Science.gov

Sample records for theory torsional angular

  1. Can Torsion Play a Role in Angular Momentum Conservation Law ?

    NASA Astrophysics Data System (ADS)

    Duan, Yishi; Jiang, Ying

    1999-01-01

    In Einstein-Cartan theory, by the use of the general Noether theorem, the general covariant angular-momentum conservation law is obtained with the respect to the local Lorentz transformations. The corresponding conservative Noether current is interpreted as the angular momentum tensor of the gravity-matter system including the spin density. It is pointed out that, assuming the tetrad transformation given by eq. (15), torsion tensor can not play a role in the conservation law of angular momentum.

  2. Can Gravity Probe B usefully constrain torsion gravity theories?

    SciTech Connect

    Flanagan, Eanna E.; Rosenthal, Eran

    2007-06-15

    In most theories of gravity involving torsion, the source for torsion is the intrinsic spin of matter. Since the spins of fermions are normally randomly oriented in macroscopic bodies, the amount of torsion generated by macroscopic bodies is normally negligible. However, in a recent paper, Mao et al. (arXiv:gr-qc/0608121) point out that there is a class of theories, including the Hayashi-Shirafuji (1979) theory, in which the angular momentum of macroscopic spinning bodies generates a significant amount of torsion. They further argue that, by the principle of action equals reaction, one would expect the angular momentum of test bodies to couple to a background torsion field, and therefore the precession of the Gravity Probe B gyroscopes should be affected in these theories by the torsion generated by the Earth. We show that in fact the principle of action equals reaction does not apply to these theories, essentially because the torsion is not an independent dynamical degree of freedom. We examine in detail a generalization of the Hayashi-Shirafuji theory suggested by Mao et al. called Einstein-Hayashi-Shirafuji theory. There are a variety of different versions of this theory, depending on the precise form of the coupling to matter chosen for the torsion. We show that, for any coupling to matter that is compatible with the spin transport equation postulated by Mao et al., the theory has either ghosts or an ill-posed initial-value formulation. These theoretical problems can be avoided by specializing the parameters of the theory and in addition choosing the standard minimal coupling to matter of the torsion tensor. This yields a consistent theory, but one in which the action equals reaction principle is violated, and in which the angular momentum of the gyroscopes does not couple to the Earth's torsion field. Thus, the Einstein-Hayashi-Shirafuji theory does not predict a detectable torsion signal for Gravity Probe B. There may be other torsion theories which do.

  3. Coupling a small torsional oscillator to large optical angular momentum

    NASA Astrophysics Data System (ADS)

    Shi, Hao; Bhattacharya, Mishkatul

    2013-05-01

    We propose a new optomechanical system to achieve torsional optomechanics. Our system is composed of a windmill-shaped dielectric optically trapped within a cavity interacting with Laguerre-Gaussian cavity modes with both angular and radial nodes. Compared to existing configurations, our proposal enables small mechanical oscillators to interact with the in-principle unlimited orbital angular momentum that can be carried by a single photon, and therefore allows the generation of scalable optomechanical coupling. Supported by Research Corporation for Science Advancement.

  4. 35. VERTICAL AND TORSIONAL MOTION FROM EAST TOWER SHOWING ANGULAR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. VERTICAL AND TORSIONAL MOTION FROM EAST TOWER SHOWING ANGULAR DISTORTION APPROACHING 45 DEGREES WITH LAMP POSTS APPEARING TO BE AT EIGHT ANGLES, 7 NOVEMBER 1940, FROM 16MN FILM SHOT BY PROFESSOR F.B. FARQUHARSON, UNIVERSITY OF WASHINGTON. (LABORATORY STUDIES ON THE TACOMA NARROWS BRIDGE, AT UNIVERSITY OF WASHINGTON SEATTLE: UNIVERSITY OF WASHINGTON, DEPARTMENT OF CIVIL ENGINEERING, 1941) - Tacoma Narrows Bridge, Spanning Narrows at State Route 16, Tacoma, Pierce County, WA

  5. Improving the measurement sensitivity of angular deflection of a torsion pendulum by an electrostatic spring

    NASA Astrophysics Data System (ADS)

    Bai, Y. Z.; Fang, L.; Luo, J.; Yin, H.; Zhou, Z. B.

    2015-09-01

    The torsion pendulum is widely employed in gravitational experiments as a weak force sensitive instrument, and its resolution is limited by the thermal noise of the pendulum and detection noise of angular deflection. Different kinds of angular deflection transducers are proposed and realized to improve its resolution. A torsion pendulum combined with an electrostatic spring is proposed here in order to improve the measurement sensitivity of angular deflection. Noise analysis and demonstration experiments show that the electrostatic torsion pendulum can relax the requirement of angular deflection detection, which is useful for gravitational experiments with much higher precision requirements.

  6. Studies of torsional properties of DNA and nucleosomes using angular optical trapping

    NASA Astrophysics Data System (ADS)

    Sheinin, Maxim Y.

    DNA in vivo is subjected to torsional stress due to the action of molecular motors and other DNA-binding proteins. Several decades of research have uncovered the fascinating diversity of DNA transformations under torsion and the important role they play in the regulation of vital cellular processes such as transcription and replication. Recent studies have also suggested that torsion can influence the structure and stability of nucleosomes---basic building blocks of the eukaryotic genome. However, our understanding of the impact of torsion is far from being complete due to significant experimental challenges. In this work we have used a powerful single-molecule experimental technique, angular optical trapping, to address several long-standing issues in the field of DNA and nucleosome mechanics. First, we utilized the high resolution and direct torque measuring capability of the angular optical trapping to precisely measure DNA twist-stretch coupling. Second, we characterized DNA melting under tension and torsion. We found that torsionally underwound DNA forms a left-handed structure, significantly more flexible compared to the regular B-DNA. Finally, we performed the first comprehensive investigation of the single nucleosome behavior under torque and force. Importantly, we discovered that positive torque causes significant dimer loss, which can have implications for transcription through chromatin.

  7. The torsion cosmology in Kaluza–Klein theory

    SciTech Connect

    Chen, Songbai; Jing, Jiliang E-mail: jljing@hunnu.edu.cn

    2009-09-01

    We have studied the torsion cosmology model in Kaluza–Klein theory. We considered two simple models in which the torsion vectors are A{sub μ} = (α,0,0,0) and A{sub μ} = a(t){sup 2}(0,β,β,β), respectively. For the first model, the accelerating expansion of the Universe can be not explained without dark energy which is similar to that in the standard cosmology. But for the second model, we find that without dark energy the effect of torsion can give rise to the accelerating expansion of the universe and the alleviation of the well-known age problem of the three old objects for appropriated value of the model parameter β. These outstanding features of the second torsion cosmology model have been supported by the Type Ia supernovae (SNIa) data.

  8. Feedback control of torsion balance in measurement of gravitational constant G with angular acceleration method

    SciTech Connect

    Quan, Li-Di; School of Automation, Huazhong University of Science and Technology, Wuhan, Hubei 430074 ; Xue, Chao; Shao, Cheng-Gang; Yang, Shan-Qing; Tu, Liang-Cheng; Luo, Jun; Wang, Yong-Ji

    2014-01-15

    The performance of the feedback control system is of central importance in the measurement of the Newton's gravitational constant G with angular acceleration method. In this paper, a PID (Proportion-Integration-Differentiation) feedback loop is discussed in detail. Experimental results show that, with the feedback control activated, the twist angle of the torsion balance is limited to 7.3×10{sup −7} rad /√( Hz ) at the signal frequency of 2 mHz, which contributes a 0.4 ppm uncertainty to the G value.

  9. On discrete symmetries and torsion homology in F-theory

    NASA Astrophysics Data System (ADS)

    Mayrhofer, Christoph; Palti, Eran; Till, Oskar; Weigand, Timo

    2015-06-01

    We study the relation between discrete gauge symmetries in F-theory compactifications and torsion homology on the associated Calabi-Yau manifold. Focusing on the simplest example of a symmetry, we show that there are two physically distinct ways that such a discrete gauge symmetry can arise. First, compactifications of M-Theory on Calabi-Yau threefolds which support a genus-one fibration with a bi-section are known to be dual to six-dimensional F-theory vacua with a gauge symmetry. We show that the resulting five-dimensional theories do not have a symmetry but that the latter emerges only in the F-theory decompactification limit. Accordingly the genus-one fibred Calabi-Yau manifolds do not exhibit torsion in homology. Associated to the bi-section fibration is a Jacobian fibration which does support a section. Compactifying on these related but distinct varieties does lead to a symmetry in five dimensions and, accordingly, we find explicitly an associated torsion cycle. We identify the expected particle and membrane system of the discrete symmetry in terms of wrapped M2 and M5 branes and present a field-theory description of the physics for both cases in terms of circle reductions of six-dimensional theories. Our results and methods generalise straightforwardly to larger discrete symmetries and to four-dimensional compactifications.

  10. Dynamical features of scalar-torsion theories

    NASA Astrophysics Data System (ADS)

    Skugoreva, Maria A.; Saridakis, Emmanuel N.; Toporensky, Alexey V.

    2015-02-01

    We investigate the cosmological dynamics in teleparallel gravity with nonminimal coupling. We analytically extract several asymptotic solutions, and we numerically study the exact phase-space behavior. Comparing the obtained results with the corresponding behavior of nonminimal scalar-curvature theory, we find significant differences, such as the rare stability and the frequent presence of oscillatory behavior.

  11. Can a macroscopic gyroscope feel torsion

    NASA Technical Reports Server (NTRS)

    Stoeger, W. R.; Yasskin, P. B.

    1979-01-01

    We demonstrate that for a large class of Lagrangian-based torsion theories a macroscopic gyroscope is insensitive to the torsion field: there can be no coupling of the torsion to the gyroscope's angular momentum of rotation. To detect torsion a polarized system with a net elementary particle spin is needed. These conclusions are evident from the conservation laws, which form the basis for deriving the equations of motion.

  12. Thermal Properties of SiCp/Al Composites Consolidated by Equal Channel Angular Pressing and Torsion

    NASA Astrophysics Data System (ADS)

    Qian, Chen-hao; Li, Ping; Xue, Ke-min

    2015-02-01

    Powder mixture of pure Al and oxidized SiC was consolidated into SiCp/Al composites by equal channel angular pressing and torsion (ECAP-T). The influences of several parameters on the thermal expansions, the thermal conductivities, and the recrystallization temperatures of the as-consolidated composites were studied. These parameters are the number of ECAP-T passes (1, 2, and 4), the content of SiC (10, 20, and 40 wt.%), and the fabrication temperature (150, 250, and 350 °C). The results show that increasing the number of ECAP-T passes has a positive effect on depressing the coefficient of thermal expansion (CTE) of the composite within a certain temperature range, since the total variation amplitude of the CTE is enlarged. The CTE can also be decreased by increasing the content of SiC. The number of ECAP-T passes and the contents of SiC in the composites are both positively related with the thermal conductivity of the composites. No direct relationship between the fabrication temperature and the thermal properties was detected. However, the composite fabricated at too low temperature (150 °C) can not obtain full densification, leading to the appearance of low CTE and thermal conductivity. Finally, when the number of ECAP-T passes is elevated from 2 to 4, the recrystallization temperature of the composite has an obvious declination.

  13. Hyperscaling violating black holes in scalar-torsion theories

    NASA Astrophysics Data System (ADS)

    Kofinas, Georgios

    2015-10-01

    We study a gravity theory where a scalar field with potential, beyond its minimal coupling, is also coupled through a nonminimal derivative coupling with the torsion scalar which is the teleparallel equivalent of Einstein gravity. This theory provides second order equations of motion and we find large-distance, nonperturbative, static, spherically symmetric four-dimensional solutions. Among them a general class of black hole solutions is found for some range of the parameters/integration constants with asymptotics of the form of hyperscaling violating Lifshitz spacetime with spherical horizon topology. Although the scalar field diverges at the horizon, its energy density and pressures are finite there. From the astrophysical point of view, this solution provides extra deflection of light compared to the Newtonian deflection.

  14. Constraining torsion with Gravity Probe B

    SciTech Connect

    Mao Yi; Guth, Alan H.; Cabi, Serkan; Tegmark, Max

    2007-11-15

    It is well-entrenched folklore that all torsion gravity theories predict observationally negligible torsion in the solar system, since torsion (if it exists) couples only to the intrinsic spin of elementary particles, not to rotational angular momentum. We argue that this assumption has a logical loophole which can and should be tested experimentally, and consider nonstandard torsion theories in which torsion can be generated by macroscopic rotating objects. In the spirit of action=reaction, if a rotating mass like a planet can generate torsion, then a gyroscope would be expected to feel torsion. An experiment with a gyroscope (without nuclear spin) such as Gravity Probe B (GPB) can test theories where this is the case. Using symmetry arguments, we show that to lowest order, any torsion field around a uniformly rotating spherical mass is determined by seven dimensionless parameters. These parameters effectively generalize the parametrized post-Newtonian formalism and provide a concrete framework for further testing Einstein's general theory of relativity (GR). We construct a parametrized Lagrangian that includes both standard torsion-free GR and Hayashi-Shirafuji maximal torsion gravity as special cases. We demonstrate that classic solar system tests rule out the latter and constrain two observable parameters. We show that Gravity Probe B is an ideal experiment for further constraining nonstandard torsion theories, and work out the most general torsion-induced precession of its gyroscope in terms of our torsion parameters.

  15. Free torsional vibration of nanotubes based on nonlocal stress theory

    NASA Astrophysics Data System (ADS)

    Lim, C. W.; Li, C.; Yu, J. L.

    2012-06-01

    A new elastic nonlocal stress model and analytical solutions are developed for torsional dynamic behaviors of circular nanorods/nanotubes. Unlike the previous approaches which directly substitute the nonlocal stress into the equations of motion, this new model begins with the derivation of strain energy using the nonlocal stress and by considering the nonlinear history of straining. The variational principle is applied to derive an infinite-order differential nonlocal equation of motion and the corresponding higher-order boundary conditions which contain a nonlocal nanoscale parameter. Subsequently, free torsional vibration of nanorods/nanotubes and axially moving nanorods/nanotubes are investigated in detail. Unlike the previous conclusions of reduced vibration frequency, the solutions indicate that natural frequency for free torsional vibration increases with increasing nonlocal nanoscale. Furthermore, the critical speed for torsional vibration of axially moving nanorods/nanotubes is derived and it is concluded that this critical speed is significantly influenced by the nonlocal nanoscale.

  16. Exaptation and torsion: toward a theory of natural information processing.

    PubMed

    Kirby, K G

    1998-04-01

    Several conundrums are provoked by attempts to provide algorithmic descriptions of natural phenomena. A characteristic feature of natural computation is a breakdown in the formal simulation relation. This is called hermeneutic torsion, and is formally the failure to commute of a diagram describing homomorphisms between dynamical systems. This torsion is a source of computational power. For example, it is deeply involved with phenomena such as exaptation, wherein an existing structure is recruited for a novel function. Exaptation occurs continually at the macromolecular level and is fundamentally nonalgorithmic; our system-theoretic models of computation deal with structural descriptions for which a functional semantics must be assigned in advance, and a natural system continually 'diagonalizes out' of this semantics. This perspective clarifies the nature of computing power and encourages consideration of a new kind of transcomputational complexity. PMID:9648677

  17. PPN Metric and PPN torsion in the quadratic poincaré gauge theory of gravity

    NASA Astrophysics Data System (ADS)

    Gladchenko, M. S.; Ponomariov, V. N.; Zhytnikov, V. V.

    1990-05-01

    The post-newtonian approximation of the quadratic Poincaré gauge theory of gravity is studied. As a result of this investigation the modified PPN metric and PPN torsion is obtained. Post-newtonian equations of motion for different test bodies are analyzed and some restrictions on the parameters of the quadratic lagrangian are found.

  18. Orientifolds, discrete torsion and twisted equivariant K-theory

    NASA Astrophysics Data System (ADS)

    Stefanski, Bogdan, Jr.

    2003-06-01

    The recent generalization of group cohomology techniques to orientifolds is reviewed. These are used to define previously unknown twisted equivariant KR-theories which classify D-branes on orientifolds.

  19. Standard electroweak interactions in gravitational theory with chameleon field and torsion

    NASA Astrophysics Data System (ADS)

    Ivanov, A. N.; Wellenzohn, M.

    2015-04-01

    We propose a version of a gravitational theory with a torsion field, induced by the chameleon field. Following Hojman et al. [Phys. Rev. D 17, 3141 (1976)], the results obtained in Phys. Rev. D 90, 045040 (2014) are generalized by extending Einstein gravity to Einstein-Cartan gravity with a torsion field as a gradient of the chameleon field through a modification of the local gauge invariance of minimal coupling in the Weinberg-Salam electroweak model. The contributions of the chameleon (torsion) field to the observables of electromagnetic and weak processes are calculated. Since in our approach the chameleon-photon coupling constant βγ is equal to the chameleon-matter coupling constant β , i.e., βγ=β , the experimental constraints on β —obtained in terrestrial laboratories by T. Jenke et al. [Phys. Rev. Lett. 112, 115105 (2014)] and by H. Lemmel et al. [Phys. Lett. B 743, 310 (2015)]—can be used for the analysis of astrophysical sources of chameleons, proposed by C. Burrage et al. [Phys. Rev. D 79, 044028 (2009)], A.-C. Davis et al. [Phys. Rev. D 80, 064016 (2009)], and in references therein, where chameleons induce photons because of direct chameleon-photon transitions in the magnetic fields.

  20. Gyrokinetic theory and simulation of angular momentum transport

    SciTech Connect

    Waltz, R. E.; Staebler, G. M.; Candy, J.; Hinton, F. L.

    2007-12-15

    A gyrokinetic theory of turbulent toroidal angular momentum transport as well as modifications to neoclassical poloidal rotation from turbulence is formulated starting from the fundamental six-dimensional kinetic equation. The gyro-Bohm scaled transport is evaluated from toroidal delta-f gyrokinetic simulations using the GYRO code [Candy and Waltz, J. Comput. Phys. 186, 545 (2003)]. The simulations recover two pinch mechanisms in the radial transport of toroidal angular momentum: The slab geometry ExB shear pinch [Dominguez and Staebler, Phys. Fluids B 5, 387 (1993)] and the toroidal geometry 'Coriolis' pinch [Peeters, Angioni, and Strintzi, Phys. Rev. Lett. 98, 265003 (2007)]. The pinches allow the steady state null stress (or angular momentum transport flow) condition required to understand intrinsic (or spontaneous) toroidal rotation in heated tokamak without an internal source of torque [Staebler, Kinsey, and Waltz, Bull. Am. Phys. Soc. 46, 221 (2001)]. A predicted turbulent shift in the neoclassical poloidal rotation [Staebler, Phys. Plasmas 11, 1064 (2004)] appears to be small at the finite relative gyroradius (rho-star) of current experiments.

  1. Singularity in the Laboratory Frame Angular Distribution Derived in Two-Body Scattering Theory

    ERIC Educational Resources Information Center

    Dick, Frank; Norbury, John W.

    2009-01-01

    The laboratory (lab) frame angular distribution derived in two-body scattering theory exhibits a singularity at the maximum lab scattering angle. The singularity appears in the kinematic factor that transforms the centre of momentum (cm) angular distribution to the lab angular distribution. We show that it is caused in the transformation by the

  2. Semiclassical complex angular momentum theory and Pade reconstruction for resonances, rainbows, and reaction thresholds

    SciTech Connect

    Sokolovski, D.; Msezane, A.Z.

    2004-09-01

    A semiclassical complex angular momentum theory, used to analyze atom-diatom reactive angular distributions, is applied to several well-known potential (one-particle) problems. Examples include resonance scattering, rainbow scattering, and the Eckart threshold model. Pade reconstruction of the corresponding matrix elements from the values at physical (integral) angular momenta and properties of the Pade approximants are discussed in detail.

  3. Singularity in the Laboratory Frame Angular Distribution Derived in Two-Body Scattering Theory

    ERIC Educational Resources Information Center

    Dick, Frank; Norbury, John W.

    2009-01-01

    The laboratory (lab) frame angular distribution derived in two-body scattering theory exhibits a singularity at the maximum lab scattering angle. The singularity appears in the kinematic factor that transforms the centre of momentum (cm) angular distribution to the lab angular distribution. We show that it is caused in the transformation by the…

  4. Theory of pure rotational transitions in doubly degenerate torsional states of ethane

    NASA Technical Reports Server (NTRS)

    Rosenberg, A.; Susskind, J.

    1979-01-01

    It is shown that pure rotational transitions in doubly degenerate torsional states of C2H6 (with selection rules Delta K = 0, plus or minus 1) are made allowed by Coriolis interaction between torsion and dipole-allowed vibrations. Expressions are presented for integrated intensities from which strengths of lines in the millimeter region can be calculated.

  5. Maxwell Field with Torsion

    NASA Astrophysics Data System (ADS)

    Fresneda, R.; Baldiotti, M. C.; Pereira, T. S.

    2015-06-01

    We propose a gauge-invariant model of propagating torsion which couples to the Maxwell field and to charged particles. As a result, we have an Abelian gauge-invariant action leading to a theory with nonzero torsion consistent with available experimental data, which can be used to establish a lower bound for our new coupling parameter.

  6. Kerr-Newman-dS/AdS solution and anti-evaporation in higher-order torsion scalar gravity theories

    NASA Astrophysics Data System (ADS)

    Nashed, Gamal G. L.

    2016-03-01

    We derive a null tetrad from axially-symmetric vierbein field. The f(T)f(T)-Maxwell field equations with cosmological constant, where T is the scalar torsion, are applied to the null tetrad. An exact non-vacuum solution having three constants of integration is derived which is a solution to the f (T) -Maxwell field equations provided that f(T)=T0f(T)=T0 and fT=df(T)dT=1fT=df(T)dT=1, where T0T0 is a constant. The scalar torsion related to this solution is constant, i.e., T=T0T=T0, and differs from the classical general relativity when f(T)≈T0f(T)≈T0. We study the singularities of this solution using curvature and torsion invariants. We consider a slow rotation and show that the derived solution behaves asymptotically as de Sitter spacetime and display the existence of Nariai spacetime as a background solution. We assume a perturbation of Nariai spacetime till the first order and investigate the behavior of the black hole horizon. Finally, we explain that the anti-evaporation occurs on the classical level in the f (T) gravitational theories.

  7. Generalization of Equivalent Crystal Theory to Include Angular Dependence

    NASA Technical Reports Server (NTRS)

    Ferrante, John; Zypman, Fredy R.

    2004-01-01

    In the original Equivalent Crystal Theory, each atomic site in the real crystal is assigned an equivalent lattice constant, in general different from the ground state one. This parameter corresponds to a local compression or expansion of the lattice. The basic method considers these volumetric transformations and, in addition, introduces the possibility that the reference lattice is anisotropically distorted. These distortions however, were introduced ad-hoc. In this work, we generalize the original Equivalent Crystal Theory by systematically introducing site-dependent directional distortions of the lattice, whose corresponding distortions account for the dependence of the energy on anisotropic local density variations. This is done in the spirit of the original framework, but including a gradient term in the density. This approach is introduced to correct a deficiency in the original Equivalent Crystal Theory and other semiempirical methods in quantitatively obtaining the correct ratios of the surface energies of low index planes of cubic metals (100), (110), and (111). We develop here the basic framework, and apply it to the calculation of Fe (110) and Fe (111) surface energy formation. The results, compared with first principles calculations, show an improvement over previous semiempirical approaches.

  8. Torsion in superstrings

    SciTech Connect

    Bars, I.; Nemeschansky, D.; Yankielowicz, S.

    1985-09-01

    String theories on a background manifold with torsion are discussed. Candidate vacuum configurations are discussed for ten-dimensional superstrings. These are compactified on M/sub 4/ x K, where M/sub 4/ is four-dimensional and K is some compact six-dimensional manifold. Solutions with non-zero torsion on K are emphasized. The compactification problem is approached both from the effective field theory point of view and directly using string considerations. The construction of string theories in curved space with torsion is then discussed. Particular emphasis is put on the constraints on space-time supersymmetry in the Green-Schwarz approach. Two-dimensional non-linear sigma models are used to describe the propagation of strings in background geometries with torsion. (LEW)

  9. ANGULAR MOMENTUM TRANSPORT BY ACOUSTIC MODES GENERATED IN THE BOUNDARY LAYER. I. HYDRODYNAMICAL THEORY AND SIMULATIONS

    SciTech Connect

    Belyaev, Mikhail A.; Rafikov, Roman R.; Stone, James M.

    2013-06-10

    The nature of angular momentum transport in the boundary layers of accretion disks has been one of the central and long-standing issues of accretion disk theory. In this work we demonstrate that acoustic waves excited by supersonic shear in the boundary layer serve as an efficient mechanism of mass, momentum, and energy transport at the interface between the disk and the accreting object. We develop the theory of angular momentum transport by acoustic modes in the boundary layer, and support our findings with three-dimensional hydrodynamical simulations, using an isothermal equation of state. Our first major result is the identification of three types of global modes in the boundary layer. We derive dispersion relations for each of these modes that accurately capture the pattern speeds observed in simulations to within a few percent. Second, we show that angular momentum transport in the boundary layer is intrinsically nonlocal, and is driven by radiation of angular momentum away from the boundary layer into both the star and the disk. The picture of angular momentum transport in the boundary layer by waves that can travel large distances before dissipating and redistributing angular momentum and energy to the disk and star is incompatible with the conventional notion of local transport by turbulent stresses. Our results have important implications for semianalytical models that describe the spectral emission from boundary layers.

  10. Unexpectedly low angular extent of journal bearing pressures: experiment and theory

    NASA Astrophysics Data System (ADS)

    Sharma, Nikhil; Vimal, T.; Chatterjee, Anindya

    2015-04-01

    Journal bearings have been studied for a long time. Pressure solutions for the same, as presented in textbooks, typically have angular extents exceeding 150°. Here, for a bearing with a relatively larger clearance ratio (0.01 as opposed to, say, 0.001), our experiments show an angular extent of about 50° only. Such small angular extents cannot be predicted, even approximately, by the existing simple theories for journal bearing pressures. However, such theories are based on assumptions whereby only the relative speed between bearing and journal surfaces enters the governing equations. We discuss how these same assumptions motivate some new combinations of boundary conditions that allow reasonably simple numerical treatment. In this paper, the resulting families of possible solutions are computed semi-numerically using a Fourier series expansion in one direction and finite differences and numerical continuation in the other. We find that one such solution family contains small-extent solutions similar to those observed experimentally.

  11. Second order classical perturbation theory for atom surface scattering: Analysis of asymmetry in the angular distribution

    SciTech Connect

    Zhou, Yun Pollak, Eli; Miret-Artés, Salvador

    2014-01-14

    A second order classical perturbation theory is developed and applied to elastic atom corrugated surface scattering. The resulting theory accounts for experimentally observed asymmetry in the final angular distributions. These include qualitative features, such as reduction of the asymmetry in the intensity of the rainbow peaks with increased incidence energy as well as the asymmetry in the location of the rainbow peaks with respect to the specular scattering angle. The theory is especially applicable to “soft” corrugated potentials. Expressions for the angular distribution are derived for the exponential repulsive and Morse potential models. The theory is implemented numerically to a simplified model of the scattering of an Ar atom from a LiF(100) surface.

  12. Angular and frequency response of the gravitational wave interferometers in the metric theories of gravity

    NASA Astrophysics Data System (ADS)

    Błaut, Arkadiusz

    2012-02-01

    We analyze detector responses of gravitational wave detectors for gravitational waves with arbitrary polarizations predicted in the metric theories of gravity. We present the general formulas for the frequency responses valid in various interferometric arrangements including Michelson, Delay-Line and Fabry-Perot detectors. We analyze the angular and frequency behavior and the sensitivity patterns of the responses for each polarization mode.

  13. Crystal Field Theory and the Angular Overlap Model Applied to Hydrides of Main Group Elements.

    ERIC Educational Resources Information Center

    Moore, E. A.

    1990-01-01

    Described is how crystal field theory and the angular overlap model can be applied to very simple molecules which can then be used to introduce such concepts as bonding orbitals, MO diagrams, and Walsh diagrams. The main-group compounds are used as examples and a switch to the transition metal complexes. (KR)

  14. Appendicular Torsion

    PubMed Central

    Dubhashi, Siddharth Pramod; Khadav, Bharat

    2016-01-01

    Torsion of the vermiform appendix is a rare condition detectable only at operation. It can be primary or secondary. This is a case report of 52-year-old female with 180° anti-clockwise rotation of the appendix. Torsion can further leads to strangulation and infarction of the organ. Appendicular torsion could be included in the differential diagnosis of pain in right iliac fossa. PMID:27013858

  15. Energy-momentum and angular momentum densities in gauge theories of gravity

    NASA Astrophysics Data System (ADS)

    Kawai, Toshiharu

    2000-11-01

    In the Poincaré¯ gauge theory of gravity, which has been formulated on the basis of a principal fiber bundle over the space-time manifold having the covering group of the proper orthochronous Poincaré group as the structure group, we examine the tensorial properties of the dynamical energy-momentum density GTμk and the ``spin'' angular momentum density GSμkl of the gravitational field. They are both space-time vector densities, and transform as tensors under global SL(2,C) transformations. Under local internal translation, GTμk is invariant, while GSμkl transforms inhomogeneously. The dynamical energy-momentum density MTμk and the ``spin'' angular momentum density MSμkl of the matter field are also examined, and they are known to be space-time vector densities and to obey tensorial transformation rules under internal Poincaré¯ gauge transformations. The corresponding discussions in extended new general relativity which is obtained as a teleparallel limit of Poincaré¯ gauge theory are also given, and energy-momentum and ``spin'' angular momentum densities are known to be well behaved. Namely, they are all space-time vector densities, etc. The tensorial properties of canonical energy-momentum and ``extended orbital angular momentum'' densities are also examined.

  16. Predicting photoemission intensities and angular distributions with real-time density-functional theory

    NASA Astrophysics Data System (ADS)

    Dauth, M.; Kümmel, S.

    2016-02-01

    Photoemission spectroscopy is one of the most frequently used tools for characterizing the electronic structure of condensed matter systems. We discuss a scheme for simulating photoemission from finite systems based on time-dependent density-functional theory. It allows for the first-principles calculation of relative electron binding energies, ionization cross sections, and anisotropy parameters. We extract these photoemission spectroscopy observables from Kohn-Sham orbitals propagated in real time. We demonstrate that the approach is capable of estimating photoemission intensities, i.e., peak heights. It can also reliably predict the angular distribution of photoelectrons. For the example of benzene we contrast calculated angular distribution anisotropy parameters to experimental reference data. Self-interaction free Kohn-Sham theory yields meaningful outer valence single-particle states in the right energetic order. We discuss how to properly choose the complex absorbing potential that is used in the simulations.

  17. Siegert pseudostate formulation of scattering theory: Nonzero angular momenta in the one-channel case

    SciTech Connect

    Batishchev, Pavel A.; Tolstikhin, Oleg I.

    2007-06-15

    The Siegert pseudostate (SPS) formulation of scattering theory, originally developed by Tolstikhin, Ostrovsky, and Nakamura [Phys. Rev. A, 58, 2077 (1998)] for s-wave scattering in a spherically symmetric finite-range potential, is generalized to nonzero angular momenta. The orthogonality and completeness properties of SPSs are established and SPS expansions for the outgoing-wave Green's function, physical states, and scattering matrix are obtained. The present formulation completes the theory of SPSs in the one-channel case, making its application to three-dimensional problems possible. The results are illustrated by calculations for several model potentials.

  18. Generalized extended Navier-Stokes theory: Correlations in molecular fluids with intrinsic angular momentum

    NASA Astrophysics Data System (ADS)

    Hansen, J. S.; Daivis, Peter J.; Dyre, Jeppe C.; Todd, B. D.; Bruus, Henrik

    2013-01-01

    The extended Navier-Stokes theory accounts for the coupling between the translational and rotational molecular degrees of freedom. In this paper, we generalize this theory to non-zero frequencies and wavevectors, which enables a new study of spatio-temporal correlation phenomena present in molecular fluids. To discuss these phenomena in detail, molecular dynamics simulations of molecular chlorine are performed for three different state points. In general, the theory captures the behavior for small wavevector and frequencies as expected. For example, in the hydrodynamic regime and for molecular fluids with small moment of inertia like chlorine, the theory predicts that the longitudinal and transverse intrinsic angular velocity correlation functions are almost identical, which is also seen in the molecular dynamics simulations. However, the theory fails at large wavevector and frequencies. To account for the correlations at these scales, we derive a phenomenological expression for the frequency dependent rotational viscosity and wavevector and frequency dependent longitudinal spin viscosity. From this we observe a significant coupling enhancement between the molecular angular velocity and translational velocity for large frequencies in the gas phase; this is not observed for the supercritical fluid and liquid state points.

  19. Theory for noise of propellers in angular inflow with parametric studies and experimental verification

    NASA Technical Reports Server (NTRS)

    Hanson, Donald B.; Parzych, David J.

    1993-01-01

    This report presents the derivation of a frequency domain theory and working equations for radiation of propeller harmonic noise in the presence of angular inflow. In applying the acoustic analogy, integration over the tangential coordinate of the source region is performed numerically, permitting the equations to be solved without approximation for any degree of angular inflow. Inflow angle is specified in terms of yaw, pitch, and roll angles of the aircraft. Since these can be arbitrarily large, the analysis applies with equal accuracy to propellers and helicopter rotors. For thickness and loading, the derivation is given in complete detail with working equations for near and far field. However, the quadrupole derivation has been carried only far enough to show feasibility of the numerical approach. Explicit formulas are presented for computation of source elements, evaluation of Green's functions, and location of observer points in various visual and retarded coordinate systems. The resulting computer program, called WOBBLE has been written in FORTRAN and follows the notation of this report very closely. The new theory is explored to establish the effects of varying inflow angle on axial and circumferential directivity. Also, parametric studies were performed to evaluate various phenomena outside the capabilities of earlier theories, such as an unsteady thickness effect. Validity of the theory was established by comparison with test data from conventional propellers and Prop Fans in flight and in wind tunnels under a variety of operating conditions and inflow angles.

  20. Testicular torsion

    MedlinePlus

    ... surgically removed. Shrinkage of the testicle may occur days to months after the torsion has been corrected. Severe infection of the testicle and scrotum is also possible if the blood flow is restricted for an extended period.

  1. Nonlinear Hysteretic Torsional Waves.

    PubMed

    Cabaret, J; Béquin, P; Theocharis, G; Andreev, V; Gusev, V E; Tournat, V

    2015-07-31

    We theoretically study and experimentally report the propagation of nonlinear hysteretic torsional pulses in a vertical granular chain made of cm-scale, self-hanged magnetic beads. As predicted by contact mechanics, the torsional coupling between two beads is found to be nonlinear hysteretic. This results in a nonlinear pulse distortion essentially different from the distortion predicted by classical nonlinearities and in a complex dynamic response depending on the history of the wave particle angular velocity. Both are consistent with the predictions of purely hysteretic nonlinear elasticity and the Preisach-Mayergoyz hysteresis model, providing the opportunity to study the phenomenon of nonlinear dynamic hysteresis in the absence of other types of material nonlinearities. The proposed configuration reveals a plethora of interesting phenomena including giant amplitude-dependent attenuation, short-term memory, as well as dispersive properties. Thus, it could find interesting applications in nonlinear wave control devices such as strong amplitude-dependent filters. PMID:26274421

  2. Empirical formula of crustal torsional oscillations

    NASA Astrophysics Data System (ADS)

    Sotani, Hajime

    2016-02-01

    Crustal torsional oscillations depend on not only crust properties but also the stellar mass and radius. Thus, one could extract stellar information by identifying the observed frequencies of stellar oscillations with the crustal torsional oscillations. Owing to the confinement of torsional oscillations inside the crust region of neutron stars, we successfully derive an empirical formula for the fundamental crustal torsional oscillations as a function of the stellar mass, radius, the so-called slope parameter of the nuclear symmetry energy, and the angular index of oscillations, with which one can estimate the frequencies with high accuracy. This empirical formula could be valuable in both the astrophysics and nuclear physics communities.

  3. Mass and angular momentum of black holes in low-energy heterotic string theory

    NASA Astrophysics Data System (ADS)

    Peng, Jun-Jin

    2016-04-01

    We investigate conserved charges in the low-energy effective field theory describing heterotic string theory. Starting with a general Lagrangian that consists of a metric, a scalar field, a vector gauge field, together with a two-form potential, we derive off-shell Noether potentials of the Lagrangian and generalize the Abbott-Deser-Tekin (ADT) formalism to the off-shell level by establishing one-to-one correspondence between the ADT potential and the off-shell Noether potential. It is proved that the off-shell generalized ADT formalism is conformally invariant. Then, we apply the formulation to compute mass and angular momentum of the four-dimensional Kerr-Sen black hole and the five-dimensional rotating charged black string in the string frame without a necessity to transform the metrics into the Einstein frame.

  4. Omental Torsion

    PubMed Central

    R., Arora

    2014-01-01

    Torsion of greater omentum is one of the rare causes of acute abdominal pain. It can be primary or secondary. Primary Omental Torsion (POT) occurs because a mobile, thicken segment of omentum rotates around a proximal fixed point in the absence of any associated or secondary intra-abdominal pathology. Secondary omental torsion is associated with a number of pre-existing conditions most common among them is inguinal hernia, other causes include tumours, cysts, internal or external herniation, foci of intra-abdominal inflammation and postsurgical wound or scarring. Torsion of omentum causes twisting of omentum along its long axis resulting in impaired blood supply. This rare condition is more predominant in middle-aged males. It clinically mimics acute appendicitis. It should be kept in mind as a differential diagnosis for acute abdomen. Laparoscopy can aid in diagnosis and management but explorative laparotomy is the definitive and therapeutic procedure of choice. However the condition is not life threatening as omentectomy reduces the inflammation and focus of adhesions within the abdomen. PMID:25121029

  5. Study of the sensitivity and resonant frequency of the torsional modes of an AFM cantilever with a sidewall probe based on a nonlocal elasticity theory.

    PubMed

    Abbasi, Mohammad; Karami Mohammadi, Ardeshir

    2015-05-01

    A relationship based on a nonlocal elasticity theory is developed to investigate the torsional sensitivity and resonant frequency of an atomic force microscope (AFM) with assembled cantilever probe (ACP). This ACP comprises a horizontal cantilever and a vertical extension, and a tip located at the free end of the extension, which makes the AFM capable of topography at sidewalls of microstructures. First, the governing differential equations of motion and boundary conditions for dynamic analysis are obtained by a combination of the basic equations of nonlocal elasticity theory and Hamilton's principle. Afterward, a closed-form expression for the sensitivity of vibration modes has been obtained using the relationship between the resonant frequency and contact stiffness of cantilever and sample. These analysis accounts for a better representation of the torsional behavior of an AFM with sidewall probe where the small-scale effect are significant. The results of the proposed model are compared with those of classical beam theory. The results show that the sensitivities and resonant frequencies of ACP predicted by the nonlocal elasticity theory are smaller than those obtained by the classical beam theory. PMID:25755027

  6. Calculation of photodetachment cross sections and photoelectron angular distributions of negative ions using density functional theory

    NASA Astrophysics Data System (ADS)

    Liu, Yuan; Ning, Chuangang

    2015-10-01

    Recently, the development of photoelectron velocity map imaging makes it much easier to obtain the photoelectron angular distributions (PADs) experimentally. However, explanations of PADs are only qualitative in most cases, and very limited works have been reported on how to calculate PAD of anions. In the present work, we report a method using the density-functional-theory Kohn-Sham orbitals to calculate the photodetachment cross sections and the anisotropy parameter β. The spherical average over all random molecular orientation is calculated analytically. A program which can handle both the Gaussian type orbital and the Slater type orbital has been coded. The testing calculations on Li-, C-, O-, F-, CH-, OH-, NH2-, O2-, and S2- show that our method is an efficient way to calculate the photodetachment cross section and anisotropy parameter β for anions, thus promising for large systems.

  7. Calculation of photodetachment cross sections and photoelectron angular distributions of negative ions using density functional theory.

    PubMed

    Liu, Yuan; Ning, Chuangang

    2015-10-14

    Recently, the development of photoelectron velocity map imaging makes it much easier to obtain the photoelectron angular distributions (PADs) experimentally. However, explanations of PADs are only qualitative in most cases, and very limited works have been reported on how to calculate PAD of anions. In the present work, we report a method using the density-functional-theory Kohn-Sham orbitals to calculate the photodetachment cross sections and the anisotropy parameter ?. The spherical average over all random molecular orientation is calculated analytically. A program which can handle both the Gaussian type orbital and the Slater type orbital has been coded. The testing calculations on Li(-), C(-), O(-), F(-), CH(-), OH(-), NH2 (-), O2 (-), and S2 (-) show that our method is an efficient way to calculate the photodetachment cross section and anisotropy parameter ? for anions, thus promising for large systems. PMID:26472382

  8. Coupled mode theory for orbital angular momentum modes transmission in the presence of atmosphere turbulence.

    PubMed

    Zhou, Junhe; Zong, Jinbang; Liu, Daoqiang

    2015-12-14

    In this paper, orbital angular momentum (OAM) modes transmission in the presence of atmosphere turbulence is studied via a coupled mode theory. The Laguerre-Gauss (LG) beams with OAM topological charges are emitted into free space and undergo interactions due to the random index variations in the atmosphere. The coupling between the LG beams can be characterized by a set of coupled average power equation, which resembles the Marcuse' coupled power equation (CPE) originally proposed for the optical waveguides. The coupling coefficients and the modal radiation losses for the equation can be evaluated analytically. The accurate solution and the first order approximate solution to the CPE match the published data and the Mont-Carlos simulation results with good accuracy. The CPE and its approximate analytical solution can work as powerful tools for the analysis of the OAM beam evolution with the presence of the atmosphere turbulence. PMID:26698988

  9. Torsional locomotion

    PubMed Central

    Bigoni, D.; Dal Corso, F.; Misseroni, D.; Bosi, F.

    2014-01-01

    One edge of an elastic rod is inserted into a friction-less and fitting socket head, whereas the other edge is subjected to a torque, generating a uniform twisting moment. It is theoretically shown and experimentally proved that, although perfectly smooth, the constraint realizes an expulsive axial force on the elastic rod, which amount is independent of the shape of the socket head. The axial force explains why screwdrivers at high torque have the tendency to disengage from screw heads and demonstrates torsional locomotion along a perfectly smooth channel. This new type of locomotion finds direct evidence in the realization of a ‘torsional gun’, capable of transforming torque into propulsive force. PMID:25383038

  10. Torsional locomotion.

    PubMed

    Bigoni, D; Dal Corso, F; Misseroni, D; Bosi, F

    2014-11-01

    One edge of an elastic rod is inserted into a friction-less and fitting socket head, whereas the other edge is subjected to a torque, generating a uniform twisting moment. It is theoretically shown and experimentally proved that, although perfectly smooth, the constraint realizes an expulsive axial force on the elastic rod, which amount is independent of the shape of the socket head. The axial force explains why screwdrivers at high torque have the tendency to disengage from screw heads and demonstrates torsional locomotion along a perfectly smooth channel. This new type of locomotion finds direct evidence in the realization of a 'torsional gun', capable of transforming torque into propulsive force. PMID:25383038

  11. Torsional vibration isolator and method

    SciTech Connect

    Allen, C.A.; Durrett, V.D.

    1986-10-21

    This patent describes a multicylinder internal combustion engine having a rotatable crankshaft and a rotatable flywheel which together define an inertial system rotating about a predetermined axis of rotation. An improvement is described here which facilitates avoiding destructive effects on the crankshaft of stress induced by torsional vibration. The method comprises an elastomeric annulus coupling means operatively interposed between the crankshaft and flywheel for coupling the crankshaft and flywheel together for rotation of the flywheel with the crankshaft. The coupling means has a torsional spring rate of less than 20,000 in lb/radian effective to permit substantial angular displacement between the flywheel and the crankshaft for isolating the rotating inertia of the flywheel from the rotating inertia of the crankshaft after engine startup. The coupling means avoids dampening while preventing torsional vibration from being transferred between the flywheel and the crankshaft.

  12. Angular Scattering Dynamics of the CH4 + Cl → CH3 + HCl Reaction Using Nearside-Farside, Local Angular Momentum, and Resummation Theories.

    PubMed

    Totenhofer, A J; Connor, J N L; Nyman, Gunnar

    2016-03-01

    The differential cross section (DCS) for the CH4 + Cl → CH3 + HCl reaction is studied at six total energies where all of the species are in their ground states. The scattering (S) matrix elements have been calculated by the rotating line umbrella method for a dual-level ab initio analytic potential energy surface. We make the first application to this reaction of nearside-farside (NF) and local angular momentum (LAM) techniques, including resummation orders (r) of 0, 1, 2, and 3 for the partial-wave series representation of the full scattering amplitude. We find that resummation usually cleans the NF r = 0 DCSs of unphysical oscillations, especially at small angles. This cleaning effect is typically most pronounced when changing from no resummation (r = 0) to r = 1; further resummations from r = 1 to r = 2 and from r = 2 to r = 3 have smaller effects. The NF DCS analyses show that the reaction is N-dominated at sideward and large angles, whereas at small angles there are oscillations caused by NF interference. The NF LAM analysis provides consistent and complementary information, in particular for the total angular momenta that contribute to the reaction at different scattering angles. The NF analyses also provide justification for simpler N-dominant dynamical theories such as the semiclassical optical model, which provides an explanation for the distorted mirror image effect for the moduli of the S matrix elements and the DCSs, as well as the use of a hard-sphere DCS over limited angular ranges. PMID:26625096

  13. Bellows joint absorbs torsional deflections in duct system

    NASA Technical Reports Server (NTRS)

    Daniels, C. M.

    1966-01-01

    Long, thin-walled bellows compressed into a short length absorbs the same amount of torsional deflection as the same tube in full length condition and saves in cost, complexity and space. This bellows has lower torsional spring rate to absorb the bulk of the duct assembly tortional deflections, leaving the other bellows free to absorb axial and angular deflections.

  14. Equal-channel-angular processing (ECAP) of materials: Experiment and theory

    NASA Astrophysics Data System (ADS)

    Stoica, Grigoreta Mihaela

    Equal Channel-Angular Processing (ECAP), as a severe plastic deformation of metals and composites, is analyzed both theoretically---to describe the ECAP macromechanics---and experimentally---to obtain ultrafine-grained materials with new thermo-mechanical properties---with a focus on hexagonal-closed-packed (HCP) structures such as Mg alloys. Due to their obvious similarity to ECAP, the slip-line - field theories developed for orthogonal cutting are applied to the ECAP deformation for predicting the shear-strain spatial heterogeneities. A theoretical model for predicting the plastic-deformation zone in an ECAP-ed billet with a free surface is provided, and is validated experimentally. A shear-strain-mapping procedure was developed by decomposing the large deformation process into fine steps, and, by analyzing the partially-deformed billets, the strain maps captured the spatio-temporal evolutions of the ECAP-induced plastic shear strains. This approach was later generalized for studying the local behavior of different material parameters, such as textures (texture mapping). The mechanical testing of the as-received and ECAP-deformed Mg-alloys (ZK60 and AZ31) was performed in monotonic and cyclic tests, for three loading orientations. The ECAP-ed samples demonstrate: (a) a good grain refinement from 50--70 mum down to 2.5--7 mum), (b) a superplastic ZK60 alloy, with an elongation to failure of 371% at 3500C and the strain rate of 10-2 s-1, and (c) a longer fatigue life for the AZ31 alloy, relative to the as-received material. The starting and ECAP-deformed materials were characterized by optical microscopy, X-ray diffraction using both soft and hard X-rays, and neutron diffraction. The grain sizes, the textures, the coherent-domain sizes, the elastic microstrains, and the dislocation densities were determined for the samples deformed by rolling, extrusion, and ECAP. The synchrotron radiation measurements allowed monitoring the lattice rotation induced by the ECAP deformation in Mg alloys. The grain-orientation dependent deformation is studied relative to the deformation history, and its influence on the mechanical behavior is analyzed relative to the twinning contribution. The results of the present work constitute a valuable benchmark for the understanding and modeling of the deformation mechanisms, such as the dislocations slip, twinning, recovery, or recrystallization in HCP structures.

  15. Torsional Oscillations of the Earths's Core

    NASA Technical Reports Server (NTRS)

    Hide, Raymond; Boggs, Dale H.; Dickey, Jean O.

    1997-01-01

    Torsional oscillations of the Earth's liquid metallic outer core are investigated by diving the core into twenty imaginary e1qui-volume annuli coaxial with the axis of ratation of the Earth and determining temproal fluctuations in the axial component of angular memonetum of each annulus under the assumption of iso-rotation on cylindrical surfaces.

  16. Trapped torsional vibrations in elastic plates

    NASA Astrophysics Data System (ADS)

    Knowles, T.; Kang, M. K.; Huang, R.

    2005-11-01

    We report observation and analysis of trapped torsional vibrations in elastic plates. Each trapping element consists of a circular mesa machined in cast aluminum plate, with an electromagnetic acoustic transducer used to generate oscillatory surface traction. Suitably applied traction induced torsional vibrations trapped in the mesa. The resonant frequencies, relative displacements and Q-values were measured, and an approximate theory was developed to analyze the trapping effect with good agreement between measurements and theory. It was found that these trapped torsional modes have Q-values exceeding 100 000 with pure in-plane motion, which is of practical importance for acoustic sensor applications.

  17. Angular distributions of electrons photoemitted from core levels of oriented diatomic molecules: Multiple scattering theory in non-spherical potentials

    SciTech Connect

    Diez Muino, R.; Rolles, D.; Garcia de Abajo, F.J.; Fadley, C.S.; Van Hove, M.A.

    2001-09-06

    We use multiple scattering in non-spherical potentials (MSNSP) to calculate the angular distributions of electrons photoemitted from the 1s-shells of CO and N2 gas-phase molecules with fixed-in-space orientations. For low photoelectron kinetic energies (E<50 eV), as appropriate to certain shape-resonances, the electron scattering must be represented by non-spherical scattering potentials, which are naturally included in our formalism. Our calculations accurately reproduce the experimental angular patterns recently measured by several groups, including those at the shape-resonance energies. The MSNSP theory thus enhances the sensitivity to spatial electronic distribution and dynamics, paving the way toward their determination from experiment.

  18. Pion production via proton synchrotron radiation in strong magnetic fields in relativistic field theory: Scaling relations and angular distributions

    NASA Astrophysics Data System (ADS)

    Maruyama, Tomoyuki; Cheoun, Myung-Ki; Kajino, Toshitaka; Mathews, Grant J.

    2016-06-01

    We study pion production by proton synchrotron radiation in the presence of a strong magnetic field when the Landau numbers of the initial and final protons are ni,f ∼104-105. We find in our relativistic field theory calculations that the pion decay width depends only on the field strength parameter which previously was only conjectured based upon semi-classical arguments. Moreover, we also find new results that the decay width satisfies a robust scaling relation, and that the polar angular distribution of emitted pion momenta is very narrow and can be easily obtained. This scaling implies that one can infer the decay width in more realistic magnetic fields of 1015 G, where ni,f ∼1012-1013, from the results for ni,f ∼104-105. The resultant pion intensity and angular distributions for realistic magnetic field strengths are presented and their physical implications discussed.

  19. Testicular torsion repair

    MedlinePlus

    Testicular torsion repair is surgery to untangle a spermatic cord. The spermatic cord is the collection of blood vessels in the ... people will get general anesthesia for testicular torsion repair surgery. This will make you asleep and pain- ...

  20. Variable stiffness torsion springs

    NASA Technical Reports Server (NTRS)

    Alhorn, Dean C. (Inventor); Polites, Michael E. (Inventor)

    1995-01-01

    In a torsion spring the spring action is a result of the relationships between the torque applied in twisting the spring, the angle through which the torsion spring twists, and the modulus of elasticity of the spring material in shear. Torsion springs employed industrially have been strips, rods, or bars, generally termed shafts, capabable of being flexed by twisting their axes. They rely on the variations in shearing forces to furnish an internal restoring torque. In the torsion springs herein the restoring torque is external and therefore independent of the shearing modulus of elasticity of the torsion spring shaft. Also provided herein is a variable stiffness torsion spring. This torsion spring can be so adjusted as to have a given spring constant. Such variable stiffness torsion springs are extremely useful in gimballed payloads such as sensors, telescopes, and electronic devices on such platforms as a space shuttle or a space station.

  1. Variable stiffness torsion springs

    NASA Technical Reports Server (NTRS)

    Alhorn, Dean C. (Inventor); Polites, Michael E. (Inventor)

    1994-01-01

    In a torsion spring the spring action is a result of the relationships between the torque applied in twisting the spring, the angle through which the torsion spring twists, and the modulus of elasticity of the spring material in shear. Torsion springs employed industrially have been strips, rods, or bars, generally termed shafts, capabable of being flexed by twisting their axes. They rely on the variations in shearing forces to furnish an internal restoring torque. In the torsion springs herein the restoring torque is external and therefore independent of the shearing modulus of elasticity of the torsion spring shaft. Also provided herein is a variable stiffness torsion spring. This torsion spring can be so adjusted as to have a given spring constant. Such variable stiffness torsion springs are extremely useful in gimballed payloads such as sensors, telescopes, and electronic devices on such platforms as a space shuttle or a space station.

  2. Nearside-farside, local angular momentum and resummation theories: Useful tools for understanding the dynamics of complex-mode reactions

    NASA Astrophysics Data System (ADS)

    Hankel, Marlies; Connor, J. N. L.

    2015-07-01

    A valuable tool for understanding the dynamics of direct reactions is Nearside-Farside (NF) scattering theory. It makes a decomposition of the (resummed) partial wave series for the scattering amplitude, both for the differential cross section (DCS) and the Local Angular Momentum (LAM). This paper makes the first combined application of these techniques to complex-mode reactions. We ask if NF theory is a useful tool for their identification, in particular, can it distinguish complex-mode from direct-mode reactions? We also ask whether NF theory can identify NF interference oscillations in the full DCSs of complex-mode reactions. Our investigation exploits the fact that accurate quantum scattering matrix elements have recently become available for complex-mode reactions. We first apply NF theory to two simple models for the scattering amplitude of a complex-mode reaction: One involves a single Legendre polynomial; the other involves a single Legendre function of the first kind, whose form is suggested by complex angular momentum theory. We then study, at fixed translational energies, four state-to-state complex-mode reactions. They are: S(1D) + HD → SH + D, S(1D) + DH → SD + H, N(2D) +H2 → NH + H, and H+ + D2 → HD + D+. We compare the NF results for the DCSs and LAMs with those for a state-to-state direct reaction, namely, F + H2 → FH + H. We demonstrate that NF theory is a valuable tool for identifying and analyzing the dynamics of complex-mode reactions.

  3. Many-Body Theory of Ultrafast Demagnetization and Angular Momentum Transfer in Ferromagnetic Transition Metals

    NASA Astrophysics Data System (ADS)

    Töws, W.; Pastor, G. M.

    2015-11-01

    Exact calculated time evolutions in the framework of a many-electron model of itinerant magnetism provide new insights into the laser-induced ultrafast demagnetization observed in ferromagnetic (FM) transition metal thin films. The interplay between local spin-orbit interactions and interatomic hopping is shown to be at the origin of the observed postexcitation breakdown of FM correlations between highly stable local magnetic moments. The mechanism behind spin- and angular-momentum transfer is revealed from a microscopic perspective by rigorously complying with all fundamental conservation laws. An energy-resolved analysis of the time evolution shows that the efficiency of the demagnetization process reaches almost 100% in the excited states.

  4. Torsional modified gravity and cosmology

    NASA Astrophysics Data System (ADS)

    Saridakis, E.

    2013-09-01

    Torsion has been proved to be crucial in gauging gravity, which is in turn a necessary step towards its quantization. On the other hand, almost all the efforts in modifying gravity has been performed in the usual curvature-based framework. We investigate the case where one modifies gravity based on its torsional-teleparallel formulation, namely the f(T) gravity paradigm, and its cosmological applications. In particular, we analyze the perturbations of the theory examining the growth history, we construct a cosmological bounce, and we use solar system observations in order to impose constraints on the f(T) forms. Additionally, we study the case where T is nonminimally coupled to a scalar field, that is the scenario of teleparallel dark energy. Finally we analyze the charged black hole solutions of the theory, performing a comparison between f(R) and f(T) modifications.

  5. Many-Body Theory of Ultrafast Demagnetization and Angular Momentum Transfer in Ferromagnetic Transition Metals.

    PubMed

    Töws, W; Pastor, G M

    2015-11-20

    Exact calculated time evolutions in the framework of a many-electron model of itinerant magnetism provide new insights into the laser-induced ultrafast demagnetization observed in ferromagnetic (FM) transition metal thin films. The interplay between local spin-orbit interactions and interatomic hopping is shown to be at the origin of the observed postexcitation breakdown of FM correlations between highly stable local magnetic moments. The mechanism behind spin- and angular-momentum transfer is revealed from a microscopic perspective by rigorously complying with all fundamental conservation laws. An energy-resolved analysis of the time evolution shows that the efficiency of the demagnetization process reaches almost 100% in the excited states. PMID:26636871

  6. Noncontact measurement of angular deflection

    NASA Technical Reports Server (NTRS)

    Bryant, E. L.

    1978-01-01

    Technique for measuring instantaneous angular deflection of object requires no physical contact. Technique utilizes two flat refractors, converging lens, and different photocell. Distinction of method is its combination of optical and electromechanical components into feedback system in which measurement error is made to approach zero. Application is foreseen in measurement of torsional strain.

  7. Quantum theory of molecular collisions in a magnetic field: Efficient calculations based on the total angular momentum representation

    NASA Astrophysics Data System (ADS)

    Tscherbul, T. V.; Dalgarno, A.

    2010-11-01

    An efficient method is presented for rigorous quantum calculations of atom-molecule and molecule-molecule collisions in a magnetic field. The method is based on the expansion of the wave function of the collision complex in basis functions with well-defined total angular momentum in the body-fixed coordinate frame. We outline the general theory of the method for collisions of diatomic molecules in the ?2 and ?3 electronic states with structureless atoms and with unlike ?2 and ?3 molecules. The cross sections for elastic scattering and Zeeman relaxation in low-temperature collisions of CaH(?+2) and NH(?-3) molecules with H3e atoms converge quickly with respect to the number of total angular momentum states included in the basis set, leading to a dramatic (>10-fold) enhancement in computational efficiency compared to the previously used methods [A. Volpi and J. L. Bohn, Phys. Rev. A 65, 052712 (2002); R. V. Krems and A. Dalgarno, J. Chem. Phys. 120, 2296 (2004)]. Our approach is thus well suited for theoretical studies of strongly anisotropic molecular collisions in the presence of external electromagnetic fields.

  8. Theory of angular-dispersive, imaging hard-x-ray spectrographs

    NASA Astrophysics Data System (ADS)

    Shvyd'ko, Yuri

    2015-05-01

    A spectrograph is an optical instrument that disperses photons of different energies into distinct directions and space locations and that images photon spectra on a position-sensitive detector. Spectrographs consist of collimating, angular dispersive, and focusing optical elements. Bragg reflecting crystals arranged in an asymmetric scattering geometry can be used as the dispersing elements in the hard-x-ray regime. A ray-transfer matrix technique is applied to propagate x-rays through the optical elements. Several optical designs of hard-x-ray spectrographs are proposed and their performance is analyzed. Spectrographs with an energy resolution of 0.1 meV and a spectral window of imaging up to a few tens of meVs are shown to be feasible for inelastic x-ray scattering (IXS) spectroscopy applications. In another example, a spectrograph with a 1-meV spectral resolution and 85-meV spectral window of imaging is considered for Cu K -edge resonant IXS.

  9. Quantum field theory treatment of magnetic effects on the spin and orbital angular momentum of a free electron

    NASA Astrophysics Data System (ADS)

    Kurian, P.; Verzegnassi, C.

    2016-01-01

    We consider in a quantum field theory framework the effects of a classical magnetic field on the spin and orbital angular momentum (OAM) of a free electron. We derive formulae for the changes in the spin and OAM due to the introduction of a general classical background field. We consider then a constant magnetic field, in which case the relevant expressions of the effects become much simpler and conversions between spin and OAM become readily apparent. An estimate of the expectation values for a realistic electron state is also given. Our findings may be of interest to researchers in spintronics and the field of quantum biology, where electron spin has been implicated on macroscopic time and energy scales.

  10. Reassessment of fission fragment angular distributions from continuum states in the context of transition-state theory

    NASA Astrophysics Data System (ADS)

    Vaz, Louis C.; Alexander, John M.

    1983-07-01

    Fission angular distributions have been studied for years and have been treated as classic examples of trasitions-state theory. Early work involving composite nuclei of relatively low excitation energy E ∗ (⪅35 MeV) and spin I (⪅25ħ) gave support to theory and delimited interesting properties of the transitions-state nuclei. More recent research on fusion fission and sequential fission after deeply inelastic reactions involves composite nuclei of much higher energies (⪅200 MeV) and spins (⪅100ħ). Extension of the basic ideas developed for low-spin nuclei requires detailed consideration of the role of these high spins and, in particular, the “spin window” for fussion. We have made empirical correlations of cross sections for evaporation residues and fission in order to get a description of this spin window. A systematic reanalysis has been made for fusion fission induced by H, He and heavier ions. Empirical correlations of K 20 (K 20 = {IeffT }/{h̷2}) are presented along with comparisons of Ieff to moments of inertia for saddle-point nuclei from the rotating liquid drop model. This model gives an excellent guide for the intermidiate spin zone (30⪅ I ⪅65), while strong shell and/or pairing effects are evident for excitations less than ⪅35 MeV. Observations of strong anisotropies for very high-spin systems signal the demise of certain approximation commonly made in the theory, and suggestions are made toward this end.

  11. Accounting for conformational flexibility and torsional anharmonicity in the H + CH{sub 3}CH{sub 2}OH hydrogen abstraction reactions: A multi-path variational transition state theory study

    SciTech Connect

    Meana-Pañeda, Rubén; Fernández-Ramos, Antonio

    2014-05-07

    This work reports a detailed theoretical study of the hydrogen abstraction reactions from ethanol by atomic hydrogen. The calculated thermal rate constants take into account torsional anharmonicity and conformational flexibility, in addition to the variational and tunneling effects. Specifically, the kinetics calculations were performed by using multi-path canonical variational transition state theory with least-action path tunneling corrections, to which we have added the two-dimensional non-separable method to take into account torsional anharmonicity. The multi-path thermal rate constant is expressed as a sum over conformational reaction channels. Each of these channels includes all the transition states that can be reached by internal rotations. The results show that, in the interval of temperatures between 250 and 2500 K, the account for multiple paths leads to higher thermal rate constants with respect to the single path approach, mainly at low and at high temperatures. In addition, torsional anharmonicity enhances the slope of the Arrhenius plot in this range of temperatures. Finally, we show that the incorporation of tunneling into the hydrogen abstraction reactions substantially changes the contribution of each of the transition states to the conformational reaction channel.

