Science.gov

Sample records for thermal conditioning technology

  1. Thermal Management Technology Status

    NASA Technical Reports Server (NTRS)

    Parish, R. C.

    1984-01-01

    The thermal control requirements of a large space station are considered. Motivations for advanced thermal technology are discussed. Two test programs, designed to evaluate the analytical and theoretical basis from which thermal technology directions are determined, are described.

  2. Thermally activated technologies: Technology Roadmap

    SciTech Connect

    None, None

    2003-05-01

    The purpose of this Technology Roadmap is to outline a set of actions for government and industry to develop thermally activated technologies for converting Americas wasted heat resources into a reservoir of pollution-free energy for electric power, heating, cooling, refrigeration, and humidity control. Fuel flexibility is important. The actions also cover thermally activated technologies that use fossil fuels, biomass, and ultimately hydrogen, along with waste heat.

  3. Heat Pipe Thermal Conditioning Panel

    NASA Technical Reports Server (NTRS)

    Saaski, E. W.

    1973-01-01

    The technology involved in designing and fabricating a heat pipe thermal conditioning panel to satisfy a broad range of thermal control system requirements on NASA spacecraft is discussed. The design specifications were developed for a 30 by 30 inch heat pipe panel. The fundamental constraint was a maximum of 15 gradient from source to sink at 300 watts input and a flux density of 2 watts per square inch. The results of the performance tests conducted on the panel are analyzed.

  4. INNOVATIVE THERMAL DESTRUCTION TECHNOLOGIES

    EPA Science Inventory

    Ten innovative technologies for thermally destroying hazardous wastes were selected and described in this paper. hese technologies were either supported by EPA's RCRA or SARA programs or developed by industry since 1980. wo of the important criteria used in selecting these techno...

  5. Solar thermal technology

    NASA Astrophysics Data System (ADS)

    1988-09-01

    This annual report describes the accomplishments and progress of government-funded activities initiated, renewed, or completed during Fiscal Year (FY) 1987 (October 1, 1986, through September 30, 1987). It highlights the program tasks conducted by participating federal laboratories and by industrial, academic, or other research under a subcontract. The emphasis of the Solar Thermal Technology Program during the year was: (1) to perform research and development leading to the economic viability of two primary solar thermal concepts, central receiver and parabolic dish, and (2) to explore applications of national significance where the special attributes of concentrated sunlight are appropriate. The report includes three appendices that cover principal contacts and sources of additional information (Appendix A), acronyms and abbreviations (Appendix B), and a glossary of terms (Appendix C). A bibliography of relevant publications from Sandia National Laboratories and the Solar Energy Research Institute completes this annual report.

  6. Heat pipe thermal conditioning panel

    NASA Technical Reports Server (NTRS)

    Saaski, E. W.; Loose, J. D.; Mccoy, K. E.

    1974-01-01

    Thermal control of electronic hardware and experiments on future space vehicles is critical to proper functioning and long life. Thermal conditioning panels (cold plates) are a baseline control technique in current conceptual studies. Heat generating components mounted on the panels are typically cooled by fluid flowing through integral channels within the panel. However, replacing the pumped fluid coolant loop within the panel with heat pipes offers attractive advantages in weight, reliability, and installation. This report describes the development and fabrication of two large 0.76 x 0.76 m heat pipe thermal conditioning panels to verify performance and establish the design concept.

  7. Thermal control system technology discipline

    NASA Technical Reports Server (NTRS)

    Ellis, Wilbert E.

    1990-01-01

    Viewgraphs on thermal control systems technology discipline for Space Station Freedom are presented. Topics covered include: heat rejection; heat acquisition and transport; monitoring and control; passive thermal control; and analysis and test verification.

  8. Centaur Propellant Thermal Conditioning Study

    NASA Technical Reports Server (NTRS)

    Blatt, M. H.; Pleasant, R. L.; Erickson, R. C.

    1976-01-01

    A wicking investigation revealed that passive thermal conditioning was feasible and provided considerable weight advantage over active systems using throttled vent fluid in a Centaur D-1s launch vehicle. Experimental wicking correlations were obtained using empirical revisions to the analytical flow model. Thermal subcoolers were evaluated parametrically as a function of tank pressure and NPSP. Results showed that the RL10 category I engine was the best candidate for boost pump replacement and the option showing the lowest weight penalty employed passively cooled acquisition devices, thermal subcoolers, dry ducts between burns and pumping of subcooler coolant back into the tank. A mixing correlation was identified for sizing the thermodynamic vent system mixer. Worst case mixing requirements were determined by surveying Centaur D-1T, D-1S, IUS, and space tug vehicles. Vent system sizing was based upon worst case requirements. Thermodynamic vent system/mixer weights were determined for each vehicle.

  9. Thermal Skin fabrication technology

    NASA Technical Reports Server (NTRS)

    Milam, T. B.

    1972-01-01

    Advanced fabrication techniques applicable to Thermal Skin structures were investigated, including: (1) chemical machining; (2) braze bonding; (3) diffusion bonding; and (4) electron beam welding. Materials investigated were nickel and nickel alloys. Sample Thermal Skin panels were manufactured using the advanced fabrication techniques studied and were structurally tested. Results of the program included: (1) development of improved chemical machining processes for nickel and several nickel alloys; (2) identification of design geometry limits; (3) identification of diffusion bonding requirements; (4) development of a unique diffusion bonding tool; (5) identification of electron beam welding limits; and (6) identification of structural properties of Thermal Skin material.

  10. Nuclear thermal propulsion technology overview

    NASA Technical Reports Server (NTRS)

    Stone, James R.

    1993-01-01

    Viewgraphs on nuclear thermal propulsion technology overview are presented. Topics covered include non-nuclear material; instrumentation, controls, and health monitoring; turbopumps; nozzle and extension; and exhaust plume characteristics.

  11. High temperature solar thermal technology

    NASA Technical Reports Server (NTRS)

    Leibowitz, L. P.; Hanseth, E. J.; Peelgren, M. L.

    1980-01-01

    Some advanced technology concepts under development for high-temperature solar thermal energy systems to achieve significant energy cost reductions and performance gains and thus promote the application of solar thermal power technology are presented. Consideration is given to the objectives, current efforts and recent test and analysis results in the development of high-temperature (950-1650 C) ceramic receivers, thermal storage module checker stoves, and the use of reversible chemical reactions to transport collected solar energy. It is pointed out that the analysis and testing of such components will accelerate the commercial deployment of solar energy.

  12. Thermal desorption: A technology review

    SciTech Connect

    Sullivan, T.P.

    1998-12-31

    The development of new and innovative technologies to treat hazardous waste is driven by the extreme costs associated with remediating contaminated sites. One innovative technology is thermal desorption, which heats soils, sediments, and sludges to volatilize contaminants present, then recovers the contaminants or destroys them. This paper discusses thermal desorption systems in detail, including evaluations of their performance, cost, and safety. The performance of thermal desorption units is determined by reviewing results of Superfund demonstration projects, remedial efforts, and pilot tests. These results indicate that thermal desorption is able to meet treatment standards for wastes contaminated with volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), polycyclic aromatic hydrocarbons (PAHs), fuels, and polychlorinated biphenyls (PCBs). Additionally, thermal desorption is competitive from a cost standpoint, with low temperature thermal desorption among the least expensive remediation technologies and high temperature thermal desorption in the middle of the cost band. The final aspect of thermal desorption discussed is worker exposure from both stack emissions and fugitive emissions. Air contaminant modeling was used to estimate ambient contaminant concentrations based on stack emission limits from previous remedial efforts. These estimates were compared with the American Conference of Governmental Industrial Hygienists (ACGIH) Threshold Limit Values (TLVs) and the OSHA Permissible Exposure Limits (PELs). Through this comparison, it was determined that, if the stack emissions limits are not exceeded, the ambient contaminant concentrations ranged from one order to seven orders of magnitude below the exposure standards.

  13. Rapid thermal conditioning of sewage sludge

    NASA Astrophysics Data System (ADS)

    Zheng, Jianhong

    Rapid thermal conditioning (RTC) is a developing technology recently applied to sewage sludge treatment. Sludge is heated rapidly to a reaction temperature (up to about 220sp°C) under sufficient pressure to maintain the liquid phase. Reaction is quenched after 10 to 30 seconds when the mixture of sludge and steam pass through a pressure let-down valve. This process reduces the amount of sludge requiring land disposal, eliminates the need for polymer coagulant, improves dewaterability, increases methane production, and further reduces the concentration of pathogens. The odor problem associated with traditional thermal conditioning processes is largely minimized. Ammonia removal is readily integrated with the process. For this research, a pilot unit was constructed capable of processing 90 liters of sludge per hour. Over 22 runs were made with this unit using sludge from New York City Water Pollution Control Plants (WPCP). Sludges processed in this equipment were tested to determine the effect of RTC operating conditions on sludge dewaterability, biodegradability, and other factors affecting the incorporation of RTC into wastewater treatment plants. Dewaterability of thermally conditioned sludge was assessed for cetrifugeability and filterability. Bench scale centrifugation was used for evaluating centrifugeability, pressure filtration and capillary suction time (CST) for filterability. A mathematical model developed for centrifuge dewatering was used to predict the effect of RTC on full scale centrifuge performance. Particle size distribution and solids density of raw and treated PDS were also analyzed. An observed increase in sludge solids density at least partially explains its improved centrifugeability. An investigation of thermally conditioned amino acids showed that the L-isomer is highly biodegradable while the D-isomers are generally less so. Glucose is highly biodegradable, but rapidly becomes refractory as thermal conditioning time is lengthened. This shows the fundamental importance of rapid processing. Rapid thermal conditioning may be incorporated into a wastewater treatment plant where biological treatment is used. For purposes of a concrete example, flow-sheets for the incorporation of the RTC process into the New York City Wards Island WPCP were prepared, and experimental data from the laboratory scale RTC test facility were used to set design parameters. A design incorporating nitrogen removal into the RTC flow sheet was also examined. ASPEN software was used to design the proposed processes and perform economic analyses. Cost estimates for these alternatives show a substantial advantage to implement RTC in comparison to present plant operation. About one third of the current sludge processing cost can be saved by incorporation of RTC into the Wards Island Plant. With nitrogen removal, the economics are even more attractive.

  14. The thermal conditions of Venus

    NASA Technical Reports Server (NTRS)

    Zharkov, Vladimir N.; Solomatov, V. S.

    1991-01-01

    Models of Venus' thermal evolution are examined. The following subject areas are covered: (1) modified approximation of parameterized convection; (2) description of the model; (3) numerical results and asymptotic solution of the MAPC equations; (4) magnetism and the thermal regime of the cores of Earth and Venus; and (5) the thermal regime of the Venusian crust.

  15. Advanced solar thermal receiver technology

    NASA Astrophysics Data System (ADS)

    Kudirka, A. A.; Leibowitz, L. P.

    1980-01-01

    Development of advanced receiver technology for solar thermal receivers designed for electric power generation or for industrial applications, such as fuels and chemical production or industrial process heat, is described. The development of this technology is focused on receivers that operate from 1000 F to 3000 F and above. Development strategy is mapped in terms of application requirements, and the related system and technical requirements. Receiver performance requirements and current development efforts are covered for five classes of receiver applications: high temperature, advanced Brayton, Stirling, and Rankine cycle engines, and fuels and chemicals.

  16. European uncooled thermal imaging technology

    NASA Astrophysics Data System (ADS)

    McEwen, Kennedy R.

    1997-08-01

    There is widespread requirement for low cost lightweight thermal imaging sensors for both military and civilian applications. In Europe, these requirements are now being met by systems using large uncooled ferroelectric detector arrays offering performance levels which, until recently, could only be achieved by expensive cryogenically cooled systems. The uncooled technology is the result of collaboration between the UK Defence Research Agency (DRA) and GEC-Marconi Electro Optics (GMEO) under a 'dual use technology program' (DUTP). This has resulted in the design of an uncooled module suite which constitute the core elements of the European uncooled thermal imaging sensors. This module suite has been adopted by UK MoD to meet the requirements of the UK Stairs A demonstrator program producing a lightweight thermal surveillance and weapon sight. A European consortium including Delft Instruments and Signaal Usfa (DISU) in Holland have also adopted the modules to meet the requirements of the lightweight infrared observation nightsight (LION). This product is being marketed in collaboration with Thomson CSF Optronics, of France. This paper discusses the current status of the underlying detector and processing technology including enhancements already in development. In addition, the designs and benefits offered by the Stairs A and LION products are addressed.

  17. Conceptual Thermal Treatment Technologies Feasibility Study

    SciTech Connect

    Suer, A.

    1996-02-28

    This report presents a conceptual Thermal Treatment Technologies Feasibility Study (FS) for the Savannah River Site (SRS) focusing exclusively on thermal treatment technologies for contaminated soil, sediment, or sludge remediation projects.

  18. Thermally-Choked Combustor Technology

    NASA Technical Reports Server (NTRS)

    Knuth, William H.; Gloyer, P.; Goodman, J.; Litchford, R. J.

    1993-01-01

    A program is underway to demonstrate the practical feasibility of thermally-choked combustor technology with particular emphasis on rocket propulsion applications. Rather than induce subsonic to supersonic flow transition in a geometric throat, the goal is to create a thermal throat by adding combustion heat in a diverging nozzle. Such a device would have certain advantages over conventional flow accelerators assuming that the pressure loss due to heat addition does not severely curtail propulsive efficiency. As an aid to evaluation, a generalized one-dimensional compressible flow analysis tool was constructed. Simplified calculations indicate that the process is fluid dynamically and thermodynamically feasible. Experimental work is also being carried out in an attempt to develop, assuming an array of practical issues are surmountable, a practical bench-scale demonstrator using high flame speed H2/O2 combustibles.

  19. Cryogenic thermal control technology summaries

    NASA Technical Reports Server (NTRS)

    Stark, J. A.; Leonhard, K. E.; Bennett, F. O., Jr.

    1974-01-01

    A summarization and categorization is presented of the pertinent literature associated with cryogenic thermal control technology having potential application to in-orbit fluid transfer systems and/or associated space storage. Initially, a literature search was conducted to obtain pertinent documents for review. Reports determined to be of primary significance were summarized in detail. Each summary, where applicable, consists of; (1) report identification, (2) objective(s) of the work, (3) description of pertinent work performed, (4)major results, and (5) comments of the reviewer (GD/C). Specific areas covered are; (1) multilayer insulation of storage tanks with and without vacuum jacketing, (2) other insulation such as foams, shadow shields, microspheres, honeycomb, vent cooling and composites, (3) vacuum jacketed and composite fluid lines, and (4) low conductive tank supports and insulation penetrations. Reports which were reviewed and not summarized, along with reasons for not summarizing, are also listed.

  20. Advanced solar thermal technology - Potential and progress

    NASA Technical Reports Server (NTRS)

    Leibowitz, L.; Hanseth, E.

    1979-01-01

    The advanced thermal power technology program which develops and applies advanced technology for improved solar thermal energy subsystems and components. It is shown that the effort is aimed at systems which can achieve significant energy cost reductions. The paper describes the potential for advanced technology to achieve commercially attractive solar thermal systems and describes some recent developments in advanced heat engines, high temperature receivers, chemical transport, and storage.

  1. NASA/Goddard Thermal Technology Overview 2012

    NASA Technical Reports Server (NTRS)

    Butler, Dan; Swanson, Ted

    2012-01-01

    New Technology program is underway at NASA NASA/GSFC's primary mission of science satellite development is healthy and vibrant, although new missions are scarce Future mission applications promise to be thermally challenging Direct technology funding is still very restricted

  2. Advanced thermal management technologies for defense electronics

    NASA Astrophysics Data System (ADS)

    Bloschock, Kristen P.; Bar-Cohen, Avram

    2012-05-01

    Thermal management technology plays a key role in the continuing miniaturization, performance improvements, and higher reliability of electronic systems. For the past decade, and particularly, the past 4 years, the Defense Advanced Research Projects Agency (DARPA) has aggressively pursued the application of micro- and nano-technology to reduce or remove thermal constraints on the performance of defense electronic systems. The DARPA Thermal Management Technologies (TMT) portfolio is comprised of five technical thrust areas: Thermal Ground Plane (TGP), Microtechnologies for Air-Cooled Exchangers (MACE), NanoThermal Interfaces (NTI), Active Cooling Modules (ACM), and Near Junction Thermal Transport (NJTT). An overview of the TMT program will be presented with emphasis on the goals and status of these efforts relative to the current State-of-the-Art. The presentation will close with future challenges and opportunities in the thermal management of defense electronics.

  3. Thermal Control Technologies for Complex Spacecraft

    NASA Technical Reports Server (NTRS)

    Swanson, Theodore D.

    2004-01-01

    Thermal control is a generic need for all spacecraft. In response to ever more demanding science and exploration requirements, spacecraft are becoming ever more complex, and hence their thermal control systems must evolve. This paper briefly discusses the process of technology development, the state-of-the-art in thermal control, recent experiences with on-orbit two-phase systems, and the emerging thermal control technologies to meet these evolving needs. Some "lessons learned" based on experience with on-orbit systems are also presented.

  4. Quaternion Based Thermal Condition Monitoring System

    NASA Astrophysics Data System (ADS)

    Wong, Wai Kit; Loo, Chu Kiong; Lim, Way Soong; Tan, Poi Ngee

    In this paper, we will propose a new and effective machine condition monitoring system using log-polar mapper, quaternion based thermal image correlator and max-product fuzzy neural network classifier. Two classification characteristics namely: peak to sidelobe ratio (PSR) and real to complex ratio of the discrete quaternion correlation output (p-value) are applied in the proposed machine condition monitoring system. Large PSR and p-value observe in a good match among correlation of the input thermal image with a particular reference image, while small PSR and p-value observe in a bad/not match among correlation of the input thermal image with a particular reference image. In simulation, we also discover that log-polar mapping actually help solving rotation and scaling invariant problems in quaternion based thermal image correlation. Beside that, log-polar mapping can have a two fold of data compression capability. Log-polar mapping can help smoother up the output correlation plane too, hence makes a better measurement way for PSR and p-values. Simulation results also show that the proposed system is an efficient machine condition monitoring system with accuracy more than 98%.

  5. High Spatial Resolution Thermal Satellite Technologies

    NASA Technical Reports Server (NTRS)

    Ryan, Robert

    2003-01-01

    This document in the form of viewslides, reviews various low-cost alternatives to high spatial resolution thermal satellite technologies. There exists no follow-on to Landsat 7 or ASTER high spatial resolution thermal systems. This document reviews the results of the investigation in to the use of new technologies to create a low-cost useful alternative. Three suggested technologies are examined. 1. Conventional microbolometer pushbroom modes offers potential for low cost Landsat Data Continuity Mission (LDCM) thermal or ASTER capability with at least 60-120 ground sampling distance (GSD). 2. Backscanning could produce MultiSpectral Thermal Imager performance without cooled detectors. 3. Cooled detector could produce hyperspectral thermal class system or extremely high spatial resolution class instrument.

  6. UPDATE OF INNOVATIVE THERMAL DESTRUCTION TECHNOLOGIES

    EPA Science Inventory

    Five innovative technologies for thermally destroying hazardous wastes were selected and described in the paper. They are Oxygen-Enriched Incineration, Westinghouse/O'Connor Combustor, Circulating Bed Combustion, Infrared System, and Plasma Arc. Two important criteria used in sel...

  7. Conditions for Classroom Technology Innovations.

    ERIC Educational Resources Information Center

    Zhao, Yong; Pugh, Kevin; Sheldon, Stephen; Byers, Joe L.

    2002-01-01

    Investigated the complex process of classroom technology innovation, following a group of teachers for 1 year as they attempted to implement technology-rich projects in their classrooms. Results indicated that 11 factors significantly impacted their degree of success. These factors fell into three interactive domains: the teacher, the innovation,

  8. Commercial application of thermal protection system technology

    NASA Technical Reports Server (NTRS)

    Dyer, Gordon L.

    1991-01-01

    The thermal protection system process technology is examined which is used in the manufacture of the External Tank for the Space Shuttle system and how that technology is applied by private business to create new products, new markets, and new American jobs. The term 'technology transfer' means different things to different people and has become one of the buzz words of the 1980s and 1990s. Herein, technology transfer is defined as a means of transferring technology developed by NASA's prime contractors to public and private sector industries.

  9. Thermal protection in space technology

    NASA Technical Reports Server (NTRS)

    Salakhutdinov, G. M.

    1982-01-01

    The provision of heat protection for various elements of space flight apparata has great significance, particularly in the construction of manned transport vessels and orbital stations. A popular explanation of the methods of heat protection in rocket-space technology at the current stage as well as in perspective is provided.

  10. NASA/Goddard Thermal Technology Overview 2014

    NASA Technical Reports Server (NTRS)

    Butler, Daniel; Swanson, Theodore D.

    2014-01-01

    This presentation summarizes the current plans and efforts at NASA Goddard to develop new thermal control technology for anticipated future missions. It will also address some of the programmatic developments currently underway at NASA, especially with respect to the Technology Development Program at NASA. While funding for basic technology development is still scarce, significant efforts are being made in direct support of flight programs. New technology development continues to be driven by the needs of future missions, and applications of these technologies to current Goddard programs will be addressed. Many of these technologies also have broad applicability to DOD, DOE, and commercial programs. Partnerships have been developed with the Air Force, Navy, and various universities to promote technology development. In addition, technology development activities supported by internal research and development (IRAD) program, the Small Business Innovative Research (SBIR) program, and the NASA Engineering and Safety Center (NESC), are reviewed in this presentation. Specific technologies addressed include; two-phase systems applications and issues on NASA missions, latest developments of electro-hydrodynamically pumped systems, development of high electrical conductivity coatings, and various other research activities. New Technology program underway at NASA, although funding is limited center dot NASA/GSFC's primary mission of science satellite development is healthy and vibrant, although new missions are scarce - now have people on overhead working new missions and proposals center dot Future mission applications promise to be thermally challenging center dot Direct technology funding is still very restricted - Projects are the best source for direct application of technology - SBIR thermal subtopic resurrected in FY 14 - Limited Technology development underway via IRAD, NESC, other sources - Administrator pushing to revive technology and educational programs at NASA - new HQ directorate established

  11. Thermal Management Using Pulsating Jet Cooling Technology

    NASA Astrophysics Data System (ADS)

    Alimohammadi, S.; Dinneen, P.; Persoons, T.; Murray, D. B.

    2014-07-01

    The existing methods of heat removal from compact electronic devises are known to be deficient as the evolving technology demands more power density and accordingly better cooling techniques. Impinging jets can be used as a satisfactory method for thermal management of electronic devices with limited space and volume. Pulsating flows can produce an additional enhancement in heat transfer rate compared to steady flows. This article is part of a comprehensive experimental and numerical study performed on pulsating jet cooling technology. The experimental approach explores heat transfer performance of a pulsating air jet impinging onto a flat surface for nozzle-to-surface distances 1 <= H/D <= 6, Reynolds numbers 1,300 <= Re <= 2,800 pulsation frequency 2Hz <= f <= 65Hz, and Strouhal number 0.0012 <= Sr = fD/Um <= 0.084. The time-resolved velocity at the nozzle exit is measured to quantify the turbulence intensity profile. The numerical methodology is firstly validated using the experimental local Nusselt number distribution for the steady jet with the same geometry and boundary conditions. For a time-averaged Reynolds number of 6,000, the heat transfer enhancement using the pulsating jet for 9Hz <= f <= 55Hz and 0.017 <= Sr <= 0.102 and 1 <= H/D <= 6 are calculated. For the same range of Sr number, the numerical and experimental methods show consistent results.

  12. JPL Advanced Thermal Control Technology Roadmap - 2008

    NASA Technical Reports Server (NTRS)

    Birur, Gaj

    2008-01-01

    This slide presentation reviews the status of thermal control technology at JPL and NASA.It shows the active spacecraft that are in vairous positions in the solar syatem, and beyond the solar system and the future missions that are under development. It then describes the challenges that the past missions posed with the thermal control systems. The various solutions that were implemented duirng the decades prior to 1990 are outlined. A review of hte thermal challenges of the future misions is also included. The exploration plan for Mars is then reviewed. The thermal challenges of the Mars Rovers are then outlined. Also the challenges of systems that would be able to be used in to explore Venus, and Titan are described. The future space telescope missions will also need thermal control technological advances. Included is a review of the thermal requirements for manned missions to the Moon. Both Active and passive technologies that have been used and will be used are reviewed. Those that are described are Mechanically Pumped Fluid Loops (MPFL), Loop Heat Pipes, an M3 Passive Cooler, Heat Siwtch for Space and Mars surface applications, phase change material (PCM) technology, a Gas Gap Actuateor using ZrNiH(x), the Planck Sorption Cooler (PCS), vapor compression -- Hybrid two phase loops, advanced pumps for two phase cooling loops, and heat pumps that are lightweight and energy efficient.

  13. Flameless Thermal Oxidation. Innovative Technology Summary Report

    SciTech Connect

    1995-09-01

    The Flameless Thermal Oxidizer (FTO) is a commercial technology offered by Thermatrix, Inc. The FTO has been demonstrated to be an effective destructive technology for process and waste stream off-gas treatment of volatile organic compounds (VOCs), and in the treatment of VOC and chlorinated volatile organic compounds (CVOCs) off-gases generated during site remediation using either baseline or innovative in situ environmental technologies. The FTO process efficiently converts VOCs and CVOCs to carbon dioxide, water, and hydrogen chloride. When FTO is coupled with a baseline technology, such as soil vapor extraction (SVE), an efficient in situ soil remediation system is produced. The innovation is in using a simple, reliable, scalable, and robust technology for the destruction of VOC and CVOC off-gases based on a design that generates a uniform thermal reaction zone that prevents flame propagation and efficiently oxidizes off-gases without forming products of incomplete combustion (Plcs ).

  14. NASA Thermal Control Technologies for Robotic Spacecraft

    NASA Technical Reports Server (NTRS)

    Swanson, Theodore D.; Biur, Gajanana C.

    2002-01-01

    Technology development is inevitably a dynamic process in search of an elusive goal. It is never truly clear whether the need for a particular technology drives its development, or the existence of a new capability initiates new applications. Technology development for the thermal control of spacecraft presents an excellent example of this situation. Nevertheless, it is imperative to have a basic plan to help guide and focus such an effort. Although this plan will be a living document that changes with time to reflect technological developments, perceived needs, perceived opportunities, and the ever-changing funding environment, it is still a very useful tool. This presentation summarizes the current efforts at NASA/Goddard and NASA/JPL to develop new thermal control technology for future NASA missions.

  15. NASA Thermal Control Technologies for Robotic Spacecraft

    NASA Technical Reports Server (NTRS)

    Swanson, Theodore D.; Birur, Gajanana C.

    2003-01-01

    Technology development is inevitably a dynamic process in search of an elusive goal. It is never truly clear whether the need for a particular technology drives its development, or the existence of a new capability initiates new applications. Technology development for the thermal control of spacecraft presents an excellent example of this situation. Nevertheless, it is imperative to have a basic plan to help guide and focus such an effort. Although this plan will be a living document that changes with time to reflect technological developments, perceived needs, perceived opportunities, and the ever-changing funding environment, it is still a very useful tool. This presentation summarizes the current efforts at NASA/Goddard and NASA/JPL to develop new thermal control technology for future robotic NASA missions.

  16. Flameless thermal oxidation. Innovative technology summary report

    SciTech Connect

    1995-09-01

    The Flameless Thermal Oxidizer (FTO) is a commercial technology offered by Thermatrix, Inc. The FTO has been demonstrated to be an effective destructive technology for process and waste stream off-gas treatment of volatile organic compounds (VOCs), and in the treatment of VOC and chlorinated volatile organic compounds (CVOCs) off-gases generated during site remediation using either baseline or innovative in situ environmental technologies. The FTO process efficiently converts VOCs and CVOCs to carbon dioxide, water, and hydrogen chloride. When FTO is coupled with a baseline technology, such as soil vapor extraction (SVE), an efficient in situ soil remediation system is produced. The innovation is in using a simple, reliable, scalable, and robust technology for the destruction of VOC and CVOC off-gases based on a design that generates a uniform thermal reaction zone that prevents flame propagation and efficiently oxidizes off-gases without forming products of incomplete combustion (PICs).

  17. Air Conditioning and Heating Technology--II.

    ERIC Educational Resources Information Center

    Gattone, Felix

    Twenty-eight chapters and numerous drawings provide information for instructors and students of air conditioning and heating technology. Chapter 1 lists the occupational opportunities in the field. Chapter 2 covers the background or development of the industry of air conditioning and heating technology. Chapter 3 includes some of the principle…

  18. Air Conditioning and Heating Technology--II.

    ERIC Educational Resources Information Center

    Gattone, Felix

    Twenty-eight chapters and numerous drawings provide information for instructors and students of air conditioning and heating technology. Chapter 1 lists the occupational opportunities in the field. Chapter 2 covers the background or development of the industry of air conditioning and heating technology. Chapter 3 includes some of the principle

  19. Development of Design Technology on Thermal-Hydraulic Performance in Tight-Lattice Rod Bundles: II - Rod Bowing Effect on Boiling Transition under Transient Conditions

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Tamai, Hidesada; Kureta, Masatoshi; Ohnuki, Akira; Akimoto, Hajime

    A thermal-hydraulic feasibility project for an Innovative Water Reactor for Flexible fuel cycle (FLWR) has been performed since 2002. In this R&D project, large-scale thermal-hydraulic tests, several model experiments and development of advanced numerical analysis codes have been carried out. In this paper, we describe the critical power characteristics in a 37-rod tight-lattice bundle with rod bowing under transient states. It is observed that transient Boiling Transition (BT) always occurs axially at exit elevation of upper high-heat-flux region and transversely in the central area of the bundle, which is same as that under steady state. For the postulated power increase and flow decrease cases that may be possibly met in a normal operation of the FLWR, it is confirmed that no BT occurs when Initial Critical Power Ratio (ICPR) is 1.3. Moreover, when the transients are run under severer ICPR that causes BT, the transient critical powers are generally same as the steady ones. The experiments are analyzed with a modified TRAC-BFI code, where Japan Atomic Energy Agency (JAEA) newest critical power correlation is implemented for the BT judgement. The code shows good prediction for the occurrence or the non occurrence of the BT and predicts the BT starting time conservatively. Traditional quasi-steady state prediction of the transient BT is confirmed being applicable for the postulated abnormal transient processes in the tight-lattice bundle with rod bowing.

  20. Thermal conditioning of the AEOS Telescope

    NASA Astrophysics Data System (ADS)

    Roberts, Lewis C., Jr.; Figgis, Peter D.

    2003-02-01

    The AEOS telescope facility was designed for high angular resolution imagery. Part of that design is the inclusion of several air handling systems to maximize dome seeing. Four air conditioning units chill the telescope and dome air to the predicted nighttime temperature. There is a mirror purge system, which prevents moisture from condensing on the mirror by blowing desiccated air into the mirror cell. A laminar air system counteracts the seeing degradation effects of a warm mirror by blowing air across the face of the primary. An hour before sunset the dome is partially opened and outside air is pulled through the telescope truss structure in an effort to remove any thermal differences caused by incorrect cooling. Finally a fan pulls air through the coude' tube in order to remove rising air cells. We present details of each system and the beginnings of our experiments to determine their efficacy. Finally, lessons learned from the systems on the AEOS telescope are presented.

  1. Thermal Casimir effect with soft boundary conditions.

    PubMed

    Dean, David S

    2009-01-01

    We consider the thermal Casimir effect in systems of parallel plates coupled to a massless free field theory via quadratic interaction terms which suppress (i) the field on the plates and (ii) the gradient of the field in the plane of the plates. These boundary interactions correspond to (i) the presence of an electrolyte in the plates and (ii) a uniform field of dipoles, in the plates, which are polarizable in the plane of the plates. These boundary interactions lead to Robin-type boundary conditions in the case where there is no field outside the two plates. In the appropriate limit, in both cases Dirichlet boundary conditions are obtained but we show that in case (i) the Dirichlet limit breaks down at short interplate distances and in (ii) it breaks down at large distances. The behavior of the two plate system is also seen to be highly dependent on whether the system is open or closed. In addition we analyze the Casimir force on a third plate placed between two outer plates. The force acting on the central plate is shown to be highly sensitive to whether or not the fluctuating scalar field is present in the region exterior to the two confining plates. PMID:19257002

  2. The research on thermal adaptability reinforcement technology for photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Su, Nana; Zhou, Guozhong

    2015-10-01

    Nowadays, Photovoltaic module contains more high-performance components in smaller space. It is also demanded to work in severe temperature condition for special use, such as aerospace. As temperature rises, the failure rate will increase exponentially which makes reliability significantly reduce. In order to improve thermal adaptability of photovoltaic module, this paper makes a research on reinforcement technologies. Thermoelectric cooler is widely used in aerospace which has harsh working environment. So, theoretical formulas for computing refrigerating efficiency, refrigerating capacity and temperature difference are described in detail. The optimum operating current of three classical working condition is obtained which can be used to guide the design of driven circuit. Taken some equipment enclosure for example, we use thermoelectric cooler to reinforce its thermal adaptability. By building physical model and thermal model with the aid of physical dimension and constraint condition, the model is simulated by Flotherm. The temperature field cloud is shown to verify the effectiveness of reinforcement.

  3. Advances in thermal imaging technology in the first responder arena

    NASA Astrophysics Data System (ADS)

    Amon, Francine; Bryner, Nelson

    2006-05-01

    Thermal imaging cameras are rapidly becoming integral equipment for first responders for use in structure fires and other emergencies. Currently there are no standardized test methods or performance metrics available to the users and manufacturers of these instruments. The Building and Fire Research Laboratory at the National Institute of Standards and Technology has been conducting research that will provide a quantifiable physical and scientific basis upon which industry standards for imaging performance, testing protocols and reporting practices can be developed. To date, the components of this project have included full-scale fire testing, development of bench-scale testing facilities, computational fluid dynamics and radiation modeling, and performance metric evaluations. A workshop was held in which participants representing thermal imager users, manufacturers, researchers, government agencies, and standards developing organizations discussed the future of thermal imaging technology as it applies to first responders. Performance metrics for thermal and spatial resolution have been explored, with emphasis on the contrast transfer function, minimum resolvable temperature difference, and noise equivalent temperature difference. These performance metrics and associated test methods are currently being applied to conditions that simulate first responder scenarios. A system of thermal classifications was adopted to define the boundaries of testing conditions. A method of relating the performance of the imager's display screen to an image captured from the imager's composite video output is proposed. New testing instrumentation, in which optically simulated thermal scenes are projected onto the imager's sensor, is also under development.

  4. Thermal Interface Comparisons Under Flight Like Conditions

    NASA Technical Reports Server (NTRS)

    Rodriquez-Ruiz, Juan

    2008-01-01

    Thermal interface materials are used in bolted interfaces to promote good thermal conduction between the two. The mounting surface can include panels, heat pipes, electronics boxes, etc.. . On Lunar Reconnaissance Orbiter (LRO) project the results are directly applicable: a) Several high power avionics boxes b) Several interfaces from RWA to radiator through heat pipe network

  5. Integrated Vehicle Thermal Management for Advanced Vehicle Propulsion Technologies

    SciTech Connect

    Bennion, K.; Thornton, M.

    2010-04-01

    A critical element to the success of new propulsion technologies that enable reductions in fuel use is the integration of component thermal management technologies within a viable vehicle package. Vehicle operation requires vehicle thermal management systems capable of balancing the needs of multiple vehicle systems that may require heat for operation, require cooling to reject heat, or require operation within specified temperature ranges. As vehicle propulsion transitions away from a single form of vehicle propulsion based solely on conventional internal combustion engines (ICEs) toward a wider array of choices including more electrically dominant systems such as plug-in hybrid electric vehicles (PHEVs), new challenges arise associated with vehicle thermal management. As the number of components that require active thermal management increase, so do the costs in terms of dollars, weight, and size. Integrated vehicle thermal management is one pathway to address the cost, weight, and size challenges. The integration of the power electronics and electric machine (PEEM) thermal management with other existing vehicle systems is one path for reducing the cost of electric drive systems. This work demonstrates techniques for evaluating and quantifying the integrated transient and continuous heat loads of combined systems incorporating electric drive systems that operate primarily under transient duty cycles, but the approach can be extended to include additional steady-state duty cycles typical for designing vehicle thermal management systems of conventional vehicles. The work compares opportunities to create an integrated low temperature coolant loop combining the power electronics and electric machine with the air conditioning system in contrast to a high temperature system integrated with the ICE cooling system.

  6. Behavior of Materials Under Conditions of Thermal Stress

    NASA Technical Reports Server (NTRS)

    Manson, S S

    1954-01-01

    A review is presented of available information on the behavior of brittle and ductile materials under conditions of thermal stress and thermal shock. For brittle materials, a simple formula relating physical properties to thermal-shock resistance is derived and used to determine the relative significance of two indices currently in use for rating materials. For ductile materials, thermal-shock resistance depends upon the complex interrelation among several metallurgical variables which seriously affect strength and ductility. These variables are briefly discussed and illustrated from literature sources. The importance of simulating operating conditions in tests for rating materials is especially to be emphasized because of the importance of testing conditions in metallurgy. A number of practical methods that have been used to minimize the deleterious effects of thermal stress and thermal shock are outlined.

  7. Thermal striping downstream of a horizontal elbow under thermally stratified transient flow conditions

    SciTech Connect

    Kuzay, T.M.; Kasza, K.E.

