Science.gov

Sample records for therapies glp-1 receptor

  1. [Characteristics and types of GLP-1 receptor agonists. An opportunity for individualized therapy].

    PubMed

    Jdar, Esteban

    2014-09-01

    Glucagon-like peptide 1 (GLP-1) is secreted from enteroendocrine L-cells in response to oral nutrient intake and elicits glucose-stimulated insulin secretion while suppressing glucagon secretion. Moreover slows gastric emptying -reducing postprandial glycemic excursions-, reduces body weight, systolic blood pressure and has beneficial effects in the cardiovascular and central nervous systems. Since the 1990s, the efficacy of GLP-1 in reducing blood glucose levels in type 2 diabetes (DM2) was well known. However, GLP-1 should be administered by chronic subcutaneous infusion because of the rapid cleavage by the enzyme dipeptidyl peptidase 4 (DPP-4). Hence, DPP-4 inhibitors -which increase pseudo-physiologically endogenous GLP-1 levels- were developed. In addition, several GLP-1 receptor agonists have been designed to avoid DPP-4-breakdown and/or rapid renal elimination and, therefore, induce a pharmacologic effect in the GLP-1 receptor: short-acting, long-acting, and prolonged-acting GLP-1 analogs. Each class has different structural, pharmacodynamic and clinical properties and could be administered in different therapeutical regimens giving us the opportunity to individualize the therapy of DM2. PMID:25437460

  2. Combination therapy with GLP-1 receptor agonists and basal insulin: a systematic review of the literature

    PubMed Central

    Balena, R; Hensley, I E; Miller, S; Barnett, A H

    2013-01-01

    Treatment algorithms for type 2 diabetes call for intensification of therapy over time as the disease progresses and glycaemic control worsens. If diet, exercise and oral antihyperglycaemic medications (OAMs) fail to maintain glycaemic control then basal insulin is added and ultimately prandial insulin may be required. However, such an intensification strategy carries risk of increased hypoglycaemia and weight gain, both of which are associated with worse long-term outcomes. An alternative strategy is to intensify therapy by the addition of a short-acting glucagon-like peptide-1 receptor agonist (GLP-1 RA) rather than prandial insulin. Short-acting GLP-1 RAs such as exenatide twice daily are particularly effective at reducing postprandial glucose while basal insulin has a greater effect on fasting glucose, providing a physiological rationale for this complementary approach. This review analyzes the latest randomized controlled clinical trials of insulin/GLP-1 RA combination therapy and examines results from ‘real-world’ use of the combinations as reported through observational and clinical practice studies. The most common finding across all types of studies was that combination therapy improved glycaemic control without weight gain or an increased risk of hypoglycaemia. Many studies reported weight loss and a reduction in insulin use when a GLP-1 RA was added to existing insulin therapy. Overall, the relative degree of benefit to glycaemic control and weight was influenced by the insulin titration employed in conjunction with the GLP-1 RA. The greatest glycaemic benefits were observed in studies with structured titration of insulin to glycaemic targets while the greatest weight benefits were observed in studies with a protocol-specified focus on insulin sparing. The adverse event profile of GLP-1 RAs in the reviewed trials was similar to that reported with GLP-1 RAs as monotherapy or in combination with OAMs with gastrointestinal events being the most commonly reported. PMID:23061470

  3. Novel GLP-1 Fusion Chimera as Potent Long Acting GLP-1 Receptor Agonist

    PubMed Central

    Wang, Qinghua; Chen, Kui; Liu, Rui; Zhao, Fang; Gupta, Sandeep; Zhang, Nina; Prud'homme, Gerald J.

    2010-01-01

    GLP-1 has a variety of anti-diabetic effects. However, native GLP-1 is not suitable for therapy of diabetes due to its short half-life (t1/2<2 min). To circumvent this, we developed a long-lasting GLP-1 receptor agonist by the fusion of GLP-1 with human IgG2 Fc (GLP-1/hIgG2). ELISA-based receptor binding assay demonstrated that GLP-1/hIgG2 had high binding affinity to the GLP-1R in INS-1 cells (Kd?=?13.901.52 nM). Upon binding, GLP-1/hIgG2 was rapidly internalized by INS-1 cells in a dynamin-dependent manner. Insulin RIA showed that GLP-1/IgG2 dose-dependently stimulated insulin secretion from INS-1 cells. Pharmacokinetic studies in CD1 mice showed that with intraperitoneal injection (i.p.), the GLP-1/hIgG2 peaked at 30 minutes in circulation and maintained a plateau for >168 h. Intraperitoneal glucose tolerance test (IPGTT) in mice showed that GLP-1/hIgG2 significantly decreased glucose excursion. Furthermore, IPGTT performed on mice one week after a single drug-injection also displayed significantly reduced glucose excursion, indicating that GLP-1/hIgG2 fusion protein has long-lasting effects on the modulation of glucose homeostasis. GLP-1/hIgG2 was found to be effective in reducing the incidence of diabetes in multiple-low-dose streptozotocin-induced type 1 diabetes in mice. Together, the long-lasting bioactive GLP-1/hIgG2 retains native GLP-1 activities and thus may serve as a potent GLP-1 receptor agonist. PMID:20856794

  4. Molecular evolution of GPCRs: GLP1/GLP1 receptors.

    PubMed

    Hwang, Jong-Ik; Yun, Seongsik; Moon, Mi Jin; Park, Cho Rong; Seong, Jae Young

    2014-06-01

    Glucagon-like peptide 1 (GLP1) is an intestinal incretin that regulates glucose homeostasis through stimulation of insulin secretion from pancreatic ?-cells and inhibits appetite by acting on the brain. Thus, it is a promising therapeutic agent for the treatment of type 2 diabetes mellitus and obesity. Studies using synteny and reconstructed ancestral chromosomes suggest that families for GLP1 and its receptor (GLP1R) have emerged through two rounds (2R) of whole genome duplication and local gene duplications before and after 2R. Exon duplications have also contributed to the expansion of the peptide family members. Specific changes in the amino acid sequence following exon/gene/genome duplications have established distinct yet related peptide and receptor families. These specific changes also confer selective interactions between GLP1 and GLP1R. In this review, we present a possible macro (genome level)- and micro (gene/exon level)-evolution mechanisms of GLP1 and GLP1R, which allows them to acquire selective interactions between this ligand-receptor pair. This information may provide critical insight for the development of potent therapeutic agents targeting GLP1R. PMID:24598200

  5. GLP-1 based therapies: clinical implications for gastroenterologists.

    PubMed

    Smits, Mark M; van Raalte, Daniel H; Tonneijck, Lennart; Muskiet, Marcel H A; Kramer, Mark H H; Cahen, Djuna L

    2016-04-01

    The gut-derived incretin hormone, glucagon-like peptide 1 (GLP-1) lowers postprandial blood glucose levels by stimulating insulin and inhibiting glucagon secretion. Two novel antihyperglycaemic drug classes augment these effects; GLP-1 receptor agonists and inhibitors of the GLP-1 degrading enzyme dipeptidyl peptidase 4. These so called GLP-1 based or incretin based drugs are increasingly used to treat type 2 diabetes, because of a low risk of hypoglycaemia and favourable effect on body weight, blood pressure and lipid profiles. Besides glucose control, GLP-1 functions as an enterogastrone, causing a wide range of GI responses. Studies have shown that endogenous GLP-1 and its derived therapies slow down digestion by affecting the stomach, intestines, exocrine pancreas, gallbladder and liver. Understanding the GI actions of GLP-1 based therapies is clinically relevant; because GI side effects are common and need to be recognised, and because these drugs may be used to treat GI disease. PMID:26786687

  6. From Theory to Clinical Practice in the Use of GLP-1 Receptor Agonists and DPP-4 Inhibitors Therapy

    PubMed Central

    Dicembrini, Ilaria; Pala, Laura; Rotella, Carlo Maria

    2011-01-01

    Promoting long-term adherence to lifestyle modification and choice of antidiabetic agent with low hypoglycemia risk profile and positive weight profile could be the most effective strategy in achieving sustained glycemic control and in reducing comorbidities. From this perspective, vast interest has been generated by glucagon-like peptide-1 (GLP-1) receptor agonists and dipeptidyl peptidase-4 inhibitors (DPP-4i). In this review our ten-year clinical and laboratory experience by in vitro and in vivo studies is reported. Herein, we reviewed available data on the efficacy and safety profile of GLP-1 receptor agonists and DPP-4i. The introduction of incretin hormone-based therapies represents a novel therapeutic strategy, because these drugs not only improve glycemia with minimal risk of hypoglycemia but also have other extraglycemic beneficial effects. In clinical studies, both GLP-1 receptor agonists and DPP-4i, improve β cell function indexes. All these agents showed trophic effects on beta-cell mass in animal studies. The use of these drugs is associated with positive or neucral effect on body weight and improvements in blood pressure, diabetic dyslipidemia, hepatic steazosis markets, and myocardial function. These effects have the potential to reduce the burden of cardiovascular disease, which is a major cause of mortality in patients with diabetes. PMID:21747834

  7. Differential effects of prandial and non-prandial GLP-1 receptor agonists in type 2 diabetes therapy.

    PubMed

    Davidson, Jaime A

    2015-11-01

    In type 2 diabetes mellitus (T2DM), decreased pancreatic beta-cell function and increased insulin resistance contribute to a steady decline in glucose homeostasis. Maintaining levels of glycated hemoglobin ?7.0% is thought to reduce the microvascular and possibly macrovascular complications that result if T2DM is not properly managed. Recent guidelines have recognized the importance of postprandial glucose (PPG) control in reducing cardiovascular risks, and have recommended a more patient-centered approach. Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) mimic the action of the endogenous gastrointestinal hormone GLP-1 to activate the insulin response in pancreatic beta cells in a glucose-dependent manner. Prandial GLP-1 RAs have a short plasma half-life and are particularly effective at targeting PPG elevations, whereas long-acting non-prandial GLP-1 RAs are more effective at reducing fasting plasma glucose. These differences highlight the potential for treatment with these agents to be tailored to the need of individual patients and their glycemic imbalance. All GLP-1 RAs are being evaluated in long-term cardiovascular outcome trials. To date, the only cardiovascular trial that has been completed is the ELIXA trial for lixisenatide, which was found to meet the pre-specified criterion of non-inferiority versus placebo in terms of cardiovascular outcomes. PMID:26428031

  8. Systems-Level G Protein-Coupled Receptor Therapy Across a Neurodegenerative Continuum by the GLP-1 Receptor System

    PubMed Central

    Janssens, Jonathan; Etienne, Harmonie; Idriss, Sherif; Azmi, Abdelkrim; Martin, Bronwen; Maudsley, Stuart

    2014-01-01

    With our increasing appreciation of the true complexity of diseases and pathophysiologies, it is clear that this knowledge needs to inform the future development of pharmacotherapeutics. For many disorders, the disease mechanism itself is a complex process spanning multiple signaling networks, tissues, and organ systems. Identifying the precise nature and locations of the pathophysiology is crucial for the creation of systemically effective drugs. Diseases once considered constrained to a limited range of organ systems, e.g., central neurodegenerative disorders such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and Huntington’ disease (HD), the role of multiple central and peripheral organ systems in the etiology of such diseases is now widely accepted. With this knowledge, it is increasingly clear that these seemingly distinct neurodegenerative disorders (AD, PD, and HD) possess multiple pathophysiological similarities thereby demonstrating an inter-related continuum of disease-related molecular alterations. With this systems-level appreciation of neurodegenerative diseases, it is now imperative to consider that pharmacotherapeutics should be developed specifically to address the systemic imbalances that create the disorders. Identification of potential systems-level signaling axes may facilitate the generation of therapeutic agents with synergistic remedial activity across multiple tissues, organ systems, and even diseases. Here, we discuss the potentially therapeutic systems-level interaction of the glucagon-like peptide 1 (GLP-1) ligand–receptor axis with multiple aspects of the AD, PD, and HD neurodegenerative continuum. PMID:25225492

  9. The Cardiovascular Effects of GLP-1 Receptor Agonists

    PubMed Central

    Okerson, Theodore; Chilton, Robert J

    2012-01-01

    Glucagon-like peptide-1 receptor (GLP-1R) agonists have been shown to regulate blood glucose concentrations by mechanisms including enhanced insulin synthesis/secretion, suppressed glucagon secretion, slowed gastric emptying, and enhanced satiety. GLP-1 receptors have also been identified in the heart, kidneys, and blood vessels, leading to the hypothesis that GLP-1R agonists may affect cardiovascular function or cardiovascular disease (CVD). The aim of this literature review was to assemble and assess preclinical and clinical data of potential medical importance regarding the cardiovascular effects of GLP-1R agonists. Preclinical studies with the GLP-1R agonists GLP-1, exenatide, or liraglutide provided evidence that GLP-1R stimulation favorably affects endothelial function, sodium excretion, recovery from ischemic injury, and myocardial function in animals. Similar observations have been made in exploratory studies on GLP-1 infusion in normal subjects and patients with type 2 diabetes. Post hoc analyses of phase III studies of patients with type 2 diabetes treated with exenatide(bid or qw) or liraglutide(qd) showed that these GLP-1R agonists reduced blood pressure, an effect largely independent of weight loss, and that liraglutide slightly increased heart rate. Preliminary data also indicated that GLP-1R agonists reduced markers of CVD risk such as C-reactive protein and plasminogen activator inhibitor-1. Ongoing studies are examining the effects of administering GLP-1R agonists to patients at risk of CVD, postangioplasty patients, post-CABG patients, and patients with heart failure. Additional studies should provide meaningful data to determine whether GLP-1R agonists provide unique treatment benefits to patients at risk for or with established CVD. PMID:21167014

  10. The cardiovascular effects of GLP-1 receptor agonists.

    PubMed

    Okerson, Theodore; Chilton, Robert J

    2012-06-01

    Glucagon-like peptide-1 receptor (GLP-1R) agonists have been shown to regulate blood glucose concentrations by mechanisms including enhanced insulin synthesis/secretion, suppressed glucagon secretion, slowed gastric emptying, and enhanced satiety. GLP-1 receptors have also been identified in the heart, kidneys, and blood vessels, leading to the hypothesis that GLP-1R agonists may affect cardiovascular function or cardiovascular disease (CVD). The aim of this literature review was to assemble and assess preclinical and clinical data of potential medical importance regarding the cardiovascular effects of GLP-1R agonists. Preclinical studies with the GLP-1R agonists GLP-1, exenatide, or liraglutide provided evidence that GLP-1R stimulation favorably affects endothelial function, sodium excretion, recovery from ischemic injury, and myocardial function in animals. Similar observations have been made in exploratory studies on GLP-1 infusion in normal subjects and patients with type 2 diabetes. Post hoc analyses of phase III studies of patients with type 2 diabetes treated with exenatide(bid or qw) or liraglutide(qd) showed that these GLP-1R agonists reduced blood pressure, an effect largely independent of weight loss, and that liraglutide slightly increased heart rate. Preliminary data also indicated that GLP-1R agonists reduced markers of CVD risk such as C-reactive protein and plasminogen activator inhibitor-1. Ongoing studies are examining the effects of administering GLP-1R agonists to patients at risk of CVD, postangioplasty patients, post-CABG patients, and patients with heart failure. Additional studies should provide meaningful data to determine whether GLP-1R agonists provide unique treatment benefits to patients at risk for or with established CVD. PMID:21167014

  11. User's guide to mechanism of action and clinical use of GLP-1 receptor agonists.

    PubMed

    Shaefer, Charles F; Kushner, Pamela; Aguilar, Richard

    2015-01-01

    Glucagon-like peptide-1 (GLP-1) receptor agonists (GLP-1RAs) are injectable glucose-lowering medications approved for the treatment of adult patients with type 2 diabetes mellitus (T2DM). This article provides practical information to guide primary care physicians on the use of GLP-1RAs in patients with T2DM. Two short-acting (once- or twice-daily administration; exenatide and liraglutide) and three long-acting (weekly administration; albiglutide, dulaglutide and exenatide) GLP-1RAs are currently approved in the US. These drugs provide levels of GLP-1 receptor agonism many times that of endogenous GLP-1. The GLP-1RAs have been shown to significantly improve glycemic parameters and reduce body weight. These agents work by activating GLP-1 receptors in the pancreas, which leads to enhanced insulin release and reduced glucagon release-responses that are both glucose-dependent-with a consequent low risk for hypoglycemia. Effects on GLP-1 receptors in the CNS and the gastrointestinal tract cause reduced appetite and delayed glucose absorption due to slower gastric emptying. The most common adverse effects are gastrointestinal, which are transient and less common with the long-acting drugs. GLP-1RAs are recommended as second-line therapy in combination with metformin, sulfonylureas, thiazolidinediones or basal insulin, providing a means of enhancing glucose control while offsetting the weight gain associated with insulin and some oral agents. GLP-1RAs represent a useful tool that the primary care physician can use to help patients with T2DM achieve their therapeutic goals. PMID:26371721

  12. [Effects of GLP-1 receptor agonists on carbohydrate metabolism control].

    PubMed

    Fernndez-Garca, Jos Carlos; Colomo, Natalia; Tinahones, Francisco Jos

    2014-09-01

    Glucagon-like peptide-1 (GLP-1) receptor agonists are a new group of drugs for the treatment of type 2 diabetes mellitus (DM2). In the present article, we review the available evidence on the efficacy of GLP-1 receptor agonists as glucose-lowering agents, their place in therapeutic algorithms, and the clinical factors associated with a favorable treatment response. Finally, we describe the clinical characteristics of patients who may benefit from these drugs. PMID:25437461

  13. [Effects of GLP-1 receptor agonists on carbohydrate metabolism control].

    PubMed

    Fernndez-Garca, Jos Carlos; Colomo, Natalia; Tinahones, Francisco Jos

    2014-01-01

    Glucagon-like peptide-1 (GLP-1) receptor agonists are a new group of drugs for the treatment of type 2 diabetes mellitus (DM2). In the present article, we review the available evidence on the efficacy of GLP-1 receptor agonists as glucose-lowering agents, their place in therapeutic algorithms, and the clinical factors associated with a favorable treatment response. Finally, we describe the clinical characteristics of patients who may benefit from these drugs. PMID:25326839

  14. GLP-1 receptor agonists or DPP-4 inhibitors: how to guide the clinician?

    PubMed

    Scheen, Andr J

    2013-12-01

    Pharmacological treatment of type 2 diabetes has been enriched during recent years, with the launch of incretin therapies targeting glucagon-like peptide-1 (GLP-1). Such medications comprise either GLP-1 receptor agonists, with short (one or two daily injections: exenatide, liraglutide, lixisenatide) or long duration (one injection once weekly: extended-released exenatide, albiglutide, dulaglutide, taspoglutide); or oral compounds inhibiting dipeptidyl peptidase-4 (DPP-4), the enzyme that inactives GLP-1, also called gliptins (sitagliptin, vildagliptin, saxagliptin, linagliptin, alogliptin). Although both pharmacological approaches target GLP-1, important differences exist concerning the mode of administration (subcutaneous injection versus oral ingestion), the efficacy (better with GLP-1 agonists), the effects on body weight and systolic blood pressure (diminution with agonists versus neutrality with gliptins), the tolerance profile (nausea and possibly vomiting with agonists) and the cost (higher with GLP-1 receptor agonists). Both agents may exert favourable cardiovascular effects. Gliptins may represent a valuable alternative to a sulfonylurea or a glitazone after failure of monotherapy with metformin while GLP-1 receptor agonists may be considered as a good alternative to insulin (especially in obese patients) after failure of a dual oral therapy. However, this scheme is probably too restrictive and modalities of using incretins are numerous, in almost all stages of type 2 diabetes. Physicians may guide the pharmacological choice based on clinical characteristics, therapeutic goals and patient's preference. PMID:23570814

  15. GLP-1-mediated gene therapy approaches for diabetes treatment.

    PubMed

    Tasyurek, Mukerrem Hale; Altunbas, Hasan Ali; Canatan, Halit; Griffith, Thomas S; Sanlioglu, Salih

    2014-01-01

    Glucagon-like peptide (GLP)-1 is an incretin hormone with several antidiabetic functions including stimulation of glucose-dependent insulin secretion, increase in insulin gene expression and beta-cell survival. Despite the initial technical difficulties and profound inefficiency of direct gene transfer into the pancreas that seriously restricted in vivo gene transfer experiments with GLP-1, recent exploitation of various routes of gene delivery and alternative means of gene transfer has permitted the detailed assessment of the therapeutic efficacy of GLP-1 in animal models of type 2 diabetes (T2DM). As a result, many clinical benefits of GLP-1 peptide/analogues observed in clinical trials involving induction of glucose tolerance, reduction of hyperglycaemia, suppression of appetite and food intake linked to weight loss have been replicated in animal models using gene therapy. Furthermore, GLP-1-centered gene therapy not only improved insulin sensitivity, but also reduced abdominal and/or hepatic fat associated with obesity-induced T2DM with drastic alterations in adipokine profiles in treated subjects. Thus, a comprehensive assessment of recent GLP-1-mediated gene therapy approaches with detailed analysis of current hurdles and resolutions, is discussed. PMID:24666581

  16. Exendin-4, a GLP-1 receptor agonist, attenuates prostate cancer growth.

    PubMed

    Nomiyama, Takashi; Kawanami, Takako; Irie, Shinichiro; Hamaguchi, Yuriko; Terawaki, Yuichi; Murase, Kunitaka; Tsutsumi, Yoko; Nagaishi, Ryoko; Tanabe, Makito; Morinaga, Hidetaka; Tanaka, Tomoko; Mizoguchi, Makio; Nabeshima, Kazuki; Tanaka, Masatoshi; Yanase, Toshihiko

    2014-11-01

    Recently, pleiotropic benefits of incretin therapy beyond glycemic control have been reported. Although cancer is one of the main causes of death in diabetic patients, few reports describe the anticancer effects of incretin. Here, we examined the effect of the incretin drug exendin (Ex)-4, a GLP-1 receptor (GLP-1R) agonist, on prostate cancer. In human prostate cancer tissue obtained from patients after they had undergone radical prostatectomy, GLP-1R expression colocalized with P504S, a marker of prostate cancer. In in vitro experiments, Ex-4 significantly decreased the proliferation of the prostate cancer cell lines LNCap, PC3, and DU145, but not that of ALVA-41. This antiproliferative effect depended on GLP-1R expression. In accordance with the abundant expression of GLP-1R in LNCap cells, a GLP-1R antagonist or GLP-1R knockdown with small interfering RNA abolished the inhibitory effect of Ex-4 on cell proliferation. Although Ex-4 had no effect on either androgen receptor activation or apoptosis, it decreased extracellular signal-regulated kinase (ERK)-mitogen-activated protein kinase (MAPK) phosphorylation in LNCap cells. Importantly, Ex-4 attenuated in vivo prostate cancer growth induced by transplantation of LNCap cells into athymic mice and significantly reduced the tumor expression of P504S, Ki67, and phosphorylated ERK-MAPK. These data suggest that Ex-4 attenuates prostate cancer growth through the inhibition of ERK-MAPK activation. PMID:24879833

  17. Role and development of GLP-1 receptor agonists in the management of diabetes

    PubMed Central

    Chia, Chee W; Egan, Josephine M

    2009-01-01

    Glucagon-like peptide-1 (GLP-1) is a hormone secreted from enteroendocrine L cells of the intestine in response to food. Exogenous GLP-1 administration at pharmacological doses results in many effects that are beneficial for treating type 2 diabetes, these include: (1) an increase in insulin secretion from β cells; (2) a suppression of glucagon secretion from α cells in the presence of hyperglycemia but not hypoglycemia; (3) a delay in gastric emptying and gut motility which in turns delays absorption of ingested nutrients and dampens post-prandial glucose excursion; and (4) an increase in the duration of postprandial satiety therefore suppressing appetite and decreasing food intake which eventually leads to weight loss. However, GLP-1 is subject to rapid enzymatic degradation, and therefore, not suitable for long-term treatment. A synthetic enzyme-resistant GLP-1 receptor agonist that reproduces the biological effects of GLP-1 is in use and more are under development. This review aims at providing a summary of the properties of GLP-1 and the development of GLP-1-based therapies for treatment of diabetes. PMID:20148188

  18. Nucleus accumbens GLP-1 receptors influence meal size and palatability.

    PubMed

    Dossat, Amanda M; Diaz, Ryan; Gallo, Lindsay; Panagos, Alyssa; Kay, Kristen; Williams, Diana L

    2013-06-15

    Recent evidence suggests that the glucagon-like peptide-1 (GLP-1) neuronal projection to the nucleus accumbens core (NAcC) contributes to food intake control. To investigate the role of endogenous stimulation of GLP-1 receptors (GLP-1R) in NAcC, we examined the effects of the GLP-1R antagonist exendin-(9-39) (Ex9) on meal pattern and microstructure of ingestive behavior in rats. Intra-NAcC Ex9 treatment selectively increased meal size relative to vehicle in rats consuming 0.25 M sucrose solution or sweetened condensed milk. Microstructural analysis revealed effects of NAcC Ex9 on initial lick rate and the size and duration of licking bursts in rats consuming 0.1 or 0.25 M sucrose, suggesting that blockade of NAcC GLP-1R increases palatability. Because NAcC Ex9 did not affect licking for nonnutritive saccharin (0.1%), we suggest that the presence of nutrients in the gut may be required for endogenous stimulation of NAcC GLP-1R. Consistent with this, we also found that the meal size-suppressive effects of intragastric nutrient infusion were attenuated by NAcC delivery of Ex9 at a dose that had no effect when delivered alone. Analysis of licking patterns revealed that NAcC Ex9 did not reverse intragastric nutrient-induced suppression of burst number but rather blunted the effect of nutrient infusion on meal size primarily by increasing the size and duration of licking bursts. Together, our results suggest that NAcC Ex9 influences taste evaluation. We conclude that GLP-1 released in NAcC in response to gastrointestinal nutrients reduces the hedonic value of food. PMID:23612998

  19. Nucleus accumbens GLP-1 receptors influence meal size and palatability

    PubMed Central

    Dossat, Amanda M.; Diaz, Ryan; Gallo, Lindsay; Panagos, Alyssa; Kay, Kristen

    2013-01-01

    Recent evidence suggests that the glucagon-like peptide-1 (GLP-1) neuronal projection to the nucleus accumbens core (NAcC) contributes to food intake control. To investigate the role of endogenous stimulation of GLP-1 receptors (GLP-1R) in NAcC, we examined the effects of the GLP-1R antagonist exendin-(939) (Ex9) on meal pattern and microstructure of ingestive behavior in rats. Intra-NAcC Ex9 treatment selectively increased meal size relative to vehicle in rats consuming 0.25 M sucrose solution or sweetened condensed milk. Microstructural analysis revealed effects of NAcC Ex9 on initial lick rate and the size and duration of licking bursts in rats consuming 0.1 or 0.25 M sucrose, suggesting that blockade of NAcC GLP-1R increases palatability. Because NAcC Ex9 did not affect licking for nonnutritive saccharin (0.1%), we suggest that the presence of nutrients in the gut may be required for endogenous stimulation of NAcC GLP-1R. Consistent with this, we also found that the meal size-suppressive effects of intragastric nutrient infusion were attenuated by NAcC delivery of Ex9 at a dose that had no effect when delivered alone. Analysis of licking patterns revealed that NAcC Ex9 did not reverse intragastric nutrient-induced suppression of burst number but rather blunted the effect of nutrient infusion on meal size primarily by increasing the size and duration of licking bursts. Together, our results suggest that NAcC Ex9 influences taste evaluation. We conclude that GLP-1 released in NAcC in response to gastrointestinal nutrients reduces the hedonic value of food. PMID:23612998

  20. GLP-1 receptor agonists for type 2 diabetes mellitus: recent developments and emerging agents.

    PubMed

    Trujillo, Jennifer M; Nuffer, Wesley

    2014-11-01

    More than 26 million people in the United States have type 2 diabetes mellitus (T2D). Many treatment options exist, but achieving long-term glycemic control in patients with T2D remains challenging. The glucagon-like peptide-1 receptor agonists (GLP-1 RAs) offer a treatment option that improves glycemic control and reduces weight, with a low risk of hypoglycemia. They have emerged as attractive options for the treatment of T2D, and significant advances and developments continue to be published regarding these agents. To identify relevant literature on emerging issues related to GLP-1 RAs, a search of the MEDLINE database was performed. Studies published in English evaluating the safety and efficacy of GLP-1 RAs were analyzed. Because of their advantages and unique mechanism of action, GLP-1 RAs are currently being studied in new clinical areas, including in combination with basal insulin, as adjunctive therapy in type 1 diabetes, and for weight loss. In addition, there are several emerging agents in development. Lixisenatide is a once-daily GLP-1 RA that targets postprandial glucose and may be most useful when added to basal insulin as an alternative to rapid-acting insulin. Albiglutide and dulaglutide are once-weekly GLP-1 RAs that may offer more convenient dosing. The most common adverse effects of all GLP-1 RA agents are gastrointestinal (e.g., nausea, diarrhea, and vomiting), but the rates of occurrence vary among agents. Due to the differences in pharmacokinetics, efficacy, rates of adverse effects, and administration requirements within the GLP-1 RA class, each agent should be evaluated independently. The future of GLP-1 RAs offers broader treatment options for T2D as well as potential in other treatment areas. PMID:25382096

  1. A clinical review of GLP-1 receptor agonists: efficacy and safety in diabetes and beyond.

    PubMed

    Prasad-Reddy, Lalita; Isaacs, Diana

    2015-01-01

    The prevalence of type 2 diabetes is increasing at an astounding rate. Many of the agents used to treat type 2 diabetes have undesirable adverse effects of hypoglycemia and weight gain. Glucagon-like peptide-1 (GLP-1) receptor agonists represent a unique approach to the treatment of diabetes, with benefits extending outside glucose control, including positive effects on weight, blood pressure, cholesterol levels, and beta-cell function. They mimic the effects of the incretin hormone GLP-1, which is released from the intestine in response to food intake. Their effects include increasing insulin secretion, decreasing glucagon release, increasing satiety, and slowing gastric emptying. There are currently four approved GLP-1 receptor agonists in the United States: exenatide, liraglutide, albiglutide, and dulaglutide. A fifth agent, lixisenatide, is available in Europe. There are important pharmacodynamic, pharmacokinetic, and clinical differences of each agent. The most common adverse effects seen with GLP-1 therapy include nausea, vomiting, and injection-site reactions. Other warnings and precautions include pancreatitis and thyroid cell carcinomas. GLP-1 receptor agonists are an innovative and effective option to improve blood glucose control, with other potential benefits of preserving beta-cell function, weight loss, and increasing insulin sensitivity. Once-weekly formulations may also improve patient adherence. Overall, these are effective agents for patients with type 2 diabetes, who are either uncontrolled on metformin or intolerant to metformin. PMID:26213556

  2. A clinical review of GLP-1 receptor agonists: efficacy and safety in diabetes and beyond

    PubMed Central

    Prasad-Reddy, Lalita; Isaacs, Diana

    2015-01-01

    The prevalence of type 2 diabetes is increasing at an astounding rate. Many of the agents used to treat type 2 diabetes have undesirable adverse effects of hypoglycemia and weight gain. Glucagon-like peptide-1 (GLP-1) receptor agonists represent a unique approach to the treatment of diabetes, with benefits extending outside glucose control, including positive effects on weight, blood pressure, cholesterol levels, and beta-cell function. They mimic the effects of the incretin hormone GLP-1, which is released from the intestine in response to food intake. Their effects include increasing insulin secretion, decreasing glucagon release, increasing satiety, and slowing gastric emptying. There are currently four approved GLP-1 receptor agonists in the United States: exenatide, liraglutide, albiglutide, and dulaglutide. A fifth agent, lixisenatide, is available in Europe. There are important pharmacodynamic, pharmacokinetic, and clinical differences of each agent. The most common adverse effects seen with GLP-1 therapy include nausea, vomiting, and injection-site reactions. Other warnings and precautions include pancreatitis and thyroid cell carcinomas. GLP-1 receptor agonists are an innovative and effective option to improve blood glucose control, with other potential benefits of preserving beta-cell function, weight loss, and increasing insulin sensitivity. Once-weekly formulations may also improve patient adherence. Overall, these are effective agents for patients with type 2 diabetes, who are either uncontrolled on metformin or intolerant to metformin. PMID:26213556

  3. Hindbrain CART induces hypothermia mediated by GLP-1 receptors

    PubMed Central

    Skibicka, Karolina P.; Alhadeff, Amber L.; Grill, Harvey J.

    2009-01-01

    Cocaine- and amphetamine-regulated transcript peptides (CART) are widely distributed throughout the neuraxis, including regions associated with energy balance. CART’s classification as a catabolic neuropeptide is based on its inhibitory effects on feeding, co-expression with arcuate nucleus POMC neurons, and on limited analysis of its energy expenditure effects. Here we investigate whether: 1) caudal brainstem delivery of CART produces energetic, cardiovascular and glycemic effects, 2) forebrain – caudal brainstem neural communication is required for those effects and 3) GLP-1 receptors (GLP-1R) contribute to the mediation of CART-induced effects. Core temperature (Tc), heart rate (HR), activity and blood glucose were measured in rats injected 4th v. with CART (0.1, 1.0 and 2.0µg). Food was withheld during physiologic recording and returned for overnight measurement of intake and body weight. CART induced a long-lasting (> 6h); hypothermia; a 1.5°C and 1.6°C drop in TC for the 1.0 and 2.0µg doses. Hindbrain CART application reduced food intake and body weight and increased blood glucose levels; no change in HR or activity was observed. Supracollicular decerebration eliminated the hypothermic response observed in intact rats to hindbrain ventricular CART, suggesting that forebrain processing is required for hypothermia. Pretreatment with the GLP-1R antagonist (exendin-9-39) in control rats attenuated CART hypothermia and hypophagia, indicating that GLP-1R activation contributes to hypothermic and hypophagic effects of hindbrain CART while CART-induced hyperglycemia was not altered by GLP-1R blockade. Data reveal a novel function of CART in temperature regulation and open possibilities for future studies on the clinical potential of the hypothermic effect. PMID:19474324

  4. Recent progress and future options in the development of GLP-1 receptor agonists for the treatment of diabesity.

    PubMed

    Lorenz, Martin; Evers, Andreas; Wagner, Michael

    2013-07-15

    The dramatic rise of the twin epidemics, type 2 diabetes and obesity is associated with increased mortality and morbidity worldwide. Based on this global development there is clinical need for anti-diabetic therapies with accompanied weight reduction. From the approved therapies, the injectable glucagon-like peptide-1 receptor agonists (GLP-1 RAs) are the only class of agents which are associated with a modest weight reduction. Physiological effects of the gastro-intestinal hormone GLP-1 are improvement of glycemic control as well as a reduction in appetite and food intake. Different approaches are currently under clinical evaluation to optimize the therapeutic potential of GLP-1 RAs directed to once-weekly up to once-monthly administration. The next generation of peptidic co-agonists comprises the activity of GLP-1 plus additional gastro-intestinal hormones with the potential for increased therapeutic benefits compared to GLP-1 RAs. PMID:23743288

  5. Are GLP-1 receptor agonists useful against traumatic brain injury?

    PubMed

    Combs, Colin K

    2015-12-01

    This Editorial highlights a study by Li etal. (2015) in the current issue of J. Neurochem. The image depicts the hypothesized neuroprotective pathway that is proposed by the authors. Using a combination of SH-SY5Y and primary rat neuron cultures the GLP-1R agonist, Liraglutide, was shown to increase SH-SY5Y proliferation and CREB phosphorylation correlating with reduced toxicity, preservation of Bcl2 protein levels, and decreased caspase 3 activity following glutamate or H2 O2 stimulations. These invitro observations correlated with a Liraglutide-dependent improvement in memory performance in mice subjected to a mild TBI. Bcl2, B-cell lymphoma 2; CREB, cAMP-response element binding protein; GLP-1R, glucagon-like peptide 1 receptor; TBI, traumatic brain injury; PKA, protein kinase A. PMID:26234912

  6. Molecular mechanisms underlying physiological and receptor pleiotropic effects mediated by GLP-1R activation.

    PubMed

    Pabreja, K; Mohd, M A; Koole, C; Wootten, D; Furness, S G B

    2014-03-01

    The incidence of type 2 diabetes in developed countries is increasing yearly with a significant negative impact on patient quality of life and an enormous burden on the healthcare system. Current biguanide and thiazolidinedione treatments for type 2 diabetes have a number of clinical limitations, the most serious long-term limitation being the eventual need for insulin replacement therapy (Table?1). Since 2007, drugs targeting the glucagon-like peptide-1 (GLP-1) receptor have been marketed for the treatment of type 2 diabetes. These drugs have enjoyed a great deal of success even though our underlying understanding of the mechanisms for their pleiotropic effects remain poorly characterized even while major pharmaceutical companies actively pursue small molecule alternatives. Coupling of the GLP-1 receptor to more than one signalling pathway (pleiotropic signalling) can result in ligand-dependent signalling bias and for a peptide receptor such as the GLP-1 receptor this can be exaggerated with the use of small molecule agonists. Better consideration of receptor signalling pleiotropy will be necessary for future drug development. This is particularly important given the recent failure of taspoglutide, the report of increased risk of pancreatitis associated with GLP-1 mimetics and the observed clinical differences between liraglutide, exenatide and the newly developed long-acting exenatide long acting release, albiglutide and dulaglutide. PMID:23889512

  7. Modulation of Glucagon-like Peptide-1 (GLP-1) Potency by Endocannabinoid-like Lipids Represents a Novel Mode of Regulating GLP-1 Receptor Signaling.

    PubMed

    Cheng, Yu-Hong; Ho, Mei-Shang; Huang, Wei-Ting; Chou, Ying-Ting; King, Klim

    2015-06-01

    Glucagon-like peptide-1 (GLP-1) analogs are approved for treatment of type 2 diabetes and are in clinical trials for disorders including neurodegenerative diseases. GLP-1 receptor (GLP-1R) is expressed in many peripheral and neuronal tissues and is activated by circulating GLP-1. Other than food intake, little is known about factors regulating GLP-1 secretion. Given a normally basal circulating level of GLP-1, knowledge of mechanisms regulating GLP-1R signaling, which has diverse functions in extrapancreatic tissues, remains elusive. In this study, we found that the potency of GLP-1, not exendin 4, is specifically enhanced by the endocannabinoid-like lipids oleoylethanolamide (OEA) and 2-oleoylglycerol but not by stearoylethanolamide (SEA) or palmitoylethanolamide. 9.2 ?M OEA enhances the potency of GLP-1 in stimulating cAMP production by 10-fold but does not affect its receptor binding affinity. OEA and 2-oleoylglycerol, but not SEA, bind to GLP-1 in a dose-dependent and saturable manner. OEA but not SEA promoted GLP-1(7-36) amide to trypsin inactivation in a dose-dependent and saturable manner. Susceptibility of GLP-1(7-36) amide to trypsin inactivation is increased 40-fold upon binding to OEA but not to SEA. Our findings indicate that OEA binds to GLP-1(7-36) amide and enhances the potency that may result from a conformational change of the peptide. In conclusion, modulating potency of GLP-1 by physiologically regulated endocannabinoid-like lipids allows GLP-1R signaling to be regulated spatiotemporally at a constant basal GLP-1 level. PMID:25903129

  8. Dual melanocortin-4 receptor and GLP-1 receptor agonism amplifies metabolic benefits in diet-induced obese mice

    PubMed Central

    Clemmensen, Christoffer; Finan, Brian; Fischer, Katrin; Tom, Robby Zachariah; Legutko, Beata; Sehrer, Laura; Heine, Daniela; Grassl, Niklas; Meyer, Carola W; Henderson, Bart; Hofmann, Susanna M; Tschp, Matthias H; Van der Ploeg, Lex HT; Mller, Timo D

    2015-01-01

    We assessed the efficacy of simultaneous agonism at the glucagon-like peptide-1 receptor (GLP-1R) and the melanocortin-4 receptor (MC4R) for the treatment of obesity and diabetes in rodents. Diet-induced obese (DIO) mice were chronically treated with either the long-acting GLP-1R agonist liraglutide, the MC4R agonist RM-493 or a combination of RM-493 and liraglutide. Co-treatment of DIO mice with RM-493 and liraglutide improves body weight loss and enhances glycemic control and cholesterol metabolism beyond what can be achieved with either mono-therapy. The superior metabolic efficacy of this combination therapy is attributed to the anorectic and glycemic actions of both drugs, along with the ability of RM-493 to increase energy expenditure. Interestingly, compared to mice treated with liraglutide alone, hypothalamic Glp-1r expression was higher in mice treated with the combination therapy after both acute and chronic treatment. Further, RM-493 enhanced hypothalamic Mc4r expression. Hence, co-dosing with MC4R and GLP-1R agonists increases expression of each receptor, indicative of minimized receptor desensitization. Together, these findings suggest potential opportunities for employing combination treatments that comprise parallel MC4R and GLP-1R agonism for the treatment of obesity and diabetes. PMID:25652173

  9. [Extrapancreatic effects of GLP-1 receptor agonists: an open window towards new treatment goals in type 2 diabetes].

    PubMed

    Salvador, Javier; Andrada, Patricia

    2014-01-01

    The wide ubiquity of GLP-1 receptors in the body has stimulated the search for different extrapancreatic actions of GLP-1 and its receptor agonists. Thus, severe cardioprotective effects directed on myocardial ischaemia and dysfunction as well as diverse antiaterogenic actions have been reported. Also, native and GLP-1 receptor agonists have demonstrated significant beneficial effects on liver steatosis and fibrosis and on neuronal protection in experimental models of Alzheimer, and Parkinson's disease as well as on cerebral ischaemia. Recent evidences suggest that these drugs may also be useful for prevention and treatment of diabetic retinopathy, nephropathy and peripheral neuropathy. Good results have also been reported in psoriasis. Despite we still need confirmation that these promising effects can be applied to clinical practice, they offer new interesting perspectives for treatment of type 2 diabetes associated complications and give to GLP-1 receptor agonists an even more integral position in diabetes therapy. PMID:25326841

  10. [Extrapancreatic effects of GLP-1 receptor agonists: an open window towards new treatment goals in type 2 diabetes].

    PubMed

    Salvador, Javier; Andrada, Patricia

    2014-09-01

    The wide ubiquity of GLP-1 receptors in the body has stimulated the search for different extrapancreatic actions of GLP-1 and its receptor agonists. Thus, severe cardioprotective effects directed on myocardial ischaemia and dysfunction as well as diverse antiaterogenic actions have been reported. Also, native and GLP-1 receptor agonists have demonstrated significant beneficial effects on liver steatosis and fibrosis and on neuronal protection in experimental models of Alzheimer, and Parkinson's disease as well as on cerebral ischaemia. Recent evidences suggest that these drugs may also be useful for prevention and treatment of diabetic retinopathy, nephropathy and peripheral neuropathy. Good results have also been reported in psoriasis. Despite we still need confirmation that these promising effects can be applied to clinical practice, they offer new interesting perspectives for treatment of type 2 diabetes associated complications and give to GLP-1 receptor agonists an even more integral position in diabetes therapy. PMID:25437463

  11. Differential structural properties of GLP-1 and exendin-4 determine their relative affinity for the GLP-1 receptor N-terminal extracellular domain.

    PubMed

    Runge, Steffen; Schimmer, Susann; Oschmann, Jan; Schidt, Christine Bruun; Knudsen, Sanne Mller; Jeppesen, Claus Bekker; Madsen, Kjeld; Lau, Jesper; Thgersen, Henning; Rudolph, Rainer

    2007-05-15

    Glucagon-like peptide-1 (GLP-1) and exendin-4 (Ex4) are homologous peptides with established potential for treatment of type 2 diabetes. They bind and activate the pancreatic GLP-1 receptor (GLP-1R) with similar affinity and potency and thereby promote insulin secretion in a glucose-dependent manner. GLP-1R belongs to family B of the seven transmembrane G-protein coupled receptors. The N-terminal extracellular domain (nGLP-1R) is a ligand binding domain with differential affinity for Ex4 and GLP-1: low affinity for GLP-1 and high affinity for exendin-4. The superior affinity of nGLP-1R for Ex4 was previously explained by an additional interaction between nGLP-1R and the C-terminal Trp-cage of Ex4. In this study we have combined biophysical and pharmacological approaches thus relating structural properties of the ligands in solution to their relative binding affinity for nGLP-1R. We used both a tracer competition assay and ligand-induced thermal stabilization of nGLP-1R to measure the relative affinity of full length, truncated, and chimeric ligands for soluble refolded nGLP-1R. The ligands in solution and the conformational consequences of ligand binding to nGLP-1R were characterized by circular dichroism and fluorescence spectroscopy. We found a correlation between the helical content of the free ligands and their relative binding affinity for nGLP-1R, supporting the hypothesis that the ligands are helical at least in the segment that binds to nGLP-1R. The Trp-cage of Ex4 was not necessary to maintain a superior helicity of Ex4 compared to GLP-1. The results suggest that the differential affinity of nGLP-1R is explained almost entirely by divergent residues in the central part of the ligands: Leu10-Gly30 of Ex4 and Val16-Arg36 of GLP-1. In view of our results it appears that the Trp-cage plays only a minor role for the interaction between Ex4 and nGLP-1R and for the differential affinity of nGLP-1R for GLP-1 and Ex4. PMID:17444618

  12. Sitagliptin protects rat kidneys from acute ischemia-reperfusion injury via upregulation of GLP-1 and GLP-1 receptors

    PubMed Central

    Chang, Meng-wei; Chen, Chih-hung; Chen, Yi-ching; Wu, Ying-chun; Zhen, Yen-yi; Leu, Steve; Tsai, Tzu-hsien; Ko, Sheung-fat; Sung, Pei-hsun; Yang, Chih-chau; Chiang, Hsin-ju; Chang, Hsueh-wen; Chen, Yen-ta; Yip, Hon-kan

    2015-01-01

    Aim: Sitagliptin, an oral glucose-lowering agent, has been found to produce cardiovascular protection possibly via anti-inflammatory and anti-atherosclerotic activities of glucagon-like peptide-1 receptor (GLP-1). The aim of this study was to investigate whether sitagliptin protected the kidney function from acute ischemia-reperfusion (IR) injury in rats. Methods: Adult male SD rats were categorized into 4 groups: sham control, IR injury, IR+sitagliptin (300 mg/kg) and IR+sitagliptin (600 mg/kg). Acute renal IR injury of both kidneys was induced by clamping the renal pedicles for 1 h. The drug was orally administered at 1, 24 and 48 h after acute IR. Blood samples and 24-h urine were collected before and at 72 h after acute IR. Then the rats were sacrificed, and the kidneys were harvested for biochemical and immunohistochemical studies. Results: Acute IR procedure markedly increased serum levels of creatinine and BUN and the ratio of urine protein to creatinine. The kidney injury score, inflammatory biomarkers (MMP-9, TNF-? and NF-?B) levels and CD68+ cells in IR kidneys were considerably increased. The expression of oxidized protein, reactive oxygen species (NOX-1, NOX-2) and apoptosis proteins (Bax, caspase-3, PARP) in IR kidneys was also significantly upregulated. All these pathological changes were suppressed by sitagliptin in a dose-dependent manner. Furthermore, the serum GLP-1 level, and the expression of GLP-1 receptor, anti-oxidant biomarkers (HO-1 and NQO-1 cells, as well as SOD-1, NQO-1 and HO-1 proteins), and angiogenesis markers (SDF-1?+ and CXCR4+ cells) in IR kidneys were significantly increased, and further upregulated by sitagliptin. Conclusion: Sitagliptin dose-dependently protects rat kidneys from acute IR injury via upregulation of serum GLP-1 and GLP-1 receptor expression in kidneys. PMID:25500876

  13. Sustained expression of GLP-1 receptor differentially modulates ?-cell functions in diabetic and nondiabetic mice.

    PubMed

    Kubo, Fumiyo; Miyatsuka, Takeshi; Sasaki, Shugo; Takahara, Mitsuyoshi; Yamamoto, Yuichi; Shimo, Naoki; Watada, Hirotaka; Kaneto, Hideaki; Gannon, Maureen; Matsuoka, Taka-Aki; Shimomura, Iichiro

    2016-02-26

    Glucagon-like peptide 1 (GLP-1) has been shown to play important roles in maintaining ?-cell functions, such as insulin secretion and proliferation. While expression levels of GLP-1 receptor (Glp1r) are compromised in the islets of diabetic rodents, it remains unclear when and to what degree Glp1r mRNA levels are decreased during the progression of diabetes. In this study, we performed real-time PCR with the islets of db/db diabetic mice at different ages, and found that the expression levels of Glp1r were comparable to those of the islets of nondiabetic db/misty controls at the age of four weeks, and were significantly decreased at the age of eight and 12 weeks. To investigate whether restored expression of Glp1r affects the diabetic phenotypes, we generated the transgenic mouse model Pdx1(PB)-CreER(TM); CAG-CAT-Glp1r (?Glp1r) that allows for induction of Glp1r expression specifically in ? cells. Whereas the expression of exogenous Glp1r had no measurable effect on glucose tolerance in nondiabetic ?Glp1r;db/misty mice, ?Glp1r;db/db mice exhibited higher glucose and lower insulin levels in blood on glucose challenge test than control db/db littermates. In contrast, four weeks of treatment with exendin-4 improved the glucose profiles and increased serum insulin levels in ?Glp1r;db/db mice, to significantly higher levels than those in control db/db mice. These differential effects of exogenous Glp1r in nondiabetic and diabetic mice suggest that downregulation of Glp1r might be required to slow the progression of ?-cell failure under diabetic conditions. PMID:26854076

  14. Treatment potential of the GLP-1 receptor agonists in type 2 diabetes mellitus: a review.

    PubMed

    Østergaard, L; Frandsen, Christian S; Madsbad, S

    2016-02-01

    Over the last decade, the discovery of glucagon-like peptide 1 receptor agonists (GLP-1 RAs) has increased the treatment options for patients with type 2 diabetes mellitus (T2DM). GLP-1 RAs mimic the effects of native GLP-1, which increases insulin secretion, inhibits glucagon secretion, increases satiety and slows gastric emptying. This review evaluates the phase III trials for all approved GLP-1 RAs and reports that all GLP-1 RAs decrease HbA1c, fasting plasma glucose, and lead to a reduction in body weight in the majority of trials. The most common adverse events are nausea and other gastrointestinal discomfort, while hypoglycaemia is rarely reported when GLP-1 RAs not are combined with sulfonylurea or insulin. Treatment options in the near future will include co-formulations of basal insulin and a GLP-1 RA. PMID:26573176

  15. Peripheral and Central GLP-1 Receptor Populations Mediate the Anorectic Effects of Peripherally Administered GLP-1 Receptor Agonists, Liraglutide and Exendin-4

    PubMed Central

    Fortin, Samantha M.; Arnold, Myrtha; Grill, Harvey J.; Hayes, Matthew R.

    2011-01-01

    The long-acting glucagon-like peptide-1 receptor (GLP-1R) agonists, exendin-4 and liraglutide, suppress food intake and body weight. The mediating site(s) of action for the anorectic effects produced by peripheral administration of these GLP-1R agonists are not known. Experiments addressed whether food intake suppression after ip delivery of exendin-4 and liraglutide is mediated exclusively by peripheral GLP-1R or also involves direct central nervous system (CNS) GLP-1R activation. Results showed that CNS delivery [third intracerebroventricular (3rd ICV)] of the GLP-1R antagonist exendin-(939) (100 ?g), attenuated the intake suppression by ip liraglutide (10 ?g) and exendin-4 (3 ?g), particularly at 6 h and 24 h. Control experiments show that these findings appear to be based neither on the GLP-1R antagonist acting as a nonspecific competing orexigenic signal nor on blockade of peripheral GLP-1R via efflux of exendin-(939) to the periphery. To assess the contribution of GLP-1R expressed on subdiaphragmatic vagal afferents to the anorectic effects of liraglutide and exendin-4, food intake was compared in rats with complete subdiaphragmatic vagal deafferentation and surgical controls after ip delivery of the agonists. Both liraglutide and exendin-4 suppressed food intake at 3 h, 6 h, and 24 h for controls; for subdiaphragmatic vagal deafferentation rats higher doses of the GLP-1R agonists were needed for significant food intake suppression, which was observed at 6 h and 24 h after liraglutide and at 24 h after exendin-4. Conclusion: Food intake suppression after peripheral administration of exendin-4 and liraglutide is mediated by activation of GLP-1R expressed on vagal afferents as well as direct CNS GLP-1R activation. PMID:21693680

  16. Pleiotropic effects of insulin and GLP-1 receptor agonists: Potential benefits of the association.

    PubMed

    Cariou, B

    2015-12-01

    The combination of basal insulin and glucagon-like peptide-1 receptor agonists (GLP-1RAs) is an emerging option for patients with type 2 diabetes (T2D). GLP-1RAs have been shown to improve glycaemic control with a low risk of hypoglycaemia and to promote body weight loss. However, GLP-1 receptors (GLP-1Rs) are widely expressed in extrapancreatic tissues and could sustain pleiotropic actions of GLP-1RAs beyond glycaemic control. The underlying molecular mechanisms maintaining these extrapancreatic actions of GLP-1 are complex, and involve GLP-1R signalling in both the brain and several peripheral tissues. The present review focuses specifically on the role of GLP-1RAs in the cardiovascular system and liver. Preclinical data in rodents and pilot studies in humans suggest that GLP-1RAs may have potential beneficial effects on heart function, blood pressure, postprandial lipaemia, liver steatosis and non-alcoholic steatohepatitis (NASH). Long-term studies are now warranted to determine the safety and clinical relevance of the association between insulin and GLP-1RAs in T2D. PMID:26774017

  17. REVIEWMolecular mechanisms underlying physiological and receptor pleiotropic effects mediated by GLP-1R activation

    PubMed Central

    Pabreja, K; Mohd, M A; Koole, C; Wootten, D; Furness, S G B

    2014-01-01

    The incidence of type 2 diabetes in developed countries is increasing yearly with a significant negative impact on patient quality of life and an enormous burden on the healthcare system. Current biguanide and thiazolidinedione treatments for type 2 diabetes have a number of clinical limitations, the most serious long-term limitation being the eventual need for insulin replacement therapy (Table 1). Since 2007, drugs targeting the glucagon-like peptide-1 (GLP-1) receptor have been marketed for the treatment of type 2 diabetes. These drugs have enjoyed a great deal of success even though our underlying understanding of the mechanisms for their pleiotropic effects remain poorly characterized even while major pharmaceutical companies actively pursue small molecule alternatives. Coupling of the GLP-1 receptor to more than one signalling pathway (pleiotropic signalling) can result in ligand-dependent signalling bias and for a peptide receptor such as the GLP-1 receptor this can be exaggerated with the use of small molecule agonists. Better consideration of receptor signalling pleiotropy will be necessary for future drug development. This is particularly important given the recent failure of taspoglutide, the report of increased risk of pancreatitis associated with GLP-1 mimetics and the observed clinical differences between liraglutide, exenatide and the newly developed long-acting exenatide long acting release, albiglutide and dulaglutide. Linked ArticlesThis article is part of a themed section on Molecular Pharmacology of GPCRs. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-5 PMID:23889512

  18. The identification of novel proteins that interact with the GLP-1 receptor and restrain its activity.

    PubMed

    Huang, X; Dai, F F; Gaisano, G; Giglou, K; Han, J; Zhang, M; Kittanakom, S; Wong, V; Wei, L; Showalter, A D; Sloop, K W; Stagljar, I; Wheeler, M B

    2013-09-01

    Glucagon-like peptide 1 receptor (GLP-1R) controls diverse physiological functions in tissues including the pancreatic islets, brain, and heart. To understand the mechanisms that control glucagon-like peptide 1 (GLP-1) signaling better, we sought to identify proteins that interact with the GLP-1R using a membrane-based split ubiquitin yeast two-hybrid (MYTH) assay. A screen of a human fetal brain cDNA prey library with an unliganded human GLP-1R as bait in yeast revealed 38 novel interactor protein candidates. These interactions were confirmed in mammalian Chinese hamster ovarian cells by coimmunoprecipitation. Immunofluorescence was used to show subcellular colocalization of the interactors with GLP-1R. Cluster analysis revealed that the interactors were primarily associated with signal transduction, metabolism, and cell development. When coexpressed with the GLP-1R in Chinese hamster ovarian cells, 15 interactors significantly altered GLP-1-induced cAMP accumulation. Surprisingly, all 15 proteins inhibited GLP-1-activated cAMP. Given GLP-1's prominent role as an incretin, we then focused on 3 novel interactors, SLC15A4, APLP1, and AP2M1, because they are highly expressed and localized to the membrane in mouse insulinoma ?-cells. Small interfering RNA-mediated knockdown of each candidate gene significantly enhanced GLP-1-induced insulin secretion. In conclusion, we have generated a novel GLP-1R-protein interactome, identifying several interactors that suppress GLP-1R signaling. We suggest that the inhibition of these interactors may serve as a novel strategy to enhance GLP-1R activity. PMID:23864651

  19. GLP-1 receptor agonists for individualized treatment of type 2 diabetes mellitus.

    PubMed

    Meier, Juris J

    2012-12-01

    In healthy humans, the incretin glucagon-like peptide 1 (GLP-1) is secreted after eating and lowers glucose concentrations by augmenting insulin secretion and suppressing glucagon release. Additional effects of GLP-1 include retardation of gastric emptying, suppression of appetite and, potentially, inhibition of ?-cell apoptosis. Native GLP-1 is degraded within ~2-3 min in the circulation; various GLP-1 receptor agonists have, therefore, been developed to provide prolonged in vivo actions. These GLP-1 receptor agonists can be categorized as either short-acting compounds, which provide short-lived receptor activation (such as exenatide and lixisenatide) or as long-acting compounds (for example albiglutide, dulaglutide, exenatide long-acting release, and liraglutide), which activate the GLP-1 receptor continuously at their recommended dose. The pharmacokinetic differences between these drugs lead to important differences in their pharmacodynamic profiles. The short-acting GLP-1 receptor agonists primarily lower postprandial blood glucose levels through inhibition of gastric emptying, whereas the long-acting compounds have a stronger effect on fasting glucose levels, which is mediated predominantly through their insulinotropic and glucagonostatic actions. The adverse effect profiles of these compounds also differ. The individual properties of the various GLP-1 receptor agonists might enable incretin-based treatment of type 2 diabetes mellitus to be tailored to the needs of each patient. PMID:22945360

  20. Induction of Energy Expenditure by Sitagliptin Is Dependent on GLP-1 Receptor

    PubMed Central

    Goldsmith, Felicia; Keenan, Michael J.; Raggio, Anne M.; Ye, Xin; Hao, Zheng; Durham, Holiday; Geaghan, James; Jia, Weiping; Martin, Roy J.; Ye, Jianping

    2015-01-01

    Sitagliptin (SG) increases serum GLP-1 (Glucagon-like peptide-1) through inhibition of the hormone degradation. Resistant starch (RS) induces GLP-1 expression by stimulating L-cells in the intestine. Sitagliptin and resistant starch may have a synergistic interaction in the induction of GLP-1. This possibility was tested in current study in a mouse model of type 2 diabetes. Hyperglycemia was induced in the diet-induced obese mice by a signal injection of streptozotocin (STZ). Sitagliptin (0.4g/100g diet) was tested in the mice (n = 55) with dietary RS (HAM-RS2) at three dosages (0, 15, or 28g/100g diet). Energy and glucose metabolism were monitored in the evaluation of synergistic activity, and GLP-1 activity was determined in the GLP-1 receptor knockout (KO) mice. In the wild type mice, body weight and adiposity were reduced by sitagliptin, which was enhanced by RS (28g). Serum GLP-1 was induced and energy expenditure was enhanced by sitagliptin. Fasting glucose, insulin, and leptin levels were decreased by sitagliptin. The sitagliptin effects were lost in the KO mice (n = 25) although induction of serum GLP-1 by sitagliptin was even stronger in KO mice. The data suggests that sitagliptin is able to reduce adiposity and insulin resistance through induction of energy expenditure. The effect of sitagliptin is partially enhanced by RS. GLP-1 receptor may regulate serum GLP-1 by facilitating the hormone clearance. PMID:25938560

  1. Differences in acute anorectic effects of long-acting GLP-1 receptor agonists in rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Long-acting glucagon-like peptide-1 receptor (GLP-1R) agonists have both glucose- and weight-lowering effects. The brain is poised to mediate both of these actions since GLP-1Rs are present in key areas known to control weight and glucose. Although some research has been performed on the effects of ...

  2. Topical Administration of GLP-1 Receptor Agonists Prevents Retinal Neurodegeneration in Experimental Diabetes.

    PubMed

    Hernández, Cristina; Bogdanov, Patricia; Corraliza, Lidia; García-Ramírez, Marta; Solà-Adell, Cristina; Arranz, José A; Arroba, Ana I; Valverde, Angela M; Simó, Rafael

    2016-01-01

    Retinal neurodegeneration is an early event in the pathogenesis of diabetic retinopathy (DR). Since glucagon-like peptide 1 (GLP-1) exerts neuroprotective effects in the central nervous system and the retina is ontogenically a brain-derived tissue, the aims of the current study were as follows: 1) to examine the expression and content of GLP-1 receptor (GLP-1R) in human and db/db mice retinas; 2) to determine the retinal neuroprotective effects of systemic and topical administration (eye drops) of GLP-1R agonists in db/db mice; and 3) to examine the underlying neuroprotective mechanisms. We have found abundant expression of GLP-1R in the human retina and retinas from db/db mice. Moreover, we have demonstrated that systemic administration of a GLP-1R agonist (liraglutide) prevents retinal neurodegeneration (glial activation, neural apoptosis, and electroretinographical abnormalities). This effect can be attributed to a significant reduction of extracellular glutamate and an increase of prosurvival signaling pathways. We have found a similar neuroprotective effect using topical administration of native GLP-1 and several GLP-1R agonists (liraglutide, lixisenatide, and exenatide). Notably, this neuroprotective action was observed without any reduction in blood glucose levels. These results suggest that GLP-1R activation itself prevents retinal neurodegeneration. Our results should open up a new approach in the treatment of the early stages of DR. PMID:26384381

  3. GLP-1 Receptor Agonists: Nonglycemic Clinical Effects in Weight Loss and Beyond

    PubMed Central

    Ryan, Donna; Acosta, Andres

    2015-01-01

    Obective Glucagon-like peptide-1 (GLP-1) receptor agonists are indicated for treatment of type 2 diabetes since they mimic the actions of native GLP-1 on pancreatic islet cells, stimulating insulin release, while inhibiting glucagon release, in a glucose-dependent manner. The observation of weight loss has led to exploration of their potential as antiobesity agents, with liraglutide 3.0 mg day−1 approved for weight management in the US on December 23, 2014, and in the EU on March 23, 2015. This review examines the potential nonglycemic effects of GLP-1 receptor agonists. Methods A literature search was conducted to identify preclinical and clinical evidence on nonglycemic effects of GLP-1 receptor agonists. Results GLP-1 receptors are distributed widely in a number of tissues in humans, and their effects are not limited to the well-recognized effects on glycemia. Nonglycemic effects include weight loss, which is perhaps the most widely recognized nonglycemic effect. In addition, effects on the cardiovascular, neurologic, and renal systems and on taste perception may occur independently of weight loss. Conclusions GLP-1 receptor agonists may provide other nonglycemic clinical effects besides weight loss. Understanding these effects is important for prescribers in using GLP-1 receptor agonists for diabetic patients, but also if approved for chronic weight management. PMID:25959380

  4. Retinal pigment epithelial cells express a functional receptor for glucagon-like peptide-1 (GLP-1).

    PubMed

    Puddu, Alessandra; Sanguineti, Roberta; Montecucco, Fabrizio; Viviani, Giorgio L

    2013-01-01

    Glucagon-like peptide-1 (GLP-1) is a gut-derived incretin hormone that has been shown to improve glucose homeostasis in type 2 diabetes. The biological effects of GLP-1 are mediated by its specific receptor GLP-1R that is expressed in a wide range of tissues, where it is responsible of the extra-pancreatic effects of GLP-1. Since the retinal pigment epithelium (RPE), that forms the outer retinal barrier, has a key role in protecting from diabetic retinopathy (DR), we investigated the potential expression and function of GLP-1R in a RPE cell line. ARPE-19 cells were cultured in DMEM/F12 supplemented with 10%?FBS. The expression of GLP-1R was evaluated at both mRNA and protein levels. Then, the activation postreceptor intracellular signal transduction pathways (extracellular signal-regulated kinases 1 and 2 [ERK1/2] and protein kinase B [PKB]) were assessed by western blot in normal cells or silenced for GLP-1R in the presence or absence of 10?nmol/L GLP-1. The potential connections between intracellular signalling pathways triggered by GLP-1 stimulation were performed before incubating cells with kinase pharmacological inhibitors of mitogen-activated protein kinase (MEK)1/2, phosphatydilinositol-3kinase (PI3K), or epidermal growth factor receptor (EGFR). The results showed that GLP1R is expressed at both mRNA and protein level in ARPE-19 cells. Stimulation with GLP-1 strongly activated PKB and ERK1/2 phosphorylation till 40?min of exposure. GLP-1-mediated activation of both kinases was dependent on the upstream activation of PI3K and EGFR. Finally, treatment with GLP-1 did not affect the spontaneous release of VEGF-A from ARPE-19 cells. In conclusion, this paper showed that the presence of functional GLP-1R is expressed in RPE cells. These data might represent the rationale to further investigate the potential direct beneficial effects of GLP-1 treatment against DR. PMID:24307763

  5. Nutrient Induced Type 2 and Chemical Induced Type 1 Experimental Diabetes Differently Modulate Gastric GLP-1 Receptor Expression

    PubMed Central

    Bloch, Olga; Broide, Efrat; Ben-Yehudah, Gilad; Cantrell, Dror; Shirin, Haim; Rapoport, Micha J.

    2015-01-01

    T2DM patients demonstrate reduced GLP-1 receptor (GLP-1R) expression in their gastric glands. Whether induced T2DM and T1DM differently affect the gastric GLP-1R expression is not known. This study assessed extrapancreatic GLP-1R system in glandular stomach of rodents with different types of experimental diabetes. T2DM and T1DM were induced in Psammomys obesus (PO) by high-energy (HE) diet and by streptozotocin (STZ) in Sprague Dawly (SD) rats, respectively. GLP-1R expression was determined in glandular stomach by RT PCR and immunohistomorphological analysis. The mRNA expression and cellular association of the GLP-1R in principal glands were similar in control PO and SD rats. However, nutrient and chemical induced diabetes resulted in opposite alterations of glandular GLP-1R expression. Diabetic PO demonstrated increased GLP-1R mRNA expression, intensity of cellular GLP-1R immunostaining, and frequency of GLP-1R positive cells in the neck area of principal glands compared with controls. In contrast, SD diabetic rats demonstrated decreased GLP-1 mRNA, cellular GLP-1R immunoreactivity, and frequency of GLP-1R immunoreactive cells in the neck area compared with controls. In conclusion, nutrient and chemical induced experimental diabetes result in distinct opposite alterations of GLP-1R expression in glandular stomach. These results suggest that induced T1DM and T2DM may differently modulate GLP-1R system in enteropancreatic axis. PMID:25893200

  6. The glucagon-like peptide 1 (GLP-1) analogue, exendin-4, decreases the rewarding value of food: a new role for mesolimbic GLP-1 receptors.

    PubMed

    Dickson, Suzanne L; Shirazi, Rozita H; Hansson, Caroline; Bergquist, Filip; Nissbrandt, Hans; Skibicka, Karolina P

    2012-04-01

    The glucagon-like peptide 1 (GLP-1) system is a recently established target for type 2 diabetes treatment. In addition to regulating glucose homeostasis, GLP-1 also reduces food intake. Previous studies demonstrate that the anorexigenic effects of GLP-1 can be mediated through hypothalamic and brainstem circuits which regulate homeostatic feeding. Here, we demonstrate an entirely novel neurobiological mechanism for GLP-1-induced anorexia in rats, involving direct effects of a GLP-1 agonist, Exendin-4 (EX4) on food reward that are exerted at the level of the mesolimbic reward system. We assessed the impact of peripheral, central, and intramesolimbic EX4 on two models of food reward: conditioned place preference (CPP) and progressive ratio operant-conditioning. Food-reward behavior was reduced in the CPP test by EX4, as rats no longer preferred an environment previously paired to chocolate pellets. EX4 also decreased motivated behavior for sucrose in a progressive ratio operant-conditioning paradigm when administered peripherally. We show that this effect is mediated centrally, via GLP-1 receptors (GLP-1Rs). GLP-1Rs are expressed in several key nodes of the mesolimbic reward system; however, their function remains unexplored. Thus we sought to determine the neurobiological substrates underlying the food-reward effect. We found that the EX4-mediated inhibition of food reward could be driven from two key mesolimbic structures-ventral tegmental area and nucleus accumbens-without inducing concurrent malaise or locomotor impairment. The current findings, that activation of central GLP-1Rs strikingly suppresses food reward/motivation by interacting with the mesolimbic system, indicate an entirely novel mechanism by which the GLP-1R stimulation affects feeding-oriented behavior. PMID:22492036

  7. The arcuate nucleus mediates GLP-1 receptor agonist liraglutide-dependent weight loss

    PubMed Central

    Secher, Anna; Jelsing, Jacob; Baquero, Arian F.; Hecksher-Sørensen, Jacob; Cowley, Michael A.; Dalbøge, Louise S.; Hansen, Gitte; Grove, Kevin L.; Pyke, Charles; Raun, Kirsten; Schäffer, Lauge; Tang-Christensen, Mads; Verma, Saurabh; Witgen, Brent M.; Vrang, Niels; Bjerre Knudsen, Lotte

    2014-01-01

    Liraglutide is a glucagon-like peptide-1 (GLP-1) analog marketed for the treatment of type 2 diabetes. Besides lowering blood glucose, liraglutide also reduces body weight. It is not fully understood how liraglutide induces weight loss or to what degree liraglutide acts directly in the brain. Here, we determined that liraglutide does not activate GLP-1–producing neurons in the hindbrain, and liraglutide-dependent body weight reduction in rats was independent of GLP-1 receptors (GLP-1Rs) in the vagus nerve, area postrema, and paraventricular nucleus. Peripheral injection of fluorescently labeled liraglutide in mice revealed the presence of the drug in the circumventricular organs. Moreover, labeled liraglutide bound neurons within the arcuate nucleus (ARC) and other discrete sites in the hypothalamus. GLP-1R was necessary for liraglutide uptake in the brain, as liraglutide binding was not seen in Glp1r–/– mice. In the ARC, liraglutide was internalized in neurons expressing proopiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript (CART). Electrophysiological measurements of murine brain slices revealed that GLP-1 directly stimulates POMC/CART neurons and indirectly inhibits neurotransmission in neurons expressing neuropeptide Y (NPY) and agouti-related peptide (AgRP) via GABA-dependent signaling. Collectively, our findings indicate that the GLP-1R on POMC/CART-expressing ARC neurons likely mediates liraglutide-induced weight loss. PMID:25202980

  8. Purslane Effect on GLP-1 and GLP-1 receptor in type 2 diabetes

    PubMed Central

    Heidarzadeh, Sara; Farzanegi, Parvin; Azarbayjani, Mohammad Ali; Daliri, Roja

    2013-01-01

    Background: The aim of this study was to examine the effect of purslane seeds in glucagon-like peptide-1 concentration and glucagon-like peptide-1 receptor in women with diabetes. Methods: This was a quasi-experimental study. The population was consisted of the city of Sari where diabetic women with diabetes II who had no history of using purslane seeds. All individuals used the same dose of metformin under the specialist supervision. Among these individuals, 16 were assigned at random to Purslane group and control group. The purslane group consumed 2.5 grams Purslane with lunch and along with 5 grams of purslane (Portulaca oleracea seeds 7.5 g daily) with dinner meals twice daily for 8 weeks. Blood sample was taken before and after 8 weeks, after 12 hours of fasting to 5 ml of the left brachial vein. Results: After 8 weeks using purslane seeds in the experimental group, a significant increase was seen in glucagon-like peptide-1 concentrations (p<0.007), but there was no significant difference in the concentration of glucagon-like peptide-1 receptor (p <0.455). No significant relationship was found between changes in glucagon-like peptide-1 and its receptor. Conclusion: The use of purslane seeds improved Type II diabetes; therefore it can be effective in improving the health of women with diabetes. PMID:26120386

  9. GLP-1 Receptor Agonists and the Thyroid: C-Cell Effects in Mice Are Mediated via the GLP-1 Receptor and not Associated with RET Activation

    PubMed Central

    Knauf, Jeffrey A.; Gotfredsen, Carsten; Pilling, Andrew; Sjögren, Ingrid; Andersen, Søren; Andersen, Lene; Sietske de Boer, Anne; Manova, Katia; Barlas, Afsar; Vundavalli, Sushil; Nyborg, Niels C. Berg; Bjerre Knudsen, Lotte; Moelck, Anne Marie

    2012-01-01

    Liraglutide and exenatide are glucagon-like peptide receptor (GLP-1R) agonists used in the treatment of type 2 diabetes. Both molecules have been associated with the development of thyroid C-cell tumors after lifetime exposure in rodents. Previously, it has been reported that these tumors are preceded by increased plasma calcitonin and C-cell hyperplasia. We can now document that the murine C-cell effects are mediated via GLP-1R. Thus, 13 wk of continuous exposure to GLP-1R agonists was associated with marked increases in plasma calcitonin and in the incidence of C-cell hyperplasia in wild-type mice. In contrast, similar effects were not seen in GLP-1R knockout mice. Human C-cell cancer is often caused by activating mutations in the rearranged-during-transfection (RET) protooncogene. We developed an immunohistochemical method to assess RET activation in tissues. Liraglutide dosing to mice was not found to activate RET. Further evaluation of the signaling pathways demonstrated that liraglutide increased ribosomal S6, but not MAPK kinase, phosphorylation. These observations are consistent with effects of GLP-1R agonists on rodent C cells being mediated via mammalian target of rapamycin activation in a RET- and MAPK-independent manner. PMID:22234463

  10. Endocrine and metabolic effects of Glucagon like peptide 1 receptor agonists (GLP1RA).

    PubMed

    Kalra, Sanjay; Gupta, Yashdeep

    2016-03-01

    This brief review describes the potential non-glycaemic effects and benefits of glucagon like peptide 1 receptor agonists (GLP1RA). It lists various indications in which this class of drugs has been used, and explains the rationale behind this use. The potential uses of GLP1RA extend across the entire spectrum of endocrinology and metabolism, from hypothalamic obesity to non-alcoholic steatohepatitis (NASH) to polycystic ovary syndrome (PCOS). The article also discusses and addresses endocrine-related concerns related to the GLP1RAs. PMID:26968296

  11. Hindbrain GLP-1 receptor mediation of cisplatin-induced anorexia and nausea.

    PubMed

    De Jonghe, Bart C; Holland, Ruby A; Olivos, Diana R; Rupprecht, Laura E; Kanoski, Scott E; Hayes, Matthew R

    2016-01-01

    While chemotherapy-induced nausea and vomiting are clinically controlled in the acute (<24h) phase following treatment, the anorexia, nausea, fatigue, and other illness-type behaviors during the delayed phase (>24h) of chemotherapy are largely uncontrolled. As the hindbrain glucagon-like peptide-1 (GLP-1) system contributes to energy balance and mediates aversive and stressful stimuli, here we examine the hypothesis that hindbrain GLP-1 signaling mediates aspects of chemotherapy-induced nausea and reductions in feeding behavior in rats. Specifically, hindbrain GLP-1 receptor (GLP-1R) blockade, via 4th intracerebroventricular (ICV) exendin-(9-39) injections, attenuates the anorexia, body weight reduction, and pica (nausea-induced ingestion of kaolin clay) elicited by cisplatin chemotherapy during the delayed phase (48h) of chemotherapy-induced nausea. Additionally, the present data provide evidence that the central GLP-1-producing preproglucagon neurons in the nucleus tractus solitarius (NTS) of the caudal brainstem are activated by cisplatin during the delayed phase of chemotherapy-induced nausea, as cisplatin led to a significant increase in c-Fos immunoreactivity in NTS GLP-1-immunoreactive neurons. These data support a growing body of literature suggesting that the central GLP-1 system may be a potential pharmaceutical target for adjunct anti-emetics used to treat the delayed-phase of nausea and emesis, anorexia, and body weight loss that accompany chemotherapy treatments. PMID:26522737

  12. Berberine induces GLP-1 secretion through activation of bitter taste receptor pathways.

    PubMed

    Yu, Yunli; Hao, Gang; Zhang, Quanying; Hua, Wenyan; Wang, Meng; Zhou, Wenjia; Zong, Shunlin; Huang, Ming; Wen, Xiaozhou

    2015-09-15

    Our previous studies revealed that berberine-mediated GLP-1 secretion was a possible mechanism for berberine exerting good effects on hyperglycemia. This study was designed to ascertain whether berberine-induced secretion of GLP-1 was related with activation of bitter taste receptors expressed in gastrointestinal tract. Western blotting results showed that TAS2R38, a subtype of bitter taste receptor, was expressed on human enteroendocrine NCI-H716 cells. GLP-1 secretion induced by berberine from NCI-H716 cells was inhibited by incubation with anti-TAS2R38 antibody. We further performed gene silencing using siRNA to knockdown TAS2R38 from NCI-H716 cells, which showed that siRNA knockdown of the TAS2R38 reduced berberine-mediated GLP-1 secretion. We adopted inhibitors of PLC and TRPM5 known to be involved in bitter taste transduction to investigate the underlying pathways mediated in berberine-induced GLP-1 secretion. It was found that PLC inhibitor U73122 inhibited berberine-induced GLP-1 release in NCI-H716 cells, while TRPM5 blocker quinine failed to attenuate berberine-induced secretion of GLP-1. The present results demonstrated that berberine stimulated GLP-1 secretion via activation of gut-expressed bitter taste receptors in a PLC-dependent manner. Because berberine was found to be a ligand of bitter taste receptor, the results of present study may provide an explanation for some bitter taste substance obtain hypoglycemic effect. PMID:26206195

  13. A Novel Humanized GLP-1 Receptor Model Enables Both Affinity Purification and Cre-LoxP Deletion of the Receptor

    PubMed Central

    Jun, Lucy S.; Showalter, Aaron D.; Ali, Nosher; Dai, Feihan; Ma, Wenzhen; Coskun, Tamer; Ficorilli, James V.; Wheeler, Michael B.; Michael, M. Dodson; Sloop, Kyle W.