  12. Torsional actuator motor using solid freeform fabricated PZT ceramics

    NASA Astrophysics Data System (ADS)

    Kim, Chulho; Wu, Carl C. M.; Bender, Barry

    2004-07-01

    A torsional actuator has been developed at NRL utilizing the high piezoelectric shear coefficient, d15. This torsional actuator uses an even number of alternately poled segments of electroactive PZT. Under an applied electric field, the torsional actuator produces large angular displacement and a high torque. The solid freeform fabrication technique of the laminated object manufacturing (LOM) is used for rapid prototyping of torsional actuator with potential cost and time saving. First step to demonstrate the feasibility of the LOM technique for the torsional actuator device fabrication is to make near net shape segments. We report a prototype PZT torsional actuator using LOM prepared PZT-5A segments. Fabrication processes and test results are described. The torsional actuator PZT-5A tube has dimensions of 13 cm long, 2.54 cm OD and 1.9 cm ID. Although the piezoelectric strain is small, it may be converted into large displacement via accumulation of the small single cycle displacements over many cycles using AC driving voltage such as with a rotary 'inchworm' actuator or an ultrasonic rotary motor. A working prototype of a full-cycle motor driven by the piezoelectric torsional actuator has been achieved. The rotational speed is 1,200 rpm under 200 V/cm field at the resonant frequency of 4.5 kHz.

  13. Perturbation theory for spin ladders using angular-momentum coupled bases

    SciTech Connect

    Piekarewicz, J.; Shepard, J.R.

    1998-10-01

    We compute bulk properties of Heisenberg spin-1/2 ladders using Rayleigh-Schr{umlt o}dinger perturbation theory in the rung and plaquette bases. We formulate a method to extract high-order perturbative coefficients in the bulk limit from solutions for relatively small finite clusters. For example, a perturbative calculation for an isotropic 2{times}12 ladder yields an eleventh-order estimate of the ground-state energy per site that is within 0.02{percent} of the density-matrix-renormalization-group value. Moreover, the method also enables a reliable estimate of the radius of convergence of the perturbative expansion. We find that for the rung basis the radius of convergence is {lambda}{sub c}{approx_equal}0.8, with {lambda} defining the ratio between the coupling along the chain relative to the coupling across the chain. In contrast, for the plaquette basis we estimate a radius of convergence of {lambda}{sub c}{approx_equal}1.25. Thus, we conclude that the plaquette basis offers the best currently available perturbative approach which can provide a reliable treatment of the physically interesting case of isotropic ({lambda}=1) spin ladders. We illustrate our methods by computing perturbative coefficients for the ground-state energy per site, the gap, and the one-magnon dispersion relation. {copyright} {ital 1998} {ital The American Physical Society}

  14. Can Torsion BE Treated as Just another Tensor Field?

    NASA Astrophysics Data System (ADS)

    Nester, James M.; Wang, Chih-Hung

    Many alternative gravity theories use an independent connection which leads to torsion in addition to curvature. Some have argued that there is no physical need to use such connections, that one can always use the Levi-Civita connection and just treat torsion as another tensor field. We explore this issue here in the context of the Poincaré Gauge theory of gravity, which is usually formulated in terms of an affine connection for a Riemann-Cartan geometry (torsion and curvature). We compare the equations obtained by taking as the independent dynamical variables: (i) the orthonormal coframe and the connection and (ii) the orthonormal coframe and the torsion (contortion), and we also consider the coupling to a source. From this analysis we conclude that, at least for this class of theories, torsion should not be considered as just another tensor field.

  15. On Angular Momentum

    DOE R&D Accomplishments Database

    Schwinger, J.

    1952-01-26

    The commutation relations of an arbitrary angular momentum vector can be reduced to those of the harmonic oscillator. This provides a powerful method for constructing and developing the properties of angular momentum eigenvectors. In this paper many known theorems are derived in this way, and some new results obtained. Among the topics treated are the properties of the rotation matrices; the addition of two, three, and four angular momenta; and the theory of tensor operators.

  16. Affine dynamics with torsion

    NASA Astrophysics Data System (ADS)

    Gültekin, Kemal

    2016-03-01

    In this study, we give a thorough analysis of a general affine gravity with torsion. After a brief exposition of the affine gravities considered by Eddington and Schrödinger, we construct and analyze different affine gravities based on the determinants of the Ricci tensor, the torsion tensor, the Riemann tensor, and their combinations. In each case we reduce equations of motion to their simplest forms and give a detailed analysis of their solutions. Our analyses lead to the construction of the affine connection in terms of the curvature and torsion tensors. Our solutions of the dynamical equations show that the curvature tensors at different points are correlated via non-local, exponential rescaling factors determined by the torsion tensor.

  17. Testicular Torsion (For Parents)

    MedlinePlus

    ... ON THIS TOPIC Hernias Ultrasound: Scrotum Undescended Testicles Male Reproductive System PQ: I have a lump on one of ... How to Perform a Testicular Self-Examination Varicocele Male Reproductive System Testicular Torsion Contact Us Print Resources Send to ...

  18. Torsion and the cosmological constant problem

    NASA Astrophysics Data System (ADS)

    de Sabbata, Venzo; Sivaram, C.

    1990-03-01

    A promising possibility which has yet to be considered with a view to furthering understanding of the cosmological constant problem is the use of torsion in a framework such as that of Einstein-Cartan theory: as would be natural in considering the gravitational contributions of particles with spin. It is presently shown that the recently suggested energy-dependent torsion-coupling constant can make the spin contributions of matter sources sufficiently large to cancel the cosmological constant term at all stages of the early universe, from the Plank epoch onward.

  19. Structural and torsional vibration analysis of a dry screw compressor

    NASA Astrophysics Data System (ADS)

    Willie, J.; Sachs, R.

    2015-08-01

    This paper investigates torsional vibration and pulsating noise in a dry screw compressor. The compressor is designed at Gardner Denver (GD) and is oil free and use for mounting on highway trucks. They are driven using a Power Take-Off (PTO) transmission and gear box on a truck. Torque peak fluctuation and noise measurements are done and their sources are investigated and reported in this work. To accurately predict the torsional response (frequency and relative angular deflection and torque amplitude), the Holzer method is used. It is shown that the first torsional frequency is manifested as sidebands in the gear train meshing frequencies and this can lead to noise that is the result of amplitude modulation. Sensitivity analysis of the drive train identifies the weakest link in the drive train that limits the first torsional frequency to a low value. Finally, the significance of higher mode shapes on inter-lobe clearance distribution of the rotors is investigated.

  20. S U (2 ) gauge field theories, gauge-invariant angular momenta, and a Coulomb theorem: A new viewpoint on the resolution of the nucleon spin crisis

    NASA Astrophysics Data System (ADS)

    Huang, Changyu; Huang, Yong-Chang; Zhou, Bao-Hua

    2015-09-01

    We investigate the inner structure of a general S U (2 ) [naturally including S O (3 )] symmetry system—the fermion-gauge field interaction system—and achieve naturally a set of gauge-invariant spin and orbital angular momentum operators of fermion and gauge fields by Noether's theorem in general field theory. Some new relations concerning non-Abelian field strengths are discovered, e.g., the covariant transverse condition, covariant parallel condition (i.e., non-Abelian divergence, non-Abelian curl), and simplified S U (2 ) Coulomb theorem. And we show that the condition that Chen et al. obtained to construct their gauge-invariant angular momentum operators is a result of some fundamental equations in the general field theory. The results obtained in this paper present a new perspective for looking at the overall structure of the gauge field, and provide a new viewpoint to the final resolution of the nucleon spin crisis in the general field theory. Especially, the achieved theory in this paper can calculate the strong interactions with isospin symmetry and solves the serious problem without gauge-invariant angular momenta in strong interaction systems with isospin symmetry, and then the achieved predictions in the calculations can be exactly measured by particle physics experiments due to their gauge invariant properties.

  1. Two-step spacetime deformation-induced dynamical torsion

    NASA Astrophysics Data System (ADS)

    Ter-Kazarian, G.

    2011-03-01

    We extend the geometrical ideas of the spacetime deformations to study the physical foundation of the post-Riemannian geometry. To this aim, we construct the theory of two-step spacetime deformation as a guiding principle. We address the theory of teleparallel gravity and construct a consistent Einstein-Cartan (EC) theory with the dynamical torsion. We show that the equations of the standard EC theory, in which the equation defining torsion is the algebraic type and, in fact, no propagation of torsion is allowed, can be equivalently replaced by the set of modified EC equations in which the torsion, in general, is dynamical. The special physical constraint imposed upon the spacetime deformations yields the short-range propagating spin-spin interaction.

  2. Isospin-Breaking Corrections to Superallowed Fermi Beta Decay in Isospin- and Angular-Momentum-Projected Nuclear Density Functional Theory

    SciTech Connect

    Satula, W.; Dobaczewski, J.; Nazarewicz, Witold

    2012-01-01

    Background: Superallowed -decay rates provide stringent constraints on physics beyond the standard model of particle physics. To extract crucial information about the electroweak force, small isospin-breaking corrections to the Fermi matrix element of superallowed transitions must be applied.

    Purpose: We perform systematic calculations of isospin-breaking corrections to superallowed decays and estimate theoretical uncertainties related to the basis truncation, to time-odd polarization effects related to the intrinsic symmetry of the underlying Slater determinants, and to the functional parametrization.

    Methods: We use the self-consistent isospin- and angular-momentum-projected nuclear density functional theory employing two density functionals derived from the density-independent Skyrme interaction. Pairing correlations are ignored. Our framework can simultaneously describe various effects that impact matrix elements of the Fermi decay: symmetry breaking, configuration mixing, and long-range Coulomb polarization.

    Results: Isospin-breaking corrections to the I=0+, T=1 I=0+, T=1 pure Fermi transitions are computed for nuclei from A=10 to A=98 and, for the first time, to the Fermi branch of the I,T=1/2 I, T=1/2 transitions in mirror nuclei from A=11 to A=49. We carefully analyze various model assumptions impacting theoretical uncertainties of our calculations and provide theoretical error bars on our predictions. Conclusions: The overall agreement with empirical isospin-breaking corrections is very satisfactory. Using computed isospin-breaking corrections we show that the unitarity of the CKM matrix is satisfied with a precision of better than 0.1%.

  3. Nanomechanical torsional resonators for frequency-shift infrared thermal sensing.

    PubMed

    Zhang, X C; Myers, E B; Sader, J E; Roukes, M L

    2013-04-10

    We investigate use of nanomechanical torsional resonators for frequency-shift-based infrared (IR) thermal sensing. Nanoscale torsion rods, ~1 μm long and 50-100 nm in diameter, provide both extraordinary thermal isolation and excellent angular displacement and torque sensitivities, of order ~10(-7) rad·Hz(-1/2) and ~10(-22) (N·m) Hz(-1/2), respectively. Furthermore, these nanorods act as linear torsional springs, yielding a maximum angular displacement of 3.6° and a dynamic range of over 100 dB; this exceeds the performance of flexural modes by as much as 5 orders of magnitude. These attributes lead to superior noise performance for torsional-mode sensing. We demonstrate the operational principles of torsional-mode IR detection, attaining an uncooled noise equivalent temperature difference (NETD) of 390 mK. By modeling the fundamental noise processes, we project that further reduction of device size can significantly improve thermal responsivity; a room-temperature NETD below 10 mK appears feasible. PMID:23458733

  4. Planar torsion spring

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Parsons, Adam H. (Inventor); Mehling, Joshua S. (Inventor); Griffith, Bryan Kristian (Inventor)

    2012-01-01

    A torsion spring comprises an inner mounting segment. An outer mounting segment is located concentrically around the inner mounting segment. A plurality of splines extends from the inner mounting segment to the outer mounting segment. At least a portion of each spline extends generally annularly around the inner mounting segment.

  5. Quantum-mechanical theory including angular momenta analysis of atom-atom collisions in a laser field

    NASA Technical Reports Server (NTRS)

    Devries, P. L.; George, T. F.

    1978-01-01

    The problem of two atoms colliding in the presence of an intense radiation field, such as that of a laser, is investigated. The radiation field, which couples states of different electronic symmetry, is described by the number state representation while the electronic degrees of freedom (plus spin-orbit interaction) are discussed in terms of a diabatic representation. The total angular momentum of the field-free system and the angular momentum transferred by absorption (or emission) of a photon are explicitly considered in the derivation of the coupled scattering equations. A model calculation is discussed for the Xe + F collision system.

  6. Visual reaction times during prolonged angular acceleration parallel the subjective perception of rotation

    NASA Technical Reports Server (NTRS)

    Mattson, D. L.

    1975-01-01

    The effect of prolonged angular acceleration on choice reaction time to an accelerating visual stimulus was investigated, with 10 commercial airline pilots serving as subjects. The pattern of reaction times during and following acceleration was compared with the pattern of velocity estimates reported during identical trials. Both reaction times and velocity estimates increased at the onset of acceleration, declined prior to the termination of acceleration, and showed an aftereffect. These results are inconsistent with the torsion-pendulum theory of semicircular canal function and suggest that the vestibular adaptation is of central origin.

  7. Torsional fatigue of aramid fibers

    SciTech Connect

    Kawabata, S.; Sera, M.

    1993-12-31

    An experimental investigation on the shear fatigue process of aramid fibers is presented. Repeated cycles of the torsional deformation are applied on the aramid single fiber and the reduction of the shear modulus of the fiber with an increasing number of the cycles is observed for different strain amplitudes. It has been found that the reduction process of the shear modulus with an increasing number of the repeated cycles depends on the strain amplitude and the effect of the number of cycles is equivalent to that of the strain amplitude on the modulus reduction and they may be superposed like the time-temperature equivalence superposition observed in the viscoelasticity of amorphous polymeric solids. From this relation, the life prediction for the long term use of aramid fibers becomes possible by using this superimposed relation. A simple rate process theory is applied to interpret this fatigue process and to derive the equation for predicting the life cycle number of the loading.

  8. Torsional vibrations of circular poroelastic plates

    NASA Astrophysics Data System (ADS)

    Shah, S. Ahmed; Nageswara Nath, C.

    2015-12-01

    Torsional vibrations of annular poroelastic circular plates are studied in the framework of Biot's theory of wave propagation in porous solids. The frequency equation of torsional vibrations is same for pervious and impervious surfaces. The frequency equation of torsional vibrations is obtained by using the traction free boundaries and edges of the annular circular plate. Non-dimensional frequency of annular plate is computed as a function of aspect ratio. The frequency equation is discussed for first two modes. Frequency equation of torsional vibrations of uniform circular poroelastic plate is obtained as a particular case of the annular plate. Resonant frequency of infinite poroelastic plate is obtained as a limiting case of annular plate. The expressions for phase velocity and attenuation are obtained and these are computed for two different poroelastic materials as a function of frequency in presence of dissipation. Phase velocity is almost same for the considered poroelastic materials and dissipations. Results of previous study are obtained as a particular case of the present investigation.

  9. Femtosecond torsional relaxation

    NASA Astrophysics Data System (ADS)

    Clark, J.; Nelson, T.; Tretiak, S.; Cirmi, G.; Lanzani, G.

    2012-03-01

    Molecular conformational reorganization following photon absorption is a fundamental process driving reactions such as the cis-trans isomerization at the heart of the primary step of vision and can be exploited for switching in artificial systems using photochromics. In general, conformational change occurs on a timescale defined by the energy of the main vibrational mode and the rate of energy dissipation. Typically, for a conformational change such as a twist around the backbone of a conjugated molecule, this occurs on the tens of picoseconds timescale. However, here we demonstrate experimentally that in certain circumstances the molecule, in this case an oligofluorene, can change conformation over two orders of magnitude faster (that is sub-100fs) in a manner analogous to inertial solvent reorganization demonstrated in the 1990s. Theoretical simulations demonstrate that non-adiabatic transitions during internal conversion can efficiently convert electronic potential energy into torsional kinetic energy, providing the `kick' that prompts sub-100fs torsional reorganization.

  10. Torsional Ratcheting Actuating System

    SciTech Connect

    BARNES,STEPHEN MATTHEW; MILLER,SAMUEL L.; RODGERS,M. STEVEN; BITSIE,FERNANDO

    2000-01-24

    A new type of surface micromachined ratcheting actuation system has been developed at the Microelectronics Development Laboratory at Sandia National Laboratories. The actuator uses a torsional electrostatic comb drive that is coupled to an external ring gear through a ratcheting scheme. The actuator can be operated with a single square wave, has minimal rubbing surfaces, maximizes comb finger density, and can be used for open-loop position control. The prototypes function as intended with a minimum demonstrated operating voltage of 18V. The equations of motion are developed for the torsional electrostatic comb drive. The resonant frequency, voltage vs. displacement and force delivery characteristics are predicted and compared with the fabricated device's performance.

  11. Torsion in box wings

    NASA Technical Reports Server (NTRS)

    Wheatley, John B

    1931-01-01

    Logical analysis of a box wing necessitates the allowance for the contribution of the drag spars to the torsional strength of the structure. A rigorous analysis is available in the use of the Method of Least Work. The best logical method of analysis is that applying Prandtl's Membrane Analogy. The results so obtained vary by a negligible amount from those obtained by the rigorous method.

  12. Constraining spacetime torsion with the Moon and Mercury

    SciTech Connect

    March, Riccardo; Bellettini, Giovanni; Tauraso, Roberto; Dell'Agnello, Simone

    2011-05-15

    We report a search for new gravitational physics phenomena based on Riemann-Cartan theory of general relativity including spacetime torsion. Starting from the parametrized torsion framework of Mao, Tegmark, Guth, and Cabi, we analyze the motion of test bodies in the presence of torsion, and, in particular, we compute the corrections to the perihelion advance and to the orbital geodetic precession of a satellite. We consider the motion of a test body in a spherically symmetric field, and the motion of a satellite in the gravitational field of the Sun and the Earth. We describe the torsion field by means of three parameters, and we make use of the autoparallel trajectories, which in general differ from geodesics when torsion is present. We derive the specific approximate expression of the corresponding system of ordinary differential equations, which are then solved with methods of celestial mechanics. We calculate the secular variations of the longitudes of the node and of the pericenter of the satellite. The computed secular variations show how the corrections to the perihelion advance and to the orbital de Sitter effect depend on the torsion parameters. All computations are performed under the assumptions of weak field and slow motion. To test our predictions, we use the measurements of the Moon's geodetic precession from lunar laser ranging data, and the measurements of Mercury's perihelion advance from planetary radar ranging data. These measurements are then used to constrain suitable linear combinations of the torsion parameters.

  13. Derivation of Einstein-Cartan theory from general relativity

    NASA Astrophysics Data System (ADS)

    Petti, Richard

    2015-04-01

    General relativity cannot describe exchange of classical intrinsic angular momentum and orbital angular momentum. Einstein-Cartan theory fixes this problem in the least invasive way. In the late 20th century, the consensus view was that Einstein-Cartan theory requires inclusion of torsion without adequate justification, it has no empirical support (though it doesn't conflict with any known evidence), it solves no important problem, and it complicates gravitational theory with no compensating benefit. In 1986 the author published a derivation of Einstein-Cartan theory from general relativity, with no additional assumptions or parameters. Starting without torsion, Poincaré symmetry, classical or quantum spin, or spinors, it derives torsion and its relation to spin from a continuum limit of general relativistic solutions. The present work makes the case that this computation, combined with supporting arguments, constitutes a derivation of Einstein-Cartan theory from general relativity, not just a plausibility argument. This paper adds more and simpler explanations, more computational details, correction of a factor of 2, discussion of limitations of the derivation, and discussion of some areas of gravitational research where Einstein-Cartan theory is relevant.

  14. Angular Cheilitis

    MedlinePlus

    ... mouth. A patient with angular cheilitis may notice: Cracking and fissuring of the corners of the mouth, ... Seek Medical Care If persistent lip irritation, painful cracking, or fissuring at the corners of the mouth ...

  15. Torsion as a source of expansion in a Bianchi type-I universe in the self-consistent Einstein-Cartan theory of a perfect fluid with spin density

    NASA Astrophysics Data System (ADS)

    Bradas, James C.; Fennelly, Alphonsus J.; Smalley, Larry L.

    1987-04-01

    It is shown that a generalized (or 'power law') inflationary phase arises naturally and inevitably in a simple (Bianchi type-I) anisotropic cosmological model in the self-consistent Einstein-Cartan gravitation theory with the improved stress-energy-momentum tensor with the spin density of Ray and Smalley (1982, 1983). This is made explicit by an analytical solution of the field equations of motion of the fluid variables. The inflation is caused by the angular kinetic energy density due to spin. The model further elucidates the relationship between fluid vorticity, the angular velocity of the inertially dragged tetrads, and the precession of the principal axes of the shear ellipsoid. Shear is not effective in damping the inflation.

  16. Torsion as a source of expansion in a Bianchi type-I universe in the self-consistent Einstein-Cartan theory of a perfect fluid with spin density

    NASA Technical Reports Server (NTRS)

    Bradas, James C.; Fennelly, Alphonsus J.; Smalley, Larry L.

    1987-01-01

    It is shown that a generalized (or 'power law') inflationary phase arises naturally and inevitably in a simple (Bianchi type-I) anisotropic cosmological model in the self-consistent Einstein-Cartan gravitation theory with the improved stress-energy-momentum tensor with the spin density of Ray and Smalley (1982, 1983). This is made explicit by an analytical solution of the field equations of motion of the fluid variables. The inflation is caused by the angular kinetic energy density due to spin. The model further elucidates the relationship between fluid vorticity, the angular velocity of the inertially dragged tetrads, and the precession of the principal axes of the shear ellipsoid. Shear is not effective in damping the inflation.

  17. Photon- and electron-impact ionization and ejected-electron angular distributions from molecules including retardation effects: Nonrelativistic theory

    NASA Astrophysics Data System (ADS)

    Bonham, R. A.; Lively, M. L.

    1984-03-01

    The nonrelativistic first-Born-approximation matrix element for the photoionization and electron impact of a single electron from a molecule with no restriction on its shape, including retardation effects and with rotational energy resolution, is evaluated within the framework of the Born-Oppenheimer approximation. Angular distributions of ejected electrons are cylindrically symmetric about the propagation direction of the photon or electron source if the light is circularly polarized or if no attempt is made to simultaneously measure the scattered and ejected electrons in electron-impact ionization. If plane polarized light is used, retardation effects destroy the cylindrical symmetry about the light propagation direction. If the scattered electron in electron-impact ionization is detected in coincidence with the ejected electron then the angular distribution of ejected electrons shows cylindrical symmetry about the momentum-transfer direction. Use of an LCAO-MO (linear combination of atomic orbitals representation of molecular orbitals) basis for both bound and continuum one-electron orbitals leads to selection and propensity rules for rotational excitation.

  18. A Cryogenic Torsion Balance for Tests of the Equivalence Principle

    NASA Astrophysics Data System (ADS)

    Fleischer, Frank; Adelberger, Eric; Bassan, Massimo; Heckel, Blayne

    2010-02-01

    Almost all theories of physics ``beyond the standard model'' predict the existence of new, weak interactions that violate the equivalence principle (EP) at some level. Consequently, precise tests of the EP are a sensitive probe for new physics. The best limits on EP violations currently come from torsion balance experiments, where the dominant contribution to the error budgets are due to thermal noise. To achieve a higher sensitivity to extremely weak forces, we have built a cryostat designed to operate a torsion balance near liquid helium temperature. For cooling, we employ a commercially available pulse tube cooler. The extreme sensitivity of torsion balances to seismic noise required special attention to isolating the vibrations of the pulse-tube cooler from the torsion balance. Results from first tests of the noise performance of the apparatus will be presented. )

  19. Randall-Sundrum scenario with bulk dilaton and torsion

    SciTech Connect

    Mukhopadhyaya, Biswarup; Sen, Somasri; SenGupta, Soumitra

    2009-06-15

    We consider a string-inspired torsion-dilaton-gravity action in a Randall-Sundrum braneworld scenario and show that, in an effective four-dimensional theory on the visible brane, the rank-2 antisymmetric Kalb-Ramond field (source of torsion) is exponentially suppressed. The result is similar to our earlier result in [B. Mukhopadhyaya, S. Sen, and S. SenGupta, Phys. Rev. Lett. 89, 121101 (2002); Phys. Rev. Lett. 89, 259902(E) (2002)], where no dilaton was present in the bulk. This offers an explanation of the apparent invisibility of torsion in our space-time. However, in this case the trilinear couplings {approx}TeV{sup -1} between the dilaton and torsion may lead to new signals in TeV-scale experiments, bearing the stamp of extra warped dimensions.

  20. Torsional vibration analysis of bars including secondary torsional shear deformation effect by the boundary element method

    NASA Astrophysics Data System (ADS)

    Sapountzakis, E. J.; Tsipiras, V. J.; Argyridi, A. K.

    2015-10-01

    In this paper a boundary element method (BEM) is developed for the torsional vibration problem of bars of arbitrary doubly symmetric constant cross section, taking into account the nonuniform warping and secondary torsional shear deformation effects (STSDE). The bar is subjected to arbitrarily distributed or concentrated dynamic torsional loading along its length, while its edges are subjected to the most general torsional and warping boundary conditions. Apart from the angle of twist, the primary angle of twist per unit length is considered as an additional 1-D degree of freedom in order to account for the STSDE in the equations of motion of the bar. The warping shear stress distribution and the pertinent secondary torsional rigidity are computed by satisfying local equilibrium considerations under dynamic conditions without adhering to assumptions of Thin Tube Theory (TTT). By employing a distributed mass model system accounting for rotatory and warping inertia, an initial boundary value and two boundary value problems with respect to the variable along the bar time-dependent 1-D kinematical components, to the primary and secondary warping functions, respectively, are formulated. The latter are solved employing a pure BE method, requiring exclusively boundary discretization of the bar's cross section. The numerical solution of the aforementioned initial boundary value problem is performed through a BE method leading to a system of differential equations with displacement only unknowns, which is solved using an efficient direct time integration technique. Additionally, for the free vibrations case, a generalized eigenvalue problem is formulated through a similar BE technique. The accuracy and reliability of the results is assessed by FEM solutions employing solid or shell modelling. Both open- and closed-shaped cross section bars are examined and the necessity to include nonuniform torsional and STSD effects in the dynamic analysis of bars is demonstrated.

  1. Autoparallel vs. Geodesic Trajectories in a Model of Torsion Gravity

    NASA Astrophysics Data System (ADS)

    Acedo, Luis

    2015-11-01

    We consider a parametrized torsion gravity model for Riemann-Cartan geometry around a rotating axisymmetric massive body. In this model, the source of torsion is given by a circulating vector potential following the celestial parallels around the rotating object. Ours is a variant of the Mao, Tegmark, Guth and Cabi (MTGC model) in which the total angular momentum is proposed as a source of torsion. We study the motion of bodies around the rotating object in terms of autoparallel trajectories and determine the leading perturbations of the orbital elements by using standard celestial mechanics techniques. We find that this torsion model implies new gravitational physical consequences in the Solar system and, in particular, secular variations of the semi-major axis of the planetary orbits. Perturbations on the longitude of the ascending node and the perihelion of the planets are already under discussion in the astronomical community, and if confirmed as truly non-zero effects at a statistically significant level, we might be at the dawn of an era of torsion phenomenology in the Solar system.

  2. Regular and anomalous torsional splitting patterns: a trend in ethane-like molecules and general perspectives

    NASA Astrophysics Data System (ADS)

    Lattanzi, F.; di Lauro, C.

    2004-01-01

    It is shown that torsional Coriolis coupling can alter the torsional splittings in molecules with hindered internal rotation. Splitting patterns that would occur in the absence of any vibrational contribution to the torsional angular momentum, with reference to a molecular axis system (IAM), are called regular. It is shown that different sets of vibrational coordinates, corresponding to vibrational states with different splitting patterns, can be defined for modes normal to the internal rotation axis. The forms of normal coordinates appropriate to basis vibrational states with regular and inverted splitting patterns are identified. It is found that in normal coordinates appropriate to vibrational states with regular torsional splitting patterns, the relative orientation of the displacements of pairs of atoms belonging to different molecular moieties is independent of the internal rotation angle, and relative displacements normal to the internal rotation axis can be cis or trans at any conformation. On the contrary, in normal coordinates appropriate to vibrational states with inverted torsional splitting patterns the relative orientation of such displacements changes by ?(cis-trans interchange) upon half the internal rotation converting two neighbor equivalent conformations (as in a staggered-eclipsed conformational conversion). The formation of the actual torsional splitting patterns in degenerate vibrational states of CH3CH3-type molecules depends on the joint effect of torsional Coriolis and head-tail coupling. The torsional Coriolis operator can tune pairs of levels to resonance for the action of typical head-tail coupling operators (torsion-dependent vibrational operators), depending on the values of the torsional Coriolis coefficients, generating vibrational states with either regular or inverted torsional splitting patterns and affecting the splitting magnitude. It is shown that operators with a sin3?-type torsional dependence favor the formation of inverted splitting patterns. In less symmetric molecules torsional Coriolis coupling affects the torsional splitting patterns by the same mechanism as in CH3CH3-type molecules, but the torsion-dependent operators are different and their action is expected to be less effective. Typical anomalous perpendicular splitting patterns can be predicted for non-degenerate modes localized in a single molecular moiety, normal or with a component normal to the internal rotation axis, having fixed orientation in that moiety (as the C=O or C-H stretchings of acetaldehyde). Adopting a barrier-hindered torsional basis, where the lower torsional levels can be seen as vibrational states with quantum numbers v? exhibiting tunneling splitting, one finds that all operators generating matrix elements with ?v?=+/-1, or in general odd, work toward the formation of inverted splitting patterns, generating anomalous patterns.

  3. Induced Angular Momentum

    ERIC Educational Resources Information Center

    Parker, G. W.

    1978-01-01

    Discusses, classically and quantum mechanically, the angular momentum induced in the bound motion of an electron by an external magnetic field. Calculates the current density and its magnetic moment, and then uses two methods to solve the first-order perturbation theory equation for the required eigenfunction. (Author/GA)

  4. Manipulating torsional motions of soft dielectric tubes

    NASA Astrophysics Data System (ADS)

    Shmuel, Gal

    2015-05-01

    Tubular dielectric elastomers function as actuators by application of a radial voltage difference. This work demonstrates how the applied electric field can be exploited to manipulate their torsional motion. The approach employed considers torsional elastic waves superposed on a finitely deformed configuration, which depends on bias electromechanical loadings. The theory of nonlinear electroelasticity is utilized to derive the corresponding governing equations. These are analyzed analytically and numerically, as functions of the thickness of the tube, the mechanical constraints, and most importantly the applied voltage. The analysis shows how dispersive waves beyond a certain length are filtered across a frequency band, and are significantly accelerated above it. This phenomenon observed to strongly depend on the applied voltage, in a non-linear manner.

  5. Torsional Electromechanics of Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Joselevich, Ernesto; Cohen-Karni, Tzahi; Segev, Lior; Srur-Lavi, Onit; Cohen, Sidney R.

    2007-03-01

    Carbon nanotubes are known to be distinctly metallic or semiconducting depending on their diameter and chirality. Here we show that continuously varying the chirality by mechanical torsion can induce conductance oscillations, which can be attributed to metal-semiconductor periodic transitions. The phenomenon is observed in multi-walled carbon nanotubes, where both the torque and the current are shown to be carried predominantly by the outermost wall. The oscillation period with torsion is consistent with the theoretical shifting of the corners of the first Brillouin zone of graphene across different subbands allowed in the nanotube. Beyond a critical torsion, the conductance irreversibly drops due to torsional failure, allowing us to determine the torsional strength of carbon nanotubes. Our experiments indicate that carbon nanotubes could be used as self-sensing torsional springs for nanoelectromechanical systems (NEMS). [1] E. Joselevich, Twisting nanotubes: From torsion to chirality, ChemPhysChem 2006, 7, 1405. [2] T. Cohen-Karni, L. Segev, O. Srur-Lavi, S. R. Cohen, E. Joselevich, Torsional electromechanical quantum oscillations in carbon nanotubes, Nature Nanotechnology, 2006, 1, 36.

  6. Performance of an angular flange aeroelastic wind energy converter

    SciTech Connect

    Ahmadi, G.

    1983-05-01

    ALL conventional wind turbines operate on the principles of turbomachinaries, with wind being made to flow over a set of rotating vanes. Recently, a new concept for wind energy conversion based on aeroelastic instability was introduced. It is well known that couplings between the vibration of an elastic structure and fluid stream may lead to aeroelastic instability. Energy then is transferred from the airstream into the elastic structure, which results in a destructive monotonic increase of the vibration amplitude of the structure. The failure of the Tacoma Narrows Bridge is one of the well-known examples of such a disaster. The use of an aeroelastic instability (or flutter) mechanism for constructing a wind energy converter was suggested. The theory for a torsional wind energy converter and the results of some model tests were also presented. Recently, some studies on similar types of wind energy converters using oscillating airfoils were reported. In the present study an angular flange H-section model of a torsional aeroelastic wind energy converter is constructed, and its performances under various conditions are investigated. The effects of the variations of the flange angle and the flange width on the performance of the model are studied. The weight of the pendulum is also varied, and its effects on the power coefficient of the model are investigated. It is observed that the efficiency of energy conversion decreases with an increase in wind speed. A method for possible improvement of the theoretical prediction is suggested and discussed.

  7. Testicular torsion: A surgical emergency

    SciTech Connect

    Prater, J.M.; Overdorf, B.S. )

    1991-09-01

    Testicular torsion is caused by twisting of the spermatic cord, which results in compromised testicular blood flow. The degree of ischemic injury is determined by the severity of arterial compression and the interval between the onset of symptoms and surgical intervention. Torsion usually occurs at puberty, and an anatomic defect known as bell-clapper deformity is usually present. Typical symptoms include acute scrotal pain with associated nausea and vomiting. Up to one-half of patients report previous similar episodes. On examination, the testis is high-riding, tender, swollen and firm. Testicular scan or Doppler ultrasound examination can be helpful in distinguishing torsion from acute epididymitis. Prompt surgical treatment is indicated to reduce the torsion, and bilateral orchiopexy is performed to prevent recurrence. Exocrine function, as determined by semen analysis, is often abnormal after unilateral torsion. 25 references.

  8. Torsion-rotation intensities in methanol

    NASA Astrophysics Data System (ADS)

    Pearson, John

    Methanol exists in numerous kinds of astronomical objects featuring a wide range of local conditions. The light nature of the molecule coupled with the internal rotation of the methyl group with respect to the hydroxyl group results in a rich, strong spectrum that spans the entire far-infrared region. As a result, any modest size observational window will have a number of strong methanol transitions. This has made it the gas of choice for testing THz receivers and to extract the local physical conditions from observations covering small frequency windows. The latter has caused methanol to be dubbed the Swiss army knife of astrophysics. Methanol has been increasingly used in this capacity and will be used even more for subsequent investigations into the Herschel archive, and with SOFIA and ALMA. Interpreting physical conditions on the basis of a few methanol lines requires that the molecular data, line positions, intensities, and collision rates, be complete, consistent and accurate to a much higher level than previously required for astrophysics. The need for highly reliable data is even more critical for modeling the two classes of widespread maser action and many examples of optical pumping through the torsional bands. Observation of the torsional bands in the infrared will be a unique opportunity to directly connect JWST observations with those of Herschel, SOFIA, and ALMA. The theory for the intensities of torsion-rotation transitions in a molecule featuring a single internally rotating methyl group is well developed after 70 years of research. However, other than a recent very preliminary and not completely satisfactory investigation of a few CH3OH torsional bands, this theory has never been experimentally tested for any C3V internal rotor. More alarming is a set of recent intensity calibrated microwave measurements that showed deviations relative to calculations of up to 50% in some ground state rotational transitions commonly used by astronomers to extract local conditions. We propose a comprehensive study of the intensities of methanol involving both the pure rotation bands and the torsional bands to serve as a benchmark for the theory used to calculate the infrared activity of all single methyl internal rotation molecules.

  9. Angular Momentum

    ERIC Educational Resources Information Center

    Shakur, Asif; Sinatra, Taylor

    2013-01-01

    The gyroscope in a smartphone was employed in a physics laboratory setting to verify the conservation of angular momentum and the nonconservation of rotational kinetic energy. As is well-known, smartphones are ubiquitous on college campuses. These devices have a panoply of built-in sensors. This creates a unique opportunity for a new paradigm in…

  10. Angular Momentum

    ERIC Educational Resources Information Center

    Shakur, Asif; Sinatra, Taylor

    2013-01-01

    The gyroscope in a smartphone was employed in a physics laboratory setting to verify the conservation of angular momentum and the nonconservation of rotational kinetic energy. As is well-known, smartphones are ubiquitous on college campuses. These devices have a panoply of built-in sensors. This creates a unique opportunity for a new paradigm in

  11. Torsion Tests of Tubes

    NASA Technical Reports Server (NTRS)

    Stang, Ambrose H; Ramberg, Walter; Back, Goldie

    1937-01-01

    This report presents the results of tests of 63 chromium-molybdenum steel tubes and 102 17st aluminum-alloy tubes of various sizes and lengths made to study the dependence of the torsional strength on both the dimensions of the tube and the physical properties of the tube material. Three types of failure are found to be important for sizes of tubes frequently used in aircraft construction: (1) failure by plastic shear, in which the tube material reached its yield strength before the critical torque was reached; (2) failure by elastic two-lobe buckling, which depended only on the elastic properties of the tube material and the dimensions of the tube; and (3) failure by a combination of (1) and (2) that is, by buckling taking place after some yielding of the tube material.

  12. Torsional resonances in magnetoelastic bimorphs

    SciTech Connect

    Peuzin, J.C.; Mackay, K.

    1997-02-01

    In this paper, we show that torsional as well as flexion modes can be excited rather naturally in a magnetoelastic bimorph. This behavior is in contrast with that of usual piezoelectric bimorphs in which only flexion modes can be excited. We describe experimental results on the torsional resonances of bimorphs composed of a glass substrate and a highly magnetostrictive thin film of (TbDy)(FeCo){sub 2} and show how basic linear piezomagnetic constants may be extracted from the resonance data. Finally, we discuss some possible applications of torsional resonance in magnetoelastic bimorphs. {copyright} {ital 1997 American Institute of Physics.}

  13. Saccular impact on ocular torsion.

    PubMed

    De Graaf, B; Bos, J E; Groen, E

    1996-01-01

    When someone is tilted laterally, the shear force on the maculae of the utriculus and the sacculus is described by the sine and the cosine of the angle of tilt, respectively. So both the sacculus and the utriculus are stimulated, but in the literature, ocular torsion is normally attributed to utricular function alone (and, thus, seen as a response to y-axis linear acceleration). However, on the base of a series of experiments on a tilt chair, a linear track, human centrifuges, and during parabolic flights, we conclude that the sacculus contributes to ocular torsion as well (there is a response to z-axis linear acceleration). The data suggest that the ratio of the utricular and saccular impact on ocular torsion is 3:1. The utriculus generates conjugate and the sacculus disjunctive torsional eye movements. PMID:8886354

  14. Isolated penile torsion in newborns

    PubMed Central

    Eroglu, Egemen; Gundogdu, Gokhan

    2015-01-01

    Introduction: We reported on the incidence of isolated penile torsion among our healthy children and our approach to this anomaly. Methods: Between 2011 and 2014, newborn babies with penile torsion were classified according to the angle of torsion. Surgical correction (penile degloving and reattachment for moderate cases and dorsal dartos flap technique in case of resistance) after 6 months was advised to the babies with rotations more than 45°. Results: Among 1000 newborn babies, 200 isolated penile torsions were found, and among these, 43 had torsions more than 45°, and 4 of these had angles greater than 90°. The mean angle of the rotations was found 30.45° (median: 20°). In total, 8 children with 60° torsions were previously circumcised. Surgery was performed on 19 patients, with a mean patient age of 12 ± 2 months. Of these 19, 13 babies were corrected with degloving and reattachment. This technique was not enough on the remaining 6 patients; therefore, derotational dorsal dartos flap was added to correct the torsion. After a mean of 15.6 ± 9.8 months, residual penile rotation, less than 15°, was found only in 2 children. Conclusion: The incidence of isolated penile torsion is 20% in newborns. However, rotation more than 45° angles are seen in 4.3% of male babies. Correction is not necessary in mild degrees, and penile degloving with reattachment is enough in most cases. If the initial correction is insufficient, dorsal dartos flap rotation is easy and effective. Prior circumcision neither disturbs the operative procedure nor affects the outcomes. PMID:26600889

  15. Torsional vibration of aircraft engines

    NASA Technical Reports Server (NTRS)

    Lurenbaum, Karl

    1932-01-01

    Exhaustive torsional-vibration investigations are required to determine the reliability of aircraft engines. A general outline of the methods used for such investigations and of the theoretical and mechanical means now available for this purpose is given, illustrated by example. True vibration diagrams are usually obtained from vibration measurements on the completed engine. Two devices for this purpose and supplementing each other, the D.V.L. torsiograph and the D.V.L. torsion recorder, are described in this report.

  16. Twisted ultrathin silicon nanowires: A possible torsion electromechanical nanodevice

    NASA Astrophysics Data System (ADS)

    Garcia, J. C.; Justo, J. F.

    2014-11-01

    Nanowires have been considered for a number of applications in nanometrology. In such a context, we have explored the possibility of using ultrathin twisted nanowires as torsion nanobalances to probe forces and torques at molecular level with high precision, a nanoscale system analogous to the Coulomb's torsion balance electrometer. In order to achieve this goal, we performed a first-principles investigation on the structural and electronic properties of twisted silicon nanowires, in their pristine and hydrogenated forms. The results indicated that wires with pentagonal and hexagonal cross-sections are the thinnest stable silicon nanostructures. Additionally, all wires followed a Hooke's law behavior for small twisting deformations. Hydrogenation leads to spontaneous twisting, but with angular spring constants considerably smaller than the ones for the respective pristine forms. We observed considerable changes on the nanowire electronic properties upon twisting, which allows to envision the possibility of correlating the torsional angular deformation with the nanowire electronic transport. This could ultimately allow a direct access to measurements on interatomic forces at molecular level.

  17. Angular momentum

    NASA Astrophysics Data System (ADS)

    Shakur, Asif; Sinatra, Taylor

    2013-12-01

    The gyroscope in a smartphone was employed in a physics laboratory setting to verify the conservation of angular momentum and the nonconservation of rotational kinetic energy. As is well-known, smartphones are ubiquitous on college campuses. These devices have a panoply of built-in sensors. This creates a unique opportunity for a new paradigm in the physics laboratory. Many traditional physics experiments can now be performed very conveniently in a pedagogically enlightening environment while simultaneously reducing the laboratory budget substantially by using student-owned smartphones.

  18. New supersymmetric index of heterotic compactifications with torsion

    NASA Astrophysics Data System (ADS)

    Isral, Dan; Sarkis, Matthieu

    2015-12-01

    We compute the new supersymmetric index of a large class of N=2 heterotic compactifications with torsion, corresponding to principal two-torus bundles over warped K3 surfaces with H-flux. Starting from a UV description as a (0,2) gauged linear sigma-model with torsion, we use supersymmetric localization techniques to provide an explicit expression of the index as a sum over the Jeffrey-Kirwan residues of the one-loop determinant. We finally propose a geometrical formula that gives the new supersymmetric index in terms of bundle data, regardless of any particular choice of underlying two-dimensional theory.

  19. Torsion of cracked nanorods using a nonlocal elasticity model

    NASA Astrophysics Data System (ADS)

    Loya, J. A.; Aranda-Ruiz, J.; Fernández-Sáez, J.

    2014-03-01

    This paper presents a nonlocal cracked-rod model from which we have analysed the torsional vibrations of a carbon nanotube with a circumferential crack. Several types of boundary conditions, including the consideration of a buckyball at the end of the nanotube, have been studied. The nonlocal Eringen elasticity theory is used to formulate the problem. The cracked rod is modelled by dividing the cracked element into two segments connected by a torsional linear spring whose stiffness is related to the crack severity. The effect of the nonlocal small-scale parameter, crack severity, cracked section position, different boundary conditions and attached mass are examined in this work.

  20. On the interpretation of combined torsion and tension tests of thin-wall tubes

    NASA Technical Reports Server (NTRS)

    Prager, W

    1948-01-01

    General ways of testing thin-wall tubes under combined tension and torsion as a means of checking the various theories of plasticity are discussed. Suggestions also are given for the interpretation of the tests.

  1. Torsional oscillations in dynamo simulations

    NASA Astrophysics Data System (ADS)

    Wicht, Johannes; Christensen, Ulrich R.

    2010-06-01

    Cylinders aligned with the planetary rotation axis have a special significance in the dynamics of planetary dynamo regions. The azimuthal Lorentz forces on these geostrophic cylinders is expected to cancel to a large degree, establishing the so-called Taylor state. Deviations from this state take the form of torsional oscillations (TOs) that are supposed to represent important fast flow variations. These oscillations have reportedly been identified in the secular variation signal from the top of Earth's core. We have performed several dynamo simulations at different parameters to check whether Taylor state and TOs can also be identified in a numerical model. Taylor states are approached when viscous effects are small at Ekman numbers of E = 3 × 10-5 or below and Reynolds stresses are kept low by choosing moderate Rayleigh numbers. One-dimensional magnetic Alfvén waves that travel towards the boundaries then become prominent in the motion of the geostrophic cylinders. These waves obey the TO theory but are also damped and modified by other effects. For example, fast variations of likely convective origin remain important in all our simulations. Reynolds stresses may play a more sizable role for the dynamics in Earth's dynamo region than commonly assumed. They may also contribute to the motions of geostrophic cylinders and severely reduce the significance of TOs for the fast core dynamics. The amplitude of TOs amounts to not more than a few percent of the total flow amplitude in the simulations, which renders these motions insignificant for the long-term dynamo process.

  2. Torsional wave propagation in multiwalled carbon nanotubes using nonlocal elasticity

    NASA Astrophysics Data System (ADS)

    Arda, Mustafa; Aydogdu, Metin

    2016-03-01

    Torsional wave propagation in multiwalled carbon nanotubes is studied in the present work. Governing equation of motion of multiwalled carbon nanotube is obtained using Eringen's nonlocal elasticity theory. The effect of van der Waals interaction coefficient is considered between inner and outer nanotubes. Dispersion relations are obtained and discussed in detail. Effect of nonlocal parameter and van der Waals interaction to the torsional wave propagation behavior of multiwalled carbon nanotubes is investigated. It is obtained that torsional van der Waals interaction between adjacent tubes can change the rotational direction of multiwalled carbon nanotube as in-phase or anti-phase. The group and escape velocity of the waves converge to a limit value in the nonlocal elasticity approach.

  3. Simple torsion test for shear moduli determination of orthotropic composites

    NASA Technical Reports Server (NTRS)

    Sumsion, H. T.; Rajapakse, Y. D. S.

    1978-01-01

    By means of torsion tests performed on test specimens of the same material having a minimum of two different cross sections (flat sheet of different widths), the effective in-plane (G13) and out-of-plane (G23) shear moduli were determined for two composite materials of uniaxial and angleply fiber orientations. Test specimens were 16 plies (nominal 2 mm) thick, 100 mm in length, and in widths of 6.3, 9.5, 12.5, and 15.8 mm. Torsion tests were run under controlled deflection (constant angle of twist) using an electrohydraulic servocontrolled test system. In-plane and out-of-plane shear moduli were calculated from an equation derived in the theory of elasticity which relates applied torque, the torsional angle of twist, the specimen width/thickness ratio, and the ratio of the two shear moduli G13/G23. Results demonstrate that torsional shear moduli, G23 as well as G13, can be determined by simple torsion tests of flat specimens of rectangular cross section. Neither the uniaxial nor angleply composite material were transversely isotropic.

  4. Torsional Carbon Nanotube Artificial Muscles

    NASA Astrophysics Data System (ADS)

    Foroughi, Javad; Spinks, Geoffrey M.; Wallace, Gordon G.; Oh, Jiyoung; Kozlov, Mikhail E.; Fang, Shaoli; Mirfakhrai, Tissaphern; Madden, John D. W.; Shin, Min Kyoon; Kim, Seon Jeong; Baughman, Ray H.

    2011-10-01

    Rotary motors of conventional design can be rather complex and are therefore difficult to miniaturize; previous carbon nanotube artificial muscles provide contraction and bending, but not rotation. We show that an electrolyte-filled twist-spun carbon nanotube yarn, much thinner than a human hair, functions as a torsional artificial muscle in a simple three-electrode electrochemical system, providing a reversible 15,000° rotation and 590 revolutions per minute. A hydrostatic actuation mechanism, as seen in muscular hydrostats in nature, explains the simultaneous occurrence of lengthwise contraction and torsional rotation during the yarn volume increase caused by electrochemical double-layer charge injection. The use of a torsional yarn muscle as a mixer for a fluidic chip is demonstrated.

  5. An explanation of forms of planetary orbits and estimation of angular shift of the Mercury' perihelion using the statistical theory of gravitating spheroidal bodies

    NASA Astrophysics Data System (ADS)

    Krot, A. M.

    2013-09-01

    This work develops a statistical theory of gravitating spheroidal bodies to calculate the orbits of planets and explore forms of planetary orbits with regard to the Alfvén oscillating force [1] in the Solar system and other exoplanetary systems. The statistical theory of formation of gravitating spheroidal bodies has been proposed in [2]-[5]. Starting the conception for forming a spheroidal body inside a gas-dust protoplanetary nebula, this theory solves the problem of gravitational condensation of a gas-dust protoplanetary cloud with a view to planetary formation in its own gravitational field [3] as well as derives a new law of the Solar system planetary distances which generalizes the wellknown laws [2], [3]. This work also explains an origin of the Alfvén oscillating force modifying forms of planetary orbits within the framework of the statistical theory of gravitating spheroidal bodies [5]. Due to the Alfvén oscillating force moving solid bodies in a distant zone of a rotating spheroidal body have elliptic trajectories. It means that orbits for the enough remote planets from the Sun in Solar system are described by ellipses with focus in the origin of coordinates and with small eccentricities. The nearby planet to Sun named Mercury has more complex trajectory. Namely, in case of Mercury the angular displacement of a Newtonian ellipse is observed during its one rotation on an orbit, i.e. a regular (century) shift of the perihelion of Mercury' orbit occurs. According to the statistical theory of gravitating spheroidal bodies [2]-[5] under the usage of laws of celestial mechanics in conformity to cosmogonic bodies (especially, to stars) it is necessary to take into account an extended substance called a stellar corona. In this connection the stellar corona can be described by means of model of rotating and gravitating spheroidal body [5]. Moreover, the parameter of gravitational compression α of a spheroidal body (describing the Sun, in particular) has been estimated on the basis of the linear size of its kernel, i.e. the thickness of a visible part of the solar corona. Really, NASA' astronomer S. Odenwald in his notice «How thick is the solar corona?» wrote: "The corona actually extends throughout the entire solar system as a "wind" of particles, however, the densist parts of the corona is usually seen not more than about 1-2 solar radii from the surface or about 690,000 to 1.5 million kilometers at the equator. Near the poles, it seems to be a bit flatter..." [6]. In the fact, as mentioned in [5], a recession of plots of dependences of relative brightness of components of spectrum of the Solar corona occurs on distance of 3-3.5 radii from the center, i.e. on 2-2.5 radii from the edge of the solar disk. Thus, accepting thickness of a visible part of the solar corona equal to Δ = 2R (here R is radius of the solar disk) we find that r* = R + Δ = 3R , where r* =1/ α . In other words, the parameter of gravitational compression 2 α =1/ r* of a spheroidal body in case of the Sun with its corona (for which the equatorial radius ofdisk R = 6.955ṡ108 m) can be estimated by the value [2]-[5]: 2.29701177718 10 (m ) (3 ) 1 19 2 2 = ≈ ṡ - - R α . (1) So, the procedure of finding α is based on the known 3σ -rule in the statistical theory. Really, as shown in the monograph [5], namely the solar corona accounting under calculation of perturbed orbit of the planet of Mercury allows to find the estimation of a displacement of perihelion of Mercury' orbit for the one period within the framework of the statistical theory of gravitating spheroidal bodies. As it is known, on a way of specification of the law of Newton using the general relativity theory the Mercury problem solving was found [5]. Nevertheless, from a common position of the statistical theory of gravitating spheroidal bodies the points of view as Leverrier (about existence of an unknown matter) and Einstein (about insufficiency of the theory of Newton) practically differ nothing. Really, there exist plasma as well as gas-dust substance around of kernel of cosmogonic body (in particular, the solar corona in case of the Sun), i.e. the account of circumstance that forming cosmogonic bodies have not precise outlines and are represented by means of spheroidal forms demands some specification of the Newton' law in connection with a gravitating spheroidal body [2]-[5]. So, with the purpose of Mercury' trajectory finding within the framework of the statistical theory of gravitating and rotating spheroidal bodies it is necessary to estimate gravitational potential in nearby removal from the Sun, i.e. in a remote zone of a gravitational field and in immediate proximity to a kernel of a rotating spheroidal body. Taking into account that the orbit of planet Mercury entirely lays in one plane of polar angle θ =θ 0 = const we should use the formula [5]: 0 2 2 1 0 sin () * ɛ θ γ ϕ - = - > r r M g r r , (2) where r* =1/ α , α is a parameter of gravitational compression of a spheroidal body, M is its mass, γ is the Newtonian gravitational constant, ɛ 0 is a geometrical eccentricity of kernel of a rotating and gravitating spheroidal body (2 1 ɛ 0 << ) [2]-[5]. This work shows that in view of greatest proximity on distance to the Sun and essential inclination of orbit of Mercury the projection of a point of perihelion of its orbit can directly get in a nearby vicinity of the Sun, namely, in the visible part of the solar corona. In the monograph [5], using Binet' equation and formula (2) the equation of disturbed orbit of a planet (the Mercury) in a vicinity of a kernel of a rotating and gravitating spheroidal body has been derived. The obtained relation expresses the equation of the so-called "disturbed" ellipse in polar coordinates with the origin of coordinates in focus, i.e. the planet Mercury is moving on a precessing elliptic orbit in view of the fact that there is a modulating multiplier of a phase (or azimuth angle). So, within the framework of the statistical theory of gravitating spheroidal bodies the required angular moving of Newtonian ellipse during one turn of Mercury on the disturbed orbit (or displacement of perihelion of its orbit for the period) has been estimated [5]: 2 2 2 2 0 (1 )2 (3 ) a e e ṡ - + ṡ = α π ɛ δɛ , (3) where through a and e a major semi-axis and an eccentricity of Mercury's orbit are designated respectively, α is a parameter of gravitational compression (1) and ɛ 0 is a geometrical eccentricity of kernel of a rotating and gravitating spheroidal body (the Sun) [5]. Thus, according to the proposed formula (3) the turn of perihelion of Mercury' orbit is equal to 43.93'' in century that well is consistent with conclusions of the general relativity theory of Einstein (whose analogous estimation is equal to 43.03'') and astronomical observation data (43.11 ± 0.45'') [5].

  6. Torsional waves operating in geodynamo and magnetoconvection simulations

    NASA Astrophysics Data System (ADS)

    Teed, Robert; Jones, Chris; Tobias, Steve

    2015-04-01

    Torsional waves are a principal feature of the dynamics of the fluid outer core where the Earth's magnetic field is generated. These oscillations are Alfvén waves operating about an equilibrium known as a Taylor state (Taylor, 1963) and they propagate in the cylindrical radial direction. The change in core angular momentum inferred from geomagnetic observations has a measurable impact on the length of the day, and the small decadal variations in the length-of-day signal confirm the existence of torsional oscillations (Holme & de Viron, 2013). Many questions remain unanswered about the exact nature of these waves and this presentation will attempt to address some of these. In order to gain insight we perform three-dimensional spherical dynamo and magnetoconvection simulations in parameter regimes where Earth-like magnetic fields are produced. Many of our simulations produce the desired torsional oscillations, identified by their movement at the correct Alfvén speed, and several show Earth-like core travel times of around 4 years. Our dynamo simulations (Teed et al., 2014) show torsional waves within the tangent cylinder region that also have the ability to pass through this theoretical cylinder. By calculating the driving terms for these waves we find that both the Reynolds force and ageostrophic convection acting through the Lorentz force can be important in driving torsional oscillations. Driven by a desire to reach smaller Ekman numbers and larger magnetic field strengths, which are computationally unattainable in dynamo simulations, we perform, in our follow up work, magnetoconvection simulations (Teed et al., 2015) by imposing a dipolar field on the core-mantle boundary. Under this configuration we find a transition, at low Ekman numbers, to regimes where excitation is found only at the tangent cylinder, is delivered by the Lorentz force and gives rise to a periodic Earth-like wave pattern. This pattern is approximately operating on a 4 to 5 year timescale, similar to the 6 year period expected of the waves in the Earth. References Holme, R. & de Viron, O., 2013. Characterization and implications of intradecadal variations in length of day. Nature 499 (7457), 202-204. Taylor, J., 1963. The magneto-hydrodynamics of a rotating fluid and the Earth's dynamo problem. Proc. Roy. Soc. A 274, 274-283. Teed, R., Jones, C., Tobias, S., 2014. The dynamics and excitation of torsional waves in geodynamo simulations. Geophys. J. Int. 196 (2), 724-735. Teed, R., Jones, C., Tobias, S., 2015. The transition to Earth-like torsional oscillations in magnetoconvection simulations. Submitted

  7. Scalar torsion and a new symmetry of general relativity

    NASA Astrophysics Data System (ADS)

    Fonseca-Neto, J. B.; Romero, C.; Martinez, S. P. G.

    2013-08-01

    We reformulate the general theory of relativity in the language of Riemann-Cartan geometry. We start from the assumption that the space-time can be described as a non-Riemannian manifold, which, in addition to the metric field, is endowed with torsion. In this new framework, the gravitational field is represented not only by the metric, but also by the torsion, which is completely determined by a geometric scalar field. We show that in this formulation general relativity has a new kind of invariance, whose invariance group consists of a set of conformal and gauge transformations, called Cartan transformations. These involve both the metric tensor and the torsion vector field, and are similar to the well known Weyl gauge transformations. By making use of the concept of Cartan gauges, we show that, under Cartan transformations, the new formalism leads to different pictures of the same gravitational phenomena. We illustrate this fact by looking at the one of the classical tests of general relativity theory, namely the gravitational spectral shift. Finally, we extend the concept of space-time symmetry to Riemann-Cartan space-times with scalar torsion and obtain the conservation laws for auto-parallel motions in a static spherically symmetric vacuum space-time in a Cartan gauge, whose orbits are identical to Schwarzschild orbits in general relativity.

  8. Optical activity caused by torsion stresses: the case of NaBi(MoO4)2 crystals.

    PubMed

    Vasylkiv, Yuriy; Kvasnyuk, Oleksiy; Shopa, Yaroslav; Vlokh, Rostyslav

    2013-05-01

    We have found that torsion mechanical stresses induce the optical rotation effect in centrosymmetric NaBi(MoO4)2 crystals. We have suggested a description of the effect on the basis of nonlocal linear elasticity theory. It has been shown that the induced optical gyration is proportional to the stress gradient appearing due to the torsion. PMID:23695320

  9. The dynamics and excitation of torsional waves in geodynamo simulations

    NASA Astrophysics Data System (ADS)

    Teed, R. J.; Jones, C. A.; Tobias, S. M.

    2014-02-01

    The predominant force balance in rapidly rotating planetary cores is between Coriolis, pressure, buoyancy and Lorentz forces. This magnetostrophic balance leads to a Taylor state where the spatially averaged azimuthal Lorentz force is compelled to vanish on cylinders aligned with the rotation axis. Any deviation from this state leads to a torsional oscillation, signatures of which have been observed in the Earth's secular variation and are thought to influence length of day variations via angular momentum conservation. In order to investigate the dynamics of torsional oscillations (TOs), we perform several 3-D dynamo simulations in a spherical shell. We find TOs, identified by their propagation at the correct Alfvén speed, in many of our simulations. We find that the frequency, location and direction of propagation of the waves are influenced by the choice of parameters. Torsional waves are observed within the tangent cylinder and also have the ability to pass through it. Several of our simulations display waves with core traveltimes of 4-6 yr. We calculate the driving terms for these waves and find that both the Reynolds force and ageostrophic convection acting through the Lorentz force are important in driving TOs.

  10. Electrothermally-Actuated Micromirrors with Bimorph Actuators—Bending-Type and Torsion-Type

    PubMed Central

    Tsai, Cheng-Hua; Tsai, Chun-Wei; Chang, Hsu-Tang; Liu, Shih-Hsiang; Tsai, Jui-Che

    2015-01-01

    Three different electrothermally-actuated MEMS micromirrors with Cr/Au-Si bimorph actuators are proposed. The devices are fabricated with the SOIMUMPs process developed by MEMSCAP, Inc. (Durham, NC, USA). A silicon-on-insulator MEMS process has been employed for the fabrication of these micromirrors. Electrothermal actuation has achieved a large angular movement in the micromirrors. Application of an external electric current 0.04 A to the bending-type, restricted-torsion-type, and free-torsion-type mirrors achieved rotation angles of 1.69°, 3.28°, and 3.64°, respectively. PMID:26110409

  11. Electrothermally-Actuated Micromirrors with Bimorph Actuators--Bending-Type and Torsion-Type.

    PubMed

    Tsai, Cheng-Hua; Tsai, Chun-Wei; Chang, Hsu-Tang; Liu, Shih-Hsiang; Tsai, Jui-Che

    2015-01-01

    Three different electrothermally-actuated MEMS micromirrors with Cr/Au-Si bimorph actuators are proposed. The devices are fabricated with the SOIMUMPs process developed by MEMSCAP, Inc. (Durham, NC, USA). A silicon-on-insulator MEMS process has been employed for the fabrication of these micromirrors. Electrothermal actuation has achieved a large angular movement in the micromirrors. Application of an external electric current 0.04 A to the bending-type, restricted-torsion-type, and free-torsion-type mirrors achieved rotation angles of 1.69°, 3.28°, and 3.64°, respectively. PMID:26110409

  12. Combined bending-torsion fatigue reliability. III

    NASA Technical Reports Server (NTRS)

    Kececioglu, D.; Chester, L. B.; Nolf, C. F., Jr.

    1975-01-01

    Results generated by three, unique fatigue reliability research machines which can apply reversed bending loads combined with steady torque are presented. AISI 4340 steel, grooved specimens with a stress concentration factor of 1.42 and 2.34, and Rockwell C hardness of 35/40 were subjected to various combinations of these loads and cycled to failure. The generated cycles-to-failure and stress-to-failure data are statistically analyzed to develop distributional S-N and Goodman diagrams. Various failure theories are investigated to determine which one represents the data best. The effects of the groove, and of the various combined bending-torsion loads, on the S-N and Goodman diagrams are determined. Two design applications are presented which illustrate the direct useability and value of the distributional failure governing strength and cycles-to-failure data in designing for specified levels of reliability and in predicting the reliability of given designs.