    1984-06-01

    A thermally stratified flow produced by a thermal transient passing through a horizontal elbow gives rise to large thermal fluctuations on the inner curvature wall of the downstream piping. These fluctuations were measured in a specially instrumented horizontal pipe and elbow system on a test set-up using water in the Mixing Components Technology Facility. This study is part of a larger program which is studying the influence of thermal buoyancy on general reactor component performance. This paper discusses the influence of pipe flow generated thermal oscillations on the structured thermal stresses induced in the pipe walls.

  8. Cryogenic Fluid Management Technology Development for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Taylor, B. D.; Caffrey, J.; Hedayat, A.; Stephens, J.; Polsgrove, R.

    2015-01-01

    Cryogenic fluid management technology is critical to the success of future nuclear thermal propulsion powered vehicles and long duration missions. This paper discusses current capabilities in key technologies and their development path. The thermal environment, complicated from the radiation escaping a reactor of a nuclear thermal propulsion system, is examined and analysis presented. The technology development path required for maintaining cryogenic propellants in this environment is reviewed. This paper is intended to encourage and bring attention to the cryogenic fluid management technologies needed to enable nuclear thermal propulsion powered deep space missions.

  9. Monitoring Local Strain in a Thermal Barrier Coating System Under Thermal Mechanical Gas Turbine Operating Conditions

    NASA Astrophysics Data System (ADS)

    Manero, Albert; Sofronsky, Stephen; Knipe, Kevin; Meid, Carla; Wischek, Janine; Okasinski, John; Almer, Jonathan; Karlsson, Anette M.; Raghavan, Seetha; Bartsch, Marion

    2015-07-01

    Advances in aircraft and land-based turbine engines have been increasing the extreme loading conditions on traditional engine components and have incited the need for improved performance with the use of protective coatings. These protective coatings shield the load-bearing super alloy blades from the high-temperature combustion gases by creating a thermal gradient over their thickness. This addition extends the life and performance of blades. A more complete understanding of the behavior, failure mechanics, and life expectancy for turbine blades and their coatings is needed to enhance and validate simulation models. As new thermal-barrier-coated materials and deposition methods are developed, strides to effectively test, evaluate, and prepare the technology for industry deployment are of paramount interest. Coupling the experience and expertise of researchers at the University of Central Florida, The German Aerospace Center, and Cleveland State University with the world-class synchrotron x-ray beam at the Advanced Photon Source in Argonne National Laboratory, the synergistic collaboration has yielded previously unseen measurements to look inside the coating layer system for in situ strain measurements during representative service loading. These findings quantify the in situ strain response on multilayer thermal barrier coatings and shed light on the elastic and nonelastic properties of the layers and the role of mechanical load and internal cooling variations on the response. The article discusses the experimental configuration and development of equipment to perform in situ strain measurements on multilayer thin coatings and provides an overview of the achievements thus far.

  10. Cryogenic Fluid Management Technology and Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Taylor, Brian D.; Caffrey, Jarvis; Hedayat, Ali; Stephens, Jonathan; Polsgrove, Robert

    2016-01-01

    Cryogenic fluid management (CFM) is critical to the success of future nuclear thermal propulsion powered vehicles. While this is an issue for any propulsion system utilizing cryogenic propellants, this is made more challenging by the radiation flux produced by the reactor in a nuclear thermal rocket (NTR). Managing the cryogenic fuel to prevent propellant loss to boil off and leakage is needed to limit the required quantity of propellant to a reasonable level. Analysis shows deposition of energy into liquid hydrogen fuel tanks in the vicinity of the nuclear thermal engine. This is on top of ambient environment sources of heat. Investments in cryogenic/thermal management systems (some of which are ongoing at various organizations) are needed in parallel to nuclear thermal engine development in order to one day see the successful operation of an entire stage. High durability, low thermal conductivity insulation is one developmental need. Light weight cryocoolers capable of removing heat from large fluid volumes at temperatures as low as approx. 20 K are needed to remove heat leak from the propellant of an NTR. Valve leakage is an additional CFM issue of great importance. Leakage rates of state of the art, launch vehicle size valves (which is approximately the size valves needed for a Mars transfer vehicle) are quite high and would result in large quantities of lost propellant over a long duration mission. Additionally, the liquid acquisition system inside the propellant tank must deliver properly conditioned propellant to the feed line for successful engine operation and avoid intake of warm or gaseous propellant. Analysis of the thermal environment and the CFM technology development are discussed in the accompanying presentation.

  11. Modeling The Potential For Thermal Concentrating Solar Power Technologies

    SciTech Connect

    Zhang, Yabei; Smith, Steven J.; Kyle, G. Page; Stackhouse, Jr., Paul W.

    2010-10-25

    In this paper we explore the tradeoffs between thermal storage capacity, cost, and other system parameters in order to examine possible evolutionary pathways for thermal Concen-trating Solar Power (CSP) technologies. A representation of CSP performance that is suit-able for incorporation into economic modeling tools is developed. We find that, as the fraction of electricity supplied by CSP technologies grows, the application of thermal CSP technologies might progress from current hybrid plants, to plants with a modest amount of thermal storage, and potentially even to plants with sufficient thermal storage to provide base load generation capacity. The representation of CSP cost and performance developed here was implemented in the ObjECTS MiniCAM long-term integrated assessment model. Datasets for global solar resource characteristics as applied to CSP technology were also developed. The regional and global potential of thermal CSP technologies is examined.

  12. Technology Solutions Case Study: Preventing Thermal Bypass

    SciTech Connect

    none,

    2012-10-01

    This project highlights the importance of continuous air barriers in full alignment with insulation to prevent thermal bypasses and achieve high energy performance, and recommends use of ENERGY STAR's Thermal Bypass Inspection Checklist.

  13. Commercialization of aquifer thermal energy storage technology

    SciTech Connect

    Hattrup, M.P.; Weijo, R.O.

    1989-09-01

    Pacific Northwest Laboratory (PNL) conducted this study for the US Department of Energy's (DOE) Office of Energy Storage and Distribution. The purpose of the study was to develop and screen a list of potential entry market applications for aquifer thermal energy storage (ATES). Several initial screening criteria were used to identify promising ATES applications. These include the existence of an energy availability/usage mismatch, the existence of many similar applications or commercial sites, the ability to utilize proven technology, the type of location, market characteristics, the size of and access to capital investment, and the number of decision makers involved. The in-depth analysis identified several additional screening criteria to consider in the selection of an entry market application. This analysis revealed that the best initial applications for ATES are those where reliability is acceptable, and relatively high temperatures are allowable. Although chill storage was the primary focus of this study, applications that are good candidates for heat ATES were also of special interest. 11 refs., 3 tabs.

  14. Application of reuseable interface technology for thermal parameter estimation

    SciTech Connect

    Blackwell, B.F.; Eldred, M.S.

    1997-05-01

    A Reuseable Interface Technology is presented for application to thermal parameter estimation problems. It is applied to the estimation of thermal conductivity of compacted Al{sub 2}O{sub 3} powder without binder. As temperature increases, the thermal conductivity of Al{sub 2}O{sub 3} powder without binder decreases.

  15. Solar thermal technology report, FY 1981. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The activities of the Department of Energy's Solar Thermal Technology Program are discussed. Highlights of technical activities and brief descriptions of each technology are given. Solar thermal conversion concepts are discussed in detail, particularily concentrating collectors and salt-gradient solar ponds.

  16. Current Technology for Thermal Protection Systems

    NASA Technical Reports Server (NTRS)

    Scotti, Stephen J. (Compiler)

    1992-01-01

    Interest in thermal protection systems for high-speed vehicles is increasing because of the stringent requirements of such new projects as the Space Exploration Initiative, the National Aero-Space Plane, and the High-Speed Civil Transport, as well as the needs for improved capabilities in existing thermal protection systems in the Space Shuttle and in turbojet engines. This selection of 13 papers from NASA and industry summarizes the history and operational experience of thermal protection systems utilized in the national space program to date, and also covers recent development efforts in thermal insulation, refractory materials and coatings, actively cooled structures, and two-phase thermal control systems.

  17. Thermal Analysis for Condition Monitoring of Machine Tool Spindles

    NASA Astrophysics Data System (ADS)

    Clough, D.; Fletcher, S.; Longstaff, A. P.; Willoughby, P.

    2012-05-01

    Decreasing tolerances on parts manufactured, or inspected, on machine tools increases the requirement to have a greater understanding of machine tool capabilities, error sources and factors affecting asset availability. Continuous usage of a machine tool during production processes causes heat generation typically at the moving elements, resulting in distortion of the machine structure. These effects, known as thermal errors, can contribute a significant percentage of the total error in a machine tool. There are a number of design solutions available to the machine tool builder to reduce thermal error including, liquid cooling systems, low thermal expansion materials and symmetric machine tool structures. However, these can only reduce the error not eliminate it altogether. It is therefore advisable, particularly in the production of high value parts, for manufacturers to obtain a thermal profile of their machine, to ensure it is capable of producing in tolerance parts. This paper considers factors affecting practical implementation of condition monitoring of the thermal errors. In particular is the requirement to find links between temperature, which is easily measureable during production and the errors which are not. To this end, various methods of testing including the advantages of thermal images are shown. Results are presented from machines in typical manufacturing environments, which also highlight the value of condition monitoring using thermal analysis.

  18. Thermal human biometeorological conditions and subjective thermal sensation in pedestrian streets in Chengdu, China.

    PubMed

    Zeng, YuLang; Dong, Liang

    2015-01-01

    The outdoor thermal environment of a public space is highly relevant to the thermal perception of individuals, thereby affecting the use of space. This study aims to connect thermal human biometeorological conditions and subjective thermal sensation in hot and humid regions and to find its influence on street use. We performed a thermal comfort survey at three locations in a pedestrian precinct of Chengdu, China. Meteorological measurements and questionnaire surveys were used to assess the thermal sensation of respondents. The number of people visiting the streets was counted. Meanwhile, mean radiant temperature (T mrt) and the physiological equivalent temperature (PET) index were used to evaluate the thermal environment. Analytical results reveal that weather and street design drive the trend of diurnal micrometeorological conditions of the street. With the same geometry and orientation, a street with no trees had wider ranges of meteorological parameters and a longer period of discomfort. The neutral temperature in Chengdu (24.4C PET) is similar to that in Taiwan, demonstrating substantial human tolerance to hot conditions in hot and humid regions. Visitors' thermal sensation votes showed the strongest positive relationships with air temperature. Overall comfort level was strongly related to every corresponding meteorological parameter, indicating the complexity of people's comfort in outdoor environments. In major alleys with multiple functions, the number of people in the street decreased as thermal indices increased; T mrt and PET had significant negative correlations with the number of people. This study aids in understanding pedestrian street use in hot and humid regions. PMID:25112452

  19. Applications of cogeneration with thermal energy storage technologies

    SciTech Connect

    Somasundaram, S.; Katipamula, S.; Williams, H.R.

    1995-03-01

    The Pacific Northwest Laboratory (PNL) leads the U.S. Department of Energy`s Thermal Energy Storage (TES) Program. The program focuses on developing TES for daily cycling (diurnal storage), annual cycling (seasonal storage), and utility-scale applications [utility thermal energy storage (UTES)]. Several of these storage technologies can be used in a new or an existing power generation facility to increase its efficiency and promote the use of the TES technology within the utility and the industrial sectors. The UTES project has included a study of both heat storage and cool storage systems for different utility-scale applications. The study reported here has shown that an oil/rock diurnal TES system, when integrated with a simple gas turbine cogeneration system, can produce on-peak power for $0.045 to $0.06 /kWh, while supplying a 24-hour process steam load. The molten salt storage system was found to be less suitable for simple as well as combined-cycle cogeneration applications. However, certain advanced TES concepts and storage media could substantially improve the performance and economic benefits. In related study of a chill TES system was evaluated for precooling gas turbine inlet air, which showed that an ice storage system could be used to effectively increase the peak generating capacity of gas turbines when operating in hot ambient conditions.

  20. Nanoparticle Pre-Conditioning for Enhanced Thermal Therapies in Cancer

    PubMed Central

    Shenoi, Mithun M.; Shah, Neha B.; Griffin, Robert J.; Vercellotti, Gregory M.; Bischof, John C.

    2011-01-01

    Nanoparticles show tremendous promise in the safe and effective delivery of molecular adjuvants to enhance local cancer therapy. One important form of local cancer treatment that suffers from local recurrence and distant metastases is thermal therapy. Here we review a new concept involving the use of nanoparticle delivered adjuvants to pre-condition or alter the vascular and immunological biology of the tumor to enhance its susceptibility to thermal therapy. To this end, a number of opportunities to combine nanoparticles with vascular and immunologically active agents are reviewed. One specific example of pre-conditioning involves a gold nanoparticle tagged with a vascular targeting agent (i.e. TNF-?). This nanoparticle embodiment demonstrates pre-conditioning through a dramatic reduction in tumor blood flow and induction of vascular damage which recruits a strong and sustained inflammatory infiltrate in the tumor. The ability of this nanoparticle pre-conditioning to enhance subsequent heat or cold thermal therapy in a variety of tumor models is reviewed. Finally, the potential for future clinical imaging to judge the extent of pre-conditioning and thus the optimal timing and extent of combinatorial thermal therapy is discussed. PMID:21542691

  1. Demonstration of Passive Fuel Cell Thermal Management Technology

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.; Jakupca, Ian; Colozza, Anthony; Wynne, Robert; Miller, Michael; Meyer, Al; Smith, William

    2012-01-01

    The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA Exploration program. The passive thermal management system relies on heat conduction within highly thermally conductive cooling plates to move the heat from the central portion of the cell stack out to the edges of the fuel cell stack. Using the passive approach eliminates the need for a coolant pump and other cooling loop components within the fuel cell system which reduces mass and improves overall system reliability. Previous development demonstrated the performance of suitable highly thermally conductive cooling plates and integrated heat exchanger technology to collect the heat from the cooling plates (Ref. 1). The next step in the development of this passive thermal approach was the demonstration of the control of the heat removal process and the demonstration of the passive thermal control technology in actual fuel cell stacks. Tests were run with a simulated fuel cell stack passive thermal management system outfitted with passive cooling plates, an integrated heat exchanger and two types of cooling flow control valves. The tests were run to demonstrate the controllability of the passive thermal control approach. Finally, successful demonstrations of passive thermal control technology were conducted with fuel cell stacks from two fuel cell stack vendors.

  2. Optimal working conditions for thermoelectric generators with realistic thermal coupling

    NASA Astrophysics Data System (ADS)

    Apertet, Y.; Ouerdane, H.; Glavatskaya, O.; Goupil, C.; Lecoeur, P.

    2012-01-01

    We study how maximum output power can be obtained from a thermoelectric generator (TEG) with non-ideal heat exchangers. We demonstrate with an analytic approach based on a force-flux formalism that the sole improvement of the intrinsic characteristics of thermoelectric modules including the enhancement of the figure of merit is of limited interest: the constraints imposed by the working conditions of the TEG must be considered on the same footing. Introducing an effective thermal conductance we derive the conditions which permit maximization of both efficiency and power production of the TEG dissipatively coupled to heat reservoirs. Thermal impedance matching must be accounted for as well as electrical impedance matching in order to maximize the output power. Our calculations also show that the thermal impedance does not only depend on the thermal conductivity at zero electrical current: it also depends on the TEG figure of merit. Our analysis thus yields both electrical and thermal conditions permitting optimal use of a thermoelectric generator.

  3. Long-term goals for solar thermal technology

    SciTech Connect

    Williams, T.A.; Dirks, J.A.; Brown, D.R.

    1985-05-01

    This document describes long-term performance and cost goals for three solar thermal technologies. Pacific Northwest Laboratory (PNL) developed these goals in support of the Draft Five Year Research and Development Plan for the National Solar Thermal Technology Program (DOE 1984b). These technology goals are intended to provide targets that, if met, will lead to the widespread use of solar thermal technologies in the marketplace. Goals were developed for three technologies and two applications: central receiver and dish technologies for utility-generated electricity applications, and central receiver, dish, and trough technologies for industrial process heat applications. These technologies and applications were chosen because they are the primary technologies and applications that have been researched by DOE in the past. System goals were developed through analysis of future price projections for energy sources competing with solar thermal in the middle-to-late 1990's time frame. The system goals selected were levelized energy costs of $0.05/kWh for electricity and $9/MBtu for industrial process heat (1984 $). Component goals established to meet system goals were developed based upon projections of solar thermal component performance and cost which could be achieved in the same time frame.

  4. Long-term goals for solar thermal technology

    NASA Astrophysics Data System (ADS)

    Williams, T. A.; Dirks, J. A.; Brown, D. R.

    1985-05-01

    Long-term performance and cost goals for three solar thermal technologies are discussed. Pacific Northwest Laboratory (PNL) developed these goals in support of the Draft Five Year Research and Development Plan for the National Solar Thermal Technology Program (DOE 1984b). These technology goals are intended to provide targets that, if met, will lead to the widespread use of solar thermal technologies in the marketplace. Goals were developed for three technologies and two applications: central receiver and dish technologies for utility-generated electricity applications, and central receiver, dish, and trough technologies for industrial process heat applications. These technologies and applications were chosen because they are the primary technologies and applications that have been researched by DOE in the past. System goals were developed through analysis of future price projections for energy sources competing with solar thermal in the middle-to-late 1990's time frame. The system goals selected were levelized energy costs of 0.05/kWh for electricity and $9/MBtu for industrial process heat (1984 $). Component goals established to meet system goals were developed based upon projections of solar thermal component performance and cost which could be achieved in the same time frame.

  5. Overview of NASA's Thermal Control Technology Development Project

    NASA Technical Reports Server (NTRS)

    Stephan, Ryan A.

    2010-01-01

    NASA?s Constellation Program included the Orion, Altair, and Lunar Surface Systems project offices. The first two elements, Orion and Altair, were planned to be manned space vehicles while the third element was much broader and included several sub-elements including Rovers and a Lunar Habitat. The planned missions involving these systems and vehicles included several risks and design challenges. Due to the unique thermal operating environment, many of these risks and challenges were associated with the vehicles? thermal control system. NASA?s Exploration Technology Development Program (ETDP) consisted of several technology development projects. The project chartered with mitigating the aforementioned thermal risks and design challenges was the Thermal Control System Development for Exploration Project. These risks and design challenges were being addressed through a rigorous technology development process that was planned to culminate with an integrated thermal control system test. Although these Constellation elements have been cancelled or significantly changed, the thermal technology development process is being continued within a new program entitled Enabling Technology Development and Demonstration (ETDD). The current paper summarizes the development efforts being performed by the technology development project. The development efforts involve heat acquisition and heat rejection hardware including radiators, heat exchangers, and evaporators. The project has also been developing advanced phase change material heat sinks and performing a material compatibility assessment for a promising thermal control system working fluid. The to-date progress and lessons-learned from these development efforts will be discussed throughout the paper.

  6. Estimating Thermal Inertia with a Maximum Entropy Boundary Condition

    NASA Astrophysics Data System (ADS)

    Nearing, G.; Moran, M. S.; Scott, R.; Ponce-Campos, G.

    2012-04-01

    Thermal inertia, P [Jm-2s-1/2K-1], is a physical property the land surface which determines resistance to temperature change under seasonal or diurnal heating. It is a function of volumetric heat capacity, c [Jm-3K-1], and thermal conductivity, k [Wm-1K-1] of the soil near the surface: P=√ck. Thermal inertia of soil varies with moisture content due the difference between thermal properties of water and air, and a number of studies have demonstrated that it is feasible to estimate soil moisture given thermal inertia (e.g. Lu et al, 2009, Murray and Verhoef, 2007). We take the common approach to estimating thermal inertia using measurements of surface temperature by modeling the Earth's surface as a 1-dimensional homogeneous diffusive half-space. In this case, surface temperature is a function of the ground heat flux (G) boundary condition and thermal inertia and a daily value of P was estimated by matching measured and modeled diurnal surface temperature fluctuations. The difficulty is in measuring G; we demonstrate that the new maximum entropy production (MEP) method for partitioning net radiation into surface energy fluxes (Wang and Bras, 2011) provides a suitable boundary condition for estimating P. Adding the diffusion representation of heat transfer in the soil reduces the number of free parameters in the MEP model from two to one, and we provided a sensitivity analysis which suggests that, for the purpose of estimating P, it is preferable to parameterize the coupled MEP-diffusion model by the ratio of thermal inertia of the soil to the effective thermal inertia of convective heat transfer to the atmosphere. We used this technique to estimate thermal inertia at two semiarid, non-vegetated locations in the Walnut Gulch Experimental Watershed in southeast AZ, USA and compared these estimates to estimates of P made using the Xue and Cracknell (1995) solution for a linearized ground heat flux boundary condition, and we found that the MEP-diffusion model produced superior thermal inertia estimates. The MEP-diffusion estimates also agreed well with P estimates made using a boundary condition measured with buried flux plates. We further demonstrated the new method using diurnal surface temperature fluctuations estimated from day/night MODIS image pairs and, excluding instances where the soil was extremely dry, found a strong relationship between estimated thermal inertia and measured 5 cm soil moisture. Lu, S., Ju, Z.Q., Ren, T.S. & Horton, R. (2009). A general approach to estimate soil water content from thermal inertia. Agricultural and Forest Meteorology, 149, 1693-1698. Murray, T. & Verhoef, A. (2007). Moving towards a more mechanistic approach in the determination of soil heat flux from remote measurements - I. A universal approach to calculate thermal inertia. Agricultural and Forest Meteorology, 147, 80-87. Wang, J.F. & Bras, R.L. (2011). A model of evapotranspiration based on the theory of maximum entropy production. Water Resources Research, 47. Xue, Y. & Cracknell, A.P. (1995). Advanced thermal inertia modeling. International Journal of Remote Sensing, 16, 431-446.

  7. Trends in automotive applications of thermal spray technology in Japan

    SciTech Connect

    Nakagawa, P.M.; Kawakami, F.; Kudoh, T.

    1994-12-31

    The quality of automotive parts must be strictly assured. The defect ratio must be maintained below one per one hundred thousand, although they are mass-produced. Thermal spray technology has been studied in terms of the required coating performances, comparing with those of the other surface modification processes. A short history of automotive applications has been shown and the trend in those applications has been described. Some examples of typical applications for automotive parts shown in this paper indicate the merits of thermal spray technology for automotive manufacturers. Demands on thermal spray technology for applications to automotive parts are presented in terms of materials, processes and peripheral technologies. The number of applications will increase if those demands are fulfilled by means of joint developments between the thermal spray industry and users.

  8. Solar thermal technology evaluation, fiscal year 1982. Volume 2: Technical

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The technology base of solar thermal energy is investigated. The materials, components, subsystems, and processes capable of meeting specific energy cost targets are emphasized, as are system efficiency and reliability.

  9. Lightweight Nonmetallic Thermal Protection Materials Technology (LNTPMT) Project

    NASA Technical Reports Server (NTRS)

    Flynn, Kevin; Gubert, Michael

    2005-01-01

    Contents include the following: Exploration systems research and technology program structure. Project objective. Overview of project. Candidate thermal protection system (PS) materials. Definition of reference missions and space environments. Technical performance metrics (TPMs).Testing (types of tests). Conclusion.

  10. TREATMENT OF HAZARDOUS PETROLEUM CONTAMINATED SOILS BY THERMAL DESORPTION TECHNOLOGIES

    EPA Science Inventory

    Spills, leaks, and accidental discharges of petroleum products have contaminated soil at thousands of sites in the United States. ne remedial action technique for treating petroleum contaminated soil is the use of thermal desorption technologies. his paper describes key elements ...

  11. ALTERNATIVE TECHNOLOGIES FOR REFRIGERATION AND AIR-CONDITIONING APPLICATIONS

    EPA Science Inventory

    The report gives results of an assessment of refrigeration technologies that are alternatives to vapor compression refrigeration for use in five application categories: domestic air conditioning, commercial air conditioning, mobile air conditioning, domestic refrigeration, and co...

  12. Thermal and Mechanical Microspacecraft Technologies for X-2000 Future Deliveries

    NASA Technical Reports Server (NTRS)

    Birur, Gaj; Bruno, Robin

    1999-01-01

    Thermal and mechanical technologies are an important part of the X-2000 Future Delivery (X-2000 FD) microspacecraft. A wide range of future space missions are expected to utilize the technologies and the architecture developed by the X-2000 FD. These technologies, besides being small in physical size, make the tiny spacecraft robust and flexible. The X2000 FD architecture is designed to be highly reliable and suitable for a wide range of missions such as planetary landers/orbiters/flybys, earth orbiters, cometary flybys/landers/sample returns, etc. One of the key ideas used in the development of these technologies and architecture is that several functions be in included in each of the thermal and mechanical elements. One of the thermal architecture being explored for the X-2000 FD microspacecraft is integrated thermal energy management of the complete spacecraft using a fluid loop. The robustness and the simplicity of the loop and the flexibility with which it can be integrated in the spacecraft have made it attractive for applications to X-2000 FD. Some of the thermal technologies to be developed as a part of this architecture are passive and active cooling loops, electrically variable emittance surfaces, miniature thermal switches, and specific high density electronic cooling technologies. In the mechanical area, multifunction architecture for the structural elements will be developed. The multifunction aspect is expected to substantially reduce the mass and volume of the spacecraft. Some of the technologies that will be developed are composite material panels incorporating electronics, cabling, and thermal elements in them. The paper to be presented at the 1999 conference, will describe the progress made so far in the microspacecraft thermal and mechanical technologies and approaches for the X2000 Future Deliveries microspacecraft.

  13. Advanced thermal control technologies for space science missions at JPL

    NASA Technical Reports Server (NTRS)

    Birur, G. C.; O'Donnell, T.

    2000-01-01

    A wide range of deep space science missions are planned by NASA for the future. Many of these missions are being planned under strict cost caps and advanced technologies are needed in order to enable these challenging mssions. Because of the wide range of thermal environments the spacecraft experience during the mission, advanced thermal control technologies are the key to enabling many of these missions.

  14. The processing of nanopowders by thermal plasma technology

    NASA Astrophysics Data System (ADS)

    Tong, Lirong; Reddy, Ramana G.

    2006-04-01

    The thermal plasma synthesis of nanopowders is a relatively new technology with great potential for future industrial applications. This article introduces research carried out in the plasma processing laboratory at the University of Alabama in Tuscaloosa, Alabama. Ceramic nanopowders and nanofibers (SiC, TiC, and B4C) and nanocomposite powders (TiC-Al(Ti), TiC-Fe(Ti), and TiN-Fe (Ti)) were successfully synthesized by thermal plasma technology.

  15. Thermal Cyclic Behavior of Thermal and Environmental Barrier Coatings Investigated Under High-Heat-Flux Conditions

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Lee, Kang N.; Miller, Robert A.

    2002-01-01

    Environmental barrier coatings (EBC's) have been developed to protect silicon-carbide- (SiC) based ceramic components in gas turbine engines from high-temperature environmental attack. With continuously increasing demands for significantly higher engine operating temperature, future EBC systems must be designed for both thermal and environmental protection of the engine components in combustion gases. In particular, the thermal barrier functions of EBC's become a necessity for reducing the engine-component thermal loads and chemical reaction rates, thus maintaining the required mechanical properties and durability of these components. Advances in the development of thermal and environmental barrier coatings (TBC's and EBC's, respectively) will directly impact the successful use of ceramic components in advanced engines. To develop high-performance coating systems, researchers must establish advanced test approaches. In this study, a laser high-heat-flux technique was employed to investigate the thermal cyclic behavior of TBC's and EBC's on SiC-reinforced SiC ceramic matrix composite substrates (SiC/SiC) under high thermal gradient and thermal cycling conditions. Because the laser heat flux test approach can monitor the coating's real-time thermal conductivity variations at high temperature, the coating thermal insulation performance, sintering, and delamination can all be obtained during thermal cycling tests. Plasma-sprayed yttria-stabilized zirconia (ZrO2-8 wt% Y2O3) thermal barrier and barium strontium aluminosilicate-based environmental barrier coatings (BSAS/BSAS+mullite/Si) on SiC/SiC ceramic matrix composites were investigated in this study. These coatings were laser tested in air under thermal gradients (the surface and interface temperatures were approximately 1482 and 1300 C, respectively). Some coating specimens were also subject to alternating furnace cycling (in a 90-percent water vapor environment at 1300 C) and laser thermal gradient cycling tests (in air), to investigate the water vapor effect. All cyclic tests were conducted using a 60-min hot-time temperature.

  16. Photovoltaic-Thermal New Technology Demonstration

    SciTech Connect

    Dean, Jesse; McNutt, Peter; Lisell, Lars; Burch, Jay; Jones, Dennis; Heinicke, David

    2015-01-01

    Photovoltaic-thermal (PV-T) hybrid solar systems offer increased electricity production by cooling the PV panel, and using the removed thermal energy to heat water - all in the same footprint as a standard PV system. GPG's assessment of the nation's first large-scale PV-T system installed at the Thomas P. O'Neill, Jr. Federal Building in Boston, MA, provided numerous lessons learned in system design, and identified a target market of locations with high utility costs and electric hot water backup.

  17. Porous materials for thermal management under extreme conditions.

    PubMed

    Clyne, T W; Golosnoy, I O; Tan, J C; Markaki, A E

    2006-01-15

    A brief analysis is presented of how heat transfer takes place in porous materials of various types. The emphasis is on materials able to withstand extremes of temperature, gas pressure, irradiation, etc. i.e. metals and ceramics, rather than polymers. A primary aim is commonly to maximize either the thermal resistance (i.e. provide insulation) or the rate of thermal equilibration between the material and a fluid passing through it (i.e. to facilitate heat exchange). The main structural characteristics concern porosity (void content), anisotropy, pore connectivity and scale. The effect of scale is complex, since the permeability decreases as the structure is refined, but the interfacial area for fluid-solid heat exchange is, thereby, raised. The durability of the pore structure may also be an issue, with a possible disadvantage of finer scale structures being poor microstructural stability under service conditions. Finally, good mechanical properties may be required, since the development of thermal gradients, high fluid fluxes, etc. can generate substantial levels of stress. There are, thus, some complex interplays between service conditions, pore architecture/scale, fluid permeation characteristics, convective heat flow, thermal conduction and radiative heat transfer. Such interplays are illustrated with reference to three examples: (i) a thermal barrier coating in a gas turbine engine; (ii) a Space Shuttle tile; and (iii) a Stirling engine heat exchanger. Highly porous, permeable materials are often made by bonding fibres together into a network structure and much of the analysis presented here is oriented towards such materials. PMID:18272456

  18. Thermal Performance Testing of Glass Microspheres under Cryogenic Vacuum Conditions

    NASA Astrophysics Data System (ADS)

    Fesmire, J. E.; Augustynowicz, S. D.

    2004-06-01

    A key element of space launch vehicles and systems is thermal insulation for cryogenic tanks and piping. Glass microspheres, or glass bubbles, represent an alternative insulation material for a number of applications. Composite materials and engineered thermal insulation systems are also being developed based on the use of glass bubbles as the main constituent material. Commonly used materials, such as spray-on foam insulation, or SOFI, for vehicle tanks and perlite powder for ground storage tanks, are targeted for replacement with the new-technology systems that use glass bubbles. Complete thermal characterization of the glass bubbles is the first step toward producing the engineering solutions required for the energy-efficient, low-maintenance cryogenic systems of the future. Thermal performance testing of the glass microsphere material was successfully completed at the Cryogenics Test Laboratory of NASA Kennedy Space Center. The test measurements were made at the full temperature difference (typical boundary temperatures of 78 kelvin [K] and 293 K) and included the full cold-vacuum pressure range. The results are reported in apparent thermal conductivity (k-value) and mean heat flux.

  19. The Effects of Nonuniform Thermal Boundary Condition on Thermal Stress Calculation of Water-Cooled W/Cu Divertors

    NASA Astrophysics Data System (ADS)

    Han, Le; Chang, Haiping; Zhang, Jingyang; Liu, Nan; Xu, Tiejun

    2014-10-01

    The thermal boundary condition has very important effects on the accuracy of thermal stress calculation of a water-cooled W/Cu divertor. In this paper, phase-change heat transfer was simulated based on the Euler homogeneous phase model, and local differences of liquid physical properties were considered under one-sided high heating conditions. The steady-state temperature field and thermal stress field under nonuniform thermal boundary conditions were obtained through numerical calculation. By comparison with the case of traditional uniform thermal boundary conditions, the results show that the distribution of thermal stress under nonuniform thermal boundary conditions exhibits the same trend as that under uniform thermal boundary conditions, but is larger in value. The maximum difference of maximum von Mises stress is up to 42% under the highest heating conditions. These results provide a valuable reference for the thermal stress calculation of water-cooled W/Cu divertors.

  20. Acoustic Emission Analysis of Damage Progression in Thermal Barrier Coatings Under Thermal Cyclic Conditions

    NASA Technical Reports Server (NTRS)

    Appleby, Matthew; Zhu, Dongming; Morscher, Gregory

    2015-01-01

    Damage evolution of electron beam-physical vapor deposited (EBVD-PVD) ZrO2-7 wt.% Y2O3 thermal barrier coatings (TBCs) under thermal cyclic conditions was monitored using an acoustic emission (AE) technique. The coatings were heated using a laser heat flux technique that yields a high reproducibility in thermal loading. Along with AE, real-time thermal conductivity measurements were also taken using infrared thermography. Tests were performed on samples with induced stress concentrations, as well as calcium-magnesium-alumino-silicate (CMAS) exposure, for comparison of damage mechanisms and AE response to the baseline (as-produced) coating. Analysis of acoustic waveforms was used to investigate damage development by comparing when events occurred, AE event frequency, energy content and location. The test results have shown that AE accumulation correlates well with thermal conductivity changes and that AE waveform analysis could be a valuable tool for monitoring coating degradation and provide insight on specific damage mechanisms.

  1. Thermal Momentum Distribution from Path Integrals with Shifted Boundary Conditions

    SciTech Connect

    Giusti, Leonardo; Meyer, Harvey B.

    2011-04-01

    For a thermal field theory formulated in the grand canonical ensemble, the distribution of the total momentum is an observable characterizing the thermal state. We show that its cumulants are related to thermodynamic potentials. In a relativistic system, for instance, the thermal variance of the total momentum is a direct measure of the enthalpy. We relate the generating function of the cumulants to the ratio of (a) a partition function expressed as a Matsubara path integral with shifted boundary conditions in the compact direction and (b) the ordinary partition function. In this form the generating function is well suited for Monte Carlo evaluation, and the cumulants can be extracted straightforwardly. We test the method in the SU(3) Yang-Mills theory and obtain the entropy density at three different temperatures.

  2. Rapid thermal cycling of new technology solar array blanket coupons

    NASA Technical Reports Server (NTRS)

    Scheiman, David A.; Smith, Bryan K.; Kurland, Richard M.; Mesch, Hans G.

    1990-01-01

    NASA Lewis Research Center is conducting thermal cycle testing of a new solar array blanket technologies. These technologies include test coupons for Space Station Freedom (SSF) and the advanced photovoltaic solar array (APSA). The objective of this testing is to demonstrate the durability or operational lifetime of the solar array interconnect design and blanket technology within a low earth orbit (LEO) or geosynchronous earth orbit (GEO) thermal cycling environment. Both the SSF and the APSA array survived all rapid thermal cycling with little or no degradation in peak performance. This testing includes an equivalent of 15 years in LEO for SSF test coupons and 30 years of GEO plus ten years of LEO for the APSA test coupon. It is concluded that both the parallel gap welding of the SSF interconnects and the soldering of the APSA interconnects are adequately designed to handle the thermal stresses of space environment temperature extremes.

  3. Thermal coefficients of technology assimilation by natural systems

    NASA Technical Reports Server (NTRS)

    Mueller, R. F.

    1971-01-01

    Estimates of thermal coefficients of the rates of technology assimilation processes was made. Consideration of such processes as vegetation and soil recovery and pollution assimilation indicates that these processes proceed ten to several hundred times more slowly in earth's cold regions than in temperate regions. It was suggested that these differential assimilation rates are important data in planning for technological expansion in Arctic regions.

  4. COMPARISON OF INNOVATIVE TECHNOLOGY FOR THERMAL DESTRUCTION OF HAZARDOUS WASTE

    EPA Science Inventory

    This paper briefly summaries and compares six technologies which are considered to be innovative to the thermal destruction of hazardous wastes. The six technologies are: Fluidized Bed, Molten Salt, High Temperature Fluid Wall, Plasma Arc, Wet Air Oxidation and Supercritical Wate...

  5. Hypothetical accident conditions thermal analysis of the 5320 package

    SciTech Connect

    Hensel, S.J.; Gromada, R.J.

    1995-12-31

    An axisymmetric model of the 5320 package was created to perform hypothetical accident conditions (HAC) thermal calculations. The analyses assume the 5320 package contains 359 grams of plutonium-238 (203 Watts) in the form of an oxide powder at a minimum density of 2.4 g/cc or at a maximum density of 11.2 g/cc. The solution from a non-solar 100 F ambient steady-state analysis was used as the initial conditions for the fire transient. A 30 minute 1,475 F fire transient followed by cooling via natural convection and thermal radiation to a 100 F non-solar environment was analyzed to determine peak component temperatures and vessel pressures. The 5320 package was considered to be horizontally suspended within the fire during the entire transient.