    2014-01-01

    Class B G protein-coupled receptors (GPCRs) are important regulators of endocrine physiology, and peptide-based therapeutics targeting some of these receptors have proven effective at treating disorders such as hypercalcemia, osteoporosis, and type 2 diabetes mellitus (T2DM). As next generation efforts attempt to develop novel non-peptide, orally available molecules for these GPCRs, new animal models expressing human receptor orthologs may be required because small molecule ligands make fewer receptor contacts, and thus, the impact of amino acid differences across species may be substantially greater. The objective of this report was to generate and characterize a new mouse model of the human glucagon-like peptide-1 receptor (hGLP-1R), a class B GPCR for which established peptide therapeutics exist for the treatment of T2DM. hGLP-1R knock-in mice express the receptor from the murine Glp-1r locus. Glucose tolerance tests and gastric emptying studies show hGLP-1R mice and their wild-type littermates display similar physiological responses for glucose metabolism, insulin secretion, and gastric transit, and treatment with the GLP-1R agonist, exendin-4, elicits similar responses in both groups. Further, ex vivo assays show insulin secretion from humanized islets is glucose-dependent and enhanced by GLP-1R agonists. To enable additional utility, the targeting construct of the knock-in line was engineered to contain both flanking LoxP sites and a C-terminal FLAG epitope. Anti-FLAG affinity purification shows strong expression of hGLP-1R in islets, lung, and stomach. We crossed the hGLP-1R line with Rosa26Cre mice and generated global Glp-1r−/− animals. Immunohistochemistry of pancreas from humanized and knock-out mice identified a human GLP-1R-specific antibody that detects the GLP-1R in human pancreas as well as in the pancreas of hGLP-1r knock-in mice. This new hGLP-1R model will allow tissue-specific deletion of the GLP-1R, purification of potential GLP-1R partner proteins, and testing of novel therapeutic agents targeting the hGLP-1R. PMID:24695667

  14. Geniposide and its iridoid analogs exhibit antinociception by acting at the spinal GLP-1 receptors.

    PubMed

    Gong, Nian; Fan, Hui; Ma, Ai-Niu; Xiao, Qi; Wang, Yong-Xiang

    2014-09-01

    We recently discovered that the activation of the spinal glucagon-like peptide-1 receptors (GLP-1Rs) by the peptidic agonist exenatide produced antinociception in chronic pain. We suggested that the spinal GLP-1Rs are a potential target molecule for the management of chronic pain. This study evaluated the antinociceptive activities of geniposide, a presumed small molecule GLP-1R agonist. Geniposide produced concentration-dependent, complete protection against hydrogen peroxide-induced oxidative damage in PC12 and HEK293 cells expressing rat and human GLP-1Rs, but not in HEK293T cells that do not express GLP-1Rs. The orthosteric GLP-1R antagonist exendin(9-39) right-shifted the concentration-response curve of geniposide without changing the maximal protection, with identical pA2 values in both cell lines. Subcutaneous and oral geniposide dose-dependently blocked the formalin-induced tonic response but not the acute flinching response. Subcutaneous and oral geniposide had maximum inhibition of 72% and 68%, and ED50s of 13.1 and 52.7 mg/kg, respectively. Seven days of multidaily subcutaneous geniposide and exenatide injections did not induce antinociceptive tolerance. Intrathecal geniposide induced dose-dependent antinociception, which was completely prevented by spinal exendin(9-39), siRNA/GLP-1R and cyclic AMP/PKA pathway inhibitors. The geniposide iridoid analogs geniposidic acid, genipin methyl ether, 1,10-anhydrogenipin, loganin and catalpol effectively inhibited hydrogen peroxide-induced oxidative damage and formalin pain in an exendin(9-39)-reversible manner. Our results suggest that geniposide and its iridoid analogs produce antinociception during persistent pain by activating the spinal GLP-1Rs and that the iridoids represented by geniposide are orthosteric agonists of GLP-1Rs that function similarly in humans and rats and presumably act at the same binding site as exendin(9-39). PMID:24747181

  15. Targeting Incretins in Type 2 Diabetes: Role of GLP-1 Receptor Agonists and DPP-4 Inhibitors

    PubMed Central

    Pratley, Richard E.; Gilbert, Matthew

    2008-01-01

    Until recently, the pathogenesis of type 2 diabetes mellitus (T2DM) has been conceptualized in terms of the predominant defects in insulin secretion and insulin action. It is now recognized that abnormalities in other hormones also contribute to the development of hyperglycemia. For example, the incretin effect, mediated by glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP), is attenuated in T2DM. Intravenous administration of GLP-1 ameliorates hyperglycemia in patients with T2DM, but an extremely short half-life limits its utility as a therapeutic agent. Strategies to leverage the beneficial effects of GLP-1 include GLP-1 receptor agonists or analogs or dipeptidyl peptidase-4 (DPP-4) inhibitors—agents that act by slowing the inactivation of endogenous GLP-1 and GIP. The GLP-1 agonist exenatide has been shown to improve HbA1c and decrease body weight. However, exenatide is limited by its relatively short pharmacologic half-life, various gastrointestinal (GI) side effects, and the development of antibodies. Studies of a long-acting exenatide formulation suggest that it has improved efficacy and also promotes weight loss. Another prospect is liraglutide, a once-daily human GLP-1 analog. In phase 2 studies, liraglutide lowered HbA1c by up to 1.7% and weight by approximately 3 kg, with apparently fewer GI side effects than exenatide. DPP-4 inhibitors such as sitagliptin and vildagliptin result in clinically significant reductions in HbA1c, and are weight neutral with few GI side effects. This review will provide an overview of current and emerging agents that augment the incretin system with a focus on the role of GLP-1 receptor agonists and DPP-4 inhibitors. PMID:18795210

  16. The glucagon-like peptide 1 (GLP-1) receptor agonist exendin-4 reduces cocaine self-administration in mice.

    PubMed

    Srensen, Gunnar; Reddy, India A; Weikop, Pia; Graham, Devon L; Stanwood, Gregg D; Wortwein, Gitta; Galli, Aurelio; Fink-Jensen, Anders

    2015-10-01

    Glucagon-like peptide 1 (GLP-1) analogues are used for the treatment of type 2 diabetes. The ability of the GLP-1 system to decrease food intake in rodents has been well described and parallels results from clinical trials. GLP-1 receptors are expressed in the brain, including within the ventral tegmental area (VTA) and the nucleus accumbens (NAc). Dopaminergic neurons in the VTA project to the NAc, and these neurons play a pivotal role in the rewarding effects of drugs of abuse. Based on the anatomical distribution of GLP-1 receptors in the brain and the well-established effects of GLP-1 on food reward, we decided to investigate the effect of the GLP-1 analogue exendin-4 on cocaine- and dopamine D1-receptor agonist-induced hyperlocomotion, on acute and chronic cocaine self-administration, on cocaine-induced striatal dopamine release in mice and on cocaine-induced c-fos activation. Here, we report that GLP-1 receptor stimulation reduces acute and chronic cocaine self-administration and attenuates cocaine-induced hyperlocomotion. In addition, we show that peripheral administration of exendin-4 reduces cocaine-induced elevation of striatal dopamine levels and striatal c-fos expression implicating central GLP-1 receptors in these responses. The present results demonstrate that the GLP-1 system modulates cocaine's effects on behavior and dopamine homeostasis, indicating that the GLP-1 receptor may be a novel target for the pharmacological treatment of drug addiction. PMID:26072178

  17. Effects of GLP-1 and Incretin-Based Therapies on Gastrointestinal Motor Function

    PubMed Central

    Marathe, Chinmay S.; Rayner, Christopher K.; Jones, Karen L.; Horowitz, Michael

    2011-01-01

    Glucagon-like peptide 1 (GLP-1) is a hormone secreted predominantly by the distal small intestine and colon and released in response to enteral nutrient exposure. GLP-1-based therapies are now used widely in the management of type 2 diabetes and have the potential to be effective antiobesity agents. Although widely known as an incretin hormone, there is a growing body of evidence that GLP-1 also acts as an enterogastrone, with profound effects on the gastrointestinal motor system. Moreover, the effects of GLP-1 on gastrointestinal motility appear to be pivotal to its effect of reducing postprandial glycaemic excursions and may, potentially, represent the dominant mechanism. This review summarizes current knowledge of the enterogastrone properties of GLP-1, focusing on its effects on gut motility at physiological and pharmacological concentrations, and the motor actions of incretin-based therapies. While of potential importance, the inhibitory action of GLP-1 on gastric acid secretion is beyond the scope of this paper. PMID:21747825

  18. Hippocampal GLP-1 Receptors Influence Food Intake, Meal Size, and Effort-Based Responding for Food through Volume Transmission

    PubMed Central

    Hsu, Ted M; Hahn, Joel D; Konanur, Vaibhav R; Lam, Ashley; Kanoski, Scott E

    2015-01-01

    Glucagon-like peptide-1 (GLP-1) is produced in the small intestines and in nucleus tractus solitarius (NTS) neurons. Activation of central GLP-1 receptors (GLP-1Rs) reduces feeding and body weight. The neural circuits mediating these effects are only partially understood. Here we investigate the inhibition of food intake and motivated responding for food in rats following GLP-1R activation in the ventral hippocampal formation (HPFv), a region only recently highlighted in food intake control. Increased HPFv GLP-1R activity following exendin-4 administration potently reduced food intake (both chow and Western diet) and body weight, whereas HPFv GLP-1R blockade increased food intake. These hypophagic effects were based on reduced meal size, and likely do not involve nausea as HPFv exendin-4 did not induce a conditioned flavor avoidance. HPFv GLP-1R activation also reduced effort-based responding for food under an operant progressive ratio reinforcement schedule, but did not affect food conditioned place preference expression. To investigate possible routes of HPFv GLP-1 signaling, immunohistochemical analysis revealed the absence of GLP-1 axon terminals in the HPFv, suggesting volume transmission as a mechanism of action. Consistent with this, the presence of active GLP-1 was detected in both the cerebrospinal fluid (CSF) and the HPFv. The source of CSF GLP-1 may be NTS GLP-1-producing neurons, as, (1) ∼30% of NTS GLP-1 neurons colocalized with the retrograde tracer fluorogold (FG) following lateral ventricle FG injection, and (2) GLP-1-immunoreactive axon terminals were observed adjacent to the ventricular ependymal layer. Collectively these findings illuminate novel neuronal and behavioral mechanisms mediating food intake reduction by GLP-1. PMID:25035078

  19. Hippocampal GLP-1 receptors influence food intake, meal size, and effort-based responding for food through volume transmission.

    PubMed

    Hsu, Ted M; Hahn, Joel D; Konanur, Vaibhav R; Lam, Ashley; Kanoski, Scott E

    2015-01-01

    Glucagon-like peptide-1 (GLP-1) is produced in the small intestines and in nucleus tractus solitarius (NTS) neurons. Activation of central GLP-1 receptors (GLP-1Rs) reduces feeding and body weight. The neural circuits mediating these effects are only partially understood. Here we investigate the inhibition of food intake and motivated responding for food in rats following GLP-1R activation in the ventral hippocampal formation (HPFv), a region only recently highlighted in food intake control. Increased HPFv GLP-1R activity following exendin-4 administration potently reduced food intake (both chow and Western diet) and body weight, whereas HPFv GLP-1R blockade increased food intake. These hypophagic effects were based on reduced meal size, and likely do not involve nausea as HPFv exendin-4 did not induce a conditioned flavor avoidance. HPFv GLP-1R activation also reduced effort-based responding for food under an operant progressive ratio reinforcement schedule, but did not affect food conditioned place preference expression. To investigate possible routes of HPFv GLP-1 signaling, immunohistochemical analysis revealed the absence of GLP-1 axon terminals in the HPFv, suggesting volume transmission as a mechanism of action. Consistent with this, the presence of active GLP-1 was detected in both the cerebrospinal fluid (CSF) and the HPFv. The source of CSF GLP-1 may be NTS GLP-1-producing neurons, as, (1) ∼30% of NTS GLP-1 neurons colocalized with the retrograde tracer fluorogold (FG) following lateral ventricle FG injection, and (2) GLP-1-immunoreactive axon terminals were observed adjacent to the ventricular ependymal layer. Collectively these findings illuminate novel neuronal and behavioral mechanisms mediating food intake reduction by GLP-1. PMID:25035078

  20. The Aversive Agent Lithium Chloride Suppresses Phasic Dopamine Release Through Central GLP-1 Receptors.

    PubMed

    Fortin, Samantha M; Chartoff, Elena H; Roitman, Mitchell F

    2016-02-01

    Unconditioned rewarding stimuli evoke phasic increases in dopamine concentration in the nucleus accumbens (NAc) while discrete aversive stimuli elicit pauses in dopamine neuron firing and reductions in NAc dopamine concentration. The unconditioned effects of more prolonged aversive states on dopamine release dynamics are not well understood and are investigated here using the malaise-inducing agent lithium chloride (LiCl). We used fast-scan cyclic voltammetry to measure phasic increases in NAc dopamine resulting from electrical stimulation of dopamine cell bodies in the ventral tegmental area (VTA). Systemic LiCl injection reduced electrically evoked dopamine release in the NAc of both anesthetized and awake rats. As some behavioral effects of LiCl appear to be mediated through glucagon-like peptide-1 receptor (GLP-1R) activation, we hypothesized that the suppression of phasic dopamine by LiCl is GLP-1R dependent. Indeed, peripheral pretreatment with the GLP-1R antagonist exendin-9 (Ex-9) potently attenuated the LiCl-induced suppression of dopamine. Pretreatment with Ex-9 did not, however, affect the suppression of phasic dopamine release by the kappa-opioid receptor agonist, salvinorin A, supporting a selective effect of GLP-1R stimulation in LiCl-induced dopamine suppression. By delivering Ex-9 to either the lateral or fourth ventricle, we highlight a population of central GLP-1 receptors rostral to the hindbrain that are involved in the LiCl-mediated suppression of NAc dopamine release. PMID:26211731

  1. Treatment with a GLP-1 receptor agonist diminishes the decrease in free plasma leptin during maintenance of weight loss

    PubMed Central

    Iepsen, E W; Lundgren, J; Dirksen, C; Jensen, J-EB; Pedersen, O; Hansen, T; Madsbad, S; Holst, J J; Torekov, S S

    2015-01-01

    Background: Recent studies indicate that glucagon-like peptide (GLP)-1 inhibits appetite in part through regulation of soluble leptin receptors. Thus, during weight loss maintenance, GLP-1 receptor agonist (GLP-1RA) administration may inhibit weight loss-induced increases in soluble leptin receptors thereby preserving free leptin levels and preventing weight regain. Methods: In a randomized controlled trial, 52 healthy obese individuals were, after a diet-induced 12% body weight loss, randomized to treatment with or without administration of the GLP-1RA liraglutide (1.2 mg per day). In case of weight gain, low-calorie diet products were allowed to replace up to two meals per day to achieve equal weight maintenance. Glucose tolerance and hormone responses were investigated before and after weight loss and after 52 weeks weight maintenance. Primary end points: increase in soluble leptin receptor plasma levels and decrease in free leptin index after 52 weeks weight loss maintenance. Results: Soluble leptin receptor increase was 59% lower; 2.1±0.7 vs 5.1±0.8 ng ml−1 (−3.0 (95% confidence interval (CI)=−0.5 to −5.5)), P<0.001 and free leptin index decrease was 43% smaller; −62±15 vs −109±20 (−47 (95% CI=−11 to −83)), P<0.05 with administration of GLP-1RA compared with control group. The 12% weight loss was successfully maintained in both the groups with no significant change in weight after 52 weeks follow-up. The GLP-1RA group had greater weight loss during the weight maintenance period (−2.3 kg (95% CI=−0.6 to −4.0)), and had fewer meal replacements per day compared with the control group (minus one meal per day (95% CI=−0.6 to −1)), P<0.001. Fasting glucose was decreased by an additional −0.2±0.1 mmol l−1 in the GLP-1RA group in contrast to the control group, where glucose increased 0.3±0.1 mmol l−1 to the level before weight loss (−0.5mmol l−1 (95% CI=−0.1 to −0.9)), P<0.005. Meal response of peptide PYY3–36 was higher at week 52 in the GLP-1RA group compared with the control group, P<0.05. Conclusions: The weight maintaining effect of GLP-1RAs may be mediated by smaller decrease in free leptin and higher PYY3–36 response. Low dose GLP-1RA therapy maintained 12% weight loss for 1 year and may prevent pre-diabetes in obesity. PMID:25287751

  2. Ligand Binding Pocket Formed by Evolutionarily Conserved Residues in the Glucagon-like Peptide-1 (GLP-1) Receptor Core Domain*

    PubMed Central

    Moon, Mi Jin; Lee, Yoo-Na; Park, Sumi; Reyes-Alcaraz, Arfaxad; Hwang, Jong-Ik; Millar, Robert Peter; Choe, Han; Seong, Jae Young

    2015-01-01

    Glucagon-like peptide-1 (GLP-1) plays a pivotal role in glucose homeostasis through its receptor GLP1R. Due to its multiple beneficial effects, GLP-1 has gained great attention for treatment of type 2 diabetes and obesity. However, little is known about the molecular mechanism underlying the interaction of GLP-1 with the heptahelical core domain of GLP1R conferring high affinity ligand binding and ligand-induced receptor activation. Here, using chimeric and point-mutated GLP1R, we determined that the evolutionarily conserved amino acid residue Arg380 flanked by hydrophobic Leu379 and Phe381 in extracellular loop 3 (ECL3) may have an interaction with Asp9 and Gly4 of the GLP-1 peptide. The molecular modeling study showed that Ile196 at transmembrane helix 2, Met233 at ECL1, and Asn302 at ECL2 of GLP1R have contacts with His1 and Thr7 of GLP-1. This study may shed light on the mechanism underlying high affinity interaction between the ligand and the binding pocket that is formed by these conserved residues in the GLP1R core domain. PMID:25561730

  3. GLP-1 receptor agonists: a review of head-to-head clinical studies.

    PubMed

    Trujillo, Jennifer M; Nuffer, Wesley; Ellis, Samuel L

    2015-02-01

    Glucagon-like peptide-1 receptor agonists (GLP-1 RA) are attractive options for the treatment of type 2 diabetes (T2D) because they effectively lower A1C and weight while having a low risk of hypoglycemia. The GLP-1 RA class has grown in the last decade with several agents available for use in the US and Europe and several more in development. Since the efficacy and tolerability, dosing frequency, administration requirements, and cost may vary between agents within the class, each agent may offer unique advantages and disadvantages. Through a review of phase III clinical programs for exenatide twice daily, exenatide once weekly, liraglutide, albiglutide, lixisenatide, and dulaglutide, eight head-to-head trials have evaluated the safety and efficacy of GLP-1 RA active comparators. The purpose of this review is to provide an analysis of these trials. The GLP-1 RA head-to-head clinical studies have demonstrated that all GLP-1 RA agents are effective therapeutic options at reducing A1C. However, differences exist in terms of magnitude of effect on A1C and weight as well as frequency and severity of adverse effects. PMID:25678953

  4. Lixisenatide, a novel GLP-1 receptor agonist for the treatment of type 2 diabetes mellitus.

    PubMed

    Christensen, Mikkel; Knop, Filip K; Holst, Jens J; Vilsboll, Tina

    2009-08-01

    Lixisenatide, under development by sanofi-aventis, is a novel human glucagon-like peptide-1 receptor (GLP-1R) agonist for the treatment of type 2 diabetes mellitus (T2DM; non-insulin dependent diabetes). The structure of lixisenatide, based on exendin-4(1-39) modified C-terminally with six Lys residues, is able to withstand physiological degradation by dipeptidyl peptidase IV. In vitro, lixisenatide bound to human GLP-1R with a greater affinity than native human GLP-1 (7-36 amide). In various in vitro and in vivo models of T2DM, lixisenatide improved glycemic measures and demonstrated promising pancreatic beta-cell-preserving actions. In patients with T2DM, subcutaneously administered lixisenatide displayed linear pharmacokinetics. In two phase II clinical trials, lixisenatide improved glucose tolerance, resulted in weight loss and lowered HbA1C, thereby causing significantly more patients to achieve target HbA1C levels compared with placebo. Lixisenatide exhibited well-established GLP-1-related gastrointestinal side effects, with mild nausea occurring most frequently; a low frequency of hypoglycemia was also reported. The results of phase III trials are awaited for confirmation of the anticipated effects of lixisenatide on glycemic measures and weight; favorable results would place lixisenatide for consideration among other GLP-1R agonists in the treatment armamentarium for T2DM. PMID:19629885

  5. GLP-1 receptor agonists: a review of head-to-head clinical studies

    PubMed Central

    Nuffer, Wesley; Ellis, Samuel L.

    2015-01-01

    Glucagon-like peptide-1 receptor agonists (GLP-1 RA) are attractive options for the treatment of type 2 diabetes (T2D) because they effectively lower A1C and weight while having a low risk of hypoglycemia. The GLP-1 RA class has grown in the last decade with several agents available for use in the US and Europe and several more in development. Since the efficacy and tolerability, dosing frequency, administration requirements, and cost may vary between agents within the class, each agent may offer unique advantages and disadvantages. Through a review of phase III clinical programs for exenatide twice daily, exenatide once weekly, liraglutide, albiglutide, lixisenatide, and dulaglutide, eight head-to-head trials have evaluated the safety and efficacy of GLP-1 RA active comparators. The purpose of this review is to provide an analysis of these trials. The GLP-1 RA head-to-head clinical studies have demonstrated that all GLP-1 RA agents are effective therapeutic options at reducing A1C. However, differences exist in terms of magnitude of effect on A1C and weight as well as frequency and severity of adverse effects. PMID:25678953

  6. Erratum to GLP-1 receptor agonists: a review of head-to-head clinical studies

    PubMed Central

    2015-01-01

    SAGE Publications wish to apologise for the following error which was introduced into GLP-1 receptor agonists: a review of head-to-head clinical studies by Jennifer M. Trujillo, Wesley Nuffer and Samuel L. Ellis. This article was published in Therapeutic Advances in Endocrinology and Metabolism 2015, volume 6(1) 1928, DOI: 10.1177/2042018814559725. PMID:26134499

  7. Metformin ameliorates lipotoxicity-induced mesangial cell apoptosis partly via upregulation of glucagon like peptide-1 receptor (GLP-1R).

    PubMed

    Kim, Dong-il; Park, Min-jung; Heo, Young-ran; Park, Soo-hyun

    2015-10-15

    Glucagon like peptide-1 receptor (GLP-1R), known to be expressed in pancreatic beta cells, is also expressed in glomerular mesangial cells and its agonist has protective effects in diabetic nephropathy. However, its regulatory mechanisms by lipotoxicity in glomerular mesangial cells are not understood. We found that palmitate-mediated lipotoxicity increased apoptosis and decreased GLP-1R expression in a rat mesangial cell line. Silencing GLP-1R expression also increased mesangial cell apoptosis. Interestingly, metformin, one of the biguanide drugs that has anti-diabetic effects, attenuated lipotoxicity-induced mesangial cell apoptosis and restored GLP-1R expression. Moreover, this treatment alleviated GLP-1R knockdown-induced mesangial cell apoptosis. To further evaluate invivo, diabetic obese db/db mice were administered metformin. Glomerular GLP-1R expression was diminished in db/db mice, as compared with db/m control mice. However, this decrease significantly recovered on metformin administration. Together, these data provide novel evidence that lipotoxicity decreases the mesangial GLP-1R expression in intact cells and invivo. The decrease induced mesangial cell apoptosis. Furthermore, we provided the evidence that metformin treatment has a renal protective effect partly via increased mesangial GLP-1R expression. Our data suggested that regulation of GLP-1R expression could be a promising approach to treat diabetic nephropathy and the novel mechanism of metformin mediated GLP-1R regulation. PMID:26302449

  8. Comparative Effects of the Endogenous Agonist Glucagon-Like Peptide-1 (GLP-1)-(7-36) Amide and the Small-Molecule Ago-Allosteric Agent Compound 2 at the GLP-1 Receptor

    PubMed Central

    Coopman, Karen; Huang, Yan; Johnston, Neil; Bradley, Sophie J.; Wilkinson, Graeme F.

    2010-01-01

    Glucagon-like peptide-1 (GLP-1) mediates antidiabetogenic effects through the GLP-1 receptor (GLP-1R), which is targeted for the treatment of type 2 diabetes. Small-molecule GLP-1R agonists have been sought due to difficulties with peptide therapeutics. Recently, 6,7-dichloro-2-methylsulfonyl-3-N-tert-butylaminoquinoxaline (compound 2) has been described as a GLP-1R allosteric modulator and agonist. Using human embryonic kidney-293 cells expressing human GLP-1Rs, we extended this work to consider the impact of compound 2 on G protein activation, Ca2+ signaling and receptor internalization and particularly to compare compound 2 and GLP-1 across a range of functional assays in intact cells. GLP-1 and compound 2 activated G?s in cell membranes and increased cellular cAMP in intact cells, with compound 2 being a partial and almost full agonist, respectively. GLP-1 increased intracellular [Ca2+] by release from intracellular stores, which was mimicked by compound 2, with slower kinetics. In either intact cells or membranes, the orthosteric antagonist exendin-(9-39), inhibited GLP-1 cAMP generation but increased the efficacy of compound 2. GLP-1 internalized enhanced green fluorescent protein-tagged GLP-1Rs, but the speed and magnitude evoked by compound 2 were less. Exendin-(9-39) inhibited internalization by GLP-1 and also surprisingly that by compound 2. Compound 2 displays GLP-1R agonism consistent with action at an allosteric site, although an orthosteric antagonist increased its efficacy on cAMP and blocked compound 2-mediated receptor internalization. Full assessment of the properties of compound 2 was potentially hampered by damaging effects that were particularly manifest in either longer term assays with intact cells or in acute assays with membranes. PMID:20507928

  9. GLP1- and GIP-producing cells rarely overlap and differ by bombesin receptor-2 expression and responsiveness.

    PubMed

    Svendsen, Berit; Pais, Ramona; Engelstoft, Maja S; Milev, Nikolay B; Richards, Paul; Christiansen, Charlotte B; Egerod, Kristoffer L; Jensen, Signe M; Habib, Abdella M; Gribble, Fiona M; Schwartz, Thue W; Reimann, Frank; Holst, Jens J

    2016-01-01

    The incretin hormones glucagon-like peptide-1 (GLP1) and glucose-dependent insulinotropic polypeptide (GIP) are secreted from intestinal endocrine cells, the so-called L- and K-cells. The cells are derived from a common precursor and are highly related, and co-expression of the two hormones in so-called L/K-cells has been reported. To investigate the relationship between the GLP1- and GIP-producing cells more closely, we generated a transgenic mouse model expressing a fluorescent marker in GIP-positive cells. In combination with a mouse strain with fluorescent GLP1 cells, we were able to estimate the overlap between the two cell types. Furthermore, we used primary cultured intestinal cells and isolated perfused mouse intestine to measure the secretion of GIP and GLP1 in response to different stimuli. Overlapping GLP1 and GIP cells were rare (?5%). KCl, glucose and forskolin+IBMX increased the secretion of both GLP1 and GIP, whereas bombesin/neuromedin C only stimulated GLP1 secretion. Expression analysis showed high expression of the bombesin 2 receptor in GLP1 positive cells, but no expression in GIP-positive cells. These data indicate both expressional and functional differences between the GLP1-producing 'L-cell' and the GIP-producing 'K-cell'. PMID:26483393

  10. On-target effects of GLP-1 receptor agonists on thyroid C-cells in rats and mice.

    PubMed

    Rosol, Thomas J

    2013-02-01

    Glucagon-like peptide-1 is an incretin hormone from the gastrointestinal tract, which enhances insulin secretion, slows gastric emptying, and reduces food intake. GLP-1 receptor agonists are being developed for Type 2 diabetes mellitus. GLP-1 is rapidly degraded by serum dipeptidyl peptidase IV, so analogues with a prolonged serum half-life are used clinically. Exenatide was the first GLP-1 agonist approved and is a synthetic version of exendin-4 derived from the Gila monster. Liraglutide was approved for clinical use in 2010. GLP-1 receptor agonists have been shown to increase calcitonin secretion and stimulate C-cell hyperplasia and neoplasia in rats and mice of both sexes. Rat C-cells are more sensitive to the effects of GLP-1 agonists than mice. The effects of GLP-1 agonists on C-cell proliferation or neoplasia have not been documented in nonhuman primates or humans. The proliferative C-cell effects may be rodent-specific. GLP-1 receptors have been demonstrated on normal rodent C-cells, but are either not present or occur in low numbers on C-cells of nonhuman primates and humans. Hyperplasia and neoplasia of C-cells in rodents treated with GLP-1 agonists represent a unique example of an on-target species-specific effect that may not have relevance to humans. PMID:23471186

  11. Progesterone Receptor Membrane Component 1 Is a Functional Part of the Glucagon-like Peptide-1 (GLP-1) Receptor Complex in Pancreatic ? Cells*

    PubMed Central

    Zhang, Ming; Robitaille, Mlanie; Showalter, Aaron D.; Huang, Xinyi; Liu, Ying; Bhattacharjee, Alpana; Willard, Francis S.; Han, Junfeng; Froese, Sean; Wei, Li; Gaisano, Herbert Y.; Angers, Stphane; Sloop, Kyle W.; Dai, Feihan F.; Wheeler, Michael B.

    2014-01-01

    Glucagon-like peptide-1 (GLP-1) is an incretin hormone that regulates glucose homeostasis. Because of their direct stimulation of insulin secretion from pancreatic ? cells, GLP-1 receptor (GLP-1R) agonists are now important therapeutic options for the treatment of type 2 diabetes. To better understand the mechanisms that control the insulinotropic actions of GLP-1, affinity purification and mass spectrometry (AP-MS) were employed to uncover potential proteins that functionally interact with the GLP-1R. AP-MS performed on Chinese hamster ovary cells or MIN6 ? cells, both expressing the human GLP-1R, revealed 99 proteins potentially associated with the GLP-1R. Three novel GLP-1R interactors (PGRMC1, Rab5b, and Rab5c) were further validated through co-immunoprecipitation/immunoblotting, fluorescence resonance energy transfer, and immunofluorescence. Functional studies revealed that overexpression of PGRMC1, a novel cell surface receptor that associated with liganded GLP-1R, enhanced GLP-1-induced insulin secretion (GIIS) with the most robust effect. Knockdown of PGRMC1 in ? cells decreased GIIS, indicative of positive interaction with GLP-1R. To gain insight mechanistically, we demonstrated that the cell surface PGRMC1 ligand P4-BSA increased GIIS, whereas its antagonist AG-205 decreased GIIS. It was then found that PGRMC1 increased GLP-1-induced cAMP accumulation. PGRMC1 activation and GIIS induced by P4-BSA could be blocked by inhibition of adenylyl cyclase/EPAC signaling or the EGF receptorPI3K signal transduction pathway. These data reveal a dual mechanism for PGRMC1-increased GIIS mediated through cAMP and EGF receptor signaling. In conclusion, we identified several novel GLP-1R interacting proteins. PGRMC1 expressed on the cell surface of ? cells was shown to interact with the activated GLP-1R to enhance the insulinotropic actions of GLP-1. PMID:25044020

  12. Progesterone receptor membrane component 1 is a functional part of the glucagon-like peptide-1 (GLP-1) receptor complex in pancreatic β cells.

    PubMed

    Zhang, Ming; Robitaille, Mélanie; Showalter, Aaron D; Huang, Xinyi; Liu, Ying; Bhattacharjee, Alpana; Willard, Francis S; Han, Junfeng; Froese, Sean; Wei, Li; Gaisano, Herbert Y; Angers, Stéphane; Sloop, Kyle W; Dai, Feihan F; Wheeler, Michael B

    2014-11-01

    Glucagon-like peptide-1 (GLP-1) is an incretin hormone that regulates glucose homeostasis. Because of their direct stimulation of insulin secretion from pancreatic β cells, GLP-1 receptor (GLP-1R) agonists are now important therapeutic options for the treatment of type 2 diabetes. To better understand the mechanisms that control the insulinotropic actions of GLP-1, affinity purification and mass spectrometry (AP-MS) were employed to uncover potential proteins that functionally interact with the GLP-1R. AP-MS performed on Chinese hamster ovary cells or MIN6 β cells, both expressing the human GLP-1R, revealed 99 proteins potentially associated with the GLP-1R. Three novel GLP-1R interactors (PGRMC1, Rab5b, and Rab5c) were further validated through co-immunoprecipitation/immunoblotting, fluorescence resonance energy transfer, and immunofluorescence. Functional studies revealed that overexpression of PGRMC1, a novel cell surface receptor that associated with liganded GLP-1R, enhanced GLP-1-induced insulin secretion (GIIS) with the most robust effect. Knockdown of PGRMC1 in β cells decreased GIIS, indicative of positive interaction with GLP-1R. To gain insight mechanistically, we demonstrated that the cell surface PGRMC1 ligand P4-BSA increased GIIS, whereas its antagonist AG-205 decreased GIIS. It was then found that PGRMC1 increased GLP-1-induced cAMP accumulation. PGRMC1 activation and GIIS induced by P4-BSA could be blocked by inhibition of adenylyl cyclase/EPAC signaling or the EGF receptor-PI3K signal transduction pathway. These data reveal a dual mechanism for PGRMC1-increased GIIS mediated through cAMP and EGF receptor signaling. In conclusion, we identified several novel GLP-1R interacting proteins. PGRMC1 expressed on the cell surface of β cells was shown to interact with the activated GLP-1R to enhance the insulinotropic actions of GLP-1. PMID:25044020

  13. GLP-1 based therapeutics: simultaneously combating T2DM and obesity

    PubMed Central

    Heppner, Kristy M.; Perez-Tilve, Diego

    2015-01-01

    Glucagon-like peptide-1 (GLP-1) enhances meal-related insulin secretion, which lowers blood glucose excursions. In addition to its incretin action, GLP-1 acts on the GLP-1 receptor (GLP-1R) in the brain to suppress feeding. These combined actions of GLP-1R signaling cause improvements in glycemic control as well as weight loss in type II diabetes (T2DM) patients treated with GLP-1R agonists. This is a superior advantage of GLP-1R pharmaceuticals as many other drugs used to treat T2DM are weight neutral or actual cause weight gain. This review summarizes GLP-1R action on energy and glucose metabolism, the effectiveness of current GLP-1R agonists on weight loss in T2DM patients, as well as GLP-1R combination therapies. PMID:25852463

  14. Pancreatic GLP-1 receptor activation is sufficient for incretin control of glucose metabolism in mice

    PubMed Central

    Lamont, Benjamin J.; Li, Yazhou; Kwan, Edwin; Brown, Theodore J.; Gaisano, Herbert; Drucker, Daniel J.

    2011-01-01

    Glucagon-like peptide-1 (GLP-1) circulates at low levels and acts as an incretin hormone, potentiating glucose-dependent insulin secretion from islet β cells. GLP-1 also modulates gastric emptying and engages neural circuits in the portal region and CNS that contribute to GLP-1 receptor–dependent (GLP-1R–dependent) regulation of glucose homeostasis. To elucidate the importance of pancreatic GLP-1R signaling for glucose homeostasis, we generated transgenic mice that expressed the human GLP-1R in islets and pancreatic ductal cells (Pdx1-hGLP1R:Glp1r–/– mice). Transgene expression restored GLP-1R–dependent stimulation of cAMP and Akt phosphorylation in isolated islets, conferred GLP-1R–dependent stimulation of β cell proliferation, and was sufficient for restoration of GLP-1–stimulated insulin secretion in perifused islets. Systemic GLP-1R activation with the GLP-1R agonist exendin-4 had no effect on food intake, hindbrain c-fos expression, or gastric emptying but improved glucose tolerance and stimulated insulin secretion in Pdx1-hGLP1R:Glp1r–/– mice. i.c.v. GLP-1R blockade with the antagonist exendin(9–39) impaired glucose tolerance in WT mice but had no effect in Pdx1-hGLP1R:Glp1r–/– mice. Nevertheless, transgenic expression of the pancreatic GLP-1R was sufficient to normalize both oral and i.p. glucose tolerance in Glp1r–/– mice. These findings illustrate that low levels of endogenous GLP-1 secreted from gut endocrine cells are capable of augmenting glucoregulatory activity via pancreatic GLP-1Rs independent of communication with neural pathways. PMID:22182839

  15. SIRT1 mediates the effect of GLP-1 receptor agonist exenatide on ameliorating hepatic steatosis.

    PubMed

    Xu, Fen; Li, Zhuo; Zheng, Xiaobin; Liu, Hongxia; Liang, Hua; Xu, Haixia; Chen, Zonglan; Zeng, Kejing; Weng, Jianping

    2014-11-01

    GLP-1 and incretin mimetics, such as exenatide, have been shown to attenuate hepatocyte steatosis in vivo and in vitro, but the specific underlying mechanism is unclear. SIRT1, an NAD(+)-dependent protein deacetylase, has been considered as a crucial regulator in hepatic lipid homeostasis by accumulated studies. Here, we speculate that SIRT1 might mediate the effect of the GLP-1 receptor agonist exenatide (exendin-4) on ameliorating hepatic steatosis. After 8 weeks of exenatide treatment in male SIRT1(+/-) mice challenged with a high-fat diet and their wild-type (WT) littermates, we found that lipid deposition and inflammation in the liver, which were improved dramatically in the WT group, diminished in SIRT1(+/-) mice. In addition, the protein expression of SIRT1 and phosphorylated AMPK was upregulated, whereas lipogenic-related protein, including SREBP-1c and PNPLA3, was downregulated in the WT group after exenatide treatment. However, none of these changes were observed in SIRT1(+/-) mice. In HepG2 cells, exendin-4-reversed lipid deposition induced by palmitate was hampered when SIRT1 was silenced by SIRT1 RNA interference. Our data demonstrate that SIRT1 mediates the effect of exenatide on ameliorating hepatic steatosis, suggesting the GLP-1 receptor agonist could serve as a potential drug for nonalcoholic fatty liver disease (NAFLD), especially in type 2 diabetes combined with NAFLD, and SIRT1 could be a therapeutic target of NAFLD. PMID:24947350

  16. SIRT1 mediates the effect of GLP-1 receptor agonist exenatide on ameliorating hepatic steatosis.

    TOXLINE Toxicology Bibliographic Information

    Xu F; Li Z; Zheng X; Liu H; Liang H; Xu H; Chen Z; Zeng K; Weng J

    2014-11-01

    GLP-1 and incretin mimetics, such as exenatide, have been shown to attenuate hepatocyte steatosis in vivo and in vitro, but the specific underlying mechanism is unclear. SIRT1, an NAD(+)-dependent protein deacetylase, has been considered as a crucial regulator in hepatic lipid homeostasis by accumulated studies. Here, we speculate that SIRT1 might mediate the effect of the GLP-1 receptor agonist exenatide (exendin-4) on ameliorating hepatic steatosis. After 8 weeks of exenatide treatment in male SIRT1(+/-) mice challenged with a high-fat diet and their wild-type (WT) littermates, we found that lipid deposition and inflammation in the liver, which were improved dramatically in the WT group, diminished in SIRT1(+/-) mice. In addition, the protein expression of SIRT1 and phosphorylated AMPK was upregulated, whereas lipogenic-related protein, including SREBP-1c and PNPLA3, was downregulated in the WT group after exenatide treatment. However, none of these changes were observed in SIRT1(+/-) mice. In HepG2 cells, exendin-4-reversed lipid deposition induced by palmitate was hampered when SIRT1 was silenced by SIRT1 RNA interference. Our data demonstrate that SIRT1 mediates the effect of exenatide on ameliorating hepatic steatosis, suggesting the GLP-1 receptor agonist could serve as a potential drug for nonalcoholic fatty liver disease (NAFLD), especially in type 2 diabetes combined with NAFLD, and SIRT1 could be a therapeutic target of NAFLD.

  17. GLP-1 receptor antagonist as a potential probe for pancreatic {beta}-cell imaging

    SciTech Connect

    Mukai, Eri; Japan Association for the Advancement of Medical Equipment, Tokyo ; Toyoda, Kentaro; Kimura, Hiroyuki; Kawashima, Hidekazu; Fujimoto, Hiroyuki; Japan Association for the Advancement of Medical Equipment, Tokyo ; Ueda, Masashi; Temma, Takashi; Hirao, Konomu; Nagakawa, Kenji; Saji, Hideo; Inagaki, Nobuya; CREST of Japan Science and Technology Cooperation , Kyoto

    2009-11-20

    We examined exendin(9-39), an antagonist of glucagon-like peptide-1 (GLP-1) receptor (GLP-1R), as a potential probe for imaging of pancreatic {beta}-cells. To evaluate in vitro receptor specificity, binding assay was performed using dispersed mouse islet cells. Binding assay showed competitive inhibition of [{sup 125}I]BH-exendin(9-39) binding by non-radioactive exendin(9-39). To assess in vivo selectivity, the biodistribution was evaluated by intravenous administration of [{sup 125}I]BH-exendin(9-39) to mice. Radioactivity of harvested pancreas reached highest levels at 60 and 120 min among organs examined except lung. Pre-administration of excess non-radioactive exendin(9-39) remarkably and specifically blocked the radioactivity of pancreas. After [{sup 125}I]BH-exendin(9-39) injection into transgenic mice with pancreatic {beta}-cells expressing GFP, fluorescent and radioactive signals of sections of pancreas were evaluated with an image analyzer. Imaging analysis showed that the fluorescent GFP signals and the radioactive signals were correspondingly located. Thus, the GLP-1R antagonist exendin(9-39) may serve as a useful probe for pancreatic {beta}-cell imaging.

  18. Blockade of cannabinoid 1 receptor improves GLP-1R mediated insulin secretion in mice.

    PubMed

    González-Mariscal, Isabel; Krzysik-Walker, Susan M; Kim, Wook; Rouse, Michael; Egan, Josephine M

    2016-03-01

    The cannabinoid 1 receptor (CB1) is an important regulator of energy metabolism. Reports of in vivo and in vitro studies give conflicting results regarding its role in insulin secretion, possibly due to circulatory factors, such as incretins. We hypothesized that this receptor may be a regulator of the entero-insular axis. We found that despite lower food consumption and lower body weight postprandial GLP-1 plasma concentrations were increased in CB1(-/-) mice compared to CB1(+/+) mice administered a standard diet or high fat/sugar diet. Upon exogenous GLP-1 treatment, CB1(-/-) mice had increased glucose-stimulated insulin secretion. In mouse insulinoma cells, cannabinoids reduced GLP-1R-mediated intracellular cAMP accumulation and subsequent insulin secretion. Importantly, such effects were also evident in human islets, and were prevented by pharmacologic blockade of CB1. Collectively, these findings suggest a novel mechanism in which endocannabinoids are negative modulators of incretin-mediated insulin secretion. PMID:26724516

  19. Emerging role of GLP-1 receptor agonists in the treatment of obesity

    PubMed Central

    Neff, Lisa M; Kushner, Robert F

    2010-01-01

    The prevalence of obesity has increased dramatically in recent decades, both in the US and worldwide. Pharmacotherapy can augment the weight-reducing effects of lifestyle modification and can facilitate long-term weight maintenance. However, there is a paucity of pharmacologic agents approved for the treatment of obesity, and the use of existing weight loss medications is frequently limited by contraindications, drug interactions, adverse effects, limited coverage by third-party payers, and cost. In recent years, there has been an increased understanding and appreciation of the role of gastrointestinal hormones in the control of body weight. One such hormone, GLP-1, also plays an important role in glucose homeostasis. GLP-1 receptor agonists, such as exenatide and liraglutide, have been developed and are already approved for the treatment of type 2 diabetes. There has also been interest in the use of GLP-1 receptor agonists for the treatment of obesity in nondiabetic patients. This review explores the potential utility and limitations of exenatide and liraglutide as therapeutic agents for obesity. PMID:21437094

  20. Initial evidence that GLP-1 receptor blockade fails to suppress postprandial satiety or promote food intake in humans.

    PubMed

    Melhorn, Susan J; Tyagi, Vidhi; Smeraglio, Anne; Roth, Christian L; Schur, Ellen A

    2014-11-01

    Glucagon-like peptide 1 (GLP-1) has incretin effects that are well-documented, but the independent role of GLP-1 action in human satiety perception is debated. We hypothesized that blockade of GLP-1 receptors would suppress postprandial satiety and increase voluntary food intake. After an overnight fast, eight normal weight participants (seven men, BMI 19-24.7 kg/m(2), age 19-29 year) were enrolled in a double-blind, placebo-controlled, randomized crossover study of the GLP-1 antagonist Exendin-[9-39] (Ex-9) to determine if the satiating effects of a meal are dependent on GLP-1 signaling in humans. Following a fasting blood draw, iv infusion of Ex-9 (600-750 pmol/kg/min) or saline began. Thirty minutes later, subjects consumed a standardized breakfast followed 90 min later (at the predicted time of maximal endogenous circulating GLP-1) by an ad libitum buffet meal to objectively measure satiety. Infusions ended once the buffet meal was complete. Visual analog scale ratings of hunger and fullness and serial assessments of plasma glucose, insulin, and GLP-1 concentrations were done throughout the experiment. Contrary to the hypothesis, during Ex-9 infusion subjects reported a greater decrease in hunger due to consumption of the breakfast (Ex-9 -62 ± 5; placebo -41 ± 9; P=0.01) than during placebo. There were no differences in ad libitum caloric intake between Ex-9 and placebo. Ex-9 increased glucose, insulin, and endogenous GLP-1, which may have counteracted any effects of Ex-9 infusion to block satiety signaling. Blockade of GLP-1 receptors failed to suppress subjective satiety following a standardized meal or increase voluntary food intake in healthy, normal-weight subjects. PMID:25049134

  1. Inactivation of the cardiomyocyte glucagon-like peptide-1 receptor (GLP-1R) unmasks cardiomyocyte-independent GLP-1R-mediated cardioprotectionab

    PubMed Central

    Ussher, John R.; Baggio, Laurie L.; Campbell, Jonathan E.; Mulvihill, Erin E.; Kim, Minsuk; Kabir, M. Golam; Cao, Xiemin; Baranek, Benjamin M.; Stoffers, Doris A.; Seeley, Randy J.; Drucker, Daniel J.

    2014-01-01

    GLP-1R agonists improve outcomes in ischemic heart disease. Here we studied GLP-1R-dependent adaptive and cardioprotective responses to ventricular injury. Glp1r−/− hearts exhibited chamber-specific differences in gene expression, but normal mortality and left ventricular (LV) remodeling after myocardial infarction (MI) or experimental doxorubicin-induced cardiomyopathy. Selective disruption of the cardiomyocyte GLP-1R in Glp1rCM−/− mice produced no differences in survival or LV remodeling following LAD coronary artery occlusion. Unexpectedly, the GLP-1R agonist liraglutide still produced robust cardioprotection and increased survival in Glp1rCM−/− mice following LAD coronary artery occlusion. Although liraglutide increased heart rate (HR) in Glp1rCM−/− mice, basal HR was significantly lower in Glp1rCM−/− mice. Hence, endogenous cardiomyocyte GLP-1R activity is not required for adaptive responses to ischemic or cardiomyopathic injury, and is dispensable for GLP-1R agonist-induced cardioprotection or enhanced chronotropic activity. However the cardiomyocyte GLP-1R is essential for the control of HR in mice. PMID:25061556

  2. GLP-1 receptor agonism ameliorates hepatic VLDL overproduction and de novo lipogenesis in insulin resistance

    PubMed Central

    Taher, Jennifer; Baker, Christopher L.; Cuizon, Carmelle; Masoudpour, Hassan; Zhang, Rianna; Farr, Sarah; Naples, Mark; Bourdon, Celine; Pausova, Zdenka; Adeli, Khosrow

    2014-01-01

    Background/objectives Fasting dyslipidemia is commonly observed in insulin resistant states and mechanistically linked to hepatic overproduction of very low density lipoprotein (VLDL). Recently, the incretin hormone glucagon-like peptide-1 (GLP-1) has been implicated in ameliorating dyslipidemia associated with insulin resistance and reducing hepatic lipid stores. Given that hepatic VLDL production is a key determinant of circulating lipid levels, we investigated the role of both peripheral and central GLP-1 receptor (GLP-1R) agonism in regulation of VLDL production. Methods The fructose-fed Syrian golden hamster was employed as a model of diet-induced insulin resistance and VLDL overproduction. Hamsters were treated with the GLP-1R agonist exendin-4 by intraperitoneal (ip) injection for peripheral studies or by intracerebroventricular (ICV) administration into the 3rd ventricle for central studies. Peripheral studies were repeated in vagotomised hamsters. Results Short term (7–10 day) peripheral exendin-4 enhanced satiety and also prevented fructose-induced fasting dyslipidemia and hyperinsulinemia. These changes were accompanied by decreased fasting plasma glucose levels, reduced hepatic lipid content and decreased levels of VLDL-TG and -apoB100 in plasma. The observed changes in fasting dyslipidemia could be partially explained by reduced respiratory exchange ratio (RER) thereby indicating a switch in energy utilization from carbohydrate to lipid. Additionally, exendin-4 reduced mRNA markers associated with hepatic de novo lipogenesis and inflammation. Despite these observations, GLP-1R activity could not be detected in primary hamster hepatocytes, thus leading to the investigation of a potential brain–liver axis functioning to regulate lipid metabolism. Short term (4 day) central administration of exendin-4 decreased body weight and food consumption and further prevented fructose-induced hypertriglyceridemia. Additionally, the peripheral lipid-lowering effects of exendin-4 were negated in vagotomised hamsters implicating the involvement of parasympathetic signaling. Conclusion Exendin-4 prevents fructose-induced dyslipidemia and hepatic VLDL overproduction in insulin resistance through an indirect mechanism involving altered energy utilization, decreased hepatic lipid synthesis and also requires an intact parasympathetic signaling pathway. PMID:25506548

  3. Effects of the GLP-1 Receptor Agonist Dulaglutide on the Structure of the Exocrine Pancreas of Cynomolgus Monkeys.

    PubMed

    Vahle, John L; Byrd, Richard A; Blackbourne, Jamie L; Martin, Jennifer A; Sorden, Steven D; Ryan, Thomas; Pienkowski, Thomas; Rosol, Thomas J; Snyder, Paul W; Klppel, Gnter

    2015-10-01

    Clinical and nonclinical studies have implicated glucagon-like peptide-1 (GLP-1) receptor agonist therapy as a risk factor for acute pancreatitis in patients with type 2 diabetes. Therefore, it is critical to understand the effect that dulaglutide, an approved GLP-1 receptor agonist, has on the exocrine pancreas. Dulaglutide 8.15 mg/kg (approximately 500 times the maximum recommended human dose based on plasma exposure) was administered twice weekly for 12 months to cynomolgus monkeys. Serum amylase and lipase activities were measured and 6 sections of each pancreas were examined microscopically. Ductal epithelial cell proliferation was estimated using Ki67 labeling. Dulaglutide administration did not alter serum amylase or lipase activities measured at the end of treatment compared to control values. An extensive histologic evaluation of the pancreas revealed no changes in the acinar or endocrine portions and no evidence of pancreatitis, necrosis, or pancreatic intraepithelial neoplasia. An increase in goblet cells noted in 4 of the 19 treated monkeys was considered an effect of dulaglutide but was not associated with dilation, blockage, or accumulation of mucin in the pancreatic duct. There was no difference in cell proliferation in ductal epithelium between control and dulaglutide-treated monkeys. These data reveal that chronic dosing of nondiabetic primates with dulaglutide does not induce inflammatory or preneoplastic changes in exocrine pancreas. PMID:26059826

  4. The GIP Receptor Displays Higher Basal Activity than the GLP-1 Receptor but Does Not Recruit GRK2 or Arrestin3 Effectively

    PubMed Central

    Al-Sabah, Suleiman; Al-Fulaij, Munya; Shaaban, Ghina; Ahmed, Hanadi A.; Mann, Rosalind J.; Donnelly, Dan; Bünemann, Moritz; Krasel, Cornelius

    2014-01-01

    Background and Objectives Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are important regulators of insulin secretion, and their functional loss is an early characteristic of type 2 diabetes mellitus (T2DM). Pharmacological levels of GLP-1, but not GIP, can overcome this loss. GLP-1 and GIP exert their insulinotropic effects through their respective receptors expressed on pancreatic β-cells. Both the GLP-1 receptor (GLP-1R) and the GIP receptor (GIPR) are members of the secretin family of G protein-coupled receptors (GPCRs) and couple positively to adenylate cyclase. We compared the signalling properties of these two receptors to gain further insight into why GLP-1, but not GIP, remains insulinotropic in T2DM patients. Methods GLP-1R and GIPR were transiently expressed in HEK-293 cells, and basal and ligand-induced cAMP production were investigated using a cAMP-responsive luciferase reporter gene assay. Arrestin3 (Arr3) recruitment to the two receptors was investigated using enzyme fragment complementation, confocal microscopy and fluorescence resonance energy transfer (FRET). Results GIPR displayed significantly higher (P<0.05) ligand-independent activity than GLP-1R. Arr3 displayed a robust translocation to agonist-stimulated GLP-1R but not to GIPR. These observations were confirmed in FRET experiments, in which GLP-1 stimulated the recruitment of both GPCR kinase 2 (GRK2) and Arr3 to GLP-1R. These interactions were not reversed upon agonist washout. In contrast, GIP did not stimulate recruitment of either GRK2 or Arr3 to its receptor. Interestingly, arrestin remained at the plasma membrane even after prolonged (30 min) stimulation with GLP-1. Although the GLP-1R/arrestin interaction could not be reversed by agonist washout, GLP-1R and arrestin did not co-internalise, suggesting that GLP-1R is a class A receptor with regard to arrestin binding. Conclusions GIPR displays higher basal activity than GLP-1R but does not effectively recruit GRK2 or Arr3. PMID:25191754

  5. Bile Acids Trigger GLP-1 Release Predominantly by Accessing Basolaterally Located G Protein–Coupled Bile Acid Receptors

    PubMed Central

    Brighton, Cheryl A.; Rievaj, Juraj; Kuhre, Rune E.; Glass, Leslie L.; Schoonjans, Kristina; Holst, Jens J.

    2015-01-01

    Bile acids are well-recognized stimuli of glucagon-like peptide-1 (GLP-1) secretion. This action has been attributed to activation of the G protein–coupled bile acid receptor GPBAR1 (TGR5), although other potential bile acid sensors include the nuclear farnesoid receptor and the apical sodium-coupled bile acid transporter ASBT. The aim of this study was to identify pathways important for GLP-1 release and to determine whether bile acids target their receptors on GLP-1–secreting L-cells from the apical or basolateral compartment. Using transgenic mice expressing fluorescent sensors specifically in L-cells, we observed that taurodeoxycholate (TDCA) and taurolithocholate (TLCA) increased intracellular cAMP and Ca2+. In primary intestinal cultures, TDCA was a more potent GLP-1 secretagogue than taurocholate (TCA) and TLCA, correlating with a stronger Ca2+ response to TDCA. Using small-volume Ussing chambers optimized for measuring GLP-1 secretion, we found that both a GPBAR1 agonist and TDCA stimulated GLP-1 release better when applied from the basolateral than from the luminal direction and that luminal TDCA was ineffective when intestinal tissue was pretreated with an ASBT inhibitor. ASBT inhibition had no significant effect in nonpolarized primary cultures. Studies in the perfused rat gut confirmed that vascularly administered TDCA was more effective than luminal TDCA. Intestinal primary cultures and Ussing chamber–mounted tissues from GPBAR1-knockout mice did not secrete GLP-1 in response to either TLCA or TDCA. We conclude that the action of bile acids on GLP-1 secretion is predominantly mediated by GPBAR1 located on the basolateral L-cell membrane, suggesting that stimulation of gut hormone secretion may include postabsorptive mechanisms. PMID:26280129

  6. Optimization of co-agonism at GLP-1 and glucagon receptors to safely maximize weight reduction in DIO-rodents.

    PubMed

    Day, Jonathan W; Gelfanov, Vasily; Smiley, David; Carrington, Paul E; Eiermann, George; Chicchi, Gary; Erion, Mark D; Gidda, Jas; Thornberry, Nancy A; Tschp, Matthias H; Marsh, Donald J; SinhaRoy, Ranabir; DiMarchi, Richard; Pocai, Alessandro

    2012-01-01

    The ratio of GLP-1/glucagon receptor (GLP1R/GCGR) co-agonism that achieves maximal weight loss without evidence of hyperglycemia was determined in diet-induced obese (DIO) mice chronically treated with GLP1R/GCGR co-agonist peptides differing in their relative receptor agonism. Using glucagon-based peptides, a spectrum of receptor selectivity was achieved by a combination of selective incorporation of GLP-1 sequences, C-terminal modification, backbone lactam stapling to stabilize helical structure, and unnatural amino acid substitutions at the N-terminal dipeptide. In addition to ?-amino-isobutyric acid (Aib) substitution at position two, we show that ?,?'-dimethyl imidazole acetic acid (Dmia) can serve as a potent replacement for the highly conserved histidine at position one. Selective site-specific pegylation was used to further minimize enzymatic degradation and provide uniform, extended in vivo duration of action. Maximal weight loss devoid of any sign of hyperglycemia was achieved with a co-agonist comparably balanced for in vitro potency at murine GLP1R and GCGR. This peptide exhibited superior weight loss and glucose lowering compared to a structurally matched pure GLP1R agonist, and to co-agonists of relatively reduced GCGR tone. Any further enhancement of the relative GCGR agonist potency yielded increased weight loss but at the expense of elevated blood glucose. We conclude that GCGR agonism concomitant with GLP1R agonism constitutes a promising approach to treatment of the metabolic syndrome. However, the relative ratio of GLP1R/GCGR co-agonism needs to be carefully chosen for each species to maximize weight loss efficacy and minimize hyperglycemia. PMID:23203689

  7. Bile Acids Trigger GLP-1 Release Predominantly by Accessing Basolaterally Located G Protein-Coupled Bile Acid Receptors.

    PubMed

    Brighton, Cheryl A; Rievaj, Juraj; Kuhre, Rune E; Glass, Leslie L; Schoonjans, Kristina; Holst, Jens J; Gribble, Fiona M; Reimann, Frank

    2015-11-01

    Bile acids are well-recognized stimuli of glucagon-like peptide-1 (GLP-1) secretion. This action has been attributed to activation of the G protein-coupled bile acid receptor GPBAR1 (TGR5), although other potential bile acid sensors include the nuclear farnesoid receptor and the apical sodium-coupled bile acid transporter ASBT. The aim of this study was to identify pathways important for GLP-1 release and to determine whether bile acids target their receptors on GLP-1-secreting L-cells from the apical or basolateral compartment. Using transgenic mice expressing fluorescent sensors specifically in L-cells, we observed that taurodeoxycholate (TDCA) and taurolithocholate (TLCA) increased intracellular cAMP and Ca(2+). In primary intestinal cultures, TDCA was a more potent GLP-1 secretagogue than taurocholate (TCA) and TLCA, correlating with a stronger Ca(2+) response to TDCA. Using small-volume Ussing chambers optimized for measuring GLP-1 secretion, we found that both a GPBAR1 agonist and TDCA stimulated GLP-1 release better when applied from the basolateral than from the luminal direction and that luminal TDCA was ineffective when intestinal tissue was pretreated with an ASBT inhibitor. ASBT inhibition had no significant effect in nonpolarized primary cultures. Studies in the perfused rat gut confirmed that vascularly administered TDCA was more effective than luminal TDCA. Intestinal primary cultures and Ussing chamber-mounted tissues from GPBAR1-knockout mice did not secrete GLP-1 in response to either TLCA or TDCA. We conclude that the action of bile acids on GLP-1 secretion is predominantly mediated by GPBAR1 located on the basolateral L-cell membrane, suggesting that stimulation of gut hormone secretion may include postabsorptive mechanisms. PMID:26280129

  8. Peptidic exenatide and herbal catalpol mediate neuroprotection via the hippocampal GLP-1 receptor/β-endorphin pathway.

    PubMed

    Jia, Yu; Gong, Nian; Li, Teng-Fei; Zhu, Bin; Wang, Yong-Xiang

    2015-12-01

    Both peptidic agonist exenatide and herbal agonist catalpol of the glucagon-like peptide-1 receptor (GLP-1R) are neuroprotective. We have previously shown that activation of spinal GLP-1Rs expresses β-endorphin in microglia to produce antinociception. The aim of this study was to explore whether exenatide and catalpol exert neuroprotection via activation of the hippocampal GLP-1R/β-endorphin pathway. The rat middle cerebral artery occlusion model was employed, and the GLP-1R immunofluorescence staining and β-endorphin measurement were assayed in the hippocampus and primary cultures of microglia, neurons and astrocytes. The immunoreactivity of GLP-1Rs on microglia in the hippocampus was upregulated after ischemia reperfusion. Intracerebroventricular (i.c.v.) injection of exenatide and catalpol produced neuroprotection in the rat transient ischemia/reperfusion model, reflected by a marked reduction in brain infarction size and a mild recovery in neurobehavioral deficits. In addition, i.c.v. injection of exenatide and catalpol significantly stimulated β-endorphin expression in the hippocampus and cultured primary microglia (but not primary neurons or astrocytes). Furthermore, exenatide and catalpol neuroprotection was completely blocked by i.c.v. injection of the GLP-1R orthosteric antagonist exendin (9-39), specific β-endorphin antiserum, and selective opioid receptor antagonist naloxone. Our results indicate, for the first time, that the neuroprotective effects of catalpol and exenatide are GLP-1R-specific, and that these effects are mediated by β-endorphin expression probably in hippocampal microglia. We postulate that in contrast to the peripheral tissue, where the activation of GLP-1Rs in pancreas islet β-cells causes secretion of insulin to perform glucoregulation, it leads to β-endorphin expression in microglial cells to produce neuroprotection and analgesia in the central nervous system. PMID:26546042

  9. An Orally Active Allosteric GLP-1 Receptor Agonist Is Neuroprotective in Cellular and Rodent Models of Stroke.

    PubMed

    Zhang, Huinan; Liu, Yunhan; Guan, Shaoyu; Qu, Di; Wang, Ling; Wang, Xinshang; Li, Xubo; Zhou, Shimeng; Zhou, Ying; Wang, Ning; Meng, Jingru; Ma, Xue

    2016-01-01

    Diabetes is a major risk factor for the development of stroke. Glucagon-like peptide-1 receptor (GLP-1R) agonists have been in clinical use for the treatment of diabetes and also been reported to be neuroprotective in ischemic stroke. The quinoxaline 6,7-dichloro-2-methylsulfonyl-3-N-tert- butylaminoquinoxaline (DMB) is an agonist and allosteric modulator of the GLP-1R with the potential to increase the affinity of GLP-1 for its receptor. The aim of this study was to evaluate the neuroprotective effects of DMB on transient focal cerebral ischemia. In cultured cortical neurons, DMB activated the GLP-1R, leading to increased intracellular cAMP levels with an EC50 value about 100 fold that of exendin-4. Pretreatment of neurons with DMB protected against necrotic and apoptotic cell death was induced by oxygen-glucose deprivation (OGD). The neuroprotective effects of DMB were blocked by GLP-1R knockdown with shRNA but not by GLP-1R antagonism. In C57BL/6 mice, DMB was orally administered 30 min prior to middle cerebral artery occlusion (MCAO) surgery. DMB markedly reduced the cerebral infarct size and neurological deficits caused by MCAO and reperfusion. The neuroprotective effects were mediated by activation of the GLP-1R through the cAMP-PKA-CREB signaling pathway. DMB exhibited anti-apoptotic effects by modulating Bcl-2 family members. These results provide evidence that DMB, a small molecular GLP-1R agonist, attenuates transient focal cerebral ischemia injury and inhibits neuronal apoptosis induced by MCAO. Taken together, these data suggest that DMB is a potential neuroprotective agent against cerebral ischemia. PMID:26863436

  10. An Orally Active Allosteric GLP-1 Receptor Agonist Is Neuroprotective in Cellular and Rodent Models of Stroke

    PubMed Central

    Qu, Di; Wang, Ling; Wang, Xinshang; Li, Xubo; Zhou, Shimeng; Zhou, Ying; Wang, Ning; Meng, Jingru; Ma, Xue

    2016-01-01

    Diabetes is a major risk factor for the development of stroke. Glucagon-like peptide-1 receptor (GLP-1R) agonists have been in clinical use for the treatment of diabetes and also been reported to be neuroprotective in ischemic stroke. The quinoxaline 6,7-dichloro-2-methylsulfonyl-3-N-tert- butylaminoquinoxaline (DMB) is an agonist and allosteric modulator of the GLP-1R with the potential to increase the affinity of GLP-1 for its receptor. The aim of this study was to evaluate the neuroprotective effects of DMB on transient focal cerebral ischemia. In cultured cortical neurons, DMB activated the GLP-1R, leading to increased intracellular cAMP levels with an EC50 value about 100 fold that of exendin-4. Pretreatment of neurons with DMB protected against necrotic and apoptotic cell death was induced by oxygen-glucose deprivation (OGD). The neuroprotective effects of DMB were blocked by GLP-1R knockdown with shRNA but not by GLP-1R antagonism. In C57BL/6 mice, DMB was orally administered 30 min prior to middle cerebral artery occlusion (MCAO) surgery. DMB markedly reduced the cerebral infarct size and neurological deficits caused by MCAO and reperfusion. The neuroprotective effects were mediated by activation of the GLP-1R through the cAMP-PKA-CREB signaling pathway. DMB exhibited anti-apoptotic effects by modulating Bcl-2 family members. These results provide evidence that DMB, a small molecular GLP-1R agonist, attenuates transient focal cerebral ischemia injury and inhibits neuronal apoptosis induced by MCAO. Taken together, these data suggest that DMB is a potential neuroprotective agent against cerebral ischemia. PMID:26863436

  11. Diverse signaling systems activated by the sweet taste receptor in human GLP-1-secreting cells.

    PubMed

    Ohtsu, Yoshiaki; Nakagawa, Yuko; Nagasawa, Masahiro; Takeda, Shigeki; Arakawa, Hirokazu; Kojima, Itaru

    2014-08-25

    Sweet taste receptor regulates GLP-1 secretion in enteroendocrine L-cells. We investigated the signaling system activated by this receptor using Hutu-80 cells. We stimulated them with sucralose, saccharin, acesulfame K and glycyrrhizin. These sweeteners stimulated GLP-1 secretion, which was attenuated by lactisole. All these sweeteners elevated cytoplasmic cyclic AMP ([cAMP]c) whereas only sucralose and saccharin induced a monophasic increase in cytoplasmic Ca(2+) ([Ca(2+)]c). Removal of extracellular calcium or sodium and addition of a Gq/11 inhibitor greatly reduced the [Ca(2+)]c responses to two sweeteners. In contrast, acesulfame K induced rapid and sustained reduction of [Ca(2+)]c. In addition, glycyrrhizin first reduced [Ca(2+)]c which was followed by an elevation of [Ca(2+)]c. Reductions of [Ca(2+)]c induced by acesulfame K and glycyrrhizin were attenuated by a calmodulin inhibitor or by knockdown of the plasma membrane calcium pump. These results indicate that various sweet molecules act as biased agonists and evoke strikingly different patterns of intracellular signals. PMID:25017733

  12. New screening strategy and analysis for identification of allosteric modulators for glucagon-like peptide-1 receptor using GLP-1 (9-36) amide.

    PubMed

    Nakane, Atsushi; Gotoh, Yusuke; Ichihara, Junji; Nagata, Hidetaka

    2015-12-15

    The glucagon-like peptide-1 receptor (GLP-1R) is an important physiologic regulator of insulin secretion and a major therapeutic target for diabetes mellitus. GLP-1 (7-36) amide (active form of GLP-1) is truncated to GLP-1 (9-36) amide, which has been described as a weak agonist of GLP-1R and the major form of GLP-1 in the circulation. New classes of positive allosteric modulators (PAMs) for GLP-1R may offer improved therapeutic profiles. To identify these new classes, we developed novel and robust primary and secondary high-throughput screening (HTS) systems in which PAMs were identified to enhance the GLP-1R signaling induced by GLP-1 (9-36) amide. Screening enabled identification of two compounds, HIT-465 and HIT-736, which possessed new patterns of modulation of GLP-1R. We investigated the ability of these compounds to modify GLP-1R signaling enhanced GLP-1 (9-36) amide- and/or GLP-1 (7-36) amide-mediated cyclic adenosine monophosphate (cAMP) accumulation. These compounds also had unique profiles with regard to allosteric modulation of multiple downstream signaling (PathHunter ?-arrestin signaling, PathHunter internalization signaling, microscopy-based internalization assay). We found allosteric modulation patterns to be obviously different among HIT-465, HIT-736, and Novo Nordisk compound 2. This work may enable the design of new classes of drug candidates by targeting modulation of GLP-1 (7-36) amide and GLP-1 (9-36) amide. PMID:26341912

  13. The differential antiemetic properties of GLP-1 receptor antagonist, exendin (9-39) in Suncus murinus (house musk shrew).

    PubMed

    Chan, Sze Wa; Lu, Zengbing; Lin, Ge; Yew, David Tai Wai; Yeung, Chi Kong; Rudd, John A

    2014-08-01

    The use of glucagon-like peptide-1 (7-36) amide (GLP-1) receptor agonists for the treatment of type 2 diabetes mellitus is commonly associated with nausea and vomiting. Previous studies using Suncus murinus revealed that the GLP-1 receptor agonist, exendin-4, induces emesis via the brainstem and/or hypothalamus. The present study investigated the mechanism of exendin-4-induced emesis in more detail. Ondansetron (1mg/kg, s.c.) and CP-99,994 (10mg/kg, s.c) failed to reduce emesis induced by exendin-4 (3nmol, i.c.v.), suggesting that 5-HT3 and NK1 receptors are not involved in the mechanism. In other studies, the GLP-1 receptor antagonist, exendin (9-39), antagonised emesis and c-Fos expression in the brainstem and the paraventricular hypothalamus induced by the chemotherapeutic drug cisplatin (30mg/kg, i.p.; p<0.05), but not the emesis induced by nicotine (5mg/kg, s.c.; p>0.05), or copper sulphate pentahydrate (120mg/kg, p.o.; p>0.05). GLP-1 receptors may therefore represent a potential target for drugs to prevent chemotherapy-induced emesis in situations where 5-HT3 and NK1 receptor antagonists fail. PMID:24726308

  14. The short chain fatty acid propionate stimulates GLP-1 and PYY secretion via free fatty acid receptor 2 in rodents

    PubMed Central

    Psichas, A; Sleeth, M L; Murphy, K G; Brooks, L; Bewick, G A; Hanyaloglu, A C; Ghatei, M A; Bloom, S R; Frost, G

    2015-01-01

    Background and Objectives: The gut hormones peptide YY (PYY) and glucagon-like peptide 1 (GLP-1) acutely suppress appetite. The short chain fatty acid (SCFA) receptor, free fatty acid receptor 2 (FFA2) is present on colonic enteroendocrine L cells, and a role has been suggested for SCFAs in appetite regulation. Here, we characterise the in vitro and in vivo effects of colonic propionate on PYY and GLP-1 release in rodents, and investigate the role of FFA2 in mediating these effects using FFA2 knockout mice. Methods: We used Wistar rats, C57BL6 mice and free fatty acid receptor 2 knockout (FFA−/−) mice on a C57BL6 background to explore the impact of the SCFA propionate on PYY and GLP-1 release. Isolated colonic crypt cultures were used to assess the effects of propionate on gut hormone release in vitro. We subsequently developed an in vivo technique to assess gut hormone release into the portal vein following colonic infusion of propionate. Results: Propionate stimulated the secretion of both PYY and GLP-1 from wild-type primary murine colonic crypt cultures. This effect was significantly attenuated in cultures from FFA2−/− mice. Intra-colonic infusion of propionate elevated PYY and GLP-1 levels in jugular vein plasma in rats and in portal vein plasma in both rats and mice. However, propionate did not significantly stimulate gut hormone release in FFA2−/− mice. Conclusions: Intra-colonic administration of propionate stimulates the concurrent release of both GLP-1 and PYY in rats and mice. These data demonstrate that FFA2 deficiency impairs SCFA-induced gut hormone secretion both in vitro and in vivo. PMID:25109781

  15. The anorexic effect of Ex4/Fc through GLP-1 receptor activation in high-fat diet fed mice.

    PubMed

    Liu, Rui; Ma, Duan; Li, Yiming; Hu, Renming; Peng, Yongde; Wang, Qinghua

    2014-08-01

    Exendin-4 (Ex4), a peptide initially found in the saliva of the Gila monster, can activate the signaling pathway of the incretin hormone glucagon-like peptide-1 (GLP-1) through the GLP-1 receptor (GLP-1R). We previously reported that a chimera protein consisting of Ex4 and mouse IgG heavy chain constant regions (Ex4/Fc) can exert biological effects of GLP-1, such as improving glycemic control and ameliorating manifestations in diabetic mice. The aim of this study was to determine whether Ex4/Fc is effective in modulating energy homeostasis in mice. Our results showed that in vivo expression of Ex4/Fc by intramuscular injection of the plasmid encoding Ex4/Fc followed by local electroporation effectively decreased food intake in the mice on high-fat diet (HFD) feeding. In addition, the reduced energy intake was associated with the decreased excrements from the Ex4/Fc-treated HFD mice but not the Fc control mice. Remarkably, the Ex4/Fctreated HFD mice displayed significantly lower triglyceride (TG) levels when compared with the control mice. Interestingly, while the leptin levels were not changed, the circulating ghrelin levels were higher in Ex4/Fc mice than those in the Fc control mice. These results suggested that Ex4/Fc can improve energy metabolism and lipid metabolism through GLP-1R in mice under excessive nutrition conditions. PMID:24951724

  16. Cloning and functional expression of the human islet GLP-1 receptor. Demonstration that exendin-4 is an agonist and exendin-(9-39) an antagonist of the receptor.

    PubMed

    Thorens, B; Porret, A; Bhler, L; Deng, S P; Morel, P; Widmann, C

    1993-11-01

    A complementary DNA for a glucagon-like peptide-1 receptor was isolated from a human pancreatic islet cDNA library. The isolated clone encoded a protein with 90% identity to the rat receptor. In stably transfected fibroblasts, the receptor bound [125I]GLP-1 with high affinity (Kd = 0.5 nM) and was coupled to adenylate cyclase as detected by a GLP-1-dependent increase in cAMP production (EC50 = 93 pM). Two peptides from the venom of the lizard Heloderma suspectum, exendin-4 and exendin-(9-39), displayed similar ligand binding affinities to the human GLP-1 receptor. Whereas exendin-4 acted as an agonist of the receptor, inducing cAMP formation, exendin-(9-39) was an antagonist of the receptor, inhibiting GLP-1-induced cAMP production. Because GLP-1 has been proposed as a potential agent for treatment of NIDDM, our present data will contribute to the characterization of the receptor binding site and the development of new agonists of this receptor. PMID:8405712

  17. Options for intensification of basal insulin in type 2 diabetes: Premeal insulin or short-acting GLP-1 receptor agonists?

    PubMed

    Darmon, P; Raccah, D

    2015-12-01

    Type 2 diabetes is an evolutive disease with a progressive defect of beta-cell insulin secretion. This characteristic points to a need for treatment that takes into account such a natural history. When oral antidiabetic drugs fail to achieve the patient's target HbA1c level, basal insulin treatment is usually initiated and titrated in association with oral drugs to manage fasting hyperglycaemia. Over a period of time, it is enough to simply achieve the HbA1c target. However, when even a good fasting blood glucose level is no longer sufficient to control overall glycaemia, then prandial treatment must be combined with the titrated basal insulin to deal with the postprandial hyperglycaemia responsible for the elevation of HbA1c. Of the different therapeutic options now available for this, rapid-acting insulins and GLP-1 receptor agonists (RAs) can be used. Rapid-acting insulins can be added either at each meal, achieving full insulin supplementation with a basal-bolus regimen, or at the main meal only as a "basal-plus" regimen. Compared with the full basal-bolus, the basal-plus strategy is associated with fewer injections, yet provides similar efficacy in terms of HbA1c improvement, but with less weight gain and lower hypoglycaemic risk. As for GLP-1 RAs, numerous studies, and especially those using short-acting GLP-1 RAs, have demonstrated more pronounced effects on postprandial hyperglycaemia, good complementary effects with basal insulin, and significant improvement of HbA1c with no weight gain and a low risk of hypoglycaemia. Similarly, direct and indirect comparisons of the use of rapid-acting insulins and GLP-1 RAs to intensify basal insulin have shown comparable efficacy in terms of HbA1c control, but with less weight gain and fewer hypoglycaemic episodes with GLP-1 RAs. PMID:26774016

  18. Improved Glycaemia Correlates with Liver Fat Reduction in Obese, Type 2 Diabetes, Patients Given Glucagon-Like Peptide-1 (GLP-1) Receptor Agonists

    PubMed Central

    Cuthbertson, Daniel J.; Irwin, Andrew; Gardner, Chris J.; Daousi, Christina; Purewal, Tej; Furlong, Niall; Goenka, Niru; Thomas, E. Louise; Adams, Valerie L.; Pushpakom, Sudeep P.; Pirmohamed, Munir; Kemp, Graham J.

    2012-01-01

    Glucagon-like peptide-1 receptor agonists (GLP-1 RA) are effective for obese patients with type 2 diabetes mellitus (T2DM) because they concomitantly target obesity and dysglycaemia. Considering the high prevalence of non-alcoholic fatty liver disease (NAFLD) in patients with T2DM, we determined the impact of 6 months GLP-1 RA therapy on intrahepatic lipid (IHL) in obese, T2DM patients with hepatic steatosis, and evaluated the inter-relationship between changes in IHL with those in glycosylated haemoglobin (HbA1c), body weight, and volume of abdominal visceral and subcutaneous adipose tissue (VAT and SAT). We prospectively studied 25 (12 male) patients, age 5010 years, BMI 38.45.6 kg/m2 (mean SD) with baseline IHL of 28.2% (16.5 to 43.1%) and HbA1c of 9.6% (7.9 to 10.7%) (median and interquartile range). Patients treated with metformin and sulphonylureas/DPP-IV inhibitors were given 6 months GLP-1 RA (exenatide, n?=?19; liraglutide, n?=?6). IHL was quantified by liver proton magnetic resonance spectroscopy (1H MRS) and VAT and SAT by whole body magnetic resonance imaging (MRI). Treatment was associated with mean weight loss of 5.0 kg (95% CI 3.5,6.5 kg), mean HbA1c reduction of 16% (17 mmol/mol) (08,24%) and a 42% relative reduction in IHL (?59.3, ?16.5%). The relative reduction in IHL correlated with that in HbA1c (??=?0.49; p?=?0.01) but was not significantly correlated with that in total body weight, VAT or SAT. The greatest IHL reduction occurred in individuals with highest pre-treatment levels. Mechanistic studies are needed to determine potential direct effects of GLP-1 RA on human liver lipid metabolism. PMID:23236362

  19. Expression and purification of exendin-4 dimer in Escherichia coli and its interaction with GLP-1 receptor in vitro.

    PubMed

    Yi, Lina; Yin, Xiaopu; Wei, Dongzhi; Ma, Yushu

    2006-01-01

    Exendin-4 is a 39 amino acid peptide isolated from the Gila monster salivary gland. It is 53% homologous to GLP-1 and exhibits similar glucoregulatory activities. In this study, exendin-4 dimer (D-Ex4) was constructed, cloned into plasmid pET32a(+) and expressed in E. coli BL21(DE3). The fusion protein with His-tag at the N-terminus was purified with a Ni-NTA-agarose column. After proteolytic cleavage, D-Ex4 peptide with high purity was obtained by HPLC. The results obtained by chemical cross-linking showed that D-Ex4 maintained affinity to GLP-1 receptor. PMID:17073729

  20. Peripheral activation of the Y2-receptor promotes secretion of GLP-1 and improves glucose tolerance

    PubMed Central

    Chandarana, Keval; Gelegen, Cigdem; Irvine, Elaine E.; Choudhury, Agharul I.; Amouyal, Chloé; Andreelli, Fabrizio; Withers, Dominic J.; Batterham, Rachel L.

    2013-01-01

    The effect of peptide tyrosine–tyrosine (PYY) on feeding is well established but currently its role in glucose homeostasis is poorly defined. Here we show in mice, that intraperitoneal (ip) injection of PYY3-36 or Y2R agonist improves nutrient-stimulated glucose tolerance and enhances insulin secretion; an effect blocked by peripheral, but not central, Y2R antagonist administration. Studies on isolated mouse islets revealed no direct effect of PYY3-36 on insulin secretion. Bariatric surgery in mice, enterogastric anastomosis (EGA), improved glucose tolerance in wild-type mice and increased circulating PYY and active GLP-1. In contrast, in Pyy-null mice, post-operative glucose tolerance and active GLP-1 levels were similar in EGA and sham-operated groups. PYY3-36 ip increased hepato-portal active GLP-1 plasma levels, an effect blocked by ip Y2R antagonist. Collectively, these data suggest that PYY3-36 therefore acting via peripheral Y2R increases hepato-portal active GLP-1 plasma levels and improves nutrient-stimulated glucose tolerance. PMID:24049729

  1. Brain GLP-1 and insulin sensitivity.

    PubMed

    Sandoval, Darleen; Sisley, Stephanie R

    2015-12-15

    Type 2 diabetes is often treated with a class of drugs referred to as glucagon-like peptide-1 (GLP-1) analogs. GLP-1 is a peptide secreted by the gut that acts through only one known receptor, the GLP-1 receptor. The primary function of GLP-1 is thought to be lowering of postprandial glucose levels. Indeed, medications utilizing this system, including the long-acting GLP-1 analogs liraglutide and exenatide, are beneficial in reducing both blood sugars and body weight. GLP-1 analogs were long presumed to affect glucose control through their ability to increase insulin levels through peripheral action on beta cells. However, multiple lines of data point to the ability of GLP-1 to act within the brain to alter glucose regulation. In this review we will discuss the evidence for a central GLP-1 system and the effects of GLP-1 in the brain on regulating multiple facets of glucose homeostasis including glucose tolerance, insulin production, insulin sensitivity, hepatic glucose production, muscle glucose uptake, and connections of the central GLP-1 system to the gut. Although the evidence indicates that GLP-1 receptors in the brain are not necessary for physiologic control of glucose regulation, we discuss the research showing a strong effect of acute manipulation of the central GLP-1 system on glucose control and how it is relevant to type 2 diabetic patients. PMID:25724479

  2. Exenatide Protects Against Glucose- and Lipid-Induced Endothelial Dysfunction: Evidence for Direct Vasodilation Effect of GLP-1 Receptor Agonists in Humans.