  13. On determining G using a cryogenic torsion pendulum

    NASA Astrophysics Data System (ADS)

    Newman, R. D.; Bantel, M. K.

    1999-06-01

    A measurement of G which will use a torsion pendulum in the `dynamic' (time-of-swing) mode, measuring the influence of field source masses on the pendulum's oscillation period, is being prepared at UC Irvine. Features of the design include: (i) operation at cryogenic temperature (2 K) to reduce thermal noise and increase frequency stability and for ease of magnetic shielding, (ii) large pendulum oscillation amplitudes to increase signal-to-noise ratio and reduce the effect of amplitude-determination error, (iii) use of a pair of source mass rings to produce an extremely uniform field gradient; and (iv) use of a thin quartz plate as a torsion pendulum to minimize sensitivity to pendulum density inhomogeneity and dimensional uncertainties. The `dynamic' method to be used has the great advantage of requiring no angular displacement measurement or calibrating force, but, as pointed out by Kuroda, the method is subject to systematic error associated with the anelastic properties of a torsion fibre. We demonstrate that, for the linear anelasticity discussed by Kuroda, the fractional error introduced by anelasticity in such measurements of G is bounded by 0icons/Journals/Common/le" ALT="le" ALIGN="TOP"/>icons/Journals/Common/delta" ALT="delta" ALIGN="TOP"/> G/Gicons/Journals/Common/le" ALT="le" ALIGN="TOP"/> 1/2 Q-1, where Q is the torsional oscillation quality factor of the pendulum. We report detailed studies of anelasticity in candidate fibre materials at low temperature, concluding that anelastic behaviour should not limit our G measurement at a level of a few ppm.

  14. Stability of Thin-Walled Tubes Under Torsion

    NASA Technical Reports Server (NTRS)

    Donnell, L H

    1935-01-01

    In this report a theoretical solution is developed for the torsion on a round thin-walled tube for which the walls become unstable. The results of this theory are given by a few simple formulas and curves which cover all cases. The differential equations of equilibrium are derived in a simpler form than previously found, it being shown that many items can be neglected.

  15. Torsion and attractors in the Kolmogorov hydrodynamical system

    NASA Astrophysics Data System (ADS)

    Pasini, Antonello; Pelino, Vinicio; Potestà, Sergio

    1998-04-01

    The geometrical structure of the Kolmogorov system is studied. Considering a divergence-free geodesic motion on a Riemann-Cartan manifold, it is shown that the torsion tensor is related via group theory to the quadratic part of this system. Kolmogorov equations can be considered as the dissipative Euler-Poincaré equations on the Lie algebra of the associated group manifold. The relationship with Navier-Stokes equations and their truncated models is discussed.

  16. Topological design of torsional metamaterials

    NASA Astrophysics Data System (ADS)

    Vitelli, Vincenzo; Paulose, Jayson; Meeussen, Anne; Topological Mechanics Lab Team

    Frameworks - stiff elements with freely hinged joints - model the mechanics of a wide range of natural and artificial structures, including mechanical metamaterials with auxetic and topological properties. The unusual properties of the structure depend crucially on the balance between degrees of freedom associated with the nodes, and the constraints imposed upon them by the connecting elements. Whereas networks of featureless nodes connected by central-force springs have been well-studied, many real-world systems such as frictional granular packings, gear assemblies, and flexible beam meshes incorporate torsional degrees of freedom on the nodes, coupled together with transverse shear forces exerted by the connecting elements. We study the consequences of such torsional constraints on the mechanics of periodic isostatic networks as a foundation for mechanical metamaterials. We demonstrate the existence of soft modes of topological origin, that are protected against disorder or small perturbations of the structure analogously to their counterparts in electronic topological insulators. We have built a lattice of gears connected by rigid beams that provides a real-world demonstration of a torsional metamaterial with topological edge modes and mechanical Weyl modes.

  17. Shaft instantaneous angular speed for blade vibration in rotating machine

    NASA Astrophysics Data System (ADS)

    Gubran, Ahmed A.; Sinha, Jyoti K.

    2014-02-01

    Reliable blade health monitoring (BHM) in rotating machines like steam turbines and gas turbines, is a topic of research since decades to reduce machine down time, maintenance costs and to maintain the overall safety. Transverse blade vibration is often transmitted to the shaft as torsional vibration. The shaft instantaneous angular speed (IAS) is nothing but the representing the shaft torsional vibration. Hence the shaft IAS has been extracted from the measured encoder data during machine run-up to understand the blade vibration and to explore the possibility of reliable assessment of blade health. A number of experiments on an experimental rig with a bladed disk were conducted with healthy but mistuned blades and with different faults simulation in the blades. The measured shaft torsional vibration shows a distinct difference between the healthy and the faulty blade conditions. Hence, the observations are useful for the BHM in future. The paper presents the experimental setup, simulation of blade faults, experiments conducted, observations and results.

  18. External and internal coupling effects of rotor's bending and torsional vibrations under unbalances

    NASA Astrophysics Data System (ADS)

    Yuan, Zhenwei; Chu, Fulei; Lin, Yanli

    2007-01-01

    External and internal bending-torsion coupling effects of a rotor system with comprehensive unbalances are studied by analytical analysis and numerical simulations. Based on Lagrangian approach, a full-degree-of-freedom dynamic model of a Jeffcott rotor is developed. The harmonic balance method and the Floquet theory are combined to analyze the stability of the system equations. Numerical simulations are conducted to observe the bending-torsion coupling effects. In the formulation of rotordynamic model, two bending-torsion coupling patterns, external coupling and internal coupling, are suggested. By analytical analysis, it is concluded that the periodic solution of the system is asymptotically stable. From numerical simulations, three bending-torsion coupling effects are observed in three cases. Under static unbalance, synchronous torsional response is observed, which is the result of external coupling under unbalanced force. Under dynamic unbalance, two-time synchronous frequency torsional response is observed, which is the result of internal coupling under unbalanced moment. Under comprehensive unbalance, synchronous and two-time synchronous frequency torsional components are observed, which are the results of both external and internal couplings under unbalanced force and moment. These observations agree with the analytical analysis. It is believed that these observed phenomena should make sense in the dynamical design and fault diagnostics of a rotor system.

  19. An analysis of traction drive torsional stiffness

    NASA Technical Reports Server (NTRS)

    Rohn, D. A.; Loewenthal, S. H.

    1983-01-01

    The tangential compliance of elastic bodies in concentrated contact applied to traction drive elements to determine their torsional stiffness was analyzed. Static loading and rotating conditions are considered. The effects of several design variables are shown. The theoretical torsional stiffness of a fixed ratio multiroller drive is computed and compared to experimental values. It is shown that the torsional compliance of the traction contacts themselves is a relatively small portion of the overall drive system compliance.

  20. Spin precession of slow neutrons in Einstein-Cartan gravity with torsion, chameleon, and magnetic field

    NASA Astrophysics Data System (ADS)

    Ivanov, A. N.; Wellenzohn, M.

    2016-02-01

    We analyze a spin precession of slow neutrons in the Einstein-Cartan gravity with torsion, chameleon and magnetic field. For the derivation of the Heisenberg equation of motion of the neutron spin we use the effective low-energy potential, derived by Ivanov and Wellenzohn [Phys. Rev. D 92, 125004 (2015)] for slow neutrons, coupled to gravitational, chameleon, and torsion fields to order 1 /m , where m is the neutron mass. In addition to these low-energy interactions we switch on the interaction of slow neutrons with a magnetic field. We show that to linear order approximation with respect to gravitational, chameleon, and torsion fields the Dirac Hamilton operator for fermions (neutrons), moving in spacetimes created by rotating coordinate systems, contains the anti-Hermitian operators of torsion-fermion (neutron) interactions, caused by torsion scalar and tensor space-space-time and time-space-space degrees of freedom. Such anti-Hermitian operators violate C P and T invariance. In the low-energy approximation the C P and T violating torsion-fermion (neutron) interactions appear only to order O (1 /m ). One may assume that in the rotating Universe and galaxies the obtained anti-Hermitian torsion-fermion interactions might be an origin of (i) violation of C P and T invariance in the Universe and (ii) of baryon asymmetry. We show that anti-Hermitian torsion-fermion interactions of relativistic fermions, violating C P and T invariance, (i) cannot be removed by nonunitary transformations of the Dirac fermion wave functions and (ii) are conformal invariant. According to general requirements of conformal invariance of massive particle theories in gravitational fields [see R. H. Dicke, Phys. Rev. 125, 2163 (1962) and A. J. Silenko, Phys. Rev. D 91, 065012 (2015)], conformal invariance of anti-Hermitian torsion-fermion interactions is valid only if the fermion mass is changed by a conformal factor.

  1. Coupled lateral-torsional-axial vibrations of a helical gear-rotor-bearing system

    NASA Astrophysics Data System (ADS)

    Li, Chao-Feng; Zhou, Shi-Hua; Liu, Jie; Wen, Bang-Chun

    2014-10-01

    Considering the axial and radial loads, a mathematical model of angular contact ball bearing is deduced with Hertz contact theory. With the coupling effects of lateral, torsional and axial vibrations taken into account, a lumped-parameter nonlinear dynamic model of helical gearrotor-bearing system (HGRBS) is established to obtain the transmission system dynamic response to the changes of different parameters. The vibration differential equations of the drive system are derived through the Lagrange equation, which considers the kinetic and potential energies, the dissipative function and the internal/external excitation. Based on the Runge-Kutta numerical method, the dynamics of the HGRBS is investigated, which describes vibration properties of HGRBS more comprehensively. The results show that the vibration amplitudes have obvious fluctuation, and the frequency multiplication and random frequency components become increasingly obvious with changing rotational speed and eccentricity at gear and bearing positions. Axial vibration of the HGRBS also has some fluctuations. The bearing has self-variable stiffness frequency, which should be avoided in engineering design. In addition, the bearing clearance needs little attention due to its slightly discernible effect on vibration response. It is suggested that a careful examination should be made in modelling the nonlinear dynamic behavior of a helical gear-rotor-bearing system.

  2. Premotor neurons encode torsional eye velocity during smooth-pursuit eye movements

    NASA Technical Reports Server (NTRS)

    Angelaki, Dora E.; Dickman, J. David

    2003-01-01

    Responses to horizontal and vertical ocular pursuit and head and body rotation in multiple planes were recorded in eye movement-sensitive neurons in the rostral vestibular nuclei (VN) of two rhesus monkeys. When tested during pursuit through primary eye position, the majority of the cells preferred either horizontal or vertical target motion. During pursuit of targets that moved horizontally at different vertical eccentricities or vertically at different horizontal eccentricities, eye angular velocity has been shown to include a torsional component the amplitude of which is proportional to half the gaze angle ("half-angle rule" of Listing's law). Approximately half of the neurons, the majority of which were characterized as "vertical" during pursuit through primary position, exhibited significant changes in their response gain and/or phase as a function of gaze eccentricity during pursuit, as if they were also sensitive to torsional eye velocity. Multiple linear regression analysis revealed a significant contribution of torsional eye movement sensitivity to the responsiveness of the cells. These findings suggest that many VN neurons encode three-dimensional angular velocity, rather than the two-dimensional derivative of eye position, during smooth-pursuit eye movements. Although no clear clustering of pursuit preferred-direction vectors along the semicircular canal axes was observed, the sensitivity of VN neurons to torsional eye movements might reflect a preservation of similar premotor coding of visual and vestibular-driven slow eye movements for both lateral-eyed and foveate species.

  3. Turbine generator laboratory model tests to damp torsional oscillations with supplementary signals

    SciTech Connect

    Sokhey, I.S. ); Limebeer, D.J.N.; MacDonald, D.C. )

    1993-03-01

    The improvement of generator stability by the use of supplementary signals into the voltage regulator and governor loops using discrete-time linear optimal control theory has been studied in this paper with particular emphasis on providing better damping for torsional oscillations. A multi-inertia laboratory model equipped with data acquisition and control computers was constructed to model the shaft dynamics of a 660 MW Drax turbine-generator. It is shown that the shaft torsional phenomena can be adequately simulated on a micro synchronous-generator at least as far as the dominant shaft torsional modes of vibration are concerned. The practical implementation of multi-mode LQG controllers has been shown to enhance system stability and provide better damping to the lower frequency torsional modes, which are those most susceptible to excitation.

  4. Bending stresses due to torsion in cantilever box beams

    NASA Technical Reports Server (NTRS)

    Kuhn, Paul

    1935-01-01

    The paper beings with a brief discussion on the origin of the bending stresses in cantilever box beams under torsion. A critical survey of existing theory is followed by a summary of design formulas; this summary is based on the most complete solution published but omits all refinements considered unnecessary at the present state of development. Strain-gage tests made by NACA to obtained some experimental verification of the formulas are described next. Finally, the formulas are applied to a series of box beams previously static-tested by the U.S. Army Air Corps; the results show that the bending stresses due to torsion are responsible to a large extent for the free-edge type of failure frequently experienced in these tests.

  5. A Novel Permanent Magnetic Angular Acceleration Sensor

    PubMed Central

    Zhao, Hao; Feng, Hao

    2015-01-01

    Angular acceleration is an important parameter for status monitoring and fault diagnosis of rotary machinery. Therefore, we developed a novel permanent magnetic angular acceleration sensor, which is without rotation angle limitations and could directly measure the instantaneous angular acceleration of the rotating system. The sensor rotor only needs to be coaxially connected with the rotating system, which enables convenient sensor installation. For the cup structure of the sensor rotor, it has a relatively small rotational inertia. Due to the unique mechanical structure of the sensor, the output signal of the sensor can be directed without a slip ring, which avoids signal weakening effect. In this paper, the operating principle of the sensor is described, and simulated using finite element method. The sensitivity of the sensor is calibrated by torsional pendulum and angle sensor, yielding an experimental result of about 0.88 mV/(rad·s−2). Finally, the angular acceleration of the actual rotating system has been tested, using both a single-phase asynchronous motor and a step motor. Experimental result confirms the operating principle of the sensor and indicates that the sensor has good practicability. PMID:26151217

  6. A Novel Permanent Magnetic Angular Acceleration Sensor.

    PubMed

    Zhao, Hao; Feng, Hao

    2015-01-01

    Angular acceleration is an important parameter for status monitoring and fault diagnosis of rotary machinery. Therefore, we developed a novel permanent magnetic angular acceleration sensor, which is without rotation angle limitations and could directly measure the instantaneous angular acceleration of the rotating system. The sensor rotor only needs to be coaxially connected with the rotating system, which enables convenient sensor installation. For the cup structure of the sensor rotor, it has a relatively small rotational inertia. Due to the unique mechanical structure of the sensor, the output signal of the sensor can be directed without a slip ring, which avoids signal weakening effect. In this paper, the operating principle of the sensor is described, and simulated using finite element method. The sensitivity of the sensor is calibrated by torsional pendulum and angle sensor, yielding an experimental result of about 0.88 mV/(rad·s(-2)). Finally, the angular acceleration of the actual rotating system has been tested, using both a single-phase asynchronous motor and a step motor. Experimental result confirms the operating principle of the sensor and indicates that the sensor has good practicability. PMID:26151217

  7. Torsion of Noncircular Composite Cylinders

    NASA Technical Reports Server (NTRS)

    Rouse, Marshall; Hyer, Michael W.; Haynie, Waddy T.

    2005-01-01

    The paper presents a brief overview of the predicted deformation and failure characteristics of noncircular composite cylinders subjected to torsion. Using a numerical analysis, elliptical cylinders with a minor-to-major diameter ratio of 0.7 are considered. Counterpart circular cylinders with the same circumference as the elliptical cylinders are included for comparison. The cylinders are constructed of a medium-modulus graphite-epoxy material in a quasi-isotropic lay-up. Imperfections generated from the buckling mode shapes are included in the initial cross-sectional geometry of the cylinders. Deformations until first fiber failure, as predicted using the maximum stress failure criterion and a material degradation scheme, are presented. For increasing levels of torsion, the deformations of the elliptical cylinders, in the form of wrinkling of the cylinder wall, occur primarily in the flatter regions of the cross section. By comparison the wrinkling deformations of the circular cylinders are more uniformly distributed around the circumference. Differences in the initial failure and damage progression and the overall torque vs. twist relationship between the elliptical and circular cylinders are presented. Despite differences in the response as the cylinders are being loaded, at first fiber failure the torque and twist for the elliptical and circular cylinders nearly coincide.

  8. Torsion Profiling of Proteins Using Magnetic Particles

    PubMed Central

    van Reenen, A.; Gutiérrez-Mejía, F.; van IJzendoorn, L.J.; Prins, M.W.J.

    2013-01-01

    We report a method to profile the torsional spring properties of proteins as a function of the angle of rotation. The torque is applied by superparamagnetic particles and has been calibrated while taking account of the magnetization dynamics of the particles. We record and compare the torsional profiles of single Protein G-Immunoglobulin G (IgG) and IgG-IgG complexes, sandwiched between a substrate and a superparamagnetic particle, for torques in the range between 0.5 × 103 and 5 × 103 pN·nm. Both molecular systems show torsional stiffening for increasing rotation angle, but the elastic and inelastic torsion stiffnesses are remarkably different. We interpret the results in terms of the structural properties of the molecules. The torsion profiling technique opens new dimensions for research on biomolecular characterization and for research on bio-nanomechanical structure-function relationships. PMID:23473490

  9. Optically probing torsional superelasticity in spider silks

    SciTech Connect

    Kumar, Bhupesh; Thakur, Ashish; Panda, Biswajit; Singh, Kamal P.

    2013-11-11

    We investigate torsion mechanics of various spider silks using a sensitive optical technique. We find that spider silks are torsionally superelastic in that they can reversibly withstand great torsion strains of over 10{sup 2−3} rotations per cm before failure. Among various silks from a spider, we find the failure twist-strain is greatest in the sticky capture silk followed by dragline and egg-case silk. Our in situ laser-diffraction measurements reveal that torsional strains on the silks induce a nano-scale transverse compression in its diameter that is linear and reversible. These unique torsional properties of the silks could find applications in silk-based materials and devices.

  10. Communication: Direct comparison between theory and experiment for correlated angular and product-state distributions of the ground-state and stretching-excited O({sup 3}P) + CH{sub 4} reactions

    SciTech Connect

    Czakó, Gábor

    2014-06-21

    Motivated by a recent experiment [H. Pan and K. Liu, J. Chem. Phys. 140, 191101 (2014)], we report a quasiclassical trajectory study of the O({sup 3}P) + CH{sub 4}(v{sub k} = 0, 1) → OH + CH{sub 3} [k = 1 and 3] reactions on an ab initio potential energy surface. The computed angular distributions and cross sections correlated to the OH(v = 0, 1) + CH{sub 3}(v = 0) coincident product states can be directly compared to experiment for O + CH{sub 4}(v{sub 3} = 0, 1). Both theory and experiment show that the ground-state reaction is backward scattered, whereas the angular distributions shift toward sideways and forward directions upon antisymmetric stretching (v{sub 3}) excitation of the reactant. Theory predicts similar behavior for the O + CH{sub 4}(v{sub 1} = 1) reaction. The simulations show that stretching excitation enhances the reaction up to about 15 kcal/mol collision energy, whereas the O + CH{sub 4}(v{sub k} = 1) reactions produce smaller cross sections for OH(v = 1) + CH{sub 3}(v = 0) than those of O + CH{sub 4}(v = 0) → OH(v = 0) + CH{sub 3}(v = 0). The former finding agrees with experiment and the latter awaits for confirmation. The computed cold OH rotational distributions of O + CH{sub 4}(v = 0) are in good agreement with experiment.

  11. A reduced dimensionality model of torsional vibrations in star molecules

    NASA Astrophysics Data System (ADS)

    Curtin, Evan M.; Sohlberg, Karl

    2016-03-01

    The torsional vibrations of star molecules are studied with a reduced dimensionality model. In this model, the molecule is described by two equivalent sets of lumped inertial cylinders and vibrational frequencies are predicted by solution of the coupled equations of motion. Force constants are determined by including them as free parameters in the model and fitting the computed frequencies to their analogs as determined using full normal coordinate analysis at the HFSCF level of theory. Best agreement between the methods occurs when torsional force constants are included for the first two layers of the molecule. This reveals that non-bonded torsional interactions are important in the vibrational dynamics of these systems. Further insight is afforded by an analysis of why simple harmonic oscillator models are sufficient for modeling some related systems but fail to reproduce the trend in global mode frequencies for saturated aliphatic star molecules. The analysis reveals that the origin of this failure lies in backbone flexibility in these branched polymeric systems.

  12. Magnetic Torsional Oscillations in Magnetars

    SciTech Connect

    Sotani, Hajime; Kokkotas, Kostas D.; Stergioulas, Nikolaos

    2009-05-01

    We investigate torsional Alfven oscillations of relativistic stars with a global dipole magnetic field, via 2D numerical simulations. We find that a) there exist two families of quasi-periodic oscillations (QPOs) with harmonics at integer multiples of the fundamental frequency, b) the QPOs are long-lived, c) for the chosen form of dipolar magnetic field, the frequency ratio of the lower to upper fundamental QPOs is about 0.6, independent of the equilibrium model or of the strength of the magnetic field, and d) within a representative sample of EOS and of various magnetar masses, the Alfven QPO frequencies are given by accurate empirical relations that depend only on the compactness of the star and on the magnetic field strength. Compared to the observational frequencies, we also obtain an upper limit on the strength of magnetic field of SGR 1806-20 (if is dominated by a dipolar component) between {approx}3 and 7x10{sup 15} Gauss.

  13. Torsional oscillations of strange stars

    NASA Astrophysics Data System (ADS)

    Mannarelli, Massimo

    2014-11-01

    Strange stars are one of the hypothetical compact stellar objects that can be formed after a supernova explosion. The existence of these objects relies on the absolute stability of strange collapsed quark matter with respect to standard nuclear matter. We discuss simple models of strange stars with a bare quark matter surface, thus standard nuclear matter is completely absent. In these models an electric dipole layer a few hundreds Fermi thick should exist close to the star surface. Studying the torsional oscillations of the electrically charged layer we estimate the emitted power, finding that it is of the order of 1045 erg/s, meaning that these objects would be among the brightest compact sources in the heavens. The associated relaxation times are very uncertain, with values ranging between microseconds and minutes, depending on the crust thickness. Although part of the radiated power should be absorbed by the electrosphere surrounding the strange star, a sizable fraction of photons should escape and be detectable.

  14. Torsional properties of distal femoral cortical defects.

    PubMed

    Amanatullah, Derek F; Williams, Joel C; Fyhrie, David P; Tamurian, Robert M

    2014-03-01

    The optimal management of pathologic long bone lesions remains a challenge in orthopedic surgery. The goal of the current study was to investigate the effect of defect depth on the torsional properties of the distal femur. A laterally placed distal metaphyseal cylindrical defect was milled in the cortex of the distal femur in 20 composite models. The proximal extent of the defects was constant. By decreasing the radius of the cylinder that intersected this predefined cord, 4 different radii defining 4 different depths of resection of the distal femur were created for testing: 17%, 33%, 50%, and 67% cortical defects, when normalized to the width of the femur at the level of resection. Each femur was mounted into a hydraulic axial/torsion materials testing machine and each specimen underwent torsional stiffness testing and torsional failure in external rotation. The specimens with less than a 33% cortical loss consistently demonstrated a superiorly oriented spiral fracture pattern, while the specimens with greater than a 50% cortical loss consistently demonstrated an inferiorly oriented transverse fracture pattern. The cortical defects were all statistically (P<.05) less stiff in torsion as the defect grew larger. There was a strong linear correlation between the mean torsional stiffness and cortical defect size (r(2)=0.977). This observation is supported by finite element analysis. The amount of femur remaining is crucial to stability. This biomechanical analysis predicts a critical loss of torsional integrity when a cortical defect approaches 50% of the width of the femur. PMID:24762144

  15. A spinning finite beam element of general orientation analyzed with Rayleigh/Timoshenko/Saint-Venant theory

    SciTech Connect

    Abrahamsson, T.J.S.; Saellstroem, J.H.

    1996-01-01

    Linear vibrations are studied for a straight uniform finite beam element of general orientation spinning at a constant angular speed about a fixed axis in the inertial space. The gyroscopic and circulatory matrices and also the geometric stiffness matrix of the beam element are presented. The effect of the centrifugal static axial load on the bending and torsional dynamic stiffnesses is thereby accounted for. The Rayleigh/Timoshenko/Saint-Venant theory is applied, and polynomial shape functions are used in the construction of the deformation fields. Nonzero off-diagonal elements in the gyroscopic and circulatory matrices indicate coupled bending/shearing/torsional/tensional free and forced modes of a generally oriented spinning beam. Two numerical examples demonstrate the use and performance of the beam element.

  16. Modification of gravity due to torsion

    SciTech Connect

    Nair, V. P.; Nikiforova, V.; Randjbar-Daemi, S.; Rubakov, V.

    2010-01-01

    Modifications of general relativity have been considered as one of the possible ways of addressing some of the outstanding problems related to the large scale gravitational physics. In this contribution we review some of the recent results which are due to the inclusion of dynamical torsion. More specifically we shall discuss the propagation of massive spin-2 particles in flat and curved space times. We shall show that, contrary to what is generally believed, spinning matter is not the sole source of torsion field. A symmetric energy momentum tensor can also couple to torsion degrees of freedom. The massive and massless spin-2 particles mix giving rise to an infrared modification of gravity.

  17. Testicular torsion in the older patient

    SciTech Connect

    Perry, S.; Hoopingarner, D.; Askins, D.

    1983-05-01

    A 40-year-old man presented with severe right-sided scrotal pain and was proven to have a 720-degree right testicular torsion. Fewer than 50 documented cases of testicular torsion have been reported in men over the age of thirty. The anatomical predisposition for torsion generally selects these individuals early in life. Rapid diagnosis allowed for surgical correction and testicular salvage. We outline an expedient diagnostic approach for these difficult cases with use of the Doppler ultrasound and the technetium (99mTc) testicular scan.

  18. Euler angles as torsional flat spaces

    NASA Astrophysics Data System (ADS)

    Trejo-Mandujano, Hector A.

    In this work we use general tensor calculus to compare the geodesic equation of motion and Newton's first law for force-free classical systems that are described by an arbitrary number of generalized coordinates in spaces with and without torsion. We choose as objects of study the flat torsional Euler angle metric spaces for rigid rotators. We tested the equivalence of the two motion equations using computational software that allowed algebraic manipulation. The main result is that the equivalence only holds for torsion-free spaces, and for isotropic force-free rotators. We present analytical calculations for the isotropic case and computational results for the general case.

  19. Observation of coronal loop torsional oscillation

    NASA Astrophysics Data System (ADS)

    Zaqarashvili, T. V.

    2003-02-01

    We suggest that the global torsional oscillation of solar coronal loop may be observed by the periodical variation of a spectral line width. The amplitude of the variation must be maximal at the velocity antinodes and minimal at the nodes of the torsional oscillation. Then the spectroscopic observation as a time series at different heights above the active region at the solar limb may allow to determine the period and wavelength of global torsional oscillation and consequently the Alfvén speed in corona. From the analysis of early observation (Egan & Schneeberger \\cite{egan}) we suggest the value of coronal Alfvén speed as ~ 500 km s-1.

  20. Inevitable inflation in Einstein-Cartan theory with improved energy-momentum tensor with spin

    NASA Technical Reports Server (NTRS)

    Fennelly, A. J.; Bradas, James C.; Smalley, Larry L.

    1988-01-01

    Generalized, or power-law, inflation is shown to necessarily exist for a simple, anisotropic, (Bianchi Type-1) cosmology in the Einstein-Cartan gravitational theory with the Ray-Smalley improved energy momentum tensor with spin. Formal solution of the EC field equations with the fluid equations of motion explicitly shows inflation caused by the RS spin angular kinetic energy density. Shear is not effective in preventing inflation in the ECRS model. The relation between fluid vorticity, torsion, reference axis rotation, and shear ellipsoid precession shows through clearly.

  1. Torsion-induced effects in magnetic nanowires

    NASA Astrophysics Data System (ADS)

    Sheka, Denis D.; Kravchuk, Volodymyr P.; Yershov, Kostiantyn V.; Gaididei, Yuri

    2015-08-01

    A magnetic helix wire is one of the simplest magnetic systems which manifests properties of both curvature and torsion. Possible equilibrium magnetization states in the helix wire with different anisotropy directions are studied theoretically. There exist two equilibrium states in the helix wire with easy-tangential anisotropy: a quasitangential magnetization distribution in the case of relatively small curvatures and torsions, and an onion state in the opposite case. The curvature and torsion also essentially influence the spin-wave dynamics in the helix wire, acting as an effective magnetic field. Originated from a geometry-induced effective Dzyaloshinskii interaction, this magnetic field leads to a coupling between the helix chirality and the magnetochirality and breaks mirror symmetry in the spin-wave spectrum: the modification of magnon dispersion relation is linear with respect to the torsion and quadratic with respect to the curvature. All analytical predictions on magnetization statics and dynamics are well confirmed by direct spin-lattice simulations.

  2. Torsion and geometrostasis in covariant superstrings

    SciTech Connect

    Zachos, C.

    1985-01-01

    The covariant action for freely propagating heterotic superstrings consists of a metric and a torsion term with a special relative strength. It is shown that the strength for which torsion flattens the underlying 10-dimensional superspace geometry is precisely that which yields free oscillators on the light cone. This is in complete analogy with the geometrostasis of two-dimensional sigma-models with Wess-Zumino interactions. 13 refs.

  3. Torsion of ovarian tumors: a clinicopathological study.

    PubMed

    Lee, C H; Raman, S; Sivanesaratnam, V

    1989-01-01

    Torsion of ovarian tumors occurred predominantly in the reproductive age group. The majority of the cases presented in pregnant (22.7%) than in non-pregnant (6.1%) women. The major presenting symptom was pain but an abdominal mass was palpable in 79.4% of cases. Torsion was more common on the right ovary and 50% were gangrenous at laparotomy. Most of the tumors were benign cystic teratomas. Only 8.7% of the tumors were malignant. PMID:2565826

  4. Ocular torsion on earth and in weightlessness

    NASA Technical Reports Server (NTRS)

    Young, L. R.; Lichtenberg, B. K.; Arrott, A. P.; Crites, T. A.; Oman, C. M.; Edelman, E. R.

    1981-01-01

    Otolith function is studied by means of measurements of ocular torsion under various acceleration environments on earth and in weightlessness. Photographic measurements of ocular torsion as indicated by the rotation of landmarks on the iris with respect to head-fixed fiducial marks were obtained in subjects undergoing horizontal linear acceleration in a ground-based version of the space sled, lateral acceleration from weightlessness during pullout from the free-fall portion of parabolic flight, and optokinetic stimulation about the roll axis in the supine position in the laboratory and during weightlessness. The responses of ocular torsion to horizontal acceleration are in agreement with a simple low-order linear system with a dominant time constant of 0.33 sec, with a transfer function fit by a model with a pure delay of 0 to 400 msec and a first-order lag. In the pullout experiment, torsion was not observed in response to the onset of acceleration in the right-ear-down position, although it was present in response to the lateral stimulus. Results of the roll vection experiments indicate the independence of ocular torsion and visually induced tilt. In addition, an automatic video system using a soft contact lens target is presented which has been developed for ocular torsion measurements.

  5. Torsional tunneling splittings in the v4 = 1 excited torsional state of Si2H6: analysis of hot bands accompanying fundamental transitions in the high resolution infrared spectrum

    NASA Astrophysics Data System (ADS)

    Lattanzi, F.; di Lauro, C.; Horneman, V.-M.

    The (ν4 + ν6) - ν4, (ν4 + ν8) - ν4 and (ν4 + ν9) - ν4 hot infrared systems of disilane (Si2H6) have been analysed at high resolution, and the values of the relative vibration-rotation-torsion parameters have been determined. The torsional splitting is about 0.500 cm-1 in the ν4 and ν4 + ν6 states, and decreases strongly in the vibrationally degenerate upper states ν4 + ν8 (about 0.0272 cm-1 on average) and ν4 + ν9 (about 0.3019 cm-1), consistent with theoretical predictions. Comparison between the vibrational wavenumbers of cold transitions and hot transitions originating in the excited torsional state v4 = 1 allows one to determine the change of the fundamental torsional frequency ν4 caused by the excitation of small amplitude vibrations. A remarkable increase in ν4 of about 8.599 cm-1 is found in the v9 = 1 state (E1d SiH3-rocking mode, asymmetric to inversion in the staggered geometry), and this corresponds to an increase in the torsional barrier height in this excited fundamental vibrational state by about 48.77 cm-1. The mechanism responsible for the decrease of the torsional splittings in the degenerate vibrational states is briefly outlined by means of second-order perturbation theory, using torsion-hindered vibrational basis functions of E1d and E2d symmetries for the degenerate modes.

  6. MSTor version 2013: A new version of the computer code for the multi-structural torsional anharmonicity, now with a coupled torsional potential

    NASA Astrophysics Data System (ADS)

    Zheng, Jingjing; Meana-Pañeda, Rubén; Truhlar, Donald G.

    2013-08-01

    We present an improved version of the MSTor program package, which calculates partition functions and thermodynamic functions of complex molecules involving multiple torsions; the method is based on either a coupled torsional potential or an uncoupled torsional potential. The program can also carry out calculations in the multiple-structure local harmonic approximation. The program package also includes seven utility codes that can be used as stand-alone programs to calculate reduced moment of inertia matrices by the method of Kilpatrick and Pitzer, to generate conformational structures, to calculate, either analytically or by Monte Carlo sampling, volumes for torsional subdomains defined by Voronoi tessellation of the conformational subspace, to generate template input files for the MSTor calculation and Voronoi calculation, and to calculate one-dimensional torsional partition functions using the torsional eigenvalue summation method. Restrictions: There is no limit on the number of torsions that can be included in either the Voronoi calculation or the full MS-T calculation. In practice, the range of problems that can be addressed with the present method consists of all multitorsional problems for which one can afford to calculate all the conformational structures and their frequencies. Unusual features: The method can be applied to transition states as well as stable molecules. The program package also includes the hull program for the calculation of Voronoi volumes, the symmetry program for determining point group symmetry of a molecule, and seven utility codes that can be used as stand-alone programs to calculate reduced moment-of-inertia matrices by the method of Kilpatrick and Pitzer, to generate conformational structures, to calculate, either analytically or by Monte Carlo sampling, volumes of the torsional subdomains defined by Voronoi tessellation of the conformational subspace, to generate template input files, and to calculate one-dimensional torsional partition functions using the torsional eigenvalue summation method. Additional comments: The program package includes a manual, installation script, and input and output files for a test suite. Running time: There are 26 test runs. The running time of the test runs on a single processor of the Itasca computer is less than 2 s. References: [1] MS-T(C) method: Quantum Thermochemistry: Multi-Structural Method with Torsional Anharmonicity Based on a Coupled Torsional Potential, J. Zheng and D.G. Truhlar, Journal of Chemical Theory and Computation 9 (2013) 1356-1367, DOI: http://dx.doi.org/10.1021/ct3010722. [2] MS-T(U) method: Practical Methods for Including Torsional Anharmonicity in Thermochemical Calculations of Complex Molecules: The Internal-Coordinate Multi-Structural Approximation, J. Zheng, T. Yu, E. Papajak, I, M. Alecu, S.L. Mielke, and D.G. Truhlar, Physical Chemistry Chemical Physics 13 (2011) 10885-10907.

  7. Cross-shaped torsional spring

    DOEpatents

    Williamson, M.M.; Pratt, G.A.

    1999-06-08

    The invention provides an elastic actuator consisting of a motor and a motor drive transmission connected at an output of the motor. An elastic element is connected in series with the motor drive transmission, and this elastic element is positioned to alone support the full weight of any load connected at an output of the actuator. A single force transducer is positioned at a point between a mount for the motor and an output of the actuator. This force transducer generates a force signal, based on deflection of the elastic element, that indicates force applied by the elastic element to an output of the actuator. An active feedback force control loop is connected between the force transducer and the motor for controlling the motor. This motor control is based on the force signal to deflect the elastic element an amount that produces a desired actuator output force. The produced output force is substantially independent of load motion. The invention also provides a torsional spring consisting of a flexible structure having at least three flat sections each connected integrally with and extending radially from a central section. Each flat section extends axially along the central section from a distal end of the central section to a proximal end of the central section. 30 figs.

  8. Cross-shaped torsional spring

    DOEpatents

    Williamson, Matthew M.; Pratt, Gill A.

    1999-06-08

    The invention provides an elastic actuator consisting of a motor and a motor drive transmission connected at an output of the motor. An elastic element is connected in series with the motor drive transmission, and this elastic element is positioned to alone support the full weight of any load connected at an output of the actuator. A single force transducer is positioned at a point between a mount for the motor and an output of the actuator. This force transducer generates a force signal, based on deflection of the elastic element, that indicates force applied by the elastic element to an output of the actuator. An active feedback force control loop is connected between the force transducer and the motor for controlling the motor. This motor control is based on the force signal to deflect the elastic element an amount that produces a desired actuator output force. The produced output force is substantially independent of load motion. The invention also provides a torsional spring consisting of a flexible structure having at least three flat sections each connected integrally with and extending radially from a central section. Each flat section extends axially along the central section from a distal end of the central section to a proximal end of the central section.

  9. Nonseparable transition state theory for nonzero total angular momentum: Implications for J shifting and application to the OH+H2 reaction

    NASA Astrophysics Data System (ADS)

    Bowman, Joel M.; Shnider, Heather M.

    1999-03-01

    We report vibration/rotation energies of the OHH2 transition state using the code "Multimode," for total angular momentum J=0, 1, and 4. Rotation is treated in the adiabatic rotation approximation for J=1 and 4, as well as exactly, i.e., including Coriolis coupling, for J=1. State-dependent rotation constants are obtained using the adiabatic rotation energies from the J=0 and 1 calculations and shown to predict accurately the adiabatic rotation rovibrational energies for J=4. These rotation constants are used in new J-shifting calculations of the thermal rate constant for the reaction OH+H2→H2O+H using results from a previous accurate calculation of the rate constant for J=0 [U. Manthe, T. Seideman, and W. H. Miller, J. Chem. Phys. 99, 10078 (1993); 101, 4759 (1994)]. Comparisons with previous J-shifting and recent centrifugal sudden calculations of the rate constant [D. H. Zhang, J. C. Light, and S-Y. Lee, J. Chem. Phys. 109, 79 (1998)] of this reaction are presented. A modification of the previous centrifugal sudden rate constant is made and shown to yield results that are in good agreement with the new J-shifting calculations. Finally, an assessment of Coriolis coupling is made.

  10. Investigation of fluctuations in angular velocity in magnetic memory devices

    NASA Technical Reports Server (NTRS)

    Meshkis, Y. A.; Potsyus, Z. Y.

    1973-01-01

    The fluctuations in the angular velocity of individual assemblies of a precision mechanical system were analyzed. The system was composed of an electric motor and a magnetic drum which were connected by a flexible coupling. A dynamic model was constructed which took into account the absence of torsion in the rigid shafts of the electric motor drive rotor and the magnetic drum. The motion was described by Lagrange differential equations of the second kind. Curves are developed to show the nature of amplitude fluctuation of the magnetic drum angular velocity at a specific excitation frequency. Additional curves show the amplitudes of fluctuation of the magnetic drum angular velocity compared to the quantity of damping at specific frequencies.

  11. Angular Acceleration Without Torque?

    NASA Astrophysics Data System (ADS)

    Kaufman, Richard D.

    2012-01-01

    Hardly. Just as Robert Johns qualitatively describes angular acceleration by an internal force in his article "Acceleration Without Force?" here we will extend the discussion to consider angular acceleration by an internal torque. As we will see, this internal torque is due to an internal force acting at a distance from an instantaneous center.2

  12. Angular Acceleration without Torque?

    ERIC Educational Resources Information Center

    Kaufman, Richard D.

    2012-01-01

    Hardly. Just as Robert Johns qualitatively describes angular acceleration by an internal force in his article "Acceleration Without Force?" here we will extend the discussion to consider angular acceleration by an internal torque. As we will see, this internal torque is due to an internal force acting at a distance from an instantaneous center.

  13. Modified teleparallel theories of gravity

    NASA Astrophysics Data System (ADS)

    Bahamonde, Sebastian; Böhmer, Christian G.; Wright, Matthew

    2015-11-01

    We investigate modified theories of gravity in the context of teleparallel geometries. It is well known that modified gravity models based on the torsion scalar are not invariant under local Lorentz transformations while modifications based on the Ricci scalar are. This motivates the study of a model depending on the torsion scalar and the divergence of the torsion vector. We derive the teleparallel equivalent of f (R ) gravity as a particular subset of these models and also show that this is the unique theory in this class that is invariant under local Lorentz transformation. Furthermore one can show that f (T ) gravity is the unique theory admitting second-order field equations.

  14. No Effect of Steady Rotation on Solid ^4He in a Torsional Oscillator

    NASA Astrophysics Data System (ADS)

    Fear, M. J.; Walmsley, P. M.; Zmeev, D. E.; Mäkinen, J. T.; Golov, A. I.

    2016-05-01

    We have measured the response of a torsional oscillator containing polycrystalline hcp solid 4He to applied steady rotation in an attempt to verify the observations of several other groups that were initially interpreted as evidence for macroscopic quantum effects. The geometry of the cell was that of a simple annulus, with a fill line of relatively narrow diameter in the centre of the torsion rod. Varying the angular velocity of rotation up to 2 rad s^{-1} showed that there were no step-like features in the resonant frequency or dissipation of the oscillator and no history dependence, even though we achieved the sensitivity required to detect the various effects seen in earlier experiments on other rotating cryostats. All small changes during rotation were consistent with those occurring with an empty cell. We thus observed no effects on the samples of solid ^4He attributable to steady rotation.

  15. Endodontic instruments after torsional failure: nanoindentation test.

    PubMed

    Jamleh, Ahmed; Sadr, Alireza; Nomura, Naoyuki; Ebihara, Arata; Yahata, Yoshio; Hanawa, Takao; Tagami, Junji; Suda, Hideaki

    2014-01-01

    This study aimed to evaluate effects of torsional loading on the mechanical properties of endodontic instruments using the nanoindentation technique. ProFile (PF; size 30, taper 04; Dentsply Maillefer, Switzerland) and stainless steel (SS; size 30, taper 02; Mani, Japan) instruments were subjected to torsional test. Nanoindentation was then performed adjacent to the edge of fracture (edge) and at the cutting part beside the shank (shank). Hardness and elastic modulus were measured under 100-mN force on 100 locations at each region, and compared to those obtained from the same regions on new instruments. It showed that PF and SS instruments failed at 559 ± 67 and 596 ± 73 rotation degrees and mean maximum torque of 0.90 ± 0.07 and 0.99 ± 0.05 N-cm, respectively. Hardness and elastic modulus ranged 4.8-6.7 and 118-339 GPa in SS, and 2.7-3.2 and 52-81 GPa in PF. Significant differences between torsion-fractured and new instruments in hardness and elastic modulus were detected in the SS system used. While in PF system, the edge region after torsional fracture had significantly lower hardness and elastic modulus compared to new instruments. The local hardness and modulus of elasticity of endodontic instruments adjacent to the fracture edge are significantly reduced by torsional loading. PMID:24610598

  16. Torsion-Mediated Interaction between Adjacent Genes

    PubMed Central

    Meyer, Sam; Beslon, Guillaume

    2014-01-01

    DNA torsional stress is generated by virtually all biomolecular processes involving the double helix, in particular transcription where a significant level of stress propagates over several kilobases. If another promoter is located in this range, this stress may strongly modify its opening properties, and hence facilitate or hinder its transcription. This mechanism implies that transcribed genes distant of a few kilobases are not independent, but coupled by torsional stress, an effect for which we propose the first quantitative and systematic model. In contrast to previously proposed mechanisms of transcriptional interference, the suggested coupling is not mediated by the transcription machineries, but results from the universal mechanical features of the double-helix. The model shows that the effect likely affects prokaryotes as well as eukaryotes, but with different consequences owing to their different basal levels of torsion. It also depends crucially on the relative orientation of the genes, enhancing the expression of eukaryotic divergent pairs while reducing that of prokaryotic convergent ones. To test the in vivo influence of the torsional coupling, we analyze the expression of isolated gene pairs in the Drosophila melanogaster genome. Their orientation and distance dependence is fully consistent with the model, suggesting that torsional gene coupling may constitute a widespread mechanism of (co)regulation in eukaryotes. PMID:25188032

  17. The metric on field space, functional renormalization, and metric-torsion quantum gravity

    NASA Astrophysics Data System (ADS)

    Reuter, Martin; Schollmeyer, Gregor M.

    2016-04-01

    Searching for new non-perturbatively renormalizable quantum gravity theories, functional renormalization group (RG) flows are studied on a theory space of action functionals depending on the metric and the torsion tensor, the latter parameterized by three irreducible component fields. A detailed comparison with Quantum Einstein-Cartan Gravity (QECG), Quantum Einstein Gravity (QEG), and "tetrad-only" gravity, all based on different theory spaces, is performed. It is demonstrated that, over a generic theory space, the construction of a functional RG equation (FRGE) for the effective average action requires the specification of a metric on the infinite-dimensional field manifold as an additional input. A modified FRGE is obtained if this metric is scale-dependent, as it happens in the metric-torsion system considered.

  18. DVL Angular Velocity Recorder

    NASA Technical Reports Server (NTRS)

    Liebe, Wolfgang

    1944-01-01

    In many studies, especially of nonstationary flight motion, it is necessary to determine the angular velocities at which the airplane rotates about its various axes. The three-component recorder is designed to serve this purpose. If the angular velocity for one flight attitude is known, other important quantities can be derived from its time rate of change, such as the angular acceleration by differentiations, or - by integration - the angles of position of the airplane - that is, the angles formed by the airplane axes with the axis direction presented at the instant of the beginning of the motion that is to be investigated.

  19. Step-response of a torsional device with multiple discontinuous non-linearities: Formulation of a vibratory experiment

    NASA Astrophysics Data System (ADS)

    Krak, Michael D.; Dreyer, Jason T.; Singh, Rajendra

    2016-03-01

    A vehicle clutch damper is intentionally designed to contain multiple discontinuous non-linearities, such as multi-staged springs, clearances, pre-loads, and multi-staged friction elements. The main purpose of this practical torsional device is to transmit a wide range of torque while isolating torsional vibration between an engine and transmission. Improved understanding of the dynamic behavior of the device could be facilitated by laboratory measurement, and thus a refined vibratory experiment is proposed. The experiment is conceptually described as a single degree of freedom non-linear torsional system that is excited by an external step torque. The single torsional inertia (consisting of a shaft and torsion arm) is coupled to ground through parallel production clutch dampers, which are characterized by quasi-static measurements provided by the manufacturer. Other experimental objectives address physical dimensions, system actuation, flexural modes, instrumentation, and signal processing issues. Typical measurements show that the step response of the device is characterized by three distinct non-linear regimes (double-sided impact, single-sided impact, and no-impact). Each regime is directly related to the non-linear features of the device and can be described by peak angular acceleration values. Predictions of a simplified single degree of freedom non-linear model verify that the experiment performs well and as designed. Accordingly, the benchmark measurements could be utilized to validate non-linear models and simulation codes, as well as characterize dynamic parameters of the device including its dissipative properties.

  20. Mechanical behavior of twinned SiC nanowires under combined tension-torsion and compression-torsion strain

    SciTech Connect

    Li, Zhijie; Wang, Shengjie; Wang, Zhiguo; Zu, Xiaotao T.; Gao, Fei; Weber, William J.

    2010-07-01

    The mechanical behavior of twinned silicon carbide (SiC) nanowires under combined tension-torsion and compression-torsion is investigated using molecular dynamics simulations with an empirical potential. The simulation results show that both the tensile failure stress and buckling stress decrease under combined tension-torsional and combined compression-torsional strain, and they decrease with increasing torsional rate under combined loading. The torsion rate has no effect on the elastic properties of the twinned SiC nanowires. The collapse of the twinned nanowires takes place in a twin stacking fault of the nanowires.

  1. Active structures to reduce torsional vibrations

    NASA Astrophysics Data System (ADS)

    Matthias, M.; Schlote, D.; Atzrodt, H.

    2013-03-01

    This paper describes the development of different active measures to reduce torsional vibrations in power trains. The measures are based on concepts developed for active mounts to reduce the transmission of structure-borne sound. To show the potential of these active measures and investigate their mode of operation to influence torsional vibrations, numerical simulations of powertrains with different active measures were done. First experimental results from tests on an experimental (reduced size) power train were used to align the numerical models. The work was done within the project 'LOEWE-Zentrum AdRIA: Adaptronik - Research, Innovation, Application' funded by the German federal state of Hessen, and the Project AKTos: 'Active control of torsional vibrations by coupling elements' placed in the research Framework program 'Navigation and Maritime Technology for the 21st Century' funded by the German Federal Ministry of Economics and Technology.

  2. Surgical correction of torsion of the penis.

    PubMed

    Azmy, A; Eckstein, H B

    1981-08-01

    Torsion of the penis is a rare anomaly, believed to be due to abnormal skin attachment and not to any structural abnormality of the corpora. The rotation is usually to the left in a counter-clockwise fashion. The urethral meatus is placed in a oblique position and the median raphe makes a spiral curve from the base of the penis towards the meatus. Three boys with congenital torsion of the penis are reported. A corrective operative for this condition is described. Penile torsion was first described by Verneuil in 1857, but in the past no operative correction was recommended, since attempts to move the skin around were believed not to correct the spiral alignment of the corpora cavernosa. PMID:7260553

  3. Torsional elasticity and energetics of F1-ATPase.

    PubMed

    Czub, Jacek; Grubmüller, Helmut

    2011-05-01

    F(o)F(1)-ATPase is a rotary motor protein synthesizing ATP from ADP driven by a cross-membrane proton gradient. The proton flow through the membrane-embedded F(o) generates the rotary torque that drives the rotation of the asymmetric shaft of F(1). Mechanical energy of the rotating shaft is used by the F(1) catalytic subunit to synthesize ATP. It was suggested that elastic power transmission with transient storage of energy in some compliant part of the shaft is required for the observed high turnover rate. We used atomistic simulations to study the spatial distribution and structural determinants of the F(1) torsional elasticity at the molecular level and to comprehensively characterize the elastic properties of F(1)-ATPase. Our fluctuation analysis revealed an unexpected heterogeneity of the F(1) shaft elasticity. Further, we found that the measured overall torsional moduli of the shaft arise from two distinct contributions, the intrinsic elasticity and the effective potential imposed on the shaft by the catalytic subunit. Separation of these two contributions provided a quantitative description of the coupling between the rotor and the catalytic subunit. This description enabled us to propose a minimal quantitative model of the F(1) energetics along the rotary degrees of freedom near the resting state observed in the crystal structures. As opposed to the usually employed models where the motor mechanical progression is described by a single angular variable, our multidimensional treatment incorporates the spatially inhomogeneous nature of the shaft and its interactions with the stator and offers new insight into the mechanoenzymatics of F(1)-ATPase. PMID:21502534

  4. Angular velocity discrimination

    NASA Technical Reports Server (NTRS)

    Kaiser, Mary K.

    1990-01-01

    Three experiments designed to investigate the ability of naive observers to discriminate rotational velocities of two simultaneously viewed objects are described. Rotations are constrained to occur about the x and y axes, resulting in linear two-dimensional image trajectories. The results indicate that observers can discriminate angular velocities with a competence near that for linear velocities. However, perceived angular rate is influenced by structural aspects of the stimuli.

  5. Jet-cooled vibronic spectroscopy and asymmetric torsional potentials of phenylcyclopentene.

    PubMed

    Newby, Josh J; Müller, Christian W; Liu, Ching-Ping; Zwier, Timothy S

    2009-10-01

    The ultraviolet spectroscopy of the S(1) <-- S(0) transition of 1-phenylcyclopentene (PCP) was studied by resonant-two-photon ionization (R2PI), laser-induced fluorescence (LIF) and single vibronic level fluorescence (SVLF). UV-UV hole-burning (UVHB) spectroscopy was used to determine that there is only one spectroscopically distinct conformer in the supersonic expansion. The excitation spectrum shows extensive vibronic structure extending to over 1000 cm(-1) above the electronic origin (34,646 cm(-1)). Much of the vibronic structure is similar to that of styrene and other singly substituted benzene derivatives, with Franck-Condon (FC) activity predominantly in substituent-sensitive benzene modes. Sizeable FC progressions were also found in the inter-ring torsion, reflecting a large displacement in the inter-ring angle upon electronic excitation. No evidence for FC activity in the ring-puckering coordinate is observed. The torsional potentials of the ground and excited states were determined from the experimental transition frequencies by fitting the calculated to the experimental torsional frequency spacings in an automated least-squares fitting procedure. The S(1) torsional potential is a symmetric single-well potential centered around a locally planar equilibrium geometry at a torsional angle of varphi = 0 degrees . The energy levels are reproduced by a cosine term potential function with torsional parameters V(2) = 3765 cm(-1) and V(4) = -183 cm(-1). The S(0) torsional potential possesses a twisted equilibrium geometry that is strongly asymmetric about varphi = 0 degrees due to the non-planarity of the cyclopentene ring. The best-fit potential parameters uses a sin/cos potential function (odd/even), with V = 948 cm(-1), V = -195 cm(-1), V = -162 cm(-1) and V = -268 cm(-1). The shape of the potentials are similar to those predicted by relaxed potential energy scans calculated at the DFT, CIS and TDDFT//CIS levels of theory. The change in the torsional angle varphi upon electronic excitation was determined to be approximately 15 degrees from fits of the displacement delta of the S(0) torsional potential with respect to the S(1) potential. The simulated shift of the S(0) potential with respect to the S(1) potential of approximately 15 degrees is in very good agreement with that obtained from B3LYP calculations. PMID:19756289

  6. Primary omental torsion: A case report

    PubMed Central

    Scabini, Stefano; Rimini, Edoardo; Massobrio, Andrea; Romairone, Emanuele; Linari, Chiara; Scordamaglia, Renato; Marini, Luisito De; Ferrando, Valter

    2011-01-01

    A patient presented with an acute abdomen at the Emergency Department. The patient, a 69-year-old man, was admitted and underwent surgery with a provisional diagnosis of acute appendicitis. During surgery, omental torsion was diagnosed and the involved omentum was removed. The patient had no previous surgical history. Omental torsion is a rare cause of acute abdomen in children and adults who may present with various signs and symptoms; a preoperative diagnosis may therefore be difficult and can usually only be established during surgery. PMID:22110847

  7. Thermal Hall effect and geometry with torsion.

    PubMed

    Gromov, Andrey; Abanov, Alexander G

    2015-01-01

    We formulate a geometric framework that allows us to study momentum and energy transport in nonrelativistic systems. It amounts to a coupling of the nonrelativistic system to the Newton-Cartan (NC) geometry with torsion. The approach generalizes the classic Luttinger's formulation of thermal transport. In particular, we clarify the geometric meaning of the fields conjugated to energy and energy current. These fields describe the geometric background with nonvanishing temporal torsion. We use the developed formalism to construct the equilibrium partition function of a nonrelativistic system coupled to the NC geometry in 2+1 dimensions and to derive various thermodynamic relations. PMID:25615492

  8. Cracked shells under skew-symmetric loading. [Reissner theory

    NASA Technical Reports Server (NTRS)

    Delale, F.

    1981-01-01

    The general problem of a shell containing a through crack in one of the principal planes of curvature and under general skew-symmetric loading is considered. By employing a Reissner type shell theory which takes into account the effect of transverse shear strains, all boundary conditions on the crack surfaces are satisfied separately. Consequently, unlike those obtained from the classical shell theory, the angular distributions of the stress components around the crack tips are shown to be identical to the distributions obtained from the plane and anti-plane elasticity solutions. Results are given for axially and circumferentially cracked cylindrical shells, spherical shells, and toroidal shells under uniform in-plane shearing, out of plane shearing, and torsion. The problem is formulated for specially orthostropic materials, therefore, the effect of orthotropy on the results is also studied.

  9. Angular orientation of nanorods using nanophotonic tweezers.

    PubMed

    Kang, Pilgyu; Serey, Xavier; Chen, Yih-Fan; Erickson, David

    2012-12-12

    Near-field optical techniques have enabled the trapping, transport, and handling of nanoscopic materials much smaller than what can be manipulated with traditional optical tweezers. Here we extend the scope of what is possible by demonstrating angular orientation and rotational control of both biological and nonbiological nanoscale rods using photonic crystal nanotweezers. In our experiments, single microtubules (diameter 25 nm, length 8 ?m) and multiwalled carbon nanotubes (outer diameter 110-170 nm, length 5 ?m) are rotated by the optical torque resulting from their interaction with the evanescent field emanating from these devices. An angular trap stiffness of ? = 92.8 pNnm/rad(2)mW is demonstrated for the microtubules, and a torsional spring constant of 22.8 pNnm/rad(2)mW is measured for the nanotubes. We expect that this new capability will facilitate the development of high precision nanoassembly schemes and biophysical studies of bending strains of biomolecules. PMID:23145817

  10. Cosmological and astrophysical consequences from the magnetic dynamo equation in torsioned spacetime and teleparallel gravity

    NASA Astrophysics Data System (ADS)

    de Andrade, L. C. G.

    2016-01-01

    A generalized dynamo equation in the first order torsion Garcia de Andrade L C (2012 Phys. Lett. B 711 143) has previously been derived. From this equation it is shown that for the 10 kpc scale, torsion gravity is not able to help seed galactic dynamos since the dynamo time is not long enough to take into account structure formation. In this paper, the dynamo equation is extended to second-order torsion terms—but unfortunately, the situation is even worse and the torsion does not seem to help dynamo efficiency. Nevertheless, in the intergalactic magnetic field scale of 1 mpc, the efficiency of the self-induction equation with torsion changes, and even in the first-order torsion case, one obtains large-scale magnetic fields with 109 yr dynamo efficiency. Dynamo efficiency in the case of interstellar matter (ISM) reaches a diffusion time of 1013 yr. This seems to be in contrast with a recent investigation by Bamba et al (2012 J. Cosmol. Astropart. Phys. JCAP05(2010)08) where they obtained, from another type of torsion theory called teleparallelism (A Einstein, Math Annalen (1922)), a large scale intergalactic magnetic field of 10-9 G. If this is not a model-dependent result, there is an apparent contradiction that has to be addressed. It is shown that for dynamo efficiency in astrophysical flow without shear, a strong seed field of 10-11 G is obtained, which is suitable for seeding galactic dynamos. As an example of a non-parity-violating dynamo equation, a magnetic field of the order of 10-27G is obtained as a seed field for the galactic dynamo from the theory of Einstein’s unified teleparallelism. This shows that in certain gravity models, torsion is able to enhance cosmological magnetic fields in view of obtaining better dynamo efficiency. To better compare our work with Bamba et al (2012 J. Cosmol. Astropart. Phys. JCAP05(2010)08), we consider the slow decay of magnetic fields in the teleparallel model. This observation is due to an anonymous referee who found this mistake in the first draft of the paper.

  11. Matter-antimatter asymmetry and dark matter from torsion

    SciTech Connect

    Poplawski, Nikodem J.

    2011-04-15

    We propose a simple scenario which explains the observed matter-antimatter imbalance and the origin of dark matter in the Universe. We use the Einstein-Cartan-Sciama-Kibble theory of gravity which naturally extends general relativity to include the intrinsic spin of matter. Spacetime torsion produced by spin generates, in the classical Dirac equation, the Hehl-Datta term which is cubic in spinor fields. We show that under a charge-conjugation transformation this term changes sign relative to the mass term. A classical Dirac spinor and its charge conjugate therefore satisfy different field equations. Fermions in the presence of torsion have higher energy levels than antifermions, which leads to their decay asymmetry. Such a difference is significant only at extremely high densities that existed in the very early Universe. We propose that this difference caused a mechanism, according to which heavy fermions existing in such a Universe and carrying the baryon number decayed mostly to normal matter, whereas their antiparticles decayed mostly to hidden antimatter which forms dark matter. The conserved total baryon number of the Universe remained zero.

  12. Length of day decade variations, torsional oscillations and inner core superrotation: evidence from recovered core surface zonal flows

    NASA Astrophysics Data System (ADS)

    Pais, A.; Hulot, G.

    2000-03-01

    We consider the core surface flow derived from geomagnetic models [Bloxham, J., Jackson, A., 1992. Time-dependent mapping of the magnetic field at the core-mantle boundary. J. Geophys. Res. 97, 19537-19563.] under the frozen flux and tangentially geostrophic assumptions, and focus on the significance of its toroidal zonal component. This component represents a small fraction of the whole flow, but is believed to contain important information concerning core dynamics and the way the liquid core interacts with both the mantle and the inner core. We consider the 150-year period 1840-1990 for which the best data is available. Our results show that with the current methodology and data, recovered core surface zonal flows can successfully be used to address three issues in core dynamics, provided that one properly takes data and methodology uncertainties into account. The first issue deals with the possibility of testing the theory of Jault et al. [Jault, D., Gire, C., Le Mouël, J.-L., 1988. Westward drift, core motions and exchanges of angular momentum between core and mantle. Nature 333, 353-356.] which predicts a relationship between core surface zonal flows and length of day (LOD) variations on decade time scales. We recover the known fact that this theory leads to a successful prediction of LOD variations after 1920 and not early on, and show that this failure can entirely be attributed to the (partly correlated) uncertainties affecting the t10 and t30 flow components required to carry on the prediction. The second issue deals with the possibility of detecting torsional oscillations of the kind that Braginsky [Braginsky, S.I., 1970. Torsional magnetohydrodynamics vibrations in the Earth's core and variations in day length. Geomagn. Aeron. 10, 3-12 (Eng. transl. 1-8).] predicted should occur in the core on decade time scales. We show that the large scale component of the relevant equatorial symmetric zonal flow ( t10, t30, t50 and very marginally t70) displays significant time variations that can be attributed to such oscillations. But uncertainties affecting these coefficients are quite large and should therefore be taken into account. The third and final issue deals with the possibility of identifying a surface signature of the inner core superrotation that some seismologists claim to have detected and that is predicted by most dynamo numerical simulations. We show that the average zonal flow recovered over the 1840-1990 period displays a strong westward rotation (at 0.3-1°/yr) within the inner core tangent cylinder, which can possibly be interpreted as the surfacic counterpart of an opposite eastward inner core superrotation.

  13. On some features of possible torsion effects on observables at Hadron colliders

    NASA Astrophysics Data System (ADS)

    Syromyatnikov, A. G.