  6. Guidelines on Thermal Comfort of Air Conditioned Indoor Environment

    NASA Astrophysics Data System (ADS)

    Miura, Toyohiko

    The thermal comfort of air conditioned indoor environment for workers depended, of course, on metabolic rate of work, race, sex, age, clothing, climate of the district and state of acclimatization. The attention of the author was directed to the seasonal variation and the sexual difference of comfortable temperature and a survey through a year was conducted on the thermal comfort, and health conditions of workers engaged in light work in a precision machine factory, in some office workers. Besides, a series of experiments were conducted for purpose of determinning the optimum temperature of cooling in summer time in relation to the outdoor temperature. It seemed that many of workers at present would prefer somewhat higher temperature than those before the World War II. Forty years ago the average homes and offices were not so well heated as today, and clothing worn on the average was considerably heavier.

  7. Improvement for Thermal Energy Characteristics of Wood Biomass Pelletized Using a Half Carbonized Technology

    NASA Astrophysics Data System (ADS)

    Ishimura, Kenji; Ida, Tamio; Fuchihata, Manabu; Honjo, Takako; Sano, Hiroshi

    Biomass pellet utilities are popular in North European as a pellet stove and boiler et al. But, we have a lot of problem on wood biomass utilities in social situations and geography conditions. Especially, to move of biomass from mountain area to user side transportation coast rises. Therefore, we have to improve for thermal energy characteristics in biomass based on moving. This technology is new carbonized technology for improvement of biomass thermal energy characteristics. This technology controls heated temperature and pressed force by hot-press method. Fundamental properties of biomass show thermal decomposition and ultimate analysis. In these results, we suggest to occur a half carbonized phenomena for improvement of thermal energy. Half carbonized phenomena begin approximately 540K in sawdust and 580K in cellulose. And, total calorifi c value suddenly increases in these heated temperatures. Sawdust could suggest occurring lower 40K to compare cellulose.

  8. High-Temperature Adhesives for Thermally Stable Aero-Assist Technologies

    NASA Technical Reports Server (NTRS)

    Eberts, Kenneth; Ou, Runqing

    2013-01-01

    Aero-assist technologies are used to control the velocity of exploration vehicles (EVs) when entering Earth or other planetary atmospheres. Since entry of EVs in planetary atmospheres results in significant heating, thermally stable aero-assist technologies are required to avoid the high heating rates while maintaining low mass. Polymer adhesives are used in aero-assist structures because of the need for high flexibility and good bonding between layers of polymer films or fabrics. However, current polymer adhesives cannot withstand temperatures above 400 C. This innovation utilizes nanotechnology capabilities to address this need, leading to the development of high-temperature adhesives that exhibit high thermal conductivity in addition to increased thermal decomposition temperature. Enhanced thermal conductivity will help to dissipate heat quickly and effectively to avoid temperature rising to harmful levels. This, together with increased thermal decomposition temperature, will enable the adhesives to sustain transient high-temperature conditions.

  9. Modeling of thermal plasma arc technology FY 1994 report

    SciTech Connect

    Hawkes, G.L.; Nguyen, H.D.; Paik, S.; McKellar, M.G.

    1995-03-01

    The thermal plasma arc process is under consideration to thermally treat hazardous and radioactive waste. A computer model for the thermal plasma arc technology was designed as a tool to aid in the development and use of the plasma arc-Joule beating process. The value of this computer model is to: (a) aid in understanding the plasma arc-Joule beating process as applied to buried waste or exhumed buried waste, (b) help design melter geometry and electrode configuration, (c) calculate the process capability of vitrifying waste (i.e., tons/hour), (d) develop efficient plasma and melter operating conditions to optimize the process and/or reduce safety hazards, (e) calculate chemical reactions during treatment of waste to track chemical composition of off-gas products, and composition of final vitrified waste form and (f) help compare the designs of different plasma-arc facilities. A steady-state model of a two-dimensional axisymmetric transferred plasma arc has been developed and validated. A parametric analysis was performed that studied the effects of arc length, plasma gas composition, and input power on the temperatures and velocity profiles of the slag and plasma gas. A two-dimensional transient thermo-fluid model of the US Bureau of Mines plasma arc melter has been developed. This model includes the growth of a slag pool. The thermo-fluid model is used to predict the temperature and pressure fields within a plasma arc furnace. An analysis was performed to determine the effects of a molten metal pool on the temperature, velocity, and voltage fields within the slag. A robust and accurate model for the chemical equilibrium calculations has been selected to determine chemical composition of final waste form and off-gas based on the temperatures and pressures within the plasma-arc furnace. A chemical database has been selected. The database is based on the materials to be processed in the plasma arc furnaces.

  10. Thermal conditions and functional requirements for molten fuel containment

    SciTech Connect

    Kang, C.S.; Torri, A.

    1980-05-01

    This paper discusses the configuration and functional requirements for the molten fuel containment system (MFCS) in the GCFR demonstration plant design. Meltdown conditions following a loss of shutdown cooling (LOSC) accident were studied to define the core debris volume for a realistic meltdown case. Materials and thicknesses of the molten fuel container were defined. Stainless steel was chosen as the sacrificial material and magnesium oxide was chosen as the crucible material. Thermal conditions for an expected quasi-steady state were analyzed. Highlights of the functional requirements which directly affect the MFCS design are discussed.

  11. Lightweight Nonmetallic Thermal Protection Materials Technology

    NASA Technical Reports Server (NTRS)

    Valentine, Peter G.; Lawrence, Timothy W.; Gubert, Michael K.; Milos, Frank S.; Levine, Stanley R.; Ohlhorst, Craig W.; Koenig, John R.

    2005-01-01

    To fulfill President George W. Bush's "Vision for Space Exploration" (2004) - successful human and robotic missions to and from other solar system bodies in order to explore their atmospheres and surfaces - the National Aeronautics and Space Administration (NASA) must reduce the trip time, cost, and vehicle weight so that the payload and scientific experiments' capabilities can be maximized. The new project described in this paper will generate thermal protection system (TPS) product that will enable greater fidelity in mission/vehicle design trade studies, support risk reduction for material selections, assist in the optimization of vehicle weights, and provide materials and processes templates for use in the development of human-rated TPS qualification and certification plans.

  12. Advancements in thermal spallation drilling technology

    SciTech Connect

    Williams, R.E.; Dey, T.; Rauenzahn, R.; Kranz, R.; Tester, J.; Potter, R.; Murphy, H.

    1988-09-01

    Thermal spallation of hard rocks has been used commercially for many years to cut granite in quarries and to produce blasting holes in taconite mines. It is potentially an economic process for creating cavities in hard rocks that are difficult to drill or mine by conventional methods. These cavities might have application for storage of liquids and gases and of energy in several forms. They may also be used as high-pressure, naturally heated retorts for certain chemical processes. This report describes the spallation process, including the fluid dynamics and heat transfer from flame jets to the rock and subsequent rock failure. Our model of the spallation process predicts with good accuracy the surface temperatures and heat-transfer rates required to maintain desired drilling rates. Field tests, including site selection, equipment, field operations, and accomplishments, are also described in detail. 31 refs., 13 figs., 1 tab.

  13. Ceramic technology for solar thermal receivers

    NASA Astrophysics Data System (ADS)

    Kudirka, A. A.; Smoak, R. H.

    1981-11-01

    The high-temperature capability, resistance to corrosive environments and non-strategic nature of ceramics have prompted applications in the solar thermal field whose advantages over metallic devices of comparable performance may begin to be assessed. It is shown by a survey of point-focusing receiver designs employing a variety of ceramic compositions and fabrication methods that the state-of-the-art in structural ceramics is not sufficiently advanced to fully realize the promised benefits of higher temperature capabilities at lower cost than metallic alternatives. The ceramics considered include alumina, berylia, magnesia, stabilized zirconia, fused silica, silicon nitride, silicon carbide, mullite and cordierite, processed by such methods as isostatic pressing, dry pressing, slip casting, extrusion, calendaring and injection molding.

  14. Ceramic technology for solar thermal receivers

    NASA Technical Reports Server (NTRS)

    Kudirka, A. A.; Smoak, R. H.

    1981-01-01

    The high-temperature capability, resistance to corrosive environments and non-strategic nature of ceramics have prompted applications in the solar thermal field whose advantages over metallic devices of comparable performance may begin to be assessed. It is shown by a survey of point-focusing receiver designs employing a variety of ceramic compositions and fabrication methods that the state-of-the-art in structural ceramics is not sufficiently advanced to fully realize the promised benefits of higher temperature capabilities at lower cost than metallic alternatives. The ceramics considered include alumina, berylia, magnesia, stabilized zirconia, fused silica, silicon nitride, silicon carbide, mullite and cordierite, processed by such methods as isostatic pressing, dry pressing, slip casting, extrusion, calendaring and injection molding.

  15. Thermal imaging of solid oxide cells operating under electrolysis conditions

    NASA Astrophysics Data System (ADS)

    Cumming, D. J.; Elder, R. H.

    2015-04-01

    Solid oxide fuel cells remain at the forefront of research into electrochemical energy conversion technology. More recent interest has focused on operating in electrolyser mode to convert steam or carbon dioxide into hydrogen or carbon monoxide, respectively. The mechanism of these reactions is not fully understood, particularly when operated in co-electrolysis mode using both steam and CO2. This contribution reports the use of a thermal camera to directly observe changes in the cell temperature during operation, providing a remote, non-contact and highly sensitive method for monitoring an operational cell.

  16. Assessing condition of turbine engine ceramic components through NDE technology.

    SciTech Connect

    Ellingson, W.A.; Sun, J.G.; Deemer, C.; Erdman, S.; Prested, C.

    2002-04-12

    Thermal barrier coatings (TBCs) and environmental barrier coatings (EBCs) are under development for hot-gas path components to allow higher gas-firing temperatures in advanced (high-efficiency, low-emission) gas turbines. Increasing dependence on the reliability of TBC and EBC components has driven the need for nondestructive evaluation (NDE) methods to assess the condition, or ''health status,'' of these coatings. NDE methods based on elastic optical scatter and thermal imaging have been applied to TBC-coated test specimens that were thermally cycled and to EBC-coated SiC/SiC components that were run in 4.5 MW(e) field-test turbines. One primary interest is to develop NDE methods that can predict a prespall condition. Resulting data suggest a correlation between laser scatter data and thermal cycles for TBC-coated specimens, and thermal imaging results have demonstrated prespall detection for an EBC-coated SiC/SiC combustor liner.

  17. Operant Conditioning and Learning: Examples, Sources, Technology.

    ERIC Educational Resources Information Center

    Pedrini, Bonnie C.; Pedrini, D. T.

    The purpose of this paper is to relate psychology to teaching generally, and to relate behavior shaping to curriculum, specifically. Focusing on operant conditioning and learning, many studies are cited which illustrate some of the work being done toward effectively shaping or modifying student behavior whether in terms of subject matter or…

  18. Current Issues in Human Spacecraft Thermal Control Technology

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene K.

    2008-01-01

    Efficient thermal management of Earth-orbiting human spacecraft, lunar transit spacecraft and landers, as well as a lunar habitat will require advanced thermal technology. These future spacecraft will require more sophisticated thermal control systems that can dissipate or reject greater heat loads at higher input heat fluxes while using fewer of the limited spacecraft mass, volume and power resources. The thermal control designs also must accommodate the harsh environments associated with these missions including dust and high sink temperatures. The lunar environment presents several challenges to the design and operation of active thermal control systems. During the Apollo program, landings were located and timed to occur at lunar twilight, resulting in a benign thermal environment. The long duration polar lunar bases that are foreseen in 15 years will see extremely cold thermal environments. Long sojourns remote from low-Earth orbit will require lightweight, but robust and reliable systems. Innovative thermal management components and systems are needed to accomplish the rejection of heat from lunar bases. Advances are required in the general areas of radiators, thermal control loops and equipment. Radiators on the Moon's poles must operate and survive in very cold environments. Also, the dusty environment of an active lunar base may require dust mitigation and removal techniques to maintain radiator performance over the long term.

  19. Seasonal and clonal variations in technological and thermal properties of raw Hevea natural rubber

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was undertaken over a ten-month period, under the environmental conditions within the state of Mato Grosso, Brazil, to evaluate the causes of variation in technological and thermal properties of raw natural rubber from different clones of Hevea brasiliensis (GT 1, PR 255, FX 3864 and RRIM...

  20. Active Dust Mitigation Technology for Thermal Radiators for Lunar Exploration

    NASA Technical Reports Server (NTRS)

    Calle, C. I.; Buhler, C. R.; Hogue, M. D.; Johansen, M. R.; Hopkins, J. W.; Holloway, N. M. H.; Connell, J. W.; Chen, A.; Irwin, S. A.; Case, S. O.; VanSuetendael, N. J.; Snyder, S. J.; Clements, J. S.

    2010-01-01

    Dust accumulation on thermal radiator surfaces planned for lunar exploration will significantly reduce their efficiency. Evidence from the Apollo missions shows that an insulating layer of dust accumulated on radiator surfaces could not be removed and caused serious thermal control problems. Temperatures measured at different locations in the magnetometer on Apollo 12 were 38 C warmer than expected due to lunar dust accumulation. In this paper, we report on the application of the Electrodynamic Dust Shield (EDS) technology being developed in our NASA laboratory and applied to thermal radiator surfaces. The EDS uses electrostatic and dielectrophoretic forces generated by a grid of electrodes running a 2 micro A electric current to remove dust particles from surfaces. Working prototypes of EDS systems on solar panels and on thermal radiators have been successfully developed and tested at vacuum with clearing efficiencies above 92%. For this work EDS prototypes on flexible and rigid thermal radiators were developed and tested at vacuum.

  1. Impact of tax incentives on the commercialization of solar thermal electric technologies

    SciTech Connect

    Bos, P.B.; Weingart, J.M.

    1984-01-01

    This study was conducted to explore the impacts of the current and proposed tax incentives affecting the commercialization prospects for the solar thermal central receiver technology concept. The study was carried out using a newly developed methodology for integrated technical, market, economic and financial analysis of advanced power generation technologies. In particular, detailed financial cash flow analyses of intermediary financing of solar thermal central receiver technology under a variety of technical, economic and financial conditions were conducted. This analysis established the investor-perceived economic value as compared with the projected installed costs of solar thermal central receiver technology. A primary conclusion of this study is, that in spite of the rapid pace of technical development of the solar thermal option, the scheduled termination of these incentives will seriously impair full commercialization of this technology. Therefore, the Congressionally proposed enhancement and extension of the present federal tax incentives through 1995, combined with the various state tax credits during the early commercialization period, are essential for successful transfer of the solar thermal central receiver technology to the private sector.

  2. Innovative site remediation technology: Thermal desorption. Volume 6

    SciTech Connect

    Anderson, W.C.

    1993-11-01

    The monograph on thermal desorption is one of a series of eight on innovative site and waste remediation technologies that are the culmination of a multiorganization effort involving more than 100 experts over a two-year period. The thermal desorption processes addressed in this monograph use heat, either direct or indirect, ex situ, as the principal means to physically separate and transfer contaminants from soils, sediments, sludges, filter cakes, or other media. Thermal desorption is part of a treatment train; some pre- and postprocessing is necessary.

  3. Thermal and electrical conductivity of iron at Earth's core conditions.

    PubMed

    Pozzo, Monica; Davies, Chris; Gubbins, David; Alfè, Dario

    2012-05-17

    The Earth acts as a gigantic heat engine driven by the decay of radiogenic isotopes and slow cooling, which gives rise to plate tectonics, volcanoes and mountain building. Another key product is the geomagnetic field, generated in the liquid iron core by a dynamo running on heat released by cooling and freezing (as the solid inner core grows), and on chemical convection (due to light elements expelled from the liquid on freezing). The power supplied to the geodynamo, measured by the heat flux across the core-mantle boundary (CMB), places constraints on Earth's evolution. Estimates of CMB heat flux depend on properties of iron mixtures under the extreme pressure and temperature conditions in the core, most critically on the thermal and electrical conductivities. These quantities remain poorly known because of inherent experimental and theoretical difficulties. Here we use density functional theory to compute these conductivities in liquid iron mixtures at core conditions from first principles--unlike previous estimates, which relied on extrapolations. The mixtures of iron, oxygen, sulphur and silicon are taken from earlier work and fit the seismologically determined core density and inner-core boundary density jump. We find both conductivities to be two to three times higher than estimates in current use. The changes are so large that core thermal histories and power requirements need to be reassessed. New estimates indicate that the adiabatic heat flux is 15 to 16 terawatts at the CMB, higher than present estimates of CMB heat flux based on mantle convection; the top of the core must be thermally stratified and any convection in the upper core must be driven by chemical convection against the adverse thermal buoyancy or lateral variations in CMB heat flow. Power for the geodynamo is greatly restricted, and future models of mantle evolution will need to incorporate a high CMB heat flux and explain the recent formation of the inner core. PMID:22495307

  4. Thermal Management of Power Semiconductor Packages - Matching Cooling Technologies with Packaging Technologies (Presentation)

    SciTech Connect

    Bennion, K.; Moreno, G.

    2010-04-27

    Heat removal for power semiconductor devices is critical for robust operation. Because there are different packaging options, different thermal management technologies, and a range of applications, there is a need for a methodology to match cooling technologies and package configurations to target applications. To meet this need, a methodology was developed to compare the sensitivity of cooling technologies on the overall package thermal performance over a range of power semiconductor packaging configurations. The results provide insight into the trade-offs associated with cooling technologies and package configurations. The approach provides a method for comparing new developments in power semiconductor packages and identifying potential thermal control technologies for the package. The results can help users select the appropriate combination of packaging configuration and cooling technology for the desired application.

  5. Cyclic Failure Mechanisms of Thermal and Environmental Barrier Coating Systems Under Thermal Gradient Test Conditions

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Lee, Kang N.; Miller, Robert A.

    2002-01-01

    Plasma-sprayed ZrO2-8wt%Y2O3 and mullite+BSAS/Si multilayer thermal and environmental barrier coating (TBC-EBC) systems on SiC/SiC ceramic matrix composite (CMC) substrates were thermally cyclic tested under high thermal gradients using a laser high-heat-flux rig in conjunction with furnace exposure in water-vapor environments. Coating sintering and interface damage were assessed by monitoring the real-time thermal conductivity changes during the laser heat-flux tests and by examining the microstructural changes after exposure. Sintering kinetics of the coating systems were also independently characterized using a dilatometer. It was found that the coating failure involved both the time-temperature dependent sintering and the cycle frequency dependent cyclic fatigue processes. The water vapor environments not only facilitated the initial coating conductivity increases due to enhanced sintering and interface reaction, but also promoted later conductivity reductions due to the accelerated coating cracking and delamination. The failure mechanisms of the coating systems are also discussed based on the cyclic test results and are correlated to the sintering and thermal stress behavior under the thermal gradient test conditions.

  6. Generation of Turbulent Inlet Conditions for Thermal Boundary Layer Simulations

    NASA Astrophysics Data System (ADS)

    Araya, Juan G.

    2005-11-01

    Realistic environments generally imply spatially evolving turbulent boundary layers, being the flat plate the typical example. In this case, periodic boundary conditions cannot be established in the streamwise direction as in fully developed flows in channels. For this reason, it is necessary to generate turbulent fluctuations at the inlet of the computational domain at every time step. Lund et al. (1998) proposed an ingenious method for accounting spatial growth in the inflow condition based on the similarity of the velocity profiles at different streamwise locations. They extracted a velocity field, from a downstream plane, rescaled it and reintroduced it as a boundary condition at the inlet of the domain. In a posterior study, Kong et al. (2000) extended the previous concept to thermal inflow generation predictions. This research proposes different scales in the inner and outer regions for simulating actual turbulent temperature fluctuations at the entrance of a computational domain based on the Lund's idea: the velocity scales are based on the work of George and Castillo (1997), meanwhile the temperature scaling is derived from investigations performed by Wang and Castillo (2003). Finally, Direct Numerical Simulations of evolving turbulent thermal boundary layers on a flat plate are performed to test the proposed inflow generation model.

  7. Evaluation of thermal perception in schoolyards under Mediterranean climate conditions

    NASA Astrophysics Data System (ADS)

    Antoniadis, D.; Katsoulas, N.; Papanastasiou, D.; Christidou, V.; Kittas, C.

    2016-03-01

    The aim of this paper was to study qualitatively and quantitatively the thermal perception and corresponding heat stress conditions that prevail in two schoolyards in a coastal city in central Greece. For this purpose, meteorological parameters (i.e., wind speed, temperature, relative humidity, solar radiation) were recorded at 70 and 55 measuring points in the schoolyards, from 14:00 to 15:30 local time, during May and June of 2011. The measuring points were distributed so as to get measurements at points (a) directly exposed to the sun, (b) under the shadow of trees and building structures, and (c) near building structures. Cluster analysis was applied to group observations and revealed places that are microclimatically homogeneous. Thermal perception and heat stress conditions were assessed by means of the physiologically equivalent temperature (PET, °C), and the results are presented in relevant charts. The impact of material's albedo, radiation's reflection by structures and obstacles, and different tree species on thermal perception and heat stress conditions was also assessed. The analysis showed that trees triggered a reduction of incident solar radiation that ranged between 79 and 94 % depending on tree's species, crown dimension, tree height, and leaf area. PET values were mainly affected by solar radiation and wind speed. Trees caused a reduction of up to 37 % in PET values, while a 1-m s-1 increase in wind speed triggered a reduction of 3.7-5.0 °C in PET value. The effective shading area in the two schoolyards was small, being 27.5 and 11 %. The results of this study could be exploited by urban planning managers when designing or improving the outdoor environment of a school complex.

  8. Evaluation of thermal perception in schoolyards under Mediterranean climate conditions.

    PubMed

    Antoniadis, D; Katsoulas, N; Papanastasiou, D; Christidou, V; Kittas, C

    2016-03-01

    The aim of this paper was to study qualitatively and quantitatively the thermal perception and corresponding heat stress conditions that prevail in two schoolyards in a coastal city in central Greece. For this purpose, meteorological parameters (i.e., wind speed, temperature, relative humidity, solar radiation) were recorded at 70 and 55 measuring points in the schoolyards, from 14:00 to 15:30 local time, during May and June of 2011. The measuring points were distributed so as to get measurements at points (a) directly exposed to the sun, (b) under the shadow of trees and building structures, and (c) near building structures. Cluster analysis was applied to group observations and revealed places that are microclimatically homogeneous. Thermal perception and heat stress conditions were assessed by means of the physiologically equivalent temperature (PET, °C), and the results are presented in relevant charts. The impact of material's albedo, radiation's reflection by structures and obstacles, and different tree species on thermal perception and heat stress conditions was also assessed. The analysis showed that trees triggered a reduction of incident solar radiation that ranged between 79 and 94 % depending on tree's species, crown dimension, tree height, and leaf area. PET values were mainly affected by solar radiation and wind speed. Trees caused a reduction of up to 37 % in PET values, while a 1-m s(-1) increase in wind speed triggered a reduction of 3.7-5.0 °C in PET value. The effective shading area in the two schoolyards was small, being 27.5 and 11 %. The results of this study could be exploited by urban planning managers when designing or improving the outdoor environment of a school complex. PMID:26190284

  9. Evaluation of thermal perception in schoolyards under Mediterranean climate conditions

    NASA Astrophysics Data System (ADS)

    Antoniadis, D.; Katsoulas, N.; Papanastasiou, D.; Christidou, V.; Kittas, C.

    2015-07-01

    The aim of this paper was to study qualitatively and quantitatively the thermal perception and corresponding heat stress conditions that prevail in two schoolyards in a coastal city in central Greece. For this purpose, meteorological parameters (i.e., wind speed, temperature, relative humidity, solar radiation) were recorded at 70 and 55 measuring points in the schoolyards, from 14:00 to 15:30 local time, during May and June of 2011. The measuring points were distributed so as to get measurements at points (a) directly exposed to the sun, (b) under the shadow of trees and building structures, and (c) near building structures. Cluster analysis was applied to group observations and revealed places that are microclimatically homogeneous. Thermal perception and heat stress conditions were assessed by means of the physiologically equivalent temperature (PET, C), and the results are presented in relevant charts. The impact of material's albedo, radiation's reflection by structures and obstacles, and different tree species on thermal perception and heat stress conditions was also assessed. The analysis showed that trees triggered a reduction of incident solar radiation that ranged between 79 and 94 % depending on tree's species, crown dimension, tree height, and leaf area. PET values were mainly affected by solar radiation and wind speed. Trees caused a reduction of up to 37 % in PET values, while a 1-m s-1 increase in wind speed triggered a reduction of 3.7-5.0 C in PET value. The effective shading area in the two schoolyards was small, being 27.5 and 11 %. The results of this study could be exploited by urban planning managers when designing or improving the outdoor environment of a school complex.

  10. Thermal Conductivity and Elastic Modulus Evolution of Thermal Barrier Coatings under High Heat Flux Conditions

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    1999-01-01

    Laser high heat flux test approaches have been established to obtain critical properties of ceramic thermal barrier coatings (TBCs) under near-realistic temperature and thermal gradients that may he encountered in advanced engine systems. Thermal conductivity change kinetics of a thin ceramic coating were continuously monitored in real time at various test temperatures. A significant thermal conductivity increase was observed during the laser simulated engine heat flux tests. For a 0.25 mm thick ZrO2-8%Y2O3 coating system, the overall thermal conductivity increased from the initial value of 1.0 W/m-K to 1. 15 W/m-K, 1. 19 W/m-K and 1.5 W/m-K after 30 hour testing at surface temperatures of 990C, 1100C, and 1320C. respectively. Hardness and modulus gradients across a 1.5 mm thick TBC system were also determined as a function of laser testing time using the laser sintering/creep and micro-indentation techniques. The coating Knoop hardness values increased from the initial hardness value of 4 GPa to 5 GPa near the ceramic/bond coat interface, and to 7.5 GPa at the ceramic coating surface after 120 hour testing. The ceramic surface modulus increased from an initial value of about 70 GPa to a final value of 125 GPa. The increase in thermal conductivity and the evolution of significant hardness and modulus gradients in the TBC systems are attributed to sintering-induced micro-porosity gradients under the laser-imposed high thermal gradient conditions. The test techniques provide a viable means for obtaining coating data for use in design, development, stress modeling, and life prediction for various thermal barrier coating applications.

  11. Heavy oil reservoirs recoverable by thermal technology

    NASA Astrophysics Data System (ADS)

    Kujawa, P.

    1981-02-01

    Data are presented on reservoirs that contain heavy oil in the 8 to 25(0) API gravity range, contain at least ten million barrels of oil currently in place, and are noncarbonate in lithology. The reservoirs within these constraints were analyzed in light of applicable recovery technology, either steam drive or in situ combustion, and then ranked hierarchically as candidate reservoirs. An extensive basis for heavy oil development is provided, however, it is recommended that data on carbonate reservoirs, and tar sands be compiled. It was discovered that operators, and industrial and government analysts will lump heavy oil reservoirs as poor producers, however, it was found that upon detailed analysis, a large number, so categorized, were producing very well. A big problem in producing heavy oil is that of regulation; specifically, it was found that the regulatory constraints are so fluid and changing that one cannot settle on a favorable recovery and production plan with enough confidence in the regulatory requirements to commit capital to the project.

  12. Low-thrust chemical propulsion system propellant expulsion and thermal conditioning study

    NASA Technical Reports Server (NTRS)

    Merino, F.; Wakabayashi, I.; Pleasant, R. L.; Hill, M.

    1982-01-01

    Thermal conditioning systems for satisfying engine net positive suction pressure (NPSP) requirements, and propellant expulsion systems for achieving propellant dump during a return-to-launch site (RTLS) abort were studied for LH2/LO2 and LCH4/LO2 upper stage propellant combinations. A state-of-the-art thermal conditioning system employing helium injection beneath the liquid surface shows the lowest weight penalty for LO2 and LCH4. A technology system incorporating a thermal subcooler (heat exchanger) for engine NPSP results in the lowest weight penalty for the LH2 tank. A preliminary design of two state-of-the-art and two new technology systems indicates a weight penalty difference too small to warrant development of a LH2 thermal subcooler. Analysis results showed that the LH2/LO2 propellant expulsion system is optimized for maximum dump line diameters, whereas the LCH4/LO2 system is optimized for minimum dump line diameter (LCH4) and maximum dump line diameter (LO2). The primary uncertainty is the accurate determination of two-phase flow rates through the dump system; experimentation is not recommended because this uncertainty is not considered significant.

  13. Overall Thermal Performance of Flexible Piping Under Simulated Bending Conditions

    NASA Technical Reports Server (NTRS)

    Fesmire, James E.; Augustynowicz, S. D.; Demko, J. A.; Thompson, Karen (Technical Monitor)

    2001-01-01

    Flexible, vacuum-insulated transfer lines for low-temperature applications have higher thermal losses than comparable rigid lines. Typical flexible piping construction uses corrugated tubes, inner and outer, with a multilayer insulation (MLI) system in the annular space. Experiments on vacuum insulation systems in a flexible geometry were conducted at the Cryogenics Test Laboratory of NASA Kennedy Space Center. The effects of bending were simulated by causing the inner tube to be eccentric with the outer tube. The effects of spacers were simulated in a controlled way by inserting spacer tubes for the length of the cylindrical test articles. Two material systems, standard MLI and a layered composite insulation (LCI), were tested under the full range of vacuum levels using a liquid nitrogen boiloff calorimeter to determine the apparent thermal conductivity (k-value). The results indicate that the flexible piping under simulated bending conditions significantly degrades the thermal performance of the insulation system. These data are compared to standard MLI for both straight and flexible piping configurations. The definition of an overall k-value for actual field installations (k(sub oafi)) is described for use in design and analysis of cryogenic piping systems.

  14. Sintering Characteristics of Multilayered Thermal Barrier Coatings Under Thermal Gradient and Isothermal High Temperature Annealing Conditions

    NASA Technical Reports Server (NTRS)

    Rai, Amarendra K.; Schmitt, Michael P.; Bhattacharya, Rabi; Zhu, Dongming; Wolfe, Douglas E.

    2014-01-01

    Pyrochlore oxides have most of the relevant attributes for use as next generation thermal barrier coatings such as phase stability, low sintering kinetics and low thermal conductivity. One of the issues with the pyrochlore oxides is their lower toughness and therefore higher erosion rate compared to the current state-of-the-art TBC material, yttria (6 to 8 wt%) stabilized zirconia (YSZ). In this work, sintering characteristics were investigated for novel multilayered coating consisted of alternating layers of pyrochlore oxide viz Gd2Zr2O7 and t' low k (rare earth oxide doped YSZ). Thermal gradient and isothermal high temperature (1316 C) annealing conditions were used to investigate sintering and cracking in these coatings. The results are then compared with that of relevant monolayered coatings and a baseline YSZ coating.

  15. Thermal Denitration. Innovative Technology Summary Report

    SciTech Connect

    2001-09-01

    The major object of this work was to provide data for identifying and demonstrating a technically viable and cost-effective approach to condition LAW for immobilization. Pacific Northwest National Laboratory evaluated an approach that consisted of distillation followed by low-temperature denitration with a reductant addition. This process option minimizes volatilization of radionuclides and hazardous constituents, and converts most of the nitrate in the water to at least 50% nitrogen gas instead of NOx during LAW calcination, while still producing a groutable product. INEEL investigated high-temperature calcination for the LAW, a process already selected by INEEL for calcining high-level waste. Why is it necessary to remove the nitrate (denitrification)? The low-activity waste derived from the separation work performed on the sodium-bearing waste will be very acidic as will the high-activity waste from the redissolution of calcine. In addition, these waste streams will contain very high levels of nitrates; these nitrates are detrimental to grout waste forms. Thus, the nitrate must be removed from these waste streams before they are encapsulated in grout.

  16. Site technology capsule: Clean Berkshires, Inc. thermal desorption system

    SciTech Connect

    Not Available

    1994-08-01

    The thermal desorption process devised by Clean Berkshires Inc. (CBI) uses standard rotary kiln technology to remove organic contaminants from excavated solid wastes. The process works by vaporizing and isolating the constituents in a gas stream and then destroying them in a high-efficiency afterburner. The processed solids are either reused or disposed of as nonhazardous, depending on applicable regulations.

  17. Thermal management system technology development for space station applications

    NASA Technical Reports Server (NTRS)

    Rankin, J. G.; Marshall, P. F.

    1983-01-01

    A short discussion of the history to date of the NASA thermal management system technology development program is presented, and the current status of several ongoing studies and hardware demonstration tasks is reported. One element of technology that is required for long-life, high-power orbital platforms/stations that is being developed is heat rejection and a space-constructable radiator system. Aspects of this project include high-efficiency fin concepts, a heat pipe quick-disconnect device, high-capacity heat pipes, and an alternate interface heat exchanger design. In the area of heat acquisition and transport, developments in a pumped two-phase transport loop, a capillary pumped transport loop using the concept of thermal utility are reported. An example of a thermal management system concept is provided.

  18. Thermally Activated Desiccant Technology for Heat Recovery and Comfort

    SciTech Connect

    Jalalzadeh, A. A.

    2005-11-01

    Desiccant cooling is an important part of the diverse portfolio of Thermally Activated Technologies (TAT) designed for conversion of heat for the purpose of indoor air quality control. Thermally activated desiccant cooling incorporates a desiccant material that undergoes a cyclic process involving direct dehumidification of moist air and thermal regeneration. Desiccants fall into two categories: liquid and solid desiccants. Regardless of the type, solid or liquid, the governing principles of desiccant dehumidification systems are the same. In the dehumidification process, the vapor pressure of the moist air is higher than that of the desiccant, leading to transfer of moisture from the air to the desiccant material. By heating the desiccant, the vapor pressure differential is reversed in the regeneration process that drives the moisture from the desiccant. Figure 1 illustrates a rotary solid-desiccant dehumidifier. A burner or a thermally compatible source of waste heat can provide the required heat for regeneration.

  19. Numerical Determination of Critical Conditions for Thermal Ignition

    NASA Technical Reports Server (NTRS)

    Luo, W.; Wake, G. C.; Hawk, C. W.; Litchford, R. J.

    2008-01-01

    The determination of ignition or thermal explosion in an oxidizing porous body of material, as described by a dimensionless reaction-diffusion equation of the form .tu = .2u + .e-1/u over the bounded region O, is critically reexamined from a modern perspective using numerical methodologies. First, the classic stationary model is revisited to establish the proper reference frame for the steady-state solution space, and it is demonstrated how the resulting nonlinear two-point boundary value problem can be reexpressed as an initial value problem for a system of first-order differential equations, which may be readily solved using standard algorithms. Then, the numerical procedure is implemented and thoroughly validated against previous computational results based on sophisticated path-following techniques. Next, the transient nonstationary model is attacked, and the full nonlinear form of the reaction-diffusion equation, including a generalized convective boundary condition, is discretized and expressed as a system of linear algebraic equations. The numerical methodology is implemented as a computer algorithm, and validation computations are carried out as a prelude to a broad-ranging evaluation of the assembly problem and identification of the watershed critical initial temperature conditions for thermal ignition. This numerical methodology is then used as the basis for studying the relationship between the shape of the critical initial temperature distribution and the corresponding spatial moments of its energy content integral and an attempt to forge a fundamental conjecture governing this relation. Finally, the effects of dynamic boundary conditions on the classic storage problem are investigated and the groundwork is laid for the development of an approximate solution methodology based on adaptation of the standard stationary model.

  20. Limiting factors to advancing thermal battery technology for naval applications

    NASA Astrophysics Data System (ADS)

    Davis, Patrick B.; Winchester, Clinton S.

    1991-10-01

    Thermal batteries are primary reserve electrochemical power sources using molten salt electrolyte which experience little effective aging while in storage or dormant deployment. Thermal batteries are primarily used in military applications, and are currently used in a wide variety of Navy devices such as missiles, torpedoes, decays, and training targets, usually as power supplies in guidance, propulsion, and Safe/Arm applications. Technology developments have increased the available energy and power density ratings by an order of magnitude in the last ten years. Present thermal batteries, using lithium anodes and metal sulfide cathodes, are capable of performing applications where only less rugged and more expensive silver oxide/zinc or silver/magnesium chloride seawater batteries could serve previously. Additionally, these batteries are capable of supplanting lithium/thionyl chloride reserve batteries in a variety of specifically optimized designs. Increases in thermal battery energy and power density capabilities are not projected to continue with the current available technology. Several battery designs are now at the edge of feasibility and safety. Since future naval systems are likely to require continued growth of battery energy and power densities, there must be significant advances in battery technology. Specifically, anode alloy composition and new cathode materials must be investigated to allow for safe development and deployment of these high power, higher energy density batteries.

  1. Thermal control of the Lidar In-Space Technology Experiment

    NASA Technical Reports Server (NTRS)

    Carlson, Ann B.; Roettker, William A.

    1987-01-01

    The Lidar In-Space Technology Experiment (LITE) will employ lidar techniques to study the atmosphere from space. The LITE instrument will be flown in the Space Shuttle Payload Bay with an earth directed orientation. The experiment thermal control incorporates both active and passive techniques. The Laser Transmitter Module (LTM) and the system electronics will be actively cooled through the Shuttle pallet coolant loop. The receiver system and experiment platform will be passsively controlled through the use of insulation and component surface properties. This paper explains the thermal control techniques used and the analysis results, with primary focus on the receiver system.

  2. Novel Thermal Storage Technologies for Concentrating Solar Power Generation

    SciTech Connect

    Neti, Sudhakar; Oztekin, Alparslan; Chen, John; Tuzla, Kemal; Misiolek, Wojciech

    2013-06-20

    The technologies that are to be developed in this work will enable storage of thermal energy in 100 MWe solar energy plants for 6-24 hours at temperatures around 300oC and 850oC using encapsulated phase change materials (EPCM). Several encapsulated phase change materials have been identified, fabricated and proven with calorimetry. Two of these materials have been tested in an airflow experiment. A cost analysis for these thermal energy storage systems has also been conducted that met the targets established at the initiation of the project.