    PubMed

    Koska, Juraj; Sands, Michelle; Burciu, Camelia; D'Souza, Karen M; Raravikar, Kalyani; Liu, James; Truran, Seth; Franco, Daniel A; Schwartz, Eric A; Schwenke, Dawn C; D'Alessio, David; Migrino, Raymond Q; Reaven, Peter D

    2015-07-01

    GLP-1 receptor (GLP-1R) agonists may improve endothelial function (EF) via metabolic improvement and direct vascular action. The current study determined the effect of GLP-1R agonist exenatide on postprandial EF in type 2 diabetes and the mechanisms underlying GLP-1R agonist-mediated vasodilation. Two crossover studies were conducted: 36 participants with type 2 diabetes received subcutaneous exenatide or placebo for 11 days and EF, and glucose and lipid responses to breakfast and lunch were determined; and 32 participants with impaired glucose tolerance (IGT) or diet-controlled type 2 diabetes had EF measured before and after intravenous exenatide, with or without the GLP-1R antagonist exendin-9. Mechanisms of GLP-1R agonist action were studied ex vivo on human subcutaneous adipose tissue arterioles and endothelial cells. Subcutaneous exenatide increased postprandial EF independent of reductions in plasma glucose and triglycerides. Intravenous exenatide increased fasting EF, and exendin-9 abolished this effect. Exenatide elicited eNOS activation and NO production in endothelial cells, and induced dose-dependent vasorelaxation and reduced high-glucose or lipid-induced endothelial dysfunction in arterioles ex vivo. These effects were reduced with AMPK inhibition. In conclusion, exenatide augmented postprandial EF in subjects with diabetes and prevented high-glucose and lipid-induced endothelial dysfunction in human arterioles. These effects were largely direct, via GLP-1R and AMPK activation. PMID:25720388

  3. The peptide agonist-binding site of the glucagon-like peptide-1 (GLP-1) receptor based on site-directed mutagenesis and knowledge-based modelling.

    PubMed

    Dods, Rachel L; Donnelly, Dan

    2015-01-01

    Glucagon-like peptide-1 (7-36)amide (GLP-1) plays a central role in regulating blood sugar levels and its receptor, GLP-1R, is a target for anti-diabetic agents such as the peptide agonist drugs exenatide and liraglutide. In order to understand the molecular nature of the peptide-receptor interaction, we used site-directed mutagenesis and pharmacological profiling to highlight nine sites as being important for peptide agonist binding and/or activation. Using a knowledge-based approach, we constructed a 3D model of agonist-bound GLP-1R, basing the conformation of the N-terminal region on that of the receptor-bound NMR structure of the related peptide pituitary adenylate cyclase-activating protein (PACAP21). The relative position of the extracellular to the transmembrane (TM) domain, as well as the molecular details of the agonist-binding site itself, were found to be different from the model that was published alongside the crystal structure of the TM domain of the glucagon receptor, but were nevertheless more compatible with published mutagenesis data. Furthermore, the NMR-determined structure of a high-potency cyclic conformationally-constrained 11-residue analogue of GLP-1 was also docked into the receptor-binding site. Despite having a different main chain conformation to that seen in the PACAP21 structure, four conserved residues (equivalent to His-7, Glu-9, Ser-14 and Asp-15 in GLP-1) could be structurally aligned and made similar interactions with the receptor as their equivalents in the GLP-1-docked model, suggesting the basis of a pharmacophore for GLP-1R peptide agonists. In this way, the model not only explains current mutagenesis and molecular pharmacological data but also provides a basis for further experimental design. PMID:26598711

  4. The peptide agonist-binding site of the glucagon-like peptide-1 (GLP-1) receptor based on site-directed mutagenesis and knowledge-based modelling

    PubMed Central

    Dods, Rachel L.; Donnelly, Dan

    2015-01-01

    Glucagon-like peptide-1 (7–36)amide (GLP-1) plays a central role in regulating blood sugar levels and its receptor, GLP-1R, is a target for anti-diabetic agents such as the peptide agonist drugs exenatide and liraglutide. In order to understand the molecular nature of the peptide–receptor interaction, we used site-directed mutagenesis and pharmacological profiling to highlight nine sites as being important for peptide agonist binding and/or activation. Using a knowledge-based approach, we constructed a 3D model of agonist-bound GLP-1R, basing the conformation of the N-terminal region on that of the receptor-bound NMR structure of the related peptide pituitary adenylate cyclase-activating protein (PACAP21). The relative position of the extracellular to the transmembrane (TM) domain, as well as the molecular details of the agonist-binding site itself, were found to be different from the model that was published alongside the crystal structure of the TM domain of the glucagon receptor, but were nevertheless more compatible with published mutagenesis data. Furthermore, the NMR-determined structure of a high-potency cyclic conformationally-constrained 11-residue analogue of GLP-1 was also docked into the receptor-binding site. Despite having a different main chain conformation to that seen in the PACAP21 structure, four conserved residues (equivalent to His-7, Glu-9, Ser-14 and Asp-15 in GLP-1) could be structurally aligned and made similar interactions with the receptor as their equivalents in the GLP-1-docked model, suggesting the basis of a pharmacophore for GLP-1R peptide agonists. In this way, the model not only explains current mutagenesis and molecular pharmacological data but also provides a basis for further experimental design. PMID:26598711

  5. Regulation of glucose homeostasis by GLP-1.

    PubMed

    Nadkarni, Prashant; Chepurny, Oleg G; Holz, George G

    2014-01-01

    Glucagon-like peptide-1(7-36)amide (GLP-1) is a secreted peptide that acts as a key determinant of blood glucose homeostasis by virtue of its abilities to slow gastric emptying, to enhance pancreatic insulin secretion, and to suppress pancreatic glucagon secretion. GLP-1 is secreted from L cells of the gastrointestinal mucosa in response to a meal, and the blood glucose-lowering action of GLP-1 is terminated due to its enzymatic degradation by dipeptidyl-peptidase-IV (DPP-IV). Released GLP-1 activates enteric and autonomic reflexes while also circulating as an incretin hormone to control endocrine pancreas function. The GLP-1 receptor (GLP-1R) is a G protein-coupled receptor that is activated directly or indirectly by blood glucose-lowering agents currently in use for the treatment of type 2 diabetes mellitus (T2DM). These therapeutic agents include GLP-1R agonists (exenatide, liraglutide, lixisenatide, albiglutide, dulaglutide, and langlenatide) and DPP-IV inhibitors (sitagliptin, vildagliptin, saxagliptin, linagliptin, and alogliptin). Investigational agents for use in the treatment of T2DM include GPR119 and GPR40 receptor agonists that stimulate the release of GLP-1 from L cells. Summarized here is the role of GLP-1 to control blood glucose homeostasis, with special emphasis on the advantages and limitations of GLP-1-based therapeutics. PMID:24373234

  6. Regulation of Glucose Homeostasis by GLP-1

    PubMed Central

    Nadkarni, Prashant; Chepurny, Oleg G.; Holz, George G.

    2014-01-01

    Glucagon-like peptide-1(7–36)amide (GLP-1) is a secreted peptide that acts as a key determinant of blood glucose homeostasis by virtue of its abilities to slow gastric emptying, to enhance pancreatic insulin secretion, and to suppress pancreatic glucagon secretion. GLP-1 is secreted from L cells of the gastrointestinal mucosa in response to a meal, and the blood glucose-lowering action of GLP-1 is terminated due to its enzymatic degradation by dipeptidyl-peptidase-IV (DPP-IV). Released GLP-1 activates enteric and autonomic reflexes while also circulating as an incretin hormone to control endocrine pancreas function. The GLP-1 receptor (GLP-1R) is a G protein-coupled receptor that is activated directly or indirectly by blood glucose-lowering agents currently in use for the treatment of type 2 diabetes mellitus (T2DM). These therapeutic agents include GLP-1R agonists (exenatide, liraglutide, lixisenatide, albiglutide, dulaglutide, and langlenatide) and DPP-IV inhibitors (sitagliptin, vildagliptin, saxagliptin, linagliptin, and alogliptin). Investigational agents for use in the treatment of T2DM include GPR119 and GPR40 receptor agonists that stimulate the release of GLP-1 from L cells. Summarized here is the role of GLP-1 to control blood glucose homeo-stasis, with special emphasis on the advantages and limitations of GLP-1-based therapeutics. PMID:24373234

  7. Effect of GLP-1 Receptor Activation on Offspring Kidney Health in a Rat Model of Maternal Obesity

    PubMed Central

    Glastras, Sarah J.; Chen, Hui; McGrath, Rachel T.; Zaky, Amgad A.; Gill, Anthony J.; Pollock, Carol A.; Saad, Sonia

    2016-01-01

    Maternal obesity is associated with an increased risk of chronic disease in offspring, including type 2 diabetes (T2D). Exendin-4 (Exd-4) activates the glucagon like peptide-1 (GLP-1) receptor thereby decreasing serum glucose levels and body weight. In addition, Exd-4 has been shown to reduce renal and cardiac complications in experimental models of T2D. We hypothesized that treatment with Exd-4 would ameliorate the detrimental effects of maternal and diet-induced obesity on renal characteristics in offspring. Female Sprague-Dawley rats were fed either normal or high-fat diet (HFD) for 6 weeks prior to pregnancy, during pregnancy and lactation, and their offspring were weaned to normal or HFD. The offspring were randomized to Exd-4 or placebo from weaning and their kidneys harvested at Week 9. We found that the kidneys of offspring from obese mothers, regardless of postnatal diet, had significantly increased markers of inflammation, oxidative stress and fibrosis. Exd-4 ameliorated the negative renal effects of maternal obesity and in particular, reduced renal inflammation, oxidative stress and fibrosis. In conclusion, maternal obesity has persisting effects on renal structure in the offspring. GLP-1 analogues are potentially useful for protecting against the deleterious effects of maternal obesity on renal physiology in offspring. PMID:27004609

  8. Effect of GLP-1 Receptor Activation on Offspring Kidney Health in a Rat Model of Maternal Obesity.

    PubMed

    Glastras, Sarah J; Chen, Hui; McGrath, Rachel T; Zaky, Amgad A; Gill, Anthony J; Pollock, Carol A; Saad, Sonia

    2016-01-01

    Maternal obesity is associated with an increased risk of chronic disease in offspring, including type 2 diabetes (T2D). Exendin-4 (Exd-4) activates the glucagon like peptide-1 (GLP-1) receptor thereby decreasing serum glucose levels and body weight. In addition, Exd-4 has been shown to reduce renal and cardiac complications in experimental models of T2D. We hypothesized that treatment with Exd-4 would ameliorate the detrimental effects of maternal and diet-induced obesity on renal characteristics in offspring. Female Sprague-Dawley rats were fed either normal or high-fat diet (HFD) for 6 weeks prior to pregnancy, during pregnancy and lactation, and their offspring were weaned to normal or HFD. The offspring were randomized to Exd-4 or placebo from weaning and their kidneys harvested at Week 9. We found that the kidneys of offspring from obese mothers, regardless of postnatal diet, had significantly increased markers of inflammation, oxidative stress and fibrosis. Exd-4 ameliorated the negative renal effects of maternal obesity and in particular, reduced renal inflammation, oxidative stress and fibrosis. In conclusion, maternal obesity has persisting effects on renal structure in the offspring. GLP-1 analogues are potentially useful for protecting against the deleterious effects of maternal obesity on renal physiology in offspring. PMID:27004609

  9. [GLP-1 receptor agonists versus SGLT-2 inhibitors in obese type 2 diabetes patients].

    PubMed

    Marques, Ana Rita Forte; Jaafar, Jaafar; de Kalbermatten, Bndicte; Philippe, Jacques

    2015-06-01

    Who never had a type 2 obese diabetic patient, treated by several oral antidiabetic drugs and insulin, with consequent weight gain associated with the therapeutic escalation and uncontrolled diabetes? The arrival of GLP-1 agonists and SGLT-2 inhibitors allows to reevaluate the management of these patients, with their favorable effects on glycemic control, weight and the risk of hypoglycemia and their complementary mechanisms to conventional treatments. The vicious cycle of weight gain and increased need of insulin is limited. The choice between these two molecules must be based on several factors (glycemic target, weight, comorbidities, route of administration, side effects, etc.), and the balanced enthusiasm of these new treatments with the insufficient data regarding their long-term safety and their impact on micro- and macrovascular complications. PMID:26211282

  10. Anti-atherosclerotic effects of the glucagon-like peptide-1 (GLP-1) based therapies in patients with type 2 Diabetes Mellitus: A meta-analysis.

    PubMed

    Song, Xiaoyan; Jia, Hetang; Jiang, Yuebo; Wang, Liang; Zhang, Yan; Mu, Yiming; Liu, Yu

    2015-01-01

    This study assessed the effect of GLP-1 based therapies on atherosclerotic markers in type 2 diabetes patients. 31 studies were selected to obtain data after multiple database searches and following inclusion and exclusion criteria. Age and BMI of the participants of longitudinal studies were 59.8??8.3 years and 29.2??5.7?kg/m(2) (MeanSD). Average duration of GLP-1 based therapies was 20.5 weeks. Percent flow-mediated diameter (%FMD) did not change from baseline significantly but when compared to controls, %FMD increased non-significantly following GLP-1-based therapies (1.65 [-0.89, 4.18]; P?=?0.2; REM) in longitudinal studies and increased significantly in cross sectional studies (2.58 [1.68, 3.53]; P?GLP-1 based therapies. GLP-1 based therapies led to statistically significant reductions in the serum levels of brain natriuretic peptide (-40.16 [-51.50, -28.81]; P?GLP-1-based therapies appear to provide beneficial effects against atherosclerosis. More randomized data will be required to arrive at conclusive evidence. PMID:26111974

  11. Oral l-Arginine Stimulates GLP-1 Secretion to Improve Glucose Tolerance in Male Mice

    PubMed Central

    Clemmensen, Christoffer; Smajilovic, Sanela; Smith, Eric P.; Woods, Stephen C.; Bruner-Osborne, Hans; Seeley, Randy J.; D'Alessio, David A.

    2013-01-01

    Pharmacological and surgical interventions that increase glucagon-like peptide 1 (GLP-1) action are effective to improve glucose homeostasis in type 2 diabetes mellitus. In light of this, nutritional strategies to enhance postprandial GLP-1 secretion, particularly in the context of diet-induced obesity, may provide an alternative therapeutic approach. Importantly, recent evidence suggests the amino acid l-arginine, a well-known insulin secretagogue, can also stimulate release of GLP-1 from isolated rat intestine. Here we tested the hypothesis that oral l-arginine acts as a GLP-1 secretagogue in vivo, to augment postprandial insulin secretion and improve glucose tolerance. To test this, we administered l-arginine or vehicle by oral gavage, immediately prior to an oral glucose tolerance test in lean and diet-induced obese mice. In both lean and obese mice oral l-arginine increased plasma GLP-1 and insulin and substantially improved glucose clearance. To directly assess the contribution of GLP-1 receptor (GLP-1R)-signaling to these improvements, l-arginine was given to Glp1r knockout mice and their wild-type littermates. In this experiment oral l-arginine significantly augmented insulin secretion and improved glucose clearance in WT mice, but not in Glp1r knockout littermates. Taken together these findings identify l-arginine as a GLP-1 secretagogue in vivo and demonstrate that improvement of glucose tolerance by oral l-arginine depends on GLP-1R-signaling. These findings raise the intriguing possibility that l-arginine-based nutritional and/or pharmaceutical therapies may benefit glucose tolerance by improving the postprandial GLP-1 response in obese individuals. PMID:23959939

  12. RD Lawrence Lecture 2008 Targeting GLP-1 release as a potential strategy for the therapy of Type 2 diabetes

    PubMed Central

    Gribble, F M

    2008-01-01

    Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are gastrointestinal hormones that play an important role in stimulating postprandial insulin release from pancreatic ?-cells. Agents that either mimic GLP-1 or prevent its degradation are now available for the treatment of Type 2 diabetes, and strategies to enhance endogenous GLP-1 release are under assessment. As intestinal peptides have a range of actions, including appetite regulation and coordination of fat metabolism, harnessing the enteric endocrine system is a promising new field for drug development. Diabet. Med. 25, 889894 (2008) PMID:18959599

  13. Ghrelin Is a Novel Regulator of GLP-1 Secretion.

    PubMed

    Gagnon, Jeffrey; Baggio, Laurie L; Drucker, Daniel J; Brubaker, Patricia L

    2015-05-01

    GLP-1 is a gastrointestinal L-cell hormone that enhances glucose-stimulated insulin secretion. Hence, strategies that prevent GLP-1 degradation or activate the GLP-1 receptor are used to treat patients with type 2 diabetes. GLP-1 secretion occurs after a meal and is partly regulated by other circulating hormones. Ghrelin is a stomach-derived hormone that plays a key role in whole-body energy metabolism. Because ghrelin levels peak immediately before mealtimes, we hypothesized that ghrelin plays a role in priming the intestinal L-cell for nutrient-induced GLP-1 release. The intraperitoneal injection of ghrelin into mice 15 min before the administration of oral glucose enhanced glucose-stimulated GLP-1 release and improved glucose tolerance, whereas the ghrelin receptor antagonist D-Lys GHRP-6 reduced plasma levels of GLP-1 and insulin and diminished oral glucose tolerance. The ghrelin-mediated improvement in glucose tolerance was lost in mice coinjected with a GLP-1 receptor antagonist as well as in Glp1r(-/-) mice lacking the GLP-1 receptor. The impaired oral glucose tolerance in diet-induced obese mice was also improved by ghrelin preadministration. Importantly, ghrelin directly stimulated GLP-1 release from L-cell lines (murine GLUTag, human NCI-H716) through an extracellular signal-related kinase 1/2-dependent pathway. These studies demonstrate a novel role for ghrelin in enhancing the GLP-1 secretory response to ingested nutrients. PMID:25412624

  14. Anti-atherosclerotic effects of the glucagon-like peptide-1 (GLP-1) based therapies in patients with type 2 Diabetes Mellitus: A meta-analysis

    PubMed Central

    Song, Xiaoyan; Jia, Hetang; Jiang, Yuebo; Wang, Liang; Zhang, Yan; Mu, Yiming; Liu, Yu

    2015-01-01

    This study assessed the effect of GLP-1 based therapies on atherosclerotic markers in type 2 diabetes patients. 31 studies were selected to obtain data after multiple database searches and following inclusion and exclusion criteria. Age and BMI of the participants of longitudinal studies were 59.8 ± 8.3 years and 29.2 ± 5.7 kg/m2 (Mean±SD). Average duration of GLP-1 based therapies was 20.5 weeks. Percent flow-mediated diameter (%FMD) did not change from baseline significantly but when compared to controls, %FMD increased non-significantly following GLP-1-based therapies (1.65 [−0.89, 4.18]; P = 0.2; REM) in longitudinal studies and increased significantly in cross sectional studies (2.58 [1.68, 3.53]; P < 0.00001). Intima media thickness decreased statistically non-significantly by the GLP-1 based therapies. GLP-1 based therapies led to statistically significant reductions in the serum levels of brain natriuretic peptide (−40.16 [−51.50, −28.81]; P < 0.0001; REM), high sensitivity c-reactive protein (−0.27 [−0.48, −0.07]; P = 0.009), plasminogen activator inhibitor-1 (−12.90 [−25.98, 0.18]; P=0.05), total cholesterol (−5.47 [−9.55, −1.39]; P = 0.009), LDL-cholesterol (−3.70 [−7.39, −0.00]; P = 0.05) and triglycerides (−16.44 [−25.64, −7.23]; P = 0.0005) when mean differences with 95% CI in the changes from baselines were meta-analyzed. In conclusion, GLP-1-based therapies appear to provide beneficial effects against atherosclerosis. More randomized data will be required to arrive at conclusive evidence. PMID:26111974

  15. Leptin receptor expression in hindbrain Glp-1 neurons regulates food intake and energy balance in mice

    PubMed Central

    Scott, Michael M.; Williams, Kevin W.; Rossi, Jari; Lee, Charlotte E.; Elmquist, Joel K.

    2011-01-01

    Leptin is an adipose-derived hormone that signals to inform the brain of nutrient status; loss of leptin signaling results in marked hyperphagia and obesity. Recent work has identified several groups of neurons that contribute to the effects of leptin to regulate energy balance, but leptin receptors are distributed throughout the brain, and the function of leptin signaling in discrete neuronal populations outside of the hypothalamus has not been defined. In the current study, we produced mice in which the long form of the leptin receptor (Lepr) was selectively ablated using Cre-recombinase selectively expressed in the hindbrain under control of the paired-like homeobox 2b (Phox2b) promoter (Phox2b Cre Leprflox/flox mice). In these mice, Lepr was deleted from glucagon-like 1 peptide–expressing neurons resident in the nucleus of the solitary tract. Phox2b Cre Leprflox/flox mice were hyperphagic, displayed increased food intake after fasting, and gained weight at a faster rate than wild-type controls. Paradoxically, Phox2b Cre Leprflox/flox mice also exhibited an increased metabolic rate independent of a change in locomotor activity that was dependent on food intake, and glucose homeostasis was normal. Together, these data support a physiologically important role of direct leptin action in the hindbrain. PMID:21606595

  16. Evidence that geniposide abrogates norepinephrine-induced hypopigmentation by the activation of GLP-1R-dependent c-kit receptor signaling in melanocyte.

    PubMed

    Wen-Jun, Lan; Hai-Yan, Wang; Wei, Lan; Ke-Yu, Wang; Rui-Ming, Wang

    2008-06-19

    Geniposide (GP) as an agonist of glucagon-like peptide-1 receptor (GLP-1R) is an iridoid glycoside from the fruit of Gardenia jasminoides Ellis used as a Chinese traditional medicine for treatment of vitiligo vulgaris. Interaction of c-kit receptor with its ligand-SCF potent enhances the melanocytic melanogenesis, which can be repressed by norepinephrine (NE). To discover economic and efficient drug against vitiligo vulgaris, this paper addresses the action and mechanism of GP abrogating the NE-induced hypopigmentation in melanocyte. Flow cytometry exhibited the up-regulation effect of GP on NE-suppressed production of c-kit by normal human epidermal melanocyte (HEMn) in a concentration-dependent manner, and exendin-(9-39) (selective GLP-1R antagonist) appeared to alleviate the GP-stimulated expression of c-kit. However, neither NE nor GP affected the production of SCF by normal human epidermal keratinocyte (HEKn) assessed by cellular enzyme-linked immunosorbent assay. Spectrophotometry documented that GP abrogated the repression effect of NE on tyrosinase activity and melanin production in HEMn in the presence of recombination SCF significantly. The response of melanocytic melanogenesis to GP was blocked by exendin-(9-39) or K44.2 antibody (c-kit inhibitory antibody). Data from this paper provide the evidence that GP abrogates the NE-induced hypopigmentation by the activation of GLP-1R-dependent c-kit receptor signaling in which c-kit expression is augmented in HEMn. PMID:18485637

  17. Pancreatic and extrapancreatic effects of GLP-1.

    PubMed

    Valverde, I; Villanueva-Peacarrillo, M L; Malaisse, W J

    2002-12-01

    Glucagon-like peptide-1 (GLP-1), an incretin hormone which helps to regulate plasma glucose levels, is considered a potential agent for the treatment of type-2 diabetes mellitus, because of its insulinotropic capacity and insulinomimetic actions. In normal conditions, the beta-cell secretory response to GLP-1 is modulated by the extracellular concentration of D-glucose; however, the recognition of D-glucose by the beta-cell is often impaired in type-2 diabetes, and this could impede the full GLP-1 insulinotropic action. Non-glucidic substrates, such as the dimethyl ester of succinic acid, restore the effect of GLP-1 in the isolated perfused rat pancreas of normal or diabetic rats, in the absence of any other exogenous nutrient; likewise, the dimethyl ester of succinic or L-glutamic acid, and the monomethyl ester of pyruvic acid, potentiate the in vivo beta-cell secretory response to GLP-1 in normal and diabetic rats. Therefore, it was proposed that nutrients susceptible to bypass the site-specific defects of the diabetic beta-cell, could be used to potentiate and/or prolong the insulinotropic action of antidiabetic agents such as GLP-1. In vitro, GLP-1 insulin-like effects on glucose metabolism have been documented in normal and diabetic rat liver, and in rat and human skeletal muscle. In rat and human adipocytes, GLP-1 is lipolytic and/or lipogenic, and also stimulates parameters involved in the glucose metabolism. In liver, muscle and fat, GLP-1 seems to act through specific receptors, apparently different--at least in liver and muscle--in structure or signaling pathway from the pancreatic one. It is proposed that an inositolphosphoglycan might be a second messenger of GLP-1 action in extrapancreatic tissues. PMID:12688638

  18. Neuroprotection by Exendin-4 Is GLP-1 Receptor Specific but DA D3 Receptor Dependent, Causing Altered BrdU Incorporation in Subventricular Zone and Substantia Nigra

    PubMed Central

    Harkavyi, A.; Rampersaud, N.; Whitton, P. S.

    2013-01-01

    Glucagon-like peptide-1 receptor (GLP-1R) activation by exendin-4 (EX-4) is effective in preclinical models of Parkinson's disease (PD) and appears to promote neurogenesis even in severely lesioned rats. In the present study, we determined the effects of EX-4 on cellular BrdU incorporation in the rat subventricular zone (SVZ) and substantia nigra (SN). We also determined the specificity of this effect with the GLP-1R antagonist EX-(9-39) as well as the potential role of dopamine (DA) D3 receptors. Rats were administered 6-OHDA and 1 week later given EX-4 alone, with EX-(9-39) or nafadotride (D3 antagonist) and BrdU. Seven days later, rats were challenged with apomorphine to evaluate circling. Extracellular DA was measured using striatal microdialysis and subsequently tissue DA measured. Tyrosine hydroxylase and BrdU were verified using immunohistochemistry. Apomorphine circling was reversed by EX-4 in lesioned rats, an effect reduced by EX-4, while both EX-(9-39) and NAF attenuated this. 6-OHDA decreased extracellular and tissue DA, both reversed by EX-4 but again attenuated by EX-(9-39) or NAF. Analysis of BrdU+ cells in the SVZ revealed increases in 6-OHDA-treated rats which were reversed by EX-4 and antagonised by either EX-(9-39) or NAF, while in the SN the opposite profile was seen. PMID:26316987

  19. Potential of Albiglutide, a Long-Acting GLP-1 Receptor Agonist, in Type 2 Diabetes

    PubMed Central

    Rosenstock, Julio; Reusch, Jane; Bush, Mark; Yang, Fred; Stewart, Murray

    2009-01-01

    OBJECTIVE To evaluate the efficacy, safety, and tolerability of incremental doses of albiglutide, a long-acting glucagon-like peptide-1 receptor agonist, administered with three dosing schedules in patients with type 2 diabetes inadequately controlled with diet and exercise or metformin monotherapy. RESEARCH DESIGN AND METHODS In this randomized multicenter double-blind parallel-group study, 356 type 2 diabetic subjects with similar mean baseline characteristics (age 54 years, diabetes duration 4.9 years, BMI 32.1 kg/m2, A1C 8.0%) received subcutaneous placebo or albiglutide (weekly [4, 15, or 30 mg], biweekly [15, 30, or 50 mg], or monthly [50 or 100 mg]) or exenatide twice daily as an open-label active reference (per labeling in metformin subjects only) over 16 weeks followed by an 11-week washout period. The main outcome measure was change from baseline A1C of albiglutide groups versus placebo at week 16. RESULTS Dose-dependent reductions in A1C were observed within all albiglutide schedules. Mean A1C was similarly reduced from baseline by albiglutide 30 mg weekly, 50 mg biweekly (every 2 weeks), and 100 mg monthly (−0.87, −0.79, and −0.87%, respectively) versus placebo (−0.17%, P < 0.004) and exenatide (−0.54%). Weight loss (−1.1 to −1.7 kg) was observed with these three albiglutide doses with no significant between-group effects. The incidence of gastrointestinal adverse events in subjects receiving albiglutide 30 mg weekly was less than that observed for the highest biweekly and monthly doses of albiglutide or exenatide. CONCLUSIONS Weekly albiglutide administration significantly improved glycemic control and elicited weight loss in type 2 diabetic patients, with a favorable safety and tolerability profile. PMID:19592625

  20. ? cell membrane remodelling and procoagulant events occur in inflammation-driven insulin impairment: a GLP-1 receptor dependent and independent control.

    PubMed

    Gleizes, Cline; Kreutter, Guillaume; Abbas, Malak; Kassem, Mohamad; Constantinescu, Andrei Alexandru; Boisram-Helms, Julie; Yver, Blandine; Toti, Florence; Kessler, Laurence

    2016-02-01

    Inflammation and hyperglycaemia are associated with a prothrombotic state. Cell-derived microparticles (MPs) are the conveyors of active procoagulant tissue factor (TF) and circulate at high concentration in diabetic patients. Liraglutide, a glucagon-like peptide (GLP)-1 analogue, is known to promote insulin secretion and ?-cell preservation. In this in vitro study, we examined the link between insulin impairment, procoagulant activity and plasma membrane remodelling, under inflammatory conditions. Rin-m5f ?-cell function, TF activity mediated by MPs and their modulation by 1 ?M liraglutide were examined in a cell cross-talk model. Methyl-?-cyclodextrine (MCD), a cholesterol depletor, was used to evaluate the involvement of raft on TF activity, MP shedding and insulin secretion as well as Soluble N-thylmaleimide-sensitive-factor Attachment protein Receptor (SNARE)-dependent exocytosis. Cytokines induced a two-fold increase in TF activity at MP surface that was counteracted by liraglutide. Microparticles prompted TF activity on the target cells and a two-fold decrease in insulin secretion via protein kinase A (PKA) and p38 signalling, that was also abolished by liraglutide. Large lipid raft clusters were formed in response to cytokines and liraglutide or MCD-treated cells showed similar patterns. Cells pre-treated by saturating concentration of the GLP-1r antagonist exendin (9-39), showed a partial abolishment of the liraglutide-driven insulin secretion and liraglutide-decreased TF activity. Measurement of caspase 3 cleavage and MP shedding confirmed the contribution of GLP-1r-dependent and -independent pathways. Our results confirm an integrative ?-cell response to GLP-1 that targets receptor-mediated signalling and membrane remodelling pointing at the coupling of insulin secretion and inflammation-driven procoagulant events. PMID:26607759

  1. GLP-1, the Gut-Brain, and Brain-Periphery Axes

    PubMed Central

    Cabou, Cendrine; Burcelin, Remy

    2011-01-01

    Glucagon-like peptide 1 (GLP-1) is a gut hormone which directly binds to the GLP-1 receptor located at the surface of the pancreatic β-cells to enhance glucose-induced insulin secretion. In addition to its pancreatic effects, GLP-1 can induce metabolic actions by interacting with its receptors expressed on nerve cells in the gut and the brain. GLP-1 can also be considered as a neuropeptide synthesized by neuronal cells in the brain stem that release the peptide directly into the hypothalamus. In this environment, GLP-1 is assumed to control numerous metabolic and cardiovascular functions such as insulin secretion, glucose production and utilization, and arterial blood flow. However, the exact roles of these two locations in the regulation of glucose homeostasis are not well understood. In this review, we highlight the latest experimental data supporting the role of the gut-brain and brain-periphery axes in the control of glucose homeostasis. We also focus our attention on the relevance of β-cell and brain cell targeting by gut GLP-1 for the regulation of glucose homeostasis. In addition to its action on β-cells, we find that understanding the physiological role of GLP-1 will help to develop GLP-1-based therapies to control glycemia in type 2 diabetes by triggering the gut-brain axis or the brain directly. This pleiotropic action of GLP-1 is an important concept that may help to explain the observation that, during their treatment, type 2 diabetic patients can be identified as 'responders' and 'non-responders'. PMID:22262078

  2. GLP-1 Receptor Agonists

    MedlinePLUS

    ... y Cuidadores Hormones and Health Journey Through the Endocrine System Endocrine Glands and Types of Hormones Brainy Hormones ... Women's Health Hormones and Health Journey Through the Endocrine System Endocrine Glands and Types of Hormones Brainy Hormones ...

  3. Synthesis and evaluation of optical and PET GLP-1 peptide analogues for GLP-1R imaging.

    PubMed

    Behnam Azad, Babak; Rota, Vanessa; Yu, Lihai; McGirr, Rebecca; St Amant, Andr H; Lee, Ting-Yim; Dhanvantari, Savita; Luyt, Leonard G

    2015-01-01

    A fluorescein-GLP-1 (7-37) analog was generated to determine GLP-1R distribution in various cell types of the pancreas in both strains of mice and receptor-specific uptake was confirmed by blocking with exendin-4. Biodistribution studies were carried out using 68Ga-labeled GLP-1(7-37) peptides in CD1 and C57BL/6 mice. In addition, immunocompromised mice bearing GLP-1R-expressing insulinomas were evaluated by positron emission tomography (PET) imaging and ex vivo biodistribution studies. The optical GLP-1 probe strongly colocalized with immunofluorescence for insulin and glucagon, and more weakly with amylase (exocrine pancreas) and cytokeratin 19 (ductal cells), confirming its application for in situ GLP-1R imaging in various pancreatic cell types. Insulinomas were clearly visualized by in vivo PET. Reducing the peptide positive charge decreased renal retention as well as tumor uptake. Results demonstrate the application of the developed GLP-1 peptide analogues for in situ (optical) and in vivo (PET) imaging of GLP-1R expression. PMID:25762192

  4. The non-peptide GLP-1 receptor agonist WB4-24 blocks inflammatory nociception by stimulating ?-endorphin release from spinal microglia

    PubMed Central

    Fan, Hui; Gong, Nian; Li, Teng-Fei; Ma, Ai-Niu; Wu, Xiao-Yan; Wang, Ming-Wei; Wang, Yong-Xiang

    2015-01-01

    BACKGROUND AND PURPOSE Two peptide agonists of the glucagon-like peptide-1 (GLP-1) receptor, exenatide and GLP-1 itself, exert anti-hypersensitive effects in neuropathic, cancer and diabetic pain. In this study, we have assessed the anti-allodynic and anti-hyperalgesic effects of the non-peptide agonist WB4-24 in inflammatory nociception and the possible involvement of microglial ?-endorphin and pro-inflammatory cytokines. EXPERIMENTAL APPROACH We used rat models of inflammatory nociception induced by formalin, carrageenan or complete Freund's adjuvant (CFA), to test mechanical allodynia and thermal hyperalgesia. Expression of ?-endorphin and pro-inflammatory cytokines was measured using real-time quantitative PCR and fluorescent immunoassays. KEY RESULTS WB4-24 displaced the specific binding of exendin (939) in microglia. Single intrathecal injection of WB4-24 (0.3, 1, 3, 10, 30 and 100 ?g) exerted dose-dependent, specific, anti-hypersensitive effects in acute and chronic inflammatory nociception induced by formalin, carrageenan and CFA, with a maximal inhibition of 6080%. Spinal WB4-24 was not effective in altering nociceptive pain. Subcutaneous injection of WB4-24 was also antinociceptive in CFA-treated rats. WB4-24 evoked ?-endorphin release but did not inhibit expression of pro-inflammatory cytokines in either the spinal cord of CFA-treated rats or cultured microglia stimulated by LPS. WB4-24 anti-allodynia was prevented by a microglial inhibitor, ?-endorphin antiserum and a ?-opioid receptor antagonist. CONCLUSIONS AND IMPLICATIONS Our results suggest that WB4-24 inhibits inflammatory nociception by releasing analgesic ?-endorphin rather than inhibiting the expression of proalgesic pro-inflammatory cytokines in spinal microglia, and that the spinal GLP-1 receptor is a potential target molecule for the treatment of pain hypersensitivity including inflammatory nociception. PMID:25176008

  5. Glucagon-like peptide 1 receptor (GLP1R) haplotypes correlate with altered response to multiple antipsychotics in the CATIE trial.

    PubMed

    Ramsey, Timothy L; Brennan, Mark D

    2014-12-01

    Glucagon-like peptide 1 receptor (GLP1R) signaling has been shown to have antipsychotic properties in animal models and to impact glucose-dependent insulin release, satiety, memory, and learning in man. Previous work has shown that two coding mutations (rs6923761 and rs1042044) are associated with altered insulin release and cortisol levels. We identified four frequently occurring haplotypes in Caucasians, haplotype 1 through haplotype 4, spanning exons 4-7 and containing the two coding variants. We analyzed response to antipsychotics, defined as predicted change in PANSS-Total (dPANSS) at 18 months, in Caucasian subjects from the Clinical Antipsychotic Trial of Intervention Effectiveness treated with olanzapine (n=139), perphenazine (n=78), quetiapine (n=14), risperidone (n=143), and ziprasidone (n=90). Haplotype trend regression analysis revealed significant associations with dPANSS for olanzapine (best p=0.002), perphenazine (best p=0.01), quetiapine (best p=0.008), risperidone (best p=0.02), and ziprasidone (best p=0.007). We also evaluated genetic models for the two most common haplotypes. Haplotype 1 (uniquely including the rs1042044 [Leu(260)] allele) was associated with better response to olanzapine (p=0.002), and risperidone (p=0.006), and worse response to perphenazine (p=.03), and ziprasidone (p=0.003), with a recessive genetic model providing the best fit. Haplotype 2 (uniquely including the rs6923761 [Ser(168)] allele) was associated with better response to perphenazine (p=0.001) and worse response to olanzapine (p=.02), with a dominant genetic model providing the best fit. However, GLP1R haplotypes were not associated with antipsychotic-induced weight gain. These results link functional genetic variants in GLP1R to antipsychotic response. PMID:25449714

  6. The central GLP-1: implications for food and drug reward

    PubMed Central

    Skibicka, Karolina P.

    2013-01-01

    Glucagon-like-peptide-1 (GLP-1) and its long acting analogs comprise a novel class of type 2 diabetes (T2D) treatment. What makes them unique among other T2D drugs is their concurrent ability to reduce food intake, a great benefit considering the frequent comorbidity of T2D and obesity. The precise neural site of action underlying this beneficial effect is vigorously researched. In accordance with the classical model of food intake control GLP-1 action on feeding has been primarily ascribed to receptor populations in the hypothalamus and the hindbrain. In contrast to this common view, relevant GLP-1 receptor populations are distributed more widely, with a prominent mesolimbic complement emerging. The physiological relevance of the mesolimbic GLP-1 is suggested by the demonstration that similar anorexic effects can be obtained by independent stimulation of the mesolimbic and hypothalamic GLP-1 receptors (GLP-1R). Results reviewed here support the idea that mesolimbic GLP-1R are sufficient to reduce hunger-driven feeding, the hedonic value of food and food-motivation. In parallel, emerging evidence suggests that the range of action of GLP-1 on reward behavior is not limited to food-derived reward but extends to cocaine, amphetamine, and alcohol reward. The new discoveries concerning GLP-1 action on the mesolimbic reward system significantly extend the potential therapeutic range of this drug target. PMID:24133407

  7. Acting on Hormone Receptors with Minimal Side Effect on Cell Proliferation: A Timely Challenge Illustrated with GLP-1R and GPER

    PubMed Central

    Gigoux, Véronique; Fourmy, Daniel

    2013-01-01

    G protein-coupled receptors (GPCRs) constitute a large family of receptors that sense molecules outside the cell and activate inside signal transduction pathways and cellular responses. GPCR are involved in a wide variety of physiological processes, including in the neuroendocrine system. GPCR are also involved in many diseases and are the target of 30% of marketed medicinal drugs. Whereas the majority of the GPCR-targeting drugs have proved their therapeutic benefit, some of them were associated with undesired effects. We develop two examples of used drugs whose therapeutic benefits are tarnished by carcinogenesis risks. The chronic administration of glucagon-like peptide-1 (GLP-1) analogs widely used to treat type-2 diabetes was associated with an increased risk of pancreatic or thyroid cancers. The long-term treatment with the estrogen antagonist tamoxifen, developed to target breast cancer overexpressing estrogen receptors ER, presents agonist activity on the G protein-coupled estrogen receptor which is associated with an increased incidence of endometrial cancer and breast cancer resistance to hormonotherapy. We point out and discuss the need of pharmacological studies to understand and overcome the undesired effects associated with the chronic administration of GPCR ligands. In fact, biological effects triggered by GPCR often result from the activation of multiple intracellular signaling pathways. Deciphering which signaling networks are engaged following GPCR activation appears to be primordial to unveil their contribution in the physiological and physiopathological processes. The development of biased agonists to elucidate the role of the different signaling mechanisms mediated by GPCR activation will allow the generation of new therapeutic agents with improved efficacy and reduced side effects. In this regard, the identification of GLP-1R biased ligands promoting insulin secretion without inducing pro-tumoral effects would offer therapeutic benefit. PMID:23641235

  8. Extra-pancreatic effects of incretin-based therapies.

    PubMed

    Gallwitz, Baptist

    2014-11-01

    Glucagon-like peptide-1 (GLP-1) stimulates insulin secretion and inhibits glucagon secretion in the pancreatic islets of Langerhans under hyperglycaemia. In type 2 diabetes (T2DM), GLP-1 improves glycaemic control without a hypoglycaemia risk. GLP-1 receptors have also been found in extra-pancreatic tissues, e.g., the cardiovascular system, the gastrointestinal system, and the central nervous system. Since cardiovascular comorbidities and degenerative neurological changes are associated with T2DM, the interest in the extrapancreatic effects of GLP-1 has increased. GLP-1-based therapies with either GLP-1 receptor agonists (GLP-1 RA) or DPP-4 inhibitors (that delay the degradation of endogenous GLP-1) have become widely used therapeutic options in T2DM. In clinical studies, GLP-1 RA have demonstrated a significant lowering of blood pressure that is independent of body weight changes. Preclinical data and small short-term studies with GLP-1 and GLP-1 RA have shown cardioprotective effects in ischaemia models. GLP-1 as well as a treatment with GLP-1 RA also induces a stable body weight loss by affecting GLP-1 signaling in the hypothalamus and by slowing gastric emptying. Regarding neuroprotective actions in degenerative neurological disease models for Parkinson's- or Alzheimer's disease or neurovascular complications like stroke, animal studies have shown positive results. In this article, a summary of the extrapancreatic effects of GLP-1 and GLP-1-based therapies is presented. PMID:24604239

  9. Vascular, but not luminal, activation of FFAR1 (GPR40) stimulates GLP-1 secretion from isolated perfused rat small intestine

    PubMed Central

    Christensen, Louise W; Kuhre, Rune E; Janus, Charlotte; Svendsen, Berit; Holst, Jens J

    2015-01-01

    Glucagon-like peptide 1 (GLP-1) plays a central role in modern treatment of type 2 diabetes (T2DM) in the form of GLP-1 enhancers and GLP-1 mimetics. An alternative treatment strategy is to stimulate endogenous GLP-1 secretion from enteroendocrine L cells using a targeted approach. The G-protein-coupled receptor, FFAR1 (previously GPR40), expressed on L cells and activated by long-chain fatty acids (LCFAs) is a potential target. A link between FFAR1 activation and GLP-1 secretion has been demonstrated in cellular models and small-molecule FFAR1 agonists have been developed. In this study, we examined the effect of FFAR1 activation on GLP-1 secretion using isolated, perfused small intestines from rats, a physiologically relevant model allowing distinction between direct and indirect effects of FFAR1 activation. The endogenous FFAR1 ligand, linoleic acid (LA), and four synthetic FFAR1 agonists (TAK-875, AMG 837, AM-1638, and AM-5262) were administered through intraluminal and intra-arterial routes, respectively, and dynamic changes in GLP-1 secretion were evaluated. Vascular administration of 10?mol/L TAK-875, 10?mol/L AMG 837, 1?mol/L and 0.1?mol/L AM-1638, 1?mol/L AM-6252, and 1mmol/L LA, all significantly increased GLP-1 secretion compared to basal levels (P<0.05), whereas luminal administration of LA and FFAR1 agonists was ineffective. Thus, both natural and small-molecule agonists of the FFAR1 receptor appear to require absorption prior to stimulating GLP-1 secretion, indicating that therapies based on activation of nutrient sensing may be more complex than hitherto expected. PMID:26381015

  10. Vascular, but not luminal, activation of FFAR1 (GPR40) stimulates GLP-1 secretion from isolated perfused rat small intestine.

    PubMed

    Christensen, Louise W; Kuhre, Rune E; Janus, Charlotte; Svendsen, Berit; Holst, Jens J

    2015-09-01

    Glucagon-like peptide 1 (GLP-1) plays a central role in modern treatment of type 2 diabetes (T2DM) in the form of GLP-1 enhancers and GLP-1 mimetics. An alternative treatment strategy is to stimulate endogenous GLP-1 secretion from enteroendocrine L cells using a targeted approach. The G-protein-coupled receptor, FFAR1 (previously GPR40), expressed on L cells and activated by long-chain fatty acids (LCFAs) is a potential target. A link between FFAR1 activation and GLP-1 secretion has been demonstrated in cellular models and small-molecule FFAR1 agonists have been developed. In this study, we examined the effect of FFAR1 activation on GLP-1 secretion using isolated, perfused small intestines from rats, a physiologically relevant model allowing distinction between direct and indirect effects of FFAR1 activation. The endogenous FFAR1 ligand, linoleic acid (LA), and four synthetic FFAR1 agonists (TAK-875, AMG 837, AM-1638, and AM-5262) were administered through intraluminal and intra-arterial routes, respectively, and dynamic changes in GLP-1 secretion were evaluated. Vascular administration of 10?mol/L TAK-875, 10?mol/L AMG 837, 1?mol/L and 0.1?mol/L AM-1638, 1?mol/L AM-6252, and 1mmol/L LA, all significantly increased GLP-1 secretion compared to basal levels (P<0.05), whereas luminal administration of LA and FFAR1 agonists was ineffective. Thus, both natural and small-molecule agonists of the FFAR1 receptor appear to require absorption prior to stimulating GLP-1 secretion, indicating that therapies based on activation of nutrient sensing may be more complex than hitherto expected. PMID:26381015

  11. Release of GLP-1 and PYY in response to the activation of G protein-coupled bile acid receptor TGR5 is mediated by Epac/PLC-ε pathway and modulated by endogenous H2S

    PubMed Central

    Bala, Vanitha; Rajagopal, Senthilkumar; Kumar, Divya P.; Nalli, Ancy D.; Mahavadi, Sunila; Sanyal, Arun J.; Grider, John R.; Murthy, Karnam S.

    2014-01-01

    Activation of plasma membrane TGR5 receptors in enteroendocrine cells by bile acids is known to regulate gastrointestinal secretion and motility and glucose homeostasis. The endocrine functions of the gut are modulated by microenvironment of the distal gut predominantly by sulfur-reducing bacteria of the microbiota that produce H2S. However, the mechanisms involved in the release of peptide hormones, GLP-1 and PYY in response to TGR5 activation by bile acids and the effect of H2S on bile acid-induced release of GLP-1 and PYY are unclear. In the present study, we have identified the signaling pathways activated by the bile acid receptor TGR5 to mediate GLP-1 and PYY release and the mechanism of inhibition of their release by H2S in enteroendocrine cells. The TGR5 ligand oleanolic acid (OA) stimulated Gαs and cAMP formation, and caused GLP-1 and PYY release. OA-induced cAMP formation and peptide release were blocked by TGR5 siRNA. OA also caused an increase in PI hydrolysis and intracellular Ca2+. Increase in PI hydrolysis was abolished in cells transfected with PLC-ε siRNA. 8-pCPT-2′-O-Me-cAMP, a selective activator of Epac, stimulated PI hydrolysis, and GLP-1 and PYY release. L-Cysteine, which activates endogenous H2S producing enzymes cystathionine-γ-lyase and cystathionine-β-synthase, and NaHS and GYY4137, which generate H2S, inhibited PI hydrolysis and GLP-1 and PYY release in response to OA or 8-pCPT-2′-O-Me-cAMP. Propargylglycine, an inhibitor of CSE, reversed the effect of L-cysteine on PI hydrolysis and GLP-1 and PYY release. We conclude: (i) activation of Gαs-coupled TGR5 receptors causes stimulation of PI hydrolysis, and release of GLP-1 and PYY via a PKA-independent, cAMP-dependent mechanism involving Epac/PLC-ε/Ca2+ pathway, and (ii) H2S has potent inhibitory effects on GLP-1 and PYY release in response to TGR5 activation, and the mechanism involves inhibition of PLC-ε/Ca2+ pathway. PMID:25404917

  12. Release of GLP-1 and PYY in response to the activation of G protein-coupled bile acid receptor TGR5 is mediated by Epac/PLC-ε pathway and modulated by endogenous H2S.

    PubMed

    Bala, Vanitha; Rajagopal, Senthilkumar; Kumar, Divya P; Nalli, Ancy D; Mahavadi, Sunila; Sanyal, Arun J; Grider, John R; Murthy, Karnam S

    2014-01-01

    Activation of plasma membrane TGR5 receptors in enteroendocrine cells by bile acids is known to regulate gastrointestinal secretion and motility and glucose homeostasis. The endocrine functions of the gut are modulated by microenvironment of the distal gut predominantly by sulfur-reducing bacteria of the microbiota that produce H2S. However, the mechanisms involved in the release of peptide hormones, GLP-1 and PYY in response to TGR5 activation by bile acids and the effect of H2S on bile acid-induced release of GLP-1 and PYY are unclear. In the present study, we have identified the signaling pathways activated by the bile acid receptor TGR5 to mediate GLP-1 and PYY release and the mechanism of inhibition of their release by H2S in enteroendocrine cells. The TGR5 ligand oleanolic acid (OA) stimulated Gαs and cAMP formation, and caused GLP-1 and PYY release. OA-induced cAMP formation and peptide release were blocked by TGR5 siRNA. OA also caused an increase in PI hydrolysis and intracellular Ca(2+). Increase in PI hydrolysis was abolished in cells transfected with PLC-ε siRNA. 8-pCPT-2'-O-Me-cAMP, a selective activator of Epac, stimulated PI hydrolysis, and GLP-1 and PYY release. L-Cysteine, which activates endogenous H2S producing enzymes cystathionine-γ-lyase and cystathionine-β-synthase, and NaHS and GYY4137, which generate H2S, inhibited PI hydrolysis and GLP-1 and PYY release in response to OA or 8-pCPT-2'-O-Me-cAMP. Propargylglycine, an inhibitor of CSE, reversed the effect of L-cysteine on PI hydrolysis and GLP-1 and PYY release. We conclude: (i) activation of Gαs-coupled TGR5 receptors causes stimulation of PI hydrolysis, and release of GLP-1 and PYY via a PKA-independent, cAMP-dependent mechanism involving Epac/PLC-ε/Ca(2+) pathway, and (ii) H2S has potent inhibitory effects on GLP-1 and PYY release in response to TGR5 activation, and the mechanism involves inhibition of PLC-ε/Ca(2+) pathway. PMID:25404917

  13. Pharmacologic stimulation of central GLP-1 receptors has opposite effects on the alterations of plasma FGF21 levels induced by feeding and fasting.

    PubMed

    Nonogaki, Katsunori; Kaji, Takao; Yamazaki, Tomoe; Murakami, Mari

    2016-01-26

    Fibroblast growth factor 21 (FGF21) functions as an endocrine hormone to regulate energy metabolism. Circulating FGF21 is derived from the liver and is produced in response to alterations of nutritional status. Here we show the effects of liraglutide, a human glucagon-like-peptide-1 (GLP-1) receptor agonist, injected into the third cerebral ventricle on body weight and plasma FGF21 levels in free-feeding mice, food-deprived mice, and mice provided 1g after the injection. In free-feeding mice, liraglutide (5-100?g/kg) injected into the third cerebral ventricle suppressed food intake and body weight after 24h in a dose-dependent manner. Liraglutide (50 and 100?g/kg) significantly increased plasma FGF21 levels and hepatic FGF21 expression, whereas smaller doses (5 and 10?g/kg) had no effect. In food-deprived mice, body weight did not differ significantly between the saline control and liraglutide-treated groups, but liraglutide (100?g/kg) significantly decreased plasma FGF21 levels at 24h compared with the saline control. In mice provided 1g food, body weight did not differ significantly between the saline control and liraglutide-treated groups, but liraglutide (50?g/kg) significantly decreased plasma FGF21 levels at 24h compared with the saline control. These findings suggest that intracerebral injection of liraglutide decreases body weight by inhibiting food intake and increases plasma FGF21 levels in free-feeding mice, whereas it suppresses the elevations of plasma FGF21 levels induced by fasting or the restricted feeding. Thus, pharmacologic stimulation of central GLP-1 receptors has opposite effects on the alterations of plasma FGF21 levels induced by feeding and fasting. PMID:26683903

  14. Systemic bile acid sensing by G protein-coupled bile acid receptor 1 (GPBAR1) promotes PYY and GLP-1 release

    PubMed Central

    Ullmer, C; Alvarez Sanchez, R; Sprecher, U; Raab, S; Mattei, P; Dehmlow, H; Sewing, S; Iglesias, A; Beauchamp, J; Conde-Knape, K

    2013-01-01

    Background and Purpose Nutrient sensing in the gut is believed to be accomplished through activation of GPCRs expressed on enteroendocrine cells. In particular, L-cells located predominantly in distal regions of the gut secrete glucagon-like peptide 1 (GLP-1) and peptide tyrosine-tyrosine (PYY) upon stimulation by nutrients and bile acids (BA). The study was designed to address the mechanism of hormone secretion in L-cells stimulated by the BA receptor G protein-coupled bile acid receptor 1 (GPBAR1). Experimental Approach A novel, selective, orally bioavailable, and potent GPBAR1 agonist, RO5527239, was synthesized in order to investigate L-cell secretion in vitro and in vivo in mice and monkey. In analogy to BA, RO5527239 was conjugated with taurine to reduce p.o. bioavailability yet retaining its potency. Using RO5527239 and tauro-RO5527239, the acute secretion effects on L-cells were addressed via different routes of administration. Key Results GPBAR1 signalling triggers the co-secretion of PYY and GLP-1, and leads to improved glucose tolerance. The strong correlation of plasma drug exposure and plasma PYY levels suggests activation of GPBAR1 from systemically accessible compartments. In contrast to the orally bioavailable agonist RO5527239, we show that tauro-RO5527239 triggers PYY release only when applied intravenously. Compared to mice, a slower and more sustained PYY secretion was observed in monkeys. Conclusion and Implications Selective GPBAR1 activation elicits a strong secretagogue effect on L-cells, which primarily requires systemic exposure. We suggest that GPBAR1 is a key player in the intestinal proximal-distal loop that mediates the early phase of nutrient-evoked L-cell secretion effects. PMID:23488746

  15. Lesions of area postrema and subfornical organ alter exendin-4-induced brain activation without preventing the hypophagic effect of the GLP-1 receptor agonist.

    PubMed

    Baraboi, Elena-Dana; Smith, Pauline; Ferguson, Alastair V; Richard, Denis

    2010-04-01

    The mechanism and route whereby glucagon-like peptide 1 (GLP-1) receptor agonists, such as GLP-1 and exendin-4 (Ex-4), access the central nervous system (CNS) to exert their metabolic effects have yet to be clarified. The primary objective of the present study was to investigate the potential role of two circumventricular organs (CVOs), the area postrema (AP) and the subfornical organ (SFO), in mediating the metabolic and CNS-stimulating effects of Ex-4. We demonstrated that electrolytic ablation of the AP, SFO, or AP + SFO does not acutely prevent the anorectic effects of Ex-4. AP + SFO lesion chronically decreased food intake and body weight and also modulated the effect of Ex-4 on the neuronal activation of brain structures involved in the hypothalamic-pituitary-adrenal axis and glucose metabolism. The results of the study also showed that CVO lesions blunted Ex-4-induced expression of c-fos mRNA (a widely used neuronal activity marker) in 1) limbic structures (bed nucleus of the stria terminalis and central amygdala), 2) hypothalamus (paraventricular hypothalamic nucleus, supraoptic nucleus, and arcuate nucleus), and 3) hindbrain (lateral and lateral-external parabrachial nucleus, medial nucleus of the solitary tract, and ventrolateral medulla). In conclusion, although the present results do not support a role for the CVOs in the anorectic effect induced by a single injection of Ex-4, they suggest that the CVOs play important roles in mediating the actions of Ex-4 in the activation of CNS structures involved in homeostatic control. PMID:20106992

  16. Sitagliptin Reduces Cardiac Apoptosis, Hypertrophy and Fibrosis Primarily by Insulin-Dependent Mechanisms in Experimental type-II Diabetes. Potential Roles of GLP-1 Isoforms

    PubMed Central

    Picatoste, Beln; Ramrez, Elisa; Caro-Vadillo, Alicia; Iborra, Cristian; Egido, Jess

    2013-01-01

    Background Myocardial fibrosis is a key process in diabetic cardiomyopathy. However, their underlying mechanisms have not been elucidated, leading to a lack of therapy. The glucagon-like peptide-1 (GLP-1) enhancer, sitagliptin, reduces hyperglycemia but may also trigger direct effects on the heart. Methods Goto-Kakizaki (GK) rats developed type-II diabetes and received sitagliptin, an anti-hyperglycemic drug (metformin) or vehicle (n=10, each). After cardiac structure and function assessment, plasma and left ventricles were isolated for biochemical studies. Cultured cardiomyocytes and fibroblasts were used for in vitro assays. Results Untreated GK rats exhibited hyperglycemia, hyperlipidemia, plasma GLP-1 decrease, and cardiac cell-death, hypertrophy, fibrosis and prolonged deceleration time. Moreover, cardiac pro-apoptotic/necrotic, hypertrophic and fibrotic factors were up-regulated. Importantly, both sitagliptin and metformin lessened all these parameters. In cultured cardiomyocytes and cardiac fibroblasts, high-concentration of palmitate or glucose induced cell-death, hypertrophy and fibrosis. Interestingly, GLP-1 and its insulinotropic-inactive metabolite, GLP-1(9-36), alleviated these responses. In addition, despite a specific GLP-1 receptor was only detected in cardiomyocytes, GLP-1 isoforms attenuated the pro-fibrotic expression in cardiomyocytes and fibroblasts. In addition, GLP-1 receptor signalling may be linked to PPAR? activation, and metformin may also exhibit anti-apoptotic/necrotic and anti-fibrotic direct effects in cardiac cells. Conclusions Sitagliptin, via GLP-1 stabilization, promoted cardioprotection in type-II diabetic hearts primarily by limiting hyperglycemia e hyperlipidemia. However, GLP-1 and GLP-1(9-36) promoted survival and anti-hypertrophic/fibrotic effects on cultured cardiac cells, suggesting cell-autonomous cardioprotective actions. PMID:24302978

  17. GLP1-derived nonapeptide GLP1(28-36)amide protects pancreatic ?-cells from glucolipotoxicity.

    PubMed

    Liu, Zhengu; Stanojevic, Violeta; Brindamour, Luke J; Habener, Joel F

    2012-05-01

    Type 2 diabetes, often associated with obesity, results from a deficiency of insulin production and action manifested in increased blood levels of glucose and lipids that further promote insulin resistance and impair insulin secretion. Glucolipotoxicity caused by elevated plasma glucose and lipid levels is a major cause of impaired glucose-stimulated insulin secretion from pancreatic ?-cells, due to increased oxidative stress, and insulin resistance. Glucagon-like peptide-1 (GLP1), an insulinotropic glucoincretin hormone, is known to promote ?-cell survival via its actions on its G-protein-coupled receptor on ?-cells. Here, we report that a nonapeptide, GLP1(28-36)amide, derived from the C-terminal domain of the insulinotropic GLP1, exerts cytoprotective actions on INS-1 ?-cells and on dispersed human islet cells in vitro in conditions of glucolipotoxicity and increased oxidative stress independently of the GLP1 receptor. The nonapeptide appears to enter preferably stressed, glucolipotoxic cells compared with normal unstressed cells. It targets mitochondria and improves impaired mitochondrial membrane potential, increases cellular ATP levels, inhibits cytochrome c release, caspase activation, and apoptosis, and enhances the viability and survival of INS-1 ?-cells. We propose that GLP1(28-36)amide might be useful in alleviating ?-cell stress and might improve ?-cell functions and survival. PMID:22414687

  18. GLP1-derived nonapeptide GLP1(2836)amide protects pancreatic ?-cells from glucolipotoxicity

    PubMed Central

    Liu, Zhengu; Stanojevic, Violeta; Brindamour, Luke J; Habener, Joel F

    2014-01-01

    Type 2 diabetes, often associated with obesity, results from a deficiency of insulin production and action manifested in increased blood levels of glucose and lipids that further promote insulin resistance and impair insulin secretion. Glucolipotoxicity caused by elevated plasma glucose and lipid levels is a major cause of impaired glucose-stimulated insulin secretion from pancreatic ?-cells, due to increased oxidative stress, and insulin resistance. Glucagon-like peptide-1 (GLP1), an insulinotropic glucoincretin hormone, is known to promote ?-cell survival via its actions on its G-protein-coupled receptor on ?-cells. Here, we report that a nonapeptide, GLP1(2836)amide, derived from the C-terminal domain of the insulinotropic GLP1, exerts cytoprotective actions on INS-1 ?-cells and on dispersed human islet cells in vitro in conditions of glucolipotoxicity and increased oxidative stress independently of the GLP1 receptor. The nonapeptide appears to enter preferably stressed, glucolipotoxic cells compared with normal unstressed cells. It targets mitochondria and improves impaired mitochondrial membrane potential, increases cellular ATP levels, inhibits cytochrome c release, caspase activation, and apoptosis, and enhances the viability and survival of INS-1 ?-cells. We propose that GLP1(2836)amide might be useful in alleviating ?-cell stress and might improve ?-cell functions and survival. PMID:22414687

  19. GLP-1(28-36)amide, the Glucagon-like peptide-1 metabolite: friend, foe, or pharmacological folly?

    PubMed Central

    Taing, Meng-Wong; Rose, Felicity J; Whitehead, Jonathan P

    2014-01-01

    The glucagon-like peptide-1 (GLP-1) axis has emerged as a major therapeutic target for the treatment of type 2 diabetes. GLP-1 mediates its key insulinotropic effects via a G-protein coupled receptor expressed on ?-cells and other pancreatic cell types. The insulinotropic activity of GLP-1 is terminated via enzymatic cleavage by dipeptidyl peptidase-4. Until recently, GLP-1-derived metabolites were generally considered metabolically inactive; however, accumulating evidence indicates some have biological activity that may contribute to the pleiotropic effects of GLP-1 independent of the GLP-1 receptor. Recent reports describing the putative effects of one such metabolite, the GLP-1-derived nonapeptide GLP-1(28-36) amide, are the focus of this review. Administration of the nonapeptide elevates cyclic adenosine monophosphate (cAMP) and activates protein kinase A, ?-catenin, and cAMP response-element binding protein in pancreatic ?-cells and hepatocytes. In stressed cells, the nonapeptide targets the mitochondria and, via poorly defined mechanisms, helps to maintain mitochondrial membrane potential and cellular adenosine triphosphate levels and to reduce cytotoxicity and apoptosis. In mouse models of diet-induced obesity, treatment with the nonapeptide reduces weight gain and ameliorates associated pathophysiology, including hyperglycemia, hyperinsulinemia, and hepatic steatosis. Nonapeptide administration in a streptozotocin-induced model of type 1 diabetes also improves glucose disposal concomitant with elevated insulin levels and increased ?-cell mass and proliferation. Collectively, these results suggest some of the beneficial effects of GLP-1 receptor analogs may be mediated by the nonapeptide. However, the concentrations required to elicit some of these effects are in the micromolar range, leading to reservations about potentially related therapeutic benefits. Moreover, although controversial, concerns have been raised about the potential for incretin-based therapies to promote pancreatitis and pancreatic and thyroid cancers. The effects ascribed to the nonapeptide make it a potential contributor to such outcomes, raising additional questions about its therapeutic suitability. Notwithstanding, the nonapeptide, like other GLP-1 metabolites, appears to be biologically active. Increasing understanding of such noncanonical GLP-1 activities should help to improve future incretin-based therapeutics. PMID:24940046

  20. GLP-1 is both anxiogenic and antidepressant; divergent effects of acute and chronic GLP-1 on emotionality.

    PubMed

    Anderberg, Rozita H; Richard, Jennifer E; Hansson, Caroline; Nissbrandt, Hans; Bergquist, Filip; Skibicka, Karolina P

    2016-03-01

    Glucagon-like peptide 1 (GLP-1), produced in the intestine and hindbrain, is known for its glucoregulatory and appetite suppressing effects. GLP-1 agonists are in clinical use for treatment of type 2 diabetes and obesity. GLP-1, however, may also affect brain areas associated with emotionality regulation. Here we aimed to characterize acute and chronic impact of GLP-1 on anxiety and depression-like behavior. Rats were subjected to anxiety and depression behavior tests following acute or chronic intracerebroventricular or intra-dorsal raphe (DR) application of GLP-1 receptor agonists. Serotonin or serotonin-related genes were also measured in the amygdala, DR and the hippocampus. We demonstrate that both GLP-1 and its long lasting analog, Exendin-4, induce anxiety-like behavior in three rodent tests of this behavior: black and white box, elevated plus maze and open field test when acutely administered intraperitoneally, into the lateral ventricle, or directly into the DR. Acute central GLP-1 receptor stimulation also altered serotonin signaling in the amygdala. In contrast, chronic central administration of Exendin-4 did not alter anxiety-like behavior but significantly reduced depression-like behavior in the forced swim test. Importantly, this positive effect of Exendin-4 was not due to significant body weight loss and reduced food intake, since rats pair-fed to Exendin-4 rats did not show altered mood. Collectively we show a striking impact of central GLP-1 on emotionality and the amygdala serotonin signaling that is divergent under acute versus chronic GLP-1 activation conditions. We also find a novel role for the DR GLP-1 receptors in regulation of behavior. These results may have direct relevance to the clinic, and indicate that Exendin-4 may be especially useful for obese patients manifesting with comorbid depression. PMID:26724568

  1. Physiological aspects of the combination of insulin and GLP-1 in the regulation of blood glucose control.

    PubMed

    Ahrn, B

    2015-12-01

    Combining insulin with glucagon-like peptide-1 (GLP-1) receptor agonists or dipeptidyl peptidase-4 (DPP-4) inhibitors as glucose-lowering therapy for type 2 diabetes is a promising strategy that has gained considerable interest over the past few years. One advantage of this combination is the complementary mechanistic actions of insulin and GLP-1. Insulin increases glucose utilization and retards hepatic glucose production through direct actions in muscle, adipose tissue and the liver. On the other hand, GLP-1 stimulates insulin secretion, inhibits glucagon secretion and retards gastric emptying. Combining these effects results in powerful reductions in both fasting and postprandial glucose through diminished glucose entry into the bloodstream after food consumption, reduced hepatic production of glucose and increased glucose utilization. In addition, GLP-1 receptor agonists induce satiety, leading to decreases in food intakes and body weight, thereby preventing the weight gain often seen with insulin therapy. Clinical trials have verified that these physiological effects as a result of combining insulin with GLP-1 receptor agonists or DPP-4 inhibitors can indeed result in improved glycaemia, with limited risks of hypoglycaemia and weight gain. PMID:26774018

  2. Proteomic Analysis of INS-1 Rat Insulinoma Cells: ER Stress Effects and the Protective Role of Exenatide, a GLP-1 Receptor Agonist

    PubMed Central

    Kim, Mi-Kyung; Cho, Jin-Hwan; Lee, Jae-Jin; Son, Moon-Ho; Lee, Kong-Joo

    2015-01-01

    Beta cell death caused by endoplasmic reticulum (ER) stress is a key factor aggravating type 2 diabetes. Exenatide, a glucagon-like peptide (GLP)-1 receptor agonist, prevents beta cell death induced by thapsigargin, a selective inhibitor of ER calcium storage. Here, we report on our proteomic studies designed to elucidate the underlying mechanisms. We conducted comparative proteomic analyses of cellular protein profiles during thapsigargin-induced cell death in the absence and presence of exenatide in INS-1 rat insulinoma cells. Thapsigargin altered cellular proteins involved in metabolic processes and protein folding, whose alterations were variably modified by exenatide treatment. We categorized the proteins with thapsigargin initiated alterations into three groups: those whose alterations were 1) reversed by exenatide, 2) exaggerated by exenatide, and 3) unchanged by exenatide. The most significant effect of thapsigargin on INS-1 cells relevant to their apoptosis was the appearance of newly modified spots of heat shock proteins, thimet oligopeptidase and 14-3-3?, ?, and ?, and the prevention of their appearance by exenatide, suggesting that these proteins play major roles. We also found that various modifications in 14-3-3 isoforms, which precede their appearance and promote INS-1 cell death. This study provides insights into the mechanisms in ER stress-caused INS-1 cell death and its prevention by exenatide. PMID:25793496

  3. A novel dual GLP-1 and GIP incretin receptor agonist is neuroprotective in a mouse model of Parkinson's disease by reducing chronic inflammation in the brain.

    PubMed

    Cao, Lijun; Li, Dongfang; Feng, Peng; Li, Lin; Xue, Guo-Fang; Li, Guanglai; Hölscher, Christian

    2016-04-13

    The incretins glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are growth factors. GLP-1 mimetics are on the market as treatments for type 2 diabetes. Both GLP-1 and GIP mimetics have shown neuroprotective properties in previous studies. In addition, the GLP-1 mimetic exendin-4 has shown protective effects in a clinical trial in Parkinson's disease (PD) patients. Novel GLP-1/GIP dual-agonist peptides have been developed to treat diabetes. Here, we report the neuroprotective effects of a novel dual agonist (DA-JC1) in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. MPTP was injected once daily (20 mg/kg intraperitoneally) for 7 days and the dual agonist was coinjected once daily (50 nmol/kg intraperitoneally). We found that the drug reduced most of the MPTP-induced motor impairments in the rotarod, open-field locomotion, and muscle strength test. The number of tyrosine hydroxylase-positive neurons in the substantia nigra and striatum was reduced by MPTP and increased by DA-JC1. Synapse numbers (synaptophysin expression) were reduced in the substantia nigra and the striatum by MPTP and DA-JC1 reversed this effect. The activation of a chronic inflammation response by MPTP was considerably reduced by the dual agonist (DA) (astroglia and microglia activation). Therefore, dual agonists show promise as a novel treatment of PD. PMID:26918675

  4. Ability of GLP-1 to Decrease Food Intake is Dependent on Nutritional Status

    PubMed Central

    Ronveaux, Charlotte C; de Lartigue, Guillaume; Raybould, Helen E

    2014-01-01

    Gut-derived glucagon like peptide-1 (GLP-1) acts in the postprandial period to stimulate insulin secretion and inhibit gastrointestinal motor and secretory function; whether endogenous peripheral GLP-1 inhibits food intake is less clear. We hypothesized that GLP-1 inhibits food intake in the fed, but not fasted, state. There is evidence that GLP-1 acts via stimulation of vagal afferent neurons (VAN); we further hypothesized that the satiating effects of endogenous GLP-1 in the postprandial period is determined either by a change in GLP-1 receptor (GLP-1R) expression or localization to different cellular compartments in VAN. METHODS Food intake was recorded following administration of GLP-1 (50 ?g/kg or 100?g/kg) or saline (IP) in Wistar rats fasted for 18h or fasted then re-fed with 3g chow. GLP-1R protein expression and localization on VAN was determined by immunocytochemistry and immunoblots in animals fasted for 18h or fasted then re-fed for 40mins. GLP-1R mRNA level was detected in animals fasted for 18h or fasted and re-fed ad libitum for 2h. RESULTS GLP-1 (100?g/kg) significantly reduced 40 min food intake by 38% in re-fed but not fasted rats (p<0.05). GLP-1R mRNA or protein levels in VAN were unchanged in re-fed compared to fasted rats. However, GLP-1R localization to the plasma membrane was significantly increased in VAN by feeding. CONCLUSION Feeding changes the ability of peripheral GLP-1 to inhibit food intake. GLP-1Rs are trafficked to the plasma membrane in response to a meal. GLP-1 may play a role in regulating food intake in the postprandial period. PMID:24955496

  5. The Fate of Taspoglutide, a Weekly GLP-1 Receptor Agonist, Versus Twice-Daily Exenatide for Type 2 Diabetes

    PubMed Central

    Rosenstock, Julio; Balas, Bogdan; Charbonnel, Bernard; Bolli, Geremia B.; Boldrin, Mark; Ratner, Robert; Balena, Raffaella

    2013-01-01

    OBJECTIVE Taspoglutide is a long-acting glucagon-like peptide 1 receptor agonist developed for treatment of type 2 diabetes. The efficacy and safety of once-weekly taspoglutide was compared with twice-daily exenatide. RESEARCH DESIGN AND METHODS Overweight adults with inadequately controlled type 2 diabetes on metformin ± a thiazolidinedione were randomized to subcutaneous taspoglutide 10 mg weekly (n = 399), taspoglutide 20 mg weekly (n = 398), or exenatide 10 µg twice daily (n = 392) in an open-label, multicenter trial. The primary end point was change in HbA1c after 24 weeks. RESULTS Mean baseline HbA1c was 8.1%. Both doses of taspoglutide reduced HbA1c significantly more than exenatide (taspoglutide 10 mg: –1.24% [SE 0.09], difference –0.26, 95% CI –0.37 to –0.15, P < 0.0001; taspoglutide 20 mg: –1.31% [0.08], difference –0.33, –0.44 to –0.22, P < 0.0001; exenatide: –0.98% [0.08]). Both taspoglutide doses reduced fasting plasma glucose significantly more than exenatide. Taspoglutide reduced body weight (taspoglutide 10 mg, –1.6 kg; taspoglutide 20 mg, –2.3 kg) as did exenatide (–2.3 kg), which was greater than with taspoglutide 10 mg (P < 0.05). HbA1c and weight effects were maintained after 52 weeks. More adverse events with taspoglutide 10 and 20 mg than exenatide developed over time (nausea in 53, 59, and 35% and vomiting in 33, 37, and 16%, respectively). Allergic and injection-site reactions were more common with taspoglutide. Discontinuations were greater with taspoglutide. Antitaspoglutide antibodies were detected in 49% of patients. CONCLUSIONS Once-weekly taspoglutide demonstrated greater glycemic control than twice-daily exenatide with comparable weight loss, but with unacceptable levels of nausea/vomiting, injection-site reactions, and systemic allergic reactions. PMID:23139373

  6. GLP-1 and Amylin in the Treatment of Obesity.

    PubMed

    Jorsal, T; Rungby, J; Knop, F K; Vilsbll, T

    2016-01-01

    For decades, extensive research has aimed to clarify the role of pancreas and gut-derived peptide hormones in the regulation of glucose homeostasis and feeding behavior. Among these are the beta-cell hormone amylin and the intestinal L cell hormone glucagon-like peptide-1 (GLP-1). They exhibit distinct and yet several similar physiological actions including suppression of food intake, postprandial glucagon secretion, and gastric emptying-altogether lowering plasma glucose and body weight. These actions have been clinically exploited by the development of amylin and GLP-1 hormone analogs now used for treatment of diabetes and obesity. This review will outline the physiology and pharmacological potential of amylin and GLP-1, respectively, and focus on innovative peptide drug development leading to drugs acting on two or more distinct receptors, such as an amylin and GLP-1 peptide hybrid, potentially producing a more effective treatment strategy to combat the rapidly increasing global obesity. PMID:26699764

  7. A novel dual GLP-1 and GIP receptor agonist is neuroprotective in the MPTP mouse model of Parkinson's disease by increasing expression of BNDF.

    PubMed

    Ji, Chenhui; Xue, Guo-Fang; Lijun, Cao; Feng, Peng; Li, Dongfang; Li, Lin; Li, Guanglai; Hölscher, Christian

    2016-03-01

    The incretins glucagon-like peptide 1 (GLP-1) and glucose dependent insulinotropic polypeptide (GIP) are growth factors with neuroprotective properties. GLP-1 mimetics are on the market as treatments for type 2 diabetes and are well tolerated. Both GLP-1 and GIP mimetics have shown neuroprotective properties in animal models of Parkinson's and Alzheimer's disease. In addition, the GLP-1 mimetic exendin-4 has shown protective effects in a clinical trial in Parkinson's disease (PD) patients. Novel GLP-1/GIP dual-agonist peptides have been developed and are tested in diabetic patients. Here we demonstrate the neuroprotective effects of a novel dual agonist (DA-JC1) in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. MPTP was injected once-daily (20mg/kg i.p.) for 7 days, and the dual agonist was injected 30min later i.p. (50nmol/kg bw). The PI3k inhibitor LY294002 (0.6mg/kg i.v.) was co-injected in one group. DA-JC1 reduced or reversed most of the MPTP induced motor impairments in the rotarod and in a muscle strength test. The number of tyrosine hydroxylase (TH) positive neurons in the substantia nigra (SN) was reduced by MPTP and increased by DA-JC1. The ratio of anti-inflammatory Bcl-2 to pro-inflammatory BAX as well as the activation of the growth factor kinase Akt was reduced by MPTP and reversed by DA-JC1. The PI3k inhibitor had only limited effect on the DA-JC1 drug effect. Importantly, levels of the neuroprotective brain derived neurotropic factor (BDNF) were reduced by MPTP and enhanced by DA-JC1. The results demonstrate that DA-JC1 shows promise as a novel treatment for PD. PMID:26453833

  8. A new angle for glp-1 receptor agonist: the medical economics argument Editorial on: Huetson P, Palmer JL, Levorsen A, et al. Cost-effectiveness of the once-daily glp-1 receptor agonist lixisenatide compared to bolus insulin both in combination with basal insulin for the treatment of patients with type 2 diabetes in Norway. J Med Econ 2015: 1-13 [Epub ahead of print].

    PubMed

    Valencia, Willy Marcos; Florez, Hermes Jose

    2015-12-01

    Glucagon-like peptide-1 receptor agonists (GLP-1 RA) are relatively new medications for diabetes that offer a weight-loss profile that can be considered desirable for patients with both type 2 diabetes (T2D) and obesity. GLP-1 RA are effective in combination with insulin, and even slightly superior or at least equal to short-acting insulin in T2D; however, since they work in the incretin system, they may not be effective in long-standing disease. Additionally, only recently have publications reported their cardiovascular safety, and there is limited evidence for long-term effectiveness. The work presented by Huetson et al. offers a much needed perspective through a medical economic model for the long term cost-effectiveness of GLP-1 RA. The authors found benefits in quality-adjusted life years and reduced lifetime healthcare costs. While there are a few limitations, this study contributes to the understanding of these agents and their impact on the epidemics of obesity in T2D, where weight management is no longer an option, but an essential component of the diabetes plan of care. PMID:26337323

  9. GLP-1 signals via ERK in peripheral nerve and prevents nerve dysfunction in diabetic mice

    PubMed Central

    Jolivalt, C.G.; Fineman, M.; Deacon, C.F.; Carr, R.D.; Calcutt, N.A.