    2015-08-01

    I give a geometrical description of conformal gauge gravitational theory (CGTG) from the viewpoint of symmetries and affine structure. In the frames of the CGTG incorporating gravitation with torsion space-time into Standard Model of electro-weak interaction (EWI) the multi-muon events produced at the Fermilab Tevatron collider were studied. The CGTG gives the value of the torsion pseudotrace-spinor (muon) universal coupling fT = 4.388 ṡ 10-17 GF, and with limits from known experiments — torsion mass mT = 0.4700 ṡ 10-7 eV or mT = 0.445 ṡ 10-15 muon mass. So the value of the constant of effective four-fermions interaction fT/mT = 0.988, indeed may lead to multi-muon events production. The model of interaction of quantum oscillator with the tensor potential Wμν of traceless part of the torsion lead to 2 cm displacement of quark-lepton system as a whole in the magnetic field of collider in accordance with a significant sample of events related to b\\bar {b} production and decay in which at least one of the muon candidates is produced outside of the beam pipe of radius 1.5 cm. A traceless part of the torsion in CGTG does not vanish in the Newtonian limit of nonzero mass. Torsion gravity potential Wμν gives conservation of a special conformal current and may be produced in the condition of a spontaneous breaking of gauge symmetry where the gravitation mass MX defect is 1-3 Tev ṡ c-2 or 10-13MX. This effect may be possible at known effects on top pair asymmetries at the Tevatron and LHC and takes place as the known energy dissipation above 3 TeV of the Galaxy gamma-ray and neutrino spectrum from two bubbles outside the Galaxy plane.

  14. TORSION ANALYSIS OF FRESH AND AGED CHEESES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Torsion gelometry is a fundamental rheological test that can be performed on cheese to provide values of shear stress and shear strain. Six cheese varieties encompassing a wide compositional and age range were analyzed fresh and after aging to determine correlations between casein proteolysis produ...

  15. A genetic study of torsion dystonia.

    PubMed Central

    Bundey, S; Harrison, M J; Marsden, C D

    1975-01-01

    A family study of 32 patients with torsion dystonia has shown at least two forms of generalized dystonia with onset in childhood. These two forms, an autosomal dominant and an autosomal recessive, are clinically indistinguishable. There were at least three families and probably about six to eight patients with the autosomal recessive variety. The remaining nine to 11 patients with generalized childhood dystonia are thought, because of a probable paternal age effect, to be examples of new dominant mutations. Since fitness with childhood onset is 1/20 of normal, most childhood dominant cases appear sporadically. Most of the other 15 patients (12 with onset in adult life) appear to have a non-genetic torsion dystonia, although an example of a benign adult-onset dominant form associated with a tremor has been observed. It is concluded that there are at least two forms of genetic torsion dystonia, an autosomal recessive form with onset in childhood, which, on evidence from America, is particularly common in Ashkenazi Jews, and one or more dominant forms, with onset in childhood or adult life. The majority of adult-onset isolated cases of idiopathic torsion dystonia seem to be due to exogenous but unidentified causes. PMID:1121020

  16. Adnexal torsion: review of the literature.

    PubMed

    Sasaki, Kirsten J; Miller, Charles E

    2014-01-01

    Adnexal torsion is one of a few gynecologic surgical emergencies. Misdiagnosis or delay in treatment can have permanent sequelae including loss of an ovary with effect on future fertility, peritonitis, and even death. A PubMed search was performed between 1985 and 2012 for reviews, comparative studies, and case reports to provide a review of the epidemiology, risk factors, clinical presentation, common laboratory and imaging findings, and treatments of adnexal torsion. Common symptoms of torsion include pain, nausea, and vomiting, with associated abdominal or pelvic tenderness, and may differ in premenarchal and pregnant patients. Laboratory and imaging findings including ultrasound with Doppler analysis, computed tomography, and magnetic resonance imaging can assist in making the diagnosis but should not trump clinical judgment; normal Doppler flow can be observed in up to 60% of adnexal torsion cases. Treatment depends on the individual patient but commonly includes detorsion, even if the adnexae initially seem necrotic, with removal of any associated cysts or salpingo-oophorectomy, because recurrence rates are higher with detorsion alone or detorsion with only cyst aspiration. PMID:24126258

  17. Evidence for the distribution of angular velocity inside the sun and stars

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A round table discussion of problems of solar and stellar spindown and theory is presented. Observational evidence of the angular momentum of the solar wind is included, emphasizing the distribution of angular velocity inside the sun and stars.

  18. Fluidic angular velocity sensor

    NASA Technical Reports Server (NTRS)

    Berdahl, C. M. (inventor)

    1986-01-01

    A fluidic sensor providing a differential pressure signal proportional to the angular velocity of a rotary input is described. In one embodiment the sensor includes a fluid pump having an impeller coupled to a rotary input. A housing forming a constricting fluid flow chamber is connected to the fluid input of the pump. The housing is provided with a fluid flow restrictive input to the flow chamber and a port communicating with the interior of the flow chamber. The differential pressure signal measured across the flow restrictive input is relatively noise free and proportional to the square of the angular velocity of the impeller. In an alternative embodiment, the flow chamber has a generally cylindrical configuration and plates having flow restrictive apertures are disposed within the chamber downstream from the housing port. In this embodiment, the differential pressure signal is found to be approximately linear with the angular velocity of the impeller.

  19. Torsion of a Large Appendix Testis Misdiagnosed as Pyocele

    PubMed Central

    Meher, Susanta; Rath, Satyajit; Sharma, Rakesh; Sasmal, Prakash Kumar; Mishra, Tushar Subhadarshan

    2015-01-01

    Torsion of the appendix testis is not an uncommon cause of acute hemiscrotum. It is frequently misdiagnosed as acute epididymitis, orchitis, or torsion of testis. Though conservative management is the treatment of choice for this condition, prompt surgical intervention is warranted when testicular torsion is suspected. We report a case of torsion of a large appendix testis misdiagnosed as pyocele. Emergency exploration of it revealed a large appendix testis with torsion and early features of gangrene. After excision of the appendix testis, the wound was closed with an open drain. The patient had an uneventful and smooth postoperative recovery. PMID:25861514

  20. Angular Scaling In Jets

    SciTech Connect

    Jankowiak, Martin; Larkoski, Andrew J.; /SLAC

    2012-02-17

    We introduce a jet shape observable defined for an ensemble of jets in terms of two-particle angular correlations and a resolution parameter R. This quantity is infrared and collinear safe and can be interpreted as a scaling exponent for the angular distribution of mass inside the jet. For small R it is close to the value 2 as a consequence of the approximately scale invariant QCD dynamics. For large R it is sensitive to non-perturbative effects. We describe the use of this correlation function for tests of QCD, for studying underlying event and pile-up effects, and for tuning Monte Carlo event generators.

  1. Angular shear plate

    DOEpatents

    Ruda, Mitchell C. (Tucson, AZ); Greynolds, Alan W. (Tucson, AZ); Stuhlinger, Tilman W. (Tucson, AZ)

    2009-07-14

    One or more disc-shaped angular shear plates each include a region thereon having a thickness that varies with a nonlinear function. For the case of two such shear plates, they are positioned in a facing relationship and rotated relative to each other. Light passing through the variable thickness regions in the angular plates is refracted. By properly timing the relative rotation of the plates and by the use of an appropriate polynomial function for the thickness of the shear plate, light passing therethrough can be focused at variable positions.

  2. Design and analysis of a torsion braid pendulum displacement transducer

    NASA Technical Reports Server (NTRS)

    Rind, E.; Bryant, E. L.

    1981-01-01

    The dynamic properties at various temperatures of braids impregnated with polymer can be measured by using the braid as the suspension of a torsion pendulum. This report describes the electronic and mechanical design of a torsional braid pendulum displacement transducer which is an advance in the state of the art. The transducer uses a unique optical design consisting of refracting quartz windows used in conjunction with a differential photocell to produce a null signal. The release mechanism for initiating free torsional oscillation of the pendulum has also been improved. Analysis of the precision and accuracy of the transducer indicated that the maximum relative error in measuring torsional amplitude was approximately 0. A serious problem inherent in all instruments which use a torsional suspension was analyzed: misalignment of the physical and torsional axes of the torsional member which results in modulation of the amplitude of the free oscillation.

  3. Development of a second generation torsion balance based on a spherical superconducting suspension

    NASA Astrophysics Data System (ADS)

    Hammond, Giles D.; Speake, Clive C.; Matthews, Anthony J.; Rocco, Emanuele; Peña-Arellano, Fabian

    2008-02-01

    This paper describes the development of a second generation superconducting torsion balance to be used for a precision measurement of the Casimir force and a short range test of the inverse square law of gravity at 4.2K. The instrument utilizes niobium (Nb) as the superconducting element and employs passive damping of the parasitic modes of oscillation. Any contact potential difference between the torsion balance and its surroundings is nulled to within ≈50mV by applying known DC biases and fitting the resulting parabolic relationship between the measured torque and the applied voltage. A digital proportional-integral-derivative servo system has been developed and characterized in order to control the azimuthal position of the instrument. The angular acceleration and displacement noise are currently limited by the capacitive sensor at the level 3×10-8rads-2/√Hz and 30nm/√Hz at 100mHz. The possibility of lossy dielectric coatings on the surface of the torsion balance test masses is also investigated. Our measurements show that the loss angles δ are (1.5±2.3)×10-4 and (2.0±2.2)×10-4 at frequencies of 5 and 10mHz, respectively. These values of loss are not significant sources of error for measurements of the Casimir force using this experimental setup.

  4. Development of a second generation torsion balance based on a spherical superconducting suspension.

    PubMed

    Hammond, Giles D; Speake, Clive C; Matthews, Anthony J; Rocco, Emanuele; Peña-Arellano, Fabian

    2008-02-01

    This paper describes the development of a second generation superconducting torsion balance to be used for a precision measurement of the Casimir force and a short range test of the inverse square law of gravity at 4.2 K. The instrument utilizes niobium (Nb) as the superconducting element and employs passive damping of the parasitic modes of oscillation. Any contact potential difference between the torsion balance and its surroundings is nulled to within approximately 50 mV by applying known DC biases and fitting the resulting parabolic relationship between the measured torque and the applied voltage. A digital proportional-integral-derivative servo system has been developed and characterized in order to control the azimuthal position of the instrument. The angular acceleration and displacement noise are currently limited by the capacitive sensor at the level 3x10(-8) rad s(-2)/ squarerootHz and 30 nm/ squarerootHz at 100 mHz. The possibility of lossy dielectric coatings on the surface of the torsion balance test masses is also investigated. Our measurements show that the loss angles delta are (1.5+/-2.3)x10(-4) and (2.0+/-2.2)x10(-4) at frequencies of 5 and 10 mHz, respectively. These values of loss are not significant sources of error for measurements of the Casimir force using this experimental setup. PMID:18315325

  5. Sudden lateral asymmetry and torsional oscillations of section models of suspension bridges

    NASA Astrophysics Data System (ADS)

    Plaut, R. H.; Davis, F. M.

    2007-11-01

    Cable-supported bridges typically exhibit minimal torsional motion under traffic and wind loads. If symmetry of the bridge about the deck's centerline is suddenly lost, such as by the failure of one or more cables or hangers (suspenders), torsional motion of the deck may grow and angles of twist may become large. The initiation of the disastrous torsional oscillations of the original Tacoma Narrows Bridge involved a sudden lateral asymmetry due to loosening of a cable band at midspan. The effects of these types of events on two-degree-of-freedom and four-degree-of-freedom section models of suspension bridges are analyzed. Vertical and rotational motions of the deck, along with vertical motions of the cables, are considered. A harmonic vertical force and an aerodynamic moment proportional to angular velocity are applied to the deck. Resistance is provided by translational and rotational springs and dashpots. Flutter instability and large oscillations occur under the aerodynamic moment, which provides "negative damping." In order to model the occurrence of limit cycles, nonlinear damping of the van der Pol type is included in one case, and nonlinear stiffness of the hangers in others. The frequencies of the limit cycles are compared to the natural frequencies of the system.

  6. Direct measurements of kinesin torsional properties reveal flexible domains and occasional stalk reversals during stepping

    PubMed Central

    Gutiérrez-Medina, Braulio; Fehr, Adrian N.; Block, Steven M.

    2009-01-01

    Kinesin is a homodimeric motor with two catalytic heads joined to a stalk via short neck linkers (NLs). We measured the torsional properties of single recombinant molecules by tracking the thermal angular motions of fluorescently labeled beads bound to the C terminus of the stalk. When kinesin heads were immobilized on microtubules (MTs) under varied nucleotide conditions, we observed bounded or unbounded angular diffusion, depending on whether one or both heads were attached to the MT. Free rotation implies that NLs act as swivels. From data on constrained diffusion, we conclude that the coiled-coil stalk domains are ≈30-fold stiffer than its flexible “hinge” regions. Surprisingly, while tracking processive kinesin motion at low ATP concentrations, we observed occasional abrupt reversals in the directional orientations of the stalk. Our results impose constraints on kinesin walking models and suggest a role for rotational freedom in cargo transport. PMID:19805111

  7. Angular momentum in spin-phonon processes

    NASA Astrophysics Data System (ADS)

    Garanin, D. A.; Chudnovsky, E. M.

    2015-07-01

    Quantum theory of spin relaxation in the elastic environment is revised with account of the concept of a phonon spin recently introduced by Zhang and Niu [L. Zhang and Q. Niu, Phys. Rev. Lett. 112, 085503 (2014), 10.1103/PhysRevLett.112.085503]. Similar to the case of the electromagnetic field, the division of the angular momentum associated with elastic deformations into the orbital part and the part due to phonon spins proves to be useful for the analysis of the balance of the angular momentum. Such analysis sheds important light on microscopic processes leading to the Einstein-de Haas effect.

  8. Laser-Based Measurement Of Torsional Vibration

    NASA Astrophysics Data System (ADS)

    Eastwood, P. G.; Halliwell, N. A.

    1986-07-01

    Investigations of the torsional vibration characteristics of shaft systems which transmit pulsating torques are an important part of a machinery designer's responsibility. Satisfactory operation of such systems depends to a large extent on successful treatment of this vibration problem, since incorrectly or insufficiently controlled torsional oscillations can lead to fatigue failure, rapid bearing wear, gear hammer etc. The problem is particularly severe in engine crankshaft design where numerous failures have been traced to abnormal vibration at "critical" speeds. Traditionally, the monitoring of torsional oscillation has been performed using strain gauges, slip rings and a variety of mechanical and electrical "torsiographs". More recently systems employing slotted discs or toothed wheels together with proximity transducers have been preferred, but a disadvantage arises from all these methods in that they require contact with the rotating component which necessitates "downtime" for transducer attachment. Moreover, physical access to the rotating surface is often restricted thus making the use of such methods impractical. The "cross-beam" laser velocimeter provides a means of measuring torsional vibration by a non-contact method, thus effectively overcoming the disadvantages of previous measurement systems. This well established laser-based instrument provides a time-resolved voltage analogue of shaft tangential surface velocity and laboratory and field tests have shown it to be both accurate and reliable. The versatility of this instrument, however, is restricted by the need for accurate positioning, since the velocimeter must be arranged so that the rotating surface always traverses the beam intersection region, which is typically only a fraction of a millimetre in length. As a consequence use is restricted to components of circular cross section. This paper compares and contrasts the "cross-beam" system with a new laser instrument, the laser torsional vibrometer. The optical geometry employed in this new instrument offers a means of producing a hand held laser tool which the operator can simply "point" at the rotating surface of interest. Other important advantages include Insensitivity to operator or shaft radial movement and the ability to measure torsional oscillations of any rotating component of arbitrary cross-section.

  9. Torsional oscillations of a sphere in a Stokes flow

    NASA Astrophysics Data System (ADS)

    Box, F.; Thompson, A. B.; Mullin, T.

    2015-12-01

    The results of an experimental investigation into a sphere performing torsional oscillations in a Stokes flow are presented. A novel experimental set-up was developed, which enabled the motion of the sphere to be remotely controlled through application of an oscillatory magnetic field. The response of the sphere to the applied field was characterised in terms of the viscous, magnetic and gravitational torques acting on the sphere. A mathematical model of the system was developed, and good agreement was found between experimental, numerical and theoretical results. The flow resulting from the motion of the sphere was measured, and the fluid velocity was found to have an inverse square dependence on radial distance from the sphere. The good agreement between measurements and the analytical solutions for both fluid velocity and angular displacement of the sphere indicates that the flow may be considered Stokesian, thus providing an excellent basis for experimental and theoretical characterisation of hydrodynamic interactions between multiple oscillating spheres at low Reynolds number.

  10. Torsional Pendulum Studies of HELIUM-4 in Nanopores

    NASA Astrophysics Data System (ADS)

    Miyamoto, Satoru

    In this dissertation, experimental results are presented on the torsion pendulum studies of ^4 He adsorbed in chabazite, whose pore is 13 A in diameter, and in silica with 25 A diameter pores. The objective of this work was to search for superfluidity in extremely confined ^4He. A novel technique for dehydrating chabazite crystals has been developed for this work. As we found out, chabazite crystals of millimeter sizes cannot be dehydrated simply by heating them in vacuum as commonly done for zeolite powders, since the heating results in pulverization of the crystals. To dehydrate the crystals without damage, a high pressure dehydration technique has been developed. In this method, chabazite crystals are heated in a high pressure helium atomosphere at pressures over 10,000 psi in a furnace attached to a sorption pump filled with activated charcoal. The pump removes water selectively under high pressure. Using a crystal prepared with this method, the experiment down to 100 mK found no superfluidity in ^4He adsorbed in chabazite crystal with the torsion pendulum technique. In porous silica, superfluid transition was observed with the transition temperature ranging from 0.12 K to 0.82 K depending on the ^4He coverage. Near the full pore coverage, the temperature dependence of the superfluid density was found to arise entirely from the phonon excitation, with no evidence for other mechanisms such as vortex-pair unbinding. The superfluid density for lower ^4He coverages are compared with the Kosterlitz-Thouless theory adopted by Kotsubo and Williams for a small sphere. The fitting parameters obtained from the comparison are examined to address the applicability of the Kosterlitz-Thouless theory to ^4He films in extreme confinement.

  11. Modeling and analysis of a cracked composite cantilever beam vibrating in coupled bending and torsion

    NASA Astrophysics Data System (ADS)

    Wang, Kaihong; Inman, Daniel J.; Farrar, Charles R.

    2005-06-01

    The coupled bending and torsional vibration of a fiber-reinforced composite cantilever with an edge surface crack is investigated. The model is based on linear fracture mechanics, the Castigliano theorem and classical lamination theory. The crack is modeled with a local flexibility matrix such that the cantilever beam is replaced with two intact beams with the crack as the additional boundary condition. The coupling of bending and torsion can result from either the material properties or the surface crack. For the unidirectional fiber-reinforced composite, analysis indicates that changes in natural frequencies and the corresponding mode shapes depend on not only the crack location and ratio, but also the material properties (fiber orientation, fiber volume fraction). The frequency spectrum along with changes in mode shapes may help detect a possible surface crack (location and magnitude) of the composite structure, such as a high aspect ratio aircraft wing. The coupling of bending and torsion due to a surface crack may serve as a damage prognosis tool of a composite wing that is initially designed with bending and torsion decoupled by noting the effect of the crack on the flutter speed of the aircraft.

  12. Benchmark Torsional Potentials of Building Blocks for Conjugated Materials: Bifuran, Bithiophene, and Biselenophene.

    PubMed

    Bloom, Jacob W G; Wheeler, Steven E

    2014-09-01

    The utility of π-conjugated oligomers and polymers continues to grow, and oligofurans, oligothiophenes, and oligoselenophenes have shown great promise in the context of organic electronic materials. Vital to the performance of these materials is the maintenance of planarity along the conjugated backbone. Consequently, there has been a great deal of work modeling the torsional behavior of these prototypical components of conjugated organic materials both in the gas and condensed phases. Such simulations generally rely on classical molecular mechanics force fields or density functional theory (DFT) potentials. Unfortunately, there is a lack of benchmark quality, converged ab initio torsional potentials for bifuran, bithiophene, and biselenophene against which these lower level theoretical methods can be calibrated. To remedy this absence, we present highly accurate torsional potentials for these three molecules based on focal point analyses. These potentials will enable the benchmarking and parametrization of DFT functionals and classical molecular mechanics force fields. Here, we provide an initial assessment of the performance of common DFT functional and basis set combinations, to identify methods that provide robust descriptions of the torsional behavior of these prototypical building blocks for conjugated systems. PMID:26588510

  13. Approximate Torsional Analysis of Multi-layered Tubes with Non-circular Cross-Sections

    NASA Astrophysics Data System (ADS)

    Gholami Bazehhour, Benyamin; Rezaeepazhand, Jalil

    2011-12-01

    In this paper an approximate formulation for torsional analysis of tubes with multi-layered non-circular cross-sections is presented. A previously presented method based on Bredt's theory is extended to achieve these formulas. Layers are assumed to be isotropic and may possess different thicknesses and material properties. The obtained formulas for shear stress and angle of twist are applicable to thin to moderately thick closed cross-sections. It is shown that depending on the properties of the layers, maximum shear stress does not necessarily happen on the outer boundary. Furthermore, the effect of different cross-sectional shapes on torsional response is studied. Using the presented method, one can achieve desirable shear stresses and angles of twist for a polygonal multi-layered tube with a proper choice of bluntness. The method can be extended for torsion problem of FGM tubes as well. The presented formulas for torsion problem are relatively accurate and suitable to be implemented in optimization programs.

  14. Cosmology in Poincaré gauge gravity with a pseudoscalar torsion

    NASA Astrophysics Data System (ADS)

    Lu, Jianbo; Chee, Guoying

    2016-05-01

    A cosmology of Poincar é gauge theory is developed, where several properties of universe corresponding to the cosmological equations with the pseudoscalar torsion function are investigated. The cosmological constant is found to be the intrinsic torsion and curvature of the vacuum universe and is derived from the theory naturally rather than added artificially, i.e. the dark energy originates from geometry and includes the cosmological constant but differs from it. The cosmological constant puzzle, the coincidence and fine tuning problem are relieved naturally at the same time. By solving the cosmological equations, the analytic cosmological solution is obtained and can be compared with the ΛCDM model. In addition, the expressions of density parameters of the matter and the geometric dark energy are derived, and it is shown that the evolution of state equations for the geometric dark energy agrees with the current observational data. At last, the full equations of linear cosmological perturbations and the solutions are obtained.

  15. Torsion and transverse bending of cantilever plates

    NASA Technical Reports Server (NTRS)

    Reissner, Eric; Stein, Manuel

    1951-01-01

    The problem of combined bending and torsion of cantilever plates of variable thickness, such as might be considered for solid thin high-speed airplane or missile wings, is considered in this paper. The deflections of the plate are assumed to vary linearly across the chord; minimization of the potential energy by means of the calculus of variations then leads to two ordinary linear differential equations for the bending deflections and the twist of the plate. Because the cantilever is analyzed as a plate rather than as a beam, the effect of constraint against axial warping in torsion is inherently included. The application of this method to specific problems involving static deflection, vibration, and buckling of cantilever plates is presented. In the static-deflection problems, taper and sweep are considered.

  16. Chronic splenic torsion in two dogs.

    PubMed

    Reinhart, Jennifer M; Sherwood, J Matthew; KuKanich, Katherine S; Klocke, Emily; Biller, David S

    2015-01-01

    A 5 yr old spayed female poodle (case 1) was presented with a 4 mo history of lethargy, inappetence, and nonregenerative anemia. A 5 yr old castrated male French bulldog (case 2) was presented with a 2 wk history of mild abdominal pain, dyschezia, and intermittent anorexia. Both dogs were diagnosed with chronic splenic torsion based on changes in splenic position, echogenicity, and/or echotexture identified on B-mode abdominal ultrasonography, as well as either decreased or absent splenic blood flow on color-flow Doppler ultrasonography. Both dogs underwent splenectomy and had full resolution of clinical signs. Presentation of chronic splenic torsion is variable, and clinical signs can be nonspecific. Abdominal ultrasound with Doppler evaluation is an important diagnostic step that can lead to appropriate surgical intervention and good long-term prognosis. PMID:25955145

  17. Axial and torsional fatigue behavior of Waspaloy

    NASA Technical Reports Server (NTRS)

    Zamrik, S.; Mirdamadi, M.; Zahiri, F.

    1986-01-01

    The cyclic flow response and crack growth behavior of Waspaloy at room temperature and 650 C under tensile loading and torsional loading was studied, for two conditions of Waspaloy: fine grain, large gamma prime size; coarse grain, small gamma prime size. The fine grain material showed 5 to 10 percent hardening after about 10 percent of life, with sequent softening to failure at both themperature levels. The coarse grain material showed either stable response or monotonic softening to failure. Early crack initiation was observed on planes of maximum shear, with eventual branching to principle planes under torsional loading; cracks were always normal to load axis under tensile loading. Also, crack paths were intergranular at 650 C, mostly transgranular at room temperature.

  18. Torsional Tribological Behavior and Torsional Friction Model of Polytetrafluoroethylene against 1045 Steel.

    PubMed

    Wang, Shibo; Niu, Chengchao

    2016-01-01

    In this work, the plane-on-plane torsional fretting tribological behavior of polytetrafluoroethylene (PTFE) was studied. A model of a rigid, flat-ended punch acting on an elastic half-space was built according to the experimental conditions. The results indicate that the shape of T-θ curves was influenced by both the torsional angle and the normal load. The torsion friction torque and wear rate of PTFE exponentially decreased when the torsion angle rose. The torsional torque increased from 0.025 N·m under a normal load of 43 N to 0.082 N·m under a normal load of 123 N. With sequentially increasing normal load, the value of torque was maintained. With rising normal load, the wear mass loss of PTFE disks was increased and the wear rate was decreased. Good agreement was found with the calculated torque according to the model and the experimental torque except for that under a normal load of 163 N. The difference under a normal load of 163 N was caused by the coefficient of friction. Usually the coefficient of friction of a polymer decreases with increasing normal load, whereas a constant coefficient of friction was applied in the model. PMID:26799324

  19. Torsional Tribological Behavior and Torsional Friction Model of Polytetrafluoroethylene against 1045 Steel

    PubMed Central

    Wang, Shibo; Niu, Chengchao

    2016-01-01

    In this work, the plane-on-plane torsional fretting tribological behavior of polytetrafluoroethylene (PTFE) was studied. A model of a rigid, flat-ended punch acting on an elastic half-space was built according to the experimental conditions. The results indicate that the shape of T–θ curves was influenced by both the torsional angle and the normal load. The torsion friction torque and wear rate of PTFE exponentially decreased when the torsion angle rose. The torsional torque increased from 0.025 N·m under a normal load of 43 N to 0.082 N·m under a normal load of 123 N. With sequentially increasing normal load, the value of torque was maintained. With rising normal load, the wear mass loss of PTFE disks was increased and the wear rate was decreased. Good agreement was found with the calculated torque according to the model and the experimental torque except for that under a normal load of 163 N. The difference under a normal load of 163 N was caused by the coefficient of friction. Usually the coefficient of friction of a polymer decreases with increasing normal load, whereas a constant coefficient of friction was applied in the model. PMID:26799324

  20. Fluid driven torsional dipole seismic source

    DOEpatents

    Hardee, Harry C.

    1991-01-01

    A compressible fluid powered oscillating downhole seismic source device capable of periodically generating uncontaminated horizontally-propagated, shear waves is provided. A compressible fluid generated oscillation is created within the device which imparts an oscillation to a housing when the device is installed in a housing such as the cylinder off an existing downhole tool, thereby a torsional seismic source is established. Horizontal waves are transferred to the surrounding bore hole medium through downhole clamping.

  1. Analytic Model for the Rototranslational Torsion Pendulum

    NASA Astrophysics Data System (ADS)

    De Marchi, F.; Bassan, M.; Pucacco, G.; Marconi, L.; Stanga, R.; Visco, M.

    2013-01-01

    We develop an analytic model to describe the motion of the RotoTranslational Torsion Pendulum PETER in a wide range of frequencies (from 1mHz up to 10-15Hz). We also try to explain some unexpected features we found in the data with only 1 soft degree of freedom and we estimate values for the misalignment angles and other parameters of the model.

  2. Torsional Oscillations of Nonbare Strange Stars

    NASA Astrophysics Data System (ADS)

    Mannarelli, Massimo; Pagliaroli, Giulia; Parisi, Alessandro; Pilo, Luigi; Tonelli, Francesco

    2015-12-01

    Strange stars are one of the possible compact stellar objects that can form after a supernova collapse. We consider a model of a strange star having an inner core in the color-flavor locked phase surmounted by a crystalline color superconducting (CCSC) layer. These two phases constitute the quarksphere, which we assume to be the largest and heaviest part of the strange star. The next layer consists of standard nuclear matter forming an ionic crust, hovering on the top of the quarksphere and prevented from falling by a strong dipolar electric field. The dipolar electric field arises because quark matter is confined in the quarksphere by the strong interaction, but electrons can leak outside forming an electron layer a few hundred fermi thick separating the ionic crust from the underlying quark matter. The ionic matter and the CCSC matter constitute two electromagnetically coupled crust layers. We study the torsional oscillations of these two layers. Remarkably, we find that if a fraction larger than 10-4 of the energy of a Vela-like glitch is conveyed to a torsional oscillation, the ionic crust will likely break. The reason is that the very rigid and heavy CCSC crust layer will absorb only a small fraction of the glitch energy, leading to a large-amplitude torsional oscillation of the ionic crust. The maximum stress generated by the torsional oscillation is located inside the ionic crust and is very close to the star's surface. This peculiar behavior leads to a much easier crust cracking than in standard neutron stars.

  3. Cecocolic Torsion: Classification, Pathogenesis, and Treatment

    PubMed Central

    2005-01-01

    Cecocolic torsion is a class of right colon obstruction. Under this heading, the known and the recently identified variants are unified under 1 classification. An algorithm is utilized to trace the pathogenesis of these variants. Recent data, prevailing definitions, and controversies are discussed and resolved. The significance of specific membranes and the blood supply is clarified. New symptoms, clinical and x-ray diagnoses are elucidated. The recommended treatments are outlined. PMID:16121881

  4. Fundamentals of IC engine torsional vibration

    SciTech Connect

    Doughty, S.

    1988-01-01

    Fluctuations in IC engine cylinder pressure are an obvious source of torsional vibration excitation, although the details of the coupling from cylinder pressure to torque on the crankshaft are complicated. A second, less obvious source of torsional excitation is the effect of variable inertia associated with the engine slider-crank mechanism. This is a tutorial paper, intended to show the relation between, on the one hand, the actual engine slider-crank mechanism subject to combustion gas pressure and, on the other hand, the models commonly used for torsional vibration analysis that involve constant inertias subject to torques expressed by Fourier series. As such, it uses some new approaches to reach previously known results with a greater degree of physical insight. The presentation is in terms of a single cylinder, two stroke engine with load, and makes clear the roles of piston mass, connecting rod mass and moment of inertia, and crank inertia as they affect both the effective inertia and the effective torque. The determination of natural frequencies and the forced vibration response calculation are briefly described to complete the analysis. The development of a Fourier series representation for the effective torque, including both the cylinder pressure and inertia variation is also discussed. The various components for the response are identified, in an effort to clarify the meaning of terms such as ''zero frequency mode,'' ''rigid body mode,'' and ''twisting mode.''

  5. Torsional Oscillator Studies on Solid Helium

    NASA Astrophysics Data System (ADS)

    Kim, Duk Y.; Chan, Moses H. W.

    2014-03-01

    In 2004, the series of torsional oscillator (TO) experiments by Kim and Chan initiated considerable research activities on the supersolidity of helium. However, recent experiments in rigid torsional oscillators which reduce the effect of stiffening of bulk solid helium at low temepratures showed very small or negligible changes in the resonant period. A new TO experiment of solid helium confined in porous Vycor glass with no bulk solid helium in the sample cell show no evidence of supersolidity. Moreover, we have repeated an earlier experiment on hcp 3He solid, which shows similar low temperature stiffening like hcp 4He. We found that the small drop of the resonant period measured in the hcp 3He samples is comparable to that measured in the hcp 4He samples. These results confirm that the resonant period drops in torsional oscillators are consequence of the shear modulus stiffening effect in solid helium. Remaining issues and open questions on the supersolidity will be discussed. Support for this experiment was provided by NSF Grants No. DMR 1103159.

  6. Aeroelastic considerations for torsionally soft rotors

    NASA Technical Reports Server (NTRS)

    Mantay, W. R.; Yeager, W. T., Jr.

    1986-01-01

    A research study was initiated to systematically determine the impact of selected blade tip geometric parameters on conformable rotor performance and loads characteristics. The model articulated rotors included baseline and torsionally soft blades with interchangeable tips. Seven blade tip designs were evaluated on the baseline rotor and six tip designs were tested on the torsionally soft blades. The designs incorporated a systemmatic variation in geometric parameters including sweep, taper, and anhedral. The rotors were evaluated in the NASA Langley Transonic Dynamics Tunnel at several advance ratios, lift and propulsive force values, and tip Mach numbers. A track sensitivity study was also conducted at several advance ratios for both rotors. Based on the test results, tip parameter variations generated significant rotor performance and loads differences for both baseline and torsionally soft blades. Azimuthal variation of elastic twist generated by variations in the tip parameters strongly correlated with rotor performance and loads, but the magnitude of advancing blade elastic twist did not. In addition, fixed system vibratory loads and rotor track for potential conformable rotor candidates appears very sensitive to parametric rotor changes.

  7. Perinatal testicular torsion and medicolegal considerations.

    PubMed

    Massoni, F; Troili, G M; Pelosi, M; Ricci, S

    2014-06-01

    Perinatal testicular torsion (PTT) is a very complex condition because of rarity of presentation and diagnostic and therapeutic difficulties. In presence of perinatal testicular torsion, the involvement of contralateral testis can be present also in absence of other indications which suggest the bilateral involvement; therefore, occurrences supported by literature do not exclude the use of surgery to avoid the risk of omitted or delayed diagnosis. The data on possible recovery of these testicles are not satisfactory, and treatment consists of an observational approach ("wait-and-see") or an interventional approach. The hypothesis of randomized clinical trials seems impracticable because of rarity of disease. The authors present a case of PTT, analyzing injuries due to clinical and surgical management of these patients, according to medicolegal profile. The delayed diagnosis and the choice of an incorrect therapeutic approach can compromise the position of healthcare professionals, defective in terms of skill, prudence and diligence. Endocrine insufficiency is an unfortunate event. The analysis of literature seems to support, because of high risk, a surgical approach aimed not only at resolution of unilateral pathology or prevention of a relapse, but also at prevention of contralateral testicular torsion. PMID:24826979

  8. Mangle: Angular Mask Software

    NASA Astrophysics Data System (ADS)

    Swanson, Molly; Tegmark, Max; Hamilton, Andrew; Hill, Colin

    2012-02-01

    Mangle is a suite of software designed to deal accurately and efficiently with complex angular masks, such as occur typically in galaxy surveys. Mangle performs the following tasks: converts masks between many handy formats (including HEALPix),rapidly finds the polygons containing a given point on the sphere,rapidly decomposes a set of polygons into disjoint parts,expands masks in spherical harmonics,generates random points with weights given by the mask, and implements computations for correlation function analysis.To mangle, a mask is an arbitrary union of arbitrarily weighted angular regions bounded by arbitrary numbers of edges. The restrictions on the mask are only (1) that each edge must be part of some circle on the sphere (but not necessarily a great circle), and (2) that the weight within each subregion of the mask must be constant. Mangle is complementary to and integrated with the HEALPix package; mangle works with vector graphics whereas HEALPix works with pixels.

  9. Torsional and biaxial (tension-torsion) fatigue damage mechanisms in Waspaloy at room temperature

    NASA Technical Reports Server (NTRS)

    Jayaraman, N.; Ditmars, M. M.

    1989-01-01

    Strain controlled torsional and biaxial (tension-torsion) low cycle fatigue behavior of Waspaloy was studied at room temperature as a function of heat treatment. Biaxial tests were conducted under proportional and nonproportional cyclic conditions. The deformation behavior under these different cyclic conditions was evaluated by slip trace analysis. For this, a Schmidt-type factor was defined for multiaxial loading conditions, and it was shown that when the slip deformation is predominant, nonproportional cycles are more damaging than proportional or pure axial or torsional cycles. This was attributed to the fact that under nonproportional cyclic conditions, deformation was through multiple slip, as opposed to single slip for other loading conditions, which gave rise to increased hardening. The total life for a given test condition was found to be independent of heat treatment. This was interpreted as being due to the differences in the cycles to initiation and propagation of cracks.

  10. Biothermal sensing of a torsional artificial muscle

    NASA Astrophysics Data System (ADS)

    Lee, Sung-Ho; Kim, Tae Hyeob; Lima, Márcio D.; Baughman, Ray H.; Kim, Seon Jeong

    2016-02-01

    Biomolecule responsive materials have been studied intensively for use in biomedical applications as smart systems because of their unique property of responding to specific biomolecules under mild conditions. However, these materials have some challenging drawbacks that limit further practical application, including their speed of response and mechanical properties, because most are based on hydrogels. Here, we present a fast, mechanically robust biscrolled twist-spun carbon nanotube yarn as a torsional artificial muscle through entrapping an enzyme linked to a thermally sensitive hydrogel, poly(N-isopropylacrylamide), utilizing the exothermic catalytic reaction of the enzyme. The induced rotation reached an equilibrated angle in less than 2 min under mild temperature conditions (25-37 °C) while maintaining the mechanical properties originating from the carbon nanotubes. This biothermal sensing of a torsional artificial muscle offers a versatile platform for the recognition of various types of biomolecules by replacing the enzyme, because an exothermic reaction is a general property accompanying a biochemical transformation.Biomolecule responsive materials have been studied intensively for use in biomedical applications as smart systems because of their unique property of responding to specific biomolecules under mild conditions. However, these materials have some challenging drawbacks that limit further practical application, including their speed of response and mechanical properties, because most are based on hydrogels. Here, we present a fast, mechanically robust biscrolled twist-spun carbon nanotube yarn as a torsional artificial muscle through entrapping an enzyme linked to a thermally sensitive hydrogel, poly(N-isopropylacrylamide), utilizing the exothermic catalytic reaction of the enzyme. The induced rotation reached an equilibrated angle in less than 2 min under mild temperature conditions (25-37 °C) while maintaining the mechanical properties originating from the carbon nanotubes. This biothermal sensing of a torsional artificial muscle offers a versatile platform for the recognition of various types of biomolecules by replacing the enzyme, because an exothermic reaction is a general property accompanying a biochemical transformation. Electronic supplementary information (ESI) available: Experimental sections; a schematic drawing of the custom-built flow injection system; the change in the length of the yarn correlated with the wetting and drying of the entrapped PNIPAm-GOx particle versus time; the particle size distribution of PNIPAm-GOx hydrogel in a pure PBS solution and in a PBS solution containing 100 mM glucose at 36 °C biothermal sensing torsional actuation of a carbon nanotube yarn (video). See DOI: 10.1039/c5nr07195j

  11. On the physical interpretation of torsion-rotation parameters in methanol and acetaldehyde: Comparison of global fit and {ital ab initio} results

    SciTech Connect

    Xu, L.; Lees, R.M.; Hougen, J.T.

    1999-02-01

    Equilibrium structural constants and certain torsion{endash}rotation interaction parameters have been determined for methanol and acetaldehyde from {ital ab initio} calculations using GAUSSIAN 94. The substantial molecular flexing which occurs in going from the bottom to the top of the torsional potential barrier can be quantitatively related to coefficients of torsion{endash}rotation terms having a (1{minus}cos&hthinsp;3{gamma}) dependence on torsional angle {gamma}. The barrier height, six equilibrium structural constants characterizing the bottom of the potential well, and six torsion{endash}rotation constants are all compared to experimental parameters obtained from global fits to large microwave and far-infrared data sets for methanol and acetaldehyde. The rather encouraging agreement between the Gaussian and global fit results for methanol seems both to validate the accuracy of {ital ab initio} calculations of these parameters, and to demonstrate that the physical origin of these torsion{endash}rotation interaction terms in methanol lies primarily in structural relaxation with torsion. The less satisfactory agreement between theory and experiment for acetaldehyde requires further study. {copyright} {ital 1999 American Institute of Physics.}

  12. Quantum Heuristics of Angular Momentum

    ERIC Educational Resources Information Center

    Levy-Leblond, Jean-Marc

    1976-01-01

    Discusses the quantization of angular momentum components, Heisenberg-type inequalities for their spectral dispersions, and the quantization of the angular momentum modulus, without using operators or commutation relations. (MLH)

  13. The space-time torsion in the context of the exact Foldy-Wouthuysen transformation for a Dirac fermion

    NASA Astrophysics Data System (ADS)

    Gonçalves, Bruno; Ribeiro, Baltazar J.; Pereira, Dante D.; Dias, Mário M.

    2016-05-01

    In this paper, we focus our attention in the inconsistency that appears when the semi-exact Foldy-Wouthuysen transformation for the Dirac field interacting with space-time torsion field is performed. In order to solve this problem, we present a new involution operator that makes possible to perform the exact transformation when torsion field is present. Such operator has a structure, well known in the literature, composed of the product of an operator that acts in the matrices space and another one that acts in the function space. We also present the bound state of this theory and discuss the possible experimental analysis.

  14. Symmetries of the Dirac operator with skew-symmetric torsion

    NASA Astrophysics Data System (ADS)

    Houri, Tsuyoshi; Kubizňák, David; Warnick, Claude; Yasui, Yukinori

    2010-09-01

    In this paper, we consider the symmetries of the Dirac operator derived from a connection with skew-symmetric torsion, ∇T. We find that the generalized conformal Killing-Yano tensors give rise to symmetry operators of the massless Dirac equation, provided an explicitly given anomaly vanishes. We show that this gives rise to symmetries of the Dirac operator in the case of strong Kähler with torsion (KT) and strong hyper-Kähler with torsion (HKT) manifolds.

  15. A Novel Angular Acceleration Sensor Based on the Electromagnetic Induction Principle and Investigation of Its Calibration Tests

    PubMed Central

    Zhao, Hao; Feng, Hao

    2013-01-01

    An angular acceleration sensor can be used for the dynamic analysis of human and joint motions. In this paper, an angular acceleration sensor with novel structure based on the principle of electromagnetic induction is designed. The method involves the construction of a constant magnetic field by the excitation windings of sensor, and the cup-shaped rotor that cut the magnetic field. The output windings of the sensor generate an electromotive force, which is directly proportional to the angular acceleration through the electromagnetic coupling when the rotor has rotational angular acceleration. The mechanical structure and the magnetic working circuit of the sensor are described. The output properties and the mathematical model including the transfer function and state-space model of the sensor are established. The asymptotical stability of the sensor when it is working is verified by the Lyapunov Theorem. An angular acceleration calibration device based on the torsional pendulum principle is designed. The method involves the coaxial connection of the angular acceleration sensor, torsion pendulum and a high-precision angle sensor, and then an initial external force is applied to the torsion pendulum to produce a periodic damping angle oscillation. The angular acceleration sensor and the angle sensor will generate two corresponding electrical signals. The sensitivity coefficient of the angular acceleration sensor can be obtained after processing these two-channel signals. The experiment results show that the sensitivity coefficient of the sensor is about 17.29 mv/Krad·s2. Finally, the errors existing in the practical applications of the sensor are discussed and the corresponding improvement measures are proposed to provide effective technical support for the practical promotion of the novel sensor. PMID:23941911

  16. Dynamic fragmentation of ferroelectric ceramics using the torsional Kolsky bar

    SciTech Connect

    Costin, L S; Grady, D E

    1983-10-01

    This paper studied the dynamic loading and subsequent fragmentation of four different load zirconate titanate (95/5 PZT) ferroelectric ceramics using a torsional Kolsky bar apparatus. Solid cylinders of the four materials were loaded in torsion at shear strain rates in the range 10/sup 2/ to 10/sup 3/s/sup -1/. Using the strain gage recordings of the incident, reflected and transmitted pulses, the energy required to fragment the specimen was determined for each test. In addition, the fragments resulting from each test were collected and analyzed by various technciques to determine their mass and size distributions. Results show some differences in particle distributions between the different batches of material. However, there is a more significant and consistent difference between the dynamic strength (as measured by the maximum shear stress) and the fragment mass distributions of the virgin material and the pressure depoled material, despite the fact that no differences were detected in the energy of fragmentation. Using earlier analytical results which relate the local kinetic energy of a potential fragment to the surface energy required to create that fragment, a relationship between the distribution of fragments from a test and material properties was derived. Results of tests on PZT as well as other materials such as oil shale, graphite, uranium dioxide and glass indicate a good correlation between the fragment distribution parameter, n, and material properties as predicted by the theory. Finally, the results are analyzed to determine the potential effects of internal stresses on the dynamic strength of the material and its fragmentation characteristics.

  17. Secondary Torsion of Vermiform Appendix with Mucinous Cystadenoma

    PubMed Central

    Kitagawa, Maki; Kotani, Tatsuya; Yamano, Takeshi; Tsurudome, Hideaki; Hatakeyama, Tomoya; Kuriu, Yoshiaki; Nishi, Hiroshi; Yabe, Masaharu

    2007-01-01

    Torsion of the vermiform appendix is a rare disorder, which causes abdominal symptoms indistinguishable from acute appendicitis. We report a case (a 34-year-old male) of secondary torsion of the vermiform appendix with mucinous cystadenoma. This case was characterized by mild inflammatory responses, pentazocine-resistant abdominal pain, and appendiceal tumor, which was not enhanced by the contrast medium on computed tomography presumably because of reduced blood flow by the torsion. These findings may be helpful for the preoperative diagnosis of secondary appendiceal torsion. PMID:21487469

  18. Coherent Control of Angular Momentum Transfer in Resonant Two-Photon Light-Matter Interaction

    SciTech Connect

    Malik, D. A.; Kimel, A. V.; Kirilyuk, A.; Rasing, Th.; Zande, W. J. van der

    2010-04-02

    We show experimentally and theoretically that a polarization-shaped femtosecond laser pulse with a zero net angular momentum creates a net angular momentum in atomic rubidium during resonant two-photon excitation. The necessary conditions for the creation of a nonzero angular momentum as well as the excitation efficiencies are analyzed in the framework of second-order time-dependent perturbation theory.

  19. Accurate description of torsion potentials in conjugated polymers using density functionals with reduced self-interaction error.

    PubMed

    Sutton, Christopher; Körzdörfer, Thomas; Gray, Matthew T; Brunsfeld, Max; Parrish, Robert M; Sherrill, C David; Sears, John S; Brédas, Jean-Luc

    2014-02-01

    We investigate the torsion potentials in two prototypical π-conjugated polymers, polyacetylene and polydiacetylene, as a function of chain length using different flavors of density functional theory. Our study provides a quantitative analysis of the delocalization error in standard semilocal and hybrid density functionals and demonstrates how it can influence structural and thermodynamic properties. The delocalization error is quantified by evaluating the many-electron self-interaction error (MESIE) for fractional electron numbers, which allows us to establish a direct connection between the MESIE and the error in the torsion barriers. The use of non-empirically tuned long-range corrected hybrid functionals results in a very significant reduction of the MESIE and leads to an improved description of torsion barrier heights. In addition, we demonstrate how our analysis allows the determination of the effective conjugation length in polyacetylene and polydiacetylene chains. PMID:24511943

  20. Accurate description of torsion potentials in conjugated polymers using density functionals with reduced self-interaction error

    SciTech Connect

    Sutton, Christopher; Gray, Matthew T.; Brunsfeld, Max; Parrish, Robert M.; Sherrill, C. David; Sears, John S.; Brédas, Jean-Luc E-mail: thomas.koerzdoerfer@uni-potsdam.de; Körzdörfer, Thomas E-mail: thomas.koerzdoerfer@uni-potsdam.de; Computational Chemistry, Institute of Chemistry, University of Potsdam, D-14476 Potsdam

    2014-02-07

    We investigate the torsion potentials in two prototypical π-conjugated polymers, polyacetylene and polydiacetylene, as a function of chain length using different flavors of density functional theory. Our study provides a quantitative analysis of the delocalization error in standard semilocal and hybrid density functionals and demonstrates how it can influence structural and thermodynamic properties. The delocalization error is quantified by evaluating the many-electron self-interaction error (MESIE) for fractional electron numbers, which allows us to establish a direct connection between the MESIE and the error in the torsion barriers. The use of non-empirically tuned long-range corrected hybrid functionals results in a very significant reduction of the MESIE and leads to an improved description of torsion barrier heights. In addition, we demonstrate how our analysis allows the determination of the effective conjugation length in polyacetylene and polydiacetylene chains.

  1. A comparison of the torsional performance of stainless steel and titanium alloy tibial intramedullary nails: a clinically relevant approach.

    PubMed

    Aitchison, G A; Johnstone, A J; Shepherd, D E T; Watson, M A

    2004-01-01

    In recent years there has been a tendency to design and manufacture intramedullary nails from titanium alloy rather than from stainless steel. The aim of this project was to compare the torsional performance of one manufacturers standard stainless steel and titanium alloy tibial intramedullary nails, using their distal locking screw holes and dedicated cross screws to secure each nail distally. A custom built test rig and materials testing machine were used to determine the torsional rigidity of the nails. Theory was used to calculate the torsional rigidity of the central parts of each nail. From the mechanical testing, the mean torsional rigidity of the titanium alloy nail system was 40.9 N m2 while that of the stainless steel nail system was 34.6 N m2, for all distal interlocking screw positions tested. Based on theoretical calculations the torsional rigidity of the central part of the nail was 83 N m2 for the stainless steel nail and 66 N m2 for the titanium alloy nail. This study shows the importance of using the distal locking screw holes and dedicated cross screws to secure intramedullary nails during mechanical testing so that clinically relevant results are obtained about the whole nail system and not just the nail. PMID:15299235

  2. Angular distributions in multifragmentation

    SciTech Connect

    Stoenner, R.W.; Klobuchar, R.L.; Haustein, P.E.; Virtes, G.J.; Cumming, J.B.; Loveland, W.

    2006-04-15

    Angular distributions are reported for {sup 37}Ar and {sup 127}Xe from 381-GeV {sup 28}Si+Au interactions and for products between {sup 24}Na and {sup 149}Gd from 28-GeV {sup 1}H+Au. Sideward peaking and forward deficits for multifragmentation products are significantly enhanced for heavy ions compared with protons. Projectile kinetic energy does not appear to be a satisfactory scaling variable. The data are discussed in terms of a kinetic-focusing model in which sideward peaking is due to transverse motion of the excited product from the initial projectile-target interaction.

  3. Quark Orbital Angular Momentum

    NASA Astrophysics Data System (ADS)

    Burkardt, Matthias

    2016-03-01

    Generalized parton distributions provide information on the distribution of quarks in impact parameter space. For transversely polarized nucleons, these impact parameter distributions are transversely distorted and this deviation from axial symmetry leads on average to a net transverse force from the spectators on the active quark in a DIS experiment. This force when acting along the whole trajectory of the active quark leads to transverse single-spin asymmetries. For a longitudinally polarized nucleon target, the transverse force implies a torque acting on the quark orbital angular momentum (OAM). The resulting change in OAM as the quark leaves the target equals the difference between the Jaffe-Manohar and Ji OAMs.

  4. Quantum Thermochemistry: Multistructural Method with Torsional Anharmonicity Based on a Coupled Torsional Potential.

    PubMed

    Zheng, Jingjing; Truhlar, Donald G

    2013-03-12

    We present a new approximation for calculating partition functions and thermodynamic functions by the multistructural method with torsional anharmonicity (MS-T). The new approximation is based on a reference potential with torsional barriers obtained from a calculation that includes local torsional coupling. By comparing to a fully coupled classical rotational-torsional partition function evaluated as a numerical phase space integral, the method is shown to provide improved accuracy in the classical limit. Quantum effects, which are most important at low temperatures, are included based on the harmonic approximation (which can be upgraded to a quasiharmonic approximation, that is, harmonic formulas with effective frequencies). Calculations were performed for six molecules (ethanol, 1-butanol, hexane, isohexane, heptane, and isoheptane), one radical (1-pentyl radical), and the saddle point structures of a hydrogen abstraction reaction (hydroxyl plus ethanol) to illustrate the difference between the new coupled-potential MS-T approximation and the original uncoupled-potential MS-T approximation. The new method improves the agreement with experimental results of calcuated thermodynamic functions for 1-butanol, hexane, isohexane, and heptane. PMID:26587598

  5. An extension of the high-resolution millimeter- and submillimeter-wave spectrum of methanol to high angular momentum quantum numbers

    NASA Technical Reports Server (NTRS)

    Anderson, Todd; Herbst, Eric; De Lucia, Frank C.

    1992-01-01

    The high-resolution laboratory millimeter- and submillimeter-wave spectra of C-12H(3)OH and C-13H(3)OH have been extended to include transitions involving significantly higher angular momentum quantum numbers than studied previously. For C-12H(3)OH, the data set now includes 549 A torsional substate transitions and 524 E torsional substate transitions through J is not greater than 24, exclusive of blends. For C-13H(3)OH the data set now includes 453 A torsional substate transitions and 440 E torsional substate transitions through J is not greater than 24, exclusive of blends. The extended internal axis method Hamiltonian has been used to analyze the transitions to experimental accuracy. The molecular constants determined by this approach have been used to predict accurately the frequencies of many transitions through J = 25 not measured in the laboratory.

  6. The Torsional Spectrum of Doubly Deuterated Methanol CHD_2OH

    NASA Astrophysics Data System (ADS)

    Ndao, M.; Coudert, L. H.; Kwabia Tchana, F.; Barros, J.; Margulès, L.; Manceron, Laurent; Roy, P.

    2014-06-01

    Although the torsional spectrum of several isotopic species of methanol with a symmetrical CH_3 or CD_3 was analyzed some time ago, it is recently, and only for the monodeuterated species CH_2DOH, that such an analysis was extended to the case of an asymmetrical methyl group. In this talk, based on a Fourier transform high-resolution spectrum recorded in the 20 to 670 wn region, the first analysis of the torsional spectrum of doubly deuterated methanol CHD_2OH will be presented. The Q branch of many torsional subbands could be observed and their assignment was initiated using a theoretical torsion-rotation spectrum computed with an approach accounting for the torsion-rotation Coriolis coupling and for the dependence of the generalized inertia tensor on the angle of internal rotation. 46 torsional subbands were thus assigned. For 28 of them, their rotational structure could be assigned and fitted using an effective Hamiltonian expressed as a J(J+1) expansion; and for 2 of them microwave transitions within the lower torsional level could also be included in the analysis. In several cases these analysis revealed that the torsional levels are strongly perturbed. In the talk, the torsional parameters retrieved in the analysis of the torsional subband centers will be discussed. The results of the analysis of the rotational structure of the torsional subbands will be presented and we will also try to understand the nature of the perturbations. At last, preliminary results about the analysis of the microwave spectrum will be presented. El Hilali, Coudert, Konov, and Klee, J. Chem. Phys. 135 (2011) 194309 Lauvergnat, Coudert, Klee, and Smirnov, J. Mol. Spectrosc. 256 (2009) 204 Quade, Liu, Mukhopadhyay, and Su, J. Mol. Spectrosc. 192 (1998) 378 Pearson, Yu, and Drouin, J. Mol. Spectrosc. 280 (2012) 119

  7. Angular displacement measuring device

    NASA Technical Reports Server (NTRS)

    Seegmiller, H. Lee B. (Inventor)

    1992-01-01

    A system for measuring the angular displacement of a point of interest on a structure, such as aircraft model within a wind tunnel, includes a source of polarized light located at the point of interest. A remote detector arrangement detects the orientation of the plane of the polarized light received from the source and compares this orientation with the initial orientation to determine the amount or rate of angular displacement of the point of interest. The detector arrangement comprises a rotating polarizing filter and a dual filter and light detector unit. The latter unit comprises an inner aligned filter and photodetector assembly which is disposed relative to the periphery of the polarizer so as to receive polarized light passing the polarizing filter and an outer aligned filter and photodetector assembly which receives the polarized light directly, i.e., without passing through the polarizing filter. The purpose of the unit is to compensate for the effects of dust, fog and the like. A polarization preserving optical fiber conducts polarized light from a remote laser source to the point of interest.

  8. Uniaxial angular accelerometers

    NASA Astrophysics Data System (ADS)

    Seleznev, A. V.; Shvab, I. A.

    1985-05-01

    The basic mechanical components of an angular accelerometer are the sensor, the damper, and the transducer. Penumatic dampers are simplest in construction, but the viscosity of air is very low and, therefore, dampers with special purpose oils having a high temperature stability (synthetic silicon or organosilicon oils) are most widely used. The most common types of viscous dampers are lamellar with meshed opposed arrays of fixed and movable vanes in the dashpot, piston dampers regulated by an adjustable-length capillary tube, and dampers with paddle wheel in closed tank. Another type of damper is an impact-inertial one with large masses absorbing the rotational energy upon collision with the sensor. Conventional measuring elements are resistive, capacitive, electromagnetic, photoelectric, and penumatic or hydraulic. Novel types of angular accelerometers are based on inertia of gas jets, electron beams, and ion beams, the piezoelectric effect in p-n junctions of diode and transistors, the electrokinetic effect in fluids, and cryogenic suspension of the sensor.

  9. Linking the HOMO-LUMO gap to torsional disorder in P3HT/PCBM blends

    NASA Astrophysics Data System (ADS)

    McLeod, John A.; Pitman, Amy L.; Kurmaev, Ernst Z.; Finkelstein, Larisa D.; Zhidkov, Ivan S.; Savva, Achilleas; Moewes, Alexander

    2015-12-01

    The electronic structure of [6,6]-phenyl C61 butyric acid methyl ester (PCBM), poly(3-hexylthiophene) (P3HT), and P3HT/PCBM blends is studied using soft X-ray emission and absorption spectroscopy and density functional theory calculations. We find that annealing reduces the HOMO-LUMO gap of P3HT and P3HT/PCBM blends, whereas annealing has little effect on the HOMO-LUMO gap of PCBM. We propose a model connecting torsional disorder in a P3HT polymer to the HOMO-LUMO gap, which suggests that annealing helps to decrease the torsional disorder in the P3HT polymers. Our model is used to predict the characteristic length scales of the flat P3TH polymer segments in P3HT and P3HT/PCBM blends before and after annealing. Our approach may prove useful in characterizing organic photovoltaic devices in situ or even in operando.

  10. Experimental method for determination of bending and torsional rigidities of advanced composite laminates

    SciTech Connect

    Maeda, Takenori

    1995-11-01

    This paper presents an experimental method for the determination of the bending and torsional rigidities of advanced fiber composite laminates with the aid of laser holographic interferometry. The proposed method consists of a four-point bending test and a resonance test. The bending rigidity ratio (D{sub 12}/D{sub 22}) can be determined from the fringe patterns of the four-point bending test. The bending rigidities (D{sub 11} and D{sub 22}) and the torsional rigidity (D{sub 66}) are calculated from the natural frequencies of cantilever plates of the resonance test. The test specimens are carbon/epoxy cross-ply laminates. The adequacy of the experimental method is confirmed by comparing the measured rigidities with the theoretical values obtained from classical lamination theory (CLT) by using the measured tensile properties. The results show that the present method can be used to evaluate the rigidities of orthotropic laminates with reasonably good accuracy.

  11. Gradient plasticity used for modeling extrinsic and intrinsic size effects in the torsion of Au microwires

    NASA Astrophysics Data System (ADS)

    Wei, Xiaokun; Konstantinidis, Avraam; Qi, Chengzhi; Aifantis, Elias

    2016-04-01

    The gradient plasticity theory proposed by Aifantis and coworkers has been successfully used to model size effect phenomena at the microscale and nanoscale, by introducing into the formulation an internal length scale associated with the phenomenological coefficients of the gradient plasticity model. In this paper, Aifantis' gradient plasticity theory is applied to model the sample size-dependent torsion of thin wires, with a strain-dependent internal length scale as well as grain size dependence based on the Hall-Petch relationship. This study reveals that internal length scale is related with sample size and grain size, with such a connection determined by the ductility of the material.

  12. Enhanced angular current intensity from Schottky emitters.

    PubMed

    Fujita, S; Wells, T R C; Ushio, W; Sato, H; El-Gomati, M M

    2010-09-01

    Even though the Schottky emitter is a high-brightness source of choice for electron beam systems, its angular current intensity is substantially lower than that of thermionic cathodes, rendering the emitter impractical for applications that require high beam current. In this study, two strategies were attempted to enhance its angular intensity, and their experimental results are reported. The first scheme is to employ a higher extraction field for increasing the brightness. However, the tip shape transformation was found to induce undesirably elevated emission from the facet edges at high fields. The second scheme exploits the fact that the angular intensity is proportional to the square of the electron gun focal length [Fujita, S. & Shimoyama, H. (2005) Theory of cathode trajectory characterization by canonical mapping transformation. J. Electron Microsc. 54, 331-343], which can be increased by scaling-up the emitter tip radius. A high angular current intensity (J(Omega) approximately 1.5 mA sr(-1)) was obtained from a scaled-up emitter. Preliminary performance tests were conducted on an electron probe-forming column by substituting the new emitter for the original tungsten filament gun. The beam current up to a few microamperes was achieved with submicron spatial resolution. PMID:20701659

  13. Mechanical origins of rightward torsion in early chick brain development

    NASA Astrophysics Data System (ADS)

    Chen, Zi; Guo, Qiaohang; Dai, Eric; Taber, Larry

    2015-03-01

    During early development, the neural tube of the chick embryo undergoes a combination of progressive ventral bending and rightward torsion. This torsional deformation is one of the major organ-level left-right asymmetry events in development. Previous studies suggested that bending is mainly due to differential growth, however, the mechanism for torsion remains poorly understood. Since the heart almost always loops rightwards that the brain twists, researchers have speculated that heart looping affects the direction of brain torsion. However, direct evidence is lacking, nor is the mechanical origin of such torsion understood. In our study, experimental perturbations show that the bending and torsional deformations in the brain are coupled and that the vitelline membrane applies an external load necessary for torsion to occur. Moreover, the asymmetry of the looping heart gives rise to the chirality of the twisted brain. A computational model and a 3D printed physical model are employed to help interpret these findings. Our work clarifies the mechanical origins of brain torsion and the associated left-right asymmetry, and further reveals that the asymmetric development in one organ can induce the asymmetry of another developing organ through mechanics, reminiscent of D'Arcy Thompson's view of biological form as ``diagram of forces''. Z.C. is supported by the Society in Science - Branco Weiss fellowship, administered by ETH Zurich. L.A.T acknowledges the support from NIH Grants R01 GM075200 and R01 NS070918.

  14. Hydrostatic self-aligning axial/torsional mechanism

    DOEpatents

    O'Connor, Daniel G.; Gerth, Howard L.

    1990-01-01

    The present invention is directed to a self-aligning axial/torsional loading mechanism for testing the strength of brittle materials which are sensitive to bending moments. Disposed inside said self-aligning loading mechanism is a frictionless hydrostatic ball joint with a flexure ring to accommodate torsional loads through said ball joint.