  3. Peptide formation mechanism on montmorillonite under thermal conditions.

    PubMed

    Fuchida, Shigeshi; Masuda, Harue; Shinoda, Keiji

    2014-02-01

    The oligomerization of amino acids is an essential process in the chemical evolution of proteins, which are precursors to life on Earth. Although some researchers have observed peptide formation on clay mineral surfaces, the mechanism of peptide bond formation on the clay mineral surface has not been clarified. In this study, the thermal behavior of glycine (Gly) adsorbed on montmorillonite was observed during heating experiments conducted at 150C for 336h under dry, wet, and dry-wet conditions to clarify the mechanism. Approximately 13.9% of the Gly monomers became peptides on montmorillonite under dry conditions, with diketopiperazine (cyclic dimer) being the main product. On the other hand, peptides were not synthesized in the absence of montmorillonite. Results of IR analysis showed that the Gly monomer was mainly adsorbed via hydrogen bonding between the positively charged amino groups and negatively charged surface sites (i.e., Lewis base sites) on the montmorillonite surface, indicating that the Lewis base site acts as a catalyst for peptide formation. In contrast, peptides were not detected on montmorillonite heated under wet conditions, since excess water shifted the equilibrium towards hydrolysis of the peptides. The presence of water is likely to control thermodynamic peptide production, and clay minerals, especially those with electrophilic defect sites, seem to act as a kinetic catalyst for the peptide formation reaction. PMID:24917118

  4. Peptide Formation Mechanism on Montmorillonite Under Thermal Conditions

    NASA Astrophysics Data System (ADS)

    Fuchida, Shigeshi; Masuda, Harue; Shinoda, Keiji

    2014-02-01

    The oligomerization of amino acids is an essential process in the chemical evolution of proteins, which are precursors to life on Earth. Although some researchers have observed peptide formation on clay mineral surfaces, the mechanism of peptide bond formation on the clay mineral surface has not been clarified. In this study, the thermal behavior of glycine (Gly) adsorbed on montmorillonite was observed during heating experiments conducted at 150 °C for 336 h under dry, wet, and dry-wet conditions to clarify the mechanism. Approximately 13.9 % of the Gly monomers became peptides on montmorillonite under dry conditions, with diketopiperazine (cyclic dimer) being the main product. On the other hand, peptides were not synthesized in the absence of montmorillonite. Results of IR analysis showed that the Gly monomer was mainly adsorbed via hydrogen bonding between the positively charged amino groups and negatively charged surface sites (i.e., Lewis base sites) on the montmorillonite surface, indicating that the Lewis base site acts as a catalyst for peptide formation. In contrast, peptides were not detected on montmorillonite heated under wet conditions, since excess water shifted the equilibrium towards hydrolysis of the peptides. The presence of water is likely to control thermodynamic peptide production, and clay minerals, especially those with electrophilic defect sites, seem to act as a kinetic catalyst for the peptide formation reaction.

  5. Conditions, Processes and Consequences of Technology Use: A Case Study

    ERIC Educational Resources Information Center

    Dawson, Kara; Heinecke, Walter

    2004-01-01

    The conditions, processes and consequences of technology implementation were explored in order to develop a holistic view of technology use in a typical elementary school (ages 6-11 years). This qualitative case study employed a symbolic interactionist conceptual framework, an interpretivist research paradigm and analytic induction strategies.…

  6. Heating, Ventilating, and Air Conditioning. Energy Technology Series.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This course in heating, ventilating, and air conditioning is one of 16 courses in the Energy Technology Series developed for an Energy Conservation-and-Use Technology curriculum. Intended for use in two-year postsecondary technical institutions to prepare technicians for employment, the courses are also useful in industry for updating employees in

  7. Conditions, Processes and Consequences of Technology Use: A Case Study

    ERIC Educational Resources Information Center

    Dawson, Kara; Heinecke, Walter

    2004-01-01

    The conditions, processes and consequences of technology implementation were explored in order to develop a holistic view of technology use in a typical elementary school (ages 6-11 years). This qualitative case study employed a symbolic interactionist conceptual framework, an interpretivist research paradigm and analytic induction strategies.

  8. Chronic Heat Stress and Cognitive Development: An Example of Thermal Conditions Influencing Human Development

    ERIC Educational Resources Information Center

    Riniolo, Todd C.; Schmidt, Louis A.

    2006-01-01

    Although thermal conditions influence the development of living organisms in a wide variety of ways, this topic has been recently ignored in humans. This paper reintroduces thermal conditions as a topic of importance for developmentalists by presenting an example of how thermal conditions are hypothesized to influence a particular developmental…

  9. Chronic Heat Stress and Cognitive Development: An Example of Thermal Conditions Influencing Human Development

    ERIC Educational Resources Information Center

    Riniolo, Todd C.; Schmidt, Louis A.

    2006-01-01

    Although thermal conditions influence the development of living organisms in a wide variety of ways, this topic has been recently ignored in humans. This paper reintroduces thermal conditions as a topic of importance for developmentalists by presenting an example of how thermal conditions are hypothesized to influence a particular developmental

  10. Experiments and models of active and thermal imaging under bad weather conditions

    NASA Astrophysics Data System (ADS)

    Bernard, Erwan; Riviere, Nicolas; Renaudat, Mathieu; Guiset, Pierrick; Pealat, Michel; Zenou, Emmanuel

    2013-10-01

    Thermal imaging cameras are widely used in military contexts for their night vision capabilities and their observation range; there are based on passive infrared sensors (e.g. MWIR or LWIR range). Under bad weather conditions or when the target is partially hidden (e.g. foliage, military camouflage) they are more and more complemented by active imaging systems, a key technology to perform target identification at long range. The 2D flash imaging technique is based on a high powered pulsed laser source that illuminates the entire scene and a fast gated camera as the imaging system. Both technologies are well experienced under clear meteorological conditions; models including atmospheric effects such as turbulence are able to predict accurately their performances. However, under bad weather conditions such as rain, haze or snow, these models are not relevant. This paper introduces new models to predict performances under bad weather conditions for both active and infrared imaging systems. We point out their effects on controlled physical parameters (extinction, transmission, spatial resolution, thermal background, speckle, turbulence). Then we develop physical models to describe their intrinsic characteristics and their impact on the imaging system performances. Finally, we approximate these models to have a "first order" model easy to deploy for industrial applications. This theoretical work will be validated on real active and infrared data.

  11. Study of thermal management for space platform applications: Unmanned modular thermal management and radiator technologies

    NASA Technical Reports Server (NTRS)

    Oren, J. A.

    1981-01-01

    Candidate techniques for thermal management of unmanned modules docked to a large 250 kW platform were evaluated. Both automatically deployed and space constructed radiator systems were studied to identify characteristics and potential problems. Radiator coating requirements and current state-of-the-art were identified. An assessment of the technology needs was made and advancements were recommended.

  12. Proceedings of the DOE solar thermal technology program planning workshop

    SciTech Connect

    Radosevich, L.G.

    1982-03-01

    The workshop reviewed several strategies for solar thermal technology program planning. After the strategy options were presented to the workshop participants, each committee (user/supplier, system test and evaluation, technology development, and research) was asked to address the following issues: which strategy shows the best potential for meeting the objectives of the solar thermal program; is there an obvious imbalance in the program in terms of emphasis in various areas; are there any activities which should be added or deleted; and, if a funding cut occurs, how should the cut be made. The strategy options are briefly discussed. Summary reports from each committee follow, and a compilation of the committee findings highlights major similarities and differences. (LEW)

  13. Dish concentrators for solar thermal energy: Status and technology development

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.

    1982-01-01

    Point-focusing concentrators under consideration for solar thermal energy use are reviewed. These concentrators differ in such characteristics as optical configuration, optical materials, structure for support of the optical elements and of the receiver, mount, foundation, drive, controls and enclosure. Concentrator performance and cost are considered. Technology development is outlined, including wind loads and aerodynamics; precipitation, sand, and seismic considerations; and maintenance and cleaning.

  14. CARBONACEOUS MATTER PRECURSORS AND METAMORPHIC CONDITIONS IN THERMALLY PROCESSED CHONDRITES

    NASA Astrophysics Data System (ADS)

    Quirico, E.; Montagnac, G.; Rouzaud, J.; Bonal, L.; Bourot-Denise, M.; Duber, S.; Reynard, B.

    2009-12-01

    Unravelling the origin of carbonaceous matter in pristine chondrites requires the understanding of the effect of post-accretion processes. In chondrites of petrologic type 3, thermal metamorphism modified to various extents the composition and structure of carbonaceous matter. Interestingly, this process controls the degree of structural order of carbonaceous matter, and clues on the thermal history of the parent body may be recovered from the physico-chemical study of carbonaceous matter. Following this framework, geothermometers based on Raman spectrometry of carbonaceous matter and covering a wide range of temperatures (100-650 °C) have been developed over recent years, both on terrestrial rocks and chondrites. While Raman data have been largely interpreted in terms of temperature, they are also the fingerprint of certain metamorphic conditions, especially in the low temperature range relevant to poorly ordered carbonaceous matter. This study investigates the Raman spectra of two series of chondritic carbonaceous matter and coal samples formed from different precursors and under different metamorphic conditions. The Raman spectra of Polyaromatic Carbonaceous Matter (PCM) from 42 chondrites and 27 coal samples, measured with visible (514 nm) and ultra-violet (244 nm) excitation wavelengths, are analyzed. The Raman spectra of low rank coals and chondrites of petrologic types 1 and 2, which contain the more disordered PCM, reflect the distinct carbon structures of their precursors. The 514 nm Raman spectra of high rank coals and chondrites of petrologic type 3 exhibit continuous and systematic spectral differences reflecting different carbon structures present during the metamorphism event. They result from differences in the chemical structures of the precursors concerning for instance the reticulation of polyaromatic units or an abundance of ether functional groups, or possibly from a lack of carbonization processes to efficiently expel oxygen heteroatoms, due to weak lithostatic pressure and confinement. These results suggest that the use of lowtemperature carbon thermometers should be restricted to a given geological context. At the same time, the sensitivity of Raman spectra to precursors and certain metamorphic conditions could be used to obtain information other than temperature. The analysis also provides evidence of the accretion of relatively homogeneous PCM precursors among ordinary CO and CV carbonaceous chondrite parent bodies, given that the 514nm Raman spectra of PCM efficiently trace the metamorphism grades. Looking closer, however, the 514 nm Raman data are more scattered in chondrites than in coals and the maturity tracers are less sensitive and miscorrelate with the atomic H/C ratio, suggesting slight compositional and structural differences among the PCM precursors accreted.

  15. Strategic Need for Multi-Purpose Thermal Hydraulic Loop for Support of Advanced Reactor Technologies

    SciTech Connect

    James E. O'Brien; Piyush Sabharwall; Su-Jong Yoon; Gregory K. Housley

    2014-09-01

    This report presents a conceptual design for a new high-temperature multi fluid, multi loop test facility for the INL to support thermal hydraulic, materials, and thermal energy storage research for nuclear and nuclear-hybrid applications. In its initial configuration, the facility will include a high-temperature helium loop, a liquid salt loop, and a hot water/steam loop. The three loops will be thermally coupled through an intermediate heat exchanger (IHX) and a secondary heat exchanger (SHX). Research topics to be addressed with this facility include the characterization and performance evaluation of candidate compact heat exchangers such as printed circuit heat exchangers (PCHEs) at prototypical operating conditions, flow and heat transfer issues related to core thermal hydraulics in advanced helium-cooled and salt-cooled reactors, and evaluation of corrosion behavior of new cladding materials and accident-tolerant fuels for LWRs at prototypical conditions. Based on its relevance to advanced reactor systems, the new facility has been named the Advanced Reactor Technology Integral System Test (ARTIST) facility. Research performed in this facility will advance the state of the art and technology readiness level of high temperature intermediate heat exchangers (IHXs) for nuclear applications while establishing the INL as a center of excellence for the development and certification of this technology. The thermal energy storage capability will support research and demonstration activities related to process heat delivery for a variety of hybrid energy systems and grid stabilization strategies. Experimental results obtained from this research will assist in development of reliable predictive models for thermal hydraulic design and safety codes over the range of expected advanced reactor operating conditions. Proposed/existing IHX heat transfer and friction correlations and criteria will be assessed with information on materials compatibility and instrumentation needs. The experimental database will guide development of appropriate predictive methods and be available for code verification and validation (V&V) related to these systems.

  16. Advanced Mirror Technology Development (AMTD) Thermal Trade Studies

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas

    2015-01-01

    Advanced Mirror Technology Development (AMTD) is being done at Marshall Space Flight Center (MSFC) in preparation for the next large aperture UVOIR space observatory. A key science mission of that observatory is the detection and characterization of 'Earth-like' exoplanets. Direct exoplanet observation requires a telescope to see a planet which will be 10(exp -10) times dimmer than its host star. To accomplish this using an internal coronagraph requires a telescope with an ultra-stable wavefront error (WFE). This paper investigates parametric relationships between primary mirror physical parameters and thermal WFE stability. Candidate mirrors are designed as a mesh and placed into a thermal analysis model to determine the temperature distribution in the mirror when it is placed inside of an actively controlled cylindrical shroud at Lagrange point 2. Thermal strains resulting from the temperature distribution are found and an estimation of WFE is found to characterize the effect that thermal inputs have on the optical quality of the mirror. This process is repeated for several mirror material properties, material types, and mirror designs to determine how to design a mirror for thermal stability.

  17. Development of Passive Fuel Cell Thermal Management Technology

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.; Jakupca, Ian; Colozza, Anthony

    2011-01-01

    The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA exploration program. The passive thermal management system relies on heat conduction within the cooling plate to move the heat from the central portion of the cell stack out to the edges of the fuel cell stack rather than using a pumped loop cooling system to convectively remove the heat. Using the passive approach eliminates the need for a coolant pump and other cooling loop components which reduces fuel cell system mass and improves overall system reliability. Previous analysis had identified that low density, ultra-high thermal conductivity materials would be needed for the cooling plates in order to achieve the desired reductions in mass and the highly uniform thermal heat sink for each cell within a fuel cell stack. A pyrolytic graphite material was identified and fabricated into a thin plate using different methods. Also a development project with Thermacore, Inc. resulted in a planar heat pipe. Thermal conductivity tests were done using these materials. The results indicated that lightweight passive fuel cell cooling is feasible.

  18. Non-thermal plasma: An emerging technology for VOCs control

    SciTech Connect

    Lee, H.M.; Chang, M.B.

    1998-12-31

    The effectiveness of applying non-thermal plasma for destroying VOCs from gas streams is experimentally investigated in this study. p-Xylene, designated as air toxics in the 1990 US Clean Air Act Amendment, is selected as target pollutants due to its wide use in industrial processes. Exposure to fairly low levels of p-xylene (a few ppm) can cause irritation to nose, skin and eyes. In addition, it is odor-causing VOCs which has received much public concern especially in Taiwan due to its high population density. Various technologies have been developed for removing VOCs, e.g., condensation, activated carbon adsorption, thermal decomposition, heterogeneous catalysis and biofiltration. However, there are some limitations with these technologies. Recently, non-thermal plasma technologies have been proposed as an innovative way for VOCs control. Non-thermal plasma can be generated via various methods including dielectric barrier discharge, corona discharge, DC discharge, packed-bed discharge and RF discharge. The sinks of xylene in atmosphere are primarily involved with the reactions with O and OH atoms. Interestingly, O and OH atoms can be effectively generated via nonthermal plasma processes. A laboratory-scale reactor is designed and constructed for evaluating the effectiveness of nonthermal plasma for destroying p-xylene molecules. The nonthermal plasma is generated with dielectric barrier discharge operating at atmospheric pressure. Operating parameters investigated in this study include applied voltage, temperature and composition of the gas stream. Results indicate that as high as 100% p-xylene removal efficiencies can be achieved.

  19. Solar parabolic dish thermal power systems - Technology and applications

    NASA Technical Reports Server (NTRS)

    Lucas, J. W.; Marriott, A. T.

    1979-01-01

    Activities of two projects at JPL in support of DOE's Small Power Systems Program are reported. These two projects are the Point-Focusing Distributed Receiver (PFDR) Technology Project and the Point-Focusing Thermal and Electric Applications (PFTEA) Project. The PFDR Technology Project's major activity is developing the technology of solar concentrators, receivers and power conversion subsystems suitable for parabolic dish or point-focusing distributed receiver power systems. Other PFDR activities include system integration and cost estimation under mass production, as well as the testing of the hardware. The PFTEA Project's first major activity is applications analysis, that is seeking ways to introduce PFDR systems into appropriate user sectors. The second activity is systems engineering and development wherein power plant systems are analyzed for specific applications. The third activity is the installation of a series of engineering experiments in various user environments to obtain actual operating experience

  20. Evaluation of thermal comfort conditions in Ourmieh Lake, Iran

    NASA Astrophysics Data System (ADS)

    Farajzadeh, Hassan; Matzarakis, Andreas

    2012-02-01

    Research in developing countries concerning the relationship of weather and climate conditions with tourism shows a high importance not only because of financial aspects but also an important part of the region's tourism resource base. Monthly mean air temperature, relative humidity, precipitation, vapor pressure, wind velocity, and cloud cover for the period 1985-2005 data collected from four meteorological stations Tabriz, Maragheh, Orumieh, and Khoy were selected. The purpose of this study is to determine the most suitable months for human thermal comfort in Ourmieh Lake, a salt sea in the northwest of Iran. To achieve this, the cooling power and physiologically equivalent temperature (PET) calculated by the RayMan model and the Climate Tourism/Transfer Information Scheme (CTIS) were used. The results based on cooling power indicate that the most favorable period for tourism, sporting, and recreational activities in Ourmieh Lake is between June and October and based on PET between June to September. In addition, the CTIS shows a detailed quantification of the relevant climate-tourism factors.

  1. First responder thermal imaging cameras: establishment of representative performance testing conditions

    NASA Astrophysics Data System (ADS)

    Amon, Francine; Hamins, Anthony; Rowe, Justin

    2006-04-01

    Thermal imaging cameras are rapidly becoming integral equipment for first responders for use in structure fires and other emergencies. Currently there are no standardized performance metrics or test methods available to the users and manufacturers of these instruments. The Building and Fire Research Laboratory (BFRL) at the National Institute of Standards and Technology is conducting research to establish test conditions that best represent the environment in which these cameras are used. First responders may use thermal imagers for field operations ranging from fire attack and search/rescue in burning structures, to hot spot detection in overhaul activities, to detecting the location of hazardous materials. In order to develop standardized performance metrics and test methods that capture the harsh environment in which these cameras may be used, information has been collected from the literature, and from full-scale tests that have been conducted at BFRL. Initial experimental work has focused on temperature extremes and the presence of obscuring media such as smoke. In full-scale tests, thermal imagers viewed a target through smoke, dust, and steam, with and without flames in the field of view. The fuels tested were hydrocarbons (methanol, heptane, propylene, toluene), wood, upholstered cushions, and carpeting with padding. Gas temperatures, CO, CO II, and O II volume fraction, emission spectra, and smoke concentrations were measured. Simple thermal bar targets and a heated mannequin fitted in firefighter gear were used as targets. The imagers were placed at three distances from the targets, ranging from 3 m to 12 m.

  2. NASA-EPA automotive thermal reactor technology program

    NASA Technical Reports Server (NTRS)

    Blankenship, C. P.; Hibbard, R. R.

    1972-01-01

    The status of the NASA-EPA automotive thermal reactor technology program is summarized. This program is concerned primarily with materials evaluation, reactor design, and combustion kinetics. From engine dynamometer tests of candidate metals and coatings, two ferritic iron alloys (GE 1541 and Armco 18-SR) and a nickel-base alloy (Inconel 601) offer promise for reactor use. None of the coatings evaluated warrant further consideration. Development studies on a ceramic thermal reactor appear promising based on initial vehicle road tests. A chemical kinetic study has shown that gas temperatures of at least 900 K to 1000 K are required for the effective cleanup of carbon monoxide and hydrocarbons, but that higher temperatures require shorter combustion times and thus may permit smaller reactors.

  3. High temperature solar thermal technology: The North Africa Market

    SciTech Connect

    Not Available

    1990-12-01

    High temperature solar thermal (HTST) technology offers an attractive option for both industrialized and non-industrialized countries to generate electricity and industrial process steam. The purpose of this report is to assess the potential market for solar thermal applications in the North African countries of Algeria, Egypt, Morocco and Tunisia. North Africa was selected because of its outstanding solar resource base and the variety of applications to be found there. Diminishing oil and gas resources, coupled with expanding energy needs, opens a large potential market for the US industry. The US high temperature solar trough industry has little competition globally and could build a large market in these areas. The US is already familiar with certain solar markets in North Africa due to the supplying of substantial quantities of US-manufactured flat plate collectors to this region.

  4. Evaluation Framework and Analyses for Thermal Energy Storage Integrated with Packaged Air Conditioning

    SciTech Connect

    Kung, F.; Deru, M.; Bonnema, E.

    2013-10-01

    Few third-party guidance documents or tools are available for evaluating thermal energy storage (TES) integrated with packaged air conditioning (AC), as this type of TES is relatively new compared to TES integrated with chillers or hot water systems. To address this gap, researchers at the National Renewable Energy Laboratory conducted a project to improve the ability of potential technology adopters to evaluate TES technologies. Major project outcomes included: development of an evaluation framework to describe key metrics, methodologies, and issues to consider when assessing the performance of TES systems integrated with packaged AC; application of multiple concepts from the evaluation framework to analyze performance data from four demonstration sites; and production of a new simulation capability that enables modeling of TES integrated with packaged AC in EnergyPlus. This report includes the evaluation framework and analysis results from the project.

  5. Prospects for using the technology of circulating fluidized bed for technically refitting Russian thermal power stations

    NASA Astrophysics Data System (ADS)

    Ryabov, G. A.; Folomeev, O. M.; Litun, D. S.; Sankin, D. A.; Dmitryukova, I. G.

    2009-01-01

    The present state and development of circulating fluidized bed (CFB) technology around the world are briefly reviewed. Questions of increasing the capacity of single boiler units and raising the parameters of steam are discussed. CFB boilers for 225- and 330-MW power units are described and their parameters are estimated as applied to the conditions of firing different Russian fuels. Indicators characterizing CFB boilers and pulverized-coal boilers are given. Capital outlays and operational costs for new coal-fired units are compared, and the results from this comparison are used to show the field of the most promising use of the CFB technology during technical refitting of Russian thermal power stations.

  6. Thermal Protection Materials Technology for NASA's Exploration Systems Mission Directorate

    NASA Technical Reports Server (NTRS)

    Valentine, Peter G.; Lawerence, Timtohy W.; Gubert, Michael K.; Flynn, Kevin C.; Milos, Frank S.; Kiser, James D.; Ohlhorst, Craig W.; Koenig, John R.

    2005-01-01

    To fulfill the President s Vision for Space Exploration - successful human and robotic missions between the Earth and other solar system bodies in order to explore their atmospheres and surfaces - NASA must reduce trip time, cost, and vehicle weight so that payload and scientific experiment capabilities are maximized. As a collaboration among NASA Centers, this project will generate products that will enable greater fidelity in mission/vehicle design trade studies, support risk reduction for material selections, assist in optimization of vehicle weights, and provide the material and process templates for development of human-rated qualification and certification Thermal Protection System (TPS) plans. Missions performing aerocapture, aerobraking, or direct aeroentry rely on technologies that reduce vehicle weight by minimizing the need for propellant. These missions use the destination planet s atmosphere to slow the spacecraft. Such mission profiles induce heating environments on the spacecraft that demand thermal protection heatshields. This program offers NASA essential advanced thermal management technologies needed to develop new lightweight nonmetallic TPS materials for critical thermal protection heatshields for future spacecraft. Discussion of this new program (a December 2004 new start) will include both initial progress made and a presentation of the work to be preformed over the four-year life of the program. Additionally, the relevant missions and environments expected for Exploration Systems vehicles will be presented, along with discussion of the candidate materials to be considered and of the types of testing to be performed (material property tests, space environmental effects tests, and Earth and Mars gases arc jet tests).

  7. Solar Thermal Technology Program bibliography, 1973-1985

    NASA Astrophysics Data System (ADS)

    1986-12-01

    This bibliography contains citations of technical publications that have emerged from the US Department of Energy's Solar Thermal Technology (STT) Program. The entries include research performed at the Federal laboratories and at various universities and other organizations under subcontract to the US Department of Energy or its laboratories from 1973 through 1985. The types of references include journal articles, papers presented in conference proceedings, monographs, chapters in monographs, technical reports, and patents. The citations are divided into chapters by federal laboratory where the research was performed or where the subcontract was monitored. Although there may be some crossover among the laboratories, each one has traditionally had certain areas of responsibility. The first chapter contains citations from the Jet Propulsion Laboratory, which directed most of the parabolic dish technology research. The second chapter, Sandia National Laboratory/Albuquerque, lists documents primarily for distributed receiver technology as well as documents pertaining to the Central Receiver Test Facility (CRTF), which is located in Albuquerque. The third chapter, Sandia National Laboratory/Livermore, contains references for central receiver technology. The documents on central receiver technology that resulted from contracts managed by the US Department of Energy San Francisco Operations Office are also included in the third chapter. The fourth chapter, Solar Energy Research Institute, contains citations documenting advanced research concepts.

  8. Coated columbium thermal protection systems: An assessment of technological readiness

    NASA Technical Reports Server (NTRS)

    Levine, S. R.; Grisaffe, S. J.

    1973-01-01

    Evaluation and development to date show that of the coated columbium alloys FS-85 coated with R512E shows significant promise for a reusable thermal protection system (TPS) as judged by environmental resistance and the retention of mechanical properties and structural integrity of panels upon repeated reentry simulation. Production of the alloy, the coating, and full-sized TPS panels is well within current manufacturing technology. Small defects which arise from impact damage or from local coating breakdown do not appear to have serious immediate consequences in the use environment anticipated for the space shuttle orbiter TPS.

  9. Distributed automatic control of technological processes in conditions of weightlessness

    NASA Technical Reports Server (NTRS)

    Kukhtenko, A. I.; Merkulov, V. I.; Samoylenko, Y. I.; Ladikov-Royev, Y. P.

    1986-01-01

    Some problems associated with the automatic control of liquid metal and plasma systems under conditions of weightlessness are examined, with particular reference to the problem of stability of liquid equilibrium configurations. The theoretical fundamentals of automatic control of processes in electrically conducting continuous media are outlined, and means of using electromagnetic fields for simulating technological processes in a space environment are discussed.

  10. Condition Assessment Technologies for Water Transmission and Distribution Systems

    EPA Science Inventory

    As part of the U.S. Environmental Protection Agencys (EPAs) Aging Water Infrastructure Research Program, this research was conducted to identify and characterize the state of the technology for structural condition assessment of drinking water transmission and distribution syst...

  11. Condition Assessment Technologies for Water Transmission and Distribution Systems

    EPA Science Inventory

    As part of the U.S. Environmental Protection Agency’s (EPA’s) Aging Water Infrastructure Research Program, this research was conducted to identify and characterize the state of the technology for structural condition assessment of drinking water transmission and distribution syst...

  12. Thermal conductivity measurements of particulate materials under Martian conditions

    NASA Technical Reports Server (NTRS)

    Presley, M. A.; Christensen, P. R.

    1993-01-01

    The mean particle diameter of surficial units on Mars has been approximated by applying thermal inertia determinations from the Mariner 9 Infrared Radiometer and the Viking Infrared Thermal Mapper data together with thermal conductivity measurement. Several studies have used this approximation to characterize surficial units and infer their nature and possible origin. Such interpretations are possible because previous measurements of the thermal conductivity of particulate materials have shown that particle size significantly affects thermal conductivity under martian atmospheric pressures. The transfer of thermal energy due to collisions of gas molecules is the predominant mechanism of thermal conductivity in porous systems for gas pressures above about 0.01 torr. At martian atmospheric pressures the mean free path of the gas molecules becomes greater than the effective distance over which conduction takes place between the particles. Gas particles are then more likely to collide with the solid particles than they are with each other. The average heat transfer distance between particles, which is related to particle size, shape and packing, thus determines how fast heat will flow through a particulate material.The derived one-to-one correspondence of thermal inertia to mean particle diameter implies a certain homogeneity in the materials analyzed. Yet the samples used were often characterized by fairly wide ranges of particle sizes with little information about the possible distribution of sizes within those ranges. Interpretation of thermal inertia data is further limited by the lack of data on other effects on the interparticle spacing relative to particle size, such as particle shape, bimodal or polymodal mixtures of grain sizes and formation of salt cements between grains. To address these limitations and to provide a more comprehensive set of thermal conductivities vs. particle size a linear heat source apparatus, similar to that of Cremers, was assembled to provide a means of measuring the thermal conductivity of particulate samples. In order to concentrate on the dependence of the thermal conductivity on particle size, initial runs will use spherical glass beads that are precision sieved into relatively small size ranges and thoroughly washed.

  13. Trend of Refrigeration and Air-Conditioning Technology in Korea

    NASA Astrophysics Data System (ADS)

    Oh, Hoo-Kyu; Papk, Ki-Won

    It can be said that refrigeration and air-conditioning technology in Korea dates back to the ancient dynasty, all the way up to the Sokkuram(700s) and Seokbinggo(1700s), But modern refrigeration and air-conditioning technology was first developed in and introduced to Korea in the1960swith the modernization of Korea, Today it is at a level which meets that of advanced countries in both the industrial and domestic fields. As of 2003, there were about 700 companies that owned cold storage/freezing/refrigeration facilities, with cold storage capacity of about 2,000, 000tons and capacity per company of about 3,000 tons. These facilities most are continuously expanding and automating their facilities. 62 million units of refrigeration and air-conditioning machinery and equipment were produced in 2003, worth a total of 7.7 trillion won(about 7.7 thousand million US). On the academic side there are 9 universities and 12 junior colleges with courses in either refrigeration and air-conditioning or architectural equipment. Academic societies such as the Society of Air-conditioning and Refrigerating Engineers of Korea(SAREK), and industrial societies like the Korean Association of Refrigeration(KAR) are active members of the refrigeration and air-conditioning industry. The1eare also national/government-established research institutions such as the Korea Institute of Science and Technology(KIST), the Korea Institute of Machinery and Materials (KIMM), the Korea Institute of Energy Research(KIER), and the Korea Institute of Industrial Technology (KITECH).

  14. Cryogenic Fluid Management Technology Development for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Taylor, Brian; Caffrey, Jarvis; Hedayat, Ali; Stephens, Jonathan; Polsgrove, Robert

    2015-01-01

    The purpose of this paper is to investigate, facilitate a discussion and determine a path forward for technology development of cryogenic fluid management technology that is necessary for long duration deep space missions utilizing nuclear thermal propulsion systems. There are a number of challenges in managing cryogenic liquids that must be addressed before long durations missions into deep space, such as a trip to Mars can be successful. The leakage rate of hydrogen from pressure vessels, seals, lines and valves is a critical factor that must be controlled and minimized. For long duration missions, hydrogen leakage amounts to large increases in hydrogen and therefore vehicle mass. The size of a deep space vehicle, such as a mars transfer vehicle, must be kept small to control cost and the logistics of a multi launch, assembled in orbit vehicle. The boil off control of the cryogenic fluid is an additional obstacle to long duration missions. The boil off caused by heat absorption results in the growth of the propellant needs of the vehicle and therefore vehicle mass. This is a significant problem for a vehicle using nuclear (fission) propulsion systems. Radiation from the engines deposits large quantities of heat into the cryogenic fluid, greatly increasing boil off beyond that caused by environmental heat leakage. Addressing and resolving these challenges is critical to successful long duration space exploration. This paper discusses the state of the technology needed to address these challenges and discuss the path forward needed in technology development.

  15. Production of pig iron from red mud waste fines using thermal plasma technology

    NASA Astrophysics Data System (ADS)

    Jayasankar, K.; Ray, P. K.; Chaubey, A. K.; Padhi, A.; Satapathy, B. K.; Mukherjee, P. S.

    2012-08-01

    Red mud, an insoluble residue produced during alkali leaching of bauxite, is considered as a low-grade iron ore containing 30% to 50% iron. The present paper deals with the use of thermal plasma technology for producing pig iron from red mud waste fines. The smelting reduction of red mud was carried out in a 35 kW DC extended arc thermal plasma reactor. Red mud was properly mixed with fluxes and graphite (fixed carbon, 99%) as a reductant as per stoichiometric requirement. The effect of various process parameters like a reductant, fluxes and smelting time on iron recovery was studied and optimized. An optimum condition for the maximum recovery of iron was obtained. A new thermal plasma process applicable to direct iron making from red mud waste fines that would achieve significant utilization of red mud was proposed.

  16. Evaluation of airborne thermal, magnetic, and electromagnetic characterization technologies

    SciTech Connect

    Josten, N.E.

    1992-03-01

    The identification of Buried Structures (IBS) or Aerial Surveillance Project was initiated by the US Department of Energy (DOE) Office of Technology Development to demonstrate airborne methods for locating and identifying buried waste and ordnance at the Idaho National Engineering Laboratory (INEL). Two technologies were demonstrated: (a) a thermal infrared imaging system built by Martin Marietta Missile Systems and (b) a magnetic and electromagnetic (EM) geophysical surveying system operated by EBASCO Environmental. The thermal system detects small differences in ground temperature caused by uneven heating and cooling of the ground by the sun. Waste materials on the ground can be detected when the temperature of the waste is different than the background temperature. The geophysical system uses conventional magnetic and EM sensors. These sensors detect disturbances caused by magnetic or conductive waste and naturally occurring magnetic or conductive features of subsurface soils and rock. Both systems are deployed by helicopter. Data were collected at four INEL sites. Tests at the Naval Ordnance Disposal Area (NODA) were made to evaluate capabilities for detecting ordnance on the ground surface. Tests at the Cold Simulated Waste Demonstration Pit were made to evaluate capabilities for detecting buried waste at a controlled site, where the location and depth of buried materials are known. Tests at the Subsurface Disposal Area and Stationary Low-Power Reactor-1 burial area were made to evaluate capabilities for characterizing hazardous waste at sites that are typical of DOE buried waste sites nationwide.

  17. Gaseous and particulate emissions from thermal power plants operating on different technologies.

    PubMed

    Athar, Makshoof; Ali, Mahboob; Khan, Misbahul Ain

    2010-07-01

    This paper presents the assessment of gaseous and particulate emissions from thermal power plants operating on different combustion technologies. Four thermal power plants operating on heavy furnace oil were selected for the study, among which three were based on diesel engine technology, while the fourth plant was based on oil-fired steam turbine technology. The stack emissions were monitored for critical air pollutants carbon monoxide, carbon dioxide, oxides of nitrogen, sulfur dioxide, particulate matter, lead, and mercury. The pollutant emissions were measured at optimum load conditions for a period of 6 months with an interval of 1 month. The results of stack emissions were compared with National Environmental Quality Standards of Pakistan and World Bank guidelines for thermal power plants, and few parameters were found higher than the permissible limits of emissions. It was observed that the emissions carbon monoxide, oxides of nitrogen, and particulate matters from diesel engine-based power plants were comparatively higher than the turbine-based power plants. The emissions of sulfur dioxide were high in all the plants, even the plants with different technologies, which was mainly due to high sulfur contents in fuel. PMID:19533397

  18. Mercury emissions control technologies for mixed waste thermal treatment

    SciTech Connect

    Chambers, A.; Knecht, M.; Soelberg, N.; Eaton, D.; Roberts, D.; Broderick, T.

    1997-12-31

    EPA has identified wet scrubbing at low mercury feedrates, as well as carbon adsorption via carbon injection into the offgas or via flow through fixed carbon beds, as control technologies that can be used to meet the proposed Maximum Achievable Control Technology (MACT) rule limit for mercury emissions from hazardous waste incinerators. DOE is currently funding demonstrations of gold amalgamation that may also control mercury to the desired levels. Performance data from a variety of sources was reviewed to determine ranges of achievable mercury control. Preliminary costs were estimated for using these technologies to control mercury emissions from mixed waste incineration. Mercury emissions control for mixed waste incineration may need to be more efficient than for incineration of other hazardous wastes because of higher mercury concentrations in some mixed waste streams. However, mercury control performance data for wet scrubbing and carbon adsorption is highly variable. More information is needed to demonstrate control efficiencies that are achievable under various design and operating conditions for wet scrubbing, carbon adsorption, and gold amalgamation technologies. Given certain assumptions made in this study, capital costs, operating costs, and lifecycle costs for carbon injection, carbon beds, and gold amalgamation generally vary for different assumed mercury feedrates and for different offgas flowrates. Assuming that these technologies can in fact provide the necessary mercury control performance, each of these technologies may be less costly than the others for certain mercury feedrates and the offgas flowrates.