    2011-01-01

    Aims Glucagon-like peptide-1 (GLP-1) is an incretin hormone that induces glucose-dependent insulin secretion and may have neurotrophic properties. Our aim was to identify the presence and activity of GLP-1 receptors (GLP-1R) in peripheral nerve and to assess the impact of GLP-1R agonists on diabetes-induced nerve disorders. Materials and methods Tissues were collected from streptozotocin-diabetic rats. GLP-1R function was assessed by incubating tissues from normal and diabetic rats with GLP-1R agonists and antagonists and measuring induction of ERK1/2 phosphorylation by western blot. Streptozotocin-diabetic mice were also treated with the GLP-1R agonist exenatide for 8 weeks to assess the impact of GLP-1R signaling on peripheral nerve function and structure. Results GLP-1R protein was detected in rat dorsal root ganglia and the neurons and Schwann cells of the sciatic nerve. Protein levels were not affect by streptozotocin-induced diabetes. GLP-1R agonists did not signal via ERK1/2 in sciatic nerve of normal rats. However, GLP-1R agonists significantly increased pERK1/2 levels in sciatic nerves from diabetic rats, indicating that GLP-1Rs are functional in this tissue. Exenatide treatment did not affect blood sugar, insulin levels or paw thermal response latencies in either control or diabetic mice. However, the reductions of motor nerve conduction velocity and paw intraepidermal fibre density seen in diabetic mice were attenuated by exenatide treatment. Conclusions These data demonstrate that the peripheral nerve of diabetic rodents exhibits functional GLP-1R and suggest that GLP-1R-mediated ERK-signaling in sciatic nerve of diabetic rodents may protect large motor fibre function and small C fibre structure by a mechanism independent of glycaemic control. PMID:21635674

  10. GLP-1R agonism enhances adjustable gastric banding in diet-induced obese rats.

    PubMed

    Habegger, Kirk M; Kirchner, Henriette; Yi, Chun-Xia; Heppner, Kristy M; Sweeney, Dan; Ottaway, Nickki; Holland, Jenna; Amburgy, Sarah; Raver, Christine; Krishna, Radhakrishna; Müller, Timo D; Perez-Tilve, Diego; Pfluger, Paul T; Obici, Silvana; DiMarchi, Richard D; D'Alessio, David A; Seeley, Randy J; Tschöp, Matthias H

    2013-09-01

    Bariatric procedures vary in efficacy, but overall are more effective than behavioral and pharmaceutical treatment. Roux-en-Y gastric bypass causes increased secretion of glucagon-like peptide 1 (GLP-1) and reduces body weight (BW) more than adjustable gastric banding (AGB), which does not trigger increased GLP-1 secretion. Since GLP-1-based drugs consistently reduce BW, we hypothesized that GLP-1 receptor (GLP-1R) agonists would augment the effects of AGB. Male Long-Evans rats with diet-induced obesity received AGB implantation or sham surgery. GLP-1R agonism, cannabinoid receptor-1 (CB1-R) antagonism, or vehicle was combined with inflation to evaluate interaction between AGB and pharmacological treatments. GLP1-R agonism reduced BW in both sham and AGB rats (left uninflated) compared with vehicle-treated animals. Subsequent band inflation was ineffective in vehicle-treated rats but enhanced weight loss stimulated by GLP1-R agonism. In contrast, there was no additional BW loss when CB1-R antagonism was given with AGB. We found band inflation to trigger neural activation in areas of the nucleus of the solitary tract known to be targeted by GLP-1R agonism, offering a potential mechanism for the interaction. These data show that GLP-1R agonism, but not CB1-R antagonism, improves weight loss achieved by AGB and suggest an opportunity to optimize bariatric surgery with adjunctive pharmacotherapy. PMID:23775764

  11. Endogenous GLP-1 acts on paraventricular nucleus to suppress feeding: projection from nucleus tractus solitarius and activation of corticotropin-releasing hormone, nesfatin-1 and oxytocin neurons.

    PubMed

    Katsurada, Kenichi; Maejima, Yuko; Nakata, Masanori; Kodaira, Misato; Suyama, Shigetomo; Iwasaki, Yusaku; Kario, Kazuomi; Yada, Toshihiko

    2014-08-22

    Glucagon-like peptide-1 (GLP-1) receptor agonists have been used to treat type 2 diabetic patients and shown to reduce food intake and body weight. The anorexigenic effects of GLP-1 and GLP-1 receptor agonists are thought to be mediated primarily via the hypothalamic paraventricular nucleus (PVN). GLP-1, an intestinal hormone, is also localized in the nucleus tractus solitarius (NTS) of the brain stem. However, the role of endogenous GLP-1, particularly that in the NTS neurons, in feeding regulation remains to be established. The present study examined whether the NTS GLP-1 neurons project to PVN and whether the endogenous GLP-1 acts on PVN to restrict feeding. Intra-PVN injection of GLP-1 receptor antagonist exendin (9-39) increased food intake. Injection of retrograde tracer into PVN combined with immunohistochemistry for GLP-1 in NTS revealed direct projection of NTS GLP-1 neurons to PVN. Moreover, GLP-1 evoked Ca(2+) signaling in single neurons isolated from PVN. The majority of GLP-1-responsive neurons were immunoreactive predominantly to corticotropin-releasing hormone (CRH) and nesfatin-1, and less frequently to oxytocin. These results indicate that endogenous GLP-1 targets PVN to restrict feeding behavior, in which the projection from NTS GLP-1 neurons and activation of CRH and nesfatin-1 neurons might be implicated. This study reveals a neuronal basis for the anorexigenic effect of endogenous GLP-1 in the brain. PMID:25089000

  12. Mechanisms of Action of GLP-1 in the Pancreas

    PubMed Central

    Doyle, Máire E.; Egan, Josephine M.

    2007-01-01

    Glucagon-like peptide-1 is a hormone that is encoded in the proglucagon gene. It is mainly produced in enteroendocrine L cells of the gut and is secreted into the blood stream when food containing fat, protein hydrolysate and/or glucose enters the duodenum. Its particular effects on insulin and glucagon secretion have generated a flurry of research activity over the past twenty years culminating in a naturally occurring GLP-1 receptor agonist, exendin-4, now being used to treat type 2 diabetes. GLP-1 engages a specific G-protein coupled receptor that is present in tissues other than the pancreas (brain, kidney, lung, heart, major blood vessels). The most widely studied cell activated by GLP-1 is the insulin-secreting beta cell where its defining action is augmentation of glucose-induced insulin secretion. Upon GLP-1 receptor activation, adenylyl cyclase is activated and cAMP generated, leading, in turn, to cAMP-dependent activation of second messenger pathways, such as the PKA and Epac pathways. As well as short-term effects of enhancing glucose-induced insulin secretion, continuous GLP-1 receptor activation also increases insulin synthesis, and beta cell proliferation and neogenesis. Although these latter effects cannot be currently monitored in humans, there are substantial improvements in glucose tolerance and increases in both first phase and plateau phase insulin secretory responses in type 2 diabetic patients treated with exendin-4. This review we will focus on the effects resulting from GLP-1 receptor activation in islets of Langerhans PMID:17306374

  13. The Anorectic Effect of GLP-1 in Rats Is Nutrient Dependent

    PubMed Central

    Sandoval, Darleen; Barrera, Jason G.; Stefater, Margaret A.; Sisley, Stephanie; Woods, Stephen C.; DAlessio, David D.; Seeley, Randy J.

    2012-01-01

    GLP-1-induced insulin secretion from the ?-cell is dependent upon glucose availability. The purpose of the current study was to determine whether CNS GLP-1 signaling is also glucose-dependent. We found that fasting blunted the ability of 3rd cerebroventricularly (i3vt)-administered GLP-1 to reduce food intake. However, fasted animals maintained the anorexic response to melanotan II, a melanocortin receptor agonist, indicating a specific effect of fasting on GLP-1 action. We also found that i3vt administration of leptin, which is also decreased with fasting, was not able to potentiate GLP-1 action in fasted animals. However, we did find that CNS glucose sensing is important in GLP-1 action. Specifically, we found that i3vt injection of 2DG, a drug that blocks cellular glucose utilization, and AICAR which activates AMPK, both blocked GLP-1-induced reductions in food intake. To examine the role of glucokinase, an important CNS glucose sensor, we studied glucokinase-heterozygous knockout mice, but found that they responded normally to peripherally administered GLP-1 and exendin-4. Interestingly, oral, but not i3vt or IP glucose potentiated GLP-1?s anorectic action. Thus, CNS and peripheral fuel sensing are both important in GLP-1-induced reductions in food intake. PMID:23284795

  14. TGR5 potentiates GLP-1 secretion in response to anionic exchange resins

    PubMed Central

    Harach, Taoufiq; Pols, Thijs W. H.; Nomura, Mitsunori; Maida, Adriano; Watanabe, Mitsuhiro; Auwerx, Johan; Schoonjans, Kristina

    2012-01-01

    Anionic exchange resins are bona fide cholesterol-lowering agents with glycemia lowering actions in diabetic patients. Potentiation of intestinal GLP-1 secretion has been proposed to contribute to the glycemia lowering effect of these non-systemic drugs. Here, we show that resin exposure enhances GLP-1 secretion and improves glycemic control in diet-induced animal models of diabesity, effects which are critically dependent on TGR5, a G protein-coupled receptor that is activated by bile acids. We identified the colon as a major source of GLP-1 secretion after resin treatment. Furthermore, we demonstrate that the boost in GLP-1 release by resins is due to both enhanced TGR5-dependent production of the precursor transcript of GLP-1 as well as to the local enrichment of TGR5 agonists in the colon. Thus, TGR5 represents an essential component in the pathway mediating the enhanced GLP-1 release in response to anionic exchange resins. PMID:22666533

  15. TGR5 potentiates GLP-1 secretion in response to anionic exchange resins.

    PubMed

    Harach, Taoufiq; Pols, Thijs W H; Nomura, Mitsunori; Maida, Adriano; Watanabe, Mitsuhiro; Auwerx, Johan; Schoonjans, Kristina

    2012-01-01

    Anionic exchange resins are bona fide cholesterol-lowering agents with glycemia lowering actions in diabetic patients. Potentiation of intestinal GLP-1 secretion has been proposed to contribute to the glycemia lowering effect of these non-systemic drugs. Here, we show that resin exposure enhances GLP-1 secretion and improves glycemic control in diet-induced animal models of "diabesity", effects which are critically dependent on TGR5, a G protein-coupled receptor that is activated by bile acids. We identified the colon as a major source of GLP-1 secretion after resin treatment. Furthermore, we demonstrate that the boost in GLP-1 release by resins is due to both enhanced TGR5-dependent production of the precursor transcript of GLP-1 as well as to the local enrichment of TGR5 agonists in the colon. Thus, TGR5 represents an essential component in the pathway mediating the enhanced GLP-1 release in response to anionic exchange resins. PMID:22666533

  16. Impact of GLP-1 Receptor Agonists on Major Gastrointestinal Disorders for Type 2 Diabetes Mellitus: A Mixed Treatment Comparison Meta-Analysis

    PubMed Central

    Sun, Feng; Yu, Kai; Yang, Zhirong; Wu, Shanshan; Zhang, Yuan; Shi, Luwen; Ji, Linong; Zhan, Siyan

    2012-01-01

    Aim. We aimed to integrate evidence from all randomized controlled trials (RCTs) and assess the impact of different doses of exenatide or liraglutide on major gastrointestinal adverse events (GIAEs) in type 2 diabetes (T2DM). Methods. RCTs evaluating different doses of exenatide and liraglutide against placebo or an active comparator with treatment duration ≥4 weeks were searched and reviewed. A total of 35, 32 and 28 RCTs met the selection criteria evaluated for nausea, vomiting, and diarrhea, respectively. Pairwise random-effects meta-analyses and mixed treatment comparisons (MTC) of all RCTs were performed. Results. All GLP-1 dose groups significantly increased the probability of nausea, vomiting and diarrhea relative to placebo and conventional treatment. MTC meta-analysis showed that there was 99.2% and 85.0% probability, respectively, that people with exenatide 10 μg twice daily (EX10BID) was more vulnerable to nausea and vomiting than those with other treatments. There was a 78.90% probability that liraglutide 1.2 mg once daily (LIR1.2) has a higher risk of diarrhea than other groups. A dose-dependent relationship of exenatide and liraglutide on GIAEs was observed. Conclusions. Our MTC meta-analysis suggests that patients should be warned about these GIAEs in early stage of treatment by GLP-1s, especially by EX10BID and LIR1.2, to promote treatment compliance. PMID:23365557

  17. Incretin therapies: highlighting common features and differences in the modes of action of glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors.

    PubMed

    Nauck, M

    2016-03-01

    Over the last few years, incretin-based therapies have emerged as important agents in the treatment of type 2 diabetes (T2D). These agents exert their effect via the incretin system, specifically targeting the receptor for the incretin hormone glucagon-like peptide 1 (GLP-1), which is partly responsible for augmenting glucose-dependent insulin secretion in response to nutrient intake (the 'incretin effect'). In patients with T2D, pharmacological doses/concentrations of GLP-1 can compensate for the inability of diabetic ? cells to respond to the main incretin hormone glucose-dependent insulinotropic polypeptide, and this is therefore a suitable parent compound for incretin-based glucose-lowering medications. Two classes of incretin-based therapies are available: GLP-1 receptor agonists (GLP-1RAs) and dipeptidyl peptidase-4 (DPP-4) inhibitors. GLP-1RAs promote GLP-1 receptor (GLP-1R) signalling by providing GLP-1R stimulation through 'incretin mimetics' circulating at pharmacological concentrations, whereas DPP-4 inhibitors prevent the degradation of endogenously released GLP-1. Both agents produce reductions in plasma glucose and, as a result of their glucose-dependent mode of action, this is associated with low rates of hypoglycaemia; however, there are distinct modes of action resulting in differing efficacy and tolerability profiles. Furthermore, as their actions are not restricted to stimulating insulin secretion, these agents have also been associated with additional non-glycaemic benefits such as weight loss, improvements in ?-cell function and cardiovascular risk markers. These attributes have made incretin therapies attractive treatments for the management of T2D and have presented physicians with an opportunity to tailor treatment plans. This review endeavours to outline the commonalities and differences among incretin-based therapies and to provide guidance regarding agents most suitable for treating T2D in individual patients. PMID:26489970

  18. Does a GLP-1 receptor agonist change glucose tolerance in patients treated with antipsychotic medications? Design of a randomised, double-blinded, placebo-controlled clinical trial

    PubMed Central

    Larsen, Julie Rask; Vedtofte, Louise; Holst, Jens Juul; Oturai, Peter; Kjr, Andreas; Corell, Christoph U; Vilsbll, Tina; Fink-Jensen, Anders

    2014-01-01

    Background Metabolic disturbances, obesity and life-shortening cardiovascular morbidity are major clinical problems among patients with antipsychotic treatment. Especially two of the most efficacious antipsychotics, clozapine and olanzapine, cause weight gain and metabolic disturbances. Additionally, patients with schizophrenia-spectrum disorders not infrequently consume alcohol. Glucagon-like peptide-1 (GLP-1) has shown to improve glycaemic control and reduce alcohol intake among patients with type 2 diabetes. Objectives To investigate whether the beneficial effects of GLP-1 analogues on glycaemic control and alcohol intake, in patients with type 2 diabetes, can be extended to a population of pre-diabetic psychiatric patients receiving antipsychotic treatment. Methods and analysis Trial design, intervention and participants: The study is a 16-week, double-blinded, randomised, parallel-group, placebo-controlled clinical trial, designed to evaluate the effects of the GLP-1 analogue liraglutide on glycaemic control and alcohol intake compared to placebo in patients who are prediabetic, overweight (body mass index ?27?kg/m2), diagnosed with a schizophrenia-spectrum disorder and on stable treatment with either clozapine or olanzapine. Outcomes: The primary endpoint is the change in glucose tolerance from baseline (measured by area under the curve for the plasma glucose excursion following a 4?h 75?g oral glucose tolerance test) to follow-up at week 16. The secondary endpoints include changes of dysglycaemia, body weight, waist circumference, blood pressure, secretion of incretin hormones, insulin sensitivity and ? cell function, dual-energy X-ray absorption scan (body composition), lipid profile, liver function and measures of quality of life, daily functioning, severity of the psychiatric disease and alcohol consumption from baseline to follow-up at week 16. Status: Currently recruiting patients. Ethics and dissemination Ethical approval has been obtained. Before screening, all patients will be provided oral and written information about the trial. The study will be disseminated by peer-review publications and conference presentations. Trial registration number ClinicalTrials.gov: NCT01845259, EudraCT: 2013-000121-31. PMID:24667381

  19. PACAP intraperitoneal treatment suppresses appetite and food intake via PAC1 receptor in mice by inhibiting ghrelin and increasing GLP-1 and leptin.

    PubMed

    Vu, John P; Goyal, Deepinder; Luong, Leon; Oh, Suwan; Sandhu, Ravneet; Norris, Joshua; Parsons, William; Pisegna, Joseph R; Germano, Patrizia M

    2015-11-15

    Pituitary adenylate cyclase-activating peptide (PACAP) is expressed within the gastroenteric system, where it has profound physiological effects. PACAP was shown to regulate food intake and thermogenesis centrally; however, PACAP peripheral regulation of appetite and feeding behavior is unknown. Therefore, we studied PACAP's effect on appetite and food intake control by analyzing feeding behavior and metabolic hormones in PAC1-deficient (PAC1-/-) and age-matched wild-type (WT) mice intraperitoneally injected with PACAP1-38 or PACAP1-27 before the dark phase of feeding. Food intake and feeding behavior were analyzed using the BioDAQ system. Active ghrelin, glucagon-like peptide-1 (GLP-1), leptin, peptide YY, pancreatic polypeptide, and insulin were measured following PACAP1-38 administration in fasted WT mice. PACAP1-38/PACAP1-27 injected into WT mice significantly decreased in a dose-dependent manner cumulative food intake and reduced bout and meal feeding parameters. Conversely, PACAP1-38 injected into PAC1-/- mice failed to significantly change food intake. Importantly, PACAP1-38 reduced plasma levels of active ghrelin compared with vehicle in WT mice. In PAC1-/- mice, fasting levels of active ghrelin, GLP-1, insulin, and leptin and postprandial levels of active ghrelin and insulin were significantly altered compared with levels in WT mice. Therefore, PAC1 is a novel regulator of appetite/satiety. PACAP1-38/PACAP1-27 significantly reduced appetite and food intake through PAC1. In PAC1-/- mice, the regulation of anorexigenic/orexigenic hormones was abolished, whereas active ghrelin remained elevated even postprandially. PACAP significantly reduced active ghrelin in fasting conditions. These results establish a role for PACAP via PAC1 in the peripheral regulation of appetite/satiety and suggest future studies to explore a therapeutic use of PACAP or PAC1 agonists for obesity treatment. PMID:26336928

  20. Heterobivalent GLP-1/Glibenclamide for Targeting Pancreatic ?-cells

    PubMed Central

    Hart, Nathaniel J.; Chung, Woo Jin; Weber, Craig; Ananthakrishnan, Kameswari; Anderson, Miranda; Patek, Renata; Zhang, Zhanyu; Limesand, Sean W.; Vagner, Josef; Lynch, Ronald M.

    2014-01-01

    Guanine nucleotide (G)-protein coupled receptor (GPCR) linked cell signaling cascades are initiated upon binding of a specific agonist ligand to its cell surface receptor. Linking multiple heterologous ligands that simultaneously bind and potentially cross-link different receptors on the cell surface is a unique approach to modulate cell responses. Moreover, if the target receptors are pre-selected, based on analysis of cell specific expression of a receptor combination, then the linked binding elements may provide enhanced specificity of targeting to the cell type of interest; i.e., only to cells that express the complementary receptors. Two receptors whose expression is relatively specific, as a combination, to the insulin secreting ?-cell of the pancreas, are the sulfonylurea-1 (SUR1) and the glucagon-like peptide-1 (GLP-1) receptors. A heterobivalent ligand was assembled of the active fragment of GLP-1 ([Phe12, Arg36] 7-36 GLP-1) and glibenclamide,a small organic ligand to the SUR1. The synthetic construct was labelled with Cy5 or Europium chelated in DTPA to evaluate binding to ?-cell lines using fluorescence microscopy or time-resolved saturation and competition binding assays, respectively. Once the ligand binds to ?-cells, it is rapidly capped and presumably removed from the cell surface via endocytosis. The bivalent ligand had an affinity ~3 fold higher than monomeric Europium labelled GLP-1, likely due to cooperative binding to the complimentary receptors on the ?TC3 cells. The high affinity binding was lost in the presence of either unlabelled monomer demonstrating that interaction with both receptors is required for the enhanced binding at low concentrations. Importantly, bivalent enhancement was accomplished in a cell system with physiological levels of expression of the complementary receptors, indicating that this approach may be applicable for ?-cell targeting in vivo. PMID:24259278

  1. Structurally modified analogues of glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) as future antidiabetic agents.

    PubMed

    Green, Brian D; Gault, Victor A; O'harte, Finbarr P M; Flatt, Peter R

    2004-01-01

    Glucagon-like peptide-1(7-36)amide (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are gastrointestinal insulin-releasing hormones involved in the regulation of postprandial nutrient homeostasis. These two incretin hormones are glucose-dependent stimulators of pancreatic beta-cell function, exhibiting a spectrum of secondary extrapancreatic activities, which favour the efficient control of blood glucose homeostasis. Such actions of GLP-1 and GIP have generated considerable interest in their possible exploitation as novel agents for the treatment of type 2 diabetes. Despite the many attributes of GLP-1 and GIP as possible future antidiabetic agents, their rapid degradation in the circulation by dipeptidyl peptidase IV (DPP IV) to inactive truncated forms GLP-1(9-36)amide and GIP(3-42), severely limits their therapeutic usefulness. This review will consider recent developments in the design and effectiveness of synthetic DPP IV-resistant analogues of GLP-1 and GIP. Consideration will be given to the effects of N-terminal modification and amino acid substitution of GLP-1 and GIP either side of the DPP IV cleavage site on (i) susceptibility to enzymatic degradation, (ii) binding to native hormone receptor, (iii) ability to elevate intracellular cyclic AMP, (iv) potency as insulin secretagogues, and (v) antihyperglycaemic activity in type 2 diabetes. It will be shown that structural modification can produce a varied set of biological activities, ranging from more efficacious analogues to those which antagonise the activity of the native hormone. The antidiabetic properties of the best GLP-1 and GIP analogues indeed promise to provide the basis for novel, effective and long-acting drugs for type 2 diabetes therapy. This approach is currently being pursued actively by the pharmaceutical industry. PMID:15579061

  2. Intestinal Bile Acid Composition Modulates Prohormone Convertase 1/3 (PC1/3) Expression and Consequent GLP-1 Production in Male Mice.

    PubMed

    Morimoto, Kohkichi; Watanabe, Mitsuhiro; Sugizaki, Taichi; Irie, Jun-Ichiro; Itoh, Hiroshi

    2016-03-01

    Besides an established medication for hypercholesterolemia, bile acid binding resins (BABRs) present antidiabetic effects. Although the mechanisms underlying these effects are still enigmatic, glucagon-like peptide-1 (GLP-1) appears to be involved. In addition to a few reported mechanisms, we propose prohormone convertase 1/3 (PC1/3), an essential enzyme of GLP-1 production, as a potent molecule in the GLP-1 release induced by BABRs. In our study, the BABR colestimide leads to a bile acid-specific G protein-coupled receptor TGR5-dependent induction of PC1/3 gene expression. Here, we focused on the alteration of intestinal bile acid composition and consequent increase of total TGR5 agonistic activity to explain the TGR5 activation. Furthermore, we demonstrate that nuclear factor of activated T cells mediates the TGR5-triggered PC1/3 gene expression. Altogether, our data indicate that the TGR5-dependent intestinal PC1/3 gene expression supports the BABR-stimulated GLP-1 release. We also propose a combination of BABR and dipeptidyl peptidase-4 inhibitor in the context of GLP-1-based antidiabetic therapy. PMID:26789236

  3. Activation of glucagon-like peptide-1 receptor inhibits growth and promotes apoptosis of human pancreatic cancer cells in a cAMP-dependent manner.

    PubMed

    Zhao, Hejun; Wei, Rui; Wang, Liang; Tian, Qing; Tao, Ming; Ke, Jing; Liu, Ye; Hou, Wenfang; Zhang, Lin; Yang, Jin; Hong, Tianpei

    2014-06-15

    Glucagon-like peptide-1 (GLP-1) promotes pancreatic ?-cell regeneration through GLP-1 receptor (GLP-1R) activation. However, whether it promotes exocrine pancreas growth and thereby increases the risk of pancreatic cancer has been a topic of debate in recent years. Clinical data and animal studies published so far have been controversial. In the present study, we report that GLP-1R activation with liraglutide inhibited growth and promoted apoptosis in human pancreatic cancer cell lines in vitro and attenuated pancreatic tumor growth in a mouse xenograft model in vivo. These effects of liraglutide were mediated through activation of cAMP production and consequent inhibition of Akt and ERK1/2 signaling pathways in a GLP-1R-dependent manner. Moreover, we examined GLP-1R expression in human pancreatic cancer tissues and found that 43.3% of tumor tissues were GLP-1R-null. In the GLP-1R-positive tumor tissues (56.7%), the level of GLP-1R was lower compared with that in tumor-adjacent normal pancreatic tissues. Furthermore, the GLP-1R-positive tumors were significantly smaller than the GLP-1R-null tumors. Our study shows for the first time that GLP-1R activation has a cytoreductive effect on human pancreatic cancer cells in vitro and in vivo, which may help address safety concerns of GLP-1-based therapies in the context of human pancreatic cancer. PMID:24801389

  4. The GLP-1 receptor agonist liraglutide reduces pathology-specific tau phosphorylation and improves motor function in a transgenic hTauP301L mouse model of tauopathy.

    PubMed

    Hansen, Henrik H; Barkholt, Pernille; Fabricius, Katrine; Jelsing, Jacob; Terwel, Dick; Pyke, Charles; Knudsen, Lotte Bjerre; Vrang, Niels

    2016-03-01

    In addition to a prominent role in glycemic control, glucagon-like peptide 1 (GLP-1) receptor agonists exhibit neuroprotective properties. There is mounting experimental evidence that GLP-1 receptor agonists, including liraglutide, may enhance synaptic plasticity, counteract cognitive deficits and ameliorate neurodegenerative features in preclinical models of Alzheimer's disease (AD), predominantly in the context of ?-amyloid toxicity. Here we characterized the effects of liraglutide in a transgenic mutant tau (hTauP301L) mouse tauopathy model, which develops age-dependent pathology-specific neuronal tau phosphorylation and neurofibrillary tangle formation with progressively compromised motor function (limb clasping). Liraglutide (500g/kg/day, s.c., q.d., n=18) or vehicle (n=18) was administered to hTauP301L mice for 6 months from the age of three months. Vehicle-dosed wild-type FVB/N mice served as normal control (n=17). The onset and severity of hind limb clasping was markedly different in liraglutide and vehicle-dosed transgenic mice. Clasping behavior was observed in 61% of vehicle-dosed hTauP301L mice with a 55% survival rate in 9-month old transgenic mice. In contrast, liraglutide treatment reduced the clasping rate to 39% of hTauP301L mice, and fully prevented clasping-associated lethality resulting in a survival rate of 89%. Stereological analyses demonstrated that hTauP301L mice exhibited hindbrain-dominant neuronal accumulation of phosphorylated tau closely correlated to the severity of clasping behavior. In correspondence, liraglutide treatment significantly reduced neuronal phospho-tau load by 61.910.2% (p<0.001) in hTauP301L mice, as compared to vehicle-dosed controls. In conclusion, liraglutide significantly reduced tau pathology in a transgenic mouse tauopathy model. PMID:26746341

  5. Treatment of antipsychotic-associated obesity with a GLP-1 receptor agonistprotocol for an investigator-initiated prospective, randomised, placebo-controlled, double-blinded intervention study: the TAO study protocol

    PubMed Central

    Ishy, Pelle L; Knop, Filip K; Broberg, Brian V; Baandrup, Lone; Fagerlund, Birgitte; Jrgensen, Niklas R; Andersen, Ulrik B; Rostrup, Egill; Glenthj, Birte Y; Ebdrup, Bjrn H

    2014-01-01

    Introduction Antipsychotic medication is widely associated with dysmetabolism including obesity and type 2 diabetes, cardiovascular-related diseases and early death. Obesity is considered the single most important risk factor for cardiovascular morbidity and mortality. Interventions against antipsychotic-associated obesity are limited and insufficient. Glucagon-like peptide-1 (GLP-1) receptor agonists are approved for the treatment of type 2 diabetes, but their bodyweight-lowering effects have also been recognised in patients with non-diabetes. The primary endpoint of this trial is weight loss after 3?months of treatment with a GLP-1 receptor agonist (exenatide once weekly) in patients with non-diabetic schizophrenia with antipsychotic-associated obesity. Secondary endpoints include physiological and metabolic measurements, various psychopathological and cognitive measures, and structural and functional brain MRI. Methods and analysis 40 obese patients with schizophrenia or schizoaffective disorder treated with antipsychotic drugs will be randomised to subcutaneous injection of exenatide once weekly (2?mg) or placebo for 3?months, adjunctive to their antipsychotic treatment. Ethics and dissemination The trial has been approved by the Danish Health and Medicines Authority, the National Committee on Health Research Ethics and the Danish Data Protection Agency. Trial participation presupposes theoral and written patient informed consent. An external, independent monitoring committee (Good Clinical Practice Unit at Copenhagen University Hospital) will monitor the study according to the GCP Guidelines. Trial data, including positive, negative and inconclusive results, will be presented at national and international scientific meetings and conferences. Papers will be submitted to peer-reviewed journals. Trial registration ClinicalTrials.gov identifier: NCT01794429; National Committee on Health Research Ethics project number: 36378; EudraCT nr: 2012-005404-17; The Danish Data Protection Agency project number: RHP-2012-027. PMID:24401727

  6. Discovery of the Once-Weekly Glucagon-Like Peptide-1 (GLP-1) Analogue Semaglutide.

    PubMed

    Lau, Jesper; Bloch, Paw; Schffer, Lauge; Pettersson, Ingrid; Spetzler, Jane; Kofoed, Jacob; Madsen, Kjeld; Knudsen, Lotte Bjerre; McGuire, James; Steensgaard, Dorte Bjerre; Strauss, Holger Martin; Gram, Dorte X; Knudsen, Sanne Mller; Nielsen, Flemming Seier; Thygesen, Peter; Reedtz-Runge, Steffen; Kruse, Thomas

    2015-09-24

    Liraglutide is an acylated glucagon-like peptide-1 (GLP-1) analogue that binds to serum albumin in vivo and is approved for once-daily treatment of diabetes as well as obesity. The aim of the present studies was to design a once weekly GLP-1 analogue by increasing albumin affinity and secure full stability against metabolic degradation. The fatty acid moiety and the linking chemistry to GLP-1 were the key features to secure high albumin affinity and GLP-1 receptor (GLP-1R) potency and in obtaining a prolonged exposure and action of the GLP-1 analogue. Semaglutide was selected as the optimal once weekly candidate. Semaglutide has two amino acid substitutions compared to human GLP-1 (Aib(8), Arg(34)) and is derivatized at lysine 26. The GLP-1R affinity of semaglutide (0.38 0.06 nM) was three-fold decreased compared to liraglutide, whereas the albumin affinity was increased. The plasma half-life was 46.1 h in mini-pigs following i.v. administration, and semaglutide has an MRT of 63.6 h after s.c. dosing to mini-pigs. Semaglutide is currently in phase 3 clinical testing. PMID:26308095

  7. Glucagon-like peptide-1 receptor overexpression in cancer and its impact on clinical applications.

    PubMed

    Krner, Meike; Christ, Emanuel; Wild, Damian; Reubi, Jean Claude

    2012-01-01

    Peptide hormones of the glucagon-like peptide (GLP) family play an increasing clinical role, such as GLP-1 in diabetes therapy. Moreover, GLP receptors are overexpressed in various human tumor types and therefore represent molecular targets for important clinical applications. In particular, virtually all benign insulinomas highly overexpress GLP-1 receptors (GLP-1R). Targeting GLP-1R with the stable GLP-1 analogs (111)In-DOTA/DPTA-exendin-4 offers a new approach to successfully localize these small tumors. This non-invasive technique has the potential to replace the invasive localization of insulinomas by selective arterial stimulation and venous sampling. Malignant insulinomas, in contrast to their benign counterparts, express GLP-1R in only one-third of the cases, while they more often express the somatostatin type 2 receptors. Importantly, one of the two receptors appears to be always expressed in malignant insulinomas. The GLP-1R overexpression in selected cancers is worth to be kept in mind with regard to the increasing use of GLP-1 analogs for diabetes therapy. While the functional role of GLP-1R in neoplasia is not known yet, it may be safe to monitor patients undergoing GLP-1 therapy carefully. PMID:23230431

  8. Glucagon-like peptide-1 receptor overexpression in cancer and its impact on clinical applications

    PubMed Central

    Krner, Meike; Christ, Emanuel; Wild, Damian; Reubi, Jean Claude

    2012-01-01

    Peptide hormones of the glucagon-like peptide (GLP) family play an increasing clinical role, such as GLP-1 in diabetes therapy. Moreover, GLP receptors are overexpressed in various human tumor types and therefore represent molecular targets for important clinical applications. In particular, virtually all benign insulinomas highly overexpress GLP-1 receptors (GLP-1R). Targeting GLP-1R with the stable GLP-1 analogs 111In-DOTA/DPTA-exendin-4 offers a new approach to successfully localize these small tumors. This non-invasive technique has the potential to replace the invasive localization of insulinomas by selective arterial stimulation and venous sampling. Malignant insulinomas, in contrast to their benign counterparts, express GLP-1R in only one-third of the cases, while they more often express the somatostatin type 2 receptors. Importantly, one of the two receptors appears to be always expressed in malignant insulinomas. The GLP-1R overexpression in selected cancers is worth to be kept in mind with regard to the increasing use of GLP-1 analogs for diabetes therapy. While the functional role of GLP-1R in neoplasia is not known yet, it may be safe to monitor patients undergoing GLP-1 therapy carefully. PMID:23230431

  9. Circulating glucagon-like peptide-1 (GLP-1) inhibits eating in male rats by acting in the hindbrain and without inducing avoidance.

    PubMed

    Punjabi, Mukesh; Arnold, Myrtha; Rttimann, Elisabeth; Graber, Mariana; Geary, Nori; Pacheco-Lpez, Gustavo; Langhans, Wolfgang

    2014-05-01

    To address the neural mediation of the eating-inhibitory effect of circulating glucagon-like peptide-1 (GLP-1), we investigated the effects of 1) intra-fourth ventricular infusion of the GLP-1 receptor antagonist exendin-9 or 2) area postrema lesion on the eating-inhibitory effect of intrameal hepatic portal vein (HPV) GLP-1 infusion in adult male rats. To evaluate the physiological relevance of the observed effect we examined 3) the influence of GLP-1 on flavor acceptance in a 2-bottle conditioned flavor avoidance test, and 4) measured active GLP-1 in the HPV and vena cava (VC) in relation to a meal and in the VC after HPV GLP-1 infusion. Intrameal HPV GLP-1 infusion (1 nmol/kg body weight-5 min) specifically reduced ongoing meal size by almost 40% (P < .05). Intra-fourth ventricular exendin-9 (10 ?g/rat) itself did not affect eating, but attenuated (P < .05) the satiating effect of HPV GLP-1. Area postrema lesion also blocked (P < .05) the eating-inhibitory effect of HPV GLP-1. Pairing consumption of flavored saccharin solutions with HPV GLP-1 infusion did not alter flavor acceptance, indicating that HPV GLP-1 can inhibit eating without inducing malaise. A regular chow meal transiently increased (P < .05) HPV, but not VC, plasma active GLP-1 levels, whereas HPV GLP-1 infusion caused a transient supraphysiological increase (P < .01) in VC GLP-1 concentration 3 minutes after infusion onset. The results implicate hindbrain GLP-1 receptors and the area postrema in the eating-inhibitory effect of circulating GLP-1, but question the physiological relevance of the eating-inhibitory effect of iv infused GLP-1 under our conditions. PMID:24601880

  10. Cyclic alpha-conotoxin peptidomimetic chimeras as potent GLP-1R agonists.

    PubMed

    Swedberg, Joakim E; Schroeder, Christina I; Mitchell, Justin M; Durek, Thomas; Fairlie, David P; Edmonds, David J; Griffith, David A; Ruggeri, Roger B; Derksen, David R; Loria, Paula M; Liras, Spiros; Price, David A; Craik, David J

    2015-10-20

    Type 2 diabetes mellitus (T2DM) results from compromised pancreatic ?-cell function, reduced insulin production, and lowered insulin sensitivity in target organs resulting in hyperglycemia. The GLP-1 hormone has two biologically active forms, GLP-1-(7-37) and GLP-1-(7-36)amide, which are equipotent at the glucagon-like peptide-1 receptor (GLP-1R). These peptides are central both to normal glucose metabolism and dysregulation in T2DM. Several structurally modified GLP-1 analogues are now approved drugs, and a number of other analogues are in clinical trials. None of these compounds is orally bioavailable and all require parenteral delivery. Recently, a number of smaller peptidomimetics containing 11-12 natural and unnatural amino acids have been identified that have similar insulin regulating profiles as GLP-1. The ?-conotoxins are a class of disulfide rich peptide venoms isolated from cone snails, and are known for their highly constrained structures and resistance to enzymatic degradation. In this study, we examined whether 11-residue peptidomimetics incorporated into ?-conotoxin scaffolds, forming monocyclic or bicyclic compounds constrained by disulfide bonds and/or backbone cyclization, could activate the GLP-1 receptor (GLP-1R). Several compounds showed potent (nanomolar) agonist activity at GLP-1R, as evaluated via cAMP signaling. In addition, HPLC retention times and in silico calculations suggested that mono- and bicyclic compounds had more favorable n-octanol/water partition coefficients according to the virtual partition coefficient model (vLogP), while maintaining a smaller radius of gyration compared to corresponding uncyclized peptidomimetics. Our findings suggest that cyclic peptidomimetics provide a potential avenue for future design of potent, compact ligands targeting GLP-1R and possessing improved physicochemical properties. PMID:26352676

  11. Differential Stimulation of Insulin Secretion by GLP-1 and Kisspeptin-10

    PubMed Central

    Schwetz, Tara A.; Reissaus, Christopher A.; Piston, David W.

    2014-01-01

    ?-cells in the pancreatic islet respond to elevated plasma glucose by secreting insulin to maintain glucose homeostasis. In addition to glucose stimulation, insulin secretion is modulated by numerous G-protein coupled receptors (GPCRs). The GPCR ligands Kisspeptin-10 (KP) and glucagon-like peptide-1 (GLP-1) potentiate insulin secretion through Gq and Gs-coupled receptors, respectively. Despite many studies, the signaling mechanisms by which KP and GLP-1 potentiate insulin release are not thoroughly understood. We investigated the downstream signaling pathways of these ligands and their affects on cellular redox potential, intracellular calcium activity ([Ca2+]i), and insulin secretion from ?-cells within intact murine islets. In contrast to previous studies performed on single ?-cells, neither KP nor GLP-1 affect [Ca2+]i upon stimulation with glucose. KP significantly increases the cellular redox potential, while no effect is observed with GLP-1, suggesting that KP and GLP-1 potentiate insulin secretion through different mechanisms. Co-treatment with KP and the G??-subunit inhibitor gallein inhibits insulin secretion similar to that observed with gallein alone, while co-treatment with gallein and GLP-1 does not differ from GLP-1 alone. In contrast, co-treatment with the G?? activator mSIRK and either KP or GLP-1 stimulates insulin release similar to mSIRK alone. Neither gallein nor mSIRK alter [Ca2+]i activity in the presence of KP or GLP-1. These data suggest that KP likely alters insulin secretion through a G??-dependent process that stimulates glucose metabolism without altering Ca2+ activity, while GLP-1 does so, at least partly, through a G?-dependent pathway that is independent of both metabolism and Ca2+. PMID:25401335

  12. Endogenous GLP-1 as a key self-defense molecule against lipotoxicity in pancreatic islets.

    PubMed

    Huang, Chenghu; Yuan, Li; Cao, Shuyi

    2015-07-01

    The number of pro-α cells is known to increase in response to β cell injury and these cells then generate glucagon-like peptide-1 (GLP-1), thus attenuating the development of diabetes. The aim of the present study was to further examine the role and the mechanisms responsible for intra-islet GLP-1 production as a self-protective response against lipotoxicity. The levels of the key enzyme, prohormone convertase 1/3 (PC1/3), as well as the synthesis and release of GLP-1 in models of lipotoxicity were measured. Furthermore, islet viability, apoptosis, oxidative stress and inflammation, as well as islet structure were assessed after altering GLP-1 receptor signaling. Both prolonged exposure to palmitate and a high-fat diet facilitated PC1/3 expression, as well as the synthesis and release of GLP-1 induced by β cell injury and the generation of pro-α cells. Prolonged exposure to palmitate increased reactive oxygen species (ROS) production, and the antioxidant, N-acetylcysteine (NAC), partially prevented the detrimental effects induced by palmitate on β cells, resulting in decreased GLP-1 levels. Furthermore, the inhibition of GLP-1 receptor (GLP-1R) signaling by treatment with exendin‑(9-39) further decreased cell viability, increased cell apoptosis and caused a stronger inhibition of the β cell-specific transcription factor, pancreatic duodenal homeobox 1 (PDX1). Moreover, treatment with the GLP-1R agonist, liraglutide, normalized islet structure and function, resulting in a decrease in cell death and in the amelioration of β cell marker expression. Importantly, liraglutide maintained the oxidative balance and decreased inflammatory factor and p65 expression. Overall, our data demonstrate that an increase in the number of pro-α cells and the activation of the intra-islet GLP-1 system comprise a self-defense mechanism for enhancing β cell survival to combat lipid overload, which is in part mediated by oxidative stress and inflammation. PMID:25976560

  13. Endogenous GLP-1 as a key self-defense molecule against lipotoxicity in pancreatic islets

    PubMed Central

    HUANG, CHENGHU; YUAN, LI; CAO, SHUYI

    2015-01-01

    The number of pro-? cells is known to increase in response to ? cell injury and these cells then generate glucagon-like peptide-1 (GLP-1), thus attenuating the development of diabetes. The aim of the present study was to further examine the role and the mechanisms responsible for intra-islet GLP-1 production as a self-protective response against lipotoxicity. The levels of the key enzyme, prohormone convertase 1/3 (PC1/3), as well as the synthesis and release of GLP-1 in models of lipotoxicity were measured. Furthermore, islet viability, apoptosis, oxidative stress and inflammation, as well as islet structure were assessed after altering GLP-1 receptor signaling. Both prolonged exposure to palmitate and a high-fat diet facilitated PC1/3 expression, as well as the synthesis and release of GLP-1 induced by ? cell injury and the generation of pro-? cells. Prolonged exposure to palmitate increased reactive oxygen species (ROS) production, and the antioxidant, N-acetylcysteine (NAC), partially prevented the detrimental effects induced by palmitate on ? cells, resulting in decreased GLP-1 levels. Furthermore, the inhibition of GLP-1 receptor (GLP-1R) signaling by treatment with exendin-(9-39) further decreased cell viability, increased cell apoptosis and caused a stronger inhibition of the ? cell-specific transcription factor, pancreatic duodenal homeobox 1 (PDX1). Moreover, treatment with the GLP-1R agonist, liraglutide, normalized islet structure and function, resulting in a decrease in cell death and in the amelioration of ? cell marker expression. Importantly, liraglutide maintained the oxidative balance and decreased inflammatory factor and p65 expression. Overall, our data demonstrate that an increase in the number of pro-? cells and the activation of the intra-islet GLP-1 system comprise a self-defense mechanism for enhancing ? cell survival to combat lipid overload, which is in part mediated by oxidative stress and inflammation. PMID:25976560

  14. Options for prandial glucose management in type 2 diabetes patients using basal insulin: addition of a short-acting GLP-1 analogue versus progression to basal-bolus therapy.

    PubMed

    Hirsch, I B; Buse, J B; Leahy, J; McGill, J B; Peters, A; Rodbard, H W; Rubin, R R; Skyler, J S; Verderese, C A; Riddle, M C

    2014-03-01

    Integrating patient-centered diabetes care and algorithmic medicine poses particular challenges when optimized basal insulin fails to maintain glycaemic control in patients with type 2 diabetes. Multiple entwined physiological, psychosocial and systems barriers to insulin adherence are not easily studied and are not adequately considered in most treatment algorithms. Moreover, the limited number of alternatives to add-on prandial insulin therapy has hindered shared decision-making, a central feature of patient-centered care. This article considers how the addition of a glucagon-like peptide 1 (GLP-1) analogue to basal insulin may provide new opportunities at this stage of treatment, especially for patients concerned about weight gain and risk of hypoglycaemia. A flexible framework for patient-clinician discussions is presented to encourage development of decision-support tools applicable to both specialty and primary care practice. PMID:23711193

  15. Glucocorticoids suppress GLP-1 secretion: possible contribution to their diabetogenic effects.

    PubMed

    Kappe, Camilla; Fransson, Liselotte; Wolbert, Petra; Ortsäter, Henrik

    2015-09-01

    Evidence indicates that subtle abnormalities in GC (glucocorticoid) plasma concentrations and/or in tissue sensitivity to GCs are important in the metabolic syndrome, and it is generally agreed that GCs induce insulin resistance. In addition, it was recently reported that short-term exposure to GCs reduced the insulinotropic effects of the incretin GLP-1 (glucagon-like peptide 1). However, although defective GLP-1 secretion has been correlated with insulin resistance, potential direct effects of GCs on GLP-1-producing L-cell function in terms of GLP-1 secretion and apoptosis have not been studied in any greater detail. In the present study, we sought to determine whether GCs could exert direct effects on GLP-1-producing L-cells in terms of GLP-1 secretion and cell viability. We demonstrate that the GR (glucocorticoid receptor) is expressed in GLP-1-producing cells, where GR activation in response to dexamethasone induces SGK1 (serum- and glucocorticoid-inducible kinase 1) expression, but did not influence preproglucagon expression or cell viability. In addition, dexamethasone treatment of enteroendocrine GLUTag cells reduced GLP-1 secretion induced by glucose, 2-deoxy-D-glucose, fructose and potassium, whereas the secretory response to a phorbol ester was unaltered. Furthermore, in vivo administration of dexamethasone to rats reduced the circulating levels of GLP-1 concurrent with induction of insulin resistance and glucose intolerance. We can conclude that GR activation in GLP-1-producing cells will diminish the secretory responsiveness of these cells to subsequent carbohydrate stimulation. These effects may not only elucidate the pathogenesis of steroid diabetes, but could ultimately contribute to the identification of novel molecular targets for controlling incretin secretion. PMID:25853863

  16. Synaptotagmin-7 phosphorylation mediates GLP-1dependent potentiation of insulin secretion from ?-cells

    PubMed Central

    Wu, Bingbing; Wei, Shunhui; Petersen, Natalia; Ali, Yusuf; Wang, Xiaorui; Bacaj, Taulant; Rorsman, Patrik; Hong, Wanjin; Sdhof, Thomas C.; Han, Weiping

    2015-01-01

    Glucose stimulates insulin secretion from ?-cells by increasing intracellular Ca2+. Ca2+ then binds to synaptotagmin-7 as a major Ca2+ sensor for exocytosis, triggering secretory granule fusion and insulin secretion. In type-2 diabetes, insulin secretion is impaired; this impairment is ameliorated by glucagon-like peptide-1 (GLP-1) or by GLP-1 receptor agonists, which improve glucose homeostasis. However, the mechanism by which GLP-1 receptor agonists boost insulin secretion remains unclear. Here, we report that GLP-1 stimulates protein kinase A (PKA)-dependent phosphorylation of synaptotagmin-7 at serine-103, which enhances glucose- and Ca2+-stimulated insulin secretion and accounts for the improvement of glucose homeostasis by GLP-1. A phospho-mimetic synaptotagmin-7 mutant enhances Ca2+-triggered exocytosis, whereas a phospho-inactive synaptotagmin-7 mutant disrupts GLP-1 potentiation of insulin secretion. Our findings thus suggest that synaptotagmin-7 is directly activated by GLP-1 signaling and may serve as a drug target for boosting insulin secretion. Moreover, our data reveal, to our knowledge, the first physiological modulation of Ca2+-triggered exocytosis by direct phosphorylation of a synaptotagmin. PMID:26216970

  17. Synaptotagmin-7 phosphorylation mediates GLP-1-dependent potentiation of insulin secretion from ?-cells.

    PubMed

    Wu, Bingbing; Wei, Shunhui; Petersen, Natalia; Ali, Yusuf; Wang, Xiaorui; Bacaj, Taulant; Rorsman, Patrik; Hong, Wanjin; Sdhof, Thomas C; Han, Weiping

    2015-08-11

    Glucose stimulates insulin secretion from ?-cells by increasing intracellular Ca(2+). Ca(2+) then binds to synaptotagmin-7 as a major Ca(2+) sensor for exocytosis, triggering secretory granule fusion and insulin secretion. In type-2 diabetes, insulin secretion is impaired; this impairment is ameliorated by glucagon-like peptide-1 (GLP-1) or by GLP-1 receptor agonists, which improve glucose homeostasis. However, the mechanism by which GLP-1 receptor agonists boost insulin secretion remains unclear. Here, we report that GLP-1 stimulates protein kinase A (PKA)-dependent phosphorylation of synaptotagmin-7 at serine-103, which enhances glucose- and Ca(2+)-stimulated insulin secretion and accounts for the improvement of glucose homeostasis by GLP-1. A phospho-mimetic synaptotagmin-7 mutant enhances Ca(2+)-triggered exocytosis, whereas a phospho-inactive synaptotagmin-7 mutant disrupts GLP-1 potentiation of insulin secretion. Our findings thus suggest that synaptotagmin-7 is directly activated by GLP-1 signaling and may serve as a drug target for boosting insulin secretion. Moreover, our data reveal, to our knowledge, the first physiological modulation of Ca(2+)-triggered exocytosis by direct phosphorylation of a synaptotagmin. PMID:26216970

  18. Aerosolized GLP-1 for treatment of diabetes mellitus and irritable bowel syndrome.

    PubMed

    Siekmeier, Rdiger; Hofmann, Thomas; Scheuch, Gerhard; Pokorski, Mieczyslaw

    2015-01-01

    Diabetes is a global burden and the prevalence of the disease, in particular diabetes mellitus type 2 is rapidly increasing worldwide. After introduction of insulin into clinical therapy about 90 years ago a major number of pharmaceuticals has been developed for treatment of diabetes mellitus type 2. One of these, the incretin glucagon-like peptide 1 (GLP-1), like insulin, needs subcutaneous administration causing inconvenience to patients. However, administration of GLP-1 plays also a role for treatment of irritable bowel syndrome (IBS). To improve patient convenience inhaled insulin (Exubera()) was developed and approved but failed market acceptance some years ago. Recently, another inhalative insulin (Afrezza()) received market approval and GLP-1 may serve as another candidate drug for inhalative administration. This review analyzes the current literature investigating alternative administration of GLP-1 and GLP-1 analogs focusing on inhalation. Several formulations for inhalative administration of GLP-1 and analogs were investigated in animal studies, whereas there are only few clinical data. However, feasibility of GLP-1 inhalation has been shown and should be further investigated as such type of drug administration may serve for improvement of therapy in patients with diabetes mellitus or irritable bowel syndrome. PMID:25427821

  19. In Vitro and In Vivo Effects of Natural Putative Secretagogues of Glucagon-Like Peptide-1 (GLP-1).

    PubMed

    Rafferty, Eamon P; Wylie, Alastair R; Elliott, Chris T; Chevallier, Olivier P; Grieve, David J; Green, Brian D

    2011-09-01

    Glucagon-like peptide-1 (GLP-1) is an intestinal hormone with well-established glucose-lowering activity. The in vitro and in vivo actions of natural putative secretagogues of GLP-1 were investigated. The acute GLP-1 releasing activity of olive leaf extract (OLE), glutamine (GLN), alpha casein (ACAS), beta casein (BCAS) and chlorogenic acid (CGA) were assessed in STC-1 cells and C57BL/6 mice. All compounds except ACAS significantly increased acute in vitro GLP-1 secretion (66-386%; P<0.05-0.001). Oral gavage of OLE and GLN modestly increased plasma GLP-1 concentrations (48% and 41%, respectively), but did not lower glycaemic excursions. OLE and GLN are potent stimulators of GLP-1 secretion both in vitro and in vivo and chronic studies should assess their suitability as nutritional therapies for type 2 diabetes. PMID:21886907

  20. In Vitro and In Vivo Effects of Natural Putative Secretagogues of Glucagon-Like Peptide-1 (GLP-1)

    PubMed Central

    Rafferty, Eamon P.; Wylie, Alastair R.; Elliott, Chris T.; Chevallier, Olivier P.; Grieve, David J.; Green, Brian D.

    2011-01-01

    Glucagon-like peptide-1 (GLP-1) is an intestinal hormone with well-established glucose-lowering activity. The in vitro and in vivo actions of natural putative secretagogues of GLP-1 were investigated. The acute GLP-1 releasing activity of olive leaf extract (OLE), glutamine (GLN), alpha casein (ACAS), beta casein (BCAS) and chlorogenic acid (CGA) were assessed in STC-1 cells and C57BL/6 mice. All compounds except ACAS significantly increased acute in vitro GLP-1 secretion (66386%; P<0.050.001). Oral gavage of OLE and GLN modestly increased plasma GLP-1 concentrations (48% and 41%, respectively), but did not lower glycaemic excursions. OLE and GLN are potent stimulators of GLP-1 secretion both in vitro and in vivo and chronic studies should assess their suitability as nutritional therapies for type 2 diabetes. PMID:21886907

  1. Comparative Effectiveness of Dipeptidyl Peptidase-4 (DPP-4) Inhibitors and Human Glucagon-Like Peptide-1 (GLP-1) Analogue as Add-On Therapies to Sulphonylurea among Diabetes Patients in the Asia-Pacific Region: A Systematic Review

    PubMed Central

    Wong, Martin C. S.; Wang, Harry H. X.; Kwan, Mandy W. M.; Zhang, Daisy D. X.; Liu, Kirin Q. L.; Chan, Sky W. M.; Fan, Carmen K. M.; Fong, Brian C. Y.; Li, Shannon T. S.; Griffiths, Sian M.

    2014-01-01

    The prevalence of diabetes mellitus is rising globally, and it induces a substantial public health burden to the healthcare systems. Its optimal control is one of the most significant challenges faced by physicians and policy-makers. Whereas some of the established oral hypoglycaemic drug classes like biguanide, sulphonylureas, thiazolidinediones have been extensively used, the newer agents like dipeptidyl peptidase-4 (DPP-4) inhibitors and the human glucagon-like peptide-1 (GLP-1) analogues have recently emerged as suitable options due to their similar efficacy and favorable side effect profiles. These agents are widely recognized alternatives to the traditional oral hypoglycaemic agents or insulin, especially in conditions where they are contraindicated or unacceptable to patients. Many studies which evaluated their clinical effects, either alone or as add-on agents, were conducted in Western countries. There exist few reviews on their effectiveness in the Asia-Pacific region. The purpose of this systematic review is to address the comparative effectiveness of these new classes of medications as add-on therapies to sulphonylurea drugs among diabetic patients in the Asia-Pacific countries. We conducted a thorough literature search of the MEDLINE and EMBASE from the inception of these databases to August 2013, supplemented by an additional manual search using reference lists from research studies, meta-analyses and review articles as retrieved by the electronic databases. A total of nine randomized controlled trials were identified and described in this article. It was found that DPP-4 inhibitors and GLP-1 analogues were in general effective as add-on therapies to existing sulphonylurea therapies, achieving HbA1c reductions by a magnitude of 0.590.90% and 0.771.62%, respectively. Few adverse events including hypoglycaemic attacks were reported. Therefore, these two new drug classes represent novel therapies with great potential to be major therapeutic options. Future larger-scale research should be conducted among other Asia-Pacific region to evaluate their efficacy in other ethnic groups. PMID:24614606

  2. Effects of GLP-1 on Forearm Vasodilator Function and Glucose Disposal During Hyperinsulinemia in the Metabolic Syndrome

    PubMed Central

    Tesauro, Manfredi; Schinzari, Francesca; Adamo, Angelo; Rovella, Valentina; Martini, Francesca; Mores, Nadia; Barini, Angela; Pitocco, Dario; Ghirlanda, Giovanni; Lauro, Davide; Campia, Umberto; Cardillo, Carmine

    2013-01-01

    OBJECTIVE Patients with the metabolic syndrome (MetS) have impaired insulin-induced enhancement of vasodilator responses. The incretin hormone glucagon-like peptide 1 (GLP-1), beyond its effects on blood glucose, has beneficial actions on vascular function. This study, therefore, aimed to assess whether GLP-1 affects insulin-stimulated vasodilator reactivity in patients with the MetS. RESEARCH DESIGN AND METHODS Forearm blood flow responses to acetylcholine (ACh) and sodium nitroprusside (SNP) were assessed in MetS patients before and after the addition of GLP-1 to an intra-arterial infusion of saline (n = 5) or insulin (n = 5). The possible involvement of oxidative stress in the vascular effects of GLP-1 in this setting was investigated by infusion of vitamin C (n = 5). The receptor specificity of GLP-1 effect during hyperinsulinemia was assessed by infusing its metabolite GLP-1(9-36) (n = 5). The metabolic actions of GLP-1 were also tested by analyzing forearm glucose disposal during hyperinsulinemia (n = 5). RESULTS In MetS patients, GLP-1 enhanced endothelium-dependent and -independent responses to ACh and SNP, respectively, during hyperinsulinemia (P < 0.001 for both), but not during saline (P > 0.05 for both). No changes in vasodilator reactivity to ACh and SNP were seen after GLP-1 was added to insulin and vitamin C (P > 0.05 for both) and after GLP-1(9-36) was given during hyperinsulinemia (P > 0.05 for both). Also, GLP-1 did not affect forearm glucose extraction and uptake during hyperinsulinemia (P > 0.05 for both). CONCLUSIONS In patients with the MetS, GLP-1 improves insulin-mediated enhancement of endothelium-dependent and -independent vascular reactivity. This effect may be influenced by vascular oxidative stress and is possibly exerted through a receptor-mediated mechanism. PMID:23069838

  3. GLP-1R responsiveness predicts individual gastric bypass efficacy on glucose tolerance in rats.

    PubMed

    Habegger, Kirk M; Heppner, Kristy M; Amburgy, Sarah E; Ottaway, Nickki; Holland, Jenna; Raver, Christine; Bartley, Erin; Mller, Timo D; Pfluger, Paul T; Berger, Jose; Toure, Mouhamadoul; Benoit, Stephen C; Dimarchi, Richard D; Perez-Tilve, Diego; D'Alessio, David A; Seeley, Randy J; Tschp, Matthias H

    2014-02-01

    Several bariatric operations are currently used to treat obesity and obesity-related comorbidities. These vary in efficacy, but most are more effective than current pharmaceutical treatments. Roux-en-Y gastric bypass (RYGB) produces substantial body weight (BW) loss and enhanced glucose tolerance, and is associated with increased secretion of the gut hormone glucagon-like peptide 1 (GLP-1). Given the success of GLP-1-based agents in lowering blood glucose levels and BW, we hypothesized that an individual sensitivity to GLP-1 receptor agonism could predict metabolic benefits of surgeries associated with increased GLP-1 secretion. One hundred ninety-seven high-fat diet-induced obese male Long-Evans rats were monitored for BW loss during exendin-4 (Ex4) administration. Stable populations of responders and nonresponders were identified based on Ex4-induced BW loss and GLP-1-induced improvements in glucose tolerance. Subpopulations of Ex4 extreme responders and nonresponders underwent RYGB surgery. After RYGB, responders and nonresponders showed similar BW loss compared with sham, but nonresponders retained impaired glucose tolerance. These data indicate that the GLP-1 response tests may predict some but not all of the improvements observed after RYGB. These findings present an opportunity to optimize the use of bariatric surgery based on an improved understanding of GLP-1 biology and suggest an opportunity for a more personalized therapeutic approach to the metabolic syndrome. PMID:24186863

  4. GLP-1R Responsiveness Predicts Individual Gastric Bypass Efficacy on Glucose Tolerance in Rats

    PubMed Central

    Habegger, Kirk M.; Heppner, Kristy M.; Amburgy, Sarah E.; Ottaway, Nickki; Holland, Jenna; Raver, Christine; Bartley, Erin; Mller, Timo D.; Pfluger, Paul T.; Berger, Jose; Toure, Mouhamadoul; Benoit, Stephen C.; DiMarchi, Richard D.; Perez-Tilve, Diego; DAlessio, David A.; Seeley, Randy J.; Tschp, Matthias H.

    2014-01-01

    Several bariatric operations are currently used to treat obesity and obesity-related comorbidities. These vary in efficacy, but most are more effective than current pharmaceutical treatments. Roux-en-Y gastric bypass (RYGB) produces substantial body weight (BW) loss and enhanced glucose tolerance, and is associated with increased secretion of the gut hormone glucagon-like peptide 1 (GLP-1). Given the success of GLP-1based agents in lowering blood glucose levels and BW, we hypothesized that an individual sensitivity to GLP-1 receptor agonism could predict metabolic benefits of surgeries associated with increased GLP-1 secretion. One hundred ninety-seven high-fat dietinduced obese male Long-Evans rats were monitored for BW loss during exendin-4 (Ex4) administration. Stable populations of responders and nonresponders were identified based on Ex4-induced BW loss and GLP-1induced improvements in glucose tolerance. Subpopulations of Ex4 extreme responders and nonresponders underwent RYGB surgery. After RYGB, responders and nonresponders showed similar BW loss compared with sham, but nonresponders retained impaired glucose tolerance. These data indicate that the GLP-1 response tests may predict some but not all of the improvements observed after RYGB. These findings present an opportunity to optimize the use of bariatric surgery based on an improved understanding of GLP-1 biology and suggest an opportunity for a more personalized therapeutic approach to the metabolic syndrome. PMID:24186863

  5. Simultaneous quantification of the glucagon-like peptide-1 (GLP-1) and cholecystokinin (CCK) receptor agonists in rodent plasma by on-line solid phase extraction and LC-MS/MS.

    PubMed

    Wang, Yan; Roth, Jonathan D; Taylor, Steven W

    2014-04-15

    Peptide agonists of the glucagon-like peptide-1 receptor (GLP-1R) and the cholecystokinin-1 receptor (CCK1-R) have therapeutic potential because of their marked anorexigenic and weight lowering effects. Furthermore, recent studies in rodents have shown that co-administration of these agents may prove more effective than treatment either of the peptide classes alone. To correlate the pharmacodynamic effects to the pharmacokinetics of these peptide drugs in vivo, a sensitive and robust bioanalytical method is essential. Furthermore, the simultaneous determination of both analytes in plasma samples by a single method offers obvious advantages. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is well suited to this goal through its ability to simultaneously monitor multiple analytes through selected reaction monitoring (SRM). However, it is a challenge to find appropriate conditions that allow two peptides with widely disparate physiochemical properties to be simultaneously analyzed while maintaining the necessary sensitivity for their accurate plasma concentrations. Herein, we report an on-line solid phase extraction (SPE) LC-MS/MS method for simultaneous quantification of the CCK1-R agonist AC170222 and the GLP-1R agonist AC3174 in rodent plasma. The assay has a linear range from 0.0975 to 100ng/mL, with lower limits of quantification of 0.0975ng/mL and 0.195ng/mL for AC3174 and AC170222, respectively. The intra- and inter-day precisions were below 15%. The developed LC-MS/MS method was used to simultaneously quantify AC3174 and AC170222, the results showed that the terminal plasma concentrations of AC3174 or AC170222 were comparable between groups of animals that were administered with the peptides alone (24715pg/mL of AC3174 and 130648pg/mL of AC170222), or in combination (22232pg/mL and 113647pg/mL of AC3174 and AC170222, respectively). These data provide information on the drug exposure to aid in assessing the combination effects of AC3174 and AC170222 on rodent metabolism. PMID:24657407

  6. Glucagon-like peptide-1 (GLP-1) and glucose metabolism in human myocytes.

    PubMed

    Luque, M A; Gonzlez, N; Mrquez, L; Acitores, A; Redondo, A; Morales, M; Valverde, I; Villanueva-Peacarrillo, M L

    2002-06-01

    Glucagon-like peptide-1 (GLP-1) has been shown to have insulin-like effects upon the metabolism of glucose in rat liver, muscle and fat, and on that of lipids in rat and human adipocytes. These actions seem to be exerted through specific receptors which, unlike that of the pancreas, are not - at least in liver and muscle - cAMP-associated. Here we have investigated the effect, its characteristics, and possible second messengers of GLP-1 on the glucose metabolism of human skeletal muscle, in tissue strips and primary cultured myocytes. In muscle strips, GLP-1, like insulin, stimulated glycogen synthesis, glycogen synthase a activity, and glucose oxidation and utilization, and inhibited glycogen phosphorylase a activity, all of this at physiological concentrations of the peptide. In cultured myotubes, GLP-1 exerted, from 10(-13) mol/l, a dose-related increase of the D-[U-(14)C]glucose incorporation into glycogen, with the same potency as insulin, together with an activation of glycogen synthase a; the effect of 10(-11) mol/l GLP-1 on both parameters was additive to that induced by the equimolar amount of insulin. Synthase a was still activated in cells after 2 days of exposure to GLP-1, as compared with myotubes maintained in the absence of peptide. In human muscle cells, exendin-4 and its truncated form 9-39 amide (Ex-9) are both agonists of the GLP-1 effect on glycogen synthesis and synthase a activity; but while neither GLP-1 nor exendin-4 affected the cellular cAMP content after 5-min incubation in the absence of 3-isobutyl-1-methylxantine (IBMX), an increase was detected with Ex-9. GLP-1, exendin-4, Ex-9 and insulin all induced the prompt hydrolysis of glycosylphosphatidylinositols (GPIs). This work shows a potent stimulatory effect of GLP-1 on the glucose metabolism of human skeletal muscle, and supports the long-term therapeutic value of the peptide. Further evidence for a GLP-1 receptor in this tissue, different from that of the pancreas, is also illustrated, suggesting a role for an inositolphosphoglycan (IPG) as at least one of the possible second messengers of the GLP-1 action in human muscle. PMID:12065236

  7. Incorporating Incretin-Based Therapies Into Clinical Practice: Differences Between Glucagon-Like Peptide 1 Receptor Agonists and Dipeptidyl Peptidase 4 Inhibitors

    PubMed Central

    Davidson, Jaime A.

    2010-01-01

    Type 2 diabetes mellitus (DM) is a prevalent disorder that affects children, adolescents, and adults worldwide. In addition to risks of microvascular disease, patients with type 2 DM often have multiple risk factors of macrovascular disease; for example, approximately 90% of patients with type 2 DM are overweight/obese. Type 2 DM is a complex disease that involves a variety of pathophysiologic abnormalities, including insulin resistance, increased hepatic glucose production, and abnormalities in the secretion of hormones, such as insulin, glucagon, amylin, and incretins. Incretins are gut-derived peptides with a variety of glucoregulatory functions. Incretin dysfunction can be treated with glucagon-like peptide 1 (GLP-1) receptor agonists (eg, exenatide and liraglutide) or inhibitors of dipeptidyl peptidase 4 (DPP-4) (eg, sitagliptin and saxagliptin), the enzyme that degrades GLP-1. The GLP-1 receptor agonists and DPP-4 inhibitors both elevate GLP-1 activity and substantially improve glycemic control. The GLP-1 receptor agonists are more effective in lowering blood glucose and result in substantial weight loss, whereas therapy with DPP-4 inhibitors lowers blood glucose levels to a lesser degree, and they are weight neutral. Treatment with GLP-1 receptor agonists has demonstrated durable glycemic control and improvement in multiple cardiovascular disease risk factors. In addition, unlike insulin or sulfonylureas, treatment with a GLP-1 receptor agonist or a DPP-4 inhibitor has not been associated with substantial hypoglycemia. These factors should be considered when selecting monotherapy or elements of combination therapy for patients with type 2 DM who are overweight/obese, for patients who have experienced hypoglycemia with other agents, and when achieving glycemic targets is difficult. PMID:21106865

  8. Coumaglutide, a novel long-acting GLP-1 analog, inhibits ?-cell apoptosis in vitro and invokes sustained glycemic control in vivo.

    PubMed

    Sun, Lidan; Wang, Chuandong; Dai, Yuxuan; Chu, Yingying; Han, Jing; Zhou, Jie; Cai, Xingguang; Huang, Wenlong; Qian, Hai

    2015-11-15

    Glucagon-like peptide-1 (GLP-1) is a potential candidate for the treatment of type 2 diabetes. However, native GLP-1 is not suitable for therapy of diabetes due to its short half-life (t1/2=2 min). Our recent discovery of the novel long-acting GLP-1 analog, coumaglutide, elicits favorable hypoglycemic effects. The present study was aimed at determining the protection effect of ?-cell from apoptosis and in vivo pharmacologic properties of coumaglutide in diabetic mice. To determine the protective effect of coumaglutide on INS-1 cell viability and apoptosis, cells were exposed to 1 ?M streptozotocin (STZ) and coumaglutide for 24 h. Moreover, STZ-induced diabetic mice were treated daily with coumaglutide for 20 days and a range of pharmacologic parameters, including hemoglobin A1c (HbA1C), intraperitoneal glucose tolerance, food intake and body weight were assessed before and after the treatment. As with other glucagon-like peptide-1 receptor agonizts, coumaglutide was able to protect ?-cell from apoptosis in vitro and induce a durable restoration of glycemic control (normalization of both HbA1C and improvement of intraperitoneal glucose tolerance) in diabetic mice. It can be concluded that coumaglutide retains native GLP-1 activities and thus may serve as a promising hypoglycemic drug candidate. PMID:26481165

  9. Myocardial regeneration in adriamycin cardiomyopathy by nuclear expression of GLP1 using ultrasound targeted microbubble destruction

    SciTech Connect

    Chen, Shuyuan; Chen, Jiaxi; Huang, Pintong; Meng, Xing-Li; Clayton, Sandra; Shen, Jin-Song; Grayburn, Paul A.

    2015-03-20

    Recently GLP-1 was found to have cardioprotective effects independent of those attributable to tight glycemic control. Methods and results: We employed ultrasound targeted microbubble destruction (UTMD) to deliver piggybac transposon plasmids encoding the GLP-1 gene with a nuclear localizing signal to rat hearts with adriamycin cardiomyopathy. After a single UTMD treatment, overexpression of transgenic GLP-1 was found in nuclei of rat heart cells with evidence that transfected cardiac cells had undergone proliferation. UTMD-GLP-1 gene therapy restored LV mass, fractional shortening index, and LV posterior wall diameter to nearly normal. Nuclear overexpression of GLP-1 by inducing phosphorylation of FoxO1-S256 and translocation of FoxO1 from the nucleus to the cytoplasm significantly inactivated FoxO1 and activated the expression of cyclin D1 in nuclei of cardiac muscle cells. Reversal of adriamycin cardiomyopathy appeared to be mediated by dedifferentiation and proliferation of nuclear FoxO1-positive cardiac muscle cells with evidence of embryonic stem cell markers (OCT4, Nanog, SOX2 and c-kit), cardiac early differentiation markers (NKX2.5 and ISL-1) and cellular proliferation markers (BrdU and PHH3) after UTMD with GLP-1 gene therapy. Conclusions: Intranuclear myocardial delivery of the GLP-1gene can reverse established adriamycin cardiomyopathy by stimulating myocardial regeneration. - Highlights: • The activation of nuclear FoxO1 in cardiac muscle cells associated with adriamycin cardiomyopathy. • Myocardial nuclear GLP-1 stimulates myocardial regeneration and reverses adriamycin cardiomyopathy. • The process of myocardial regeneration associated with dedifferentiation and proliferation.

  10. GLP1 protects cardiomyocytes from palmitate-induced apoptosis via Akt/GSK3b/b-catenin pathway

    PubMed Central

    Ying, Ying; Zhu, Huazhang; Liang, Zhen; Ma, Xiaosong; Li, Shiwei

    2015-01-01

    Activation of apoptosis in cardiomyocytes by saturated palmitic acids contributes to cardiac dysfunction in diabetic cardiomyopathy. Beta-catenin (b-catenin) is a transcriptional regulator of several genes involved in survival/anti-apoptosis. However, its role in palmitate-induced cardiomyocyte apoptosis remains unclear. Glucagon-like peptide 1 (GLP1) has been shown to exhibit potential cardioprotective properties. This study was designed to evaluate the role of b-catenin signalling in palmitate-induced cardiomyocyte apoptosis and the molecular mechanism underlying the protective effects of GLP1 on palmitate-stressed cardiomyocytes. Exposure of neonatal rat cardiomyocytes to palmitate increased the fatty acid transporter CD36-mediated intracellular lipid accumulation and cardiomyocyte apoptosis, decreased accumulation and nuclear translocation of active b-catenin, and reduced expression of b-catenin target protein survivin and BCL2. These detrimental effects of palmitate were significantly attenuated by GLP1 co-treatment. However, the anti-apoptotic effects of GLP1 were markedly abolished when b-catenin was silenced with a specific short hairpin RNA. Furthermore, analysis of the upstream molecules and mechanisms responsible for GLP1-associated cardiac protection revealed that GLP1 restored the decreased phosphorylation of protein kinase B (Akt) and glycogen synthase kinase-3b (GSK3b) in palmitate-stimulated cardiomyocytes. In contrast, inhibition of Akt with an Akt-specific inhibitor MK2206 or blockade of GLP1 receptor (GLP1R) with a competitive antagonist exendin-(9–39) significantly abrogated the GLP1-mediated activation of GSK3b/b-catenin signalling, leading to increased apoptosis in palmitate-stressed cardiomyocytes. Collectively, our results demonstrated for the first time that the attenuated b-catenin signalling may contribute to palmitate-induced cardiomyocyte apoptosis, while GLP1 can protect cardiomyocytes from palmitate-induced apoptosis through activation of GLP1R/Akt/GSK3b-mediated b-catenin signalling. PMID:26386043

  11. Autocrine selection of a GLP-1R G-protein biased agonist with potent antidiabetic effects.

    PubMed

    Zhang, Hongkai; Sturchler, Emmanuel; Zhu, Jiang; Nieto, Ainhoa; Cistrone, Philip A; Xie, Jia; He, LinLing; Yea, Kyungmoo; Jones, Teresa; Turn, Rachel; Di Stefano, Peter S; Griffin, Patrick R; Dawson, Philip E; McDonald, Patricia H; Lerner, Richard A

    2015-01-01

    Glucagon-like peptide-1 (GLP-1) receptor (GLP-1R) agonists have emerged as treatment options for type 2 diabetes mellitus (T2DM). GLP-1R signals through G-protein-dependent, and G-protein-independent pathways by engaging the scaffold protein ?-arrestin; preferential signalling of ligands through one or the other of these branches is known as 'ligand bias'. Here we report the discovery of the potent and selective GLP-1R G-protein-biased agonist, P5. We identified P5 in a high-throughput autocrine-based screening of large combinatorial peptide libraries, and show that P5 promotes G-protein signalling comparable to GLP-1 and Exendin-4, but exhibited a significantly reduced ?-arrestin response. Preclinical studies using different mouse models of T2DM demonstrate that P5 is a weak insulin secretagogue. Nevertheless, chronic treatment of diabetic mice with P5 increased adipogenesis, reduced adipose tissue inflammation as well as hepatic steatosis and was more effective at correcting hyperglycaemia and lowering haemoglobin A1c levels than Exendin-4, suggesting that GLP-1R G-protein-biased agonists may provide a novel therapeutic approach to T2DM. PMID:26621478

  12. Autocrine selection of a GLP-1R G-protein biased agonist with potent antidiabetic effects

    PubMed Central

    Zhang, Hongkai; Sturchler, Emmanuel; Zhu, Jiang; Nieto, Ainhoa; Cistrone, Philip A.; Xie, Jia; He, LinLing; Yea, Kyungmoo; Jones, Teresa; Turn, Rachel; Di Stefano, Peter S.; Griffin, Patrick R.; Dawson, Philip E.; McDonald, Patricia H.; Lerner, Richard A.

    2015-01-01

    Glucagon-like peptide-1 (GLP-1) receptor (GLP-1R) agonists have emerged as treatment options for type 2 diabetes mellitus (T2DM). GLP-1R signals through G-protein-dependent, and G-protein-independent pathways by engaging the scaffold protein β-arrestin; preferential signalling of ligands through one or the other of these branches is known as ‘ligand bias'. Here we report the discovery of the potent and selective GLP-1R G-protein-biased agonist, P5. We identified P5 in a high-throughput autocrine-based screening of large combinatorial peptide libraries, and show that P5 promotes G-protein signalling comparable to GLP-1 and Exendin-4, but exhibited a significantly reduced β-arrestin response. Preclinical studies using different mouse models of T2DM demonstrate that P5 is a weak insulin secretagogue. Nevertheless, chronic treatment of diabetic mice with P5 increased adipogenesis, reduced adipose tissue inflammation as well as hepatic steatosis and was more effective at correcting hyperglycaemia and lowering haemoglobin A1c levels than Exendin-4, suggesting that GLP-1R G-protein-biased agonists may provide a novel therapeutic approach to T2DM. PMID:26621478

  13. Evaluating preferences for profiles of GLP-1 receptor agonists among injection-naïve type 2 diabetes patients in the UK

    PubMed Central

    Gelhorn, Heather L; Poon, Jiat-Ling; Davies, Evan W; Paczkowski, Rosirene; Curtis, Sarah E; Boye, Kristina S

    2015-01-01

    Objective To use a discrete choice experiment (DCE) to evaluate preferences for the actual treatment features and overall profiles of two injectable glucagon-like peptide-1 receptor agonists (dulaglutide and liraglutide) among patients with type 2 diabetes mellitus (T2DM) in the UK. Methods In-person interviews were conducted in the UK to administer a DCE to patients with self-reported T2DM, naïve to treatment with injectable medications. The DCE examined six attributes of T2DM treatment each described by two levels: “dosing frequency,” “hemoglobin A1c change,” “weight change,” “type of delivery system,” “frequency of nausea,” and “frequency of hypoglycemia.” Part-worth utilities were estimated using random effects logit models and were used to calculate relative importance (RI) values for each attribute. A chi-square test was used to determine differences in preferences for dulaglutide versus liraglutide profiles. Results A total of 243 participants [mean age: 60.5 (standard deviation 10.9) years; 76.1% male; mean body mass index: 29.8 (standard deviation 5.4) kg/m2] completed the study. RI values for the attributes in rank order were: “dosing frequency” (41.6%), “type of delivery system” (35.5%), “frequency of nausea” (10.4%), “weight change” (5.9%), “hemoglobin A1c change” (3.6%), and “frequency of hypoglycemia” (3.0%). Significantly more participants preferred the dulaglutide profile (83.1%) compared with the liraglutide profile (16.9%; P<0.0001). Conclusion This study elicited patients’ preferences for attributes and levels representing the actual characteristics of two specific glucagon-like peptide-1 medications. In this context, dosing frequency and type of delivery system were most important, accounting for over 75% of the RI. While previous studies have identified efficacy as highly important in T2DM medication decisions, this study suggests that when differences in efficacy between medications are small, other treatment features (eg, dosing frequency and delivery system) are of much greater importance to patients. PMID:26635470

  14. Alternative Agents in Type 1 Diabetes in Addition to Insulin Therapy: Metformin, Alpha-Glucosidase Inhibitors, Pioglitazone, GLP-1 Agonists, DPP-IV Inhibitors, and SGLT-2 Inhibitors.

