up to 2 mills per kWh higher than busbar cost in a water-cooled Texaco GCC plant; and even a simple-cycle regenerative combustion turbine plant fueled with gas from the BGC gasifier could have a coal-to-net electric power efficiency of over 30% and a busbar cost competitive with that in a water cooled conventional plant. The principal reason that air-cooled power plants using combustion turbines could be competitive with conventional water-cooled, coal-fired steam plants is that a majority of net power is produced by the combustion turbines, which require no cooling water. This, in turn, leads to a reduced cost and performance penalty when bottoming steam-cycle condensers are air-cooled.

Cavazo, R.; Clemmer, A.B.; de la Mora, J.A.; Grisso, J.R.; Klumpe, H.W.; Meissner, R.E.; Musso, A.; Roszkowski, T.R.

1982-01-01

56

Coal gasification and the power production market  

SciTech Connect

The US electric power production market is experiencing significant changes sparking interest in the current and future alternatives for power production. Coal gasification technology is being marketed to satisfy the needs of the volatile power production industry. Coal gasification is a promising power production process in which solid coal is burned to produce a synthesis gas (syn gas). The syn gas may be used to fuel combustion integrated into a facility producing electric power. Advantages of this technology include efficient power production, low flue gas emissions, flexible fuel utilization, broad capability for facility integration, useful process byproducts, and decreased waste disposal. The primary disadvantages are relatively high capital costs and lack of proven long-term operating experience. Developers of coal gasification intend to improve on these disadvantages and lop a strong position in the power generation market. This paper is a marketing analysis of the partial oxidation coal gasification processes emerging in the US in response to the market factors of the power production industry. A brief history of these processes is presented, including the results of recent projects exploring the feasibility of integrated gasification combined cycle (IGCC) as a power production alternative. The current power generation market factors are discussed, and the status of current projects is presented including projected performance.

Howington, K.; Flandermeyer, G. [Burns and McDonnell Engineering Co., Kansas City, MO (United States)

1995-09-01

57

The Public Perceptions of Underground Coal Gasification (UCG)  

E-print Network

The Public Perceptions of Underground Coal Gasification (UCG): A Pilot Study Simon Shackley #12;The Public Perceptions of Underground Coal Gasification (UCG): A Pilot Study Dr Simon Shackley of Underground Coal Gasification (UCG) in the United Kingdom. The objectives were to identify the main dangers

Watson, Andrew

58

Fluidized bed catalytic coal gasification process  

DOEpatents

Coal or similar carbonaceous solids impregnated with gasification catalyst constituents (16) are oxidized by contact with a gas containing between 2 volume percent and 21 volume percent oxygen at a temperature between 50.degree. C. and 250.degree. C. in an oxidation zone (24) and the resultant oxidized, catalyst impregnated solids are then gasified in a fluidized bed gasification zone (44) at an elevated pressure. The oxidation of the catalyst impregnated solids under these conditions insures that the bed density in the fluidized bed gasification zone will be relatively high even though the solids are gasified at elevated pressure and temperature.

Euker, Jr., Charles A. (15163 Dianna La., Houston, TX 77062); Wesselhoft, Robert D. (120 Caldwell, Baytown, TX 77520); Dunkleman, John J. (3704 Autumn La., Baytown, TX 77520); Aquino, Dolores C. (15142 McConn, Webster, TX 77598); Gouker, Toby R. (5413 Rocksprings Dr., LaPorte, TX 77571)

1984-01-01

59

Assessment of advanced coal gasification processes  

NASA Technical Reports Server (NTRS)

A technical assessment of the following advanced coal gasification processes is presented: high throughput gasification (HTG) process; single stage high mass flux (HMF) processes; (CS/R) hydrogasification process; and the catalytic coal gasification (CCG) process. Each process is evaluated for its potential to produce synthetic natural gas from a bituminous coal. Key similarities, differences, strengths, weaknesses, and potential improvements to each process are identified. The HTG and the HMF gasifiers share similarities with respect to: short residence time (SRT), high throughput rate, slagging, and syngas as the initial raw product gas. The CS/R hydrogasifier is also SRT, but is nonslagging and produces a raw gas high in methane content. The CCG gasifier is a long residence time, catalytic, fluidbed reactor producing all of the raw product methane in the gasifier.

Mccarthy, J.; Ferrall, J.; Charng, T.; Houseman, J.

1981-01-01

60

Process for fixed bed coal gasification  

DOEpatents

The combustion of gas produced from the combination of coal pyrolysis and gasification involves combining a combustible gas coal and an oxidant in a pyrolysis chamber and heating the components to a temperature of at least 1600.degree. F. The products of coal pyrolysis are dispersed from the pyrolyzer directly into the high temperature gasification region of a pressure vessel. Steam and air needed for gasification are introduced in the pressure vessel and the materials exiting the pyrolyzer flow down through the pressure vessel by gravity with sufficient residence time to allow any carbon to form carbon monoxide. Gas produced from these reactions are then released from the pressure vessel and ash is disposed of.

Sadowski, Richard S. (Greenville, SC)

1992-01-01

61

Fixed-bed gasification research using US coals. Volume 13. Gasification of Blind Canyon bituminous coal  

SciTech Connect

A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report is the thirteenth volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of Blind Canyon bituminous coal, from July 31, 1984 to August 11, 1984. 6 refs., 22 figs., 20 tabs.

Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

1985-05-01

62

Investigation of plasma-aided bituminous coal gasification  

SciTech Connect

This paper presents thermodynamic and kinetic modeling of plasma-aided bituminous coal gasification. Distributions of concentrations, temperatures, and velocities of the gasification products along the gasifier are calculated. Carbon gasification degree, specific power consumptions, and heat engineering characteristics of synthesis gas at the outlet of the gasifier are determined at plasma air/steam and oxygen/steam gasification of Powder River Basin bituminous coal. Numerical simulation showed that the plasma oxygen/steam gasification of coal is a more preferable process in comparison with the plasma air/steam coal gasification. On the numerical experiments, a plasma vortex fuel reformer is designed.

Matveev, I.B.; Messerle, V.E.; Ustimenko, A.B. [Applied Plasma Technology, Mclean, VA (United States)

2009-04-15

63

Clean coal technologyStudy on the pilot project experiment of underground coal gasification  

Microsoft Academic Search

In this paper, the gasification conditions, the gasifier structure, the measuring system and the gasification rationale of a pilot project experiment of underground coal gasification (UCG) in the Liuzhuang Colliery, Tangshan, are illustrated. The technique of two-phase underground coal gasification is proposed. The detection of the moving speed and the length of the gasification working face is made using radon

Lanhe Yang; Jie Liang; Li Yu

2003-01-01

64

Continuous Removal of Coal-Gasification Residue  

NASA Technical Reports Server (NTRS)

Continuous-flow hopper processes solid residue from coal gasification, converting it from ashes, cinders, and clinkers to particles size of sand granules. Unit does not require repeated depressurization of lockhopper to admit and release materials. Therefore consumes less energy. Because unit has no airlock valves opened and closed repeatedly on hot, abrasive particles, subjected to lesser wear. Coal-gasification residue flows slowly through pressure-letdown device. Material enters and leaves continuously. Cleanout door on each pressure-letdown chamber allows access for maintenance and emergencies.

Collins, Earl R., Jr.; Suitor, J.; Dubis, D.

1986-01-01

65

Catalysis of coal gasification at elevated pressure. [6 references  

Microsoft Academic Search

Various additives were evaluated for their catalytic effect on coal gasification. Steam--coal gasification tests were done in bench-scale units at 850°C and 300 psig with coal containing 5 wt percent additive. Alkali metal compounds increased carbon gasification the most, by 31 to 66 percent. Twenty different metal oxides increased carbon gasification by 20 to 30 percent. Inserts coated with Raney

W. P. Haynes; S. J. Gasior; A. J. Forney

1974-01-01

66

Apparatus and method for solar coal gasification  

DOEpatents

Apparatus for using focused solar radiation to gasify coal and other carbonaceous materials. Incident solar radiation is focused from an array of heliostats onto a tower-mounted secondary mirror which redirects the focused solar radiation down through a window onto the surface of a vertically-moving bed of coal, or a fluidized bed of coal, contained within a gasification reactor. The reactor is designed to minimize contact between the window and solids in the reactor. Steam introduced into the gasification reactor reacts with the heated coal to produce gas consisting mainly of carbon monoxide and hydrogen, commonly called "synthesis gas", which can be converted to methane, methanol, gasoline, and other useful products. One of the novel features of the invention is the generation of process steam at the rear surface of the secondary mirror.

Gregg, David W. (Moraga, CA)

1980-01-01

67

The Use of Catalysts in Coal Gasification  

Microsoft Academic Search

Existing and projected shortages of natural gas in the United States have stimulated extensive research to develop the technology for commercial production of synthetic high-Btu gases of pipeline quality. In this general effort, coal gasification has been given particular emphasis because of the extensive availability of coal as a natural re source in this country, and several large-scale process-development programs

James L. Johnson

1976-01-01

68

Novel gas turbine cycles with coal gasification  

Microsoft Academic Search

This paper summarizes the results of a study to devise efficient gas turbine cycles without steam bottoming for use with coal gasification. Substitution of other forms of heat recovery in place of steam bottoming offers a potential cost saving. A novel form of the intercooled-reheat-regenerative cycle was devised with thermal efficiency nearly as high as that of combined cycles. As

S. J. Lehman

1979-01-01

69

Catalytic coal gasification for SNG manufacture  

Microsoft Academic Search

The predevelopment phase of research on the Exxon catalytic coal gasification (CCG) process was completed in early 1978 and included bench-scale research on catalyst recovery and kinetics, the operation of a 6 in. diameter times 30 ft long fluid bed gasifier, and supporting engineering studies. As part of the engineering program, a conceptual design has been developed for a pioneer

J. E. Gallagher Jr.; C. A. Euker Jr.

1980-01-01

70

Optimum Design of Coal Gasification Plants  

E-print Network

with economizers is recommended for Coal Gasification Combined Cycle to maximize energy efficiency. A water quench mode is suggested for hydrogen production because of the need to adjust the H 2O/CO ratio for shift conversion. A partial heat-recovery mode...

Pohani, B. P.; Ray, H. P.; Wen, H.

1982-01-01

71

COAL GASIFICATION ENVIRONMENTAL DATA SUMMARY: ORGANICS  

EPA Science Inventory

The report summarizes the organics data from environmental assessments of several low- and medium-Btu coal gasification processes conducted between 1977 and 1981 under the sponsorship of the U.S. EPA. The data summary focuses on the concentration, composition, and mass flow of or...

72

Low/medium-Btu coal-gasification assessment program for specific sites of two New York utilities  

SciTech Connect

The scope of this study is to investigate the technical and economic aspects of coal gasification to supply low- or medium-Btu gas to the two power plant boilers selected for study. This includes the following major studies (and others described in the text): investigate coals from different regions of the country, select a coal based on its availability, mode of transportation and delivered cost to each power plant site; investigate the effects of burning low- and medium-Btu gas in the selected power plant boilers based on efficiency, rating and cost of modifications and make recommendations for each; and review the technical feasibility of converting the power plant boilers to coal-derived gas. The following two coal gasification processes have been used as the basis for this Study: the Combustion Engineering coal gasification process produces a low-Btu gas at approximately 100 Btu/scf at near atmospheric pressure; and the Texaco coal gasification process produces a medium-Btu gas at 292 Btu/scf at 800 psig. The engineering design and economics of both plants are described. Both plants meet the federal, state, and local environmental requirements for air quality, wastewater, liquid disposal, and ground level disposal of byproduct solids. All of the synthetic gas alternatives result in bus bar cost savings on a yearly basis within a few years of start-up because the cost of gas is assumed to escalate at a lower rate than that of fuel oil, approximately 4 to 5%.

Not Available

1980-12-01

73

An evaluation of integrated-gasification-combined-cycle and pulverized-coal-fired steam plants: Volume 1, Base case studies: Final report  

Microsoft Academic Search

An evaluation of the performance and costs for a Texaco-based integrated gasification combined cycle (IGCC) power plant as compared to a conventional pulverized coal-fired steam (PCFS) power plant with flue gas desulfurization (FGD) is provided. A general set of groundrules was used within which each plant design was optimized. The study incorporated numerous sensitivity cases along with up-to-date operating and

J. Pietruszkiewicz; R. J. Milkavich; G. S. Booras; G. O. Thomas; H. Doss

1988-01-01

74

International energy technology assessment: status of materials for coal gasification  

SciTech Connect

The difficulties in obtaining information on foreign technologies lead to serious limitations on the level of detail in the technology assessment. The extensive commercial operating experience with gasifiers of the Lurgi and Koppers-Totzek varieties has no counterpart in the US. This situation translates into a great deal of engineering data on the operating envelopes of ceramics and alloys. This type of information is crucial to the operation of a Lurgi gasifier, and some of it is translatable to other types of gasifiers. However, the emerging technologies envisaged for the US gasification programs and the developmental foreign programs require a much higher level of materials technology than is represented in current commercial practice. In the area of new materials for coal gasification applications, we find a rough equivalence between the levels of US and foreign technologies. In fact, our assessment indicates that the US holds a lead in the development and testing of alloys for high-temperature service in corrosive environments. However, a few significant technical developments have occurred in foreign countries without comparable domestic advances. These include the pilot-plant experience on refractories for slagging gasifiers (Shell-Koppers, Texaco, and BGC); the development of corrosion-resistant alloys based on refractory metals (BGC); and the long-term high-temperature creep tests (Karslruhe). Foreign organizations can almost always present the disclosure of large amounts of detailed technical information, if they so desire. Information-exchange agreements with the foreign organizations identified in this report may prove fruitful in providing the type of information needed for the US program.

Gehl, S.M.; Natesan, K.

1981-11-01

75

Fixed-bed gasification research using US coals. Volume 7. Gasification of Piney Tipple bituminous coal  

SciTech Connect

A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report is the seventh volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of Piney Tipple bituminous coal. The period of the gasification test was July 18-24, 1983. 6 refs., 20 figs., 17 tabs.

Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

1985-05-01

76

Fixed-bed gasification research using US coals. Volume 4. Gasification of Leucite Hills subbituminous coal  

SciTech Connect

A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report is the fourth volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of Leucite Hills subbituminous coal from Sweetwater County, Wyoming. The period of the gasification test was April 11-30, 1983. 4 refs., 23 figs., 27 tabs.

Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

1985-03-31

77

Coal to electricity - Integrated gasification combined cycle  

NASA Astrophysics Data System (ADS)

An advanced energy conversion system - the integrated gasification combined cycle (IGCC) - has been identified as an efficient and economical means of converting coal to electricity for utility application. Several demonstration projects on a near-commercial scale are approaching the construction stage. A coal conversion facility has been constructed to simulate the operational features of an IGCC. This process evaluation facility (PEF-scale) performs a dual function: (1) acquiring and processing data on the performance of the individual components - coal gasifier, gas clean up, and turbine simulator - that comprise the IGCC concept and (2) simulating the total system in an operational control mode that permits evaluation of system response to imposed load variations characteristic of utility operation. The results to date indicate that an efficient, economical IGCC can be designed so that the gasification/gas clean up plant and the power generation system operate compatibly to meet utility requirements in an environmentally acceptable manner.

Corman, J. C.

1982-04-01

78

ENVIRONMENTAL HAZARD RANKINGS OF POLLUTANTS GENERATED IN COAL GASIFICATION PROCESSES  

EPA Science Inventory

The report gives results of an evaluation and ranking of environmental hazards associated with coal gasification. Applied chemical analytical data were provided by (1) research with an experimental gasifier, and (2) sampling of four commercial gasification processes. Gas, liquid,...

79

Coal gasification developments in Europe -- A perspective  

SciTech Connect

This survey paper will review the development status of coal gasification in Europe and give a broad perspective of the future uptake of the technology. Three main families of gasifier design are currently being developed or demonstrated world-wide, namely fixed bed (also known as moving bed), fluidized bed and entrained flow. Gasifiers belonging to each of these families have been or are being developed in European countries. Of the three families, entrained flow gasifiers are at the most advanced stage of development, with two demonstration projects currently underway: these projects are based on designs developed by Shell and Krupp Koppers. Fixed bed systems have been developed to operate under either slagging or non-slagging conditions, ie, the British Gas-Lurgi and Tampella U-Gas systems, respectively. Fluid bed systems of various designs have also been developed, eg, the Rheinbraun HTW, British Coal and Ahlstrom systems. Gasification cycles can be based on either total or partial gasification, and the above designs represent both these options. In addition, a wide variety of fuel sources can be used in gasifiers, including bituminous coal, lignite, biomass, petroleum coke, etc or, indeed, any combination of these. The major demonstration projects in Europe are at Buggenum in the Netherlands, where a 250 MWe entrained flow gasifier based on Shell technology first gasified coal in December 1993. A further 335 MWe entrained flow gasifier, located at Puertollano in Spain, based on Krupp Koppers Prenflo technology, is at an advanced stage of construction.

Burnard, G.K.; Sharman, P.W.; Alphandary, M. [ETSU, Harwell (United Kingdom)

1994-12-31

80

Assessment of Advanced Coal Gasification Processes  

NASA Technical Reports Server (NTRS)

This report represents a technical assessment of the following advanced coal gasification processes: AVCO High Throughput Gasification (HTG) Process; Bell Single-Stage High Mass Flux (HMF) Process; Cities Service/Rockwell (CS/R) Hydrogasification Process; Exxon Catalytic Coal Gasification (CCG) Process. Each process is evaluated for its potential to produce SNG from a bituminous coal. In addition to identifying the new technology these processes represent, key similarities/differences, strengths/weaknesses, and potential improvements to each process are identified. The AVCO HTG and the Bell HMF gasifiers share similarities with respect to: short residence time (SRT), high throughput rate, slagging and syngas as the initial raw product gas. The CS/R Hydrogasifier is also SRT but is non-slagging and produces a raw gas high in methane content. The Exxon CCG gasifier is a long residence time, catalytic, fluidbed reactor producing all of the raw product methane in the gasifier. The report makes the following assessments: 1) while each process has significant potential as coal gasifiers, the CS/R and Exxon processes are better suited for SNG production; 2) the Exxon process is the closest to a commercial level for near-term SNG production; and 3) the SRT processes require significant development including scale-up and turndown demonstration, char processing and/or utilization demonstration, and reactor control and safety features development.

McCarthy, John; Ferrall, Joseph; Charng, Thomas; Houseman, John

1981-01-01

81

ENCOAL mild coal gasification project. Annual report  

SciTech Connect

This document is the combination of the fourth quarter report (July--September 1993) and the 1993 annual report for the ENCOAL project. The following pages include the background and process description for the project, brief summaries of the accomplishments for the first three quarters, and a detailed fourth quarter report. Its purpose is to convey the accomplishments and current progress of the project. ENCOAL Corporation, has completed the construction of a mild gasification demonstration plant at Triton Coal Company`s Buckskin Mine near Gillette, Wyoming. The process, using Liquids From Coal (LFC) technology developed by SMC and SGI International, utilizes low-sulfur Powder River Basin coal to produce two new fuels, Process Derived Fuel (PDF) and Coal Derived Liquids (CDL). ENCOAL submitted an application to the US Department of Energy (DOE) in August 1989, soliciting joint funding of the project in the third round of the Clean Coal Technology Program. The project was selected by DOE in December, 1989 and the Cooperative Agreement approved in September, 1990. Construction, commissioning, and start-up of the ENCOAL mild coal gasification facility was completed in June of 1992, and the project is currently in the operations phase. Some plant modifications have been required and are discussed in this report.

Not Available

1993-10-01

82

Catalytic effects in coal gasification. Annual report, FY 1980  

Microsoft Academic Search

This annual report, for FY 1980, summarizes the activities of Sandia National Laboratories' program on mineral matter effects in coal gasification. The objective is to determine the effects of mineral matter on the devolatilization of coal and subsequent char gasification. We have selected a basis set of five Eastern bituminous coals whose mineral matter content ranged from <5% to >20%,

Padrick

1981-01-01

83

Fluidized bed gasification of extracted coal  

DOEpatents

Coal or similar carbonaceous solids are extracted by contacting the solids in an extraction zone with an aqueous solution having a pH above 12.0 at a temperature between 65/sup 0/C and 110/sup 0/C for a period of time sufficient to remove bitumens from the coal into said aqueous solution, and the extracted solids are then gasified at an elevated pressure and temperature in a fluidized bed gasification zone (60) wherein the density of the fluidized bed is maintained at a value above 160 kg/m/sup 3/. In a preferred embodiment of the invention, water is removed from the aqueous solution in order to redeposit the extracted bitumens onto the solids prior to the gasification step. 2 figs., 1 tab.

Aquino, D.C.; DaPrato, P.L.; Gouker, T.R.; Knoer, P.

1984-07-06

84

Fluidized bed gasification of extracted coal  

DOEpatents

Coal or similar carbonaceous solids are extracted by contacting the solids in an extraction zone (12) with an aqueous solution having a pH above 12.0 at a temperature between 65.degree. C. and 110.degree. C. for a period of time sufficient to remove bitumens from the coal into said aqueous solution and the extracted solids are then gasified at an elevated pressure and temperature in a fluidized bed gasification zone (60) wherein the density of the fluidized bed is maintained at a value above 160 kg/m.sup.3. In a preferred embodiment of the invention, water is removed from the aqueous solution in order to redeposit the extracted bitumens onto the solids prior to the gasification step.

Aquino, Dolores C. (Houston, TX); DaPrato, Philip L. (Westfield, NJ); Gouker, Toby R. (Baton Rouge, LA); Knoer, Peter (Houston, TX)

1986-01-01

85

Proceedings of the fifth advanced coal gasification symposium  

SciTech Connect

The Fifth Advanced Coal Gasification Symposium, held in Taiyuan, Shanxi, China in September 1987, was sponsored by the Shanxi Provincial Government, Shanxi Science and Technology Association, Shanxi Energy Research Association, and the Taiyuan Coal Gasification Corporation. Opening and closing speeches, summaries of the technical sessions, and lists of delegates are included. Thirteen papers presented by the international delegation of specialists discuss current coal gasification processes and research and development activities. Papers have been indexed separately.

Flowers, A.; Alpert, S.; Beck, B.; Chen, C.; Dalrymple, D.; Gummel, P.; Henley, J.; Hileman, E.; Holmgren, J.; Lau, F.

1987-01-01

86

Catalytic enhancement of coal gasification. Final report  

Microsoft Academic Search

The effect of sodium carbonate catalyst on the gasification of one commercial char and three coals was investigated at four pressures from 250 to 700 psig (18 to 49 atm), peak temperatures from 1270 to 1870°F (690 to 1020°C), and steam\\/oxygen feed ratios from 2.4 to 12.5 lb steam\\/lb oxygen. The Illinois No. 6 char showed the most enhancement. With

E. M. Winter; N. D. Malcosky; C. C. Hong

2008-01-01

87

Fluidized bed injection assembly for coal gasification  

DOEpatents

A coaxial feed system for fluidized bed coal gasification processes including an inner tube for injecting particulate combustibles into a transport gas, an inner annulus about the inner tube for injecting an oxidizing gas, and an outer annulus about the inner annulus for transporting a fluidizing and cooling gas. The combustibles and oxidizing gas are discharged vertically upward directly into the combustion jet, and the fluidizing and cooling gas is discharged in a downward radial direction into the bed below the combustion jet.

Cherish, Peter (Bethel Park, PA); Salvador, Louis A. (Hempfield Township, Westmoreland County, PA)

1981-01-01

88

Recent developments in coal gasification  

SciTech Connect

The authors trace the historical development of the Lurgi fixed-bed gasifier, showing how its application has been expanded. Improvements have been made in the type and size of coal which can be gasified and in the quality of gas produced. Particular attention is given to the Ruhr 100 pressure gasifier and to the British Gas/Lurgi slagging gasifier. Current work includes a programme on fine-coal agglomeration.

Schad, M.K.; Hafke, C.F.

1983-05-01

89

ENCOAL Mild Coal Gasification project  

SciTech Connect

Commissioning of the plant dominated the activities of the ENCOAL field group during this reporting period. The operator training classes were completed, initial plant start-up commenced. On June 17, 1992 all systems were fully integrated and the ENCOAL Mild Gasification Plant became fully operational. The plant operated continuously for 24 hours, and both PDF and CDL were produced. Construction of the project was 100% complete by the end of May. As a result of the construction progress, demobilization of KCI and their subcontractors was concluded. An electrical and instrumentation contract was also awarded during the quarter. This contract, combined with the mechanical maintenance contract awarded earlier, provided excellent assistance for plant commissioning and final construction activities.

Frederick, J.P.

1992-01-01

90

Coal gasification: New challenge for the Beaumont rotary feeder  

NASA Technical Reports Server (NTRS)

The use of rotary feeders in the coal gasification process is described with emphasis on the efficient conversion of coal to clean gaseous fuels. Commercial applications of the rotary feeder system are summarized.

Stelian, J.

1977-01-01

91

The role of high-Btu coal gasification technology  

NASA Astrophysics Data System (ADS)

An analysis is given of the role and economic potential of Lurgi-technology gasification of coal to the year 2000, in relation to other gas-supply options, the further development of gasifier designs, and probable environmental impact. It is predicted that coal gasification may reach 10% of total gas supplies by the year 2000, with Eastern U.S. coal use reaching commercially significant use in the 1990's. It is concluded that coal gasification is the cleanest way of using coal, with minimal physical, chemical, biological and socioeconomic impacts.

German, M. I.

92

A model for moving-bed coal gasification reactors  

Microsoft Academic Search

A steady state model of moving-bed coal gasification reactors has been developed. Model predictions are in agreement with published commercial plant data for Lurgi pressurized gasification reactors and a pilot plant slagging gasifier. The dependence of reactor performance on operating variables has been studied for Illinois and Wyoming coals. For a given coal, maximum efficiency is determined by the coal-to-oxygen

Heeyoung Yoon; James Wei; Morton M. Denn

1978-01-01

93

Wabash River coal gasification repowering project: Public design report  

SciTech Connect

The Wabash River Coal Gasification Repowering Project (the Project), conceived in October of 1990 and selected by the US Department of Energy as a Clean Coal IV demonstration project in September 1991, is expected to begin commercial operations in August of 1995. The Participants, Destec Energy, Inc., (Destec) of Houston, Texas and PSI Energy, Inc., (PSI) of Plainfield, Indiana, formed the Wabash River Coal Gasification Repowering Project Joint Venture (the JV) to participate in the DOE`s Clean Coal Technology (CCT) program by demonstrating the coal gasification repowering of an existing 1950`s vintage generating unit affected by the Clean Air Act Amendments (CAAA). The Participants, acting through the JV, signed the Cooperative Agreement with the DOE in July 1992. The Participants jointly developed, and separately designed, constructed, own, and will operate an integrated coal gasification combined cycle (CGCC) power plant using Destec`s coal gasification technology to repower Unit {number_sign}1 at PSI`s Wabash River Generating Station located in Terre Haute, Indiana. PSI is responsible for the new power generation facilities and modification of the existing unit, while Destec is responsible for the coal gasification plant. The Project demonstrates integration of the pre-existing steam turbine generator, auxiliaries, and coal handling facilities with a new combustion turbine generator/heat recovery steam generator tandem and the coal gasification facilities.

NONE

1995-07-01

94

Dynamic simulation of Exxon's Catalytic Coal-Gasification process  

Microsoft Academic Search

A dynamic simulation of the Catalytic Coal Gasification (CCG) process was done to determine whether the process interactions presented any controllability problems as well as to help design a control scheme for the process. While there were previous dynamic simulation of both fixed and fluidized bed coal gasifiers, these simulations were all performed for noncatalytic gasification processes, and thus would

H. D. Franklin; R. S. Parnas; C. D. Kahn; N. Y. Gaitonde

1982-01-01

95

Method for increasing steam decomposition in a coal gasification process  

DOEpatents

The gasification of coal in the presence of steam and oxygen is significantly enhanced by introducing a thermochemical water- splitting agent such as sulfuric acid, into the gasifier for decomposing the steam to provide additional oxygen and hydrogen usable in the gasification process for the combustion of the coal and enrichment of the gaseous gasification products. The addition of the water-splitting agent into the gasifier also allows for the operation of the reactor at a lower temperature.

Wilson, M.W.

1987-03-23

96

Method for increasing steam decomposition in a coal gasification process  

DOEpatents

The gasification of coal in the presence of steam and oxygen is significantly enhanced by introducing a thermochemical water-splitting agent such as sulfuric acid, into the gasifier for decomposing the steam to provide additional oxygen and hydrogen usable in the gasification process for the combustion of the coal and enrichment of the gaseous gasification products. The addition of the water-splitting agent into the gasifier also allows for the operation of the reactor at a lower temperature.

Wilson, Marvin W. (Fairview, WV)

1988-01-01

97

Fixed-bed gasification research using US coals. Volume 2. Gasification of Jetson bituminous coal  

SciTech Connect

A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report describes the gasification testing of Jetson bituminous coal. This Western Kentucky coal was gasified during an initial 8-day and subsequent 5-day period. Material flows and compositions are reported along with material and energy balances. Operational experience is also described. 4 refs., 24 figs., 17 tabs.

Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

1985-03-31

98

Pneumatic solids feeder for coal gasification reactor  

SciTech Connect

This invention is comprised of a pneumatic feeder system for a coal gasification reactor which includes one or more feeder tubes entering the reactor above the level of the particle bed inside the reactor. The tubes are inclined downward at their outer ends so that coal particles introduced into the tubes through an aperture at the top of the tubes slides downward away from the reactor and does not fall directly into the reactor. Pressurized gas introduced into, or resulting from ignition of recycled combustible gas in a chamber adjacent to the tube ends, propels the coal from the tube into the reactor volume and onto the particle bed. Leveling of the top of the bed is carried out by a bladed rotor mounted on the reactor stirring shaft. Coal is introduced into the tubes from containers above the tubes by means of rotary valves placed across supply conduits. This system avoids placement of feeder hardware in the plenum above the particle bed and keeps the coal from being excessively heated prior to reaching the particle bed.

Notestein, J.E.; Halow, J.S.

1991-12-31

99

Coal gasification: Direct applications and syntheses of chemicals and fuels: A research needs assessment  

Microsoft Academic Search

The DOE Working Group for an Assessment of Coal-Gasification Research Needs (COGARN - coal gasification advanced research needs) has reviewed and evaluated US programs dealing with coal gasification for a variety of applications. Cost evaluations and environmental-impact assessments formed important components of the deliberations. We have examined in some depth each of the following technologies: coal gasification for electricity generation

S. S. Penner; S. B. Alpert; J. M. Beer; M. Denn; W. Haag; R. Magee; E. Reichl; E. S. Rubin; P. R. Solomon; I. Wender

1987-01-01

100

Carbon dioxide sorption capacities of coal gasification residues.  

PubMed

Underground coal gasification is currently being considered as an economically and environmentally sustainable option for development and utilization of coal deposits not mineable by conventional methods. This emerging technology in combination with carbon capture and sorptive CO2 storage on the residual coke as well as free-gas CO2 storage in the cavities generated in the coal seams after gasification could provide a relevant contribution to the development of Clean Coal Technologies. Three hard coals of different rank from German mining districts were gasified in a laboratory-scale reactor (200 g of coal at 800 C subjected to 10 L/min air for 200 min). High-pressure CO2 excess sorption isotherms determined before and after gasification revealed an increase of sorption capacity by up to 42%. Thus, physical sorption represents a feasible option for CO2 storage in underground gasification cavities. PMID:21210659

Kempka, Thomas; Fernndez-Steeger, Toms; Li, Dong-Yong; Schulten, Marc; Schlter, Ralph; Krooss, Bernhard M

2011-02-15

101

Investigation of polycyclic aromatic hydrocarbons from coal gasification.  

PubMed

The hazardous organic pollutants generated from coal gasification, such as polycyclic aromatic hydrocarbons(PAHs), are highly mutagenic and carcinogenic. More researchers have paid particular attention to them. Using air and steam as gasification medium, the experiments of three kinds of coals were carried out in a bench-scale atmospheric fluidized bed gasifier. The contents of the 16 PAHs specified by US EPA in raw coal, slag, bag house coke, cyclone coke and gas were measured by HPLC to study the contents of PAHs in raw coal and the effects of the inherent characters of coals on the formation and release of PAHs in coal gasification. The experimental results showed that the distributions of PAHs in the gasified products are similar to raw coals and the total-PAHs content in coal gasification is higher than in raw coal(except Coal C). The total-PAHs contents increase and then decrease with the rise of fixed carbon and sulfur of coal while there has an opposite variation when volatile matters content increase. The quantities of PAHs reduce with the increase of ash content or the drop of heating value during coal gasification. PMID:15900777

Zhou, Hong-cang; Jin, Bao-sheng; Zhong, Zhao-ping; Huang, Ya-ji; Xiao, Rui; Li, Da-ji

2005-01-01

102

Fixed-bed gasification research using US coals. Volume 10. Gasification of Benton lignite  

SciTech Connect

A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report is the tenth volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of Benton lignite. The period of gasification test was November 1-8, 1983. 16 refs., 22 figs., 19 tabs.

Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

1985-05-01

103

Advanced coal-gasification technical analyses. Appendix 1: technology reviews. Final report, December 1982-September 1985  

SciTech Connect

This document is a result of KRSI's activities to support the GRI/Advisors Committee thru the duration of the contract. It provides an overview of the gasification, shift/methanation, acid-gas removal, and sulfur-recovery technologies for use in coal-to SNG plant design. For selected processes in each technology area, Status Summary reports are presented. The non-proprietary information contained in these reports was utilized to assess the characteristics, efficiencies, and other performance variables of each process relative to criteria developed for each ssess the characteristics, efficiencies and other performance variables of each process relative to criteria developed for each technology area. The results of the assessment are presented in tables that can be utilized for selection of a process best suited for a given application. In the coal-gasification area, status summaries were prepared for Lurgi, GKT, Texaco, BGC/Lurgi, Westinghouse (now KRW), Exxon CCG, Shell and U-Gas processes. The Conventional Shift/Methanation, Combined Shift/Methanation, Direct Methanation and Comflux Methanation processes were selected for review of shift/methanation technology. In the acid-gas-removal technology area, evaluation of Selexol, Rectisol, Benfield and CNG processes is presented. For the sulfur-recovery technology area, Claus, Amoco Direct Oxidation, LO-CAT, Selectox, Stretford and Unisulf processes, were selected for assessment.

Cover, A.E.; Hubbard, D.A.; Jain, S.K.; Shah, K.V.

1986-01-01

104

Coal gasification - the KILnGAS project  

SciTech Connect

The KILnGAS process, a coal gasification technology that was developed by Allis-Chalmers, and is currently being demonstrated on a commercial scale at East Alton, Illinois. The KILnGAS process is designed to convert large volumes of high-sulfur carbonaceous materials, including bituminous and sub-bituminous coals, into environmentally-clean low Btu gaseous (LBG) fuel. With a heating value of approximately 155 Btu/SCF, LBG is perceived to be best suited as a fuel for combustion in large boilers and combustion turbines, such as those used in the electric utility industry. This industry, therefore, is currently viewed as the primary market for the KILnGAS system, particularly in the Eastern half of the nation where extensive high-sulfur coal reserves exist. This paper describes the process and the status of the program. The application of the KILnGAS technology in the utility industry, and the impact this technology can have on acid rain control and coal usage are also discussed. 8 figs.

Deacon, J.S.

1985-01-01

105

Wastewater treatment manual for coal gasification-combined-cycle power plants  

SciTech Connect

The three-volume Wastewater Treatment Manual for GCC Power Plants presents a programmed methodology for the informed user to conceive and develop, size, and cost a wastewater treatment system for the gasification and gas cleanup areas of an integrated gasification-combined cycle (GCC) power plant. Based on the limited information likely to be available at the conceptual level of GCC project development (e.g., gasifier type and coal analysis), the manual first provides information on how to characterize gasification wastewaters from moving-bed and entrained-flow gasification processes. It then provides information on applicable wastewater discharge standards and effluent reuse criteria as a means of establishing the treatment system performance goals. Given these data, the user is guided through a series of worksheets and examples in the development of one or more conceptual-level process flowsheets for an appropriate wastewater treatment system. Detailed information is provided for 28 wastewater treatment processes that may have applicability in a variety of flowsheet configurations. Another series of worksheets allows the calculation of flow and material balances that permit the conceptual-level sizing of treatment equipment. Order-of-magnitude capital and operating costs are calculated from cost curves based on these sizing criteria. Worksheets also are provided for the calculation of levelized revenue requirements, which affords a relatively fast and easy means by which to compare the costs of altemative process flowsheets. Two annotated examples are provided for the Texaco and Shell gasification processes as a means of fully conveying the manual's methodology. Each example illustrates the characterization of wastewater sources, the development of a treatment process flowsheet, sizing of the necessary equipment, and the development of cost estimates

Rosain, R.M.; Davis, M.W.; York, R.J.; Craveiro de Sa, F.A.; Peterson, D.L.; Eis, B.J. (CH2M Hill, Bellevue, WA (United States))

1992-12-01

106

Wastewater treatment manual for coal gasification-combined-cycle power plants  

SciTech Connect

The three-volume Wastewater Treatment Manual for GCC Power Plants presents a programmed methodology for the informed user to conceive and develop, size, and cost a wastewater treatment system for the gasification and gas cleanup areas of an integrated gasification-combined cycle (GCC) power plant. Based on the limited information likely to be available at the conceptual level of GCC project development (e.g., gasifier type and coal analysis), the manual first provides information on how to characterize gasification wastewaters from moving-bed and entrained-flow gasification processes. It then provides information on applicable wastewater discharage standards and effluent reuse criteria as a means of establishing the treatment system performance goals. Given these data, the user is guided through a series of worksheets and examples in the development of one or more conceptual-level process flowsheets for an appropriate wastewater treatment system. Detailed information is provided for 28 wastewater treatment processes that may have applicability in a variety of flowsheet configurations. Another series of worksheets allows the calculation of flow and material balances that permit the conceptual-level sizing of treatment equipment. Order-of-magnitude capital and operating costs are calculated from cost curves based on these sizing criteria. Worksheets also are provided for the calculation of levelized revenue requirements, which affords a relatively fast and easy means by which to compare the costs of alternative process flowsheets. Two annotated samples are provided for the Texaco and Shell gasification processes as a means of fully conveying the manual's methodology. Each sample illustrates the characterization of wastewater sources, the development of a treatment process flowsheet, sizing of the necessary equipment, and the development of cost estimates.

Rosain, R.M.; Davis, M.W.; York, R.J.; Craveoro de Sa, F.A.; Peterson, D.L.; Eis, B.J. (CH2M Hill, Bellevue, WA (United States))

1992-12-01

107

Assessment of advanced coal-gasification processes. [AVCO high throughput gasification in process; Bell High Mass Flux process; CSR process; and Exxon Gasification process  

Microsoft Academic Search

This report represents a technical assessment of the following advanced coal gasification processes: AVCO High Throughput Gasification (HTG) Process, Bell Single - Stage High Mass Flux (HMF) Process, Cities Service\\/Rockwell (CS\\/R) Hydrogasification Process, and the Exxon Catalytic Coal Gasification (CCG) Process. Each process is evaluated for its potential to produce SNG from a bituminous coal. In addition to identifying the

J. McCarthy; J. Ferrall; T. Charng; J. Houseman

1981-01-01

108

Coal gasification systems engineering and analysis. Appendix A: Coal gasification catalog  

NASA Technical Reports Server (NTRS)

The scope of work in preparing the Coal Gasification Data Catalog included the following subtasks: (1) candidate system subsystem definition, (2) raw materials analysis, (3) market analysis for by-products, (4) alternate products analysis, (5) preliminary integrated facility requirements. Definition of candidate systems/subsystems includes the identity of and alternates for each process unit, raw material requirements, and the cost and design drivers for each process design.

1980-01-01

109

POLLUTANTS FROM SYNTHETIC FUELS PRODUCTION: COAL GASIFICATION SCREENING TEST RESULTS  

EPA Science Inventory

Coal gasification test runs have been conducted in a semibatch, fixed-bed laboratory gasifier in order to evaluate various coals and operating conditions for pollutant generation. Thirty-eight tests have been completed using char, coal, lignite, and peat. Extensive analyses were ...

110

Dynamic simulation of Exxon's Catalytic Coal-Gasification process  

NASA Astrophysics Data System (ADS)

A dynamic simulation of the Catalytic Coal Gasification (CCG) process was done to determine whether the process interactions presented any controllability problems as well as to help design a control scheme for the process. While there were previous dynamic simulation of both fixed and fluidized bed coal gasifiers, these simulations were all performed for noncatalytic gasification processes, and thus would not show the process dynamics implications resulting from the unique features of the CCG process. Unique features of closed control loop responses are given. The Exxon Catalytic Coal Gasification process is a novel method for producing methane directly from coal. Its key features from a process dynamics standpoint are use of a catalyst which causes both the highly endothermic gasification and exothermic methanation reactions to occur in the same reactor, separation of product gas in a highly heat-integrated cryogenic section, and recycle of product carbon monoxide and hydrogen back into the reactor.

Franklin, H. D.; Parnas, R. S.; Kahn, C.; Gaitonde, N. Y.

1982-11-01

111

Current experiences in applied underground coal gasification  

NASA Astrophysics Data System (ADS)

The world is experiencing greater stress on its ability to mine and exploit energy resources such as coal, through traditional mining methods. The resources available by extraction from traditional mining methods will have a finite time and quantity. In addition, the high quality coals available are becoming more difficult to find substantially increasing exploration costs. Subsequently, new methods of extraction are being considered to improve the ability to unlock the energy from deep coals and improve the efficiency of the exploitation of the resources while also considering the mitigation of global warming. Underground Coal Gasification (UCG) is a leading commercial technology that is able to maximize the exploitation of the deep coal through extraction of the coal as a syngas (CO and H2) in situ. The syngas is then brought to the surface and efficiently utilized in any of combined cycle power generation, liquid hydrocarbon transport fuel production, fertilizer production or polymer production. Commercial UCG has been successfully operating for more than 50 years at the Yerostigaz facility in Angren, Uzbekistan. Yerostigaz is the only remaining UCG site in the former Soviet Union. Linc Energy currently owns 91.6% of this facility. UCG produces a high quality synthetic gas (syngas), containing carbon monoxide, hydrogen and methane. UCG produced syngas can be economically used for a variety of purposes, including: the production of liquid fuels when combined with Gas to Liquids (GTL) technology power generation in gas turbine combined cycle power stations a feedstock for different petrochemical processes, for example producing chemicals or other gases such as hydrogen, methane, ammonia, methanol and dimethyl ether Linc Energy has proven the combined use of UCG to Gas to Liquids (GTL) technologies. UCG to GTL technologies have the ability to provide energy alternatives to address increasing global demand for energy products. With these technologies, Linc Energy is set to become the leading producer of cleaner liquid fuels and other associated products. UCG has now been developed to a point where the commercialisation of the process is no longer questioned, the economics of the process are compelling, and is now seen as a method that resolves energy security for countries that have access to deep coal previously thought to have no economic value.

Peters, Justyn

2010-05-01

112

Catalytic coal partial gasification in an atmospheric fluidized bed  

Microsoft Academic Search

The coal partial gasification catalyzed by limestone, sodium carbonate and dolomite was studied using a bench-scale atmospheric\\u000a fluidized bed in the presence of air and steam at 900 C. The effects of limestone, sodium carbonate and dolomite on composition,\\u000a heating value, gas yield of product gas and carbon conversion in the catalytic coal partial gasification have been examined.\\u000a The experimental

Hongcang Zhou; Baosheng Jin; Zhaoping Zhong; Yaji Huang; Rui Xiao; Youfei Zheng

2007-01-01

113

Wastewater treatment manual for coal gasification-combined-cycle power plants  

SciTech Connect

The three-volume Wastewater Treatment Manual for GCC Power Plants presents a programmed methodology for the informed user to conceive and develop, size, and cost a wastewater treatment system for the gasification and gas cleanup areas of an integrated gasification-combined cycle (GCC) power plant. Based on the limited information likely to be available at the conceptual level of GCC project development (e.g., gasifier type and coal analysis), the manual first provides information on how to characterize gasification wastewaters from moving-bed and entrained-flow gasification processes. It then provides information on applicable wastewater discharge standards and effluent reuse criteria as a means of establishing the treatment system performance goals. Given these data, the user is guided through a series of worksheets and examples in the development of one or more conceptual-level process flowsheets for an appropriate wastewater treatment system. Detailed information is provided for 28 wastewater treatment processes that may have applicability in a variety of flowsheet configurations. Another series of worksheets allows the calculation of flow and material balances that permit the conceptual-level sizing of treatment equipment. Order-of-magnitude capital and operating costs are calculated from cost curves based on these sizing criteria. Worksheets also are provided for the calculation of levelized revenue requirements, which affords a relatively fast and easy means by which to compare the costs of alternative process flowsheets. Two annotated examples are provided for the Texaco and Shell gasiflcation processes as a means of fully conveying the manual's methodology. Each example illustrates the characterization of wastewater sources, the development of a treatment process flowsheet, sizing of the necessary equipment, and the development of cost estimates.