  19. Geomagnetic Secular Variation Prediction with Thermal Heterogeneous Boundary Conditions

    NASA Technical Reports Server (NTRS)

    Kuang, Weijia; Tangborn, Andrew; Jiang, Weiyuan

    2011-01-01

    It has long been conjectured that thermal heterogeneity at the core-mantle boundary (CMB) affects the geodynamo substantially. The observed two pairs of steady and strong magnetic flux lobes near the Polar Regions and the low secular variation in the Pacific over the past 400 years (and perhaps longer) are likely the consequences of this CMB thermal heterogeneity. There are several studies on the impact of the thermal heterogeneity with numerical geodynamo simulations. However, direct correlation between the numerical results and the observations is found very difficult, except qualitative comparisons of certain features in the radial component of the magnetic field at the CMB. This makes it difficult to assess accurately the impact of thermal heterogeneity on the geodynamo and the geomagnetic secular variation. We revisit this problem with our MoSST_DAS system in which geomagnetic data are assimilated with our geodynamo model to predict geomagnetic secular variations. In this study, we implement a heterogeneous heat flux across the CMB that is chosen based on the seismic tomography of the lowermost mantle. The amplitude of the heat flux (relative to the mean heat flux across the CMB) varies in the simulation. With these assimilation studies, we will examine the influences of the heterogeneity on the forecast accuracies, e.g. the accuracies as functions of the heterogeneity amplitude. With these, we could be able to assess the model errors to the true core state, and thus the thermal heterogeneity in geodynamo modeling.

  20. The ASME handbook on water technology for thermal power systems

    SciTech Connect

    Cohen, P.

    1989-01-01

    The idea that a handbook on water technology be developed was initially put forth in 1978 by the ASME Research Committee on Water in Thermal Power Systems. A prospectus was issued in 1979 to solicit funding from industry and government. The preparation of the handbook began in 1980 under the direct control of a Handbook Steering Subcommittee established by the Research Committee and an editor reporting to that subcommittee. Handbook content was carefully monitored by an editorial committee of industry experts and by a special honorary editorial committee from the Chemistry Committee of the Edison Electric Institute. This handbook summarizes the current state of the art of water technology for steam power plant cycles. It is intended to serve both as a training text and a reference volume for power station chemists, engineers, manufacturers, and research and development institutions. While the primary emphasis is on Electric Utility Power Generation cycles (fossil and nuclear), the book will also serve as a valuable reference on high pressure industrial steam system technology.

  1. Nuclear Thermal Rocket - An Established Space Propulsion Technology

    NASA Astrophysics Data System (ADS)

    Klein, Milton

    2004-02-01

    From the late 1950s to the early 1970s a major program successfully developed the capability to conduct space exploration using the advanced technology of nuclear rocket propulsion. The program had two primary elements: pioneering and advanced technology work-Rover-at Los Alamos National Laboratory and its contractors provided the basic reactor design, fuel materials development, and reactor testing capability; and engine development-NERVA-by the industrial team of Aerojet and Westinghouse building on and extending the Los Alamos efforts to flight system development. This presentation describes the NERVA program, the engine system testing that demonstrated the space-practical operation capabilities of nuclear thermal rockets, and the mission studies that point the way to most effectively use the NTR capabilities. Together, the two programs established a technology base that includes proven NTR capabilities of (1) over twice the specific impulse of chemical propulsion systems, (2) thrust capabilities ranging from 44kN to 1112kN, and (3) practical thrust-to-weight ratios for future NASA space exploration missions, both manned payloads to Mars and unmanned payloads to the outer planets. The overall nuclear rocket program had a unique management structure that integrated the efforts of the two government agencies involved-NASA and the then-existing Atomic Energy Commission. The objective of this paper is to summarize and convey the technical and management lessons learned in this program as the nation considers the design of its future space exploration activities.

  2. Balanced Flow Metering and Conditioning: Technology for Fluid Systems

    NASA Technical Reports Server (NTRS)

    Kelley, Anthony R.

    2006-01-01

    Revolutionary new technology that creates balanced conditions across the face of a multi-hole orifice plate has been developed, patented and exclusively licensed for commercialization. This balanced flow technology simultaneously measures mass flow rate, volumetric flow rate, and fluid density with little or no straight pipe run requirements. Initially, the balanced plate was a drop in replacement for a traditional orifice plate, but testing revealed substantially better performance as compared to the orifice plate such as, 10 times better accuracy, 2 times faster (shorter distance) pressure recovery, 15 times less acoustic noise energy generation, and 2.5 times less permanent pressure loss. During 2004 testing at MSFC, testing revealed several configurations of the balanced flow meter that match the accuracy of Venturi meters while having only slightly more permanent pressure loss. However, the balanced meter only requires a 0.25 inch plate and has no upstream or downstream straight pipe requirements. As a fluid conditioning device, the fluid usually reaches fully developed flow within 1 pipe diameter of the balanced conditioning plate. This paper will describe the basic balanced flow metering technology, provide performance details generated by testing to date and provide implementation details along with calculations required for differing degrees of flow metering accuracy.

  3. Carbon monoxide oxidation rates computed for automobile thermal reactor conditions

    NASA Technical Reports Server (NTRS)

    Brokaw, R. S.; Bittker, D. A.

    1972-01-01

    Carbon monoxide oxidation rates in thermal reactors for exhaust manifolds are computed by integrating differential equations for system of twenty-nine reversible chemical reactions. Reactors are noncatalytic replacements for conventional exhaust manifolds and are a system for reducing carbon monoxide and hydrocarbons in automobile exhausts.

  4. ABIOTIC DEGRADATION OF TRICHLOROETHYLENE UNDER THERMAL REMEDIATION CONDITIONS

    EPA Science Inventory

    The degradation of TCE (C2HCl3) to carbon dioxide (CO2) and chloride (Cl-) has been reported to occur during thermal remediation of subsurface environments. The overall goal of this study was to evaluate abiotic degradation of TCE at el...

  5. Advanced Mirror Technology Development (AMTD) Thermal Trade Studies

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas; Stahl, Phil; Arnold, Bill

    2015-01-01

    Advanced Mirror Technology Development (AMTD) is being done at Marshall Space Flight Center (MSFC) in preparation for the next Ultraviolet, Optical, Infrared (UVOIR) space observatory. A likely science mission of that observatory is the detection and characterization of 'Earth-like' exoplanets. Direct exoplanet observation requires a telescope to see a planet that is 10-10 times dimmer than its host star. To accomplish this using an internal coronagraph requires a telescope with an ultra-stable wavefront. This paper investigates two topics: 1) parametric relationships between a primary mirror's thermal parameters and wavefront stability, and 2) optimal temperature profiles in the telescope's shroud and heater plate that minimize static wavefront error (WFE) in the primary mirror.

  6. Treatment of Bone Waste Using Thermal Plasma Technology

    NASA Astrophysics Data System (ADS)

    Ki, Ho Beom; Kim, Woo Hyung; Kim, Bong Soo; Koo, Hyung Joon; Li, Mingwei; Chae, Jae Ou

    2007-10-01

    Daily meat consumption produces a lot of bone waste, and dumped bone waste without treatment would result in environmental hazards. Conventional treatment methods of waste bones have some disadvantages. Herein, an investigation of bone waste treated using thermal plasma technology is presented. A high-temperature plasma torch operated at 25.2 kW was used to treat bone waste for seven minutes. The bone waste was finally changed into vitric matter and lost 2/3 of its weight after the treatment. The process was highly efficient, economical, convenient, and fuel-free. This method could be used as an alternative for disposal of bone waste, small infectious animals, hazardous hospital waste, etc.

  7. Dish concentrators for solar thermal energy - Status and technology development

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.

    1981-01-01

    Comparisons are presented of point-focusing, or 'dish' solar concentrator system features, development status, and performance levels demonstrated to date. In addition to the requirements of good optical efficiency and high geometric concentration ratios, the most important future consideration in solar thermal energy dish concentrator design will be the reduction of installed and lifetime costs, as well as the materials and labor costs of production. It is determined that technology development initiatives are needed in such areas as optical materials, design wind speeds and wind loads, structural configuration and materials resistance to prolonged exposure, and the maintenance of optical surfaces. The testing of complete concentrator systems, with energy-converting receivers and controls, is also necessary. Both reflector and Fresnel lens concentrator systems are considered.

  8. Networked thermal imaging and intelligent video technology for border security applications

    NASA Astrophysics Data System (ADS)

    Dumpert, Dwight T.; Dirksen, Shawn

    2006-05-01

    Thermal imaging plays an increasingly significant role in border & coastal security programs around the world. Recent advances in thermal imaging cameras are complimented by new system architectures based on IP networks and video analysis technology. These new technologies provide the user community with vast improvements in system performance and flexibility. This paper provides an overview of the technologies and the benefits they provide.

  9. Task 4 supporting technology. Part 2: Detailed test plan for thermal seals. Thermal seals evaluation, improvement and test. CAN8-1, Reusable Launch Vehicle (RLV), advanced technology demonstrator: X-33. Leading edge and seals thermal protection system technology demonstration

    NASA Technical Reports Server (NTRS)

    Hogenson, P. A.; Lu, Tina

    1995-01-01

    The objective is to develop the advanced thermal seals to a technology readiness level (TRL) of 6 to support the rapid turnaround time and low maintenance requirements of the X-33 and the future reusable launch vehicle (RLV). This program is divided into three subtasks: (1) orbiter thermal seals operation history review; (2) material, process, and design improvement; and (3) fabrication and evaluation of the advanced thermal seals.

  10. Numerical modeling of physical vapor transport under microgravity conditions: Effect of thermal creep and stress

    NASA Technical Reports Server (NTRS)

    Mackowski, Daniel W.; Knight, Roy W.

    1993-01-01

    One of the most promising applications of microgravity (micro-g) environments is the manufacture of exotic and high-quality crystals in closed cylindrical ampoules using physical vapor transport (PVT) processes. The quality enhancements are believed to be due to the absence of buoyant convection in the weightless environment - resulting in diffusion-limited transport of the vapor. In a typical experiment, solid-phase sample material is initially contained at one end of the ampoule. The sample is made to sublime into the vapor phase and deposit onto the opposite end by maintaining the source at an elevated temperature with respect to the deposit. Identification of the physical factors governing both the rates and uniformity of crystal growth, and the optimization of the micro-g technology, will require an accurate modeling of the vapor transport within the ampoule. Previous micro-g modeling efforts have approached the problem from a 'classical' convective/diffusion formulation, in which convection is driven by the action of buoyancy on thermal and solutal density differences. The general conclusion of these works have been that in low gravity environments the effect of buoyancy on vapor transport is negligible, and vapor transport occurs in a diffusion-limited mode. However, it has been recently recognized than in the non-isothermal (and often low total pressure) conditions encountered in ampoules, the commonly-assumed no-slip boundary condition to the differential equations governing fluid motion can be grossly unrepresentative of the actual situation. Specifically, the temperature gradients can give rise to thermal creep flows at the ampoule side walls. In addition, temperature gradients in the vapor itself can, through the action of thermal stress, lead to bulk fluid convection.

  11. Thermal Environment for Classrooms. Central System Approach to Air Conditioning.

    ERIC Educational Resources Information Center

    Triechler, Walter W.

    This speech compares the air conditioning requirements of high-rise office buildings with those of large centralized school complexes. A description of one particular air conditioning system provides information about the system's arrangement, functions, performance efficiency, and cost effectiveness. (MLF)

  12. ANALYSIS OF THERMAL DECOMPOSITION PRODUCTS OF FLUE GAS CONDITIONING AGENTS

    EPA Science Inventory

    The report gives results of a study of reactions of several flue gas conditioning agents in a laboratory-scale facility simulating conditions in the flue gas train of a coal-burning power plant. Primary purposes of the study were to characterize the chemical species resulting fro...

  13. High Technology Centrifugal Compressor for Commercial Air Conditioning Systems

    SciTech Connect

    Ruckes, John

    2006-04-15

    R&D Dynamics, Bloomfield, CT in partnership with the State of Connecticut has been developing a high technology, oil-free, energy-efficient centrifugal compressor called CENVA for commercial air conditioning systems under a program funded by the US Department of Energy. The CENVA compressor applies the foil bearing technology used in all modern aircraft, civil and military, air conditioning systems. The CENVA compressor will enhance the efficiency of water and air cooled chillers, packaged roof top units, and other air conditioning systems by providing an 18% reduction in energy consumption in the unit capacity range of 25 to 350 tons of refrigeration The technical approach for CENVA involved the design and development of a high-speed, oil-free foil gas bearing-supported two-stage centrifugal compressor, CENVA encompassed the following high technologies, which are not currently utilized in commercial air conditioning systems: Foil gas bearings operating in HFC-134a; Efficient centrifugal impellers and diffusers; High speed motors and drives; and System integration of above technologies. Extensive design, development and testing efforts were carried out. Significant accomplishments achieved under this program are: (1) A total of 26 builds and over 200 tests were successfully completed with successively improved designs; (2) Use of foil gas bearings in refrigerant R134a was successfully proven; (3) A high speed, high power permanent magnet motor was developed; (4) An encoder was used for signal feedback between motor and controller. Due to temperature limitations of the encoder, the compressor could not operate at higher speed and in turn at higher pressure. In order to alleviate this problem a unique sensorless controller was developed; (5) This controller has successfully been tested as stand alone; however, it has not yet been integrated and tested as a system; (6) The compressor successfully operated at water cooled condensing temperatures Due to temperature limitations of the encoder, it could not be operated at air cooled condensing temperatures. (7) The two-stage impellers/diffusers worked well separately but combined did not match well.

  14. Status of utility-interactive photovoltaic power conditioning technology

    NASA Technical Reports Server (NTRS)

    Key, T. S.; Krauthamer, S.

    1985-01-01

    Design options for utility-interactive photovoltaic power conditioning technology for unit ratings from 2kW to 5 MW are compared. Line- and self-commutated inverter designs for both single and three-phase applications are described. Efficiency, weight, and cost projections are provided for comparing the design options. New circuit designs that take advantage of advances in power semiconductor devices are found to be the most promising. Hardware efficiencies from 95 percent for single phase to 98 percent for three-phase applications are found.

  15. Effect of boundary conditions on thermal plume growth

    NASA Astrophysics Data System (ADS)

    Kondrashov, A.; Sboev, I.; Rybkin, K.

    2015-08-01

    We have investigated the influence of boundary conditions on the growth rate of convective plumes. Temperature and rate fields were studied in a rectangular convective cell heated by a spot heater. The results of the full-scale test were compared with the numerical data calculated using the ANSYS CFX software package. The relationship between the heat plume growth rate and heat boundary conditions, the width and height of the cell, size of heater for different kinds of liquid was established.

  16. Long-term performance and cost goals for solar thermal technology

    NASA Astrophysics Data System (ADS)

    Williams, T. A.

    1985-04-01

    Long term performance and cost goals recently developed for the solar thermal technology are described. These goals were developed in support of the draft 1985 to 1989 National Solar Thermal Technology Program Five Year Research and Development Plan, and are intended to aid in planning research activities needed to make solar thermal energy an option which is both technically and economically attractive (DOE 1984). Goals were developed for both utility electric applications and for industrial process heat applications. Solar thermal technology goals are intended to provide targets, which when met, would result in the widespread usage of solar thermal technologies in the marketplace. The goals described include system goals and component goals. System goals are energy price targets which must be met for solar thermal to be economically viable in a given market. Component goals are performance and cost targets for the primary elements of a solar thermal plant (concentrators, receivers, etc.) which would allow achievement of the system level goal.

  17. A technical and economic evaluation of thermal spallation drilling technology

    SciTech Connect

    1984-07-10

    Thermal spallation of rock may be defined as a type of progressive rock failure caused by the creation of thermal stresses induced by a sudden application of heat from a high temperature source. This technology is applicable to only certain types of hard rock, such as dolomite, taconite, and granite. In 1981 and 1982, the deepest holes ever drilled by this process were drilled in granite to depths of 1086 feet and 425 feet respectively. Penetration rates at the bottom of the deeper hole reached a maximum of 100 ft/hr. Because of these high rates, considerable interest was generated concerning the use of this technology for the drilling of deep holes. Based on this interest, this study was undertaken to evaluate the technical and economic aspects of the technology in general. This methodology has been used for blasthole drilling, the cutting of chambers at the bottom of drilled holes, and the cutting of narrow grooves in rock. However, because of the very high temperatures generated by the flame jet and the application of the technology to only certain types of rock, other areas of use have been very limited. In this report, evaluation of the technology was performed by conceptually designing and costing a theoretical flame jet drilling rig. The design process reviews a number of different concepts of the various components needed, and then chooses those pieces of equipment that best suit the needs of the system and have the best chance of being properly developed. The final concept consists of a flexible umbilical hose containing several internal hoses for carrying the various required fluids. An evaluation of this system was then made to determine its operational characteristics. The drilling capabilities and the economics of this rig were then compared to a conventional rotary drilling rig by theoretically drilling two holes of approximately 15,000 feet in depth. This comparison was done by use of a spread sheet type computer program. The results of this study indicate that flame jet drilling performs significantly better in both time and cost. These results are due primarily to the high penetration rates, the reduced number of trips, and the decreased trip time due to the use of the umbilical. However, this significant time and cost advantage must be tempered by the fact that they are based on the assumption that the main components of the flame jet rig can be realistically and reliably built. Unfortunately, the use of an umbilical system presents very realistic and difficult design problems as hole depth extends beyond 7000 feet. Thus, unless a significant market for the use of this equipment can be found, further development of an umbilical type system is very questionable. An alternate system suggests by LASL may circumvent many of the problems stated. This concept consists of using concentric pipes and a down hole fluid separation system. Concentric pipe built by the Walker-Neer Manufacturing Company, Wichita Falls, Texas, has been used successfully in the drilling industry for years. Fluid separators have also been developed and used. Although this concept also presents problems, it may be worth investigating.

  18. Alternative Air Conditioning Technologies: Underfloor AirDistribution (UFAD)

    SciTech Connect

    Webster, Tom

    2004-06-01

    Recent trends in today's office environment make it increasingly more difficult for conventional centralized HVAC systems to satisfy the environmental preferences of individual officer workers using the standardized approach of providing a single uniform thermal and ventilation environment. Since its original introduction in West Germany during the 1950s, the open plan office containing modular workstation furniture and partitions is now the norm. Thermostatically controlled zones in open plan offices typically encompass relatively large numbers of workstations in which a diverse work population having a wide range of preferred temperatures must be accommodated. Modern office buildings are also being impacted by a large influx of heat-generating equipment (computers, printers, etc.) whose loads may vary considerably from workstation to workstation. Offices are often reconfigured during the building's lifetime to respond to changing tenant needs, affecting the distribution of within-space loads and the ventilation pathways among and over office partitions. Compounding this problem, there has been a growing awareness of the importance of the comfort, health, and productivity of individual office workers, giving rise to an increased demand among employers and employees for a high-quality work environment. During recent years an increasing amount of attention has been paid to air distribution systems that individually condition the immediate environments of office workers within their workstations to address the issues outlined above. As with task/ambient lighting systems, the controls for the ''task'' components of these systems are partially or entirely decentralized and under the control of the occupants. Typically, the occupant has control over the speed and direction, and in some cases the temperature, of the incoming air supply. Variously called ''task/ambient conditioning,'' ''localized thermal distribution,'' and ''personalized air conditioning'' systems, these systems have been most commonly installed in open-plan office buildings in which they provide supply air and (in some cases) radiant heating directly into workstations. TAC systems can be classified into the following two major categories: (1) furniture-based, and (2) floor-based, underfloor air distribution (UFAD). A large majority of these systems include a raised floor system with which underfloor plenums are used to deliver conditioned air to the space through floor grills, or in conjunction with the workstation furniture and partitions.

  19. Olfactory classical conditioning in neonatal mouse pups using thermal stimuli.

    PubMed

    Bollen, Bieke; Matrot, Boris; Ramanantsoa, Nelina; Van den Bergh, Omer; D'Hooge, Rudi; Gallego, Jorge

    2012-04-01

    Mouse models are increasingly used to investigate genetic contributions to developmental disorders in children, especially newborns. In particular, early cognitive assessment in newborn mice is critical to evaluate pediatric drug efficacy and toxicity. Unfortunately, methods for behavioral tests in newborn mice are scarce. Therefore, developing such tests for newborn mice is a priority challenge for neurogenetics and pharmacological research. The aim of the present study was to develop a conditioning method well suited to high-throughput cognitive screening in newborn mice. To this end, we developed an odor-preference conditioning test using ambient temperature as an unconditioned stimulus (US) and artificial odors as conditioned stimuli (CS). First, we showed that mouse pups move toward the thermoneutral temperature when offered a choice between a thermoneutral and cold environment, thus showing thermotaxis. Second, we conducted a classical conditioning paradigm in pups aged six to ten days. In terms of central nervous system development, this period corresponds to extreme prematurity to early post-term period in humans. During acquisition, the pups were alternatively exposed to odor CS paired with either cold or warm temperatures. Immediately after acquisition, the pups underwent a two-odor choice test, which showed preference for the odor previously paired with the warm temperature, thus showing conditioning. The proposed paradigm is easy to conduct, and requires modest experimenter interference. The method is well suited for high-throughput screening of early associative disorders in newborn mice. PMID:22257564

  20. Frequency response of the atmosphere under thermal blooming conditions.

    PubMed

    Weiss, J D

    1982-06-15

    An analysis, using a single-phase-sheet model, of the effect of an oscillating thermally bloomed atmosphere on a high-power laser beam is presented. The oscillations are caused by a small modulation of the wave front of the beam at the transmitter. The primary contention made here is that the time-dependent blooming is not an oscillating version of its static counterpart; rather, new gratinglike effects are introduced by the interaction of the crosswind and the dithered high-power beam. The resulting temporal variations of the target-plane irradiance at the position of its static bloomed peak are examined and implications for slow dither are discussed. PMID:20396013

  1. Structure of cadmium selen-telluride alloy films grown by the thermal-screen method under highly nonequilibrium conditions

    SciTech Connect

    Belyaev, A. P. Rubets, V. P.; Antipov, V. V.; Toshkhodzhaev, Kh. A.

    2009-06-15

    The results of technological experiments and structural investigations of films of CdSe{sub x}Te{sub 1-x} alloys synthesized by the thermal-screen method on heated and cooled substrates (under highly nonequilibrium conditions) are presented. It is shown that the synthesis of the entire range of compositions of alloy films with the structure from epitaxial to amorphous is possible from the mechanical mixture of CdSe and CdTe powders of the same composition under highly nonequilibrium conditions. The electron diffraction patterns and the microphotographs of film surfaces are reported.

  2. Thermal requirement of indian mustard (Brassica juncea) at different phonological stages under late sown condition.

    PubMed

    Singh, Manoj Pratap; Lallu; Singh, N B

    2014-01-01

    Indian mustard [Brassica juncea (L.) Czern & Coss.] is a long day plant, which requires fairly cool climatic condition during growth and development for obtaining better seed yield. Various workers have correlated crop growth and development with energy requirement parameters, such as growing degree days (GDD), photo-thermal unit (PTU), helios thermal unit (HTU), photo-thermal index (PTI) and heat use efficiency (HUE). Therefore, GDD requirement for different phenological stages of 22 newly developed Indian mustard varieties was studies during winter (rabi) seasons of 2009-10 and 2010-11 at student instructional farm of C.S. Azad University of Agriculture and Technology, Kanpur, (Utter Pradesh). Study revealed that RH-8814, NRCDR-02 and BPR-549-9 recorded higher GDD (1703.0, 1662.9 and 1648.0), PTU (19129.8, 18694.2 and 18379.8), HTU (11397.7, 11072.2 and 10876.0), PTI (13.25, 13.14 and 13.08) and HUE (4.11, 3.84 and 3.71) at physiological maturity, while higher HUE was recorded (9.62, 8.99 and 8.91 kg ha(-1) degrees-day) at days after sowing (DAS) to 50 % flowering. On the basis of study mustard genotypes RH-8814, NRCDR-02 and BPR-549-9 were identified as most heat-tolerant, as they maintained higher values for energy related parameters. Seed yield was highly positively correlated with GDD (r = 0.61, 0.65 and 0.75), PTU (r = 0.66, 0.64 and 0.74), HTU(r = 0.79, 0.68 and 0.73) at the above these three phenological stages, while negatively correlated with PTI at anthesis and at maturity. Hence, these parents could be used in crossing programme for achieving further improvement. PMID:25242823

  3. Energy efficient engine, high pressure turbine thermal barrier coating. Support technology report

    NASA Technical Reports Server (NTRS)

    Duderstadt, E. C.; Agarwal, P.

    1983-01-01

    This report describes the work performed on a thermal barrier coating support technology task of the Energy Efficient Engine Component Development Program. A thermal barrier coating (TBC) system consisting of a Ni-Cr-Al-Y bond cost layer and ZrO2-Y2O3 ceramic layer was selected from eight candidate coating systems on the basis of laboratory tests. The selection was based on coating microstructure, crystallographic phase composition, tensile bond and bend test results, erosion and impact test results, furnace exposure, thermal cycle, and high velocity dynamic oxidation test results. Procedures were developed for applying the selected TBC to CF6-50, high pressure turbine blades and vanes. Coated HPT components were tested in three kinds of tests. Stage 1 blades were tested in a cascade cyclic test rig, Stage 2 blades were component high cycle fatigue tested to qualify thermal barrier coated blades for engine testing, and Stage 2 blades and Stage 1 and 2 vanes were run in factory engine tests. After completion of the 1000 cycle engine test, the TBC on the blades was in excellent condition over all of the platform and airfoil except at the leading edge above midspan on the suction side of the airfoil. The coating damage appeared to be caused by particle impingement; adjacent blades without TBC also showed evidence of particle impingement.

  4. Novel Thermal Powered Technology for UUV Persistent Surveillance

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.; Chao, Yi

    2006-01-01

    Buoyancy Generation: Various technology attempts include melting a wax, which pushes directly against a piston (U.S. Patent 5,291,847) or against a bladder (Webb Research), using ammonia or Freon 21 (U.S. Patent 5,303,552), and using solar heat to expand an oil (www.space.com, April, 10, 2002). All these heat-activated buoyancy control designs have thus far proved impractical and have ultimately failed during repeated cycling in ocean testing. JPL has demonstrated fully reversible 10 C encapsulated wax phase change, which can be used to change buoyancy without electrical hydraulic pumps. This technique has greatly improved heat transfer and much better reversibility than previous designs. Power Generation: Ocean Thermal Energy Conversion (OTEC) systems have been designed that transfer deep, cold sea water to the surface to generate electricity using turbine cycles with ammonia or water as the working fluid. JPL has designed several UUV systems: 1) Using a propeller water turbine to generate power on a gliding submersible; 2) Employing a compact CO2 turbine cycle powered by moving through thermoclines; and 3) Using melted wax to directly produce power through a piston-geared generator.

  5. Thermal Synthesis of Nucleoside H-Phosphonates Under Mild Conditions

    NASA Astrophysics Data System (ADS)

    de Graaf, R. M.; Schwartz, Alan W.

    2005-02-01

    Nucleosides react rapidly with ammonium phosphite ((NH4)2HPO3) at 60 C to produce good yields of nucleoside-5-phosphite monoesters within 24 h. Under the same conditions, ammonium phosphate is unreactive, producing low yields of nucleotide only after extended reactions. These results confirm earlier suggestions that nucleoside H-phosphonates and their possible condensation products may have been produced on the primitive earth more easily than nucleotides.

  6. Thermal responses and perceptions under distinct ambient temperature and wind conditions.

    PubMed

    Shimazaki, Yasuhiro; Yoshida, Atsumasa; Yamamoto, Takanori

    2015-01-01

    Wind conditions are widely recognized to influence the thermal states of humans. In this study, we investigated the relationship between wind conditions and thermal perception and energy balance in humans. The study participants were exposed for 20 min to 3 distinct ambient temperatures, wind speeds, and wind angles. During the exposure, the skin temperatures as a physiological reaction and mental reactions of the human body were measured and the energy balance was calculated based on the human thermal-load method. The results indicate that the human thermal load is an accurate indicator of human thermal states under all wind conditions. Furthermore, wind speed and direction by themselves do not account for the human thermal experience. Because of the thermoregulation that occurs to prevent heat loss and protect the core of the body, a low skin temperature was maintained and regional differences in skin temperature were detected under cool ambient conditions. Thus, the human thermal load, which represents physiological parameters such as skin-temperature change, adequately describes the mixed sensation of the human thermal experience. PMID:25774021

  7. Mechanical and thermal buckling analysis of rectangular sandwich panels under different edge conditions

    NASA Technical Reports Server (NTRS)

    Ko, William L.

    1994-01-01

    The combined load (mechanical or thermal load) buckling equations were established for orthotropic rectangular sandwich panels under four different edge conditions by using the Rayleigh-Ritz method of minimizing the total potential energy of a structural system. Two-dimensional buckling interaction curves and three-dimensional buckling interaction surfaces were constructed for high-temperature honeycomb-core sandwich panels supported under four different edge conditions. The interaction surfaces provide overall comparison of the panel buckling strengths and the domains of symmetrical and antisymmetrical buckling associated with the different edge conditions. In addition, thermal buckling curves of these sandwich panels are presented. The thermal buckling conditions for the cases with and without thermal moments were found to be identical for the small deformation theory.

  8. Cellulose nanowhiskers from coconut husk fibers: effect of preparation conditions on their thermal and morphological behavior

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cellulose nanowhiskers were prepared by sulfuric acid hydrolysis from coconut husk fibers which had previously been submitted to a delignification process. The effects of preparation conditions on the thermal and morphological behavior of the nanocrystals were investigated. Cellulose nanowhisker sus...

  9. NASA Office of Aeronautics and Space Technology Summer Workshop. Volume 8: Thermal control panel

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Technology deficiencies in the area of thermal control for future space missions are identified with emphasis on large space structures and cold controlled environments. Thermal control surfaces, heat pipes, and contamination are considered along with cryogenics, insulation, and design techniques. Major directions forecast for thermal control technology development and space experiments are: (1) extend the useful lifetime of cryogenic systems for space, (2) reduce temperature gradients, and (3) improve temperature stability.

  10. Status of thermal imaging technology as applied to conservation-update 1

    SciTech Connect

    Snow, F.J.; Wood, J.T.; Barthle, R.C.

    1980-07-01

    This document updates the 1978 report on the status of thermal imaging technology as applied to energy conservation in buildings. Thermal imaging technology is discussed in terms of airborne surveys, ground survey programs, and application needs such as standards development and lower cost equipment. Information on the various thermal imaging devices was obtained from manufacturer's standard product literature. Listings are provided of infrared projects of the DOE building diagnostics program, of aerial thermographic firms, and of aerial survey programs. (LCL)

  11. Immunologic Applications of Conditional Gene Modification Technology in the Mouse

    PubMed Central

    Sharma, Suveena; Zhu, Jinfang

    2014-01-01

    Since the success of homologous recombination in altering mouse genome and the discovery of Cre-loxP system, the combination of these two breakthroughs has created important applications for studying the immune system in the mouse. Here, we briefly summarize the general principles of this technology and its applications in studying immune cell development and responses; such implications include conditional gene knockout and inducible and/or tissue-specific gene over-expression, as well as lineage fate mapping. We then discuss the pros and cons of a few commonly used Cre-expressing mouse lines for studying lymphocyte development and functions. We also raise several general issues, such as efficiency of gene deletion, leaky activity of Cre, and Cre toxicity, all of which may have profound impacts on data interpretation. Finally, we selectively list some useful links to the Web sites as valuable mouse resources. PMID:24700321

  12. Lattice thermal conductivity of MgO at conditions of Earths interior

    PubMed Central

    Tang, Xiaoli; Dong, Jianjun

    2010-01-01

    Thermal conductivity of the Earths lower mantle greatly impacts the mantle convection style and affects the heat conduction from the core to the mantle. Direct laboratory measurement of thermal conductivity of mantle minerals remains a technical challenge at the pressure-temperature (P-T) conditions relevant to the lower mantle, and previously estimated values are extrapolated from low P-T data based on simple empirical thermal transport models. By using a numerical technique that combines first-principles electronic structure theory and PeierlsBoltzmann transport theory, we predict the lattice thermal conductivity of MgO, previously used to estimate the thermal conductivity in the Earth, at conditions from ambient to the core-mantle boundary (CMB). We show that our first-principles technique provides a realistic model for the P-T dependence of lattice thermal conductivity of MgO at conditions from ambient to the CMB, and we propose thermal conductivity profiles of MgO in the lower mantle based on geotherm models. The calculated conductivity increases from 1520W/K-m at the 670km seismic discontinuity to 4050W/K-m at the CMB. This large depth variation in calculated thermal conductivity should be included in models of mantle convection, which has been traditionally studied based on the assumption of constant conductivity. PMID:20176973

  13. Free vibrations of thermally stressed orthotropic plates with various boundary conditions

    NASA Technical Reports Server (NTRS)

    Bailey, C. D.; Greetham, J. C.

    1973-01-01

    An analytical investigation of the vibrations of thermally stressed orthotropic plates in the prebuckled region is presented. The investigation covers the broad class of trapezoidal plates with two opposite sides parallel. Each edge of the plate may be subjected to different uniform boundary conditions. variable thickness and arbitrary temperature distributions (analytical or experimental) for any desired combination of boundary conditions may be prescribed. Results obtained using this analysis are compared to experimental results obtained for isotropic plates with thermal stress, and to results contained in the literature for orthotropic plates without thermal stress. Good agreement exists for both sets of comparisons.

  14. Can Handheld Thermal Imaging Technology Improve Detection of Poachers in African Bushveldt?

    PubMed

    Hart, Adam G; Rolfe, Richard N; Dandy, Shantelle; Stubbs, Hannah; MacTavish, Dougal; MacTavish, Lynne; Goodenough, Anne E

    2015-01-01

    Illegal hunting (poaching) is a global threat to wildlife. Anti-poaching initiatives are making increasing use of technology, such as infrared thermography (IRT), to support traditional foot and vehicle patrols. To date, the effectiveness of IRT for poacher location has not been tested under field conditions, where thermal signatures are often complex. Here, we test the hypothesis that IRT will increase the distance over which a poacher hiding in African scrub bushveldt can be detected relative to a conventional flashlight. We also test whether any increase in effectiveness is related to the cost and complexity of the equipment by comparing comparatively expensive (22,000 USD) and relatively inexpensive (2000 USD) IRT devices. To test these hypotheses we employ a controlled, fully randomised, double-blind procedure to find a poacher in nocturnal field conditions in African bushveldt. Each of our 27 volunteer observers walked three times along a pathway using one detection technology on each pass in randomised order. They searched a prescribed search area of bushveldt within which the target was hiding. Hiding locations were pre-determined, randomised, and changed with each pass. Distances of first detection and positive detection were noted. All technologies could be used to detect the target. Average first detection distance for flashlight was 37.3 m, improving by 19.8 m to 57.1 m using LIRT and by a further 11.2m to 68.3m using HIRT. Although detection distances were significantly greater for both IRTs compared to flashlight, there was no significant difference between LIRT and HIRT. False detection rates were low and there was no significant association between technology and accuracy of detection. Although IRT technology should ideally be tested in the specific environment intended before significant investment is made, we conclude that IRT technology is promising for anti-poaching patrols and that for this purpose low cost IRT units are as effective as units ten times more expensive. PMID:26110865

  15. Can Handheld Thermal Imaging Technology Improve Detection of Poachers in African Bushveldt?

    PubMed Central

    Dandy, Shantelle; Stubbs, Hannah; MacTavish, Dougal; MacTavish, Lynne

    2015-01-01

    Illegal hunting (poaching) is a global threat to wildlife. Anti-poaching initiatives are making increasing use of technology, such as infrared thermography (IRT), to support traditional foot and vehicle patrols. To date, the effectiveness of IRT for poacher location has not been tested under field conditions, where thermal signatures are often complex. Here, we test the hypothesis that IRT will increase the distance over which a poacher hiding in African scrub bushveldt can be detected relative to a conventional flashlight. We also test whether any increase in effectiveness is related to the cost and complexity of the equipment by comparing comparatively expensive (22000 USD) and relatively inexpensive (2000 USD) IRT devices. To test these hypotheses we employ a controlled, fully randomised, double-blind procedure to find a poacher in nocturnal field conditions in African bushveldt. Each of our 27 volunteer observers walked three times along a pathway using one detection technology on each pass in randomised order. They searched a prescribed search area of bushveldt within which the target was hiding. Hiding locations were pre-determined, randomised, and changed with each pass. Distances of first detection and positive detection were noted. All technologies could be used to detect the target. Average first detection distance for flashlight was 37.3m, improving by 19.8m to 57.1m using LIRT and by a further 11.2m to 68.3m using HIRT. Although detection distances were significantly greater for both IRTs compared to flashlight, there was no significant difference between LIRT and HIRT. False detection rates were low and there was no significant association between technology and accuracy of detection. Although IRT technology should ideally be tested in the specific environment intended before significant investment is made, we conclude that IRT technology is promising for anti-poaching patrols and that for this purpose low cost IRT units are as effective as units ten times more expensive. PMID:26110865

  16. A SINDA thermal model using CAD/CAE technologies

    NASA Technical Reports Server (NTRS)

    Rodriguez, Jose A.; Spencer, Steve

    1992-01-01

    The approach to thermal analysis described by this paper is a technique that incorporates Computer Aided Design (CAD) and Computer Aided Engineering (CAE) to develop a thermal model that has the advantages of Finite Element Methods (FEM) without abandoning the unique advantages of Finite Difference Methods (FDM) in the analysis of thermal systems. The incorporation of existing CAD geometry, the powerful use of a pre and post processor and the ability to do interdisciplinary analysis, will be described.

  17. Inverse Thermal Analysis of a Titanium Laser Weld Using Multiple Constraint Conditions

    NASA Astrophysics Data System (ADS)

    Lambrakos, S. G.; Shabaev, A.; Huang, L.