    PubMed

    DeGeeter, Michelle; Williamson, Bobbie

    2014-10-13

    Insulin is the mainstay of current treatment for patients with type 1 diabetes mellitus (T1DM). Due to increasing insulin resistance, insulin doses are often continually increased, which may result in weight gain for patients. Medications currently approved for the treatment of type 2 diabetes offer varying mechanisms of action that can help to reduce insulin resistance and prevent or deter weight gain. A MEDLINE search was conducted to review literature evaluating the use of metformin, alpha-glucosidase inhibitors, pioglitazone, glucagon-like peptide 1 agonists, dipeptidyl peptidase, and sodium-dependent glucose transporter 2 inhibitors, in patients with T1DM. Varying results were found with some benefits including reductions in hemoglobin A1c, decreased insulin doses, and favorable effects on weight. Of significance, a common fear of utilizing multiple therapies for diabetes treatment is the risk of hypoglycemia, and this review displayed limited evidence of hypoglycemia with multiple agents. PMID:25312263

  15. Linker engineering for fusion protein construction: Improvement and characterization of a GLP-1 fusion protein.

    PubMed

    Kong, Yuelin; Tong, Yue; Gao, Mingming; Chen, Chen; Gao, Xiangdong; Yao, Wenbing

    2016-01-01

    Protein engineering has been successfully applied in protein drug discovery. Using this technology, we previously have constructed a fusion protein by linking the globular domain of adiponectin to the C-terminus of a glucagon-like peptide-1 (GLP-1) analog. Herein, to further improve its bioactivity, we reconstructed this fusion protein by introducing linker peptides of different length and flexibility. The reconstructed fusion proteins were overexpressed in Escherichia coli and purified using nickel affinity chromatography. Their agonist activity towards receptors of GLP-1 and adiponectin were assessed in vitro by using luciferase assay and AMP-activated protein kinase (AMPK) immunoblotting, respectively. The effects of the selected fusion protein on glucose and lipid metabolism were evaluated in mice. The fusion protein reconstructed using a linker peptide of AMGPSSGAPGGGGS showed high potency in activating GLP-1 receptor and triggering AMPK phosphorylation via activating the adiponectin receptor. Remarkably, the optimized fusion protein was highly effective in lowering blood glucose and lipids in mice. Collectively, these findings demonstrate that the bioactivity of this GLP-1 fusion protein can be significantly promoted by linker engineering, and indicate that the optimized GLP-1 fusion protein is a promising lead structure for anti-diabetic drug discovery. PMID:26672455

  16. Role of GLP-1 in the Hypoglycemic Effects of Wild Bitter Gourd

    PubMed Central

    Lu, Kan-Ni; Pai, Yi-Ping; Chin Hsu

    2013-01-01

    This study aimed to examine the role of GLP-1 in the hypoglycemic activity of wild bitter gourd (Momordica charantia L., BG). In vitro, the GLP-1 secretion in STC-1, a murine enteroendocrine cell line, was dose dependently stimulated by water extract (WE), its fractions (WEL, >3?kD and WES, <3?kD), and a bitter compounds-rich fraction of BG. These stimulations were partially inhibited by probenecid, a bitter taste receptor inhibitor, and by U-73122, a phospholipase C?2 inhibitor. These results suggested that the stimulation might involve, at least in part, certain bitter taste receptors and/or PLC?2-signaling pathway. Two cucurbitane triterpenoids isolated from BG, 19-nor-cucurbita-5(10),6,8,22-(E),24-pentaen-3?-ol, and 5?,19-epoxycucurbita-6,24-diene-3?,23?-diol (karavilagenine E,) showed relative high efficacy in the stimulation. In vivo, mice fed BG diet showed higher insulinogenic index in an oral glucose tolerance test. A single oral dose of WE or WES pretreatment significantly improved intraperitoneal glucose tolerance. A single oral dose of WES significantly decreased glucose and increased insulin and GLP-1 in serum after 30?min. This acute hypoglycemic effect of WES was abolished by pretreatment with exendin-9, a GLP-1 receptor antagonist. Our data provide evidence that BG stimulates GLP-1 secretion which contributes, at least in part, to the antidiabetic activity of BG through an incretin effect. PMID:23589719

  17. Role of GLP-1 in the Hypoglycemic Effects of Wild Bitter Gourd.

    PubMed

    Huang, Ting-Ni; Lu, Kan-Ni; Pai, Yi-Ping; Chin Hsu; Huang, Ching-Jang

    2013-01-01

    This study aimed to examine the role of GLP-1 in the hypoglycemic activity of wild bitter gourd (Momordica charantia L., BG). In vitro, the GLP-1 secretion in STC-1, a murine enteroendocrine cell line, was dose dependently stimulated by water extract (WE), its fractions (WEL, >3?kD and WES, <3?kD), and a bitter compounds-rich fraction of BG. These stimulations were partially inhibited by probenecid, a bitter taste receptor inhibitor, and by U-73122, a phospholipase C ? 2 inhibitor. These results suggested that the stimulation might involve, at least in part, certain bitter taste receptors and/or PLC ? 2-signaling pathway. Two cucurbitane triterpenoids isolated from BG, 19-nor-cucurbita-5(10),6,8,22-(E),24-pentaen-3 ? -ol, and 5 ? ,19-epoxycucurbita-6,24-diene-3 ? ,23 ? -diol (karavilagenine E,) showed relative high efficacy in the stimulation. In vivo, mice fed BG diet showed higher insulinogenic index in an oral glucose tolerance test. A single oral dose of WE or WES pretreatment significantly improved intraperitoneal glucose tolerance. A single oral dose of WES significantly decreased glucose and increased insulin and GLP-1 in serum after 30?min. This acute hypoglycemic effect of WES was abolished by pretreatment with exendin-9, a GLP-1 receptor antagonist. Our data provide evidence that BG stimulates GLP-1 secretion which contributes, at least in part, to the antidiabetic activity of BG through an incretin effect. PMID:23589719

  18. GLP-1 secretion is increased by inflammatory stimuli in an IL-6-dependent manner, leading to hyperinsulinemia and blood glucose lowering.

    PubMed

    Kahles, Florian; Meyer, Christina; Möllmann, Julia; Diebold, Sebastian; Findeisen, Hannes M; Lebherz, Corinna; Trautwein, Christian; Koch, Alexander; Tacke, Frank; Marx, Nikolaus; Lehrke, Michael

    2014-10-01

    Hypoglycemia and hyperglycemia are both predictors for adverse outcome in critically ill patients. Hyperinsulinemia is induced by inflammatory stimuli as a relevant mechanism for glucose lowering in the critically ill. The incretine hormone GLP-1 was currently found to be induced by endotoxin, leading to insulin secretion and glucose lowering under inflammatory conditions in mice. Here, we describe GLP-1 secretion to be increased by a variety of inflammatory stimuli, including endotoxin, interleukin-1β (IL-1β), and IL-6. Although abrogation of IL-1 signaling proved insufficient to prevent endotoxin-dependent GLP-1 induction, this was abolished in the absence of IL-6 in respective knockout animals. Hence, we found endotoxin-dependent GLP-1 secretion to be mediated by an inflammatory cascade, with IL-6 being necessary and sufficient for GLP-1 induction. Functionally, augmentation of the GLP-1 system by pharmacological inhibition of DPP-4 caused hyperinsulinemia, suppression of glucagon release, and glucose lowering under endotoxic conditions, whereas inhibition of the GLP-1 receptor led to the opposite effect. Furthermore, total GLP-1 plasma levels were profoundly increased in 155 critically ill patients presenting to the intensive care unit (ICU) in comparison with 134 healthy control subjects. In the ICU cohort, GLP-1 plasma levels correlated with markers of inflammation and disease severity. Consequently, GLP-1 provides a novel link between the immune system and the gut with strong relevance for metabolic regulation in context of inflammation. PMID:24947356

  19. The role of GLP-1 mimetics and basal insulin analogues in type 2 diabetes mellitus: guidance from studies of liraglutide

    PubMed Central

    Barnett, A H

    2012-01-01

    In people with type 2 diabetes mellitus (T2DM), the incretin effect is reduced, but the recent advent of dipeptidyl peptidase-4 inhibitors and glucagon-like peptide (GLP)-1 agonists/analogues has enabled restoration of at least some of the function of the incretin system, with accompanying improvements in glycaemic control. Two GLP-1 receptor agonists/analogues are currently approved for the treatment of T2DM—exenatide (Byetta®, Eli Lilly & Co., Indianapolis, IN, US) and liraglutide (Victoza®, Novo Nordisk, Bagsvaerd, Denmark); a once-weekly formulation of exenatide (Bydureon®, Eli Lilly & Co.) has also been approved by the European Medicines Agency. The National Institute for Health and Clinical Excellence (NICE) has recently published guidance on the use of liraglutide in T2DM, based on evidence from the Liraglutide Effect and Action in Diabetes (LEAD) Phase III trial programme, which compared liraglutide with existing glucose-lowering therapies, such as exenatide and insulin glargine. The LEAD programme reported HbA1c reductions from 0.8 to 1.5% with liraglutide (1.2 and 1.8 mg), accompanied by low rates of hypoglycaemia and some weight loss; side effects were primarily gastrointestinal in nature (e.g. nausea and diarrhoea). Based on the findings of the LEAD studies and the NICE recommendation, liraglutide now represents an important therapy widely available in the UK for certain patient groups, including those with a body mass index (BMI) ≥35.0 kg/m2, and patients with a BMI <35 kg/m2 who are considered unsuitable for insulin and are failing to meet targets for glycaemic control with oral agents. NICE guidelines still suggest that most patients without considerable obesity (BMI <35 kg/m2) are probably best managed using insulin therapy. Evidence also suggests a future role for GLP-1 mimetics in combination with basal insulin. PMID:22051096

  20. Lipid derivatives activate GPR119 and trigger GLP-1 secretion in primary murine L-cells

    PubMed Central

    Moss, Catherine E.; Glass, Leslie L.; Diakogiannaki, Eleftheria; Pais, Ramona; Lenaghan, Carol; Smith, David M.; Wedin, Marianne; Bohlooly-Y, Mohammad; Gribble, Fiona M.; Reimann, Frank

    2016-01-01

    Aims/hypothesis Glucagon-like peptide-1 (GLP-1) is an incretin hormone derived from proglucagon, which is released from intestinal L-cells and increases insulin secretion in a glucose dependent manner. GPR119 is a lipid derivative receptor present in L-cells, believed to play a role in the detection of dietary fat. This study aimed to characterize the responses of primary murine L-cells to GPR119 agonism and assess the importance of GPR119 for the detection of ingested lipid. Methods GLP-1 secretion was measured from murine primary cell cultures stimulated with a panel of GPR119 ligands. Plasma GLP-1 levels were measured in mice lacking GPR119 in proglucagon-expressing cells and controls after lipid gavage. Intracellular cAMP responses to GPR119 agonists were measured in single primary L-cells using transgenic mice expressing a cAMP FRET sensor driven by the proglucagon promoter. Results L-cell specific knockout of GPR119 dramatically decreased plasma GLP-1 levels after a lipid gavage. GPR119 ligands triggered GLP-1 secretion in a GPR119 dependent manner in primary epithelial cultures from the colon, but were less effective in the upper small intestine. GPR119 agonists elevated cAMP in ∼70% of colonic L-cells and 50% of small intestinal L-cells. Conclusions/interpretation GPR119 ligands strongly enhanced GLP-1 release from colonic cultures, reflecting the high proportion of colonic L-cells that exhibited cAMP responses to GPR119 agonists. Less GPR119-dependence could be demonstrated in the upper small intestine. In vivo, GPR119 in L-cells plays a key role in oral lipid-triggered GLP-1 secretion. PMID:26144594

  1. [Analogs of glucagon-like peptide-1 (GLP-1): an old concept as a new treatment of patients with diabetes mellitus type 2].

    PubMed

    Diamant, M; Bunck, M C M; Heine, R J

    2004-09-25

    Upon ingestion of food, the incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are synthesised and secreted by specialised gut cells. GLP-1 is also produced in the pancreatic islets and the central nervous system. Both incretins bind to specific G-protein-coupled receptors that are distributed throughout the body. Incretins potentiate meal-induced insulin production and secretion by the beta-cells and lower the blood glucose level in the presence of hyperglycaemia. GLP-1 and GIP stimulate beta-cell proliferation and differentiation, whereas GLP-1 only inhibits gastric emptying and glucagon secretion, reduces food intake and improves insulin sensitivity. Insulin-resistant and type-2 diabetic patients have an impaired incretin response to meal ingestion. However, the insulinotropic action of exogenous GLP-1, but not that of GIP, is preserved in these subjects. After parenteral administration, GLP-1 has an extremely short duration of action because it is rapidly degraded by the ubiquitous enzyme dipeptidyl peptidase IV (DPPIV). To prolong GLP-1 bioactivity, DPPIV-resistant GLP-1 analogues, DPPIV inhibitors and exenatide, a long-acting synthetic GLP-1 receptor agonist derived from the Gila monster hormone exendin-4, have been developed. Enhancement of incretin action seems a rational and promising option for the treatment of type-2 diabetes. PMID:15495988

  2. GLP-1 Agonists and Blood Pressure: A Review of the Evidence.

    PubMed

    Goud, Aditya; Zhong, Jixin; Peters, Matthew; Brook, Robert D; Rajagopalan, Sanjay

    2016-01-01

    Type 2 diabetes mellitus (T2DM) is a major risk factor for cardiovascular disease. The presence of concomitant hypertension in diabetics is a major driver of excess cardiovascular risk. Glucagon-like peptide-1 receptor agonists (GLP-1a) act on numerous pathways that intersect glycemic, weight, and blood pressure (BP) control. BP-lowering effects have been observed in mouse models of hypertension with a variety of GLP-1a. Acute administration of GLP-1a in humans has been shown to no effects and sometimes increased BP in humans. Chronic administration of GLP-1a, however, reduces clinic systolic BP (≈2 mmHg) at least when evaluated as a secondary end point in glycemia-lowering studies while simultaneously increasing heart rate. BP lowering has not been consistently observed in two recent double-blind controlled clinical trials evaluating ambulatory BP as the primary end point. While a number of mechanisms including vascular, myocardial, renal, and central nervous system pathways have been suggested in animal studies, these mechanistic pathways have not been sufficiently detailed in humans and it is unclear if the same pathways are operational. Further studies need to be conducted to unravel the full spectrum of effects of this drug class. An understanding of their effects on BP may help provide an explanation for the ability of GLP-1a to influence cardiovascular (CV) events in ongoing event-driven CV trials. PMID:26803771

  3. The Caenorhabditis Elegans Sel-1 Gene, a Negative Regulator of Lin-12 and Glp-1, Encodes a Predicted Extracellular Protein

    PubMed Central

    Grant, B.; Greenwald, I.

    1996-01-01

    The Caenorhabditis elegans lin-12 and glp-1 genes encode members of the LIN-12/NOTCH family of receptors. The sel-1 gene was identified as an extragenic suppressor of a lin-12 hypomorphic mutant. We show in this report that the sel-1 null phenotype is wild type, except for an apparent elevation in lin-12 and glp-1 activity in sensitized genetic backgrounds, and that this genetic interaction seems to be lin-12 and glp-1 specific. We also find that sel-1 encodes a predicted extracellular protein, with a domain sharing sequence similarity to predicted proteins from humans and yeast. SEL-1 may interact with the LIN-12 and GLP-1 receptors and/or their respective ligands to down-regulate signaling. PMID:8722778

  4. Glucagon-like Peptide-1 (GLP-1) Analogs: Recent Advances, New Possibilities, and Therapeutic Implications

    PubMed Central

    2015-01-01

    Glucagon-like peptide-1 (GLP-1) is an incretin that plays important physiological roles in glucose homeostasis. Produced from intestine upon food intake, it stimulates insulin secretion and keeps pancreatic ?-cells healthy and proliferating. Because of these beneficial effects, it has attracted a great deal of attention in the past decade, and an entirely new line of diabetic therapeutics has emerged based on the peptide. In addition to the therapeutic applications, GLP-1 analogs have demonstrated a potential in molecular imaging of pancreatic ?-cells; this may be useful in early detection of the disease and evaluation of therapeutic interventions, including islet transplantation. In this Perspective, we focus on GLP-1 analogs for their studies on improvement of biological activities, enhancement of metabolic stability, investigation of receptor interaction, and visualization of the pancreatic islets. PMID:25349901

  5. Minireview: Signal Bias, Allosterism, and Polymorphic Variation at the GLP-1R: Implications for Drug Discovery

    PubMed Central

    Koole, Cassandra; Savage, Emilia E.; Christopoulos, Arthur; Miller, Laurence J.

    2013-01-01

    The glucagon-like peptide-1 receptor (GLP-1R) controls the physiological responses to the incretin hormone glucagon-like peptide-1 and is a major therapeutic target for the treatment of type 2 diabetes, owing to the broad range of effects that are mediated upon its activation. These include the promotion of glucose-dependent insulin secretion, increased insulin biosynthesis, preservation of β-cell mass, improved peripheral insulin action, and promotion of weight loss. Regulation of GLP-1R function is complex, with multiple endogenous and exogenous peptides that interact with the receptor that result in the activation of numerous downstream signaling cascades. The current understanding of GLP-1R signaling and regulation is limited, with the desired spectrum of signaling required for the ideal therapeutic outcome still to be determined. In addition, there are several single-nucleotide polymorphisms (used in this review as defining a natural change of single nucleotide in the receptor sequence; clinically, this is viewed as a single-nucleotide polymorphism only if the frequency of the mutation occurs in 1% or more of the population) distributed within the coding sequence of the receptor protein that have the potential to produce differential responses for distinct ligands. In this review, we discuss the current understanding of GLP-1R function, in particular highlighting recent advances in the field on ligand-directed signal bias, allosteric modulation, and probe dependence and the implications of these behaviors for drug discovery and development. PMID:23864649

  6. The human GLP-1 analogs liraglutide and semaglutide: absence of histopathological effects on the pancreas in nonhuman primates.

    PubMed

    Gotfredsen, Carsten F; Mlck, Anne-Marie; Thorup, Inger; Nyborg, Niels C Berg; Salanti, Zaki; Knudsen, Lotte Bjerre; Larsen, Marianne O

    2014-07-01

    Increased pancreas mass and glucagon-positive adenomas have been suggested to be a risk associated with sitagliptin or exenatide therapy in humans. Novo Nordisk has conducted extensive toxicology studies, including data on pancreas weight and histology, in Cynomolgus monkeys dosed with two different human glucagon-like peptide-1 (GLP-1) receptor agonists. In a 52-week study with liraglutide, a dose-related increase in absolute pancreas weight was observed in female monkeys only. Such dose-related increase was not found in studies of 4, 13, or 87 weeks' duration. No treatment-related histopathological abnormalities were observed in any of the studies. Quantitative histology of the pancreas from the 52-week study showed an increase in the exocrine cell mass in liraglutide-dosed animals, with normal composition of endocrine and exocrine cellular compartments. Proliferation rate of the exocrine tissue was low and comparable between groups. Endocrine cell mass and proliferation rates were unaltered by liraglutide treatment. Semaglutide showed no increase in pancreas weight and no treatment-related histopathological findings in the pancreas after 13 or 52 weeks' dosing. Overall, results in 138 nonhuman primates showed no histopathological changes in the pancreas associated with liraglutide or semaglutide, two structurally different GLP-1 receptor agonists. PMID:24608440

  7. The evolving place of incretin-based therapies in type 2 diabetes

    PubMed Central

    2010-01-01

    Treatment options for type 2 diabetes based on the action of the incretin hormone glucagon-like peptide-1 (GLP-1) were first introduced in 2005. These comprise the injectable GLP-1 receptor agonists solely acting on the GLP-1 receptor on the one hand and orally active dipeptidyl-peptidase inhibitors (DPP-4 inhibitors) raising endogenous GLP-1 and other hormone levels by inhibiting the degrading enzyme DPP-4. In adult medicine, both treatment options are attractive and more commonly used because of their action and safety profile. The incretin-based therapies stimulate insulin secretion and inhibit glucagon secretion in a glucose-dependent manner and carry no intrinsic risk of hypoglycaemia. GLP-1 receptor agonists allow weight loss, whereas DPP-4 inhibitors are weight neutral. This review gives an overview of the mechanism of action and the substances and clinical data available. PMID:20130920

  8. The GLP-1 agonist, liraglutide, as a pharmacotherapy for obesity

    PubMed Central

    Crane, James; McGowan, Barbara

    2015-01-01

    There is a global obesity epidemic that will continue to be a financial burden on healthcare systems around the world. Tackling obesity through diet and exercise should always be the first intervention, but this has not proved to be effective for a large number of patients. Pharmacotherapeutic options have been limited and many previously available drugs have been withdrawn due to safety concerns. Currently, only bariatric surgery has the capability to induce both substantial and durable weight loss. This article briefly reviews the history of pharmacotherapy for obesity before focusing on the clinical trial evidence for the use of the GLP-1 agonist liraglutide as a weight loss agent and comparing its efficacy with other emerging drug therapies for obesity. PMID:26977279

  9. Lipopolysaccharides-mediated increase in glucose-stimulated insulin secretion: involvement of the GLP-1 pathway.

    PubMed

    Nguyen, Anh Thoai; Mandard, Stphane; Dray, Cdric; Deckert, Valrie; Valet, Philippe; Besnard, Philippe; Drucker, Daniel J; Lagrost, Laurent; Grober, Jacques

    2014-02-01

    Lipopolysaccharides (LPS) of the cell wall of gram-negative bacteria trigger inflammation, which is associated with marked changes in glucose metabolism. Hyperglycemia is frequently observed during bacterial infection and it is a marker of a poor clinical outcome in critically ill patients. The aim of the current study was to investigate the effect of an acute injection or continuous infusion of LPS on experimentally induced hyperglycemia in wild-type and genetically engineered mice. The acute injection of a single dose of LPS produced an increase in glucose disposal and glucose-stimulated insulin secretion (GSIS). Continuous infusion of LPS through mini-osmotic pumps was also associated with increased GSIS. Finally, manipulation of LPS detoxification by knocking out the plasma phospholipid transfer protein (PLTP) led to increased glucose disposal and GSIS. Overall, glucose tolerance and GSIS tests supported the hypothesis that mice treated with LPS develop glucose-induced hyperinsulinemia. The effects of LPS on glucose metabolism were significantly altered as a result of either the accumulation or antagonism of glucagon-like peptide 1 (GLP-1). Complementary studies in wild-type and GLP-1 receptor knockout mice further implicated the GLP-1 receptor-dependent pathway in mediating the LPS-mediated changes in glucose metabolism. Hence, enhanced GLP-1 secretion and action underlies the development of glucose-mediated hyperinsulinemia associated with endotoxemia. PMID:24186868

  10. The effects of GLP-1 analogues in obese, insulin-using type 2 diabetes in relation to eating behaviour.

    PubMed

    de Boer, Stefanie Amarens; Lefrandt, Joop Daniel; Petersen, Japke Frida; Boersma, Hendrikus Hessel; Mulder, Douwe Johannes; Hoogenberg, Klaas

    2016-02-01

    Background Glucagon-like peptide-1 receptor agonists (GLP-1 RA) added to insulin in type 2 diabetes patients have shown to lower body weight, improve glycaemic control and reduce total daily insulin dose in short term studies, although the individual response greatly varies. Objective To evaluate GLP-1 RA treatment on body weight, glycaemic control and total daily insulin dose in obese, insulin-using type 2 diabetes patients after 2 years follow-up in a real life setting and to explore a possible relation with eating behaviour. Setting The Martini Hospital and the University Medical Center in Groningen in the Netherlands. Methods Eligible patients were at least 18 years of age, were on insulin therapy and obese (BMI > 30 kg/m(2)), started GLP-1 RA treatment. At baseline eating behaviour was classified according to the validated Dutch Eating Behaviour Questionnaire. A 2 years follow-up was performed. Main outcome measures Body weight, HbA1c and total daily insulin dose. Results 151 Patients started with exenatide or liraglutide. 120 patients completed the 2 years follow-up. From baseline to 2 years, body weight (mean ± SD) changed from 117.9 ± 22.1 to 107.9 ± 22.9 kg (P < 0.0001), HbA1c (median, IQR) changed from 7.9 (7.2-8.9) to 7.6 (6.9-8.3) % [63 (55-74) to 60 (52-67) mmol/mol] (P < 0.0001), total daily insulin dose changed from 90 (56-150) to 60 (0-100) Units/day (P < 0.0001). Weight change differed between eating behaviour groups (P < 0.001) in which external eating behaviour (n = 17) resulted in the smallest decline (-3.1 %) and restrained (n = 41) in the greatest (-10.3 %) in comparison with emotional (n = 37, -8.5 %) and indifferent (n = 25, -9.6 %) eating behaviours. Conclusion Two year of GLP-1 RA treatment resulted in a sustained reduction of weight, HbA1c and total daily insulin dose in obese, insulin-using type 2 diabetes patients in a real life setting. Largest weight loss was achieved in patients with a predominant restraint eating pattern while a predominant external eating pattern resulted in the smallest weight reduction. PMID:26597956

  11. Is the GLP-1 system a viable therapeutic target for weight reduction?

    PubMed Central

    Sandoval, Darleen A.

    2011-01-01

    Incretin hormones are intestinally derived peptides that are known to augment glucose-stimulated insulin secretion and suppress glucagon levels. Incretin mimetics are attractive adjunctive therapy for type 2 diabetes due to its efficacy on reducing hyperglycemia with a minimal risk of hypoglycemia. In contrast to most available hypoglycemia agents that cause weight gain, incretin mimetics are associated with moderate weight loss. In this review, we focused our discussion on the actions of glucagon-like peptide 1 (GLP-1) in the brain regulation of energy expenditure and food intake. Furthermore, we reviewed the data from preclinical and clinical studies in humans and discussed the actions of GLP-1, GLP-1 analogs, dipeptidyl pepidase 4 (DPP-4) inhibitors on body weight regulation as well as mechanism by which these effects may occur. The gastrointestinal side effects common to GLP-1 based therapeutics such as nausea hamper its wide spread use. Here, we discussed theoretical possibilities for maximizing weight loss and minimizing nausea with of incretin-based therapy. PMID:21336840

  12. Puerarin Protects Pancreatic β-Cells in Obese Diabetic Mice via Activation of GLP-1R Signaling.

    PubMed

    Yang, Lei; Yao, Dongdong; Yang, Haiyuan; Wei, Yingjie; Peng, Yunru; Ding, Yongfang; Shu, Luan

    2016-03-01

    Diabetes is characterized by a loss and dysfunction of the β-cell. Glucagon-like peptide 1 receptor (GLP-1R) signaling plays an important role in β-cell survival and function. It is meaningful to identify promising agents from natural products which might activate GLP-1R signaling. In this study, puerarin, a diet isoflavone, was evaluated its beneficial effects on β-cell survival and GLP-1R pathway. We showed that puerarin reduced the body weight gain, normalized blood glucose, and improved glucose tolerance in high-fat diet-induced and db/db diabetic mice. Most importantly, increased β-cell mass and β-cell proliferation but decreased β-cell apoptosis were observed in puerarin-treated diabetic mice as examined by immunostaining of mice pancreatic sections. The protective effect of puerarin on β-cell survival was confirmed in isolated mouse islets treated with high glucose. Further mechanism studies showed that the circulating level of GLP-1 in mice was unaffected by puerarin. However, puerarin enhanced GLP-1R signaling by up-regulating expressions of GLP-1R and pancreatic and duodenal homeobox 1, which subsequently led to protein kinase B (Akt) activation but forkhead box O1 inactivation, and promoted β-cell survival. The protective effect of puerarin was remarkably suppressed by Exendin(9-39), an antagonist of GLP-1R. Our study demonstrated puerarin improved glucose homeostasis in obese diabetic mice and identified a novel role of puerarin in protecting β-cell survival by mechanisms involving activation of GLP-1R signaling and downstream targets. PMID:26789107

  13. Association of low GLP-1 with oxidative stress is related to cardiac disease and outcome in patients with type 2 diabetes mellitus: a pilot study.

    PubMed

    Ravassa, Susana; Beaumont, Javier; Huerta, Ana; Barba, Joaquín; Coma-Canella, Isabel; González, Arantxa; López, Begoña; Díez, Javier

    2015-04-01

    Oxidative stress (OS) contributes to cardiovascular damage in type 2 diabetes mellitus (T2DM). The peptide glucagon-like peptide-1 (GLP-1) inhibits OS and exerts cardiovascular protective actions. Our aim was to investigate whether cardiac remodeling (CR) and cardiovascular events (CVE) are associated with circulating GLP-1 and biomarkers of OS in T2DM patients. We also studied GLP-1 antioxidant effects in a model of cardiomyocyte lipotoxicity. We examined 72 T2DM patients with no coronary or valve heart disease and 14 nondiabetic subjects. A median of 6 years follow-up information was obtained in 60 patients. Circulating GLP-1, dipeptidyl peptidase-4 activity, and biomarkers of OS were quantified. In T2DM patients, circulating GLP-1 decreased and OS biomarkers increased, compared with nondiabetics. Plasma GLP-1 was inversely correlated with serum 3-nitrotyrosine in T2DM patients. Patients showing high circulating 3-nitrotyrosine and low GLP-1 levels exhibited CR and higher risk for CVE, compared to the remaining patients. In palmitate-stimulated HL-1 cardiomyocytes, GLP-1 reduced cytosolic and mitochondrial oxidative stress, increased mitochondrial ATP synthase expression, partially restored mitochondrial membrane permeability and cytochrome c oxidase activity, blunted leakage of creatine to the extracellular medium, and inhibited oxidative damage in total and mitochondrial DNA. These results suggest that T2DM patients with reduced circulating GLP-1 and exacerbated OS may exhibit CR and be at higher risk for CVE. In addition, GLP-1 exerts antioxidant effects in HL-1 palmitate-overloaded cardiomyocytes. It is proposed that therapies aimed to increase GLP-1 may counteract OS, protect from CR, and prevent CVE in patients with T2DM. PMID:25595459

  14. A new GLP-1 analogue with prolonged glucose-lowering activity in vivo via backbone-based modification at the N-terminus.

    PubMed

    Bai, Xiaohui; Niu, Youhong; Zhu, Jingjing; Yang, An-Qi; Wu, Yan-Fen; Ye, Xin-Shan

    2016-03-15

    Glucagon-like peptide-1 (GLP-1) is an endogenous insulinotropic hormone with wonderful glucose-lowering activity. However, its clinical use in type II diabetes is limited due to its rapid degradation at the N-terminus by dipeptidyl peptidase IV (DPP-IV). Among the N-terminal modifications of GLP-1, backbone-based modification was rarely reported. Herein, we employed two backbone-based strategies to modify the N-terminus of tGLP-1. Firstly, the amide N-methylated analogues 2-6 were designed and synthesized to make a full screening of the N-terminal amide bonds, and the loss of GLP-1 receptor (GLP-1R) activation indicated the importance of amide H-bonds. Secondly, with retaining the N-terminal amide H-bonds, the β-peptide replacement strategy was used and analogues 7-13 were synthesized. By two rounds of screening, analogue 10 was identified. Analogue 10 greatly improved the DPP-IV resistance with maintaining good GLP-1R activation in vitro, and showed approximately a 4-fold prolonged blood glucose-lowering activity in vivo in comparison with tGLP-1. This modification strategy will benefit the development of GLP-1-based anti-diabetic drugs. PMID:26895657

  15. cAMP-independent effects of GLP-1 on ? cells.

    PubMed

    Kolic, Jelena; MacDonald, Patrick E

    2015-12-01

    The ability of glucose to stimulate insulin secretion from the pancreatic islets of Langerhans is enhanced by the intestinal hormone glucagon-like peptide 1 (GLP-1), which is secreted from the gut in response to nutrient ingestion. This action, called the incretin effect, accounts for as much as half of the postprandial insulin response and is exploited therapeutically for diabetes treatment through the use of incretin mimetic drugs and inhibitors of dipeptidyl peptidase 4, which degrades GLP-1. Despite a prominent role for incretin mimetics in diabetes treatment, several key questions remain about GLP-1-induced insulin secretion. Most studies have examined the effects of GLP-1 at concentrations several orders of magnitude higher than those found in vivo; therefore, one might question the physiological (and perhaps even pharmacological) relevance of pathways identified in these studies and whether other important mechanisms might have been obscured. In this issue of the JCI, Shigeto and colleagues demonstrate that physiological GLP-1 does indeed amplify the insulin secretory response. Intriguingly, while much of this response is PKA dependent, as might be expected, the use of picomolar GLP-1 reveals a new and important mechanism that contributes to GLP-1-induced insulin secretion. PMID:26571393

  16. Novel coumarin modified GLP-1 derivatives with enhanced plasma stability and prolonged in vivo glucose-lowering ability

    PubMed Central

    Han, Jing; Sun, Lidan; Huang, Xun; Li, Zheng; Zhang, Chenyu; Qian, Hai; Huang, Wenlong

    2014-01-01

    Background and Purpose The short biological half-life limits the therapeutic use of glucagon-like peptide-1 (GLP-1) and chemical modification to improve the interaction of peptides with serum albumin represents an effective strategy to develop long-acting peptide analogues. Coumarin, a natural product, is known to bind tightly to plasma proteins and possesses many biological activities. Therefore, we designed and synthesized a series of coumarin-modified GLP-1 derivatives, hypothesizing that conjugation with coumarin would retain the therapeutic effects and prolong the biological half-life of the conjugates. Experimental Approach Four cysteine-modified GLP-1 analogues (1–4) were prepared using Gly8-GLP-1(7–36)-NH2 peptide as a starting point. These analogues were conjugated with two coumarin maleimides to yield eight compounds (conjugates 6–13) for testing. Activation of human GLP-1 receptors, stability to enzymic inactivation in plasma and binding to human albumin were assessed in vitro. In vivo, effects on oral glucose tolerance tests (OGTT) in rats and on blood glucose levels in db/db mice were studied. Key Results Most conjugates showed well preserved receptor activation efficacy, enhanced albumin-binding properties and improved in vitro plasma stability and conjugate 7 was selected to undergo further assessment. In rats, conjugate 7 had a longer circulating t1/2 than exendin-4 or liraglutide. A prolonged antidiabetic effect of conjugate 7 was observed after OGTT in rats and a prolonged hypoglycaemic effect in db/db mice. Conclusions and Implications Cysteine-specific coumarin conjugation with GLP-1 offers a useful approach to the development of long-acting incretin-based antidiabetic agents. Conjugate 7 is a promising long-lasting GLP-1 derivative deserving further investigation. PMID:25039358

  17. Differentiating among incretin-based therapies in the management of patients with type 2 diabetes mellitus.

    PubMed

    Cobble, Michael

    2012-01-01

    The glucagon-like peptide-1 receptor (GLP-1R) agonists and dipeptidyl peptidase-4 (DPP-4) inhibitors have become important options for the management of patients with type 2 diabetes mellitus. While the GLP-1R agonists and DPP-4 inhibitors act on the incretin system to regulate glucose homeostasis, there are important clinical differences among the five agents currently available in the U.S. For example, the GLP-1R agonists require subcutaneous administration, produce pharmacological levels of GLP-1 activity, promote weight loss, have a more robust glucose-lowering effect, and have a higher incidence of adverse gastrointestinal effects. In contrast, the DPP-4 inhibitors are taken orally, increase the half-life of endogenous GLP-1, are weight neutral, and are more commonly associated with nasopharyngitis. Differences in efficacy, safety, tolerability, and cost among the incretin-based therapies are important to consider in the primary care management of patients with type 2 diabetes mellitus. PMID:22390369

  18. Novel GLP-1 (Glucagon-Like Peptide-1) Analogues and Insulin in the Treatment for Alzheimer's Disease and Other Neurodegenerative Diseases.

    PubMed

    Calsolaro, Valeria; Edison, Paul

    2015-12-01

    The link between diabetes mellitus and Alzheimer's disease (AD) has been known for the last few decades. Since insulin and insulin receptors are known to be present in the brain, the downstream signalling as well as the effect of hyperinsulinemia have been extensively studied in both AD and Parkinson's disease. Glucagon-like peptide-1 (GLP-1) is a hormone belonging to the incretin family, and its receptors (GLP-1Rs) can be found in pancreatic cells and in vascular endothelium. Interestingly, GLP-1Rs are found in the neuronal cell body and dendrites in the central nervous system (CNS), in particular in the hypothalamus, hippocampus, cerebral cortex and olfactory bulb. Several studies have shown the importance of both insulin and GLP-1 signalling on cognitive function, and many preclinical studies have been performed to evaluate the potential protective role of GLP-1 on the brain. Here we review the underlying mechanism of insulin and GLP-1 signalling in the CNS, as well as the preclinical data for the use of GLP-1 analogues such as liraglutide, exenatide and lixisenatide in neurodegenerative diseases. PMID:26666230

  19. Neurotensin Is Coexpressed, Coreleased, and Acts Together With GLP-1 and PYY in Enteroendocrine Control of Metabolism.

    PubMed

    Grunddal, Kaare V; Ratner, Cecilia F; Svendsen, Berit; Sommer, Felix; Engelstoft, Maja S; Madsen, Andreas N; Pedersen, Jens; Nhr, Mark K; Egerod, Kristoffer L; Nawrocki, Andrea R; Kowalski, Timothy; Howard, Andrew D; Poulsen, Steen Seier; Offermanns, Stefan; Bckhed, Fredrik; Holst, Jens J; Holst, Birgitte; Schwartz, Thue W

    2016-01-01

    The 2 gut hormones glucagon-like peptide-1 (GLP-1) and peptide YY (PYY) are well known to be coexpressed, costored, and released together to coact in the control of key metabolic target organs. However, recently, it became clear that several other gut hormones can be coexpressed in the intestinal-specific lineage of enteroendocrine cells. Here, we focus on the anatomical and functional consequences of the coexpression of neurotensin with GLP-1 and PYY in the distal small intestine. Fluorescence-activated cell sorting analysis, laser capture, and triple staining demonstrated that GLP-1 cells in the crypts become increasingly multihormonal, ie, coexpressing PYY and neurotensin as they move up the villus. Proglucagon promoter and pertussis toxin receptor-driven cell ablation and reappearance studies indicated that although all the cells die, the GLP-1 cells reappear more quickly than PYY- and neurotensin-positive cells. High-resolution confocal fluorescence microscopy demonstrated that neurotensin is stored in secretory granules distinct from GLP-1 and PYY storing granules. Nevertheless, the 3 peptides were cosecreted from both perfused small intestines and colonic crypt cultures in response to a series of metabolite, neuropeptide, and hormonal stimuli. Importantly, neurotensin acts synergistically, ie, more than additively together with GLP-1 and PYY to decrease palatable food intake and inhibit gastric emptying, but affects glucose homeostasis in a more complex manner. Thus, neurotensin is a major gut hormone deeply integrated with GLP-1 and PYY, which should be taken into account when exploiting the enteroendocrine regulation of metabolism pharmacologically. PMID:26469136

  20. Efficacy and tolerability of GLP-1 agonists in patients with type 2 diabetes mellitus: an Indian perspective

    PubMed Central

    2014-01-01

    Glucagon like peptide-1 (GLP-1) agonists have been able to address the unmet needs of type 2 diabetes patients across the world. Indian patients with type 2 diabetes have also been able to benefit from effects of GLP-1 analogues to a more or less similar extent compared with patients from other parts of the world. As there is no nationwide data on use of GLP-1 agonists in India, we used the clinical data from different studies and compared them with the global data on GLP-1 analogues. The review is limited to only two approved GLP-1 analogues in India: exenatide and liraglutide. The efficacy of GLP-1 analogues, in terms of glycated haemoglobin (HbA1c), fasting plasma glucose (FPG) and postprandial glucose (PPG), is found to be similar in Indian patients compared with the global data. The other beneficial effects such as weight loss, incidence of hypoglycaemia were found to be on similar lines in the Indian setting. In a single-centre study, liraglutide reduced the dose of antihypertensive medications due to its effect on blood pressure. The gastrointestinal adverse effects such as nausea and vomiting were major adverse events, but these were transient and varied from one particular agent to another. Liraglutide is found to be superior in terms of compliance compared with exenatide in the Indian setting. Overall, the GLP-1 analogues have presented a treatment option that gives patient a benefit of glycaemic control, weight loss and very low incidence of hypoglycaemia, but the cost of the therapy presents a major barrier. PMID:25489471

  1. Exenatide exerts a PKA-dependent positive inotropic effect in human atrial myocardium: GLP-1R mediated effects in human myocardium.

    PubMed

    Wallner, Markus; Kolesnik, Ewald; Ablasser, Klemens; Khafaga, Mounir; Wakula, Paulina; Ljubojevic, Senka; Thon-Gutschi, Eva Maria; Sourij, Harald; Kapl, Martin; Edmunds, Nicholas J; Kuzmiski, J Brent; Griffith, David A; Knez, Igor; Pieske, Burkert; von Lewinski, Dirk

    2015-12-01

    Glucagon-like peptide-1 receptor (GLP-1R) agonists are a rapidly growing class of drugs developed for treating type-2 diabetes mellitus. Patients with diabetes carry an up to 5-fold greater mortality risk compared to non-diabetic patients, mainly as a result of cardiovascular diseases. Although beneficial cardiovascular effects have been reported, exact mechanisms of GLP-1R-agonist action in the heart, especially in human myocardium, are poorly understood. The effects of GLP-1R-agonists (exenatide, GLP-1(7-36)NH2, PF-06446009, PF-06446667) on cardiac contractility were tested in non-failing atrial and ventricular trabeculae from 72 patients. The GLP-1(7-36)NH2 metabolite, GLP-1(9-36)NH2, was also examined. In electrically stimulated trabeculae, the effects of compounds on isometric force were measured in the absence and presence of pharmacological inhibitors of signal transduction pathways. The role of β-arrestin signaling was examined using a β-arrestin partial agonist, PF-06446667. Expression levels were tested by immunoblots. Translocation of GLP-1R downstream molecular targets, Epac2, GLUT-1 and GLUT-4, were assessed by fluorescence microscopy. All tested GLP-1R-agonists significantly increased developed force in human atrial trabeculae, whereas GLP-1(9-36)NH2 had no effect. Exendin(9-39)NH2, a GLP-1R-antagonist, and H-89 blunted the inotropic effect of exenatide. In addition, exenatide increased PKA-dependent phosphorylation of phospholamban (PLB), GLUT-1 and Epac2 translocation, but not GLUT-4 translocation. Exenatide failed to enhance contractility in ventricular myocardium. Quantitative real-time PCR (qRT-PCR) revealed a significant higher GLP-1R expression in the atrium compared to ventricle. Exenatide increased contractility in a dose-dependent manner via GLP-1R/cAMP/PKA pathway and induced GLUT-1 and Epac2 translocation in human atrial myocardium, but had no effect in ventricular myocardium. Therapeutic use of GLP-1R-agonists may therefore impart beneficial effects on myocardial function and remodelling. PMID:26432951

  2. Selected tetrapeptides lead to a GLP-1 release from the human enteroendocrine cell line NCI-H716.

    PubMed

    Le Nev, Boris; Daniel, Hannelore

    2011-02-25

    Enteroendocrine cells in the intestine sense the luminal contents and have been shown to respond to not only fatty acids, proteins, and monosaccharides but also artificial sweeteners and bitter compounds. Secretion of hormones such as CCK and GLP-1 from these cells is often associated with a rise in intracellular calcium concentration [Ca+](i). The human NCI-H716 enteroendocrine cell line has been described as a proper model to study GLP-1 secretion in response to amino acids and protein hydrolysates. Here, we describe that NCI-H716 cells specifically respond to selective tetrapeptides such as tetra-glycine, tetra-alanine and Gly-Trp-Gly-Gly with a dose-dependent [Ca+](i) response and a GLP-1 secretion, whereas selected free amino acids, dipeptides, tripeptides and pentapeptides failed to elicit such a response. Hormone secretion was not associated with changes in cAMP levels in the cells. The calcium-dependence of hormone secretion appears to involve store-operated calcium channels (SOCCs), since the SOCC blocker 2-APB abolished both the [Ca+](i) response and GLP-1 release upon tetra-glycine stimulation. The nature of the sensor currently remains elusive, and no obvious common structural pattern in tetrapeptides eliciting GLP-1 secretion was identified. This tetrapeptide sensing in NCI-H716 cells may be underlying the effective stimulation of hormone secretion shown for various protein hydrolysates, and could involve a novel G-protein-coupled receptor (GPCR). PMID:21070823

  3. Epac is required for GLP-1R-mediated inhibition of oxidative stress and apoptosis in cardiomyocytes.

    PubMed

    Mangmool, Supachoke; Hemplueksa, Piriya; Parichatikanond, Warisara; Chattipakorn, Nipon

    2015-04-01

    Although the cardioprotective effects of glucagon-like peptide-1 and its analogs have been reported, the exact mechanisms of the glucagon-like peptide-1 receptor (GLP-1R) signaling pathway in the heart are still unclear. Activation of the GLP-1R has been shown to increase cAMP levels, thus eliciting protein kinase A- and exchange protein activated by cAMP (Epac)-dependent signaling pathways in pancreatic β-cells. However, which pathway plays an important role in the antioxidant and antiapoptotic effects of GLP-1R activation in the heart is not known. In this study, we demonstrated that stimulation of GLP-1Rs with exendin-4 attenuated H2O2-induced reactive oxygen species production and increased the synthesis of antioxidant enzymes, catalase, glutathione peroxidase-1, and manganese superoxide dismutase that is dependent on Epac. Additionally, exendin-4 has an antiapoptotic effect by decreasing a number of apoptotic cells, inhibiting caspase-3 activity, and enhancing the expression of antiapoptotic protein B-cell lymphoma 2, which is mediated through both protein kinase A- and Epac-dependent pathways. These data indicate a critical role for Epac in GLP-1R-mediated cardioprotection. PMID:25719403

  4. In vivo expression of GLP-1/IgG-Fc fusion protein enhances beta-cell mass and protects against streptozotocin-induced diabetes.

    PubMed

    Soltani, N; Kumar, M; Glinka, Y; Prud'homme, G J; Wang, Q

    2007-06-01

    Glucagon-like peptide 1 (GLP-1) and its analogue exendin-4 (Ex4) have displayed potent glucose homeostasis-modulating characteristics in type 2 diabetes (T2D). However, there are few reports of effectiveness in type 1 diabetes (T1D) therapy, where there is massive loss of beta cells. We previously described a novel GLP-1 analogue consisting of the fusion of active GLP-1 and IgG heavy chain constant regions (GLP-1/IgG-Fc), and showed that in vivo expression of the protein, via electroporation-enhanced intramuscular plasmid-based gene transfer, normalized blood glucose levels in T2D-prone db/db mice. In the present study, GLP-1/IgG-Fc and Ex4/IgG-Fc were independently tested in multiple low-dose streptozotocin-induced T1D. Both GLP-1/IgG-Fc and Ex4/IgG-Fc effectively reduced fed blood glucose levels in treated mice and ameliorated diabetes symptoms, where as control IgG-Fc had no effect. Treatment with GLP-1/IgG-Fc or Ex4/IgG-Fc improved glucose tolerance and increased circulating insulin and GLP-1 levels. It also significantly enhanced islet beta-cell mass, which is likely a major factor in the amelioration of diabetes. This suggests that GLP-1/IgG-Fc gene therapy may be applicable to diseases where there is either acute or chronic beta-cell injury. PMID:17410180

  5. Incretin-based therapies: where will we be 50 years from now?

    PubMed

    Meier, Juris J; Nauck, Michael A

    2015-08-01

    The development of incretin-based therapies (glucagon-like peptide 1 [GLP-1] receptor agonists and dipeptidyl peptidase-4 [DPP-4] inhibitors) has changed the landscape of type 2 diabetes management over the past decade. Current developments include longer-acting GLP-1 receptor agonists, fixed-ratio combinations of GLP-1 analogues and basal insulin, as well as implantable osmotic minipumps for long-term delivery of GLP-1 receptor agonists. In longer terms, oral or inhaled GLP-1 analogues may become a reality. In addition, oral enhancers of GLP-1 secretion (e.g. via G-protein-coupled receptors, nuclear farnesoid-receptor X and the G-protein-coupled bile acid-activated receptor [TGR5]) are currently being explored in experimental studies. Combination of GLP-1 with other gut hormones (e.g. peptide YY, glucagon, gastrin, glucose-dependent insulinotropic polypeptide [GIP], secretin, cholecystokinin, vasoactive intestinal polypeptide and pituitary adenylate cyclase-activating polypeptide) may enhance the glucose- and weight-lowering effect of GLP-1 alone, and dual or triple hormone receptor agonists may even exploit the properties of different peptides with just one molecule. There is also an increasing interest in employing incretin-based therapies in other areas, such as type 1 diabetes, impaired glucose metabolism, obesity, polycystic ovary syndrome, non-alcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH), psoriasis or even neurodegeneration. Thus, incretin-based therapies may continue to broaden the therapeutic spectrum for type 2 diabetes and for various other indications in the coming years. This is one of a series of commentaries under the banner '50 years forward', giving personal opinions on future perspectives in diabetes, to celebrate the 50th anniversary of Diabetologia (1965-2015). PMID:25994073

  6. Ingestion of coffee polyphenols increases postprandial release of the active glucagon-like peptide-1 (GLP-1(7-36)) amide in C57BL/6J mice.

    PubMed

    Fujii, Yoshie; Osaki, Noriko; Hase, Tadashi; Shimotoyodome, Akira

    2015-01-01

    The widespread prevalence of diabetes, caused by impaired insulin secretion and insulin resistance, is now a worldwide health problem. Glucagon-like peptide 1 (GLP-1) is a major intestinal hormone that stimulates glucose-induced insulin secretion from ? cells. Prolonged activation of the GLP-1 signal has been shown to attenuate diabetes in animals and human subjects. Therefore, GLP-1 secretagogues are attractive targets for the treatment of diabetes. Recent epidemiological studies have reported that an increase in daily coffee consumption lowers diabetes risk. The present study examined the hypothesis that the reduction in diabetes risk associated with coffee consumption may be mediated by the stimulation of GLP-1 release by coffee polyphenol extract (CPE). GLP-1 secretion by human enteroendocrine NCI-H716 cells was augmented in a dose-dependent manner by the addition of CPE, and was compatible with the increase in observed active GLP-1(7-36) amide levels in the portal blood after administration with CPE alone in mice. CPE increased intracellular cyclic AMP (cAMP) levels in a dose-dependent manner, but this was not mediated by G protein-coupled receptor 119 (GPR119). The oral administration of CPE increased diet (starch and glyceryl trioleate)-induced active GLP-1 secretion and decreased glucose-dependent insulinotropic polypeptide release. Although CPE administration did not affect diet-induced insulin secretion, it decreased postprandial hyperglycaemia, which indicates that higher GLP-1 levels after the ingestion of CPE may improve insulin sensitivity. We conclude that dietary coffee polyphenols augment gut-derived active GLP-1 secretion via the cAMP-dependent pathway, which may contribute to the reduced risk of type 2 diabetes associated with daily coffee consumption. PMID:26097706

  7. Stimulation of GLP-1 secretion downstream of the ligand-gated ion channel TRPA1.

    PubMed

    Emery, Edward C; Diakogiannaki, Eleftheria; Gentry, Clive; Psichas, Arianna; Habib, Abdella M; Bevan, Stuart; Fischer, Michael J M; Reimann, Frank; Gribble, Fiona M

    2015-04-01

    Stimulus-coupled incretin secretion from enteroendocrine cells plays a fundamental role in glucose homeostasis and could be targeted for the treatment of type 2 diabetes. Here, we investigated the expression and function of transient receptor potential (TRP) ion channels in enteroendocrine L cells producing GLP-1. By microarray and quantitative PCR analysis, we identified trpa1 as an L cell-enriched transcript in the small intestine. Calcium imaging of primary L cells and the model cell line GLUTag revealed responses triggered by the TRPA1 agonists allyl-isothiocyanate (mustard oil), carvacrol, and polyunsaturated fatty acids, which were blocked by TRPA1 antagonists. Electrophysiology in GLUTag cells showed that carvacrol induced a current with characteristics typical of TRPA1 and triggered the firing of action potentials. TRPA1 activation caused an increase in GLP-1 secretion from primary murine intestinal cultures and GLUTag cells, an effect that was abolished in cultures from trpa1(-/-) mice or by pharmacological TRPA1 inhibition. These findings present TRPA1 as a novel sensory mechanism in enteroendocrine L cells, coupled to the facilitation of GLP-1 release, which may be exploitable as a target for treating diabetes. PMID:25325736

  8. Off-label antiobesity treatment in patients without diabetes with GLP-1 agonists in clinical practice.

    PubMed

    Sauer, N; Reining, F; Schulze Zur Wiesch, C; Burkhardt, T; Aberle, J

    2015-07-01

    The aim of the work was to investigate whether continuation of treatment, side effects, and effect on weight loss of GLP-1 agonists in obese patients without diabetes are equally promising in daily clinical-practice-settings compared to controlled clinical trials. Obese patients without diabetes of our interdisciplinary obesity centre were treated off-label with GLP-1-agonists for different time periods. Application was started with low-dose and increased if side effects were tolerable. Monthly costs were ?125 for daily applications of 1.2?mg liraglutide or 10??g exenatide twice daily. Data were obtained by telephone interviews about baseline characteristics, weight loss, sensation of satiation, duration of therapy, side effects, and reasons for discontinuation. Of 43 included cases (5 males, mean age 4311 years, mean weight 10724?kg, mean excess weight 3521?kg) 7 were treated with exenatide and 36 with liraglutide. Excess weight loss in linear regression models was 6.7% per month (p <0.05) under control of age, sex, initial weight, and type of GLP-1 analogue treatment and did not significantly differ between liraglutide and exenatide. Overall, 58% of patients reported side effects mostly concerning the gastrointestinal tract. Surprisingly no patient reported vomiting. One patient developed a severe pancreatitis. At time of telephone interview only 30.2% were continuing treatment. Mean treatment duration was 2.982.71 months. Common reasons for discontinuation of treatment were no/little effect on weight loss (27.9%), intolerable side effects (20.9%), or financial reasons (14%). GLP-1 agonist treatment in obese patients without diabetes also correlates with significant weight loss in clinical practice. However, side effects and discontinuation of treatment are common. Therefore, long-term effect on weight loss might not be as promising as suggested by data from clinical trials. PMID:25230325

  9. GLP-1 plays a limited role in improved glycemia shortly after Roux-en-Y gastric bypass: a comparison with intensive lifestyle modification.

    PubMed

    Vetter, Marion L; Wadden, Thomas A; Teff, Karen L; Khan, Zahra F; Carvajal, Raymond; Ritter, Scott; Moore, Reneé H; Chittams, Jesse L; Iagnocco, Alex; Murayama, Kenric; Korus, Gary; Williams, Noel N; Rickels, Michael R

    2015-02-01

    Rapid glycemic improvements following Roux-en-Y gastric bypass (RYGB) are frequently attributed to the enhanced GLP-1 response, but causality remains unclear. To determine the role of GLP-1 in improved glucose tolerance after surgery, we compared glucose and hormonal responses to a liquid meal test in 20 obese participants with type 2 diabetes mellitus who underwent RYGB or nonsurgical intensive lifestyle modification (ILM) (n = 10 per group) before and after equivalent short-term weight reduction. The GLP-1 receptor antagonist exendin(9-39)-amide (Ex-9) was administered, in random order and in double-blinded fashion, with saline during two separate visits after equivalent weight loss. Despite the markedly exaggerated GLP-1 response after RYGB, changes in postprandial glucose and insulin responses did not significantly differ between groups, and glucagon secretion was paradoxically augmented after RYGB. Hepatic insulin sensitivity also increased significantly after RYGB. With Ex-9, glucose tolerance deteriorated similarly from the saline condition in both groups, but postprandial insulin release was markedly attenuated after RYGB compared with ILM. GLP-1 exerts important insulinotropic effects after RYGB and ILM, but the enhanced incretin response plays a limited role in improved glycemia shortly after surgery. Instead, enhanced hepatic metabolism, independent of GLP-1 receptor activation, may be more important for early postsurgical glycemic improvements. PMID:25204975

  10. GLP-1 Plays a Limited Role in Improved Glycemia Shortly After Roux-en-Y Gastric Bypass: A Comparison With Intensive Lifestyle Modification

    PubMed Central

    Wadden, Thomas A.; Teff, Karen L.; Khan, Zahra F.; Carvajal, Raymond; Ritter, Scott; Moore, Rene H.; Chittams, Jesse L.; Iagnocco, Alex; Murayama, Kenric; Korus, Gary; Williams, Noel N.; Rickels, Michael R.

    2015-01-01

    Rapid glycemic improvements following Roux-en-Y gastric bypass (RYGB) are frequently attributed to the enhanced GLP-1 response, but causality remains unclear. To determine the role of GLP-1 in improved glucose tolerance after surgery, we compared glucose and hormonal responses to a liquid meal test in 20 obese participants with type 2 diabetes mellitus who underwent RYGB or nonsurgical intensive lifestyle modification (ILM) (n = 10 per group) before and after equivalent short-term weight reduction. The GLP-1 receptor antagonist exendin(939)-amide (Ex-9) was administered, in random order and in double-blinded fashion, with saline during two separate visits after equivalent weight loss. Despite the markedly exaggerated GLP-1 response after RYGB, changes in postprandial glucose and insulin responses did not significantly differ between groups, and glucagon secretion was paradoxically augmented after RYGB. Hepatic insulin sensitivity also increased significantly after RYGB. With Ex-9, glucose tolerance deteriorated similarly from the saline condition in both groups, but postprandial insulin release was markedly attenuated after RYGB compared with ILM. GLP-1 exerts important insulinotropic effects after RYGB and ILM, but the enhanced incretin response plays a limited role in improved glycemia shortly after surgery. Instead, enhanced hepatic metabolism, independent of GLP-1 receptor activation, may be more important for early postsurgical glycemic improvements. PMID:25204975

  11. A Novel TGR5 Activator WB403 Promotes GLP-1 Secretion and Preserves Pancreatic ?-Cells in Type 2 Diabetic Mice.

    PubMed

    Zheng, Chunbing; Zhou, Wenbo; Wang, Tongtong; You, Panpan; Zhao, Yongliang; Yang, Yiqing; Wang, Xin; Luo, Jian; Chen, Yihua; Liu, Mingyao; Chen, Huaqing

    2015-01-01

    The G protein-coupled receptor TGR5 is a membrane receptor for bile acids. Its agonism increases energy expenditure and controls blood glucose through secretion of glucagon-like peptide-1 in enteroendocrine cells. In this study, we explored the therapeutic potential of WB403, a small compound activating TGR5 which was identified by combining TGR5 targeted luciferase assay and active GLP-1 assay, in treating type 2 diabetes. After confirmation of TGR5 and GLP-1 stimulating activities in various cell systems, WB403 was examined in oral glucose tolerance test, and tested on different mouse models of type 2 diabetes for glycemic control and pancreatic ?-cell protection effect. As a result, WB403 exhibited a moderate TGR5 activation effect while promoting GLP-1 secretion efficiently. Interestingly, gallbladder filling effect, which was reported for some known TGR5 agonists, was not detected in this novel compound. In vivo results showed that WB403 significantly improved glucose tolerance and decreased fasting blood glucose, postprandial blood glucose and HbA1c in type 2 diabetic mice. Further analysis revealed that WB403 increased pancreatic ?-cells and restored the normal distribution pattern of ?-cell and ?-cell in islets. These findings demonstrated that TGR5 activator WB403 effectively promoted GLP-1 release, improved hyperglycemia and preserved the mass and function of pancreatic ?-cells, whereas it did not show a significant side effect on gallbladder. It may represent a promising approach for future type 2 diabetes mellitus drug development. PMID:26208278

  12. Gastrointestinal actions of glucagon-like peptide-1-based therapies: glycaemic control beyond the pancreas.

    PubMed

    Smits, M M; Tonneijck, L; Muskiet, M H A; Kramer, M H H; Cahen, D L; van Raalte, D H

    2016-03-01

    The gastrointestinal hormone glucagon-like peptide-1 (GLP-1) lowers postprandial glucose concentrations by regulating pancreatic islet-cell function, with stimulation of glucose-dependent insulin and suppression of glucagon secretion. In addition to endocrine pancreatic effects, mounting evidence suggests that several gastrointestinal actions of GLP-1 are at least as important for glucose-lowering. GLP-1 reduces gastric emptying rate and small bowel motility, thereby delaying glucose absorption and decreasing postprandial glucose excursions. Furthermore, it has been suggested that GLP-1 directly stimulates hepatic glucose uptake, and suppresses hepatic glucose production, thereby adding to reduction of fasting and postprandial glucose levels. GLP-1 receptor agonists, which mimic the effects of GLP-1, have been developed for the treatment of type 2 diabetes. Based on their pharmacokinetic profile, GLP-1 receptor agonists can be broadly categorized as short- or long-acting, with each having unique islet-cell and gastrointestinal effects that lower glucose levels. Short-acting agonists predominantly lower postprandial glucose excursions, by inhibiting gastric emptying and intestinal glucose uptake, with little effect on insulin secretion. By contrast, long-acting agonists mainly reduce fasting glucose levels, predominantly by increased insulin and reduced glucagon secretion, with potential additional direct inhibitory effects on hepatic glucose production. Understanding these pharmacokinetic and pharmacodynamic differences may allow personalized antihyperglycaemic therapy in type 2 diabetes. In addition, it may provide the rationale to explore treatment in patients with no or little residual ?-cell function. PMID:26500045

  13. GLP-1 secretion is stimulated by 1,10-phenanthroline via colocalized T2R5 signal transduction in human enteroendocrine L cell.

    PubMed

    Park, Jiyoung; Kim, Ki-Suk; Kim, Kang-Hoon; Lee, In-Seung; Jeong, Hyeon-soo; Kim, Yumi; Jang, Hyeung-Jin

    Glucagon-like peptide-1 (GLP-1) hormone is known to regulate blood glucose by an insulinotropic effect and increases proliferation as and also prevents apoptosis of pancreatic β cells. We know that GLP-1 is secreted by nutrients such as fatty acids and sweet compounds but also bitter compounds via stimulation of G-protein coupled receptors (GPCRs) in the gut. Among these, bitter compounds are multiply-contained in phytochemicals or artificial materials and perceived as ligands of various bitter taste receptors. We hypothesized that GLP-1 hormone is secreted through stimulation of a single bitter taste receptor by 1,10-phenanthroline which is known agonist of taste receptor type 2 member 5 (T2R5). To prove this hypothesis, we used the representatively well-known 1,10-phenanthroline as ligand of single receptor and evaluated the existence of T2R5 by double-labeling immunofluorescence and then 1,10-phenanthroline is able to secrete GLP-1 hormone through stimulation of T2R5 in human enteroendocrine cells. Consequently, we verify that GLP-1 hormone is colocalized with T2R5 in the human duodenum and ileum tissue and is secreted by 1,10-phenanthroline via T2R5 signal transduction in differentiated human enteroendocrine L cells. PMID:26505793

  14. Basal insulin combined incretin mimetic therapy with glucagon-like protein 1 receptor agonists as an upcoming option in the treatment of type 2 diabetes: a practical guide to decision making

    PubMed Central

    Fleischmann, Holger

    2014-01-01

    The combination of basal insulin and glucagon-like protein 1 receptor agonists (GLP-1 RAs) is a new intriguing therapeutic option for patients with type 2 diabetes. In our daily practice we abbreviate this therapeutic concept with the term BIT (basal insulin combined incretin mimetic therapy) in a certain analogy to BOT (basal insulin supported oral therapy). In most cases BIT is indeed an extension of BOT, if fasting, prandial or postprandial blood glucose values have not reached the target range. In our paper we discuss special features of combinations of short- or prandial-acting and long- or continuous-acting GLP-1 RAs like exenatide, lixisenatide and liraglutide with basal insulin in relation to different glycemic targets. Overall it seems appropriate to use a short-acting GLP-1 RA if, after the near normalization of fasting blood glucose with BOT, the prandial or postprandial values are elevated. A long-acting GLP-1 RA might well be given, if fasting blood glucose values are the problem. Based on pathophysiological findings, recent clinical studies and our experience with BIT and BOT as well as BOTplus we developed chart-supported algorithms for decision making, including features and conditions of patients. The development of these practical tools was guided by the need for a more individualized antidiabetic therapy and the availability of the new BIT principle. PMID:25419451

  15. Glucagon-Like Peptide-1 Gene Therapy

    PubMed Central

    Rowzee, Anne M.; Cawley, Niamh X.; Chiorini, John A.; Di Pasquale, Giovanni

    2011-01-01

    Glucagon-like peptide 1 (GLP-1) is a small peptide component of the prohormone, proglucagon, that is produced in the gut. Exendin-4, a GLP-1 receptor agonist originally isolated from the saliva of H. suspectum or Gila monster, is a peptide that shares sequence and functional homology with GLP-1. Both peptides have been demonstrated to stimulate insulin secretion, inhibit glucagon secretion, promote satiety and slow gastric emptying. As such, GLP-1 and Exendin-4 have become attractive pharmaceutical targets as an adjunctive therapy for individuals with type II diabetes mellitus, with several products currently available clinically. Herein we summarize the cell biology leading to GLP-1 production and secretion from intestinal L-cells and the endocrine functions of this peptide and Exendin-4 in humans. Additionally, gene therapeutic applications of GLP-1 and Exendin-4 are discussed with a focus on recent work using the salivary gland as a gene therapy target organ for the treatment of diabetes mellitus. PMID:21747830

  16. GLP-1: broadening the incretin concept to involve gut motility.

    PubMed

    Hellstrm, Per M

    2009-08-01

    The incretin effect of the gut peptide hormone glucagon-like peptide-1 (GLP-1) is a combined result of inhibition of gastric emptying and stimulation of insulin secretion via an incretin mechanism. The temporal pattern of these events implicate that gastric emptying is primarily delayed, while later in the digestive process insulin is released for nutrient disposal. Since the inhibitory effect of GLP-1 on gastric motility is very outspoken, we considered it of value to study its effects on gut motility. Animal experimentation in the rat clearly showed that not only gastric emptying, but also small bowel motility with the migrating myoelectric complex was profoundly inhibited by GLP-1 at low doses. Similar effects were seen with analogues of the peptide. Extending the studies to man supported our earliest data indicating that the migrating motor complex of the small intestine was affected, and even more noticeable, the summarized motility index inhibited. Further extension of our studies to patients with irritable bowel syndrome (IBS) displayed similar results. This encouraged us to embark on a clinical pain-relief multi-centre study in IBS patients using a GLP-1 analogue, ROSE-010, with longer half-life than the native peptide. The outcome of the IBS study proved ROSE-010 to be superior to placebo with a pain-relief response rate of 24% for ROSE-010 compared to 12% for placebo. Taken together, the GLP-1 analogue ROSE-010 is believed to cause relaxation of the gut and can thereby relieve an acute pain attack of IBS, even though its precise mechanism is yet to be defined. PMID:19362109

  17. An overview of once-weekly glucagon-like peptide-1 receptor agonists--available efficacy and safety data and perspectives for the future.

    PubMed

    Madsbad, S; Kielgast, U; Asmar, M; Deacon, C F; Torekov, S S; Holst, J J

    2011-05-01

    Incretin-based therapies, such as the injectable glucagon-like peptide-1 (GLP-1) receptor agonists and orally administered dipeptidyl peptidase-4 (DPP-4) inhibitors, have recently been introduced into clinical practice. At present, the GLP-1 receptor agonists need to be administered once or twice daily. Several once-weekly GLP-1 receptor agonists are in phase 3 development. This review examines the efficacy, safety and perspective for the future of the once-weekly GLP-1 receptor agonists: exenatide once weekly, taspoglutide, albiglutide, LY2189265 and CJC-1134-PC, and compared them to the currently available agonists, exenatide BID and liraglutide QD. A greater reduction in haemoglobin A1c (HbA1c) and fasting plasma glucose was found with the once-weekly GLP-1 receptor agonists compared with exenatide BID, while the effect on postprandial hyperglycaemia was modest with the once-weekly GLP-1 receptor agonist. The reduction in HbA1c was in most studies greater compared to oral antidiabetic drugs and insulin glargine. The reduction in weight did not differ between the short- and long-acting agonists. The gastrointestinal side effects were less with the once-weekly agonists compared with exenatide BID, except for taspoglutide. Antibodies seem to be most frequent with exenatide once weekly, while hypersensitivity has been described in few patients treated with taspoglutide. Injection site reactions differ among the long-acting GLP-1 receptor agonists and are observed more frequently than with exenatide BID and liraglutide. In humans, no signal has been found indicating an association between the once-weekly agonists and C-cell cancer. The cardiovascular safety, durability of glucose control and effect on weight will emerge from several ongoing major long-term trials. The once-weekly GLP-1 receptor analogues are promising candidates for the treatment of type 2 diabetes, although their efficacy may not be superior to once-daily analogue liraglutide. PMID:21208359

  18. Glucagon-like receptor 1 agonists and DPP-4 inhibitors: potential therapies for the treatment of stroke.

    PubMed

    Darsalia, Vladimer; Larsson, Martin; Nathanson, David; Klein, Thomas; Nyström, Thomas; Patrone, Cesare

    2015-05-01

    During the past decades, candidate drugs that have shown neuroprotective efficacy in the preclinical setting have failed in clinical stroke trials. As a result, no treatment for stroke based on neuroprotection is available today. The activation of the glucagon-like peptide 1 receptor (GLP-1) for reducing stroke damage is a relatively novel concept that has shown neuroprotective effects in animal models. In addition, clinical studies are currently ongoing. Herein, we review this emerging research field and discuss the next milestones to be achieved to develop a novel antistroke therapy. PMID:25669907

  19. Extending residence time and stability of peptides by Protected Graft Copolymer (PGC) excipient: GLP-1 example

    PubMed Central

    Castillo, Gerardo M.; Reichstetter, Sandra; Bolotin, Elijah M.

    2011-01-01

    Purpose The purpose of this study is to determine whether a Protected Graft Copolymer (PGC) containing fatty acid can be used as a stabilizing excipient for GLP-1 and whether PGC/GLP-1 given once a week can be an effective treatment for diabetes. Methods To create a PGC excipient, polylysine was grafted with methoxypolyethyleneglycol and fatty acid at the epsilon amino groups. We performed evaluation of 1) the binding of excipient to GLP-1, 2) the DPP IV sensitivity of GLP-1 formulated with PGC as the excipient, 3) the in vitro bio-activity of excipient-formulated GLP-1, 4) the in vivo pharmacokinetics of excipient-formulated GLP-1, and 5) the efficacy of the excipient-formulated GLP-1 in diabetic rats. Results We showed reproducible synthesis of PGC excipient, showed high affinity binding of PGC to GLP-1, slowed protease degradation of excipient-formulated GLP-1, and showed that excipient-formulated GLP-1 induced calcium influx in INS cells. Excipient-formulated GLP-1 stays in the blood for at least 4 days. When excipient-formulated GLP-1 was given subcutaneously once a week to diabetic ZDF rats, a significant reduction of HbA1c compared to control was observed. The reduction is similar to diabetic ZDF rats given exendin twice a day. Conclusions PGC can be an ideal in vivo stabilizing excipient for biologically labile peptides. PMID:21830140

  20. Clinical use of GLP-1 agonists and DPP4 inhibitors.

    PubMed

    Tuch, Bernard E

    2016-01-01

    Type 2 diabetes is a growing problem, with 387 million people currently affected, and 592 million by 2035. Whilst diet and exercise are the corner stones of treatment, oral hypoglycaemic agents are often needed to achieve glycaemic control, thereby reducing the chance of long term diabetic complications. Biguanides and sulfonylureas have been the standard tablets used for this disorder, until 2005-7 when glucagon-like peptide-1 (GLP-1) agonists and dipeptidyl peptidase-4 (DPP4) inhibitors became available. Their major advantage over sulfonylureas is that they are weight lowering or weight neutral, and have a very low incidence of hypoglycaemia. GLP-1 agonists are injectables, whereas the DPP4 inhibitors are administered orally. Both agents are best used in combination with other hypoglycaemic medication, especially metformin and sodium glucose co-transporter 2 (SGLT2) inhibtors. Usage is increasing, being roughly equal to that of sulfonylureas, but less than that of metformin. Side effects appear to be minimal. PMID:26138513

  1. Yhhu4488, a novel GPR40 agonist, promotes GLP-1 secretion and exerts anti-diabetic effect in rodent models.

    PubMed

    Guo, Dan-Yang; Li, De-Wen; Ning, Meng-Meng; Dang, Xiang-Yu; Zhang, Li-Na; Zeng, Li-Min; Hu, You-Hong; Leng, Ying

    2015-10-30

    G protein-coupled receptor 40 (GPR40) is predominantly expressed in pancreatic ?-cells and activated by long-chain fatty acids. GPR40 has drawn considerable interest as a potential therapeutic target for type 2 diabetes mellitus (T2DM) due to its important role in enhancing glucose-stimulated insulin secretion (GSIS). Encouragingly, GPR40 is also proven to be highly expressed in glucagon-like peptide-1 (GLP-1)-producing enteroendocrine cells afterwards, which opens a potential role of GPR40 in enhancing GLP-1 secretion to exert additional anti-diabetic efficacy. In the present study, we discovered a novel GPR40 agonist, yhhu4488, which is structurally different from other reported GPR40 agonists. Yhhu4488 showed potent agonist activity with EC50 of 49.96nM, 70.83nM and 58.68nM in HEK293cells stably expressing human, rat and mouse GPR40, respectively. Yhhu4488 stimulated GLP-1 secretion from fetal rat intestinal cells (FRIC) via triggering endogenous calcium store mobilization and extracellular calcium influx. The effect of yhhu4488 on GLP-1 secretion was further confirmed in type 2 diabetic db/db mice. Yhhu4488 exhibited satisfactory potency in invivo studies. Single administration of yhhu4488 improved glucose tolerance in SD rats. Chronic administration of yhhu4488 effectively decreased fasting blood glucose level, improved ?-cell function and lipid homeostasis in type 2 diabetic ob/ob mice. Taken together, yhhu4488 is a novel GPR40 agonist that enhances GLP-1 secretion, improves metabolic control and ?-cell function, suggesting its promising potential for the treatment of type 2 diabetes. PMID:26417688

  2. Bile acid sequestrants in type 2 diabetes: potential effects on GLP1 secretion.

    PubMed

    Sonne, David P; Hansen, Morten; Knop, Filip K

    2014-08-01

    Bile acid sequestrants have been used for decades for the treatment of hypercholesterolaemia. Sequestering of bile acids in the intestinal lumen interrupts enterohepatic recirculation of bile acids, which initiate feedback mechanisms on the conversion of cholesterol into bile acids in the liver, thereby lowering cholesterol concentrations in the circulation. In the early 1990s, it was observed that bile acid sequestrants improved glycaemic control in patients with type 2 diabetes. Subsequently, several studies confirmed the finding and recently - despite elusive mechanisms of action - bile acid sequestrants have been approved in the USA for the treatment of type 2 diabetes. Nowadays, bile acids are no longer labelled as simple detergents necessary for lipid digestion and absorption, but are increasingly recognised as metabolic regulators. They are potent hormones, work as signalling molecules on nuclear receptors and G protein-coupled receptors and trigger a myriad of signalling pathways in many target organs. The most described and well-known receptors activated by bile acids are the farnesoid X receptor (nuclear receptor) and the G protein-coupled cell membrane receptor TGR5. Besides controlling bile acid metabolism, these receptors are implicated in lipid, glucose and energy metabolism. Interestingly, activation of TGR5 on enteroendocrine L cells has been suggested to affect secretion of incretin hormones, particularly glucagon-like peptide 1 (GLP1 (GCG)). This review discusses the role of bile acid sequestrants in the treatment of type 2 diabetes, the possible mechanism of action and the role of bile acid-induced secretion of GLP1 via activation of TGR5. PMID:24760535

  3. Monotherapy with the once weekly GLP-1 receptor agonist dulaglutide for 12 weeks in Japanese patients with type 2 diabetes: dose-dependent effects on glycaemic control in a randomised, double-blind, placebo-controlled study.

    PubMed

    Terauchi, Yasuo; Satoi, Yoichi; Takeuchi, Masakazu; Imaoka, Takeshi

    2014-01-01

    The aim of this study was to evaluate the dose-dependent effect of dulaglutide, a glucagon-like peptide-1 receptor agonist, on glycaemic control in Japanese patients with type 2 diabetes mellitus who were treated with diet/exercise or oral antidiabetic drug monotherapy. In this randomised, double-blind, placebo-controlled, parallel-group, 12-week study, patients received once weekly subcutaneous dulaglutide doses of 0.25, 0.5, or 0.75 mg (DU 0.25, DU 0.5, and DU 0.75, respectively) or placebo (n=36, 37, 35, and 37, respectively). The primary measure was change from baseline in glycated haemoglobin (HbA1c; %) at 12 weeks. Continuous variables were analysed using a mixed-effects model for repeated measures. Significant dose-dependent reductions in HbA1c were observed (least squares mean difference versus placebo [95% confidence interval]): DU 0.25=-0.72% (-0.95, -0.48), DU 0.5=-0.97% (-1.20, -0.73), and DU 0.75=-1.17% (-1.41, -0.93); p<0.001. Significant improvements in plasma glucose (PG), both fasting and average 7-point self-monitored blood glucose, were also observed with dulaglutide versus placebo (p<0.001). Dulaglutide was well-tolerated. Gastrointestinal adverse events (AEs) were more common in dulaglutide-treated patients, with nausea the most frequent (8 [5.5%]). Few dulaglutide-treated patients discontinued due to AEs (4 [3.7%]), and no serious AEs related to study medication occurred. Three patients (DU 0.5=1 and DU 0.75=2) reported asymptomatic hypoglycaemia (PG ?70 mg/dL). The observed dose-dependent reduction in HbA1c and acceptable safety profile support further clinical development of dulaglutide for treatment of type 2 diabetes mellitus in Japan. PMID:25029955

  4. Palmitic acid acutely inhibits acetylcholine- but not GLP-1-stimulated insulin secretion in mouse pancreatic islets

    PubMed Central

    Qin, Wei; Vinogradov, Sergei A.; Wilson, David F.; Matschinsky, Franz M.