Rosain, R.M.; Davis, M.W.; York, R.J.; Craveiro de Sa, F.A.; Peterson, D.L.; Eis, B.J. (CH2M Hill, Bellevue, WA (United States))

1992-12-01

114

Start-up method for coal gasification plant  

SciTech Connect

A method is disclosed for initiating operation of a coal gasification plant which includes a gasification reactor and gas cleansing apparatus fabricated in part from materials susceptible to chloride induced stress corrosion cracking the presence of oxygen. The reactor is preheated by combusting a stoichiometric mixture of air and fuel to produce an exhaust gas which is then diluted with steam to produce product gas which contains essentially no free oxygen. The product gas heats the reactor to a temperature profile necessary to maintain autothermic operation of the gasification process while maintaining air oxygen-free environment within the plant apparatus while chlorine is liberated from coal being gasified.

Farnia, K.; Petit, P.J.

1983-04-05

115

Underground coal gasification: a brief review of current status  

SciTech Connect

Coal gasification is a promising option for the future use of coal. Similarly to gasification in industrial reactors, underground coal gasification (UCG) produces syngas, which can be used for power generation or for the production of liquid hydrocarbon fuels and other valuable chemical products. As compared with conventional mining and surface gasification, UCG promises lower capital/operating costs and also has other advantages, such as no human labor underground. In addition, UCG has the potential to be linked with carbon capture and sequestration. The increasing demand for energy, depletion of oil and gas resources, and threat of global climate change lead to growing interest in UCG throughout the world. In this article, we review the current status of this technology, focusing on recent developments in various countries.

Shafirovich, E.; Varma, A. [Purdue University, West Lafayette, IN (United States). School of Chemical Engineering

2009-09-15

116

Utilisation of Malaysian Coal: Merit Pila in the Gasification System  

NASA Astrophysics Data System (ADS)

Gasification is the most efficient Clean Coal Technology. Gasification of Merit Pila coal had been studied in a laboratory-scale, atmospheric fluidized bed gasifier using air and air-steam as fluidizing agent. Merit Pila coal was chosen for the gasification study because of its high reactivity in nitrogen. Determination of the producer gas compositions were conducted using Gas Chromatography. Gasification experiments were conducted at bed temperature of 650-800 C, different equivalence ratios, ER and different bed heights. Low heating value, LHVpg of the producer gas were in the range of 2.0-5.5 MJ/Nm3. Introduction of steam as the gasifying agents had shown significant increased of CO, CH4 and H2 contents in producer gas. LHV also increased about 35% with the presence of steam.

Othman, Nor Fadzilah; Bosrooh, Mohd Hariffin; Majid, Kamsani Abdul

2011-06-01

117

Integration of carbonate fuel cells with advanced coal gasification systems  

NASA Astrophysics Data System (ADS)

Carbonate fuel cells have attributes which make them ideally suited to operate on coal-derived fuel gas; they can convert the methane, hydrogen, and carbon monoxide present in coal derived fuel gas directly to electricity, are not subject to thermodynamic cycle limits as are heat engines, and operate at temperatures compatible with coal gasifiers. Some new opportunities for improved efficiency have been identified in integrated coal gasification/carbonate fuel cells which take advantage of low temperature catalytic coal gasification producing a methane-rich fuel gas, and the internal methane reforming capabilities of Energy Research Corporation's carbonate fuel cells. By selecting the appropriate operating conditions and catalyst in the gasifier, methane formation is maximized to improve gasification efficiency and to take advantage of the heat management aspects of the internal reforming carbonate fuel cell. These advanced integrated gasification/carbonate fuel cell systems are projected to have better efficiencies than gasification/carbonate fuel cell systems employing conventional gasification, and also competing non-fuel cell systems. These improved efficiencies would be accompanied by a corresponding reduction in impact on the environment as well.

Steinfeld, G.; Meyers, S. J.; Hauserman, W. B.

118

Solar coal gasification reactor with pyrolysis gas recycle  

DOEpatents

Coal (or other carbonaceous matter, such as biomass) is converted into a duct gas that is substantially free from hydrocarbons. The coal is fed into a solar reactor (10), and solar energy (20) is directed into the reactor onto coal char, creating a gasification front (16) and a pyrolysis front (12). A gasification zone (32) is produced well above the coal level within the reactor. A pyrolysis zone (34) is produced immediately above the coal level. Steam (18), injected into the reactor adjacent to the gasification zone (32), reacts with char to generate product gases. Solar energy supplies the energy for the endothermic steam-char reaction. The hot product gases (38) flow from the gasification zone (32) to the pyrolysis zone (34) to generate hot char. Gases (38) are withdrawn from the pyrolysis zone (34) and reinjected into the region of the reactor adjacent the gasification zone (32). This eliminates hydrocarbons in the gas by steam reformation on the hot char. The product gas (14) is withdrawn from a region of the reactor between the gasification zone (32) and the pyrolysis zone (34). The product gas will be free of tar and other hydrocarbons, and thus be suitable for use in many processes.

Aiman, William R. (Livermore, CA); Gregg, David W. (Morago, CA)

1983-01-01

119

Underground Coal Gasification Program: FY85 annual report  

Microsoft Academic Search

As part of the Department of Energy's Underground Coal Gasification (UCG) research program, activities at Sandia National Laboratories during FY85 have included laboratory and modeling studies of UCG in Eastern bituminous coals, planning and subsidence studies in support of upcoming Eastern field tests, and post-burn roof stability analyses of the Tono CRIP test. Accomplishments for the year include completion of

1986-01-01

120

Hydrogen manufacture by Lurgi gasification of Oklahoma coal  

NASA Technical Reports Server (NTRS)

Advantages and disadvantages of using the Lurgi gasification process to produce hydrogen from Oklahoma coal are listed. Special attention was given to the production of heat for the process; heat is generated by burning part of pretreated coal in the steam generator. Overall performance of the Lurgi process is summarized in tabular form.

1975-01-01

121

Effects of alkaline metal on coal gasification at pyrolysis and gasification phases  

Microsoft Academic Search

A Chinese high-rank coal was acid-washed and ion-exchanged with Na and K to prepare the H-form, Na-form and K-form coals. After pyrolysis, H-form, Na-form and K-form chars and two additional H-form chars (acid washed Na-form and K-form chars) were prepared to investigate the effects of alkaline metal (AM) on coal gasification at the pyrolysis and gasification phases. The H-form char

Xu Shenqi; Zhou Zhijie; Xiong Jie; Yu Guangsuo; Wang Fuchen

2011-01-01

122

Case-study of a coal gasification-based energy supply system for China  

E-print Network

Case-study of a coal gasification-based energy supply system for China Zheng Hongtao Department gasification-based energy supply system that deploys gasification-based polygeneration technologies to meet clean fuels derived via coal gasification. Emissions of air pollutants in the SC scenario are compared

123

Behavior of coal slag during gasification  

SciTech Connect

This paper is based on the operating experience of an atmospheric pressure, two-stage, entrained flow, air-blown slagging gasifier. The paper briefly describes the design and operation of the gasifier, coal slag mineralogy, and the changes in slag mineralogy encountered during operation due to refractory wear and the reducing atmosphere within the gasifier. The wear rates of different kinds of refractory used in the gasifier are also briefly described. Coal slags, which depend mainly on a high iron oxide content to provide a high slag fluidity during gasification, are quite sensitive to changes in oxygen partial pressure and dissolution of refractory in the slag. Both the removal of FeO and metallic iron and the addition of Al/sub 2/O/sub 3/ and Cr/sub 2/O/sub 3/ result in the precipitation of large volumes of crystallites, which can adversely affect slag viscosity. Concerning refractory wear rates, the burned Al/sub 2/O/sub 3/-Cr/sub 2/O/sub 3/ brick in the high temperature slagging zones showed lower wear rates than unfired monolithic materials of the same general composition. However, thick refractory lining designs using either type showed excessive wear rates in the combustor. The thin refractory studded lining was the only design found acceptable here, and showed good durability on the test panel in the combustor through over 5000 hours of operation. In the lower temperature slagging zones such as the diffuser, burned Al/sub 2/O/sub 3/-Cr/sub 2/O/sub 3/ brick may be acceptable, but rammed unfired refractories are not. For the nonslagging zones, a 90% alumina ramming mix gave satisfactory results.

Bakker, W.T.; Coons, W.C.; Darling, S.L.

1983-12-01

124

POLLUTANTS FROM SYNTHETIC FUELS PRODUCTION: SAMPLING AND ANALYSIS METHODS FOR COAL GASIFICATION  

EPA Science Inventory

The report describes sampling and analysis methods involving a laboratory-scale coal gasification facility used to study the generation, sampling, chemical analysis, process evaluation, and environmental assessment of pollutants from coal gasification. It describes methods for pa...

125

Understanding of phenolic compound production in coal gasification processing  

Microsoft Academic Search

An understanding of phenolic compound production in coal gasification processing was achieved by bench-scale study of the decomposition characteristics of select phenolic compounds in the homogeneous gas phase and over fixed beds of coal char and limestone-derived solids; experiments in a pilot-scale Synthane gasifier to assess the effects of changing initial devolatilization conditions on the formation of phenols from coal;

Fillo

1979-01-01

126

Fixed-bed gasification research using US coals. Volume 6. Gasification of delayed petroleum coke  

SciTech Connect

A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report is the sixth volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of delayed petroleum coke from Pine Bend, MN. The period of the gasification test was June 1-17, 1983. 2 refs., 15 figs., 22 tabs.

Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

1985-05-01

127

Transformation of indigenous iron-bearing phases during coal gasification  

NASA Astrophysics Data System (ADS)

The reactivity of coal toward CO2 and steam is enhanced by indigenous mineral impurities or by added catalysts. The prominence of iron compounds among the natural impurities in coal and the known catalytic effect of metallic iron for carbon gasification suggests that such ``iron-specific'' techniques as Mssbauer spectroscopy and magnetization may provide unique insight into these effects. The early stages of coal gasification have been examined using the cited reactant gases on an Illinois no. 6 coal char at 900-950 C, with no added catalysts. The iron-bearing minerals in the coal transformed in different ways depending on the gaseous environment. The dominant impurity pyrite FeS2 in the raw coal converted during the preliminary inert-gas pyrolysis at 700 C to a pyrrhotite Fe1-xS. During CO2 gasification a major portion of the pyrrhotite was converted into magnetite Fe3O4. By contrast, during steam gasification, the iron remained in less oxidized states with important fractions found as wstite, Fe1-xO, ferrous glass/silicates, and metallic iron. These differences may influence the catalytic activity of the iron in the two gaseous environments.

Jacobs, I. S.; Federighi, C.; McKee, D. W.; Patchen, H. J.

1982-11-01

128

CATALYTIC GASIFICATION OF COAL USING EUTECTIC SALT MIXTURES  

SciTech Connect

This progress report on the Department of Energy project DE-FG-97FT97263 entitled, ''Catalytic Gasification of Coal Using Eutectic Salt Mixtures'', covers the period April-September 1998. The specific aims of the project for this period were to identify appropriate eutectic salt mixture catalysts for the gasification of Illinois No.6 coal, evaluate various impregnation or catalyst addition methods to improve catalyst dispersion, and evaluate gasification performance in a bench-scale fixed bed reactor. The project is being conducted jointly by Clark Atlanta University (CAU), the University of Tennessee Space Institute (UTSI) and the Georgia Institute of Technology (Georgia Tech) with CAU as the prime contractor. Several single salt catalysts and binary and ternary eutectic catalysts were investigated at Clark Atlanta University. Physical mixing and incipient wetness methods were investigated as catalyst addition techniques. Gasification was carried out using TGA at CAU and UTSI and with a fixed-bed reactor at UTSI. The results showed better gasification activity in the presence of the catalysts tested. The eutectic salt studies showed clear agreement between the melting points of the prepared eutectics and reported literature values. The order of catalytic activity observed was ternary > binary > single salt. With the soluble single salt catalysts, the incipient wetness method was found to give better results than physical mixing technique. Also, catalyst preparation conditions such as catalyst loading, drying time and temperature were found to influence the gasification rate. Based on the Clark Atlanta University studies on Task 1, the project team selected the 43.5%Li{sub 2}CO{sub 3}-31.5%Na{sub 2}CO{sub 3}-25%K{sub 2}CO{sub 3} ternary eutectic and the 29%Na{sub 2}CO{sub 3}-71%K{sub 2}CO{sub 3} and 2.3% KNO{sub 3}-97.7%K{sub 2}CO{sub 3} binary eutectic for the fixed bed studies at UTSI. The eutectic salts were found to be highly insoluble in aqueous medium. As a result the technique of adding the eutectic to the raw coal was found to be better than using wet methods. Also, addition of the catalyst to the raw coal appeared to give better gasification results than addition to pyrolyzed coal. In addition, eutectic catalysts added to the coal yielded better gasification rates than rates obtained by mixing the individual salts in the eutectic ratio with the coal. These results, especially with the eutectic catalysts are very significant since the use of the low melting eutectics will reduce the severity of gasification processes.

NONE

2000-04-01

129

CATALYTIC GASIFICATION OF COAL USING EUTECTIC SALT MIXTURES  

SciTech Connect

This progress report on the Department of Energy project DE-FG-97FT97263 entitled, ''Catalytic Gasification of Coal Using Eutectic Salt Mixtures,'' covers the period April-September 1998. The specific aims of the project for this period were to identify appropriate eutectic salt mixture catalysts for the gasification of Illinois No.6 coal, evaluate various impregnation or catalyst addition methods to improve catalyst dispersion, and evaluate gasification performance in a bench-scale fixed bed reactor. The project is being conducted jointly by Clark Atlanta University (CAU), the University of Tennessee Space Institute (UTSI) and the Georgia Institute of Technology (Georgia Tech) with CAU as the prime contractor. Several single salt catalysts and binary and ternary eutectic catalysts were investigated at Clark Atlanta University. Physical mixing and incipient wetness methods were investigated as catalyst addition techniques. Gasification was carried out using TGA at CAU and UTSI and with a fixed-bed reactor at UTSI. The results showed better gasification activity in the presence of the catalysts tested. The eutectic salt studies showed clear agreement between the melting points of the prepared eutectics and reported literature values. The order of catalytic activity observed was ternary > binary > single salt. With the soluble single salt catalysts, the incipient wetness method was found to give better results than physical mixing technique. Also, catalyst preparation conditions such as catalyst loading, drying time and temperature were found to influence the gasification rate. Based on the Clark Atlanta University studies on Task 1, the project team selected the 43.5%Li{sub 2}CO{sub 3}-31.5%Na{sub 2}CO{sub 3}-25%K{sub 2}CO{sub 3} ternary eutectic and the 29%Na{sub 2}CO{sub 3}-71%K{sub 2}CO{sub 3} and 2.3%KNO{sub 3}-97.7%K{sub 2}CO{sub 3} binary eutectic for the fixed bed studies at UTSI. The eutectic salts were found to be highly insoluble in aqueous medium. As a result the technique of adding the eutectic to the raw coal was found to be better than using wet methods. Also, addition of the catalyst to the raw coal appeared to give better gasification results than addition to pyrolyzed coal. In addition, eutectic catalysts added to the coal yielded better gasification rates than rates obtained by mixing the individual salts in the eutectic ratio with the coal. These results, especially with the eutectic catalysts are very significant since the use of the low melting eutectics will reduce the severity of gasification processes.

NONE

1998-10-01

130

CATALYTIC GASIFICATION OF COAL USING EUTECTIC SALT MIXTURES  

SciTech Connect

The project, ''Catalytic Gasification of Coal Using Eutectic Salt Mixtures'', is being conducted jointly by Clark Atlanta University (CAU), the University of Tennessee Space Institute (UTSI) and the Georgia Institute of Technology (GT). The aims of the project are to: identify appropriate eutectic salt mixture catalysts for the gasification of Illinois No.6 coal; evaluate various impregnation or catalyst addition methods to improve catalyst dispersion; evaluate effects of major process variables (e.g., temperature, system pressure, etc.) on coal gasification; evaluate the recovery, regeneration and recycle of the spent catalysts in a bench-scale fixed bed reactor; and conduct thorough analysis and modeling of the gasification process to provide a better understanding of the fundamental mechanisms and kinetics of the process. The eutectic catalysts increased gasification rate significantly. The methods of catalyst preparation and addition had significant effect on the catalytic activity and coal gasification. The incipient wetness method gave more uniform catalyst distribution than that of physical mixing for the soluble catalysts resulting in higher gasification rates for the incipient wetness samples. The catalytic activity increased by varying degrees with catalyst loading. The above results are especially important since the eutectic catalysts (with low melting points) yield significant gasification rates even at low temperatures. Among the ternary eutectic catalysts studied, the system 39% Li{sub 2}CO{sub 3}-38.5% Na{sub 2}CO{sub 3}-22.5% Rb{sub 2}CO{sub 3} showed the best activity and will be used for further bench scale fixed-bed gasification reactor in the next period. Based on the Clark Atlanta University studies in the previous reporting period, the project team selected the 43.5% Li{sub 2}CO{sub 3}-31.5% Na{sub 2}CO{sub 3}-25% K{sub 2}CO{sub 3} ternary eutectic and the 29% Na{sub 2}CO{sub 3}-71% K{sub 2}CO{sub 3} binary eutectic for the fixed-bed studies at UTSI during this reporting period. Temperature was found to have a significant effect on the rate of gasification of coal. The rate of gasification increased up to 1400 F. Pressure did not have much effect on the gasification rates. The catalyst loading increased the gasification rate and approached complete conversion when 10 wt% of catalyst was added to the coal. Upon further increasing the catalyst amount to 20-wt% and above, there was no significant rise in gasification rate. The rate of gasification was lower for a 2:1 steam to char molar ratio (60%) compared to gasification rates at 3.4:1 molar ratio of steam-to-char where the conversion approached 100%. The characterization results of Georgia Tech are very preliminary and inconclusive and will be made available in the next report.

Unknown

1999-04-01

131

Steam-injected gas turbines uneconomical with coal gasification equipment  

SciTech Connect

Researchers at the Electric Power Research Institute conducted a series of engineering and economic studies to assess the possibility of substituting steam-injected gas (STIG) turbines for the gas turbines currently proposed for use in British Gas Corporation (BGC)/Lurgi coal gasification-combined cycle plants. The study sought to determine whether steam-injected gas turbines and intercooled steam-injected gas turbines, as proposed by General Electric would be economically competitive with conventional gas and steam turbines when integrated with coal gasification equipment. The results are tabulated in the paper.

Not Available

1986-09-01

132

Dry coal feeder development program at Ingersoll-Rand Research, Incorporated. [for coal gasification systems  

NASA Technical Reports Server (NTRS)

A dry coal screw feeder for feeding coal into coal gasification reactors operating at pressures up to 1500 psig is described. Results on the feeder under several different modes of operation are presented. In addition, three piston feeder concepts and their technical and economical merits are discussed.

Mistry, D. K.; Chen, T. N.

1977-01-01

133

Fixed-bed gasification research using US coals. Volume 3. Gasification of Rosebud sub-bituminous coal  

SciTech Connect

A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report is the third volume in a series of documents prepared by Black, Sivalls and Bryson, Incorporated and describes the gasification of Rosebud subbituminous coal during the time period November 2-20, 1982. Test results and data are presented for the gasification of the coal and the operation of a slipstream tar scrubber to cool the gas and remove condensed tar. 5 refs., 29 figs., 18 tabs.

Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

1985-03-31

134

Catalytic Gasification of Coal using Eutectic Salt Mixtures  

SciTech Connect

The objectives of this study are to: identify appropriate eutectic salt mixture catalysts for coal gasification; assess agglomeration tendency of catalyzed coal; evaluate various catalyst impregnation techniques to improve initial catalyst dispersion; evaluate effects of major process variables (such as temperature, system pressure, etc.) on coal gasification; evaluate the recovery, regeneration and recycle of the spent catalysts; and conduct an analysis and modeling of the gasification process to provide better understanding of the fundamental mechanisms and kinetics of the process. A review of the collected literature was carried out. The catalysts which have been used for gasification can be roughly classified under the following five groups: alkali metal salts; alkaline earth metal oxides and salts; mineral substances or ash in coal; transition metals and their oxides and salts; and eutectic salt mixtures. Studies involving the use of gasification catalysts have been conducted. However, most of the studies focused on the application of individual catalysts. Only two publications have reported the study of gasification of coal char in CO2 and steam catalyzed by eutectic salt mixture catalysts. By using the eutectic mixtures of salts that show good activity as individual compounds, the gasification temperature can be reduced possibly with still better activity and gasification rates due to improved dispersion of the molten catalyst on the coal particles. For similar metal/carbon atomic ratios, eutectic catalysts were found to be consistently more active than their respective single salts. But the exact roles that the eutectic salt mixtures play in these are not well understood and details of the mechanisms remain unclear. The effects of the surface property of coals and the application methods of eutectic salt mixture catalysts with coal chars on the reactivity of gasification will be studied. Based on our preliminary evaluation of the literature, a ternary eutectic salt mixture consisting of Li- Na- and K- carbonates has the potential as gasification catalyst. To verify the literature reported, melting points for various compositions consisting of these three salts and the temperature range over which the mixture remained molten were determined in the lab. For mixtures with different concentrations of the three salts, the temperatures at which the mixtures were found to be in complete molten state were recorded. By increasing the amount of Li2CO3, the melting temperature range was reduced significantly. In the literature, the eutectic mixtures of Li- Na- and K-carbonates are claimed to have a lower activation energy than that of K2CO3 alone and they remain molten at a lower temperature than pure K2CO3. The slow increase in the gasification rates with eutectics reported in the literature is believed to be due to a gradual penetration of the coals and coal char particles by the molten and viscous catalyst phase. The even spreading of the salt phase seems to increase the overall carbon conversion rate. In the next reporting period, a number of eutectic salts and methods of their application on the coal will be identified and tested.

Atul Sheth; Pradeep Agrawal; Yaw D. Yeboah

1998-12-04

135

Modeling of contaminant transport in underground coal gasification  

SciTech Connect

In order to study and discuss the impact of contaminants produced from underground coal gasification on groundwater, a coupled seepage-thermodynamics-transport model for underground gasification was developed on the basis of mass and energy conservation and pollutant-transport mechanisms, the mathematical model was solved by the upstream weighted multisell balance method, and the model was calibrated and verified against the experimental site data. The experiment showed that because of the effects of temperature on the surrounding rock of the gasification panel the measured pore-water-pressure was higher than the simulated one; except for in the high temperature zone where the simulation errors of temperature, pore water pressure, and contaminant concentration were relatively high, the simulation values of the overall gasification panel were well fitted with the measured values. As the gasification experiment progressed, the influence range of temperature field expanded, the gradient of groundwater pressure decreased, and the migration velocity of pollutant increased. Eleven months and twenty months after the test, the differences between maximum and minimum water pressure were 2.4 and 1.8 MPa, respectively, and the migration velocities of contaminants were 0.24-0.38 m/d and 0.27-0.46 m/d, respectively. It was concluded that the numerical simulation of the transport process for pollutants from underground coal gasification was valid. 42 refs., 13 figs., 1 tab.

Lanhe Yang; Xing Zhang [China University of Mining and Technology, Xuzhou (China). College of Resources and Geosciences

2009-01-15

136

Exxon Catalytic Coal Gasification Process Predevelopment Program. Final project report  

Microsoft Academic Search

This report summarizes the results of work conducted on Predevelopment Research for the Exxon Catalytic Coal Gasification Process. The eighteen-month effort (July 1976-December 1977) was a coordinated program which included operation of a continuous fluidized-bed gasifier, parallel bench-scale research, and engineering studies leading to the preparation of a commercial-scale plant study design and economics for producing SNG from Illinois coal.

T. Kalina; N. C. Nahas

1978-01-01

137

Highly active catalysts from inexpensive raw materials for coal gasification  

Microsoft Academic Search

The present review article focuses on novel methods of converting inexpensive raw materials to active catalysts for low-temperature coal gasification, which can produce clean fuels and valuable feedstock with high thermal efficiency. Precipitation methods using NH3, urea, and Ca(OH)2 make it possible to prepare active, Cl-free iron catalysts on brown coals from an aqueous solution of FeCl3 as the major

Yasuo Ohtsuka; Kenji Asami

1997-01-01

138

Separating hydrogen from coal gasification gases with alumina membranes  

SciTech Connect

Synthesis gas produced in coal gasification processes contains hydrogen, along with carbon monoxide, carbon dioxide, hydrogen sulfide, water, nitrogen, and other gases, depending on the particular gasification process. Development of membrane technology to separate the hydrogen from the raw gas at the high operating temperatures and pressures near exit gas conditions would improve the efficiency of the process. Tubular porous alumina membranes with mean pore radii ranging from about 9 to 22 {Angstrom} have been fabricated and characterized. Based on hydrostatic tests, the burst strength of the membranes ranged from 800 to 1600 psig, with a mean value of about 1300 psig. These membranes were evaluated for separating hydrogen and other gases. Tests of membrane permeabilities were made with helium, nitrogen, and carbon dioxide. Measurements were made at room temperature in the pressure range of 15 to 589 psi. Selected membranes were tested further with mixed gases simulating a coal gasification product gas. 5 refs., 7 figs.

Egan, B.Z. (Oak Ridge National Lab., TN (USA)); Fain, D.E.; Roettger, G.E.; White, D.E. (Oak Ridge K-25 Site, TN (USA))

1991-01-01

139

Thermophysical models of underground coal gasification and FEM analysis  

SciTech Connect

In this study, mathematical models of the coupled thermohydromechanical process of coal rock mass in an underground coal gasification panel are established. Combined with the calculation example, the influence of heating effects on the observed values and simulated values for pore water pressure, stress, and displacement in the gasification panel are fully discussed and analyzed. Calculation results indicate that 38, 62, and 96 days after the experiment, the average relative errors for the calculated values and measured values for the temperature and water pressure were between 8.51-11.14% and 3-10%, respectively; with the passage of gasification time, the calculated errors for the vertical stress and horizontal stress gradually declined, but the simulated errors for the horizontal and vertical displacements both showed a rising trend. On the basis of the research results, the calculated values and the measured values agree with each other very well.

Yang, L.H. [China University of Mining & Technology, Xuzhou (China)

2007-11-15

140

Fuel Nitrogen Evolution during Coal Pyrolysis and Gasification  

NASA Astrophysics Data System (ADS)

The morphology of fuel nitrogen in coal and its fate during pyrolysis and the nitrogen species including N2, HCN and NH3 during coal pyrolysis and gasification have been investigated to clarify the evolution mechanism of fuel nitrogen in heat treatment process. Experimental results show that the morphology of coal nitrogen in the studied Chinese raw coals generally include pyrrolic nitrogen (N-5), pyridinic nitrogen (N-6), quaternary nitrogen (N-Q) and nitrogen-oxide (N-X). Generally, nitrogen in char is transformed to volatile and more stable components during pyrolysis. Char-N is the major source of NOx precursors during temperature programmed pyrolysis in 600-800 C. N-5 and N-X in char is converted to HCN first, and HCN is then hydrogenated to NH3. N-Q in char is the main source of nitrogen gas. The major nitrogenous gas products during rapid coal pyrolysis are N2, HCN and NH3, amongst which N2 is dominant. The yields of N2 and NOx precursors, such as HCN and NH3, increase with increased pyrolysis temperature. The major gaseous nitrogenous products during coal gasification in steam include HCN, NH3 and N2. H2O is the main source of the groups containing hydrogen, which not only participates in the reaction as a gasification agent, but also has catalysis on the reaction.

Che, Defu; Liu, Yinhe; Lin, Junguang

2010-03-01

141

Catalytic gasification of coal with high-pressure steam  

Microsoft Academic Search

Simultaneous equilibria for steam-conversion of coal were computed for temperatures from 800 to 1100 K and for pressures to 600 bar. Real behavior of the gases was taken into account using the equation of state by Redlich and Kwong. An apparatus is described for investigating the gasification of lignite and bituminous coke at high pressures. Considerable accelerations of the reaction

S. Peter; G. Woyke; G. Baumgaertel

1978-01-01

142

Underground Coal Gasification Program: FY84 annual report  

Microsoft Academic Search

As part of the Department of Energy's Underground Coal Gasification research program, activities at Sandia National Laboratories during FY84 have included cornering water jet drill development, subsidence and cavity growth modeling in support of the Tono PSC field experiments, field testing of the CSAMT remote monitoring technique, and laboratory experimentation and site characterization planning in support of the Eastern bituminous

1985-01-01

143

Co-gasification of biomass and coal for methanol synthesis  

Microsoft Academic Search

In recent years, a growing interest has been observed in the application of methanol as an alternative liquid fuel, which can be used directly for powering Otto engines or fuel cells achieving high thermodynamic efficiencies and relatively low environmental impacts. Biomass and coal can be considered as a potential fuel for gasification and further syn-gas production and methanol synthesis. In

Tomasz Chmielniak; Marek Sciazko

2003-01-01

144

Prospects for high-temperature gasification of coal and sludge  

NASA Astrophysics Data System (ADS)

Results from an experimental research work aimed at studying gasification of carbonized coal and sludge in high-temperature steam are reported. The component composition of the obtained gaseous phase and the results from calculation of carbon conversion rate are given.

Bogomolov, A. R.; Shevyrev, S. A.; Alekseev, M. V.

2013-02-01

145

Effect of petroleum coke addition on coal gasification  

NASA Astrophysics Data System (ADS)

The main fuel for power generation is combustion of coal and/or natural gas. Natural gas is expensive but clean and less problematic, whereas coal is the reverse of natural gas. Natural gas resources are expected to last until 2020 where else coal has another 200 years expectancy. To replace the natural gas, synthetic gas (syngas) can be used as a substitute fuel. Syngas can be produced using coal as fuel. In this study we blend petcoke, a cheap solid carboneous fuel as an alternative to coal for the production of syngas using a 30 Kwattheat bubbling fluidized bed gasifier. The equivalent ratio (ER) was set at 2.8 and a gasification temperature was maintained between 680 to 710C by manipulating between the feed flow rates and fluidizing medium. This condition was chosen as it proved to be the optimum based on the work by the same group. Various blend of coal:petcoke between 0 to 100% was analyzed. It was found that a 20:80, petcoke to coal gives a good correlation with 100% coal gasification.

Sinnathambi, Chandra Mohan; Najib, Nur Khadijah Mohamad

2014-10-01

146

Effect of operating conditions on gas components in the partial coal gasification with air\\/steam  

Microsoft Academic Search

With increasing environmental considerations and stricter regulations, coal gasification, especially partial coal gasification,\\u000a is considered to be a more attractive technology than conventional combustion. Partial coal gasification was conducted in\\u000a detail under various experimental conditions in a lab-scale fluidized bed to study the factors that affected gas components\\u000a and heating value, including fluidized air flow rate, coal feed rate, and

Yaji Huang; Baosheng Jin; Zhaoping Zhong; Rui Xiao; Hongcang Zhou

2007-01-01

147

Integrated coal cleaning, liquefaction, and gasification process  

DOEpatents

Coal is finely ground and cleaned so as to preferentially remove denser ash-containing particles along with some coal. The resulting cleaned coal portion having reduced ash content is then fed to a coal hydrogenation system for the production of desirable hydrocarbon gases and liquid products. The remaining ash-enriched coal portion is gasified to produce a synthesis gas, the ash is removed from the gasifier usually as slag, and the synthesis gas is shift converted with steam and purified to produce the high purity hydrogen needed in the coal hydrogenation system. This overall process increases the utilization of as-mined coal, reduces the problems associated with ash in the liquefaction-hydrogenation system, and permits a desirable simplification of a liquids-solids separation step otherwise required in the coal hydrogenation system.

Chervenak, Michael C. (Pennington, NJ)

1980-01-01

148

Thermodynamic analysis and conceptual design for partial coal gasification air preheating coal-fired combined cycle  

NASA Astrophysics Data System (ADS)

The partial coal gasification air pre-heating coal-fired combined cycle (PGACC) is a cleaning coal power system, which integrates the coal gasification technology, circulating fluidized bed technology, and combined cycle technology. It has high efficiency and simple construction, and is a new selection of the cleaning coal power systems. A thermodynamic analysis of the PGACC is carried out. The effects of coal gasifying rate, pre-heating air temperature, and coal gas temperature on the performances of the power system are studied. In order to repower the power plant rated 100 MW by using the PGACC, a conceptual design is suggested. The computational results show that the PGACC is feasible for modernizing the old steam power plants and building the new cleaning power plants.

Xu, Yue; Wu, Yining; Deng, Shimin; Wei, Shirang

2004-02-01

149

Calderon coal gasification Process Development Unit design and test program  

SciTech Connect

The Process Development Unit (PDU) was designed and constructed to demonstrate the novel Calderon gasification/hot gas cleanup process. in the process, run-of-mine high sulfur coal is first pyrolyzed to recover a rich gas (medium Btu gas), after which the resulting char is subjected to airblown gasification to yield a lean gas (low Btu gas). The process incorporates a proprietary integrated system for the conversion of coal to gases and for the hot cleanup of the gases which removes both particulate and sulfur components of the gaseous products. The yields are: a syngas (CO and H[sub 2] mix) suitable for further conversion to liquid fuel (e.g. methanol/gasoline), and a lean gas suitable to fuel the combustion turbine of a combined cycle power generation plant with very low levels of NO[sub x] (15 ppmv). The fused slag (from the gasified char ash content) and the sulfur recovered during the hot gas cleanup will be sold as by-products. The small quantity of spent sorbent generated will be combined with the coal feed as a fluxing agent for the slag. The small quantity of wastewater from slag drainings and steam generation blowdown will be mixed with the coal feed for disposal. The Calderon gasification/hot gas cleanup, which is a completely closed system, operates at a pressure suitable for combined cycle power generation.

Calderon, A.; Madison, E.; Probert, P.

1992-01-01

150

Calderon coal gasification Process Development Unit design and test program  

SciTech Connect

The Process Development Unit (PDU) was designed and constructed to demonstrate the novel Calderon gasification/hot gas cleanup process. in the process, run-of-mine high sulfur coal is first pyrolyzed to recover a rich gas (medium Btu gas), after which the resulting char is subjected to airblown gasification to yield a lean gas (low Btu gas). The process incorporates a proprietary integrated system for the conversion of coal to gases and for the hot cleanup of the gases which removes both particulate and sulfur components of the gaseous products. The yields are: a syngas (CO and H{sub 2} mix) suitable for further conversion to liquid fuel (e.g. methanol/gasoline), and a lean gas suitable to fuel the combustion turbine of a combined cycle power generation plant with very low levels of NO{sub x} (15 ppmv). The fused slag (from the gasified char ash content) and the sulfur recovered during the hot gas cleanup will be sold as by-products. The small quantity of spent sorbent generated will be combined with the coal feed as a fluxing agent for the slag. The small quantity of wastewater from slag drainings and steam generation blowdown will be mixed with the coal feed for disposal. The Calderon gasification/hot gas cleanup, which is a completely closed system, operates at a pressure suitable for combined cycle power generation.

Calderon, A.; Madison, E.; Probert, P.

1992-11-01

151

Method for gasification of deep, thin coal seams  

DOEpatents

A method of gasification of coal in deep, thin seams by using controlled bending subsidence to confine gas flow to a region close to the unconsumed coal face. The injection point is moved sequentially around the perimeter of a coal removal area from a production well to sweep out the area to cause the controlled bending subsidence. The injection holes are drilled vertically into the coal seam through the overburden or horizontally into the seam from an exposed coal face. The method is particularly applicable to deep, thin seams found in the eastern United States and at abandoned strip mines where thin seams were surface mined into a hillside or down a modest dip until the overburden became too thick for further mining.

Gregg, David W. (Moraga, CA)

1982-01-01

152

Method for gasification of deep, thin coal seams. [DOE patent  

DOEpatents

A method of gasification of coal in deep, thin seams by using controlled bending subsidence to confine gas flow to a region close to the unconsumed coal face is given. The injection point is moved sequentially around the perimeter of a coal removal area from a production well to sweep out the area to cause the controlled bending subsidence. The injection holes are drilled vertically into the coal seam through the overburden or horizontally into the seam from an exposed coal face. The method is particularly applicable to deep, thin seams found in the eastern United States and at abandoned strip mines where thin seams were surface mined into a hillside or down a modest dip until the overburden became too thick for further mining.

Gregg, D.W.

1980-08-29

153

Wabash River Coal Gasification Repowering Project: A DOE Assessment  

SciTech Connect

The goal of the U.S. Department of Energy (DOE) Clean Coal Technology Program (CCT) is to furnish the energy marketplace with a number of advanced, more efficient, and environmentally responsible coal utilization technologies through demonstration projects. These projects seek to establish the commercial feasibility of the most promising advanced coal technologies that have developed beyond the proof-of-concept stage. This document serves as a DOE post-project assessment (PPA) of a project selected in CCT Round IV, the Wabash River Coal Gasification Repowering (WRCGR) Project, as described in a Report to Congress (U.S. Department of Energy 1992). Repowering consists of replacing an existing coal-fired boiler with one or more clean coal technologies to achieve significantly improved environmental performance. The desire to demonstrate utility repowering with a two-stage, pressurized, oxygen-blown, entrained-flow, integrated gasification combined-cycle (IGCC) system prompted Destec Energy, Inc., and PSI Energy, Inc., to form a joint venture and submit a proposal for this project. In July 1992, the Wabash River Coal Gasification Repowering Project Joint Venture (WRCGRPJV, the Participant) entered into a cooperative agreement with DOE to conduct this project. The project was sited at PSI Energy's Wabash River Generating Station, located in West Terre Haute, Indiana. The purpose of this CCT project was to demonstrate IGCC repowering using a Destec gasifier and to assess long-term reliability, availability, and maintainability of the system at a fully commercial scale. DOE provided 50 percent of the total project funding (for capital and operating costs during the demonstration period) of $438 million.

National Energy Technology Laboratory

2002-01-15

154

Combined cycle power plant incorporating coal gasification  

DOEpatents

A combined cycle power plant incorporating a coal gasifier as the energy source. The gases leaving the coal gasifier pass through a liquid couplant heat exchanger before being used to drive a gas turbine. The exhaust gases of the gas turbine are used to generate both high pressure and low pressure steam for driving a steam turbine, before being exhausted to the atmosphere.

Liljedahl, Gregory N. (Tariffville, CT); Moffat, Bruce K. (Simsbury, CT)

1981-01-01

155

Catalytic effects in coal gasification. Quarterly report, April-June 1980  

Microsoft Academic Search

This quarterly report, for the period April through June 1980, summarizes the activities of Sandia National Laboratories' program on mineral matter effects in coal gasification. The objective is to determine the effects of mineral matter on the devolatilization of coal and on the subsequent char gasification. We have selected a basis set of Eastern bituminous coals whose mineral matter content,

Padrick

1980-01-01

156

Underground coal gasification field experiment in the high-dipping coal seams  

SciTech Connect

In this article the experimental conditions and process of the underground gasification in the Woniushan Mine, Xuzhou, Jiangsu Province are introduced, and the experimental results are analyzed. By adopting the new method of long-channel, big-section, and two-stage underground coal gasification, the daily gas production reaches about 36,000 m{sup 3}, with the maximum output of 103,700 m{sup 3}. The daily average heating value of air gas is 5.04 MJ/m{sup 3}, with 13.57 MJ/m{sup 3} for water gas. In combustible compositions of water gas, H{sub 2} contents stand at over 50%, with both CO and CH{sub 4} contents over 6%. Experimental results show that the counter gasification can form new temperature conditions and increase the gasification efficiency of coal seams.

Yang, L.H.; Liu, S.Q.; Yu, L.; Zhang, W. [China University of Mining & Technology, Xuzhou (China). College of Resources & Geoscience

2009-07-01

157

Caution marks progress in coal-conversion plan  

Microsoft Academic Search

The contracts let recently by ERDA for the conceptual design of high- and low-Btu gasification projects include the 3800 ton\\/day Conoco Coal Development Co. technology (the slagging Lurgi process); the 2200 ton\\/day Illinois Coal Gasification Group's (COED\\/Cogas process); the 250 million cu ft\\/day Procon Inc. (Hygas process) high-Btu pipeline gas projects; the 1800 ton\\/day W.R. Grance\\/Ebasco ammonia project (Texaco process);

1977-01-01

158

Gasification Characteristics of Coal/Biomass Mixed Fuels  

SciTech Connect

A research project was undertaken that had the overall objective of developing the models needed to accurately predict conversion rates of coal/biomass mixtures to synthesis gas under conditions relevant to a commercially-available coal gasification system configured to co- produce electric power as well as chemicals and liquid fuels. In our efforts to accomplish this goal, experiments were performed in an entrained flow reactor in order to produce coal and biomass chars at high heating rates and temperatures, typical of the heating rates and temperatures fuel particles experience in real systems. Mixed chars derived from coal/biomass mixtures containing up to 50% biomass and the chars of the pure coal and biomass components were subjected to a matrix of reactivity tests in a pressurized thermogravimetric analyzer (TGA) in order to obtain data on mass loss rates as functions of gas temperature, pressure and composition as well as to obtain information on the variations in mass specific surface area during char conversion under kinetically-limited conditions. The experimental data were used as targets when determining the unknown parameters in the chemical reactivity and specific surface area models developed. These parameters included rate coefficients for the reactions in the reaction mechanism, enthalpies of formation and absolute entropies of adsorbed species formed on the carbonaceous surfaces, and pore structure coefficients in the model used to describe how the mass specific surface area of the char varies with conversion. So that the reactivity models can be used at high temperatures when mass transport processes impact char conversion rates, Thiele modulus effectiveness factor relations were also derived for the reaction mechanisms developed. In addition, the reactivity model and a mode of conversion model were combined in a char-particle gasification model that includes the effects of chemical reaction and diffusion of reactive gases through particle pores and energy exchange between the particle and its environment. This char-particle gasification model is capable of predicting the average mass loss rates, sizes, apparent densities, specific surface areas, and temperatures of the char particles produced when co-firing coal and biomass to the type environments established in entrained flow gasifiers operating at high temperatures and elevated pressures. A key result of this work is the finding that the reactivities of the mixed chars were not always in between the reactivities of the pure component chars at comparable gasification conditions. Mixed char reactivity to CO2 was lower than the reactivities of both the pure Wyodak coal and pure corn stover chars to CO2. In contrast, mixed char reactivity to H2O was higher than the reactivities of both the pure Wyodak coal and pure corn stover chars to H2O. This was found to be in part, a consequence of the reduced mass specific surface areas of the coal char particles formed during devolatilization when the coal and biomass particles are co-fired. The biomass particles devolatilize prior to the coal particles, impacting the temperature and the composition of the environment in which the coal particles devolatilize. This situation results in coal char particles within the mixed char that differ in specific surface area and reactivity from the coal char particles produced in the absence of the devolatilizing biomass particles. Due to presence of this affected coal char, it was not possible to develop a mixed char reactivity model that uses linear mixing rules to determine the reactivity of a mixed char from only the reactivities of the pure mixture components. However, it was possible to predict both mixed char specific surface area and reactivity for a wide range of fuel mixture rat os provided the specific surface area and reactivity of the affected coal char particles are known. Using the kinetic parameters determined for the Wyodak coal and corn stover chars, the model was found to adequately predict the observed conversion times and off-gas compositions

Mitchell, Reginald

2013-09-30

159

Corrosion performance of alumina scales in coal gasification environments  

Microsoft Academic Search

Corrosion of metallic structural materials in complex gas environments of coal gasification is a potential problem. The corrosion process is dictated by concentrations of two key constituents: sulfur as HS and Cl as HCl. This paper examines the corrosion performance of alumina scales that are thermally grown on Fe-base alloys during exposure to O\\/S mixed-gas environments. The results are compared

Natesan

1997-01-01

160

Rawlins UCG (underground coal gasification) Demonstration Project site characterization report  

SciTech Connect

The US Department of Energy and Energy International, Inc. have entered into a Cooperative Agreement to conduct a cost-shared UCG field test demonstrating the operation of commercial scale underground coal gasification (UCG) on steeply dipping bed modules to provide synthesis gas for a small scale commercial ammonia plant. The field test and the commercial ammonia plant will be located at the North Knobs site near Rawlins, Wyoming. During this demonstration test, two or more UCG modules will be operated simultaneously until one module is completely consumed and an additional module is brought on line. During this period, the average coal gasification rate will be between 500 and 1200 tons per day. A portion of the raw UCG product gas will be cleaned and converted into a synthesis gas, which will be used as feedstock to a 400--500 ton per day ammonia plant. The UCG facility will continue to operate subsequent to the test demonstration to provide feedstock for the commercial plant. The objective of the geologic site characterization program is to provide a descriptive model that accurately represents the geologic environment of the coal resource that is to be gasified. This model is to be used as an aid in understanding the hydrology of the coal bearing sequence, as a framework for installation of the process wells and the subsequent exploitation of the coal resources. 3 figs., 3 tabs.