    2014-06-01

    Inverse thermal analysis of a titanium laser weld using multiple constraint conditions is presented. This analysis employs a methodology that is in terms of numerical-analytical basis functions for inverse thermal analysis of steady-state energy deposition in plate structures. The results of this type of analysis provide parametric representations of weld temperature histories that can be adopted as input data to various types of computational procedures, such as those for prediction of solid-state phase transformations. In addition, these temperature histories can be used to construct parametric-function representations for inverse thermal analysis of welds corresponding to other process parameters or welding processes whose process conditions are within similar regimes. The present study extends an inverse thermal analysis procedure applied in previous studies. This extension provides for the inclusion of constraint conditions associated with both solidification and phase transformation boundaries.

  18. Comparative Experimental Study of Fixed Temperature and Fixed Heat Flux Boundary Conditions in Turbulent Thermal Convection.

    PubMed

    Huang, Shi-Di; Wang, Fei; Xi, Heng-Dong; Xia, Ke-Qing

    2015-10-01

    We report the first experimental study of the influences of the thermal boundary condition on turbulent thermal convection. Two configurations were examined: one had a constant heat flux at the bottom boundary and a constant temperature at the top (CFCT cell); the other had constant temperatures at both boundaries (CTCT cell). In addition to producing different temperature stability in the boundary layers, the differences in the boundary condition lead to rather unexpected changes in the flow dynamics. It is found that, surprisingly, reversals of the large-scale circulation occur more frequently in the CTCT cell than in the CFCT cell, despite the fact that in the former its flow strength is on average 9% larger than that in the latter. Our results not only show which aspects of the thermal boundary condition are important in thermal turbulence, but also reveal that, counterintuitively, the stability of the flow is not directly coupled to its strength. PMID:26550726

  19. Thermal and Mechanical Microspacecraft Technologies for Deep Space Systems Program X2000 Future Deliveries

    NASA Technical Reports Server (NTRS)

    Birur, Gajanana C.; Bruno, Robin J.

    1999-01-01

    Thermal and mechanical technologies are an important part of the Deep Space Systems Technology (DSST) Program X2000 Future Deliveries (FD) microspacecraft. A wide range of future space missions are expected to utilize the technologies and the architecture developed by DSST FD. These technologies, besides being small in physical size, make the tiny spacecraft robust and flexible. The DSST FD architecture is designed to be highly reliable and suitable for a wide range of missions such as planetary landers/orbiters/flybys, earth orbiters, cometary flybys/landers/sample returns, etc. Two of the key ideas used in the development of thermal and mechanical technologies and architectures are: 1) to include several of the thermal and mechanical functions in any given single spacecraft element and 2) the architecture be modular so that it can easily be adapted to any of the future missions. One of the thermal architectures being explored for the DSST FD microspacecraft is the integrated thermal energy management of the complete spacecraft using a fluid loop. The robustness and the simplicity of the loop and the flexibility with which it can be integrated in the spacecraft have made it attractive for applications to DSST FD. Some of the thermal technologies to be developed as a part of this architecture are passive and active cooling loops, electrically variable emittance surfaces, miniature thermal switches, and specific high density electronic cooling technologies. In the mechanical area, multifunction architecture for the structural elements will be developed. The multifunction aspect is expected to substantially reduce the mass and volume of the spacecraft. Some of the technologies that will be developed are composite material panels incorporating electronics, cabling, and thermal elements in them. The paper describes the current state of the technologies and progress to be made in the thermal and mechanical technologies and approaches for the DSST Future Deliveries microspacecraft.

  20. Performance Testing of Thermal Interface Filler Materials in a Bolted Aluminum Interface Under Thermal/Vacuum Conditions

    NASA Technical Reports Server (NTRS)

    Glasgow, S. D.; Kittredge, K. B.

    2003-01-01

    A thermal interface material is one of the many tools often used as part of the thermal control scheme for space-based applications. Historically, at Marshall Space Flight Center, CHO-THERM 1671 has primarily been used for applications where an interface material was deemed necessary. However, numerous alternatives have come on the market in recent years. It was decided that a number of these materials should be tested against each other to see if there were better performing alternatives. The tests were done strictly to compare the thermal performance of the materials relative to each other under repeatable conditions and do not take into consideration other design issues, such as off-gassing, electrical conduction, isolation, etc. The purpose of this Technical Memorandum is to detail the materials tested, test apparatus, procedures, and results of these tests. The results show that there are a number of better performing alternatives now available.

  1. Field Demonstration of Multi-Sensor Technology for Condition Assessment of Wastewater Collection Systems (Abstract)

    EPA Science Inventory

    The purpose of the field demonstration program is to gather technically reliable cost and performance information on selected condition assessment technologies under defined field conditions. The selected technologies include zoom camera, focused electrode leak location (FELL), ...

  2. Thermal storage technologies for solar industrial process heat applications

    NASA Technical Reports Server (NTRS)

    Gordon, L. H.

    1979-01-01

    The state-of-the-art of thermal storage subsystems for the intermediate and high temperature (100 C to 600 C) solar industrial process heat generation is presented. Primary emphasis is focused on buffering and diurnal storage as well as total energy transport. In addition, advanced thermal storage concepts which appear promising for future solar industrial process heat applications are discussed.

  3. Thermal barrier coatings: A near term, high payoff technology

    NASA Technical Reports Server (NTRS)

    Levine, S. R.; Clark, J. S.

    1977-01-01

    The present status of thermal barrier coatings is reviewed including both experimental results and forecasts of the benefits derived from use of these coatings in aircraft and utility gas turbines. The potential of thermal barrier coatings relative to structural ceramics is discussed along with a development plan for these coatings.

  4. Catheter-based ultrasound technology for image-guided thermal therapy: Current technology and applications

    PubMed Central

    Salgaonkar, Vasant A.; Diederich, Chris J.

    2015-01-01

    Catheter-based ultrasound (CBUS) is being applied to deliver minimally invasive thermal therapy to solid cancer tumors, benign tissue growth, vascular disease, and tissue remodeling. Compared to other energy modalities used in catheter-based surgical interventions, unique features of ultrasound result in conformable and precise energy delivery with high selectivity, fast treatment times, and larger treatment volumes. Here, a concise review of CBUS technology being currently utilized in animal and clinical studies or being developed for future applications is presented. CBUS devices have been categorized into interstitial, endoluminal and endovascular/cardiac applications. Basic applicator designs, site specific evaluations and possible treatment applications have been discussed in brief. Particular emphasis has been given on ablation studies that incorporate image-guidance for applicator placement, therapy monitoring, feedback control, and post-procedure assessment. Examples of devices included here span the entire spectrum of development cycle from preliminary simulation based design studies to implementation in clinical investigations. The use of CBUS under image guidance has the potential for significantly improving precision and applicability of thermal therapy delivery. PMID:25799287

  5. INFLUENCE OF THERMAL CHALLENGE ON CONDITIONED FEEDING FORAYS OF JUVENILE RAINBOW TROUT

    EPA Science Inventory

    Juvenile rainbow trout (Salmo gairdneri) conditioned to traverse a 2.4-m-long channel to receive a food reward where subjected to in-transit thermal challenges. Conditioning was to a criterion that required 80% of the fish to leave the 'home' area and reach the 'reward' area with...

  6. Thermal bioclimatic conditions and patterns of behaviour in an urban park in Gteborg, Sweden.

    PubMed

    Thorsson, Sofia; Lindqvist, Maria; Lindqvist, Sven

    2004-02-01

    People in urban areas frequently use parks for recreation and outdoor activities. Owing to the complexity of the outdoor environment, there have only been a few attempts to understand the effect of the thermal environment on people's use of outdoor spaces. This paper therefore seeks to determine the relationship between the thermal environment, park use and behavioural patterns in an urban area of Sweden. The methods used include structured interviews, unobtrusive observations of the naturally occurring behaviour and simultaneous measurements of thermal comfort variables, i.e., air temperature, air humidity, wind speed and global radiation. The thermal environment is investigated through the mean radiant temperature (Tmrt) and the predicted mean vote (PMV) index. The outcome is compared to the subjective behaviour and thermal sensation of the interviewees. It is found that the thermal environment, access and design are important factors in the use of the park. In order to continue to use the park when the thermal conditions become too cold or too hot for comfort, people improve their comfort conditions by modifying their clothing and by choosing the most supportive thermal opportunities available within the place. The study also shows that psychological aspects such as time of exposure, expectations, experience and perceived control may influence the subjective assessment. Comparison between the thermal sensation of the interviewees and the thermal sensation assessed by the PMV index indicates that steady-state models such as the PMV index may not be appropriate for the assessment of short-term outdoor thermal comfort, mainly because they are unable to analyse transient exposure. PMID:12955614

  7. Thermal characteristics of the 12-gigahertz, 200-watt output stage tube for the communications technology satellite

    NASA Technical Reports Server (NTRS)

    Curren, A. N.

    1978-01-01

    A description of the methods used to measure component temperatures and heat-rejection rates in a simulated space environment on output stage tubes (OST's) developed for the Communications Technology Satellite is presented along with summaries of experimentally determined values. The OST's were operated over the entire anticipated operating drive range, from the dc beam (zero drive) condition to the 6-db overdrive condition. The baseplate temperature was varied from -10 to 58 C with emphasis placed on the testing done at 45 C, the normal anticipated operating temperature. The heat-rejection rate of the OST baseplate ranged from 7.6 W at the dc beam condition to 184.5 W at the 6-db overdrive condition; the heat-rejection rate of the multistage depressed collector (MDC) cover ranged from 192.2 to 155.9 W for the same conditions. The maximum OST temperature measured on the MDC cover was 227 C during a dc beam test. The minimum temperature measured, also on the MDC cover, was -67.5 C at the end of an extended simulated eclipse test period. No effects were observed on the OST thermal characteristics due to vibration testing or temperature-reversal cycle testing.

  8. Mechanically Pumped Fluid Loop (MPFL) Technologies for Thermal Control of Future Mars Rovers

    NASA Technical Reports Server (NTRS)

    Birur, Gaj; Bhandari, Pradeep; Prina, Mauro; Bame, Dave; Yavrouian, Andre; Plett, Gary

    2006-01-01

    Mechanically pumped fluid loop has been the basis of thermal control architecture for the last two Mars lander and rover missions and is the key part of the MSL thermal architecture. Several MPFL technologies are being developed for the MSL rover include long-life pumps, thermal control valves, mechanical fittings for use with CFC-11 at elevated temperatures of approx.100 C. Over three years of life tests and chemical compatibility tests on these MPFL components show that MPFL technology is mature for use on MSL. The advances in MPFL technologies for MSL Rover will benefit any future MPFL applications on NASA s Moon, Mars and Beyond Program.

  9. SSTAC/ARTS review of the draft Integrated Technology Plan (ITP). Volume 3: Space power and thermal management

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Viewgraphs of briefings from the SSTAC/ARTS review of the draft integrated technology plan on thermal power and thermal management are presented. Topics covered include: space energy conversion research and technology; space photovoltaic energy conversion; chemical energy conversion and storage; thermal energy conversion; power management; thermal management; space nuclear power; high capacity power; surface power and thermal management; space platforms power and thermal management; and project SELENE.

  10. Teachers' Working Conditions and the Unmet Promise of Technology

    ERIC Educational Resources Information Center

    Delacruz, Elizabeth

    2004-01-01

    I consider the promise of computer-facilitated technologies for enriching the practice of teaching art. Selected art education writings highlight the potential of computer technologies for K-12 art education. In search of an understanding of K-12 teachers' experiences and perceptions about technology utilization, I examine aspects of teachers'

  11. Thermal stress on ZnO surge arresters in polluted conditions; Part I: Laboratory test methods

    SciTech Connect

    Vitet, S. ); Stenstrom, L.; Lundquist, J )

    1992-10-01

    The thermal performance of ZnO surge arresters in polluted conditions were studied in the laboratory and the field. Part I of the paper deals with laboratory test methods such as the salt fog, solid layer, partial wetting, and slurry method. The thermal stress imposed on the arresters by the different test methods in terms of pollution severity and temperature rise, is discussed in this paper.

  12. Thermal anomalies of the transmitter experiment package on the communications technology satellite

    NASA Technical Reports Server (NTRS)

    Alexovich, R. E.; Curren, A. N.

    1979-01-01

    The causes of four temporary thermal-control-system malfunctions that gave rise to unexpected temperature excursions in the 12-gigahertz, 200-watt transmitter experiment package (TEP) on the Communications Technology Satellite were investigated. The TEP consists of a nominal 200-watt output stage tube (OST), a supporting power-processing system (PPS), and a variable-conductance heat-pipe system (VCHPS). The VCHPS, which uses three heat pipes to conduct heat from the body of the OST to a radiator fin, was designed to maintain the TEP at safe operating temperatures at all operating conditions. On four occasions during 1977, all near the spring and fall equinoxes, the OST body temperature and related temperatures displayed sudden, rapid, and unexpected rises above normal levels while the TEP was operating at essentially constant, normal conditions. The temperature excursions were terminated without TEP damage by reducing the radio frequency (RF) output power of the OST. Between the anomalies and since the fourth, the thermal control system has apparently functioned as designed. The results indicate the most probable cause of the temperature anomalies is depriming of the arteries in the variable-conductance heat pipes. A mode was identified in which the TEP, as presently configured, may operate with stable temperatures and with minimum change in performance level.

  13. Technology for Space Station Evolution. Volume 5: Structures and Materials/Thermal Control System

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA's Office of Aeronautics and Space Technology (OAST) conducted a workshop on technology for space station evolution on 16-19 Jan. 1990. The purpose of this workshop was to collect and clarify Space Station Freedom technology requirements for evolution and to describe technologies that can potentially fill those requirements. These proceedings are organized into an Executive Summary and Overview and five volumes containing the Technology Discipline Presentations. Volume 5 consists of the technology discipline sections for Structures/Materials and the Thermal Control System. For each technology discipline, there is a level 3 subsystem description, along with papers.

  14. Overview of non-thermal mixed waste treatment technologies: Treatment of mixed waste (ex situ); Technologies and short descriptions

    SciTech Connect

    1995-07-01

    This compendium contains brief summaries of new and developing non- thermal treatment technologies that are candidates for treating hazardous or mixed (hazardous plus low-level radioactive) wastes. It is written to be all-encompassing, sometimes including concepts that presently constitute little more than informed ``ideas``. It bounds the universe of existing technologies being thought about or considered for application on the treatment of such wastes. This compendium is intended to be the very first step in a winnowing process to identify non-thermal treatment systems that can be fashioned into complete ``cradle-to-grave`` systems for study. The purpose of the subsequent systems paper studies is to investigate the cost and likely performance of such systems treating a representative sample of U.S. Department of Energy (DOE) mixed low level wastes (MLLW). The studies are called Integrated Non-thermal Treatment Systems (INTS) Studies and are being conducted by the Office of Science and Technology (OST) of the Environmental Management (EM) of the US Department of Energy. Similar studies on Integrated Thermal Treatment Systems have recently been published. These are not designed nor intended to be a ``downselection`` of such technologies; rather, they are simply a systems evaluation of the likely costs and performance of various non- thermal technologies that have been arranged into systems to treat sludges, organics, metals, soils, and debris prevalent in MLLW.

  15. Thermal sensations and comfort investigations in transient conditions in tropical office.

    PubMed

    Dahlan, Nur Dalilah; Gital, Yakubu Yau

    2016-05-01

    The study was done to identify affective and sensory responses observed as a result of hysteresis effects in transient thermal conditions consisting of warm-neutral and neutral - warm performed in a quasi-experiment setting. Air-conditioned building interiors in hot-humid areas have resulted in thermal discomfort and health risks for people moving into and out of buildings. Reports have shown that the instantaneous change in air temperature can cause abrupt thermoregulation responses. Thermal sensation vote (TSV) and thermal comfort vote (TCV) assessments as a consequence of moving through spaces with distinct thermal conditions were conducted in an existing single-story office in a hot-humid microclimate, maintained at an air temperature 24 °C (±0.5), relative humidity 51% (±7), air velocity 0.5 m/s (±0.5), and mean radiant temperature (MRT) 26.6 °C (±1.2). The measured office is connected to a veranda that showed the following semi-outdoor temperatures: air temperature 35 °C (±2.1), relative humidity 43% (±7), air velocity 0.4 m/s (±0.4), and MRT 36.4 °C (±2.9). Subjective assessments from 36 college-aged participants consisting of thermal sensations, preferences and comfort votes were correlated against a steady state predicted mean vote (PMV) model. Local skin temperatures on the forehead and dorsal left hand were included to observe physiological responses due to thermal transition. TSV for veranda-office transition showed that no significant means difference with TSV office-veranda transition were found. However, TCV collected from warm-neutral (-0.24, ±1.2) and neutral-warm (-0.72, ±1.3) conditions revealed statistically significant mean differences (p < 0.05). Sensory and affective responses as a consequence of thermal transition after travel from warm-neutral-warm conditions did not replicate the hysteresis effects of brief, slightly cool, thermal sensations found in previous laboratory experiments. These findings also indicate that PMV is an acceptable alternative to predict thermal sensation immediately after a down-step thermal transition (≤1 min exposure duration) for people living in a hot-humid climate country. PMID:26851476

  16. Dumping pump and treat: rapid cleanups using thermal technology

    SciTech Connect

    Newmark, R.L.; Aines, R.D.

    1997-03-11

    Underground spills of volatile hydrocarbons are often difficult to clean up, especially if the contaminants are present in or below the water table as a separate liquid-organic phase. Excavating and treating the contaminated soil may not be practical or even possible if the affected zone is relatively deep. Merely pumping groundwater has proven to be ineffective because huge amounts of water must be flushed through the contaminated area to clean it; even then the contaminants may not be completely removed. Due to the low solubility of most common contaminants, such pump and treat systems can be expected to take decades to centuries to actually clean a site. Today, many sites are required to pump and treat contaminated groundwater even though there is no expectation that the site will be cleaned. In these cases, the pumps simply control the spread of the contaminant, while requiring a continuous flow of money, paperwork, and management attention. Although pump and treat systems are relatively inexpensive to operate, they represent along term cost. Most importantly, they rarely remove enough contaminant to change the property`s status. Although a pump and treat system can offer compliance in a regulatory sense, it doesn`t solve the site`s liability problem. Thermal methods promise to solve this dilemma by actually cleaning a property in a short time period, thus limiting the period of liability. This may involve cleaning a site to closure during the initial contaminant-removal phase, or removal of the majority of the contaminant so that natural processes such as bioremediation can return the site to pristine condition over a period of years, without further owner intervention. Today`s regulatory environment encourages this approach through efforts such as the brownfields initiatives. In either case, this requires a strong commitment on the part of the site owner. Most if not all the cleanup occurs within the first year or so, and nearly all the cost. In our experience, the total cleanup cost is still significantly smaller than with conventional methods. The real benefit is the cleanup and thus the removal of liability within a realistic time frame.

  17. Thermal performance of MSFC hot air collectors under natural and simulated conditions

    NASA Technical Reports Server (NTRS)

    Shih, K., Sr.

    1977-01-01

    The procedures used and the results obtained from an evaluation test program conducted to determine the thermal performance and structural characteristics of selected MSFC--designed hot air collectors under both real and simulated environmental conditions are described. Five collectors were tested in the three phased program. A series of outdoor tests were conducted to determine stagnation temperatures on a typical bright day and to determine each collector's ability to withstand these temperatures. Two of the collectors experienced structural deformation sufficient to eliminate them from the remainder of the test program. A series of outdoor tests to evaluate the thermal performance of collector S/N 10 under certain test conditions were performed followed by a series of indoor tests to evaluate the thermal performance of the collector under closely controlled simulated conditions.

  18. Five Year Research and Development Plan, 1986-1990. National Solar Thermal Technology Program

    NASA Astrophysics Data System (ADS)

    1986-09-01

    This Solar Thermal Technology Program Five Year Research and Development Plan discusses the planning process and describes in more detail the first five years of the long term strategy for the development of solar thermal technology. The overall strategy is to focus and structure the activities which should lead to broad economic competitiveness for solar thermal. The state of each of the technologies is first assessed to determine the characteristics of the next system which could be built. These are referred to as current capabilities. Cost/performance goals are then determined which would allow solar thermal technology to compete in the free marketplace for electricity and heat production and appear to be technically achievable in the 1990's. The critical advanced components and development decisions are identified and finally, tasks addressing each of these are delineated.

  19. Development and validation of nonthermal and advanced thermal food safety intervention technologies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alternative nonthermal and thermal food safety interventions are gaining acceptance by the food processing industry and consumers. These technologies include high pressure processing, ultraviolet and pulsed light, ionizing radiation, pulsed and radiofrequency electric fields, cold atmospheric plasm...

  20. OVERVIEW OF CONVENTIONAL AND INNOVATIVE LAND-BASED THERMAL TECHNOLOGIES FOR WASTE DISPOSAL

    EPA Science Inventory

    For more than the past two decades, the USEPA has been aggressive in its research, development, performance testing, and in encouragement of the regulated use of proven thermal destruction (or incineration) technologies for the environmentally acceptable treatment and disposal of...

  1. Thermal plasma technology for the treatment of wastes: a critical review.

    PubMed

    Gomez, E; Rani, D Amutha; Cheeseman, C R; Deegan, D; Wise, M; Boccaccini, A R

    2009-01-30

    This review describes the current status of waste treatment using thermal plasma technology. A comprehensive analysis of the available scientific and technical literature on waste plasma treatment is presented, including the treatment of a variety of hazardous wastes, such as residues from municipal solid waste incineration, slag and dust from steel production, asbestos-containing wastes, health care wastes and organic liquid wastes. The principles of thermal plasma generation and the technologies available are outlined, together with potential applications for plasma vitrified products. There have been continued advances in the application of plasma technology for waste treatment, and this is now a viable alternative to other potential treatment/disposal options. Regulatory, economic and socio-political drivers are promoting adoption of advanced thermal conversion techniques such as thermal plasma technology and these are expected to become increasingly commercially viable in the future. PMID:18499345

  2. Advanced Thermal Control Technologies for "CEV" (New Name: ORION)

    NASA Technical Reports Server (NTRS)

    Golliher, Eric; Westheimer, David; Ewert, Michael; Hasan, Mojib; Anderson, Molly; Tuan, George; Beach, Duane

    2007-01-01

    NASA is currently investigating several technology options for advanced human spaceflight. This presentation covers some recent developments that relate to NASA's Orion spacecraft and future Lunar missions.

  3. Thermal Energy for Space Cooling--Federal Technology Alert

    SciTech Connect

    Brown, Daryl R.

    2000-12-31

    Cool storage technology can be used to significantly reduce energy costs by allowing energy-intensive, electrically driven cooling equipment to be predominantly operated during off peak hours when electricity rates are lower. This Federal Technology Alert, which is sponsored by DOE's Federal Energy Management Program (FEMP), describes the basic types of cool storage technologies and cooling system integration options. In addition, it defines the savings potential in the federal sector, presents application advice, and describes the performance experience of specific federal users. The results of a case study of a GSA building using cool storage technology are also provided.

  4. Thermal plasma waste remediation technology: Historical perspective and current trends. Final report

    SciTech Connect

    Counts, D.A.; Sartwell, B.D.; Peterson, S.H.; Kirkland, R.; Kolak, N.P.

    1999-01-29

    The idea of utilizing thermal plasma technology for waste processing goes back to the mid-1970`s during the energy crisis. Since then, more interest has been shown by universities, industry, and government in developing thermal plasma waste processing technology for hazardous and non-hazardous waste treatment. Much of the development has occurred outside of the United States, most significantly in Japan and France, while the market growth for thermal plasma waste treatment technology has remained slow in the United States. Despite the slow expansion of the market in the United States, since the early 1990`s there has been an increase in interest in utilizing thermal plasma technology for environmental remediation and treatment in lieu of the more historical methods of incineration and landfilling. Currently within the Department of Defense there are several demonstration projects underway, and details of some of these projects are provided. Prior to these efforts by the U.S. Government, the State of New York had investigated the use of thermal plasma technology for treating PCB contaminated solvent wastes from the Love Canal cleanup. As interest continues to expand in the application of thermal plasma technology for waste treatment and remediation, more and more personnel are becoming involved with treatment, regulation, monitoring, and commercial operations and many have little understanding of this emerging technology. To address these needs, this report will describe: (1) characteristics of plasmas; (2) methods for generating sustained thermal plasmas; (3) types of thermal plasma sources for waste processing; (4) the development of thermal plasma waste treatment systems; and (5) Department of Defense plasma arc waste treatment demonstration projects.

  5. The effect of process parameters on the thermal conditions during moving mold ESR

    SciTech Connect

    Heilman, J.E.; Damkroger, B.K.

    1994-09-01

    Several experimental melts were conducted using a moving mold electroslag remelting furnace. The conditions of electrode immersion depth, slag cap thickness, and melt current were varied. Mold wall temperatures and slag pool temperatures were measured and the heat flux through the mold wall was calculated. The relationships between varying ESR melt parameters and the resultant thermal conditions were examined. The thermal profile of the mold, the heat transfer to the mold coolant total and fractional, and the formation of a slag skin were studied.

  6. Staring infrared focal plane arrays for thermal imaging technology

    NASA Astrophysics Data System (ADS)

    Jitescu, Florina; Novac, Octavian

    2000-02-01

    Thermal imaging converts the IR radiation of a scene into a live picture of that scene; the thermal image is a pictorial representation of temperature differences. One of the most promising new sensor for thermal imaging is the IR focal plane array. The IR focal plane array consists of a large number of minuscule IR detectors which can resolve targets as little as one tenth of a degree warmer than their surroundings, and offer enormous gains in data throughput per unit time without mechanical scanning. Imaging arrays are the most advanced IR detectors and commonplace in products ranging form hand-held IR cameras for industry and security use, to sophisticated systems for military applications.

  7. Nuclear thermal propulsion technology: Results of an interagency panel in FY 1991

    NASA Technical Reports Server (NTRS)

    Clark, John S.; Mcdaniel, Patrick; Howe, Steven; Helms, Ira; Stanley, Marland

    1993-01-01

    NASA LeRC was selected to lead nuclear propulsion technology development for NASA. Also participating in the project are NASA MSFC and JPL. The U.S. Department of Energy will develop nuclear technology and will conduct nuclear component, subsystem, and system testing at appropriate DOE test facilities. NASA program management is the responsibility of NASA/RP. The project includes both nuclear electric propulsion (NEP) and nuclear thermal propulsion (NTP) technology development. This report summarizes the efforts of an interagency panel that evaluated NTP technology in 1991. Other panels were also at work in 1991 on other aspects of nuclear propulsion, and the six panels worked closely together. The charters for the other panels and some of their results are also discussed. Important collaborative efforts with other panels are highlighted. The interagency (NASA/DOE/DOD) NTP Technology Panel worked in 1991 to evaluate nuclear thermal propulsion concepts on a consistent basis. Additionally, the panel worked to continue technology development project planning for a joint project in nuclear propulsion for the Space Exploration Initiative (SEI). Five meetings of the panel were held in 1991 to continue the planning for technology development of nuclear thermal propulsion systems. The state-of-the-art of the NTP technologies was reviewed in some detail. The major technologies identified were as follows: fuels, coatings, and other reactor technologies; materials; instrumentation, controls, health monitoring and management, and associated technologies; nozzles; and feed system technology, including turbopump assemblies.

  8. Technological change in Swiss thermal waste treatment: an expert-based socio-technical analysis.

    PubMed

    Spoerri, Andy; Lang, Daniel J; Staeubli, Beat; Scholz, Roland W

    2010-07-01

    Understanding technological change provides a crucial basis for governing sustainability transitions. In this paper we present an analysis of technological change using the example of Swiss thermal waste processing. In recent years, increased concerns about the low quality of residues from grate-firing systems led to the examination of alternative technologies. Yet despite clear indications of a potential better performance with respect to residue quality, none of these alternatives has been adopted. Based on a two-stage knowledge integration among 15 leading experts, in a retrospective analysis we identified factors that have significantly affected technological change in Swiss thermal waste processing. These factors were then related to three technological options representing different types of technological change, i.e., from incremental improvements of the existing to the implementation of a new technology. The results indicate that technological change is currently in a technological lock-in and provide detailed insights on the causes. The lock-in results in the step-wise further development of the status quo grate-firing system despite its limitations for improving the residue qualities. Almost all factors (legal, economic, societal, technological) of the existing 'thermal waste management' system have been well adapted to the cost- and energy-efficient grate-firing technology, blocking innovative technologies from entering the Swiss market. In addition, pressures from the context, e.g., societal pressure related to landfill risks, have not been strong enough to promote non-incremental change. PMID:20206491

  9. The effect of atmospheric thermal conditions and urban thermal pollution on all-cause and cardiovascular mortality in Bangladesh.

    PubMed

    Burkart, Katrin; Schneider, Alexandra; Breitner, Susanne; Khan, Mobarak Hossain; Krmer, Alexander; Endlicher, Wilfried

    2011-01-01

    This study assessed the effect of temperature and thermal atmospheric conditions on all-cause and cardiovascular mortality in Bangladesh. In particular, differences in the response to elevated temperatures between urban and rural areas were investigated. Generalized additive models (GAMs) for daily death counts, adjusted for trend, season, day of the month and age were separately fitted for urban and rural areas. Breakpoint models were applied for determining the increase in mortality above and below a threshold (equivalent) temperature. Generally, a 'V'-shaped (equivalent) temperature-mortality curve with increasing mortality at low and high temperatures was observed. Particularly, urban areas suffered from heat-related mortality with a steep increase above a specific threshold. This adverse heat effect may well increase with ongoing urbanization and the intensification of the urban heat island due to the densification of building structures. Moreover, rising temperatures due to climate change could aggravate thermal stress. PMID:21377776

  10. Technology Demonstration: Acoustic Condition Assessment of Wastewater Collection Systems

    EPA Science Inventory

    The overall objective of this EPA-funded study was to demonstrate innovative sewer line assessment technologies that are designed for rapid deployment using portable equipment. This study focused on demonstration of technologies that are suitable for smaller diameter pipes (less ...

  11. SITE TECHNOLOGY CAPSULE: CLEAN BERKSHIRES, INC. - THERMAL DESORPTION SYSTEM

    EPA Science Inventory

    The thermal desorption process devised by Clean Berkshires, Inc., works by vaporizing the organic contaminants from the soil with heat, isolating the contaminant! in a gas stream, and then destroying them in a high efficiency afterburner. he processed solids are either replaced f...

  12. SITE TECHNOLOGY CAPSULE: CLEAN BERKSHIRES, INC. THERMAL DESORPTION SYSTEM

    EPA Science Inventory

    The thermal desorption process devised by Clean Berkshires, Inc., works by vaporizing the organic contaminants from the soil with heat, isolating the contaminant! in a gas stream, and then destroying them in a high efficiency afterburner. The processed solids are either replaced ...

  13. High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems

    SciTech Connect

    Baechler, M.; Gilbride, T.; Ruiz, K.; Steward, H.; Love, P.

    2007-06-01

    This document is the sixth volume of the Building America Best Practices Series. It presents information that is useful throughout the United States for enhancing the energy efficiency practices in the specific climate zones that are presented in the first five Best Practices volumes. It provides an introduction to current photovoltaic and solar thermal building practices. Information about window selection and shading is included.

  14. Thermal neutral format based on the step technology

    NASA Technical Reports Server (NTRS)

    Almazan, P. Planas; Legal, J. L.

    1995-01-01

    The exchange of models is one of the most serious problems currently encountered in the practice of spacecraft thermal analysis. Essentially, the problem originates in the diversity of computing environments that are used across different sites, and the consequent proliferation of native tool formats. Furthermore, increasing pressure to reduce the development's life cycle time has originated a growing interest in the so-called spacecraft concurrent engineering. In this context, the realization of the interdependencies between different disciplines and the proper communication between them become critical issues. The use of a neutral format represents a step forward in addressing these problems. Such a means of communication is adopted by consensus. A neutral format is not directly tied to any specific tool and it is kept under stringent change control. Currently, most of the groups promoting exchange formats are contributing with their experience to STEP, the Standard for Exchange of Product Model Data, which is being developed under the auspices of the International Standards Organization (ISO 10303). This paper presents the different efforts made in Europe to provide the spacecraft thermal analysis community with a Thermal Neutral Format (TNF) based on STEP. Following an introduction with some background information, the paper presents the characteristics of the STEP standard. Later, the first efforts to produce a STEP Spacecraft Thermal Application Protocol are described. Finally, the paper presents the currently harmonized European activities that follow up and extend earlier work on the area.

  15. TECHNOLOGY ASSESSMENT OF SOLAR THERMAL ENERGY APPLICATIONS IN WASTEWATER TREATMENT

    EPA Science Inventory

    Three major areas were identified for which solar thermal energy usage has potential applicability in Publicly Owned Treatment Works. These areas include space and domestic water heating, anaerobic digester heating, and sludge drying. The report contains a detailed analysis of so...

  16. Porous materials produced from incineration ash using thermal plasma technology.

    PubMed

    Yang, Sheng-Fu; Chiu, Wen-Tung; Wang, To-Mai; Chen, Ching-Ting; Tzeng, Chin-Ching

    2014-06-01

    This study presents a novel thermal plasma melting technique for neutralizing and recycling municipal solid waste incinerator (MSWI) ash residues. MSWI ash residues were converted into water-quenched vitrified slag using plasma vitrification, which is environmentally benign. Slag is adopted as a raw material in producing porous materials for architectural and decorative applications, eliminating the problem of its disposal. Porous materials are produced using water-quenched vitrified slag with Portland cement and foaming agent. The true density, bulk density, porosity and water absorption ratio of the foamed specimens are studied here by varying the size of the slag particles, the water-to-solid ratio, and the ratio of the weights of the core materials, including the water-quenched vitrified slag and cement. The thermal conductivity and flexural strength of porous panels are also determined. The experimental results show the bulk density and the porosity of the porous materials are 0.9-1.2 g cm(-3) and 50-60%, respectively, and the pore structure has a closed form. The thermal conductivity of the porous material is 0.1946 W m(-1) K(-1). Therefore, the slag composite materials are lightweight and thermal insulators having considerable potential for building applications. PMID:23948051

  17. CALORSTOCK 1994: Thermal energy storage. Better economy, environment, technology

    NASA Astrophysics Data System (ADS)

    Kangas, M. T.; Lund, P. D.

    This publication is the second volume of the Proceedings of CALORSTOCK'94, the Sixth International Conference on Thermal Energy Storage held in Espoo, Finland on 22-25 Aug. 1994. This volume contains 51 presentations from the following six sessions: Chemical storage; Heat storage and environment; Central solar heating plants with seasonal storage; Water storage pits and tanks; Cooling; and National activities.

  18. Field Demonstration of Condition Assessment Technologies for Wastewater Collection Systems

    EPA Science Inventory

    Reliable information on pipe condition is needed to accurately estimate the remaining service life of wastewater collection system assets. Although inspections with conventional closed-circuit television (CCTV) have been the mainstay of pipeline condition assessment for decades,...

  19. Human-biometeorological conditions and thermal perception in a Mediterranean coastal park

    NASA Astrophysics Data System (ADS)

    Saaroni, Hadas; Pearlmutter, David; Hatuka, Tali

    2015-10-01

    This study looks at the interrelation of human-biometeorological conditions, physiological thermal stress and subjective thermal perception in the design and use of a new waterfront park in Tel-Aviv, Israel. Our initial assumption was that the park's design would embody a comprehensive response to the area's ever-increasing heat stress and water shortage. However, almost half of it is covered by grass lawns, irrigated with fresh water, while the remaining area is mainly covered with concrete paving, with minimal shading and sparse trees. We hypothesized that stressful thermal conditions would prevail in the park in the summer season and would be expressed in a high discomfort perception of its users. Thermo-physiological stress conditions in a typical summer month were compared with the subjective comfort perceptions of pedestrians surveyed in the park. It was found that even during mid-day hours, the level of thermal stress tends to be relatively mild, owing largely to the strong sea breeze and despite the high intensity of solar radiation. Moreover, it appears that the largely favorable perception of comfort among individuals may also result from socio-cultural aspects related to their satisfaction with the park's aesthetic attractiveness and in fact its very existence. Adaptive planning is proposed for such vulnerable regions, which are expected to experience further aggravation in thermal comfort due to global as well as localized warming trends.