  15. Laparoscopic Management of Synchronous Bilateral Ovarian Torsion in a Neonate

    PubMed Central

    Alkan, Murat; Elbek, Ali; Evruke, Cuneyt; Memec, Ahmet Eray; Ozkan, Bulent Aziz; Sucak, Hatice Gülin; Erkan, Ozgur Talat

    2016-01-01

    Synchronous bilateral ovarian torsion is an uncommon entity of which both ovaries twist at the same time or observed twisted during the surgical intervention. Herein, we present a neonate with bilateral ovarian torsion, which successfully managed by laparoscopic approach. PMID:26793599

  16. Biothermal sensing of a torsional artificial muscle.

    PubMed

    Lee, Sung-Ho; Kim, Tae Hyeob; Lima, Márcio D; Baughman, Ray H; Kim, Seon Jeong

    2016-02-01

    Biomolecule responsive materials have been studied intensively for use in biomedical applications as smart systems because of their unique property of responding to specific biomolecules under mild conditions. However, these materials have some challenging drawbacks that limit further practical application, including their speed of response and mechanical properties, because most are based on hydrogels. Here, we present a fast, mechanically robust biscrolled twist-spun carbon nanotube yarn as a torsional artificial muscle through entrapping an enzyme linked to a thermally sensitive hydrogel, poly(N-isopropylacrylamide), utilizing the exothermic catalytic reaction of the enzyme. The induced rotation reached an equilibrated angle in less than 2 min under mild temperature conditions (25-37 °C) while maintaining the mechanical properties originating from the carbon nanotubes. This biothermal sensing of a torsional artificial muscle offers a versatile platform for the recognition of various types of biomolecules by replacing the enzyme, because an exothermic reaction is a general property accompanying a biochemical transformation. PMID:26806884

  17. Infrared modified gravity with dynamical torsion

    SciTech Connect

    Nikiforova, V.; Randjbar-Daemi, S.; Rubakov, V.

    2009-12-15

    We continue the recent study of the possibility of constructing a consistent infrared modification of gravity by treating the vierbein and connection as independent dynamical fields. We present the generalized Fierz-Pauli equation that governs the propagation of a massive spin-2 mode in a model of this sort in the backgrounds of arbitrary torsionless Einstein manifolds. We show explicitly that the number of propagating degrees of freedom in these backgrounds remains the same as in flat space-time. This generalizes the recent result that the Boulware-Deser phenomenon does not occur in de Sitter and anti-de Sitter backgrounds. We find that, at least for weakly curved backgrounds, there are no ghosts in the model. We also discuss the interaction of sources in flat background. It is generally believed that the spinning matter is the only source of torsion. Our flat space study shows that this is not the case. We demonstrate that an ordinary conserved symmetric energy-momentum tensor can also generate torsion fields and thus excite massive spin-2 degrees of freedom.

  18. Curvature and torsion in growing actin networks

    PubMed Central

    Shaevitz, Joshua W; Fletcher, Daniel A

    2011-01-01

    Intracellular pathogens such as Listeria monocytogenes and Rickettsia rickettsii move within a host cell by polymerizing a comet-tail of actin fibers that ultimately pushes the cell forward. This dense network of cross-linked actin polymers typically exhibits a striking curvature that causes bacteria to move in gently looping paths. Theoretically, tail curvature has been linked to details of motility by considering force and torque balances from a finite number of polymerizing filaments. Here we track beads coated with a prokaryotic activator of actin polymerization in three dimensions to directly quantify the curvature and torsion of bead motility paths. We find that bead paths are more likely to have low rather than high curvature at any given time. Furthermore, path curvature changes very slowly in time, with an autocorrelation decay time of 200 s. Paths with a small radius of curvature, therefore, remain so for an extended period resulting in loops when confined to two dimensions. When allowed to explore a three-dimensional (3D) space, path loops are less evident. Finally, we quantify the torsion in the bead paths and show that beads do not exhibit a significant left- or right-handed bias to their motion in 3D. These results suggest that paths of actin-propelled objects may be attributed to slow changes in curvature, possibly associated with filament debranching, rather than a fixed torque. PMID:18560043

  19. Curvature and torsion in growing actin networks

    NASA Astrophysics Data System (ADS)

    Shaevitz, Joshua W.; Fletcher, Daniel A.

    2008-06-01

    Intracellular pathogens such as Listeria monocytogenes and Rickettsia rickettsii move within a host cell by polymerizing a comet-tail of actin fibers that ultimately pushes the cell forward. This dense network of cross-linked actin polymers typically exhibits a striking curvature that causes bacteria to move in gently looping paths. Theoretically, tail curvature has been linked to details of motility by considering force and torque balances from a finite number of polymerizing filaments. Here we track beads coated with a prokaryotic activator of actin polymerization in three dimensions to directly quantify the curvature and torsion of bead motility paths. We find that bead paths are more likely to have low rather than high curvature at any given time. Furthermore, path curvature changes very slowly in time, with an autocorrelation decay time of 200 s. Paths with a small radius of curvature, therefore, remain so for an extended period resulting in loops when confined to two dimensions. When allowed to explore a three-dimensional (3D) space, path loops are less evident. Finally, we quantify the torsion in the bead paths and show that beads do not exhibit a significant left- or right-handed bias to their motion in 3D. These results suggest that paths of actin-propelled objects may be attributed to slow changes in curvature, possibly associated with filament debranching, rather than a fixed torque.

  20. Tailoring patterns of graphene wrinkles by circular torsion

    NASA Astrophysics Data System (ADS)

    Becton, Matthew; Wang, Xianqiao

    2016-02-01

    Wrinkled graphene has been emerging as a hot topic of interest due to its easily induced physical changes accompanied by changes in its material behavior. However, the wrinkling pattern of graphene and its relevant properties remain poorly understood. Here we employ molecular dynamics simulations to model the behavior of graphene under periodic, torsional wrinkling and elucidate the effect of torsion pattern, torsion velocity, and hole size on the wrinkling characteristics of a large graphene sheet. Simulation results show that gross control over the wrinkling pattern is feasible via manipulation of torsion direction and relative hole size, with fine-tuning of the wrinkle formation possible by control of the relative torsion speed of each hole.

  1. Torsion and noninertial effects on a nonrelativistic Dirac particle

    SciTech Connect

    Bakke, K.

    2014-07-15

    We investigate torsion and noninertial effects on a spin-1/2 quantum particle in the nonrelativistic limit of the Dirac equation. We consider the cosmic dislocation spacetime as a background and show that a rotating system of reference can be used out to distances which depend on the parameter related to the torsion of the defect. Therefore, we analyse torsion effects on the spectrum of energy of a nonrelativistic Dirac particle confined to a hard-wall potential in a Fermi–Walker reference frame. -- Highlights: •Torsion effects on a spin- 1/2 particle in a noninertial reference frame. •Fermi–Walker reference frame in the cosmic dislocation spacetime background. •Torsion and noninertial effects on the confinement to a hard-wall confining potential.

  2. Torsional spring constant obtained for an atomic force microscope cantilever

    NASA Astrophysics Data System (ADS)

    Jeon, Sangmin; Braiman, Yehuda; Thundat, Thomas

    2004-03-01

    In this letter, a method to measure the torsional spring constant of a microcantilever is described. The cantilever was twisted laterally without any normal load by inducing the Lorentz force. An electrical current was applied to the cantilever in a magnetic field, and the torsional resonance frequency of the cantilever was obtained. Based on the observation that the torsional resonance frequency is the same as the second resonance peak of the thermally vibrating cantilever, the ratio of deflection spring constant to torsional spring constant is easily obtained from a simple relationship. For the cantilever used here, the torsional spring constant is 11.24 N/m, 28 times greater than the deflection spring constant.

  3. Optical measurement of DNA torsional modulus under various stretching forces

    NASA Astrophysics Data System (ADS)

    Choi, Jaehyuck

    2005-03-01

    Optical measurement of DNA torsional modulus under various stretching forces Jaehyuck Choi[1], Kai Zhao[2] Y.-H. Lo[1] [1] Department of Electrical and Computer Engineering, [2] Department of Physics University of California at San Diego, La Jolla, California 92093-0407 We have measured the torsional spring modulus of a double stranded-DNA by applying an external torque around the axis of a vertically stretched DNA molecule. We observed that the torsional modulus of the DNA increases with stretching force. This result supports the hypothesis that an applied stretching force may raise the intrinsic torsional modulus of ds-DNA via elastic coupling between twisting and stretching. This further verifies that the torsional modulus value (C = 46.5 +/- 10 pN nm2) of a ds-DNA investigated under Brownian torque (no external force and torque) could be the pure intrinsic value without contribution from other effects such as stretching, bending, or buckling of DNA chains.

  4. Krukenberg tumor: a rare cause of ovarian torsion.

    PubMed

    Sandhu, Sameer; Arafat, Omar; Patel, Harshad; Lall, Chandana

    2012-01-01

    Ovarian torsion is the fifth most common gynecological surgical emergency. Ovarian torsion is usually associated with a cyst or a tumor, which is typically benign. The most common is mature cystic teratoma. We report the case of a 43-year-old woman who came to the Emergency Department with rare acute presentation of bilateral Krukenberg tumors, due to unilateral ovarian torsion. In this case report, we highlight the specific computed tomography (CT) features of ovarian torsion and demonstrate the unique radiological findings on CT imaging. Metastasis to the ovary is not rare and 5 to 10% of all ovarian malignancies are metastatic. The stomach is the common primary site in most Krukenberg tumors (70%); an acute presentation of metastatic Krukenberg tumors with ovarian torsion is rare and not previously reported in radiology literature. PMID:22439130

  5. Angular deflection of rotary nickel titanium files: a comparative study.

    PubMed

    Gambarini, Gianluca; Testarelli, Luca; Milana, Valerio; Pecci, Raffaella; Bedini, Rossella; Pongione, Giancarlo; Gerosa, Roberto; De Luca, Massimo

    2009-01-01

    A new manufacturing method of twisting nickel titanium wire to produce rotary nickel titanium (RNT) files has recently been developed. The aim of the present study was to evaluate whether the new manufacturing process increased the angular deflection of RNT files, by comparing instruments produced using the new manufacturing method (Twisted Files) versus instruments produced with the traditional grinding process. Testing was performed on a total of 40 instruments of the following commercially available RNT files: Twisted Files (TF), Profile, K3 and M2 (NRT). All instruments tested had the same dimensions (taper 0.06 and tip size 25). Test procedures strictly followed ISO 3630-1. Data were collected and statistically analyzed by means ANOVA test. The results showed that TF demonstrated significantly higher average angular deflection levels (P<0.05), than RNT manufactured by a grinding process. Since angular deflection represent the amount of rotation (and consequently deformation) that a RNT file can withstand before torsional failure, such a significant improvement is a favorable property for the clinical use of the tested RNT files. PMID:20061663

  6. Torsional ARC Effectively Expands the Visual Field in Hemianopia

    PubMed Central

    Satgunam, PremNandhini; Peli, Eli

    2012-01-01

    Purpose Exotropia in congenital homonymous hemianopia has been reported to provide field expansion that is more useful when accompanied with harmonios anomalous retinal correspondence (HARC). Torsional strabismus with HARC provides a similar functional advantage. In a subject with hemianopia demonstrating a field expansion consistent with torsion we documented torsional strabismus and torsional HARC. Methods Monocular visual fields under binocular fixation conditions were plotted using a custom dichoptic visual field perimeter (DVF). The DVF was also modified to measure perceived visual directions under dissociated and associated conditions across the central 50° diameter field. The field expansion and retinal correspondence of a subject with torsional strabismus (along with exotropia and right hypertropia) with congenital homonymous hemianopia was compared to that of another exotropic subject with acquired homonymous hemianopia without torsion and to a control subject with minimal phoria. Torsional rotations of the eyes were calculated from fundus photographs and perimetry. Results Torsional ARC documented in the subject with congenital homonymous hemianopia provided a functional binocular field expansion up to 18°. Normal retinal correspondence was mapped for the full 50° visual field in the control subject and for the seeing field of the acquired homonymous hemianopia subject, limiting the functional field expansion benefit. Conclusions Torsional strabismus with ARC, when occurring with homonymous hemianopia provides useful field expansion in the lower and upper fields. Dichoptic perimetry permits documentation of ocular alignment (lateral, vertical and torsional) and perceived visual direction under binocular and monocular viewing conditions. Evaluating patients with congenital or early strabismus for HARC is useful when considering surgical correction, particularly in the presence of congenital homonymous hemianopia. PMID:22885782

  7. Time-dependent photoelectron angular distributions

    NASA Astrophysics Data System (ADS)

    Wang, Xiangyang

    1999-09-01

    I show that the angular distribution of electrons photoionized from gas phase targets by short light pulses is time-dependent, when the orbital momentum composition of the photocurrent changes with excitation energy so evolves with the time of detection. A theory of time- dependent photoionization is outlined and general formulas of time-dependent photoelectron flux and angular distribution are given. Two general propagator methods suitable to describe the time-dependent photoionization and scattering processes are developed. The photoionization process is viewed as a local excitation followed by a half scattering. The local excitation process is solved theoretically in a small region around the target core. This approach has been generalized to describe the evolution of a wavepacket in an unbound system. An asymptotic propagator theorem is discovered and used to derive analytic expressions for asymptotic propagators. The origin of the time dependence is explored by parameterizing the time delay and orbital momentum coupling in a two channel model. K-shell photoionization of N2 and CO are calculated with this time- dependent photoionization theory, implemented using a multiple scattering model. Numerical results demonstrate that the time dependence of photoelectron angular distributions is a realistic effect.

  8. Torsion of wing trusses at diving speeds

    NASA Technical Reports Server (NTRS)

    Miller, Roy G

    1921-01-01

    The purpose of this report is to indicate what effect the distortion of a typical loaded wing truss will have upon the load distribution. The case of high angle of incidence may be dismissed immediately from consideration as the loads on the front and rear trusses are balanced, and consequently there will be little angular distortion. A given angular distortion will have the maximum effect upon load distribution in the region of the angle of no-lift, because the slope of the lift curve is highest here, and it is here that the greatest angular distortion will occur, because the load on the front truss acts downward while the load on the rear truss acts upward.

  9. Wave angular momentum and the evolution of planetary rings

    NASA Astrophysics Data System (ADS)

    Dranikov, I. L.; Fridman, A. M.

    2010-05-01

    A theory is proposed that provides angular momentum conservation through the acoustic drift mechanism for gap and ringlet formation in planetary rings. In this context, a new variant of drift mechanism is found, which is dominant if the collision frequency is of the order of the orbital frequency or less. An angular pseudo-momentum equation is derived for gravitational acoustic waves with dissipation. An explicit expression for angular pseudo-momentum, taking into account vertical wave structure, is obtained. The relation between Eulerian- and Lagrangian-averaged mass fluxes is also derived, and the advantages of the Lagrangian one are emphasized.

  10. PREDICTED EFFECTS OF LOCAL CONFORMATIONAL COUPLING AND EXTERNAL RESTRAINTS ON THE TORSIONAL PROPERTIES OF SINGLE DNA MOLECULES.

    PubMed

    Matsumoto, Atsushi; Olson, Wilma K

    2006-01-01

    A newly developed, coarse-grained treatment of the low-frequency normal modes of DNA has been adapted to study the torsional properties of fully extended, double-helical molecules. Each base pair is approximated in this scheme as a rigid body, and molecular structure is described in terms of the relative position and orientation of successive base pairs. The torsional modulus C is computed from the lowest-frequency normal twisting mode using expressions valid for a homogeneous, naturally straight elastic rod. Fluctuations of local dimeric structure, including the coupled variation of conformational parameters, are based on the observed arrangements of neighboring base pairs in high-resolution structures. Chain ends are restrained by an elastic energy term. The calculations show how the end-to-end constraints placed on a naturally straight DNA molecule, in combination with the natural conformational features of the double helix, can account for the substantially larger torsional moduli determined with state-of-the-art, single-molecule experiments compared to values extracted from solution measurements and/or incorporated into theories to account for the force-extension properties of single molecules. The computed normal-mode frequencies and torsional moduli increase substantially if base pairs are inclined with respect to the double-helical axis and the deformations of selected conformational variables follow known interdependent patterns. The changes are greatest if the fluctuations in dimeric twisting are coupled with parameters that directly alter the end-to-end displacement. Imposed restraints that mimic the end-to-end conditions of single-molecule experiments then impede the twisting of base pairs and increase the torsional modulus. The natural inclination of base pairs concomitantly softens the Young's modulus, i.e., ease of duplex stretching. The analysis of naturally curved DNA points to a drop in the torsional modulus upon imposed extension of the double-helical molecule. PMID:19081755

  11. The management of moderate and severe congenital penile torsion associated with hypospadias: Urethral mobilisation is not a panacea against torsion

    PubMed Central

    Elbakry, Adel; Zakaria, Ahmed; Matar, Adel; El Nashar, Ahmed

    2013-01-01

    Objectives To evaluate the effectiveness of urethral mobilisation for correcting moderate and severe penile torsion associated with distal hypospadias. Patients and methods Nineteen patients with distal hypospadias and congenital moderate and severe penile torsion were treated surgically. The hypospadias was at the distal shaft, coronal and glanular in seven, eight and four patients, respectively, and six had mild chordee. The mean (SD, range) angle of torsion was 94.7 (19.9, 75–160)°. The urethra was mobilised down to the perineum. If the urethral mobilisation was insufficient the right border of the tunica albuginea was anchored to the pubic periosteum. The hypospadias was repaired using the urethral mobilisation and advancement technique, with a triangular plate flap for meatoplasty. The patients were followed up for 12–18 months. Results All patients had a successful functional and cosmetic outcome, with no residual torsion. Two patients had a small subcutaneous haematoma that resolved after conservative treatment. Massive oedema occurred in three patients and was treated conservatively. Urethral mobilisation did not correct the penile torsion completely. Although the mean (SD, range) angle of torsion was reduced to 86.1 (14.3, 65–130)°, statistically significantly different (P = 0.001), it was not clinically important. The presence of chordee had no significant correlation with the reduction of penile torsion. Conclusion Urethral mobilisation cannot completely correct moderate and severe penile torsion but it might only partly decrease the angle of torsion. Periosteal anchoring of the tunica albuginea might be the most reliable manoeuvre for the complete correction of penile torsion. PMID:26579237

  12. Localization in rate-dependent shearing deformation, with application to torsion testing

    NASA Astrophysics Data System (ADS)

    Paterson, M. S.

    2004-12-01

    In discussions on the localization of plastic deformation in situations such as the formation of "ductile" shear zones, it is commonly conjectured that strain softening, as evidenced by a falling stress-strain curve at constant strain rate, is likely to lead to strain localization in simple shear. Yet observations in torsion tests at constant twist rate on calcite and olivine aggregates fail to show such an effect. This apparent discrepancy is resolved by going to a continuum mechanics analysis using the theory of Fressengeas and Molinari (J. Mech. Phys. Solids 1987, 35, 185-211) for material showing strain-rate dependence of the flow stress. Their treatment of simple shear shows that, in the absence of material changes, whether localization occurs or not can depend on the nature of the boundary conditions. Thus, when the boundary conditions are specified in terms of displacements, no localization is predicted in case of strain softening, in agreement with the torsion test observations. In contrast, if the boundary conditions are set in terms of forces, localization can be expected for a strain-softening material. This prediction needs experimental testing in torsion creep tests at constant torque.

  13. Localization in rate-dependent shearing deformation, with application to torsion testing

    NASA Astrophysics Data System (ADS)

    Paterson, M. S.

    2007-12-01

    In discussions on the localization of plastic deformation in situations such as the formation of "ductile" shear zones, it is commonly conjectured that strain softening, as evidenced by a falling stress-strain curve at constant strain rate, is likely to lead to strain localization in simple shear. Yet observations in torsion tests at constant twist rate on calcite and olivine aggregates fail to show such an effect. This apparent discrepancy is resolved by going to a continuum mechanics analysis using the theory of Fressengeas and Molinari (J. Mech. Phys. Solids 1987, 35, 185-211) for material showing strain-rate dependence of the flow stress. Their treatment of simple shear shows that, in the absence of material changes, whether localization occurs or not can depend on the nature of the boundary conditions. Thus, when the boundary conditions are specified in terms of displacements, no localization is predicted in case of strain softening, in agreement with the torsion test observations. In contrast, if the boundary conditions are set in terms of forces, localization can be expected for a strain-softening material. This prediction needs experimental testing in torsion creep tests at constant torque.

  14. Multistep-shaping control based on the static and dynamic behavior of nonlinear optical torsional micromirror

    NASA Astrophysics Data System (ADS)

    Bai, Cheng; Huang, Jin

    2014-05-01

    Electrostatically driven torsional micromirrors are suitable for optical microelectromechanical systems due to their good dynamic response, low adhesion, and simple structure for large-scale-integrated applications. For these devices, how to eliminate the excessive residual vibration in order to achieve more accurate positioning and faster switching is an important research topic. Because of the known nonlinearity issues, traditional shaping techniques based on linear theories are not suitable for nonlinear torsional micromirrors. In addition, due to the difficulties in calculating energy dissipation, the existing nonlinear command shaping techniques using energy method have neglected the effect of damping. We analyze the static and dynamic behavior of the electrostatically actuated torsional micromirrors. Based on the response of these devices, a multistep-shaping control considering the damping effects and the nonlinearity is proposed. Compared to the conventional closed-loop control, the proposed multistep-shaping control is a feedforward approach which can yield a good enough performance without extra sensors and actuators. Simulation results show that, without changing the system structure, the preshaping input reduces the settling time from 4.3 to 0.97 ms, and the overshoot percentage of the mirror response is decreased from 33.2% to 0.2%.

  15. Experimental Study of Torsional Column Failure

    NASA Technical Reports Server (NTRS)

    Nile, Alfred S

    1939-01-01

    Thirty-three 24ST aluminum-alloy 2- by 2- by 0.10-inch channels, with lengths ranging from 10 to 90 inches were tested at Stanford University in compression to obtain an experimental verification of the theoretical formulas for torsional failure developed by Eugene E. Lundquist of the N.A.C.A. The observed critical loads and twist-axis locations were sufficiently close to the values obtained from the formulas to establish the substantial validity of the latter. The differences between observed and computed results were small enough to be accounted for by small and mostly unavoidable differences between actual test conditions and those assumed in deriving the formulas. Some data were obtained from the shorter specimens regarding the growth of the buckles that resulted in local buckling failure.

  16. Plant-based torsional actuator with memory

    NASA Astrophysics Data System (ADS)

    Plaza, Nayomi; Zelinka, Samuel L.; Stone, Don S.; Jakes, Joseph E.

    2013-07-01

    A bundle of a few loblolly pine (Pinus taeda) cells are moisture-activated torsional actuators that twist multiple revolutions per cm length in direct proportion to moisture content. The bundles generate 10 N m kg-1 specific torque during both twisting and untwisting, which is higher than an electric motor. Additionally, the bundles exhibit a moisture-activated, shape memory twist effect. Over 70% of the twist in a wetted bundle can be locked-in by drying under constraint and then released by rewetting the bundle. Our results indicate that hemicelluloses dominate the shape fixity mechanism and lignin is primarily responsible for remembering the bundle’s original form. The bundles demonstrate proof of a high specific torque actuator with large angles of rotation and shape memory twist capabilities that can be used in microactuators, sensors, and energy harvesters.

  17. Mutations in GNAL cause primary torsion dystonia

    PubMed Central

    Fuchs, Tania; Saunders-Pullman, Rachel; Masuho, Ikuo; Luciano, Marta San; Raymond, Deborah; Factor, Stewart; Lang, Anthony E.; Liang, Tsao-Wei; Trosch, Richard M.; White, Sierra; Ainehsazan, Edmond; Herve, Denis; Sharma, Nutan; Ehrlich, Michelle E.; Martemyanov, Kirill A.; Bressman, Susan B.; Ozelius, Laurie J.

    2012-01-01

    Dystonia is a movement disorder characterized by repetitive twisting muscle contractions and postures1,2. Its molecular pathophysiology is poorly understood, in part due to limited knowledge of the genetic basis of the disorder. Only three genes for primary torsion dystonia (PTD), TOR1A (DYT1)3, THAP1 (DYT6)4, and CIZ15 have been identified. Using exome sequencing in two PTD families we identified a novel causative gene, GNAL, with a nonsense p.S293X mutation resulting in premature stop codon in one family and a missense p.V137M mutation in the other. Screening of GNAL in 39 PTD families, revealed six additional novel mutations in this gene. Impaired function of several of the mutations was shown by bioluminescence resonance energy transfer (BRET) assays. PMID:23222958

  18. Torsional suspension system for testing space structures

    NASA Technical Reports Server (NTRS)

    Reed, Wilmer H., III (Inventor); Gold, Ronald R. (Inventor)

    1991-01-01

    A low frequency torsional suspension system for testing a space structure uses a plurality of suspension stations attached to the space structure along the length thereof in order to suspend the space structure from an overhead support. Each suspension station includes a disk pivotally mounted to the overhead support, and two cables which have upper ends connected to the disk and lower ends connected to the space structure. The two cables define a parallelogram with the center of gravity of the space structure being vertically beneath the pivot axis of the disk. The vertical distance between the points of attachment of the cables to the disk and the pivot axis of the disk is adjusted to lower the frequency of the suspension system to a level which does not interfere with frequency levels of the space structure, thereby enabling accurate measurement.

  19. Novel fiber grating sensing technique based on the torsion beam

    NASA Astrophysics Data System (ADS)

    Zhang, Weigang; Feng, Dejun; Ding, Lei; Zhang, Ying; Dong, Xinyong; Zhao, Chunliu; Dong, Xiaoyi

    2000-07-01

    A novel fiber grating sensing technology based on the torsion beam is reported for the first time. The Bragg wavelength change is linear with the torsional angle and the torque. The fiber Bragg grating (FBG) is firmly mounted on the surface of the torsion beam with a determinate angle along the direction of the axes of the torsion beam. The range of the torsional angle is between -45 degree(s) and +45 degree(s). The sensing sensitivity of the torsional angle is up to 11.534 degree/nm and that of the torque is up to 0.1595 Nm/nm, respectively. The formulas have been derived theoretically and the experimental results basically accord with the theoretical ones. This technology has many advantages, such as two dimensional tuning, the high sensitivity, the good repetitiveness and no chirping for the torsional angle within the range -45 degree(s) and +45 degree(s), etc. It has potential applications in the area of the fiber sensing, the fiber communication and laser technology.

  20. Continuity Conditions and Torsion Angles from SSNMR Orientational Restraints

    PubMed Central

    Achuthan, S.; Asbury, T.; Hu, J.; Bertram, R.; Cross, T. A.; Quine, J. R.

    2008-01-01

    The backbone torsion angle pair (?, ?) at each amino acid of a polypeptide is a descriptor of its conformation. One can use chemical shift and dipolar coupling data from solid-state NMR PISEMA experiments to directly calculate the torsion angles for the membrane-spanning portion of a protein. However, degeneracies inherent in the data give rise to multiple potential torsion angles between two adjacent peptide planes (a diplane). The molecular backbone structure can be determined by gluing together the consecutive diplanes, as in the PIPATH algorithm [25]. The multiplicities in torsion angles translate to multiplicities in diplane orientations. In this paper, we show that adjacent diplanes can be glued together to form a permissible structure only if they satisfy continuity conditions, described quantitatively here. These restrict the number of potential torsion angle pairs. We rewrite the torsion angle formulas from [22] so that they automatically satisfy the continuity conditions. The reformulated torsion angle formulas have been applied recently in the PIPATH algorithm [25] and will be helpful in other applications in which diplane gluing is used to construct a protein backbone model. PMID:18093855

  1. Significance of torsion modes in bowed-string dynamics

    NASA Astrophysics Data System (ADS)

    Inacio, Octavio; Antunes, Jose; Henrique, Luis

    2002-11-01

    Several aspects of bowed-string dynamics are still inadequately clarified. The importance of torsion modes on the motion regimes is one such issue. Experiments involving torsion are difficult and most of the results available pertain to numerical simulations. The authors' approach differs from previous efforts in two main aspects: (1) the development of a computational method distinct from the wave-propagation approach pioneered by McIntyre, Schumacher, and Woodhouse and (2) an extensive and systematic analysis of the coupling between torsion and transverse motions is performed. The numerical simulations are based on a modal representation of the unconstrained string and a computational approach for friction that enables accurate representations of the stick-slip forces and of the string dynamics, in both time and space. Many relevant aspects of the bowed-string can be readily implemented, including string inharmonic behavior, finite bow-width, and torsion effects. Concerning the later aspect, a realistic range of the torsional to transverse wave-speed ratio is investigated, for several values of the bow velocity and normal force. Results suggest that torsion modes can effect both transient durations and steady state regimes, in particular when the above-mentioned ratio is <4. Gut strings should then be particularly prone to torsion effects.

  2. Intrinsic Angular Momentum of Light.

    ERIC Educational Resources Information Center

    Santarelli, Vincent

    1979-01-01

    Derives a familiar torque-angular momentum theorem for the electromagnetic field, and includes the intrinsic torques exerted by the fields on the polarized medium. This inclusion leads to the expressions for the intrinsic angular momentum carried by the radiation traveling through a charge-free medium. (Author/MA)

  3. Angular signal radiography.

    PubMed

    Li, Panyun; Zhang, Kai; Bao, Yuan; Ren, Yuqi; Ju, Zaiqiang; Wang, Yan; He, Qili; Zhu, Zhongzhu; Huang, Wanxia; Yuan, Qingxi; Zhu, Peiping

    2016-03-21

    Microscopy techniques using visible photons, x-rays, neutrons, and electrons have made remarkable impact in many scientific disciplines. The microscopic data can often be expressed as the convolution of the spatial distribution of certain properties of the specimens and the inherent response function of the imaging system. The x-ray grating interferometer (XGI), which is sensitive to the deviation angle of the incoming x-rays, has attracted significant attention in the past years due to its capability in achieving x-ray phase contrast imaging with low brilliance source. However, the comprehensive and analytical theoretical framework is yet to be presented. Herein, we propose a theoretical framework termed angular signal radiography (ASR) to describe the imaging process of the XGI system in a classical, comprehensive and analytical manner. We demonstrated, by means of theoretical deduction and synchrotron based experiments, that the spatial distribution of specimens' physical properties, including absorption, refraction and scattering, can be extracted by ASR in XGI. Implementation of ASR in XGI offers advantages such as simplified phase retrieval algorithm, reduced overall radiation dose, and improved image acquisition speed. These advantages, as well as the limitations of the proposed method, are systematically investigated in this paper. PMID:27136780

  4. The Angular Gyrus

    PubMed Central

    2013-01-01

    There is considerable interest in the structural and functional properties of the angular gyrus (AG). Located in the posterior part of the inferior parietal lobule, the AG has been shown in numerous meta-analysis reviews to be consistently activated in a variety of tasks. This review discusses the involvement of the AG in semantic processing, word reading and comprehension, number processing, default mode network, memory retrieval, attention and spatial cognition, reasoning, and social cognition. This large functional neuroimaging literature depicts a major role for the AG in processing concepts rather than percepts when interfacing perception-to-recognition-to-action. More specifically, the AG emerges as a cross-modal hub where converging multisensory information is combined and integrated to comprehend and give sense to events, manipulate mental representations, solve familiar problems, and reorient attention to relevant information. In addition, this review discusses recent findings that point to the existence of multiple subdivisions in the AG. This spatial parcellation can serve as a framework for reporting AG activations with greater definition. This review also acknowledges that the role of the AG cannot comprehensibly be identified in isolation but needs to be understood in parallel with the influence from other regions. Several interesting questions that warrant further investigations are finally emphasized. PMID:22547530

  5. The Torsion of Box Beams with One Side Lacking

    NASA Technical Reports Server (NTRS)

    Cambilargiu, E

    1940-01-01

    The torsion of box beams of rectangular section, the edges of which are strengthened by flanges, and of which one side is lacking, is analyzed by the energy method. The torsional stresses are generally taken up by the bending of the two parallel walls, the rigidity of which is augmented by the third wall. The result was checked experimentally on duralumin and plywood boxes. The torsion recorded was 10 to 30 percent less than that given by the calculation, owing to self-stiffening.

  6. Discussion on massive gravitons and propagating torsion in arbitrary dimensions

    SciTech Connect

    Hernaski, C. A.; Vargas-Paredes, A. A.; Helayeel-Neto, J. A.

    2009-12-15

    In this paper, we reassess a particular R{sup 2}-type gravity action in D dimensions, recently studied by Nakasone and Oda, now taking torsion effects into account. Considering that the vielbein and the spin connection carry independent propagating degrees of freedom, we conclude that ghosts and tachyons are absent only if torsion is nonpropagating, and we also conclude that there is no room for massive gravitons. To include these excitations, we understand how to enlarge Nakasone-Oda's model by means of explicit torsion terms in the action and we discuss the unitarity of the enlarged model for arbitrary dimensions.

  7. Experimental investigation of cyclic thermomechanical deformation in torsion

    NASA Technical Reports Server (NTRS)

    Ellis, John R.; Castelli, Michael G.; Bakis, Charles E.

    1992-01-01

    An investigation of thermomechanical testing and deformation behavior of tubular specimens under torsional loading is described. Experimental issues concerning test accuracy and control specific to thermomechanical loadings under a torsional regime are discussed. A series of shear strain-controlled tests involving the nickel-base superalloy Hastelloy X were performed with various temperature excursions and compared to similar thermomechanical uniaxial tests. The concept and use of second invariants of the deviatoric stress and strain tensors as a means of comparing uniaxial and torsional specimens is also briefly presented and discussed in light of previous thermomechanical tests conducted under uniaxial conditions.

  8. Twisted anisotropic fibers for robust orbital-angular-momentum-based information transmission

    NASA Astrophysics Data System (ADS)

    Barshak, E. V.; Alexeyev, C. N.; Lapin, B. P.; Yavorsky, M. A.

    2015-03-01

    We study the light propagation in the twisted anisotropic optical fibers endowed with torsional mechanical stress by obtaining the analytical solution of the vector wave equation. We show that at certain interplay between fiber parameters optical vortex beams of topological charge ? =0 ,1 ,2 ,... become the modes of the fibers in question. To explain the splitting of the optical vortex propagation constants we introduce the notions of orbital birefringence and optical Zeeman effect. Moreover, we unveil that induced by torsional stress circular birefringence makes the vortex beams with the well-defined orbital angular momentum robust against small perturbations characterized by both constant and spatially varying orientation of a director. We believe that such fibers can be successfully utilized for the long-range robust transmission of information encoded in the light's orbital degrees of freedom.

  9. Optical detection of thermal noise modes in torsional microelectromechanical oscillators

    NASA Astrophysics Data System (ADS)

    Vlaminck, Vincent; Guest, Jeffrey R.; Antonio, Dario; Lopez, Daniel; Pearson, John E.; Hoffmann, Axel

    2012-02-01

    We present the optical detection of the thermal noise spectrum for different torsional MEMS that will be implemented in a study of magnetomechanical coupling at the nanoscale. The interferometric measurement yields the differential dynamic displacement between two diffraction-limited spots on the surface to sub-pm precision, allowing us to identify the thermal modes in the low MHz frequency range. Flexion and torsional modes from thermal noise at room temperature can be distinguished by different amplitudes at different positions of the probe beam. The different mechanical eigenmodes are identified with the help of finite element simulations. This study of the thermal oscillation serves to identify the torsional mode frequencies that can be matched to low frequency magnetization dynamics of magnetic domain wall oscillators. At this point we have fabricated torsional oscillators with a resonance frequency of 6.53 MHz and a Q-factor of 1030, which are at the same time compatible with magnetic domain wall oscillators.

  10. Response characteristics of the human torsional vestibuloocular reflex

    NASA Technical Reports Server (NTRS)

    Peterka, Robert J.

    1992-01-01

    The characteristics of the response dynamics of the human torsional vestibuloocular reflex were studied during controlled rotations about an earth-horizontal axis. The results extended the frequency range to 2 Hz and identified the nonlinearity of the amplitude response.

  11. Isolated adnexal torsion in a 20-week spontaneous twin pregnancy

    PubMed Central

    Kahramanoglu, Ilker; Eroglu, Vasfiye; Turan, Hasan; Kaval, Gizem; Sal, Veysel; Tokgozoglu, Nedim

    2016-01-01

    Background Adnexal torsion can be a life-threatning condition in pregnancy, while the risk of late diagnosis is increased, in second and third trimester in particular. Laparoscopy is an effective approach in diagnosis and treatment of adnexal torsion. However, entry to abdomen may be challenging in more advanced pregnancies. Case report Herein, we report a case of adnexal torsion during 20th week of twin pregnancy, which was detorsioned laparoscopically. The woman delivered healthy infants at her 36th week of pregnancy. Discussion Adnexal torsion as a cause of acute abdomen may be kept in mind in pregnants, even if there is no predisposing factor. Laparoscopy may be performed safely in 2nd trimester for acute abdomen. PMID:27129134

  12. Uncommon cause of acute pelvic pain: isolated torsion of hydrosalpinx.

    PubMed

    Ait Benkaddour, Y; Bennani, R; Aboulfalah, A; Abbassi, H

    2009-12-01

    Isolated torsion of hydrosalpinx is a rare cause of acute pelvic pain. Pre-operative diagnosis is very difficult because of non specific clinical presentation. Definitive diagnosis is always made at surgical exploration performed for suspected adnexal torsion and salpingectomy is performed in the majority of cases. A 34-year-old woman was admitted for acute pelvic pain with nausea and vomiting. Vaginal examination revealed a right adnexal tender mass and ultrasound revealed a well circumscribed right adnexal cystic mass. Surgical exploration has revealed torsion of a right hydrosalpinx and right salpingectomy was performed. Differential diagnosis between adnexal and tubal torsion is very difficult, however both should be managed by rapid surgical exploration which an allow precocious diagnosis and conservative treatment. PMID:20690282

  13. [Acute torsion of the gallbladder--case report].

    PubMed

    Misiak, Piotr; Santorek-Strumiłło, Edyta; Wcisło, Szymon; Jabłoński, Sławomir; Kordiak, Jacek

    2009-05-01

    Torsion of gallbladder is simply defined as a rotation of the gallbladder on its mesentery along the axis of the cystic duct and the cystic artery. It is rare disease which etiology it's still unknown. However we can point some factors postulated as playing causative roles. This disease symptoms mimic acute cholecystitis. In spite of advanced radiological imaging technics there are still problems to set up correct preoperative diagnosis of gallbladder torsion. PMID:19606705

  14. Torsional texturing of superconducting oxide composite articles

    DOEpatents

    Christopherson, Craig John; Riley, Jr., Gilbert N.; Scudiere, John

    2002-01-01

    A method of texturing a multifilamentary article having filaments comprising a desired oxide superconductor or its precursors by torsionally deforming the article is provided. The texturing is induced by applying a torsional strain which is at least about 0.3 and preferably at least about 0.6 at the surface of the article, but less than the strain which would cause failure of the composite. High performance multifilamentary superconducting composite articles having a plurality of low aspect ratio, twisted filaments with substantially uniform twist pitches in the range of about 1.00 inch to 0.01 inch (25 to 0.25 mm), each comprising a textured desired superconducting oxide material, may be obtained using this texturing method. If tighter twist pitches are desired, the article may be heat treated or annealed and the strain repeated as many times as necessary to obtain the desired twist pitch. It is preferred that the total strain applied per step should be sufficient to provide a twist pitch tighter than 5 times the diameter of the article, and twist pitches in the range of 1 to 5 times the diameter of the article are most preferred. The process may be used to make a high performance multifilamentary superconducting article, having a plurality of twisted filaments, wherein the degree of texturing varies substantially in proportion to the radial distance from the center of the article cross-section, and is substantially radially homogeneous at any given cross-section of the article. Round wires and other low aspect ratio multifilamentary articles are preferred forms. The invention is not dependent on the melting characteristics of the desired superconducting oxide. Desired oxide superconductors or precursors with micaceous or semi-micaceous structures are preferred. When used in connection with desired superconducting oxides which melt irreversibly, it provides multifilamentary articles that exhibit high DC performance characteristics and AC performance markedly superior to any currently available for these materials. In a preferred embodiment, the desired superconducting oxide material is BSCCO 2223.

  15. Differential equations of motion for combined flapwise bending, chordwise bending, and torsion of twisted nonuniform rotor blades

    NASA Technical Reports Server (NTRS)

    Houbolt, John C; Brooks, George W

    1958-01-01

    The differential equations of motion for the lateral and torsional deformations of twisted rotating beams are developed for application to helicopter rotor and propeller blades. No assumption is made regarding the coincidence of the neutral, elastic, and mass axes, and the generality is such that previous theories involving various simplifications are contained as subcases to the theory presented in this paper. Special attention is given the terms which are not included in previous theories. These terms are largely coupling-type terms associated with the centrifugal forces. Methods of solution of the equations of motion are indicated by selected examples.

  16. Differential equations of motion for combined flapwise bending, chordwise bending, and torsion of twisted nonuniform rotor blades

    NASA Technical Reports Server (NTRS)

    Houbolt, John C; Brooks, George W

    1957-01-01

    The differential equations of motion for the lateral and torsional deformations of twisted rotating beams are developed for application to helicopter rotor and propeller blades. No assumption is made regarding the coincidence of the neutral, elastic, and mass axes, and the generality is such that previous theories involving various simplifications are contained as subcases to the theory developed and presented in this paper. Special attention is given to coupling terms not found in previous theories, and methods of solution of the equations of motion are indicated by selected examples.

  17. Relaxation of rotational angular momentum of polar diatomic molecules in simple liquids

    SciTech Connect

    Padilla, A.; Perez, J.

    2007-03-15

    The relaxation processes of rotational angular momentum of polar diatomic molecules diluted in simple liquids are analyzed by applying a non-Markovian relaxation theory to the study of the binary time autocorrelation function of the angular momentum. This non-Markovian theory was previously applied to the study of the infrared and Raman spectroscopy, and also to the analysis of the rotational energy relaxation processes. We have obtained non-Markovian evolution equations for the two-time j-level angular momentum correlation components involved in the angular momentum correlation function. In these equations, the time-dependent angular momentum transfer rates and the pure orientational angular transfer rates are given in terms of the binary time autocorrelation function of the diatomic-solvent anisotropic interaction. The non-Markovian evolution equations converge to Markovian ones in the long time limit, reaching the angular momentum transfer rates in the usual time-independent form. Alternative time scales for the angular relaxation processes, relative to the individual rotational processes as well as to the global decay correlations, are introduced and analyzed. The theory is applied to the study of the angular momentum relaxation processes of HCl diluted in liquid SF{sub 6}, a system for which rotational energy relaxation and infrared and Raman spectroscopy was previously analyzed in the scope of the same theory.

  18. MBL Experiment in Angular Momentum

    NASA Astrophysics Data System (ADS)

    Gluck, Paul

    2002-04-01

    Among the series of beautiful take-home experiments designed by A.P. French and J.G. King for MIT students, the one on angular momentum studies the loss and conservation of angular momentum using a small dc motor as generator. Here we describe a version of the experiment that increases its accuracy, enables students to perform detailed rotational dynamics calculations, and sharpens the ability to isolate the region where the collision occurs.

  19. Automated angular momentum recoupling algebra

    SciTech Connect

    Williams, H.T. . Dept. of Physics); Silbar, R.R. )

    1990-01-01

    We describe a code, RACAH, for algebraic solution of angular momentum recoupling problems. The general problem is to find an optimal path from one binary tree (representing the angular momentum coupling scheme for the reduced matrix element) to another (representing the sub-integrals and spin sums to be done). RACAH is implemented on a MS-DOS microcomputer, using the SCHEME dialect of LISP. 6 refs.

  20. New measurements and analysis of the far-infrared spectrum of CH2DOH in the lowest torsional vibrational state (e0)

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Indra

    2016-05-01

    In this work the far infrared (FIR) absorption spectrum has been measured for the asymmetrically mono deuterated Methanol (CH2DOH) species in the wavenumber range of 15-1200 cm-1 better accuracy and signal/noise ratio than known before. Assignments have been made for b-type transitions in the lowest lying torsional vibrational state trans-(e0) for a wide range of rotational angular momentum. The assignments have been rigorously confirmed by the residual loop defect methods. The rR-branch wavenumbers are analyzed by the usual state dependent expansion parameters and the Q-Branch origins. These origins have been used to calculate the torsional and torsional-rotation interaction contributions. These findings are in good agreement with predicted from the Hamiltonian model described in recent publications. A large number of assignments have also been made in the millimeter wave spectrum recorded earlier and thereby evaluated the asymmetry splitting parameters for 4 different axial rotational angular momentum quantum numbers. The analysis and interpretation of the spectra are reported. New assignments for about 260 transitions are included the text and a catalog of about 1500 transitions belonging to the e0 species is prepared (Appendix 1) and is made available through the open server in "Research Gate" and will be freely available to others.

  1. The external-anomeric torsional effect.

    PubMed

    Lii, Jenn-Huei; Chen, Kuo-Hsiang; Johnson, Glenn P; French, Alfred D; Allinger, Norman L

    2005-04-11

    The rotational barrier for a methyl group at the end of an anomeric system is sometimes lower than we might have anticipated. Thus, in the trans-trans conformation of dimethoxymethane, the barrier to methyl rotation is calculated (B3LYP/6-311++G(2d,2p)) to be 2.22 kcal/mol, just slightly smaller than the corresponding barrier to rotation of the methyl group in methyl propyl ether of 2.32 kcal/mol. However, if the methyl being rotated in dimethoxymethane is placed into a gauche conformation, that rotational barrier is reduced to 1.52 kcal/mol. This substantial (0.80 kcal/mol relative to methyl propyl ether) reduction in barrier height in the latter case is attributed mainly to the change in the bond order of the C-O bond to which the methyl is attached, as a function of conformation, which in turn is a result of the anomeric effect. We have called this barrier lowering the external-anomeric torsional effect. This effect is apparently widespread in carbohydrates, and it results in the changing of conformational energies by up to about 2 kcal/mol. If polysaccharide potential surfaces are to be accurately mapped by molecular mechanics, this effect clearly needs to be accounted for. PMID:15780251

  2. Control of Torsional Vibrations by Pendulum Masses

    NASA Technical Reports Server (NTRS)

    Stieglitz, Albert

    1942-01-01

    Various versions of pendulum masses have been developed abroad within the past few years by means of which resonant vibrations of rotating shafts can be eliminated at a given tuning. They are already successfully employed on radial engines in the form of pendulous counterweights. Compared with the commonly known torsional vibration dampers, the pendulum masses have the advantage of being structurally very simple, requiring no internal damping and being capable of completely eliminating certain vibrations. Unexplained, so far, remains the problem of behavior of pendulum masses in other critical zones to which they are not tuned, their dynamic behavior at some tuning other than in resonance, and their effect within a compound vibration system and at simultaneous application of several differently tuned pendulous masses. These problems are analyzed in the present report. The results constitute an enlargement of the scope of application of pendulum masses, especially for in-line engines. Among other things it is found that the natural frequency of a system can be raised by means of a correspondingly tuned pendulum mass. The formulas necessary for the design of any practical version are developed, and a pendulum mass having two different natural frequencies simultaneously is described.

  3. Influence of mistuning on blade torsional flutter

    NASA Technical Reports Server (NTRS)

    Srinivasan, A. V.

    1980-01-01

    An analytical technique for the prediction of fan blade flutter was evaluated by utilizing first stage fan flutter data from tests on an advanced high performance engine. The formulation includes both aerodynamic and mechanical coupling among all the blades of the assembly. Mistuning is accounted for in the analysis so that individual blade inertias, frequencies, or damping can be considered. Airfoil stability was predicted by calculating a flutter determinant, the eigenvalues of which indicate the extent of susceptibility to flutter. When blade to blade differences in frequencies are considered, a stable system is predicted for the test points examined. For a tuned system, it was found that torsional flutter can be predicted at a limited number of interblade phase angles. Examination of these phase angles indicated that they were "close" to the condition of acoustic resonance. For the range of Mach numbers and reduced frequencies considered, the so called subcritical flutter cannot be predicted. The essential influence of mechanical coupling among the blades is to change the frequencies of the system with little or no change in damping; however, aerodynamic coupling together with mechanical coupling could change not only frequencies, but also damping in the system, with a trend toward instability.

  4. Coherent Control of Molecular Torsion and the Active-space Decomposition Method

    NASA Astrophysics Data System (ADS)

    Parker, Shane Matthew

    This dissertation discusses schemes and applications for the strong-field control of molecular torsions as well as introduces the active-space decomposition method. In the first part, a route to realize general control over the torsional motions of a class of biaryl compounds is proposed. Torsion in biaryl compounds--molecules with two aromatic moieties connected by a bond about which the barrier to rotation is small--mediates the electronic coupling between the two rings in the molecule. Thus, by controlling the torsion angle, one also controls the electron transfer and transport rates, the absorption and emission spectra, and the molecule's chirality. In our scheme, a non-resonant half-cycle pulse interacts with the permanent dipole of only one moiety of the pre-oriented biaryl compound. In the non-adiabatic regime, coherent motion is initiated by the half-cycle pulse. In the adiabatic regime, the torsion angle is tuned by the pulse. By properly choosing the parameters and polarization of the half-cycle pulse, we show that free internal rotation can be started or that the molecular chirality can be inverted. Then, with the aid of optimal control theory, we design "deracemizing" control pulses, i.e., control pulses that convert a racemic mixture into an enantiopure mixture. Finally, we explore the potential for this type of control in a single-molecule pulling experiment. In the second part, we describe the active space decomposition method for computing excited states of molecular dimers. In this method, the dimer's wavefunction is expressed as a linear combination of direct products of orthogonal localized monomer states. The adiabatic dimer states are found by diagonalizing the Hamiltonian in this direct product space. Matrix elements between direct product states are computed directly, without ever explicitly forming the dimer wavefunction, thus enabling calculations of dimers with active space sizes that would be otherwise impossible. The decomposed wavefunctions approach the exact dimer wavefunctions in two limiting cases: when there is no coupling between the two monomers and when a full set of monomer states is used. After introducing the method, we apply it to the computation of model Hamiltonians for the singlet fission process.

  5. Wavelength shifts of cladding-mode resonance in corrugated long-period fiber gratings under torsion.

    PubMed

    Ivanov, Oleg V; Wang, Lon A

    2003-05-01

    A finite deformation theory of elasticity and a theory of nonlinear photoelasticity are applied to describe the wavelength shifts of cladding-mode resonance in corrugated long-period fiber gratings under torsion. The deformation of fiber is found by use of the Murnaghan model of a solid elastic body. The quadratic photoelastic effect that is proportional to the second-order displacement gradient is investigated and compared with the classical photoelastic effect. The electromagnetic field in the twisted corrugated structure is presented as a superposition of circularly polarized modes of the etched fiber section. The wavelength shift is found to be proportional to the square of the twist angle. As predicted by our theory, a wavelength shift of the same nature has been found in a conventionally photoinduced long-period fiber grating. PMID:12737456

  6. Effect of angular stability and other locking parameters on the mechanical performance of intramedullary nails.

    PubMed

    Hoffmann, Stefanie; Gerber, Claus; von Oldenburg, Geert; Kessler, Manuel; Stephan, Daniel; Augat, Peter

    2015-04-01

    To extend the indications of intramedullary nails for distal or proximal fractures, nails with angle stable locking options have been developed. Studies on the mechanical efficacy of these systems have been inconsistent likely due to confounding variables such as number, geometry, or orientation of the screws, as well as differences in the loading mode. Therefore, the aim of this study was to quantify the effect of angular stability on the mechanical performance of intramedullary nails. The results could then be compared with the effects of various locking screw parameters and loading modes. A generic model was developed consisting of artificial bone material and titanium intramedullary nail that provided the option to systematically modify the locking screw configuration. Using a base configuration, the following parameters were varied: number of screws, distance and orientation between screws, blocking of screws, and simulation of freehand locking. Tension/compression, torsional, and bending loads were applied. Stiffness and clearance around the zero loading point were determined. Angular stability had no effect on stiffness but completely blocked axial clearance (p=0.003). Simulation of freehand locking reduced clearance for all loading modes by at least 70% (p<0.003). The greatest increases in torsional and bending stiffness were obtained by increasing the number of locking screws (up to 80%, p<0.001) and by increasing the distance between them (up to 70%, p<0.001). In conclusion, our results demonstrate that the mechanical performance of IM nailing can be affected by various locking parameters of which angular stability is only one. While angular stability clearly reduces clearance of the screw within the nail, mechanical stiffness depends more on the number of screws and their relative distance. Thus, optimal mechanical performance in IM nailing could potentially be obtained by combining angular stability with optimal arrangement of locking screws. PMID:25581739

  7. Dispersion and phase shifts of torsional waves in forward models

    NASA Astrophysics Data System (ADS)

    Cox, G. A.; Livermore, P. W.; Mound, J. E.

    2013-12-01

    Torsional Alfvén waves have been thought to exist in the Earth's core since their theoretical prediction by Braginsky in 1970. More recently, they have been inferred from observations of secular variation and length of day, and also observed in geodynamo simulations. These inferences from geophysical data have provided an important means of estimating core properties such as viscosity and internal magnetic field strength. We produce 1D forward models of torsional waves in the Earth's core, also known as torsional oscillations, and study their evolution in a cylinder, a full sphere and an equatorially symmetric spherical shell. The key features of torsional waves in our models are: geometric dispersion, phase shifts and internal reflections. In all three core geometries, we find that travelling torsional waves undergo significant geometric dispersion that increases with successive reflections from the boundaries such that an initial wave pulse becomes unidentifiable within three transits of the core. This dispersion partly arises due to low amplitude wakes trailing behind sharply defined pulses during propagation, a phenomenon that is linked to the failure of Huygens' principle in the geometric setting of torsional waves. We investigate the relationship between geometric dispersion and wavelength, concluding that long wavelength features are more dispersive than short wavelength features. This result is particularly important because torsional waves inferred from secular variation are relatively long wavelength, and are therefore likely to undergo significant dispersion within the Earth's core. Torsional waves in all three geometries are reflected at the equator of the core-mantle boundary with the same sign as the incident wave, but display more complicated behaviour at the rotation axis. In a cylindrical core, the analytic solutions to the torsional wave equation are known. We use these to derive an expression for the phase shift that torsional waves undergo upon reflection at the equator of the core-mantle-boundary and when passing through the rotation axis. Finally, we identify a weak reflection at the tangent cylinder due to geometric effects in an equatorially symmetric shell, and observe other internal reflections due to strong magnetic field gradients.

  8. The Influence of the Aerodynamic Span Effect on the Magnitude of the Torsional-divergence Velocity and on the Shape of the Corresponding Deflection Mode

    NASA Technical Reports Server (NTRS)

    Hildebrand, Francis B; Reissner, Eric

    1944-01-01

    A procedure which takes into account the aerodynamic span effect is given for the determination of the torsional-divergence velocities of monoplanes. The explicit solutions obtained in several cases indicate that the aerodynamic span effect may increase the divergence velocities found by means of the section-force theory by as much as 17 to 40 percent. It is found that the magnitude of the effect increases with increasing degree of stiffness taper and decreases with increasing degree of chord taper. By a slight extension of the present method it is possible to analyze the elastic deformations of wings, and the resultant lift distributions, before torsional divergence occurs.

  9. Torsion - Vibration Coupling in the Methyl Rotor Systems

    NASA Astrophysics Data System (ADS)

    Huang, Meng; McCoy, Anne B.; Miller, Terry A.

    2014-06-01

    The couplings between the CH stretch and CH{_3} torsion in the methyl rotor have been widely studied in methanol. In this research, we are focusing on the effect of this coupling on the vibrational spectrum in the CH stretch region of the methanol cation - argon cluster, CH{_3}OH{^+}{\\cdot}Ar, and the methyl peroxy radical, CH{_3}OO{\\cdot}. A reduced dimensional analysis including the three CH stretches and the CH{_3} torsion is used to calculate the spectra. The CH stretches are treated as harmonic oscillators whose frequency depends on the torsional angle because of coupling between the CH stretch and CH{_3} torsion. The infrared spectrum of CH{_3}OH{^+}{\\cdot}Ar cluster taken by the Duncan groupshows multiple peak structure in the CH stretch region. In this system, the calculation indicates the coupling between the CH{_3} torsion and CH stretch is relatively strong. The multiple peak structure in the experimental spectrum can be assigned to the CH stretch fundamentals and the combination band involving the CH stretch and the CH{_3} torsion. However, for the methyl peroxy radical, the calculated coupling is very weak. In the CH stretch region of the infrared spectrum of CH{_3}OO{\\cdot} taken by the Lee group, only CH stretch fundamentals with relatively broad rotational contours are observed. The broadened structure of the CH stretch fundamental is possibly caused by sequence band structure from low lying torsional levels which are well populated and shift very little from the origin band. D. S. Perry J. Mol. Spectpsc. 2009, 257, 1-10 J. D. Mosley, J. W. Young, M. A. Duncan 68th International Symosium of Molecular Spectroscopy K.-H. Hsu, Y.-P. Lee, M. Huang, T. A. Miller 68th International Symosium of Molecular Spectroscopy

  10. Full Angular Profile of the Coherent Polarization Opposition Effect

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Luck, Jean-Marc; Nieuwenhuizen, Theo M.

    1999-01-01

    We use the rigorous vector theory of weak photon localization for a semi-infinite medium composed of nonabsorbing Rayleigh scatterers to compute the full angular profile of the polarization opposition effect. The latter is caused by coherent backscattering of unpolarized incident light and accompanies the renowned backscattering intensity peak.

  11. Proposals for the generation of angular momentum from non-uniformly polarized beams

    NASA Astrophysics Data System (ADS)

    Alonso, Mara; Piquero, Gemma; Serna, Julio

    2012-04-01

    Several optical arrangements using non-uniformly polarized fields are proposed for generating beams with spin and/or orbital angular momentum. By choosing adequately the input beam polarization and the characteristics of the different proposed set-ups we can control the overall angular momentum of the output beam at will. The orbital angular momentum is analyzed with the beam moments theory and the spin term is evaluated using the averaged s3 Stokes parameter.

  12. Early onset torsion dystonia (Oppenheim's dystonia).

    PubMed

    Kamm, Christoph

    2006-01-01

    Early onset torsion dystonia (EOTD) is a rare movement disorder characterized by involuntary, repetitive, sustained muscle contractions or postures involving one or more sites of the body. A US study estimated the prevalence at approximately 1 in 30,000. The estimated prevalence in the general population of Europe seems to be lower, ranging from 1 in 330,000 to 1 in 200,000, although precise numbers are currently not available. The estimated prevalence in the Ashkenazi Jewish population is approximately five to ten times higher, due to a founder mutation. Symptoms of EOTD typically develop first in an arm or leg in middle to late childhood and progress in approximately 30% of patients to other body regions (generalized dystonia) within about five years. Distribution and severity of symptoms vary widely between affected individuals. The majority of cases from various ethnic groups are caused by an autosomal dominantly inherited deletion of 3 bp (GAG) in the DYT1 gene on chromosome 9q34. This gene encodes a protein named torsinA, which is presumed to act as a chaperone protein associated with the endoplasmic reticulum and the nuclear envelope. It may interact with the dopamine transporter and participate in intracellular trafficking, although its precise function within the cell remains to be determined. Molecular genetic diagnostic and genetic counseling is recommended for individuals with age of onset below 26 years, and may also be considered in those with onset after 26 years having a relative with typical early onset dystonia. Treatment options include botulinum toxin injections for focal symptoms, pharmacological therapy such as anticholinergics (most commonly trihexiphenydil) for generalized dystonia and surgical approaches such as deep brain stimulation of the internal globus pallidus or intrathecal baclofen application in severe cases. All patients have normal cognitive function, and despite a high rate of generalization of dystonia, 75% of those patients are able to maintain ambulation and independence, and therefore a comparatively good quality of life, with modern treatment modalities. PMID:17129379

  13. Factors influencing perceived angular velocity

    NASA Technical Reports Server (NTRS)

    Kaiser, Mary K.; Calderone, Jack B.

    1991-01-01

    Angular velocity perception is examined for rotations both in depth and in the image plane and the influence of several object properties on this motion parameter is explored. Two major object properties are considered, namely, texture density which determines the rate of edge transitions for rotations in depth, i.e., the number of texture elements that pass an object's boundary per unit of time, and object size which determines the tangential linear velocities and 2D image velocities of texture elements for a given angular velocity. Results of experiments show that edge-transition rate biased angular velocity estimates only when edges were highly salient. Element velocities had an impact on perceived angular velocity; this bias was associated with 2D image velocity rather than 3D tangential velocity. Despite these biases judgements were most strongly determined by the true angular velocity. Sensitivity to this higher order motion parameter appeared to be good for rotations both in depth (y-axis) and parallel to the line of sight (z-axis).

  14. DNA torsion as a feedback mediator of transcription and chromatin dynamics

    PubMed Central

    Teves, Sheila S; Henikoff, Steven

    2014-01-01

    The double helical structure of DNA lends itself to topological constraints. Many DNA-based processes alter the topological state of DNA, generating torsional stress, which is efficiently relieved by topoisomerases. Maintaining this topological balance is crucial to cell survival, as excessive torsional strain risks DNA damage. Here, we review the mechanisms that generate and modulate DNA torsion within the cell. In particular, we discuss how transcription-generated torsional stress affects Pol II kinetics and chromatin dynamics, highlighting an emerging role of DNA torsion as a feedback mediator of torsion-generating processes. PMID:24819949

  15. Does a randall-sundrum scenario create the illusion of a torsion-free universe?

    PubMed

    Mukhopadhyaya, Biswarup; Sen, Somasri; SenGupta, Soumitra

    2002-09-16

    We consider spacetime with torsion in a Randall-Sundrum scenario where torsion, identified with the rank-2 Kalb-Ramond field, exists in the bulk together with gravity. While the interactions of both graviton and torsion in the bulk are controlled by the Planck mass, an additional exponential suppression comes for the torsion zero-mode on the visible brane. This may serve as a natural explanation of why the effect of torsion is so much weaker than that of curvature on the brane. The massive torsion modes, on the other hand, are correlated with the corresponding gravitonic modes and may be detectable in TeV-scale experiments. PMID:12225074

  16. Generation of angular momentum in cold gravitational collapse

    NASA Astrophysics Data System (ADS)

    Benhaiem, D.; Joyce, M.; Sylos Labini, F.; Worrakitpoonpon, T.

    2016-01-01

    During the violent relaxation of a self-gravitating system, a significant fraction of its mass may be ejected. If the time-varying gravitational field also breaks spherical symmetry, this mass can potentially carry angular momentum. Thus, starting initial configurations with zero angular momentum can, in principle, lead to a bound virialised system with non-zero angular momentum. Using numerical simulations we explore here how much angular momentum can be generated in a virialised structure in this way, starting from configurations of cold particles that are very close to spherically symmetric. For the initial configurations in which spherical symmetry is broken only by the Poissonian fluctuations associated with the finite particle number N, with N in range 103 to 105, we find that the relaxed structures have standard "spin" parameters λ ~ 10-3, and decreasing slowly with N. For slightly ellipsoidal initial conditions, in which the finite-N fluctuations break the residual reflection symmetries, we observe values λ ~ 10-2, i.e. of the same order of magnitude as those reported for elliptical galaxies. The net angular momentum vector is typically aligned close to normal to the major semi-axis of the triaxial relaxed structure and of the ejected mass. This simple mechanism may provide an alternative, or complement, to the so-called tidal torque theory for understanding the origin of angular momentum in astrophysical structures.