Not Available

1989-04-01

161

Encoal mild coal gasification project: Final design modifications report  

SciTech Connect

The design, construction and operation Phases of the Encoal Mild Coal Gasification Project have been completed. The plant, designed to process 1,000 ton/day of subbituminous Power River Basin (PRB) low-sulfur coal feed and to produce two environmentally friendly products, a solid fuel and a liquid fuel, has been operational for nearly five years. The solid product, Process Derived Fuel (PDF), is a stable, low-sulfur, high-Btu fuel similar in composition and handling properties to bituminous coal. The liquid product, Coal Derived Liquid (CDL), is a heavy, low-sulfur, liquid fuel similar in properties to heavy industrial fuel oil. Opportunities for upgrading the CDL to higher value chemicals and fuels have been identified. Significant quantities of both PDF and CDL have been delivered and successfully burned in utility and industrial boilers. A summary of the Project is given.

NONE

1997-07-01

162

Coal gasification: Direct applications and syntheses of chemicals and fuels: A research needs assessment  

SciTech Connect

The DOE Working Group for an Assessment of Coal-Gasification Research Needs (COGARN - coal gasification advanced research needs) has reviewed and evaluated US programs dealing with coal gasification for a variety of applications. Cost evaluations and environmental-impact assessments formed important components of the deliberations. We have examined in some depth each of the following technologies: coal gasification for electricity generation in combined-cycle systems, coal gasification for the production of synthetic natural gas, coal gasifiers for direct electricity generation in fuel cells, and coal gasification for the production of synthesis gas as a first step in the manufacture of a wide variety of chemicals and fuels. Both catalytic and non-catalytic conversion processes were considered. In addition, we have constructed an orderly, long-range research agenda on coal science, pyrolysis, and partial combustion in order to support applied research and development relating to coal gasification over the long term. The COGARN studies were performed in order to provide an independent assessment of research needs in fuel utilization that involves coal gasification as the dominant or an important component. The findings and research recommendations of COGARN are summarized in this publication.

Penner, S.S.; Alpert, S.B.; Beer, J.M.; Denn, M.; Haag, W.; Magee, R.; Reichl, E.; Rubin, E.S.; Solomon, P.R.; Wender, I.

1987-06-01

163

Gas core reactors for coal gasification  

NASA Technical Reports Server (NTRS)

The concept of using a gas core reactor to produce hydrogen directly from coal and water is presented. It is shown that the chemical equilibrium of the process is strongly in favor of the production of H2 and CO in the reactor cavity, indicating a 98% conversion of water and coal at only 1500 K. At lower temperatures in the moderator-reflector cooling channels the equilibrium strongly favors the conversion of CO and additional H2O to CO2 and H2. Furthermore, it is shown the H2 obtained per pound of carbon has 23% greater heating value than the carbon so that some nuclear energy is also fixed. Finally, a gas core reactor plant floating in the ocean is conceptualized which produces H2, fresh water and sea salts from coal.

Weinstein, H.

1976-01-01

164

Heat exchanger for coal gasification process  

DOEpatents

This invention provides a heat exchanger, particularly useful for systems requiring cooling of hot particulate solids, such as the separated fines from the product gas of a carbonaceous material gasification system. The invention allows effective cooling of a hot particulate in a particle stream (made up of hot particulate and a gas), using gravity as the motive source of the hot particulate. In a preferred form, the invention substitutes a tube structure for the single wall tube of a heat exchanger. The tube structure comprises a tube with a core disposed within, forming a cavity between the tube and the core, and vanes in the cavity which form a flow path through which the hot particulate falls. The outside of the tube is in contact with the cooling fluid of the heat exchanger.

Blasiole, George A. (Greensburg, PA)

1984-06-19

165

Hydrogen production by catalytic coal gasification  

Microsoft Academic Search

Coal is catalytically reacted with steam to produce hydrogen. Various Group I metal salts such as KCO, NaCO and borax are used as catalysts. These catalysts are stabilized with fluoride containing salts such as CaF to thereby extend their life. Alternatively, NaF was found to be a thermally stable catalyst for the reaction.

J. A. Starkovich; J. L. Blumenthal

1978-01-01

166

The BGL coal gasification process -- Applications and status  

SciTech Connect

In 1991 British Gas completed a 15 year program for the development and demonstration of the BGL gasification process for Substitute Natural Gas and power generation. The final two objectives in this program at the Westfield Development Centre of British Gas were to demonstrate the suitability of the BGL gasifier for power generation under utility load requirements using typical UK power station coals and to operate the gasifier at pressures up to 65 bar. The first part of the program was an $18 million joint demonstration with National Power and PowerGen and supported by British Coal, the UK Department of Energy and the European Community which confirmed conclusively in tests spanning 40 days of operation that the full range of available UK power station coals can be gasified at very high efficiency in the BGL Gasifier. The development program then concluded with tests on a new, purpose designed, high pressure gasifier to determine the effect of pressure on gasification performance and operability. The use of the new ABB GT 24/26 gas turbines in BGL IGCC plant is explored and the BGL IGCC project in the US Clean Coal Technology Programme (CCTV) is described briefly.

Davies, H.S.; Vierrath, H.E.; Johnson, K.S.; Kluttz, D.E.

1994-12-31

167

Pricetown I underground coal gasification field test: operations report  

SciTech Connect

An Underground Coal Gasification (UCG) field test in bituminous coal was successfully completed near Pricetown, West Virginia. The primary objective of this field test was to determine the viability of the linked vertical well (LVV) technology to recover the 900 foot deep, 6 foot thick coal seam. A methane rich product gas with an average heating value of approximately 250 Btu/SCF was produced at low air injection flow rates during the reverse combustion linkage phase. Heating value of the gas produced during the linkage enhancement phase was 221 Btu/SCF with air injection. The high methane formation has been attributed to the thermal and hydrocracking of tars and oils along with hydropyrolysis and hydrogasification of coal char. The high heating value of the gas was the combined effect of residence time, flow pattern, injection flow rate, injection pressure, and back pressure. During the gasification phase, a gas with an average heating value of 125 Btu/SCF was produced with only air injection, which resulted in an average energy production of 362 MMBtu/day.

Agarwal, A.K.; Seabaugh, P.W.; Zielinski, R.E.

1981-01-01

168

Fixed-bed gasification research using US coals. Volume 11. Gasification of Minnesota peat. [Peat pellets and peat sods  

SciTech Connect

A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a coooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report is the eleventh volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of peat pellets and peat sods during 3 different test periods. 2 refs., 20 figs., 13 tabs.

Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

1985-05-01

169

Method for using fast fluidized bed dry bottom coal gasification  

DOEpatents

Carbonaceous solid material such as coal is gasified in a fast fluidized bed gasification system utilizing dual fluidized beds of hot char. The coal in particulate form is introduced along with oxygen-containing gas and steam into the fast fluidized bed gasification zone of a gasifier assembly wherein the upward superficial gas velocity exceeds about 5.0 ft/sec and temperature is 1500.degree.-1850.degree. F. The resulting effluent gas and substantial char are passed through a primary cyclone separator, from which char solids are returned to the fluidized bed. Gas from the primary cyclone separator is passed to a secondary cyclone separator, from which remaining fine char solids are returned through an injection nozzle together with additional steam and oxygen-containing gas to an oxidation zone located at the bottom of the gasifier, wherein the upward gas velocity ranges from about 3-15 ft/sec and is maintained at 1600.degree.-200.degree. F. temperature. This gasification arrangement provides for increased utilization of the secondary char material to produce higher overall carbon conversion and product yields in the process.

Snell, George J. (Fords, NJ); Kydd, Paul H. (Lawrenceville, NJ)

1983-01-01

170

Plasma-enhanced gasification of low-grade coals for compact power plants  

SciTech Connect

A high temperature of a steam torch ensures an efficient gasification of low-grade coals, which is comparable to that of high-grade coals. Therefore, the coal gasification system energized by microwaves can serve as a moderately sized power plant due to its compact and lightweight design. This plasma power plant of low-grade coals would be useful in rural or sparsely populated areas without access to a national power grid.

Uhm, Han S. [Department of Electrophysics, Kwangwoon University, 447-1 Wolgye-Dong, Nowon-Gu, Seoul 139-701 (Korea, Republic of); Hong, Yong C.; Shin, Dong H.; Lee, Bong J. [Convergence Plasma Research Center, National Fusion Research Institute, 113 Gwahangno, Yuseong-Gu, Daejeon 305-333 (Korea, Republic of)

2011-10-15

171

NETL, USDA design coal-stabilized biomass gasification unit  

SciTech Connect

Coal, poultry litter, contaminated corn, rice hulls, moldly hay, manure sludge - these are representative materials that could be tested as fuel feedstocks in a hybrid gasification/combustion concept studied in a recent US Department of Energy (DOE) design project. DOE's National Energy Technology Laboratory (NETL) and the US Department of Agriculture (USDA) collaborated to develop a design concept of a power system that incorporates Hybrid Biomass Gasification. This system would explore the use of a wide range of biomass and agricultural waste products as gasifier feedstocks. The plant, if built, would supply one-third of electrical and steam heating needs at the USDA's Beltsville (Maryland) Agricultural Research Center. 1 fig., 1 photo.

NONE

2008-09-30

172

Workshop on environmental control technology for coal gasification  

SciTech Connect

This report contains the Proceedings of the Workshop on Environmental Control Technology for Coal Gasification. The Workshop was sponsored by the Electric Power Research Institute and was developed by the Oak Ridge National Laboratory. Papers were presented in six sessions covering a broad range of topics and representing the work of interested groups in the United States, India, South Africa, and the Federal Republic of Germany. Topics covered include EPA's views on pollution control requirements, health and environmental effects, project development, gasification plant operating experience. A Summary Discussion and Perspectives by members of the workshop Planning committee at Oak Ridge Natioonal Laboratory are also included. Twenty papers in this Proceedings have been abstracted and indexed for the Energy Data Base.

Not Available

1983-04-01

173

Steam-Coal Gasification Using CaO and KOH for in Situ Carbon and Sulfur Capture  

E-print Network

Steam-Coal Gasification Using CaO and KOH for in Situ Carbon and Sulfur Capture Nicholas S. Siefert Virginia 26507, United States ABSTRACT: We present experimental results of coal gasification-coal gasification kinetic rate. The syngas composition from the gasifier was roughly 20% methane, 70% hydrogen

Litster, Shawn

174

Modelling and simulation of energy conversion in combined gas-steam power plant integrated with coal gasification  

Microsoft Academic Search

The paper presents the modelling and simulation of energy conversion in technological systems of combined gas-steam power plants integrated with coal gasification. The energy analysis of technological systems of gas-steam power plants is connected with energy analysis of various technologies of coal gasification. The base of the performed energy analysis are the elaborate mathematical models of coal gasification process, and

B. Zaporowski

1996-01-01

175

Catalytic effects in coal gasification. Quarterly report, January-March 1981  

Microsoft Academic Search

This summarizes the activities of Sandia National Laboratories' program on mineral matter effects in coal gasification. The objective of this program is to deverop a fundamental understanding of the mechanism of the catalytic effects of mineral matter on coal gasification, and to use this knowledge for future process improvements. We have performed experiments to ascertain the mechanism of the catalytic

T. D. Padrick; D. D. Dees

1981-01-01

176

Catalytic effects in coal gasification. Quarterly report, October-December 1980  

Microsoft Academic Search

This quarterly report summarizes the activities of Sandia National Laboratories' program on mineral matter effects in coal gasification. The objective of this program is to develop a fundamental understanding of the mechanism of the catalytic effects of mineral matter on coal gasification, and to use this knowledge as the impetus for future process improvements. We have identified reduced iron as

T. D. Padrick; D. D. Dees

1981-01-01

177

Catalytic effects in coal gasification. Quarterly report, April-June 1981  

Microsoft Academic Search

This quarterly report, for the period April through June 1981, summarizes the activities of Sandia National Laboratories' program on mineral matter effects in coal gasification. The objective of this program is to develop a fundamental understanding of the mechanism of the catalytic effects of mineral matter in coal gasification, and to use this knowledge for future process improvements. Experiments using

T. D. Padrick; D. E. Trudell

1982-01-01

178

COAL GASIFICATION ENVIRONMENTAL DATA SUMMARY: LOW- AND MEDIUM-BTU WASTEWATERS  

EPA Science Inventory

The report is a compilation of environmental characterization data for wastewaters from low- and medium-Btu coal gasification facilities. Fixed-bed, entrained-bed, and ash-agglomerating fluidized-bed coal gasification processes were examined. The fixed-bed gasifiers are the Chapm...

179

Wabash River Coal Gasification Repowering Project: A DOE Assessment  

SciTech Connect

The goal of the U.S. Department of Energy (DOE) Clean Coal Technology Program (CCT) is to furnish the energy marketplace with a number of advanced, more efficient, and environmentally responsible coal utilization technologies through demonstration projects. These projects seek to establish the commercial feasibility of the most promising advanced coal technologies that have developed beyond the proof-of-concept stage. This document serves as a DOE post-project assessment (PPA) of a project selected in CCT Round IV, the Wabash River Coal Gasification Repowering (WRCGR) Project, as described in a Report to Congress (U.S. Department of Energy 1992). Repowering consists of replacing an existing coal-fired boiler with one or more clean coal technologies to achieve significantly improved environmental performance. The desire to demonstrate utility repowering with a two-stage, pressurized, oxygen-blown, entrained-flow, integrated gasification combined-cycle (IGCC) system prompted Destec Energy, Inc., and PSI Energy, Inc., to form a joint venture and submit a proposal for this project. In July 1992, the Wabash River Coal Gasification Repowering Project Joint Venture (WRCGRPJV, the Participant) entered into a cooperative agreement with DOE to conduct this project. The project was sited at PSI Energy's Wabash River Generating Station, located in West Terre Haute, Indiana. The purpose of this CCT project was to demonstrate IGCC repowering using a Destec gasifier and to assess long-term reliability, availability, and maintainability of the system at a fully commercial scale. DOE provided 50 percent of the total project funding (for capital and operating costs during the demonstration period) of $438 million. Construction for the demonstration project was started in July 1993. Pre-operational tests were initiated in August 1995, and construction was completed in November 1995. Commercial operation began in November 1995, and the demonstration period was completed in December 1999. The independent evaluation contained herein is based primarily on information provided in Wabash's Final Report (Dowd 2000), as well as other references and bibliographic sources.

National Energy Technology Laboratory

2002-01-15

180

Separation of products from mild coal gasification processes  

SciTech Connect

The primary mild coal gasification product mixture containing noncondensible gas, high-boiling hydrocarbon vapors and entrained fines is difficult to process into the desired pure products: gas, liquids, and dry solids. This challenge for mild coal gasification process development has been studied by surveying the technical literature for suitable separations processes and for similar issues in related processes. The choice for a first-stage solids separation step is standard cyclones, arranged in parallel trains for large-volume applications in order to take advantage of the higher separation efficiency of smaller cyclones. However, mild gasification pilot-plant data show entrainment of ultrafine particles for which standard cyclones have poor separation efficiency. A hot secondary solids separation step is needed for the ultrafine entrainment in order to protect the liquid product from excessive amounts of contaminating solids. The secondary solids separation step is similar to many high-temperature flue-gas applications with an important complicating condition: Mild gasifier vapors form coke on surfaces in contact with the vapors. Plugging of the filter medium by coke deposition is concluded to be the main product separation problem for mild gasification. Three approaches to solution of this problem are discussed in the order of preference: (1) a barrier filter medium made of a perforated foil that is easy to regenerate, (2) a high-efficiency cyclone coupled with recycle of a solids-containing tar fraction for coking/cracking in the gasifier, and (3) a granular moving bed filter with regeneration of the bed material. The condensation of oil vapors diluted by noncondensible gas is analyzed thermodynamically, and the conclusion is that existing commercial oil fractionator designs are adequate as long as the vapor stream does not contain excessive amounts of solids. 34 refs., 4 figs.

Wallman, P.H.

1991-09-11

181

Progress and development trends in coal gasification and liquefaction technologies - New gasification methods developed on a laboratory or large scale  

Microsoft Academic Search

New large-scale and laboratory coal gasification methods are examined. The three stages in gasifier developments, the Lurgi fixed bed reactor, the second generation reactor split into separate sections making it possible to optimize each section, and the third generation hydropyrolysis reactor which reacts the coal with pure hydrogen to produce only methane are described. The review of the evolution of

G. Fumich

1979-01-01

182

Synthetic fuels: Status of the Great Plains coal gasification project  

SciTech Connect

Sponsors of the Great Plains coal gasification project in North Dakota defaulted on a federal loan in the amount of $1.54 billion. The Department of Energy has obtained title to the Great Plains project and is evaluating proposals from investment banking-type companies to assist it in selling the plant and its assets. This fact sheet highlights recent legal action concerning gas purchase agreements and mortgage foreclosure; the status of the project's sponsors' outstanding liability; DOE's progress in evaluating its options; revenue, expense, production, and plant employment data; capital improvement projects; and plant maintenance issues.

Not Available

1987-01-01

183

Lock hopper valves for coal gasification. Final report  

SciTech Connect

The design, fabrication, and testing of two configurations of Lock Hopper Valves is described. These two configurations are intended to meet the requirements for four typical types of service in coal gasification plants. Operating pressures for either configuration is 1600 psi. One configuration is designed for use at temperatures up to 2000/sup 0/F, and the other for temperatures up to 850/sup 0/F. Several unique construction features are employed, including the extensive use of dense alumina ceramic, especially in the high-temperature valve. The description includes details of construction, and problems encountered during fabrication and testing, and proposed solutions to those problems.

Not Available

1981-05-01

184

Differences in gasification behaviors and related properties between entrained gasifier fly ash and coal char  

Microsoft Academic Search

In the study, two fly ash samples from Texaco gasifiers were compared to coal char and the physical and chemical properties and reactivity of samples were investigated by scanning electron microscopy (SEM), SEM-energy-dispersive spectrometry (EDS), X-ray diffraction (XRD), N and CO adsorption method, and isothermal thermogravimetric analysis. The main results were obtained. The carbon content of gasified fly ashes exhibited

Jing Gu; Shiyong Wu; Youqing Wu; Ye Li; Jinsheng Gao

2008-01-01

185

Geochemical Proxies for Enhanced Process Control of Underground Coal Gasification  

NASA Astrophysics Data System (ADS)

Underground coal gasification (UCG) represents a strategy targeting at syngas production for fuel or power generation from in-situ coal seams. It is a promising technique for exploiting coal deposits as an energy source at locations not allowing conventional mining under economic conditions. Although the underlying concept has already been suggested in 1868 and has been later on implemented in a number of field trials and even at a commercial scale, UCG is still facing technological barriers, impeding its widespread application. Field UCG operations rely on injection wells enabling the ignition of the target seam and the supply with oxidants (air, O2) inducing combustion (oxidative conditions). The combustion process delivers the enthalpy required for endothermic hydrogen production under reduction prone conditions in some distance to the injection point. The produced hydrogen - usually accompanied by organic and inorganic carbon species, e.g. CH4, CO, and CO2 - can then be retrieved through a production well. In contrast to gasification of mined coal in furnaces, it is difficult to measure the combustion temperature directly during UCG operations. It is already known that geochemical parameters such as the relative production gas composition as well as its stable isotope signature are related to the combustion temperature and, consequently, can be used as temperature proxies. However, so far the general applicability of such relations has not been proven. In order to get corresponding insights with respect to coals of significantly different rank and origin, four powdered coal samples covering maturities ranging from Ro= 0.43% (lignite) to Ro= 3.39% (anthracite) have been gasified in laboratory experiments. The combustion temperature has been varied between 350 and 900 ? C, respectively. During gasification, the generated gas has been captured in a cryo-trap, dried and the carbon containing gas components have been catalytically oxidized to CO2. Thereafter, the generated CO2 has been analyzed with respect to its stable carbon isotope composition by mass spectrometry. All samples exhibited a similar trend: The ^13C signatures of initially produced CO2 revealed to be relatively light and linearly increasing with temperature until approaching the bulk stable carbon isotope composition of the coal at a certain temperature, where the isotope signature kept virtually constant during further temperature increase. The temperature introducing the range of constant isotope compositions of the produced gas increased with coal rank. Additionally, all coal samples were treated by Rock Eval pyrolysis up to 550 ? C in order to investigate temperature dependent generation of CO and CO2. The results exhibited a linear decrease of the CO2/CO ratio at increasing temperature. Both experimental approaches demonstrated dependencies between the qualitative and the isotope composition of the generated syngas on the one hand and the applied combustion temperature on the other hand and, consequently, the principal applicability of the considered geochemical parameters as temperature proxies for coals of significantly different rank and origin. Although the investigated samples revealed similar trends, the absolute characteristics of the correlation functions (e.g. linear gradients) between geochemical parameters and combustion temperatures differed on an individual sample base, implying a significant additional dependence of the considered geochemical parameters on the coal composition. As a consequence, corresponding experimental approaches are currently continued and refined by involving multi component compound specific isotope analysis, high temperature Rock Eval pyrolysis as well as an enforced consideration of initial coal and oxidant compositions.

Kronimus, A.; Koenen, M.; David, P.; Veld, H.; van Dijk, A.; van Bergen, F.

2009-04-01

186

Advanced hot gas cleaning system for coal gasification processes  

NASA Astrophysics Data System (ADS)

The United States electric industry is entering a period where growth and the aging of existing plants will mandate a decision on whether to repower, add capacity, or do both. The power generation cycle of choice, today, is the combined cycle that utilizes the Brayton and Rankine cycles. The combustion turbine in a combined cycle can be used in a repowering mode or in a greenfield plant installation. Today's fuel of choice for new combined cycle power generation is natural gas. However, due to a 300-year supply of coal within the United States, the fuel of the future will include coal. Westinghouse has supported the development of coal-fueled gas turbine technology over the past thirty years. Working with the U.S. Department of Energy and other organizations, Westinghouse is actively pursuing the development and commercialization of several coal-fueled processes. To protect the combustion turbine and environment from emissions generated during coal conversion (gasification/combustion) a gas cleanup system must be used. This paper reports on the status of fuel gas cleaning technology and describes the Westinghouse approach to developing an advanced hot gas cleaning system that contains component systems that remove particulate, sulfur, and alkali vapors. The basic process uses ceramic barrier filters for multiple cleaning functions.

Newby, R. A.; Bannister, R. L.

1994-04-01

187

Study on CO2 gasification reactivity and physical characteristics of biomass, petroleum coke and coal chars.  

PubMed

Gasification reactivities of six different carbonaceous material chars with CO2 were determined by a Thermogravimetric Analyzer (TGA). Gasification reactivities of biomass chars are higher than those of coke and coal chars. In addition, physical structures and chemical components of these chars were systematically tested. It is found that the crystalline structure is an important factor to evaluate gasification reactivities of different chars and the crystalline structures of biomass chars are less order than those of coke and coal chars. Moreover, initial gasification rates of these chars were measured at high temperatures and with relatively large particle sizes. The method of calculating the effectiveness factor ? was used to quantify the effect of pore diffusion on gasification. The results show that differences in pore diffusion effects among gasification with various chars are prominent and can be attributed to different intrinsic gasification reactivities and physical characteristics of different chars. PMID:24642484

Huo, Wei; Zhou, Zhijie; Chen, Xueli; Dai, Zhenghua; Yu, Guangsuo

2014-05-01

188

Model-based estimation of adiabatic flame temperature during coal gasification  

NASA Astrophysics Data System (ADS)

Coal gasification temperature distribution in the gasifier is one of the important issues. High temperature may increase the risk of corrosion of the gasifier wall or it may cause an increase in the amount of volatile compounds. At the same time, gasification temperature is a dominant factor for high conversion of products and completing the reactions during coal gasification in a short time. In the light of this information it can be said that temperature is one of key parameters of coal gasification to enhance the production of high heating value syngas and maximize refractory longevity. This study aims to predict the adiabatic flame temperatures of Australian bituminous coal and Indonesian roto coal in an entrained flow gasifier using different operating conditions with the ChemCAD simulation and design program. To achieve these objectives, two types of gasification parameters were carried out using simulation of a vertical entrained flow reactor: oxygen-to-coal feed ratio by kg/kg and pressure and steam-to-coal feed ratio by kg/kg and pressure. In the first part of study the adiabatic flame temperatures, coal gasification products and other coal characteristics of two types of coals were determined using ChemCAD software. During all simulations, coal feed rate, coal particle size, initial temperature of coal, water and oxygen were kept constant. The relationships between flame temperature, coal gasification products and operating parameters were fundamentally investigated. The second part of this study addresses the modeling of the flame temperature relation to methane production and other input parameters used previous chapter. The scope of this work was to establish a reasonable model in order to estimate flame temperature without any theoretical calculation. Finally, sensitivity analysis was performed after getting some basic correlations between temperature and input variables. According to the results, oxygen-to-coal feed ratio has the most influential effect on adiabatic flame temperature.

Sarigul, Ihsan Mert

189

DIFFUSION COATINGS FOR CORROSION RESISTANT COMPONENTS IN COAL GASIFICATION SYSTEMS  

SciTech Connect

Heat-exchangers, filters, turbines, and other components in integrated coal gasification combined cycle system must withstand demanding conditions of high temperatures and pressure differentials. Under the highly sulfiding conditions of the high temperature coal gas, the performance of components degrade significantly with time unless expensive high alloy materials are used. Deposition of a suitable coating on a low cost alloy may improve is resistance to such sulfidation attack and decrease capital and operating costs. A review of the literature indicates that the corrosion reaction is the competition between oxidation and sulfidation reactions. The Fe- and Ni-based high-temperature alloys are susceptible to sulfidation attack unless they are fortified with high levels of Cr, Al, and Si. To impart corrosion resistance, these elements need not be in the bulk of the alloy and need only be present at the surface layers.

Gopala N. Krishnan; Ripudaman Malhotra; Angel Sanjurjo

2004-05-01

190

Mild coal gasification screw pyrolyzer development and design  

SciTech Connect

Our objective is to produce information and design recommendations needed for the development of an efficient continuous process for the mild gasification of caking bituminous coals. We have focused on the development of an externally heated pyrolyzer in which the sticky, reacting coal is conveyed by one or more screws. We have taken a multifaceted approach to forwarding the development of the externally-heated screw pyrolyzer. Small scale process experiments on a 38-mm single screw pyrolyzer have been a major part of our effort. Engineering analyses aimed at producing design and scaleup equations have also been important. Process design recommendations follow from these. We critically review our experimental data and experience, and information from the literature and equipment manufactures for the purpose of making qualitative recommendations for improving practical pyrolyzer design and operation. Benchscale experiments are used to supply needed data and test some preliminary concepts. 6 refs., 4 figs., 1 tab.

Camp, D.W.

1990-08-01

191

Lock hopper values for coal gasification plant service  

NASA Technical Reports Server (NTRS)

Although the operating principle of the lock hopper system is extremely simple, valve applications involving this service for coal gasification plants are likewise extremely difficult. The difficulties center on the requirement of handling highly erosive pulverized coal or char (either in dry or slurry form) combined with the requirement of providing tight sealing against high-pressure (possibly very hot) gas. Operating pressures and temperatures in these applications typically range up to 1600 psi (110bar) and 600F (316C), with certain process requirements going even higher. In addition, and of primary concern, is the need for reliable operation over long service periods with the provision for practical and economical maintenance. Currently available data indicate the requirement for something in the order of 20,000 to 30,000 open-close cycles per year and a desire to operate at least that long without valve failure.

Schoeneweis, E. F.

1977-01-01

192

Groundwater Management During Intermediate-to-Deep Underground Coal Gasification  

NASA Astrophysics Data System (ADS)

Underground coal gasification (UCG) is a safe, economic way to extract energy from coal with significant environmental benefits compared with other coal-based energy production methods. However, in the wrong hands, UCG can adversely impact groundwater systems in two ways: 1) by contamination with inorganic and organic compounds; and 2) groundwater depletion. The hydrogeological conditions of UCG are highly site-specific and so the risks to groundwater have to be evaluated on a case-by-case basis. Site selection plays a fundamental role in managing these risks and it is possible to identify the general characteristics that will minimise risks of environmental impacts. However, large volumes of water, much of which will come from groundwater, are consumed during UCG projects, leading to possible significant groundwater depletion at such settings. Insufficient water supplies will impact the quality of the syngas produced by UCG because coal conversion efficiencies will decrease. Furthermore, depletion of groundwater levels may extend beyond the UCG site boundary, with consequent implications for regulatory regimes and any off-site groundwater users. Additional artificial water supplies may therefore be required, although the manner in which the water is delivered to the UCG system will also likely have an impact on syngas quality. Large volumes of water delivered via the injection well will likely impact gasification efficiency because 1) large amounts of heat will be used to vaporise the water leading to suppression of the reactor temperature and inhibition of (endothermic) gasification reactions; and 2) the "steam jacket" originally present around the UCG reactor will be absent, which will lead to further heat loss from the system. Additional water may therefore have to be supplied via the surrounding strata and/or coal seam, thus mimicking the natural conditions prior to groundwater depletion. Much of the hydrogeological modelling to date has focussed on a single UCG reactor and so the groundwater impacts of full commercial scale UCG (where perhaps greater than ten modules could be operated simultaneously) are not fully understood. Careful hydrogeological (coupled with geomechanical and chemical) modelling will be required on a site-by-site basis to ensure that groundwater supplies are adequate, that environmental risks are minimised and that any additional water supplies are delivered efficiently.

Lavis, Shaun; Stanley, Edward; Mostade, Marc; Turner, Matthew

2010-05-01

193

A model approach to highly dispersing catalytic materials in coal for gasification  

Microsoft Academic Search

This project seeks to develop a technique, based on coal surface properties, for highly dispersing catalysts in coal for gasification and to investigate the potential of using potassium carbonate and calcium acetate mixtures as catalysts for coal gasification. The lower cost and higher catalytic activity of the latter compound will produce economic benefits by reducing the amount of K[sub 2]CO[sub

G. M. K. Abotsi; K. B. Bota

1992-01-01

194

Commercial low-Btu coal-gasification plant  

SciTech Connect

In response to a 1980 Department of Energy solicitation, the General Refractories Company submitted a Proposal for a feasibility study of a low Btu gasification facility for its Florence, KY plant. The proposed facility would substitute low Btu gas from a fixed bed gasifier for natural gas now used in the manufacture of insulation board. The Proposal was prompted by a concern over the rising costs of natural gas, and the anticipation of a severe increase in fuel costs resulting from deregulation. The feasibility study consisted of the following tasks: perform preliminary engineering of a gasification facility; provide a definitive full gas cost estimate based upon the preliminary engineering fuel design; determine the preferred source of coal; determine the potential for the disposition of, and income from, by-products; develop a health and safety program; perform an analysis of the risks involved in constructing and operating such a facility; and prepare a Financial Analysis of General Refractories selected Dravo Engineers and Constructors based upon the qualifications of Dravo in the field of coal conversion, and the fact that Dravo has acquired the rights to the Wellman-Galusha technology. Given the various natural gas forecasts available, there seems to be a reasonable possibility that the five-gasifier LBG prices will break even with natural gas prices somewhere between 1984 and 1989. General Refractories recognizes that there are many uncertainties in developing these natural gas forecasts and, if the present natural gas decontrol plan is not fully implemented, some budgetary risks would occur in undertaking the proposed gasification facility. Because of this, General Refractories has decided to wait for more substantiating evidence that natural gas prices will rise as is now being predicted.

none,

1981-11-01

195

Alaska coal gasification feasibility studies - Healy coal-to-liquids plant  

SciTech Connect

The Alaska Coal Gasification Feasibility Study entailed a two-phase analysis of the prospects for greater use of Alaska's abundant coal resources in industrial applications. Phase 1, Beluga Coal Gasification Feasibility Study (Report DOE/NETL 2006/1248) assessed the feasibility of using gasification technology to convert the Agrium fertilizer plant in Nikiski, Alaska, from natural gas to coal feedstock. The Phase 1 analysis evaluated coals from the Beluga field near Anchorage and from the Usibelli Coal Mine near Healy, both of which are low in sulfur and high in moisture. This study expands the results of Phase 1 by evaluating a similar sized gasification facility at the Usibelli Coal mine to supply Fischer-Tropsch (F-T) liquids to central Alaska. The plant considered in this study is small (14,640 barrels per day, bbl/d) compared to the recommended commercial size of 50,000 bbl/d for coal-to-liquid plants. The coal supply requirements for the Phase 1 analysis, four million tons per year, were assumed for the Phase 2 analysis to match the probable capacity of the Usibelli mining operations. Alaska refineries are of sufficient size to use all of the product, eliminating the need for F-T exports out of the state. The plant could produce marketable by-products such as sulfur as well as electric power. Slag would be used as backfill at the mine site and CO{sub 2} could be vented, captured or used for enhanced coalbed methane recovery. The unexpected curtailment of oil production from Prudhoe Bay in August 2006 highlighted the dependency of Alaskan refineries (with the exception of the Tesoro facility in Nikiski) on Alaska North Slope (ANS) crude. If the flow of oil from the North Slope declines, these refineries may not be able to meet the in-state needs for diesel, gasoline, and jet fuel. Additional reliable sources of essential fuel products would be beneficial. 36 refs., 14 figs., 29 tabs., 3 apps.

Lawrence Van Bibber; Charles Thomas; Robert Chaney [Research & Development Solutions, LLC (United States)

2007-07-15

196

Mathematical Modeling of Coal Gasification Processes in a Well-Stirred Reactor: Effects of Devolatilization and Moisture Content  

E-print Network

Mathematical Modeling of Coal Gasification Processes in a Well- Stirred Reactor: Effects in coal and biomass play an important role on the gasification performance of these fuels to simulate the gasification processes in a well-stirred reactor. This model is a first

Qiao, Li

197

Assessment of advanced coal-gasification processes. [AVCO high throughput gasification in process; Bell High Mass Flux process; CS-R process; and Exxon Gasification process  

SciTech Connect

This report represents a technical assessment of the following advanced coal gasification processes: AVCO High Throughput Gasification (HTG) Process, Bell Single - Stage High Mass Flux (HMF) Process, Cities Service/Rockwell (CS/R) Hydrogasification Process, and the Exxon Catalytic Coal Gasification (CCG) Process. Each process is evaluated for its potential to produce SNG from a bituminous coal. In addition to identifying the new technology these processes represent, key similarities/differences, strengths/weaknesses, and potential improvements to each process are identified. The AVCO HTG and the Bell HMF gasifiers share similarities with respect to: short residence time (SRT), high throughput rate, slagging and syngas as the initial raw product gas. The CS/R Hydrogasifier is also SRT but is non-slagging and produces a raw gas high in methane content. The Exxon CCG gasifier is a long residence time, catalytic fluidbed reactor producing all of the raw product methane in the gasifier.

McCarthy, J.; Ferrall, J.; Charng, T.; Houseman, J.

1981-06-01

198

Thermal-Hydrological Sensitivity Analysis of Underground Coal Gasification  

SciTech Connect

This paper presents recent work from an ongoing project at Lawrence Livermore National Laboratory (LLNL) to develop a set of predictive tools for cavity/combustion-zone growth and to gain quantitative understanding of the processes and conditions (natural and engineered) affecting underground coal gasification (UCG). We discuss the application of coupled thermal-hydrologic simulation capabilities required for predicting UCG cavity growth, as well as for predicting potential environmental consequences of UCG operations. Simulation of UCG cavity evolution involves coupled thermal-hydrological-chemical-mechanical (THCM) processes in the host coal and adjoining rockmass (cap and bedrock). To represent these processes, the NUFT (Nonisothermal Unsaturated-saturated Flow and Transport) code is being customized to address the influence of coal combustion on the heating of the host coal and adjoining rock mass, and the resulting thermal-hydrological response in the host coal/rock. As described in a companion paper (Morris et al. 2009), the ability to model the influence of mechanical processes (spallation and cavity collapse) on UCG cavity evolution is being developed at LLNL with the use of the LDEC (Livermore Distinct Element Code) code. A methodology is also being developed (Morris et al. 2009) to interface the results of the NUFT and LDEC codes to simulate the interaction of mechanical and thermal-hydrological behavior in the host coal/rock, which influences UCG cavity growth. Conditions in the UCG cavity and combustion zone are strongly influenced by water influx, which is controlled by permeability of the host coal/rock and the difference between hydrostatic and cavity pressure. In this paper, we focus on thermal-hydrological processes, examining the relationship between combustion-driven heat generation, convective and conductive heat flow, and water influx, and examine how the thermal and hydrologic properties of the host coal/rock influence those relationships. Specifically, we conducted a parameter sensitivity analysis of the influence of thermal and hydrological properties of the host coal, caprock, and bedrock on cavity temperature and steam production.

Buscheck, T A; Hao, Y; Morris, J P; Burton, E A

2009-10-05

199

Interaction and its induced inhibiting or synergistic effects during co-gasification of coal char and biomass char.  

PubMed

Co-gasification of coal char and biomass char was conducted to investigate the interactions between them. And random pore model (RPM) and modified random pore model (MRPM) were applied to describe the gasification behaviors of the samples. The results show that inhibiting effect was observed during co-gasification of corn stalk char with Hulunbeier lignite coal char, while synergistic effects were observed during co-gasification of corn stalk char with Shenmu bituminous coal char and Jincheng anthracite coal char. The inhibiting effect was attributed to the intimate contact and comparable gasification rate between biomass char and coal char, and the loss of the active form of potassium caused by the formation of KAlSiO4, which was proved to be inactive during gasification. While the synergistic effect was caused by the high potassium content of biomass char and the significant difference of reaction rate between coal char and biomass char during gasification. PMID:25280109

Ding, Liang; Zhang, Yongqi; Wang, Zhiqing; Huang, Jiejie; Fang, Yitian

2014-12-01

200

Photoassisted electrolysis applied to coal gasification. Final report, 2 July 1981-1 September 1983  

Microsoft Academic Search

This project was carried out to test the technical feasibility of coal gasification employing semiconductor electrodes with solar energy. The project consisted of five tasks. In Task 1, a literature search was conducted on electrochemistry of coal and carbonaceous materials and conclusions are presented. Topics reviewed include: electrochemistry of various forms of carbon, chemical oxidation and reduction of coal, electrochemical

1983-01-01

201

Performance of solid oxide fuel cells operated with coal syngas provided directly from a gasification process  

Microsoft Academic Search

Solid oxide fuel cells (SOFCs) are presently being developed for gasification integrated power plants that generate electricity from coal at 50+% efficiency. The interaction of trace metals in coal syngas with the Ni-based SOFC anodes is being investigated through thermodynamic analyses and in laboratory experiments, but direct test data from coal syngas exposure are sparsely available. This research effort evaluates

Gregory A. Hackett; Kirk R. Gerdes; Xueyan Song; Yun Chen; V. Shutthanandan; Mark H. Engelhard; Zihua Zhu; Suntharampillai Thevuthasan; Randall Gemmen

2012-01-01

202

Performance of solid oxide fuel cells operaated with coal syngas provided directly from a gasification process  

Microsoft Academic Search

Solid oxide fuel cells (SOFCs) are being developed for integrated gasification power plants that generate electricity from coal at 50% efficiency. The interaction of trace metals in coal syngas with Ni-based SOFC anodes is being investigated through thermodynamic analyses and in laboratory experiments, but test data from direct coal syngas exposure are sparsely available. This effort evaluates the significance of

G. Hackett; K. Gerdes; X. Song; Y. Chen; V. Shutthanandan; M. Englehard; Z. Zhu; S. Thevuthasan; R. Gemmen

2012-01-01

203

Evolution of hydrogen sulfide in a fluidized bed coal gasification reactor  

Microsoft Academic Search

The rates of evolution of hydrogen sulfide have been measured for the steam\\/oxygen gasification of a devolatilized Western Kentucky bituminous coal, a New Mexico subbituminous coal, and a Texas lignite in a pilot-scale fluidized bed reactor, and a phenomenological model has been formulated to correlate the results. The model assumes instantaneous devolatilization and partial combustion of the coal followed by

Robert P. Ma; Richard M. Felder; James K. Ferrell

1989-01-01

204

Simulation of coal gasification in a fluidized bed  

SciTech Connect

In this analysis of coal gasification, a fundamental approach is used where a set of multiphase (Eulerian) fluid dynamic equations, obtained either by a suitable averaging technique (Anderson and Jackson, 1976; Drew, 1971) or the formulations of continuum mechanics (Drew, 1983), is used to describe the conservation of mass, momentum, and energy for three interpenetrating phases. The particles, like the fluidizing gas, are described as interpenetrating continua. Different particle types are treated as distinct phases; in this study, the feed coal and the bed char are represented as separate phases in order to account for their different histories. Constitutive laws account for the exchange of momentum between phases (``drag``) and interphase energy transfer. The stresses within the granular phases are determined by a formulation based on the kinetic theory, characterized by a ``granular temperature``. A computer code, based on this multiphase hydrodynamic model, has been developed at the Morgantown Energy Technology Center for the detailed simulation of gas and particle dynamics in heavily loaded coal conversion processes (Syamlal, Rogers, O`Brien, 1994; Syamlal, 1995). The hydrodynamic simulation showed the reactor operated in a jetting/bubbling mode. A gas jet penetrated a considerable distance into the bed, and then detached as ``bubbles`` which rose to the top of the column. The reaction scheme indicated that the feed coal did not begin to devolatilize until it had traversed this region, because of the time required to heat up. Thus, volatiles were not released in the jetting region of the bed, but higher in the bed. The oxygen fed with the coal, however, reacted immediately with the recirculating hot char. The net effect of the char reaction scheme was to created. CO, which burned in the region where.the jet detached, creating a, fairly stable ``flame``. The tar reaction scheme indicated that none of the tar escaped the bed.

O`Brien, T.J.