    2010-01-01

    Fatty acids, acetylcholine, and GLP-1 enhance insulin secretion in a glucose-dependent manner. However, the interplay between glucose, fatty acids, and the neuroendocrine regulators of insulin secretion is not well understood. Therefore, we studied the acute effects of PA (alone or in combination with glucose, acetylcholine, or GLP-1) on isolated cultured mouse islets. Two different sets of experiments were designed. In one, a fixed concentration of 0.5 mM of PA bound to 0.15 mM BSA was used; in the other, a PA ramp from 0 to 0.5 mM was applied at a fixed albumin concentration of 0.15 mM so that the molar PA/BSA ratio changed within the physiological range. At a fixed concentration of 0.5 mM, PA markedly inhibited acetylcholine-stimulated insulin release, the rise of intracellular Ca2+, and enhancement of cAMP production but did not influence the effects of GLP-1 on these parameters of islet cell function. 2-ADB, an IP3 receptor inhibitor, reduced the effect of acetylcholine on insulin secretion and reversed the effect of PA on acetylcholine-stimulated insulin release. Islet perfusion for 35–40 min with 0.5 mM PA significantly reduced the calcium storage capacity of ER measured by the thapsigargin-induced Ca2+ release. Oxygen consumption due to low but not high glucose was reduced by PA. When a PA ramp from 0 to 0.5 mM was applied in the presence of 8 mM glucose, PA at concentrations as low as 50 μM significantly augmented glucose-stimulated insulin release and markedly reduced acetylcholine's effects on hormone secretion. We thus demonstrate that PA acutely reduces the total oxygen consumption response to glucose, glucose-dependent acetylcholine stimulation of insulin release, Ca2+, and cAMP metabolism, whereas GLP-1's actions on these parameters remain unaffected or potentiated. We speculate that acute emptying of the ER calcium by PA results in decreased glucose stimulation of respiration and acetylcholine potentiation of insulin secretion. PMID:20606076

  5. Targeting the TGR5-GLP-1 pathway to combat type 2 diabetes and non-alcoholic fatty liver disease.

    PubMed

    Pols, T W H; Auwerx, J; Schoonjans, K

    2010-01-01

    Incretin-based therapies have shown promise in the treatment of type 2 diabetes. Here we review our current understanding of TGR5 as a target to induce glucagon-like peptide-1 (GLP-1) secretion. These new observations suggest that TGR5 agonists may constitute a novel approach to treat type 2 diabetes, as well as complications of diabetes, such as non-alcoholic fatty liver disease. PMID:20444564

  6. Dissociation of GLP-1 and insulin association with food processing in the brain: GLP-1 sensitivity despite insulin resistance in obese humans

    PubMed Central

    Heni, Martin; Kullmann, Stephanie; Gallwitz, Baptist; Hring, Hans-Ulrich; Preissl, Hubert; Fritsche, Andreas

    2015-01-01

    Objective Glucagon-like peptide-1 (GLP-1) is released into the bloodstream after food intake. In addition to stimulating insulin release, it causes satiety and contributes to the termination of food intake. In this study, we investigated whether endogenous GLP-1 affects food-related brain activity and hunger. Methods Twenty-four volunteers (12 lean; 12 obese) underwent a 75g oral glucose tolerance test that promotes GLP-1 secretion. Food cue-induced brain activity was assessed by functional magnetic resonance imaging and GLP-1 concentrations were measured before, 30, and 120min after glucose intake. Results The significant increase in GLP-1 levels negatively correlated with a change in the food cue-induced brain activity in the orbitofrontal cortex, a major reward area. This association was independent of simultaneous alterations in insulin and glucose concentrations. The association was present in lean and overweight participants. By contrast, postprandial insulin changes were associated with orbitofrontal activations in lean individuals only. Conclusions The postprandial release of GLP-1 might alter reward processes in the orbitofrontal cortex and might thereby support the termination of food intake and reduce hunger. While obese persons showed brain insulin resistance, no GLP-1 resistance was observed. Our study provides novel insight into the central regulation of food intake by the incretin hormone GLP-1. PMID:26909313

  7. Loss of Cyp8b1 improves glucose homeostasis by increasing GLP-1.

    PubMed

    Kaur, Achint; Patankar, Jay V; de Haan, Willeke; Ruddle, Piers; Wijesekara, Nadeeja; Groen, Albert K; Verchere, C Bruce; Singaraja, Roshni R; Hayden, Michael R

    2015-04-01

    Besides their role in facilitating lipid absorption, bile acids are increasingly being recognized as signaling molecules that activate cell-signaling receptors. Targeted disruption of the sterol 12α-hydroxylase gene (Cyp8b1) results in complete absence of cholic acid (CA) and its derivatives. Here we investigate the effect of Cyp8b1 deletion on glucose homeostasis. Absence of Cyp8b1 results in improved glucose tolerance, insulin sensitivity, and β-cell function, mediated by absence of CA in Cyp8b1(-/-) mice. In addition, we show that reduced intestinal fat absorption in the absence of biliary CA leads to increased free fatty acids reaching the ileal L cells. This correlates with increased secretion of the incretin hormone GLP-1. GLP-1, in turn, increases the biosynthesis and secretion of insulin from β-cells, leading to the improved glucose tolerance observed in the Cyp8b1(-/-) mice. Thus, our data elucidate the importance of Cyp8b1 inhibition on the regulation of glucose metabolism. PMID:25338812

  8. Beneficial Metabolic Effects of a Probiotic via Butyrate-induced GLP-1 Hormone Secretion*

    PubMed Central

    Yadav, Hariom; Lee, Ji-Hyeon; Lloyd, John; Walter, Peter; Rane, Sushil G.

    2013-01-01

    Obesity and diabetes are associated with excess caloric intake and reduced energy expenditure resulting in a negative energy balance. The incidence of diabetes has reached epidemic proportions, and childhood diabetes and obesity are increasing alarmingly. Therefore, it is important to develop safe, easily deliverable, and economically viable treatment alternatives for these diseases. Here, we provide data supporting the candidacy of probiotics as such a therapeutic modality against obesity and diabetes. Probiotics are live bacteria that colonize the gastrointestinal tract and impart beneficial effects for health. However, their widespread prescription as medical therapies is limited primarily because of the paucity of our understanding of their mechanism of action. Here, we demonstrate that the administration of a probiotic, VSL#3, prevented and treated obesity and diabetes in several mouse models. VSL#3 suppressed body weight gain and insulin resistance via modulation of the gut flora composition. VSL#3 promoted the release of the hormone GLP-1, resulting in reduced food intake and improved glucose tolerance. The VSL#3-induced changes were associated with an increase in the levels of a short chain fatty acid (SCFA), butyrate. Using a cell culture system, we demonstrate that butyrate stimulated the release of GLP-1 from intestinal L-cells, thereby providing a plausible mechanism for VSL#3 action. These findings suggest that probiotics such as VSL#3 can modulate the gut microbiota-SCFA-hormone axis. Moreover, our results indicate that probiotics are of potential therapeutic utility to counter obesity and diabetes. PMID:23836895

  9. Beneficial metabolic effects of a probiotic via butyrate-induced GLP-1 hormone secretion.

    PubMed

    Yadav, Hariom; Lee, Ji-Hyeon; Lloyd, John; Walter, Peter; Rane, Sushil G

    2013-08-30

    Obesity and diabetes are associated with excess caloric intake and reduced energy expenditure resulting in a negative energy balance. The incidence of diabetes has reached epidemic proportions, and childhood diabetes and obesity are increasing alarmingly. Therefore, it is important to develop safe, easily deliverable, and economically viable treatment alternatives for these diseases. Here, we provide data supporting the candidacy of probiotics as such a therapeutic modality against obesity and diabetes. Probiotics are live bacteria that colonize the gastrointestinal tract and impart beneficial effects for health. However, their widespread prescription as medical therapies is limited primarily because of the paucity of our understanding of their mechanism of action. Here, we demonstrate that the administration of a probiotic, VSL#3, prevented and treated obesity and diabetes in several mouse models. VSL#3 suppressed body weight gain and insulin resistance via modulation of the gut flora composition. VSL#3 promoted the release of the hormone GLP-1, resulting in reduced food intake and improved glucose tolerance. The VSL#3-induced changes were associated with an increase in the levels of a short chain fatty acid (SCFA), butyrate. Using a cell culture system, we demonstrate that butyrate stimulated the release of GLP-1 from intestinal L-cells, thereby providing a plausible mechanism for VSL#3 action. These findings suggest that probiotics such as VSL#3 can modulate the gut microbiota-SCFA-hormone axis. Moreover, our results indicate that probiotics are of potential therapeutic utility to counter obesity and diabetes. PMID:23836895

  10. GLP-1 Increases Preovulatory LH Source and the Number of Mature Follicles, As Well As Synchronizing the Onset of Puberty in Female Rats.

    PubMed

    Outeiriño-Iglesias, Verónica; Romaní-Pérez, Marina; González-Matías, Lucas C; Vigo, Eva; Mallo, Federico

    2015-11-01

    Control of estrous cycle and reproductive capacity involves a large number of central and peripheral factors, integrating numerous nutritional and metabolic signals. Here we show that glucagon-like peptide-1 (GLP-1), a peptide with anorexigenic and insulinotropic actions, and the GLP-1 receptor agonist Exendin-4 (Ex4) exert a regulatory influence on the gonadal axis, in both adult and prepubertal female rats. In adult rats, Glp-1 receptor expression varies during the estrous cycle at the hypothalamus, pituitary, and ovary. Furthermore, acute treatment with GLP-1 in the morning proestrus doubled the amplitude of the preovulatory LH surge, as well as influencing estradiol and progesterone levels along the estrous cycle. These changes provoked an important increase in the number of Graafian follicles and corpora lutea, as well as in the litter size. Conversely, Ex4 diminished the levels of LH, later producing a partial blockade at the preovulatory surge, yet not affecting either the number of mature follicles or corpora lutea. Chronic administration of low doses of GLP-1 to prepubertal rats synchronized vaginal opening and increased LH levels on the 35th day of life, yet at these doses it did not modify their body weight, food intake, or ovarian and uterine weight. By contrast, chronic exposure to Ex4 produced a significant reduction in ovarian and uterine weight, and serum LH, and the animals treated chronically with Ex4 showed no vaginal opening in the period studied. Overall, our results demonstrate that GLP-1 and Ex4 act on the gonadal axis, involving the hypothalamic kisspeptin system, to influence reproductive efficiency in female rats. PMID:26252058

  11. Pathogenesis and management of postprandial hyperglycemia: role of incretin-based therapies

    PubMed Central

    Gerich, John

    2013-01-01

    Postprandial plasma glucose concentrations are an important contributor to glycemic control. There is evidence suggesting that postprandial hyperglycemia may be an independent risk factor for cardiovascular disease. Glucagon-like peptide-1 (GLP-1) receptor agonists and dipeptidyl peptidase-4 (DPP-4) inhibitors are antidiabetic agents that predominantly reduce postprandial plasma glucose levels. DPP-4 inhibitors are associated with fewer gastrointestinal side effects than GLP-1 receptor agonists and are administered orally, unlike GLP-1 analogs, which are administered as subcutaneous injections. GLP-1 receptor agonists are somewhat more effective than DPP-4 inhibitors in reducing postprandial plasma glucose and are usually associated with significant weight loss. For these reasons, GLP-1 receptor agonists are generally preferred over DPP-4 inhibitors as part of combination treatment regimens in patients with glycated hemoglobin levels above 8.0%. This article reviews the pathogenesis of postprandial hyperglycemia, the mechanisms by which GLP-1 receptor agonists and DPP-4 inhibitors reduce postprandial plasma glucose concentrations, and the results of recent clinical trials (ie, published 2008 to October 2012) that evaluated the effects of these agents on postprandial plasma glucose levels when evaluated as monotherapy compared with placebo or as add-on therapy to metformin, a sulfonylurea, or insulin. Findings from recent clinical studies suggest that both GLP-1 receptor agonists and DPP-4 inhibitors could become valuable treatment options for optimizing glycemic control in patients unable to achieve glycated hemoglobin goals on basal insulin, with the added benefits of weight loss and a low risk of hypoglycemia. PMID:24403842

  12. Blood pressure-lowering effects of incretin-based diabetes therapies.

    PubMed

    Lovshin, Julie A; Zinman, Bernard

    2014-10-01

    Glucagon-like peptide-1 receptor (GLP-1) agonists and dipeptidyl-peptidase-4 (DPP-4) inhibitors are therapies that are used to treat hyperglycemia in patients with type 2 diabetes mellitus. Although both of these medication types primarily lower prandial and fasting blood glucose levels by enhanced GLP-1 receptor signalling, they have distinct mechanisms of action. Whereas DPP-4 inhibitors boost patient levels of endogenously produced GLP-1 (and glucose-dependent insulinotropic peptide) by preventing its metabolism by DPP-4 enzymatic activity, GLP-1 receptor agonists are either synthetic analogues of human GLP-1 or exendin-4 based molecules. They are tailored to resist hydrolysis by DPP-4 activity and to provide longer durability in the circulation compared with native GLP-1. Several roles for incretin-based diabetes therapies beyond the endocrine pancreas and their glycemic-lowering properties have now been described, including attenuation of cardiac myocyte injury and reduction in post-ischemic infarction size after cardiovascular insult. Favourable outcomes have also been observed on systolic blood pressure reduction, postprandial intestinal lipoprotein metabolism, endothelial cell function, modulation of innate immune-mediated inflammation and surrogate markers of renal function. As hypertension is an independent risk factor for premature death in patients with type 2 diabetes, potential favourable extrapancreatic actions, particularly within the heart, blood vessels and kidney, for this drug class are of considerable clinical interest. Herein, we highlight and provide critical appraisal of the clinical data supporting the antihypertensive effects of GLP-1 receptor agonists and DPP-4 inhibitors and link possible mechanisms of action to clinical outcomes reported for this drug class. PMID:25284699

  13. GLP-1 Analogs Reduce Hepatocyte Steatosis and Improve Survival by Enhancing the Unfolded Protein Response and Promoting Macroautophagy

    PubMed Central

    Sharma, Shvetank; Mells, Jamie E.; Fu, Ping P.; Saxena, Neeraj K.; Anania, Frank A.

    2011-01-01

    Background Nonalcoholic fatty liver disease (NAFLD) is a known outcome of hepatosteatosis. Free fatty acids (FFA) induce the unfolded protein response (UPR) or endoplasmic reticulum (ER) stress that may induce apoptosis. Recent data indicate ER stress to be a major player in the progression of fatty liver to more aggressive lesions. Autophagy on the other hand has been demonstrated to be protective against ER stress- induced cell death. We hypothesized that exendin-4 (GLP-1 analog) treatment of fat loaded hepatocytes can reduce steatosis by autophagy which leads to reduced ER stress-related hepatocyte apoptosis. Methodology/Principal Findings Primary human hepatocytes were loaded with saturated, cis- and trans-unsaturated fatty acids (palmitic, oleic and elaidic acid respectively). Steatosis, induced with all three fatty acids, was significantly resolved after exendin-4 treatment. Exendin-4 sustained levels of GRP78 expression in fat-loaded cells when compared to untreated fat-loaded cells alone. In contrast, CHOP (C/EBP homologous protein); the penultimate protein that leads to ER stress-related cell death was significantly decreased by exendin-4 in hepatocytes loaded with fatty acids. Finally, exendin-4 in fat loaded hepatocytes clearly promoted gene products associated with macroautophagy as measured by enhanced production of both Beclin-1 and LC3B-II, markers for autophagy; and visualized by transmission electron microscopy (TEM). Similar observations were made in mouse liver lysates after mice were fed with high fat high fructose diet and treated with a long acting GLP-1 receptor agonist, liraglutide. Conclusions/Significance GLP-1 proteins appear to protect hepatocytes from fatty acid-related death by prohibition of a dysfunctional ER stress response; and reduce fatty acid accumulation, by activation of both macro-and chaperone-mediated autophagy. These findings provide a novel role for GLP-1 proteins in halting the progression of more aggressive lesions from underlying steatosis in humans afflicted with NAFLD. PMID:21957486

  14. Liraglutide inhibits autophagy and apoptosis induced by high glucose through GLP-1R in renal tubular epithelial cells

    PubMed Central

    ZHAO, X; LIU, G; SHEN, H; GAO, B; LI, X; FU, J; ZHOU, J; JI, Q

    2015-01-01

    Tubular atrophy and dysfunction is a critical process underlying diabetic nephropathy (DN). Understanding the mechanisms underlying renal tubular epithelial cell survival is important for the prevention of kidney failure associated with glucotoxicity. Autophagy is a cellular pathway involved in protein and organelle degradation. It is associated with many types of cellular homeostasis and human diseases. To date, little is known of the association between high concentrations of glucose and autophagy in renal tubular cells. In the present study, we investigated high glucose-induced toxicity in renal tubular epithelial cells by means of several complementary assays, including cell viability, cell death assays and changes in ultrastructure in an immortalized human kidney cell line, HK-2 cells. The extent of apoptosis was significantly increased in the HK-2 cells following treatment with high levels of glucose. In addition, in in vivo experiments using diabetic rats, high glucose exerted harmful effects on the tissue structure of the kidneys in the diabetic rats. Chronic exposure of the HK-2 cells and tubular epithelial cells of nephritic rats to high levels of glucose induced autophagy. Liraglutide inhibited these effects; however, treatment witht a glucagon-like peptide-1 receptor (GLP-1R) antagonist enhanced these effects. Our results also indicated that the exposure of the renal tubular epithelial cells to high glucose concentrations in vitro led to the downregulation of GLP-1R expression. Liraglutide reversed this effect, while the GLP-1R antagonist promoted it, promoting autophagy, suggesting that liraglutide exerts a renoprotective effect in the presence of high glucose, at least in part, by inhibiting autophagy and increasing GLP-1R expression in the HK-2 cells and kidneys of diabetic rats. PMID:25573030

  15. Glucagon like peptide-1 (GLP-1) dynamics following bariatric surgery: a Signpost to a new frontier.

    PubMed

    Neff, K J; O'Shea, D; le Roux, C W

    2013-03-01

    Glucagon like peptide-1 (GLP-1) is one of the gastrointestinal peptides implicated in glycaemic homeostasis. In non-obese individuals with normal glucose tolerance GLP-1 is secreted in response to nutrient intake. However, this GLP- 1 response is generally accepted to be significantly diminished in those with diabetes, obesity or both. Given that GLP-1 is secreted from enteroendocrine L cells in the intestine, it is not surprising that manipulation of the gastro- intestinal tract has been shown to alter GLP-1 secretion; particularly when this intestinal manipulation is designed to aid weight reduction. GLP-1 dynamics are altered by bariatric surgery, with an improved secretory response to nutrient intake. However, there remains debate on the mechanisms responsible for the alterations in GLP-1 dynamics. Here we review the evidence for GLP-1 dynamics after Roux-en-Y gastric bpyass (RYGB), adjustable gastric banding (AGB), biliopancreatic diversion (BPD) and sleeve gastrectomy (SG), and make comparisons between modalities. In addition, we review the potential mechanisms underlying these dynamics, other molecules that may add to the "incretin effect" and other possible roles for GLP-1 following bariatric surgery. Finally, we will offer our critique of the evidence base. PMID:23230996

  16. The regulation of function, growth and survival of GLP-1-producing L-cells.

    PubMed

    Kuhre, Rune E; Holst, Jens J; Kappe, Camilla

    2016-01-01

    Glucagon-like peptide-1 (GLP-1) is a peptide hormone, released from intestinal L-cells in response to hormonal, neural and nutrient stimuli. In addition to potentiation of meal-stimulated insulin secretion, GLP-1 signalling exerts numerous pleiotropic effects on various tissues, regulating energy absorption and disposal, as well as cell proliferation and survival. In Type2 Diabetes (T2D) reduced plasma levels of GLP-1 have been observed, and plasma levels of GLP-1, as well as reduced numbers of GLP-1 producing cells, have been correlated to obesity and insulin resistance. Increasing endogenous secretion of GLP-1 by selective targeting of the molecular mechanisms regulating secretion from the L-cell has been the focus of much recent research. An additional and promising strategy for enhancing endogenous secretion may be to increase the L-cell mass in the intestinal epithelium, but the mechanisms that regulate the growth, survival and function of these cells are largely unknown. We recently showed that prolonged exposure to high concentrations of the fatty acid palmitate induced lipotoxic effects, similar to those operative in insulin-producing cells, in an invitro model of GLP-1-producing cells. The mechanisms inducing this lipototoxicity involved increased production of reactive oxygen species (ROS). In this review, regulation of GLP-1-secreting cells is discussed, with a focus on the mechanisms underlying GLP-1 secretion, long-term regulation of growth, differentiation and survival under normal as well as diabetic conditions of hypernutrition. PMID:26637406

  17. GLP-1 stimulates insulin secretion by PKC-dependent TRPM4 and TRPM5 activation.

    PubMed

    Shigeto, Makoto; Ramracheya, Reshma; Tarasov, Andrei I; Cha, Chae Young; Chibalina, Margarita V; Hastoy, Benoit; Philippaert, Koenraad; Reinbothe, Thomas; Rorsman, Nils; Salehi, Albert; Sones, William R; Vergari, Elisa; Weston, Cathryn; Gorelik, Julia; Katsura, Masashi; Nikolaev, Viacheslav O; Vennekens, Rudi; Zaccolo, Manuela; Galione, Antony; Johnson, Paul R V; Kaku, Kohei; Ladds, Graham; Rorsman, Patrik

    2015-12-01

    Strategies aimed at mimicking or enhancing the action of the incretin hormone glucagon-like peptide 1 (GLP-1) therapeutically improve glucose-stimulated insulin secretion (GSIS); however, it is not clear whether GLP-1 directly drives insulin secretion in pancreatic islets. Here, we examined the mechanisms by which GLP-1 stimulates insulin secretion in mouse and human islets. We found that GLP-1 enhances GSIS at a half-maximal effective concentration of 0.4 pM. Moreover, we determined that GLP-1 activates PLC, which increases submembrane diacylglycerol and thereby activates PKC, resulting in membrane depolarization and increased action potential firing and subsequent stimulation of insulin secretion. The depolarizing effect of GLP-1 on electrical activity was mimicked by the PKC activator PMA, occurred without activation of PKA, and persisted in the presence of PKA inhibitors, the KATP channel blocker tolbutamide, and the L-type Ca(2+) channel blocker isradipine; however, depolarization was abolished by lowering extracellular Na(+). The PKC-dependent effect of GLP-1 on membrane potential and electrical activity was mediated by activation of Na(+)-permeable TRPM4 and TRPM5 channels by mobilization of intracellular Ca(2+) from thapsigargin-sensitive Ca(2+) stores. Concordantly, GLP-1 effects were negligible in Trpm4 or Trpm5 KO islets. These data provide important insight into the therapeutic action of GLP-1 and suggest that circulating levels of this hormone directly stimulate insulin secretion by β cells. PMID:26571400

  18. Ghrelin regulates GLP-1 production through mTOR signaling in L cells.

    PubMed

    Xu, Geyang; Hong, Xiaosi; Tang, Hong; Jiang, Sushi; Liu, Fenting; Shen, Zhemin; Li, Ziru; Zhang, Weizhen

    2015-11-15

    Glucagon-like peptide (GLP-1), an intestinal incretin produced in L-cells and released in response to meal intake, functions to promote insulin secretion and to decrease plasma glucose. Ghrelin is an orexigenic hormone critical for glucose homeostasis. The molecular mechanism by which ghrelin alters GLP-1 production remains largely unknown. Here we showed that ghrelin attenuates GLP-1 production through mTOR signaling. In GHSR1a null mice, ileal mTOR signaling, proglucagon and circulating GLP-1 were significantly increased. Antagonism of the GHSR1a by D-Lys-3-GHRP-6 increased GLP-1 synthesis and release in STC-1 cells. Treatment of STC-1 cells with ghrelin decreased the production of GLP-1. This effect was associated with a significant inhibition of mTOR signaling. Overexpression of ghrelin inhibited proglucagon promoter activity and GLP-1 production. Inhibition of mTOR activity by mTOR siRNA blocked D-Lys-3-GHRP-6 induced GLP-1 production in STC-1 cells. Our results suggest that mTOR signaling mediates the inhibitory effect of ghrelin on GLP-1 production. PMID:26279396

  19. Novel fusion of GLP-1 with a domain antibody to serum albumin prolongs protection against myocardial ischemia/reperfusion injury in the rat

    PubMed Central

    2013-01-01

    Background Glucagon-like peptide-1 (GLP-1) and its mimetics reduce infarct size in the setting of acute myocardial ischemia/reperfusion (I/R) injury. However, the short serum half-life of GLP-1 and its mimetics may limit their therapeutic use in acute myocardial ischemia. Domain antibodies to serum albumin (AlbudAbs) have been developed to extend the serum half-life of short lived therapeutic proteins, peptides and small molecules. In this study, we compared the effect of a long acting GLP-1 agonist, DPP-IV resistant GLP-1 (7–36, A8G) fused to an AlbudAb (GAlbudAb), with the effect of the GLP-1 mimetic, exendin-4 (short half-life GLP-1 agonist) on infarct size following acute myocardial I/R injury. Methods Male Sprague–Dawley rats (8-week-old) were treated with vehicle, GAlbudAb or exendin-4. Myocardial ischemia was induced 2 h following the final dose for GAlbudAb and 30 min post the final dose for exendin-4. In a subgroup of animals, the final dose of exendin-4 was administered (1 μg/kg, SC, bid for 2 days) 6 h prior to myocardial ischemia when plasma exendin-4 was at its minimum concentration (Cmin). Myocardial infarct size, area at risk and cardiac function were determined 24 h after myocardial I/R injury. Results GAlbudAb and exendin-4 significantly reduced myocardial infarct size by 28% and 23% respectively, compared to vehicle (both p < 0.01 vs. vehicle) after I/R injury. Moreover, both GAlbudAb and exendin-4 markedly improved post-ischemic cardiac contractile function. Body weight loss and reduced food intake consistent with the activation of GLP-1 receptors was observed in all treatment groups. However, exendin-4 failed to reduce infarct size when administered 6 h prior to myocardial ischemia, suggesting continuous activation of the GLP-1 receptors is needed for cardioprotection. Conclusions Cardioprotection provided by GAlbudAb, a long acting GLP-1 mimetic, following myocardial I/R injury was comparable in magnitude, but more sustained in duration than that produced by short-acting exendin-4. Very low plasma concentrations of exendin-4 failed to protect the heart from myocardial I/R injury, suggesting that sustained GLP-1 receptor activation plays an important role in providing cardioprotection in the setting of acute myocardial I/R injury. Long-acting GLP-1 agonists such as GAlbudAb may warrant additional evaluation as novel therapeutic agents to reduce myocardial I/R injury during acute coronary syndrome. PMID:24125539

  20. Inositolphosphoglycans and diacyglycerol are possible mediators in the glycogenic effect of GLP-1(7-36)amide in BC3H-1 myocytes.

    PubMed

    Galera, C; Clemente, F; Alcantara, A; Trapote, M A; Perea, A; Lopez-Delgado, M I; Villanueva-Penacarrillo, M L; Valverde, I

    1996-03-01

    A potent glycogenic effect of GLP-1(7-36)amide has been found in rat hepatocytes and skeletal muscle, and specific receptors for this peptide, which do not seem to be associated with the adenylate cyclase-cAMP system, have been detected in these tissue membranes. On the other hand, inositolphosphoglycan molecules (IPGs) have been implicated as second messengers of the action of insulin. In this work, we have found, in differentiated BC3H-1 myocytes, specific binding of [125I]GLP-1(7-36)amide, and a stimulatory effect of the peptide on glycogen synthesis, confirming the findings in rat skeletal muscle. Also, GLP-1(7-36)amide modulates the cell content of radiolabelled glycosylphosphatidylinositols (GPIs) and increases the production of diacylglycerol (DAG), in the same manner as insulin acts, indicating hydrolysis of GPIs and an immediate and short-lived generation of IPGs. Thus, IPGs and DAG could be mediators in the glycogenic action of GLP-1(7-36)amide in skeletal muscle. PMID:8907253

  1. Incretin Therapy – Present and Future

    PubMed Central

    Garber, Alan J.

    2011-01-01

    Although newer treatments for type 2 diabetes (T2D) patients have produced continual improvements in outcome, a large and growing population with prediabetes remains under-treated. In the last few years, incretin-based therapies have become an important treatment option for patients with T2D. There are two classes of incretin agents: the dipeptidyl peptidase-4 (DPP-4) inhibitors and the glucagon like peptide 1 (GLP-1) receptor agonists. The ultimate goal of agents within both of these classes is to increase GLP-1 signaling, which results in augmented glucose-induced insulin secretion, inhibition of glucagon secretion, and decreased appetite. This should result in improved regulation of glucose homeostasis. GLP-1 receptor agonists enable patients to achieve significant weight loss. In contrast, DPP-4 inhibitors result in a less dramatic increase in GLP-1 levels; therefore, they are weight neutral. Incretin therapies are currently recommended for use early in the treatment algorithm for T2D patients whose disease is not manageable by diet and exercise alone, but the potential for these agents may be farther reaching. Current studies are evaluating the potential benefits of combining incretin therapies with basal insulin to provide continuous glucose control before and after meals. In addition, these agents may be promising for patients with prediabetes since they effectively reduce glycosylated hemoglobin levels and fasting plasma glucose levels, enable weight control, and have the potential to preserve β-cell function. Clearly, all of these properties are desirable for patients with prediabetes. PMID:22262069

  2. Distinct action of the ?-glucosidase inhibitor miglitol on SGLT3, enteroendocrine cells, and GLP1 secretion.

    PubMed

    Lee, Eun Young; Kaneko, Shuji; Jutabha, Promsuk; Zhang, Xilin; Seino, Susumu; Jomori, Takahito; Anzai, Naohiko; Miki, Takashi

    2015-03-01

    Oral ingestion of carbohydrate triggers glucagon-like peptide 1 (GLP1) secretion, but the molecular mechanism remains elusive. By measuring GLP1 concentrations in murine portal vein, we found that the ATP-sensitive K(+) (KATP) channel is not essential for glucose-induced GLP1 secretion from enteroendocrine L cells, while the sodium-glucose co-transporter 1 (SGLT1) is required, at least in the early phase (5?min) of secretion. By contrast, co-administration of the ?-glucosidase inhibitor (?-GI) miglitol plus maltose evoked late-phase secretion in a glucose transporter 2-dependent manner. We found that GLP1 secretion induced by miglitol plus maltose was significantly higher than that by another ?-GI, acarbose, plus maltose, despite the fact that acarbose inhibits maltase more potently than miglitol. As miglitol activates SGLT3, we compared the effects of miglitol on GLP1 secretion with those of acarbose, which failed to depolarize the Xenopus laevis oocytes expressing human SGLT3. Oral administration of miglitol activated duodenal enterochromaffin (EC) cells as assessed by immunostaining of phosphorylated calcium-calmodulin kinase 2 (phospho-CaMK2). In contrast, acarbose activated much fewer enteroendocrine cells, having only modest phospho-CaMK2 immunoreactivity. Single administration of miglitol triggered no GLP1 secretion, and GLP1 secretion by miglitol plus maltose was significantly attenuated by atropine pretreatment, suggesting regulation via vagal nerve. Thus, while ?-GIs generally delay carbohydrate absorption and potentiate GLP1 secretion, miglitol also activates duodenal EC cells, possibly via SGLT3, and potentiates GLP1 secretion through the parasympathetic nervous system. PMID:25486965

  3. Glucagon-like peptide-1 receptor is present in pancreatic acinar cells and regulates amylase secretion through cAMP.

    PubMed

    Hou, Yanan; Ernst, Stephen A; Heidenreich, Kaeli; Williams, John A

    2016-01-01

    Glucagon-like peptide-1 (GLP-1) is a glucoincretin hormone that can act through its receptor (GLP-1R) on pancreatic β-cells and increase insulin secretion and production. GLP-1R agonists are used clinically to treat type 2 diabetes. GLP-1 may also regulate the exocrine pancreas at multiple levels, including inhibition through the central nervous system, stimulation indirectly through insulin, and stimulation directly on acinar cells. However, it has been unclear whether GLP-1R is present in pancreatic acini and what physiological functions these receptors regulate. In the current study we utilized GLP-1R knockout (KO) mice to study the role of GLP-1R in acinar cells. RNA expression of GLP-1R was detected in acutely isolated pancreatic acini. Acinar cell morphology and expression of digestive enzymes were not affected by loss of GLP-1R. GLP-1 induced amylase secretion in wild-type (WT) acini. In GLP-1R KO mice, this effect was abolished, whereas vasoactive intestinal peptide-induced amylase release in KO acini showed a pattern similar to that in WT acini. GLP-1 stimulated cAMP production and increased protein kinase A-mediated protein phosphorylation in WT acini, and these effects were absent in KO acini. These data show that GLP-1R is present in pancreatic acinar cells and that GLP-1 can regulate secretion through its receptor and cAMP signaling pathway. PMID:26542397

  4. GLP-1 at physiological concentrations recruits skeletal and cardiac muscle microvasculature in healthy humans

    PubMed Central

    SUBARAN, Sharmila C.; SAUDER, Matthew A.; CHAI, Weidong; JAHN, Linda A.; FOWLER, Dale E.; AYLOR, Kevin W.; BASU, Ananda; LIU, Zhenqi

    2015-01-01

    Muscle microvascular surface area determines substrate and hormonal exchanges between plasma and muscle interstitium. GLP-1 (glucagon-like peptide-1) regulates glucose-dependent insulin secretion and has numerous extrapancreatic effects, including a salutary vascular action. To examine whether GLP-1 recruits skeletal and cardiac muscle microvasculature in healthy humans, 26 overnight-fasted healthy adults received a systemic infusion of GLP-1 (1.2 pmol/kg of body mass per min) for 150 min. Skeletal and cardiac muscle MBV (microvascular blood volume), MFV (microvascular flow velocity) and MBF (microvascular blood flow) were determined at baseline and after 30 and 150 min. Brachial artery diameter and mean flow velocity were measured and total blood flow was calculated before and at the end of the GLP-1 infusion. GLP-1 infusion raised plasma GLP-1 concentrations to the postprandial levels and suppressed plasma glucagon concentrations with a transient increase in plasma insulin concentrations. Skeletal and cardiac muscle MBV and MBF increased significantly at both 30 and 150 min (P < 0.05). MFV did not change in skeletal muscle, but decreased slightly in cardiac muscle. GLP-1 infusion significantly increased brachial artery diameter (P < 0.005) and flow velocity (P = 0.05) at 150 min, resulting in a significant increase in total brachial artery blood flow (P < 0.005). We conclude that acute GLP-1 infusion significantly recruits skeletal and cardiac muscle microvasculature in addition to relaxing the conduit artery in healthy humans. This could contribute to increased tissue oxygen, nutrient and insulin delivery and exchange and therefore better prandial glycaemic control and tissue function in humans. PMID:24552454

  5. Molecular mechanisms of glucose-stimulated GLP-1 secretion from perfused rat small intestine.

    PubMed

    Kuhre, Rune E; Frost, Charlotte R; Svendsen, Berit; Holst, Jens J

    2015-02-01

    Glucose is an important stimulus for glucagon-like peptide 1 (GLP-1) secretion, but the mechanisms of secretion have not been investigated in integrated physiological models. We studied glucose-stimulated GLP-1 secretion from isolated perfused rat small intestine. Luminal glucose (5% and 20% w/v) stimulated the secretion dose dependently, but vascular glucose was without significant effect at 5, 10, 15, and 25 mmol/L. GLP-1 stimulation by luminal glucose (20%) secretion was blocked by the voltage-gated Ca channel inhibitor, nifedipine, or by hyperpolarization with diazoxide. Luminal administration (20%) of the nonmetabolizable sodium-glucose transporter 1 (SGLT1) substrate, methyl-α-D-glucopyranoside (α-MGP), stimulated release, whereas the SGLT1 inhibitor phloridzin (luminally) abolished responses to α-MGP and glucose. Furthermore, in the absence of luminal NaCl, luminal glucose (20%) did not stimulate a response. Luminal glucose-stimulated GLP-1 secretion was also sensitive to luminal GLUT2 inhibition (phloretin), but in contrast to SGLT1 inhibition, phloretin did not eliminate the response, and luminal glucose (20%) stimulated larger GLP-1 responses than luminal α-MGP in matched concentrations. Glucose transported by GLUT2 may act after metabolization, closing KATP channels similar to sulfonylureas, which also stimulated secretion. Our data indicate that SGLT1 activity is the driving force for glucose-stimulated GLP-1 secretion and that KATP-channel closure is required to stimulate a full-blown glucose-induced response. PMID:25157092

  6. Incretin actions and consequences of incretin-based therapies: lessons from complementary animal models.

    PubMed

    Renner, Simone; Blutke, Andreas; Streckel, Elisabeth; Wanke, Rüdiger; Wolf, Eckhard

    2016-01-01

    The two incretin hormones, glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP1), were discovered 45 and 30 years ago. Initially, only their insulinotropic effect on pancreatic β cells was known. Over the years, physiological and pharmacological effects of GIP and GLP1 in numerous extrapancreatic tissues were discovered which partially overlap, but may also be specific for GIP or GLP1 in certain target tissues. While the insulinotropic effect of GIP was found to be blunted in patients with type 2 diabetes, the function of GLP1 is preserved and GLP1 receptor agonists and dipeptidyl-peptidase 4 (DPP4) inhibitors, which prolong the half-life of incretins, are widely used in diabetes therapy. Wild-type and genetically modified rodent models have provided important mechanistic insights into the incretin system, but may have limitations in predicting the clinical efficacy and safety of incretin-based therapies. This review summarizes insights from rodent and non-rodent models (pig, non-human primate) into physiological and pharmacological incretin effects, with a focus on the pancreas. Similarities and differences between species are discussed and the increasing potential of genetically engineered pig models for translational incretin research is highlighted. Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. PMID:26455904

  7. Selective novel inverse agonists for human GPR43 augment GLP-1 secretion.

    PubMed

    Park, Bi-Oh; Kim, Seong Heon; Kong, Gye Yeong; Kim, Da Hui; Kwon, Mi So; Lee, Su Ui; Kim, Mun-Ock; Cho, Sungchan; Lee, Sangku; Lee, Hyun-Jun; Han, Sang-Bae; Kwak, Young Shin; Lee, Sung Bae; Kim, Sunhong

    2016-01-15

    GPR43/Free Fatty Acid Receptor 2 (FFAR2) is known to be activated by short-chain fatty acids and be coupled to Gi and Gq family of heterotrimeric G proteins. GPR43 is mainly expressed in neutrophils, adipocytes and enteroendocrine cells, implicated to be involved in inflammation, obesity and type 2 diabetes. However, several groups have reported the contradictory data about the physiological functions of GPR43, so that its roles in vivo remain unclear. Here, we demonstrate that a novel compound of pyrimidinecarboxamide class named as BTI-A-404 is a selective and potent competitive inverse agonist of human GPR43, but not the murine ortholog. Through structure-activity relationship (SAR), we also found active compound named as BTI-A-292. These regulators increased the cyclic AMP level and reduced acetate-induced cytoplasmic Ca(2+) level. Furthermore, we show that they modulated the downstream signaling pathways of GPR43, such as ERK, p38 MAPK, and NF-?B. It was surprising that two compounds augmented the secretion of glucagon-like peptide 1 (GLP-1) in NCI-H716 cell line. Collectively, these novel and specific competitive inhibitors regulate all aspects of GPR43 signaling and the results underscore the therapeutic potential of them. PMID:26683635

  8. Intragenic Dominant Suppressors of Glp-1, a Gene Essential for Cell-Signaling in Caenorhabditis Elegans, Support a Role for Cdc10/Sw16/Ankyrin Motifs in Glp-1 Function

    PubMed Central

    Lissemore, J. L.; Currie, P. D.; Turk, C. M.; Maine, E. M.

    1993-01-01

    The glp-1 gene product mediates cell-cell interactions required for cell fate specification during development in Caenorhabditis elegans. To identify genes that interact with glp-1, we screened for dominant suppressors of two temperature-sensitive glp-1 alleles and recovered 18 mutations that suppress both germline and embryonic glp-1 phenotypes. These dominant suppressors are tightly linked to glp-1 and do not bypass the requirement for a distal tip cell, which is thought to be the source of a signal that is received and transduced by the GLP-1 protein. Using single-strand conformation polymorphism (SSCP) analysis and DNA sequencing, we found that at least 17 suppressors are second-site intragenic revertants. The suppressors, like the original glp-1(ts) mutations, are all located in the cdc10/SWI6/ankyrin domain of GLP-1. cdc10/SWI6/ankyrin motifs have been shown to mediate specific protein-protein interactions in other polypeptides. We propose that the glp-1(ts) mutations disrupt contact between GLP-1 and an as yet unidentified target protein(s) and that the dominant suppressor mutations restore appropriate protein-protein interactions. PMID:8307320

  9. A Novel TGR5 Activator WB403 Promotes GLP-1 Secretion and Preserves Pancreatic β-Cells in Type 2 Diabetic Mice

    PubMed Central

    Wang, Tongtong; You, Panpan; Zhao, Yongliang; Yang, Yiqing; Wang, Xin; Luo, Jian; Chen, Yihua; Liu, Mingyao; Chen, Huaqing

    2015-01-01

    The G protein-coupled receptor TGR5 is a membrane receptor for bile acids. Its agonism increases energy expenditure and controls blood glucose through secretion of glucagon-like peptide-1 in enteroendocrine cells. In this study, we explored the therapeutic potential of WB403, a small compound activating TGR5 which was identified by combining TGR5 targeted luciferase assay and active GLP-1 assay, in treating type 2 diabetes. After confirmation of TGR5 and GLP-1 stimulating activities in various cell systems, WB403 was examined in oral glucose tolerance test, and tested on different mouse models of type 2 diabetes for glycemic control and pancreatic β-cell protection effect. As a result, WB403 exhibited a moderate TGR5 activation effect while promoting GLP-1 secretion efficiently. Interestingly, gallbladder filling effect, which was reported for some known TGR5 agonists, was not detected in this novel compound. In vivo results showed that WB403 significantly improved glucose tolerance and decreased fasting blood glucose, postprandial blood glucose and HbA1c in type 2 diabetic mice. Further analysis revealed that WB403 increased pancreatic β-cells and restored the normal distribution pattern of α-cell and β-cell in islets. These findings demonstrated that TGR5 activator WB403 effectively promoted GLP-1 release, improved hyperglycemia and preserved the mass and function of pancreatic β-cells, whereas it did not show a significant side effect on gallbladder. It may represent a promising approach for future type 2 diabetes mellitus drug development. PMID:26208278

  10. Minor Contribution of Endogenous GLP-1 and GLP-2 to Postprandial Lipemia in Obese Men

    PubMed Central

    Matikainen, Niina; Björnson, Elias; Söderlund, Sanni; Borén, Christofer; Eliasson, Björn; Pietiläinen, Kirsi H.; Bogl, Leonie H.; Hakkarainen, Antti; Lundbom, Nina; Rivellese, Angela; Riccardi, Gabriele; Després, Jean-Pierre; Alméras, Natalie; Holst, Jens Juul; Deacon, Carolyn F.; Borén, Jan; Taskinen, Marja-Riitta

    2016-01-01

    Context Glucose and lipids stimulate the gut-hormones glucagon-like peptide (GLP)-1, GLP-2 and glucose-dependent insulinotropic polypeptide (GIP) but the effect of these on human postprandial lipid metabolism is not fully clarified. Objective To explore the responses of GLP-1, GLP-2 and GIP after a fat-rich meal compared to the same responses after an oral glucose tolerance test (OGTT) and to investigate possible relationships between incretin response and triglyceride-rich lipoprotein (TRL) response to a fat-rich meal. Design Glucose, insulin, GLP-1, GLP-2 and GIP were measured after an OGTT and after a fat-rich meal in 65 healthy obese (BMI 26.5–40.2 kg/m2) male subjects. Triglycerides (TG), apoB48 and apoB100 in TG-rich lipoproteins (chylomicrons, VLDL1 and VLDL2) were measured after the fat-rich meal. Main Outcome Measures Postprandial responses (area under the curve, AUC) for glucose, insulin, GLP-1, GLP-2, GIP in plasma, and TG, apoB48 and apoB100 in plasma and TG-rich lipoproteins. Results The GLP-1, GLP-2 and GIP responses after the fat-rich meal and after the OGTT correlated strongly (r = 0.73, p<0.0001; r = 0.46, p<0.001 and r = 0.69, p<0.001, respectively). Glucose and insulin AUCs were lower, but the AUCs for GLP-1, GLP-2 and GIP were significantly higher after the fat-rich meal than after the OGTT. The peak value for all hormones appeared at 120 minutes after the fat-rich meal, compared to 30 minutes after the OGTT. After the fat-rich meal, the AUCs for GLP-1, GLP-2 and GIP correlated significantly with plasma TG- and apoB48 AUCs but the contribution was very modest. Conclusions In obese males, GLP-1, GLP-2 and GIP responses to a fat-rich meal are greater than following an OGTT. However, the most important explanatory variable for postprandial TG excursion was fasting triglycerides. The contribution of endogenous GLP-1, GLP-2 and GIP to explaining the variance in postprandial TG excursion was minor. PMID:26752550

  11. GLP-1 secretion by microglial cells and decreased CNS expression in obesity

    PubMed Central

    2012-01-01

    Background Type 2 diabetes (T2D) is a strong risk factor for developing neurodegenerative pathologies. T2D patients have a deficiency in the intestinal incretin hormone GLP-1, which has been shown to exert neuroprotective and anti-inflammatory properties in the brain. Methods Here we investigate potential sources of GLP-1 in the CNS and the effect of diabetic conditions on the proglucagon mRNA expression in the CNS. The obese mouse model ob/ob, characterized by its high levels of free fatty acids, and the microglia cell line BV-2 were used as models. mRNA expression and protein secretion were analyzed by qPCR, immunofluorescence and ELISA. Results We show evidence for microglia as a central source of GLP-1 secretion. Furthermore, we observed that expression and secretion are stimulated by cAMP and dependent on microglial activation state. We also show that insulin-resistant conditions reduce the central mRNA expression of proglucagon. Conclusion The findings that microglial mRNA expression of proglucagon and GLP-1 protein expression are affected by high levels of free fatty acids and that both mRNA expression levels of proglucagon and secretion levels of GLP-1 are affected by inflammatory stimuli could be of pathogenic importance for the premature neurodegeneration and cognitive decline commonly seen in T2D patients, and they may also be harnessed to advantage in therapeutic efforts to prevent or treat such disorders. PMID:23259618

  12. A Novel CCK-8/GLP-1 Hybrid Peptide Exhibiting Prominent Insulinotropic, Glucose-Lowering, and Satiety Actions With Significant Therapeutic Potential in High-Fat-Fed Mice.

    PubMed

    Irwin, Nigel; Pathak, Varun; Flatt, Peter R

    2015-08-01

    Glucagon-like peptide-1 (GLP-1) and cholecystokinin (CCK) exert important complementary beneficial metabolic effects. This study assessed the biological actions and therapeutic utility of a novel (pGlu-Gln)-CCK-8/exendin-4 hybrid peptide compared with the stable GLP-1 and CCK mimetics exendin-4 and (pGlu-Gln)-CCK-8, respectively. All peptides significantly enhanced in vitro insulin secretion. Administration of the peptides, except (pGlu-Gln)-CCK-8 alone, in combination with glucose significantly lowered plasma glucose and increased plasma insulin in mice. All treatments elicited appetite-suppressive effects. Twice-daily administration of the novel (pGlu-Gln)-CCK-8/exendin-4 hybrid, (pGlu-Gln)-CCK-8 alone, or (pGlu-Gln)-CCK-8 in combination with exendin-4 for 21 days to high-fat-fed mice significantly decreased energy intake, body weight, and circulating plasma glucose. HbA1c was reduced in the (pGlu-Gln)-CCK-8/exendin-4 hybrid and combined parent peptide treatment groups. Glucose tolerance and insulin sensitivity also were improved by all treatment modalities. Interestingly, locomotor activity was decreased in the hybrid peptide group, and these mice also exhibited reductions in circulating triglyceride and cholesterol levels. Pancreatic islet number and area, as well ?-cell area and insulinotropic responsiveness, were dramatically improved by all treatments. These studies highlight the clear potential of dual activation of GLP-1 and CCK1 receptors for the treatment of type 2 diabetes. PMID:25883113

  13. Intestinal GLP-1 and satiation: from man to rodents and back.

    PubMed

    Steinert, R E; Beglinger, C; Langhans, W

    2016-02-01

    In response to luminal food stimuli during meals, enteroendocrine cells release gastrointestinal (GI) peptides that have long been known to control secretory and motor functions of the gut, pancreas and liver. Glucagon-like peptide-1 (GLP-1) has emerged as one of the most important GI peptides because of a combination of functions not previously ascribed to any other molecule. GLP-1 potentiates glucose-induced insulin secretion, suppresses glucagon release, slows gastric emptying and may serve as a satiation signal, although the physiological status of the latter function has not been fully established yet. Here we review the available evidence for intestinal GLP-1 to fulfill a number of established empirical criteria for assessing whether a hormone inhibits eating by eliciting physiological satiation in man and rodents. PMID:26315842

  14. GLP-1(7-36)amide binding in skeletal muscle membranes from streptozotocin diabetic rats.

    PubMed

    Villanueva-Peacarrillo, M L; Delgado, E; Vicent, D; Mrida, E; Alcntara, A I; Valverde, I

    1995-09-01

    A higher specific binding of GLP-1(7-36)amide is found in skeletal muscle plasma membranes from adult streptozotocin (STZ)-treated rats (insulin-dependent diabetes mellitus model) and from neonatal STZ-treated rats (non insulin-dependent diabetes mellitus model), as compared to that in normal controls; no apparent change in the affinity was observed, that indicating the presence in both diabetic models of an increased number of high affinity binding sites for the peptide. The maximal specific GLP-1(7-16)amide binding in the non insulin-dependent diabetes mellitus model was found to be significantly higher than that in the insulin-dependent diabetes mellitus model. As GLP-1(7-36)amide exerts a glycogenic effect in the rat skeletal muscle, the present data suggest that the action of the peptide in the muscle glucose metabolism may be increased in states of insulin deficiency accompanied or not by insulin resistance. PMID:21153227

  15. GLP-1 promotes mitochondrial metabolism in vascular smooth muscle cells by enhancing endoplasmic reticulum-mitochondria coupling.

    PubMed

    Morales, Pablo E; Torres, Gloria; Sotomayor-Flores, Cristian; Pea-Oyarzn, Daniel; Rivera-Mejas, Pablo; Paredes, Felipe; Chiong, Mario

    2014-03-28

    Incretin GLP-1 has important metabolic effects on several tissues, mainly through the regulation of glucose uptake and usage. One mechanism for increasing cell metabolism is modulating endoplasmic reticulum (ER)-mitochondria communication, as it allows for a more efficient transfer of Ca(2+) into the mitochondria, thereby increasing activity. Control of glucose metabolism is essential for proper vascular smooth muscle cell (VSMC) function. GLP-1 has been shown to produce varied metabolic actions, but whether it regulates glucose metabolism in VSMC remains unknown. In this report, we show that GLP-1 increases mitochondrial activity in the aortic cell line A7r5 by increasing ER-mitochondria coupling. GLP-1 increases intracellular glucose and diminishes glucose uptake without altering glycogen content. ATP, mitochondrial potential and oxygen consumption increase at 3h of GLP-1 treatment, paralleled by increased Ca(2+) transfer from the ER to the mitochondria. Furthermore, GLP-1 increases levels of Mitofusin-2 (Mfn2), an ER-mitochondria tethering protein, via a PKA-dependent mechanism. Accordingly, PKA inhibition and Mfn2 down-regulation prevented mitochondrial Ca(2+) increases in GLP-1 treated cells. Inhibiting both Ca(2+) release from the ER and Ca(2+) entry into mitochondria as well as diminishing Mfn2 levels blunted the increase in mitochondrial activity in response to GLP-1. Altogether, these results strongly suggest that GLP-1 increases ER-mitochondria communication in VSMC, resulting in higher mitochondrial activity. PMID:24613839

  16. Functional Consequences of Glucagon-like Peptide-1 Receptor Cross-talk and Trafficking*

    PubMed Central

    Roed, Sarah Noerklit; Nhr, Anne Cathrine; Wismann, Pernille; Iversen, Helle; Bruner-Osborne, Hans; Knudsen, Sanne Moeller; Waldhoer, Maria

    2015-01-01

    The signaling capacity of seven-transmembrane/G-protein-coupled receptors (7TM/GPCRs) can be regulated through ligand-mediated receptor trafficking. Classically, the recycling of internalized receptors is associated with resensitization, whereas receptor degradation terminates signaling. We have shown previously that the incretin glucagon-like peptide-1 receptor (GLP-1R) internalizes fast and is primarily resensitized through recycling back to the cell surface. GLP-1R is expressed in pancreatic islets together with the closely related glucose-dependent insulinotropic polypeptide (GIPR) and glucagon (GCGR) receptors. The interaction and cross-talk between coexpressed receptors is a wide phenomenon of the 7TM/GPCR superfamily. Numerous reports show functional consequences for signaling and trafficking of the involved receptors. On the basis of the high structural similarity and tissue coexpression, we here investigated the potential cross-talk between GLP-1R and GIPR or GCGR in both trafficking and signaling pathways. Using a real-time time-resolved FRET-based internalization assay, we show that GLP-1R, GIPR, and GCGR internalize with differential properties. Remarkably, upon coexpression of the internalizing GLP-1R and the non-internalizing GIPR, GLP-1-mediated GLP-1R internalization was impaired in a GIPR concentration-dependent manner. As a functional consequence of such impaired internalization capability, GLP-1-mediated GLP-1R signaling was abrogated. A similar compromised signaling was found when GLP-1R internalization was abrogated by a dominant-negative version of dynamin (dynamin-1 K44E), which provides a mechanistic link between GLP-1R trafficking and signaling. This study highlights the importance of receptor internalization for full functionality of GLP-1R. Moreover, cross-talk between the two incretin receptors GLP-1R and GIPR is shown to alter receptor trafficking with functional consequences for GLP-1R signaling. PMID:25451942

  17. High fat diet and GLP-1 drugs induce pancreatic injury in mice

    SciTech Connect

    Rouse, Rodney Xu, Lin; Stewart, Sharron; Zhang, Jun

    2014-04-15

    Glucagon Like Peptide-1 (GLP-1) drugs are currently used to treat type-2 diabetes. Safety concerns for increased risk of pancreatitis and pancreatic ductal metaplasia have accompanied these drugs. High fat diet (HFD) is a type-2 diabetes risk factor that may affect the response to GLP-1 drug treatment. The objective of the present study was to investigate the effects of diet and GLP-1 based drugs on the exocrine pancreas in mice. Experiments were designed in a mouse model of insulin resistance created by feeding a HFD or standard diet (STD) for 6 weeks. The GLP-1 drugs, sitagliptin (SIT) and exenatide (EXE) were administered once daily for additional 6 weeks in both mice fed HFD or STD. The results showed that body weight, blood glucose levels, and serum levels of pro-inflammatory cytokines (TNFα, IL-1β, and KC) were significantly greater in HFD mice than in STD mice regardless of GLP-1 drug treatment. The semi-quantitative grading showed that pancreatic changes were significantly greater in EXE and SIT-treated mice compared to control and that HFD exacerbated spontaneous exocrine pancreatic changes seen in saline-treated mice on a standard diet. Exocrine pancreatic changes identified in this study included acinar cell injury (hypertrophy, autophagy, apoptosis, necrosis, and atrophy), vascular injury, interstitial edema and inflammation, fat necrosis, and duct changes. These findings support HFD as a risk factor to increased susceptibility/severity for acute pancreatitis and indicate that GLP-1 drugs cause pancreatic injury that can be exacerbated in a HFD environment.

  18. A tripeptide Diapin effectively lowers blood glucose levels in male type 2 diabetes mice by increasing blood levels of insulin and GLP-1.

    PubMed

    Zhang, Jifeng; Xue, Changyong; Zhu, Tianqing; Vivekanandan, Anuradha; Pennathur, Subramaniam; Ma, Zhongmin Alex; Chen, Y Eugene

    2013-01-01

    The prevalence of type 2 diabetes (T2D) is rapidly increasing worldwide. Effective therapies, such as insulin and Glucagon-like peptide-1 (GLP-1), require injections, which are costly and result in less patient compliance. Here, we report the identification of a tripeptide with significant potential to treat T2D. The peptide, referred to as Diapin, is comprised of three natural L-amino acids, GlyGlyLeu. Glucose tolerance tests showed that oral administration of Diapin effectively lowered blood glucose after oral glucose loading in both normal C57BL/6J mice and T2D mouse models, including KKay, db/db, ob/ob mice, and high fat diet-induced obesity/T2D mice. In addition, Diapin treatment significantly reduced casual blood glucose in KKay diabetic mice in a time-dependent manner without causing hypoglycemia. Furthermore, we found that plasma GLP-1 and insulin levels in diabetic models were significantly increased with Diapin treatment compared to that in the controls. In summary, our findings establish that a peptide with minimum of three amino acids can improve glucose homeostasis and Diapin shows promise as a novel pharmaceutical agent to treat patients with T2D through its dual effects on GLP-1 and insulin secretion. PMID:24386218

  19. A Tripeptide Diapin Effectively Lowers Blood Glucose Levels in Male Type 2 Diabetes Mice by Increasing Blood Levels of Insulin and GLP-1

    PubMed Central

    Zhang, Jifeng; Xue, Changyong; Zhu, Tianqing; Vivekanandan, Anuradha; Pennathur, Subramaniam; Ma, Zhongmin Alex; Chen, Y. Eugene

    2013-01-01

    The prevalence of type 2 diabetes (T2D) is rapidly increasing worldwide. Effective therapies, such as insulin and Glucagon-like peptide-1 (GLP-1), require injections, which are costly and result in less patient compliance. Here, we report the identification of a tripeptide with significant potential to treat T2D. The peptide, referred to as Diapin, is comprised of three natural L-amino acids, GlyGlyLeu. Glucose tolerance tests showed that oral administration of Diapin effectively lowered blood glucose after oral glucose loading in both normal C57BL/6J mice and T2D mouse models, including KKay, db/db, ob/ob mice, and high fat diet-induced obesity/T2D mice. In addition, Diapin treatment significantly reduced casual blood glucose in KKay diabetic mice in a time-dependent manner without causing hypoglycemia. Furthermore, we found that plasma GLP-1 and insulin levels in diabetic models were significantly increased with Diapin treatment compared to that in the controls. In summary, our findings establish that a peptide with minimum of three amino acids can improve glucose homeostasis and Diapin shows promise as a novel pharmaceutical agent to treat patients with T2D through its dual effects on GLP-1 and insulin secretion. PMID:24386218

  20. Diurnal rhythms of plasma GLP-1 levels in normal and overweight/obese subjects: lack of effect of weight loss.

    PubMed

    Galindo Muoz, Joaqun Santiago; Jimnez Rodrguez, Diana; Hernndez Morante, Juan Jos

    2015-03-01

    Food intake is regulated by not only neurohormonal, but also social, educational, and even cultural factors. Within the former, there is a complex interaction between orexigenic (ghrelin) and anorexigenic (glucagon-like peptide-1 (GLP-1)) factors in order to adjust the food intake to caloric expenditure; however, the number of subjects that are unable to properly balance appetite and body weight is increasing continuously. A loss of circadian or diurnal coordination of any of these factors may be implied in this situation. Special attention has retrieved GLP-1 due to its usefulness as a therapeutic agent against obesity and related alterations. Thus, the objective of the present study was to compare GLP-1 diurnal synthesis between normal weight and overweight/obese subjects, and to evaluate whether weight loss can restore the synthesis rhythms of GLP-1. Three groups of 25 subjects were divided attending to their body mass index (BMI) in normal weight, overweight, or obese subjects. Diurnal (5 points) GLP-1 levels were analyzed. Secondly, an intervention (behavioral-dietary treatment) study was conducted to analyze the effect of weight loss on plasma GLP-1 concentrations. Our results showed that baseline GLP-1 level was significantly lower in normal weight subjects (p?=?0.003); furthermore, our cosinor analysis revealed a higher amplitude (p?=?0.040) and daily GLP-1 variation (47%) in these subjects. In fact, our ANOVA data showed a lack of rhythmicity in overweight/obese patients. Weight loss was not able to restore a diurnal rhythm of plasma GLP-1 levels. In summary, the present work shows a disruption of diurnal GLP-1 levels in overweight/obese subjects, which worsen as body fat progresses. The attenuation of the GLP-1 synthesis rhythms may be important to understand the impairment of food intake regulation in overweight/obese subjects. PMID:25543251

  1. Glucagon-like peptide-1 receptor agonists suppress water intake independent of effects on food intake

    PubMed Central

    McKay, Naomi J.; Kanoski, Scott E.; Hayes, Matthew R.

    2011-01-01

    Glucagon-like peptide-1 (GLP-1) is produced by and released from the small intestine following ingestion of nutrients. GLP-1 receptor (GLP-1R) agonists applied peripherally or centrally decrease food intake and increase glucose-stimulated insulin secretion. These effects make the GLP-1 system an attractive target for the treatment of type 2 diabetes mellitus and obesity. In addition to these more frequently studied effects of GLP-1R stimulation, previous reports indicate that GLP-1R agonists suppress water intake. The present experiments were designed to provide greater temporal resolution and site specificity for the effect of GLP-1 and the long-acting GLP-1R agonists, exendin-4 and liraglutide, on unstimulated water intake when food was and was not available. All three GLP-1R ligands suppressed water intake after peripheral intraperitoneal administration, both in the presence of and the absence of food; however, the magnitude and time frame of water intake suppression varied by drug. GLP-1 had an immediate, but transient, hypodipsic effect when administered peripherally, whereas the water intake suppression by IP exendin-4 and liraglutide was much more persistent. Additionally, intracerebroventricular administration of GLP-1R agonists suppressed water intake when food was absent, but the suppression of intake showed modest differences depending on whether the drug was administered to the lateral or fourth ventricle. To the best of our knowledge, this is the first demonstration of GLP-1 receptor agonists affecting unstimulated, overnight intake in the absence of food, the first test for antidipsogenic effects of hindbrain application of GLP-1 receptor agonists, and the first test of a central effect (forebrain or hindbrain) of liraglutide on water intake. Overall, these results show that GLP-1R agonists have a hypodipsic effect that is independent of GLP-1R-mediated effects on food intake, and this occurs, in part, through central nervous system GLP-1R activation. PMID:21975647

  2. Glucagon-like peptide-1 receptors in the brain: controlling food intake and body weight

    PubMed Central

    Baggio, Laurie L.; Drucker, Daniel J.

    2014-01-01

    The peptide hormone glucagon-like peptide-1 (GLP-1) enhances glucose-induced insulin secretion and inhibits both gastric emptying and glucagon secretion. GLP-1 receptor (GLP-1R) agonists control glycemia via glucose-dependent mechanisms of action and promote weight loss in obese and diabetic individuals. Nevertheless, the mechanisms and cellular targets transducing the weight loss effects remain unclear. Two recent studies in the JCI provide insight into the neurons responsible for this effect. Sisley et al. reveal that GLP-1R agonist–induced weight loss requires GLP-1Rs in the CNS, while Secher et al. reveal that a small peptide GLP-1R agonist penetrates the brain and activates a subset of GLP-1R–expressing neurons in the arcuate nucleus to produce weight loss. Together, these two studies elucidate pathways that inform strategies coupling GLP-1R signaling to control of body weight in patients with diabetes or obesity. PMID:25202976

  3. Nucleotide levels regulate germline proliferation through modulating GLP-1/Notch signaling in C. elegans.

    PubMed

    Chi, Congwu; Ronai, Diana; Than, Minh T; Walker, Cierra J; Sewell, Aileen K; Han, Min

    2016-02-01

    Animals alter their reproductive programs to accommodate changes in nutrient availability, yet the connections between known nutrient-sensing systems and reproductive programs are underexplored, and whether there is a mechanism that senses nucleotide levels to coordinate germline proliferation is unknown. We established a model system in which nucleotide metabolism is perturbed in both the nematode Caenorhabditis elegans (cytidine deaminases) and its food (Escherichia coli); when fed food with a low uridine/thymidine (U/T) level, germline proliferation is arrested. We provide evidence that this impact of U/T level on the germline is critically mediated by GLP-1/Notch and MPK-1/MAPK, known to regulate germline mitotic proliferation. This germline defect is suppressed by hyperactivation of glp-1 or disruption of genes downstream from glp-1 to promote meiosis but not by activation of the IIS or TORC1 pathways. Moreover, GLP-1 expression is post-transcriptionally modulated by U/T levels. Our results reveal a previously unknown nucleotide-sensing mechanism for controlling reproductivity. PMID:26833730

  4. Unsaturated Glycoceramides as Molecular Carriers for Mucosal Drug Delivery of GLP-1

    PubMed Central

    te Welscher, Yvonne M.; Chinnapen, Daniel J.-F.; Kaoutzani, Lydia; Mrsny, Randall J.; Lencer, Wayne I.

    2014-01-01

    Summary The incretin hormone Glucagon-like peptide 1 (GLP-1) requires delivery by injection for the treatment of Type 2 diabetes mellitus. Here, we test if the properties of glycosphingolipid trafficking in epithelial cells can be applied to convert GLP-1 into a molecule suitable for mucosal absorption. GLP-1 was coupled to the extracellular oligosaccharide domain of GM1 species containing ceramides with different fatty acids and with minimal loss of incretin bioactivity. When applied to apical surfaces of polarized epithelial cells in monolayer culture, only GLP-1 coupled to GM1-ceramides with short-or cis-unsaturated fatty acids trafficked efficiently across the cell to the basolateral membrane by transcytosis. In vivo studies showed mucosal absorption after nasal administration. The results substantiate our recently reported dependence on ceramide structure for trafficking the GM1 across polarized epithelial cells and support the idea that specific glycosphingolipids can be harnessed as molecular vehicles for mucosal delivery of therapeutic peptides. PMID:24370893

  5. Long-term metabolic benefits of exenatide in mice are mediated solely via the known glucagon-like peptide 1 receptor.

    PubMed

    Tatarkiewicz, Krystyna; Sablan, Emmanuel J; Polizzi, Clara J; Villescaz, Christiane; Parkes, David G

    2014-04-01

    Glucagon-like peptide 1 receptors (GLP-1R) are expressed in multiple tissues and activation results in metabolic benefits including enhanced insulin secretion, slowed gastric emptying, suppressed food intake, and improved hepatic steatosis. Limited and inconclusive knowledge exists regarding whether the effects of chronic exposure to a GLP-1R agonist are solely mediated via this receptor. Therefore, we examined 3-mo dosing of exenatide in mice lacking a functional GLP-1R (Glp1r(-/-)). Exenatide (30 nmol kg(-1) day(-1)) was infused subcutaneously for 12 wk in Glp1r(-/-) and wild-type (Glp1r(+/+)) control mice fed a high-fat diet. Glycated hemoglobin A1c (HbA1c), plasma glucose, insulin, amylase, lipase, alanine aminotransferase (ALT), aspartate aminotransferase (AST), body weight, food intake, terminal hepatic lipid content (HLC), and plasma exenatide levels were measured. At the end of the study, oral glucose tolerance test (OGTT) and rate of gastric emptying were assessed. Exenatide produced no significant changes in Glp1r(-/-) mice at study end. In contrast, exenatide decreased body weight, food intake, and glucose in Glp1r(+/+) mice. When compared with vehicle, exenatide reduced insulin, OGTT glucose AUC0-2h, ALT, and HLC in Glp1r(+/+) mice. Exenatide had no effect on plasma amylase or lipase levels. Exenatide concentrations were approximately eightfold higher in Glp1r(-/-) versus Glp1r(+/+) mice after 12 wk of infusion, whereas renal function was similar. These data support the concept that exenatide requires a functional GLP-1R to exert chronic metabolic effects in mice, and that novel "GLP-1" receptors may not substantially contribute to these changes. Differential exenatide plasma levels in Glp1r(+/+) versus Glp1r(-/-) mice suggest that GLP-1R may play an important role in plasma clearance of exenatide and potentially other GLP-1-related peptides. PMID:24477544

  6. Chronic administration of Glucagon-like peptide-1 receptor agonists improves trabecular bone mass and architecture in ovariectomised mice.

    PubMed

    Pereira, M; Jeyabalan, J; Jørgensen, C S; Hopkinson, M; Al-Jazzar, A; Roux, J P; Chavassieux, P; Orriss, I R; Cleasby, M E; Chenu, C

    2015-12-01

    Some anti-diabetic therapies can have adverse effects on bone health and increase fracture risk. In this study, we tested the skeletal effects of chronic administration of two Glucagon-like peptide-1 receptor agonists (GLP-1RA), increasingly used for type 2 diabetes treatment, in a model of osteoporosis associated bone loss and examined the expression and activation of GLP-1R in bone cells. Mice were ovariectomised (OVX) to induce bone loss and four weeks later they were treated with Liraglutide (LIR) 0.3mg/kg/day, Exenatide (Ex-4) 10 μg/kg/day or saline for four weeks. Mice were injected with calcein and alizarin red prior to euthanasia, to label bone-mineralising surfaces. Tibial micro-architecture was determined by micro-CT and bone formation and resorption parameters measured by histomorphometric analysis. Serum was collected to measure calcitonin and sclerostin levels, inhibitors of bone resorption and formation, respectively. GLP-1R mRNA and protein expression were evaluated in the bone, bone marrow and bone cells using RT-PCR and immunohistochemistry. Primary osteoclasts and osteoblasts were cultured to evaluate the effect of GLP-1RA on bone resorption and formation in vitro. GLP-1RA significantly increased trabecular bone mass, connectivity and structure parameters but had no effect on cortical bone. There was no effect of GLP-1RA on bone formation in vivo but an increase in osteoclast number and osteoclast surfaces was observed with Ex-4. GLP-1R was expressed in bone marrow cells, primary osteoclasts and osteoblasts and in late osteocytic cell line. Both Ex-4 and LIR stimulated osteoclastic differentiation in vitro but slightly reduced the area resorbed per osteoclast. They had no effect on bone nodule formation in vitro. Serum calcitonin levels were increased and sclerostin levels decreased by Ex-4 but not by LIR. Thus, GLP-1RA can have beneficial effects on bone and the expression of GLP-1R in bone cells may imply that these effects are exerted directly on the tissue. PMID:26314515

  7. Septal Glucagon-Like Peptide 1 Receptor Expression Determines Suppression of Cocaine-Induced Behavior.

    PubMed

    Harasta, Anne E; Power, John M; von Jonquieres, Georg; Karl, Tim; Drucker, Daniel J; Housley, Gary D; Schneider, Miriam; Klugmann, Matthias

    2015-07-01

    Glucagon-like peptide 1 (GLP-1) and its receptor GLP-1R are a key component of the satiety signaling system, and long-acting GLP-1 analogs have been approved for the treatment of type-2 diabetes mellitus. Previous reports demonstrate that GLP-1 regulates glucose homeostasis alongside the rewarding effects of food. Both palatable food and illicit drugs activate brain reward circuitries, and pharmacological studies suggest that central nervous system GLP-1 signaling holds potential for the treatment of addiction. However, the role of endogenous GLP-1 in the attenuation of reward-oriented behavior, and the essential domains of the mesolimbic system mediating these beneficial effects, are largely unknown. We hypothesized that the central regions of highest Glp-1r gene activity are essential in mediating responses to drugs of abuse. Here, we show that Glp-1r-deficient (Glp-1r(-/-)) mice have greatly augmented cocaine-induced locomotor responses and enhanced conditional place preference compared with wild-type (Glp-1r(+/+)) controls. Employing mRNA in situ hybridization we located peak Glp-1r mRNA expression in GABAergic neurons of the dorsal lateral septum, an anatomical site with a crucial function in reward perception. Whole-cell patch-clamp recordings of dorsal lateral septum neurons revealed that genetic Glp-1r ablation leads to increased excitability of these cells. Viral vector-mediated Glp-1r gene delivery to the dorsal lateral septum of Glp-1r(-/-) animals reduced cocaine-induced locomotion and conditional place preference to wild-type levels. This site-specific genetic complementation did not affect the anxiogenic phenotype observed in Glp-1r(-/-) controls. These data reveal a novel role of GLP-1R in dorsal lateral septum function driving behavioral responses to cocaine. PMID:25669605

  8. GLP-1 responses are heritable and blunted in acquired obesity with high liver fat and insulin resistance.

    PubMed

    Matikainen, Niina; Bogl, Leonie H; Hakkarainen, Antti; Lundbom, Jesper; Lundbom, Nina; Kaprio, Jaakko; Rissanen, Aila; Holst, Jens J; Pietilinen, Kirsi H

    2014-01-01

    OBJECTIVE Impaired incretin response represents an early and uniform defect in type 2 diabetes, but the contributions of genes and the environment are poorly characterized. RESEARCH DESIGN AND METHODS We studied 35 monozygotic (MZ) and 75 dizygotic (DZ) twin pairs (discordant and concordant for obesity) to determine the heritability of glucagon-like peptide 1 (GLP-1) responses to an oral glucose tolerance test (OGTT) and the influence of acquired obesity to GLP-1, glucose-dependent insulinotropic peptide (GIP), and peptide YY (PYY) during OGTT or meal test. RESULTS The heritability of GLP-1 area under the curve was 67% (95% CI 45-80). Cotwins from weight-concordant MZ and DZ pairs and weight-discordant MZ pairs but concordant for liver fat content demonstrated similar glucose, insulin, and incretin profiles after the OGTT and meal tests. In contrast, higher insulin responses and blunted 60-min GLP-1 responses during the OGTT were observed in the heavier as compared with leaner MZ cotwins discordant for BMI, liver fat, and insulin sensitivity. Blunted GLP-1 response to OGTT was observed in heavier as compared with leaner DZ cotwins discordant for obesity and insulin sensitivity. CONCLUSIONS Whereas the GLP-1 response to the OGTT is heritable, an acquired unhealthy pattern of obesity characterized by liver fat accumulation and insulin resistance is closely related to impaired GLP-1 response in young adults. PMID:23990519

  9. The glucagon-like peptide 1 receptor agonist enhances intrinsic peroxisome proliferator-activated receptor γ activity in endothelial cells

    SciTech Connect

    Onuma, Hirohisa; Inukai, Kouichi Kitahara, Atsuko; Moriya, Rie; Nishida, Susumu; Tanaka, Toshiaki; Katsuta, Hidenori; Takahashi, Kazuto; Sumitani, Yoshikazu; Hosaka, Toshio; Ishida, Hitoshi

    2014-08-22

    Highlights: • PPARγ activation was involved in the GLP-1-mediated anti-inflammatory action. • Exendin-4 enhanced endogenous PPARγ transcriptional activity in HUVECs. • H89, a PKA inhibitor, abolished GLP-1-induced PPARγ enhancement. • The anti-inflammatory effects of GLP-1 may be explained by PPARγ activation. - Abstract: Recent studies have suggested glucagon-like peptide-1 (GLP-1) signaling to exert anti-inflammatory effects on endothelial cells, although the precise underlying mechanism remains to be elucidated. In the present study, we investigated whether PPARγ activation is involved in the GLP-1-mediated anti-inflammatory action on endothelial cells. When we treated HUVEC cells with 0.2 ng/ml exendin-4, a GLP-1 receptor agonist, endogenous PPARγ transcriptional activity was significantly elevated, by approximately 20%, as compared with control cells. The maximum PPARγ activity enhancing effect of exendin-4 was observed 12 h after the initiation of incubation with exendin-4. As H89, a PKA inhibitor, abolished GLP-1-induced PPARγ enhancement, the signaling downstream from GLP-1 cross-talk must have been involved in PPARγ activation. In conclusion, our results suggest that GLP-1 has the potential to induce PPARγ activity, partially explaining the anti-inflammatory effects of GLP-1 on endothelial cells. Cross-talk between GLP-1 signaling and PPARγ activation would have major impacts on treatments for patients at high risk for cardiovascular disease.

  10. Glucagonlike peptide-1 receptor: an example of translational research in insulinomas: a review.

    PubMed

    Christ, Emanuel; Wild, Damian; Reubi, Jean Claude

    2010-12-01

    Glucagonlike peptide-1 receptors (GLP-1R) play an increasingly important role in endocrine gastrointestinal tumor management. In particular, virtually all benign insulinomas express GLP-1R in high density. Exendin-4 is a GLP-1 analog that has a longer half-life than GLP-1. Targeting GLP-1R by (111)In-DOTA-exendin-4 or (111)In-DPTA-exendin-4 offers a new approach that permits the successful localization of small benign insulinomas. It is likely that this new noninvasive technique has the potential to replace the invasive localization by selective arterial stimulation and venous sampling. PMID:21095545

  11. Appetite-related peptides in childhood and adolescence: role of ghrelin, PYY, and GLP-1.

    PubMed

    Horner, Katy; Lee, SoJung

    2015-11-01

    During childhood and adolescence, a number of factors, including age, puberty, sex, race, and body composition, may contribute to differences in satiety, food intake, and appetite-related peptides. These peptides include the orexigenic peptide ghrelin and anorexigenic gut peptides peptide YY (PYY) and glucagon-like peptide-1 (GLP-1). For example, lower fasting ghrelin levels, lower postprandial ghrelin suppression, and blunted PYY and GLP-1 responses to food intake could contribute to a dysregulation of appetite in already obese children and adolescents. Whereas, changes in these peptides observed during puberty could facilitate growth. A greater understanding of the major moderating factors of appetite-related peptides in the pediatric population is essential to improve interpretation of study findings and for effective tailoring of strategies targeting appetite control to individuals. While more studies are needed, there is some evidence to suggest that exercise-based lifestyle interventions could be a potential therapeutic strategy to improve appetite-peptide profiles in overweight and obese children and adolescents. The aim of this review is (i) to discuss the potential moderating factors of ghrelin, PYY, and GLP-1, including age and puberty, sex, race and body composition; and (ii) to examine the effects of exercise interventions on these appetite-related gut peptides in children and adolescents. PMID:26466085

  12. Glucagon Like Peptide-1 (GLP-1) Modulates OVA-Induced Airway Inflammation and Mucus Secretion Involving a Protein Kinase A (PKA)-Dependent Nuclear Factor-?B (NF-?B) Signaling Pathway in Mice

    PubMed Central

    Zhu, Tao; Wu, Xiao-ling; Zhang, Wei; Xiao, Min

    2015-01-01

    Asthma is a common chronic pulmonary inflammatory disease, featured with mucus hyper-secretion in the airway. Recent studies found that glucagon like peptide-1 (GLP-1) analogs, including liraglutide and exenatide, possessed a potent anti-inflammatory property through a protein kinase A (PKA)-dependent signaling pathway. Therefore, the aim of current study was to investigate the value of GLP-1 analog therapy liraglutide in airway inflammation and mucus secretion in a murine model of ovalbumin (OVA)-induced asthma, and its underlying molecular mechanism. In our study, BALB/c mice were sensitized and challenged by OVA to induce chronic asthma. Pathological alterations, the number of cells and the content of inflammatory mediators in bronchoalveolar lavage fluid (BALF), and mucus secretion were observed and measured. In addition, the mRNA and protein expression of E-selectin and MUC5AC were analyzed by qPCR and Western blotting. Then, the phosphorylation of PKA and nuclear factor-?B (NF-?B) p65 were also measured by Western blotting. Further, NF-?B p65 DNA binding activity was detected by ELISA. OVA-induced airway inflammation, airway mucus hyper-secretion, the up-regulation of E-selectin and MUC5AC were remarkably inhibited by GLP-1 in mice (all p < 0.01). Then, we also found that OVA-reduced phosphorylation of PKA, and OVA-enhanced NF-?B p65 activation and NF-?B p65 DNA binding activity were markedly improved by GLP-1 (all p < 0.01). Furthermore, our data also figured out that these effects of GLP-1 were largely abrogated by the PKA inhibitor H-89 (all p < 0.01). Taken together, our results suggest that OVA-induced asthma were potently ameliorated by GLP-1 possibly through a PKA-dependent inactivation of NF-?B in mice, indicating that GLP-1 analogs may be considered an effective and safe drug for the potential treatment of asthma in the future. PMID:26343632

  13. Agonist-induced internalisation of the glucagon-like peptide-1 receptor is mediated by the Gαq pathway.

    PubMed

    Thompson, Aiysha; Kanamarlapudi, Venkateswarlu

    2015-01-01

    The glucagon-like peptide-1 receptor (GLP-1R) is a G-protein-coupled receptor (GPCR) and an important target in the treatment of type 2 diabetes mellitus (T2DM). Upon stimulation with agonist, the GLP-1R signals through both Gαs and Gαq coupled pathways to stimulate insulin secretion. The agonist-induced GLP-1R internalisation has recently been shown to be important for insulin secretion. However, the molecular mechanisms underlying GLP-1R internalisation remain unknown. The aim of this study was to determine the role of GLP-1R downstream signalling pathways in its internalisation. Agonist-induced human GLP-1R (hGLP-1R) internalisation and activity were examined using a number of techniques including immunoblotting, ELISA, immunofluorescence and luciferase assays to determine cAMP production, intracellular Ca(2+) accumulation and ERK phosphorylation. Agonist-induced hGLP-1R internalisation is dependent on caveolin-1 and dynamin. Inhibition of the Gαq pathway but not the Gαs pathway affected hGLP-1R internalisation. Consistent with this, hGLP-1R mutant T149M and small-molecule agonists (compound 2 and compound B), which activate only the Gαs pathway, failed to induce internalisation of the receptor. Chemical inhibitors of the Gαq pathway, PKC and ERK phosphorylation significantly reduced agonist-induced hGLP-1R internalisation. These inhibitors also suppressed agonist-induced ERK1/2 phosphorylation demonstrating that the phosphorylated ERK acts downstream of the Gαq pathway in the hGLP-1R internalisation. In summary, agonist-induced hGLP-1R internalisation is mediated by the Gαq pathway. The internalised hGLP-1R stimulates insulin secretion from pancreatic β-cells, indicating the importance of GLP-1 internalisation for insulin secretion. PMID:25449603

  14. Characterization of glucagon-like peptide-1 receptor-binding determinants.

    PubMed

    Xiao, Q; Jeng, W; Wheeler, M B

    2000-12-01

    Glucagon-like peptide 1 (GLP-1) is a potent insulinotropic hormone currently under study as a therapeutic agent for type 2 diabetes. Since an understanding of the molecular mechanisms leading to high-affinity receptor (R) binding and activation may facilitate the development of more potent GLP-1R agonists, we have localized specific regions of GLP-1R required for binding. The purified N-terminal fragment (hereafter referred to as NT) of the GLP-1R produced in either insect (Sf9) or mammalian (COS-7) cells was shown to bind GLP-1. The physical interaction of NT with GLP-1 was first demonstrated by cross-linking ((125)I-GLP-1/NT complex band at approximately 28 kDa) and secondly by attachment to Ni(2+)-NTA beads. The GLP-1R NT protein attached to beads bound GLP-1, but with lower affinity (inhibitory concentration (IC(50)): 4.5 x 10(-7) M) than wild-type (WT) GLP-1R (IC(50): 5.2 x 10(-9)M). The low affinity of GLP-1R NT suggested that other receptor domains may contribute to GLP-1 binding. This was supported by studies using chimeric glucose-dependent insulinotropic polypeptide (GIP)/GLP-1 receptors. GIP(1-151)/GLP-1R, but not GIP(1-222)/GLP-1R, exhibited specific GLP-1 binding and GLP-1-induced cAMP production, suggesting that the region encompassing transmembrane (TM) domain 1 through to TM3 was required for binding. Since it was hypothesized that certain charged or polar amino acids in this region might be involved in binding, these residues (TM2-TM3) were analyzed by substitution mutagenesis. Five mutants (K197A, D198A, K202A, D215A, R227A) displayed remarkably reduced binding affinity. These studies indicate that the NT domain of the GLP-1R is able to bind GLP-1, but charged residues concentrated at the distal TM2/extracellular loop-1 (EC1) interface (K197, D198, K202) and in EC1 (D215 and R227) probably contribute to the binding determinants of the GLP-1R. PMID:11116211

  15. Physiology and Emerging Biochemistry of the Glucagon-Like Peptide-1 Receptor

    PubMed Central

    Willard, Francis S.; Sloop, Kyle W.