  17. Modelling the torsion of thin metal wires by distortion gradient plasticity

    NASA Astrophysics Data System (ADS)

    Bardella, Lorenzo; Panteghini, Andrea

    2015-05-01

    Under small strains and rotations, we apply a phenomenological higher-order theory of distortion gradient plasticity to the torsion problem, here assumed as a paradigmatic benchmark of small-scale plasticity. Peculiar of the studied theory, proposed about ten years ago by Morton E. Gurtin, is the constitutive inclusion of the plastic spin, affecting both the free energy and the dissipation. In particular, the part of the free energy, called the defect energy, which accounts for Geometrically Necessary Dislocations, is a function of Nye's dislocation density tensor, dependent on the plastic distortion, including the plastic spin. For the specific torsion problem, we implement this distortion gradient plasticity theory into a Finite Element (FE) code characterised by implicit (Backward Euler) time integration, numerically robust and accurate for both viscoplastic and rate-independent material responses. We show that, contrariwise to other higher-order theories of strain gradient plasticity (neglecting the plastic spin), the distortion gradient plasticity can predict some strengthening even if a quadratic defect energy is chosen. On the basis of the results of many FE analyses, concerned with (i) cyclic loading, (ii) switch in the higher-order boundary conditions during monotonic plastic loading, (iii) the use of non-quadratic defect energies, and (iv) the prediction of experimental data, we mainly show that (a) including the plastic spin contribution in a gradient plasticity theory is highly recommendable to model small-scale plasticity, (b) less-than-quadratic defect energies may help in describing the experimental results, but they may lead to anomalous cyclic behaviour, and (c) dissipative (unrecoverable) higher-order finite stresses are responsible for an unexpected mechanical response under non-proportional loading.

  18. Torsional Deformations in Subnanometer MoS Interconnecting Wires.

    PubMed

    Koh, Ai Leen; Wang, Shanshan; Ataca, Can; Grossman, Jeffrey C; Sinclair, Robert; Warner, Jamie H

    2016-02-10

    We use aberration-corrected transmission electron microscopy to track the real time atomic level torsional dynamics of subnanometer wires of MoS interconnecting monolayer regions of MoS2. An in situ heating holder is used inside the transmission electron microscope to raise the temperature of the sample to 400 °C to increase crystallization rates of the wires and reduce contamination effects. Frequent rotational twisting of the MoS wire is captured, demonstrating elastic torsional deformation of the MoS wires. We show that torsional rotations of the crystal structure of the MoS wires depend upon the specific atomic structure of the anchored sections of the suspended wire and the number of unit cells that make up the wire length. Elastic torsional flexibility of the MoS wires is revealed to help their self-adapting connectivity during the structural changes. Plastic torsional deformation is also seen for MoS wires that contain defects in their crystal structure, which produce small scale rotational disorder within the wires. Upon removal of the defects, the wire returns back to pristine form. These results provide detailed insights into how the atomic structure of the anchoring site significantly influences the nanowire configurations relative to the monolayered MoS2. PMID:26785319

  19. Direct torsional actuation of microcantilevers using magnetic excitation

    NASA Astrophysics Data System (ADS)

    Gosvami, Nitya Nand; Nalam, Prathima C.; Exarhos, Annemarie L.; Tam, Qizhan; Kikkawa, James M.; Carpick, Robert W.

    2014-09-01

    Torsional mode dynamic force microscopy can be used for a wide range of studies including mapping lateral contact stiffness, torsional frequency or amplitude modulation imaging, and dynamic friction measurements of various materials. Piezo-actuation of the cantilever is commonly used, but it introduces spurious resonances, limiting the frequency range that can be sampled, and rendering the technique particularly difficult to apply in liquid medium where the cantilever oscillations are significantly damped. Here, we demonstrate a method that enables direct torsional actuation of cantilevers with high uniformity over wide frequency ranges by attaching a micrometer-scale magnetic bead on the back side of the cantilever. We show that when beads are magnetized along the width of the cantilever, efficient torsional actuation of the cantilevers can be achieved using a magnetic field produced from a solenoid placed underneath the sample. We demonstrate the capability of this technique by imaging atomic steps on graphite surfaces in tapping mode near the first torsional resonance of the cantilever in dodecane. The technique is also applied to map the variations in the lateral contact stiffness on the surface of graphite and polydiacetylene monolayers.

  20. The intermountain power project commissioning - Subsynchronous torsional interaction tests

    SciTech Connect

    Wu, C.T.; Peterson, K.J. ); Pinko, R.J.; Kankam, M.D.; Baker, D.H. )

    1988-10-01

    Subsyncronous torsional vibration as a result of electrochemical interaction between the HVDC controls and a turbine-generator was first discovered during the commissioning of the Square Butte Project in 1977. The level of interaction between the HVDC controls and the turbine-generator depends on several interacting factors: the characteristic torsional frequencies of the turbine-generator, the bandwidth of the HVDC controls and the relative strength of the connecting ac system. For the Intermountain Power Project (IPP), early analysis of these interacting factors indicated that there exist definite potential for subsynchronous oscillation to occur. The calculated torsional frequencies of the IPP units showed that the first mode frequency is 14.0 Hz and is within the typical bandwidth of an HVDC control which is between 10-20 Hz. The HVDC controls, therefore, can influence the torsional stability of the IPP units. Further, the IPP turbine-generators are required to operate isolated on the HVDC rectifier terminal, with no other interconnecting ac network. This ''radial'' mode of operation will result in maximum interaction between the converter station and the IPP units. It became obvious that special measure must be implemented in the design of the IPP HVDC control system to modify its typical characteristics to avoid the occurrence of the subsynchronous oscillation. This paper presents the results of the subsynchronous torsional interaction (SSTI) tests that were performed during the commissioning of the IPP Unit 1 and the HVDC Transmission system.

  1. Numerical modeling of pendulum dampers in torsional systems

    SciTech Connect

    Johnston, P.R.; Shusto, L.M.

    1986-01-01

    Centrifugal pendulum-design dampers are utilized in torsional systems to reduce the vibration amplitude at certain objectionable torsional speeds. The damper is tuned by proper design of its mass, dimensions, and position on a carrier disk, which is rigidly attached to the torsional system. The effects of the pendulum damper on the response of the torsional system may be included by modifying the structural model to include a separate damper element representing each order of the pendulum damper. The stiffness and mass matrices for a damper element are dependent upon the order of vibration being dampened, the mass, and the geometry of the damper. A general form of the mass and stiffness equations for a simple centrifugal pendulum damper are derived from first principles using Lagrange's equations of motion. The analysis of torsional systems with pendulum dampers utilizing the mass and stiffness properties developed is included in the program SHAMS. SHAMS calculates the steady-state response of a system of springs and masses to harmonic loads using modal superposition. The response of a crankshaft system with and without the pendulum dampers are included as a case study.

  2. Elevated temperature axial and torsional fatigue behavior of Haynes 188

    NASA Technical Reports Server (NTRS)

    Bonacuse, Peter J.; Kalluri, Sreeramesh

    1992-01-01

    The results of high-temperature axial and torsional low-cycle fatigue experiments performed on Haynes 188, a wrought cobalt-base superalloy, are reported. Fatigue tests were performed at 760 C in air on thin-walled tubular specimens at various ranges under strain control. Data are also presented for coefficient of thermal expansion, elastic modulus, and shear modulus at various temperatures from room to 1000 C, and monotonic and cyclic stress-strain curves in tension and in shear at 760 C. The data set is used to evaluate several multiaxial fatigue life models (most were originally developed for room temperature multiaxial life prediction) including von Mises equivalent strain range (ASME boiler and pressure vessel code), Manson-Halford, Modified Multiaxiality Factor (proposed here), Modified Smith-Watson-Topper, and Fatemi-Socie-Kurath. At von Mises equivalent strain ranges (the torsional strain range divided by the square root of 3, taking the Poisson's ratio to be 0.5), torsionally strained specimens lasted, on average, factors of 2 to 3 times longer than axially strained specimens. The Modified Multiaxiality Factor approach shows promise as a useful method of estimating torsional fatigue life from axial fatigue data at high temperatures. Several difficulties arose with the specimen geometry and extensometry used in these experiments. Cracking at extensometer probe indentations was a problem at smaller strain ranges. Also, as the largest axial and torsional strain range fatigue tests neared completion, a small amount of specimen buckling was observed.

  3. Elevated temperature axial and torsional fatigue behavior of Haynes 188

    NASA Technical Reports Server (NTRS)

    Bonacuse, Peter J.; Kalluri, Sreeramesh

    1995-01-01

    The results are reported for high-temperature axial and torsional low-cycle fatigue experiments performed at 760 C in air on thin-walled tubular specimens of Haynes 188, a wrought cobalt-based superalloy. Data are also presented for mean coefficient of thermal expansion, elastic modulus, and shear modulus at various temperatures from room to 1000 C, and monotonic and cyclic stress-strain curves in tension and in shear at 760 C. This data set is used to evaluate several multiaxial fatigue life models (most were originally developed for room temperature multiaxial life prediction) including von Mises equivalent strain range (ASME Boiler and Pressure Code), Manson-Halford, modified multiaxiality factor (proposed in this paper), modified Smith-Watson-Topper, and Fatemi-Socie-Kurath. At von Mises equivalent strain ranges (the torsional strain range divided by the square root of 3, taking the Poisson's ratio to be 0.5), torsionally strained specimens lasted, on average, factors of 2 to 3 times longer than axially strained specimens. The modified multiaxiality factor approach shows promise as a useful method of estimating torsional fatigue life from axial fatigue data at high temperatures. Several difficulties arose with the specimen geometry and extensometry used in these experiments. Cracking at extensometer probe indentations was a problem at smaller strain ranges. Also, as the largest axial and torsional strain range fatigue tests neared completion, a small amount of specimen buckling was observed.

  4. A torsion quasi-zero stiffness vibration isolator

    NASA Astrophysics Data System (ADS)

    Zhou, Jiaxi; Xu, Daolin; Bishop, Steven

    2015-03-01

    A torsion vibration isolator with quasi-zero stiffness (QZS) is proposed to attenuate the transmission of torsional vibration along a shaft system, which also plays a role of coupling between shafts. A pre-compressed cam-roller mechanism is designed to provide torsional negative stiffness that counteracts with the positive torsion stiffness of the vulcanized rubber between shafts. With the design parameters are set to satisfy a unique condition, the stiffness of the isolator delivers a QZS property about the equilibrium position. A nonlinear mathematical model is developed and its dynamic characteristics are further analyzed by using the Harmonic Balance method. A typical folded resonance curve occurs when the vibration amplitude is plotted as the excitation frequency is varied, illustrating a jump phenomenon in the response. The efficiency of vibration attenuation is estimated under a designed torque load, showing that the torsion QZS vibration isolator outperforms the corresponding linear counterpart, especial in low frequency ranges. Furthermore, the torque transmissibility of the QZS isolator is also studied to demonstrate the performance of the QZS isolator when the actual torque deviates from the design load.

  5. Protective effect of thymoquinone against testicular torsion induced oxidative injury.

    PubMed

    Ayan, M; Tas, U; Sogut, E; Cayl?, S; Kaya, H; Esen, M; Erdemir, F; Uysal, M

    2016-03-01

    We aimed to determine the protective effects of thymoquinone (TQ), against ischaemia-reperfusion (I/R) injury in the testis tissue of rats. Twenty-seven male Wistar albino rats were randomly divided into three equal groups as follows: Group I, sham group; Group II, torsion group; and Group III, torsion+thymoquinone group. The ischaemia period was 2h, and orchiectomy was performed after 30min of detorsion. Testis tissue sections were analysed with the terminal transferase mediated dUTP-nick end labelling (TUNEL) assay to determine insitu apoptotic DNA fragmentation. Additionally, Caspase 3 and Bax proteins were analysed immunohistochemically. The superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and malondialdehyde (MDA) activity levels in the testis tissue were also measured. The superoxide dismutase activity and malondialdehyde levels in the torsion group were significantly higher than those of the sham group (P<0.05). Thymoquinone administration significantly reduced these levels. Torsion significantly increased active-Caspase 3 and Bax expression, which was decreased by thymoquinone. The apoptotic index of the torsion group was significantly higher than that of the control group. However, thymoquinone significantly reduced the apoptotic index (P<0.05). Our results indicate that thymoquinone plays a protective role in oxidative stress induced ischaemia-reperfusion in the testis tissue of rats. PMID:25906970

  6. Interferometric measurement of angular motion

    NASA Astrophysics Data System (ADS)

    Peña Arellano, Fabián Erasmo; Panjwani, Hasnain; Carbone, Ludovico; Speake, Clive C.

    2013-04-01

    This paper describes the design and realization of a homodyne polarization interferometer for measuring angular motion. The optical layout incorporates carefully designed cat's eye retroreflectors that maximize the measurable range of angular motion and facilitate initial alignment. The retroreflectors are optimized and numerically characterized in terms of defocus and spherical aberrations using Zemax software for optical design. The linearity of the measurement is then calculated in terms of the aberrations. The actual physical interferometer is realized as a compact device with optical components from stock and without relying on adjustable holders. Evaluation of its performance using a commercial autocollimator confirmed a reproducibility within 0.1%, a non-linearity of less than 1 ppm with respect to the autocollimator, an upper limit to its sensitivity of about 5 × 10-11 rad/sqrt{textrm {Hz}} from audioband down to 100 mHz and an angular measurement range of more than ±1°.

  7. Variations in atmospheric angular momentum

    NASA Technical Reports Server (NTRS)

    Rosen, R. D.; Salstein, D. A.

    1981-01-01

    Twice-daily values of the atmosphere's angular momentum about the polar axis during the five years from 1976 through 1980 are presented in graphs and a table. The compilation is based on a global data set, incorporating 90 percent of the mass of the atmosphere. The relationship between changes in the angular momentum of the atmosphere and changes in the length of day is described, as are the main sources of error in the data. The variability in angular momentum is revealed in a preliminary fashion by means of a spectral decomposition. The data presented should stimulate comparisons with other measures of the length of day and so provide a basis for greater understanding of Earth-atmosphere interactions.

  8. Interferometric measurement of angular motion.

    PubMed

    Peña Arellano, Fabián Erasmo; Panjwani, Hasnain; Carbone, Ludovico; Speake, Clive C

    2013-04-01

    This paper describes the design and realization of a homodyne polarization interferometer for measuring angular motion. The optical layout incorporates carefully designed cat's eye retroreflectors that maximize the measurable range of angular motion and facilitate initial alignment. The retroreflectors are optimized and numerically characterized in terms of defocus and spherical aberrations using Zemax software for optical design. The linearity of the measurement is then calculated in terms of the aberrations. The actual physical interferometer is realized as a compact device with optical components from stock and without relying on adjustable holders. Evaluation of its performance using a commercial autocollimator confirmed a reproducibility within 0.1%, a non-linearity of less than 1 ppm with respect to the autocollimator, an upper limit to its sensitivity of about 5 × 10(-11) rad/Hz from audioband down to 100 mHz and an angular measurement range of more than ±1°. PMID:23635175

  9. Evidence for changes in the angular velocity of the surface regions of the sun and stars

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A round table discussion of problems of solar and stellar spindown and theory is presented. Observational evidence of the angular momentum of the solar wind is included, emphasizing changes in the angular velocity of the surface regions of the sun and stars.

  10. Non-Colinearity of Angular Velocity and Angular Momentum

    ERIC Educational Resources Information Center

    Burr, A. F.

    1974-01-01

    Discusses the principles, construction, and operation of an apparatus which serves to demonstrate the non-colinearity of the angular velocity and momentum vectors as well as the inertial tensors. Applications of the apparatus to teaching of advanced undergraduate mechanics courses are recommended. (CC)

  11. Solar cell angular position transducer

    NASA Astrophysics Data System (ADS)

    Sandford, M. C.; Gray, D. L.

    1980-01-01

    An angular position transducer utilizing photocells and a light source is disclosed. The device uses a fully rotatable baffle which is connected via an actuator shaft to the body whose rotational displacement is to be measured. The baffle blocks the light path between the light source and the photocells so that a constant semicircular beam of light reaches the photocells. The current produced by the photocells is fed through a resistor, a differential amplifier measures the voltage drop across the resistor which indicates the angular position of the actuator shaft and hence of the object.

  12. Influence of geometry and materials on the axial and torsional strength of the head-neck taper junction in modular hip replacements: A finite element study.

    PubMed

    Fallahnezhad, Khosro; Farhoudi, Hamidreza; Oskouei, Reza H; Taylor, Mark

    2016-07-01

    The assembly force is important in establishing the mechanical environment at the head-neck taper junction of modular hip replacements. Previous experimental results of the assembled taper junctions with different material combinations (Co-28Cr-6Mo and Ti-6Al-4V) reported similar axial strengths (pull-off loads), but lower torsional strengths (twist-off moments) for the CoCr/CoCr junction. However, mechanics of the junction and the strength behaviour have not been understood yet. A three dimensional finite element model of an isolated femoral head-neck junction was developed to explore the assembly and disassembly procedures, particularly the axial and torsional strengths for different material combinations and geometries. Under the same assembly load, the contacting length between the CoCr head and titanium neck was greater than that of in CoCr/CoCr. The contact length in the titanium neck was more sensitive to the assembly force when compared to the CoCr neck. For instance, with increasing the assembly force from 1890 to 3700N, the contact length increased by 88% for CoCr/Ti and 59% for CoCr/CoCr junctions. The torsional strength of the junction was related to the lateral deformation of the neck material due to the applied moment. The angular mismatch existing between the head and neck components was found to play the main role in the torsional strength of the junction. The smaller mismatch angle the higher torsional strength. It is suggested to consider reducing the mismatch angle, particularly in CoCr/CoCr junctions, and ensure a sufficiently high assembly force is applied by impaction for this combination. PMID:26807768

  13. Angular control of optical cavities in a radiation-pressure-dominated regime: the Enhanced LIGO case.

    PubMed

    Dooley, Katherine L; Barsotti, Lisa; Adhikari, Rana X; Evans, Matthew; Fricke, Tobin T; Fritschel, Peter; Frolov, Valera; Kawabe, Keita; Smith-Lefebvre, Nicolás

    2013-12-01

    We describe the angular sensing and control (ASC) of 4 km detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO). Enhanced LIGO, the culmination of the first generation LIGO detectors, operated between 2009 and 2010 with about 40 kW of laser power in the arm cavities. In this regime, radiation-pressure effects are significant and induce instabilities in the angular opto-mechanical transfer functions. Here we present and motivate the ASC design in this extreme case and present the results of its implementation in Enhanced LIGO. Highlights of the ASC performance are successful control of opto-mechanical torsional modes, relative mirror motions of ≤ 1×10(-7) rad rms, and limited impact on in-band strain sensitivity. PMID:24323024

  14. Anelastic behavior of a torsion pendulum with a CuBe fiber at low temperature, and implications for a measurement of the gravitational constant

    NASA Astrophysics Data System (ADS)

    Bantel, Michael Kurt

    1998-07-01

    Using a torsion pendulum, we have investigated the anelastic properties of a CuBe torsion fiber for shear strains in the range 4×10-7 to 3×10-3 at temperatures 4.2K, 77K, and 295K. The fiber was 20 μm in diameter and 24 cm long, with a torsion constant of 0.033 dyn/cdot cm/cdot rad-1. It suspended an 11 gram azimuthally symmetric torsion pendulum which loaded the fiber to approximately 25% of its tensile strength at room temperature. The natural torsional oscillation frequency of this system was 6.4 mHz. An autocollimator viewing a set of mirrors on the oscillating pendulum served to measure with great accuracy the times at which the pendulum assumed a large set of discrete angular displacements during each oscillation cycle. This enabled a determination of the angular displacement of the pendulum as a function of time to better than a part in 107 of its oscillation amplitude, from which accurate information was obtained on the pendulum's frequency, damping, and harmonic content as functions of the oscillation amplitude. Analysis yields a determination of the fourth order shear elastic constant of CuBe. Expressing the shear potential energy density as: u(/epsilon)=c2ɛ2+c3ɛ3+ c4ɛ4 where ɛ is the shear strain, the values determined for (c2,/ c3,/ c4) are (25, 0.17, -550) GPa respectively. A striking feature of the fiber's internal friction Q-1 is that it appears to be the sum of two independent components: Q-1=Q I-1(T)+ Q II-1(A) where Q I-1(T) is temperature-dependent, varying by a factor of 3 between 4.2 and 77K, and Q II-1(A) is linearly dependent on amplitude and virtually independent of temperature; its linear dependence on amplitude varied by less than 4% between 4.2K and 77K. Interestingly the measurements of: the linear amplitude-dependent Q II-1, the linear component of the amplitude-dependent frequency shift, and the harmonic content associated with a dissipative hysteresis loop, are consistent with the motion generated by a simple stick-slip mechanism. Such a mechanism may be the result of microplastic behavior associated with the motion of dislocations and/or point defects. For a measurement of the gravitational constant using a torsion pendulum, these fiber-related properties may create a maximal 2-5 ppm systematic error assuming a comprehensive analysis is employed.

  15. Ab initio determination of mode coupling in HSSH - The torsional splitting in the first excited S-S stretching state

    NASA Technical Reports Server (NTRS)

    Herbst, Eric; Winnewisser, G.; Yamada, K. M. T.; Defrees, D. J.; Mclean, A. D.

    1989-01-01

    A mechanism for the enhanced splitting detected in the millimeter-wave rotational spectra of the first excited S-S stretching state of HSSH (disulfane) has been studied. The mechanism, which involves a potential coupling between the first excited S-S stretching state and excited torsional states, has been investigated in part by the use of ab initio theory. Based on an ab initio potential surface, coupling matrix elements have been calculated, and the amount of splitting has then been estimated by second-order perturbation theory. The result, while not in quantitative agreement with the measured splitting, lends plausibility to the assumed mechanism.

  16. FREQUENCY FILTERING OF TORSIONAL ALFVEN WAVES BY CHROMOSPHERIC MAGNETIC FIELD

    SciTech Connect

    Fedun, V.; Erdelyi, R.; Verth, G.; Jess, D. B.

    2011-10-20

    In this Letter, we demonstrate how the observation of broadband frequency propagating torsional Alfven waves in chromospheric magnetic flux tubes can provide valuable insight into their magnetic field structure. By implementing a full nonlinear three-dimensional magnetohydrodynamic numerical simulation with a realistic vortex driver, we demonstrate how the plasma structure of chromospheric magnetic flux tubes can act as a spatially dependent frequency filter for torsional Alfven waves. Importantly, for solar magnetoseismology applications, this frequency filtering is found to be strongly dependent on magnetic field structure. With reference to an observational case study of propagating torsional Alfven waves using spectroscopic data from the Swedish Solar Telescope, we demonstrate how the observed two-dimensional spatial distribution of maximum power Fourier frequency shows a strong correlation with our forward model. This opens the possibility of beginning an era of chromospheric magnetoseismology, to complement the more traditional methods of mapping the magnetic field structure of the solar chromosphere.

  17. Meckel's diverticulum complicated by axial torsion and gangrene

    PubMed Central

    Hadeed, Andrew A.H.; Azar, Robert R.A.; Azar, Nabiel N.A.; Benninger, Brion

    2015-01-01

    Meckel's diverticulum is a remnant of the omphalomesenteric duct and is the most common congenital anomalies of the gastrointestinal tract. It has been known to mimic different disease states making its diagnosis difficult. Common complications consist of bleeding, intestinal obstruction and inflammation. The patient discussed in this case study was a 29-year-old Hispanic female who presented with right lower quadrant abdominal pain. A CT scan showed a normal appendix, thickened terminal ileum and a high-grade distal small bowel obstruction with a possible closed-loop obstruction. Laparoscopy revealed Meckel's diverticulum with the rare complication of torsion. The mechanism of torsion has been postulated but with little evidence. The purpose of this case report is to discuss the apparent mechanism of axial torsion secondary to the presence of a mesodiverticular band, provide visual evidence at surgery and recommend all Meckel's diverticulum associated with a mesodiverticular band be resected to prevent further complications. PMID:25733669

  18. Splenic Torsion Requiring Splenectomy Six Years Following Laparoscopic Nissen Fundoplication

    PubMed Central

    Le, Khoi; Griner, Devan; Tackett, Darryl

    2012-01-01

    Background: Laparoscopic Nissen fundoplication has become a mainstay in the surgical treatment of gastroesophageal reflux disease, as it has proved to be a durable, well-tolerated procedure. Despite the safety and efficacy associated with this procedure, surgeons performing this advanced laparoscopic surgery should be well versed in the potential intraoperative and postoperative complications. Methods: A case is presented of a rare complication of splenic torsion following laparoscopic Nissen fundoplication. Diagnostic evaluations and intraoperative findings are discussed. Results: We present an otherwise healthy 41-year-old woman who underwent a laparoscopic Nissen fundoplication 6 years earlier at another medical center and presented with worsening chronic left upper quadrant abdominal pain. She was diagnosed with torsion of the splenic vascular pedicle, resulting in heterogenicity of perfusion with associated hematoma requiring open splenectomy. Conclusion: Surgeons should be aware of splenic torsion as a potential, albeit rare, complication related to laparoscopic Nissen fundoplication. PMID:22906354

  19. Fault diagnosis of planetary gearboxes via torsional vibration signal analysis

    NASA Astrophysics Data System (ADS)

    Feng, Zhipeng; Zuo, Ming J.

    2013-04-01

    Torsional vibration signals are theoretically free from the amplitude modulation effect caused by time variant vibration transfer paths due to the rotation of planet carrier and sun gear, and therefore their spectral structure are simpler than transverse vibration signals. Thus, it is potentially easy and effective to diagnose planetary gearbox faults via torsional vibration signal analysis. We give explicit equations to model torsional vibration signals, considering both distributed gear faults (like manufacturing or assembly errors) and local gear faults (like pitting, crack or breakage of one tooth), and derive the characteristics of both the traditional Fourier spectrum and the proposed demodulated spectra of amplitude envelope and instantaneous frequency. These derivations are not only effective to diagnose single gear fault of planetary gearboxes, but can also be generalized to detect and locate multiple gear faults. We validate experimentally the signal models, as well as the Fourier spectral analysis and demodulation analysis methods.

  20. Testicular torsion and the acute scrotum: current emergency management.

    PubMed

    Ta, Anthony; D'Arcy, Frank T; Hoag, Nathan; D'Arcy, John P; Lawrentschuk, Nathan

    2016-06-01

    The acute scrotum is a challenging condition for the treating emergency physician requiring consideration of a number of possible diagnoses including testicular torsion. Prompt recognition of torsion and exclusion of other causes may lead to organ salvage, avoiding the devastating functional and psychological issues of testicular loss and minimizing unnecessary exploratory surgeries. This review aims to familiarize the reader with the latest management strategies for the acute scrotum, discusses key points in diagnosis and management and evaluates the strengths and drawbacks of history and clinical examination from an emergency perspective. It outlines the types and mechanisms of testicular torsion, and examines the current and possible future roles of labwork and radiological imaging in diagnosis. Emergency departments should be wary of younger males presenting with the acute scrotum. PMID:26267075

  1. On Measuring G with a Cryogenic Torsion Pendulum

    NASA Astrophysics Data System (ADS)

    Newman, Riley

    2000-04-01

    A progress report is presented on a measurement of G using a torsion pendulum operating at 2K in a ``dynamic" (``time-of-swing") mode, in which G is determined from the change in the pendulum's torsional oscillation period when the position of a pair of field source masses is varied. The cryogenic environment offers many advantages, most notably in increased mechanical Q of the pendulum with correspondingly reduced possible systematic error from anelastic torsion fiber behavior. The source masses are copper rings with a particular spacing which results in an extremely uniform gravitational field gradient, making the G measurement highly insensitive to uncertainty in the pendulum's position relative to the masses. The pendulum is a thin quartz plate suspended in a vertical plane, a geometry that makes the G measurement relatively insensitive to error in the pendulum's mass and dimensions. The apparatus operates in a former Nike missile bunker near Richland, Washington.

  2. Nonlinear Curvature Expressions for Combined Flapwise Bending, Chordwise Bending, Torsion and Extension of Twisted Rotor Blades

    NASA Technical Reports Server (NTRS)

    Kvaternik, R. G.; Kaza, K. R. V.

    1976-01-01

    The nonlinear curvature expressions for a twisted rotor blade or a beam undergoing transverse bending in two planes, torsion, and extension were developed. The curvature expressions were obtained using simple geometric considerations. The expressions were first developed in a general manner using the geometrical nonlinear theory of elasticity. These general nonlinear expressions were then systematically reduced to four levels of approximation by imposing various simplifying assumptions, and in each of these levels the second degree nonlinear expressions were given. The assumptions were carefully stated and their implications with respect to the nonlinear theory of elasticity as applied to beams were pointed out. The transformation matrices between the deformed and undeformed blade-fixed coordinates, which were needed in the development of the curvature expressions, were also given for three of the levels of approximation. The present curvature expressions and transformation matrices were compared with corresponding expressions existing in the literature.

  3. Coupled bending-bending-torsion flutter of a mistuned cascade with nonuniform blades

    NASA Technical Reports Server (NTRS)

    Kaza, K. R. V.; Kielb, R. E.

    1982-01-01

    A set of aeroelastic equations describing the motion of an arbitrarily mistuned cascade with flexible, pretwisted, nonuniform blades is developed using an extended Hamilton's principle. The derivation of the equations has its basis in the geometric nonlinear theory of elasticity in which the elongations and shears are negligible compared to unity. A general expression for foreshortening of a blade is derived and is explicity used in the formulation. The blade aerodynamic loading in the subsonic and supersonic flow regimes is obtained from two dimensional, unsteady, cascade theories. The aerodynamic, inertial and structural coupling between the bending (in two planes) and torsional motions of the blade is included. The equations are used to investigate the aeroelastic stability and to quantify the effect of frequency mistuning on flutter in turbofans. Results indicate that a moderate amount of intentional mistuning has enough potential to alleviate flutter problems in unshrouded, high aspect ratio turbofans.

  4. Kinetic description of electron plasma waves with orbital angular momentum

    SciTech Connect

    Mendonca, J. T.

    2012-11-15

    We describe the kinetic theory of electron plasma waves with orbital angular momentum or twisted plasmons. The conditions for a twisted Landau resonance to exist are established, and this concept is introduced for the first time. Expressions for the kinetic dispersion relation and for the electron Landau damping are derived. The particular case of a Maxwellian plasma is examined in detail. The new contributions to wave dispersion and damping due the orbital angular momentum are discussed. It is shown that twisted plasmons can be excited by rotating electron beams.

  5. Edge delamination of composite laminates subject to combined tension and torsional loading

    NASA Technical Reports Server (NTRS)

    Hooper, Steven J.

    1990-01-01

    Delamination is a common failure mode of laminated composite materials. Edge delamination is important since it results in reduced stiffness and strength of the laminate. The tension/torsion load condition is of particular significance to the structural integrity of composite helicopter rotor systems. Material coupons can easily be tested under this type of loading in servo-hydraulic tension/torsion test stands using techniques very similar to those used for the Edge Delamination Tensile Test (EDT) delamination specimen. Edge delamination of specimens loaded in tension was successfully analyzed by several investigators using both classical laminate theory and quasi-three dimensional (Q3D) finite element techniques. The former analysis technique can be used to predict the total strain energy release rate, while the latter technique enables the calculation of the mixed-mode strain energy release rates. The Q3D analysis is very efficient since it produces a three-dimensional solution to a two-dimensional domain. A computer program was developed which generates PATRAN commands to generate the finite element model. PATRAN is a pre- and post-processor which is commonly used with a variety of finite element programs such as MCS/NASTRAN. The program creates a sufficiently dense mesh at the delamination crack tips to support a mixed-mode fracture mechanics analysis. The program creates a coarse mesh in those regions where the gradients in the stress field are low (away from the delamination regions). A transition mesh is defined between these regions. This program is capable of generating a mesh for an arbitrarily oriented matrix crack. This program significantly reduces the modeling time required to generate these finite element meshes, thus providing a realistic tool with which to investigate the tension torsion problem.

  6. Intensity Modeling of Methanol in the Torsional Manifold

    NASA Astrophysics Data System (ADS)

    Xu, Li-Hong; Kleiner, Isabelle

    2013-06-01

    Methanol is a popular and very important molecule both in astrophysics and atmospheric science, for which reliable line intensities have long been desired by the user communities. Because of the low barrier to the large-amplitude torsional motion, the methanol spectrum is extremely rich and complicated, representing a significant challenge for global modeling. Not until recent years has the torsional manifold of v_t = 0, 1, and 2 levels been successfully globally modeled using a modified version of the BELGI code. The resulting global fit parameters were then used to predict line lists in the THz region, employing both permanent dipole moments and torsional dependence of the dipole moments from ab initio results for the intensity calculations. However, recent direct intensity measurements based on Fourier transform spectra from JPL call for improvement of the intensity model. Thus, we have initiated enhanced modeling of the measured intensities in the torsional manifold using an extended set of dipole moment parameters, including permanent (μ_a, μ_b), torsionally dependent (μ_{a3nγ}, μ_{b3nγ}, μ_{c3nγ}), and K and J dependent terms. While we are hopeful that this will improve our intensity predictive power, we also foresee challenges in the modeling for the A torsional species since a substantial body of the measured A doublet transitions exhibit either small asymmetry splittings for low K and high J states or are barely to completely unresolved as K increases. The present status of this work is that the existing database still needs some cleaning up to make it consistent with the new code. We hope to report our early intensity fit results at the conference. Xu et. al., J. Mol. Spectrosc. {251} (2008) p305. Xu & Lovas, J. Phys. Chem. Ref. Data {26} (1997) p17. Mekhtiev et. al., J. Mol. Spectrosc. {194} (1999) p171. Brauer et. al., JQSRT {113} (2012) p128.

  7. The lunar angular momentum problem

    NASA Technical Reports Server (NTRS)

    Weidenschilling, S. J.

    1984-01-01

    Formation of the Moon by classical Darwin-type fission of a rapidly spinning proto-Earth is discussed. The relationship of angular momentum to accretion disks is examined. The co-accretion scenario and Darwin-type fission are compared and evaluated.

  8. Olympic Wrestling and Angular Momentum.

    ERIC Educational Resources Information Center

    Carle, Mark

    1988-01-01

    Reported is the use of a wrestling photograph in a noncalculus introductory physics course. The photograph presents a maneuver that could serve as an example for a discussion on equilibrium, forces, torque, and angular motion. Provided are some qualitative thoughts as well as quantitative calculations. (YP)

  9. Spontaneous compactification and Ricci-flat manifolds with torsion

    NASA Astrophysics Data System (ADS)

    McInnes, Brett

    1986-08-01

    The Freund-Rubin mechanism is based on the equation Rik=λgik (where λ>0), which, via Myers' theorem, implies ``spontaneous'' compactification. The difficulties connected with the cosmological constant in this approach can be resolved if torsion is introduced and λ is set equal to zero, but then compactification ``by hand'' is necessary since the equation Rik =0 can be satisfied both on compact and on noncompact manifolds. In this paper we discuss the global geometry of Ricci-flat manifolds with torsion, and suggest ways of restoring the ``spontaneity'' of the compactification.

  10. Free torsional vibrations of tapered cantilever I-beams

    NASA Astrophysics Data System (ADS)

    Rao, C. Kameswara; Mirza, S.

    1988-08-01

    Torsional vibration characteristics of linearly tapered cantilever I-beams have been studied by using the Galerkin finite element method. A third degree polynomial is assumed for the angle of twist. The analysis presented is valid for long beams and includes the effect of warping. The individual as well as combined effects of linear tapers in the width of the flanges and the depth of the web on the torsional vibration of cantilever I-beams are investigated. Numerical results generated for various values of taper ratios are presented in graphical form.

  11. Prenatal Testicular Torsion: Not Always in the Late Third Trimester.

    PubMed

    Sauvestre, Fanny; André, Gwenaëlle; Harran, Marie-Hélène; Hemard, Marie; Carles, Dominique; Pelluard, Fanny

    2016-03-01

    Prenatal testicular torsion is a very rare morbid entity, described in the literature to occur when the testicle is intrascrotal, around the 34th week of gestation. Here we report a case of early testicular necrosis. This male fetus was the product of a medical abortion at 27 weeks. During evisceration, a left testicular nubbin free in the peritoneal cavity was found. Histologically, it was extensively necrotic. Because of the location, the size, and the histological features of this necrotic testicle, we conclude that it was the result of torsion of the pedicle that occurred around the 20th week of pregnancy. PMID:26657689

  12. Noise limit of a torsion pendulum under optomechanical control

    NASA Astrophysics Data System (ADS)

    Tan, Yu-Jie; Hu, Zhong-Kun; Shao, Cheng-Gang

    2015-09-01

    In most torsion pendulum experiments, the force resolution is dominantly limited by thermal noise, which is proportional to the pendulum's intrinsic rigidity. Thus, increasing the rigidity directly, such as through increasing torsion fiber's diameter, will decrease the resolution. Here, we present a method to improve the rigidity of a pendulum indirectly through optomechanical control. In this method, for appropriate typical parameter values, the rigidity can be improved greatly. Meanwhile, the extra noise introduced, which our analysis focuses on, can be regulated within the thermal noise level, i.e., the force resolution may not decrease after optomechanical control. This can balance the conflict between large rigidity and high resolution.

  13. Torsion-induced optical rotation in isotropic glass media.

    PubMed

    Vasylkiv, Yuriy; Adamenko, Dmitro; Kvasnyuk, Oleksiy; Smaga, Ihor; Skab, Ihor; Shopa, Yaroslav; Vlokh, Rostyslav

    2015-03-20

    We have revealed that torsion stresses produce an optical activity effect in initially isotropic glass media. The optical activity caused by spatially inhomogeneous mechanical stresses has been experimentally studied for a standard glass BK7 subjected to torques, using a single-beam polarimetry and a polarizer-sample-analyzer scheme. The torsion-gyration coefficient for the BK7 glass has been determined as (3.96±0.82)×10-17  m3/N. PMID:25968521

  14. Coated Fused Silica Fibers for Enhanced Sensitivity Torsion Pendulum

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Horowitz, Jordan; Camp, Jordan

    2007-01-01

    In order to investigate the fundamental thermal noise limit of a torsion pendulum using a fused silica fiber, we systematically measured and modeled the mechanical losses of thin fused silica fibers coated by electrically conductive thin metal films. Our results indicate that it is possible to achieve a thermal noise limit for coated silica lower by a factor between 3 and 9, depending on the silica diameter, compared to the best tungsten fibers available. This will allow a corresponding increase in sensitivity of torsion pendula used for weak force measurements, including the gravitational constant measurement and ground-based force noise testing for the Laser Interferometer Space Antenna (LISA) mission.

  15. Torsion Testing of Diffusion Bonded LIGA Formed Nickel

    SciTech Connect

    Buchheit, T.E.; Christenson, T.R.; Schmale, D.T.

    1999-01-27

    A test technique has been devised which is suitable for the testing of the bond strength of batch diffusion bonded LIGA or DXRL defined structures. The method uses a torsion tester constructed with the aid of LIGA fabrication and distributed torsion specimens which also make use of the high aspect ratio nature of DXRL based processing. Measurements reveal achieved bond strengths of 130MPa between electroplated nickel with a bond temperature of 450 C at 7 ksi pressure which is a sufficiently low temperature to avoid mechanical strength degradation.

  16. Post-Newtonian spin and angular momentum of bounded systems

    NASA Astrophysics Data System (ADS)

    Caporali, A.; Spyrou, N.

    1981-07-01

    The Newtonian expressions for (1) the orbital angular momentum of a two-body system and (2) the spin of each body, are generalized through the introduction of corresponding definitions in the post-Newtonian approximation of fully conservative theories of gravity. By means of this definition of the spin, and assuming that the bodies rotate rigidly and that the equations of motion are Hamiltonian, it is shown that the spin of each body undergoes a relativistic precession about the direction of the orbital angular momentum in fully conservative theories of gravity as a consequence of the local equations of motion for a perfect fluid. The method described is pertinent to the possibility of testing gravity theories by observing binary pulsar relativistic effects.

  17. Angular output of hollow, metal-lined, waveguide Raman sensors

    SciTech Connect

    Biedrzycki, Stephen; Buric, Michael P.; Falk, Joel; Woodruff, Steven D.

    2012-04-20

    Hollow, metal-lined waveguides used as gas sensors based on spontaneous Raman scattering are capable of large angular collection. The collection of light from a large solid angle implies the collection of a large number of waveguide modes. An accurate estimation of the propagation losses for these modes is required to predict the total collected Raman power. We report a theory/experimental comparison of the Raman power collected as a function of the solid angle and waveguide length. New theoretical observations are compared with previous theory appropriate only for low-order modes. A cutback experiment is demonstrated to verify the validity of either theory. The angular distribution of Raman light is measured using aluminum and silver-lined waveguides of varying lengths.

  18. A shear-shear torsional beam model for nonlinear aeroelastic analysis of tower buildings

    NASA Astrophysics Data System (ADS)

    Piccardo, G.; Tubino, F.; Luongo, A.

    2015-08-01

    In this paper, an equivalent one-dimensional beam model immersed in a three-dimensional space is proposed to study the aeroelastic behavior of tower buildings: linear and nonlinear dynamics are analyzed through a simple but realistic physical modeling of the structure and of the load. The beam is internally constrained, so that it is capable to experience shear strains and torsion only. The elasto-geometric and inertial characteristics of the beam are identified from a discrete model of three-dimensional frame, via a homogenization process. The model accounts for the torsional effect induced by the rotation of the floors around the tower axis; the macroscopic shear strain is produced by bending of the columns, accompanied by negligible rotation of the floors. Nonlinear aerodynamic forces are evaluated through the quasi-steady theory. The first aim is to investigate the effect of mechanical and aerodynamic coupling on the critical galloping conditions. Furthermore, the role of aerodynamic nonlinearities on the galloping post-critical behavior is analyzed through a perturbation solution which permits to obtain a reduced one-dimensional dynamical system, capable of capturing the essential dynamics of the problem.

  19. Smoothed dissipative particle dynamics with angular momentum conservation

    SciTech Connect

    Müller, Kathrin Fedosov, Dmitry A. Gompper, Gerhard

    2015-01-15

    Smoothed dissipative particle dynamics (SDPD) combines two popular mesoscopic techniques, the smoothed particle hydrodynamics and dissipative particle dynamics (DPD) methods, and can be considered as an improved dissipative particle dynamics approach. Despite several advantages of the SDPD method over the conventional DPD model, the original formulation of SDPD by Español and Revenga (2003) [9], lacks angular momentum conservation, leading to unphysical results for problems where the conservation of angular momentum is essential. To overcome this limitation, we extend the SDPD method by introducing a particle spin variable such that local and global angular momentum conservation is restored. The new SDPD formulation (SDPD+a) is directly derived from the Navier–Stokes equation for fluids with spin, while thermal fluctuations are incorporated similarly to the DPD method. We test the new SDPD method and demonstrate that it properly reproduces fluid transport coefficients. Also, SDPD with angular momentum conservation is validated using two problems: (i) the Taylor–Couette flow with two immiscible fluids and (ii) a tank-treading vesicle in shear flow with a viscosity contrast between inner and outer fluids. For both problems, the new SDPD method leads to simulation predictions in agreement with the corresponding analytical theories, while the original SDPD method fails to capture properly physical characteristics of the systems due to violation of angular momentum conservation. In conclusion, the extended SDPD method with angular momentum conservation provides a new approach to tackle fluid problems such as multiphase flows and vesicle/cell suspensions, where the conservation of angular momentum is essential.

  20. Smoothed dissipative particle dynamics with angular momentum conservation

    NASA Astrophysics Data System (ADS)

    Müller, Kathrin; Fedosov, Dmitry A.; Gompper, Gerhard

    2015-01-01

    Smoothed dissipative particle dynamics (SDPD) combines two popular mesoscopic techniques, the smoothed particle hydrodynamics and dissipative particle dynamics (DPD) methods, and can be considered as an improved dissipative particle dynamics approach. Despite several advantages of the SDPD method over the conventional DPD model, the original formulation of SDPD by Español and Revenga (2003) [9], lacks angular momentum conservation, leading to unphysical results for problems where the conservation of angular momentum is essential. To overcome this limitation, we extend the SDPD method by introducing a particle spin variable such that local and global angular momentum conservation is restored. The new SDPD formulation (SDPD+a) is directly derived from the Navier-Stokes equation for fluids with spin, while thermal fluctuations are incorporated similarly to the DPD method. We test the new SDPD method and demonstrate that it properly reproduces fluid transport coefficients. Also, SDPD with angular momentum conservation is validated using two problems: (i) the Taylor-Couette flow with two immiscible fluids and (ii) a tank-treading vesicle in shear flow with a viscosity contrast between inner and outer fluids. For both problems, the new SDPD method leads to simulation predictions in agreement with the corresponding analytical theories, while the original SDPD method fails to capture properly physical characteristics of the systems due to violation of angular momentum conservation. In conclusion, the extended SDPD method with angular momentum conservation provides a new approach to tackle fluid problems such as multiphase flows and vesicle/cell suspensions, where the conservation of angular momentum is essential.

  1. The Angular Momentum of Baryons and Dark Matter Halos Revisited

    NASA Technical Reports Server (NTRS)

    Kimm, Taysun; Devriendt, Julien; Slyz, Adrianne; Pichon, Christophe; Kassin, Susan A.; Dubois, Yohan

    2011-01-01

    Recent theoretical studies have shown that galaxies at high redshift are fed by cold, dense gas filaments, suggesting angular momentum transport by gas differs from that by dark matter. Revisiting this issue using high-resolution cosmological hydrodynamics simulations with adaptive-mesh refinement (AMR), we find that at the time of accretion, gas and dark matter do carry a similar amount of specific angular momentum, but that it is systematically higher than that of the dark matter halo as a whole. At high redshift, freshly accreted gas rapidly streams into the central region of the halo, directly depositing this large amount of angular momentum within a sphere of radius r = 0.1R(sub vir). In contrast, dark matter particles pass through the central region unscathed, and a fraction of them ends up populating the outer regions of the halo (r/R(sub vir) > 0.1), redistributing angular momentum in the process. As a result, large-scale motions of the cosmic web have to be considered as the origin of gas angular momentum rather than its virialised dark matter halo host. This generic result holds for halos of all masses at all redshifts, as radiative cooling ensures that a significant fraction of baryons remain trapped at the centre of the halos. Despite this injection of angular momentum enriched gas, we predict an amount for stellar discs which is in fair agreement with observations at z=0. This arises because the total specific angular momentum of the baryons (gas and stars) remains close to that of dark matter halos. Indeed, our simulations indicate that any differential loss of angular momentum amplitude between the two components is minor even though dark matter halos continuously lose between half and two-thirds of their specific angular momentum modulus as they evolve. In light of our results, a substantial revision of the standard theory of disc formation seems to be required. We propose a new scenario where gas efficiently carries the angular momentum generated by large-scale structure motions deep inside dark matter halos, redistributing it only in the vicinity of the disc.

  2. Testicular torsion in a patient with Cohen syndrome

    PubMed Central

    Yılmaz, Ömer; Yeşildal, Cumhur; Malkoç, Ercan; Soydan, Hasan

    2015-01-01

    Cohen syndrome is an extremely rare autosomal recessive disorder. A 12-year-old boy with Cohen syndrome applied to a primary health care center because of severe pain in the left groin and was diagnosed with epididymo-orchitis. Despite the administered the antibiotic treatment, pain increased. Therefore, the family brought the patient to the emergency department 16 h after the first diagnosis. The patient had mild mental retardation, myopia, and craniofacial dysmorphism, which are components of Cohen syndrome. There was no blood flow on the left testicle at color Doppler ultrasonography. Further, scrotal exploration was performed because of a high risk of torsion. The left testicle was torsioned, and the color was dark blue. Revascularization could not be achieved by detorsion; left orchiectomy and right testicular fixation were then conducted. In conclusion, to the best of our knowledge, this is the first reported case of testicular torsion in Cohen syndrome. If a patient with this syndrome has acute groin pain, testicular torsion should be immediately ruled out with Doppler ultrasonography. These patients may not clearly and correctly express themselves because of mild mental retardation. Moreover, detailed genitourinary, particularly testicular examination may clarify the omitted pathologies and make them well known in future in this syndrome. PMID:26328200

  3. The ground state torsion rotation spectrum of CH2DOH

    NASA Astrophysics Data System (ADS)

    Pearson, John C.; Yu, Shanshan; Drouin, Brian J.

    2012-10-01

    The ground state torsion rotation spectrum of CH2DOH has been completely characterized through J = 30 and Ka = 10, 9, 9 in the three torsional sub-states of the ground state; e0, e1, and o1, respectively. Additional a-type assignments are presented to Ka = 11 in each of the torsional sub-states. The data has been analyzed with an empirical power series model as well as an empirical internal axis model. Over 8000 transitions have been assigned and fit with near experimental accuracy over the range of 4-1628 GHz. The characterization of the spectrum allows for a complete set of ground state term values enabling a better understanding of the infrared spectrum. Comparison of the torsional contributions of the Hamiltonian with normal methanol provides great insight into the nature of the asymmetric-top asymmetric-frame internal rotation problem. The comparison with normal methanol also provides a relatively straightforward transformation from the well understood C3V internal rotation problem to the completely asymmetric internal rotation problem. The data and analysis provide some practical wisdom on the impacts of breaking the symmetry and the choice of models for addressing the nearly three fold completely asymmetric internal rotation problem.

  4. Torsional Oscillations and Waves Projected on the Wall

    ERIC Educational Resources Information Center

    Bartlett, Albert A.

    2008-01-01

    The article "Torsional Oscillations with Lorentz Force" by Paul Gluck provides a glimpse into the major world of ancient physics demonstrations in the late 19th and first half of the 20th centuries. The apparatus that was described and similar pieces of apparatus are the basis for many memorable but long forgotten educational demonstrations. The…

  5. Acute Abdomen due to Primary Omental Torsion and Infarction

    PubMed Central

    Occhionorelli, S.; Zese, M.; Cappellari, L.; Stano, R.; Vasquez, G.

    2014-01-01

    Background. Torsion of greater omentum is a quite uncommon cause of acute abdomen. It can be primary or secondary but in both cases omentum twists upon itself and causes omental segmentary or diffuse necrosis. Symptoms are unspecific and preoperative diagnosis is difficult. The widespread and increasing use of computer tomography (CT) in differential diagnosis of acute abdomen can be useful for making a specific diagnosis. Objectives. This work aims to describe primary omental torsion in order to help avoid misdiagnosis, especially with acute appendicitis, which is eventually based solely on a physical examination. Case Report. We present a case of primary omental torsion in a young man and discuss contemporary methods in diagnosis and management of the condition. Conclusions. When a right diagnosis has been posed, possible treatments for omental torsion and necrosis are two: conservative or surgical. Conservative treatment had been rarely carried out because of frequent and important sequelae just like abdominal abscesses. Nowadays, surgical treatment, laparoscopic or laparotomic, is preferred because it is a safe method in diagnosis and management of this condition. PMID:25431726

  6. New Approaches to Data Acquisitions in a Torsion Pendulum Experiment

    ERIC Educational Resources Information Center

    Jiang, Daya; Xiao, Jinghua; Li, Haihong; Dai, Qionglin

    2007-01-01

    In this paper, two simple non-contact and cost-effective methods to acquire data in the student laboratory are applied to investigate the motion of a torsion pendulum. The first method is based on a Hall sensor, while the second makes use of an optical mouse.

  7. 34. VERTICAL AND TORSIONAL MOTION VIEWED FROM EAST TOWER, 7 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. VERTICAL AND TORSIONAL MOTION VIEWED FROM EAST TOWER, 7 NOVEMBER 1940, FROM 16MN FILM SHOT BY PROFESSOR F.B. FARQUHARSON, UNIVERSITY OF WASHINGTON. (LABORATORY STUDIES ON THE TACOMA NARROWS BRIDGE, AT UNIVERSITY OF WASHINGTON (SEATTLE: UNIVERSITY OF WASHINGTON, DEPARTMENT OF CIVIL ENGINEERING, 1941) - Tacoma Narrows Bridge, Spanning Narrows at State Route 16, Tacoma, Pierce County, WA

  8. Quaternionic Torsion Geometry, Superconformal Symmetry and T-duality

    SciTech Connect

    Swann, Andrew

    2009-02-02

    HyperKaehler metrics with torsion (HKT metrics) are constructed via superconformal symmetry. It is shown how T-duality interpreted as a twist construction for circle actions provides a number of compact simply-connected examples. Further applications of the twist construction are discussed to obtain compact simply-connected HKT manifolds with few symmetries and to construct all HKT nilmanifolds.

  9. Testicular torsion in a patient with Cohen syndrome.

    PubMed

    Y?lmaz, mer; Ye?ildal, Cumhur; Malko, Ercan; Soydan, Hasan

    2015-03-01

    Cohen syndrome is an extremely rare autosomal recessive disorder. A 12-year-old boy with Cohen syndrome applied to a primary health care center because of severe pain in the left groin and was diagnosed with epididymo-orchitis. Despite the administered the antibiotic treatment, pain increased. Therefore, the family brought the patient to the emergency department 16 h after the first diagnosis. The patient had mild mental retardation, myopia, and craniofacial dysmorphism, which are components of Cohen syndrome. There was no blood flow on the left testicle at color Doppler ultrasonography. Further, scrotal exploration was performed because of a high risk of torsion. The left testicle was torsioned, and the color was dark blue. Revascularization could not be achieved by detorsion; left orchiectomy and right testicular fixation were then conducted. In conclusion, to the best of our knowledge, this is the first reported case of testicular torsion in Cohen syndrome. If a patient with this syndrome has acute groin pain, testicular torsion should be immediately ruled out with Doppler ultrasonography. These patients may not clearly and correctly express themselves because of mild mental retardation. Moreover, detailed genitourinary, particularly testicular examination may clarify the omitted pathologies and make them well known in future in this syndrome. PMID:26328200

  10. Controversy concerning the definition of quark and gluon angular momentum

    SciTech Connect

    Leader, Elliot

    2011-05-01

    A major controversy has arisen in QCD as to how to split the total angular momentum into separate quark and gluon contributions, and as to whether the gluon angular momentum can itself be split, in a gauge-invariant way, into a spin and orbital part. Several authors have proposed various answers to these questions and offered a variety of different expressions for the relevant operators. I argue that none of these is acceptable and suggest that the canonical expression for the momentum and angular momentum operators is the correct and physically meaningful one. It is then an inescapable fact that the gluon angular momentum operator cannot, in general, be split in a gauge-invariant way into a spin and orbital part. However, the projection of the gluon spin onto its direction of motion, i.e. its helicity is gauge invariant and is measured in deep inelastic scattering on nucleons. The Ji sum rule, relating the quark angular momentum to generalized parton distributions, though not based on the canonical operators, is shown to be correct, if interpreted with due care. I also draw attention to several interesting aspects of QED and QCD, which, to the best of my knowledge, are not commented upon in the standard textbooks on field theory.

  11. The Rotation-Torsion Spectrum of CH_2DOH

    NASA Astrophysics Data System (ADS)

    Hilali, A. El; Coudert, L. H.; Margulès, L.; Motiyenko, R.; Klee, S.

    2010-06-01

    Due to the asymmetry of the CH_2D group, the internal rotation problem in the partially deuterated species of methanol CH_2DOH is a complicated one as, unlike in the normal species CH_3OH, the inertia tensor depends on the angle of internal rotation. The CH_2DOH species also displays a dense far infrared torsional spectrum difficult to assign. Recently 38 torsional subbands of CH_2DOH have been identified, but for most of them there is neither an assignment nor an analysis of their rotational structure. In this paper an analysis of the rotation-torsion spectrum of CH_2DOH will be presented. The rotational structure of 23 torsional subbands have been assigned. These subbands are Δ v_t &ge 1 perpendicular subbands with a value of v'_t up to 10b and values of K' and K'' ranging from 0 to 9. For all subbands, the Q-branch was assigned, for 3 subbands, the R- and P-branches could also be found. The results of the rotational analysis with an expansion in J(J+1) of the new subbands and of already observed ones will be presented. When available, microwave lines within the lower torsional level, recorded in this work or already measured, were added to the data set. A theoretical approach aimed at calculating the rotation-torsion energy levels has also been developed. It is based on an expansion in terms of rotation-torsion operators with C_s symmetry and accounts for the dependence of the inertia tensor on the angle of internal rotation. This approach will be used to carry out a preliminary global analyses of the wavenumbers and of the frequencies. Lauvergnat, Coudert, Klee, and Smirnov, J. Mol. Spec. 256 (2009) 204. Quade, Liu, Mukhopadhyay, and Su, J. Mol. Spec. 192 (1998) 378; Mukhopadhyay, J. Mol. Struct. 695-696 (2004) 357. Liu and Quade, J. Mol. Spec. 146 (1991) 252 Mukhopadhyay et al., J. Chem. Phys. 116 (2002) 3710.

  12. Effects of Torsion on Intervertebral Disc Gene Expression and Biomechanics, Using a Rat Tail Model

    PubMed Central

    Barbir, Ana; Godburn, Karolyn E.; Michalek, Arthur J.; Lai, Alon; Monsey, Robert D.; Iatridis, James C.

    2010-01-01

    Study Design In vitro and in vivo rat tail model to assess effects of torsion on intervertebral disc biomechanics and gene expression. Objective Investigate effects of torsion on promoting biosynthesis and producing injury in rat caudal intervertebral discs. Summary of Background Data Torsion is an important loading mode in the disc and increased torsional range of motion is associated with clinical symptoms from disc disruption. Altered elastin content is implicated in disc degeneration, but its effects on torsional loading are unknown. Although effects of compression have been studied, the effect of torsion on intervertebral disc gene expression is unknown. Methods In vitro biomechanical tests were performed in torsion on rat tail motion segments subjected to 4 treatments: elastase, collagenase, genipin, control. In vivo tests were performed on rats with Ilizarov-type fixators implanted to caudal motion segments with five 90-minute loading groups: 1 Hz cyclic torsion to ±5°, ±15°, and ±30°, static torsion to +30°, and sham. Anulus and nucleus tissues were separately analyzed using qRT-PCR for gene expression of anabolic, catabolic, and proinflammatory cytokine markers. Results In vitro tests showed decreased torsional stiffness following elastase treatment and no changes in stiffness with frequency. In vivo tests showed no significant changes in dynamic stiffness with time. Cyclic torsion upregulated elastin expression in the anulus fibrosus. Upregulation of TNF-α and IL-1β was measured at ±30°. Conclusion We conclude that strong differences in the disc response to cyclic torsion and compression are apparent with torsion increasing elastin expression and compression resulting in a more substantial increase in disc metabolism in the nucleus pulposus. Results highlight the importance of elastin in torsional loading and suggest that elastin remodels in response to shearing. Torsional loading can cause injury to the disc at excessive amplitudes that are detectable biologically before they are biomechanically. PMID:20736890

  13. Angular Multiplex Laser Fusion Drivers

    NASA Astrophysics Data System (ADS)

    Parks, Joel H.

    1981-09-01

    A study program has been completed which assesses the feasibility of using rare gas-halide lasers as near term inertial confinement fusion (ICF) drivers. A prime objective of this program was to provide credible, design parameter maps to establish energy levels achievable with current and near term technologies. Key program elements include laser scaling projections, modular e-beam and pulsed power technology, optical angular multiplex configurations,optical structures, multibeam pointing and alignment, gas flow and acoustics issues, and trade-off analyses. Rare gas-halide lasers, in particular the KrF* laser, can be designed to meet ICF requirements. These lasers are scalable, emit at short wavelengths (KrF* 250 nm) and, through the use of optical angular multiplexing, can produce the required high energy (~1-5 MJ) in a short pulse (~10 ns) with projected overall efficiency in the range of 5-7%.

  14. Angular-Momentum-Compensating Servomechanism

    NASA Technical Reports Server (NTRS)

    Marchetto, Carl A.

    1988-01-01

    Servomechanism for rotating an instrumentation platform isolates supporting vehicle or stationary platform from reaction torques producedby rotations. Prevents aiming of instrument from disturbing vehicle or other instrument platforms. Rotating oppositely to instrument platform, reaction wheel, motor, and gear 1 have angular momentum equal and opposite to gear 2, output shaft, and platform. External torque reaction to rotation of platform canceled. Although spur gears appear in schematic diagram, gear train made of spline gears.

  15. Effects of toughness anisotropy and combined tension, torsion, and bending loads on fracture behavior of ferritic nuclear pipe

    SciTech Connect

    Mohan, R.; Marschall, C.; Krishnaswamy, P.; Brust, F.; Ghadiali, N.; Wilkowski, G.

    1995-04-01

    This topical report summarizes the work on angled crack growth and combined loading effects performed within the Nuclear Regulatory Commission`s research program entitled {open_quotes}Short Cracks in Piping and Piping Welds{close_quotes}. The major impetus for this work stemmed from the observation that initial circumferential cracks in carbon steel pipes exhibited angular crack growth. This failure mode was little understood, and the effect of angled crack growth from an initially circumferential crack raised questions of how pipes under combined loading with torsional stresses would behave. There were three major conclusions from this work. The first was that virtually all ferritic nuclear pipes will have toughness anisotropy. The second was that the ratio of the normalized crack driving force (as a function of angle) to the normalized toughness (also as a function of the angle of crack growth) showed that there was an equal likelihood of cracks growing at any angle between 25 and 65 degrees. This agreed with the scatter of crack growth angles observed in pipe tests. Third, for combined loads with torsional stresses, an effective moment allows pure bending analyses to be used up to crack initiation. Crack opening area under combined loads could also be determined in this mariner.

  16. NUCLEI AT HIGH ANGULAR MOMENTUM

    SciTech Connect

    Diamond, R.M.; Stephens, F.S.

    1980-06-01

    It appears that most nuclei show a compromise between purely collective and purely non-collective behavior at very high spins.non~collective behavior in nuclei has been seen only as high as 36 or 37{bar h}, at which point a more collective structure seems to develop. The concepts underlying the study of high angular momentum states are discussed. The factors that limit angular momentum in nuclei are considered. The currently emerging state of physics of very high spin states is reviewed. The detailed calculations currently made for high spin states are described, focusing not on the calculations themselves, but on the physical input to them and results that come out. Production of high-spin states using heavy-ion reactions is reviewed. Studies of {gamma}-rays de-exciting the evaporation residues from heavy-ion reactions are covered. Two types of {gamma} rays occur: those that cool the nucleus to or toward the yrast line, called "statistical," and those that are more or less parallel to the yrast line and remove the angular momentum, called "yrast~like." Collective rotation, in simplest form the motion of a deformed nucleus around an axis perpendicular to its symmetry axis, is also covered.