  20. Human-biometeorological conditions and thermal perception in a Mediterranean coastal park.

    PubMed

    Saaroni, Hadas; Pearlmutter, David; Hatuka, Tali

    2015-10-01

    This study looks at the interrelation of human-biometeorological conditions, physiological thermal stress and subjective thermal perception in the design and use of a new waterfront park in Tel-Aviv, Israel. Our initial assumption was that the park's design would embody a comprehensive response to the area's ever-increasing heat stress and water shortage. However, almost half of it is covered by grass lawns, irrigated with fresh water, while the remaining area is mainly covered with concrete paving, with minimal shading and sparse trees. We hypothesized that stressful thermal conditions would prevail in the park in the summer season and would be expressed in a high discomfort perception of its users. Thermo-physiological stress conditions in a typical summer month were compared with the subjective comfort perceptions of pedestrians surveyed in the park. It was found that even during mid-day hours, the level of thermal stress tends to be relatively mild, owing largely to the strong sea breeze and despite the high intensity of solar radiation. Moreover, it appears that the largely favorable perception of comfort among individuals may also result from socio-cultural aspects related to their satisfaction with the park's aesthetic attractiveness and in fact its very existence. Adaptive planning is proposed for such vulnerable regions, which are expected to experience further aggravation in thermal comfort due to global as well as localized warming trends. PMID:25527044

  1. Monitoring Thermal Performance of Hollow Bricks with Different Cavity Fillers in Difference Climate Conditions

    NASA Astrophysics Data System (ADS)

    Pavlík, Zbyšek; Jerman, Miloš; Fořt, Jan; Černý, Robert

    2015-03-01

    Hollow brick blocks have found widespread use in the building industry during the last decades. The increasing requirements to the thermal insulation properties of building envelopes given by the national standards in Europe led the brick producers to reduce the production of common solid bricks. Brick blocks with more or less complex systems of internal cavities replaced the traditional bricks and became dominant on the building ceramics market. However, contrary to the solid bricks where the thermal conductivity can easily be measured by standard methods, the complex geometry of hollow brick blocks makes the application of common techniques impossible. In this paper, a steady-state technique utilizing a system of two climatic chambers separated by a connecting tunnel for sample positioning is used for the determination of the thermal conductivity, thermal resistance, and thermal transmittance ( U value) of hollow bricks with the cavities filled by air, two different types of mineral wool, polystyrene balls, and foam polyurethane. The particular brick block is provided with the necessary temperature- and heat-flux sensors and thermally insulated in the tunnel. In the climatic chambers, different temperatures are set. After steady-state conditions are established in the measuring system, the effective thermal properties of the brick block are calculated using the measured data. Experimental results show that the best results are achieved with hydrophilic mineral wool as a cavity filler; the worst performance exhibits the brick block with air-filled cavities.

  2. Real-time condition monitoring of thermal power plants feed-pumps by rolling bearings supports vibration

    NASA Astrophysics Data System (ADS)

    Kostyukov, V. N.; Tarasov, E. V.

    2012-05-01

    The report addresses the real-time condition monitoring of technical state and automatic diagnosis of auxiliary equipment for bearings supports vibration, for example, control of the feed-pump operating modes of thermal power stations. The causes that lead to premature birth and development of defects in rolling bearings are identified and the development of activities ensuring safe and continuous operation of the auxiliary equipment of thermal power stations is carried out. Collection and analysis of vibration parameters of pumping units during their operation at the operating modes of the technological process are realized by means of real-time technical condition monitoring. Spectral analysis of vibration parameters of one of the pumps showed the presence of frequency components, which mark violations in the operating practices of the pump, the imbalance development and, as a consequence, the development of defects in the bearings by long-term operation of the unit. Timely warning of the personnel on the operation of the unit with the "INTOLERABLE" technical state and automatic warning issuance of the need to change the technological process allowed to recover the estimated pump operation mode in due time and prevent further development of defects in equipment.

  3. Measurements of Electrical and Thermal Conductivity of Iron Under Earth's Core Conditions

    NASA Astrophysics Data System (ADS)

    Ohta, K.; Kuwayama, Y.; Shimizu, K.; Yagi, T.; Hirose, K.; Ohishi, Y.

    2014-12-01

    Secular cooling of the Earth's core induces the convection of the conductive liquid outer core, which generates the geomagnetic field, and the growth of the solid inner core. Since iron is the primary component of the Earth's core, the electrical and thermal conductivity of iron in both solid and liquid states are key pieces of information for estimating the transport properties of the core. We performed electrical and thermal conductivity measurements on iron under core conditions in a laser-heated diamond anvil cell. Our electrical conductivity measurements on iron clearly show resistivity saturation phenomena in iron under high pressure and high temperature conditions as predicted in a recent laboratory-based model for the core conductivity (Gomi et al., 2013). Direct measurements of thermal diffusivity of iron have been also preformed at high pressures by using the pulsed light heating thermoreflectance technique, which enable us to confirm the validity of the Wiedemann-Franz law toward transition metal under high pressure.

  4. Game Changing Technology: Woven Thermal Protection Systems - Duration: 56 seconds.

    NASA Video Gallery

    New woven composite materials are an advanced space technology that mark a major milestone toward development of the space systems that will enable extending human and robotic presence throughout t...

  5. Thermal spray: Advances in coatings technology; Proceedings of the National Thermal Spray Conference, Orlando, FL, Sept. 14-17, 1987

    SciTech Connect

    Houck, D.L.

    1988-01-01

    Papers are presented on particle injection in plasma spraying, cored tube wires for arc and flame spraying, new plasma gun technology, and grit-blasting as a surface preparation before plasma spraying. Also considered are hypervelocity applications of tribological coatings, the variability in strength of thermally sprayed coatings, automated powder mass flow monitoring and control, and coated abrasive superfinishing. Other topics include wire-sprayed aluminum coating services in a SIMA corrosion-control shop, cerium oxide stabilized thermal barrier coatings, and strength enhancement of plasma sprayed coatings.

  6. Thermal stress on ZnO surge arresters in polluted conditions; Part II: Field test results

    SciTech Connect

    Vitet, S. ); Schei, A. ); Stenstrom, L.; Lundquist, J. )

    1992-10-01

    The thermal performance of ZnO surge arresters in polluted conditions were studied in the laboratory and the field. This paper describes the results from field tests in areas of marine and industrial pollution, and a comparison is made with laboratory test results.

  7. Mechanical and thermal buckling analysis of sandwich panels under different edge conditions

    NASA Technical Reports Server (NTRS)

    Ko, William L.

    1993-01-01

    By using the Rayleigh-Ritz method of minimizing the total potential energy of a structural system, combined load (mechanical or thermal load) buckling equations are established for orthotropic rectangular sandwich panels supported under four different edge conditions. Two-dimensional buckling interaction curves and three dimensional buckling interaction surfaces are constructed for high-temperature honeycomb-core sandwich panels supported under four different edge conditions. The interaction surfaces provide easy comparison of the panel buckling strengths and the domains of symmetrical and antisymmetrical buckling associated with the different edge conditions. Thermal buckling curves of the sandwich panels also are presented. The thermal buckling conditions for the cases with and without thermal moments were found to be identical for the small deformation theory. In sandwich panels, the effect of transverse shear is quite large, and by neglecting the transverse shear effect, the buckling loads could be overpredicted considerably. Clamping of the edges could greatly increase buckling strength more in compression than in shear.

  8. Determination of Creep Behavior of Thermal Barrier Coatings Under Laser Imposed High Thermal and Stress Gradient Conditions

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    1999-01-01

    A laser sintering/creep technique has been established to determine the creep behavior of thermal barrier coatings under steady-state high heat flux conditions. For a plasma sprayed zirconia-8 wt. % yttria coating, a significant primary creep strain and a low apparent creep activation energy were observed. Possible creep mechanisms involved include stress induced mechanical sliding and temperature and stress enhanced cation diffusion through the splat and grain boundaries. The elastic modulus evolution, stress response, and total accumulated creep strain variation across the ceramic coating are simulated using a finite difference approach. The modeled creep response is consistent with experimental observations.

  9. Numerical simulation of diurnally varying thermal environment in a street canyon under haze-fog conditions

    NASA Astrophysics Data System (ADS)

    Tan, Zijing; Dong, Jingliang; Xiao, Yimin; Tu, Jiyuan

    2015-10-01

    The impact of haze-fog on surface temperature, flow pattern, pollutant dispersion and pedestrian thermal comfort are investigated using computational fluid dynamics (CFD) approach based on a three-dimensional street canyon model under different haze-fog conditions. In this study, light extinction coefficient (Kex) is adopted to represent haze-fog pollution level. Numerical simulations are performed for different Kex values at four representative time events (1000 LST, 1300 LST, 1600 LST and 2000 LST). The numerical results suggest that the surface temperature is strongly affected by the haze-fog condition. Surface heating induced by the solar radiation is enhanced by haze-fog, as higher surface temperature is observed under thicker haze-fog condition. Moreover, the temperature difference between sunlit and shadow surfaces is reduced, while that for the two shadow surfaces is slightly increased. Therefore, the surface temperature among street canyon facets becomes more evenly distributed under heavy haze-fog conditions. In addition, flow patterns are considerably altered by different haze-fog conditions, especially for the afternoon (1600 LST) case, in which thermal-driven flow has opposite direction as that of the wind-driven flow direction. Consequently, pollutants such as vehicular emissions will accumulate at pedestrian level, and pedestrian thermal comfort may lower under thicker haze-fog condition.

  10. Fuel Savings and Emission Reductions from Next-Generation Mobile Air Conditioning Technology in India

    SciTech Connect

    Chaney, L.; Thundiyil, K.; Andersen, S.; Chidambaram, S.; Abbi, Y. P.

    2007-01-01

    Up to 19.4% of vehicle fuel consumption in India is devoted to air conditioning (A/C). Indian A/C fuel consumption is almost four times the fuel penalty in the United States and close to six times that in the European Union because India's temperature and humidity are higher and because road congestion forces vehicles to operate inefficiently. Car A/C efficiency in India is an issue worthy of national attention considering the rate of increase of A/C penetration into the new car market, India's hot climatic conditions and high fuel costs. Car A/C systems originally posed an ozone layer depletion concern. Now that industrialized and many developing countries have moved away from ozone-depleting substances per Montreal Protocol obligations, car A/C impact on climate has captured the attention of policy makers and corporate leaders. Car A/C systems have a climate impact from potent global warming potential gas emissions and from fuel used to power the car A/Cs. This paper focuses on car A/C fuel consumption in the context of the rapidly expanding Indian car market and how new technological improvements can result in significant fuel savings and consequently, emission reductions. A 19.4% fuel penalty is associated with A/C use in the typical Indian passenger car. Car A/C fuel use and associated tailpipe emissions are strong functions of vehicle design, vehicle use, and climate conditions. Several techniques: reducing thermal load, improving vehicle design, improving occupants thermal comfort design, improving equipment, educating consumers on impacts of driver behaviour on MAC fuel use, and others - can lead to reduced A/C fuel consumption.

  11. Supporting technology for enhanced oil recovery - EOR thermal processes

    SciTech Connect

    1995-03-01

    This report contains the results of efforts under the six tasks of the Eighth Amendment and Extension of Annex IV, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Agreement. The report is presented in sections and each section contains one or more reports prepared by various individuals or groups describing the results of efforts under each of the tasks. A statement of each task, taken from the agreement, is presented on the first page of each section.

  12. CALORSTOCK'94. Thermal energy storage. Better economy, environment, technology

    NASA Astrophysics Data System (ADS)

    Kangas, M. T.; Lund, P. D.

    This publication is the first volume of the proceedings of CALORSTOCK'94, the sixth international conference on thermal energy storage held in Espoo, Finland on August 22-25, 1994. This volume contains 58 presentations from the following six sessions: Aquifer storage, Integration into energy systems, Simulation models and design tools, IEA energy conservation through energy storage programme workshop, Earth coupled storage, and District heating and utilities.

  13. Real-time bicycle detection at signalized intersections using thermal imaging technology

    NASA Astrophysics Data System (ADS)

    Collaert, Robin

    2013-02-01

    More and more governments and authorities around the world are promoting the use of bicycles in cities, as this is healthy for the bicyclist and improves the quality of life in general. Safety and efficiency of bicyclists has become a major focus. To achieve this, there is a need for a smarter approach towards the control of signalized intersections. Various traditional detection technologies, such as video, microwave radar and electromagnetic loops, can be used to detect vehicles at signalized intersections, but none of these can consistently separate bikes from other traffic, day and night and in various weather conditions. As bikes should get a higher priority and also require longer green time to safely cross the signalized intersection, traffic managers are looking for alternative detection systems that can make the distinction between bicycles and other vehicles near the stop bar. In this paper, the drawbacks of a video-based approach are presented, next to the benefits of a thermal-video-based approach for vehicle presence detection with separation of bicycles. Also, the specific technical challenges are highlighted in developing a system that combines thermal image capturing, image processing and output triggering to the traffic light controller in near real-time and in a single housing.

  14. Performance Testing of Thermal Interface Filler Materials in a Bolted Aluminum Interface Under Thermal/Vacuum Conditions

    NASA Technical Reports Server (NTRS)

    Glasgow, Shaun; Kittredge, Ken

    2003-01-01

    A thermal interface material is one of the many tools that are often used as part of the thermal control scheme for space-based applications. These materials are placed between, for example, an avionics box and a cold plate, in order to improve the conduction heat transfer so that proper temperatures can be maintained. Historically at Marshall Space Flight Center, CHO-THERM@ 1671 has primarily been used for applications where an interface material was deemed necessary. However, there have been numerous alternatives come on the market in recent years. It was decided that a number of these materials should be tested against each other to see if there were better performing alternatives. The tests were done strictly to compare the thermal performance of the materials relative to each other under repeatable conditions and they do not take into consideration other design issues such as off-gassing, electrical conduction or isolation, etc. This paper details the materials tested, test apparatus, procedures, and results of these tests.

  15. Effect of soil water content on soil thermal conductivity under field conditions

    NASA Astrophysics Data System (ADS)

    Vico, G.; Daly, E.; Manzoni, S.; Porporato, A.

    2008-12-01

    Knowledge of the thermal properties of soils is required in many areas of engineering, meteorology, agronomy, and ecosystem and soil science. Soil thermal conductivity varies in time and space, since it is influenced by soil properties as well as soil temperature and moisture conditions. We use the one dimensional heat conduction equation in conjunction with two-year data measured in a grass-covered field in North Carolina Piedmont to estimate soil thermal conductivity and to investigate how it is impacted by water content. In agreement with laboratory experiments reported in the literature, our results suggest that under dry conditions soil thermal conductivity increases across a relatively narrow range of soil water contents, above which a further increase in water content does not significantly change thermal conductivity. However, when soil approaches saturation, heat transfer is further improved, a fact not previously noted. This nonlinear behavior is consistent with the formation at high water contents of a continuous film of liquid water in soil aggregates of mineral and organic matter.

  16. Report on Condition Assessment Technology of Wastewater Collection Systems

    EPA Science Inventory

    The wastewater collection system infrastructure in the United States is recognized as being in poor condition and in urgent need of condition assessment and rehabilitation. As part of an effort to address aging infrastructure needs, the U.S. Environmental Protection Agency (USEP...

  17. Heat Transfer and Thermal Stability Research for Advanced Hydrocarbon Fuel Technologies

    NASA Technical Reports Server (NTRS)

    DeWitt, Kenneth; Stiegemeier, Benjamin

    2005-01-01

    In recent years there has been increased interest in the development of a new generation of high performance boost rocket engines. These efforts, which will represent a substantial advancement in boost engine technology over that developed for the Space Shuttle Main Engines in the early 1970s, are being pursued both at NASA and the United States Air Force. NASA, under its Space Launch Initiative s Next Generation Launch Technology Program, is investigating the feasibility of developing a highly reliable, long-life, liquid oxygen/kerosene (RP-1) rocket engine for launch vehicles. One of the top technical risks to any engine program employing hydrocarbon fuels is the potential for fuel thermal stability and material compatibility problems to occur under the high-pressure, high-temperature conditions required for regenerative fuel cooling of the engine combustion chamber and nozzle. Decreased heat transfer due to carbon deposits forming on wetted fuel components, corrosion of materials common in engine construction (copper based alloys), and corrosion induced pressure drop increases have all been observed in laboratory tests simulating rocket engine cooling channels. To mitigate these risks, the knowledge of how these fuels behave in high temperature environments must be obtained. Currently, due to the complexity of the physical and chemical process occurring, the only way to accomplish this is empirically. Heated tube testing is a well-established method of experimentally determining the thermal stability and heat transfer characteristics of hydrocarbon fuels. The popularity of this method stems from the low cost incurred in testing when compared to hot fire engine tests, the ability to have greater control over experimental conditions, and the accessibility of the test section, facilitating easy instrumentation. These benefits make heated tube testing the best alternative to hot fire engine testing for thermal stability and heat transfer research. This investigation used the Heated Tube Facility at the NASA Glenn Research Center to perform a thermal stability and heat transfer characterization of RP-1 in an environment simulating that of a high chamber pressure, regenerative cooled rocket engine. The first step in the research was to investigate the carbon deposition process of previous heated tube experiments by performing scanning electron microscopic analysis in conjunction with energy dispersive spectroscopy on the tube sections. This analysis gave insight into the carbon deposition process and the effect that test conditions played in the formation of deleterious coke. Furthermore, several different formations were observed and noted. One other crucial finding of this investigation was that in sulfur containing hydrocarbon fuels, the interaction of the sulfur components with copper based wall materials presented a significant corrosion problem. This problem in many cases was more life limiting than those posed by the carbon deposition process. The results of this microscopic analysis was detailed and presented at the December 2003 JANNAF Air-Breathing Propulsion Meeting as a Materials Compatibility and Thermal Stability Analysis of common Hydrocarbon Fuels (reference 1).

  18. High temporal and spatial thermal infrared characterization of dense grass during high-humidity conditions

    NASA Astrophysics Data System (ADS)

    Ballard, Jerrell R., Jr.; Berry, Thomas E.; Leese, David L.; Anderson, Stacy C.; Bunch, Laura S.

    2004-08-01

    This paper describes the high temporal (1 sec to 5 min) and spatial thermal infrared directional characterization of low dense grass canopy during high humidity conditions to study the diurnal and spatial variation of simple vegetation background signatures. The instruments used in the characterization effort consisted of two infrared cameras (8-14 ?m) set at nadir and 45 degrees, four sets of radiometers (3-5 ?m and 8-12 ?m), micrometeorological instruments, and thermocouples placed within the grass. Micrometeorological measurements included wind speed, air temperature, and relative humidity observed at several heights above the canopy sampling occurred at 1 sec and 5 min intervals. These measurements were used to calculate wind speed, air temperature, and relative humidity profiles down to the top of the grass canopy. Analysis of the measured thermal images consists of quantifying the diurnal thermal differences in the directional background signatures, directional thermal variance, and thermal variance differences related to observation angle, solar radiation, and wind speed. These preliminary analyses indicate that for this environment, measurements at large temporal scales, the thermal variance is primarily affected by solar radiation, but at small temporal scales turbulent mixing of fluxes becomes the more dominant cause of the variance.

  19. Thermal performance of a Concrete Cool Roof under different climatic conditions of Mexico

    DOE PAGESBeta

    Hernández-Pérez, I.; Álvarez, G.; Gilbert, H.; Xamán, J.; Chávez, Y.; Shah, B.

    2014-11-27

    A cool roof is an ordinary roof with a reflective coating on the exterior surface which has a high solar reflectance and high thermal emittance. These properties let the roof keep a lower temperature than a standard roof under the same conditions. In this work, the thermal performance of a concrete roof with and without insulation and with two colors has been analyzed using the finite volume method. The boundary conditions of the external roof surface were taken from hourly averaged climatic data of four cities. For the internal surface, it is considered that the building is air-conditioned and themore » inside air has a constant temperature. The interior surface temperature and the heat flux rates into the roofs were obtained for two consecutive days in order to assess the benefits of a cool roofs in different climates.« less

  20. Influence of Microwaves on the Thermal Conditions of a "Polymer-Semiconductor-Composite" System

    NASA Astrophysics Data System (ADS)

    Kuznetsov, V. G.; Kravchenko, E. V.

    2015-11-01

    A numerical analysis of the influence of microwaves on the thermal conditions of elements of electronic equipment (EE) has been carried out. Investigations have shown that the temperature field of the ″polymer-semiconductor-composite″ system under the action of microwaves is nonuniform. It has been established that under rather typical operating conditions with increasing electric field intensity there is a considerable increase (from 362 to 387 K) in the maximum temperature of the modeled object. Such a strong influence of microwaves on the thermal conditions of the ″polymer-semiconductor-composite″ system is comparable to the increase in the ambient temperature by 20 K or the increase in the heat release of the internal source by 30%.

  1. Effects of various thermal boundary conditions on natural convection in porous cavities

    NASA Astrophysics Data System (ADS)

    Cheong, H. T.; Sivasankaran, S.; Bhuvaneswari, M.; Siri, Z.

    2015-10-01

    The present work analyzes numerically the effects of various thermal boundary conditions and the geometry of the cavity on natural convection in cavities with fluid-saturated porous medium. Cavity of square, right-angled trapezium and right-angled triangle shapes are considered. The different temperature profiles are imposed on the left wall of the cavity and the right wall is maintained at a lower constant temperature. The top and bottom walls are adiabatic. The Darcy model is adopted for the porous medium. The finite difference method is used to solve the governing equations and boundary conditions over a range of Darcy-Rayleigh numbers. Streamlines, isotherms and Nusselt numbers are used for presenting the results. The heat transfer of the square cavity is more enhanced at high Darcy-Rayleigh number for all the thermal boundary conditions considered.

  2. Bayesian Framework Approach for Prognostic Studies in Electrolytic Capacitor under Thermal Overstress Conditions

    NASA Technical Reports Server (NTRS)

    Kulkarni, Chetan S.; Celaya, Jose R.; Goebel, Kai; Biswas, Gautam

    2012-01-01

    Electrolytic capacitors are used in several applications ranging from power supplies for safety critical avionics equipment to power drivers for electro-mechanical actuator. Past experiences show that capacitors tend to degrade and fail faster when subjected to high electrical or thermal stress conditions during operations. This makes them good candidates for prognostics and health management. Model-based prognostics captures system knowledge in the form of physics-based models of components in order to obtain accurate predictions of end of life based on their current state of heal th and their anticipated future use and operational conditions. The focus of this paper is on deriving first principles degradation models for thermal stress conditions and implementing Bayesian framework for making remaining useful life predictions. Data collected from simultaneous experiments are used to validate the models. Our overall goal is to derive accurate models of capacitor degradation, and use them to remaining useful life in DC-DC converters.

  3. Thermal performance of a Concrete Cool Roof under different climatic conditions of Mexico

    SciTech Connect

    Hernández-Pérez, I.; Álvarez, G.; Gilbert, H.; Xamán, J.; Chávez, Y.; Shah, B.

    2014-11-27

    A cool roof is an ordinary roof with a reflective coating on the exterior surface which has a high solar reflectance and high thermal emittance. These properties let the roof keep a lower temperature than a standard roof under the same conditions. In this work, the thermal performance of a concrete roof with and without insulation and with two colors has been analyzed using the finite volume method. The boundary conditions of the external roof surface were taken from hourly averaged climatic data of four cities. For the internal surface, it is considered that the building is air-conditioned and the inside air has a constant temperature. The interior surface temperature and the heat flux rates into the roofs were obtained for two consecutive days in order to assess the benefits of a cool roofs in different climates.

  4. Temperature and oxygen conditions peculiarities of the cooling ponds of nuclear and thermal power plants

    NASA Astrophysics Data System (ADS)

    Mostova, N.

    2008-11-01

    On materials of laboratory and expeditionary researches on the cooling pond of the Zaporizhya nuclear power plant and adjoining area of the Kachovka reservoir are found out features of temperature and oxygen regime of the cooling ponds and condition and factors, that them determine. Carried out researches testify to significant thermal loading on ecosystem of the cooling pond which determines a course of hydrobiological and physico-chemical processes. Differences of the hydrochemical regime of cooling ponds from similar reservoirs in natural conditions are caused, first of all, by features of their thermal regime. Because of constant artificial heating, character of hydrobiological, physico-chemical and hydrodynamical processes in cooling ponds are formed peculiar conditions of formation of the dissolved oxygen regime.

  5. Thermoelastic characteristics of thermal barrier coatings with layer thickness and edge conditions through mathematical analysis.

    PubMed

    Go, Jaegwi; Myoung, Sang-Won; Lee, Je-Hyun; Jung, Yeon-Gil; Kim, Seokchan; Paik, Ungyu

    2014-10-01

    The thermoelastic behaviors of such as temperature distribution, displacements, and stresses in thermal barrier coatings (TBCs) are seriously influenced by top coat thickness and edge conditions, which were investigated based on the thermal and mechanical properties of plasma-sprayed TBCs. A couple of governing partial differential equations were derived based on the thermoelastic theory. Since the governing equations are too involved to solve analytically, a finite volume method was developed to obtain approximations. The thermoelastic characteristics of TBCs with the various thicknesses and microstructures were estimated through mathematical approaches with different edge conditions. The results demonstrated that the top coat thickness and the edge condition in theoretical analysis are crucial factors to be considered in controlling the thermoelastic characteristics of plasma-sprayed TBCs. PMID:25942888

  6. REVIEW OF MOBILE THERMAL TECHNOLOGIES FOR SOLID WASTE DESTRUCTION

    EPA Science Inventory

    Incineration has been dopted as a proven technology to dispose of: azardous waste regulated under the Resource Conservation and Recovery Act (RCRA); Toxic substances under the Toxic Substances Control Act (TSCA); Sludge waste under the Clean Water Act; Hazardous substances under ...

  7. Analysis of technological conditions influence on efficiency of oilfield treatment

    NASA Astrophysics Data System (ADS)

    Usheva, N. V.; Moizes, O. E.; Kuzmenko, E. A.; Kim, S. F.; Khlebnikova, E. S.; Dyalilova, S. N.; Filippova, T. V.

    2015-11-01

    The results of influence of process parameters on oil quality and recommended effective technological modes of oilfield treatment processes are presented in this paper. It is shown that the parameters that significantly affect the efficiency of oil processes are temperature and water-oil emulsion flow rate with a given number of working process units and the structure of flowsheet flows.

  8. Gene targeting in embryonic stem cells, II: conditional technologies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genome modification via transgenesis has allowed researchers to link genotype and phenotype as an alternative approach to the characterization of random mutations through evolution. The synergy of technologies from the fields of embryonic stem (ES) cells, gene knockouts, and protein-mediated recombi...

  9. Technology Demonstration: Acoustic Condition Assessment of Wastewater Collection Systems

    EPA Science Inventory

    The overall objective of this demonstration project was to evaluate technologies that are designed for rapid deployment using portable equipment that can result in significant cost-savings to wastewater utilities. Smaller diameter pipes (i.e., less than 12-inch diameter) are gen...

  10. Thermal sensors utilizing thin layer technology applied to the analysis of aeronautical thermal exchanges

    NASA Astrophysics Data System (ADS)

    Godefroy, J. C.; Gageant, C.; Francois, D.

    Thin film surface thermometers and thermal gradient fluxmeters developed by ONERA to monitor thermal exchanges in aircraft engines to predict the remaining service life of the components are described. The sensors, less than 80 microns thick, with flexible Kapton dielectric layers and metal substrates, are integrated into the shape of the surface being monitored. Features of Cu-n, Ni-, Au-, and Cr-based films, including mounting and circuitry methods that permit calibration and accurate signal analysis, are summarized. Results are discussed from sample applications of the devices on a symmetric NACA 65(1)-012 airfoil and on a turbine blade.

  11. Systematic comparison of mechanical and thermal sludge disintegration technologies.

    PubMed

    Wett, B; Phothilangka, P; Eladawy, A

    2010-06-01

    This study presents a systematic comparison and evaluation of sewage sludge pre-treatment by mechanical and thermal techniques. Waste activated sludge (WAS) was pre-treated by separate full scale Thermo-Pressure-Hydrolysis (TDH) and ball milling facilities. Then the sludge was processed in pilot-scale digestion experiments. The results indicated that a significant increase in soluble organic matter could be achieved. TDH and ball milling pre-treatment could offer a feasible treatment method to efficiently disintegrate sludge and enhance biogas yield of digestion. The TDH increased biogas production by ca. 75% whereas ball milling allowed for an approximately 41% increase. The mechanisms of pre-treatment were investigated by numerical modeling based on Anaerobic Digestion Model No. 1 (ADM1) in the MatLab/SIMBA environment. TDH process induced advanced COD-solubilisation (COD(soluble)/COD(total)=43%) and specifically complete destruction of cell mass which is hardly degradable in conventional digestion. While the ball mill technique achieved a lower solubilisation rate (COD(soluble)/COD(total)=28%) and only a partial destruction of microbial decay products. From a whole-plant prospective relevant release of ammonia and formation of soluble inerts have been observed especially from thermal hydrolysis. PMID:20060704

  12. NoSQL technologies for the CMS Conditions Database

    NASA Astrophysics Data System (ADS)

    Sipos, Roland

    2015-12-01

    With the restart of the LHC in 2015, the growth of the CMS Conditions dataset will continue, therefore the need of consistent and highly available access to the Conditions makes a great cause to revisit different aspects of the current data storage solutions. We present a study of alternative data storage backends for the Conditions Databases, by evaluating some of the most popular NoSQL databases to support a key-value representation of the CMS Conditions. The definition of the database infrastructure is based on the need of storing the conditions as BLOBs. Because of this, each condition can reach the size that may require special treatment (splitting) in these NoSQL databases. As big binary objects may be problematic in several database systems, and also to give an accurate baseline, a testing framework extension was implemented to measure the characteristics of the handling of arbitrary binary data in these databases. Based on the evaluation, prototypes of a document store, using a column-oriented and plain key-value store, are deployed. An adaption layer to access the backends in the CMS Offline software was developed to provide transparent support for these NoSQL databases in the CMS context. Additional data modelling approaches and considerations in the software layer, deployment and automatization of the databases are also covered in the research. In this paper we present the results of the evaluation as well as a performance comparison of the prototypes studied.

  13. Woven Thermal Protection System Based Heat-shield for Extreme Entry Environments Technology (HEEET)

    NASA Technical Reports Server (NTRS)

    Chinnapongse, Ronald; Ellerbe, Donald; Stackpoole, Maragaret; Venkatapathy, Ethiraj; Beerman, Adam; Feldman, Jay; Peterson Keith; Prabhu, Dinesh; Dillman, Robert; Munk, Michelle

    2013-01-01

    NASA's future robotic missions utilizing an entry system into Venus and the outer planets, namely, Saturn, Uranus, Neptune, result in extremely severe entry conditions that exceed the capabilities of state of the art low to mid density ablators such as PICA or Avcoat. Therefore mission planners typically assume the use of a fully dense carbon phenolic heat shield similar to what was flown on Pioneer Venus and Galileo. Carbon phenolic (CP) is a robust TPS material however its high density and relatively high thermal conductivity constrain mission planners to steep entries, with high heat fluxes and pressures and short entry durations, in order for CP to be feasible from a mass perspective. The high entry conditions pose challenges for certification in existing ground based test facilities and the longer-­-term sustainability of CP will continue to pose challenges. In 2012 the Game Changing Development Program (GCDP) in NASA's Space Technology Mission Directorate funded NASA ARC to investigate the feasibility of a Woven Thermal Protection System (WTPS) to meet the needs of NASA's most challenging entry missions. This project was highly successful demonstrating that a Woven TPS solution compares favorably to CP in performance in simulated reentry environments and provides the opportunity to manufacture graded materials that should result in overall reduced mass solutions and enable a much broader set of missions than does CP. Building off the success of the WTPS project GCDP has funded a follow on project to further mature and scale up the WTPS concept for insertion into future NASA robotic missions. The matured WTPS will address the CP concerns associated with ground based test limitations and sustainability. This presentation will briefly discuss results from the WTPS Project and the plans for WTPS maturation into a heat-­-shield for extreme entry environment.

  14. Woven Thermal Protection System Based Heat-shield for Extreme Entry Environments Technology (HEEET)

    NASA Technical Reports Server (NTRS)

    Ellerby, Donald; Venkatapathy, Ethiraj; Stackpoole, Margaret; Chinnapongse, Ronald; Munk, Michelle; Dillman, Robert; Feldman, Jay; Prabhu, Dinesh; Beerman, Adam

    2013-01-01

    NASA's future robotic missions utilizing an entry system into Venus and the outer planets, namely, Saturn, Uranus, Neptune, result in extremely high entry conditions that exceed the capabilities of state of the art low to mid density ablators such as PICA or Avcoat. Therefore mission planners typically assume the use of a fully dense carbon phenolic heat shield similar to what was flown on Pioneer Venus and Galileo. Carbon phenolic is a robust TPS material however its high density and relatively high thermal conductivity constrain mission planners to steep entries, with high heat fluxes and pressures and short entry durations, in order for CP to be feasible from a mass perspective. The high entry conditions pose challenges for certification in existing ground based test facilities and the longer-term sustainability of CP will continue to pose challenges. In 2012 the Game Changing Development Program (GCDP) in NASA's Space Technology Mission Directorate funded NASA ARC to investigate the feasibility of a Woven Thermal Protection System (WTPS) to meet the needs of NASA's most challenging entry missions. This project was highly successful demonstrating that a Woven TPS solution compares favorably to CP in performance in simulated reentry environments and provides the opportunity to manufacture graded materials that should result in overall reduced mass solutions and enable a much broader set of missions than does CP. Building off the success of the WTPS project GCDP has funded a follow on project to further mature and scale up the WTPS concept for insertion into future NASA robotic missions. The matured WTPS will address the CP concerns associated with ground based test limitations and sustainability. This presentation will briefly discuss results from the WTPS Project and the plans for WTPS maturation into a heat-shield for extreme entry environment.

  15. Boundary condition-enforced immersed boundary-lattice Boltzmann flux solver for thermal flows with Neumann boundary conditions

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Shu, C.; Yang, L. M.

    2016-02-01

    A boundary condition-enforced-immersed boundary-lattice Boltzmann flux solver is proposed in this work for effective simulation of thermal flows with Neumann boundary conditions. In this method, two auxiliary layers of Lagrangian points are introduced and respectively placed inside and outside of the solid body, on which the temperature corrections (related to the heat source) are set as unknowns. To effectively consider the fluid-boundary interaction, these unknowns are expressed as algebraic summations of the temperature correction on Eulerian points, which are in turn obtained from biased distributions of unknown temperature corrections on the immersed boundary. By enforcing the temperature gradient at the solid boundary being equal to that approximated by the corrected temperature field, a set of algebraic equations are formed and solved to obtain all the unknowns simultaneously. They are then distributed biasedly to the inner region of the auxiliary layer so that the diffusion from the smooth delta function can be reduced substantially. In addition, the solutions of the flow and temperature fields are obtained by the thermal lattice Boltzmann flux solver with the second order of accuracy. The proposed method is well validated through its applications to simulate several benchmarks of natural, forced and mixed convection problems. It has been demonstrated that the present solver has about 1.724 order of accuracy and the error between the present result and theoretical value for the temperature gradient on the solid surface is in the order of 10-13, which indicates that the proposed method is able to satisfy the Neumann boundary condition accurately.

  16. Formation of separating layers under conditions of the thermal aging of sorbents modified by fluorinated polyimide

    NASA Astrophysics Data System (ADS)

    Yakovleva, E. Yu.; Shundrina, I. K.; Gerasimov, E. Yu.; Vaganova, T. A.

    2014-03-01

    Thermogravimetry, elemental analysis, low-temperature nitrogen adsorption, high-resolution electron microscopy, and gas chromatography are used to study the effect of the content of perfluorinated polyimide when used as a stationary phase for modifying Chromosorb P NAW diatomite supports and aluminum oxide, and the effect of thermal aging conditions on changes in their texture and chromatographic characteristics. It is shown that Chromosorb P NAW + 5 wt % of polyimide (PI) adsorbent thermally aged at 700°C in a flow of inert gas exhibits properties of carbon molecular sieves, while aluminum oxide impregnated with 10 wt % of PI and thermally aged at 250°C allows us to selectively separate permanent and organic gases, as well separate saturated and unsaturated hydrocarbons.

  17. Evaluation of critical nuclear power plant electrical cable response to severe thermal fire conditions

    NASA Astrophysics Data System (ADS)

    Taylor, Gabriel James

    The failure of electrical cables exposed to severe thermal fire conditions are a safety concern for operating commercial nuclear power plants (NPPs). The Nuclear Regulatory Commission (NRC) has promoted the use of risk-informed and performance-based methods for fire protection which resulted in a need to develop realistic methods to quantify the risk of fire to NPP safety. Recent electrical cable testing has been conducted to provide empirical data on the failure modes and likelihood of fire-induced damage. This thesis evaluated numerous aspects of the data. Circuit characteristics affecting fire-induced electrical cable failure modes have been evaluated. In addition, thermal failure temperatures corresponding to cable functional failures have been evaluated to develop realistic single point thermal failure thresholds and probability distributions for specific cable insulation types. Finally, the data was used to evaluate the prediction capabilities of a one-dimension conductive heat transfer model used to predict cable failure.

  18. Influence of thermal boundary conditions on the current-driven resistive transition in VO2 microbridges

    NASA Astrophysics Data System (ADS)

    Manca, Nicola; Kanki, Teruo; Tanaka, Hidekazu; Marr, Daniele; Pellegrino, Luca

    2015-10-01

    We investigate the resistive switching behaviour of VO2 microbridges under current bias as a function of temperature and thermal coupling with the heat bath. Upon increasing the electrical current bias, the formation of the metallic phase can progress smoothly or through sharp jumps. The magnitude and threshold current values of these sharp resistance drops show random behaviour and are dramatically influenced by thermal dissipation conditions. Our results also evidence how the propagation of the metallic phase induced by electrical current in VO2, and thus the shape of the resulting high-conductivity path, are not predictable. We discuss the origin of the switching events through a simple electro-thermal model based on the domain structure of VO2 films that can be useful to improve the stability and controllability of future VO2-based devices.