    2012-01-01

    The glucagon-like peptide-1 (GLP-1) receptor is one of the best validated therapeutic targets for the treatment of type 2 diabetes mellitus (T2DM). Over several years, the accumulation of basic, translational, and clinical research helped define the physiologic roles of GLP-1 and its receptor in regulating glucose homeostasis and energy metabolism. These efforts provided much of the foundation for pharmaceutical development of the GLP-1 receptor peptide agonists, exenatide and liraglutide, as novel medicines for patients suffering from T2DM. Now, much attention is focused on better understanding the molecular mechanisms involved in ligand induced signaling of the GLP-1 receptor. For example, advancements in biophysical and structural biology techniques are being applied in attempts to more precisely determine ligand binding and receptor occupancy characteristics at the atomic level. These efforts should better inform three-dimensional modeling of the GLP-1 receptor that will help inspire more rational approaches to identify and optimize small molecule agonists or allosteric modulators targeting the GLP-1 receptor. This article reviews GLP-1 receptor physiology with an emphasis on GLP-1 induced signaling mechanisms in order to highlight new molecular strategies that help determine desired pharmacologic characteristics for guiding development of future nonpeptide GLP-1 receptor activators. PMID:22666230

  16. Oral Glutamine Increases Circulating GLP-1, Glucagon and Insulin Levels in Lean, Obese and Type 2 Diabetic Subjects

    PubMed Central

    Keogh, Julia M; Henning, Elana; Habib, Abdella M; Blackwood, Anthea; Reimann, Frank; Holst, Jens J; Gribble, Fiona M

    2015-01-01

    Background Incretin hormones, such as glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), play an important role in meal-related insulin secretion. We previously demonstrated that glutamine is a potent stimulus of GLP-1 secretion in vitro. Objective To determine whether glutamine increases circulating GLP-1 and GIP levels in vivo and, if so, whether this is associated with an increase in plasma insulin. Design We recruited 8 healthy, normal-weight volunteers (LEAN), 8 obese individuals with type 2 diabetes or impaired glucose tolerance (OB-DIAB) and 8 obese non-diabetic controls (OB-CON). Oral glucose (75g), glutamine (30g) and water were administered on three separate days in random order and plasma concentrations of GLP-1, GIP, insulin, glucagon and glucose were measured over 120 minutes. Results Oral glucose led to increases in circulating GLP-1 levels, peaking at 30 min in LEAN (31.95.7 pmol/L) and OB-CON (24.32.1 pmol/L) subjects and at 45 min in OB-DIAB subjects (19.51.8 pmol/L). Circulating GLP-1 levels increased in all study groups following glutamine ingestion, with peak levels at 30 min of 22.53.4 pmol/L, 17.91.1 pmol/L and 17.33.4 pmol/L in LEAN, OB-CON and OB-DIAB subjects, respectively. Glutamine also increased plasma GIP levels, but less effectively than glucose. Consistent with the increases in GLP-1 and GIP, glutamine significantly increased circulating plasma insulin levels. Glutamine stimulated glucagon secretion in all three study groups. Conclusion Glutamine effectively increases circulating GLP-1, GIP and insulin levels in vivo and may represent a novel therapeutic approach to stimulating insulin secretion in obesity and type 2 diabetes. PMID:19056578

  17. PEGylated Exendin-4, a Modified GLP-1 Analog Exhibits More Potent Cardioprotection than Its Unmodified Parent Molecule on a Dose to Dose Basis in a Murine Model of Myocardial Infarction

    PubMed Central

    Sun, Zhongchan; Tong, Guang; Kim, Tae Hyung; Ma, Nan; Niu, Gang; Cao, Feng; Chen, Xiaoyuan

    2015-01-01

    A Site-specifically PEGylated exendin-4 (denoted as PEG-Ex4) is an exendin-4 (denoted as Ex4) analog we developed by site-specific PEGylation of exendin-4 with a high molecular weight trimeric poly(ethylene glycol) (tPEG). It has been shown to possess prolonged half-life in vivo with similar receptor binding affinity compared to unmodified exendin-4 by our previous work. This study is sought to test whether PEG-Ex4 is suitable for treating myocardial infarction (MI). In the MI model, PEG-Ex4 was administered every 3 days while equivalent amount of Ex4 was administered every 3 days or twice daily. Animal survival rate, heart function, remodeling and neoangiogenesis were evaluated and compared. Tube formation was examined in endothelial cells. In addition, Western blotting and histology were performed to determine the markers of cardiac hypertrophy and angiogenesis and to explore the possible molecular mechanism involved. PEG-Ex4 and Ex4 showed comparable binding affinity to GLP-1 receptor. In MI mice, PEG-Ex4 given at 3 days interval achieved similar extent of protection as Ex4 given twice daily, while Ex4 given at 3 days interval failed to produce protection. PEG-Ex4 elevated endothelial tube formation in vitro and capillary density in the border area of MI. PEG-Ex4 increased Akt activity and VEGF production in a GLP-1R dependent manner in endothelial cells and antagonism of GLP-1R, Akt or VEGF abolished the protection of PEG-Ex4 in the MI model. PEG-Ex4 is a potent long-acting GLP-1 receptor agonist for the treatment of chronic heart disease. Its protection might be attributed to enhanced angiogenesis mediated by the activation of Akt and VEGF. PMID:25553112

  18. Death receptors: Targets for cancer therapy

    SciTech Connect

    Mahmood, Zafar; Shukla, Yogeshwer

    2010-04-01

    Apoptosis is the cell's intrinsic program to death, which plays an important role in physiologic growth control and homeostasis. Apoptosis can be triggered by death receptors (DRs), without any adverse effects. DRs are the members of tumor necrosis factor (TNF) receptor superfamily, known to be involved in apoptosis signaling, independent of p53 tumor-supressor gene. Selective triggering of DR-mediated apoptosis in cancer cells is a novel approach in cancer therapy. So far, the best characterized DRs are CD95 (Fas/Apo1), TNF-related apoptosis-inducing ligand receptor (TRAILR) and tumor necrosis factor receptor (TNFR). Among these, TRAILR is emerging as most promising agent for cancer therapy, because it induces apoptosis in a variety of tumor and transformed cells without any toxicity to normal cells. TRAIL treatment in combination with chemotherapy or radiotherapy enhances TRAIL sensitivity or reverses TRAIL resistance by regulating downstream effectors. This review covers the current knowledge about the DRs, summarizes main signaling in DRs and also summarizes the preclinical approaches of these DRs in cancer therapy.

  19. Distinguishing among incretin-based therapies. Glucose-lowering effects of incretin-based therapies.

    PubMed

    Campbell, R Keith; Cobble, Michael E; Reid, Timothy S; Shomali, Mansur E

    2010-09-01

    Extensive experience from randomized clinical trials demonstrates the efficacy of GLP-1 agonists and DPP-4 inhibitors as monotherapy and in combination with metformin and other agents, although reductions in FPG and PPG, and consequently A1C, are greater with GLP-1 agonists than with DPP-4 inhibitors. This difference may result from the pharmacologic levels of GLP-1 activity that are achieved with the GLP-1 agonists and their direct action on the GLP-1 receptor. The GLP-1 agonists have attributes that would make either of them an appropriate choice in the management of all 3 patients in our case studies, while either DPP-4 inhibitor would be an appropriate choice for Case 1. Differences in dosing, administration, safety, and tolerability should be considered. PMID:20824235

  20. Somatostatin receptor based imaging and radionuclide therapy.

    PubMed

    Xu, Caiyun; Zhang, Hong

    2015-01-01

    Somatostatin (SST) receptors (SSTRs) belong to the typical 7-transmembrane domain family of G-protein-coupled receptors. Five distinct subtypes (termed SSTR1-5) have been identified, with SSTR2 showing the highest affinity for natural SST and synthetic SST analogs. Most neuroendocrine tumors (NETs) have high expression levels of SSTRs, which opens the possibility for tumor imaging and therapy with radiolabeled SST analogs. A number of tracers have been developed for the diagnosis, staging, and treatment of NETs with impressive results, which facilitates the applications of human SSTR subtype 2 (hSSTr2) reporter gene based imaging and therapy in SSTR negative or weakly positive tumors to provide a novel approach for the management of tumors. The hSSTr2 gene can act as not only a reporter gene for in vivo imaging, but also a therapeutic gene for local radionuclide therapy. Even a second therapeutic gene can be transfected into the same tumor cells together with hSSTr2 reporter gene to obtain a synergistic therapeutic effect. However, additional preclinical and especially translational and clinical researches are needed to confirm the value of hSSTr2 reporter gene based imaging and therapy in tumors. PMID:25879040

  1. Somatostatin Receptor Based Imaging and Radionuclide Therapy

    PubMed Central

    Zhang, Hong

    2015-01-01

    Somatostatin (SST) receptors (SSTRs) belong to the typical 7-transmembrane domain family of G-protein-coupled receptors. Five distinct subtypes (termed SSTR1-5) have been identified, with SSTR2 showing the highest affinity for natural SST and synthetic SST analogs. Most neuroendocrine tumors (NETs) have high expression levels of SSTRs, which opens the possibility for tumor imaging and therapy with radiolabeled SST analogs. A number of tracers have been developed for the diagnosis, staging, and treatment of NETs with impressive results, which facilitates the applications of human SSTR subtype 2 (hSSTr2) reporter gene based imaging and therapy in SSTR negative or weakly positive tumors to provide a novel approach for the management of tumors. The hSSTr2 gene can act as not only a reporter gene for in vivo imaging, but also a therapeutic gene for local radionuclide therapy. Even a second therapeutic gene can be transfected into the same tumor cells together with hSSTr2 reporter gene to obtain a synergistic therapeutic effect. However, additional preclinical and especially translational and clinical researches are needed to confirm the value of hSSTr2 reporter gene based imaging and therapy in tumors. PMID:25879040

  2. Circulating GLP-1 in infants born small-for-gestational-age: breast-feeding versus formula-feeding.

    PubMed

    Daz, M; Bassols, J; Sebastiani, G; Lpez-Bermejo, A; Ibez, L; de Zegher, F

    2015-10-01

    Prenatal growth restraint associates with the risk for later diabetes, particularly if such restraint is followed by postnatal formula-feeding (FOF) rather than breast-feeding (BRF). Circulating incretins can influence the neonatal programming of hypothalamic setpoints for appetite and energy expenditure, and are thus candidate mediators of the long-term effects exerted by early nutrition. We have tested this concept by measuring (at birth and at age 4 months) the circulating concentrations of glucagon-like peptide-1 (GLP-1) in BRF infants born appropriate-for-gestational-age (AGA; n=63) and in small-for-gestational-age (SGA) infants receiving either BRF (n=28) or FOF (n=26). At birth, concentrations of GLP-1 were similar in AGA and SGA infants. At 4 months, pre-feeding GLP-1 concentrations were higher than at birth; SGA-BRF infants had GLP-1 concentrations similar to those in AGA-BRF infants but SGA-FOF infants had higher concentrations. In conclusion, nutrition appears to influence the circulating GLP-1 concentrations in SGA infants and may thereby modulate long-term diabetes risk. PMID:26088812

  3. Structural and Molecular Conservation of Glucagon-Like Peptide-1 and Its Receptor Confers Selective Ligand-Receptor Interaction

    PubMed Central

    Moon, Mi Jin; Park, Sumi; Kim, Dong-Kyu; Cho, Eun Bee; Hwang, Jong-Ik; Vaudry, Hubert; Seong, Jae Young

    2012-01-01

    Glucagon-like peptide-1 (GLP-1) is a major player in the regulation of glucose homeostasis. It acts on pancreatic beta cells to stimulate insulin secretion and on the brain to inhibit appetite. Thus, it may be a promising therapeutic agent for the treatment of type 2 diabetes mellitus and obesity. Despite the physiological and clinical importance of GLP-1, molecular interaction with the GLP-1 receptor (GLP1R) is not well understood. Particularly, the specific amino acid residues within the transmembrane helices and extracellular loops of the receptor that may confer ligand-induced receptor activation have been poorly investigated. Amino acid sequence comparisons of GLP-1 and GLP1R with their orthologs and paralogs in vertebrates, combined with biochemical approaches, are useful to determine which amino acid residues in the peptide and the receptor confer selective ligand-receptor interaction. This article reviews how the molecular evolution of GLP-1 and GLP1R contributes to the selective interaction between this ligand-receptor pair, providing critical clues for the development of potent agonists for the treatment of diabetes mellitus and obesity. PMID:23181056

  4. The cardiovascular safety of incretin-based therapies: a review of the evidence

    PubMed Central

    2013-01-01

    Cardiovascular disease (CVD) is a leading cause of morbidity and mortality in people with diabetes and therefore managing cardiovascular (CV) risk is a critical component of diabetes care. As incretin-based therapies are effective recent additions to the glucose-lowering treatment armamentarium for type 2 diabetes mellitus (T2D), understanding their CV safety profiles is of great importance. Glucagon-like peptide-1 (GLP-1) receptor agonists have been associated with beneficial effects on CV risk factors, including weight, blood pressure and lipid profiles. Encouragingly, mechanistic studies in preclinical models and in patients with acute coronary syndrome suggest a potential cardioprotective effect of native GLP-1 or GLP-1 receptor agonists following ischaemia. Moreover, meta-analyses of phase 3 development programme data indicate no increased risk of major adverse cardiovascular events (MACE) with incretin-based therapies. Large randomized controlled trials designed to evaluate long-term CV outcomes with incretin-based therapies in individuals with T2D are now in progress, with the first two reporting as this article went to press. PMID:24011363

  5. Incretin based therapies: A novel treatment approach for non-alcoholic fatty liver disease

    PubMed Central

    Blaslov, Kristina; Bulum, Tomislav; Zibar, Karin; Duvnjak, Lea

    2014-01-01

    Non-alcoholic fatty liver disease is considered a hepatic manifestation of metabolic syndrome (MS). The current treatment of non-alcoholic fatty liver disease (NAFLD) principally includes amelioration of MS components by lifestyle modifications but the lack of success in their implementation and sustainment arises the need for effective pharmacological agent in fatty liver treatment. Incretins are gut derived hormones secreted into the circulation in response to nutrient ingestion that enhances glucose-stimulated insulin secretion. Glucagon-like peptide-1 (GLP-1) is the most important incretin. Its receptor agonist and inhibitors of dipeptidyl peptidase-4 (DPP-4) are used in treatment of type 2 diabetes mellitus. DPP-4 serum activity and hepatic expression are shown to be elevated in several hepatic diseases. There are several experimental and clinical trials exploring the efficacy of incretin based therapies in NAFLD treatment. They suggest that GLP-1 analogues might have beneficial effect on hepatic steatosis acting as insulin sensitizers and directly by stimulating GLP-1 receptors expressed on hepatocytes. The use of DPP-4 inhibitors also results in hepatic fat reduction but the mechanism of action remains unclear. There is growing evidence that incretin based therapies have beneficial effects on hepatocytes, however further study analysis are needed to assess the long term effect of incretin based therapies on NAFLD. PMID:24966606

  6. DPP-4 inhibition increases GIP and decreases GLP-1 incretin effects during intravenous glucose tolerance test in Wistar rats.

    PubMed

    Freyse, Ernst-Joachim; Berg, Sabine; Kohnert, Klaus-Dieter; Heinke, Peter; Salzsieder, Eckhard

    2011-03-01

    GIP metabolite [GIP (3-42)] and GLP-1 metabolite [GLP-1 (9-36) amide] have been reported to differ with regard to biological actions. Systemic DPP-4 inhibition can therefore reveal different actions of GIP and GLP-1. In catheter wearing Wistar rats, insulinotropic effects of equipotent doses of GIP (2.0 nmol/kg) and GLP-1 (7-36) amide (4.0 nmol/kg) and vehicle were tested in the absence/presence of DPP-4 inhibition. Blood glucose and insulin were frequently sampled. DPP-4 inhibitor was given at -20 min, the incretin at -5 min and the intravenous glucose tolerance test (0.4 g glucose/kg) commenced at 0 min. G-AUC and I-AUC, insulinogenic index and glucose efflux, were calculated from glucose and insulin curves. Systemic DPP-4 inhibition potentiated the acute GIP incretin effects: I-AUC (11534 vs. 15339 ngmin/ml), increased the insulinogenic index (0.740.24 vs. 0.990.26 ng/mmol), and improved glucose efflux (19.83.1 vs. 20.55.0 min?). The GLP-1 incretin effects were diminished: I-AUC (12418 vs. 10638 ngmin/ml), the insulinogenic index was decreased (0.700.18 vs. 0.500.19 ng/mmol), and glucose efflux declined (14.93.1 vs. 11.13.7 min?). GLP-1 and GIP differ remarkably in their glucoregulatory actions in healthy rats when DPP-4 is inhibited. These previously unrecognized actions of DPP-4 inhibitors could have implications for future use in humans. PMID:21281062

  7. The effect of gum chewing on blood GLP-1 concentration in fasted, healthy, non-obese men.

    PubMed

    Xu, Jianping; Xiao, Xinhua; Li, Yuxiu; Zheng, Jia; Li, Wenhui; Zhang, Qian; Wang, Zhixin

    2015-09-01

    We evaluated the effect of chewing on blood GLP-1 concentration by having volunteers to chew sugarless gum. Our intention was to explore the neural mechanisms regulating the secretion of glucagon-like peptide-1(GLP-1). After fasting for 12 h, 12 healthy male, non-obese volunteers (18 < BMI < 30), were asked to chew sugarless gum at a frequency of 80 times every 2 min for a total of 30 min. Blood samples were collected before the start of chewing and 5, 10, 15, 20, 25, and 30 min after the start of chewing. Satiety and hunger were evaluated on a scale from 0 to 100 at each time point. Compared with the control group, the test group's satiety was increased at 15, 25, and 30 min (p = 0.043, p = 0.014 and p = 0.018, respectively) after they began chewing sugarless gum 80 times every 2 min. The blood GLP-1 level of the test group at 30 min was 49.6 ± 20.3 pmol/l, significantly higher than that of the control group (38.9 ± 20.9 pmol/l; p = 0.031). There was no significant difference in the test group's GLP-1 concentration at each time point. In the control group, compared to baseline, the GLP-1 concentrations at 15, 25, and 30 min were significantly decreased (p = 0.042, p = 0.0214 and p = 0.012, respectively). No significant differences in the blood concentration of glucose, insulin and GIP or hunger were observed between groups. Our study suggests that fasting sugarless gum chewing can increase satiety and reduce the decrease in GLP-1 concentration. PMID:25758865

  8. Gut Hormones and Appetite Control: A Focus on PYY and GLP-1 as Therapeutic Targets in Obesity

    PubMed Central

    De Silva, Akila

    2012-01-01

    The global obesity epidemic has resulted in significant morbidity and mortality. However, the medical treatment of obesity is limited. Gastric bypass is an effective surgical treatment but carries significant perioperative risks. The gut hormones, peptide tyrosine tyrosine (PYY) and glucagon-like peptide 1 (GLP-1), are elevated following gastric bypass and have been shown to reduce food intake. They may provide new therapeutic targets. This review article provides an overview of the central control of food intake and the role of PYY and GLP-1 in appetite control. Key translational animal and human studies are reviewed. PMID:22375166

  9. Advances in Peptide Receptor Radionuclide Therapy.

    PubMed

    Sabet, Amir; Biersack, Hans-Jürgen; Ezziddin, Samer

    2016-01-01

    Peptide receptor radionuclide therapy (PRRT) is a very effective treatment modality for advanced neuroendocrine tumors (NETs), representing a teaching model for truly targeted antitumor therapy. With the growing cumulative evidence of PRRT in various treatment settings, we are witnessing increased perception of this modality as a potent treatment option in advanced disease. Although most data derives from retrospective analyses, results from prospective comparative evaluations, such as the NETTER-1 trial, are eagerly awaited and should help to raise PRRT to a higher level of evidence. At the same time, as increased levels of evidence are anticipated by prospective evaluations, further methodological improvements are going on in different ways and aspects of radionuclide therapy, mainly regarding the radiopharmaceuticals, the combination with other radionuclides or cytotoxic drugs, and the route of administration. Although diversity of PRRT increases-not supporting cumulative evidence as opposed to uniform treatment-it is very likely to achieve significant increase of efficacy by these efforts in the near future. As the intraarterial administration of PRRT agents in liver-dominant metastatic disease has the potential to improve outcome, it would have to be shown as to which patients would benefit from this approach, to what extent the benefit would be, and to when it would justify the increased efforts for patients and treating institutes. The approach of combining cytotoxic or radiosensitizing drugs with the PRRT agents seems to trigger a major boost of efficacy in pancreatic NET. The midterm future would show the extent of benefit in terms of long-term outcome and would probably lead to inclusion into clinical routine for this particular NET entity. The translation of somatostatin-receptor antagonists into human application represents another major source of significant improvement in terms of PRRT's benefit-toxicity ratio. Eventually, it may not be completely unlikely to see another radiopharmaceutical being regarded as the PRRT agent of choice in the midterm future. PMID:26687856

  10. Glucagon-Like Peptide 1 Receptors in Nucleus Accumbens Affect Food Intake

    PubMed Central

    Dossat, Amanda M.; Lilly, Nicole; Kay, Kristen; Williams, Diana L.

    2012-01-01

    Central glucagon-like peptide 1 receptor (GLP-1R) stimulation suppresses food intake, and hindbrain GLP-1 neurons project to numerous feeding-relevant brain regions. One such region is the nucleus accumbens (NAc), which plays a role in reward and motivated behavior. Using immunohistochemical and retrograde tracing techniques in rats, we identified a robust projection from GLP-1 neurons in the nucleus of the solitary tract to the NAc. We hypothesized that activation of NAc GLP-1Rs suppresses feeding. When injected into the NAc core of rats at doses subthreshold for effect when administered to the lateral ventricle, GLP-1 significantly reduced food intake relative to vehicle at 1, 2, and 24 h posttreatment. The same doses had no effect when injected into the NAc shell. NAc core treatment with ventricle-subthreshold doses of the GLP-1R antagonist exendin (939) caused significant hyperphagia at 2 h posttreatment, suggesting that endogenous stimulation of NAc core GLP-1Rs plays a role in limiting food intake. It has been suggested that GLP-1 can cause nausea, but we found that NAc core administration of GLP-1 did not cause a conditioned taste aversion to saccharin, suggesting that the anorexic effect of NAc core GLP-1 is not caused by malaise. Finally, we observed that NAc core injection of GLP-1 significantly increased c-Fos expression in the NAc core. We conclude that that GLP-1Rs in the NAc play a physiologic role in food intake control, and suggest that the GLP-1 projection to NAc core may link satiation signal processing in the hindbrain with forebrain processing of food reward. PMID:21994361

  11. Acarbose, lente carbohydrate, and prebiotics promote metabolic health and longevity by stimulating intestinal production of GLP-1

    PubMed Central

    McCarty, Mark F; DiNicolantonio, James J

    2015-01-01

    The α-glucosidase inhibitor acarbose, which slows carbohydrate digestion and blunts postprandial rises in plasma glucose, has long been used to treat patients with type 2 diabetes or glucose intolerance. Like metformin, acarbose tends to aid weight control, postpone onset of diabetes and decrease risk for cardiovascular events. Acarbose treatment can favourably affect blood pressure, serum lipids, platelet aggregation, progression of carotid intima-media thickness and postprandial endothelial dysfunction. In mice, lifetime acarbose feeding can increase median and maximal lifespan—an effect associated with increased plasma levels of fibroblast growth factor 21 (FGF21) and decreased levels of insulin-like growth factor-I (IGF-I). There is growing reason to suspect that an upregulation of fasting and postprandial production of glucagon-like peptide-1 (GLP-1)—stemming from increased delivery of carbohydrate to L cells in the distal intestinal tract—is largely responsible for the versatile health protection conferred by acarbose. Indeed, GLP-1 exerts protective effects on vascular endothelium, the liver, the heart, pancreatic β cells, and the brain which can rationalise many of the benefits reported with acarbose. And GLP-1 may act on the liver to modulate its production of FGF21 and IGF-I, thereby promoting longevity. The benefits of acarbose are likely mimicked by diets featuring slowly-digested ‘lente’ carbohydrate, and by certain nutraceuticals which can slow carbohydrate absorption. Prebiotics that promote colonic generation of short-chain fatty acids represent an alternative strategy for boosting intestinal GLP-1 production. The health benefits of all these measures presumably would be potentiated by concurrent use of dipeptidyl peptidase 4 inhibitors, which slow the proteolysis of GLP-1 in the blood. PMID:25685364

  12. Supplementation with a fish protein hydrolysate (Micromesistius poutassou): effects on body weight, body composition, and CCK/GLP-1 secretion

    PubMed Central

    Nobile, Vincenzo; Duclos, Elisa; Michelotti, Angela; Bizzaro, Gioia; Negro, Massimo; Soisson, Florian

    2016-01-01

    Background Fish protein hydrolysates (FPHs) have been reported as a suitable source of proteins for human nutrition because of their balanced amino acid composition and positive effect on gastrointestinal absorption. Objective Here, we investigated the effect of a FPH, Slimpro®, obtained from blue whiting (Micromesistius poutassou) muscle by enzymatic hydrolysis, on body composition and on stimulating cholecystokinin (CCK) and glucagon-like peptide-1 (GLP-1) secretion. Design A randomized clinical study was carried out on 120, slightly overweight (25 kg/m2 ≤ BMI<30 kg/m2), male (25%) and female (75%) subjects. FPH was tested in a food supplement at two doses (1.4 and 2.8 g) to establish if a dose–effect relationship exists. Product use was associated with a mild hypocaloric diet (−300 kcal/day). Body composition (body weight; fat mass; extracellular water; and circumference of waist, thighs, and hips) and CCK/GLP-1 blood levels were measured at the beginning of the study and after 45 and 90 days of product use. CCK/GLP-1 levels were measured since they are involved in controlling food intake. Results Treated subjects reported an improvement of body weight composition and an increased blood concentration of both CCK and GLP-1. No differences were found between the 1.4 and 2.8 g FPH doses, indicating a plateau effect starting from 1.4 g FPH. Conclusions Both 1.4 and 2.8 g of FPH were effective in improving body composition and in increasing CCK and GLP-1 blood levels. PMID:26829186

  13. Acarbose, lente carbohydrate, and prebiotics promote metabolic health and longevity by stimulating intestinal production of GLP-1.

    PubMed

    McCarty, Mark F; DiNicolantonio, James J

    2015-01-01

    The α-glucosidase inhibitor acarbose, which slows carbohydrate digestion and blunts postprandial rises in plasma glucose, has long been used to treat patients with type 2 diabetes or glucose intolerance. Like metformin, acarbose tends to aid weight control, postpone onset of diabetes and decrease risk for cardiovascular events. Acarbose treatment can favourably affect blood pressure, serum lipids, platelet aggregation, progression of carotid intima-media thickness and postprandial endothelial dysfunction. In mice, lifetime acarbose feeding can increase median and maximal lifespan-an effect associated with increased plasma levels of fibroblast growth factor 21 (FGF21) and decreased levels of insulin-like growth factor-I (IGF-I). There is growing reason to suspect that an upregulation of fasting and postprandial production of glucagon-like peptide-1 (GLP-1)-stemming from increased delivery of carbohydrate to L cells in the distal intestinal tract-is largely responsible for the versatile health protection conferred by acarbose. Indeed, GLP-1 exerts protective effects on vascular endothelium, the liver, the heart, pancreatic β cells, and the brain which can rationalise many of the benefits reported with acarbose. And GLP-1 may act on the liver to modulate its production of FGF21 and IGF-I, thereby promoting longevity. The benefits of acarbose are likely mimicked by diets featuring slowly-digested 'lente' carbohydrate, and by certain nutraceuticals which can slow carbohydrate absorption. Prebiotics that promote colonic generation of short-chain fatty acids represent an alternative strategy for boosting intestinal GLP-1 production. The health benefits of all these measures presumably would be potentiated by concurrent use of dipeptidyl peptidase 4 inhibitors, which slow the proteolysis of GLP-1 in the blood. PMID:25685364

  14. Inhibiting receptor for advanced glycation end product (AGE) and oxidative stress involved in the protective effect mediated by glucagon-like peptide-1 receptor on AGE induced neuronal apoptosis.

    PubMed

    Chen, Song; Yin, Lei; Xu, Zheng; An, Feng-Mao; Liu, Ai-Ran; Wang, Ying; Yao, Wen-Bing; Gao, Xiang-Dong

    2016-01-26

    Our previous study has demonstrated that glucagon-like peptide-1 (GLP-1) receptor agonist could protect neurons from advanced glycation end products (AGEs) toxicity in vitro. However, further studies are still needed to clarify the molecular mechanism of this GLP-1 receptor -dependent action. The present study mainly focused on the effect of GLP-1 receptor agonists against the receptor for advanced glycation end products (RAGE) signal pathway and the mechanism underlying this effect of GLP-1. Firstly the data based on the SH-GLP-1R(+) and SH-SY5Y cells confirmed our previous finding that GLP-1 receptor could mediate the protective effect against AGEs. The assays of the protein activity and of the mRNA level revealed that apoptosis-related proteins such as caspase-3, caspase-9, Bax and Bcl-2 were involved. Additionally, we found that both GLP-1 and exendin-4 could reduce AGEs-induced reactive oxygen species (ROS) accumulation by suppressing the activity of nicotinamide adenine dinucleotide phosphate-oxidase. Interestingly, we also found that GLP-1 receptor activation could attenuate the abnormal expression of the RAGE in vitro and in vivo. Furthermore, based on the analysis of the protein expression and translocation level of transcription factor nuclear factor-?B (NF-?B), and the use of GLP-1 receptor antagonist exendin(9-39) and NF-?B inhibitor pyrrolidine dithiocarbamate, we found that the effect mediated by GLP-1 receptor could alleviate the over expression of RAGE induced by ligand via the suppression of NF-?B. In summary, the results indicated that inhibiting RAGE/oxidative stress was involved in the protective effect of GLP-1 on neuron cells against AGEs induced apoptosis. PMID:26679229

  15. Androgen receptor antagonists for prostate cancer therapy.

    PubMed

    Helsen, Christine; Van den Broeck, Thomas; Voet, Arnout; Prekovic, Stefan; Van Poppel, Hendrik; Joniau, Steven; Claessens, Frank

    2014-08-01

    Androgen deprivation is the mainstay therapy for metastatic prostate cancer (PCa). Another way of suppressing androgen receptor (AR) signaling is via AR antagonists or antiandrogens. Despite being frequently prescribed in clinical practice, there is conflicting evidence concerning the role of AR antagonists in the management of PCa. In the castration-resistant settings of PCa, docetaxel has been the only treatment option for decades. With recent evidence that castration-resistant PCa is far from AR-independent, there has been an increasing interest in developing new AR antagonists. This review gives a concise overview of the clinically available antiandrogens and the experimental AR antagonists that tackle androgen action with a different approach. PMID:24639562

  16. The pepper GNA-related lectin and PAN domain protein gene, CaGLP1, is required for plant cell death and defense signaling during bacterial infection.

    PubMed

    Kim, Nak Hyun; Lee, Dong Hyuk; Choi, Du Seok; Hwang, Byung Kook

    2015-12-01

    Carbohydrate-binding proteins, commonly referred to as lectins or agglutinins, function in defense responses to microbial pathogens. Pepper (Capsicum annuum) GNA-related lectin and PAN-domain protein gene CaGLP1 was isolated and functionally characterized from pepper leaves infected with Xanthomonas campestris pv. vesicatoria (Xcv). CaGLP1 contained an amine-terminus prokaryotic membrane lipoprotein lipid attachment site, a Galanthus nivalis agglutinin (GNA)-related lectin domain responsible for the recognition of high-mannose N-glycans, and a carboxyl-terminus PAN/apple domain. RNA gel blot and immunoblot analyses determined that CaGLP1 was strongly induced in pepper by compatible and incompatible Xcv infection. CaGLP1 protein localized primarily to the plasma membrane and exhibited mannose-binding specificity. CaGLP1-silenced pepper plants were more susceptible to compatible or incompatible Xcv infection compared with that of non-silenced control plants. CaGLP1 silencing in pepper leaves did not accumulate H2O2 and induce cell death during incompatible Xcv infection. Defense-related CaDEF1 (defensin) gene expression was significantly reduced in CaGLP1-silenced pepper plants. CaGLP1-overexpression in Arabidopsis thaliana enhanced resistance to Pseudomonas syringae pv. tomato. Defense-related AtPDF1.2 expression was elevated in CaGLP1-overexpression lines. Together, these results suggest that CaGLP1 is required for plant cell death and defense responses through the reactive oxygen species burst and downstream defense-related gene expression in response to bacterial pathogen challenge. PMID:26706081

  17. Somatostatin Analogues for Receptor Targeted Photodynamic Therapy

    PubMed Central

    Ka?kov, Slvka; Hofland, Leo J.; De Bruijn, Henriette S.; Ye, Yunpeng; Achilefu, Samuel; van der Wansem, Katy; van der Ploeg-van den Heuvel, Angelique; van Koetsveld, Peter M.; Brugts, Michael P.; van der Lelij, Aart-Jan; Sterenborg, Henricus J. C. M.; ten Hagen, Timo L. M.; Robinson, Dominic J.; van Hagen, Martin P.

    2014-01-01

    Photodynamic therapy (PDT) is an established treatment modality, used mainly for anticancer therapy that relies on the interaction of photosensitizer, light and oxygen. For the treatment of pathologies in certain anatomical sites, improved targeting of the photosensitizer is necessary to prevent damage to healthy tissue. We report on a novel dual approach of targeted PDT (vascular and cellular targeting) utilizing the expression of neuropeptide somatostatin receptor (sst2) on tumor and neovascular-endothelial cells. We synthesized two conjugates containing the somatostatin analogue [Tyr3]-octreotate and Chlorin e6 (Ce6): Ce6-K3-[Tyr3]-octreotate (1) and Ce6-[Tyr3]-octreotate-K3-[Tyr3]-octreotate (2). Investigation of the uptake and photodynamic activity of conjugates in-vitro in human erythroleukemic K562 cells showed that conjugation of [Tyr3]-octreotate with Ce6 in conjugate 1 enhances uptake (by a factor 2) in cells over-expressing sst2 compared to wild-type cells. Co-treatment with excess free Octreotide abrogated the phototoxicity of conjugate 1 indicative of a specific sst2-mediated effect. In contrast conjugate 2 showed no receptor-mediated effect due to its high hydrophobicity. When compared with un-conjugated Ce6, the PDT activity of conjugate 1 was lower. However, it showed higher photostability which may compensate for its lower phototoxicity. Intra-vital fluorescence pharmacokinetic studies of conjugate 1 in rat skin-fold observation chambers transplanted with sst2+ AR42J acinar pancreas tumors showed significantly different uptake profiles compared to free Ce6. Co-treatment with free Octreotide significantly reduced conjugate uptake in tumor tissue (by a factor 4) as well as in the chamber neo-vasculature. These results show that conjugate 1 might have potential as an in-vivo sst2 targeting photosensitizer conjugate. PMID:25111655

  18. Role of the Glucagon-Like-Peptide-1 Receptor in the Control of Energy Balance

    PubMed Central

    Hayes, Matthew R.; De Jonghe, Bart C.; Kanoski, Scott E.

    2010-01-01

    The peripheral and central glucagon-like-peptide-1 (GLP-1) systems play an essential role in glycemic and energy balance regulation. Thus, pharmacological targeting of peripheral and/or central GLP-1 receptors (GLP-1R) may represent a potential long-term treatment option for both obesity and type-II diabetes mellitus (T2DM). Uncovering and understanding the neural pathways, physiological mechanisms, specific GLP-1R populations, and intracellular signaling cascades that mediate the food intake inhibitory and incretin effects produced by GLP-1R activation are vital to the development of these potential successful therapeutics. Particular focus will be given to the essential role of the nucleus tractus solitarius (NTS) in the caudal brainstem, as well as the gut-to-brain communication by vagal afferent fibers in mediating the physiological and behavioral responses following GLP-1R activation. PMID:20226203

  19. Relief of diabetes by duodenal-jejunal bypass sleeve implantation in the high-fat diet and streptozotocin-induced diabetic rat model is associated with an increase in GLP-1 levels and the number of GLP-1-positive cells

    PubMed Central

    SHUANG, JINQUAN; ZHANG, YING; MA, LIMEI; TAN, XUEMING; HUANG, JING; WANG, XIANG; XIONG, GUANYIN; JIANG, ZHONGHUA; ZHANG, XIUHUA; DU, SHIQING; GU, YONGSONG; SHI, XIANGYANG; FAN, ZHINING

    2015-01-01

    A recently invented duodenal-jejunal bypass sleeve (DJBS) implanted in the duodenum and proximal jejunum has exhibited good glycemic control in diabetes mellitus. However, the specific mechanism by which DJBS placement induces the remission of diabetes is not well known. Previous studies have indicated that changes in the pattern of gut hormone secretion may play a role. The aim of the present study was to explore the role of intestinal L cells and the production of glucagon-like peptide-1 (GLP-1) by these cells in DJBS implantation-induced glycemic control in diabetic rats. A DJBS was placed in the proximal small intestine of rats with diabetes induced by a high-fat diet and low-dose streptozotocin (STZ), and the effects of the DJBS on the remission of diabetes and the GLP-1 levels of plasma and intestinal tissues were investigated 12 weeks after DJBS placement. The number of intestinal GLP-1 positive cells was also counted. When the DJBS had been in place for 12 weeks, the plasma glucose level of the DJBS-implanted rats decreased significantly from 23.331.56 mmol/l prior to surgery to 7.700.84 mmol/l and the diabetes mellitus was relieved completely; however, diabetic control rats and diabetic rats subjected to sham surgery did not show any improvement. Parallel with the remission of diabetes, the plasma and distal ileum GLP-1 levels of rats in the DJBS implantation group were also higher than those of rats in the diabetic control and sham surgery groups. The number of GLP-1-positive cells in the distal ileum was also higher in the DJBS implantation group than in the diabetic control and sham surgery groups (31.02.6 vs. 23.54.4 vs. 23.03.2 respectively; P<0.01). DJBS implantation effectively led to the remission of diabetes in rats with diabetes induced by a high-fat diet and low-dose STZ when implanted for 12 weeks. The remission of diabetes may be associated with the increase in the number of L cells and elevation of GLP-1 levels induced by DJBS implantation. PMID:26622491

  20. A Comparison of the Effects of the GLP-1 Analogue Liraglutide and Insulin Glargine on Endothelial Function and Metabolic Parameters: A Randomized, Controlled Trial Sapporo Athero-Incretin Study 2 (SAIS2)

    PubMed Central

    Nomoto, Hiroshi; Miyoshi, Hideaki; Furumoto, Tomoo; Oba, Koji; Tsutsui, Hiroyuki; Miyoshi, Arina; Kondo, Takuma; Tsuchida, Kenichi; Atsumi, Tatsuya; Manda, Naoki; Kurihara, Yoshio; Aoki, Shin

    2015-01-01

    Objectives GLP-1 improves hyperglycemia, and it has been reported to have favorable effects on atherosclerosis. However, it has not been fully elucidated whether GLP-1 is able to improve endothelial function in patients with type 2 diabetes. Therefore, we investigated the efficacy of the GLP-1 analogue, liraglutide on endothelial function and glycemic metabolism compared with insulin glargine therapy. Materials and Methods In this multicenter, prospective randomized parallel-group comparison study, 31 diabetic outpatients (aged 60.3 10.3 years with HbA1c levels of 8.6 0.8%) with current metformin and/or sulfonylurea treatment were enrolled and randomly assigned to receive liraglutide or glargine therapy once daily for 14 weeks. Flow mediated dilation (FMD), a comprehensive panel of hemodynamic parameters (Task Force Monitor), and serum metabolic markers were assessed before and after the treatment period. Results A greater reduction (worsening) in %FMD was observed in the glargine group, although this change was not statistically different from the liraglutide group (liraglutide; 5.7 to 5.4%, glargine 6.7 to 5.7%). The augmentation index, C-peptide index, derivatives of reactive oxygen metabolites and BMI were significantly improved in the liraglutide group. Central systolic blood pressure and NT-proBNP also tended to be improved in the liraglutide-treated group, while improvements in HbA1c levels were similar between groups. Cardiac index, blood pressure and most other metabolic parameters were not different. Conclusions Regardless of glycemic improvement, early liraglutide therapy did not affect endothelial function but may provide favorable effects on beta-cell function and cardioprotection in type 2 diabetics without advanced atherosclerosis. Trial Registration UMIN Clinical Trials Registry System as trial ID UMIN000005331. PMID:26284918

  1. Cell-cycle quiescence maintains Caenorhabditis elegans germline stem cells independent of GLP-1/Notch

    PubMed Central

    Seidel, Hannah S; Kimble, Judith

    2015-01-01

    Many types of adult stem cells exist in a state of cell-cycle quiescence, yet it has remained unclear whether quiescence plays a role in maintaining the stem cell fate. Here we establish the adult germline of Caenorhabditis elegans as a model for facultative stem cell quiescence. We find that mitotically dividing germ cellsincluding germline stem cellsbecome quiescent in the absence of food. This quiescence is characterized by a slowing of S phase, a block to M-phase entry, and the ability to re-enter M phase rapidly in response to re-feeding. Further, we demonstrate that cell-cycle quiescence alters the genetic requirements for stem cell maintenance: The signaling pathway required for stem cell maintenance under fed conditionsGLP-1/Notch signalingbecomes dispensable under conditions of quiescence. Thus, cell-cycle quiescence can itself maintain stem cells, independent of the signaling pathway otherwise essential for such maintenance. DOI: http://dx.doi.org/10.7554/eLife.10832.001 PMID:26551561

  2. Glucagon-Like Peptide-1 Receptor Agonist Treatment for Pediatric Obesity.

    PubMed

    Kelly, Aaron S

    2016-01-01

    Obesity is a complex and retractable disease for which effective and durable treatments are elusive. Successful treatment of severe obesity with lifestyle modification therapy alone is highly unlikely, particularly for adolescents. Pharmacotherapy, if appropriately prescribed, can be an effective tool to use in conjunction with lifestyle modification therapy to achieve better weight loss outcomes. Only a few obesity medications have been evaluated in children and adolescents with results suggesting modest efficacy. However, a new pipeline of obesity drugs has been recently approved for use among adults. Among these, glucagon-like peptide-1 receptor agonist (GLP-1RA) treatment appears to have reasonable weight loss efficacy along with other beneficial pleiotropic effects. Although larger trials will be required to confirm the results, two small pediatric clinical trials have suggested that GLP-1RA treatment may be useful in adolescents with severe obesity. Once sufficient evidence is generated supporting the safety and efficacy of GLP-1RAs and other obesity medications in youth, the pediatric medical community needs to become less resistant to the use of pharmacotherapy. Otherwise, poor outcomes will continue to be the norm. PMID:26683061

  3. Expression and Distribution of Glucagon-Like Peptide-1 Receptor mRNA, Protein and Binding in the Male Nonhuman Primate (Macaca mulatta) Brain

    PubMed Central

    Heppner, Kristy M.; Kirigiti, Melissa; Secher, Anna; Paulsen, Sarah Juel; Buckingham, Rikley; Pyke, Charles; Knudsen, Lotte B.

    2015-01-01

    Glucagon-like peptide-1 (GLP-1) is released from endocrine L-cells lining the gut in response to food ingestion. However, GLP-1 is also produced in the nucleus of the solitary tract, where it acts as an anorectic neurotransmitter and key regulator of many autonomic and neuroendocrine functions. The expression and projections of GLP-1-producing neurons is highly conserved between rodent and primate brain, although a few key differences have been identified. The GLP-1 receptor (GLP-1R) has been mapped in the rodent brain, but no studies have described the distribution of GLP-1Rs in the nonhuman primate central nervous system. Here, we characterized the distribution of GLP-1R mRNA and protein in the adult macaque brain using in situ hybridization, radioligand receptor autoradiography, and immunohistochemistry with a primate specific GLP-1R antibody. Immunohistochemistry demonstrated that the GLP-1R is localized to cell bodies and fiber terminals in a very selective distribution throughout the brain. Consistent with the functional role of the GLP-1R system, we find the highest concentration of GLP-1R-immunoreactivity present in select hypothalamic and brainstem regions that regulate feeding, including the paraventricular and arcuate hypothalamic nuclei, as well as the area postrema, nucleus of the solitary tract, and dorsal motor nucleus of the vagus. Together, our data demonstrate that GLP-1R distribution is highly conserved between rodent and primate, although a few key species differences were identified, including the amygdala, where GLP-1R expression is much higher in primate than in rodent. PMID:25380238

  4. Therapy in the Early Stage: Incretins

    PubMed Central

    Cernea, Simona; Raz, Itamar

    2011-01-01

    The complex pathological mechanisms responsible for development of type 2 diabetes are not fully addressed by conventional drugs, which are also associated with inconvenient side effects such as weight gain or hypoglycemia. Two types of incretin-based therapies are now in use: incretin mimetics (glucagon-like peptide-1 [GLP-1] receptor agonists that bind specific receptors and mimic the action of natural GLP-1) and incretin enhancers (inhibitors of the enzyme that degrade the incretin hormones and thus prolong their activity). Both offer important advantages over previous agents. In addition to the proven glucose-lowering efficacy, they promote weight loss (or are weight neutral) by slowing gastric emptying and inducing satiety, inhibit glucagon secretion with maintenance of counterregulatory mechanisms, and exhibit cardiovascular benefits, while having a low risk profile. Importantly, short-term studies have shown that incretins/incretin-based therapies protect β-cells (by enhancing cell proliferation and differentiation and inhibiting apoptosis) and stimulate their function (by recruiting β-cells to the secretory process and increasing insulin biosynthesis/secretion). These therapies have the opportunity to interfere with the disease progression if used as an early intervention, when enough β-cell mass/function can still be preserved or restored. PMID:21525466

  5. Targeting the EGF Receptor for Ovarian Cancer Therapy

    PubMed Central

    Zeineldin, Reema; Muller, Carolyn Y.; Stack, M. Sharon; Hudson, Laurie G.

    2010-01-01

    Ovarian carcinoma is the leading cause of death from gynecologic malignancy in the US. Factors such as the molecular heterogeneity of ovarian tumors and frequent diagnosis at advanced stages hamper effective disease treatment. There is growing emphasis on the identification and development of targeted therapies to disrupt molecular pathways in cancer. The epidermal growth factor (EGF) receptor is one such protein target with potential utility in the management of ovarian cancer. This paper will discuss contributions of EGF receptor activation to ovarian cancer pathogenesis and the status of EGF receptor inhibitors and EGF receptor targeted therapies in ovarian cancer treatment. PMID:20066160

  6. Comparison Review of Short-Acting and Long-Acting Glucagon-like Peptide-1 Receptor Agonists.

    PubMed

    Uccellatore, Annachiara; Genovese, Stefano; Dicembrini, Ilaria; Mannucci, Edoardo; Ceriello, Antonio

    2015-09-01

    Glucagon-like peptide-1 (GLP-1) receptor agonists (GLP-1 RAs) are useful tools for treating type 2 diabetes mellitus. In their recent position statement, the American Diabetes Association and European Association for the Study of Diabetes recommend GLP1-RAs as add-on to metformin when therapeutic goals are not achieved with monotherapy, particularly for patients who wish to avoid weight gain or hypoglycemia. GLP1-RAs differ substantially in their duration of action, frequency of administration and clinical profile. Members of this class approved for clinical use include exenatide twice-daily, exenatide once-weekly, liraglutide and lixisenatide once-daily. Recently, two new once-weekly GLP1-RAs have been approved: dulaglutide and albiglutide. This article summarizes properties of short- and long-acting GLP-1 analogs, and provides useful information to help choose the most appropriate compound for individual patients. PMID:26271795

  7. Therapeutic stimulation of GLP-1 and GIP protein with DPP-4 inhibitors for type-2 diabetes treatment.

    PubMed

    Sharma, Alok; Paliwal, Geetanjali; Upadhyay, Nisha; Tiwari, Archana

    2015-01-01

    Dipeptidyl peptidase-4 (DPP-4) inhibition is a new treatment for type-2 diabetes. DPP-4 inhibition increases levels of active GLP-1. GLP-1 enhances insulin secretion and diminishes glucagon secretion, in this manner reducing glucose concentrations in blood. A number of DPP-4 inhibitors are under clinical development. However, the durability and long-term safety of DPP-4 inhibition remain to be established. These synthetic DPP-4 inhibitors are showing some side effects. Herbal medicines are alternative medicine over synthetic drugs that can relieve the patients. Various research studies have been carried all over the world to evaluate the efficacy of herbs in the treatment of Type II diabetes mellitus. For a long time type II diabetes mellitus has been treated orally with herbal medicines, because plant products are frequently prescribed due to their less toxicity than conventional medicines. PMID:26473146

  8. The major determinant of exendin-4/glucagon-like peptide 1 differential affinity at the rat glucagon-like peptide 1 receptor N-terminal domain is a hydrogen bond from SER-32 of exendin-4*

    PubMed Central

    Mann, RJ; Nasr, NE; Sinfield, JK; Paci, E; Donnelly, D

    2010-01-01

    BACKGROUND AND PURPOSE Exendin-4 (exenatide, Ex4) is a high-affinity peptide agonist at the glucagon-like peptide-1 receptor (GLP-1R), which has been approved as a treatment for type 2 diabetes. Part of the drug/hormone binding site was described in the crystal structures of both GLP-1 and Ex4 bound to the isolated N-terminal domain (NTD) of GLP-1R. However, these structures do not account for the large difference in affinity between GLP-1 and Ex4 at this isolated domain, or for the published role of the C-terminal extension of Ex4. Our aim was to clarify the pharmacology of GLP-1R in the context of these new structural data. EXPERIMENTAL APPROACH The affinities of GLP-1, Ex4 and various analogues were measured at human and rat GLP-1R (hGLP-1R and rGLP-1R, respectively) and various receptor variants. Molecular dynamics coupled with in silico mutagenesis were used to model and interpret the data. KEY RESULTS The membrane-tethered NTD of hGLP-1R displayed similar affinity for GLP-1 and Ex4 in sharp contrast to previous studies using the soluble isolated domain. The selectivity at rGLP-1R for Ex4(9–39) over Ex4(9–30) was due to Ser-32 in the ligand. While this selectivity was not observed at hGLP-1R, it was regained when Glu-68 of hGLP-1R was mutated to Asp. CONCLUSIONS AND IMPLICATIONS GLP-1 and Ex4 bind to the NTD of hGLP-1R with similar affinity. A hydrogen bond between Ser32 of Ex4 and Asp-68 of rGLP-1R, which is not formed with Glu-68 of hGLP-1R, is responsible for the improved affinity of Ex4 at the rat receptor. PMID:20649595

  9. GLP-1 Cleavage Product Reverses Persistent ROS Generation After Transient Hyperglycemia by Disrupting an ROS-Generating Feedback Loop.

    PubMed

    Giacco, Ferdinando; Du, Xueliang; Carrat, Anna; Gerfen, Gary J; D'Apolito, Maria; Giardino, Ida; Rasola, Andrea; Marin, Oriano; Divakaruni, Ajit S; Murphy, Anne N; Shah, Manasi S; Brownlee, Michael

    2015-09-01

    The assumption underlying current diabetes treatment is that lowering the level of time-averaged glucose concentrations, measured as HbA1c, prevents microvascular complications. However, 89% of variation in risk of retinopathy, microalbuminuria, or albuminuria is due to elements of glycemia not captured by mean HbA1c values. We show that transient exposure to high glucose activates a multicomponent feedback loop that causes a stable left shift of the glucose concentration-reactive oxygen species (ROS) dose-response curve. Feedback loop disruption by the GLP-1 cleavage product GLP-1(9-36)(amide) reverses the persistent left shift, thereby normalizing persistent overproduction of ROS and its pathophysiologic consequences. These data suggest that hyperglycemic spikes high enough to activate persistent ROS production during subsequent periods of normal glycemia but too brief to affect the HbA1c value are a major determinant of the 89% of diabetes complications risk not captured by HbA1c. The phenomenon and mechanism described in this study provide a basis for the development of both new biomarkers to complement HbA1c and novel therapeutic agents, including GLP-1(9-36)(amide), for the prevention and treatment of diabetes complications. PMID:26294429

  10. ErbB receptors: from oncogenes to targeted cancer therapies

    PubMed Central

    Zhang, Hongtao; Berezov, Alan; Wang, Qiang; Zhang, Geng; Drebin, Jeffrey; Murali, Ramachandran; Greene, Mark I.

    2007-01-01

    Understanding the genetic origin of cancer at the molecular level has facilitated the development of novel targeted therapies. Aberrant activation of the ErbB family of receptors is implicated in many human cancers and is already the target of several anticancer therapeutics. The use of mAbs specific for the extracellular domain of ErbB receptors was the first implementation of rational targeted therapy. The cytoplasmic tyrosine kinase domain is also a preferred target for small compounds that inhibit the kinase activity of these receptors. However, current therapy has not yet been optimized, allowing for opportunities for optimization of the next generation of targeted therapy, particularly with regards to inhibiting heteromeric ErbB family receptor complexes. PMID:17671639

  11. Evidence for glucagon-like peptide-1 receptor signaling to activate ATP-sensitive potassium channels in pancreatic beta cells.

    PubMed

    Kwon, Hye-Jung; Park, Hyun-Sun; Park, Sung-Hee; Park, Jae-Hyung; Shin, Su-Kyung; Song, Seung Eun; Hwang, Meeyul; Cho, Ho-Chan; Song, Dae-Kyu

    2016-01-01

    Glucagon-like peptide-1 (GLP-1) is a gut peptide that promotes insulin release from pancreatic beta cells. GLP-1 has been shown to confer glucose-insensitive beta cells with glucose sensitivity by modulation of the activity of the ATP-sensitive potassium (KATP) channel. The channel closing effect of GLP-1, interacting with corresponding G-protein-coupled receptors, has been well established; however, to our knowledge, no study has shown whether GLP-1 directly induces activation of beta-cell KATP channels. Here, we aimed to evaluate whether the activation of beta-cell KATP channels by GLP-1 exists and affects intracellular Ca(2+) levels ([Ca(2+)]i). KATP channel activity was measured in isolated rat pancreatic beta cells by whole-cell perforated patch-clamp recordings with a diazoxide-containing pipette solution. Changes in [Ca(2+)]i and the subcellular localization of KATP channels were observed using the calcium-sensitive dye fura-4/AM and anti-Kir6.2 antibodies in INS-1 beta cells, respectively. To eliminate the well-known inhibitory effects of GLP-1 on KATP channel activity, channels were fully inhibited by pretreatment with methyl pyruvate and epigallocatechin-3-gallate. In the pretreated beta cells, GLP-1 and exendin-4 promptly activated the channels, reducing [Ca(2+)]i. The phosphoinositide 3-kinase (PI3K) inhibitor LY294002 blocked the effects of GLP-1 on channel activity. Moreover, phosphatidylinositol-3,4,5-trisphosphate mimicked the effects of GLP-1. These results suggested that beta-cell GLP-1 receptor signaling involved activation of KATP channels via a PI3K-dependent pathway. This alternative mechanism of GLP-1 function may act as a negative feedback pathway, modulating the glucose-dependent GLP-1 inhibition on KATP channel activity. PMID:26655814

  12. Triple therapy in type 2 diabetes; a systematic review and network meta-analysis

    PubMed Central

    Bettington, Emilie K.; Gunton, Jenny E.; Turkstra, Erika

    2015-01-01

    Aims. The purpose was to evaluate the evidence for triple therapy regimen using medicines available in Australia for type 2 diabetes. Methods. A systematic literature review was performed to update the relevant evidence from 2002 to 2014 on triple therapy for type 2 diabetes. A multiple-treatments network meta-analysis was undertaken to summarise the comparative efficacy and harms of different triple therapies. Results. Twenty seven trials were identified, most were six months of duration. The following combinations were included in the network meta-analysis: metformin (MET) + sulfonylureas (SU) (used as reference combination); MET + SU+ dipeptidyl peptidase 4 inhibitors (DPP-4-i); MET + SU+ thiazolidinediones (TZD); MET + SU+ glucagon-like peptide-1 receptor agonists (GLP-1-RA); MET + SU+ insulins; MET + TZD + DPP-4-i; and MET + SU+ sodium/glucose cotransporter 2 inhibitors (SGLT2-i). For HbA1c reduction, all triple therapies were statistically superior to MET+SU dual therapy, except for MET + TZD + DPP-4-i. None of the triple therapy combinations demonstrated differences in HbA1c compared with other triple therapies. MET + SU + SGLT2-i and MET + SU + GLP-1-RA resulted in significantly lower body weight than MET + SU + DPP-4-i, MET+SU+insulin and MET + SU + TZDs; MET + SU + DPP-4-i resulted in significantly lower body weight than MET + SU + insulin and MET + SU + TZD. MET + SU + insulin, MET + SU + TZD and MET + SU + DPP-4-i increased the odds of hypoglycaemia when compared to MET + SU. MET + SU + GLP-1-RA reduced the odds of hypoglycaemia compared to MET + SU + insulin. Conclusion. Care when choosing a triple therapy combination is needed as there is often a risk of increased hypoglycaemia events associated with this regimen and there are very limited data surrounding the long-term effectiveness and safety of combined therapies. PMID:26664803

  13. Effect of GLP-1 treatment on GLUT2 and GLUT4 expression in type 1 and type 2 rat diabetic models.

    PubMed

    Villanueva-Peacarrillo, M L; Puente, J; Redondo, A; Clemente, F; Valverde, I

    2001-07-01

    Glucagon-like peptide-1 (G LP-1) is an incretin with glucose-dependent insulinotropic and insulin-independent antidiabetic properties that exerts insulin-like effects on glucose metabolism in rat liver, skeletal muscle, and fat. This study aimed to search for the effect of a prolonged treatment, 3 ds, with GLP-1 on glucotransporter GLUT2 expression in liver, and on that of GLUT4 in skeletal muscle and fat, in rats. Normal rats and streptozotocin-induced type 1 and type 2 diabetic models were used; diabetic rats were also treated with insulin for comparison. In normal rats, GLP-1 treatment reduced in the three tissues the corresponding glucotransporter protein level, without modifying their mRNA. In the type 2 diabetic model, GLP-1, like insulin, stimulated in liver and fat only the glucotransporter translational process, while in the muscle an effect at the GLUT4 transcriptional level was also observed. In the type 1 diabetic model, GLP-1 apparently exerted in the liver only a posttranslational effect on GLUT2 expression; in muscle and fat, while insulin was shown to have an action on GLUT4 at both transcriptional and translational levels, the effect of GLP-1 was restricted to glucotransporter translation. In normal and diabetic rats, exogenous GLP-1 controlled the glucotransporter expression in extrapancreatic tissues participating in the overall glucose homeostasis-liver, muscle, and fat-where the effect of the peptide seems to be exerted only at the translational and/or posttranslational level; in muscle and fat, the presence of insulin seems to be required for GLP-1 to activate the transcriptional process. The stimulating action of GLP-1 on GLUT2 and GLUT4 expression, mRNA or protein, could be a mechanism by which, at least in part, the peptide exerts its lowering effect on blood glucose. PMID:11720253

  14. Incretin-based therapies.

    PubMed

    Neumiller, Joshua J

    2015-01-01

    Incretin-based therapies are steadily gaining clinical popularity, with many more products in the developmental pipeline. Current treatment recommendations incorporate GLP-1 RAs and DPP-4 inhibitors as important agents for consideration in the treatment of T2DM owing to their low hypoglycemia risk, ability to address postprandial hyperglycemia (DPP-4 inhibitors and short-acting GLP-1 RAs), and potential for weight reduction (GLP-1 RAs). These properties may likewise prove advantageous in older adults in whom hypoglycemia is particularly undesirable, although older adults may be more prone to the nausea and vomiting associated with GLP-1 RA therapy. Other safety issues for incretin-based therapies, such as pancreatitis, C-cell hyperplasia, and renal failure, should be considered when choosing an appropriate patient to receive such therapies. Ongoing CV outcome studies will further inform the health care community regarding the CV safety of incretin-based therapies. The availability of both short-acting and long-acting GLP-1 RAs currently allows practitioners to consider individualized blood glucose trends and therapeutic needs when choosing an optimal agent. PMID:25456646

  15. Type 2 Diabetes and ADP Receptor Blocker Therapy

    PubMed Central

    Samoš, Matej; Fedor, Marián; Kovář, František; Mokáň, Michal; Bolek, Tomáš; Galajda, Peter; Kubisz, Peter; Mokáň, Marián

    2016-01-01

    Type 2 diabetes (T2D) is associated with several abnormalities in haemostasis predisposing to thrombosis. Moreover, T2D was recently connected with a failure in antiplatelet response to clopidogrel, the most commonly used ADP receptor blocker in clinical practice. Clopidogrel high on-treatment platelet reactivity (HTPR) was repeatedly associated with the risk of ischemic adverse events. Patients with T2D show significantly higher residual platelet reactivity on ADP receptor blocker therapy and are more frequently represented in the group of patients with HTPR. This paper reviews the current knowledge about possible interactions between T2D and ADP receptor blocker therapy. PMID:26824047

  16. Muscarinic receptors control glucagon-like peptide 1 secretion by human endocrine L cells.

    PubMed

    Anini, Younes; Brubaker, Patricia L

    2003-07-01

    Glucagon-like peptide 1 (GLP-1) released from distal intestinal endocrine L cells after food intake is a potent glucose-dependent stimulant of insulin secretion. Plasma levels of GLP-1 rise rapidly after nutrient ingestion through an indirect mechanism triggered from the proximal intestine and involving the vagus nerve. Our previous studies showed the involvement of M1 muscarinic receptors expressed by the L cells in the regulation of postprandial GLP-1 secretion in rats. The goal of this study was to explore the involvement of muscarinic receptors in the regulation of GLP-1 secretion by human L cells using a newly described human L cell line (NCI-H716). Phorbol 12-myristate 13-acetate (positive control) stimulated GLP-1 secretion to 252 +/- 38% of the control (P < 0.001). Bethanechol, a nonselective muscarinic agonist, significantly stimulated GLP-1 secretion to 187 +/- 20% of the control (P < 0.01, n = 8). Pirenzepine (M1 antagonist; 10-1000 microM) and gallamine (M2 antagonist; 10-1000 microM) completely inhibited bethanechol-induced GLP-1 secretion, whereas 4-diphenylacetoxy-N-methylpiperidine (M3 antagonist) had no effect on bethanechol-stimulated GLP-1 secretion. McN-A-343 (M1 muscarinic agonist) dose dependently stimulated GLP-1 secretion (to 252 +/- 50% of control at 1000 microM; P < 0.01), whereas oxotremorine (M3 agonist) had no effect. M1, M2, and M3 muscarinic receptors were shown to be expressed in NCI-H716 cells by Western blot, immunohystochemistry, and RT-PCR. Expression of the M1, M2, and M3 muscarinic receptor subtypes was also confirmed in paraffin-embedded human small intestine sections by double immunofluorescent staining. These results demonstrate the role of M1 and M2 muscarinic receptors expressed by human L cells in the control of GLP-1 secretion. PMID:12810581

  17. Peptide Receptor Radionuclide Therapy in the Treatment of Neuroendocrine Tumors.

    PubMed

    Kwekkeboom, Dik J; Krenning, Eric P

    2016-02-01

    Peptide receptor radionuclide therapy (PRRT) is a promising new treatment modality for inoperable or metastasized gastroenteropancreatic neuroendocrine tumors patients. Most studies report objective response rates in 15% to 35% of patients. Progression-free (PFS) and overall survival (OS) compare favorably with that for somatostatin analogues, chemotherapy, or newer, "targeted" therapies. Prospective, randomized data regarding the potential PFS and OS benefit of PRRT compared with standard therapies is anticipated. PMID:26614376

  18. Vertical Sleeve Gastrectomy Is Effective in Two Genetic Mouse Models of Glucagon-Like Peptide 1 Receptor Deficiency

    PubMed Central

    Wilson-Prez, Hilary E.; Chambers, Adam P.; Ryan, Karen K.; Li, Bailing; Sandoval, Darleen A.; Stoffers, Doris; Drucker, Daniel J.; Prez-Tilve, Diego; Seeley, Randy J.

    2013-01-01

    Glucagon-like peptide 1 (GLP-1) is a peptide hormone that is released from the gut in response to nutrient ingestion and that has a range of metabolic effects, including enhancing insulin secretion and decreasing food intake. Postprandial GLP-1 secretion is greatly enhanced in rats and humans after some bariatric procedures, including vertical sleeve gastrectomy (VSG), and has been widely hypothesized to contribute to reduced intake, weight loss, and the improvements in glucose homeostasis after VSG. We tested this hypothesis using two separate models of GLP-1 receptor deficiency. We found that VSG-operated GLP-1 receptordeficient mice responded similarly to wild-type controls in terms of body weight and body fat loss, improved glucose tolerance, food intake reduction, and altered food selection. These data demonstrate that GLP-1 receptor activity is not necessary for the metabolic improvements induced by VSG surgery. PMID:23434938

  19. Glucagon-Like Peptide-1 (GLP-1) Analog Liraglutide Inhibits Endothelial Cell Inflammation through a Calcium and AMPK Dependent Mechanism

    PubMed Central

    Krasner, Nadia M.; Ido, Yasuo; Ruderman, Neil B.; Cacicedo, Jose M.

    2014-01-01

    Liraglutide is a glucagon-like peptide-1 (GLP-1) mimetic used for the treatment of Type 2 diabetes. Similar to the actions of endogenous GLP-1, liraglutide potentiates the post-prandial release of insulin, inhibits glucagon release and increases satiety. Recent epidemiological studies and clinical trials have suggested that treatment with GLP-1 mimetics may also diminish the risk of cardiovascular disease in diabetic patients. The mechanism responsible for this effect has yet to be determined; however, one possibility is that they might do so by a direct effect on vascular endothelium. Since low grade inflammation of the endothelium is an early event in the pathogenesis of atherosclerotic cardiovascular disease (ASCVD), we determined the effects of liraglutide on inflammation in cultured human aortic endothelial cells (HAECs). Liraglutide reduced the inflammatory responses to TNF? and LPS stimulation, as evidenced by both reduced protein expression of the adhesion molecules VCAM-1 and E-Selectin, and THP-1 monocyte adhesion. This was found to result from increased cell Ca2+ and several molecules sensitive to Ca2+ with known anti inflammatory actions in endothelial cells, including CaMKK?, CaMKI, AMPK, eNOS and CREB. Treatment of the cells with STO-609, a CaMKK inhibitor, diminished both the activation of AMPK, CaMKI and the inhibition of TNF? and LPS-induced monocyte adhesion by liraglutide. Likewise, expression of an shRNA against AMPK nullified the anti-inflammatory effects of liraglutide. The results indicate that liraglutide exerts a strong anti-inflammatory effect on HAECs. They also demonstrate that this is due to its ability to increase intracellular Ca2+ and activate CAMKK?, which in turn activates AMPK. PMID:24835252

  20. Glucagon-like peptide-1 (GLP-1) analog liraglutide inhibits endothelial cell inflammation through a calcium and AMPK dependent mechanism.

    PubMed

    Krasner, Nadia M; Ido, Yasuo; Ruderman, Neil B; Cacicedo, Jose M

    2014-01-01

    Liraglutide is a glucagon-like peptide-1 (GLP-1) mimetic used for the treatment of Type 2 diabetes. Similar to the actions of endogenous GLP-1, liraglutide potentiates the post-prandial release of insulin, inhibits glucagon release and increases satiety. Recent epidemiological studies and clinical trials have suggested that treatment with GLP-1 mimetics may also diminish the risk of cardiovascular disease in diabetic patients. The mechanism responsible for this effect has yet to be determined; however, one possibility is that they might do so by a direct effect on vascular endothelium. Since low grade inflammation of the endothelium is an early event in the pathogenesis of atherosclerotic cardiovascular disease (ASCVD), we determined the effects of liraglutide on inflammation in cultured human aortic endothelial cells (HAECs). Liraglutide reduced the inflammatory responses to TNF? and LPS stimulation, as evidenced by both reduced protein expression of the adhesion molecules VCAM-1 and E-Selectin, and THP-1 monocyte adhesion. This was found to result from increased cell Ca2+ and several molecules sensitive to Ca2+ with known anti inflammatory actions in endothelial cells, including CaMKK?, CaMKI, AMPK, eNOS and CREB. Treatment of the cells with STO-609, a CaMKK inhibitor, diminished both the activation of AMPK, CaMKI and the inhibition of TNF? and LPS-induced monocyte adhesion by liraglutide. Likewise, expression of an shRNA against AMPK nullified the anti-inflammatory effects of liraglutide. The results indicate that liraglutide exerts a strong anti-inflammatory effect on HAECs. They also demonstrate that this is due to its ability to increase intracellular Ca2+ and activate CAMKK?, which in turn activates AMPK. PMID:24835252

  1. Proglucagon Promoter Cre-Mediated AMPK Deletion in Mice Increases Circulating GLP-1 Levels and Oral Glucose Tolerance

    PubMed Central

    Sayers, Sophie R.; Reimann, Frank; Gribble, Fiona M.; Parker, Helen; Zac-Varghese, Sagen; Bloom, Stephen R.; Foretz, Marc; Viollet, Benoit; Rutter, Guy A.

    2016-01-01

    Background Enteroendocrine L-cells synthesise and release the gut hormone glucagon-like peptide-1 (GLP-1) in response to food transit. Deletion of the tumour suppressor kinase LKB1 from proglucagon-expressing cells leads to the generation of intestinal polyps but no change in circulating GLP-1 levels. Here, we explore the role of the downstream kinase AMP-activated protein kinase (AMPK) in these cells. Method Loss of AMPK from proglucagon-expressing cells was achieved using a preproglucagon promoter-driven Cre (iGluCre) to catalyse recombination of floxed alleles of AMPKα1 and α2. Oral and intraperitoneal glucose tolerance were measured using standard protocols. L-cell mass was measured by immunocytochemistry. Hormone and peptide levels were measured by electrochemical-based luminescence detection or radioimmunoassay. Results Recombination with iGluCre led to efficient deletion of AMPK from intestinal L- and pancreatic alpha-cells. In contrast to mice rendered null for LKB1 using the same strategy, mice deleted for AMPK displayed an increase (WT: 0.05 ± 0.01, KO: 0.09±0.02%, p<0.01) in L-cell mass and elevated plasma fasting (WT: 5.62 ± 0.800 pg/ml, KO: 14.5 ± 1.870, p<0.01) and fed (WT: 15.7 ± 1.48pg/ml, KO: 22.0 ± 6.62, p<0.01) GLP-1 levels. Oral, but not intraperitoneal, glucose tolerance was significantly improved by AMPK deletion, whilst insulin and glucagon levels were unchanged despite an increase in alpha to beta cell ratio (WT: 0.23 ± 0.02, KO: 0.33 ± 0.03, p<0.01). Conclusion AMPK restricts L-cell growth and GLP-1 secretion to suppress glucose tolerance. Targeted inhibition of AMPK in L-cells may thus provide a new therapeutic strategy in some forms of type 2 diabetes. PMID:27010458

  2. Metabolic Syndrome Abolishes Glucagon-Like Peptide 1 Receptor Agonist Stimulation of SERCA in Coronary Smooth Muscle.

    PubMed

    Dineen, Stacey L; McKenney, Mikaela L; Bell, Lauren N; Fullenkamp, Allison M; Schultz, Kyle A; Alloosh, Mouhamad; Chalasani, Naga; Sturek, Michael

    2015-09-01

    Metabolic syndrome (MetS) doubles the risk of adverse cardiovascular events. Glucagon-like peptide 1 (GLP-1) receptor agonists induce weight loss, increase insulin secretion, and improve glucose tolerance. Studies in healthy animals suggest cardioprotective properties of GLP-1 receptor agonists, perhaps partially mediated by improved sarco-endoplasmic reticulum Ca(2+) ATPase (SERCA) activity. We examined the acute effect of GLP-1 receptor agonists on coronary smooth muscle cells (CSM) enzymatically isolated from lean, healthy Ossabaw miniature swine. Intracellular Ca(2+) handling was interrogated with fura-2. The GLP-1 receptor agonist exenatide activated SERCA but did not alter other Ca(2+) transporters. Further, we tested the hypothesis that chronic, in vivo treatment with GLP-1 receptor agonist AC3174 would attenuate coronary artery disease (CAD) in swine with MetS. MetS was induced in 20 swine by 6 months' feeding of a hypercaloric, atherogenic diet. Swine were then randomized (n = 10/group) into placebo or AC3174 treatment groups and continued the diet for an additional 6 months. AC3174 treatment attenuated weight gain, increased insulin secretion, and improved glucose tolerance. Intravascular ultrasound and histology showed no effect of AC3174 on CAD. MetS abolished SERCA activation by GLP-1 receptor agonists. We conclude that MetS confers vascular resistance to GLP-1 receptor agonists, partially through impaired cellular signaling steps involving SERCA. PMID:25845661

  3. Developmental stimuli and stress factors affect expression of ClGLP1, an emerging allergen-related gene in Citrus limon.

    PubMed

    Bruno, Leonardo; Spadafora, Natasha Damiana; Iaria, Domenico; Chiappetta, Adriana; Bitonti, Maria Beatrice

    2014-06-01

    Germins and germin-like proteins (GLPs) constitute an ubiquitous family of plant proteins that seem to be involved in many developmental and stress related processes. A novel GLP cDNA was isolated from Citrus limon and structural features and genomic organization were investigated by in silico and Southern blots analysis. In lemon, the ClGLP1 encodes a 24.38 kDa which possesses a conserved motif of plant GLPs proteins. A phylogetic analysis mapped ClGLP1 as belonging to the GER3 subfamily into the GLP1 group of large GLP family. ClGLP1 was differentially expressed in the various organs and was highest in mature fruit. Moreover, expression in the fruit was tissue- and stage-related as well as dependent on agricultural practice (organic vs conventional). ClGLP1 transcripts increased during the transition from the green (180 days after blooming) to the yellow (240 days after blooming) mature fruit and were strongly enhanced in yellow mature fruit from organic compared with conventional culture. A sudden and systemic increase in ClGLP1 expression level was observed in leaves injured by wounding, together with an increase of endogenous H2O2 amount. Notably, an enhancement of H202 was observed in fruit peel during transition from green to yellow fruit stage. All together our data showed that ClGLP1 expression can be modulated in relation to both developmental stimuli and culture practices; evidence is also provided that through an oxidase activity this gene could play a role in fruit maturation as well as in stress responses. PMID:24681751

  4. Glucagon-Like Peptide-1 Receptor Ligand Interactions: Structural Cross Talk between Ligands and the Extracellular Domain

    PubMed Central

    West, Graham M.; Willard, Francis S.; Sloop, Kyle W.; Showalter, Aaron D.; Pascal, Bruce D.; Griffin, Patrick R.

    2014-01-01

    Activation of the glucagon-like peptide-1 receptor (GLP-1R) in pancreatic ?-cells potentiates insulin production and is a current therapeutic target for the treatment of type 2 diabetes mellitus (T2DM). Like other class B G protein-coupled receptors (GPCRs), the GLP-1R contains an N-terminal extracellular ligand binding domain. N-terminal truncations on the peptide agonist generate antagonists capable of binding to the extracellular domain, but not capable of activating full length receptor. The main objective of this study was to use Hydrogen/deuterium exchange (HDX) to identify how the amide hydrogen bonding network of peptide ligands and the extracellular domain of GLP-1R (nGLP-1R) were altered by binding interactions and to then use this platform to validate direct binding events for putative GLP-1R small molecule ligands. The HDX studies presented here for two glucagon-like peptide-1 receptor (GLP-1R) peptide ligands indicates that the antagonist exendin-4[9-39] is significantly destabilized in the presence of nonionic detergents as compared to the agonist exendin-4. Furthermore, HDX can detect stabilization of exendin-4 and exendin-4[9-39] hydrogen bonding networks at the N-terminal helix [Val19 to Lys27] upon binding to the N-terminal extracellular domain of GLP-1R (nGLP-1R). In addition we show hydrogen bonding network stabilization on nGLP-1R in response to ligand binding, and validate direct binding events with the extracellular domain of the receptor for putative GLP-1R small molecule ligands. PMID:25180755

  5. Efficacy and safety of the glucagon-like peptide-1 receptor agonist liraglutide added to insulin therapy in poorly regulated patients with type 1 diabetes—a protocol for a randomised, double-blind, placebo-controlled study: The Lira-1 study

    PubMed Central

    Dejgaard, Thomas Fremming; Knop, Filip Krag; Tarnow, Lise; Frandsen, Christian Seerup; Hansen, Tanja Stenbæk; Almdal, Thomas; Holst, Jens Juul; Madsbad, Sten; Andersen, Henrik Ullits

    2015-01-01

    Introduction Intensive insulin therapy is recommended for the treatment of type 1 diabetes (T1D). Hypoglycaemia and weight gain are the common side effects of insulin treatment and may reduce compliance. In patients with insulin-treated type 2 diabetes, the addition of glucagon-like peptide-1 receptor agonist (GLP-1RA) therapy has proven effective in reducing weight gain and insulin dose. The present publication describes a protocol for a study evaluating the efficacy and safety of adding a GLP-1RA to insulin treatment in overweight patients with T1D in a randomised, double-blinded, controlled design. Methods and analysis In total, 100 patients with type 1 diabetes, poor glycaemic control (glycated haemoglobin (HbA1c) >8%) and overweight (body mass index >25 kg/m2) will be randomised to either liraglutide 1.8 mg once daily or placebo as an add-on to intensive insulin therapy in this investigator initiated, double-blinded, placebo-controlled parallel study. The primary end point is glycaemic control as measured by changes in HbA1c. Secondary end points include changes in the insulin dose, hypoglyacemic events, body weight, lean body mass, fat mass, food preferences and adverse events. Glycaemic excursions, postprandial glucagon levels and gastric emptying rate during a standardised liquid meal test will also be studied. Ethics and dissemination The study is approved by the Danish Medicines Authority, the Regional Scientific-Ethical Committee of the Capital Region of Denmark and the Data Protection Agency. The study will be carried out under the surveillance and guidance of the good clinical practice (GCP) unit at Copenhagen University Hospital Bispebjerg in accordance with the ICH-GCP guidelines and the Helsinki Declaration. Trial registration number NCT01612468. PMID:25838513

  6. Regulation of glucagon-like peptide-1 receptor and calcium-sensing receptor signaling by L-histidine.

    PubMed

    Leech, Colin A; Habener, Joel F

    2003-11-01

    Receptor-specific agonists of the extracellular calcium-sensing receptor (CaSR) potentiate glucose-induced insulin secretion, an effect similar to that of glucagon-like peptide-1 (GLP-1). We have sequenced the full open reading frame of the CaSR from rat insulinoma (INS-1) cells and find that the predicted amino acid sequence of the receptor is identical with that of the receptor from the parathyroid gland. This receptor couples to both Gq/11 and Gi/o, and this dual coupling may partly explain the varying effects of nonspecific agonists on secretion reported previously. L-Histidine (L-His) increases the sensitivity of the CaSR to extracellular Ca2+ and potentiates glucose-dependent insulin secretion from INS-1 cells. This potentiation is partially inhibited at low extracellular [Ca2+] where the CaSR is ineffective. Coexpression of the CaSR and GLP-1 receptor (GLP-1R) produces a pertussis toxin-sensitive inhibition of GLP-1-induced cAMP production in response to elevated extracellular [Ca2+]. However, l-His potentiates cAMP response element reporter activity in INS-1 cells and in human embryonic kidney-293 cells expressing either the GLP-1R alone or the CaSR and GLP-1R. INS-1 cells express the RNA for the CaSR at a lower level than that for the GLP-1R. This difference in expression level of the receptors may explain the potentiation of insulin secretion by L-His despite coupling of the CaSR to Gi/o. In conclusion, L-His can potentiate both GLP-1R- and CaSR-activated signaling pathways, and these effects may play a role in the potentiation of glucose-induced insulin secretion in response to meals containing protein in addition to carbohydrates and fat. PMID:12959987

  7. Combined modality therapy with TRAIL or agonistic death receptor antibodies

    PubMed Central

    Amm, Hope M; Oliver, Patsy G; Lee, Choo Hyung; Li, Yufeng

    2011-01-01

    Molecularly targeted therapies, such as antibodies and small molecule inhibitors have emerged as an important breakthrough in the treatment of many human cancers. One targeted therapy under development is tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) due to its ability to induce apoptosis in a variety of human cancer cell lines and xenografts, while lacking toxicity in most normal cells. TRAIL and apoptosis-inducing agonistic antibodies to the TRAIL death receptors have been the subject of many preclinical and clinical studies in the past decade. However, the sensitivity of individual cancer cell lines of a particular tumor type to these agents varies from highly sensitive to resistant. Various chemotherapy agents have been shown to enhance the apoptosis-inducing capacity of TRAIL receptor-targeted therapies and induce sensitization of TRAIL-resistant cells. This review provides an overview of the mechanisms associated with chemotherapy enhancement of TRAIL receptor-targeted therapies including modulation of the apoptotic (death receptor expression, FLIP and Bcl-2 or inhibitors of apoptosis [IAP] families) as well as cell signaling (NF?B, Akt, p53) pathways. These mechanisms will be important in establishing effective combinations to pursue clinically and in determining relevant targets for future cancer therapies. PMID:21263219

  8. Resistant starch and pullulan reduce postprandial glucose, insulin, and GLP-1, but have no effect on satiety in healthy humans.