  17. Development of a high-resolution micro-torsion tester for measuring the shear modulus of metallic glass fibers

    NASA Astrophysics Data System (ADS)

    Dai, Y. J.; Huan, Y.; Gao, M.; Dong, J.; Liu, W.; Pan, M. X.; Wang, W. H.; Bi, Z. L.

    2015-02-01

    A high-resolution micro-torsion tester is developed based on electromagnetism, and the shear modulus of metallic glass fiber (Pd40Cu30Ni10P20) is measured using this tester. The torque is measured by a coil-magnet component and the rotation angle is measured by an inductive angular transducer. The calibration results show that the torque capacity of this tester is 1.1  ×  10-3 N m with resolution of 3  ×  10-8 N m and the rotation angle capacity is 90° with a resolution of 0.01°. A set of metallic glass fibers, with diameter of about 90 µm, are tested using this tester. The average shear modulus is obtained as 20.2 GPa (±6%).

  18. Torsional instanton effects in quantum gravity

    NASA Astrophysics Data System (ADS)

    Kaul, Romesh K.; Sengupta, Sandipan

    2014-12-01

    We show that in the first-order gravity theory coupled to axions the instanton number of the Giddings-Strominger wormhole can be interpreted as the Nieh-Yan topological index. The axion charge of the baby universes is quantized in terms of the Nieh-Yan integers. Tunneling between universes of different Nieh-Yan charges implies a nonperturbative vacuum state. The associated topological vacuum angle can be identified with the Barbero-Immirzi parameter.

  19. Torsional vibration measurements on rotating shaft system using laser doppler vibrometer

    NASA Astrophysics Data System (ADS)

    Xiang, Ling; Yang, Shixi; Gan, Chunbiao

    2012-11-01

    In this work, a laser torsional vibrameter was used to measure the torsion vibration of a rotating shaft system under electrical network impact. Based on the principles of laser Doppler velocimetry, the laser torsional vibrometer (LTV) are non-contact measurement of torsional oscillation of rotating shafts, offering significant advantages over conventional techniques. Furthermore, a highly complex shafting system is analyzed by a modified Riccati torsional transfer matrix. The system is modeled as a chain consisting of an elastic spring with concentrated mass points, and the multi-segments lumped mass model is established for this shafting system. By the modified Riccati torsional transfer matrix method, an accumulated calculation is effectively eliminated to obtain the natural frequencies. The electrical network impacts can activize the torsional vibration of shaft system, and the activized torsion vibration frequencies contained the natural frequencies of shaft system. The torsional vibrations of the shaft system were measured under electrical network impacts in laser Doppler torsional vibrometer. By comparisons, the natural frequencies by measurement were consistent with the values by calculation. The results verify the instrument is robust, user friendly and can be calibrated in situ. The laser torsional vibrometer represents a significant step forward in rotating machinery diagnostics.

  20. Design, modeling and characterization of a novel meso-scale SMA-actuated torsion actuator

    NASA Astrophysics Data System (ADS)

    Sheng, Jun; Desai, Jaydev P.

    2015-10-01

    This paper presents our work on design, modeling, and characterization of a novel shape memory alloy (SMA)-actuated torsion actuator for meso-scale robots. Development of a miniature torsion actuator is challenging, but it can enhance the agility and enlarge the workspace of meso-scale robots. This torsion actuator comprises a pair of antagonistic SMA torsion springs, which bi-directionally actuate the actuator by Joule heating and natural cooling. First, the mechanical design of the torsion actuator is presented, followed by the fabrication of SMA torsion springs. Then, we present the constitutive model of the SMA torsion spring with an analysis of its strain change, and derive a quasi-static model with the Coulomb friction torque for this torsion actuator. Finally, a series of characterization experiments are conducted on the SMA torsion spring and the torsion actuator prototype to determine the values of all model parameters. This work shows that the properties of the SMA-actuated torsion actuator can be appropriately characterized by experiments and the actuator is feasible for robotics applications.

  1. Angular Momentum Decomposition for an Electron

    SciTech Connect

    Burkardt, Matthias; BC, Hikmat

    2009-01-01

    We calculate the orbital angular momentum of the `quark' in the scalar diquark model as well as that of the electron in QED (to order $\\alpha$). We compare the orbital angular momentum obtained from the Jaffe-Manohar decomposition to that obtained from the Ji relation and estimate the importance of the vector potential in the definition of orbital angular momentum.

  2. Analytical and numerical models to predict the behavior of unbonded flexible risers under torsion

    NASA Astrophysics Data System (ADS)

    Ren, Shao-fei; Xue, Hong-xiang; Tang, Wen-yong

    2016-04-01

    This paper presents analytical and numerical models to predict the behavior of unbonded flexible risers under torsion. The analytical model takes local bending and torsion of tensile armor wires into consideration, and equilibrium equations of forces and displacements of layers are deduced. The numerical model includes lay angle, cross-sectional profiles of carcass, pressure armor layer and contact between layers. Abaqus/Explicit quasi-static simulation and mass scaling are adopted to avoid convergence problem and excessive computation time caused by geometric and contact nonlinearities. Results show that local bending and torsion of helical strips may have great influence on torsional stiffness, but stress related to bending and torsion is negligible; the presentation of anti-friction tapes may have great influence both on torsional stiffness and stress; hysteresis of torsion-twist relationship under cyclic loading is obtained by numerical model, which cannot be predicted by analytical model because of the ignorance of friction between layers.

  3. Study on torsional fretting wear behavior of a ball-on-socket contact configuration simulating an artificial cervical disk.

    PubMed

    Wang, Song; Wang, Fei; Liao, Zhenhua; Wang, Qingliang; Liu, Yuhong; Liu, Weiqiang

    2015-10-01

    A ball-on-socket contact configuration was designed to simulate an artificial cervical disk in structure. UHMWPE (ultra high molecular weight polyethylene) hot pressed by powders and Ti6Al4V alloy were selected as the material combination of ball and socket. The socket surface was coated by a ~500 nm C-DLC (carbon ion implantation-diamond like carbon) mixed layer to improve its surface nano hardness and wear resistance. The torsional fretting wear behavior of the ball-on-socket model was tested at different angular displacements under 25% bovine serum lubrication with an axial force of 100 N to obtain more realistic results with that in vivo. The fretting running regimes and wear damage characteristics as well as wear mechanisms for both ball and socket were studied based on 2D (two dimension) optical microscope, SEM (scanning electron microscope) and 3D (three dimension) profiles. With the increase of angular displacement amplitude from 1° to 7°, three types of T-θ (Torsional torque-angular displacement amplitude) curves (i.e., linear, elliptical and parallelogram loops) corresponding to running regimes of PSR (partial slip regime), MR (mixed regime) and SR (slip regime) were observed and analyzed. Both the central region and the edge zone of the ball and socket were damaged. The worn surfaces were characterized by wear scratches and wear debris. In addition, more severe wear damage and more wear debris appeared on the central region of the socket at higher angular displacement amplitude. The dominant damage mechanism was a mix of surface scratch, adhesive wear and abrasive wear for the UHMWPE ball while that for the coated socket was abrasive wear by PE particles and some polishing and rolling process on the raised overgrown DLC grains. The frictional kinetic behavior, wear type, damage region and damage mechanism for the ball-on-socket model revealed significant differences with those of a ball-on-flat contact while showing better consistency with that of in vitro cervical prosthesis simulations according to the literature. PMID:26117735

  4. Two-dimensional angular filter array for angular domain imaging with 3D printed angular filters

    NASA Astrophysics Data System (ADS)

    Ng, Eldon; Carson, Jeffrey J. L.

    2013-02-01

    Angular Domain Imaging (ADI) is a technique that is capable of generating two dimensional shadowgrams of attenuating targets embedded in a scattering medium. In ADI, an angular filter array (AFA) is positioned between the sample and the detector to distinguish between quasi-ballistic photons and scattered photons. An AFA is a series of micro-channels with a high aspect ratio. Previous AFAs from our group were constructed by micro-machining the micro-channels into a silicon wafer, limiting the imaging area to a one dimensional line. Two dimensional images were acquired via scanning. The objective of this work was to extend the AFA design to two dimensions to allow for two dimensional imaging with minimal scanning. The second objective of this work was to perform an initial characterization of the imaging capabilities of the 2D AFA. Our approach was to use rapid 3D prototyping techniques to generate an array of micro-channels. The imaging capabilities were then evaluated by imaging a 0.9 mm graphite rod submerged in a scattering media. Contrast was observed to improve when a second angular filter array was placed in front of the sample to mask the incoming light.

  5. Texture Development During Equal Channel Angular Forging of BCC Metals

    SciTech Connect

    Agnew, S.R.

    1999-08-08

    Equal channel angular forging (ECAF) has been proposed as a severe plastic deformation technique for processing metals, alloys, and composites [e.g. Segal, 1995] (Fig. 1). The technique offers two capabilities of practical interest: a high degree of strain can be introduced with no change in the cross-sectional dimensions of the work-piece, hence, even greater strains can be introduced by re-inserting the work-piece for further deformation during subsequent passes through the ECAF die. Additionally, the deformation is accomplished by simple shear (like torsion of a short tube) on a plane whose orientation, with respect to prior deformations, can be controlled by varying the processing route. There is a nomenclature that has developed in the literature for the typical processing routes: A: no rotations; B{sub A}: 90 degrees CW (clockwise), 90 degrees CCW (counterclockwise), 9O degrees CW, 90 degrees CCW...; Bc: 90 degrees CW, 90 degrees CW, 90 degrees CW...; and C: 180 degrees, 18 0 degrees.... The impact of processing route on the subsequent microstructure [Ferasse, Segal, Hartwig and Goforth, 1997; Iwahashi, Horita, Nemoto and Langdon, 1996] and texture [Gibbs, Hartwig, Cornwell, Goforth and Payzant, 1998] has been the subject of numerous experimental studies.

  6. Dynamical system analysis for a nonminimal torsion-matter coupled gravity

    NASA Astrophysics Data System (ADS)

    Carloni, Sante; Lobo, Francisco S. N.; Otalora, Giovanni; Saridakis, Emmanuel N.

    2016-01-01

    In this work, we perform a detailed dynamical analysis for the cosmological applications of a nonminimal torsion-matter coupled gravity. Two alternative formalisms are proposed, which enable one to choose between the easier approach for a given problem, and furthermore, we analyze six specific models. In general, we extract fixed points corresponding either to dark-matter-dominated, scaling decelerated solutions, or to dark-energy-dominated accelerated solutions. Additionally, we find that there is a small parameter region in which the model can experience the transition from the matter epoch to the dark-energy era. These features are in agreement with the observed evolution of the Universe, and make the theory a successful candidate for the description of nature.

  7. Torsional spring is the optimal flexibility arrangement of a flapping wing

    NASA Astrophysics Data System (ADS)

    Moore, Nick

    2015-11-01

    While it is understood that flexibility can improve the propulsive performance of flapping wings and fins, the flexibility distribution leading to optimal performance has not been explored. Using 2D small-amplitude theory and a fast Chebyshev method, we examine how thrust depends on the chord-wise distribution of wing stiffness. Through numerical optimization, we find that focusing flexibility at the wing's front, e.g. through a torsional spring, maximizes thrust. A wing with an optimally chosen spring constant typically generates 36% more thrust than a wing of optimal uniform stiffness. These results may relate to material distributions found in nature, such as insect wings, and may apply to the design of biomimetic swimmers and flyers, such as ornithopters.

  8. Torsional spring is the optimal flexibility arrangement for thrust production of a flapping wing

    NASA Astrophysics Data System (ADS)

    Moore, M. Nicholas J.

    2015-09-01

    While it is understood that flexibility can improve the propulsive performance of flapping wings and fins, the flexibility distribution leading to optimal performance has not been explored. Using 2D small-amplitude theory and a fast Chebyshev method, we examine how thrust depends on the chord-wise distribution of wing stiffness. Through numerical optimization, we find that focusing flexibility at the wing's front, e.g., through a torsional spring, maximizes thrust. A wing with an optimally chosen spring constant typically generates 36% more thrust than a wing of optimal uniform stiffness. These results may relate to material distributions found in nature, such as insect wings, and may apply to the design of biomimetic swimmers and flyers, such as ornithopters.

  9. Form factors and non-local multiplicative anomaly for fermions with background torsion

    NASA Astrophysics Data System (ADS)

    de Berredo-Peixoto, G.; Espinosa Maicá, A.

    2014-06-01

    We analyse the multiplicative anomaly (MA) in the case of quantized massive fermions coupled to a background torsion. The one-loop effective action (EA) can be expressed in terms of the logarithm of the determinant of the appropriate first-order differential operator acting in the spinors space. Simple algebraic manipulations on determinants must be used in order to apply properly the Schwinger-DeWitt technique, or even the covariant perturbation theory (Barvinsky and Vilkovisky, 1990), which is used in the present work. By this method, we calculate the finite non-local quantum corrections, and analyse explicitly the breakdown of those algebraic manipulations on determinants, called by MA. This feature comes from the finite non-local EA, but does not affect the results in the UV limit, in particular, the beta-functions. Similar results were also obtained in previous papers but for different external fields (QED and scalar field).

  10. Localization in rate-dependent shearing deformation, with application to torsion testing

    NASA Astrophysics Data System (ADS)

    Paterson, M. S.

    2007-12-01

    The localization of plastic deformation in rock is of particular interest in geology in connection with the formation of "ductile" shear zones. It is commonly conjectured that strain softening, as evidenced by a falling stress-strain curve at constant strain rate, is likely to lead to strain localization. Yet observations in torsion tests at constant twist rate fail to show such an effect. However, a more sophisticated analysis using the theory of Fressengeas and Molinari (J. Mech. Phys. Solids 1987, 35, 185-211) for material showing strain-rate dependence of the flow stress does show that, when the boundary conditions are specified in terms of displacements, no localization is predicted in case of strain softening. In contrast, if the boundary conditions are set in terms of forces, localization can be expected for a strain softening material. This prediction needs experimental testing.

  11. Numerical Investigation of Flapwise-Torsional Vibration Model of a Smart Section Blade with Microtab

    DOE PAGESBeta

    Li, Nailu; Balas, Mark J.; Yang, Hua; Jiang, Wei; Magar, Kaman T.

    2015-01-01

    This study presents a method to develop an aeroelastic model of a smart section blade equipped with microtab. The model is suitable for potential passive vibration control study of the blade section in classic flutter. Equations of the model are described by the nondimensional flapwise and torsional vibration modes coupled with the aerodynamic model based on the Theodorsen theory and aerodynamic effects of the microtab based on the wind tunnel experimental data. The aeroelastic model is validated using numerical data available in the literature and then utilized to analyze the microtab control capability on flutter instability case and divergence instabilitymore » case. The effectiveness of the microtab is investigated with the scenarios of different output controllers and actuation deployments for both instability cases. The numerical results show that the microtab can effectively suppress both vibration modes with the appropriate choice of the output feedback controller.« less

  12. On a finite-state inflow application to flap-lag-torsion damping in hover

    NASA Technical Reports Server (NTRS)

    De Andrade, Donizeti; Peters, David A.

    1992-01-01

    An aerodynamic model with a coupled set of generalized dynamic wake equations and hybrid equations of motion for an elastic blade are applied here to a two-blade untwisted stiff in-plane hingeless small-scale model rotor with torsionally soft blades. Blade root offset, precone, blade droop, pitch control stiffness, and blade pitch angle are included in the model rotor. Numerical results show that 3D tip relief effects within the nonuniform steady-state inflow are significant to predict steady-state aerodynamic loads and blade deflections. Eigenvalue results confirm the importance of unsteady 3D aerodynamics in predicting lead-lag damping and frequency. Eigenvector analysis correlations reinforced qualitative and quantitative shortcomings associated with quasi-steady 2D aerodynamic theory for aeroelastic applications in hover.

  13. Torsional MEMS scanner design for high-resolution scanning display systems

    NASA Astrophysics Data System (ADS)

    Urey, Hakan

    2002-06-01

    In scanning display systems, high horizontal and vertical resolution, and high refresh rate requirements translate into large mirror-size scan-angle product and high scanner-frequency requirements. A comparison between published scan-angle mirror-size product values for MEMS scanners and a steel mechanical scanner is presented. Current performance levels of steel mechanical scanners are better; however, Silicon MEMS scanners have good material properties and should be able to reach and exceed the performance levels of conventional mechanical scanners. The resolution limitations of mechanical and MEMS scanners are established using dynamic mirror deformation, flexure stress, and other oscillation mode frequencies. Analytical formulas for torsional, vertical deflection mode, lateral deflection mode, and rocking mode natural frequencies are derived using mechanical beam deflection theory.

  14. Natural frequencies of axial-torsional coupled motion in springs and composite bars

    NASA Astrophysics Data System (ADS)

    Howson, W. P.; Rafezy, B.

    2011-07-01

    The natural frequencies corresponding to axial-torsional (extension-twist) coupled motion of a helical spring, or the corresponding motion induced through material coupling in a composite bar, are considered using an equivalent continuum approach. Closed form solution of the governing differential equations leads either to an exact dynamic stiffness matrix or to a number of exact relationships between the natural frequencies corresponding to coupled and uncoupled motion. The latter relationships both guarantee that the Wittrick-Williams root finding algorithm can still be used to converge on any required natural frequency, despite any lack of reciprocity arising from differential coupling, and for the case of symmetric material coupling coefficients, enable their value to be determined precisely from experimental results. A number of examples are then given to confirm the accuracy of the proposed theory and to indicate its range of application.

  15. Mean Platelet Volume in Early Diagnosis of Adnexal Torsion

    PubMed Central

    Köleli, Işıl

    2015-01-01

    Background: Adnexal torsion (AT) is among the gynecological emergencies; more common in reproductive age, if diagnosed late, this can cause ovarian failure and infertility, but rarely thrombophlebitis and peritonitis. Despite these severe complications, preoperative diagnostic tests are not enough for early diagnosis. There are certain pieces of literature on the subject that reveal changes in mean platelet volume (MPV) values occur in inflammatory and ischemic diseases and that these changes have diagnostic and prognostic significance. However, there are no studies investigating this relationship with adnexal torsion. Aims: The aim of the study is to investigate the diagnostic and prognostic significance of the mean platelet volume value in the early diagnosis of patients with adnexal torsion. Study Design: Case-control study. Methods: Pre-operative demographic data, MPV, leukocyte count and neutrophils to lymphocytes (N/L) ratio in the blood samples of 51 patients, who were operated on preliminary adnexal torsion and diagnosed as adnexal torsion with a benign ovarian cyst (AT group) were retrospectively compared with those of 50 patients who were operated upon because of benign ovarian cysts and without torsion (control group) at this hospital between 2006 and 2014. Results: The mean MPV level was found to be 8.1 (7.1–10.7) fL in the AT group and 7.9 (6.6–10.2) fL in the control group; no statistically significant difference was found between the groups (p>0.05). Leukocyte count and N/L ratio in the AT group were, on average, 12×103/mm3 and 82% respectively and in control group; they were, on average, 7.2×103/mm3 and 59%, respectively. A statistically significant increase was found in the leukocyte count and N/L ratio of the AT group compared to the control group (p<0.001). The platelet count in the AT group was, on average, 253×103/mm3 and in the control group it was, on average, 280×103/mm3; no statistically significant difference was detected between these two groups (p>0.05). No correlation was detected between the MPV, platelet and leukocyte counts. The sensitivity of the leukocytosis to the AT cases was found to be 66.7%, and selectivity was 94%. Conclusion: The AT diagnostic and prognostic importance of MPV value has not been determined in this study. PMID:26740902

  16. The transition to Earth-like torsional oscillations in magnetoconvection simulations

    NASA Astrophysics Data System (ADS)

    Teed, Robert J.; Jones, Chris A.; Tobias, Steven M.

    2015-06-01

    Evidence for torsional oscillations (TOs) operating within the Earth's fluid outer core has been found in the secular variation of the geomagnetic field. These waves arise via disturbances to the predominant (magnetostrophic) force balance believed to exist in the core. The coupling of the core and mantle allow TOs to affect the length-of-day of the Earth via angular momentum conservation. Encouraged by previous work, where we were able to observe TOs in geodynamo simulations, we perform 3-D magnetoconvection simulations in a spherical shell in order to reach more Earth-like parameter regimes that proved hitherto elusive. At large Ekman numbers we find that TOs can be present but are typically only a small fraction of the overall dynamics and are often driven by Reynolds forcing at various locations throughout the domain. However, as the Ekman number is reduced to more Earth-like values, TOs become more apparent and can make up the dominant portion of the short timescale flow. This coincides with a transition to regimes where excitation is found only at the tangent cylinder, is delivered by the Lorentz force and gives rise to a periodic Earth-like wave pattern, approximately operating on a 4 to 5 year timescale. The core travel times of our waves also become independent of rotation at low Ekman number with many converging to Earth-like values of around 4 years.

  17. Two Model Hamiltonians for Torsion-Inversion Tunneling in the Ch-Stretch Vibrationally Excited States of Methylamine

    NASA Astrophysics Data System (ADS)

    Dawadi, Mahesh B.; Perry, David S.

    2012-06-01

    In methylamine (CH_3NH_2), there are six equivalent mimina that are connected by torsion and inversion tunneling. In the G_1_2 molecular symmetric group, there are four species, A = {A_1, A_2}, B = {B_1, B_2}, E_1 and E_2 that combine with distinct nuclear states. The ground vibrational state of CH_3NH_2 is split by torsion and inversion tunneling into a multiplet pattern of four distinct energy levels. The experimental tunneling pattern for CH_3NH_2 in the ν_1_1 asymmetric CH-stretch fundamental has been previously reported at this meeting. In the experimental pattern, the degenerate species (E_1 and E_2) are at the top and bottom of the multiplet and the non-degenerate species (B and A) are between them. In this work, we present two models for the torsion-inversion tunneling behavior in the CH-stretch excited states. Each model includes the lowest order torsion-inversion-vibration interactions available in the context of the model. The first model, which extends Hougen{'s} treatment of methanol, couples the two vibrational angular momentum components of the asymmetric CH-stretches to the large-amplitude motion to yield predicted tunneling patterns for the ν_2 and ν_1_1 fundamentals. This model gives similar patterns for ν_2 and ν_1_1, in which E_1 and E_2 are in the middle of the multiplet and the non-degenerate species are at the top and bottom. The second model, which follows conceptually Wang and Perry{'s} local mode treatment of methanol, couples the three local CH-stretches to each other and to the large-amplitude motion to yield the tunneling patterns for the ν_2, ν_3 and ν_1_1 fundamentals. For this model, we found that, for ν_2 and ν_1_1, both E_1 and E_2 are at the bottom of the multiplet, in contrast to ν_3 and the ground state where they are at the top. The fact that neither model reproduces the observed tunneling pattern for ν_1_1, suggests that additional isolated perturbations or systematic interactions are present in the experimental spectra. V.V. Ilyshin et al. J. Mol. Spectrosc. 251(56-63), 2008. J.T. Hougen J. Mol. Spectrosc. 207(60-65), 2001. X. Wang and D.S. Perry J. Chem. Phys. 109(10795-10805), 1998.

  18. Variable Distance Angular Symbology Reader

    NASA Technical Reports Server (NTRS)

    Schramm, Harry F., Jr. (Inventor); Corder, Eric L. (Inventor)

    2006-01-01

    A variable distance angular symbology, reader utilizes at least one light source to direct light through a beam splitter and onto a target. A target may be angled relative to the impinging light beam up to and maybe even greater than 45deg. A reflected beam from the target passes through the beam splitter and is preferably directed 90deg relative to the light source through a telecentric lens to a scanner which records an image of the target such as a direct part marking code.

  19. Two-axis angular effector

    DOEpatents

    Vaughn, Mark R.; Robinett, III, Rush D.; Phelan, John R.; Van Zuiden, Don M.

    1997-01-21

    A new class of coplanar two-axis angular effectors. These effectors combine a two-axis rotational joint analogous to a Cardan joint with linear actuators in a manner to produce a wider range of rotational motion about both axes defined by the joint. This new class of effectors also allows design of robotic manipulators having very high strength and efficiency. These effectors are particularly suited for remote operation in unknown surroundings, because of their extraordinary versatility. An immediate application is to the problems which arise in nuclear waste remediation.

  20. Two-axis angular effector

    SciTech Connect

    Vaughn, M.R.; Robinett, R.D. III; Phelan, J.R.; Zuiden, D.M. Van

    1997-01-21

    A new class of coplanar two-axis angular effectors is described. These effectors combine a two-axis rotational joint analogous to a Cardan joint with linear actuators in a manner to produce a wider range of rotational motion about both axes defined by the joint. This new class of effectors also allows design of robotic manipulators having very high strength and efficiency. These effectors are particularly suited for remote operation in unknown surroundings, because of their extraordinary versatility. An immediate application is to the problems which arise in nuclear waste remediation. 11 figs.

  1. Inter-Ring and Hexyl Chain Torsional Potentials in Poly (3-HEXYLTHIOPHENE) Oligomers: Scaling with the Length of the Conjugted Polymer Backbone

    NASA Astrophysics Data System (ADS)

    Bhatta, Ram S.; Perry, David S.; Yimer, Yeneneh; Tsige, Mesfin

    2011-06-01

    Density functional theory calculations are presented for the equilibrium structures and torsional potentials for isolated Poly (3-Hexylthiophene) (P3HT) oligomers up to 12 monomer units (up to 302 atoms). Calculations were performed at B3LYP/6-31++G(d,p) treating both the backbone of thiophene rings and the hexyl chains explicitly. One-dimensional inter-ring torsional potentials were calculated by rotating backbone around the central inter-ring bond and hexyl torsional potentials were calculated rotating n-hexyl group adjacent to the central inter-ring bond for each oligomer. The torsional and electronic properties change significantly for oligomers with 2 to 8 units but reach asymptotic values for a 10 unit P3HT chain, thereby suggesting the 10 unit long oligomer as a molecular model for the extended polymer. For P3HT oligomers having 10 or more units, all the rings and the hexyl groups are approximately coplanar except for one hexyl group at head end. The principal interaction that promotes the coplanarity of the hexyl groups is the attraction of the proximal methylene hydrogens to the sulfur on the adjacent thiophene ring. The cis conformation of the backbone is about 2kT higher than the trans minimum at room temperature. The gauche conformation of the hexyl group is within about half kT of the planar minimum. Therefore conformational polymorphisms of both types will likely be significant in the heterogeneous environment of photovoltaic devices.

  2. Torsion Test of a Monocoque Box

    NASA Technical Reports Server (NTRS)

    Mcpherson, Albert E; Ramberg, Walter; Levy, Samuel

    1942-01-01

    A monocoque box beam consisting of a 24S-T aluminum-alloy sheet reinforced by four bulkheads and by longitudinal stringers and corner posts was subjected to bending loads as follows: pure bending about the lift axis, cantilever bending about the lift axis, and pure bending about both lift and drag axis. Longitudinal strains were measured for loads up to a load at which permanent set became measurable. The loads were sufficient to produce buckling of the sheet between stringers on the compression side of the box. The only noticeable effect of this buckling was a small increase in extreme-fiber strain on the compression side. The measured strains and measured deflections differed less than 10 percent from those computed from the simple beam theory after taking account of the effective width of the buckled sheet. The effect of the bulkheads on the distribution of stringer strain was negligible.

  3. The Torsion of Members Having Sections Common in Aircraft Construction

    NASA Technical Reports Server (NTRS)

    Trayer, George W; March, H W

    1930-01-01

    Within recent years a great variety of approximate torsion formulas and drafting-room processes have been advocated. In some of these, especially where mathematical considerations are involved, the results are extremely complex and are not generally intelligible to engineers. The principal object of this investigation was to determine by experiment and theoretical investigation how accurate the more common of these formulas are and on what assumptions they are founded and, if none of the proposed methods proved to be reasonable accurate in practice, to produce simple, practical formulas from reasonably correct assumptions, backed by experiment. A second object was to collect in readily accessible form the most useful of known results for the more common sections. Formulas for all the important solid sections that have yielded to mathematical treatment are listed. Then follows a discussion of the torsion of tubular rods with formulas both rigorous and approximate.

  4. Torsion of a Wandering Spleen Presenting as Acute Abdomen

    PubMed Central

    Chauhan, Narvir Singh; Kumar, Satish

    2016-01-01

    Summary Background Wandering spleen is a rare condition which if uncorrected, can result in torsion and infarction. Clinical presentation of a wandering spleen can vary from asymptomatic abdominal mass to acute abdominal pain. Radiological investigations play a pivotal role in diagnosis as the clinical diagnosis is usually impossible. Case Report We present a case of wandering spleen with torsion and complete infarction that occurred in a 32-year-old multiparous female. The diagnosis was established preoperatively on colour Doppler and CT of the abdomen with subsequent confirmation on surgery. Conclusions Wandering spleen is a rare clinical condition which can present as acute abdomen. An increased awareness of this entity together with the timely use of ultrasound and CT of the abdomen can play an important role in preoperative diagnosis and surgical management. PMID:27057261

  5. Formation of Helices in Graphene Nanoribbons under Torsion.

    PubMed

    Nikiforov, I; Hourahine, B; Frauenheim, Th; Dumitrică, T

    2014-12-01

    We use objective boundary conditions and self-consistent charge density-functional-based tight-binding to simulate at the atomistic scale the formation of helices in narrow graphene nanoribbons with armchair edges terminated with fluorine and hydrogen. We interpret the microscopic data using an inextensible, unshearable elastic rod model, which considers both bending and torsional strains. When fitted to the atomistic data, the simple rod model uses closed-form solutions for a cubic equation to predict the strain energy and morphology at a given twist angle and the crossover point between pure torsion and a helix. Our modeling and simulation bring key insights into the origin of the helical graphene morphologies stored inside of carbon nanotubes. They can be useful for designing chiral nanoribbons with tailored properties. PMID:26278936

  6. The frequencies of cantilever wings in beam and torsional vibrations

    NASA Technical Reports Server (NTRS)

    Burgess, C P

    1940-01-01

    Methods are described for calculating the period and frequency of vibration of cantilever wings and similar structures in which the weight and moment of inertia vary along the span. Both the beam and torsional frequencies may be calculated by these methods. The procedure is illustrated by examples. It is shown that a surprisingly close approximation to the beam frequency may be obtained by a very brief calculation in which the curvature of the wing in vibration is assumed to be constant. A somewhat longer computation permits taking account of the true curvature of the beam by a series of successive approximations which are shown to be strongly convergent. Analogous methods are applied to calculations of the torsional frequency. For the first approximation it is assumed that the angle of twist varies linearly alone the semispan. True variation of the twist is computed by successive approximations which are strongly convergent, as in the case of beam vibrations.

  7. Interpreting Torsional Oscillator Measurements: Effect of Shear Modulus and Supersolidity

    NASA Astrophysics Data System (ADS)

    Reppy, John D.; Mi, Xiao; Justin, Alexander; Mueller, Erich J.

    2012-08-01

    The torsional oscillator is the chief instrument for investigating supersolidity in solid 4He. These oscillators can be sensitive to the elastic properties of the solid helium, which show anomalies over the same range of temperature in which the supersolid phenomenon appears. In this report we present a detailed study of the influence of the elastic properties of the solid on the periods of torsional oscillators for the various designs that have been commonly employed in supersolid measurements. We show how to design an oscillator which measures supersolidity, and how to design one which predominantly measures elasticity. We describe the use of multiple frequency TOs for the separation of the elastic and supersolid phenomena.

  8. Omental torsion in a captive polar bear (Ursus maritimus).

    PubMed

    Mendez-Angulo, Jose L; Funes, Francisco J; Trent, Ava M; Willette, Michelle; Woodhouse, Kerry; Renier, Anna C

    2014-03-01

    This is the first case report of an omental torsion in a polar bear (Ursus maritimus). A captive, 23-yr-old, 250-kg, intact female polar bear presented to the University of Minnesota Veterinary Medical Center with a 2-day history of lethargy, depression, and vomiting. Abdominal ultrasound identified large amounts of hyperechoic free peritoneal fluid. Ultrasound-guided abdominocentesis was performed and yielded thick serosanguinous fluid compatible with a hemoabdomen. An exploratory laparotomy revealed a large amount of malodorous, serosanguineous fluid and multiple necrotic blood clots associated with a torsion of the greater omentum and rupture of a branch of the omental artery. A partial omentectomy was performed to remove the necrotic tissue and the abdomen was copiously lavaged. The polar bear recovered successfully and is reported to be clinically well 6 mo later. This condition should be considered as a differential in bears with clinical signs of intestinal obstruction and hemoabdomen. PMID:24712179

  9. Bending and Torsion Load Alleviator With Automatic Reset

    NASA Technical Reports Server (NTRS)

    delaFuente, Horacio M. (Inventor); Eubanks, Michael C. (Inventor); Dao, Anthony X. (Inventor)

    1996-01-01

    A force transmitting load alleviator apparatus and method are provided for rotatably and pivotally driving a member to be protected against overload torsional and bending (moment) forces. The load alleviator includes at least one bias spring to resiliently bias cam followers and cam surfaces together and to maintain them in locked engagement unless a predetermined load is exceeded whereupon a center housing is pivotal or rotational with respect to a crown assembly. This pivotal and rotational movement results in frictional dissipation of the overload force by an energy dissipator. The energy dissipator can be provided to dissipate substantially more energy from the overload force than from the bias force that automatically resets the center housing and crown assembly to the normally fixed centered alignment. The torsional and bending (moment) overload levels can designed independently of each other.

  10. Analysis of damping in finite shearing and torsional deformations

    NASA Astrophysics Data System (ADS)

    Batra, Romesh C.; Yu, Jang-Horng

    2000-04-01

    We use two constitutive relations to analyze finite simple shearing, simple extensional and torsional deformations of a viscoelastic body. One of these constitutive relations is a linear relationship between the second Piola-Kirchhoff stress tensor and the history of the rate of change of the Green-St. Venant strain tensor. The other is a linear relationship between the Cauchy stress tensor and the rate of change of the relative Green-St. Venant strain tensor. It is found that only predictions from the latter constitutive relation agree with the test findings. This constitutive relation is used to analyze damping in steady state torsional oscillations of a cylinder, and slow finite shearing deformations of a constrained viscoelastic layer.

  11. Controlling neutron orbital angular momentum.

    PubMed

    Clark, Charles W; Barankov, Roman; Huber, Michael G; Arif, Muhammad; Cory, David G; Pushin, Dmitry A

    2015-09-24

    The quantized orbital angular momentum (OAM) of photons offers an additional degree of freedom and topological protection from noise. Photonic OAM states have therefore been exploited in various applications ranging from studies of quantum entanglement and quantum information science to imaging. The OAM states of electron beams have been shown to be similarly useful, for example in rotating nanoparticles and determining the chirality of crystals. However, although neutrons--as massive, penetrating and neutral particles--are important in materials characterization, quantum information and studies of the foundations of quantum mechanics, OAM control of neutrons has yet to be achieved. Here, we demonstrate OAM control of neutrons using macroscopic spiral phase plates that apply a 'twist' to an input neutron beam. The twisted neutron beams are analysed with neutron interferometry. Our techniques, applied to spatially incoherent beams, demonstrate both the addition of quantum angular momenta along the direction of propagation, effected by multiple spiral phase plates, and the conservation of topological charge with respect to uniform phase fluctuations. Neutron-based studies of quantum information science, the foundations of quantum mechanics, and scattering and imaging of magnetic, superconducting and chiral materials have until now been limited to three degrees of freedom: spin, path and energy. The optimization of OAM control, leading to well defined values of OAM, would provide an additional quantized degree of freedom for such studies. PMID:26399831

  12. The initial torsional stiffness of shells with interior webs

    NASA Technical Reports Server (NTRS)

    Kuhn, Paul

    1935-01-01

    A method of calculating the stresses and torsional stiffness of thin shells with interior webs is summarized. Comparisons between experimental and calculated results are given for 3 duralumin beams, 5 stainless steel beams and 2 duralumin wings. It is concluded that if the theoretical stiffness is multiplied by a correction factor of 0.9, experimental values may be expected to check calculated values within about 10 percent.

  13. A measurement of G with a cryogenic torsion pendulum.

    PubMed

    Newman, Riley; Bantel, Michael; Berg, Eric; Cross, William

    2014-10-13

    A measurement of Newton's gravitational constant G has been made with a cryogenic torsion pendulum operating below 4 K in a dynamic mode in which G is determined from the change in torsional period when a field source mass is moved between two orientations. The source mass was a pair of copper rings that produced an extremely uniform gravitational field gradient, whereas the pendulum was a thin fused silica plate, a combination that minimized the measurement's sensitivity to error in pendulum placement. The measurement was made using an as-drawn CuBe torsion fibre, a heat-treated CuBe fibre, and an as-drawn Al5056 fibre. The pendulum operated with a set of different large torsional amplitudes. The three fibres yielded high Q-values: 82 000, 120 000 and 164 000, minimizing experimental bias from fibre anelasticity. G-values found with the three fibres are, respectively: {6.67435(10),6.67408(15),6.67455(13)}×10(-11) m(3) kg(-1) s(-2), with corresponding uncertainties 14, 22 and 20 ppm. Relative to the CODATA2010 G-value, these are higher by 77, 37 and 107 ppm, respectively. The unweighted average of the three G-values, with the unweighted average of their uncertainties, is 6.67433(13)×10(-11) m(3) kg(-1) s(-2) (19 ppm). PMID:25202000

  14. Observation of 1990 solar eclipse by a torsion pendulum

    SciTech Connect

    Luo Jun; Li Jianguo; Zhang Xuerong ); Liakhovets, V. ); Lomonosov, M.; Ragyn, A. )

    1991-10-15

    During the solar eclipse of 22 July 1990 in the city of Bielomorsk of the U.S.S.R., we repeated the torsion pendulum experiment of Saxl and Allen, who reported an anomalous period increase during the solar eclipse of 7 March 1970. The relative change in the pendulum's period associated with the eclipse was found to be less than 5.2{times}10{sup {minus}5} (90% confidence).

  15. Torsion of the Abomasum in a One Month Old Calf

    PubMed Central

    Frazee, L. S.

    1984-01-01

    The clinical and clinicopathological findings of a one month old Holstein heifer calf presented with severe abdominal distention are reported. Preoperative evaluation and therapy were initiated and followed by an exploratory laparotomy (paracostal right flank) which revealed a 360° counterclockwise torsion (viewed from the rear) of the abomasum. Severe vascular compromise of the abomasum precluded salvage of the animal. Following euthanasia and postmortem evaluation, the calf was found to have irreversible changes within the abomasum. PMID:17422429

  16. Calibration of combined bending-torsion fatigue reliability data reduction

    NASA Technical Reports Server (NTRS)

    Kececioglu, D.; Mcconnell, J. B.

    1969-01-01

    The combined bending-torsion fatigue reliability research machines are described. Three such machines are presently in operation. The calibration of these machines is presented in depth. Fatigue data generated with these machines for SAE 4340 steel grooved specimens subjected to reversed bending and steady torque loading are given. The data reduction procedure is presented. Finally, some comments are made about notch sensitivity and stress concentration as applied to combined fatigue.

  17. BCN nanotubes as highly sensitive torsional electromechanical transducers.

    PubMed

    Garel, Jonathan; Zhao, Chong; Popovitz-Biro, Ronit; Golberg, Dmitri; Wang, Wenlong; Joselevich, Ernesto

    2014-11-12

    Owing to their mechanically tunable electronic properties, carbon nanotubes (CNTs) have been widely studied as potential components for nanoelectromechanical systems (NEMS); however, the mechanical properties of multiwall CNTs are often limited by the weak shear interactions between the graphitic layers. Boron nitride nanotubes (BNNTs) exhibit a strong interlayer mechanical coupling, but their high electrical resistance limits their use as electromechanical transducers. Can the outstanding mechanical properties of BNNTs be combined with the electromechanical properties of CNTs in one hybrid structure? Here, we report the first experimental study of boron carbonitride nanotube (BCNNT) mechanics and electromechanics. We found that the hybrid BCNNTs are up to five times torsionally stiffer and stronger than CNTs, thereby retaining to a large extent the ultrahigh torsional stiffness of BNNTs. At the same time, we show that the electrical response of BCNNTs to torsion is 1 to 2 orders of magnitude higher than that of CNTs. These results demonstrate that BCNNTs could be especially attractive building blocks for NEMS. PMID:25275220

  18. Optical diagnosis of testicular torsion: feasibility and methodology

    NASA Astrophysics Data System (ADS)

    Shadgan, Babak; Macnab, Andrew; Stothers, Lynn; Kajbafzadeh, A. M.

    2014-03-01

    Background: Torsion of the testis compromises blood flow through the spermatic cord; testicular ischemia results which if not diagnosed promptly and corrected surgically irrevocably damages the testis. Current diagnostic modalities aimed at rationalizing surgical exploration by demonstrating interruption of spermatic cord blood flow or testicular ischemia have limited applicability. Near infrared spectroscopy (NIRS) offers a non-invasive optical method for detection of ischemia; continuous wave and frequency domain devices have been used experimentally; no device customized for clinical use has been designed. Methods: A miniature spatially resolved NIRS device with light emitting diode light source was applied over the right and left spermatic cord and the difference in oxygen saturation between the two sides measured. Results: In a 14-month old boy with a history of unilateral testicular pain color Doppler ultrasonography was equivocal but the NIRS-derived tissue oxygen saturation index (TSI) was significantly reduced on the left side. Confirmation of torsion of the left testicle was made surgically. Conclusions: Spatially resolved NIRS monitoring of spermatic cord oxygen saturation is feasible in children, adding to prior studies of testicular oxygen saturation in adults. Customized device design and further clinical trials would enhance the applicability of NIRS as a diagnostic entity for torsion.

  19. Triaxial and torsional shear test results for sand

    NASA Astrophysics Data System (ADS)

    Kutter, Bruce L.; Chen, Yie-Ruey; Shen, C. K.

    1994-06-01

    This report presents the results of the laboratory tests conducted in triaxial and torsional apparatus. The purposes of this report are not only to support the calibration and verification of the bounding surface hypoplasticity model for granular soil but to provide a valuable data base for future research in numerical model simulation and design. Under this contract, two experiments were carried out: (1) Laboratory samples in the triaxial apparatus and hollow cylinder torsional apparatus; and (2) Centrifuge model tests including two and three-dimensional structures subjected to static and dynamic loadings. This report presents the results of triaxial tests including drained and undrained, monotonic and cyclic, and stress and strain controlled tests. The maximum stress ratio achieved in drained triaxial tests was significantly larger than that in undrained triaxial tests. Results of six hollow cylinder torsional and rotational shear tests are also presented. The results from different types are compared. Finally, the conclusions of these laboratory tests are also discussed. The test results indicate that the shape of phase transformation and failure surfaces were different when viewed in the pi-plane. It was also found that samples subject to rotational shear may be less likely to develop larger strain during undrained cycling than samples in triaxial compression/extension cyclic tests at similar stress ratios.

  20. Development of a torsion balance for adhesion measurements

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Maeda, Chikayoshi; Masuo, Ryuichi

    1988-01-01

    A new torsion balance for study of adhesion in ceramics is discussed. A torsion wire and a linear variable differential transformer are used to monitor load and to measure pull-off force (adhesion force). The investigation suggests that this torsion balance is valuable in studying the interfacial properties of ceramics in controlled environments such as in ultrahigh vacuum. The pull-off forces measured in dry, moist, and saturated nitrogen atmosphere demonstrate that the adhesion of silicon nitride contacts remains low at humidities below 80 percent but rises rapidly above that. The adhesion at saturation is 10 times or more greater than that below 80 percent relative humidity. The adhesion in a saturated atmosphere arises primarily from the surface tension effects of a thin film of water adsorbed on the surface. The surface tension of the water film was 58 x 10 to the minus 5 to 65 x 10 to the minus 5 power. The accepted value for water is 72.7 x 10 to the minus 5 power N/cm. Adhesion characteristics of silicon nitride in contact with metals, like the friction characteristics of silicon carbide to metal contacts, can be related to the relative chemical activity of metals in ultrahigh vacuum. The more active the metal, the higher the adhesion.

  1. ``Quasi-complete'' mechanical model for a double torsion pendulum

    NASA Astrophysics Data System (ADS)

    De Marchi, Fabrizio; Pucacco, Giuseppe; Bassan, Massimo; De Rosa, Rosario; Di Fiore, Luciano; Garufi, Fabio; Grado, Aniello; Marconi, Lorenzo; Stanga, Ruggero; Stolzi, Francesco; Visco, Massimo

    2013-06-01

    We present a dynamical model for the double torsion pendulum nicknamed “PETER,” where one torsion pendulum hangs in cascade, but off axis, from the other. The dynamics of interest in these devices lies around the torsional resonance, that is at very low frequencies (mHz). However, we find that, in order to properly describe the forced motion of the pendulums, also other modes must be considered, namely swinging and bouncing oscillations of the two suspended masses, that resonate at higher frequencies (Hz). Although the system has obviously 6+6 degrees of freedom, we find that 8 are sufficient for an accurate description of the observed motion. This model produces reliable estimates of the response to generic external disturbances and actuating forces or torques. In particular, we compute the effect of seismic floor motion (“tilt” noise) on the low frequency part of the signal spectra and show that it properly accounts for most of the measured low frequency noise.

  2. Torsional stiffness degradation and aerostatic divergence of suspension bridge decks

    NASA Astrophysics Data System (ADS)

    Zhang, Z. T.; Ge, Y. J.; Yang, Y. X.

    2013-07-01

    The mechanism of aerostatic torsional divergence (ATD) of long-span suspension bridges is investigated. A theoretical analysis on the basis of a generalized model is presented, showing that the vertical motion of a bridge deck is crucial to the torsional stiffness of the whole suspended system, and that the vertical motion of either cable with a magnitude beyond a certain threshold could result in a sudden degradation of the torsional stiffness of the system. This vertical motion-induced degradation of stiffness is recognized as the main reason for the ATD. Long-span suspension bridges are susceptible to such a type of divergence, especially when they are immersed in turbulent wind fields. The divergences that occur in turbulent wind fields differ significantly from those in smooth wind fields, and the difference is well explained by the generalized model that the loosening of any one cable could result in the vanishing of the part of stiffness provided by the whole cable system. The mechanism revealed in this paper leads to a definition of the critical wind speed of the ATD in a turbulent flow; that is, the one resulting in a vertical motion so large as to loosen either cable to a stressless state. Numerical results from the nonlinear finite-element (FE) analysis of the Xihoumen suspension bridge, in conjunction with observations from wind tunnel tests on an aero-elastic full bridge model, are in support of the viewpoint presented in this study.

  3. Rotational Energies in Various Torsional Levels of CH_2DOH

    NASA Astrophysics Data System (ADS)

    Coudert, L. H.; Hilali, A. El; Margulès, L.; Motiyenko, R. A.; Klee, S.

    2012-06-01

    Using an approach accounting for the hindered internal rotation of a monodeuterated methyl group, an analysis of the torsional spectrum of the monodeuterated species of methanol CH_2DOH has been carried out recently and led to the assignment of 76 torsional subbands in its microwave, FIR, and IR spectra. Although this approach also allowed us to account for subband centers, the rotational structure of the torsional subbands is not well understood yet. In this paper, we will deal with the rotational energies of CH_2DOH. Analyses of the rotational structure of the available subbands^b have been performed using the polynomial-type expansion introduced in the case of the normal species of methanol. For each subband, FIR or IR transitions and a-type microwave lines, within the lower torsional level, were fitted. The frequencies of the latters were taken from previous investigations or from new measurements carried out from 50 to 950 GHz with the submillimeterwave solid state spectrometer in Lille. Subbands involving lower levels with v_t=0 and K ≥ 3 could be satisfactorily analyzed. For levels characterized by lower K-values, the expansion fails. In the case of the K=1, v_t=1 level, the frequencies of a-type microwave transitions involving the lower member of the K-type doublet cannot be well reproduced. For K=0 levels with v_t=1 and 2, a large number of terms is needed in the expansion. We will try to understand why the rotational energies of these levels cannot be reproduced. The results of the analyses will be compared to those obtained with a global approach based on the rotation-torsion Hamiltonian of the molecule. [2] El Hilali, Coudert, Konov, and Klee, J. Chem. Phys. 135 (2011) 194309. [3] Ioli, Moruzzi, Riminucci, Strumia, Moraes, Winnewisser, and Winnewisser, J. Mol. Spec. 171 (1995) 130. [4] Quade and Suenram, J. Chem. Phys. 73 (1980) 1127; and Su and Quade, J. Mol. Spec. 134 (1989) 290. [5] Lauvergnat, Coudert, Klee, and Smirnov, J. Mol. Spec. 256 (2009) 204.

  4. Liquid Angular-Momentum Compensator

    NASA Technical Reports Server (NTRS)

    Iskenderian, Theodore C.

    1989-01-01

    Report discusses use of fluid-loop reaction ring as part of system orienting spacecraft. Proposed device imparts angular rotation to spacecraft by reacting against liquid contained in loop. Pump, or pumps, provide impetus to both spacecraft and fluid. Hydraulic accumulators and valves added to control flow. Technique offers better control than attitude-control thrusters. Several advantages in applications otherwise requiring large, rigid reaction wheel: Fluid loop need occupy only peripheral circulation path; does not necessarily require motor sized for maximum torque; does not require difficult-to-make bearings specified to withstand high launch-acceleration loads, provide high stiffness, operate smoothly, and exert minimal fractional torque. Unlike reaction wheel, fluid loop not balanced dynamically.

  5. Improving the sensitivity of a torsion pendulum by using an optical spring method

    SciTech Connect

    Wang Qinglan; Yeh Hsienchi; Zhou Zebing; Luo Jun

    2009-10-15

    We present a scheme aiming at improving the sensitivity of a torsion pendulum by means of radiation-pressure-induced optical spring. Two partial-reflective mirrors are installed on the opposite sides of a torsion pendulum, and one high-reflective mirror is mounted at the end of the torsion beam so that two identical Fabry-Perot cavities can be formed and aligned in series. Due to the antisymmetric radiation pressures acting on the opposite sides of the torsion beam, a negative restoring coefficient can be generated within a certain dynamic range, such that both the resultant torsional rigidity and the resonant frequency of the torsion pendulum are reduced, and the minimum detectable response torque in high-frequency region can be reduced accordingly.

  6. Fast torsional waves and strong magnetic field within the Earth's core.

    PubMed

    Gillet, Nicolas; Jault, Dominique; Canet, Elisabeth; Fournier, Alexandre

    2010-05-01

    The magnetic field inside the Earth's fluid and electrically conducting outer core cannot be directly probed. The root-mean-squared (r.m.s.) intensity for the resolved part of the radial magnetic field at the core-mantle boundary is 0.3 mT, but further assumptions are needed to infer the strength of the field inside the core. Recent diagnostics obtained from numerical geodynamo models indicate that the magnitude of the dipole field at the surface of a fluid dynamo is about ten times weaker than the r.m.s. field strength in its interior, which would yield an intensity of the order of several millitesla within the Earth's core. However, a 60-year signal found in the variation in the length of day has long been associated with magneto-hydrodynamic torsional waves carried by a much weaker internal field. According to these studies, the r.m.s. strength of the field in the cylindrical radial direction (calculated for all length scales) is only 0.2 mT, a figure even smaller than the r.m.s. strength of the large-scale (spherical harmonic degree n torsional wave recurring every six years, the angular momentum of which accounts well for both the phase and the amplitude of the six-year signal for change in length of day detected over the second half of the twentieth century. It takes about four years for the wave to propagate throughout the fluid outer core, and this travel time translates into a slowness for Alfvén waves that corresponds to a r.m.s. field strength in the cylindrical radial direction of approximately 2 mT. Assuming isotropy, this yields a r.m.s. field strength of 4 mT inside the Earth's core. PMID:20445627

  7. The Influence of Turns on Distance Cognition: New Experimental Approaches to Clarify the Route-Angularity Effect

    ERIC Educational Resources Information Center

    Jansen-Osmann, Petra; Wiedenbauer, Gunnar

    2004-01-01

    Three experiments investigated the route-angularity effect, which is demonstrated when a greater number of turns along a route increases the estimated length. So far, a route-angularity effect has not been demonstrated in school-age children. Because of the lack of a developmental theory, this finding could only be explained by a minor control of…

  8. Preliminary determination of Newtonian gravitational constant with angular acceleration feedback method

    PubMed Central

    Xue, Chao; Quan, Li-Di; Yang, Shan-Qing; Wang, Bing-Peng; Wu, Jun-Fei; Shao, Cheng-Gang; Tu, Liang-Cheng; Milyukov, Vadim; Luo, Jun

    2014-01-01

    This paper describes the preliminary measurement of the Newtonian gravitational constant G with the angular acceleration feedback method at HUST. The apparatus has been built, and preliminary measurement performed, to test all aspects of the experimental design, particularly the feedback function, which was recently discussed in detail by Quan et al. The experimental results show that the residual twist angle of the torsion pendulum at the signal frequency introduces 0.4 ppm to the value of G. The relative uncertainty of the angular acceleration of the turntable is approximately 100 ppm, which is mainly limited by the stability of the apparatus. Therefore, the experiment has been modified with three features: (i) the height of the apparatus is reduced almost by half, (ii) the aluminium shelves were replaced with shelves made from ultra-low expansion material and (iii) a perfect compensation of the laboratory-fixed gravitational background will be carried out. With these improvements, the angular acceleration is expected to be determined with an uncertainty of better than 10 ppm, and a reliable value of G with 20 ppm or below will be obtained in the near future. PMID:25201996

  9. Preliminary determination of Newtonian gravitational constant with angular acceleration feedback method.

    PubMed

    Xue, Chao; Quan, Li-Di; Yang, Shan-Qing; Wang, Bing-Peng; Wu, Jun-Fei; Shao, Cheng-Gang; Tu, Liang-Cheng; Milyukov, Vadim; Luo, Jun

    2014-10-13

    This paper describes the preliminary measurement of the Newtonian gravitational constant G with the angular acceleration feedback method at HUST. The apparatus has been built, and preliminary measurement performed, to test all aspects of the experimental design, particularly the feedback function, which was recently discussed in detail by Quan et al. The experimental results show that the residual twist angle of the torsion pendulum at the signal frequency introduces 0.4 ppm to the value of G. The relative uncertainty of the angular acceleration of the turntable is approximately 100 ppm, which is mainly limited by the stability of the apparatus. Therefore, the experiment has been modified with three features: (i) the height of the apparatus is reduced almost by half, (ii) the aluminium shelves were replaced with shelves made from ultra-low expansion material and (iii) a perfect compensation of the laboratory-fixed gravitational background will be carried out. With these improvements, the angular acceleration is expected to be determined with an uncertainty of better than 10 ppm, and a reliable value of G with 20 ppm or below will be obtained in the near future. PMID:25201996

  10. 3D Curves With a Prescribed Curvature and Torsion for a Flying Robot

    SciTech Connect

    Bestaoui, Yasmina

    2008-06-12

    The objective of this paper is to generate a desired flight path to be followed by an flying robot. A curve with discontinuous curvature and torsion is not appropriate for smooth motions for any vehicle architecture. Three different classes of curves are presented. First, constant curvature and torsion followed by a linear variation versus the curvilinear abscissa then a quadratic variation. Finally, the problem of maneuvers between two trim helices of different curvature and torsion is tackled with.

  11. Application of a boundary element method to the study of dynamical torsion of beams

    NASA Technical Reports Server (NTRS)

    Czekajski, C.; Laroze, S.; Gay, D.

    1982-01-01

    During dynamic torsion of beam elements, consideration of nonuniform warping effects involves a more general technical formulation then that of Saint-Venant. Nonclassical torsion constants appear in addition to the well known torsional rigidity. The adaptation of the boundary integral element method to the calculation of these constants for general section shapes is described. The suitability of the formulation is investigated with some examples of thick as well as thin walled cross sections.

  12. The effects of torsion-vibration coupling on rotational spectra: Toluene reinterpreted and refitted

    NASA Astrophysics Data System (ADS)

    Gascooke, Jason R.; Lawrance, Warren D.

    2015-12-01

    A re-examination of rotational line positions for toluene is reported, motivated by the recent observation that the methyl internal rotor states are perturbed by torsion-vibration coupling to vibrational mode M20 (Gascooke et al., 2015). We demonstrate that the data can be fit equally well including or excluding torsion-vibration coupling. The torsion-vibration model required to account for the torsional band positions is thus shown to be consistent with the rotational line positions reported. It is found that including torsion-vibration coupling leads to changes in the values of the rotational and torsional constants, most significantly for AF, AF‧, F and V6, as well as the higher order constants, with those involving powers of m, K and their cross-terms most affected. Expressions for these effects are provided based on a perturbation expansion, which shows the links between the two models. A primary indicator for the presence of torsion-vibration coupling is AF‧ being significantly different to the rotational constant for the frame, AF, and changing with m. Examination of published AF‧ /AF ratios for several substituted toluenes suggests that torsion-vibration coupling is widespread in such molecules. Torsion-vibration coupling has been directly observed through local perturbations to torsional levels in substituted toluenes with both 3- and 6-fold torsion potentials, indicating that it will also affect rotational and torsional constants in molecules with a 3-fold barrier. This indicates that the assumption that the small amplitude vibrations can be ignored when considering the large amplitude methyl rotation requires reassessment.

  13. Extended torsional tests of an interlocked bi-stem satellite boom

    NASA Technical Reports Server (NTRS)

    Abercrombie, R. A.

    1973-01-01

    The effect is reported of continued oscillations of a 1.27-cm interlocked bi-stem satellite boom. The test setup oscillated a boom continuously between set torque limits and periodically recorded its hysteresis characteristics. Results showed that repeated oscillations affected torsional characteristics and that torsional rigidity changed as a function of the number of cycles oscillated within certain torque limits. Torsional characteristics changes caused by repeated oscillations were retained.

  14. Penile degloving and dorsal dartos flap rotation approach for the management of isolated penile torsion

    PubMed Central

    Aykaç, Aykut; Baran, Özer; Yapıcı, Onur; Aygün, Bülent Alper; Aydın, Cemil; Çakan, Murat

    2016-01-01

    Objective Penile torsion is a counterclockwise rotational anomaly of the penile shaft or glans. We aimed to evaluate the outcomes of penile degloving and dorsal dartos flap rotation used for the repair of isolated penil torsion. Material and methods During evaluation of the patients admitted to our polyclinic for circumcision between January 2013-December 2014, 5 cases of isolated penile torsion were determined. Following the circumcision procedure performed with bipolar cautery, patients undergoing penile degloving were checked whether penile torsion was relieved or not. In case of insufficient improvement, torsion was corrected with application of dorsal dartos flap. Penile torsion was corrected with dartos flap in 2, and penile degloving in 3 cases. Results The mean age of the patients was 5.6 years (4–7), and the mean operative time 12 minutes (7–20), respectively. The mean operation time was 17.5 (15–20) minutes and 8.3 (7–10) minutes in the dorsal dartos flap and penile degloving groups, respectively. The preoperative mean degree of penile torsion was 50° (30°–70°). The mean degree of torsion was 65° and 40° in the dorsal dartos and penile degloving groups, respectively. During the postoperative follow up, 1 case of residual torsion (<10°) was observed in the dorsal dartos flap group. Residual torsion was not observed in other patients. Conclusion Exploration for isolated cases of penile torsion during the circumcision procedure should not be overlooked. Successful results can be obtained with penile degloving and dartos flap rotation in cases with low and moderate torsion. PMID:27011878

  15. Axial and torsional fatigue behavior of a cobalt-base alloy

    NASA Technical Reports Server (NTRS)

    Bonacuse, Peter J.; Kalluri, Sreeramesh

    1991-01-01

    In order to develop elevated temperature multiaxial fatigue life prediction models for the wrought cobalt-base alloy, Haynes 188, a multiaxial fatigue data base is required. To satisfy this need, an elevated temperature experimental program on Haynes 188 consisting of axial, torsional, inphase and out of phase axial-torsional fatigue experiments was designed. Elevated temperature axial and torsional fatigue experiments were conducted under strain control on thin wall tubular specimens of Haynes 188 in air. Test results are given.

  16. Abnormal Elevated CA 19-9 in the Dermoid Cyst: A Sign of the Ovarian Torsion?

    PubMed Central

    Goker, Asli; Pala, Halil Gursoy; Ordu, Sercin

    2013-01-01

    Dermoid cyst is the most common germ cell tumor of the ovary containing various tissue elements. Ovarian torsion is a common complication of which ultrasonographic diagnosis is confusing. We report here a 14-year-old adolescent with painless torsion of the ovary including dermoid cyst and with abnormal elevated CA 19-9 serum levels. Elevated CA 19-9 level may be related to ovarian torsion and may predict the extent of tissue necrosis. PMID:23840991

  17. Heidelberg Spectralis infrared video imaging: a clinical tool for diagnosing ocular torsional instability.

    PubMed

    Brodsky, Michael C; Klaehn, Lindsay; Goddard, Shannon M; Link, Thomas P

    2014-06-01

    Heidelberg Spectralis infrared video imaging provides a diagnostic modality for the assessment of dynamic torsional instability of the eyes. It accurately detects monocular changes in both vertical and torsional eye position as fixation is switched from one eye to the other without the need for illuminating either eye. Heidelberg Spectralis infrared video imaging is useful for depicting the subtle torsional components of dissociated vertical divergence, latent nystagmus in patients with infantile esotropia. PMID:24767826

  18. Unification Principle and a Geometric Field Theory

    NASA Astrophysics Data System (ADS)

    Wanas, Mamdouh I.; Osman, Samah N.; El-Kholy, Reham I.

    2015-08-01

    In the context of the geometrization philosophy, a covariant field theory is constructed. The theory satisfies the unification principle. The field equations of the theory are constructed depending on a general differential identity in the geometry used. The Lagrangian scalar used in the formalism is neither curvature scalar nor torsion scalar, but an alloy made of both, the W-scalar. The physical contents of the theory are explored depending on different methods. The analysis shows that the theory is capable of dealing with gravity, electromagnetism and material distribution with possible mutual interactions. The theory is shown to cover the domain of general relativity under certain conditions.

  19. Vibrational branching ratios and photoelectron angular distributions in 5σ photoionisation of CO

    SciTech Connect

    Stephens, J. A.; Dill, Dan; Dehmer, Joseph L.

    1981-10-28

    Vibrationally resolved photoelectron angular distributions have been calculated for the 5σ photoionisation channel of CO using the multiple-scattering method. Vibrational branching ratios and vibrationally unresolved integrated cross sections and photoelectron angular distributions are also reported and compared with available measurements. Both angular distributions and branching ratios exhibit striking non-Franck-Condon behaviour caused primarily by the f-wave shape resonance in the sigma photoionisation continuum. Significant discrepancies between theory and experiment exist for the weaker vf=2,3 vibrational levels and interaction with nearby two-electron excitation is proposed as a likely cause.