1996-12-31

205

Catalytic coal gasification: Identification of active sites: Reporting period, January 15, 1988April 14, 1988  

Microsoft Academic Search

This research uses transient isotope tracing, at steady-state reaction conditions, in combination with surface analysis techniques (secondary ion mass spectrometry (SIMS) and x-ray photoelectron spectroscopy (XPS)). Carbon dioxide gasification of carbon blacks and coal char will be used initially, since this appears to be rate-determining during steam gasification; steam gasification will be used in later experiments. In a typical isotope

J. I. Falconer; L. L. Lauderback

1988-01-01

206

Catalytic coal gasification: identification of active sites. Reporting period: April 15July 14, 1986  

Microsoft Academic Search

This research uses transient isotope tracing, at steady-state reaction conditions, in combination with surface analysis techniques (secondary ion mass spectrometry (SIMS) and x-ray photoelectron spectroscopy (XPS). Carbon dioxide gasification of carbon blacks and coal char will be used initially, since this appears to be rate-determining during steam gasification; steam gasification will be used in later experiments. In a typical isotope

J. L. Falconer; L. L. Lauderback

1986-01-01

207

Catalytic coal gasification: Identification of active sites, January 15, 1987April 14, 1987  

Microsoft Academic Search

This research uses transient isotope tracing, at steady-state reaction conditions, in combination with surface analysis techniques (secondary ion mass spectrometry (SIMS) and x-ray photoelectron spectroscopy (XPS). Carbon dioxide gasification of carbon blacks and coal char will be used initially, since this appears to be rate-determining during steam gasification; steam gasification will be used in later experiments. In a typical isotope

J. L. Falconer; L. L. Lauderback

1987-01-01

208

Catalytic coal gasification: Identification of active sites: (Progress report), April 15, 1988July 14, 1988  

Microsoft Academic Search

This research uses transient isotope tracing, at steady-state reaction conditions, in combination with surface analysis techniques (secondary ion mass spectrometry (SIMS) and x-ray photoelectron spectroscopy (XPS)). Carbon dioxide gasification of carbon blacks and coal char will be used initially, since this appears to be rate-determining during steam gasification; steam gasification will be used in later experiments. In a typical isotope

J. L. Falconer; L. L. Lauderback

1988-01-01

209

Catalytic coal gasification. Identification of active sites. Progress report, January 15April 14, 1986  

Microsoft Academic Search

This research uses transient isotope tracing, at steady-sate reaction conditions, in combination with surface analysis techniques (secondary ion mass spectrometry (SIMS) and x-ray photoelectron spectroscopy (XPS)). Carbon dioxide gasification of carbon blacks and coal char will be used initially, since this appears to be rate-determining during steam gasification; steam gasification will be used in later experiments. In a typical isotope

J. L. Falconer; L. L. Lauderback

1986-01-01

210

Catalytic coal gasification: Identification of active sites: Reporting period, April 15, 1987July 14, 1987  

Microsoft Academic Search

This research uses transient isotope tracing, at steady-state reaction conditions, in combination with surface analysis techniques (secondary ion mass spectrometry (SIMS) and x-ray photoelectron spectroscopy (XPS)). Carbon dioxide gasification of carbon blacks and coal char will be used initially, since this appears to be rate-determining during steam gasification; steam gasification will be used in later experiments. In a typical isotope

J. L. Falconer; L. L. Lauderback

1987-01-01

211

Catalytic coal gasification: Identification of active sites: Final report, October 15, 1985October 14, 1988  

Microsoft Academic Search

This research uses transient isotope tracing, at steady-state reaction conditions, in combination with surface analysis techniques (secondary ion mass spectrometry (SIMS) and x-ray photoelectron spectroscopy (XPS)). Carbon dioxide gasification of carbon blacks and coal char will be used initially, since this appears to be rate-determining during steam gasification; steam gasification will be used in later experiments. In a typical isotope

J. L. Falconer; L. L. Lauderback

1989-01-01

212

Catalytic coal gasification: Identification of active sites: Reporting period, October 15, 1987January 14, 1988  

Microsoft Academic Search

This research uses transient isotope tracing, at steady-state reaction conditions, in combination with surface analysis techniques (secondary ion mass spectrometry (SIMS) and x-ray photoelectron spectroscopy (XPS)). Carbon dioxide gasification of carbon blacks and coal char will be used initially, since this appears to be rate-determining during steam gasification; steam gasification will be used in later experiments. In a typical isotope

J. L. Falconer; L. L. Lauderback

1988-01-01

213

Catalytic coal gasification: Identification of active sites, October 15, 1986January 14, 1987  

Microsoft Academic Search

This research uses transient isotope tracing, at steady-state reaction conditions, in combination with surface analysis techniques (secondary ion mass spectrometry (SIMS) and x-ray photoelectron spectroscopy (XPS)). Carbon dioxide gasification of carbon blacks and coal char will be used initially, since this appears to be rate-determining during steam gasification; steam gasification will be used in later experiments. In a typical isotope

J. L. Falconer; L. L. Lauderback

1987-01-01

214

ENCOAL mild coal gasification project public design and construction report  

SciTech Connect

This Public Design Report describes the 1000 ton per day ENCOAL mild coal gasification demonstration plant now in operation at the Buckskin Mine near Gillette, Wyoming. The objective of the project is to demonstrate that the proprietary Liquids From Coal (LFC) technology can reliably and economically convert low Btu PRB coal into a superior, high-Btu solid fuel (PDF), and an environmentally attractive low-sulfur liquid fuel (CDL). The Project`s plans also call for the production of sufficient quantities of PDF and CDL to permit utility companies to carry out full scale burn tests. While some process as well as mechanical design was done in 1988, the continuous design effort was started in July 1990. Civil construction was started in October 1990; mechanical erection began in May 1991. Virtually all of the planned design work was completed by July 1991. Most major construction was complete by April 1992 followed by plant testing and commissioning. Plant operation began in late May 1992. This report covers both the detailed design and initial construction aspects of the Project.

NONE

1994-12-01

215

Utilization of lightweight materials made from coal gasification slags  

SciTech Connect

Praxis is working on a DOE/METC funded project to demonstrate the technical and economic feasibility of making lightweight and ultra- lightweight aggregates from slags left as solid by-products from the coal gasification process. These aggregates are produced by controlled heating of the slags to temperatures ranging between 1600 and 1900{degrees}F. Over 10 tons of expanded slag lightweight aggregates (SLA) were produced using a direct-fired rotary kiln and a fluidized bed calciner with unit weights varying between 20 and 50 lb/ft{sup 3}. The slag-based aggregates are being evaluated at the laboratory scale as substitutes for conventional lightweight aggregates in making lightweight structural concrete, roof tiles, blocks, insulating concrete, and a number of other applications. Based on the laboratory data, large-scale testing will be performed and the durability of the finished products evaluated. Conventional lightweight aggregates made from pyroprocessing expansible shales or clays are produced for $30/ton. The net production costs of SLA are in the range of $22 to $24/ton for large systems (44 t/d) and $26-$30/ton for small systems (220 t/d). Thus, the technology provides a good opportunity for economic use of gasification slags.

NONE

1996-07-08

216

Preburn versus postburn mineralogical and geochemical characteristics of overburden and coal at the Hanna, Wyoming underground coal gasification site  

SciTech Connect

Hundreds of mineralogic and geochemical tests were done under US Department of Energy contracts on core samples taken from the Hanna underground coal gasification site. These tests included x-ray diffraction studies of minerals in coal ash, overburden rocks, and heat-altered rocks; x-ray fluorescence analyses of oxides in coal ash and heat-altered rocks; semi-quantitative spectrographic analyses of elements in coal, overburden, and heat-altered rocks; chemical analyses of elements and compounds in coal, overburden, and heat-altered rocks and ASTM proximate and ultimate analyses of coal and heat-altered coal. These data sets were grouped, averaged, and analyzed to provide preburn and postburn mineralogic and geochemical characteristics of rock units at the site. Where possible, the changes in characteristics from the preburn to the postburn state are related to underground coal gasification processes. 11 references, 13 figures, 8 tables.

Oliver, R.L.; Youngberg, A.D.

1983-12-01

217

Corrosion performance of alumina scales in coal gasification environments  

SciTech Connect

Corrosion of metallic structural materials in complex gas environments of coal gasification is a potential problem. The corrosion process is dictated by concentrations of two key constituents: sulfur as H{sub 2}S and Cl as HCl. This paper examines the corrosion performance of alumina scales that are thermally grown on Fe-base alloys during exposure to O/S mixed-gas environments. The results are compared with the performance of chromia-forming alloys in similar environments. The paper also discusses the available information on corrosion performance of alloys whose surfaces were enriched with Al by the pack-diffusion process, by the electrospark deposition process, or by weld overlay techniques.

Natesan, K.

1997-02-01

218

Fluidized-bed catalytic coal-gasification process. [US patent; pretreatment to minimize agglomeration  

Microsoft Academic Search

Coal or similar carbonaceous solids impregnated with gasification catalyst constituents are oxidized by contact with a gas containing between 2 vol % and 21 vol % oxygen at a temperature between 50 and 250°C in an oxidation zone and the resultant oxidized, catalyst impregnated solids are then gasified in a fluidized bed gasification zone at an elevated pressure. The oxidation

C. A. Jr. Euker; R. D. Wesselhoft; J. J. Dunkleman; D. C. Aquino; T. R. Gouker

1981-01-01

219

Coal gasification. Quarterly report, January-March 1979. [US DOE supported  

SciTech Connect

Progress in DOE-supported coal gasification pilot plant projects is reported: company, location, contract number, funding, process description, history and progress in the current quarter. Two support projects are discussed: preparation of a technical data book and mathematical modeling of gasification reactors. (LTN)

None

1980-01-01

220

Organic contaminants in groundwater mar an underground coal gasification site in northeastern Wyoming  

Microsoft Academic Search

Three groundwater samples collected near two underground coal gasification (UCG) sites 15 months after the end of gasification were analysed for dissolved organic contaminants. The contaminants consisted of phenols, aromatic carboxylic acids, aromatic hydrocarbons, ketones, aldehydes, pyridines, quinolines, isoquinolines, and aromatic amines. Concentrations ranged up to about 50 ppm with large variations both in the relative concentrations of acidic, neutral,

Daniel H. Stuermer; Douglas J. Ng; Clarence J. Morris

1982-01-01

221

DYNAMIC MODELING OF A PILOT-SCALE FLUIDIZED-BED COAL GASIFICATION REACTOR  

EPA Science Inventory

The paper describes a dynamic mathematical model of a pressurized fluidized-bed coal gasification reactor, developed and used to correlate data from a pilot-scale reactor. The model accounts for pyrolysis, oxidation, char gasification and subsequent gas-phase reactions, fines elu...

222

Distributed optical fiber temperature sensor applied in underground coal gasification system  

NASA Astrophysics Data System (ADS)

Distributed optical fiber temperature sensor (DTS) for underground coal gasification (UCG) system using is studied in this paper. By measuring temperature of reacting mine gasification process can be controlled. Calibration of DTS and experiment result are introduced. The results show that, DTS can play an important role in UCG systems.

Wang, Jianfeng; Hu, Chuanlong; Zhang, Zaixuan; Gong, Huaping; Jin, Yongxing; Shen, Changyu

2010-12-01

223

ANALYSES OF GRAB SAMPLES FROM FIXED-BED COAL GASIFICATION PROCESSES  

EPA Science Inventory

The report gives results of an analytical screening of selected effluent samples from operating coal gasification units. The work was done to aid in planning for future more comprehensive environmental test programs which will be conducted at gasification units both in the U.S. a...

224

COAL GASIFICATION/GAS CLEANUP TEST FACILITY. VOLUME 5. PRELIMINARY ENVIRONMENTAL ASSESSMENT OF THE GASIFICATION AND GAS CLEANING OF NORTH CAROLINA PEAT  

EPA Science Inventory

The report gives results from test runs at a small pilot-scale coal gasification and gas purification facility using North Carolina peat. Results from the peat gasification are compared with those obtained previously with a New Mexico subbituminous coal. The peat gas produced had...

225

Utilization of solid wastes from the gasification of coal-water slurries  

SciTech Connect

It was found that only fly and bottom ashes are the solid wastes of water-coal slurry gasification in a direct-flow gasifier. The yields and chemical compositions of fly and bottom ashes obtained after the gasification of water-coal slurries prepared using brown (B) and long-flame (D) coals from the Berezovskii and Mokhovskii strip mines (Kansk-Achinsk and Kuznetsk Basins, respectively) were characterized. Based on an analysis of currently available information, the areas of utilization of fly and bottom ashes after water-coal slurry gasification with dry ash removal were summarized. The use of these wastes in the construction of high-ways and earthwork structures (for the parent coals of B and D grades) and in the manufacture of ash concrete (for the parent coal of D grade) is most promising.

M.Y. Shpirt; N.P. Goryunova [Institute for Fossil Fuels, Moscow (Russian Federation)

2009-07-01

226

Applied research and evaluation of process concepts for liquefaction and gasification of western coals. Final report  

SciTech Connect

Fourteen sections, including five subsections, of the final report covering work done between June 1, 1975 to July 31, 1980 on research programs in coal gasification and liquefaction have been entered individually into EDB and ERA. (LTN)

Wiser, W. H.

1980-09-01

227

Methodology for technology evaluation under uncertainty and its application in advanced coal gasification processes  

E-print Network

Integrated gasification combined cycle (IGCC) technology has attracted interest as a cleaner alternative to conventional coal-fired power generation processes. While a number of pilot projects have been launched to ...

Gong, Bo, Ph. D. Massachusetts Institute of Technology

2011-01-01

228

Large pilot plant alternatives for scaleup of the catalytic coal gasification process. Final report  

Microsoft Academic Search

This is the final report for US Department of Energy Contract No. EX-76-C-01-2480, Scaleup Requirements of the Exxon Catalyzed Coal Gasification Process. The objective was to develop the information necessary to determine if an existing DOE large pilot plant could be used to obtain the scaleup data necessary to design and construct a Catalytic Coal Gasification (CCG) pioneer plant with

1979-01-01

229

Hanna, Wyoming underground coal gasification data base. Volume 1. General information and executive summary  

SciTech Connect

This report is part of a seven-volume series on the Hanna, Wyoming, underground coal gasification field tests. Volume 1 is a summary of the project and each of Volumes 2 through 6 describes a particular test. Volume 7 is a compilation. This report covers: (1) history of underground coal gasification leading to the Hanna tests; (2) area characteristics (basic meteorological and socioeconomic data); (3) site selection history; (4) site characteristics; (5) permitting; and (6) executive summary. 5 figs., 15 tabs.

Bartke, T.C.; Fischer, D.D.; King, S.B.; Boyd, R.M.; Humphrey, A.E.

1985-08-01

230

Coal conversion submodels for design applications at elevated pressures. Part II. Char gasification  

Microsoft Academic Search

This paper surveys the database on char gasification at elevated pressures, first, to identify the tendencies that are essential to rational design of coal utilization technology, and second, to validate a gasification mechanism for quantitative design calculations. Four hundred and fifty-three independent tests with 28 different coals characterized pressures from 0.02 to 3.0MPa, CO2 and steam mole percentages from 0

Gui-Su Liu; Stephen Niksa

2004-01-01

231

Solar gasification of coal, activated carbon, coke and coal and biomass mixtures  

NASA Astrophysics Data System (ADS)

The gasification of subbituminous coal, activated carbon, coke and a mixture of coal and biomass by direct solar irradiation in a solar furnace is investigated. Sunlight concentrated by a 23-kW solar furnace was focused directly on the fuel being gasified in a gravity-fed gasifier through a window in the reactor, and steam or CO2 was passed through the bed to react with the fuel and form a combustible product gas. Experiments performed with coal and steam resulted in the conversion of more than 40% of the sunlight arriving at the reactor focus into chemical fuel, with production rate increasing with solar power and product gas composition and thus gas heating value remaining constant. A typical moisture-free gas composition obtained consists of 54% H2, 25% CO, 16% CO2, 4% CH4 and 1% higher hydrocarbons. Experiments with activated carbon and a uniform mixture of coal and biomass resulted in similar conversion efficiencies but slightly different product gas compositions, while coke showed a lower efficiency. Advantages of solar gasification over conventional oxygen-blown gasifiers are indicated.

Gregg, D. W.; Taylor, R. W.; Campbell, J. H.; Taylor, J. R.; Cotton, A.

1980-01-01

232

Online compositional analysis in coal gasification environment using laser-induced plasma technology  

NASA Astrophysics Data System (ADS)

Integrated Gasification Combined Cycle (IGCC) power plants have great potential for future clean-coal power generation. Today, the quality of coal is measured by sampling coal using various offline methods, and the syn-gas composition is determined by taking samples downstream of the gasifier and measured by gas chromatograph (GC). Laser induced plasma technology has demonstrated high sensitivity for elementary detection. The capability of free space transmission and focusing of laser beam makes laser induced plasma a unique technology for online compositional analysis in coal gasification environment and optimization control.

Deng, Kung-Li; Wu, Juntao; Wang, Zhe; Lee, Boon; Guida, Renato

2006-08-01

233

Chemometric Study of the Ex Situ Underground Coal Gasification Wastewater Experimental Data.  

PubMed

The main goal of the study was the analysis of the parameters of wastewater generated during the ex situ underground coal gasification (UCG) experiments on lignite from Belchatow, and hard coal from Ziemowit and Bobrek coal mines, simulated in the ex situ reactor. The UCG wastewater may pose a potential threat to the groundwater since it contains high concentrations of inorganic (i.e., ammonia nitrogen, nitrites, chlorides, free and bound cyanides, sulfates and trace elements: As, B, Cr, Zn, Al, Cd, Co, Mn, Cu, Mo, Ni, Pb, Hg, Se, Ti, Fe) and organic (i.e., phenolics, benzene and their alkyl derivatives, and polycyclic aromatic hydrocarbons) contaminants. The principal component analysis and hierarchical clustering analysis enabled to effectively explore the similarities and dissimilarities between the samples generated in lignite and hard coal oxygen gasification process in terms of the amounts and concentrations of particular components. The total amount of wastewater produced in lignite gasification process was higher than the amount generated in hard coal gasification experiments. The lignite gasification wastewater was also characterized by the highest contents of acenaphthene, phenanthrene, anthracene, fluoranthene, and pyrene, whereas hard coal gasification wastewater was characterized by relatively higher concentrations of nitrites, As, Cr, Cu, benzene, toluene, xylene, benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, and benzo(a)pyrene. PMID:23136453

Smoli?ski, Adam; Sta?czyk, Krzysztof; Kapusta, Krzysztof; Howaniec, Natalia

2012-11-01

234

Simultaneous removal of HS and NH in coal gasification processes. [Quarterly] report, September 2, 1993December 31, 1993  

Microsoft Academic Search

Nitrogen (N) occurs in coal in the form of tightly bound organic ring compounds typically at levels of 1 to 2 wt % on a dry-ash-free basis. During, coal gasification, this fuelbound nitrogen is released principally as ammonia and nitrogen, with smaller levels of HCN. The formation of NH in a coal gasification processes is a function of the fuel

K. Jothimurugesan; A. A. Adeyiga; S. K. Gangwal; C. Lewis; A. Bunch

1993-01-01

235

Two-stage coal gasification and desulfurization apparatus  

DOEpatents

The present invention is directed to a system which effectively integrates a two-stage, fixed-bed coal gasification arrangement with hot fuel gas desulfurization of a first stream of fuel gas from a lower stage of the two-stage gasifier and the removal of sulfur from the sulfur sorbent regeneration gas utilized in the fuel-gas desulfurization process by burning a second stream of fuel gas from the upper stage of the gasifier in a combustion device in the presence of calcium-containing material. The second stream of fuel gas is taken from above the fixed bed in the coal gasifier and is laden with ammonia, tar and sulfur values. This second stream of fuel gas is burned in the presence of excess air to provide heat energy sufficient to effect a calcium-sulfur compound forming reaction between the calcium-containing material and sulfur values carried by the regeneration gas and the second stream of fuel gas. Any ammonia values present in the fuel gas are decomposed during the combustion of the fuel gas in the combustion chamber. The substantially sulfur-free products of combustion may then be combined with the desulfurized fuel gas for providing a combustible fluid utilized for driving a prime mover.

Bissett, Larry A. (Morgantown, WV); Strickland, Larry D. (Morgantown, WV)

1991-01-01

236

COAL GASIFICATION/GAS CLEANUP TEST FACILITY: VOLUME II. ENVIRONMENTAL ASSESSMENT OF OPERATION WITH DEVOLATILIZED BITUMINOUS COAL AND CHILLED METHANOL  

EPA Science Inventory

The report gives results of initial runs of a pilot-scale coal gasification and gas cleaning plant at North Carolina State University. In these runs, a devolatilized Western Kentucky No. 11 bituminous coal was gasified with steam and oxygen, and chilled methanol was used as the a...

237

Factors governing reactivity in low temperature coal gasification. Part II. An attempt to correlate conversions with inorganic and mineral constituents  

Microsoft Academic Search

Links between extents of coal gasification and the amounts and compositions of mineral components in coals have been investigated. The influence of demineralisation and impregnation with various inorganic components on the pyrolysis and CO2-gasification behaviour of two coals have been examined at 0.1 and 1MPa. The effect of mineral matter on pyrolysis and gasification behaviour has also been examined by

L Lemaignen; Y Zhuo; G. P Reed; D. R Dugwell; R Kandiyoti

2002-01-01

238

Combustion and gasification characteristics of chars from four commercially significant coals of different rank. Final report  

SciTech Connect

The combustion and gasification kinetics of four size graded coal chars were investigated experimentally in Combustion Engineering's Drop Tube Furnace System (DTFS). The chars were prepared in the DTFS from commercially significant coals representing a wide range of rank; these included a Pittsburgh No. 8 Seam hvAb coal, an Illinois No. 6 Seam hvCb coal, a Wyoming Sub C, and a Texas Lignite A. Additionally, a number of standard ASTM and special bench scale tests were performed on the coals and chars to characterize their physicochemical properties. Results showed that the lower rank coal chars were more reactive than the higher rank coal chars and that combustion reactions of chars were much faster than the corresponding gasification reactions. Fuel properties, temperature, and reactant gas partial pressure had a significant influence on both combustion and gasification, and particle size had a mild but discernible influence on gasification. Fuel reactivities were closely related to pore structure. Computer simulation of the combustion and gasification performances of the subject samples in the DTFS supported the experimental findings.

Nsakala, N.Y.; Patel, R.L.; Lao, T.C.

1982-09-01

239

Assessment of underground coal gasification in bituminous coals. Volume I. Executive summary. Final report  

SciTech Connect

This report describes the bituminous coal resources of the United States, identifies those resources which are potentially amenable to Underground Coal Gasification (UCG), identifies products and markets in the vicinity of selected target areas, identifies UCG concepts, describes the state of the art of UCG in bituminous coal, and presents three R and D programs for development of the technology to the point of commercial viability. Of the 670 billion tons of bituminous coal remaining in-place as identified by the National Coal Data System, 32.2 billion tons or 4.8% of the total are potentially amenable to UCG technology. The identified amenable resource was located in ten states: Alabama, Colorado, Illinois, Kentucky, New Mexico, Ohio, Oklahoma, Utah, Virginia, and West Virginia. The principal criteria which eliminated 87.3% of the resource was the minimum thickness (42 inches). Three R and D programs were developed using three different concepts at two different sites. Open Borehole, Hydraulic Fracture, and Electrolinking concepts were developed. The total program costs for each concept were not significantly different. The study concludes that much of the historical information based on UCG in bituminous coals is not usable due to the poor siting of the early field tests and a lack of adequate diagnostic equipment. This information gap requires that much of the early work be redone in view of the much improved understanding of the role of geology and hydrology in the process and the recent development of analytical tools and methods.

None

1981-01-01

240

The development of Coke Carried-Heat Gasification Coal-Fired Combined Cycle  

NASA Astrophysics Data System (ADS)

Carried-Heat Partial Gasification Combined cycle is a novel combined cycle which was proposed by Thermal Engineering Department of Tsinghua University in 1992. The idea of the system comes from the situation that the efficiency of the power plants in China is much lower than that of the advanced countries, but the coal consumption is much higher, which brings about the waste of primary energy resources and the pollution of the environment. With the deep study of the gasification technology, Coke Carried-Heat Gasification Coal-Fired Combined Cycle, as the improved system, came into birth in 1996 based on the partial gasification one. At the end of 1997, a new cycle scheme similar to IGCC was created. This paper focuses on several classes combined cycle put forward by Tsinghua University, depending on the plant configuration and carbon conversion, making the solution a viable and attractive option for efficient coal utilization.

Zhao, Li; Xu, Xiangdong

1999-12-01

241

From coal to biomass gasification: Comparison of thermodynamic efficiency  

Microsoft Academic Search

The effect of fuel composition on the thermodynamic efficiency of gasifiers and gasification systems is studied. A chemical equilibrium model is used to describe the gasifier. It is shown that the equilibrium model presents the highest gasification efficiency that can be possibly attained for a given fuel. Gasification of fuels with varying composition of organic matter, in terms of O\\/C

Mark J. Prins; Krzysztof J. Ptasinski; Frans J. J. G. Janssen

2007-01-01

242

Relating catalytic coal or biomass gasification mechanisms to plant capital cost components  

Microsoft Academic Search

Selection of equipment for hydrogen production from biomass or coal is dominated by whether the process intent is to maximize pyrolysis and subsequent cracking or steam-char gasification. This paper discusses bench scale methods for predicting which approach is best suited to specific coals or biomass materials. Either reaction mode can be greatly enhanced by use of various catalysts, which adds

William B. Hauserman

1997-01-01

243

COAL GASIFICATION/GAS CLEANUP TEST FACILITY: VOLUME I. DESCRIPTION AND OPERATION  

EPA Science Inventory

The report describes an integrated fluidized-bed coal gasification reactor and acid gas removal system. The gasifier operates at 100 psig at up to 2000 F, and has a coal feed capacity of 50 lb/hr. The gas cleaning system contains a cyclone, a venturi scrubber, and an absorber/fla...

244

Mechanical properties and corrosion behavior of structural ceramics exposed to coal gasification environments  

Microsoft Academic Search

Applications of structural ceramics in coal conversion systems are discussed in an overview of the US Department of Energy's (DOE) research program on structural ceramics. Specifically emphasized is DOE-sponsored work at Argonne National Laboratory (ANL) evaluating the corrosion behavior and changes in mechanical properties of structural ceramics (sintered alpha silicon carbide, siliconized silicon carbide) after exposure to simulated coal gasification

J. M. Hobday; T. E. Easler

1986-01-01

245

Chemical and toxicological evaluation of underground coal gasification (UCG) effluents. The coal rank effect.  

PubMed

The effect of coal rank on the composition and toxicity of water effluents resulting from two underground coal gasification experiments with distinct coal samples (lignite and hard coal) was investigated. A broad range of organic and inorganic parameters was determined in the sampled condensates. The physicochemical tests were supplemented by toxicity bioassays based on the luminescent bacteria Vibrio fischeri as the test organism. The principal component analysis and Pearson correlation analysis were adopted to assist in the interpretation of the raw experimental data, and the multiple regression statistical method was subsequently employed to enable predictions of the toxicity based on the values of the selected parameters. Significant differences in the qualitative and quantitative description of the contamination profiles were identified for both types of coal under study. Independent of the coal rank, the most characteristic organic components of the studied condensates were phenols, naphthalene and benzene. In the inorganic array, ammonia, sulphates and selected heavy metals and metalloids were identified as the dominant constituents. Except for benzene with its alkyl homologues (BTEX), selected polycyclic aromatic hydrocarbons (PAHs), zinc and selenium, the values of the remaining parameters were considerably greater for the hard coal condensates. The studies revealed that all of the tested UCG condensates were extremely toxic to V. fischeri; however, the average toxicity level for the hard coal condensates was approximately 56% higher than that obtained for the lignite. The statistical analysis provided results supporting that the toxicity of the condensates was most positively correlated with the concentrations of free ammonia, phenols and certain heavy metals. PMID:25463860

Kapusta, Krzysztof; Sta?czyk, Krzysztof

2015-02-01

246

UTILIZATION OF LIGHTWEIGHT MATERIALS MADE FROM COAL GASIFICATION SLAGS  

SciTech Connect

The integrated-gasification combined-cycle (IGCC) process is an emerging technology that utilizes coal for power generation and production of chemical feedstocks. However, the process generates large amounts of solid waste, consisting of vitrified ash (slag) and some unconverted carbon. In previous projects, Praxis investigated the utilization of ''as-generated'' slags for a wide variety of applications in road construction, cement and concrete production, agricultural applications, and as a landfill material. From these studies, we found that it would be extremely difficult for ''as-generated'' slag to find large-scale acceptance in the marketplace even at no cost because the materials it could replace were abundantly available at very low cost. It was further determined that the unconverted carbon, or char, in the slag is detrimental to its utilization as sand or fine aggregate. It became apparent that a more promising approach would be to develop a variety of value-added products from slag that meet specific industry requirements. This approach was made feasible by the discovery that slag undergoes expansion and forms a lightweight material when subjected to controlled heating in a kiln at temperatures between 1400 and 1700 F. These results confirmed the potential for using expanded slag as a substitute for conventional lightweight aggregates (LWA). The technology to produce lightweight and ultra-lightweight aggregates (ULWA) from slag was subsequently developed by Praxis with funding from the Electric Power Research Institute (EPRI), Illinois Clean Coal Institute (ICCI), and internal resources. The major objectives of the subject project are to demonstrate the technical and economic viability of commercial production of LWA and ULWA from slag and to test the suitability of these aggregates for various applications. The project goals are to be accomplished in two phases: Phase I, comprising the production of LWA and ULWA from slag at the large pilot scale, and Phase II, which involves commercial evaluation of these aggregates in a number of applications.

None

1999-03-29

247

Utilization of lightweight materials made from coal gasification slags  

SciTech Connect

The integrated-gasification combined-cycle (IGCC) process is an emerging technology that utilizes coal for power generation and production of chemical feedstocks. However, the process generates large amounts of solid waste, consisting of vitrified ash (slag) and some unconverted carbon. In previous projects, Praxis investigated the utilization of as-generated slags for a wide variety of applications in road construction, cement and concrete production, agricultural applications, and as a landfill material. From these studies, the authors found that it would be extremely difficult for as-generated slag to find large-scale acceptance in the marketplace even at no cost because the materials it could replace were abundantly available at very low cost. It was further determined that the unconverted carbon, or char, in the slag is detrimental to its utilization as sand or fine aggregate. It became apparent that a more promising approach would be to develop a variety of value-added products from slag that meet specific industry requirements. This approach was made feasible by the discovery that slag undergoes expansion and forms a lightweight material when subjected to controlled heating in a kiln at temperatures between 1,400 and 1,700 F. These results confirmed the potential for using expanded slag as a substitute for conventional lightweight aggregates (LWA). The technology to produce lightweight and ultra-lightweight aggregates (ULWA) from slag was subsequently developed by Praxis with funding from the Electric Power Research Institute (EPRI), Illinois Clean Coal Institute (ICCI), and internal resources. The major objectives of the subject project are to demonstrate the technical and economic viability of commercial production of LWA and ULWA from slag and to test the suitability of these aggregates for various applications. The project goals are to be accomplished in two phases: Phase 1, comprising the production of LWA and ULWA from slag at the large pilot scale, and Phase 2, which involves commercial evaluation of these aggregates in a number of applications.

None

1999-09-30

248

UTILIZATION OF LIGHTWEIGHT MATERIALS MADE FROM COAL GASIFICATION SLAGS  

SciTech Connect

The integrated-gasification combined-cycle (IGCC) process is an emerging technology that utilizes coal for power generation and production of chemical feedstocks. However, the process generates large amounts of solid waste, consisting of vitrified ash (slag) and some unconverted carbon. In previous projects, Praxis investigated the utilization of ''as-generated'' slags for a wide variety of applications in road construction, cement and concrete production, agricultural applications, and as a landfill material. From these studies, we found that it would be extremely difficult for ''as-generated'' slag to find large-scale acceptance in the marketplace even at no cost because the materials it could replace were abundantly available at very low cost. It was further determined that the unconverted carbon, or char, in the slag is detrimental to its utilization as sand or fine aggregate. It became apparent that a more promising approach would be to develop a variety of value-added products from slag that meet specific industry requirements. This approach was made feasible by the discovery that slag undergoes expansion and forms a lightweight material when subjected to controlled heating in a kiln at temperatures between 1400 and 1700 F. These results confirmed the potential for using expanded slag as a substitute for conventional lightweight aggregates (LWA). The technology to produce lightweight and ultra-lightweight aggregates (ULWA) from slag was subsequently developed by Praxis with funding from the Electric Power Research Institute (EPRI), Illinois Clean Coal Institute (ICCI), and internal resources. The major objectives of the subject project are to demonstrate the technical and economic viability of commercial production of LWA and ULWA from slag and to test the suitability of these aggregates for, various applications. The project goals are to be accomplished in two phases Phase I, comprising the production of LWA and ULWA from slag at the large pilot scale, and Phase II, which involves commercial evaluation of these aggregates in a number of applications.

Unknown

2000-04-24

249

Instrumentation for optimizing an underground coal-gasification process  

NASA Astrophysics Data System (ADS)

While the United States has a coal resource base of 6.4 trillion tons, only seven percent is presently recoverable by mining. The process of in-situ gasification can recover another twenty-eight percent of the vast resource, however, viable technology must be developed for effective in-situ recovery. The key to this technology is system that can optimize and control the process in real-time. An instrumentation system is described that optimizes the composition of the injection gas, controls the in-situ process and conditions the product gas for maximum utilization. The key elements of this system are Monsanto PRISM Systems, a real-time analytical system, and a real-time data acquisition and control system. This system provides from complete automation of the process but can easily be overridden by manual control. The use of this cost effective system can provide process optimization and is an effective element in developing a viable in-situ technology.

Seabaugh, W.; Zielinski, R. E.

1982-06-01

250

Coal-gasification/MHD/steam-turbine combined-cycle (GMS) power generation  

SciTech Connect

The coal-gasification/MHD/steam-turbine combined cycle (GMS) refers to magnetohydrodynamic (MHD) systems in which coal gasification is used to supply a clean fuel (free of mineral matter and sulfur) for combustion in an MHD electrical power plant. Advantages of a clean-fuel system include the elimination of mineral matter or slag from all components other than the coal gasifier and gas cleanup system; reduced wear and corrosion on components; and increased seed recovery resulting from reduced exposure of seed to mineral matter or slag. Efficiencies in some specific GMS power plants are shown to be higher than for a comparably sized coal-burning MHD power plant. The use of energy from the MHD exhaust gas to gasify coal (rather than the typical approach of burning part of the coal) results in these higher efficiencies.

Lytle, J.M.; Marchant, D.D.

1980-11-01

251

Gasification rate analysis of coal char with a pressurized drop tube furnace  

Microsoft Academic Search

Two coal chars were gasified with carbon dioxide or steam using a Pressurized Drop Tube Furnace (PDTF) at high temperature and pressurized conditions to simulate the inside of an air-blown two-stage entrained flow coal gasifier. Chars were produced by rapid pyrolysis of pulverized coals using a DTF in a nitrogen gas flow at 1400C. Gasification temperatures were from 1100 to

S. Kajitani; S. Hara; H. Matsuda

2002-01-01

252

Utilization of lightweight materials made from coal gasification slags  

SciTech Connect

The integrated-gasification combined-cycle (IGCC) process is an emerging technology that utilizes coal for power generation and production of chemical feedstocks. However, the process generates large amounts of solid waste, consisting of vitrified ash (slag) and some unconverted carbon. In previous projects, Praxis investigated the utilization of as-generated slags for a wide variety of applications in road construction, cement and concrete production, agricultural applications, and as a landfill material. From these studies, the authors found that it would be extremely difficult for as-generated slag to find large-scale acceptance in the marketplace even at no cost because the materials it could replace were abundantly available at very low cost. It was further determined that the unconverted carbon, or char, in the slag is detrimental to its utilization as sand or fine aggregate. It became apparent that a more promising approach would be to develop a variety of value-added products from slag that meet specific industry requirements. This approach was made feasible by the discovery that slag undergoes expansion and forms a lightweight material when subjected to controlled heating in a kiln at temperatures between 1,400 and 1,700 F. These results confirmed the potential for using expanded slag as a substitute for conventional lightweight aggregates (LWA). The technology to produce lightweight and ultra-lightweight aggregates (ULWA) from slag was subsequently developed by Praxis with funding from the Electric Power Research Institute (EPRI), Illinois Clean Coal Institute (ICCI), and internal resources. The major objectives of the subject project are to demonstrate the technical and economic viability of commercial production of LWA and ULWA from slag and to test the suitability of these aggregates for various applications. The project goals are to be accomplished in two phases: Phase 1, comprising the production of LWA and ULWA from slag at the large pilot scale, and Phase 2, which involves commercial evaluation of these aggregates in a number of applications. Primary funding for the project is provided by DOE's Federal Energy Technology Center (FETC) at Morgantown, with significant cost sharing by Electric Power Research Institute (EPRI) and Illinois Clean Coal Institute (ICCI).

None

1999-12-30

253

Utilization of lightweight materials made from coal gasification slags  

SciTech Connect

The integrated-gasification combined-cycle (IGCC) process is an emerging technology that utilizes coal for power generation and production of chemical feedstocks. However, the process generates large amounts of solid waste, consisting of vitrified ash (slag) and some unconverted carbon. In previous projects, Praxis investigated the utilization of ''as-generated'' slags for a wide variety of applications in road construction, cement and concrete production, agricultural applications, and as a landfill material. From these studies, we found that it would be extremely difficult for ''as-generated'' slag to find large-scale acceptance in the marketplace even at no cost because the materials it could replace were abundantly available at very low cost. It was further determined that the unconverted carbon, or char, in the slag is detrimental to its utilization as sand or fine aggregate. It became apparent that a more promising approach would be to develop a variety of value-added products from slag that meet specific industry requirements. This approach was made feasible by the discovery that slag undergoes expansion and forms a lightweight material when subjected to controlled heating in a kiln at temperatures between 1400 and 1700 F. These results confirmed the potential for using expanded slag as a substitute for conventional lightweight aggregates (LWA). The technology to produce lightweight and ultra-lightweight aggregates (ULWA) from slag was subsequently developed by Praxis with funding from the Electric Power Research Institute (EPRI), Illinois Clean Coal Institute (ICCI), and internal resources. The major objectives of the subject project are to demonstrate the technical and economic viability of commercial production of LWA and ULWA from slag and to test the suitability of these aggregates for various applications. The project goals are to be accomplished in two phases: Phase I, comprising the production of LWA and ULWA from slag at the large pilot scale, and Phase II, which involves commercial evaluation of these aggregates in a number of applications. Primary funding for the project is provided by DOE's Federal Energy Technology Center (FETC) at Morgantown, with significant cost sharing by Electric Power Research Institute (EPRI) and Illinois Clean Coal Institute (ICCI).

NONE

1998-09-30

254

UTILIZATION OF LIGHTWEIGHT MATERIALS MADE FROM COAL GASIFICATION SLAGS  

SciTech Connect

The integrated-gasification combined-cycle (IGCC) process is an emerging technology that utilizes coal for power generation and production of chemical feedstocks. However, the process generates large amounts of solid waste, consisting of vitrified ash (slag) and some unconverted carbon. In previous projects, Praxis investigated the utilization of ''as-generated'' slags for a wide variety of applications in road construction, cement and concrete production, agricultural applications, and as a landfill material. From these studies, we found that it would be extremely difficult for ''as-generated'' slag to find large-scale acceptance in the marketplace even at no cost because the materials it could replace were abundantly available at very low cost. It was further determined that the unconverted carbon, or char, in the slag is detrimental to its utilization as sand or fine aggregate. It became apparent that a more promising approach would be to develop a variety of value-added products from slag that meet specific industry requirements. This approach was made feasible by the discovery that slag undergoes expansion and forms a lightweight material when subjected to controlled heating in a kiln at temperatures between 1400 and 1700 F. These results confirmed the potential for using expanded slag as a substitute for conventional lightweight aggregates (LWA). The technology to produce lightweight and ultra-lightweight aggregates (ULWA) from slag was subsequently developed by Praxis with funding from the Electric Power Research Institute (EPRI), Illinois Clean Coal Institute (ICCI), and internal resources. The major objectives of the subject project are to demonstrate the technical and economic viability of commercial production of LWA and ULWA from slag and to test the suitability of these aggregates for various applications. The project goals are to be accomplished in two phases: Phase I, comprising the production of LWA and ULWA from slag at the large pilot scale, and Phase II, which involves commercial evaluation of these aggregates in a number of applications. Primary funding for the project is provided by DOE's Federal Energy Technology Center (FETC) at Morgantown, with significant cost sharing by Electric Power Research Institute (EPRI) and Illinois Clean Coal Institute (ICCI).

None

1998-12-24

255

Exxon catalytic coal gasification process predevelopment program. Monthly report, December, 1977  

Microsoft Academic Search

Solids analyses for all FBG yield periods have been completed. The off-line material balance computer program has been used to reconcile the data from 11 of the 18 FBG yield periods. Bench scale fixed bed gasification studies indicated that KOH is equivalent to KCO as a gasification catalyst. However, KS shows lower catalytic activity than KCO. Also, Wyodak coal catalyzed

Nahas

1978-01-01

256

Dynamic modeling of a pilot-scale fluidized-bed coal gasification reactor  

Microsoft Academic Search

A dynamic mathematical model of a pressurized fluidized-bed coal gasification reactor has been developed and used to correlate data from a pilot-scale reactor. The model accounts for pyrolysis, oxidation, char gasification, and subsequent gas-phase reactions, fines elutriation and heat losses from the reactor, and simulates both transient and steady-state operation. If the values of three model parameters are adjusted to

R. Russell Rhinehart; Richard M. Felder; James K. Ferrell

1987-01-01

257

Fuel gas cleanup technology for coal gasification. State-of-the-art review and recommendations for development  

Microsoft Academic Search

Successful development of the ERDA coal gasification program objectives depends on the availability of economical and effective fuel gas cleanup technology that satisfies the environmental, occupational safety and fuel specification constraints. This report includes a review of the Fuel Gas Cleanup Technology applicable to coal gasification systems for environmental compliance, downstream equipment protection, and fuel gas purification in catalytic methanation.

B. N. Murthy; M. G. Klett; D. F. Becker; W. Szwab; W. H. Fischer

1977-01-01

258

A new approach to catalytic coal gasification: The recovery and reuse of calcium using biomass derived crude vinegars  

Microsoft Academic Search

A new concept in catalytic coal gasification has been developed. The use of crude vinegars (CVs) derived from different lignocellulosic biomass resources is described for the recovery and reuse of calcium in coal gasification. Calcium introduced by impregnation with a CV solution produced a higher catalytic activity than calcium loaded by impregnation with an aqueous acetic acid solution. Furthermore, CVs

Yan Zhang; Masami Ashizawa; Shiro Kajitani; Saburo Hara

2010-01-01

259

Scale-up requirements of the Exxon catalytic coal gasification process. Monthly report, November 1November 30, 1977  

Microsoft Academic Search

A study design and cost estimate have been completed for a major revamp of the Synthane Coal gasification pilot plant which would allow it to be operated as a catalytic coal gasification (CCG) large pilot plant. The study design was based upon modifying the Synthane Unit so that it would duplicate as closely as possible the size and capabilities of

1978-01-01

260

COAL GASIFICATION/GAS CLEANUP TEST FACILITY. VOLUME 4. A MATHEMATICAL MODEL OF THE PACKED COLUMN ACID GAS ABSORBER  

EPA Science Inventory

The report describes a mathematical model for adiabatic operation of a packed-column absorber designed to remove acid gases from coal gasification crude product gas. It also gives results of experiments with a small pilot-scale coal gasification/gas cleaning facility designed to ...

261

The role of catalyst precursor anions in coal gasification. Final technical report, September 1991--June 1994  

SciTech Connect

The utilization of coal is currently limited by several factors, including the environmental impacts of coal use and the lack of cost-effective technologies to convert coal into useful gaseous and liquid products. Several catalysts have been evaluated for coal gasification and liquefaction. The activities of the catalysts are dependent on many factors such as the method of catalyst addition to the coal and the catalyst precursor type. Since catalyst addition to coal is frequently conducted in aqueous solution, the surface chemistry of colloidal coal particles will be expected to exert an influence on catalyst uptake. However, the effects of the various coal gasification catalyst precursors on the interfacial properties of coal during catalyst loading from solution has received little attention. The aim of this study is to ascertain the influence of the metal salts (i): calcium acetate (Ca(OOCCH{sub 3}){sub 2}), calcium chloride (CaCl{sub 2}) or calcium nitrate (Ca(NO{sub 3}){sub 2}) and (ii): potassium acetate (KOOCCH{sub 3}), potassium chloride (KCl), potassium nitrate (KNO{sub 3}), potassium carbonate (K{sub 2}CO{sub 3}) and potassium sulfate (K{sub 2}SO{sub 4}) on the electrokinetic and adsorptive properties of coal and determine the relationship, if any, between coal surface electrokinetic properties, and catalyst loading and eventually its effects on the reactivities of coal chars.

Abotsi, G.M.K.

1995-01-01

262

Fluidized-bed catalytic coal-gasification process. [US patent; pretreatment to minimize agglomeration  

DOEpatents

Coal or similar carbonaceous solids impregnated with gasification catalyst constituents are oxidized by contact with a gas containing between 2 vol % and 21 vol % oxygen at a temperature between 50 and 250/sup 0/C in an oxidation zone and the resultant oxidized, catalyst impregnated solids are then gasified in a fluidized bed gasification zone at an elevated pressure. The oxidation of the catalyst impregnated solids under these conditions insures that the bed density in the fluidized bed gasification zone will be relatively high even though the solids are gasified at elevated pressure and temperature.

Euker, C.A. Jr.; Wesselhoft, R.D.; Dunkleman, J.J.; Aquino, D.C.; Gouker, T.R.

1981-09-14

263

COAL GASIFICATION/GAS CLEANUP TEST FACILITY: VOLUME III. ENVIRONMENTAL ASSESSMENT OF OPERATION WITH NEW MEXICO SUBBITUMINOUS COAL AND CHILLED METHANOL  

EPA Science Inventory

The report concerns the second major study carried out on a pilot-scale coal gasification/gas cleaning test facility, namely, the steam-oxygen gasification of a New Mexico subbituminous coal using refrigerated methanol as the acid gas removal solvent. The report briefly describes...

264

Concepts of fundamental processes related to gasification of coal. Quarterly progress report, July-September 1981  

SciTech Connect

The research projects are described: (1) single stage catalytic coal gasification is an attractive concept as a direct method of producing high BTU gas from coal. This process involves the introduction of a coal-solvent slurry and hydrogen gas into a fixed bed catalytic reactor, which employs a catalyst high in hydrogenation and cracking activity. Steam may also be added to the system. The gas produced will be principally methane. Thermodynamic calculations indicate that this process is essentially autothermal. Since this process utilizes the heat of methanation to a maximum extent, significant overall energy savings can be achieved over the more conventional multi-stage gasification systems. The primary objective of this research is to optimize the process variables to maximize methane yields. Initially, a sulfided Ni-W/SiO/sub 2/-Al/sub 2/O/sub 3/ catalyst will be used; (2) the demand for molecular hydrogen and for synthesis gas is rapidly increasing. Therefore, an extensive program on steam reforming of aromatic compounds such as benzene, substituted benzenes, naphthalene and other aromatics found in coal and coal-derived liquids (CDL) is being carried out. The combination of coal liquefaction-steam reforming of CDL could prove to be an important alternative to coal gasification for the production of SNG and hydrogen. An objective of this project is to assess the feasibility of this alternative. Potentially, coal liquids could be reformed directly in a single step to high BTU gas.