    PubMed

    Klosterbuer, Abby S; Thomas, William; Slavin, Joanne L

    2012-12-01

    The aim of this study was to determine the effects of three novel fibers on satiety and serum parameters. In a randomized, double-blind, crossover design, fasted subjects (n=20) consumed a low-fiber control breakfast or one of four breakfasts containing 25 g of fiber from soluble corn fiber (SCF) or resistant starch (RS), alone or in combination with pullulan (SCF+P and RS+P). Visual analog scales assessed appetite, and blood samples were collected to measure glucose, insulin, ghrelin, and glucagon-like peptide-1 (GLP-1). The fiber treatments did not influence satiety or energy intake compared to control. RS+P significantly reduced glucose, insulin, and GLP-1, but neither SCF treatment differed from control. To conclude, these fibers have little impact on satiety when provided as a mixed meal matched for calories and macronutrients. Additional research regarding the physiological effects of these novel fibers is needed to guide their use as functional ingredients in food products. PMID:23136915

  9. Glucagon-like Peptide-1 receptor signaling in the lateral parabrachial nucleus contributes to the control of food intake and motivation to feed.

    PubMed

    Alhadeff, Amber L; Baird, John-Paul; Swick, Jennifer C; Hayes, Matthew R; Grill, Harvey J

    2014-08-01

    Central glucagon-like peptide-1 receptor (GLP-1R) activation reduces food intake and the motivation to work for food, but the neurons and circuits mediating these effects are not fully understood. Although lateral parabrachial nucleus (lPBN) neurons are implicated in the control of food intake and reward, the specific role of GLP-1R-expressing lPBN neurons is unexplored. Here, neuroanatomical tracing, immunohistochemical, and behavioral/pharmacological techniques are used to test the hypothesis that lPBN neurons contribute to the anorexic effect of central GLP-1R activation. Results indicate that GLP-1-producing neurons in the nucleus tractus solitarius project monosynaptically to the lPBN, providing a potential endogenous mechanism by which lPBN GLP-1R signaling may exert effects on food intake control. Pharmacological activation of GLP-1R in the lPBN reduced food intake, and conversely, antagonism of GLP-1R in the lPBN increased food intake. In addition, lPBN GLP-1R activation reduced the motivation to work for food under a progressive ratio schedule of reinforcement. Taken together, these data establish the lPBN as a novel site of action for GLP-1R-mediated control of food intake and reward. PMID:24681814

  10. Glucagon-Like Peptide-1 Receptor Signaling in the Lateral Parabrachial Nucleus Contributes to the Control of Food Intake and Motivation to Feed

    PubMed Central

    Alhadeff, Amber L; Baird, John-Paul; Swick, Jennifer C; Hayes, Matthew R; Grill, Harvey J

    2014-01-01

    Central glucagon-like peptide-1 receptor (GLP-1R) activation reduces food intake and the motivation to work for food, but the neurons and circuits mediating these effects are not fully understood. Although lateral parabrachial nucleus (lPBN) neurons are implicated in the control of food intake and reward, the specific role of GLP-1R-expressing lPBN neurons is unexplored. Here, neuroanatomical tracing, immunohistochemical, and behavioral/pharmacological techniques are used to test the hypothesis that lPBN neurons contribute to the anorexic effect of central GLP-1R activation. Results indicate that GLP-1-producing neurons in the nucleus tractus solitarius project monosynaptically to the lPBN, providing a potential endogenous mechanism by which lPBN GLP-1R signaling may exert effects on food intake control. Pharmacological activation of GLP-1R in the lPBN reduced food intake, and conversely, antagonism of GLP-1R in the lPBN increased food intake. In addition, lPBN GLP-1R activation reduced the motivation to work for food under a progressive ratio schedule of reinforcement. Taken together, these data establish the lPBN as a novel site of action for GLP-1R-mediated control of food intake and reward. PMID:24681814

  11. Exendin-4 agonist and exendin(9-39)amide antagonist of the GLP-1(7-36)amide effects in liver and muscle.

    PubMed

    Alcntara, A I; Morales, M; Delgado, E; Lpez-Delgado, M I; Clemente, F; Luque, M A; Malaisse, W J; Valverde, I; Villanueva-Peacarrillo, M L

    1997-05-01

    The GLP-1 structurally related peptides exendin-4 and exendin(9-39)amide were found to act, in rat liver and skeletal muscle, as agonist and antagonist, respectively, of the GLP-1(7-36)amide effects on glucose metabolism. Thus, like GLP-1(7-36)amide, exendin-4 increased glycogen synthase a activity and glucose incorporation into glycogen in both tissues and also stimulated exogenous D-glucose utilization and oxidation in muscle. These effects of GLP-1(7-36)amide and exendin-4 were inhibited by exendin(9-39)amide. Our findings provide further support to the proposed use of GLP-1, or exendin-4, as a tool in the treatment of diabetes mellitus. Thus, in addition to the well-known insulinotropic action of the peptides, they act both in liver and in muscle in a manner most suitable for restoration of glucose homeostasis, with emphasis on their positive effects upon glycogen synthesis in the two tissues and on the stimulation of exogenous glucose catabolism in muscle. PMID:9143346

  12. Activation of Enteroendocrine Membrane Progesterone Receptors Promotes Incretin Secretion and Improves Glucose Tolerance in Mice

    PubMed Central

    Flock, Grace B.; Cao, Xiemin; Maziarz, Marlena; Drucker, Daniel J.

    2013-01-01

    Glucagon-like peptide-1 (GLP-1) secretion is classically regulated by ingested nutrients. To identify novel molecular targets controlling incretin secretion, we analyzed enteroendocrine cell pathways important for hormone biosynthesis and secretion. We demonstrate that progesterone increases GLP-1 secretion and extracellular signalrelated kinase 1/2 (ERK1/2) phosphorylation in enteroendocrine GLUTag cells via mechanisms sensitive to the mitogen-activated protein kinase inhibitor U0126. The stimulatory effects of progesterone (P4) or the synthetic progestin R5020 on ERK1/2 phosphorylation were independent of the classical progesterone receptor antagonist RU486. Furthermore, a cell-impermeable BSAprogesterone conjugate rapidly increased ERK1/2 phosphorylation and GLP-1 secretion. Knockdown of the membrane progesterone receptors Paqr5 or Paqr7 in GLUTag cells eliminated the stimulatory effect of R5020 and progesterone on GLP-1 secretion. Enteral progesterone administration increased plasma levels of GLP-1, glucose-dependent insulinotropic polypeptide (GIP), and insulin, and improved oral glucose tolerance in an RU486-insensitve manner in mice: however, systemic progesterone exposure did not improve glucose homeostasis. Unexpectedly, the glucoregulatory actions of enteral progesterone did not require classical incretin receptor signaling and were preserved in Glp1r?/? and Glp1r?/?:Gipr?/? mice. Intestine-restricted activation of membrane progesterone receptors may represent a novel approach for stimulation of incretin hormone secretion and control of glucose homeostasis. PMID:22933106

  13. Islet-selectivity of G-protein coupled receptor ligands evaluated for PET imaging of pancreatic {beta}-cell mass

    SciTech Connect

    Cline, Gary W.; Zhao, Xiaojian; Jakowski, Amy B.; Soeller, Walter C.; Treadway, Judith L.

    2011-09-02

    Highlights: {yields} We screened G-protein coupled receptors for imaging pancreatic. {yields} Database mining and immunohistochemistry identified GPCRs enriched in {beta}-cells. {yields} In vitro and in vivo assays were used to determine exocrine vs endocrine specificity. {yields} GPCR candidates for imaging of {beta}-cell mass are Prokineticin-1R, mGluR5, and GLP-1R. -- Abstract: A critical unmet need exists for methods to quantitatively measure endogenous pancreatic {beta}-cell mass (BCM) for the clinical evaluation of therapies to prevent or reverse loss of BCM and diabetes progression. Our objective was to identify G-protein coupled receptors (GPCRs) that are expressed with a high degree of specificity to islet {beta}-cells for receptor-targeted imaging of BCM. GPCRs enriched in pancreatic islets relative to pancreas acinar and hepatic tissue were identified using a database screen. Islet-specific expression was confirmed by human pancreas immunohistochemistry (IHC). In vitro selectivity assessment was determined from the binding and uptake of radiolabeled ligands to the rat insulinoma INS-1 832/13 cell line and isolated rat islets relative to the exocrine pancreas cell-type, PANC-1. Tail-vein injections of radioligands into rats were used to determine favorable image criteria of in vivo biodistribution to the pancreas relative to other internal organs (i.e., liver, spleen, stomach, and lungs). Database and IHC screening identified four candidate receptors for further in vitro and in vivo evaluation for PET imaging of BCM: prokineticin-1 receptor (PK-1R), metabotropic glutamate receptor type-5 (mGluR5), neuropeptide Y-2 receptor (NPY-2R), and glucagon-like peptide 1 receptor (GLP-1R). In vitro specificity ratios gave the following receptor rank order: PK-1R > GLP-1R > NPY-2R > mGluR5. The biodistribution rank order of selectivity to the pancreas was found to be PK-1R > VMAT2 {approx} GLP-1R > mGluR5. Favorable islet selectivity and biodistribution characteristics suggest several GPCRs as potential targets for PET imaging of pancreatic BCM.

  14. Aldosterone receptor antagonists: current perspectives and therapies.

    PubMed

    Guichard, Jason L; Clark, Donald; Calhoun, David A; Ahmed, Mustafa I

    2013-01-01

    Aldosterone is a downstream effector of angiotensin II in the renin-angiotensin-aldosterone system and binds to the mineralocorticoid receptor. The classical view of aldosterone primarily acting at the level of the kidneys to regulate plasma potassium and intravascular volume status is being supplemented by evidence of new "off-target" effects of aldosterone in other organ systems. The genomic effects of aldosterone are well known, but there is also evidence for non-genomic effects and these recently identified effects of aldosterone have required a revision in the traditional view of aldosterone's role in human health and disease. The aim of this article is to review the biological action of aldosterone and the mineralocorticoid receptor leading to subsequent physiologic and pathophysiologic effects involving the vasculature, central nervous system, heart, and kidneys. Furthermore, we outline current evidence evaluating the use of mineralocorticoid receptor antagonists in the treatment of primary aldosteronism, primary hypertension, resistant hypertension, obstructive sleep apnea, heart failure, and chronic kidney disease. PMID:23836977

  15. Dosimetry of exendin-4 based radiotracer for glucagonlike peptide-1 receptor imaging: an initial report

    NASA Astrophysics Data System (ADS)

    Tomaszuk, M.; Sowa-Staszczak, A.; Lenda-Tracz, W.; Glowa, B.; Pach, D.; Buziak-Bereza, M.; Stefanska, A.; Janota, B.; Pawlak, D.; Mikolajczak, R.; Hubalewska-Dydejczyk, A. B.

    2011-09-01

    Overexpression of glucagonlike peptide-1 (GLP-1) receptors in human tumours is a potential target for future imaging and therapy. The GLP-1 receptor imaging using [Lys40(Ahx-HYNIC-99mTc/EDDA)NH2]-exendin-4 could be useful in the localization of unknown insulinoma focus. The aim of this study was to present the first experience of our unit with the new radiopharmaceutical and its dose estimates. Imaging studies and dose assessment, according to the MIRD schema and MIRD Pamphlet No.11, were performed for 3 patients (2 with suspicion of insulinoma, 1 with suspected insulinoma recurrence). In the first case suspicion of insulinoma was not confirmed. In the second case localized accumulation of tracer in the pancreas was removed by surgery and the clinical symptoms of insulinoma receded. In the third case, pathological accumulation of tracer was localized and recurrence of insulinoma was confirmed in fusion with CT images. The biological half-time did not exceed 2.7.h. The effective half-time did not exceed 4.8 h. The total-body radiation dose did not exceed 0.0038 mGy/MBq and is comparable with the radiation dose to patient after somatostatin receptor scintigraphy. The highest radiation dose was calculated for kidneys (~ 0.070 mGy/MBq). [Lys40(Ahx-HYNIC-99mTc/EDDA)NH2]-exendin-4 is a good candidate for clinical GLP-1 receptor imaging studies and appears safe for the patient from radiological safety point of view.

  16. Dietary sweet potato (Ipomoea batatas L.) leaf extract attenuates hyperglycaemia by enhancing the secretion of glucagon-like peptide-1 (GLP-1).

    PubMed

    Nagamine, Rika; Ueno, Shiori; Tsubata, Masahito; Yamaguchi, Kazuya; Takagaki, Kinya; Hira, Tohru; Hara, Hiroshi; Tsuda, Takanori

    2014-09-01

    'Suioh', a sweet potato (Ipomoea batatas L.) cultivar developed in Japan, has edible leaves and stems. The sweet potato leaves contain polyphenols such as caffeoylquinic acid (CQA) derivatives. It has multiple biological functions and may help to regulate the blood glucose concentration. In this study, we first examined whether sweet potato leaf extract powder (SP) attenuated hyperglycaemia in type 2 diabetic mice. Administration of dietary SP for 5 weeks significantly lowered glycaemia in type 2 diabetic mice. Second, we conducted in vitro experiments, and found that SP and CQA derivatives significantly enhanced glucagon-like peptide-1 (GLP-1) secretion. Third, pre-administration of SP significantly stimulated GLP-1 secretion and was accompanied by enhanced insulin secretion in rats, which resulted in a reduced glycaemic response after glucose injection. These results indicate that oral SP attenuates postprandial hyperglycaemia, possibly through enhancement of GLP-1 secretion. PMID:25066255

  17. Modulation of Glucagon Receptor Pharmacology by Receptor Activity-modifying Protein-2 (RAMP2).

    PubMed

    Weston, Cathryn; Lu, Jing; Li, Naichang; Barkan, Kerry; Richards, Gareth O; Roberts, David J; Skerry, Timothy M; Poyner, David; Pardamwar, Meenakshi; Reynolds, Christopher A; Dowell, Simon J; Willars, Gary B; Ladds, Graham

    2015-09-18

    The glucagon and glucagon-like peptide-1 (GLP-1) receptors play important, opposing roles in regulating blood glucose levels. Consequently, these receptors have been identified as targets for novel diabetes treatments. However, drugs acting at the GLP-1 receptor, although having clinical efficacy, have been associated with severe adverse side-effects, and targeting of the glucagon receptor has yet to be successful. Here we use a combination of yeast reporter assays and mammalian systems to provide a more complete understanding of glucagon receptor signaling, considering the effect of multiple ligands, association with the receptor-interacting protein receptor activity-modifying protein-2 (RAMP2), and the role of individual G protein ?-subunits. We demonstrate that RAMP2 alters both ligand selectivity and G protein preference of the glucagon receptor. Importantly, we also uncover novel cross-reactivity of therapeutically used GLP-1 receptor ligands at the glucagon receptor that is abolished by RAMP2 interaction. This study reveals the glucagon receptor as a previously unidentified target for GLP-1 receptor agonists and highlights a role for RAMP2 in regulating its pharmacology. Such previously unrecognized functions of RAMPs highlight the need to consider all receptor-interacting proteins in future drug development. PMID:26198634

  18. Modulation of Glucagon Receptor Pharmacology by Receptor Activity-modifying Protein-2 (RAMP2)*

    PubMed Central

    Weston, Cathryn; Lu, Jing; Li, Naichang; Barkan, Kerry; Richards, Gareth O.; Roberts, David J.; Skerry, Timothy M.; Poyner, David; Pardamwar, Meenakshi; Reynolds, Christopher A.; Dowell, Simon J.; Willars, Gary B.; Ladds, Graham

    2015-01-01

    The glucagon and glucagon-like peptide-1 (GLP-1) receptors play important, opposing roles in regulating blood glucose levels. Consequently, these receptors have been identified as targets for novel diabetes treatments. However, drugs acting at the GLP-1 receptor, although having clinical efficacy, have been associated with severe adverse side-effects, and targeting of the glucagon receptor has yet to be successful. Here we use a combination of yeast reporter assays and mammalian systems to provide a more complete understanding of glucagon receptor signaling, considering the effect of multiple ligands, association with the receptor-interacting protein receptor activity-modifying protein-2 (RAMP2), and the role of individual G protein ?-subunits. We demonstrate that RAMP2 alters both ligand selectivity and G protein preference of the glucagon receptor. Importantly, we also uncover novel cross-reactivity of therapeutically used GLP-1 receptor ligands at the glucagon receptor that is abolished by RAMP2 interaction. This study reveals the glucagon receptor as a previously unidentified target for GLP-1 receptor agonists and highlights a role for RAMP2 in regulating its pharmacology. Such previously unrecognized functions of RAMPs highlight the need to consider all receptor-interacting proteins in future drug development. PMID:26198634

  19. Distribution and characterisation of Glucagon-like peptide-1 receptor expressing cells in the mouse brain

    PubMed Central

    Cork, Simon C.; Richards, James E.; Holt, Marie K.; Gribble, Fiona M.; Reimann, Frank; Trapp, Stefan

    2015-01-01

    Objective Although Glucagon-like peptide 1 is a key regulator of energy metabolism and food intake, the precise location of GLP-1 receptors and the physiological relevance of certain populations is debatable. This study investigated the novel GLP-1R-Cre mouse as a functional tool to address this question. Methods Mice expressing Cre-recombinase under the Glp1r promoter were crossed with either a ROSA26 eYFP or tdRFP reporter strain to identify GLP-1R expressing cells. Patch-clamp recordings were performed on tdRFP-positive neurons in acute coronal brain slices from adult mice and selective targeting of GLP-1R cells in vivo was achieved using viral gene delivery. Results Large numbers of eYFP or tdRFP immunoreactive cells were found in the circumventricular organs, amygdala, hypothalamic nuclei and the ventrolateral medulla. Smaller numbers were observed in the nucleus of the solitary tract and the thalamic paraventricular nucleus. However, tdRFP positive neurons were also found in areas without preproglucagon-neuronal projections like hippocampus and cortex. GLP-1R cells were not immunoreactive for GFAP or parvalbumin although some were catecholaminergic. GLP-1R expression was confirmed in whole-cell recordings from BNST, hippocampus and PVN, where 100 nM GLP-1 elicited a reversible inward current or depolarisation. Additionally, a unilateral stereotaxic injection of a cre-dependent AAV into the PVN demonstrated that tdRFP-positive cells express cre-recombinase facilitating virally-mediated eYFP expression. Conclusions This study is a comprehensive description and phenotypic analysis of GLP-1R expression in the mouse CNS. We demonstrate the power of combining the GLP-1R-CRE mouse with a virus to generate a selective molecular handle enabling future in vivo investigation as to their physiological importance. PMID:26500843

  20. Dulaglutide, a long-acting GLP-1 analog fused with an Fc antibody fragment for the potential treatment of type 2 diabetes.

    PubMed

    Jimenez-Solem, Espen; Rasmussen, Mette H; Christensen, Mikkel; Knop, Filip K

    2010-12-01

    Dulaglutide (LY-2189265) is a novel, long-acting glucagon-like peptide 1 (GLP-1) analog being developed by Eli Lilly for the treatment of type 2 diabetes mellitus (T2DM). Dulaglutide consists of GLP-1(7-37) covalently linked to an Fc fragment of human IgG4, thereby protecting the GLP-1 moiety from inactivation by dipeptidyl peptidase 4. In vitro and in vivo studies on T2DM models demonstrated glucose-dependent insulin secretion stimulation. Pharmacokinetic studies demonstrated a t1/2 in humans of up to 90 h, making dulaglutide an ideal candidate for once-weekly dosing. Clinical trials suggest that dulaglutide reduces plasma glucose, and has an insulinotropic effect increasing insulin and C-peptide levels. Two phase II clinical trials demonstrated a dose-dependent reduction in glycated hemoglobin (HbA1c) of up to 1.52% compared with placebo. Side effects associated with dulaglutide administration were mainly gastrointestinal. To date, there have been no reports on the formation of antibodies against dulaglutide, but, clearly, long-term data will be needed to asses this and other possible side effects. The results of several phase III clinical trials are awaited for clarification of the expected effects on HbA1c and body weight. If dulaglutide possesses similar efficacy to other GLP-1 analogs, the once-weekly treatment will most likely be welcomed by patients with T2DM. PMID:21154170

  1. A nondigestible saccharide, fructooligosaccharide, increases the promotive effect of a flavonoid, ?-glucosyl-isoquercitrin, on glucagon-like peptide 1 (GLP-1) secretion in rat intestine and enteroendocrine cells.

    PubMed

    Phuwamongkolwiwat, Panchita; Hira, Tohru; Hara, Hiroshi

    2014-07-01

    This study conducted in vivo and in situ experiments with rats to investigate the glucagon-like peptide-1 (GLP-1) secretion in response to oral or ileal administration of ?-glucosyl-isoquercitrin (20-40 mmol in 2 mL; Q3G), fructooligosaccharides (200 mmol in 2 mL; FOS) and Q3G + FOS. Direct effects on GLP-1-producing l-cells were also examined by an in vitro study using a murine enteroendocrine cell line, GLUTag. To evaluate the plasma GLP-1 level, blood samples from jugular cannula for in vivo and portal cannula for in situ experiments were obtained before and after administration of Q3G, FOS, or Q3G + FOS. We found tendencies for increases but transient stimulation of GLP-1 secretion by Q3G in in vivo and in situ experiments. Although FOS alone did not have any effects, Q3G + FOS enhanced and prolonged high plasma GLP-1 level in both experiments. In addition, application of Q3G on GLUTag cells stimulated GLP-1 secretion while FOS enhanced the effect of Q3G. Our results suggest that Q3G + FOS possess the potential for the management or prevention of Type 2 diabetes mellitus (T2DM) by enhancing and prolonging the GLP-1 secretion via direct stimulation of GLP-1 producing l-cell. PMID:24753209

  2. The structure and function of the glucagon-like peptide-1 receptor and its ligands

    PubMed Central

    Donnelly, Dan

    2012-01-01

    Glucagon-like peptide-1(7-36)amide (GLP-1) is a 30-residue peptide hormone released from intestinal L cells following nutrient consumption. It potentiates the glucose-induced secretion of insulin from pancreatic beta cells, increases insulin expression, inhibits beta-cell apoptosis, promotes beta-cell neogenesis, reduces glucagon secretion, delays gastric emptying, promotes satiety and increases peripheral glucose disposal. These multiple effects have generated a great deal of interest in the discovery of long-lasting agonists of the GLP-1 receptor (GLP-1R) in order to treat type 2 diabetes. This review article summarizes the literature regarding the discovery of GLP-1 and its physiological functions. The structure, function and sequenceactivity relationships of the hormone and its natural analogue exendin-4 (Ex4) are reviewed in detail. The current knowledge of the structure of GLP-1R, a Family B GPCR, is summarized and discussed, before its known interactions with the principle peptide ligands are described and summarized. Finally, progress in discovering non-peptide ligands of GLP-1R is reviewed. GLP-1 is clearly an important hormone linking nutrient consumption with blood sugar control, and therefore knowledge of its structure, function and mechanism of action is of great importance. LINKED ARTICLES This article is part of a themed section on Secretin Family (Class B) G Protein-Coupled Receptors. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.166.issue-1 PMID:21950636

  3. Adoptive T Cell Therapies: A Comparison of T Cell Receptors and Chimeric Antigen Receptors.

    PubMed

    Harris, Daniel T; Kranz, David M

    2016-03-01

    The tumor-killing properties of T cells provide tremendous opportunities to treat cancer. Adoptive T cell therapies have begun to harness this potential by endowing a functionally diverse repertoire of T cells with genetically modified, tumor-specific recognition receptors. Normally, this antigen recognition function is mediated by an αβ T cell receptor (TCR), but the dominant therapeutic forms currently in development are synthetic constructs called chimeric antigen receptors (CARs). While CAR-based adoptive cell therapies are already showing great promise, their basic mechanistic properties have been studied in less detail compared with those of αβ TCRs. In this review, we compare and contrast various features of TCRs versus CARs, with a goal of highlighting issues that need to be addressed to fully exploit the therapeutic potential of both. PMID:26705086

  4. Significance of interleukin-13 receptor alpha 2targeted glioblastoma therapy

    PubMed Central

    Thaci, Bart; Brown, Christine E.; Binello, Emanuela; Werbaneth, Katherine; Sampath, Prakash; Sengupta, Sadhak

    2014-01-01

    Glioblastoma multiforme (GBM) remains one of the most lethal primary brain tumors despite surgical and therapeutic advancements. Targeted therapies of neoplastic diseases, including GBM, have received a great deal of interest in recent years. A highly studied target of GBM is interleukin-13 receptor ? chain variant 2 (IL13R?2). Targeted therapies against IL13R?2 in GBM include fusion chimera proteins of IL-13 and bacterial toxins, nanoparticles, and oncolytic viruses. In addition, immunotherapies have been developed using monoclonal antibodies and cell-based strategies such as IL13R?2-pulsed dendritic cells and IL13R?2-targeted chimeric antigen receptormodified T cells. Advanced therapeutic development has led to the completion of phase I clinical trials for chimeric antigen receptormodified T cells and phase III clinical trials for IL-13conjugated bacterial toxin, with promising outcomes. Selective expression of IL13R?2 on tumor cells, while absent in the surrounding normal brain tissue, has motivated continued study of IL13R?2 as an important candidate for targeted glioma therapy. Here, we review the preclinical and clinical studies targeting IL13R?2 in GBM and discuss new advances and promising applications. PMID:24723564

  5. Significance of interleukin-13 receptor alpha 2-targeted glioblastoma therapy.

    PubMed

    Thaci, Bart; Brown, Christine E; Binello, Emanuela; Werbaneth, Katherine; Sampath, Prakash; Sengupta, Sadhak

    2014-10-01

    Glioblastoma multiforme (GBM) remains one of the most lethal primary brain tumors despite surgical and therapeutic advancements. Targeted therapies of neoplastic diseases, including GBM, have received a great deal of interest in recent years. A highly studied target of GBM is interleukin-13 receptor ? chain variant 2 (IL13R?2). Targeted therapies against IL13R?2 in GBM include fusion chimera proteins of IL-13 and bacterial toxins, nanoparticles, and oncolytic viruses. In addition, immunotherapies have been developed using monoclonal antibodies and cell-based strategies such as IL13R?2-pulsed dendritic cells and IL13R?2-targeted chimeric antigen receptor-modified T cells. Advanced therapeutic development has led to the completion of phase I clinical trials for chimeric antigen receptor-modified T cells and phase III clinical trials for IL-13-conjugated bacterial toxin, with promising outcomes. Selective expression of IL13R?2 on tumor cells, while absent in the surrounding normal brain tissue, has motivated continued study of IL13R?2 as an important candidate for targeted glioma therapy. Here, we review the preclinical and clinical studies targeting IL13R?2 in GBM and discuss new advances and promising applications. PMID:24723564

  6. [Albiglutide (Eperzan): a new once-weekly agonist of glucagon-like peptide-1 receptors].

    PubMed

    Scheen, A J

    2015-04-01

    Albiglutide (Eperzan) is a new once-weekly agonist of Glucagon-Like Peptide-1 (GLP-1) receptors that is indicated in the treatment of type 2 diabetes. Two doses are available, 30 mg and 50 mg, to be injected subcutaneously once a week. It has been extensively evaluated in the HARMONY programme of eight large randomised controlled trials that were performed at different stages of type 2 diabetes, in comparison with placebo or an active comparator. The endocrine and metabolic effects of albiglutide are similar to those of other GLP-1 receptor agonists: stimulation of insulin secretion (incretin effect) and inhibition of glucagon secretion, both in a glucose-dependent manner, retardation of gastric emptying and increase of satiety. These effects lead to a reduction in glycated haemoglobin (HbA(1c)) levels, combined with a weight reduction. The overall tolerance profile is good. Albiglutide is currently reimbursed in Belgium after failure (HbA(1c) > 7.5%) of and in combination with a dual therapy with metformin and a sulfonylurea as well as in combination with a basal insulin (with or without oral antidiabetic drugs). To avoid hypoglycaemia, a reduction in the dose of sulfonylurea or insulin may be recommended. A once-weekly administration should increase patient's acceptance of injectable therapy and improve compliance. PMID:26054173

  7. Glycolipid receptor depletion as an approach to specific antimicrobial therapy.

    PubMed

    Svensson, Majlis; Platt, Frances M; Svanborg, Catharina

    2006-05-01

    Mucosal pathogens recognize glycoconjugate receptors at the site of infection, and attachment is an essential first step in disease pathogenesis. Inhibition of attachment may prevent disease, and several approaches have been explored. This review discusses the prevention of bacterial attachment and disease by agents that modify the glycosylation of cell surface glycoconjugates. Glycosylation inhibitors were tested in the urinary tract infection model, where P-fimbriated Escherichia coli rely on glycosphingolipid receptors for attachment and tissue attack. N-butyldeoxynojirimycin blocked the expression of glucosylceramide-derived glycosphingolipids and attachment was reduced. Bacterial persistence in the kidneys was impaired and the inflammatory response was abrogated. N-butyldeoxynojirimycin was inactive against strains which failed to engage these receptors, including type 1 fimbriated or nonadhesive strains. In vivo attachment has been successfully prevented by soluble receptor analogues, but there is little clinical experience of such inhibitors. Large-scale synthesis of complex carbohydrates, which could be used as attachment inhibitors, remains a technical challenge. Antibodies to bacterial lectins involved in attachment may be efficient inhibitors, and fimbrial vaccines have been developed. Glycosylation inhibitors have been shown to be safe and efficient in patients with lipid storage disease and might therefore be tested in urinary tract infection. This approach differs from current therapies, including antibiotics, in that it targets the pathogens which recognize these receptors. PMID:16630247

  8. Brain insulin resistance in Alzheimer's disease and its potential treatment with GLP-1 analogs.

    PubMed

    Talbot, Konrad

    2014-01-01

    The prevalence of Alzheimer's disease is increasing rapidly in the absence of truly effective therapies. A promising strategy for developing such therapies is the treatment of brain insulin resistance, a common and early feature of Alzheimer's disease, closely tied to cognitive decline and capable of promoting many biological abnormalities in the disorder. The proximal cause of brain insulin resistance appears to be neuronal elevation in the serine phosphorylation of IRS-1, most likely due to amyloid-β-triggered microglial release of proinflammatory cytokines. Preclinically, the first line of defense is behavior-lowering peripheral insulin resistance (e.g., physical exercise and a Mediterranean diet supplemented with foods rich in flavonoids, curcumin and ω-3 fatty acids). More potent remediation is required, however, at clinical stages. Fortunately, the US FDA-approved antidiabetics exenatide (Byetta; Amylin Pharmaceuticals, Inc., CA, USA) and liraglutide (Victoza; Novo Nordisk A/S, Bagsvaerd, Denmark) are showing much promise in reducing Alzheimer's disease pathology and in restoring normal brain insulin responsiveness and cognitive function. PMID:24640977

  9. Type 2 diabetes mellitus and the cardiometabolic syndrome: impact of incretin-based therapies

    PubMed Central

    Schwartz, Stanley; Kohl, Benjamin A

    2010-01-01

    The rates of type 2 diabetes mellitus, obesity, and cardiovascular disease (CVD) continue to increase at epidemic proportions. It has become clear that these disease states are not independent but are frequently interrelated. By addressing conditions such as obesity, insulin resistance, stress hyperglycemia, impaired glucose tolerance, and diabetes mellitus, with its micro- and macrovascular complications, a specific treatment strategy can be developed. These conditions can be addressed by early identification of patients at high risk for type 2 diabetes, prompt and aggressive treatment of their hyperglycemia, recognition of the pleiotropic and synergistic benefits of certain antidiabetes agents on CVD, and thus, avoiding potential complications including hypoglycemia and weight gain. Incretin-based therapies, which include glucagon-like peptide-1 (GLP-1) receptor agonists and dipeptidyl peptidase-IV (DPP-IV) inhibitors, have the potential to alter the course of type 2 diabetes and associated CVD complications. Advantages of these therapies include glucose-dependent enhancement of insulin secretion, infrequent instances of hypoglycemia, weight loss with GLP-1 receptor agonists, weight maintenance with DPP-IV inhibitors, decreased blood pressure, improvements in dyslipidemia, and potential beneficial effects on CV function. PMID:21437091

  10. Estrogen receptors in breast carcinogenesis and endocrine therapy.

    PubMed

    Huang, Bo; Warner, Margaret; Gustafsson, Jan-ke

    2015-12-15

    Excessive exposure to estrogen has long been associated with an increased risk for developing breast cancer and anti-estrogen therapy is the gold standard of care in the treatment of estrogen receptor (ER) ?-positive breast cancers. However, there are several mysteries concerning both anti-estrogen, tamoxifen, and estrogen. The most important of these are: (1) some ER?-positive breast cancers do not respond to tamoxifen; (2) some ER?-negative breast cancers do respond to tamoxifen; (3) initial or acquired resistance to tamoxifen occurs with recurrent tumors; (4) estrogen can cause marked tumor regression in long-term tamoxifen-resistant ER?-positive breast cancer. These mysteries indicate that we do not know enough about estrogen signaling to understand the effects of targeting these receptors in cancer. The discovery of ER?, the second estrogen receptor, has added another level of complexity to estrogen signaling. This review summarizes recent publications and makes an updated portrait of ER? and ER? in breast carcinogenesis and endocrine cancer therapy. PMID:25433206

  11. Chronic Toxicity and Carcinogenicity Studies of the Long-Acting GLP-1 Receptor Agonist Dulaglutide in Rodents.

    PubMed

    Byrd, Richard A; Sorden, Steven D; Ryan, Thomas; Pienkowski, Thomas; LaRock, Richard; Quander, Ricardo; Wijsman, John A; Smith, Holly W; Blackbourne, Jamie L; Rosol, Thomas J; Long, Gerald G; Martin, Jennifer A; Vahle, John L

    2015-07-01

    The tumorigenic potential of dulaglutide was evaluated in rats and transgenic mice. Rats were injected sc twice weekly for 93 weeks with dulaglutide 0, 0.05, 0.5, 1.5, or 5 mg/kg corresponding to 0, 0.5, 7, 20, and 58 times, respectively, the maximum recommended human dose based on plasma area under the curve. Transgenic mice were dosed sc twice weekly with dulaglutide 0, 0.3, 1, or 3 mg/kg for 26 weeks. Dulaglutide effects were limited to the thyroid C-cells. In rats, diffuse C-cell hyperplasia and adenomas were statistically increased at 0.5 mg/kg or greater (P ? .01 at 5 mg/kg), and C-cell carcinomas were numerically increased at 5 mg/kg. Focal C-cell hyperplasia was higher compared with controls in females given 0.5, 1.5, and 5 mg/kg. In transgenic mice, no dulaglutide-related C-cell hyperplasia or neoplasia was observed at any dose; however, minimal cytoplasmic hypertrophy of C cells was observed in all dulaglutide groups. Systemic exposures decreased over time in mice, possibly due to an antidrug antibody response. In a 52-week study designed to quantitate C-cell mass and plasma calcitonin responses, rats received twice-weekly sc injections of dulaglutide 0 or 5 mg/kg. Dulaglutide increased focal C-cell hyperplasia; however, quantitative increases in C-cell mass did not occur. Consistent with the lack of morphometric changes in C-cell mass, dulaglutide did not affect the incidence of diffuse C-cell hyperplasia or basal or calcium-stimulated plasma calcitonin, suggesting that diffuse increases in C-cell mass did not occur during the initial 52 weeks of the rat carcinogenicity study. PMID:25860029

  12. Current status of chimeric antigen receptor therapy for haematological malignancies.

    PubMed

    Maude, Shannon; Barrett, David M

    2016-01-01

    The field of adoptive cell transfer includes chimeric antigen receptor (CAR) engineered T cells, constructs that emerged from basic research into principles of immunology and have transformed into clinically effective therapies for haematological malignancies. T cells engineered to express these artificial receptors hold great promise, but also carry significant risk. While permanent genetic modification of mature T cells appears safe, modulating their invivo function is difficult, partly because the robust response can trigger other arms of the immune system. Suicide systems and toxicity management with cytokine blockade or signal transduction modulators have emerged as a new frontier in this field, a far cry from early problems getting CAR T cells to work at all. Currently, clinical trials in patients with relapsed or refractory B cell malignancies treated with CD19-specific CAR T cells have induced durable remissions in adults and children. Results from these trials indicate that more work needs to be done to understand biomarkers of efficacy, the role of T cell persistence and how to integrate this care into standard practice. Cell therapy will not be a 'one size fits all' class of medicine, and here we will discuss the development of this therapy and important questions for its future. PMID:26560054

  13. New radiopharmaceuticals for receptor scintigraphy and radionuclide therapy.

    PubMed

    Virgolini, I; Traub, T; Leimer, M; Novotny, C; Pangerl, T; Ofluoglu, S; Halvadjieva, E; Smith-Jones, P; Flores, J; Li, S R; Angelberger, P; Havlik, E; Andreae, F; Raderer, M; Kurtaran, A; Niederle, B; Dudczak, R

    2000-03-01

    In vitro data have demonstrated a high amount of receptors for various hormones and peptides on malignant cells of neuroendocrine origin. Among these, binding sites for members of the SST-family (hSSTR1-5) are frequently found, and their expression has led to therapeutic and diagnostic attempts to specifically target these receptors. Receptor scintigraphy using radiolabeled peptide ligands has proven its effectiveness in clinical practice. In addition, initial results have indicated a clinical potential for receptor-targeted radiotherapy. Based on somatostatin (SST) receptor (R) recognition, the novel radiopharmaceuticals 111In/90Y-DOTA-lanreotide developed at the University of Vienna as well as 111In/90Y-DOTA-DPhe1-Tyr3-octreotide (NOVARTIS) both have provided promising data for diagnosis and treatment of hSSTR-positive tumors. SSTR scintigraphy using 111In-DTPA-DPhe1-octreotide has a high positive predictive value for the vast majority of neuroendocrine tumors and has gained its place in the diagnostic work-up as well as follow-up of patients. We have used 111In-DOTA-lanreotide scintigraphy in 166 patients since 1997 and have seen positive results in 93% of patients. In 42 patients with neuroendocrine tumors comparative data were obtained. As opposed to 111In-DTPA-DPhe1-octreotide and 111In-DOTA-DPhe1-Tyr3-octreotide, discrepancies in the scintigraphic results were seen in about one third of patients concerning both the tumor uptake as well as tumor lesion detection. Initial results both with 90Y-DOTA-lanreotide as well as 90Y-DOTA-DPhe1-Tyr3-octreotide has pointed out the clinical potential of radionuclide receptor-targeted radiotherapy. This new therapy could offer palliation and disease control at a reduced cost. The final peptide therapy strategy is most probably cheaper than conventional radiotherapies or prolonged chemotherapies. Overall, receptor-mediated radiotherapy with 90Y-DOTA-lanreotide/90Y-DOTA-DPhe1-Tyr3-octre otide might also be effective in patients refractory to conventional strategies. PMID:10932601

  14. Direct control of brown adipose tissue thermogenesis by central nervous system glucagon-like peptide-1 receptor signaling.

    PubMed

    Lockie, Sarah H; Heppner, Kristy M; Chaudhary, Nilika; Chabenne, Joseph R; Morgan, Donald A; Veyrat-Durebex, Christelle; Ananthakrishnan, Gayathri; Rohner-Jeanrenaud, Franoise; Drucker, Daniel J; DiMarchi, Richard; Rahmouni, Kamal; Oldfield, Brian J; Tschp, Matthias H; Perez-Tilve, Diego

    2012-11-01

    We studied interscapular brown adipose tissue (iBAT) activity in wild-type (WT) and glucagon-like peptide 1 receptor (GLP-1R)-deficient mice after the administration of the proglucagon-derived peptides (PGDPs) glucagon-like peptide (GLP-1), glucagon (GCG), and oxyntomodulin (OXM) directly into the brain. Intracerebroventricular injection of PGDPs reduces body weight and increases iBAT thermogenesis. This was independent of changes in feeding and insulin responsiveness but correlated with increased activity of sympathetic fibers innervating brown adipose tissue (BAT). Despite being a GCG receptor agonist, OXM requires GLP-1R activation to induce iBAT thermogenesis. The increase in thermogenesis in WT mice correlates with increased expression of genes upregulated by adrenergic signaling and required for iBAT thermogenesis, including PGC1a and UCP-1. In spite of the increase in iBAT thermogenesis induced by GLP-1R activation in WT mice, Glp1r(-/-) mice exhibit a normal response to cold exposure, demonstrating that endogenous GLP-1R signaling is not essential for appropriate thermogenic response after cold exposure. Our data suggest that the increase in BAT thermogenesis may be an additional mechanism whereby pharmacological GLP-1R activation controls energy balance. PMID:22933116

  15. Direct Control of Brown Adipose Tissue Thermogenesis by Central Nervous System Glucagon-Like Peptide-1 Receptor Signaling

    PubMed Central

    Lockie, Sarah H.; Heppner, Kristy M.; Chaudhary, Nilika; Chabenne, Joseph R.; Morgan, Donald A.; Veyrat-Durebex, Christelle; Ananthakrishnan, Gayathri; Rohner-Jeanrenaud, Franoise; Drucker, Daniel J.; DiMarchi, Richard; Rahmouni, Kamal; Oldfield, Brian J.; Tschp, Matthias H.; Perez-Tilve, Diego

    2012-01-01

    We studied interscapular brown adipose tissue (iBAT) activity in wild-type (WT) and glucagon-like peptide 1 receptor (GLP-1R)deficient mice after the administration of the proglucagon-derived peptides (PGDPs) glucagon-like peptide (GLP-1), glucagon (GCG), and oxyntomodulin (OXM) directly into the brain. Intracerebroventricular injection of PGDPs reduces body weight and increases iBAT thermogenesis. This was independent of changes in feeding and insulin responsiveness but correlated with increased activity of sympathetic fibers innervating brown adipose tissue (BAT). Despite being a GCG receptor agonist, OXM requires GLP-1R activation to induce iBAT thermogenesis. The increase in thermogenesis in WT mice correlates with increased expression of genes upregulated by adrenergic signaling and required for iBAT thermogenesis, including PGC1a and UCP-1. In spite of the increase in iBAT thermogenesis induced by GLP-1R activation in WT mice, Glp1r?/? mice exhibit a normal response to cold exposure, demonstrating that endogenous GLP-1R signaling is not essential for appropriate thermogenic response after cold exposure. Our data suggest that the increase in BAT thermogenesis may be an additional mechanism whereby pharmacological GLP-1R activation controls energy balance. PMID:22933116

  16. Endothelin B Receptor, a New Target in Cancer Immune Therapy

    PubMed Central

    Kandalaft, Lana E.; Facciabene, Andrea; Buckanovich, Ron J.; Coukos, George

    2010-01-01

    The endothelins and their G protein-coupled receptors A and B have been implicated innumerous diseases and have recently emerged as pivotal players in a variety of malignancies. Tumors over-express the endothelin 1 (ET-1) ligand and the endothelin-A-receptor (ETAR). Their interaction induces tumor growth and metastasis by promoting tumor cell survival and proliferation, angiogenesis, and tissue remodeling. On the basis of results from xenograft models, drug development efforts have focused on antagonizing the autocrine-paracrine effects mediated by ET-1/ETAR. In this review, we discuss a novel role of the endothelin-B-receptor (ETBR) in tumorigenesis and the effect of its blockade during cancer immune therapy. We highlight key characteristics of the B receptor such as its specific overexpression in the tumor compartment; and specifically, in the tumor endothelium, where its activation by ET-1 suppresses T-cell adhesion and homing to tumors. We also review our recent findings on the effects of ETBR-specific blockade in increasing T-cell homing to tumors and enhancing the efficacy of otherwise ineffective immunotherapy. PMID:19567593

  17. Novel drugs targeting Toll-like receptors for antiviral therapy

    PubMed Central

    Patel, Mira C; Shirey, Kari Ann; Pletneva, Lioubov M; Boukhvalova, Marina S; Garzino-Demo, Alfredo; Vogel, Stefanie N; Blanco, Jorge CG

    2014-01-01

    Toll-like receptors (TLRs) are sentinel receptors of the host innate immune system that recognize conserved ‘pathogen-associated molecular patterns’ of invading microbes, including viruses. The activation of TLRs establishes antiviral innate immune responses and coordinates the development of long-lasting adaptive immunity in order to control viral pathogenesis. However, microbe-induced damage to host tissues may release ‘danger-associated molecular patterns’ that also activate TLRs, leading to an overexuberant inflammatory response and, ultimately, to tissue damage. Thus, TLRs have proven to be promising targets as therapeutics for the treatment of viral infections that result in inflammatory damage or as adjuvants in order to enhance the efficacy of vaccines. Here, we explore recent advances in TLR biology with a focus on novel drugs that target TLRs (agonists and antagonists) for antiviral therapy. PMID:25620999

  18. Incretin-based therapies in prediabetes: Current evidence and future perspectives

    PubMed Central

    Papaetis, Georgios S

    2014-01-01

    The prevalence of type 2 diabetes (T2D) is evolving globally at an alarming rate. Prediabetes is an intermediate state of glucose metabolism that exists between normal glucose tolerance (NGT) and the clinical entity of T2D. Relentless β-cell decline and failure is responsible for the progression from NGT to prediabetes and eventually T2D. The huge burden resulting from the complications of T2D created the need of therapeutic strategies in an effort to prevent or delay its development. The beneficial effects of incretin-based therapies, dipeptidyl peptidase-4 inhibitors and glucagon-like peptide-1 (GLP-1) receptor agonists, on β-cell function in patients with T2D, together with their strictly glucose-depended mechanism of action, suggested their possible use in individuals with prediabetes when greater β-cell mass and function are preserved and the possibility of β-cell salvage is higher. The present paper summarizes the main molecular intracellular mechanisms through which GLP-1 exerts its activity on β-cells. It also explores the current evidence of incretin based therapies when administered in a prediabetic state, both in animal models and in humans. Finally it discusses the safety of incretin-based therapies as well as their possible role in order to delay or prevent T2D. PMID:25512784

  19. Chimeric antigen receptor T-cell therapy for ALL.

    PubMed

    Maude, Shannon L; Shpall, Elizabeth J; Grupp, Stephan A

    2014-12-01

    Relapsed and refractory leukemias pose substantial challenges in both children and adults, with very little progress being made in more than a decade. Targeted immunotherapy using chimeric antigen receptor (CAR)-modified T cells has emerged as a potent therapy with an innovative mechanism. Dramatic clinical responses with complete remission rates as high as 90% have been reported using CAR-modified T cells directed against the B-cell-specific antigen CD19 in patients with relapsed/refractory acute lymphoblastic leukemia. Supraphysiologic T-cell proliferation, a hallmark of this therapy, contributes to both efficacy and the most notable toxicity, cytokine release syndrome, posing a unique challenge for toxicity management. Further studies are necessary to identify additional targets, standardize approaches to cytokine release syndrome management, and determine the durability of remissions. PMID:25696911

  20. Treatment of gastroenteropancreatic neuroendocrine tumors with peptide receptor radionuclide therapy.

    PubMed

    van Vliet, Esther I; Teunissen, Jaap J M; Kam, Boen L R; de Jong, Marion; Krenning, Eric P; Kwekkeboom, Dik J

    2013-01-01

    The primary treatment of gastroenteropancreatic neuroendocrine tumors (GEPNETs) is surgery with curative intent or debulking of the tumor mass. In case of metastatic disease, cytoreductive options are limited. A relatively new therapeutic modality, peptide receptor radionuclide therapy (PRRT) with radiolabeled somatostatin analogs, is currently available in a number of mostly European centers. Complete and partial responses obtained after treatment with [90Y-DOTA0,Tyr3]octreotide are in the same range as after treatment with [177Lu-DOTA0,Tyr3]octreotate (i.e. 10-30%). However, significant nephrotoxicity has been observed after treatment with [90Y-DOTA0,Tyr3]octreotide. Options to improve PRRT may include combinations of radioactive labeled somatostatin analogs, intra-arterial administration, and the use of radiosensitizing drugs combined with PRRT. Other therapeutic applications of PRRT may include additional therapy cycles in patients with progressive disease after benefit from initial therapy, PRRT in adjuvant or neoadjuvant setting, or PRRT combined with new targeted therapies, such as sunitinib or everolimus. Randomized clinical trials comparing PRRT with other treatment modalities, or comparing various radioactive labeled somatostatin analogs should be undertaken to determine the best treatment options and treatment sequelae for patients with GEPNETs. PMID:22237390

  1. Regulation of gastric emptying rate and its role in nutrient-induced GLP-1 secretion in rats after vertical sleeve gastrectomy

    PubMed Central

    Chambers, Adam P.; Smith, Eric P.; Begg, Denovan P.; Grayson, Bernadette E.; Sisley, Stephanie; Greer, Todd; Sorrell, Joyce; Lemmen, Lisa; LaSance, Kati; Woods, Stephen C.; Seeley, Randy J.; D'Alessio, David A.

    2013-01-01

    Roux-en-Y gastric bypass (RYGB) and vertical sleeve gastrectomy (VSG) are effective weight loss surgeries that also improve glucose metabolism. Rapid, early rises of circulating insulin and glucagon-like peptide-1 (GLP-1) concentrations following food ingestion are characteristic of these procedures. The purpose of the current study was to test the hypothesis that postprandial hormone release is due to increased nutrient emptying from the stomach. Radioscintigraphy and chemical and radiolabeled tracers were used to examine gastric emptying in rat models of VSG and RYGB surgery. Intraduodenal nutrient infusions were used to assess intestinal GLP-1 secretion and nutrient sensitivity in VSG rats compared with shams. Five minutes after a nutrient gavage, the stomachs of RYGB and VSG rats were completely emptied, whereas only 6.1% of the nutrient mixture had emptied from sham animals. Gastric pressure was increased in VSG animals, and rats with this procedure did not inhibit gastric emptying normally in response to increasing caloric loads of dextrose or corn oil, and they did not respond to neural or endocrine effectors of gastric motility. Finally, direct infusion of liquid nutrients into the duodenum caused significantly greater GLP-1 release in VSG compared with shams, indicating that increases in GLP-1 secretion after VSG are the result of both greater gastric emptying rates and altered responses at the level of the intestine. These findings demonstrate greatly accelerated gastric emptying in rat models of RYGB and VSG. In VSG this is likely due to increased gastric pressure and reduced responses to inhibitory feedback from the intestine. PMID:24368666

  2. Activation of Transmembrane Bile Acid Receptor TGR5 Modulates Pancreatic Islet α Cells to Promote Glucose Homeostasis.

    PubMed

    Kumar, Divya P; Asgharpour, Amon; Mirshahi, Faridoddin; Park, So Hyun; Liu, Sichen; Imai, Yumi; Nadler, Jerry L; Grider, John R; Murthy, Karnam S; Sanyal, Arun J

    2016-03-25

    The physiological role of the TGR5 receptor in the pancreas is not fully understood. We previously showed that activation of TGR5 in pancreatic β cells by bile acids induces insulin secretion. Glucagon released from pancreatic α cells and glucagon-like peptide 1 (GLP-1) released from intestinal L cells regulate insulin secretion. Both glucagon and GLP-1 are derived from alternate splicing of a common precursor, proglucagon by PC2 and PC1, respectively. We investigated whether TGR5 activation in pancreatic α cells enhances hyperglycemia-induced PC1 expression thereby releasing GLP-1, which in turn increases β cell mass and function in a paracrine manner. TGR5 activation augmented a hyperglycemia-induced switch from glucagon to GLP-1 synthesis in human and mouse islet α cells by GS/cAMP/PKA/cAMP-response element-binding protein-dependent activation of PC1. Furthermore, TGR5-induced GLP-1 release from α cells was via an Epac-mediated PKA-independent mechanism. Administration of the TGR5 agonist, INT-777, to db/db mice attenuated the increase in body weight and improved glucose tolerance and insulin sensitivity. INT-777 augmented PC1 expression in α cells and stimulated GLP-1 release from islets of db/db mice compared with control. INT-777 also increased pancreatic β cell proliferation and insulin synthesis. The effect of TGR5-mediated GLP-1 from α cells on insulin release from islets could be blocked by GLP-1 receptor antagonist. These results suggest that TGR5 activation mediates cross-talk between α and β cells by switching from glucagon to GLP-1 to restore β cell mass and function under hyperglycemic conditions. Thus, INT-777-mediated TGR5 activation could be leveraged as a novel way to treat type 2 diabetes mellitus. PMID:26757816

  3. Gut-expressed gustducin and taste receptors regulate secretion of glucagon-like peptide-1

    PubMed Central

    Jang, Hyeung-Jin; Kokrashvili, Zaza; Theodorakis, Michael J.; Carlson, Olga D.; Kim, Byung-Joon; Zhou, Jie; Kim, Hyeon Ho; Xu, Xiangru; Chan, Sic L.; Juhaszova, Magdalena; Bernier, Michel; Mosinger, Bedrich; Margolskee, Robert F.; Egan, Josephine M.

    2007-01-01

    Glucagon-like peptide-1 (GLP-1), released from gut endocrine L cells in response to glucose, regulates appetite, insulin secretion, and gut motility. How glucose given orally, but not systemically, induces GLP-1 secretion is unknown. We show that human duodenal L cells express sweet taste receptors, the taste G protein gustducin, and several other taste transduction elements. Mouse intestinal L cells also express ?-gustducin. Ingestion of glucose by ?-gustducin null mice revealed deficiencies in secretion of GLP-1 and the regulation of plasma insulin and glucose. Isolated small bowel and intestinal villi from ?-gustducin null mice showed markedly defective GLP-1 secretion in response to glucose. The human L cell line NCI-H716 expresses ?-gustducin, taste receptors, and several other taste signaling elements. GLP-1 release from NCI-H716 cells was promoted by sugars and the noncaloric sweetener sucralose, and blocked by the sweet receptor antagonist lactisole or siRNA for ?-gustducin. We conclude that L cells of the gut taste glucose through the same mechanisms used by taste cells of the tongue. Modulating GLP-1 secretion in gut taste cells may provide an important treatment for obesity, diabetes and abnormal gut motility. PMID:17724330

  4. Differential molecular and cellular responses of GLP-1 secreting L-cells and pancreatic alpha cells to glucotoxicity and lipotoxicity.

    PubMed

    Vasu, Srividya; Moffett, R Charlotte; McClenaghan, Neville H; Flatt, Peter R

    2015-08-01

    Knowledge of the effects of glucotoxic and lipotoxic environments on proglucagon producing intestinal L cells and pancreatic alpha cells is limited compared with pancreatic beta cells. This study compares the in vitro responses of these cell types to hyperglycaemia and hyperlipidaemia. Glucose (30 mM) and palmitate (0.5mM) reduced GLUTag and MIN6 cell viability while alpha TC1 cells were sensitive only to lipotoxicity. Consistent with this, Cat mRNA expression was substantially higher in GLUTag and alpha TC1 cells compared to MIN6 cells. Glucose and palmitate reduced GLUTag cell secretory function while hypersecretion of glucagon was apparent from alpha TC1 cells. Glucose exposure increased transcription of Cat and Sod2 in MIN6 and GLUTag cells respectively while it decreased transcription of Cat and Gpx1 in alpha TC1 cells. Palmitate increased transcription of Cat and Sod2 in all three cell lines. Upregulation of antioxidant enzyme expression by palmitate was accompanied by an increase in Nfkb1 transcription, indicative of activation of defence pathways. Lipotoxicity activated ER stress response, evident from increased Hspa4 mRNA level in GLUTag and MIN6 cells. Glucose and palmitate-induced DNA damage and apoptosis, with substantially smaller effects in alpha TC1 cells. Thus alpha cells are resistant to gluco- and lipotoxicity, partly reflecting higher expression of genes involved in antioxidant defence. In contrast, intestinal L cells, like beta cells, are prone to gluco- and lipotoxicity, possibly contributing to abnormalities of GLP-1 secretion in type 2 diabetes. PMID:26027945

  5. The Insulin Receptor: A New Target for Cancer Therapy

    PubMed Central

    Malaguarnera, Roberta; Belfiore, Antonino

    2011-01-01

    A large body of evidences have shown that both the IGF-I receptor (IGF-IR) and the insulin receptor (IR) play a role in cancer development and progression. In particular, IR overactivation by IGF-II is common in cancer cells, especially in dedifferentiated/stem-like cells. In spite of these findings, until very recently, only IGF-IR but not IR has been considered a target in cancer therapy. Although several preclinical studies have showed a good anti-cancer activity of selective anti-IGF-IR drugs, the results of the clinical first trials have been disappointing. In fact, only a small subset of malignant tumors has shown an objective response to these therapies. Development of resistance to anti-IGF-IR drugs may include upregulation of IR isoform A (IR-A) in cancer cells and its overactivation by increased secretion of autocrine IGF-II. These findings have led to the concept that co-targeting IR together with IGF-IR may increase therapy efficacy and prevent adaptive resistance to selective anti-IGF-IR drugs. IR blockade should be especially considered in tumors with high IR-A:IGF-IR ratio and high levels of autocrine IGF-II. Conversely, insulin sensitizers, which ameliorate insulin resistance associated with metabolic disorders and cancer treatments, may have important implications for cancer prevention and management. Only few drugs co-targeting the IR and IGF-IR are currently available. Ideally, future IR targeting strategies should be able to selectively inhibit the tumor promoting effects of IR without impairing its metabolic effects. PMID:22654833

  6. Insights into the Structural Basis of Endogenous Agonist Activation of Family B G Protein-Coupled Receptors

    PubMed Central

    Dong, Maoqing; Gao, Fan; Pinon, Delia I.; Miller, Laurence J.

    2008-01-01

    Agonist drugs targeting the glucagon-like peptide-1 (GLP1) receptor represent important additions to the clinical management of patients with diabetes mellitus. In the current report, we have explored whether the recently described concept of a receptor-active endogenous agonist sequence within the amino terminus of the secretin receptor may also be applicable to the GLP1 receptor. If so, this could provide a lead for the development of additional small molecule agonists targeting this and other important family members. Indeed, the region of the GLP1 receptor analogous to that containing the active WDN within the secretin receptor was found to possess full agonist activity at the GLP1 receptor. The minimal fragment within this region that had full agonist activity was NRTFD. Despite having no primary sequence identity with the WDN, it was also active at the secretin receptor, where it had similar potency and efficacy to WDN, suggesting common structural features. Molecular modeling demonstrated that an intradomain salt bridge between the side chains of arginine and aspartate could yield similarities in structure with cyclic WDN. This directly supports the relevance of the endogenous agonist concept to the GLP1 receptor and provides new insights into the rational development and refinement of new types of drugs activating this important receptor. PMID:18372345

  7. The G protein-coupled receptor family C group 6 subtype A (GPRC6A) receptor is involved in amino acid-induced glucagon-like peptide-1 secretion from GLUTag cells.

    PubMed

    Oya, Manami; Kitaguchi, Tetsuya; Pais, Ramona; Reimann, Frank; Gribble, Fiona; Tsuboi, Takashi

    2013-02-15

    Although amino acids are dietary nutrients that evoke the secretion of glucagon-like peptide 1 (GLP-1) from intestinal L cells, the precise molecular mechanism(s) by which amino acids regulate GLP-1 secretion from intestinal L cells remains unknown. Here, we show that the G protein-coupled receptor (GPCR), family C group 6 subtype A (GPRC6A), is involved in amino acid-induced GLP-1 secretion from the intestinal L cell line GLUTag. Application of l-ornithine caused an increase in intracellular Ca(2+) concentration ([Ca(2+)](i)) in GLUTag cells. Application of a GPRC6A receptor antagonist, a phospholipase C inhibitor, or an IP(3) receptor antagonist significantly suppressed the l-ornithine-induced [Ca(2+)](i) increase. We found that the increase in [Ca(2+)](i) stimulated by l-ornithine correlated with GLP-1 secretion and that l-ornithine stimulation increased exocytosis in a dose-dependent manner. Furthermore, depletion of endogenous GPRC6A by a specific small interfering RNA (siRNA) inhibited the l-ornithine-induced [Ca(2+)](i) increase and GLP-1 secretion. Taken together, these findings suggest that the GPRC6A receptor functions as an amino acid sensor in GLUTag cells that promotes GLP-1 secretion. PMID:23269670

  8. Prospects in folate receptor-targeted radionuclide therapy.

    PubMed

    Mller, Cristina; Schibli, Roger

    2013-01-01

    Targeted radionuclide therapy is based on systemic application of particle-emitting radiopharmaceuticals which are directed toward a specific tumor-associated target. Accumulation of the radiopharmaceutical in targeted cancer cells results in high doses of absorbed radiation energy whereas toxicity to non-targeted healthy tissue is limited. This strategy has found widespread application in the palliative treatment of neuroendocrine tumors using somatostatin-based radiopeptides. The folate receptor (FR) has been identified as a target associated with a variety of frequent tumor types (e.g., ovarian, lung, brain, renal, and colorectal cancer). In healthy organs and tissue FR-expression is restricted to only a few sites such as for instance the kidneys. This demonstrates why FR-targeting is an attractive strategy for the development of new therapy concepts. Due to its high FR-binding affinity (K D?therapy, a therapeutic concept with folate radioconjugates has not yet been envisaged for clinical application. The reason is the generally high accumulation of folate radioconjugates in the kidneys where emission of particle-radiation may result in damage to the renal tissue. Therefore, the design of more sophisticated folate radioconjugates providing improved tissue distribution profiles are needed. This review article summarizes recent developments with regard to a therapeutic application of folate radioconjugates. A new construct of a folate radioconjugate and an application protocol which makes use of a pharmacological interaction allowed the first preclinical therapy experiments with radiofolates. These results raise hope for future application of such new concepts also in the clinic. PMID:24069581

  9. Prospects in Folate Receptor-Targeted Radionuclide Therapy

    PubMed Central

    Mller, Cristina; Schibli, Roger

    2013-01-01

    Targeted radionuclide therapy is based on systemic application of particle-emitting radiopharmaceuticals which are directed toward a specific tumor-associated target. Accumulation of the radiopharmaceutical in targeted cancer cells results in high doses of absorbed radiation energy whereas toxicity to non-targeted healthy tissue is limited. This strategy has found widespread application in the palliative treatment of neuroendocrine tumors using somatostatin-based radiopeptides. The folate receptor (FR) has been identified as a target associated with a variety of frequent tumor types (e.g., ovarian, lung, brain, renal, and colorectal cancer). In healthy organs and tissue FR-expression is restricted to only a few sites such as for instance the kidneys. This demonstrates why FR-targeting is an attractive strategy for the development of new therapy concepts. Due to its high FR-binding affinity (KD?therapy, a therapeutic concept with folate radioconjugates has not yet been envisaged for clinical application. The reason is the generally high accumulation of folate radioconjugates in the kidneys where emission of particle-radiation may result in damage to the renal tissue. Therefore, the design of more sophisticated folate radioconjugates providing improved tissue distribution profiles are needed. This review article summarizes recent developments with regard to a therapeutic application of folate radioconjugates. A new construct of a folate radioconjugate and an application protocol which makes use of a pharmacological interaction allowed the first preclinical therapy experiments with radiofolates. These results raise hope for future application of such new concepts also in the clinic. PMID:24069581

  10. Chimeric Antigen Receptors Modified T-Cells for Cancer Therapy.

    PubMed

    Dai, Hanren; Wang, Yao; Lu, Xuechun; Han, Weidong

    2016-07-01

    The genetic modification and characterization of T-cells with chimeric antigen receptors (CARs) allow functionally distinct T-cell subsets to recognize specific tumor cells. The incorporation of costimulatory molecules or cytokines can enable engineered T-cells to eliminate tumor cells. CARs are generated by fusing the antigen-binding region of a monoclonal antibody (mAb) or other ligand to membrane-spanning and intracellular-signaling domains. They have recently shown clinical benefit in patients treated with CD19-directed autologous T-cells. Recent successes suggest that the modification of T-cells with CARs could be a powerful approach for developing safe and effective cancer therapeutics. Here, we briefly review early studies, consider strategies to improve the therapeutic potential and safety, and discuss the challenges and future prospects for CAR T-cells in cancer therapy. PMID:26819347

  11. NMDA receptors and fear extinction: implications for cognitive behavioral therapy.

    PubMed

    Davis, Michael

    2011-01-01

    Based primarily on studies that employ Pavlovian fear conditioning, extinction of conditioned fear has been found to be mediated by N-methyi-D-aspartate (NMDA) receptors in the amygdala and medial prefrontal cortex. This led to the discovery that an NMDA partial agonist, D-cycloserine, could facilitate fear extinction when given systemically or locally into the amygdala. Because many forms of cognitive behavioral therapy depend on fear extinction, this led to the successful use of D-cycloserine as an adjunct to psychotherapy in patients with so-called simple phobias (fear of heights), social phobia, obsessive-compulsive behavior, and panic disorder. Data in support of these conclusions are reviewed, along with some of the possible limitations of D-cycloserine as an adjunct to psychotherapy. PMID:22275851

  12. The ERBB3 receptor in cancer and cancer gene therapy

    PubMed Central

    Sithanandam, G; Anderson, LM

    2009-01-01

    ERBB3, a member of the epidermal growth factor receptor (EGFR) family, is unique in that its tyrosine kinase domain is functionally defective. It is activated by neuregulins, by other ERBB and nonERBB receptors as well as by other kinases, and by novel mechanisms. Downstream it interacts prominently with the phosphoinositol 3-kinase/AKT survival/mitogenic pathway, but also with GRB, SHC, SRC, ABL, rasGAP, SYK and the transcription regulator EBP1. There are likely important but poorly understood roles for nuclear localization and for secreted isoforms. Studies of ERBB3 expression in primary cancers and of its mechanistic contributions in cultured cells have implicated it, with varying degrees of certainty, with causation or sustenance of cancers of the breast, ovary, prostate, certain brain cells, retina, melanocytes, colon, pancreas, stomach, oral cavity and lung. Recent results link high ERBB3 activity with escape from therapy targeting other ERBBs in lung and breast cancers. Thus a wide and centrally important role for ERBB3 in cancer is becoming increasingly apparent. Several approaches for targeting ERBB3 in cancers have been tested or proposed. Small inhibitory RNA (siRNA) to ERBB3 or AKT is showing promise as a therapeutic approach to treatment of lung adenocarcinoma. PMID:18404164

  13. Regulation of death receptors-Relevance in cancer therapies

    SciTech Connect

    Thonel, A. de; Eriksson, J.E. . E-mail: john.eriksson@btk.fi

    2005-09-01

    Apoptosis is an essential non-inflammatory mechanism for cell removal, which occurs during both physiological and pathological conditions. Apoptosis is characteristically executed by cysteine proteases, termed caspases. The most specific way to activate the caspases machinery is through death receptors (DRs), such as the tumor necrosis factor (TNFR), Fas receptor (FasR), and TRAIL (TRAIL-R). The apoptotic signaling is tightly regulated by the balance of pro-apoptotic and anti-apoptotic proteins and an imbalance between cell death and proliferation may cause numerous diseases, including cancers. The intensive research during the past decade has delineated the basic mechanisms of apoptosis and outlined many important molecular mechanisms underlying the regulation of apoptosis. There is also a better understanding of how the regulation of apoptosis can be disturbed in human cancer cells. The interplay between DRs signaling and anticancer drugs has offered new concepts for the development of highly specific therapeutical agents. Here we review the current understanding of the different molecular mechanisms that regulate DR-mediated apoptosis and the defects in apoptotic signaling discovered in cancer cells. In light of this knowledge, new promising target-based agents for future cancer therapies have been developed.

  14. Receptor targeting for tumor localisation and therapy with radiopeptides.

    PubMed

    Heppeler, A; Froidevaux, S; Eberle, A N; Maecke, H R

    2000-09-01

    Receptor targeting with radiolabeled peptides has become very important in nuclear oncology in the past few years. The most frequently used peptides in the clinic are analogs of somatostatin (SRIF), e.g. OctreoScan, which contain chelators for the radioisotopes 111In, 86Y, 90Y, 67Ga, 68Ga and 64Cu or for 99mTc and 188Re. and were labelled with the halogens 123I and 18F. Radiolabeled analogs of &alpha-melanocyte-stimulating hormone (&alpha-MSH), neurotensin, vasoactive intestinal peptide (VIP), bombesin (BN), substance P (SP) and gastrin/cholecystokinin (CCK) are also being developed, evaluated in vitro and in vivo and tested for clinical application. This review focuses on the expression in tumors and the regulation of receptors for these neuropeptides as well as the development of novel chelator-peptide conjugates suitable for in vivo scintigraphy or internal radiotherapy. The state of the art of radiopeptide pharmaceuticals is illustrated with four SRIF analogs, modified with the macrocyclic chelator 1, 4, 7, 10-tetraazacyclododecane-1, 4, 7, 10-tetraacetic acid (DOTA): [D-Phe1]-octreotide (DOTAOC), [D-Phe1, Tyr3]-octreotide (DOTATOC), vapreotide (DOTAVAP) and lanreotide (DOTALAN). DOTA is almost a universal chelator capable of strongly encapsulating hard metals such as 111In and 67Ga for Single Photon Emission Tomography (SPET), 68Ga, 86Y and 64Cu for Positron Emission Tomography (PET) as well as 90Y for receptor-mediated radionuclide therapy and radiolanthanides which exhibit different interesting decay schemes. From biodistribution studies in experimental animals and from clinical data it is concluded that DOTATOC is currently the most suitable SRIF radiopeptide with the best potential in the clinic. PMID:10911025

  15. Monoclonal T-cell receptors: new reagents for cancer therapy.

    PubMed

    Stauss, Hans J; Cesco-Gaspere, Michela; Thomas, Sharyn; Hart, Daniel P; Xue, Shao-An; Holler, Angelika; Wright, Graham; Perro, Mario; Little, Ann-Margaret; Pospori, Constantina; King, Judy; Morris, Emma C

    2007-10-01

    Adoptive transfer of antigen-specific T lymphocytes is an effective form of immunotherapy for persistent virus infections and cancer. A major limitation of adoptive therapy is the inability to isolate antigen-specific T lymphocytes reproducibly. The demonstration that cloned T-cell receptor (TCR) genes can be used to produce T lymphocyte populations of desired specificity offers new opportunities for antigen-specific T-cell therapy. TCR gene-modified lymphocytes display antigen-specific function in vitro, and were shown to protect against virus infection and tumor growth in animal models. A recent trial in humans demonstrated that TCR gene-modified T cells persisted in all and reduced melanoma burden in 2/15 patients. In future trials, it may be possible to use TCR gene transfer to equip helper and cytotoxic T cells with new antigen-specificity, allowing both T-cell subsets to cooperate in achieving improved clinical responses. Sequence modifications of TCR genes are being explored to enhance TCR surface expression, while minimizing the risk of pairing between introduced and endogenous TCR chains. Current T-cell transduction protocols that trigger T-cell differentiation need to be modified to generate "undifferentiated" T cells, which, upon adoptive transfer, display improved in vivo expansion and survival. Both, expression of only the introduced TCR chains and the production of nave T cells may be possible in the future by TCR gene transfer into stem cells. PMID:17637721

  16. The glucagon-like peptide 1 receptor agonist liraglutide attenuates the reinforcing properties of alcohol in rodents.

    PubMed

    Vallöf, Daniel; Maccioni, Paola; Colombo, Giancarlo; Mandrapa, Minja; Jörnulf, Julia Winsa; Egecioglu, Emil; Engel, Jörgen A; Jerlhag, Elisabet

    2016-03-01

    The incretin hormone, glucagon-like peptide 1 (GLP-1), regulates gastric emptying, glucose-dependent stimulation of insulin secretion and glucagon release, and GLP-1 analogs are therefore approved for treatment of type II diabetes. GLP-1 receptors are expressed in reward-related areas such as the ventral tegmental area and nucleus accumbens, and GLP-1 was recently shown to regulate several alcohol-mediated behaviors as well as amphetamine-induced, cocaine-induced and nicotine-induced reward. The present series of experiments were undertaken to investigate the effect of the GLP-1 receptor agonist, liraglutide, on several alcohol-related behaviors in rats that model different aspects of alcohol use disorder in humans. Acute liraglutide treatment suppressed the well-documented effects of alcohol on the mesolimbic dopamine system, namely alcohol-induced accumbal dopamine release and conditioned place preference in mice. In addition, acute administration of liraglutide prevented the alcohol deprivation effect and reduced alcohol intake in outbred rats, while repeated treatment of liraglutide decreased alcohol intake in outbred rats as well as reduced operant self-administration of alcohol in selectively bred Sardinian alcohol-preferring rats. Collectively, these data suggest that GLP-1 receptor agonists could be tested for treatment of alcohol dependence in humans. PMID:26303264

  17. A novel dual-glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide receptor agonist is neuroprotective in transient focal cerebral ischemia in the rat.

    PubMed

    Han, Ling; Hlscher, Christian; Xue, Guo-Fang; Li, Guanglai; Li, Dongfang

    2016-01-01

    Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) receptor agonists have been shown to be neuroprotective in previous studies in animal models of Alzheimer's or Parkinson's disease. Recently, novel dual-GLP-1/GIP receptor agonists that activate both receptors (DA) were developed to treat diabetes. We tested the protective effects of a novel potent DA against middle cerebral artery occlusion injury in rats and compared it with a potent GLP-1 analog, Val(8)-GLP-1(glu-PAL). Animals were evaluated for neurologic deficit score, infarct volume, and immunohistochemical analyses of the brain at several time points after ischemia. The Val(8)-GLP-1(glu-PAL)-treated and DA-treated groups showed significantly reduced scores of neurological dysfunction, cerebral infarction size, and percentage of TUNEL-positive apoptotic neurons. Furthermore, the expression of the apoptosis marker Bax, the inflammation marker iNOS, and the survival marker Bcl-2 was significantly increased. The DA-treated group was better protected against neurodegeneration than the Val(8)-GLP-1(glu-PAL) group, and the scores of neurological dysfunction, cerebral infarction size, and expression of Bcl-2 were higher, whereas the percentage of TUNEL-positive neurons and the levels of Bax and iNOS were lower in the DA group. DA treatment reduced the infarct volume and improved the functional deficit. It also suppressed the inflammatory response and cell apoptosis after reperfusion. In conclusion, the novel GIP and GLP-1 dual-receptor agonist is more neuroprotective than a GLP-1 receptor agonist in key biomarkers of neuronal degeneration. PMID:26555034

  18. The Effect of Glucagon-Like Peptide 1 Receptor Agonists on Weight Loss in Type 2 Diabetes: A Systematic Review and Mixed Treatment Comparison Meta-Analysis

    PubMed Central

    Potts, Jessica E.; Gray, Laura J.; Brady, Emer M.; Khunti, Kamlesh; Davies, Melanie J.; Bodicoat, Danielle H.

    2015-01-01

    Aims To determine the effects of glucagon-like peptide-1 receptor agonists compared with placebo and other anti-diabetic agents on weight loss in overweight or obese patients with type 2 diabetes mellitus. Methods Electronic searches were conducted for randomised controlled trials that compared a glucagon-like peptide-1 receptor agonist therapy at a clinically relevant dose with a comparator treatment (other type 2 diabetes treatment or placebo) in adults with type 2 diabetes and a mean body mass index ≥ 25kg/m2. Pair-wise meta-analyses and mixed treatment comparisons were conducted to examine the difference in weight change at six months between the glucagon-like peptide-1 receptor agonists and each comparator. Results In the mixed treatment comparison (27 trials), the glucagon-like peptide-1 receptor agonists were the most successful in terms of weight loss; exenatide 2mg/week: -1.62kg (95% CrI: -2.95kg, -0.30kg), exenatide 20μg: -1.37kg (95% CI: -222kg, -0.52kg), liraglutide 1.2mg: -1.01kg (95%CrI: -2.41kg, 0.38kg) and liraglutide 1.8mg: -1.51 kg (95% CI: -2.67kg, -0.37kg) compared with placebo. There were no differences between the GLP-1 receptor agonists in terms of weight loss. Conclusions This review provides evidence that glucagon-like peptide-1 receptor agonist therapies are associated with weight loss in overweight or obese patients with type 2 diabetes with no difference in weight loss seen between the different types of GLP-1 receptor agonists assessed. PMID:26121478

  19. Cardiac metastases of neuroendocrine tumors treated with 177Lu DOTATATE peptide receptor radionuclide therapy or 131I-MIBG therapy.

    PubMed

    Makis, William; McCann, Karey; Bryanton, Mark; McEwan, Alexander J B

    2015-12-01

    Neuroendocrine tumors have a propensity to metastasize to the heart, although the reason for this remains unknown. A review of 251 neuroendocrine tumor patients treated with Lu DOTATATE peptide receptor radionuclide therapy or I-MIBG therapy at our institution since 2003 revealed 2 patients with cardiac metastases (incidence, 0.8%), one treated with Lu DOTATATE and one with I-MIBG. We present the imaging findings of these 2 patients, as well as their management and responses to therapy. PMID:26359563

  20. Agavins from Agave angustifolia and Agave potatorum affect food intake, body weight gain and satiety-related hormones (GLP-1 and ghrelin) in mice.

    PubMed

    Santiago-García, Patricia Araceli; López, Mercedes G

    2014-12-01

    Agavins act as a fermentable dietary fiber and