  20. Optic-electronic system for measuring the three-dimensional angular deformation of pipe sections at large constructions

    NASA Astrophysics Data System (ADS)

    Konyakhin, Igor; Hoang, Van Phong; Artemenko, Yury; Li, Renpu; Smekhov, Andrey

    2015-05-01

    The improved autocollimation system for measuring three-dimension angular deformations of pipe sections at large constructions as support tube of radio telescope mirror is analyzed. New type of the reflector for autocollimators is researched. The reflector is the trihedral mirror composition of three reflecting sides. It advantage is the measurement pitch, yaw and torsion as three angular rotation of controlled object. The second advantage of reflector is the measurements on the large work distances. Causes are the small value of the conversion coefficient and two orthogonal reference axes of trihedral reflector. The technical characteristics of the experimental setups of new reflector are presented. The features of trihedral reflector as the reflectors for optic-electronic autocollimators are discussed.

  1. Rotation of Electromagnetic Fields and the Nature of Optical Angular Momentum.

    PubMed

    Barnett, Stephen M

    2010-08-01

    The association of spin and orbital angular momenta of light with its polarization and helical phase fronts is now well established. The problems in linking this with electromagnetic theory, as expressed in Maxwell's equations, are rather less well known. We present a simple analysis of the problems involved in defining spin and orbital angular momenta for electromagnetic fields and discuss some of the remaining challenges. Crucial to our investigation is the duplex symmetry between the electric and magnetic fields. PMID:24808629

  2. An energy harvester using piezoelectric cantilever beams undergoing coupled bending-torsion vibrations

    NASA Astrophysics Data System (ADS)

    Abdelkefi, A.; Najar, F.; Nayfeh, A. H.; Ben Ayed, S.

    2011-11-01

    Recently, piezoelectric cantilevered beams have received considerable attention for vibration-to-electric energy conversion. Generally, researchers have investigated a classical piezoelectric cantilever beam with or without a tip mass. In this paper, we propose the use of a unimorph cantilever beam undergoing bending-torsion vibrations as a new piezoelectric energy harvester. The proposed design consists of a single piezoelectric layer and a couple of asymmetric tip masses; the latter convert part of the base excitation force into a torsion moment. This structure can be tuned to be a broader band energy harvester by adjusting the first two global natural frequencies to be relatively close to each other. We develop a distributed-parameter model of the harvester by using the Euler-beam theory and Hamilton's principle, thereby obtaining the governing equations of motion and associated boundary conditions. Then, we calculate the exact eigenvalues and associated mode shapes and validate them with a finite element (FE) model. We use these mode shapes in a Galerkin procedure to develop a reduced-order model of the harvester, which we use in turn to obtain closed-form expressions for the displacement, twisting angle, voltage output, and harvested electrical power. These expressions are used to conduct a parametric study for the dynamics of the system to determine the appropriate set of geometric properties that maximizes the harvested electrical power. The results show that, as the asymmetry is increased, the harvester's performance improves. We found a 30% increase in the harvested power with this design compared to the case of beams undergoing bending only. We also show that the locations of the two masses can be chosen to bring the lowest two global natural frequencies closer to each other, thereby allowing the harvesting of electrical power from multi-frequency excitations.

  3. Influence of braiding structure on torsional properties of braided composite tube

    SciTech Connect

    Nakai, A.; Hamada, H.; Hoa, S.V.

    1996-12-01

    Many different composite cylinders and pipes can be produced by various fabrication methods such as filament winding, prepreg rolling method, braiding technique and so on. It is desirable to understand the mechanical behavior of pipe made by the different method. In this paper torsional behavior of braided composite tube, particularly the effects of braiding angle, was investigated. Numerical model was applied to estimate the torsional rigidity. The torsional rigidity increases with increase of braiding angle from 30{degree} to 45{degree}. However above 45{degree} braiding angle the torsional rigidity remains constant. These results can be compared to numerical results.

  4. Testicular torsion in the inguinal region in an extremely low birth weight infant

    PubMed Central

    Chung, Jae Min

    2010-01-01

    Testicular torsion is rare in newborn infants. However, its frequency has increased, most of which are reported in full-term infants. We diagnosed and treated testicular torsion in an extremely low birth weight infant (ELBWI). A 2×2 cm red mass was palpable in the left groin of a 24-week-old, 745 g, male newborn at 23 days of age. Left testicular torsion was diagnosed, and emergent orchiopexy was performed. Careful physical examination is needed in cases suspicious of testicular torsion in ELBWIs with cryptorchidism. Moreover, early diagnosis and emergent exploration are necessary to prevent complications such as the risk of anorchia. PMID:21189971

  5. Femoral torsion: reliability and validity of the trochanteric prominence angle test.

    PubMed

    Maier, Claudia; Zingg, Patrick; Seifert, Burkhardt; Sutter, Reto; Dora, Claudio

    2012-01-01

    Influence of femoral torsion on femoroacetabular impingement and other hip conditions is not well documented and its assessment by imaging methods during clinical work-up is not routinely performed. We studied whether physical examination could reliably measure or at least screen for gross anomalies of femoral torsion or if appropriate imaging should routinely be performed. Assessing femoral torsion of 45 volunteers using the "trochanteric prominence angle test" and magnetic resonance imaging (MRI), inter- and intra-observer reliability ranged from poor to moderate and agreement with MRI values was only fair. Considering a 5° to 10° difference of femoral torsion as clinically relevant, physical examination failed to match MRI values within ±10° in more than 50%. Arbitrarily defining thresholds for pathological femoral torsion, the "trochanteric prominence angle test" could not recognise torsions outside the >30°/<0° range and diagnosed torsions outside the >20°/<10° range with a sensitivity of 18%-75% and a specificity of 58%-98% only. Physical assessment of femoral torsion using the "trochanteric prominence angle test" does not allow reliable measurement or screening for gross anomalies. We therefore integrate an adapted MRI protocol allowing measurement of femoral torsion within our clinical work up. PMID:22865252

  6. Vacuum static compactified wormholes in eight-dimensional Lovelock theory

    SciTech Connect

    Canfora, Fabrizio; Giacomini, Alex

    2008-10-15

    In this paper, new exact solutions in eight-dimensional Lovelock theory will be presented. These solutions are the vacuum static wormhole, the black hole, and generalized Bertotti-Robinson space-times with nontrivial torsion. All of the solutions have a cross product structure of the type M{sub 5}x{sigma}{sub 3}, where M{sub 5} is a five-dimensional manifold and {sigma}{sub 3} a compact constant curvature manifold. The wormhole is the first example of a smooth vacuum static Lovelock wormhole which is neither Chern-Simons nor Born-Infeld. It will be also discussed how the presence of torsion affects the 'navigableness' of the wormhole for scalar and spinning particles. It will be shown that the wormhole with torsion may act as 'geometrical filter': A very large torsion may 'increase the traversability' for scalars while acting as a 'polarizator' on spinning particles. This may have interesting phenomenological consequences.

  7. Schwarzschild-dS Solution in Modified Teleparallel Gravity Theories

    NASA Astrophysics Data System (ADS)

    Nashed, Gamal G. L.

    2014-04-01

    A tetrad field, having one unknown function of radial coordinate r and an angle Φ which is a function of the azimuthal angle ϕ, is applied to the field equation of modified teleparallel theory of gravity with cosmological constant. Exact vacuum solution is derived whose scalar torsion, T = Tμ ν α Sα μ ν , (where Tμ ν α is the torsion tensor and Sα μ ν is a tensor defined in terms of the contortion and torsion tensors), is vanishing. When the angle Φ coincides with the polar angle (-ϕ), another solution is derived whose scalar torsion is constant. The space-time of the derived solutions is rewritten as a multiplication of two matrices: The first matrix is a special case of Euler’s angle “so(3)” while the second matrix represents the square root of the spherically-symmetric-dS metric.

  8. High precision micro-impulse measurements for micro-thrusters based on torsional pendulum and sympathetic resonance techniques

    NASA Astrophysics Data System (ADS)

    Zhang, Daixian; Wu, Jianjun; Zhang, Rui; Zhang, Hua; He, Zhen

    2013-12-01

    A sympathetic resonance theory is analyzed and applied in a newly developed torsional pendulum to measure the micro-impulse produced by a μN s-class ablative pulsed plasma thruster. According to theoretical analysis on the dynamical behaviors of a torsional pendulum, the resonance amplification effect of micro-signals is presented. In addition, a new micro-impulse measurement method based on sympathetic resonance theory is proposed as an improvement of the original single pulse measurement method. In contrast with the single pulse measurement method, the advantages of sympathetic resonance method are significant. First, because of the magnification of vibration signals due to resonance processes, measurement precision for the sympathetic resonance method becomes higher especially in reducing reading error. With an increase in peak number, the relative errors induced by readout of voltage signals decrease to approximately ±1.9% for the sympathetic resonance mode, whereas the relative error in single pulse mode is estimated as ±13.4%. Besides, by using the resonance amplification effect the sympathetic resonance method makes it possible to measure an extremely low-impulse beyond the resolution of a thrust stand without redesigning or purchasing a new one. Moreover, because of the simple operational principle and structure the sympathetic resonance method is much more convenient and inexpensive to be implemented than other high-precision methods. Finally, the sympathetic resonance measurement method can also be applied in other thrust stands to improve further the ability to measure the low-impulse bits.

  9. High precision micro-impulse measurements for micro-thrusters based on torsional pendulum and sympathetic resonance techniques.

    PubMed

    Zhang, Daixian; Wu, Jianjun; Zhang, Rui; Zhang, Hua; He, Zhen

    2013-12-01

    A sympathetic resonance theory is analyzed and applied in a newly developed torsional pendulum to measure the micro-impulse produced by a ?N s-class ablative pulsed plasma thruster. According to theoretical analysis on the dynamical behaviors of a torsional pendulum, the resonance amplification effect of micro-signals is presented. In addition, a new micro-impulse measurement method based on sympathetic resonance theory is proposed as an improvement of the original single pulse measurement method. In contrast with the single pulse measurement method, the advantages of sympathetic resonance method are significant. First, because of the magnification of vibration signals due to resonance processes, measurement precision for the sympathetic resonance method becomes higher especially in reducing reading error. With an increase in peak number, the relative errors induced by readout of voltage signals decrease to approximately 1.9% for the sympathetic resonance mode, whereas the relative error in single pulse mode is estimated as 13.4%. Besides, by using the resonance amplification effect the sympathetic resonance method makes it possible to measure an extremely low-impulse beyond the resolution of a thrust stand without redesigning or purchasing a new one. Moreover, because of the simple operational principle and structure the sympathetic resonance method is much more convenient and inexpensive to be implemented than other high-precision methods. Finally, the sympathetic resonance measurement method can also be applied in other thrust stands to improve further the ability to measure the low-impulse bits. PMID:24387474

  10. Stability of elastic bending and torsion of uniform cantilever rotor blades in hover with variable structural coupling

    NASA Technical Reports Server (NTRS)

    Hodges, D. H., Roberta.

    1976-01-01

    The stability of elastic flap bending, lead-lag bending, and torsion of uniform, untwisted, cantilever rotor blades without chordwise offsets between the elastic, mass, tension, and areodynamic center axes is investigated for the hovering flight condition. The equations of motion are obtained by simplifying the general, nonlinear, partial differential equations of motion of an elastic rotating cantilever blade. The equations are adapted for a linearized stability analysis in the hovering flight condition by prescribing aerodynamic forces, applying Galerkin's method, and linearizing the resulting ordinary differential equations about the equilibrium operating condition. The aerodynamic forces are obtained from strip theory based on a quasi-steady approximation of two-dimensional unsteady airfoil theory. Six coupled mode shapes, calculated from free vibration about the equilibrium operating condition, are used in the linearized stability analysis. The study emphasizes the effects of two types of structural coupling that strongly influence the stability of hingeless rotor blades. The first structural coupling is the linear coupling between flap and lead-lag bending of the rotor blade. The second structural coupling is a nonlinear coupling between flap bending, lead-lag bending, and torsion deflections. Results are obtained for a wide variety of hingeless rotor configurations and operating conditions in order to provide a reasonably complete picture of hingeless rotor blade stability characteristics.

  11. Angular Size Measurements of 22 Mira Variable Stars

    NASA Astrophysics Data System (ADS)

    van Belle, G. T.; Thompson, R. R.

    1999-05-01

    We present 22 oxygen-rich Mira variable stars made at IOTA (IR Optical Telescope Array). These observations build upon the previous angular size measurements of 27 oxygen-rich, carbon, and S-type Miras found in van Belle et al. (1996, 1997); in total, this data set has angular sizes of 49 Miras, of which 12 have been observed over multiple epochs. The measurements are part of a long term observational program to directly ascertain the oscillation mode of these variables. From the data, the Rosseland mean diameter is calculated from Mira atmospheric models. Estimates of bolometric flux for these stars, combined with the diameter measurements, are used to calculate effective temperatures, TEFF. Using distance estimates for these stars, linear sizes are also calculated, and the phase dependence of radius is discussed. Comparison of these data with the predictions of pulsation theory is also presented.

  12. Angular Power Spectrum in Modular Invariant Inflation Model

    SciTech Connect

    Hayashi, Mitsuo J.; Okame, Y.; Takagi, K.; Watanabe, T.; Hirai, S.; Takami, T.

    2008-05-29

    A scalar potential of inflation is proposed and the angular power spectra of the adiabatic density perturbations are computed. The potential consists of three scalar fields, S, Y and T, together with two free parameters. By fitting the parameters to cosmological data at the fixed point T = 1, we find that the potential behaves like the single-field potential of S, which slowly rolls down. We further show that the inflation predictions corresponding to this potential provide a good fit to the recent three-year WMAP data, e.g. the spectral index n{sub s} = 0.951.The TT and TE angular power spectra obtained from our model almost completely coincide with the corresponding results obtained from the {lambda}CDM model. We conclude that our model is considered to be an adequate theory of inflation that explains the present data.

  13. Gauging nonrelativistic field theories using the coset construction

    NASA Astrophysics Data System (ADS)

    Karananas, Georgios K.; Monin, Alexander

    2016-03-01

    We discuss how nonrelativistic spacetime symmetries can be gauged in the context of the coset construction. We consider theories invariant under the centrally extended Galilei algebra as well as the Lifshitz one, and we investigate under what conditions they can be supplemented by scale transformations. We also clarify the role of torsion in these theories.

  14. Response of shrink fitted assemblies to the dynamic torsion

    NASA Astrophysics Data System (ADS)

    Rajakumar, D. Ramesh

    2012-05-01

    Product design is mostly centered around design of different contact pairs. Among contact pairs, interference fit pair is widely used. Design of interference fits, involves not only dimensional interference, but also condition of interface between mating surfaces. Factors such as texture of interface, hardness of interface material and also physical properties of contacting materials influence the functional characteristics of interference shrink fitted assemblies. In actual practice most of such joints are subjected to dynamic loading. Data on torsion response is only limited. So that, detailed investigation on the influence of dimensional interference, contact length and interfacial properties (electroless nickel coating) on torsion capacity of interference fitted assemblies has been carried out. The response of interference fitted assemblies to dynamic torsion load has been evaluated, using L-9 Orthogonal array of experimental conditions to bring down the number of experiments. The results are analysed using analysis of variance (ANOVA) to find out the individual effects of parameter on dynamic loading. The Torque load carrying capacity of the shrink fitted assemblies is improved by electroless nickel coating. This could be attributed to the increase in actual contact area and tenacity of Nickel plating and presence of strong molecular bonds between the mating parts chosen for the assemblies. But the selection of interference, contact length and hardness of mating parts play a vital role in deciding the performance of these joints. The results clearly indicate that the dynamic performance of the assemblies could be improved by suitably selecting the materials keeping in mind the above factors. It is also found from the ANOVA results that the assemblies with (hardness) coated interlayer performed better. Interference and contact length also has influence on the strength but in this case their influence is not very significant. An expression is obtained using regression analysis, which gives relationship between the parameters. A result obtained from regression analysis is closer to the experimental values.

  15. Mapping Conformational Dynamics of Proteins Using Torsional Dynamics Simulations

    PubMed Central

    Gangupomu, Vamshi K.; Wagner, Jeffrey R.; Park, In-Hee; Jain, Abhinandan; Vaidehi, Nagarajan

    2013-01-01

    All-atom molecular dynamics simulations are widely used to study the flexibility of protein conformations. However, enhanced sampling techniques are required for simulating protein dynamics that occur on the millisecond timescale. In this work, we show that torsional molecular dynamics simulations enhance protein conformational sampling by performing conformational search in the low-frequency torsional degrees of freedom. In this article, we use our recently developed torsional-dynamics method called Generalized Newton-Euler Inverse Mass Operator (GNEIMO) to study the conformational dynamics of four proteins. We investigate the use of the GNEIMO method in simulations of the conformationally flexible proteins fasciculin and calmodulin, as well as the less flexible crambin and bovine pancreatic trypsin inhibitor. For the latter two proteins, the GNEIMO simulations with an implicit-solvent model reproduced the average protein structural fluctuations and sample conformations similar to those from Cartesian simulations with explicit solvent. The application of GNEIMO with replica exchange to the study of fasciculin conformational dynamics produced sampling of two of this protein’s experimentally established conformational substates. Conformational transition of calmodulin from the Ca2+-bound to the Ca2+-free conformation occurred readily with GNEIMO simulations. Moreover, the GNEIMO method generated an ensemble of conformations that satisfy about half of both short- and long-range interresidue distances obtained from NMR structures of holo to apo transitions in calmodulin. Although unconstrained all-atom Cartesian simulations have failed to sample transitions between the substates of fasciculin and calmodulin, GNEIMO simulations show the transitions in both systems. The relatively short simulation times required to capture these long-timescale conformational dynamics indicate that GNEIMO is a promising molecular-dynamics technique for studying domain motion in proteins. PMID:23663843

  16. Laparoscopic Management of Acute Torsion of the Omentum in Adults

    PubMed Central

    Tang, C. N.; Siu, W. T.; Tsui, K. K.; Li, M. K. W.

    2006-01-01

    Background: Acute torsion of the greater omentum is a rare cause of acute abdomen in adults. We report our experience on the clinical presentation, diagnosis, treatment, and outcome of this condition. Method: This is a retrospective review of 9 patients who had a clinicopathologic diagnosis of acute torsion of the greater omentum and were treated at the Department of Surgery, Pamela Youde Nethersole Eastern Hospital from January 1994 to March 2004. Eight patients were male and 1 was female with a median age of 43 years (range, 24 to 65). Median body mass index was 24 kg/m2 (range, 22 to 24). All presented with acute abdominal pain with a median temperature of 36.8 °C (range, 36.5 to 37.2) and a median white cell count of 9.5 x 109/L (range, 7.4 to 15.1 x 109). Preoperative ultrasound was done in 5 patients. Results: All diagnoses were made during surgery. Resection of the infarcted omentum was performed for all patients (5 laparoscopic resections and 4 open resections). No postoperative complications occurred. The overall median time from admission to operation was 23 hours (range, 2 to 98). The overall median operating time and postoperative stay were 70 minutes (range, 38 to 105) and 3 days (range, 1 to 6), respectively. The median oral and parenteral analgesic requirement for postoperative pain control was less and the median hospital stay was shorter in patients who underwent laparoscopic resection. Conclusion: Acute torsion of the greater omentum is an uncommon cause of acute abdomen in adults, and preoperative diagnosis is usually difficult. Laparoscopy seems a safe and minimally invasive technique for both diagnosis and treatment of this rare disease entity. PMID:17212894

  17. Fatigue strength of adhesive bonded section beams under torsion

    SciTech Connect

    Tomioka, Noboru; Kakiage, Masashi; Niisawa, Junetsu; Kitagawa, Hideo

    1995-11-01

    Fatigue strength of adhesive bonded box beams was investigated. From results of the fatigue tests, it was seen that the fatigue strength of bonded beams was higher than that of spot welded beams. Fatigue strength of bonded beams was independent of plate thickness and partition. The flexural rigidity of the box beams in the plane of partition can increase without decrease of torsional rigidity and torsional fatigue strength, if the partition is jointed by adhesive bonding instead of spot welding. Since the fatigue strength and rigidity of adhesive bonded joints can be higher than the spot welded joints in the weight saving structures, it is expected that the structural adhesive joints will be employed more in the automobile body structure. For assuring the introduction of this joint more into the automobile body structures, it is necessary that the fatigue tests on the model members of the actual members used in the automobile body structure are conducted, in addition to those of the simple joints such as tension shear and T-type tension, and the property of the fatigue strength on the adhesive bonded members is known. But, the authors now have little data on fatigue tests of the adhesive bonded members. In the present research to be reported, the fatigue tests on adhesive bonded box beams under torsion, which are typical members in automobile body structure, were carried out and the effects of the presence of longitudinal partition and plate thickness on fatigue strength were investigated. Comparing the results of fatigue tests on adhesive bonded box beams with those on spot welded box beams, the property of fatigue strength on these adhesive bonded box beams was cleared.

  18. Angular-Rate Estimation Using Quaternion Measurements

    NASA Technical Reports Server (NTRS)

    Azor, Ruth; Bar-Itzhack, Y.; Deutschmann, Julie K.; Harman, Richard R.

    1998-01-01

    In most spacecraft (SC) there is a need to know the SC angular rate. Precise angular rate is required for attitude determination, and a coarse rate is needed for attitude control damping. Classically, angular rate information is obtained from gyro measurements. These days, there is a tendency to build smaller, lighter and cheaper SC, therefore the inclination now is to do away with gyros and use other means and methods to determine the angular rate. The latter is also needed even in gyro equipped satellites when performing high rate maneuvers whose angular-rate is out of range of the on board gyros or in case of gyro failure. There are several ways to obtain the angular rate in a gyro-less SC. When the attitude is known, one can differentiate the attitude in whatever parameters it is given and use the kinematics equation that connects the derivative of the attitude with the satellite angular-rate and compute the latter. Since SC usually utilize vector measurements for attitude determination, the differentiation of the attitude introduces a considerable noise component in the computed angular-rate vector.

  19. Angular Momentum Eigenstates for Equivalent Electrons.

    ERIC Educational Resources Information Center

    Tuttle, E. R.; Calvert, J. B.

    1981-01-01

    Simple and efficient methods for adding angular momenta and for finding angular momentum eigenstates for systems of equivalent electrons are developed. Several different common representations are used in specific examples. The material is suitable for a graduate course in quantum mechanics. (SK)

  20. The Orbital Angular Momentum Sum Rule

    NASA Astrophysics Data System (ADS)

    Aslan, Fatma; Burkardt, Matthias

    2015-10-01

    As an alternative to the Ji sum rule for the quark angular momentum, a sum rule for the quark orbital angular momentum, based on a twist-3 generalized parton distribution, has been suggested. We study the validity of this sum rule in the context of scalar Yukawa interactions as well as in QED for an electron.

  1. Angular momentum decomposition of Richardson's pairs

    SciTech Connect

    Dussel, G. G.; Sofia, H. M.

    2008-07-15

    The angular momentum decomposition of pairs obtained using Richardson's exact solution of the pairing Hamiltonian for the deformed {sup 174}Yb nucleus are displayed. The probabilities for low angular momenta of the collective pairs are strikingly different from the ones obtained in the BCS ground state.

  2. Orbital angular momentum in the nucleon

    SciTech Connect

    Garvey, Gerald T.

    2010-05-15

    Analysis of the measured value of the integrated d-bar-u-bar asymmetry (I{sub fas} = 0.147 +- 0.027) in the nucleon show it to arise from nucleon fluctuations into baryon plus pion. Requiring angular momentum conservation in these fluctuations shows the associated orbital angular momentum is equal to the value of the flavor asymmetry.

  3. Strength Tests on Thin-walled Duralumin Cylinders in Torsion

    NASA Technical Reports Server (NTRS)

    Lundquist, Eugene E

    1932-01-01

    This report is the first of a series presenting the results of strength tests on thin-walled cylinders and truncated cones of circular and elliptical section; it comprises the results obtained to date from torsion (pure shear) tests on 65 thin-walled duralumin cylinders of circular section with ends clamped to rigid bulkheads. The effect of variations in the length/radius and radius/thickness ratios on the type of failure is indicated, and a semi-empirical equation for the shearing stress at maximum load is given.

  4. Stresses around large cut-outs in torsion boxes

    NASA Technical Reports Server (NTRS)

    Kuhn, Paul; Moggio, Edwin M

    1946-01-01

    The problem treated here is that of the stresses in a torsion box with a large rectangular cut-out. The theoretical treatment is confined to stresses termed the 'primary stresses.' Comparison of the theoretical results with strain gage data for a series of cut-outs indicates that the primary stresses are probably adequate for designing the major part of the structure, the only important exception being in the design of the cover sheet in the full section adjacent to the cut-out.

  5. Torsional mode relaxation of DABCO in a seeded supersonic beam

    NASA Astrophysics Data System (ADS)

    Wang, Z. W.; Quesada, M. A.; Parker, D. H.

    1987-10-01

    DABCO's ν 13 torsional mode relaxation is monitored in a helium-DABCO and argon-DABCO supersonic jet under low expansion conditions. Both cw and pulsed nozzles are employed. Modeling of the relaxation using the linear Landau-Teller relaxation equation is undertaken with various attempts to incorporate the effects of velocity slip. The relaxation rate is found to be independent of slip and the cross section dependent on the inverse of translational temperature. A V → R process is suggested as the rate determining mechanism.

  6. Compressional and torsional wave amplitudes in rods with periodic structures

    NASA Astrophysics Data System (ADS)

    Morales, A.; Flores, J.; Gutierrez, L.; Mendez-Sanchez, R. A.

    2002-11-01

    To measure and detect elastic waves in metallic rods a low-frequency electromagnetic-acoustic transducer has been developed. Frequencies range from a few hertz up to hundreds of kilohertz. With appropriate configuration of the transducer, compressional or torsional waves can be selectively excited or detected. Although the transducer can be used in many different situations, it has been tested and applied to a locally periodic rod, which consists of a finite number of unit cells. The measured wave amplitudes are compared with theoretical ones, obtained with the one-dimensional transfer matrix method, and excellent agreement is obtained. copyright 2002 Acoustical Society of America.

  7. Laparoscopic treatment of testicular torsion in a puppy.

    PubMed

    Carr, Jennifer G; Heng, Hock Gan; Ruth, Jeffrey; Freeman, Lynetta

    2015-01-01

    A 6 mo old male puppy was presented as an emergency for an acute onset of lethargy, ptyalism, and vomiting. On physical examination, the dog was painful on abdominal palpation. A torsed intra-abdominal testis was diagnosed via abdominal ultrasonography and radiography. Laparoscopy was used to identify and remove the torsed testis. The dog recovered uneventfully and was described as doing well by the owners at the 6 mo follow-up telephone contact. This is the first report of an abdominal testicular torsion treated with laparoscopy. PMID:25654442

  8. Cross-axis adaptation of torsional components in the yaw-axis vestibulo-ocular reflex

    NASA Technical Reports Server (NTRS)

    Trillenberg, P.; Shelhamer, M.; Roberts, D. C.; Zee, D. S.

    2003-01-01

    The three pairs of semicircular canals within the labyrinth are not perfectly aligned with the pulling directions of the six extraocular muscles. Therefore, for a given head movement, the vestibulo-ocular reflex (VOR) depends upon central neural mechanisms that couple the canals to the muscles with the appropriate functional gains in order to generate a response that rotates the eye the correct amount and around the correct axis. A consequence of these neural connections is a cross-axis adaptive capability, which can be stimulated experimentally when head rotation is around one axis and visual motion about another. From this visual-vestibular conflict the brain infers that the slow-phase eye movement is rotating around the wrong axis. We explored the capability of human cross-axis adaptation, using a short-term training paradigm, to determine if torsional eye movements could be elicited by yaw (horizontal) head rotation (where torsion is normally inappropriate). We applied yaw sinusoidal head rotation (+/-10 degrees, 0.33 Hz) and measured eye movement responses in the dark, and before and after adaptation. The adaptation paradigm lasted 45-60 min, and consisted of the identical head motion, coupled with a moving visual scene that required one of several types of eye movements: (1) torsion alone (-Roll); (2) horizontal/torsional, head right/CW torsion (Yaw-Roll); (3) horizontal/torsional, head right/CCW torsion (Yaw+Roll); (4) horizontal, vertical, torsional combined (Yaw+Pitch-Roll); and (5) horizontal and vertical together (Yaw+Pitch). The largest and most significant changes in torsional amplitude occurred in the Yaw-Roll and Yaw+Roll conditions. We conclude that short-term, cross-axis adaptation of torsion is possible but constrained by the complexity of the adaptation task: smaller torsional components are produced if more than one cross-coupling component is required. In contrast, vertical cross-axis components can be easily trained to occur with yaw head movements.

  9. [The functional sport shoe parameter "torsion" within running shoe research--a literature review].

    PubMed

    Michel, F I; Kälin, X; Metzger, A; Westphal, K; Schweizer, F; Campe, S; Segesser, B

    2009-12-01

    Within the sport shoe area torsion is described as the twisting and decoupling of the rear-, mid- and forefoot along the longitudinal axis of the foot. Studies have shown that running shoes restrict the torsion of the foot and thus they increase the pronation of the foot. Based on the findings, it is recommended to design running shoes, which allow the natural freedom of movement of the foot. The market introduction of the first torsion concept through adidas(R) took place in 1989. Independently of the first market introduction, only one epidemiological study was conducted in the running shoe area. The study should investigate the occurrence of Achilles tendon problems of the athletes running in the new "adidas Torsion(R) shoes". However, further studies quantifying the optimal region of torsionability concerning the reduction of injury incidence are still missing. Newer studies reveal that the criterion torsion only plays a secondary roll regarding the buying decision. Moreover, athletes are not able to perceive torsionability as a discrete functional parameter. It is to register, that several workgroups are dealing intensively with the detailed analysis of the foot movement based on kinematic multi-segment-models. However, scientific as well as popular scientific contributions display that the original idea of the torsion concept is still not completely understood. Hence, the "inverse" characteristic is postulated. The present literature review leads to the deduction that the functional characteristics of the torsion concept are not fully implemented within the running shoe area. This implies the necessity of scientific studies, which investigate the relevance of a functional torsion concept regarding injury prevention based on basic and applied research. Besides, biomechanical studies should analyse systematically the mechanism and the effects of torsion relevant technologies and systems. PMID:20108183

  10. The angular momentum of the Oort cloud

    NASA Technical Reports Server (NTRS)

    Weissman, Paul R.

    1991-01-01

    An evaluation is made of the work of Marochnik et al. (1988), which estimated that the angular momentum of the Oort cloud is 2-3 orders of magnitude greater than the planetary system's total angular momentum. It is noted that most of the angular momentum in the currently observed Oort cloud is the result of the effects of external perturbers over the solar system's history, and it is demonstrated that the total current angular momentum is probably in the 6.0 x 10 to the 50th to 1.1 x 10 to the 51st g sq cm/sec range; original angular momentum was probably a factor of 5 below such values.

  11. Torsional dependence of molecular electrical properties and long-range interactions: CH3OH-rare gas systems

    NASA Astrophysics Data System (ADS)

    Davis, Stephen L.; Dennison, Elizabeth C.

    1994-07-01

    Self-consistent-field (SCF) values are reported for all Cartesian tensor components of the dipole, quadrupole, and octupole moments (?,?,?) and polarizabilities ? and A of the methanol molecule in its staggered, eclipsed, and three intermediate conformations. The methanol geometry was held rigid except for a single internal rotation angle ?, describing the relative orientation of the methyl rotor and the hydroxyl framework. Three different basis sets were used, including a 110 contracted Gaussian set based on the electrical properties (ELP) basis of Dykstra et al. [Adv. Chem. Phys. 75, 37 (1989), and references therein]. It was found that the tensor components ?xxx, ?xyy, Axxx, Axyy, and Ayxy vary as cos 3?, while the components ?yyy, ?yxx, Ayyy, Ayxx, and Axyx vary as sin 3?. All other components of ? and A, as well as all components of ?, ?, show little variation with ?. This dependence was explained using a simple model that treats each property as a sum of a constant, hydroxyl framework contribution and a conformation-dependent, methyl rotor contribution. Torsional averages of these properties were computed from torsional wave functions obtained by diagonalization of the internal axis method (IAM) Hamiltonian. It was found that the large amplitude internal rotation in methanol gives rise to large vibrational effects on the Axxx, Axyy, and Ayxy polarizability components. The conformational dependence of the electrical properties was used to describe the conformational dependence of long-range interactions involving a near-symmetric, nonrigid molecule such as methanol. The leading ?-dependent interaction term was shown to vary as R-8 and R-7 for the induction and dispersion interactions (respectively) between a methanol molecule and a structureless atom. Cartesian tensor expressions are given for the long-range dispersion interaction within second-order perturbation theory, and the leading torsionally dependent interaction is shown to vary as sin3 ? cos 3(?-?), where ?,? are the spherical coordinates of the atom.

  12. How Does the Electromagnetic Field Couple to Gravity, in Particular to Metric, Nonmetricity, Torsion, and Curvature?

    NASA Astrophysics Data System (ADS)

    Hehl, Friedrich W.; Obukhov, Yuri N.

    The coupling of the electromagnetic field to gravity is an age-old problem. Presently, there is a resurgence of interest in it, mainly for two reasons: (i) Experimental investigations are under way with ever increasing precision, be it in the laboratory or by observing outer space. (ii) One desires to test out alternatives to Einstein’s gravitational theory, in particular those of a gauge-theoretical nature, like Einstein-Cartan theory or metric-afine gravity.— A clean discussion requires a reflection on the foundations of electrodynamics. If one bases electrodynamics on the conservation laws of electric charge and magnetic flux, one finds Maxwell’s equations expressed in terms of the excitation H = (D,H) and the field strength F = (E,B) without any intervention of the metric or the linear connection of spacetime. In other words, there is still no coupling to gravity. Only the constitutive law H = functional(F) mediates such a coupling. We discuss the different ways of how metric, nonmetricity, torsion, and curvature can come into play here. Along the way, we touch on non-local laws (Mashhoon), non-linear ones (Born-Infeld, Heisenberg-Euler, Plebaśki), linear ones, including the Abelian axion (Ni), and fid a method for deriving the metric from linear electrodynamics (Toupin, Schönberg). Finally, we discuss possible non-minimal coupling schemes.

  13. Considerations on the implementation and modeling of an active mass driver with electric torsional servomotor

    NASA Astrophysics Data System (ADS)

    Ubertini, Filippo; Venanzi, Ilaria; Comanducci, Gabriele

    2015-06-01

    The current trend in full-scale applications of active mass drivers for mitigating buildings' vibrations is to rely on the use of electric servomotors and low friction transmission devices. While similar full-scale applications have been recently documented, there is still the need for deepening the understanding of the behavior of such active mass drivers, especially as it concerns their reliability in the case of extreme loading events. This paper presents some considerations arisen in the physical implementation of a prototype active mass driver system, fabricated by coupling an electric torsional servomotor with a ball screw transmission device, using state-of-the-art electronics and a high speed digital communication protocol between controller and servomotor drive. The prototype actuator is mounted on top of a scaled-down five-story frame structure, subjected to base excitation provided by a sliding table actuated by an electrodynamic shaker. The equations of motion are rigorously derived, at first, by considering the torque of the servomotor as the control input, in agreement with other literature work. Then, they are extended to the case where the servomotor operates under kinematic control, that is, by commanding its angular velocity instead of its torque, including control-structure-interaction effects. Experiments are carried out by employing an inherently stable collocated skyhook control algorithm, proving, on the one hand, the control effectiveness of the device but also revealing, on the other hand, the possibility of closed-loop system instability at high gains. Theoretical interpretation of the results clarifies that the dynamic behavior of the actuator plays a central role in determining its control effectiveness and is responsible for the observed stability issues, operating similarly to time delay effects. Numerical extension to the case of earthquake excitation confirms the control effectiveness of the device and highlights that different controllers essentially provide similar performances in the mitigation of the structural response.

  14. Torsion of non-gravid uterus with ovarian cyst - an extremely rare case.

    PubMed

    Havaldar, Nusrat; Ashok, Kiran

    2014-01-01

    Torsion of nongravid uterus is rare. Cases reported have occured during pregnancy. We report a case of a patient with acute abdominal pain. The patient showed a voluminous mass situated in the abdomen and noncontiguous to the uterus by ultrasound scan. Laparotomy confirmed the diagnosis of cystic ovarian mass with torsion of uterus. PMID:25400862

  15. Torsion of non-gravid uterus with ovarian cyst - an extremely rare case

    PubMed Central

    Havaldar, Nusrat; Ashok, Kiran

    2014-01-01

    Torsion of nongravid uterus is rare. Cases reported have occured during pregnancy. We report a case of a patient with acute abdominal pain. The patient showed a voluminous mass situated in the abdomen and noncontiguous to the uterus by ultrasound scan. Laparotomy confirmed the diagnosis of cystic ovarian mass with torsion of uterus. PMID:25400862

  16. The experimental determination of the torsional barrier and shape for disilane.

    PubMed

    Moazzen-Ahmadi, N; Horneman, V-M

    2006-05-21

    The torsional spectrum of disilane was recorded for the first time under high-pressure-pathlength conditions and at a spectral resolution of 0.007 cm(-1) using a Bruker IFS-120 HR Fourier transform spectrometer. The spectrum shows six distinct Q branches. The most prominent Q branch is near 130 cm(-1) which is a blend of four components of the torsional fundamental. Of the remaining five, four were assigned to the first torsional hot band (v(4)=2<--1) and one to the second torsional hot band (v(4)=3<--2). Over 350 transitions were identified. An analysis of the torsional fundamental, the first torsional hot band, and the lower state combination differences from frequencies of the vibrational bands nu(9) and nu(9)+nu(4)-nu(4) was made to characterize the torsion-rotation Hamiltonian in the ground vibrational state. The barrier height, barrier shape, and the rotational constant about the Si-Si bond were determined to be 404.344(83) cm(-1), 2.255(65) cm(-1), and 43208(28) MHz, respectively. Comparison of simulated and the experimental spectra yielded (mu||-mu(perpendicular))/mu(perpendicular)= -4(1) for the torsional dipole moments. This ratio compares well with -3.39(6) for ethane. A comparison of molecular parameters obtained here is made with those for methyl silane and ethane. PMID:16729816

  17. The experimental determination of the torsional barrier and shape for disilane

    NASA Astrophysics Data System (ADS)

    Moazzen-Ahmadi, N.; Horneman, V.-M.

    2006-05-01

    The torsional spectrum of disilane was recorded for the first time under high-pressure-pathlength conditions and at a spectral resolution of 0.007cm-1 using a Bruker IFS-120 HR Fourier transform spectrometer. The spectrum shows six distinct Q branches. The most prominent Q branch is near 130cm-1 which is a blend of four components of the torsional fundamental. Of the remaining five, four were assigned to the first torsional hot band (v4=2←1) and one to the second torsional hot band (v4=3←2). Over 350 transitions were identified. An analysis of the torsional fundamental, the first torsional hot band, and the lower state combination differences from frequencies of the vibrational bands ν9 and ν9+ν4-ν4 was made to characterize the torsion-rotation Hamiltonian in the ground vibrational state. The barrier height, barrier shape, and the rotational constant about the Si-Si bond were determined to be 404.344(83)cm-1, 2.255(65)cm-1, and 43208(28)MHz, respectively. Comparison of simulated and the experimental spectra yielded (μ‖-μ⊥)/μ⊥=-4(1) for the torsional dipole moments. This ratio compares well with -3.39(6) for ethane. A comparison of molecular parameters obtained here is made with those for methyl silane and ethane.

  18. Relationship between head orientation and torsional eye movements in goldfish during linear acceleration

    NASA Astrophysics Data System (ADS)

    Takabayashi, A.; Ohmura, T.; Mori, S.

    We analyzed torsional eye movements of normal goldfish during sinusoidal linear acceleration, altering the orientation of the fish on the linear accelerator in the yaw plane over a range of 90 degrees and in the pitch plane up to 30 degrees. We video-recorded changes of torsional eye movements associated with a body rotation in the yaw and pitch plane and analyzed them frame by frame. In normal fish, we observed clear torsional eye movements for stimuli of 0.1G linear accelerations along the body axis in the horizontal position. Torsion occurred in the opposite direction of resultant force produced by linear acceleration and gravity. Though the amplitude of these compensatory responses increased with increasing magnitude of acceleration up to 0.5 G, the torsion angle did not fully compensate the angle calculated from gravity and linear acceleration. Furthermore, the torsion angle decreased as the longitudinal body axis deviated from the direction of linear acceleration. For the body axis perpendicular to the direction of acceleration, torsional eye movement was still observed. When we tilted the fish in the pitch plane, compensatory eye torsion occurred. The response amplitude to acceleration decreased for both head-up and head-down up to 30 degrees. These results suggested the existence of specific connections between the otolith organ and ocular muscles.

  19. Highly Accurate Beam Torsion Solutions Using the p-Version Finite Element Method

    NASA Technical Reports Server (NTRS)

    Smith, James P.

    1996-01-01

    A new treatment of the classical beam torsion boundary value problem is applied. Using the p-version finite element method with shape functions based on Legendre polynomials, torsion solutions for generic cross-sections comprised of isotropic materials are developed. Element shape functions for quadrilateral and triangular elements are discussed, and numerical examples are provided.

  20. Torsion of Undescended Third Testis, as Rare Cause of Painful Inguinal Mass

    PubMed Central

    Nasrallah, Najib

    2015-01-01

    Twenty years old young was referred to our department due to painful inguinal mass. The mass was diagnosed as torsion of third testis which was treated by orchiectomy. Polyorchidism is a rare entity with increased risk for malignancy and torsion. PMID:25688325

  1. Nonspecificity of the rim sign in the scintigraphic diagnosis of missed testicular torsion

    SciTech Connect

    Vieras, F.; Kuhn, C.R.

    1983-02-01

    Causes of a hyperemic peritesticular rim on dynamic and static scintigrams are reviewed. Of 6 patients exhibiting such a pattern, 3 had missed testicular torsion; the other 3 had tumor, trauma, or inflamation. The authors conclude that a hyperemic peritesticular rim is a nonspecific finding reflecting underlying pathophysiological changes and is not pathognomonic of missed torsion.

  2. Nonspecificity of the rim sign in the scintigraphic diagnosis of missed testicular torsion

    SciTech Connect

    Vieras, F.; Kuhn, C.R.

    1983-02-01

    Causes of a hyperemic peritesticular rim on dynamic and static scintigrams are reviewed. Of 6 patients exhibiting such a pattern, 3 had missed testicular torsion; the other 3 had tumor, trauma, or inflammation. The authors conclude that a hyperemic peritesticular rim is a nonspecific finding reflecting underlying pathophysiological changes and is not pathognomonic of missed torsion.

  3. A torsional completion of gravity for Dirac matter fields and its applications to neutrino oscillations

    NASA Astrophysics Data System (ADS)

    Fabbri, Luca; Vignolo, Stefano

    2016-01-01

    In this paper, we consider the torsional completion of gravitation for an underlying background filled with Dirac fields, applying it to the problem of neutrino oscillations: we discuss the effects of the induced torsional interactions as corrections to the neutrino oscillations mechanism.

  4. Faraday Rotation and Primordial Magnetic Fields Constraints on Ultraviolet Lorentz Violation with Spacetime Torsion

    NASA Astrophysics Data System (ADS)

    de Andrade, L. C. Garcia

    Recently Kahniashvili et al.9 presented a unified treatment for ultraviolet Lorentz violation (LV) testing through electromagnetic wave propagation in magnetized plasmas, based on dispersion and rotation measured data. Based on the fact discovered recently by Kostelecky et al., 3 that LV may place constraints on spacetime torsion, in this paper it is shown that on the limit of very low frequency torsion waves, it is possible to constraint torsion from Faraday rotation and CMB on a similar fashion as Minkowski spacetime plus torsion. Here, the Maxwells modified equations are obtained by a perturbative method introduced by de Sabbata and Gasperini [Introduction to Gravitation (World Scientific, 1980)]. Torsion is constraint to QCMB≈10-18 GeV which is not so stringent as the 10-31 GeV obtained by Kostelecky et al. However, Gamma-Ray Bursts (GRBs) may lead to the more string value obtained by Kostelecky et al.Another interesting constraint on torsion is shown to be placed by galactic dynamo seed magnetic fields. For torsion effects be compatible with the galactic dynamo seeds, one obtains a torsion constraint of 10-33 GeV which is two orders of magnitude more stringent that the above Kostelecky et al. limit.

  5. Effective Torsion and Spring Constants in a Hybrid Translational-Rotational Oscillator

    ERIC Educational Resources Information Center

    Nakhoda, Zein; Taylor, Ken

    2011-01-01

    A torsion oscillator is a vibrating system that experiences a restoring torque given by [tau] = -[kappa][theta] when it experiences a rotational displacement [theta] from its equilibrium position. The torsion constant [kappa] (kappa) is analogous to the spring constant "k" for the traditional translational oscillator (for which the restoring force…

  6. Flap/Lag/Torsion Dynamics of a Uniform, Cantilever Rotor Blade in Hover

    NASA Technical Reports Server (NTRS)

    Johnson, W.

    1977-01-01

    The dynamic stability of the flap/lag/torsion motion of a uniform, cantilever rotor blade in hover is calculated. The influence of blade collective pitch, lag frequency, torsional flexibility, structural coupling, and precone angle on the stability is examined. Good agreement is found with the results of an independent analytical investigation.

  7. Effective Torsion and Spring Constants in a Hybrid Translational-Rotational Oscillator

    ERIC Educational Resources Information Center

    Nakhoda, Zein; Taylor, Ken

    2011-01-01

    A torsion oscillator is a vibrating system that experiences a restoring torque given by [tau] = -[kappa][theta] when it experiences a rotational displacement [theta] from its equilibrium position. The torsion constant [kappa] (kappa) is analogous to the spring constant "k" for the traditional translational oscillator (for which the restoring force

  8. Pediatric synchronous bilateral ovarian torsion: a case report and review of the literature.

    PubMed

    Dumont, Tania; Caccia, Nicolette; Allen, Lisa

    2011-12-01

    Ovarian torsion is a surgical emergency that can present with a variety of symptoms and hence is difficult to diagnose. We present the first case of a pediatric synchronous bilateral ovarian torsion in ovaries without pathology and review its presentation, diagnosis, treatment, outcome, and the associated literature. PMID:22152901

  9. Three-dimensional organization of otolith-ocular reflexes in rhesus monkeys. II. Inertial detection of angular velocity

    NASA Technical Reports Server (NTRS)

    Angelaki, D. E.; Hess, B. J.

    1996-01-01

    1. The dynamic contribution of otolith signals to three-dimensional angular vestibuloocular reflex (VOR) was studied during off-vertical axis rotations in rhesus monkeys. In an attempt to separate response components to head velocity from those to head position relative to gravity during low-frequency sinusoidal oscillations, large oscillation amplitudes were chosen such that peak-to-peak head displacements exceeded 360 degrees. Because the waveforms of head position and velocity differed in shape and frequency content, the particular head position and angular velocity sensitivity of otolith-ocular responses could be independently assessed. 2. During both constant velocity rotation and low-frequency sinusoidal oscillations, the otolith system generated two different types of oculomotor responses: 1) modulation of three-dimensional eye position and/or eye velocity as a function of head position relative to gravity, as presented in the preceding paper, and 2) slow-phase eye velocity as a function of head angular velocity. These two types of otolith-ocular responses have been analyzed separately. In this paper we focus on the angular velocity responses of the otolith system. 3. During constant velocity off-vertical axis rotations, a steady-state nystagmus was elicited that was maintained throughout rotation. During low-frequency sinusoidal off-vertical axis oscillations, dynamic otolith stimulation resulted primarily in a reduction of phase leads that characterize low-frequency VOR during earth-vertical axis rotations. Both of these effects are the result of an internally generated head angular velocity signal of otolithic origin that is coupled through a low-pass filter to the VOR. No change in either VOR gain or phase was observed at stimulus frequencies larger than 0.1 Hz. 4. The dynamic otolith contribution to low-frequency angular VOR exhibited three-dimensional response characteristics with some quantitative differences in the different response components. For horizontal VOR, the amplitude of the steady-state slow-phase velocity during constant velocity rotation and the reduction of phase leads during sinusoidal oscillation were relatively independent of tilt angle (for angles larger than approximately 10 degrees). For vertical and torsional VOR, the amplitude of steady-state slow-phase eye velocity during constant velocity rotation increased, and the phase leads during sinusoidal oscillation decreased with increasing tilt angle. The largest steady-state response amplitudes and smallest phase leads were observed during vertical/torsional VOR about an earth-horizontal axis. 5. The dynamic range of otolith-borne head angular velocity information in the VOR was limited to velocities up to approximately 110 degrees/s. Higher head velocities resulted in saturation and a decrease in the amplitude of the steady-state response components during constant velocity rotation and in increased phase leads during sinusoidal oscillations. 6. The response characteristics of otolith-borne angular VORs were also studied in animals after selective semicircular canal inactivation. Otolith angular VORs exhibited clear low-pass filtered properties with a corner frequency of approximately 0.05-0.1 Hz. Vectorial summation of canal VOR alone (elicited during earth-vertical axis rotations) and otolith VOR alone (elicited during off-vertical axis oscillations after semicircular canal inactivation) could not predict VOR gain and phase during off-vertical axis rotations in intact animals. This suggests a more complex interaction of semicircular canal and otolith signals. 7. The results of this study show that the primate low-frequency enhancement of VOR dynamics during off-vertical axis rotation is independent of a simultaneous activation of the vertical and torsional "tilt" otolith-ocular reflexes that have been characterized in the preceding paper. (ABSTRACT TRUNCATED).

  10. Angular momentum and torque described with the complex octonion

    SciTech Connect

    Weng, Zi-Hua

    2014-08-15

    The paper aims to adopt the complex octonion to formulate the angular momentum, torque, and force etc in the electromagnetic and gravitational fields. Applying the octonionic representation enables one single definition of angular momentum (or torque, force) to combine some physics contents, which were considered to be independent of each other in the past. J. C. Maxwell used simultaneously two methods, the vector terminology and quaternion analysis, to depict the electromagnetic theory. It motivates the paper to introduce the quaternion space into the field theory, describing the physical feature of electromagnetic and gravitational fields. The spaces of electromagnetic field and of gravitational field can be chosen as the quaternion spaces, while the coordinate component of quaternion space is able to be the complex number. The quaternion space of electromagnetic field is independent of that of gravitational field. These two quaternion spaces may compose one octonion space. Contrarily, one octonion space can be separated into two subspaces, the quaternion space and S-quaternion space. In the quaternion space, it is able to infer the field potential, field strength, field source, angular momentum, torque, and force etc in the gravitational field. In the S-quaternion space, it is capable of deducing the field potential, field strength, field source, current continuity equation, and electric (or magnetic) dipolar moment etc in the electromagnetic field. The results reveal that the quaternion space is appropriate to describe the gravitational features, including the torque, force, and mass continuity equation etc. The S-quaternion space is proper to depict the electromagnetic features, including the dipolar moment and current continuity equation etc. In case the field strength is weak enough, the force and the continuity equation etc can be respectively reduced to that in the classical field theory.

  11. Angular momentum and torque described with the complex octonion

    NASA Astrophysics Data System (ADS)

    Weng, Zi-Hua

    2014-08-01

    The paper aims to adopt the complex octonion to formulate the angular momentum, torque, and force etc in the electromagnetic and gravitational fields. Applying the octonionic representation enables one single definition of angular momentum (or torque, force) to combine some physics contents, which were considered to be independent of each other in the past. J. C. Maxwell used simultaneously two methods, the vector terminology and quaternion analysis, to depict the electromagnetic theory. It motivates the paper to introduce the quaternion space into the field theory, describing the physical feature of electromagnetic and gravitational fields. The spaces of electromagnetic field and of gravitational field can be chosen as the quaternion spaces, while the coordinate component of quaternion space is able to be the complex number. The quaternion space of electromagnetic field is independent of that of gravitational field. These two quaternion spaces may compose one octonion space. Contrarily, one octonion space can be separated into two subspaces, the quaternion space and S-quaternion space. In the quaternion space, it is able to infer the field potential, field strength, field source, angular momentum, torque, and force etc in the gravitational field. In the S-quaternion space, it is capable of deducing the field potential, field strength, field source, current continuity equation, and electric (or magnetic) dipolar moment etc in the electromagnetic field. The results reveal that the quaternion space is appropriate to describe the gravitational features, including the torque, force, and mass continuity equation etc. The S-quaternion space is proper to depict the electromagnetic features, including the dipolar moment and current continuity equation etc. In case the field strength is weak enough, the force and the continuity equation etc can be respectively reduced to that in the classical field theory.

  12. Laparoscopic management of a two staged gall bladder torsion

    PubMed Central

    Sunder, Yadav Kamal; Akhilesh, Sali Priyanka; Raman, Garg; Deborshi, Sharma; Shantilal, Mehta Hitesh

    2015-01-01

    Gall bladder torsion (GBT) is a relatively uncommon entity and rarely diagnosed preoperatively. A constant factor in all occurrences of GBT is a freely mobile gall bladder due to congenital or acquired anomalies. GBT is commonly observed in elderly white females. We report a 77-year-old, Caucasian lady who was originally diagnosed as gall bladder perforation but was eventually found with a two staged torsion of the gall bladder with twisting of the Riedel’s lobe (part of tongue like projection of liver segment 4A). This together, has not been reported in literature, to the best of our knowledge. We performed laparoscopic cholecystectomy and she had an uneventful post-operative period. GBT may create a diagnostic dilemma in the context of acute cholecystitis. Timely diagnosis and intervention is necessary, with extra care while operating as the anatomy is generally distorted. The fundus first approach can be useful due to altered anatomy in the region of Calot’s triangle. Laparoscopic cholecystectomy has the benefit of early recovery. PMID:26730287

  13. Torsion, magnetic monopoles and Faraday's law via a variational principle

    NASA Astrophysics Data System (ADS)

    Mannheim, Philip D.

    2015-05-01

    Even though Faraday's Law is a dynamical law that describes how changing E and B fields influence each other, by introducing a vector potential Aμ according to Fμν = ∂νAν - ∂νAμ Faraday's Law is satisfied kinematically, with the relation (-g)-1/2ɛμνστ ∇νFστ = 0 holding on every path in a variational procedure or path integral. In a space with torsion Qαβγ the axial vector Sμ = (-g)1/2ɛμαβγQαβγ serves as a chiral analog of Aμ, and via variation with respect to Sμ one can derive Faraday's Law dynamically as a stationarity condition. With Sμ serving as an axial potential one is able to introduce magnetic monopoles without Sμ needing to be singular or have a non-trivial topology. Our analysis permits torsion and magnetic monopoles to be intrinsically Grassmann, which could explain why they have never been detected. Our procedure permits us to both construct a Weyl geometry in which Aμ is metricated and then convert it into a standard Riemannian geometry.

  14. Laparoscopic management of a two staged gall bladder torsion.

    PubMed

    Sunder, Yadav Kamal; Akhilesh, Sali Priyanka; Raman, Garg; Deborshi, Sharma; Shantilal, Mehta Hitesh

    2015-12-27

    Gall bladder torsion (GBT) is a relatively uncommon entity and rarely diagnosed preoperatively. A constant factor in all occurrences of GBT is a freely mobile gall bladder due to congenital or acquired anomalies. GBT is commonly observed in elderly white females. We report a 77-year-old, Caucasian lady who was originally diagnosed as gall bladder perforation but was eventually found with a two staged torsion of the gall bladder with twisting of the Riedel's lobe (part of tongue like projection of liver segment 4A). This together, has not been reported in literature, to the best of our knowledge. We performed laparoscopic cholecystectomy and she had an uneventful post-operative period. GBT may create a diagnostic dilemma in the context of acute cholecystitis. Timely diagnosis and intervention is necessary, with extra care while operating as the anatomy is generally distorted. The fundus first approach can be useful due to altered anatomy in the region of Calot's triangle. Laparoscopic cholecystectomy has the benefit of early recovery. PMID:26730287

  15. Twist transport in strongly torsioned astrophysical flux tubes

    NASA Astrophysics Data System (ADS)

    Garcia de Andrade, L. C.

    2007-07-01

    Riemannian geometrical effects on the expansion of the electron magnetohydrodynamical (EMH) superconductivity modeled twisted nonplanar thin magnetic flux tubes are considered. A solution is found which represents almost incompressible plasma flows, where the twist of flux tube is computed in terms of the continuous variation of its cross-section. It is shown that the twist increases in regions where twisted flux tube expands as in Parkers conjecture. From computation of compression along the tube we show that when the torsion is weak a centrifugal or vorticity effect on the longitudinal direction of the tube enhances the screening effect on the superconductor. Throughout the paper we consider helical flux tubes where torsion and curvature of the tube are constants. Thus we show that the Parkers conjecture is valid in a continuos manner for these type II superconducting twisted flux tubes. Throughout the paper we adopt the approximation that the radial component of the magnetic field varies so slowly along the tube axis that it can be approximated to zero along the tube. It is suggested that the models discussed here may also be applied to DNA and nanotubes.

  16. Effective protein conformational sampling based on predicted torsion angles.

    PubMed

    Yang, Yuedong; Zhou, Yaoqi

    2016-04-30

    Protein structure prediction is a long-standing problem in molecular biology. Due to lack of an accurate energy function, it is often difficult to know whether the sampling algorithm or the energy function is the most important factor for failure of locating near-native conformations of proteins. This article examines the size dependence of sampling effectiveness by using a perfect "energy function": the root-mean-squared distance from the target native structure. Using protein targets up to 460 residues from critical assessment of structure prediction techniques (CASP11, 2014), we show that the accuracy of near native structures sampled is relatively independent of protein sizes but strongly depends on the errors of predicted torsion angles. Even with 40% out-of-range angle prediction, 2 Å or less near-native conformation can be sampled. The result supports that the poor energy function is one of the bottlenecks of structure prediction and predicted torsion angles are useful for overcoming the bottleneck by restricting the sampling space in the absence of a perfect energy function. © 2015 Wiley Periodicals, Inc. PMID:26696379

  17. The ground and first excited torsional states of methyl carbamate

    NASA Astrophysics Data System (ADS)

    Ilyushin, V.; Alekseev, E.; Demaison, J.; Kleiner, I.

    2006-11-01

    A global fit within experimental accuracy of microwave and millimeter-wave transitions in the ground and first excited torsional states of methyl carbamate (H 2NC(O)OCH 3) is presented. The data set consisting of 995 vt = 0 and 731 vt = 1 transition frequencies combines 1544 new measurements from Kharkov with previously published vt = 0 microwave lines. In this study the so-called "rho axis method" that treats simultaneously both A and E species of the ground and first excited torsional states is applied to the methyl carbamate data set for the first time. The final fit requires only 32 parameters to achieve a unitless weighted standard deviation for the whole fit of 0.89 for a total of 1726 transitions with rotational quantum numbers up to J ⩽ 20 and Ka ⩽ 10. The barrier to internal rotation of the methyl group obtained in this study, V3 = 359.141(24) cm -1, is in good agreement with previously published values but more accurate.

  18. Architecture of torsional gyroscope having robust sense mode

    NASA Astrophysics Data System (ADS)

    Jain, Ankush; Sharma, Hitesh Kumar; Gopal, Ram

    2015-10-01

    An architecture of a torsional gyroscope having robust sense mode is reported. The robustness is achieved by utilizing dynamic amplification of torsional oscillations in the sense oscillator. The frequency response of the sense oscillator, which essentially is a 2-degree-of-freedom (DOF) one, has two resonance peaks and a flat region between the peaks, where the amplitude is less sensitive to ambient damping resulting in the robust sense mode. The frequency response of the 1-DOF drive oscillator has one resonance peak, which is designed to fall within the flat region of the sense amplitude. This helps in reducing the effects of change in the geometry and material properties of the device, induced by inevitable fabrication imperfections, on the device performance. The device is modeled by deriving the equations for electrostatic moment, moments of inertia, and spring constants. The design concepts of antiresonance and zero-phase frequency, along with analytical expressions for resonance frequencies and 3-dB bandwidth are also presented. The design is then realized using an SU-8 based ultraviolet-lithographie, galvanoformung, abformung (UV-LIGA) process having 8-μm thick Ni-Fe as the key structural layer. A characterization technique is developed to extract the frequency response of the fabricated device.

  19. Determination of transverse shear strength through torsion testing

    SciTech Connect

    Marcucelli, K.T.; Fish, J.C.

    1997-12-31

    The in-plane characterization of composite materials is, in general, well understood and widely utilized throughout the aerospace industry. However, the use of composites in structural elements such as fuselage frames and rotorcraft flexbeams place large out-of-plane or through-the-thickness stresses for which there is little data. Efforts to determine the interlaminar shear strength of laminated composites have been hampered due to the nonlinear behavior of test specimens and the limitations of current analysis tools. An inexpensive rectangular torsion test specimen was designed to determine the interlaminar shear strength, s{sub 23}, of composite materials. Six different layups were fabricated of AS4/2220-3 carbon/epoxy unidirectional tape and tested in pure torsion. All of the specimens failed abruptly with well-defined shear cracks and exhibited linear load-deflection behavior. A quasi-three-dimensional (Q-3-D) finite element analysis was conducted on each of the specimen configurations to determine the interlaminar shear stress at failure. From this analysis, s{sub 23} was found to be 107 MPa for this material.

  20. Normal Left Ventricular Torsion Mechanics in Healthy Children: Age Related Changes of Torsion Parameters Are Closely Related to Changes in Heart Rate

    PubMed Central

    Kim, Hye Jin; Yoon, Ji-Hong; Lee, Eun-Jung; Oh, Jin Hee; Lee, Soon Ju; Han, Ji Whan

    2015-01-01

    Background and Objectives This study was aimed at assessing left ventricular torsion (LVtor) mechanics using speckle tracking echocardiography (STE), establishing normal reference values of principal LVtor parameters, and analyzing the age-related changes in normal children. Subjects and Methods Eighty children (aged 3 months to 15 years) with normal cardiac function and rhythm were recruited. LVtor parameters including rotations, twist and untwist, torsion, and their rate indices were measured using STE. Age and heart rate related changes of the parameters were analyzed. Results Speckle tracking echocardiography analyses for LVtor parameters had excellent reliability in 64 of 80 subjects (80%) (intraclass correlation coefficients; 0.93-0.97). Early systolic twist (EST) motions (-8.4--0.1°) were observed in all subjects during an early 20±7% of systolic time intervals. The peak systolic twist and torsion were 17.0±6.5° and 2.9±1.3°/cm, respectively. The peak twist velocity was recorded at 51±13% of systolic time and the peak untwist velocity at 13.8±11.5% of diastolic time intervals. Multivariate analysis showed that heart rate change was an independent predictor of changes in torsion parameters; significantly decreasing LV length-normalized apical and basal rotation, torsion, and twist and untwist rate with increasing age. Isovolumetric recoil rate was independent of change in age and heart rate. Conclusion Left ventricle showed unique torsion mechanics in children with EST, torsion, and untwists. Heart rate was an independent predictor of the change in torsion parameters with aging. PMID:25810735