Wiser, W.H.

1981-12-01

265

Carbon formation and metal dusting in advanced coal gasification processes  

SciTech Connect

The product gases generated by coal gasification systems contain high concentrations of CO and, characteristically, have relatively high carbon activities. Accordingly, carbon deposition and metal dusting can potentially degrade the operation of such gasifier systems. Therefore, the product gas compositions of eight representative gasifier systems were examined with respect to the carbon activity of the gases at temperatures ranging from 480 to 1,090 C. Phase stability calculations indicated that Fe{sub 3}C is stable only under very limited thermodynamic conditions and with certain kinetic assumptions and that FeO and Fe{sub 0.877}S tend to form instead of the carbide. As formation of Fe{sub 3}C is a necessary step in the metal dusting of steels, there are numerous gasifier environments where this type of carbon-related degradation will not occur, particularly under conditions associated with higher oxygen and sulfur activities. These calculations also indicated that the removal of H{sub 2}S by a hot-gas cleanup system may have less effect on the formation of Fe{sub 3}C in air-blown gasifier environments, where the iron oxide phase can exist and is unaffected by the removal of sulfur, than in oxygen-blown systems, where iron sulfide provides the only potential barrier to Fe{sub 3}C formation. Use of carbon- and/or low-alloy steels dictates that the process gas composition be such that Fe{sub 3}C cannot form if the potential for metal dusting is to be eliminated. Alternatively, process modifications could include the reintroduction of hydrogen sulfide, cooling the gas to perhaps as low as 400 C and/or steam injection. If higher-alloy steels are used, a hydrogen sulfide-free gas may be processed without concern about carbon deposition and metal dusting.

DeVan, J.H.; Tortorelli, P.F.; Judkins, R.R.; Wright, I.G.

1997-02-01

266

Entrained-flow dry-bottom gasification of high-ash coals in coal-water slurries  

SciTech Connect

It was shown that the effective use of dry ash removal during entrained-flow gasification of coal-water slurries consists in simplification of the ash storage system and utilization of coal ash, a decrease in the coal demand, a reduction in the atmospheric emissions of noxious substances and particulate matter, and abandonment of the discharge of water used for ash slurry. According to the results of gasification of coal-water slurries (5-10 {mu}m) in a pilot oxygen-blow unit at a carbon conversion of >91%, synthesis gas containing 28.5% CO, 32.5% H{sub 2}, 8.2% CO{sub 2}, 1.5% CH{sub 4}, the rest being nitrogen, was obtained. The fly ash in its chemical composition, particle size, and density meets the requirements of the European standard EN 450 as a cement additive for concrete manufacture.

E.G. Gorlov; V.G. Andrienko; K.B. Nefedov; S.V. Lutsenko; B.K. Nefedov [Institute for Fossil Fuels, Moscow (Russian Federation)

2009-04-15

267

ENCOAL Mild Coal Gasification Demonstration Project. Annual report, October 1993--September 1994  

SciTech Connect

ENCOAL Corporation, a wholly-owned subsidiary of SMC Mining Company (formerly Shell Mining Company, now owned by Zeigler Coal Holding Company), has completed the construction and start-up of a mild gasification demonstration plant at Triton Coal Company`s Buckskin Mine near Gillette, Wyoming. The process, using Liquids From Coal (LFC) technology developed by SMC and SGI International, utilizes low-sulfur Powder River Basin coal to produce two new fuels, Process Derived Fuel (PDF) and Coal Derived Liquids (CDL). The LFC technology uses a mild pyrolysis or mild gasification process which involves heating the coal under carefully controlled conditions. The process causes chemical changes in the feed coal in contrast to conventional drying, which leads only to physical changes. Wet subbituminous coal contains considerable water, and conventional drying processes physically remove some of this moisture, causing the heating value to increase. The deeper the coal is physically dried, the higher the heating value and the more the pore structure permanently collapses, preventing resorption of moisture. However, deeply dried Powder River Basin coals exhibit significant stability problems when dried by conventional thermal processes. The LFC process overcomes these stability problems by thermally altering the solid to create PDF and CDL. Several of the major objectives of the ENCOAL Project have now been achieved. The LFC Technology has been essentially demonstrated. Significant quantities of specification CDL have been produced from Buckskin coal. Plant operation in a production mode with respectable availability (approaching 90%) has been demonstrated.

NONE

1995-03-01

268

Coal gasification systems engineering and analysis, volume 2  

NASA Technical Reports Server (NTRS)

The major design related features of each generic plant system were characterized in a catalog. Based on the catalog and requirements data, approximately 17 designs and cost estimates were developed for MBG and alternate products. A series of generic trade studies was conducted to support all of the design studies. A set of cost and programmatic analyses were conducted to supplement the designs. The cost methodology employed for the design and sensitivity studies was documented and implemented in a computer program. Plant design and construction schedules were developed for the K-T, Texaco, and B&W MBG plant designs. A generic work breakdown structure was prepared, based on the K-T design, to coincide with TVA's planned management approach. An extensive set of cost sensitivity analyses was completed for K-T, Texaco, and B&W design. Product price competitiveness was evaluated for MBG and the alternate products. A draft management policy and procedures manual was evaluated. A supporting technology development plan was developed to address high technology risk issues. The issues were identified and ranked in terms of importance and tractability, and a plan developed for obtaining data or developing technology required to mitigate the risk.

1980-01-01

269

Effects of rank and calcium catalysis on oxygen chemisorption and gasification reactivity of coal chars  

NASA Astrophysics Data System (ADS)

The effects of coal rank and calcium catalysis on oxygen gasification of coal chars have been investigated. Five different coals, from lignite to anthracite were used. Coals were demineralized and a calcium catalyst was deposited on the carbon in different amounts, by ion exchange for lignite and subbituminous coals and by impregnation for the others. Chars from all coals were obtained by both slow and rapid pyrolysis. Oxygen chemisorption studies conducted under conditions far away from gasification and measured oxygen uptakes during gasification revealed that large amounts of oxygen are chemisorbed. The lower the coal rank, the greater the amount of chemisorbed oxygen in both cases. The presence of a calcium catalyst additionally increased the oxygen uptake by solid carbons. The chemisorption tests also showed the influence of diffusion inside the smallest micropores on the kinetics of the process. Reactivity profiles were investigated in detail. Demineralized coal chars showed monotonic, linear increases with burn-off for a broad range of conversion (20-80%). The higher the coal rank, the greater the reactivity increase per unit burn-off. A comparison of reactivities of the demineralized form of coal chars confirmed that the reactivity is affected by diffusion inside the smallest micropores for experiments in the intermediate temperature range, usually 700-800 K. A comparison of reactivities of the calcium-loaded and demineralized coal chars prepared and subsequently reacted at the same conditions has confirmed that the catalytic effect of calcium is the greatest for lower-rank coals, and that it decreases with increasing coal rank. Comparable reactivities for as-received and calcium-loaded lignite and subbituminous char were about two orders of magnitude greater than for a corresponding demineralized char. For higher ranks of coal the effect of calcium loading is smaller than one order of magnitude. For the lower ranks of coal, where calcium is very well dispersed, reactivity profiles are confirmed to be dominated by the catalytic effect. Based on the reactivity and oxygen chemisorption studies, it was concluded that the effect of oxygen diffusion on char reactivity is much greater for higher-rank coals than for lower-rank coals. For the lignite char the diffusion effect is only important at the beginning of gasification and it decreases with increasing burn-off. For the anthracite char it is about 3 times greater at the very low burn-offs than at 85% burn-off. In addition, for demineralized anthracite char this diffusion effect lasts longer in terms of time and conversion.

Piotrowski, Andrzej

270

Proceedings of the first annual EPRI contractors' conference on coal gasification  

SciTech Connect

The First Annual EPRI Contractors Conference on Coal Gasification was held in Palo Alto, California, on October 28 and 29, 1981. The purpose of this conference was to bring together an invited international audience from EPRI contractors, government laboratories and organizations, utility companies, industry, and academia to participate in a review of the results of the EPRI program. In the years 1979 through 1981, several comprehensive test-run programs were conducted under EPRI sponsorship with US coals on gasification pilot plants. A parallel series of projects examining the dynamic behavior and controllability of gasification-combined-cycle (GCC) systems and their component unit operations also has been conducted. In addition, several supportive research studies on the behavior of coal during the conversion (gasification) process, on materials, on instrumentation, etc., have been undertaken. This work has now reached a point where organizations developing this technology have embarked on major projects based on commercial-sized gasification reactors. Seventeen papers have been entered individually into EDB and ERA. (LTN)

Not Available

1982-05-01

271

A review of the factors influencing the physicochemical characteristics of underground coal gasification  

SciTech Connect

In this article, the physicochemical characteristics of the oxidation zone, the reduction zone, and the destructive distillation and dry zone in the process of underground coal gasification (UCG) were explained. The effect of such major factors as temperature, coal type, water-inrush or -intake rate, the quantity and quality of wind blasting, the thickness of coal seams, operational pressure, the length, and the section of gasification gallery on the quality of the underground gas and their interrelationship were discussed. Research showed that the temperature conditions determined the underground gas compositions; the appropriate water-inrush or -intake rate was conducive to the improvement in gas heat value; the properties of the gasification agent had an obvious effect on the compositions and heat value of the product gas. Under the cyclically changing pressure, heat losses decreased by 60%, with the heat efficiency and gasification efficiency being 1.4 times and 2 times those of constant pressure, respectively. The test research further proved that the underground gasifier with a long channel and a big cross-section, to a large extent, improved the combustion-gasification conditions.

Yang, L.H. [China University of Mining and Technology, Jiangsu (China)

2008-07-01

272

Steady-state model for estimating gas production from underground coal gasification  

SciTech Connect

A pseudo-one-dimensional channel model has been developed to estimate gas production from underground coal gasification. The model incorporates a zero-dimensional steady-state cavity growth submodel and models mass transfer from the bulk gas to the coal wall using a correlation for natural convection. Simulations with the model reveal that the gas calorific value is sensitive to coal reactivity and the exposed reactive surface area per unit volume in the channel. A comparison of model results with several small-scale field trials conducted at Centralia in the U.S.A. show that the model can make good predictions of the gas production and composition under a range of different operating conditions, including operation with air and steam/oxygen mixtures. Further work is required to determine whether the model formulation is also suitable for simulating large-scale underground coal gasification field trials.

Greg Perkins; Veena Sahajwalla [University of New South Wales, Sydney, NSW (Australia). School of Materials Science and Engineering

2008-11-15

273

Mechanical properties and corrosion behavior of structural ceramics exposed to coal gasification environments  

SciTech Connect

Applications of structural ceramics in coal conversion systems are discussed in an overview of the US Department of Energy's (DOE) research program on structural ceramics. Specifically emphasized is DOE-sponsored work at Argonne National Laboratory (ANL) evaluating the corrosion behavior and changes in mechanical properties of structural ceramics (sintered alpha silicon carbide, siliconized silicon carbide) after exposure to simulated coal gasification environments at 1000 to 1300/sup 0/C for periods up to 500 h, with and without coal slag coatings. Results on the effects of exposing ceramics with and without slag coatings to higher oxygen partial pressures (i.e., combustion environments) will be compared to those for low oxygen partial pressures (coal gasification environments) to emphasize the influence of environment on corrosion behavior and mechanical properties. 8 refs., 5 figs., 4 tabs.

Hobday, J.M.; Easler, T.E.

1986-04-01

274

Catalytic steam gasification reactivity of HyperCoals produced from different rank of coals at 600-775{degree}C  

SciTech Connect

HyperCoal is a clean coal with ash content <0.05 wt %. HyperCoals were prepared from a brown coal, a sub-bituminous coal, and a bituminous raw coal by solvent extraction method. Catalytic steam gasification of these HyperCoals was carried out with K{sub 2}CO{sub 3} at 775, 700, 650, and 600 {degree}C, and their rates were compared. HyperCoals produced from low-rank coals were more reactive than those produced from the high-rank coals. XRD measurements were carried out to understand the difference in gasification reactivity of HyperCoals. Arrhenius plot of ln (k) vs 1/T in the temperature range 600-825{degree}C was a curve rather than a straight line. The point of change was observed at 700{degree}C for HyperCoals from low-rank coals and at 775{degree}C for HyperCoals from high-rank coals. Using HyperCoal produced from low-rank coals as feedstock, steam gasification of coal may be possible at temperatures less than 650{degree}C. 22 refs., 6 figs., 2 tabs.

Atul Sharma; Ikuo Saito; Toshimasa Takanohashi [National Institute of Advanced Industrial Science and Technology, Ibaraki (Japan). Advanced Fuel Group, Energy Technology Research Institute

2008-11-15

275

Subtask 4.2 - Coal Gasification Short Course  

SciTech Connect

Major utilities, independent power producers, and petroleum and chemical companies are intent on developing a fleet of gasification plants primarily because of high natural gas prices and the implementation of state carbon standards, with federal standards looming. Currently, many projects are being proposed to utilize gasification technologies to produce a synthesis gas or fuel gas stream for the production of hydrogen, liquid fuels, chemicals, and electricity. Financing these projects is challenging because of the complexity, diverse nature of gasification technologies, and the risk associated with certain applications of the technology. The Energy & Environmental Research Center has developed a gasification short course that is designed to provide technical personnel with a broad understanding of gasification technologies and issues, thus mitigating the real or perceived risk associated with the technology. Based on a review of research literature, tutorial presentations, and Web sites on gasification, a short course presentation was prepared. The presentation, consisting of about 500 PowerPoint slides, provides at least 7 hours of instruction tailored to an audience's interests and needs. The initial short course is scheduled to be presented September 9 and 10, 2009, in Grand Forks, North Dakota.

Kevin Galbreath

2009-06-30

276

Synthesis gas production with an adjustable H{sub 2}/CO ratio through the coal gasification process: effects of coal ranks and methane addition  

SciTech Connect

Direct production of synthesis gas using coal as a cheap feedstock is attractive but challenging due to its low H{sub 2}/CO ratio of generated synthesis gas. Three typical U.S. coals of different ranks were tested in a 2.5 in. coal gasifier to investigate their gasification reactivity and adjustability on H{sub 2}/CO ratio of generated synthesis gas with or without the addition of methane. Tests indicated that lower-rank coals (lignite and sub-bituminous) have higher gasification reactivity than bituminous coals. The coal gasification reactivity is correlated to its synthesis-gas yield and the total percentage of H{sub 2} and CO in the synthesis gas, but not to the H{sub 2}/CO ratio. The H{sub 2}/CO ratio of coal gasification was found to be correlated to the rank of coals, especially the H/C ratio of coals. Methane addition into the dense phase of the pyrolysis and gasification zone of the cogasification reactor could make the best use of methane in adjusting the H{sub 2}/CO ratio of the generated synthesis gas. The maximum methane conversion efficiency, which was likely correlated to its gasification reactivity, could be achieved by 70% on average for all tested coals. The actual catalytic effect of generated coal chars on methane conversion seemed coal-dependent. The coal-gasification process benefits from methane addition and subsequent conversion on the adjustment of the H{sub 2}/CO ratio of synthesis gas. The methane conversion process benefits from the use of coal chars due to their catalytic effects. This implies that there were likely synergistic effects on both. 25 refs., 3 figs., 3

Yan Cao; Zhengyang Gao; Jing Jin; Hongchang Zhou; Marten Cohron; Houying Zhao; Hongying Liu; Weiping Pan [Western Kentucky University (WKU), Bowling Green, KY (United States). Institute for Combustion Science and Environmental Technology (ICSET)

2008-05-15

277

Understanding of phenolic-compound production in coal-gasification processing  

Microsoft Academic Search

The goal of this report is to delineate the relationships that govern the production of phenols during coal gasification. Experimental efforts include: (1) bench-scale investigation of the decomposition characteristics of select phenolic compounds in the homogeneous gas phase and over fixed beds of coal char and limestone-derived solids; (2) PDU-scale experimentation on the Pittsburgh Energy Technology Center's Synthane PDU gasifier

Fillo

1979-01-01

278

Conceptual design study of a coal gasification combined-cycle powerplant for industrial cogeneration  

NASA Technical Reports Server (NTRS)

A conceptual design study was conducted to assess technical feasibility, environmental characteristics, and economics of coal gasification. The feasibility of a coal gasification combined cycle cogeneration powerplant was examined in response to energy needs and to national policy aimed at decreasing dependence on oil and natural gas. The powerplant provides the steam heating and baseload electrical requirements while serving as a prototype for industrial cogeneration and a modular building block for utility applications. The following topics are discussed: (1) screening of candidate gasification, sulfur removal and power conversion components; (2) definition of a reference system; (3) quantification of plant emissions and waste streams; (4) estimates of capital and operating costs; and (5) a procurement and construction schedule. It is concluded that the proposed powerplant is technically feasible and environmentally superior.

Bloomfield, H. S.; Nelson, S. G.; Straight, H. F.; Subramaniam, T. K.; Winklepleck, R. G.

1981-01-01

279

Utilization of lightweight materials made from coal gasification slags. Quarterly report, September 15--November 30, 1994  

SciTech Connect

Coal gasification technologies are finding increasing commercial applications for power generation or production of chemical feedstocks. The integrated-gasification-combined-cycle (IGCC) coal conversion process has been demonstrated to be a clean, efficient, and environmentally acceptable method of generating power. However, the gasification process produces relatively large quantities of a solid waste termed slag. Regulatory trends with respect to solid waste disposal, landfill development costs, and public concern make utilization of slag a high-priority issue. Therefore, it is imperative that slag utilization methods be developed, tested, and commercialized in order to offset disposal costs. This project aims to demonstrate the technical and economic viability of the slag utilization technologies developed by Praxis to produce lightweight aggregates (LWA) and ultra-lightweight aggregates (ULWA) from slag in a large-scale pilot operation, followed by total utilization of these aggregates in a number of applications.

NONE

1997-07-01

280

VAPOR-PHASE CRACKING AND WET OXIDATION AS POTENTIAL POLLUTANT CONTROL TECHNIQUES FOR COAL GASIFICATION  

EPA Science Inventory

The report gives results of an investigation of two techniques (hydrocracking of heavy organics in the raw gas prior to quency, and wet oxidation of the gasifier condensate) for pollutant control in coal gasification processes. Bench-scale experiments were used to determine rates...

281

Effects of coal combustion and gasification upon lung structure and function. Quarterly progress report  

SciTech Connect

The effects on lungs of emissions from fluidized-bed combustion and coal gasification on man are being studied by inhalation experiments and intratracheal administration of fly ash to hamsters. The hamsters are sacrificed at 1, 3, 6, 9 and 30 days and the lungs examined by methods which are described. (LTN)

Not Available

1980-12-12

282

Production of hydrogen by direct gasification of coal with steam using nuclear heat  

NASA Technical Reports Server (NTRS)

Problems related to: (1) high helium outlet temperature of the reactor, and (2) gas generator design used in hydrogen production are studied. Special attention was given to the use of Oklahoma coal in the gasification process. Plant performance, operation, and environmental considerations are covered.

1975-01-01

283

COAL GASIFICATION ENVIRONMENTAL DATA SUMMARY: SOLID WASTES AND BY-PRODUCT TARS  

EPA Science Inventory

The report, one of several data summary reports on the environmental aspects and pollutants specific to coal gasification, addresses characteristics of solid wastes (ash and cyclone dust) and by-product tars and oils analyzed in nine EPA source tests and evaluation studies and li...

284

ASSESSMENT OF DISCHARGES FROM SASOL I LURGI-BASED COAL GASIFICATION PLANT  

EPA Science Inventory

The report discusses analytical information, obtained from Sasol I, on the emission and effluent streams analyzed in the normal course of operation and testing. The purpose was to provide EPA with representative information on a commercial-size Lurgi-based coal gasification proje...

285

Postburn evaluation for Hanna II, Phases 2 and 3, underground coal gasification experiments, Hanna, Wyoming  

Microsoft Academic Search

During 1980 and 1981 the Laramie Energy Technology Center (LETC) conducted a post-burn study at the Hanna II, Phases 2 and 3 underground coal gasification (UCG) site, Hanna, Wyoming. This report contains a summary of the field and laboratory results from the study. Lithologic and geophysical well log data from twenty-two (22) drill holes, combined with high resolution seismic data

A. D. Youngberg; D. J. Sinks; G. N. II Craig; F. G. Ethridge; L. K. Burns

1983-01-01

286

TREATMENT OF AQUEOUS WASTE STREAMS FROM KRW ENERGY SYSTEMS COAL GASIFICATION TECHNOLOGY  

EPA Science Inventory

The paper gives results of a bench-scale evaluation to determine the extent to which process wastewaters from the KRW Energy Systems coal gasification process are treatable using commercially proven wastewater treatment technology. (NOTE: The process--formerly called the Westingh...

287

AEROSOL CHARACTERIZATION OF AMBIENT AIR NEAR A COMMERCIAL LURGI COAL GASIFICATION PLANT, KOSOVO REGION, YUGOSLAVIA  

EPA Science Inventory

Ambient air samples were collected continuously from May 14-29, 1980 to determine if the emissions from a commercial Lurgi coal gasification plant could be identified downwind of the facility. Physical, inorganic, and organic analyses were carried out on the collected aerosol sam...

288

IN-SITU COAL GASIFICATION: STATUS OF TECHNOLOGY AND ENVIRONMENTAL IMPACT  

EPA Science Inventory

The report gives results of a literature review and personal contacts to ascertain what is being done in in-situ coal gasification and to collect existing environmental data. It presents a general description of the chemistry, technology, and technological problems, along with de...

289

Solar gasification of biomass using oil shale and coal as candidate materials  

Microsoft Academic Search

Gasification of German oil shale and coal using concentrated solar energy as a heat source is studied in a fixed bed reactor under an argon atmosphere. The reactor allows direct absorption of irradiation resulting in high rates of temperature increase and hence in simultaneous decomposition of organic matter and carbonates present in the shale. Synthesis gases are produced consisting of

Martin Flechsenhar; Christian Sasse

1995-01-01

290

The solar thermal gasification of coal energy conversion efficiency and CO 2 mitigation potential  

Microsoft Academic Search

The steam-gasification of coal (peat, lignite, bituminous, and anthracite) into syngas is investigated using concentrated solar energy as the source of high-temperature process heat. The advantages of the solar- driven process are threefold: (1) the discharge of pollutants is avoided; (2) the gaseous products are not contaminated by combustion byproducts; and (3) the calorific value of the fuel is upgraded.

A. Steinfeld

2003-01-01

291

Testing Kentucky Coal to Set Design Criteria for a Lurgi Gasification Plant  

E-print Network

commercial scale gasification test with Kentucky 9 coal in a Lurgi Mark IV dry-bottom gasifier at the Sasol One Plant in Sasolburg, Republic of South Africa, in 1981. The test was conducted to confirm the operability of the Lurgi process on Western Kentucky...

Roeger, A., III; Jones, J. E., Jr.

1983-01-01

292

Combustion Engineering Integrated Coal Gasification Combined Cycle Repowering Project: Clean Coal Technology Program  

SciTech Connect

On February 22, 1988, DOE issued Program Opportunity Notice (PON) Number-DE-PS01-88FE61530 for Round II of the CCT Program. The purpose of the PON was to solicit proposals to conduct cost-shared ICCT projects to demonstrate technologies that are capable of being commercialized in the 1990s, that are more cost-effective than current technologies, and that are capable of achieving significant reduction of SO[sub 2] and/or NO[sub x] emissions from existing coal burning facilities, particularly those that contribute to transboundary and interstate pollution. The Combustion Engineering (C-E) Integrated Coal Gasification Combined Cycle (IGCC) Repowering Project was one of 16 proposals selected by DOE for negotiation of cost-shared federal funding support from among the 55 proposals that were received in response to the PON. The ICCT Program has developed a three-level strategy for complying with the National Environmental Policy Act (NEPA) that is consistent with the President's Council on Environmental Quality regulations implementing NEPA (40 CFR 1500-1508) and the DOE guidelines for compliance with NEPA (10 CFR 1021). The strategy includes the consideration of programmatic and project-specific environmental impacts during and subsequent to the reject selection process.

Not Available

1992-03-01

293

Effect of experimental conditions on co-gasification of coal, biomass and plastics wastes with air\\/steam mixtures in a fluidized bed system  

Microsoft Academic Search

The effect of temperature and of gasification medium was studied, using only air, only steam and mixtures of both as gasification medium, with the aim of optimising co-gasification of coal and wastes. The rise in gasification temperature promoted hydrocarbons further reactions, leading to a decrease in tars and hydrocarbons contents and an increase in H2 release. Increasing temperature, from 750

Filomena Pinto; Carlos Franco; Rui Neto Andr; C. Tavares; M. Dias; I. Gulyurtlu; I. Cabrita

2003-01-01

294

EARLY ENTRANCE CO-PRODUCTION PLANT--DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS  

SciTech Connect

Waste Processors Management, Inc. (WMPI), along with its subcontractors Texaco Power and Gasification (now ChevronTexaco), SASOL Technology Ltd., and Nexant Inc. entered into a Cooperative Agreement with the USDOE, National Energy Technology Laboratory (NETL) to assess the techno-economic viability of building an Early Entrance Co-Production Plant (EECP) in the US to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co--product. The EECP design includes recovery and gasification of low-cost coal waste (culm) from physical coal cleaning operations and will assess blends of the culm with coal or petroleum coke. The project has three phases: Phase 1 is the concept definition and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase 2 is an experimental testing program designed to validate the coal waste mixture gasification performance. Phase 3 updates the original EECP design based on results from Phase 2, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 barrel per day (BPD) coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania. The current report is WMPI's third quarterly technical progress report. It covers the period performance from October 1, 2001 through December 31, 2001.

John W. Rich

2001-03-01

295

High-yield hydrogen production by steam gasification of Hypercoal (ash-free coal extract) with potassium carbonate: comparison with raw coal  

SciTech Connect

Steam gasification of the HyperCoals (ash-free coal extracts) with the physical addition of 5.8%-6.0% K{sub 2}CO{sub 3} was conducted at 1023 K on a thermogravimetric apparatus that was equipped with an on-line quadrupole mass spectrometer. The catalytic gasification of the HyperCoals demonstrated a much higher gasification rate than the catalytic gasification of the raw coals. Interactions of K{sub 2}CO{sub 3} with mineral matter in the raw coal formed water-insoluble potassium compounds, such as potassium aluminosilicates, and reduced the catalytic activity, whereas no such negative reactions occurred for the HyperCoals. The steam gasification of the HyperCoals with K{sub 2}CO{sub 3} was also determined to be favorable for the high-yield production of hydrogen. From these experimental results, the catalytic steam gasification of HyperCoal would potentially be a more efficient process for the production of hydrogen in the future. 30 refs., 6 figs., 2 tabs.

Jie Wang; Kinya Sakanishi; Ikuo Saito [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba (Japan). Energy Technology Research Institute

2005-10-01

296

Multi-Criteria Evaluation of Coal Properties in Terms of Gasification  

NASA Astrophysics Data System (ADS)

This paper presents a comparative analysis of two types of coal taken from the ZG Janina and ZG Wieczorek coalmines. The aim of this study has been to analyze the suitability of the coal in the context of the gasification process. The types of coal vary considerably in terms of their characteristics. Each of them was subjected to treatment in a ten-ringed annular jig. A particle size of 0-18 mm constituted the feed. The separated coal was divided into five layers, each of them containing material from two additional annular jigs. Analysis of their characteristics was carried out for each of the five layers and for both types of coal obtained, taking into account both their physicochemical properties as well as chemical ones. Each of these characteristics was then presented in three-dimensional surface diagrams, where the ordinate (or Y-axis) and abscissa (X-axis) was the particle size and height in which the material ended up in the jig (expressed as a percentage of the total height of the device). On the basis of observations, it was found that the types of coal have different potential for gasification, although both types are within the limits specified on the basis of previous studies. A correlation analysis between particle size and remaining characteristics of coal was carried out for each of the layers, allowing to determine which of the studied characteristics induced changes significant from the point of view of the coal gasification process. The entire research and observation was supported by conclusions and findings, which shall form the basis for further, in-depth analysis of coal.

Marciniak-Kowalska, Jolanta; Niedoba, Tomasz; Surowiak, Agnieszka; Tumidajski, Tadeusz

2014-10-01

297

Coal gasification: molten salt processes for sulfur emission control  

Microsoft Academic Search

Two molten salt desulfurization processes are illustrated. ; Precombustion desulfurization of coal takes place in a single vessel. Pulverized ; coal, slurried with molten salt, is allowed to react with a melt that contains an ; agent with an affinity for the sulfurous compounds. The coal collects at the ; top, being less dense than the melt, and is drawn

Glueck

1973-01-01

298

Integration of carbonate fuel cells with advanced coal gasification systems  

Microsoft Academic Search

Carbonate fuel cells have attributes which make them ideally suited to operate on coal-derived fuel gas; they can convert the methane, hydrogen, and carbon monoxide present in coal derived fuel gas directly to electricity, are not subject to thermodynamic cycle limits as are heat engines, and operate at temperatures compatible with coal gasifiers. Some new opportunities for improved efficiency have

G. Steinfeld; S. J. Meyers; W. B. Hauserman

1992-01-01

299

Mathematical modelling of some chemical and physical processes in underground coal gasification  

SciTech Connect

Underground coal gasification normally involves two vertical wells which must be linked by a channel having low resistance to gas flow. There are several ways of establishing such linkage, but all leave a relatively open horizontal hole with a diameter on the order of a meter. To increase our understanding of the chemical and physical processes governing underground coal gasification LLNL has been conducting laboratory scale experiments accompanied by mathematical modelling. Blocks of selected coal types are cut to fit 55 gallon oil drums and sealed in place with plaster. A 1 cm. diameter hole is drilled the length of the block and plumbing attached to provide a flow of air or oxygen/steam mixture. After an instrumented burn the block is sawed open to examine the cavity. Mathematical modelling has been directed towards predicting the cavity shape. This paper describes some sub-models and examines their impact on predicted cavity shapes.

Creighton, J. R.

1981-08-01

300

Hydrogen production by high-temperature steam gasification of biomass and coal  

SciTech Connect

High-temperature steam gasification of paper, yellow pine woodchips, and Pittsburgh bituminous coal was investigated in a batch-type flow reactor at temperatures in the range of 700 to 1,200{sup o}C at two different ratios of steam to feedstock molar ratios. Hydrogen yield of 54.7% for paper, 60.2% for woodchips, and 57.8% for coal was achieved on a dry basis, with a steam flow rate of 6.3 g/min at steam temperature of 1,200{sup o}C. Yield of both the hydrogen and carbon monoxide increased while carbon dioxide and methane decreased with the increase in gasification temperature. A 10-fold reduction in tar residue was obtained at high-temperature steam gasification, compared to low temperatures. Steam and gasification temperature affects the composition of the syngas produced. Higher steam-to-feedstock molar ratio had negligible effect on the amount of hydrogen produced in the syngas in the fixed-batch type of reactor. Gasification temperature can be used to control the amounts of hydrogen or methane produced from the gasification process. This also provides mean to control the ratio of hydrogen to CO in the syngas, which can then be processed to produce liquid hydrocarbon fuel since the liquid fuel production requires an optimum ratio between hydrogen and CO. The syngas produced can be further processed to produce pure hydrogen. Biomass fuels are good source of renewable fuels to produce hydrogen or liquid fuels using controlled steam gasification.

Kriengsak, S.N.; Buczynski, R.; Gmurczyk, J.; Gupta, A.K. [University of Maryland, College Park, MD (United States). Dept. of Mechanical Engineering

2009-04-15

301

Assessment of underground coal gasification in bituminous coals: potential UCG products and markets. Final report, Phase I  

SciTech Connect

The following conclusions were drawn from the study: (1) The US will continue to require new sources of energy fuels and substitutes for petrochemical feedstocks into the foreseeable future. Most of this requirement will be met using coal. However, the cost of mining, transporting, cleaning, and preparing coal, disposing of ash or slag and scrubbing stack gases continues to rise; particularly, in the Eastern US where the need is greatest. UCG avoids these pitfalls and, as such, should be considered a viable alternative to the mining of deeper coals. (2) Of the two possible product gases LBG and MBG, MBG is the most versatile. (3) The most logical use for UCG product in the Eastern US is to generate power on-site using a combined-cycle or co-generation system. Either low or medium Btu gas (LBG or MBG) can be used. (4) UCG should be an option whenever surface gasification is considered; particularly, in areas where deeper, higher sulfur coal is located. (5) There are environmental and social benefits to use of UCG over surface gasification in the Eastern US. (6) A site could be chosen almost anywhere in the Illinois and Ohio area where amenable UCG coal has been determined due to the existence of existing transportation or transmission systems. (7) The technology needs to be demonstrated and the potential economic viability determined at a site in the East-North-Central US which has commercial quantities of amenable bituminous coal before utilities will show significant interest.

None

1982-01-31

302

COAL GASIFICATION ENVIRONMENTAL DATA SUMMARY: SULFUR AND NITROGEN SPECIES  

EPA Science Inventory

The report summarizes data on sulfur and nitrogen species from the source test and environmental assessment studies of low- and medium-Btu gasification processes which were sponsored by the EPA between 1977 and 1981. The data are focused on the composition and distribution of the...

303

Effect of steam partial pressure on gasification rate and gas composition of product gas from catalytic steam gasification of HyperCoal  

SciTech Connect

HyperCoal was produced from coal by a solvent extraction method. The effect of the partial pressure of steam on the gasification rate and gas composition at temperatures of 600, 650, 700, and 750{sup o}C was examined. The gasification rate decreased with decreasing steam partial pressure. The reaction order with respect to steam partial pressure was between 0.2 and 0.5. The activation energy for the K{sub 2}CO{sub 3}-catalyzed HyperCoal gasification was independent of the steam partial pressure and was about 108 kJ/mol. The gas composition changed with steam partial pressure and H{sub 2} and CO{sub 2} decreased and CO increased with decreasing steam partial pressure. By changing the partial pressure of the steam, the H{sub 2}/CO ratio of the synthesis gas can be controlled. 18 refs., 7 figs., 2 tabs.

Atul Sharma; Ikuo Saito; Toshimasa Takanohashi [National Institute of Advanced Industrial Science and Technology, Ibaraki (Japan). Advanced Fuel Group

2009-09-15

304

Subcontracted R and D final report: analysis of samples obtained from GKT gasification test of Kentucky coal. Nonproprietary version  

SciTech Connect

A laboratory test program was performed to obtain detailed compositional data on the Gesellshaft fuer Kohle-Technologie (GKT) gasifier feed and effluent streams. GKT performed pilot gasification tests with Kentucky No. 9 coal and collected various samples which were analyzed by GKT and the Radian Corporation, Austin, Texas. The coal chosen had good liquefaction characteristics and a high gasification reactivity. No organic priority pollutants or PAH compounds were detected in the wash water, and solid waste leachates were within RCRA metals limits.

Raman, S.V.

1983-09-01

305

Sulfur emission from Victorian brown coal under pyrolysis, oxy-fuel combustion and gasification conditions.  

PubMed

Sulfur emission from a Victorian brown coal was quantitatively determined through controlled experiments in a continuously fed drop-tube furnace under three different atmospheres: pyrolysis, oxy-fuel combustion, and carbon dioxide gasification conditions. The species measured were H(2)S, SO(2), COS, CS(2), and more importantly SO(3). The temperature (873-1273 K) and gas environment effects on the sulfur species emission were investigated. The effect of residence time on the emission of those species was also assessed under oxy-fuel condition. The emission of the sulfur species depended on the reaction environment. H(2)S, SO(2), and CS(2) are the major species during pyrolysis, oxy-fuel, and gasification. Up to 10% of coal sulfur was found to be converted to SO(3) under oxy-fuel combustion, whereas SO(3) was undetectable during pyrolysis and gasification. The trend of the experimental results was qualitatively matched by thermodynamic predictions. The residence time had little effect on the release of those species. The release of sulfur oxides, in particular both SO(2) and SO(3), is considerably high during oxy-fuel combustion even though the sulfur content in Morwell coal is only 0.80%. Therefore, for Morwell coal utilization during oxy-fuel combustion, additional sulfur removal, or polishing systems will be required in order to avoid corrosion in the boiler and in the CO(2) separation units of the CO(2) capture systems. PMID:23301852

Chen, Luguang; Bhattacharya, Sankar

2013-02-01

306

Theoretical and experimental studies of fixed-bed coal gasification reactors. Final report  

SciTech Connect

A laboratory fixed-bed gasification reactor was designed and built with the objective of collecting operational data for model validation and parameter estimation. The reactor consists of a 4 inch stainless steel tube filled with coal or char. Air and steam is fed at one end of the reactor and the dynamic progress of gasification in the coal or char bed is observed through thermocouples mounted at various radial and axial locations. Product gas compositions are also monitored as a function of time. Results of gasification runs using Wyoming coal are included in this report. In parallel with the experimental study, a two-dimensional model of moving bed gasifiers was developed, coded into a computer program and tested. This model was used to study the laboratory gasifier by setting the coal feed rate equal to zero. The model is based on prior work on steady state and dynamic modeling done at Washington University and published elsewhere in the literature. Comparisons are made between model predictions and experimental results. These are also included in this report. 23 references, 18 figures, 6 tables.

Joseph, B.; Bhattacharya, A.; Salam, L.; Dudukovic, M.P.

1983-09-01

307

Biomass gasification chars for mercury capture from a simulated flue gas of coal combustion.  

PubMed

The combustion of coal can result in trace elements, such as mercury, being released from power stations with potentially harmful effects for both human health and the environment. Research is ongoing to develop cost-effective and efficient control technologies for mercury removal from coal-fired power plants, the largest source of anthropogenic mercury emissions. A number of activated carbon sorbents have been demonstrated to be effective for mercury retention in coal combustion power plants. However, more economic alternatives need to be developed. Raw biomass gasification chars could serve as low-cost sorbents for capturing mercury since they are sub-products generated during a thermal conversion process. The aim of this study was to evaluate different biomass gasification chars as mercury sorbents in a simulated coal combustion flue gas. The results were compared with those obtained using a commercial activated carbon. Chars from a mixture of paper and plastic waste showed the highest retention capacity. It was found that not only a high carbon content and a well developed microporosity but also a high chlorine content and a high aluminium content improved the mercury retention capacity of biomass gasification chars. No relationship could be inferred between the surface oxygen functional groups and mercury retention in the char samples evaluated. PMID:22325640

Fuente-Cuesta, A; Diaz-Somoano, M; Lopez-Anton, M A; Cieplik, M; Fierro, J L G; Martnez-Tarazona, M R

2012-05-15

308

Coal gasification systems engineering and analysis. Appendix D: Cost and economic studies  

NASA Technical Reports Server (NTRS)

The detailed cost estimate documentation for the designs prepared in this study are presented. The include: (1) Koppers-Totzek, (2) Texaco (3) Babcock and Wilcox, (4) BGC-Lurgi, and (5) Lurgi. The alternate product cost estimates include: (1) Koppers-Totzek and Texaco single product facilities (methane, methanol, gasoline, hydrogen), (2) Kopers-Totzek SNG and MBG, (3) Kopers-Totzek and Texaco SNG and MBG, and (4) Lurgi-methane and Lurgi-methane and methanol.

1980-01-01

309

Geology of the Hanna Formation, Hanna Underground Coal Gasification Site, Hanna, Wyoming  

SciTech Connect

The Hanna Underground Coal Gasification (UCG) study area consists of the SW1/4 of Section 29 and the E1/2SE1/4 of Section 30 in Township 22 North, Range 81 West, Wyoming. Regionally, this is located in the coal-bearing Hanna Syncline of the Hanna Basin in southeast Wyoming. The structure of the site is characterized by beds dipping gently to the northeast. An east-west fault graben complex interrupts this basic trend in the center of the area. The target coal bed of the UCG experiments was the Hanna No. 1 coal in the Hanna Formation. Sedimentary rocks comprising the Hanna Formation consist of a sequence of nonmarine shales, sandstones, coals and conglomerates. The overburden of the Hanna No. 1 coal bed at the Hanna UCG site was divided into four broad local stratigraphic units. Analytical studies were made on overburden and coal samples taken from cores to determine their mineralogical composition. Textural and mineralogical characteristics of sandstones from local stratigraphic units A, B, and C were analyzed and compared. Petrographic analyses were done on the coal including oxides, forms of sulfur, pyrite types, maceral composition, and coal rank. Semi-quantitative spectrographic and analytic geochemical analyses were done on the overburden and coal and relative element concentrations were compared. Trends within each stratigraphic unit were also presented and related to depositional environments. The spectrographic analysis was also done by lithotype. 34 references, 60 figures, 18 tables.

Oliver, R.L.; Youngberg, A.D.

1984-01-01

310

Encoal mild coal gasification project: Encoal project final report, July 1, 1997--July 31, 1997  

SciTech Connect

This document is the summative report on the ENCOAL Mild Coal Gasification Project. It covers the time period from September 17, 1990, the approval date of the Cooperative Agreement between ENCOAL and the US Department of Energy (DOE), to July 17, 1997, the formal end of DOE participation in the Project. The Cooperative Agreement was the result of an application by ENCOAL to the DOE soliciting joint funding under Round III of the Clean Coal Technology Program. By June 1992, the ENCOAL Plant had been built, commissioned and started up, and in October 1994, ENCOAL was granted a two-year extension, carrying the project through to September 17, 1996. No-cost extensions have moved the Cooperative Agreement end date to July 17, 1997 to allow for completion of final reporting requirements. At its inception, ENCOAL was a subsidiary of Shell Mining Company. In November 1992, Shell Mining Company changed ownership, becoming a subsidiary of Zeigler Coal Holding Company (Zeigler) of Fairview Heights, Illinois. Renamed successively as SMC Mining Company and then Bluegrass Coal Development Company, it remained the parent entity for ENCOAL, which has operated a 1,000-ton/day mild coal gasification demonstration plant near Gillette, Wyoming for nearly 5 years. ENCOAL operates at the Buckskin Mine owned by Triton Coal Company (Triton), another Zeigler subsidiary.

NONE

1997-07-01

311

Catalytic coal gasification process and large pilot plant development program  

Microsoft Academic Search

Exxon Research and Engineering and Esso Steenkool Technologie B.V. believe that, in the longer term, CCG offers an efficient route to SNG from coal, particularly from bituminous coals. More than a decade of development work has brought the process from an early concept to a point where process feasibility has been demonstrated. The Department of Energy and the Gas Research

H. A. Marshall; F. C. R. M. Smits

1982-01-01

312

A model approach to highly dispersing catalytic materials in coal for gasification. Eleventh quarterly report, April 1, 1992June 30, 1992  

Microsoft Academic Search

This project seeks to develop a technique, based on coal surface properties, for highly dispersing catalysts in coal for gasification and to investigate the potential of using potassium carbonate and calcium acetate mixtures as catalysts for coal gasification. The lower cost and higher catalytic activity of the latter compound will produce economic benefits by reducing the amount of KCO required

G. M. K. Abotsi; K. B. Bota

1992-01-01

313

1170MW(t) HTGR-PS\\/C plant application study report: Exxon catalytic coal gasification process application  

Microsoft Academic Search

This report summarizes a study to apply the high-temperature gas-cooled reactor - process steam\\/cogeneration (HTGR-PS\\/C) to Exxon catalytic coal gasification. The industry is currently strongly interested in developing and commercializing plants producing liquid and gaseous synthetic fuels derived from coal, based on the national objective to reduce foreign oil imports and to use the abundant US coal. Exxon catalytic coal

R. Rao; A. T. Jr. McMain; D. D. Peterman

1981-01-01

314

Taguchi approach for co-gasification optimization of torrefied biomass and coal.  

PubMed

This study employs the Taguchi method to approach the optimum co-gasification operation of torrefied biomass (eucalyptus) and coal in an entrained flow gasifier. The cold gas efficiency is adopted as the performance index of co-gasification. The influences of six parameters, namely, the biomass blending ratio, oxygen-to-fuel mass ratio (O/F ratio), biomass torrefaction temperature, gasification pressure, steam-to-fuel mass ratio (S/F ratio), and inlet temperature of the carrier gas, on the performance of co-gasification are considered. The analysis of the signal-to-noise ratio suggests that the O/F ratio is the most important factor in determining the performance and the appropriate O/F ratio is 0.7. The performance is also significantly affected by biomass along with torrefaction, where a torrefaction temperature of 300C is sufficient to upgrade eucalyptus. According to the recommended operating conditions, the values of cold gas efficiency and carbon conversion at the optimum co-gasification are 80.99% and 94.51%, respectively. PMID:23907063

Chen, Wei-Hsin; Chen, Chih-Jung; Hung, Chen-I

2013-09-01

315

Instrumentation and process control development for in situ coal gasification. Quarterly report, April-June 1980  

SciTech Connect

This report discusses the results of modeling efforts by Sandia National Laboratories in in-situ coal gasification. The main areas addressed are (1) flow characteristics and (2) initial cavity growth. The flow characteristics problem has been addressed using both a single phase finite element model and a two phase finite difference model. The initial cavity growth problem has been addressed using a finite element structural model. These models are useful for providing insight into the processes and for determining the characteristics needed to insure successful in-situ coal gasification. Also to be discussed is the development of the controlled source audio magnetotelluric (CSAMT) electromagnetic geophysical prospecting technique. This technique is being evaluated for use in mapping in-situ processes. The application discussed is the LETC tar sands project near Vernal, Utah.

Glass, R.E. (ed.)

1980-10-01

316

The role of catalyst precursor anions in coal gasification  

SciTech Connect

The aims of the proposed project are to enrich our understanding of the roles of various aqueous soluble catalyst precursor anions on the surface electrical properties of coal and to ascertain the influence of the surface charge on the adsorption, dispersion, and activities of calcium and potassium. These goals will be achieved by impregnating a North Dakota lignite (PSOC 1482) and its demineralized derivative with calcium or potassium catalyst precursors containing acetate (CH{sub 3}COO{sup {minus}}), chloride (Cl{sup {minus}}), nitrate (NO{sub 3}{sup {minus}}), sulfate (SO{sub 4}{sup 2{minus}}), and carbonate (CO{sub 3}{sup 2{minus}}) anions. Catalyst loading will be conducted under well-controlled conditions of solution pH and ionic strength. In the last quarter, the surface charge properties of the coal was determined as a function of acetate (CH{sub 3}COO{sup {minus}}), chloride (Cl{sup {minus}}), nitrate (NO{sup 3}{sup {minus}}), carbonate (CO{sub 3}{sup 2{minus}}) or sulfate (SO{sub 4}{sup 2{minus}})concentration using the respective potassium salts of these anions. In general, low anion concentrations (10{sup {minus}3} or 10{sup {minus}2} mol/L) had little effect on the zeta potentials of the coals. However, the surface charge densities of the coal become less negative at 10-1 mol/L of the nitrate, carbonate or sulfate anions. These trends suggest that the surface charge density of the coal is controlled by the adsorption of potassium ions (K{sup +}) onto the coal particles. The net negative charge on the coal panicles creates a repulsive force between the anions and the coal surface and prevents the anions from exerting any significant effect on the coal's electrokinetic properties.

Abotsi, G.M.K.

1992-08-28

317

Development of biological coal gasification (MicGAS) process  

SciTech Connect

Biomethanation of coal is a phenomenon carried out in concert by a mixed population (consortium) of at least three different groups of anaerobic bacteria and can be considered analogous to that of anaerobic digestion of municipal waste. The exception, however, is that unlike municipal waste; coal is a much complex and difficult substrate to degrade. This project was focused on studying the types of microorganisms involved in coal degradation, rates of methane production, developing a cost-effective synthetic culture medium for these microbial consortia and determining the rate of methane production in bench scale bioreactors.

Walia, D.S.; Srivastava, K.C.; Barik, S.

1992-01-01

318

Development of biological coal gasification (MicGAS) process  

SciTech Connect

Biomethanation of coal is a phenomenon carried out in concert by a mixed population (consortium) of at least three different groups of anaerobic bacteria and can be considered analogous to that of anaerobic digestion of municipal waste. The exception, however, is that unlike municipal waste; coal is a much complex and difficult substrate to degrade. This project was focused on studying the types of microorganisms involved in coal degradation, rates of methane production, developing a cost-effective synthetic culture medium for these microbial consortia and determining the rate of methane production in bench scale bioreactors.

Walia, D.S.; Srivastava, K.C.; Barik, S.

1992-11-01

319

Characterization and Failure Analysis of Ceramic Filters Utilized for Emission Control Coal Gasification  

Microsoft Academic Search

Advanced integrated gasification combined cycle (IGCC) and pressurized fluidized bed;\\u000acombustion (PFBC) power system requires both hot gas desulfurization and particulate filtration;\\u000ato improve system thermal efficiency and overall performance. Therefore, effective high;\\u000atemperature ceramic filters are indispensable key component in both of the advanced IGCC and;\\u000aPFBC coal based power systems to perform hot gas cleanup work.;\\u000aTo meet

Daniel Mei; Jianren Zhou; Ziaul Huque

1998-01-01

320

Catalytic coal gasification: Identification of active sites, July 15, 1987October 14, 1987  

Microsoft Academic Search

This research uses transient isotope tracing, at steady-state reaction conditions, in combination with surface analysis techniques (secondary ion mass spectrometry (SIMS) and x-ray photoelectron spectroscopy (XPS)). Carbon dioxide gasification of carbon blacks and coal char will be used initially. In a typical isotope tracing experiment, ¹²CO flow over a carbon-catalyst mixture will be quickly replaced by ¹³CO at the same

J. L. Falconer; L. L. Lauderback

1987-01-01

321

In situ formation of coal gasification catalysts from low cost alkali metal salts  

DOEpatents

A carbonaceous material, such as crushed coal, is admixed or impregnated with an inexpensive alkali metal compound, such as sodium chloride, and then pretreated with a stream containing steam at a temperature of 350.degree. to 650.degree. C. to enhance the catalytic activity of the mixture in a subsequent gasification of the mixture. The treatment may result in the transformation of the alkali metal compound into another, more catalytically active, form.

Wood, Bernard J. (Santa Clara, CA); Brittain, Robert D. (Cupertino, CA); Sancier, Kenneth M. (Menlo Park, CA)

1985-01-01

322

Coal gasification systems engineering and analysis. Appendix H: Work breakdown structure  

NASA Technical Reports Server (NTRS)

A work breakdown structure (WBS) is presented which encompasses the multiple facets (hardware, software, services, and other tasks) of the coal gasification program. The WBS is shown to provide the basis for the following: management and control; cost estimating; budgeting and reporting; scheduling activities; organizational structuring; specification tree generation; weight allocation and control; procurement and contracting activities; and serves as a tool for program evaluation.

1980-01-01

323

Economics of synfuel and gasification systems  

SciTech Connect

The performance characteristics of several gasification systems are discussed. Cost estimates of various synthetic fuels are presented. The lowest cost synthetic fuel is significantly above the current natural gas price of about $2.75/MMBtu and about equivalent to present oil prices at the plant gate. Gas prices for the Welman-Galusha gasifier would have to be increased significantly if the plant ran on two shifts only or if the gasifiers were not fully loaded. For industrial application the lowest cost fuel is probably the direct use of low sulfur coal with some post combustion pollution control. This is followed by the atmospheric fluidized bed combustor. Coal/oil mixtures and solvent refined coal liquids (SRC I or SRC II) are the next options. High Btu gas from a large coal gasification plant will be more competitive for industrial use. Large industrial uses in the range of 1000 tons of coal a day may find reduced costs with an entrained coal conversion unit such as a Texaco or the Saarberg-Otto Gasifiers. However, before 1985 when the gas price decontrol has been felt, it is unlikely that low Btu gas, medium Btu gas and methanol will be an economical choice for industrial users.

Hahn, O.J.

1981-01-01

324

Development of biological coal gasification (MicGAS Process)  

SciTech Connect

This report describes progress on three fronts of the project. First in studies to elucidate optimal growing conditions for the consortia of coal degraders employed indicates that best growth occurs with 0. 2% w/v Shefton T. Secondly in comparing the biodegradative properties of the coal degraders, isolates identified as Mic-1 and Mic-4 were the best performers. And lastly bioreactors studies in batch mode are related.

Not Available

1992-07-28

325

Hydrogen production from coal by separating carbon dioxide during gasification  

Microsoft Academic Search

Hydrogen generation during the reaction of a coal\\/CaO mixture with high pressure steam was investigated using a flow-type reactor. Coal, CaO and CO reactions with steam, and CO2 absorption by Ca(OH)2 or CaO occurred simultaneously in the experiment. It was found that H2 was the primary resultant gas, comprising about 85% of the reaction products. CO2 was fixed into CaCO3

Shiying Lin; Michiaki Harada; Yoshizo Suzuki; Hiroyuki Hatano

2002-01-01

326

Radiochemical analysis of 210 Po in coal gasification samples  

Microsoft Academic Search

The concentrations of210Po in samples from a coal gasifier were determined by -pulse height analysis following separations from complex organic matrices. Samples were dissolved using wet acid digestion and persulfate fusion techniques and then extracted with trilaurylamine. Polonium was auto-deposited onto silver disks using209Po as a tracer for yield determination. The precision of the experimental method, determined on coal, was

L. M. Roseberry; T. G. Scott

1985-01-01

327

Development of biological coal gasification (MicGAS process)  

SciTech Connect

Laboratory scale studies examining biogasification of Texas lignite at various coal solids loadings have been completed. Bench scale bioreactors are currently being used to scale up the biogasification process to higher coal solids loadings (5% and 10%) Specific observations reported this quarter are that methane production was not curtailed when B-vitamin solution was not added to the biogasification medium and that aeration of Mic-1 did not sufficiently oxidize the medium to eliminate strict anaerobic bacteria including methanogens.

Not Available

1992-10-30

328

Advances in the development of wire mesh reactor for coal gasification studies - article no. 084102  

SciTech Connect

In an effort to further understand the coal gasification behavior in entrained-flow gasifiers, a high pressure and high temperature wire mesh reactor with new features was recently built. An advanced LABVIEW-based temperature measurement and control system were adapted. Molybdenum wire mesh with aperture smaller than 70 {mu} m and type D thermocouple were used to enable high carbon conversion ({gt}90%) at temperatures {gt}1000 {sup o}C. Gaseous species from wire mesh reactor were quantified using a high sensitivity gas chromatography. The material balance of coal pyrolysis in wire mesh reactor was demonstrated for the first time by improving the volatile's quantification techniques.

Zeng, C.; Chen, L.; Liu, G.; Li, W.H.; Huang, B.M.; Zhu, H.D.; Zhang, B.; Zamansky, V. [GE Global Research Shanghai, Shanghai (China)

2008-08-15

329

Subtask 3.16 - Low-Cost Coal-Water Fuel for Entrained-Flow Gasification  

SciTech Connect

The specific objective of this research project is to assess the potential process efficiency and pollution control benefits that may occur by applying the hydrothermal, or hot water-drying, process to low-rank coals as related to entrained-flow gasification systems. Project emphasis is on identifying more efficient coal dewatering and CWF formulation methods prior to gasification. A favorable estimate of incremental cost for integrated hydrothermal drying depends, in part, on increasing the particle size of the feed coal from minus 100 to minus 28 mesh for the purpose of simplifying the slurry concentration process. Two options will be reviewed for dewatering or concentrating the processed slurry: (1) repressurization and then concentration with sieve bends or (2) partial dewatering at system pressure with hydroclones. Both have their own merits, sieve bends being a low-cost alternative, while hydroclone application would not require additional pumping sections prior to gasification. Various CWF samples with different particle-size distributions and solids concentrations will be sent to equipment vendors for application review. Also, EERC cost models will be used to calculate the integral cost of adding the partial dewatering to the hydrothermal technology for a commercial-size facility.

Anderson, C.M.

1997-10-01

330

Examination of Gasification Characteristics of Pressurized Two-Stage Entrained Flow Coal Gasifier  

NASA Astrophysics Data System (ADS)

The program for the 200T/D coal gasification pilot plant was initiated in 1986 and successfully completed in 1996. In this program, a two-stage pressurized air-blown entrained flow coal gasifier was adopted, jointly developed by Central Research Institute of Electric Power Industry (CRIEPI) and Mitsubishi Heavy Industry, Ltd. using a 2T/D bench scale gasifier. In the 200T/D pilot plant, domestic Taiheiyo coal and Australian Moura, Warkworth coal were used for test operations. The commissioned tests of these three types of coals have been carried out in a 2T/D gasifier, prior to the pilot plant operation. The gasification characteristics of 2T/D and 200T/D gasifiers were evaluated. At the same gasifier air ratio, per pass fixed carbon conversion efficiency of the 2T/D gasifier is about 10% lower than that of the 200T/D gasifier and the heat absorption rate to the gasifier wall of the 2T/D gasifier is about 2% higher than that of the 200T/D gasifier.

Hara, Saburo; Ichikawa, Kazuyoshi; Inumaru, Jun; Ashizawa, Masami

331

Mineralogical characterization of Sasol feed coals and corresponding gasification ash constituents  

SciTech Connect

Feed coal and coarse ash particles (heated rock fragments and clinkers), produced from Sasol-Lurgi gasifier tests under different operating conditions, have been characterized by quantitative X-ray diffraction, electron microprobe analysis, and associated chemical techniques, as a basis for better understanding of the relations between the mineralogical and physical properties of the ash particles. Crystalline phases in the ashes include quartz particles inherited directly from the feed coal, as well as anorthite, mullite, and diopside, derived from solid-state reactions or crystallization of a silicate melt during the gasification process. Glass, cooled from the melt, is also abundant in the ash materials. The abundance of large particles of hard minerals in the coal or the ash, such as quartz, anorthite, pyrite, and diopside, has been correlated with a laboratory-determined abrasion index and may contribute significantly to wear on mechanical equipment during coal- or ash-handling operations. 21 refs., 3 figs., 9 tabs.

Aivo B. Hlatshwayo; Ratale H. Matjie; Zhongsheng Li; Colin R. Ward [Sasol Technology (Proprietary) Limited, Sasolburg (South Africa)

2009-05-15

332

ENCOAL mild coal gasification demonstration project. Annual report, October 1994--September 1995  

SciTech Connect

This document is the combination of the fourth quarter report (July - September 1995) and the 1995 annual report for the ENCOAL project. The following pages include the background and process description for the project, brief summaries of the accomplishments for the first three quarters, and a detailed fourth quarter report. Its purpose is to convey the accomplishments and current progress of the project. ENCOAL Corporation, a wholly-owned subsidiary of SMC Mining Company (formerly Shell Mining company, now owned by Zeigler Coal Holding Company), has completed the construction and start-up of a mild gasification demonstration plant at Triton Coal Company`s Buckskin Mine near Gillette, Wyoming. The process, using Liquids From Coal (LFC) technology developed by SMC and SGI International, utilizes low-sulfur Powder River Basis coal to produce two new fuels, Process Derived Fuel (PDF) and Coal Derived Liquids (CDL). The products, as alternative fuels sources, are expected to significantly lower current sulfur emissions at industrial and utility boiler sites throughout the nation, thereby reducing pollutants causing acid rain. In the LFC technology, coal is first deeply dried to remove water physically. The temperature is further raised in a second stage which results in decomposition reactions that form the new products. This chemical decomposition (mild gasification) creates gases by cracking reactions from the feed coal. The chemically altered solids are cooled and further processed to make PDF. The gases are cooled, condensing liquids as CDL, and the residual gases are burned in the process for heat. The process release for the ENCOAL plant predicted that one ton of feed coal would yield roughly {1/2} ton of PDF and {1/2} barrel of CDL. By varying plant running conditions, however, it has since been learned that the actual CDL recovery rate may be as much as 15% to 20% above the projections.

NONE

1996-01-01

333

Coal gasification power generation, and product market study. Topical report, March 1, 1995--March 31, 1996  

SciTech Connect

This Western Research Institute (WRI) project was part of a WRI Energy Resource Utilization Program to stimulate pilot-scale improved technologies projects to add value to coal resources in the Rocky Mountain region. The intent of this program is to assess the application potential of emerging technologies to western resources. The focus of this project is on a coal resource near the Wyoming/Colorado border, in Colorado. Energy Fuels Corporation/Kerr Coal Company operates a coal mine in Jackson County, Colorado. The coal produces 10,500 Btu/lb and has very low sulfur and ash contents. Kerr Coal Company is seeking advanced technology for alternate uses for this coal. This project was to have included a significant cost-share from the Kerr Coal Company ownership for a market survey of potential products and technical alternatives to be studied in the Rocky Mountain Region. The Energy Fuels Corporation/Kerr Coal Company and WRI originally proposed this work on a cost reimbursable basis. The total cost of the project was priced at $117,035. The Kerr Coal Company had scheduled at least $60,000.00 to be spent on market research for the project that never developed because of product market changes for the company. WRI and Kerr explored potential markets and new technologies for this resource. The first phase of this project as a preliminary study had studied fuel and nonfuel technical alternatives. Through related projects conducted at WRI, resource utilization was studied to find high-value materials that can be targeted for fuel and nonfuel use and eventually include other low-sulfur coals in the Rocky Mountain region. The six-month project work was spread over about a three-year period to observe, measure, and confirm over time-any trends in technology development that would lead to economic benefits in northern Colorado and southern Wyoming from coal gasification and power generation.

Sheesley, D.; King, S.B.

1998-12-31

334

Fixed-bed gasification research using US coals. Volume 1. Program and facility description  

SciTech Connect

The United States Department of Interior, Bureau of Mines, Twin Cities Research Center, Minneapolis, Minnesota is the site of a 6.5 foot diameter Wellman-Galusha gasifier, installed in 1977-1978. This gasifier, combustor/incinerator, and flue gas scrubber system in the past had been operated jointly by Bureau of Mines personnel, personnel from member companies of the Mining and Industrial Fuel Gas Group, and United States Department of Energy personnel-consultants. Numerous tests using a variety of coals have to date been performed. In May of 1982, Black, Sivalls and Bryson, Incorporated (BS and B) was awarded the contract to plan, execute, and report gasification test performance data from this small industrial fixed-bed gasification test facility. BS and B is responsible for program administration, test planning, test execution, and all documentation of program activities and test reports. The University of Minnesota, Particle Technology Laboratory (UMPTL) is subcontractor to BS and B to monitor process parameters, and provide analysis for material inputs and outputs. This report is the initial volume in a series of reports describing the fixed-bed gasification of US coals at the Bureau of Mines, Twin Cities Research Center. A history of the program is given in Section 1 and a thorough description of the facility in Section 2. The operation of the facility is described in Section 3. Monitoring systems and procedures are described in Sections 4 and 5. Data reduction tools are outlined in Section 6. There is no executive summary or conclusions as this volume serves only to describe the research program. Subsequent volumes will detail each gasification test and other pertinent results of the gasification program. 32 references, 23 figures, 15 tables.

Thimsen, D.; Maurer, R.E.; Poole, A.R.; Pui, D.; Liu, B.; Kittleson, D.

1984-10-01

335

Coal gasification in a pilot scale fluidized bed reactor. 2. Gasification of a New Mexico subbituminous coal  

Microsoft Academic Search

A New Mexico subbituminous coal was gasified with steam and oxygen in a 15.2 cm i.d. fluidized bed reactor at a pressure of 790 kPa (100 psig) and average bed temperatures between 875 and 990°C. Material balances were obtained on total mass and major elements (C, H, O, N, S). A simple representation of coal pyrolysis has been added to

Mark J. Purdy; Richard M. Felder; James K. Ferrell

1984-01-01

336

Effect of CO2 gasification reaction on oxycombustion of pulverized coal char.  

SciTech Connect

For oxy-combustion with flue gas recirculation, as is commonly employed, it is recognized that elevated CO{sub 2} levels affect radiant transport, the heat capacity of the gas, and other gas transport properties. A topic of widespread speculation has concerned the effect of the CO{sub 2} gasification reaction with coal char on the char burning rate. To give clarity to the likely impact of this reaction on the oxy-fuel combustion of pulverized coal char, the Surface Kinetics in Porous Particles (SKIPPY) code was employed for a range of potential CO{sub 2} reaction rates for a high-volatile bituminous coal char particle (130 {micro}m diameter) reacting in several O{sub 2} concentration environments. The effects of boundary layer chemistry are also examined in this analysis. Under oxygen-enriched conditions, boundary layer reactions (converting CO to CO{sub 2}, with concomitant heat release) are shown to increase the char particle temperature and burning rate, while decreasing the O{sub 2} concentration at the particle surface. The CO{sub 2} gasification reaction acts to reduce the char particle temperature (because of the reaction endothermicity) and thereby reduces the rate of char oxidation. Interestingly, the presence of the CO{sub 2} gasification reaction increases the char conversion rate for combustion at low O{sub 2} concentrations, but decreases char conversion for combustion at high O{sub 2} concentrations. These calculations give new insight into the complexity of the effects from the CO{sub 2} gasification reaction and should help improve the understanding of experimentally measured oxy-fuel char combustion and burnout trends in the literature.

Molina, Alejandro (Universidad Nacional de Colombia, Medellin, Colombia); Hecht, Ethan S.; Shaddix, Christopher R.; Haynes, Brian S. (University of Sydney, New South Wales, Australia)

2010-07-01

337

Storing syngas lowers the carbon price for profitable coal gasification.  

PubMed

Integrated gasification combined cycle (IGCC) electric power generation systems with carbon capture and sequestration have desirable environmental qualities but are not profitable when the carbon dioxide price is less than approximately $50 per metric ton. We examine whether an IGCC facility that operates its gasifier continuously butstores the syngas and produces electricity only when daily prices are high may be profitable at significantly lower CO2 prices. Using a probabilistic analysis, we have calculated the plant-level return on investment (ROI) and the value of syngas storage for IGCC facilities located in the U.S. Midwest using a range of storage configurations. Adding a second turbine to use the stored syngas to generate electricity at peak hours and implementing 12 h of above-ground high-pressure syngas storage significantly increases the ROI and net present value. Storage lowers the carbon price at which IGCC enters the U.S. generation mix by approximately 25%. PMID:18186325

Newcomer, Adam; Apt, Jay

2007-12-01

338

Development of biological coal gasification (MicGAS Process)  

SciTech Connect

In order for the coal biogasification process to be economically feasible, an inexpensive nutrient amendment must be found to replace the Difco[trademark] yeast extract and tryptic soy broth (YE/TSB) used in the current medium formulation. Five products have been identified which support greater methane production from Texas lignite than YE/TSB.

Not Available

1992-04-30

339

Diffusion Coatings for Corrosion-Resistant Components in Coal Gasification Systems  

SciTech Connect

Heat-exchangers, particle filters, turbines, and other components in integrated coal gasification combined cycle system must withstand the highly sulfiding conditions of the high-temperature coal gas over an extended period of time. The performance of components degrades significantly with time unless expensive high alloy materials are used. Deposition of a suitable coating on a low-cost alloy may improve its resistance to such sulfidation attack, and decrease capital and operating costs. The alloys used in the gasifier service include austenitic and ferritic stainless steels, nickel-chromium-iron alloys, and expensive nickel-cobalt alloys. During this period, we analyzed several coated and exposed samples of 409 steel by scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX), and report on the findings of four samples: (1) Analysis of two porous coupons after exposure to the porous metal particulate filter of the coal gasification power plant at 370 C for 2140 hours revealed that corrosion takes place in the bulk of the sample while the most external zone surface survived the test. (2) Coating and characterization of several porous 409 steel coupons after being coated with nitrides of Ti, Al and/or Si showed that adjusting experimental conditions results in thicker coatings in the bulk of the sample. (3) Analysis of coupons exposed to simulated coal gas at 370 C for 300 hours showed that a better corrosion resistance is achieved by improving the coatings in the bulk of the samples.

Gopala N. Krishnan; Ripudaman Malhotra; Esperanza Alvarez; Kai-Hung Lau; Jordi Perez-Mariano; Angel Sanjurjo

2006-12-31

340

Na/Ca catalyzation of Illinois coals for gasification. [Quarterly] technical report, September 1--November 30, 1992  

SciTech Connect

Three of the most pressing technical problems in coal gasification are the high reaction temperatures required, the agglomerating tendency of Illinois coals, and the sulfur content of the gas produced from Illinois coals. This research program explores the use of gasification catalysts which reduce gasification temperature, agglomeration tendency, and sulfur emissions. The catalysts are sodium/calcium mixtures and are active for gasification at loadings less than 1 weight percent. During the first quarter, we have completed Task 1, ``Test Plan and Experimental Setup`` and initiated work on Task 2, ``Catalyzed Coal Preparation and Characterization.`` Under Task 2, we have completed characterization of the feed coals (IBC-105 and mine washed Delta). An initial test series on IBC-105 catalyzed with Ca and varying Na/Ca mixtures using dry mixing and wet impregnation techniques has also been completed. The dried, catalyzed coals and coals treated in H{sub 2}0/N{sub 2} were characterized by measurement of free swelling index, pyridine swelling, and surface area. The results indicated that wet impregnation at a pH below 6 could completely eliminate swelling.

Jha, M.C.; McCormick, R.L. [AMAX Research and Development Center, Golden, CO (United States)

1992-12-31

341

NA/CA catalyzation of Illinois coals for gasification. Technical report, December 1, 1992--February 28, 1993  

SciTech Connect

Three of the most pressing technical problems in gasification of Illinois coals are high reaction temperatures, agglomerating tendency of the coals, and sulfur content of the product gas. This program explores the use of gasification catalysts which reduce gasification temperature, agglomeration tendency, and sulfur emissions. The catalysts are sodium/calcium mixtures and are active at loadings less than 1 weight percent, although higher loading may be required. During the second quarter, we have continued work, ``Catalyzed Coal Preparation and Characterization.`` We have also initiated work on, ``Bench Scale Gasification Tests.`` Work included expansion of the test series for wet impregnated IBC-105 coal. It was determined that catalyst addition at pH 4.5 or lower resulted in almost complete elimination of caking tendency as determined by measurement of the free swelling index (FSI). Characterization of this suite of samples by FTIR, CO{sub 2} Chemisorption (to measure catalyst dispersion), and TGA gasification rate was also performed. Results show correlations between impregnation pH and catalyst dispersion (low pH = high dispersion) and between dispersion and reaction rate. FTIR results suggest the formation of highly dispersed catalyst by interaction with the coal hydroxyl groups.

Jha, M.C.; McCormick, R.L. [AMAX Research and Development Center, Golden, CO (United States); Banerjee, D.D. [Illinois Clean Coal Inst., Carterville, IL (United States)

1993-05-01

342

Coal reserves and resources as well as potentials for underground coal gasification in connection with carbon capture and storage (CCS)  

NASA Astrophysics Data System (ADS)

Coal is the energy source with the largest geological availability worldwide. Of all non-renewable energies coal and lignite accounting for 55 % of the reserves and some 76 % of the resources represent the largest potential. Reserves are those geological quantities of a mineral which can currently be mined under technically and economically viable conditions. Resources are those quantities which are either proven but currently not economically recoverable or quantities which can still be expected or explored on the basis of geological findings. The global availability of energy source does not only depend on geological and economic factors. The technical availability, e.g. mining and preparation capacities, the sufficient availability of land and sea-borne transportation as well as transloading capacities and also a political availability are required likewise. The latter may be disturbed by domestic-policy disputes like strikes or unrest or by foreign-policy disputes like embargos, trade conflicts or even tensions and wars in the producing regions. In the energy-economic discussion the reach of fossil primary energies plays a central role with the most important questions being: when will which energy source be exhausted, which impact will future developments have on the energy price, what does the situation of the other energies look like and which alternatives are there? The reach of coal can only be estimated because of the large deposits on the one hand and the uncertain future coal use and demand on the other. The stronger growth of population and the economic catching-up process in the developing and threshold countries will result in a shift of the production and demand centres in the global economy. However, also in case of further increases the geological potential will be sufficient to reliably cover the global coal demand for the next 100 years. The conventional mining of seams at great depths or of thin seams reaches its technical and economic limits. However, these otherwise unprofitable coal deposits can be mined economically by means of underground coal gasification, during which coal is converted into a gaseous product in the deposit. The synthesis gas can be used for electricity generation, as chemical base material or for the production of petrol. This increases the usability of coal resources tremendously. At present the CCS technologies (carbon capture and storage) are a much discussed alternative to other CO2 abatement techniques like efficiency impovements. The capture and subsequent storage of CO2 in the deposits created by the actual underground gasification process seem to be technically feasible.

Ilse, Jrgen

2010-05-01

343

Diffusion Coatings for Corrosion-Resistant Components in Coal Gasification Systems  

SciTech Connect

Heat-exchangers, particle filters, turbines, and other components in integrated coal gasification combined cycle system must withstand the highly sulfiding conditions of the high temperature coal gas over an extended period of time. The performance of components degrades significantly with time unless expensive high alloy materials are used. Deposition of a suitable coating on a low-cost alloy may improve its resistance to such sulfidation attack, and decrease capital and operating costs. The alloys used in the gasifier service include austenitic and ferritic stainless steels, nickel-chromium-iron alloys, and expensive nickel-cobalt alloys. The primary activity this period was preparation and presentation of the findings on this project at the Twenty-Third annual Pittsburgh Coal Conference. Dr. Malhotra attended this conference and presented a paper. A copy of his presentation constitutes this quarterly report.

Gopala N. Krishnan; Ripudaman Malhotra; Esperanza Alvarez; Kai-Hung Lau; Jordi Perez Mariano; Angel Sanjurjo

2006-09-30

344

Advanced technology applications for second and third general coal gasification systems  

NASA Technical Reports Server (NTRS)

The historical background of coal conversion is reviewed and the programmatic status (operational, construction, design, proposed) of coal gasification processes is tabulated for both commercial and demonstration projects as well as for large and small pilot plants. Both second and third generation processes typically operate at higher temperatures and pressures than first generation methods. Much of the equipment that has been tested has failed. The most difficult problems are in process control. The mechanics of three-phase flow are not fully understood. Companies participating in coal conversion projects are ordering duplicates of failure prone units. No real solutions to any of the significant problems in technology development have been developed in recent years.

Bradford, R.; Hyde, J. D.; Mead, C. W.

1980-01-01

345

Numerical study on convection diffusion for gasification agent in underground coal gasification. Part I: establishment of mathematical models and solving method  

SciTech Connect

The aim of this article is to discuss the distribution law of the gasification agent concentration in a deep-going way during underground coal gasification and the new method of solving the problem for the convection diffusion of the gas. In this paper, the basic features of convection diffusion for the gas produced in underground coal gasification are studied. On the basis of the model experiment, through the analysis of the distribution and patterns of variation for the fluid concentration field in the process of the combustion and gasification of the coal seams within the gasifier, the 3-D non-linear unstable mathematical models on the convection diffusion for oxygen are established. In order to curb such pseudo-physical effects as numerical oscillation and surfeit which frequently occurred in the solution of the complex mathematical models, the novel finite unit algorithm, the upstream weighted multi-cell balance method is advanced in this article, and its main derivation process is introduced.

Yang, L.H.; Ding, Y.M. [China University of Mining & Technology, Xuzhou (China). College of Resources and Geoscience

2009-07-01

346

Synthesis gas production with an adjustable H\\/CO ratio through the coal gasification process: effects of coal ranks and methane addition  

Microsoft Academic Search

Direct production of synthesis gas using coal as a cheap feedstock is attractive but challenging due to its low H\\/CO ratio of generated synthesis gas. Three typical U.S. coals of different ranks were tested in a 2.5 in. coal gasifier to investigate their gasification reactivity and adjustability on H\\/CO ratio of generated synthesis gas with or without the addition of

Yan Cao; Zhengyang Gao; Jing Jin; Hongchang Zhou; Marten Cohron; Houying Zhao; Hongying Liu; Weiping Pan

2008-01-01

347

Process development studies in coal gasification. Volume I. Single stage catalytic hydrogenation of coal to high-Btu gas. Final report, August 1, 1979November 30, 1983  

Microsoft Academic Search

The concept of single stage gasification of coal to high-Btu gas has been successfully demonstrated, both in the batch autoclave and continuous flow systems. High-volatile bituminous coals, a Wyoming subbituminous coal and Texas lignite have all performed well and produced high hydrocarbon gas yields at temperatures in the range 440 and 500°C and pressures in the range 1500 to 2000

1984-01-01

348

Storing syngas lowers the carbon price for profitable coal gasification  

SciTech Connect

Integrated gasification combined cycle (IGCC) electric power generation systems with carbon capture and sequestration have desirable environmental qualities but are not profitable when the carbon dioxide price is less than approximately $50 per metric ton. We examine whether an IGCC facility that operates its gasifier continuously but stores the syngas and produces electricity only when daily prices are high may be profitable at significantly lower CO{sub 2} prices. Using a probabilistic analysis, we have calculated the plant-level return on investment (ROI) and the value of syngas storage for IGCC facilities located in the U.S. Midwest using a range of storage configurations. Adding a second turbine to use the stored syngas to generate electricity at peak hours and implementing 12 h of above-ground high-pressure syngas storage significantly increases the ROI and net present value. Storage lowers the carbon price at which IGCC enters the U.S. generation mix by approximately 25%. 36 refs., 7 figs., 1 tab.

Adam Newcomer; Jay Apt [Carnegie Mellon University, Pittsburgh, PA (USA). Carnegie Mellon Electricity Industry Center

2007-12-15

349

Oxidation\\/sulfidation behavior of ferritic 446, austenitic 310, and cobalt-base alloy 6B in high temperature exposures in a coal gasification atmosphere  

Microsoft Academic Search

Commercial and experimental alloys can suffer catastrophic oxidation\\/sulfidation in a coal gasification environment containing low oxygen and significant sulfur content. Most of the alloys being exposed in a major MPC program on coal gasification at IITRI corrode initially in a parabolic manner, often for thousands of hours, followed by a breakaway type of corrosion rate change at the onset of

1983-01-01

350

Development of biological coal gasification (MicGAS Process)  

SciTech Connect

The overall goal of the project is to develop an advanced, clean coal biogasification (MicGAS) Process. The objectives of the research during FY 1993--94 were to: (1) enhance kinetics of methane production (biogasification, biomethanation) from Texas lignite (TxL) by the Mic-1 consortium isolated and developed at ARCTECH, (2) increase coal solids loading, (3) optimize medium composition, and (4) reduce retention time. A closer analysis of the results described here indicate that biomethanation of TxL at >5% solids loading is feasible through appropriate development of nutrient medium and further adaptation of the microorganisms involved in this process. Further understanding of the inhibitory factors and some biochemical manipulations to overcome those inhibitions will hasten the process considerably. Results are discussed on the following: products of biomethanation and enhance of methane production including: bacterial adaptation; effect of nutrient amendment substitutes; effects of solids loading; effect of initial pH of the culture medium; effect of hydrogen donors and carbon balance.

Walia, D.S.; Srivastava, K.C.

1994-10-01

351

Coal gasification systems engineering and analysis. Appendix F: Critical technology items/issues  

NASA Technical Reports Server (NTRS)

Critical technology items and issues are defined in which there is a need for developmental research in order to assure technical and economic success for the state of the art of coal gasification in the United States. Technology development needs for the main processing units and the supporting units are discussed. While development needs are shown for a large number of systems, the most critical areas are associated with the gasifier itself and those systems which either feed the gasifier or directly receive products form the gasifier.

1980-01-01

352

Underground coal gasification with integrated carbon dioxide mitigation supports Bulgaria's low carbon energy supply  

NASA Astrophysics Data System (ADS)

Underground coal gasification allows for the utilisation of coal reserves that are economically not exploitable due to complex geological boundary conditions. The present study investigates underground coal gasification as a potential economic approach for conversion of deep-seated coals into a high-calorific synthesis gas to support the Bulgarian energy system. Coupling of underground coal gasification providing synthesis gas to fuel a combined cycle gas turbine with carbon capture and storage is considered to provide substantial benefits in supporting the Bulgarian energy system with a competitive source of energy. In addition, underground voids originating from coal consumption increase the potential for geological storage of carbon dioxide resulting from the coupled process of energy production. Cost-effectiveness, energy consumption and carbon dioxide emissions of this coupled process are investigated by application of a techno-economic model specifically developed for that purpose. Capital (CAPEX) and operational expenditure (OPEX) are derived from calculations using six dynamic sub-models describing the entire coupled process and aiming at determination of the levelised costs of electricity generation (COE). The techno-economic model is embedded into an energy system-modelling framework to determine the potential integration of the introduced low carbon energy production technology into the Bulgarian energy system and its competitiveness at the energy market. For that purpose, boundary conditions resulting from geological settings as well as those determined by the Bulgarian energy system and its foreseeable future development have to be considered in the energy system-modelling framework. These tasks comprise integration of the present infrastructure of the Bulgarian energy production and transport system. Hereby, the knowledge on the existing power plant stock and its scheduled future development are of uttermost importance, since only phasing-out power plants can be economically substituted by low carbon based technologies. Furthermore, the integrated annual load management notably contributes to innovative process integration becoming economic in an energy system affected by low efficiency and flexibility. Further limiting flexibility, the geographic location of this innovative low carbon energy production technology strictly depends on geological boundary conditions, namely the presence of exploitable coal resources, and availability of energy transport networks to supply potential end users with the product. Hereby, feeding upgraded synthesis gas directly into the Bulgarian gas pipeline network avoiding its conversion into electricity is an alternative approach with relevant economic potentials. For that purpose, the proximity and availability of these transport networks as well as the demand of end users are validated by the integrated energy system model. Coupling our techno-economic process model to an energy system-modelling framework allows the determination of the future economical potentials and the limitations for the implementation of a low carbon energy production technology into the Bulgarian energy system. The obtained results show that the Bulgarian energy system can significantly benefit from the integration of underground coal gasification considering carbon dioxide mitigation technologies potentially initiating a continuous substitution of imported fuels by domestic coal resources.

Nakaten, Natalie; Kempka, Thomas; Azzam, Rafig

2013-04-01

353

Underground coal gasification: A new clean coal utilization technique for India  

Microsoft Academic Search

Energy demand of India is continuously increasing. Coal is the major fossil fuel in India and continues to play a pivotal role in the energy sector. India has relatively large reserves of coal (253 billion tonnes) compared to crude oil (728 million tonnes) and natural gas (686 billion cubic meters). Coal meets about 60% of the commercial energy needs and

Anil Khadse; Mohammed Qayyumi; Sanjay Mahajani; Preeti Aghalayam

2007-01-01

354

Brazing as a Means of Sealing Ceramic Membranes for use in Advanced Coal Gasification Processes  

SciTech Connect

Coal is potentially a very inexpensive source of clean hydrogen fuel for use in fuel cells, turbines, and various process applications. To realize its potential however, efficient, low-cost gas separation systems are needed to provide high purity oxygen to enhance the coal gasification reaction and to extract hydrogen from the resulting gas product stream. Several types of inorganic membranes are being developed for hydrogen or oxygen separation, including porous alumina, transition metal oxide perovskites, and zirconia. One of the key challenges in developing solid-state membrane based gas separation systems is in hermetically joining the membrane to the metallic body of the separation device. In an effort to begin addressing this issue, a new brazing concept has been developed, referred to as reactive air brazing. This paper discusses the details of this joining technique and illustrates its use in bonding a wide variety of materials, including alumina, lanthanum strontium cobalt ferrite, and yttria stabilized zirconia.

Weil, K. Scott; Hardy, John S.; Rice, Joseph P.; Kim, Jin Yong Y.

2006-01-02

355

Brazing as a Means of Sealing Ceramic Membranes for Use in Advanced Coal Gasification Processes  

SciTech Connect

Coal is a potentially a very inexpensive source of clean hydrogen fuel for use in fuel cells, turbines, and various process applications. To realize its potential however, efficient, low-cost gas separation systems are needed to provide high purity oxygen to enhance the coal gasification reaction and to extract hydrogen from the resulting gas product stream. Several types of inorganic membranes are being developed for hydrogen or oxygen separation, including porous alumina, transition metal oxide perovskites, and zirconia. One of the key challenges in developing solid-state membrane based gas separation systems is in hermetically joining the membrane to the metallic body of the separation device. In an effort to begin addressing this issue, a new brazing concept has been developed, referred to as reactive air brazing. This paper discusses the details of this joining technique and illustrates its use in bonding a wide variety of materials, including alumina, lanthanum strontium cobalt ferrite, and yttria stabilized zirconia.

Weil, K. Scott; Hardy, John S.; Rice, Joseph P.; Kim, Jin Yong

2006-01-31

356

Molten salt coal gasification process development unit. Phase 1. Volume 1. PDU operations. Final report  

SciTech Connect

This report summarizes the results of a test program conducted on the Molten Salt Coal Gasification Process, which included the design, construction, and operation of a Process Development Unit. In this process, coal is gasified by contacting it with air in a turbulent pool of molten sodium carbonate. Sulfur and ash are retained in the melt, and a small stream is continuously removed from the gasifier for regeneration of sodium carbonate, removal of sulfur, and disposal of the ash. The process can handle a wide variety of feed materials, including highly caking coals, and produces a gas relatively free from tars and other impurities. The gasification step is carried out at approximately 1800/sup 0/F. The PDU was designed to process 1 ton per hour of coal at pressures up to 20 atm. It is a completely integrated facility including systems for feeding solids to the gasifier, regenerating sodium carbonate for reuse, and removing sulfur and ash in forms suitable for disposal. Five extended test runs were made. The observed product gas composition was quite close to that predicted on the basis of earlier small-scale tests and thermodynamic considerations. All plant systems were operated in an integrated manner during one of the runs. The principal problem encountered during the five test runs was maintaining a continuous flow of melt from the gasifier to the quench tank. Test data and discussions regarding plant equipment and process performance are presented. The program also included a commercial plant study which showed the process to be attractive for use in a combined-cycle, electric power plant. The report is presented in two volumes, Volume 1, PDU Operations, and Volume 2, Commercial Plant Study.

Kohl, A.L.

1980-05-01

357

A study of toxic emissions from a coal-fired gasification plant. Final report  

SciTech Connect

Under the Fine Particulate Control/Air Toxics Program, the US Department of Energy (DOE) has been performing comprehensive assessments of toxic substance emissions from coal-fired electric utility units. An objective of this program is to provide information to the US Environmental Protection Agency (EPA) for use in evaluating hazardous air pollutant emissions as required by the Clean Air Act Amendments (CAAA) of 1990. The Electric Power Research Institute (EPRI) has also performed comprehensive assessments of emissions from many power plants and provided the information to the EPA. The DOE program was implemented in two. Phase 1 involved the characterization of eight utility units, with options to sample additional units in Phase 2. Radian was one of five contractors selected to perform these toxic emission assessments.Radian`s Phase 1 test site was at southern Company Service`s Plant Yates, Unit 1, which, as part of the DOE`s Clean Coal Technology Program, was demonstrating the CT-121 flue gas desulfurization technology. A commercial-scale prototype integrated gasification-combined cycle (IGCC) power plant was selected by DOE for Phase 2 testing. Funding for the Phase 2 effort was provided by DOE, with assistance from EPRI and the host site, the Louisiana Gasification Technology, Inc. (LGTI) project This document presents the results of that effort.

NONE

1995-12-01

358

Industrial application of C-E's coal-gasification process. Final report, January 1979-August 1980  

SciTech Connect

The technical and economic feasibility of Combustion Engineering's atmospheric pressure, entrained coal gasifier was studied in four specific applications. Selection of the four applications was based on a general analysis of industrial energy requirements. Plant designs were developed and costs estimated for each of the four cases to determine the potential of a clean fuel gas produced from a C-E gasifier as a cost effective substitute for present energy sources or feedstocks. The gasification potential for industry was determined by reviewing the literature for energy demand and how energy is used. It is estimated that the potential for coal gasification in industry is about 5 x 10/sup 15/ Btu per year. This potential represents about 500 gasification plants at an average capacity of 30 x 10/sup 9/ Btu per day. Those industries which were identified as having the largest potential are the petroleum, chemical, steel, and paper industries with a combined estimated potential of 4.5 x 10/sup 15/ Btu/year. Other industries with a sizable potential are the stone, glass, food and metal mining industries. An analysis of the uses of energy indicates that low and medium Btu gas (LBG and MBG) may be used in several ways in industry. In addition to its application in the generation of electrical power, LBG or MBG can be used as alternate fuels for a conventional steam boiler, to produce a clean hotflue gas or supply heat directly in a chemical process. Under certain conditions, MBG can be used as a chemical feedstock in the production of other products.

Atabay, K.; Baldassari, M.; Thibeault, P.R.

1981-01-01

359

Steam-Coal Gasification Using CaO and KOH for in Situ Carbon and Sulfur Capture  

SciTech Connect

We present experimental results of coal gasification with and without the addition of calcium oxide and potassium hydroxide as dual-functioning catalystcapture agents. Using two different coal types and temperatures between 700 and 900 C, we studied the effect of these catalystcapture agents on (1) the syngas composition, (2) CO{sub 2} and H{sub 2}S capture, and (3) the steamcoal gasification kinetic rate. The syngas composition from the gasifier was roughly 20% methane, 70% hydrogen, and 10% other species when a CaO/C molar ratio of 0.5 was added. We demonstrated significantly enhanced steamcoal gasification kinetic rates when adding small amounts of potassium hydroxide to coal when operating a CaOCaCO{sub 3} chemical looping gasification reactor. For example, the steamcoal gasification kinetic rate increased 250% when dry mixing calcium oxide at a Ca/C molar ratio of 0.5 with a sub-bituminous coal, and the kinetic rate increased 1000% when aqueously mixing calcium oxide at a Ca/C molar ratio of 0.5 along with potassium hydroxide at a K/C molar ratio of 0.06. In addition, we conducted multi-cycle studies in which CaCO{sub 3} was calcined by heating to 900 C to regenerate the CaO, which was then reused in repeated CaOCaCO{sub 3} cycles. The increased steamcoal gasification kinetics rates for both CaO and CaO + KOH persisted even when the material was reused in six cycles of gasification and calcination. The ability of CaO to capture carbon dioxide decreased roughly 24% per CaOCaCO{sub 3} cycle. We also discuss an important application of this combined gasifiercalciner to electricity generation and selling the purge stream as a precalcined feedstock to a cement kiln. In this scenario, the amount of purge stream required is fixed not by the degradation in the capture ability but rather by the requirements at the cement kiln on the amount of CaSO{sub 4} and ash in the precalcined feedstock.

Siefert, Nicholas S.; Shekhawat, Dushyant; Litster, Shawn; Berry, David, A

2013-08-01

360

Energy analysis of MHD-steam and MHD-gas-steam power plants integrated with coal gasification  

SciTech Connect

The paper presents energy analysis of combined two media (MHD-steam) and three media (MHD-gas-steam) power plants of high efficiency of conversion of chemical energy of fuel into electric energy integrated with coal gasification. The goal of this paper is to show the possibility of obtaining the high efficiency (about 60%) of the conversion of chemical energy of coal into electric energy in combined power plants with the open cycle MHD generators. The base of performed energy analysis are the elaborated mathematical models: of gas generator, of combustion chamber of MHD generator, of MHD channel, of high-temperature heater of oxygen, nitrogen and air, of steam generator and the cycle of steam turbine and of the cycle of gas turbine, and also the computer programmes, elaborated on the base of these models for numerical simulation of the processes of energy conversion in these elements. The elaborated mathematical model of the process of coal gasification for MHD-steam power plants allows to calculate: composition, physical properties and energy parameters of gas produced in the process of coal gasification, the consumption and temperature of gasifying medium and both the chemical and energy efficiency of coal gasification. Gas produced in the process of coal gasification is directed to combustion chamber of MHD generator after desulphurization. The mathematical model of physical, chemical and energy processes in combustion chamber of MHD generator allows to determine the temperature of oxidizer and its enrichment in oxygen necessary to obtain the plasma parameters desired for optimum process of energy conversion in MHD channel. The mathematical model of energy conversion in open cycle MHD channel was presented in paper. This model allows to perform numerical simulation of energy conversion process and to determine optimum parameters of plasma at the inlet to the channel necessary to obtain maximum efficiency of energy conversion.

Zaporowski, B.; Roszkiewicz, J.; Sroka, K. [Poznan Univ. of Technology (Poland)

1995-12-31

361

Testing of novel catalytic coal-gasification concepts. Task 2. Gas-phase catalysis. Final report, September 1986September 1989  

Microsoft Academic Search

Tests were conducted in a thermogravimetric analyzer to determine the effects of gas-phase catalysts on the rate of bituminous coal char gasification. Catalysts tested included HCl, HF, BF3, BF3\\/HF, AlCl3\\/H2, and K2CO3. Tests were conducted at temperatures from 1100 to 1400 F. Char samples were prepared by devolatilizing raw Illinois No. 6 bituminous coal in nitrogen at the test temperature.

M. C. Mensinger; H. L. Feldkirchner; A. H. Hill; F. S. Lau; D. V. Punwani

1990-01-01

362

Scale-up requirements of the Exxon catalytic coal gasification process. Monthly report, September 1September 30, 1977  

Microsoft Academic Search

As reported in previous Monthly Summaries, the size of the grass-roots large pilot plant for the Catalytic Coal Gasification (CCG) Process was set to allow scaleup to a pioneer commercial plant with acceptable risk (no demonstration plant). It was determined that the gasifier diameter should be 3.5' I.D., and that the feed rate of Illinois Bituminous Coal would be 92

1978-01-01

363

Performance of solid oxide fuel cells operated with coal syngas provided directly from a gasification process  

NASA Astrophysics Data System (ADS)

Solid oxide fuel cells (SOFCs) are being developed for integrated gasification power plants that generate electricity from coal at 50+% efficiency. The interaction of trace metals in coal syngas with Ni-based SOFC anodes is being investigated through thermodynamic analyses and in laboratory experiments, but test data from direct coal syngas exposure are sparsely available. This effort evaluates the significance of performance losses associated with exposure to direct coal syngas. Specimen are operated in a unique mobile test skid that is deployed to the research gasifier at NCCC in Wilsonville, AL. The test skid interfaces with a gasifier slipstream to deliver hot syngas to a parallel array of twelve SOFCs. During the 500h test period, all twelve cells are monitored for performance at four current densities. Degradation is attributed to syngas exposure and trace material attack on the anode structure that is accelerated at increasing current densities. Cells that are operated at 0 and 125mAcm-2 degrade at 9.1 and 10.7% per 1000h, respectively, while cells operated at 250 and 375mAcm-2 degrade at 18.9 and 16.2% per 1000h, respectively. Spectroscopic analysis of the anodes showed carbon, sulfur, and phosphorus deposits; no secondary Ni-metal phases were found.

Hackett, Gregory A.; Gerdes, Kirk; Song, Xueyan; Chen, Yun; Shutthanandan, Vaithiyalingam; Engelhard, Mark; Zhu, Zihua; Thevuthasan, Suntharampillai; Gemmen, Randall

2012-09-01

364

Performance of solid oxide fuel cells operaated with coal syngas provided directly from a gasification process  

SciTech Connect

Solid oxide fuel cells (SOFCs) are being developed for integrated gasification power plants that generate electricity from coal at 50% efficiency. The interaction of trace metals in coal syngas with Ni-based SOFC anodes is being investigated through thermodynamic analyses and in laboratory experiments, but test data from direct coal syngas exposure are sparsely available. This effort evaluates the significance of performance losses associated with exposure to direct coal syngas. Specimen are operated in a unique mobile test skid that is deployed to the research gasifier at NCCC in Wilsonville, AL. The test skid interfaces with a gasifier slipstream to deliver hot syngas to a parallel array of twelve SOFCs. During the 500 h test period, all twelve cells are monitored for performance at four current densities. Degradation is attributed to syngas exposure and trace material attack on the anode structure that is accelerated at increasing current densities. Cells that are operated at 0 and 125 mA cm{sup 2} degrade at 9.1 and 10.7% per 1000 h, respectively, while cells operated at 250 and 375 mA cm{sup 2} degrade at 18.9 and 16.2% per 1000 h, respectively. Spectroscopic analysis of the anodes showed carbon, sulfur, and phosphorus deposits; no secondary Ni-metal phases were found.

Hackett, G.; Gerdes, K.; Song, X.; Chen, Y.; Shutthanandan, V.; Englehard, M.; Zhu, Z.; Thevuthasan, S.; Gemmen, R.

2012-01-01

365

Feasibility studies of in-situ coal gasification in the Warrior coal field. Quarterly report  

SciTech Connect

Studies in support of in-situ gasification involved experiments in bench-scale combustors where three parameters were varied independently: initial fuel bed temperature, applied air flow and water vapor influx rate. Methods for measuring the thermal conductivity of solids at high temperatures were evaluated and measurements of the thermal conductivity and thermal diffusivity were made over a temperature range for several samples of coke. (LTN)

Douglas G.W.; McKinley, M.D.

1980-01-01

366

Up against Giants: The National Indian Youth Council, the Navajo Nation, and Coal Gasification, 1974-77  

ERIC Educational Resources Information Center

In the spring of 1977, members of the National Indian Youth Council (NIYC), along with the Coalition for Navajo Liberation, barraged the Secretary of the Interior and the chairman of the Navajo Nation with petitions calling for a halt to the proposed construction of several coal gasification plants on the Navajo Reservation in northwestern New

Shreve, Bradley Glenn

2006-01-01

367

The Physical and Chemical Properties of Fly Ash from Coal Gasification and Study on Its Recycling Utilization  

Microsoft Academic Search

Aiming at the difficulties in utilization of fly ash from coal gasification, the physical and chemical properties of fly ash were investigated. This research studied recycling utilization on using fly ash as one of cement raw materials for cement clinker. Results showed that fly ash belongs to ordinary solid waste of siliceous and aluminous materials. Cement clinker could be generated

Guohua Qiu; Weiqiang Zeng; Zhenglun Shi; Mengxiang Fang; Zhongyang Luo

2010-01-01

368

The El Tremedal underground coal gasification field test in Spain. First trial at great depth and high pressure  

SciTech Connect

The El Tremedal Underground Coal Gasification (UCG) trial sponsored by Belgian, Spanish and United Kingdom government organizations and the European Community has conducted two gasification phases during the summer-autumn of 1997, of nine and five days duration respectively. A gas of good quality has been obtained on both occasions. During the active gasification phases, which lasted in total 12.1 days, an estimated 237.2 tonnes of coal moisture-ash-free were affected and an average power of 2.64 MW based on the lower calorific value of the product gas was developed underground. The test utilized oxygen and nitrogen as the injection reactants (no steam injection). Access to the 2--3 meters sub-bituminous coal seam situated at an average depth of 560 meters was provided by an in-seam deviated well drilled close to the bottom of the 29 degrees dipping seam. A vertical well was used for the exhaust of the gasification products and the production counter-pressure was maintained in near equilibrium with the underground hydrostatic head (50--54 bars). Three Controlled Retraction Ignition Point (CRIP) maneuvers were achieved. Analysis of the raw process data was conducted to calculate mass and energy balances, and to determine influences of process conditions on gas composition, shift and methanation equilibrium, water influx and oxygen/coal conversion efficiencies.

Chappell, R. [AEA Technology plc, Harwell (United Kingdom); Mostade, M. [Institution pour le Developpement de la Gazeification, Liege (Belgium)

1998-12-31

369

Results of Phase 1 postburn drilling and coring, Rocky Mountain 1 Underground Coal Gasification Site, Hanna Basin, Wyoming  

Microsoft Academic Search

The Rocky Mountain 1 (RM1) Underground Coal Gasification (UCG) test consisted of two different module configurations: the controlled retracting injection point (CRIP) and elongated linked well (ELW) configurations. The postburn coring of the RM1 UCG site was designed in two phases to fulfill seven objectives outlined in the Western Research Institute's (WRI) annual project plan for 1988--1989. The seven objectives

S. R. Lindblom; J. R. Covell; R. L. Oliver

1990-01-01

370

Plastic waste elimination by co-gasification with coal and biomass in fluidized bed with air in pilot plant  

Microsoft Academic Search

Treatment of plastic waste by gasification in fluidized bed with air using dolomite as tar cracking catalyst has been studied. The gasifier has a 1 m high bed zone (diameter of 9.2 cm) followed by a 1 m high freeboard (diameter of 15.4 cm). The feedstock is composed of blends of plastic waste with pine wood sawdust and coal at

Mara P. Aznar; Miguel A. Caballero; Jess A. Sancho; E. Francs

2006-01-01

371

Process for the production of a coal-water suspension which is suitable for use in coal gasification under elevated pressure  

SciTech Connect

A coal-water suspension containing 50 to 75 percent by weight coal is disclosed based on the weight of the suspension. The bulk of the coal has a particle size of 50 to 500 ..mu..m, the proportion of the particles have a diameter greater than 0.5 mm in the coal being less than 15 percent by weight and the particle size distribution curve of the coal in the Rosin-rammler particle size distribution grid according to DIN 4190 has a slope of greater than or equal to 1; a process for the production of such water-coal suspension which is suitable for use in coal gasification under elevated pressure by mixing lump coal with water directly, the water being added in a concentration just sufficient to form a water-coal dust suspension suitable for the gasification reaction and grinding the resultant suspension in a disc attrition mill, a toothed disc attrition mill or a toothed colloid mill.

Lusch, J.; Heinen, H.; Kolodzey, W.; Schmidt, V.

1985-07-02

372

Coal gasification catalysis mechanisms. Final report, September 29, 1980 to November 29, 1982. [5 coal chars; 23 catalyst compounds, 5 binary and 2 ternary eutectics  

Microsoft Academic Search

A two-year effort to explore the fundamental aspects of catalytic coal char gasification is summarized. Twenty-three different pure catalysts, five binary and two ternary eutectics were used in concentrations ranging from two to fifty percent. Cation effects were monitored at constant anion; anion effects were monitored at constant cation. Mineral effects, both added and indigenous, were studied. Thirteen different gaseous

P. G. Kosky; E. J. Lamby; D. H. Maylotte; D. W. McKee; C. L. Spiro

1982-01-01

373

Utilization of lightweight materials made from coal gasification slags. Quarterly report, September--November 1994  

SciTech Connect

Coal gasification technologies are finding increasing commercial applications for power generation or production of chemical feedstocks. The integrated-gasification-combined-cycle coal conversion process has been demonstrated to be a clean, efficient, and environmentally acceptable method of generating power. However, the gasfication process produces relatively large quantities of a solid waste termed slag. Regulatory trends with respect to solid waste disposal, landfill development costs, and public concern make utilization of slag a high-priority issue. Therefore, it is imperative that slag utilization methods be developed, tested, and commercialized in order to offset disposal costs. In previous projects, Praxis investigated the utilization of ``as-generated`` slags for a wide variety of applications in road construction, cement and concrete production, agricultural applications, and landfill. We determined that it would be extremely difficult for ``as-generated`` slag to find acceptance in the marketplace even at no cost because the materials it could replace were abundantly available at very low cost. It became apparent that a more promising approach would be to develop a variety of value-added products from slag that would meet specific industry requirements. This approach was made feasible by the discovery that slag could be made into a lightweight material by heating it to between 1600 and 1900{degree}F in a kiln, which indicated the potential for using such materials as substitutes for lightweight aggregates. Between 1987 and 1993, the technologies to produce these materials from slag were developed by Praxis with funding from the Electric Power Research Institute, Illinois Clean Coal Institute, and internal resources.

NONE

1994-12-01

374

Phase-equilibria for design of coal-gasification processes: dew points of hot gases containing condensible tars. Final report  

SciTech Connect

This research is concerned with the fundamental physical chemistry and thermodynamics of condensation of tars (dew points) from the vapor phase at advanced temperatures and pressures. Fundamental quantitative understanding of dew points is important for rational design of heat exchangers to recover sensible heat from hot, tar-containing gases that are produced in coal gasification. This report includes essentially six contributions toward establishing the desired understanding: (1) Characterization of Coal Tars for Dew-Point Calculations; (2) Fugacity Coefficients for Dew-Point Calculations in Coal-Gasification Process Design; (3) Vapor Pressures of High-Molecular-Weight Hydrocarbons; (4) Estimation of Vapor Pressures of High-Boiling Fractions in Liquefied Fossil Fuels Containing Heteroatoms Nitrogen or Sulfur; and (5) Vapor Pressures of Heavy Liquid Hydrocarbons by a Group-Contribution Method.

Prausnitz, J.M.

1980-05-01

375

Hoe Creek No. 3 - First long-term underground coal gasification experiment with oxygen-steam injection  

NASA Astrophysics Data System (ADS)

The paper describes the first long-term underground coal gasification experiment with oxygen-steam injection. In the Hoe Creek No. 3 underground experiment, linkage paths were established between the injection and production wells by drilling a horizontal borehole between them near the bottom of the coal seam. The drilled linkage hole was enlarged by reverse burning, and then the forward gasification process was started - first with air injection for one week, then with oxygen-steam injection for the remainder of the experiment. During the oxygen-steam injection period, about 3900 tons of coal were gasified in 47 days, at an average rate of 83 tons per day. The heating value of the dry product gas averaged 218 Btu/scf, suitable for input to a processing plant for upgrading to pipeline quality, which is about 900 Btu/scf.

1980-05-01

376

Lawrence Livermore National Laboratory underground coal gasification data base. [US DOE-supported field tests; data  

SciTech Connect

The Department of Energy has sponsored a number of field projects to determine the feasibility of converting the nation's vast coal reserves into a clean efficient energy source via underground coal gasification (UCG). Due to these tests, a significant data base of process information has developed covering a range of coal seams (flat subbituminous, deep flat bituminous and steeply dipping subbituminous) and processing techniques. A summary of all DOE-sponsored tests to data is shown. The development of UCG on a commercial scale requires involvement from both the public and private sectors. However, without detailed process information, accurate assessments of the commercial viability of UCG cannot be determined. To help overcome this problem the DOE has directed the Lawrence Livermore National Laboratory (LLNL) to develop a UCG data base containing raw and reduced process data from all DOE-sponsored field tests. It is our intent to make the data base available upon request to interested parties, to help them assess the true potential of UCG.

Cena, R. J.; Thorsness, C. B.

1981-08-21

377

Producing fired bricks using coal slag from a gasification plant in indiana  

USGS Publications Warehouse

Integrated gasification combined cycle (IGCC) is a promising power generation technology which increases the efficiency of coal-to-power conversion and enhances carbon dioxide concentration in exhaust emissions for better greenhouse gas capture. Two major byproducts from IGCC plants are bottom slag and sulfur. The sulfur can be processed into commercially viable products, but high value applications need to be developed for the slag material in order to improve economics of the process. The purpose of this study was to evaluate the technical feasibility of incorporating coal slag generated by the Wabash River IGCC plant in Indiana as a raw material for the production of fired bricks. Full-size bricks containing up to 20 wt% of the coal slag were successfully produced at a bench-scale facility. These bricks have color and texture similar to those of regular fired bricks and their water absorption properties met the ASTM specifications for a severe weathering grade. Other engineering properties tests, including compressive strength tests, are in progress.

Chen, L.-M.; Chou, I.-M.; Chou, S.-F.J.; Stucki, J.W.

2009-01-01

378

Effects and characterization of an environmentally-friendly, inexpensive composite Iron-Sodium catalyst on coal gasification  

NASA Astrophysics Data System (ADS)

Coal gasification has been commercially used for more than 60 years in the production of fuels and chemicals. Recently, and due to the lowered environmental impacts and high efficiency derived from integrated gasification combined cycle (IGCC), this process has received increased attention. Furthermore, upcoming strict CO2 emissions regulations by the U.S. Environmental Protection Agency (EPA) will no longer be achievable by traditional means of coal combustion, therefore, growing dependence on different energy sources has drawn attention to clean coal technologies, such as coal-to-liquids processing, and the core of this process is also gasification. Gasification is an energy intensive process that can be substantially improved in terms of efficiency through the use of catalysts. In this study, the effect of the composite catalyst, FeCO3-Na2CO3, on gasification of a low-sulfur sub-bituminous Wyodak coal from the Powder River Basin (PRB) of Wyoming was investigated. The catalytic effects of the composite catalysts were evaluated by comparing their effluent gas compositions and carbon conversion kinetics to those achieved in the presence of either FeCO3 or Na2CO3 catalyst alone or without the presence of any catalyst. All of the evaluation work was conducted in a fixed bed gasifier at atmospheric pressure. Compared to raw coal with no catalyst, the composite catalyst is efficient in increasing the carbon conversion rate constant by as much as two times within the 700-800C range due to its ability to reduce the activation energy of gasification by about 30-40%. Compared to pure sodium and iron catalysts, the composite catalyst can increase the yields of desired products H2 and CO at 800C by 15% and 40%, respectively. The composite catalyst can not only synergize the advantages, but also overcome the challenges of pure iron or pure sodium based catalytic coal gasification processes. Moreover, the mechanisms of this particular catalytic coal gasification process were studied through characterization tests. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Mossbauer spectroscopy, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), gas chromatography (GC-MS) and nuclear magnetic resonance spectroscopy (NMR) were used to perform the analyses. The XRD results are consistent with interactive mechanisms or the formation of Na-Fe oxides as the catalytic pathway. Activity of the iron catalyst during late stages of the gasification process was confirmed through XPS. Mossbauer spectroscopy also indicated the presence of metallic iron and cementite in the char at different stages. The Fe catalysts were better at tar decomposition than the Na catalysts, as indicated by GC-MS analyses. NMR spectra confirmed that tar compositions vary with the catalytic mechanism. FTIR analysis confirmed the presence of high yields of aromatic components and long aliphatic chains in the tar. Composite Fe-Na catalysts provide a method to tailor the amounts and composition of product generated during gasification.

Monterroso, Rodolfo

379

FUNDAMENTAL INVESTIGATION OF FUEL TRANSFORMATIONS IN PULVERIZED COAL COMBUSTION AND GASIFICATION TECHNOLOGIES  

SciTech Connect

The goal of this project was to carry out the necessary experiments and analyses to extend current capabilities for modeling fuel transformations to the new conditions anticipated in next-generation coal-based, fuel-flexible combustion and gasification processes. This multi-organization, multi-investigator project has produced data, correlations, and submodels that extend present capabilities in pressure, temperature, and fuel type. The combined experimental and theoretical/computational results are documented in detail in Chapters 1-8 of this report, with Chapter 9 serving as a brief summary of the main conclusions. Chapters 1-3 deal with the effect of elevated pressure on devolatilization, char formation, and char properties. Chapters 4 and 5 deal with advanced combustion kinetic models needed to cover the extended ranges of pressure and temperature expected in next-generation furnaces. Chapter 6 deals with the extension of kinetic data to a variety of alternative solid fuels. Chapter 7 focuses on the kinetics of gasification (rather than combustion) at elevated pressure. Finally, Chapter 8 describes the integration, testing, and use of new fuel transformation submodels into a comprehensive CFD framework. Overall, the effects of elevated pressure, temperature, heating rate, and alternative fuel use are all complex and much more work could be further undertaken in this area. Nevertheless, the current project with its new data, correlations, and computer models provides a much improved basis for model-based design of next generation systems operating under these new conditions.

Robert Hurt; Joseph Calo; Thomas H. Fletcher; Alan Sayre

2005-04-29

380

Higgins coal gasification/repowering study, feasibility study for alternate fuels. Vol. 1. Executive summary  

SciTech Connect

Florida Power has completed a study to determine the feasibility of repowering 138 MW gross of oil-fired steam-generating capacity at its A.W. Higgins power station (Pinellas Co., Fla.) by utilizing coal-gasification combined-cycle (CGCC) technology. The repowering would add approximately 320 MW of gross electrical generation to the Higgins station through the use of combustion turbines and heat recovery equipment. This study provided Florida Power with the technical, environmental, and economic information necessary to determine the viability of using CGCC at the Higgins station. The plant would use BGC/Lurgi slagging gasifiers and the Selexol acid-gas removal system. Although this new technology represents an acceptable level of risk for the proposed project to be considered technically feasible, the capital-cost estimates were much higher than expected. Florida Power plans to continue further economic evaluations of this CGCC repowering option.

Not Available

1981-12-01

381

Some studies on a solid state sulfur probe for coal gasification systems  

NASA Technical Reports Server (NTRS)

Measurements on the solid electrolyte cell (Ar + H(2) + H(2)S/CaS + CaF(2) + (Pt)//CaF(2)//(Pt) + CaF(2) + CaS/H(2) + H(2)+Ar) show that the emf of the cell is directly related to the difference in sulfur potentials established at the Ar + H(2) + H(2)S/electrode interfaces. The electrodes convert the sulfur potential gradient across the calcium fluoride electrolyte into an equivalent fluorine potential gradient. Response time of the probe varies from approximately 9 hr at 990 K to 2.5 hr at 1225 K. The conversion of calcium sulfide and/or calcium fluoride into calcium oxide is not a problem anticipated in commercial coal gasification systems. Suggestions are presented for improving the cell for such commercial applications.

Jacob, K. T.; Rao, D. B.; Nelson, H. G.

1977-01-01

382

Treatment of coal gasification wastewater by membrane bioreactor hybrid powdered activated carbon (MBRPAC) system.  

PubMed

A laboratory-scale membrane bioreactor hybrid powdered activated carbon (MBRPAC) system was developed to treat coal gasification wastewater to enhance the COD, total phenols (TPh), NH4+ removals and migrate the membrane fouling. Since the MBRPAC system operated with PAC dosage of 4 g L?1, the maximum removal efficiencies of COD, TPh and NH4+ reached 93%, 99% and 63%, respectively with the corresponding influent concentrations of 2.27 g L?1, 497 mg L?1 and 164 mg N L?1; the PAC extraction efficiencies of COD, TPh and NH4+ were 6%, 3% and 13%, respectively; the transmembrane pressure decreased 34% with PAC after 50 d operation. The results demonstrate that PAC played a key role in the enhancement of biodegradability and mitigation of membrane fouling. PMID:25461944

Jia, Shengyong; Han, Hongjun; Hou, Baolin; Zhuang, Haifeng; Fang, Fang; Zhao, Qian

2014-12-01

383

Utilization of lightweight materials made from coal gasification slags. Quarterly report, March 1--May 31, 1996  

SciTech Connect

Integrated-gasification combined-cycle (IGCC) technology is an emerging technology that utilizes coal for power generation and production of chemical feedstocks. However, the process generates large amounts of solid waste, consisting of vitrified ash (slag) and some unconverted carbon. The major objectives of the subject project are to demonstrate the technical and economic viability of commercial production of lightweight aggregates (LWA) and ultra-lightweight (ULWA) from slag and to test the suitability of these aggregates for various applications. The project goals are to be accomplished in two phases: Phase 1, comprising the production of LWA and ULWA from slag at the large pilot-scale, and Phase 2, which involves commercial evaluation of these aggregates in a number of applications. The following significant events occurred during this reporting period: testing of slag-based lightweight aggregates for roof tile and concrete applications.

NONE

1996-12-31

384

Environmental assessment for the Hoe Creek underground, Coal Gasification Test Site Remediation, Campbell County, Wyoming  

SciTech Connect

The U.S. Department of Energy (DOE) has prepared this EA to assess environmental and human health Issues and to determine potential impacts associated with the proposed Hoe Creek Underground Coal Gasification Test Site Remediation that would be performed at the Hoe Creek site in Campbell County, Wyoming. The Hoe Creek site is located south-southwest of the town of Gillette, Wyoming, and encompasses 71 acres of public land under the stewardship of the Bureau of Land Management. The proposed action identified in the EA is for the DOE to perform air sparging with bioremediation at the Hoe Creek site to remove contaminants resulting from underground coal gasification (UCG) experiments performed there by the DOE in the late 1970s. The proposed action would involve drilling additional wells at two of the UCG test sites to apply oxygen or hydrogen peroxide to the subsurface to volatilize benzene dissolved in the groundwater and enhance bioremediation of non-aqueous phase liquids present in the subsurface. Other alternatives considered are site excavation to remove contaminants, continuation of the annual pump and treat actions that have been used at the site over the last ten years to limit contaminant migration, and the no action alternative. Issues examined in detail in the EA are air quality, geology, human health and safety, noise, soils, solid and hazardous waste, threatened and endangered species, vegetation, water resources, and wildlife. Details of mitigative measures that could be used to limit any detrimental effects resulting from the proposed action or any of the alternatives are discussed, and information on anticipated effects identified by other government agencies is provided.

NONE

1997-10-01

385

Characterization and failure analysis of ceramic filters utilized for emission control during coal gasification. Topical report, October 1, 1995--September 30, 1996  

SciTech Connect

Ceramic filters for pollutant emission control from coal gasification have been evaluated. The following were investigated: permeability, cleaning, back pulse pressure distribution measurement within candle filter without dust cake, and optimization on back pulse system design.

Huque, Ziaul, Mei, D.; Zhou, J.

1998-12-31

386

Diffusion Coatings for Corrosion-Resistant Components in Coal Gasification Systems  

SciTech Connect

Heat-exchangers, particle filters, turbines, and other components in integrated coal gasification combined cycle system must withstand the highly sulfiding conditions of the high-temperature coal gas over an extended period of time. The performance of components degrades significantly with time unless expensive high alloy materials are used. Deposition of a suitable coating on a low-cost alloy may improve its resistance to such sulfidation attack, and decrease capital and operating costs. The alloys used in the gasifier service include austenitic and ferritic stainless steels, nickel-chromium-iron alloys, and expensive nickel-cobalt alloys. During this period, we analyzed several coated and exposed samples of 409 steel by scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX). We report here on findings of this analysis: (1) A SS409 coupon that was coated with multilayered combined nitrides of Ti, Al, and Si showed adherent coatings on the surface; (2) A similarly coated coupon, after exposure to simulated coal gas at 900 C for 300 h, revealed that the coating has cracked during the exposure; (3) An SS409 coupon that was coated with nitrides of Ti and Si with a barrier layer of tungsten in between to improve the adhesion of the coating and to prevent outward diffusion of iron to the surface. (4) A porous coupon was coated with nitrides of Ti and Al and examination of the coupon revealed deposition of Ti at the interior surfaces. A similarly prepared coupon was exposed to simulated coal gas at 370 C for 300 h, and it showed no corrosion.

Gopala N. Krishnan; Ripudaman Malhotra; Esperanza Alvarez; Kai-Hung Lau; Jordi Perez-Mariano; Angel Sanjurjo

2006-06-30

387

Performance of solid oxide fuel cells operated with coal syngas provided directly from a gasification process  

SciTech Connect

Solid oxide fuel cells (SOFCs) are presently being developed for gasification integrated power plants that generate electricity from coal at 50+% efficiency. The interaction of trace metals in coal syngas with the Ni-based SOFC anodes is being investigated through thermodynamic analyses and in laboratory experiments, but direct test data from coal syngas exposure are sparsely available. This research effort evaluates the significance of SOFC performance losses associated with exposure of a SOFC anode to direct coal syngas. SOFC specimen of industrially relevant composition are operated in a unique mobile test skid that was deployed to the research gasifier at the National Carbon Capture Center (NCCC) in Wilsonville, AL. The mobile test skid interfaces with a gasifier slipstream to deliver hot syngas (up to 300C) directly to a parallel array of 12 button cell specimen, each of which possesses an active area of approximately 2 cm2. During the 500 hour test period, all twelve cells were monitored for performance at four discrete operating current densities, and all cells maintained contact with a data acquisition system. Of these twelve, nine demonstrated good performance throughout the test, while three of the cells were partially compromised. Degradation associated with the properly functioning cells was attributed to syngas exposure and trace material attack on the anode structure that was accelerated at increasing current densities. Cells that were operated at 0 and 125 mA/cm degraded at 9.1 and 10.7% per 1000 hours, respectively, while cells operated at 250 and 375 mA/cm degraded at 18.9 and 16.2% per 1000 hours, respectively. Post-trial spectroscopic analysis of the anodes showed carbon, sulfur, and phosphorus deposits; no secondary Ni-metal phases were found.

Hackett, Gregory A.; Gerdes, Kirk R.; Song, Xueyan; Chen, Yun; Shutthanandan, V.; Engelhard, Mark H.; Zhu, Zihua; Thevuthasan, Suntharampillai; Gemmen, Randall

2012-09-15

388

Further development of an axisymmetric global UCG (underground coal gasification) cavity growth simulator  

SciTech Connect

Development has continued on the global underground coal gasification (UCG) cavity simulation model CAVSMII, first described at the 12th UCG symposium, with the result that it now treats essentially all major processes that occur during a UCG operation. To a large extent these modifications were motivated by insight into UCG cavity growth gained from observation of the excavated Partial Seam CRIP (PSC) UCG site. A submodel for water influx has been formulated and added, based on gravity drainage and water reflux, including compressibility effects of the medium. A submodel empirically describing the growth of an outflow channel from a horizontal uncased production borehole in the coal seam has been developed as well. The settling of solids in the rubble pile caused by removal of carbon from spalled char has been reformulated more realistically. Another major modeling reformulation is the addition of a resistance to gas flow through the overburden rubble, which was previously assumed negligible in comparison to the ash pile flow resistance. Also, the submodel describing dynamics of the reaction zone between the ash rubble and the competent coal wall, which previously consisted of an empirical two-parameter model, is now fully integrated into the global cavity evolution model and solved for each time step. At the same time, more efficient algorithms for computing flow of injection gas through the rubble pile have reduced both total CPU time and code memory requirements by more than a factor of two. The present state of the simulator is presented and the effect of some key physical and process parameters is explored. Finally, results are presented for the simulation of UCG cavity growth for the PSC test, the upcoming Rocky Mountain I test and a test of a high-ash, relatively thin seam coal proposed for Brazil. 13 refs.

Britten, J.A.; Thorsness, C.B.

1987-07-15

389

Prediction and measurement of entrained flow coal gasification processes. Interim report, September 8, 1981-September 7, 1983  

SciTech Connect

This volume reports interim experimental and theoretical results of the first two years of a three year study of entrained coal gasification with steam and oxygen. The gasifier facility and testing methods were revised and improved. The gasifier was also modified for high pressure operation. Six successful check-out tests at elevated pressure were performed (55, 75, 100, 130, 170, and 215 psig), and 8 successful mapping tests were performed with the Utah bituminous coal at an elevated pressure of 137.5 psig. Also, mapping tests were performed at atmospheric pressure with a Utah bituminous coal (9 tests) and with a Wyoming subbituminous coal (14 tests). The LDV system was used on the cold-flow facility to make additional nonreactive jets mixing measurements (local mean and turbulent velocity) that could be used to help validate the two-dimensional code. The previously completed two-dimensional entrained coal gasification code, PCGC-2, was evaluated through rigorous comparison with cold-flow, pulverized coal combustion, and entrained coal gasification data. Data from this laboratory were primarily used but data from other laboratories were used when available. A complete set of the data used has been compiled into a Data Book which is included as a supplemental volume of this interim report. A revised user's manual for the two-dimensional code has been prepared and is also included as a part of this interim report. Three technical papers based on the results of this study were published or prepared. 107 references, 57 figures, 35 tables.

Hedman, P.O.; Smoot, L.D.; Fletcher, T.H.; Smith, P.J.; Blackham, A.U.

1984-01-31

390

Diffusion Coatings for Corrosion-Resistant Components in Coal Gasification Systems  

SciTech Connect

Heat exchangers, particle filters, turbines, and other components in an integrated coal gasification combined cycle system must withstand the highly sulfiding conditions of the high-temperature coal gas over an extended period of time. The performance of components degrades significantly with time unless expensive high-alloy materials are used. Deposition of a suitable coating on a low-cost alloy may improve its resistance to such sulfidation attack, and decrease capital and operating costs. The alloys used in the gasifier service include austenitic and ferritic stainless steels, nickel-chromium-iron alloys, and expensive nickel-cobalt alloys. During this reporting period, we conducted a simulated gasifier test primarily with TiN-coated steel samples. Although the test showed these coatings to offer significant protection against corrosion, they also revealed a lack of uniformity in the coatings. We spent a considerable amount of effort improving our coatings procedure as well as the fluidized bed reactor and its heater. Based on the results collected thus far, we selected 12 samples and sent them to ConocoPhillips for testing in their gasifier at the Wabash River Energy plant.

Gopala N. Krishnan; Ripudaman Malhotra; Esperanza Alvarez; Kai-Hung Lau; Angel Sanjurjo

2005-12-01

391

Catalytic gasification of coal using eutectic salts: recovery, regeneration, and recycle of spent eutectic catalysts.  

PubMed

Catalyst recovery studies were conducted for gasified chars produced from steam gasification of Illinois #6 coal catalyzed with two different catalyst systems. A ternary (43.5 mol% Li2CO3-31.5 mol% Na2COr-25 mol% K2CO3) and a binary (29 mol% Na2CO3-71 mol% K2CO3) eutectic catalyst system were used for gasifying coal. Various extraction schemes, such as water extraction, H2SO4 extraction, and acetic acid extraction, were evaluated with respect to their extraction efficiencies. Effects of major process variables, such as solvent-to-char ratio, mixing time, temperature, and concentration, on the extraction efficiency were evaluated. A process schematic for the entire catalyst recovery, regeneration, and recycle scheme was developed and the preliminary process economics were determined based on these extraction schemes. H2SO4 extraction was found to be the most desirable. It also turned out to be more attractive than a once-through throwaway system. PMID:12708509

Sheth, Atul C; Sastry, Chandramouli; Yeboah, Yaw D; Xu, Yong; Agarwal, Pradeep

2003-04-01

392

Combined Air Sparge and Bioremediation of an Underground Coal Gasification Site  

SciTech Connect

EG&G Technical Services of West Virginia (TSWV) Inc. is successfully remediating a former underground coal gasification (UCG) test site in northeastern Wyoming. EG&G is demonstrating the effectiveness of combined air sparge and biostimulation technology. This project is being conducted for the U.S. Department of Energy (DOE ) - Morgantown Energy Technology Center (METC), the lease holder of the site. UCG testing from 1976 through 1979 contaminated three water-bearing units at the site with benzene. Previous pump and treat operations at the site showed the presence of a persistent non-dissolved benzene source material. The Felix I coal seam is the most contaminated unit at the site and was the target unit for the initial demonstration. Air sparging was selected to strip dissolved benzene, volatilize the non- dissolved benzene source material, and to provide oxygen for increasing aerobic bacteria populations. Indigenous bacteria populations were stimulated with ammonium phosphate addition. EG&G designed the remediation system to take advantage of the hydrogeologic environment to produce a cost-effective approach to the groundwater remediation. Groundwater pumping was used to manipulate subsurface air flow, nutrient transport, and biomass management. Demonstration operations began on September 29, 1995, and were suspended on April 30, 1996 to begin demonstration expansion. Initial results of the demonstration show substantial reduction in benzene concentrations across the demonstration area. Benzene concentration reductions greater than 80% were observed two months after demonstration operations were suspended.

Covell, J.R.; Thomas, M.H.

1996-12-01

393

LWA demonstration applications using Illinois coal gasification slag: Phase II. Technical report, 1 March--31 May 1994  

SciTech Connect

The major objective of this project is to demonstrate the suitability of using ultra-lightweight aggregates (ULWA) produced by thermal expansion of solid residues (slag) generated during the gasification of Illinois coals as substitutes for conventional aggregates, which are typically produced by pyroprocessing of perlite ores. To meet this objective, expanded slag aggregates produced from an Illinois coal slag feed in Phase I will be subjected to characterization and applications-oriented testing. Target applications include the following: aggregates in precast products (blocks and rooftiles); construction aggregates (loose fill insulation and insulating concrete); and other applications as identified from evaluation of expanded slag properties. The production of value-added products from slag is aimed at eliminating a solid waste and possibly enhancing the overall economics of the gasification process, especially when the avoided costs of disposal are taken into consideration.

Choudhry, V. [Praxis Engineers, Inc., Milpitas, CA (United States); Steck, P. [Harvey Cement Products, Inc. (United States)

1994-09-01

394

IGDS/TRAP Interface Program (ITIP). Software User Manual (SUM). [network flow diagrams for coal gasification studies  

NASA Technical Reports Server (NTRS)

This specification establishes the requirements, concepts, and preliminary design for a set of software known as the IGDS/TRAP Interface Program (ITIP). This software provides the capability to develop at an Interactive Graphics Design System (IGDS) design station process flow diagrams for use by the NASA Coal Gasification Task Team. In addition, ITIP will use the Data Management and Retrieval System (DMRS) to maintain a data base from which a properly formatted input file to the Time-Line and Resources Analysis Program (TRAP) can be extracted. This set of software will reside on the PDP-11/70 and will become the primary interface between the Coal Gasification Task Team and IGDS, DMRS, and TRAP. The user manual for the computer program is presented.

Jefferys, S.; Johnson, W.; Lewis, R.; Rich, R.

1981-01-01

395

Scale-up requirements of the Exxon catalytic coal gasification process. Monthly report, October 1October 31, 1977  

Microsoft Academic Search

The operating cost for the 92 T\\/D grass roots Catalytic Coal Gasification large pilot plant (LPP) was estimated to be $73M. This estimate is based on escalated costs for LPP operation over a 2¹\\/ year period from January 1, 1983 to July 1, 1985. The direct costs for modifications to the synthane pilot plant have been completed and the total

1978-01-01

396

Testing of novel catalytic coal-gasification concepts. Task 1. Ultrasound-promoted catalysis. Final report, September 1986September 1989  

Microsoft Academic Search

Tests were conducted to determine the effects of operating conditions, catalysts, and reactor configurations on ultrasound-promoted coal gasification. The operating conditions tested with lignite-water or lignite-water-salt slurries included temperatures and pressures in the range of 75 to 650 F, and 50 to 1200 psig, respectively. In tests conducted with nonaqueous slurries, the temperatures and pressures tested ranged from 650 to

M. C. Mensinger; F. S. Lau; J. R. Wangerow; D. V. Punwani

1990-01-01

397

Application of coal gasification technology as a flue gas pre-conditioning step for the catalytic reduction of acid gases  

Microsoft Academic Search

Typical flue gas contains an excess amount of oxygen, which can deactivate the reduction catalyst for NOX and SO2, such as the lanthanum oxysulfide-based catalyst. The reductant available in a flue gas stream rich in oxygen is usually scarce and not sufficient for the reduction. Coal gasification was applied to pre-condition the flue gas to remove the excessive oxygen and

Ming Fang; Jianxin Ma; Ngai T Lau; Lei Wang; Shaosong Qian; King L To

2002-01-01

398

Partial gasification of coal in a fluidized bed reactor: Comparison of a laboratory and pilot scale reactors  

Microsoft Academic Search

A 0.1 MWth lab-scale and 2 MWth pilot-scale experimental rigs were constructed to demonstrate the technical feasibility of a new process. The aim of the\\u000a lab-scale study is to optimize coal partial gasification reactions operating conditions, which were applied in the pilot-scale\\u000a tests. A comparison between the laboratory and pilot scale experimental results is presented in this paper in order

Rui Xiao; Laihong Shen; Mingyao Zhang; Baosheng Jin; Yuanquan Xiong; Yufeng Duan; Zhaoping Zhong; Hongcang Zhou; Xiaoping Chen; Yaji Huang

2007-01-01

399

Integrated Gasification Combined Cycle (IGCC) demonstration project, Polk Power Station -- Unit No. 1. Annual report, October 1993--September 1994  

SciTech Connect

This describes the Tampa Electric Company`s Polk Power Station Unit 1 (PPS-1) Integrated Gasification Combined Cycle (IGCC) demonstration project which will use a Texaco pressurized, oxygen-blown, entrained-flow coal gasifier to convert approximately 2,300 tons per day of coal (dry basis) coupled with a combined cycle power block to produce a net 250 MW electrical power output. Coal is slurried in water, combined with 95% pure oxygen from an air separation unit, and sent to the gasifier to produce a high temperature, high pressure, medium-Btu syngas with a heat content of about 250 Btu/scf (LHV). The syngas then flows through a high temperature heat recovery unit which cools the syngas prior to its entering the cleanup systems. Molten coal ash flows from the bottom of the high temperature heat recovery unit into a water-filled quench chamber where it solidifies into a marketable slag by-product.

NONE

1995-05-01

400

Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 3: Combustors, furnaces and low-BTU gasifiers. [used in coal gasification and coal liquefaction (equipment specifications)  

NASA Technical Reports Server (NTRS)

Information is presented on the design, performance, operating characteristics, cost, and development status of coal preparation equipment, combustion equipment, furnaces, low-Btu gasification processes, low-temperature carbonization processes, desulfurization processes, and pollution particulate removal equipment. The information was compiled for use by the various cycle concept leaders in determining the performance, capital costs, energy costs, and natural resource requirements of each of their system configurations.

Hamm, J. R.

1976-01-01

401

Geomechanical Analysis of Underground Coal Gasification Reactor Cool Down for Subsequent CO2 Storage  

NASA Astrophysics Data System (ADS)

Underground coal gasification (UCG) is an efficient method for the conversion of conventionally unmineable coal resources into energy and feedstock. If the UCG process is combined with the subsequent storage of process CO2 in the former UCG reactors, a near-zero carbon emission energy source can be realised. This study aims to present the development of a computational model to simulate the cooling process of UCG reactors in abandonment to decrease the initial high temperature of more than 400 C to a level where extensive CO2 volume expansion due to temperature changes can be significantly reduced during the time of CO2 injection. Furthermore, we predict the cool down temperature conditions with and without water flushing. A state of the art coupled thermal-mechanical model was developed using the finite element software ABAQUS to predict the cavity growth and the resulting surface subsidence. In addition, the multi-physics computational software COMSOL was employed to simulate the cavity cool down process which is of uttermost relevance for CO2 storage in the former UCG reactors. For that purpose, we simulated fluid flow, thermal conduction as well as thermal convection processes between fluid (water and CO2) and solid represented by coal and surrounding rocks. Material properties for rocks and coal were obtained from extant literature sources and geomechanical testings which were carried out on samples derived from a prospective demonstration site in Bulgaria. The analysis of results showed that the numerical models developed allowed for the determination of the UCG reactor growth, roof spalling, surface subsidence and heat propagation during the UCG process and the subsequent CO2 storage. It is anticipated that the results of this study can support optimisation of the preparation procedure for CO2 storage in former UCG reactors. The proposed scheme was discussed so far, but not validated by a coupled numerical analysis and if proved to be applicable it could provide a significant optimisation of the UCG process by means of CO2 storage efficiency. The proposed coupled UCG-CCS scheme allows for meeting EU targets for greenhouse gas emissions and increases the coal yield otherwise impossible to exploit.

Sarhosis, Vasilis; Yang, Dongmin; Kempka, Thomas; Sheng, Yong

2013-04-01

402

An evaluation of the United Kingdom Clean Coal Power Generation Group`s air-blown gasification cycle  

SciTech Connect

The Electric Power Research Institute (EPRI) is conducting an engineering and economic study of various pressurized fluidized-bed combustor (PFBC) designs. Studies have been completed on bubbling and circulating PFBC technologies and on an advanced PFBC power plant technology, in which the feed coal is partially gasified and the residual char burned in a PFBC. The United Kingdom Clean Coal Power Generation Group`s (CCPGG) air-blown gasification cycle (ABGC), known formerly as the British Coal Topping Cycle, also partially gasifies the feed coal, but uses a circulating atmospheric fluidized-bed combustor (AFBC) to burn the residual char. Although not a PFBC plant, the study was completed to effect a comparison with the advanced PFBC cycle.

Wheeldon, J.M.; Brown, R.A. [Electric Power Research Inst., Palo Alto, CA (United States); McKinsey, R.R. [Bechtel Group, Inc., San Francisco, CA (United States); Dawes, S.G. [British Coal Corp., Cheltenham (United Kingdom)

1996-12-31

403

Coal gasification systems engineering and analysis. Appendix C: Alternate product facility designs  

NASA Technical Reports Server (NTRS)

The study of the production of methane, methanol, gasoline, and hydrogen by an add-on facility to a Koppers-Totzek based MBG plant is presented. Applications to a Texaco facility are inferred by evaluation of delta effects from the K-T cases. The production of methane from an add-on facility to a Lurgi based MBG plant and the co-production of methane and methanol from a Lurgi based system is studied. Studies are included of the production of methane from up to 50 percent of the MBG produced in an integrated K-T based plant and the production of methane from up to 50 percent of the MBG produced from an integrated plant in which module 1 is based on K-T technology and modules 2, 3, and 4 are based on Texaco technology.

1980-01-01

404

High-level computer molecular modeling for low-rank coal containing metal complexes and iron-catalyzed steam gasification  

SciTech Connect

Low-rank coal is a complex mixture; consequently, it is necessary to develop simpler molecular representations for computational modeling. Our modeling objective has been to develop molecules suitable for semi-empirical (SE) computations of low-rank coal containing transition-metal complexes. These molecular models contain oxygen functional groups that are macro-ligands, forming coordination complexes with specific three-dimensional (3D) orientations; consequently, we develop models that encapsulate the properties of low-rank coals and can form metal complexes. The large computer resources required for SE calculations of these molecules limited their size; of the models examined, those containing numerous short links between phenyl groups caused excessive strain and were unsuitable to model transition-metal complexes. Computations (SE) of our models provided data on (i) hydrogen bonds of coal containing water, (ii) formation of aqua-inorganic species and transition-metal complexes, (iii) pyrolysis chemistry involving transformations of metal hydroxide/oxides, (iv) routes for H{sub 2} and CO formation, and (v) mechanism of iron-catalyzed steam gasification. Our char models, on the basis of transformations of the coal model, were consistent with low-temperature pyrolysis; these were disordered structures with some phenyl groups spaced between 0.35 and 0.4 nm. Smaller models of char and chars containing transition-metal clusters were optimized with SE and density functional theory (DFT) computations; these models were useful in modeling the mechanism of catalytic steam gasification. Our modeling of the mechanisms of iron-catalyzed steam gasification was consistent with experimental data. 44 refs., 5 figs., 5 tabs.

G. Domazetis; B.D. James; J. Liesegang [La Trobe University, Melbourne, Vic. (Australia). Physics and Chemistry Departments

2008-11-15

405

Changes in char structure during the gasification of a Victorian brown coal in steam and oxygen at 800{degree}C  

SciTech Connect

Char structure is an important factor influencing its reactivity during gasification. This study aims to investigate the changes in char structure during the gasification of brown coal. A Victorian brown coal was gasified in a fluidized-bed/fixed-bed reactor at 800{degree}C in atmospheres containing 15% H{sub 2}O, 2000 ppm O{sub 2}, or 15% H{sub 2}O and 2000 ppm O{sub 2}, respectively. Although the char gasification in 2000 ppm O{sub 2} was mainly rate-limited by the external diffusion of O{sub 2}, the char-H{sub 2}O reaction was mainly rate-limited by the chemical reactions. The structural features of char at different levels of char gasification conversion were examined with FT-Raman spectroscopy. Our results show that the chars from the gasification in the mixture of 2000 ppm O{sub 2} and 15% H{sub 2}O had almost the same features as the chars from the gasification in 15% H{sub 2}O alone when the same levels of char conversion were achieved. Both the thermal decomposition of char and the char gasification reactions could result in changes in char structure during gasification. 29 refs., 5 figs., 1 tab.

Xin Guo; Hui Ling Tay; Shu Zhang; Chun-Zhu Li [Monash University, Vic. (Australia). Department of Chemical Engineering

2008-11-15

406

Low-Btu coal-gasification-process design report for Combustion Engineering/Gulf States Utilities coal-gasification demonstration plant. [Natural gas or No. 2 fuel oil to natural gas or No. 2 fuel oil or low Btu gas  

SciTech Connect

This report describes a coal gasification demonstration plant that was designed to retrofit an existing steam boiler. The design uses Combustion Engineering's air blown, atmospheric pressure, entrained flow coal gasification process to produce low-Btu gas and steam for Gulf States Utilities Nelson No. 3 boiler which is rated at a nominal 150 MW of electrical power. Following the retrofit, the boiler, originally designed to fire natural gas or No. 2 oil, will be able to achieve full load power output on natural gas, No. 2 oil, or low-Btu gas. The gasifier and the boiler are integrated, in that the steam generated in the gasifier is combined with steam from the boiler to produce full load. The original contract called for a complete process and mechanical design of the gasification plant. However, the contract was curtailed after the process design was completed, but before the mechanical design was started. Based on the well defined process, but limited mechanical design, a preliminary cost estimate for the installation was completed.

Andrus, H E; Rebula, E; Thibeault, P R; Koucky, R W

1982-06-01

407

Utilization of lightweight materials made from coal gasification slags. Quarterly report, June--August 1995  

SciTech Connect

Integrated-gasification combined-cycle (IGCC) technology is an emerging technology that utilizes coal for power generation and production of chemical feedstocks. However, the process generates large amounts of solid waste, consisting of vitrified ash (slag) and some unconverted carbon. In previous projects, Praxis investigated the utilization of {open_quotes}as-generated{close_quotes} slags for a wide variety of applications in road construction, cement and concrete production, agricultural applications, and as a landfill material. From these studies, we found that it would be extremely difficult for {open_quotes}as-generated{close_quotes} slag to find large-scale acceptance in the marketplace even at no cost because the materials it could replace were abundantly available at very low cost. It was further determined that the unconverted carbon, or char, in the slag is detrimental to its utilization as sand or fine aggregate. It became apparent that a more promising approach would be to develop a variety of value-added products from slag that meet specific industry requirements. This approach was made feasible by the discovery that slag undergoes expansion and forms a lightweight material when subjected to controlled heating in a kiln at temperatures between 1400 and 1700{degrees}F. These results indicated the potential for using expanded slag as a substitute for conventional lightweight aggregates (LWA). The technology to produce lightweight and ultra-lightweight aggregates (ULWA) from slag was subsequently developed by Praxis with funding from the Electric Power Research Institute (EPRI), Illinois Clean Coal Institute (ICCI), and internal resources. The major objectives of the subject project are to demonstrate the technical and economic viability of commercial production of LWA and ULWA from slag and to test the suitability of these aggregates for various applications.

NONE

1995-09-01

408

Utilization of lightweight materials made from coal gasification slags. Quarterly report, March 1995--May 1995  

SciTech Connect

Integrated-gasification combined-cycle (IGCC) technology is an emerging technology that utilizes coal for power generation and production of chemical feedstocks. However, this process generates large amounts of solid waste, consisting of vitrified ash (slag) along with some unconverted carbon, which is disposed of as solid waste. In previous projects, Praxis investigated the utilization of {open_quotes}as-generated{close_quotes} slags for a wide variety of applications in road construction, cement and concrete production, agricultural applications, and as a landfill material. From these studies, we found that it would be extremely difficult for {open_quotes}as-generated{close_quotes} slag to find large-scale acceptance in the marketplace even at no cost because the materials it could replace were abundantly available at very low cost. It became apparent that a more promising approach would be to develop a variety of value-added products from slag that meet specific industry requirements. This approach was made feasible by the discovery that slag could be made into a lightweight material by controlled heating in a kiln at temperatures between 1400 and 1700{degrees}F. These results indicated the potential for using such materials as substitutes for conventional lightweight aggregates (LWA). The technology to produce lightweight and ultra-lightweight aggregates (ULWA) from slag was subsequently developed by Praxis with funding from the Electric Power Research Institute (EPRI), Illinois Clean Coal Institute (ICCI), and internal resources. The major objectives of the subject project, funded by DOE`s Morgantown Energy Technology Center (METC), are to demonstrate the technical and economic viability of commercial production of LWA and ULWA from slag and to test the suitability of these aggregates for various applications.

NONE

1995-06-01

409

Comparative Life-Cycle Air Emissions of Coal, Domestic Natural  

E-print Network

come domestically from the production of synthetic natural gas (SNG) via coal gasification- methanation gasification technologies that use coal to produce SNG. This National Gasification Strategy calls

Jaramillo, Paulina

410

The O?-enriched air gasification of coal, plastics and wood in a fluidized bed reactor.  

PubMed

The effect of oxygen-enriched air during fluidized bed co-gasification of a mixture of coal, plastics and wood has been investigated. The main components of the obtained syngas were measured by means of on-line analyzers and a gas chromatograph while those of the condensate phase were off-line analysed by means of a gas chromatography-mass spectrometer (GC-MS). The characterization of condensate phase as well as that of the water used as scrubbing medium completed the performed diagnostics. The experimental results were further elaborated in order to provide material and substances flow analyses inside the plant boundaries. These analyses allowed to obtain the main substance distribution between solid, gaseous and condensate phases and to estimate the conversion efficiency of carbon and hydrogen but also to easily visualise the waste streams produced by the process. The process performance was then evaluated on the basis of parameters related to the conversion efficiency of fuels into valuable products (i.e. by considering tar and particulate as process losses) as well as those related to the energy recovery. PMID:21993077

Mastellone, Maria Laura; Zaccariello, Lucio; Santoro, Donato; Arena, Umberto

2012-04-01

411

SPINEL-BASED REFRACTORIES FOR IMPROVED PERFORMANCE IN COAL GASIFICATION ENVIRONMENTS  

SciTech Connect

Oak Ridge National Laboratory, in collaboration with refractory manufacturer Minteq International, Inc., academic partner Missouri University of Science and Technology and refractory end users have developed novel refractory systems and techniques to reduce energy consumption of refractory lined vessels. The objective of this U.S. DOE funded project was to address the need for innovative refractory compositions by developing MgO-Al 2O3 spinel gunnable refractory compositions utilizing new aggregate materials, bond systems, protective coatings, and phase formation techniques. Materials have been developed specifically for coal gasification environments and work has been performed to develop and apply low cost coatings using a colloidal approach for protection against attack of the refractory brick by the service environment and to develop a light-weight back-up refractory system to help offset the high thermal conductivity inherent in spinel materials. This paper discusses the systematic development of these materials, laboratory testing and evaluation of these materials, and relevant results achieved toward the reduction of chemical reactions and mechanical degradation by the service environment though compositional and processing modifications.

Hemrick, James Gordon [ORNL; Armstrong, Beth L [ORNL; Rodrigues-Schroer, Angela [Minteq International, Inc.; Colavito, [Minteq International, Inc.; Smith, Jeffrey D [ORNL; O'Hara, Kelley [University of Missouri, Rolla

2013-01-01

412

Refractory Materials based on Magnesia-Alumina Spinel for Improved Performance in Coal Gasification Environments  

SciTech Connect

As part of a larger project to develop novel refractory systems and techniques to reduce energy consumption of refractory lined vessels, a team composed of Oak Ridge National Laboratory, refractory manufacturer Minteq International, Inc., and academic partner Missouri University of Science and Technology have developed new refractory materials and coating systems specifically for application in coal gasification environments. Materials were developed under this U.S. DOE funded project to address the need for innovative refractory compositions by developing MgO-Al2O3 spinel gunnable refractory compositions utilizing new aggregate materials, bond systems, protective coatings, and phase formation techniques. Work was conducted to develop and deploy these new materials and to develop and apply low cost coatings using a colloidal approach for protection against attack of the refractory brick by the serviced environment. Additionally, a light-weight back-up refractory system was developed to help offset the high thermal conductivity inherent in spinel materials. This paper discusses the efforts involved in the development of these materials, along with the laboratory testing and evaluation of these materials leading to relevant results achieved toward the reduction of chemical reactions and mechanical degradation by the service environment though compositional and processing modifications.

Hemrick, James Gordon [ORNL; Armstrong, Beth L [ORNL; Rodrigues-Schroer, Angela [Minteq International, Inc.; Colavito, [Minteq International, Inc.; Smith, Jeffrey D [ORNL; O'Hara, Kelley [University of Missouri, Rolla

2013-01-01

413

DEVELOPMENT OF NOVEL SPINEL REFRACTORIES FOR USE IN COAL GASIFICATION ENVIRONMENTS  

SciTech Connect

Work has been performed by Oak Ridge National Laboratory (ORNL), in collaboration with industrial refractory manufacturer (Minteq International, Inc.), academic research partner (Missouri University of Science and Technology) and end users to employ novel refractory systems and techniques to reduce energy consumption of refractory lined vessels found in industries such as aluminum, chemical, glass, and pulp and paper. The objective of the project was to address the need for new innovative refractory compositions by developing a family of novel MgO-Al 2O3 spinel structured unshaped refractory compositions (castables, gunnables, shotcretes, etc) utilizing new aggregate materials, bond systems, protective coatings, and phase formation techniques. As part of the four-year project funded by the U.S. Department of Energy (DOE), materials have been developed specifically for coal gasification environments. Additionally, work has been performed to develop and apply low cost coatings using a colloidal approach for protection against corrosion attack of the refractory brick and to develop a light-weight back-up refractory system to help offset the high thermal conductivity inherent in spinel materials. This paper discusses the development of these materials, along with preliminary results achieved toward the reduction of chemical reactions and mechanical degradation by the service environment.

Hemrick, James Gordon [ORNL; Armstrong, Beth L [ORNL; Rodrigues-Schroer, Angela [Minteq International, Inc.; Colavito, [Minteq International, Inc.; Smith, Jeffrey D [ORNL; O'Hara, Kelley [University of Missouri, Rolla

2011-01-01

414

Some studies on a solid-state sulfur probe for coal gasification systems  

NASA Technical Reports Server (NTRS)

As a part of a program for the development of a sulfur probe for monitoring the sulfur potential in coal gasification reactors, an investigation was conducted regarding the efficiency of the solid electrolyte cell Ar+H2+H2S/CaS+CaF2+(Pt)//CaF2//Pt)+CaF2+CaS/H2S+H2+Ar. A demonstration is provided of the theory, design, and operation of a solid-state sulfur probe based on CaF2 electrolyte. It was found that the cell responds to changes in sulfur potential in a manner predicted by the Nernst equation. The response time of the cell at 1225 K, after a small change in temperature or gas composition, was 2.5 Hr, while at a lower temperature of 990 K the response time was approximately 9 hr. The cell emf was insensitive to a moderate increase in the flow rate of the test gas and/or the reference gas. The exact factors affecting the slow response time of galvanic cells based on a CaF2 electrolyte have not yet been determined. The rate-limiting steps may be either the kinetics of electrode reactions or the rate of transport through the electrolyte.

Jacob, K. T.; Rao, D. B.; Nelson, H. G.

1978-01-01

415

Solar-driven coal gasification in a thermally irradiated packed-bed reactor  

SciTech Connect

Coal gasification for high-quality synthesis gas production is considered using concentrated solar energy as the source of high-temperature process heat. The solar reactor consists of two cavities separated by a radiant emitter plate, with the upper one serving as the solar absorber and the lower one containing the reacting packed bed that shrinks as the reaction progresses. A 5 kW prototype reactor with an 8 cm depth, 14.3 cm diameter cylindrical bed was fabricated and tested in a high-flux solar furnace, subjected to solar flux concentrations up to 2600 suns and packed-bed temperatures up to 1440 K. The reactor is modeled by formulating the 1D unsteady energy conservation equation that couples conductive-radiative heat transfer with the reaction kinetics and solving it by the finite volume technique for a transient shrinking domain. The overall reaction rate was determined experimentally by thermogravimetry, while the effective thermal conductivity was determined experimentally in a radial heat flow oven. Model validation was accomplished in terms of bed temperatures, gasified mass, and bed shrink rates measured in solar experiments conducted with beech charcoal. Heat transfer through the bed proved to be the rate-controlling mechanism, indicating an ablation regime. 31 refs., 18 figs.

Nicolas Piatkowski; Aldo Steinfeld [ETH Zurich, Zurich (Switzerland). Department of Mechanical and Process Engineering

2008-05-15

416

Gas production strategy of underground coal gasification based on multiple gas sources.  

PubMed

To lower stability requirement of gas production in UCG (underground coal gasification), create better space and opportunities of development for UCG, an emerging sunrise industry, in its initial stage, and reduce the emission of blast furnace gas, converter gas, and coke oven gas, this paper, for the first time, puts forward a new mode of utilization of multiple gas sources mainly including ground gasifier gas, UCG gas, blast furnace gas, converter gas, and coke oven gas and the new mode was demonstrated by field tests. According to the field tests, the existing power generation technology can fully adapt to situation of high hydrogen, low calorific value, and gas output fluctuation in the gas production in UCG in multiple-gas-sources power generation; there are large fluctuations and air can serve as a gasifying agent; the gas production of UCG in the mode of both power and methanol based on multiple gas sources has a strict requirement for stability. It was demonstrated by the field tests that the fluctuations in gas production in UCG can be well monitored through a quality control chart method. PMID:25114953

Tianhong, Duan; Zuotang, Wang; Limin, Zhou; Dongdong, Li

2014-01-01

417

Manufacture of gasification briquettes from meager-lean coal for use in chemical fertilizer-plant gasifiers  

SciTech Connect

Chinese fertilizer plants, especially middle or small fertilizer plants, feed lump anthracite to atmospheric fixed bed gasifiers to produce fuel gas and syngas. However, the available lump coal meets less than one half the demand for fertilizer production, and the price of good lump anthracite has risen. Most good anthracite is produced in Shanxi Province. Chemical fertilizer plants in other areas pay high transportation costs and leave Shanxi mines with waste fine coal and slime that cause environmental pollution. So, it is important to fully utilize fine anthracite coal or bituminous coal to produce the industrial gasification briquettes. That may mitigate the disparity between supply and demand of lump coal, reduce the fertilizer production cost, and decrease the degree of environmental pollution. The briquettes don`t require heat-drying in their production and have the characteristics of high strength and water resistance. This technology is very important for local fertilizer plants where only meager-lean coal is produced. This paper discusses the processing technique and parameters, the quality standards and testing methods of briquettes made from meager-lean coal.

Xu Zesheng; Yang Qiaowen; Zhao Yinrong; Wang Xingou; Hu Kunmo [China Univ. of Mining and Technology, Beijing (China). Beijing Graduate School; Wang Shiquan; Tao Xilo; Wang Guangnan; Meng Zhongze [Hebi Coal Mine Bureau, Beijing (China). The Fourth Coal Mine

1998-12-31

418

Biological removal of organic constituents in quench water from a slagging, fixed-bed coal-gasification pilot plant  

SciTech Connect

This study is part of an effort to assess the efficiency of activated-sludge treatment for removal of organic constituents from high-Btu coal-gasification pilot-plant quench waters. A sample of raw-gas quench water was obtained from the Grand Forks Energy and Technology Center's pilot plant, which employs the slagging, fixed-bed gasification process. The quench water generated in the processing of Indian Head lignite was pretreated to reduce ammonia and alkalinity, and then diluted and subjected to long-term biological treatment, followed by detailed characterization and analysis of organic constituents. The pretreated (influent) and treated (effluent) samples were extracted using a methylene chloride, pH-fractionation method to obtain acid, base, and neutral fractions, which were analyzed by capillary-column gas chromatography/mass spectrometry (GC/MS). Over 99% of the total extractable and chromatographable organic material in the influent acid fraction was composed of phenol and alkylated phenols. Biological treatment removed these compounds almost completely. Major components of the influent base fraction were alkylated pyridines, anilines, aminopyrroles, imidazoles and/or pyrazoles, diazines, and quinolines. Removal efficiency of these compounds ranged between 90 and 100%. The influent neutral fraction was composed mainly of cycloalkanes, cycloalkenes, naphthalene, indole, acetophenone, and benzonitrile. Alkylated benzenes were generally absent. Removal efficiencies of these compounds were generally very good, except for certain alkylated cycloalkanes and cycloalkenes. Results are compared with those of a similar study on HYGAS coal-gasification quench water.

Stamoudis, V C; Luthy, R G

1980-02-01

419

Evaluation of wood chip gasification to produce reburn fuel for coal-fired boilers  

EPA Science Inventory

Gasification/reburn testing with biomass and other wastes is of interest to both the U.S. Environmental Protection Agency (EPA) and the Italian Ministry of the Environment & Territory (IMET). Gasification systems that use wastes as feedstock should provide a clean, efficient sour...

420

Evaluation of Biomass Gasification to Produce Reburning Fuel for Coal-Fired Boilers  

EPA Science Inventory

Gasification and reburning testing with biomass and other wastes is of interest to both the U.S. EPA and the Italian Ministry of the Environment & Territory. Gasification systems that use biofuels or wastes as feedstock can provide a clean, efficient source of synthesis gas and p...

421

Evaluation of wood chip gasification to produce reburrn fuel for coal-fired boilers: AWMA  

EPA Science Inventory

Gasification or reburn testing with biomass and other wastes is of interest to both the U.S. Environmental Protection Agency (EPA) and the Italian Ministry of the Environment & Territory (IMET). Gasification systems that use wastes as feedstock should provide a clean, efficient s...

422

Utilization of lightweight materials made from coal gasification slags. Quarterly report, September--November 1995  

SciTech Connect

Integrated-gasification combined-cycle (IGCC) technology is an emerging technology that utilizes coal for power generation and production of chemical feedstocks. However, the process generates large amounts of solid waste, consisting of vitrified ash (slag) and some unconverted carbon. Slag undergoes expansion and forms a lightweight material when subjected to controlled heating in a kiln. The potential exists for using expanded slag as a substitute for conventional lightweight aggregates (LWA). The technology to produce lightweight and ultra-lightweight aggregates (ULWA) from slag was subsequently developed. The project scope consists of collecting a 20-ton sample of slag (primary slag), processing it for char removal, and subjecting it to pyroprocessing to produce expanded slag aggregates of various size gradations and unit weights, ranging from 12 to 50 lb/ft{sup 3}. A second smaller slag sample will be used for confirmatory testing. The expanded slag aggregates will then be tested for their suitability in manufacturing precast concrete products (e.g., masonry blocks and roof tiles) and insulating concrete, first at the laboratory scale and subsequently in commercial manufacturing plants. These products will be evaluated using ASTM and industry test methods. Technical data generated during production and testing of the products will be used to assess the overall technical viability of expanded slag production. In addition, a market assessment will be made based on an evaluation of both the expanded slag aggregates and the final products, and market prices for these products will be established in order to assess the economic viability of these utilization technologies.

NONE

1995-12-01

423

Utilization of lightweight materials made from coal gasification slags. Quarterly report, June 1--August 31, 1996  

SciTech Connect

Integrated-gasification combined-cycle (IGCC) technology is an emerging technology that utilizes coal for power generation and production of chemical feedstocks. However, the process generates large amounts of solid waste, consisting of vitrified ash (slag) and some unconverted carbon. In previous projects, Praxis investigated the utilization of ``as-generated`` slags for a wide variety of applications in road construction, cement and concrete production, agricultural applications, and as a landfill material. From these studies, we found that it would be extremely difficult for ``as-generated`` slag to find large-scale acceptance in the marketplace even at no cost because the materials it could replace were abundantly available at very low cost. It was further determined that the unconverted carbon, or char, in the slag is detrimental to its utilization as sand or fine aggregate. It became apparent that a more promising approach would be to develop a variety of value-added products from slag that meet specific industry requirements. This approach was made feasible by the discovery that slag undergoes expansion and forms a lightweight material when subjected to controlled heating in a kiln at temperatures between 1400 and 17000F. These results confirmed the potential for using expanded slag as a substitute for conventional lightweight aggregates (LWA). The technology to produce lightweight and ultra-lightweight aggregates (ULWA) from slag was subsequently developed by Praxis. The major objectives of the subject project are to demonstrate the technical and economic viability of commercial production of LWA and ULWA from slag and to test the suitability of these aggregates for various applications. The project goals are to be accomplished in two phases: Phase 1, comprising the production of LWA and ULWA from slag at the large pilot-scale, and Phase 2, which involves commercial evaluation of these aggregates in a number of applications. Accomplishments are described.

NONE

1996-12-31

424

Laser-absorption sensing of gas composition of products from coal gasification  

NASA Astrophysics Data System (ADS)

A prototype in-situ laser-absorption sensor for the real-time composition measurement (CO, CH4, H2O and CO2) of synthesis gas products of coal gasification (called here syngas) was designed, tested in the laboratory, and demonstrated during field-measurement campaigns in a pilot-scale entrained flow gasifier at the University of Utah and in an engineering-scale, fluidized-bed transport gasifier at the National Carbon Capture Center (NCCC). The prototype design and operation were improved by the lessons learned from each field test. Laser-absorption measurements are problematic in syngas flows because efficient gasifiers operate at elevated pressures (10-50 atm) where absorption transitions are collision broadened and absorption transitions that are isolated at 1 atm become blended into complex features, and because syngas product streams can contain significant particulate, producing significant non-absorption scattering losses of the transmission of laser light. Thus, the prototype sensor used a new wavelength-scanned, wavelength-modulation spectroscopy strategy with 2f-detection and 1f-normalization (WMS-2f/1f) that can provide sensitive absorption measurements of species with spectra blended by collision broadening even in the presence of large non-absorption laser transmission losses (e.g., particulate scattering, beam steering, etc.). The design of the sensor for detection of CO, CH4, H2O and CO2 was optimized for the specific application of syngas monitoring at the output of large-scale gasifiers. Sensor strategies, results and lessons learned from these field measurement campaigns are discussed.

Jeffries, Jay B.; Sur, Ritobrata; Sun, Kai; Hanson, Ronald K.

2014-06-01

425

Three-dimensional unstable non-linear numerical analysis of the underground coal gasification with free channel  

SciTech Connect

The three-dimensional unstable non-linear coupled mathematical model on the underground coal gasification with free channel is established in this article. The determination methods for the major model parameters are explained. Adopting the SIMPLE method, the numerical solution of the mathematical model is found. Additionally, the patterns of variation and development for the temperature field, concentration field and pressure field in the gasification panel are studied. On the basis of the model test, the calculation results are analyzed. Research shows that calculated values of the temperature field are a little higher than the experimental ones, and the relative error for every measuring point is virtually within 16%. Also, a good conformity takes on between the experimental values for the concentration field of the gas compositions and the calculated ones. The simulated results indicate that the relative calculation error of the pressure field is 10.20%-19.44%. Through the analysis of measured data, the change mechanisms of the gas compositions, heating value and pressure field in the underground gasification with free channel are pointed out.

Yang, L. [China University of Mining & Technology, Xuzhou (China). College of Resources & Geoscience

2006-12-15

426

Gasification system  

DOEpatents

A method and system for injecting coal and process fluids into a fluidized bed gasification reactor. Three concentric tubes extend vertically upward into the fluidized bed. Coal particulates in a transport gas are injected through an inner tube, and an oxygen rich mixture of oxygen and steam are injected through an inner annulus about the inner tube. A gaseous medium relatively lean in oxygen content, such as steam, is injected through an annulus surrounding the inner annulus.

Haldipur, Gaurang B. (Hempfield, PA); Anderson, Richard G. (Penn Hills, PA); Cherish, Peter (Bethel Park, PA)

1983-01-01

427

Gasification system  

DOEpatents

A method and system for injecting coal and process fluids into a fluidized bed gasification reactor. Three concentric tubes extend vertically upward into the fluidized bed. Coal particulates in a transport gas are injected through an inner tube, and an oxygen rich mixture of oxygen and steam are injected through an inner annulus about the inner tube. A gaseous medium relatively lean in oxygen content, such as steam, is injected through an annulus surrounding the inner annulus.

Haldipur, Gaurang B. (Hempfield, PA); Anderson, Richard G. (Penn Hills, PA); Cherish, Peter (Bethel Park, PA)

1985-01-01

428

Effects of coal gasification slag as a substrate for the plant Cyperus esculentus and the worm Eisenia fetida.  

PubMed

A further development of the coal gasification process will result in an increase of the amount of coal gasification slag (CGS). As yet little is known about the effects of storage in uncovered dumps. If there are any environmental effects, they are most likely caused by accumulation of metals from the CGS or by unacceptable physical properties of the CGS. Growth inhibition, mortality, and metal accumulation were analyzed for the plant Cyperus esculentus and the worm Eisenia fetida on CGS substrate. Pulverized fuel ash (PFA) was used as a reference. Both in the substrate and in tissues the concentrations of the cations Cu, Ni, Pb, and Zn and the anions As, B, Cr, Mo, Sb, and Se were determined. The availability of anions for C. esculentus and for E. fetida is greater in PFA than in CGS. The extent and rate of uptake of anionic metals by the plants is on the whole higher in the wetland situation. The availability of metals, expressed as the concentration factor (CF), in most cases appears to be smaller than 1 for nearly all elements. In E. fetida a CF greater than 1 was found only for the element As, in PFA substrate and 50% CGS. In C. esculentus a CF greater than 1 was found for B and Mo in the PFA substrate as well. PMID:1385078

Jenner, H A; Janssen-Mommen, J P; Koeman, J H

1992-08-01

429

LWA demonstration applications using Illinois coal gasification slag: Phase 2. Technical report, September 1--November 30, 1993  

SciTech Connect

The objectives of this program are to demonstrate the feasibility of producing ultra-lightweight aggregates (ULWA) from solid residues (slag) generated during the gasification of Illinois coals, and to test the products as substitutes for conventional aggregates produced by pyroprocessing of perlite ores. In Phase 1 of this project, Praxis developed a pilotscale production technique and produced a large batch of expanded aggregates from an Illinois coal slag feed. The Phase 2 work focuses on characterization and applications-oriented testing of the expanded slag products as substitutes for conventional ULWAs. Target applications include high-volume uses such as loose fill insulation, insulating concrete, lightweight precast products (blocks), waterproof wallboard, rooftiles, and filtration media. The precast products will be subjected to performance and characterization testing in conjunction with a commercial manufacturer of such products in order to obtain input from a potential user. The production of value-added products from slag will eliminate a solid waste and possibly enhance the overall gasification process economics, especially when the avoided costs of disposal are taken into consideration.

Choudhry, V. [Praxis Engineers, Inc., Milpitas, CA (United States); Steck, P. [Harvey Cement Products, Inc. (United States)

1993-12-31

430

Higgins coal gasification/repowering study: feasibility study for alternate fuels. [Higgins power plant, Pinellar County, Florida  

SciTech Connect

In 1978, FPC determined that repowering the existing 138 MW Higgins power plant would provide the most economical means for meeting immediate additional power requirements. The use of an integrated coal gasification combined cycle power plant offered the opportunity to revive the Higgins repowering concept without potential Fuel Use Act restrictions. The existing Higgins power plant is located at the north end of Tampa Bay on Booth Point, near the City of Oldsmar in Pinellas County, Florida. The basis for this feasibility study is to prepare a preliminary facility design for repowering the existing Higgins plant steam turbine generators utilizing coal gasification combined cycle (CGCC) technology to produce an additional 300 MW of power. The repowering is to be accomplished by integrating British Gas/Lurgi slagging gasifiers with combined cycle equipment consisting of new combustion turbines and heat recovery steam generators (HRSGs), and the existing steam turbines. The proposed CGCC facility has been designed for daily cyclic duty. However, since it was anticipated that the heat rate would be lower than at other existing FPC units, the CGCC facility has also been designed with base load operation capabilities.

Not Available

1981-12-01

431

Molten salt coal gasification process development unit, Phase 2. Quarterly technical progress report No. 1, July-September 1980  

SciTech Connect

This represents the first quarterly progress report on Phase 2 of the Molten Salt Coal Gasification Process Development Unit (PDU) Program. Phase 1 of this program started in March 1976 and included the design, construction, and initial operation of a PDU to test the Molten Salt Coal Gasification Process. On July 24, 1980, Phase 2 of the program was initiated. It covers a 1-year operations program utilizing the existing PDU and is planned to include five runs with a targeted total operating time of 9 weeks. The primary activities during the period covered by this report related to preparations for PDU Run 6, the initial run of the Phase 2 program. These activities included restaffing the PDU operations group, reactivation of the facility, and effecting plant modifications and improvements based on an evaluation of previous operation experience. The Melt Withdrawal System which had proven unreliable during the previous runs, was completely redesigned; thermal and flow analyses were performed; new components procured; and assembly initiated. Run 6 which is scheduled for the next report period, is aimed primarily at verifying the adequacy of the redesigned Melt Withdrawal System.

Slater, M.H.

1980-10-01

432

Study of the treatability of wastewater from a coal-gasification plant. Final report, July 15, 1978-July 14, 1980  

SciTech Connect

This study focused on the coal gasification facility serving the Holston Army Ammunition Plant in Kingsport, Tennessee. Objectives were to characterize the wastewater produced by the gasification facility, and to evaluate technology for treating the waste in preparation for dischage to the environment. Most wastewater was recycled for scrubbing and cooling the product gas, with the excess requiring disposal found to be an average of only 1170 gallons per day (53 gallons per ton of coal, as received, and 366 gallons per million cubic feet of product gas). Analysis indicated that the waste was warm, high in alkaline material, especially ammonia, high in organic material, especially phenols, and also contaminated with other substances. Sulfides and thiocyanates were especially high in concentration. It was found that pretreatment could be accomplished by stripping (air injection) at high pH, removal of grease and oil (by pH suppression and light aeration) and neutralizatin. Equations were developed to describe the first two steps. Biological treatment through activated sludge was found to be successful, but effected only a moderate degree of treatment, and was troubled with frequent process upset. Attempts to improve treatment efficiency and stability are described. The data indicated the need to study aerated waste stabilization ponds as an alternative to activated sludge. Biological reaction kinetics were studied for activated sludge. Evaluation of the application of granular activated carbon suggested that this could be an effective practical tertiary treatment.

Iglar, A. F.

1980-01-01

433

Exxon catalytic coal gasification process: predevelopment program. Quarterly technical progress report, July 1September 30, 1976  

Microsoft Academic Search

Predevelopment Program activities for the Exxon Catalytic Gasification Process include: recommissioning of the existing 20 lbs\\/hr Fluid Bed Gasifier (FBG); modifications to the FBG data acquisition system including the on-line computer program for the calculation of unit material balances from process variable data; start-up and initial operations of the 1-3 lbs\\/hr Continuous Gasification Unit (CGU); and computer programs development for

Kalina

1976-01-01

434

Development of a hot gas cleanup system for integrated coal gasification\\/molten carbonate fuel cell power plants. Quarterly progress report, April 1June 30, 1984  

Microsoft Academic Search

Under this program, the Institute of Gas Technology is conducting research in support of the development of both a high-temperature fuel-gas desulfurization process and a new, high-capacity sorbent for the removal of HCl and possibly other contaminants from coal-derived fuel gas at elevated temperatures for use in coal gasification\\/MCFC power plants. The high-temperature fuel-gas desulfurization process being developed by IGT

G. L. Anderson; F. O. Berry

1984-01-01

435

Energy Center Center for Coal Technology Research  

E-print Network

Production Gasification Power Plants Coking Liquid Fuels Environment Oxyfuels Byproducts Legislation;INDIANA COAL REPORT 2009 Table of Contents ii 7 COAL GASIFICATION INITIATIVES 7-1 7.1 Coal Gasification

Fernández-Juricic, Esteban

436

X-ray-absorption spectroscopic study of the reactions, dispersion, and degradation of the Ca and K catalytic species in coal gasification. Annual report, January-December 1985  

Microsoft Academic Search

EXAFS spectroscopy and several supplementary techniques have been used to investigate a variety of coal and polymer chars containing alkali and alkaline earth catalysts. The catalysts studied included Ca, K, Rb, and Sr. In-situ EXAFS measurements were performed on Rb-loaded polymer chars during gasification. At 450 deg. C in 90% N sub 2 - 10% O sub 2, the Rb

G. P. Huffman; F. E. Huggins

1986-01-01

437

Oxidation\\/sulfidation behaviour of ferritic 446, austenitic 310 and cobalt-base alloy 6B in high temperature exposures in a coal gasification atmosphere  

Microsoft Academic Search

Most of the alloys being exposed to a coal gasification environment in an experimental programme were found to corrode initially in a parabolic manner, often over a long period, followed by a break-away type of corrosion rate change at the onset of a rapid mode of corrosion. Results of tests to gain a better understanding of the break-away phenomenon are

1983-01-01

438

A comparison of circulating fluidised bed combustion and gasification power plant technologies for processing mixtures of coal, biomass and plastic waste  

Microsoft Academic Search

Environmental regulations concerning emission limitations from the use of fossil fuels in large combustion plants have stimulated interest in biomass for electricity generation.The main objective of the present study was to examine the technical and economic viability of using combustion and gasification of coal mixed with biomass and plastic wastes, with the aim of developing an environmentally acceptable process to

D. R. McIlveen-Wright; F. Pinto; L. Armesto; M. A. Caballero; M. P. Aznar; A. Cabanillas; Y. Huang; C. Franco; I. Gulyurtlu; J. T. McMullan

2006-01-01

439

Fixed Bed Countercurrent Low Temperature Gasification of Dairy Biomass and Coal-Dairy Biomass Blends Using Air-Steam as Oxidizer  

E-print Network

W) countercurrent fixed bed gasifier was rebuilt to perform gasification studies under quasisteady state conditions using dairy biomass (DB) as feedstock and various air-steam mixtures as oxidizing sources. A DB-ash (from DB) blend and a DB-Wyoming coal blend were...

Gordillo Ariza, Gerardo

2010-10-12

440

Fixed bed gasification studies on coal-feedlot biomass and coal-chicken litter biomass under batch mode operation  

E-print Network

of the processes for energy conversion of biomass fuels is thermochemical gasification. For the current study, a laboratory scale, 10 kW[th], fixed-bed gasifier (reactor internal diameter 0.15 m, reactor height 0.30 m) facility was built at the Texas A...

Priyadarsan, Soyuz

2002-01-01

441

Assessment of the chemical, microbiological and toxicological aspects of post-processing water from underground coal gasification.  

PubMed

The purpose of this paper is to provide a comprehensive characterisation (including chemical, microbiological and toxicological parameters) of water after the underground coal gasification (UCG) process. This is the first report in which these parameters were analysed together to assess the environmental risk of the water generated during the simulation of the underground coal gasification (UCG) process performed by the Central Mining Institute (Poland). Chemical analysis of the water indicated many hazardous chemical compounds, including benzene, toluene, ethylbenzene, xylene, phenols and polycyclic aromatic hydrocarbons (PAHs). Additionally, large quantities of inorganic compounds from the coal and ashes produced during the volatilisation process were noted. Due to the presence of refractory and inhibitory compounds in the post-processing water samples, the microbiological and toxicological analyses revealed the high toxicity of the UCG post-processing water. Among the tested microorganisms, mesophilic, thermophilic, psychrophilic, spore-forming, anaerobic and S-oxidizing bacteria were identified. However, the number of detected microorganisms was very low. The psychrophilic bacteria dominated among tested bacteria. There were no fungi or Actinomycetes in any of the water samples. Preliminary study revealed that hydrocarbon-oxidizing bacteria were metabolically active in the water samples. The samples were very toxic to the biotests, with the TU50 reaching 262. None of biotests was the most sensitive to all samples. Cytotoxicity and genotoxicity testing of the water samples in Vicia uncovered strong cytotoxic and clastogenic effects. Furthermore, TUNEL indicated that all of the water samples caused sporadic DNA fragmentation in the nuclei of the roots. PMID:25108176

Pankiewicz-Sperka, Magdalena; Sta?czyk, Krzysztof; P?aza, Gra?yna A; Kwa?niewska, Jolanta; Na??cz-Jawecki, Grzegorz

2014-10-01

442

Engineering support services for the DOE\\/GRI coal gasification research program. Technical and economic assessment of the Exxon Catalytic Coal-Gasification Process  

Microsoft Academic Search

In this assessment Kellogg utilized operating experience and data from the Exxon PDU wherever possible: modifications to the coal drying system, the catalyst recovery system and gasifier sizing criteria resulted from PDU observation since the previous (1979) screening evaluation. No data describing operation of the gasifier or the pretreatment unit in the PDU were available, however. This study must therefore

L. E. Bostwick; D. A. Coyle; R. W. Laramore

1981-01-01

443

ANALYTICAL METHODS FOR HAZARDOUS ORGANICS IN LIQUID WASTES FROM COAL GASIFICATION AND LIQUEFACTION PROCESSES  

EPA Science Inventory

This study was conducted by the University of Southern California group to provide methods for the analysis of coal liquefaction wastes from coal conversion processing plants. Several methods of preliminary fractionation prior to analysis were considered. The most satisfactory me...

444

The O{sub 2}-enriched air gasification of coal, plastics and wood in a fluidized bed reactor  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer The effect of the O{sub 2} in the gasification stream of a BFB gasifier has been studied. Black-Right-Pointing-Pointer Main advantage of the O{sub 2}-enriched air is the increasing of the bed temperature. Black-Right-Pointing-Pointer No remarkable effects on tar reduction. Decreasing of recognized PAHs. Black-Right-Pointing-Pointer Gasification reactions completed inside the dense bed and splashing zone. Black-Right-Pointing-Pointer Polycondensation reactions occur mainly in the freeboard region. - Abstract: The effect of oxygen-enriched air during fluidized bed co-gasification of a mixture of coal, plastics and wood has been investigated. The main components of the obtained syngas were measured by means of on-line analyzers and a gas chromatograph while those of the condensate phase were off-line analysed by means of a gas chromatography-mass spectrometer (GC-MS). The characterization of condensate phase as well as that of the water used as scrubbing medium completed the performed diagnostics. The experimental results were further elaborated in order to provide material and substances flow analyses inside the plant boundaries. These analyses allowed to obtain the main substance distribution between solid, gaseous and condensate phases and to estimate the conversion efficiency of carbon and hydrogen but also to easily visualise the waste streams produced by the process. The process performance was then evaluated on the basis of parameters related to the conversion efficiency of fuels into valuable products (i.e. by considering tar and particulate as process losses) as well as those related to the energy recovery.

Mastellone, Maria Laura, E-mail: mlaura.mastellone@unina2.it [Department of Environmental Sciences-Second University of Naples, Via Vivaldi, 43 81100 Caserta (Italy); Zaccariello, Lucio; Santoro, Donato; Arena, Umberto [Department of Environmental Sciences-Second University of Naples, Via Vivaldi, 43 81100 Caserta (Italy)

2012-04-15

445

LWA demonstration applications using Illinois coal gasification slag. Phase 2, [Quarterly] technical report, December 1, 1993--February 28, 1994  

SciTech Connect

The objectives of this program are to demonstrate the feasibility of producing ultra-lightweight aggregates (ULWA) , from solid residues (slag) generated during the gasification of Illinois coals, and to test the products as substitutes for conventional aggregates produced by pyroprocessing of perlite ores. During this reporting period, major accomplishments were the selection of mix designs and test methods for preparation of specimens of expanded slag for testing in precast applications (Task 3) and construction aggregate applications (Task 4). In addition, characterization data (Task 1) were,analyzed, and evaluation of the expanded slag products as substitutes for conventional ULWAs (Task 2) was completed. Potential applications that were identi