  19. Comparison of Dynamic Characteristics for an Inflatable Solar Concentrator in Atmospheric and Thermal Vacuum Conditions

    NASA Technical Reports Server (NTRS)

    Slade, Kara N.; Tinker, Michael L.; Lassiter, John O.; Engberg, Robert

    2000-01-01

    Dynamic testing of an inflatable solar concentrator structure in a thermal vacuum chamber as well as in ambient laboratory conditions is described in detail. Unique aspects of modal testing for the extremely lightweight inflatable are identified, including the use of a noncontacting laser vibrometer measurement system. For the thermal vacuum environment, mode shapes and frequency response functions are compared for three different test article inflation pressures at room temperature. Modes that persist through all the inflation pressure regimes are identified, as well as modes that are unique for each pressure. In atmospheric pressure and room temperature conditions, dynamic measurements were obtained for the expected operational inflation pressure of 0.5 psig. Experimental mode shapes and frequency response functions for ambient conditions are described and compared to the 0.5 psig results from the thermal vacuum tests. Only a few mode shapes were identified that occurred in both vacuum and atmospheric environments. This somewhat surprising result is discussed in detail, and attributed at least partly to 1.) large differences in modal damping, and 2.) significant differences in the mass of air contained by the structure, in the two environments. Results of this investigation point out the necessity of testing inflatable space structures in vacuum conditions before they can be launched. Ground testing in atmospheric pressure is not sufficient for predicting on-orbit dynamics of non-rigidized inflatable systems.

  20. Heavy oil reservoirs recoverable by thermal technology. Annual report

    SciTech Connect

    Kujawa, P.

    1981-02-01

    This volume contains reservoir, production, and project data for target reservoirs thermally recoverable by steam drive which are equal to or greater than 2500 feet deep and contain heavy oil in the 8 to 25/sup 0/ API gravity range. Data were collected from three source types: hands-on (A), once-removed (B), and twice-removed (C). In all cases, data were sought depicting and characterizing individual reservoirs as opposed to data covering an entire field with more than one producing interval or reservoir. The data sources are listed at the end of each case. This volume also contains a complete listing of operators and projects, as well as a bibliography of source material.

  1. Technology update: bronchoscopic thermal vapor ablation for managing severe emphysema

    PubMed Central

    Gompelmann, Daniela; Eberhardt, Ralf; Herth, Felix JF

    2014-01-01

    Bronchoscopic thermal vapor ablation (BTVA) is an endoscopic lung volume reduction therapy that presents an effective treatment approach in patients with severe upper lobe-predominant emphysema. By instillation of heated water vapor, an inflammatory reaction is induced, leading to fibrosis and scarring of the lung parenchyma, resulting in lobar volume reduction. Clinical single-arm trials demonstrated great outcomes, with significant improvement of lung function, exercise capacity, and quality of life. As the BTVA-induced local inflammatory response that seems to be essential for the desired lobar volume reduction can be associated with transient clinical worsening, strict monitoring of the patients is required. In future, the balance between efficacy and safety will constitute a major challenge. This review summarizes the BTVA procedure, the mechanism of action, and the results of the clinical trials, including the efficacy and safety data. PMID:25336993

  2. An outdoor exposure testing program for optical materials used in solar thermal electric technologies

    SciTech Connect

    Wendelin, T.; Jorgensen, G.

    1994-01-01

    Developing low-cost, durable advanced optical materials is important for making solar thermal energy. technologies viable for electricity production. The objectives of a new outdoor testing program recently initiated by the National Renewable Energy Laboratory (NREL) are to determine the expected lifetimes of candidate reflector materials and demonstrate their optical durability in real-world service conditions. NREL is working with both utilities and industry in a collaborative effort to achieve these objectives. To date, simulated/accelerated exposure testing of these materials has not been correlated with actual outdoor exposure testing. Such a correlation is desirable to provide confidence in lifetime predictions based upon accelerated weathering results. This outdoor testing program will allow outdoor exposure data to be obtained for realistic environments and will establish a data base for correlating simulated/accelerated outdoor exposure data with actual outdoor exposure data. In this program, candidate reflector materials are subjected to various outdoor exposure conditions in a network of sites across the southwestern United States. Important meteorological data are continuously recorded at these sites; these data will be analyzed for possible correlations with material optical performance. Weathered samples are characterized on a regular basis using a series of optical tests. These tests provide the basis for tracking material performance and durability with exposure time in the various outdoor environments. This paper describes the outdoor testing program in more detail including meteorological monitoring capabilities and the optical tests that are performed on these materials.

  3. A simple capacitive cell for the measurement of liquids dielectric constant under transient thermal conditions.

    PubMed

    Baudot, A; Bret, J L

    2003-01-01

    A simple device for the measurement of the complex dielectric permittivity of liquids in various thermodynamic states has been developed. It uses a cylindrical aluminium capacitor of a type currently applied in tuning antenna circuits. The capacitor is filled with the liquid solution under study. A comparison of its capacity is made with that of the nitrogen filled capacitor tested under the same thermal conditions. This comparison allows the determination of the real and imaginary part of the solutions permittivity as a function of temperature (between 150 and 300 K) and frequency (between 100 Hz to 2 MHz). After validating the technique with pure glycerol and pure 1,2-propanediol, spectroscopic measurements have been undertaken on pure and diluted 1,2-propanediol in water. Due to the low heat capacity and the high thermal conductivity of the capacitor, cooling rates of 40 K/min have been achieved inside the solution, allowing measurements in the supercooled liquid and vitreous states. Results are presented and discussed in terms of relaxation and the physical states of the sample. By selecting the required thermal conditions, this device permits the observation of thermal transitions, such as ice crystallisation, and measurements to be conducted in the unstable supercooled liquid state. These measurements are necessary in the development of an effective electromagnetic warming device for vitrified cryoprotective solutions. PMID:12644848

  4. Thermoelectric power enhancement by way of flow impedance for fixed thermal input conditions

    NASA Astrophysics Data System (ADS)

    Amaral, Calil; Brando, Caio; Sempels, ric V.; Lesage, Frdric J.

    2014-12-01

    Liquid-to-liquid thermoelectric generators are now being considered for the purpose of converting low cost heat to electricity for local energy uses. The importance in investigating their system efficiency lies in the fact that the generator's purpose is to maintain a heat source and a heat sink for its embedded thermoelectric modules. Of particular importance is the generator's ability to maintain an asymmetric thermal field across its embedded modules since this mechanism partially dictates the devices' thermal to electric conversion efficiency. Indeed, since the modules' semiconductor materials' ability to generate an electromotive force is dependent on the quality of the thermal dipole across the material, gains in thermoelectric generator energy conversion efficiency are made possible with thermal system management. In an effort to improve the system conversion efficiency of a liquid-to-liquid thermoelectric generator (TEG), the present work builds upon recent advancements in TEG inner pipe flow optimisation by investigating the thermoelectric power enhancement brought upon by flow impeding panel inserts in a thermoelectric generator's flow channels for fixed thermal input conditions and with respect to varying insert panel densities. The pumping penalty associated with the flow impedance is measured in order to present and to discuss the net thermoelectric power enhancement.

  5. Response of SiC/SiC to Transient Thermal Conditions: A Review

    SciTech Connect

    Jones, Russell H.

    2001-06-30

    The database on thermal shock behavior of SiC/SiC composites is very limited. The existing data suggests continuous fiber ceramic matrix composites, such as SiC/SiC, exhibit very good thermal shock characteristics but most data was obtained for -Delta T conditions as a result of quenching from an elevated temperature. Thermal shock in a fusion energy system will result from plasma discharge and will result in a +Delta T. One study was reported for SiC/SiC composites given a +Delta T with no loss in strength following 25 cycles at a heating rate of 1700 degrees C/s. Monolithic SiC failed in 1.5 cycles at a heating rate of 1400 degrees C/s. Thermal fatigue test results also suggest that SiC/SiC composites will exhibit little or no degradation for 100's of cycles. It was estimated that radiation could, in an extreme case, cause a reduction in the thermal shock performance from a calculated Delta Tc of 957K to about 300K if the fiber strength is reduced by 50%. Newer composites with greater radiation resistance should have a much smaller change in the Delta Tc.

  6. Graphite Ablation and Thermal Response Simulation Under Arc-Jet Flow Conditions

    NASA Technical Reports Server (NTRS)

    Chen, Y.-K.; Milos, F. S.; Reda, D. C.; Stewart, D. A.; Venkatapathy, Ethiraj (Technical Monitor)

    2002-01-01

    The Two-dimensional Implicit Thermal Response and Ablation program, TITAN, was developed and integrated with a Navier-Stokes solver, GIANTS, for multidimensional ablation and shape change simulation of thermal protection systems in hypersonic flow environments. The governing equations in both codes are demoralized using the same finite-volume approximation with a general body-fitted coordinate system. Time-dependent solutions are achieved by an implicit time marching technique using Gauess-Siedel line relaxation with alternating sweeps. As the first part of a code validation study, this paper compares TITAN-GIANTS predictions with thermal response and recession data obtained from arc-jet tests recently conducted in the Interaction Heating Facility (IHF) at NASA Ames Research Center. The test models are graphite sphere-cones. Graphite was selected as a test material to minimize the uncertainties from material properties. Recession and thermal response data were obtained from two separate arc-jet test series. The first series was at a heat flux where graphite ablation is mainly due to sublimation, and the second series was at a relatively low heat flux where recession is the result of diffusion-controlled oxidation. Ablation and thermal response solutions for both sets of conditions, as calculated by TITAN-GIANTS, are presented and discussed in detail. Predicted shape change and temperature histories generally agree well with the data obtained from the arc-jet tests.

  7. Hybrid heating systems optimization of residential environment to have thermal comfort conditions by numerical simulation.

    PubMed

    Jahantigh, Nabi; Keshavarz, Ali; Mirzaei, Masoud

    2015-01-01

    The aim of this study is to determine optimum hybrid heating systems parameters, such as temperature, surface area of a radiant heater and vent area to have thermal comfort conditions. DOE, Factorial design method is used to determine the optimum values for input parameters. A 3D model of a virtual standing thermal manikin with real dimensions is considered in this study. Continuity, momentum, energy, species equations for turbulent flow and physiological equation for thermal comfort are numerically solved to study heat, moisture and flow field. K - ɛRNG Model is used for turbulence modeling and DO method is used for radiation effects. Numerical results have a good agreement with the experimental data reported in the literature. The effect of various combinations of inlet parameters on thermal comfort is considered. According to Pareto graph, some of these combinations that have significant effect on the thermal comfort require no more energy can be used as useful tools. A better symmetrical velocity distribution around the manikin is also presented in the hybrid system. PMID:26052442

  8. The Jet Principle: Technologies Provide Border Conditions for Global Learning

    ERIC Educational Resources Information Center

    Ahamer, Gilbert

    2012-01-01

    Purpose: The purpose of this paper is to first define the "jet principle" of (e-)learning as providing dynamically suitable framework conditions for enhanced learning procedures that combine views from multiple cultures of science. Second it applies this principle to the case of the "Global Studies" curriculum, a unique interdisciplinary…

  9. Stand for studying technological processes under conditions simulating space

    NASA Technical Reports Server (NTRS)

    Paton, B. Y.; Paton, V. Y.; Dudko, D. A.; Bernadskiy, V. N.; Dubenko, G. P.; Lapchinskiy, V. F.; Stesin, V. V.; Zagrebelnyy, A. A.; Lankin, Y. N.; Masalov, Y. A.

    1974-01-01

    A test stand for conducting processing experiments under conditions simulating space is described. The most important units of the stand are discussed. Tests of the stand and research studies using the stand demonstrated that it is a reliable and universal research facility which makes it possible to study processes such as metal melting, welding, and deposition.

  10. The Jet Principle: Technologies Provide Border Conditions for Global Learning

    ERIC Educational Resources Information Center

    Ahamer, Gilbert

    2012-01-01

    Purpose: The purpose of this paper is to first define the "jet principle" of (e-)learning as providing dynamically suitable framework conditions for enhanced learning procedures that combine views from multiple cultures of science. Second it applies this principle to the case of the "Global Studies" curriculum, a unique interdisciplinary

  11. A review of wet air oxidation and Thermal Hydrolysis technologies in sludge treatment.

    PubMed

    Hii, Kevin; Baroutian, Saeid; Parthasarathy, Raj; Gapes, Daniel J; Eshtiaghi, Nicky

    2014-03-01

    With rapid world population growth and strict environmental regulations, increasingly large volumes of sludge are being produced in today's wastewater treatment plants (WWTP) with limited disposal routes. Sludge treatment has become an essential process in WWTP, representing 50% of operational costs. Sludge destruction and resource recovery technologies are therefore of great ongoing interest. Hydrothermal processing uses unique characteristics of water at elevated temperatures and pressures to deconstruct organic and inorganic components of sludge. It can be broadly categorized into wet oxidation (oxidative) and thermal hydrolysis (non-oxidative). While wet air oxidation (WAO) can be used for the final sludge destruction and also potentially producing industrially useful by-products such as acetic acid, thermal hydrolysis (TH) is mainly used as a pre-treatment method to improve the efficiency of anaerobic digestion. This paper reviews current hydrothermal technologies, roles of wet air oxidation and thermal hydrolysis in sludge treatment, and challenges faced by these technologies. PMID:24457302

  12. Thermal Technology Development Activities at the Goddard Space Flight Center - 2001

    NASA Technical Reports Server (NTRS)

    Butler, Dan

    2002-01-01

    This presentation provides an overview of thermal technology development activities carried out at NASA's Goddard Space Flight Center during 2001. Specific topics covered include: two-phase systems (heat pipes, capillary pumped loops, vapor compression systems and phase change materials), variable emittance systems, advanced coatings, high conductivity materials and electrohydrodynamic (EHD) thermal coatings. The application of these activities to specific space missions is also discussed.

  13. Thermal Behavior of Aerospace Spur Gears in Normal and Loss-of-Lubrication Conditions

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.

    2015-01-01

    Testing of instrumented spur gears operating at aerospace rotorcraft conditions was conducted. The instrumented gears were operated in a normal and in a loss-of-lubrication environment. Thermocouples were utilized to measure the temperature at various locations on the test gears and a test utilized a full-field, high-speed infrared thermal imaging system. Data from thermocouples was recorded during all testing at 1 hertz. One test had the gears shrouded and a second test was run without the shrouds to permit the infrared thermal imaging system to take data during loss-of-lubrication operation. Both tests using instrumented spur gears were run in normal and loss-of-lubrication conditions. Also the result from four other loss-of-lubrication tests will be presented. In these tests two different torque levels were used while operating at the same rotational speed (10000 revolutions per minute).

  14. Thermal Behavior of Aerospace Spur Gears in Normal and Loss-of-Lubrication Conditions

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.

    2015-01-01

    Testing of instrumented spur gears operating at aerospace rotorcraft conditions was conducted. The instrumented gears were operated in a normal and in a loss-of-lubrication environment. Thermocouples were utilized to measure the temperature at various locations on the test gears and a test utilized a full-field, high-speed infrared thermal imaging system. Data from thermocouples was recorded during all testing at 1 Hz. One test had the gears shrouded and a second test was run without the shrouds to permit the infrared thermal imaging system to take date during loss-of-lubrication operation. Both tests using instrumented spur gears were run in normal and loss-of-lubrication conditions. Also the result from four other loss-of-lubrication tests will be presented. In these tests two different torque levels were used while operating at the same rotational speed (10000 rpm).

  15. The effect of solar radiation on the thermal environment inside the air-conditioned automobile chamber

    SciTech Connect

    Tong, L.; Yang, K.; Chen, Z.

    1999-07-01

    The distribution of solar radiant energy inside the specific air-conditioned automobile chamber is studied on the basis of the unique wavelength spectrum. Some important optical parameters of the internal materials are mostly determined by experiments with monochromator, electron-multiplier phototube, etc. Some optical parameters of the thin transparent object are analyzed theoretically. Based on random model, Monte Carlo method is adopted to get the detailed distribution of solar radiant energy. The procedures of absorptivity, reflection and transmission of each ray are simulated and traced during the calculation. The universal software calculates two cases with different kind of glass. The relevant results show the importance of solar radiant energy on the thermal environment inside the air-conditioned automobile chamber. Furthermore, the necessity of shield quality of the automobile glass is also obvious. This study is also the basis of the following researches on fluid and temperature fields. The results are also useful for further thermal comfort design.

  16. Optimization of Remediation Conditions using Vadose Zone Monitoring Technology

    NASA Astrophysics Data System (ADS)

    Dahan, O.; Mandelbaum, R.; Ronen, Z.

    2010-12-01

    Success of in-situ bio-remediation of the vadose zone depends mainly on the ability to change and control hydrological, physical and chemical conditions of subsurface. These manipulations enables the development of specific, indigenous, pollutants degrading bacteria or set the environmental conditions for seeded bacteria. As such, the remediation efficiency is dependent on the ability to implement optimal hydraulic and chemical conditions in deep sections of the vadose zone. Enhanced bioremediation of the vadose zone is achieved under field conditions through infiltration of water enriched with chemical additives. Yet, water percolation and solute transport in unsaturated conditions is a complex process and application of water with specific chemical conditions near land surface dose not necessarily result in promoting of desired chemical and hydraulic conditions in deeper sections of the vadose zone. A newly developed vadose-zone monitoring system (VMS) allows continuous monitoring of the hydrological and chemical properties of the percolating water along deep sections of the vadose zone. Implementation of the VMS at sites that undergoes active remediation provides real time information on the chemical and hydrological conditions in the vadose zone as the remediation process progresses. Manipulating subsurface conditions for optimal biodegradation of hydrocarbons is demonstrated through enhanced bio-remediation of the vadose zone at a site that has been contaminated with gasoline products in Tel Aviv. The vadose zone at the site is composed of 6 m clay layer overlying a sandy formation extending to the water table at depth of 20 m bls. The upper 5 m of contaminated soil were removed for ex-situ treatment, and the remaining 15 m vadose zone is treated in-situ through enhanced bioremedaition. Underground drip irrigation system was installed below the surface on the bottom of the excavation. Oxygen and nutrients releasing powder (EHCO, Adventus) was spread below the irrigation system to enrich the percolating water. The vadose zone monitoring system that was installed at the site allowed accurate monitoring of the wetting cycles, including: (1) wetting front propagation velocities, (2) temporal variation of the sediment water content, (2) chemical composition of the percolating water, (3) isotopic composition of BTEX compounds, (4) variations in nutrient concentration, and (5) variations in the vadose zone redox potential. Preliminary results showed that the wetting front crossed the entire vadose zone in four days reaching maximum water content values of 12 to 18 %. Temporal variation in the sediment BTEX concentrations indicated significant reduction in highly soluble and mobile compounds such as MTBE. Yet the chemical composition of the water samples through the first sampling campaign indicated that the limiting factor for biodegradation at the first wetting cycle was insufficient nitrogen. Results from each wetting cycles were used to improve the following wetting cycles in order to optimize the vadose zone conditions for microbial activity while minimizing leaching of contaminants to the groundwater.

  17. solar thermal power systems advanced solar thermal technology project, advanced subsystems development

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The preliminary design for a prototype small (20 kWe) solar thermal electric generating unit was completed, consisting of several subsystems. The concentrator and the receiver collect solar energy and a thermal buffer storage with a transport system is used to provide a partially smoothed heat input to the Stirling engine. A fossil-fuel combustor is included in the receiver designs to permit operation with partial or no solar insolation (hybrid). The engine converts the heat input into mechanical action that powers a generator. To obtain electric power on a large scale, multiple solar modules will be required to operate in parallel. The small solar electric power plant used as a baseline design will provide electricity at remote sites and small communities.

  18. Development of the Variable Emittance Thermal Suite for the Space Technology 5 Microsatellite

    NASA Technical Reports Server (NTRS)

    Douglas, Donya M.; Swanson, Theodore; Osiander, Robert; Champion, John; Darrin, Ann Garrison; Biter, William; Chandrasekhar, Prasanna; Obenschain, Arthur (Technical Monitor)

    2001-01-01

    The advent of very small satellites, such as nano and microsatellites, logically leads to a requirement for smaller thermal control subsystems. In addition, the thermal control needs of the smaller spacecraft/instrument may well be different from more traditional situations. For example, power for traditional heaters may be very limited or unavailable, mass allocations may be severely limited, and fleets of nano/microsatellites will require a generic thermal design as the cost of unique designs will be prohibitive. Some applications may require significantly increased power levels while others may require extremely low heat loss for extended periods. Small spacecraft will have low thermal capacitance thus subjecting them to large temperature swings when either the heat generation rate changes or the thermal sink temperature changes. This situation, combined with the need for tighter temperature control, will present a challenging situation during transient operation. The use of "off-the-shelf" commercial spacecraft buses for science instruments will also present challenges. Older thermal technology, such as heaters, thermostats, and heat pipes, will almost certainly not be sufficient to meet the requirements of these new spacecraft/instruments. They are generally too heavy, not scalable to very small sizes, and may consume inordinate amounts of power. Hence there is a strong driver to develop new technology to meet these emerging needs. Variable emittance coatings offer an exciting alternative to traditional control methodologies and are one of the technologies that will be flown on Space Technology 5, a mission of three microsatellites designed to validate "enabling" technologies. Several studies have identified variable emittance coatings as applicable to a wide range of spacecraft, and to potentially offer substantial savings in mass and/or power over traditional approaches. This paper discusses the development of the variable emittance thermal suite for ST-5. More specifically, it provides a description of and the infusion and validation plans for the variable emittance coatings.

  19. Numerical Investigation of Thermal Stress Convention in Nonisothermal Gases Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Mackowski, D. W.

    1999-01-01

    Reported here are our results of our numerical/theoretical investigation into the effects of thermal stress in nonisothermal gases under microgravity conditions. The first part of the report consists of a brief summary of the accomplishments and conclusions of our work. The second part consists of two manuscripts, one being a paper presented at the 1998 MSAD Fluid Physics workshop, and the other to appear in Physics of Fluids.

  20. Indexes system of technological condition assessment of economic branches

    NASA Astrophysics Data System (ADS)

    Chuvashova, M. N.; Avramchikova, N. T.; Antamoshkin, A. N.

    2015-10-01

    The increased level of innovative production process, connected with the current trends, points out the necessity of economic diversification of the whole national economy as well as regional economies in order to increase competitiveness and stable development. Russian regional economies are characterized with local directive of development and innovative processes have evident local vector. Intensive development of Siberian regional economies, which depends on oil and mining industries, considerably falls behind the world indicators according to the GRP output per head. To improve the quality of economic space the authors have suggested a new scientific approach, which allows qualitative assessment inside the economic space of resource-based regions, based on principles of high technological modes development inside economic branches taking into account density, regular enterprise distribution and connectivity of commercial organizations as well as secures innovative development of regional economy and its competitiveness. In this context it is necessary to develop a modern system of indexes, characterizing the structure of economic branches in accordance with present technological modes and at the same time the dynamics of appropriate structural shifts in regional economies of this type.

  1. Multiphase Flow Technology Impacts on Thermal Control Systems for Exploration

    NASA Technical Reports Server (NTRS)

    McQuillen, John; Sankovic, John; Lekan, Jack

    2006-01-01

    The Two-Phase Flow Facility (TPHIFFy) Project focused on bridging the critical knowledge gap by developing and demonstrating critical multiphase fluid products for advanced life support, thermal management and power conversion systems that are required to enable the Vision for Space Exploration. Safety and reliability of future systems will be enhanced by addressing critical microgravity fluid physics issues associated with flow boiling, condensation, phase separation, and system stability. The project included concept development, normal gravity testing, and reduced gravity aircraft flight campaigns, in preparation for the development of a space flight experiment implementation. Data will be utilized to develop predictive models that could be used for system design and operation. A single fluid, two-phase closed thermodynamic loop test bed was designed, assembled and tested. The major components in this test bed include: a boiler, a condenser, a phase separator and a circulating pump. The test loop was instrumented with flow meters, thermocouples, pressure transducers and both high speed and normal speed video cameras. A low boiling point surrogate fluid, FC-72, was selected based on scaling analyses using preliminary designs for operational systems. Preliminary results are presented which include flow regime transitions and some observations regarding system stability.

  2. Supporting technology for enhanced oil recovery for thermal processes

    SciTech Connect

    Reid, T.B.; Bolivar, J.

    1997-12-01

    This report contains the results of efforts under the six tasks of the Ninth Amendment and Extension of Annex IV, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Agreement. The report is presented in sections (for each of the 6 tasks) and each section contains one or more reports prepared by various individuals or groups describing the results of efforts under each of the tasks. A statement of each task, taken from the agreement, is presented on the first page of each section. The tasks are numbered 62 through 67. The first, second, third, fourth fifth, sixth, seventh, eighth, and ninth reports on Annex IV, [Venezuela MEM/USA-DOE Fossil Energy Report IV-1, IV-2, IV-3, IV-4, IV-5, IV-6, IV-7, and IV-8 (DOE/BETC/SP-83/15, DOE/BC-84/6/SP, DOE/BC-86/2/SP, DOE/BC-87/2/SP, DOE/BC-90/1/SP, DOE/BC-90/1/SP) (DOE/BC-92/1/SP, DOE/BC-93/3/SP, and DOE/BC-95/3/SP)] contain the results from the first 61 tasks. Those reports are dated April 1983, August 1984, March 1986, July 1987, November 1988, October 1991, February 1993, and March 1995 respectively.

  3. Integration of Thermal Indoor Conditions into Operational Heat Health Warning Systems

    NASA Astrophysics Data System (ADS)

    Koppe, C.; Becker, P.; Pfafferott, J.

    2009-09-01

    The 2003 heat wave in Western Europe with altogether 35,000 to 50,000 deaths in Europe, several thousands of which occurred in Germany, has clearly pointed out the danger arising from long periods with high heat load. As a consequence, Germany, as many other European countries, has started to implement a Heat Health Warning System (HHWS). The German HHWS is based on the Perceived Temperature'. The 'Perceived Temperature' is determined through a heat budget model of the human organism which includes the main thermophysiologically relevant mechanisms of heat exchange with the atmosphere. The most important meteorological ambience parameters included in the model are air temperature, humidity, wind speed and radiation fluxes in the short-wave and long-wave ranges. In addition to using a heat budget model for the assessment of the thermal load, the German HHWS also takes into account that the human body reacts in different ways to its thermal environment due to physiological adaptation (short-term acclimatisation) and short-term behavioural adaptation. The restriction of such an approach, like the majority of approaches used to issue heat warnings, is that the threshold for a warning is generally derived from meteorological observations and that warnings are issued on the basis of weather forecasts. Both, the observed data and the weather forecasts are only available for outside conditions. The group of people who are most at risk of suffering from a heat wave, however, are the elderly and frail who mainly stay inside. The indoor situation, which varies largely from the conditions outside, is not taken into account by most of the warning systems. To overcome this limitation the DWD, in co-operation with the Fraunhofer Institute for Solar Energy Systems, has developed a model which simulates the thermal conditions in the indoor environment. As air-conditioning in private housing in Germany is not very common, the thermal indoor conditions depend on the outside conditions, on the building characteristics, and on the inhabitants' behaviour. The thermal building simulation model estimates the indoor heat load based of the predicted meteorological outside conditions by calculating the operative indoor temperature. The building types prevailing in Germany are quite heterogeneous. It was therefore decided to use for the thermal simulation a so-called "realistic worst-case building type. In addition, a differentiation is made between two types of user behaviour: the active user opens the windows during the cold hours of the day and uses shading devices whereas the passive user does nothing to keep the heat outside. Since 2007, the DWD has been using the simulation of the indoor thermal conditions as an additional source of information for heat warnings. The information on the indoor conditions has proved very valuable for the decision whether to issue a heat warning or not.

  4. Thermally-Conditioned Paleo-Permafrost Variations from Global Climate Modeling

    NASA Astrophysics Data System (ADS)

    Saito, K.; Marchenko, S. S.; Bigelow, N. H.; Romanovsky, V. E.; Yoshikawa, K.; Walsh, J. E.

    2009-12-01

    The permafrost distribution under Quaternary climate conditions is investigated by a frozen ground classification method (Left figure) based solely upon the near surface air thermal indices as a diagnosing analysis of the Paleoclimate Model Intercomparison Project 2 (PMIP2) output. The methodology is constructed using the present-day distribution of the frozen ground and the thermal (freeze and thaw) index, and showed reasonable capability for large-scale mapping. The frozen ground distribution was reconstructed for 0 ka (pre-industrial), 6 ka (mid-Holocene), and 21 ka (the last glacial maximum; LGM; Right Figure) conditions. The Holocene simulations (0 ka and 6 ka) produced largely similar results. The LGM outputs showed substantial increase of the permafrost area by 49.6% relative to the pre-industrial conditions in median among the models, but also showed insufficient cooling during the cold season in some regions. Across-model variations illustrate the regions that need careful examination in using PMIP2 outputs for further subsurface thermal regime calculations. Fig 1. Fig 2.

  5. Combined effects of Fenton peroxidation and CaO conditioning on sewage sludge thermal drying.

    PubMed

    Liu, Huan; Liu, Peng; Hu, Hongyun; Zhang, Qiang; Wu, Zhenyu; Yang, Jiakuan; Yao, Hong

    2014-12-01

    Joint application of Fenton's reagent and CaO can dramatically enhance sludge dewaterability, thus are also likely to affect subsequent thermal drying process. This study investigated the synergistic effects of the two conditioners on the thermal drying behavior of sewage sludge and the emission characteristics of main sulfur-/nitrogen-containing gases. According to the results, Fenton peroxidation combined with CaO conditioning efficiently promoted sludge heat transfer, reduced the amounts of both free and bound water, and created porous structure in solids to provide evaporation channels, thus producing significant positive effects on sludge drying performance. In this case, the required time for drying was shortened to one-third. Additionally, joint usage of Fenton's reagent and CaO did not increase the losses of organic matter during sludge drying process. Meanwhile, they facilitated the formation of sulfate and sulfonic acid/sulfone, leading to sulfur retention in dried sludge. Both of Fenton peroxidation and CaO conditioning promoted the oxidation, decomposition, and/or dissolution of protein and inorganic nitrogen in sludge pre-treatment. As a consequence, the emissions of sulfurous and nitrogenous gases from dewatered sludge drying were greatly suppressed. These indicate that combining Fenton peroxidation with CaO conditioning is a promising strategy to improve drying efficiency of sewage sludge and to control sulfur and nitrogen contaminants during sludge thermal drying process. PMID:25289973

  6. Measurement of thermal regain in duct systems located in partially conditioned buffer spaces. Informal report

    SciTech Connect

    Andrews, J.W.

    1994-07-01

    Thermal losses from duct systems have been shown to be a significant fraction of the heat or cooling energy delivered by the space-conditioning equipment. However, when the ducts are located in a partially conditioned buffer space such as a basement, a portion of these losses are effectively regained through system interactions with the building. This paper presents two methods of measuring this regain effect. One is based on the relative thermal resistances between the conditioned space and the buffer space, on the one hand, and between the buffer space and the outside, on the other. The second method is based on a measured drop in the buffer-space temperature when steps are taken to reduce the duct losses. The second method is compared with results of an extensive research project that are published in a major professional society handbook. The thermal regain fraction using the drop in basement temperature was found to be 0.68, while that obtained from an analysis of the system performance data, without using the basement temperature, was 0.59.

  7. Field Demonstration of Electro-Scan Defect Location Technology for Condition Assessment of Wastewater Collection Systems

    EPA Science Inventory

    The purpose of the field demonstration program is to gather technically reliable cost and performance information on selected condition assessment technologies under defined field conditions. The selected technologies include zoom camera, electro-scan (FELL-41), and a multi-sens...

  8. Thermal convection in a closed cavity in zero-gravity space conditions with stationary magnetic forces

    NASA Astrophysics Data System (ADS)

    Lyubimova, T.; Mailfert, A.

    2013-03-01

    The paper deals with the investigation of thermo-magnetic convection in a paramagnetic liquid subjected to a non-uniform magnetic field in weightlessness conditions. Indeed, in zero-g space conditions such as realized in International Space Station (ISS), or in artificial satellite, or in free-flight space vessels, the classical thermo-gravitational convection in fluid disappears. In any cases, it may be useful to restore the convective thermal exchange inside fluids such as liquid oxygen. In this paper, the restoration of heat exchange by the way of creation of magnetic convection is numerically studied.

  9. Boundary Condition in Liquid Thin Films Revealed through the Thermal Fluctuations of Their Free Surfaces

    NASA Astrophysics Data System (ADS)

    Pottier, B.; Frtigny, C.; Talini, L.

    2015-06-01

    We investigate the properties of nanometric liquid films with a new noninvasive technique. We measure the spontaneous thermal fluctuations of the free surfaces of liquids to probe their hydrodynamic boundary condition at a solid wall. The surface fluctuations of a silicon oil film could be described with a no-slip boundary condition for film thicknesses down to 20 nm. Oppositely, a 4 nm negative slip length had to be introduced to describe the behavior of n -hexadecane, consistently with previous surface force apparatus data on the same system. Our results demonstrate that at vanishing flow a nanometric solidlike layer close to the wall may exist according to the nature of the liquid.

  10. Tensile ductility and fracture of superplastic aluminum-SiC composites under thermal cycling conditions

    SciTech Connect

    Gonzalez-Doncel, G.; Sherby, O.D.

    1996-09-01

    The tensile and fracture creep behavior of aluminum-SiC composites has been evaluated under isothermal and cyclic heating conditions. The true strain to fracture under thermal cycling conditions is shown to decrease linearly with the logarithm of the applied stress. This trend is unexpected since the strain rate sensitivity exponent, m, is high (typical of superplastic materials) and constant over the range of stresses studied. The results obtained are explained by a fracture mechanics model in which the crack size increases by a strain-induced mechanism. The results are compared with similar behavior obtained in superplastic ceramics.

  11. Thermal performance evaluation of the Solargenics solar collector at outdoor conditions

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Test procedures used during the performance of an evaluation program are presented. The test program was conducted to obtain the following performance data and information on the solar collector. (1) thermal performance data under outdoor conditions; (2) structural behavior of collector under static conditions; (3) effects of long term exposure to material weathering elements. The solargenics is a liquid, single-glazed, flat plate collector. Approximate dimensions of each collector are 240 inches long, 36 inches wide, and 3.5 inches in depth.

  12. Analytical Methodology Used To Assess/Refine Observatory Thermal Vacuum Test Conditions For the Landsat 8 Data Continuity Mission

    NASA Technical Reports Server (NTRS)

    Fantano, Louis

    2015-01-01

    Thermal and Fluids Analysis Workshop Silver Spring, MD NCTS 21070-15 The Landsat 8 Data Continuity Mission, which is part of the United States Geologic Survey (USGS), launched February 11, 2013. A Landsat environmental test requirement mandated that test conditions bound worst-case flight thermal environments. This paper describes a rigorous analytical methodology applied to assess refine proposed thermal vacuum test conditions and the issues encountered attempting to satisfy this requirement.

  13. Heavy oil reservoirs recoverable by thermal technology. Annual report

    SciTech Connect

    Kujawa, P.

    1981-02-01

    This volume contains reservoir, production, and project data for target reservoirs which contain heavy oil in the 8 to 25/sup 0/ API gravity range and are susceptible to recovery by in situ combustion and steam drive. The reservoirs for steam recovery are less than 2500 feet deep to comply with state-of-the-art technology. In cases where one reservoir would be a target for in situ combustion or steam drive, that reservoir is reported in both sections. Data were collectd from three source types: hands-on (A), once-removed (B), and twice-removed (C). In all cases, data were sought depicting and characterizing individual reservoirs as opposed to data covering an entire field with more than one producing interval or reservoir. The data sources are listed at the end of each case. This volume also contains a complete listing of operators and projects, as well as a bibliography of source material.

  14. Suitable features selection for monitoring thermal condition of electrical equipment using infrared thermography

    NASA Astrophysics Data System (ADS)

    Huda, A. S. N.; Taib, S.

    2013-11-01

    Monitoring the thermal condition of electrical equipment is necessary for maintaining the reliability of electrical system. The degradation of electrical equipment can cause excessive overheating, which can lead to the eventual failure of the equipment. Additionally, failure of equipment requires a lot of maintenance cost, manpower and can also be catastrophic- causing injuries or even deaths. Therefore, the recognition processof equipment conditions as normal and defective is an essential step towards maintaining reliability and stability of the system. The study introduces infrared thermography based condition monitoring of electrical equipment. Manual analysis of thermal image for detecting defects and classifying the status of equipment take a lot of time, efforts and can also lead to incorrect diagnosis results. An intelligent system that can separate the equipment automatically could help to overcome these problems. This paper discusses an intelligent classification system for the conditions of equipment using neural networks. Three sets of features namely first order histogram based statistical, grey level co-occurrence matrix and component based intensity features are extracted by image analysis, which are used as input data for the neural networks. The multilayered perceptron networks are trained using four different training algorithms namely Resilient back propagation, Bayesian Regulazation, Levenberg-Marquardt and Scale conjugate gradient. The experimental results show that the component based intensity features perform better compared to other two sets of features. Finally, after selecting the best features, multilayered perceptron network trained using Levenberg-Marquardt algorithm achieved the best results to classify the conditions of electrical equipment.

  15. Boundary conditions at the walls with thermionic electron emission in two temperature modeling of "thermal" plasmas

    NASA Astrophysics Data System (ADS)

    Pekker, Leonid; Hussary, Nakhleh

    2015-08-01

    In this paper, we propose new boundary conditions for the electric potential, the electron energy equation, and the energy equation for heavy particles (ions and neutrals) at the hot walls with thermionic electron emission for two-temperature thermal arc models. The derived boundary conditions assume that the walls are made from refractory metals and, consequently, the erosion of the wall is small and can be neglected. In these boundary conditions, the plasma sheath formed at the electrode is viewed as the interface between the plasma and the wall. The derived boundary conditions allow the calculation of the heat flux to the walls from the plasma. This allows the calculation of the thermionic electron current that makes the model of electrode-plasma interaction self-consistent.

  16. Thermodynamic model of a thermal storage air conditioning system with dynamic behavior

    SciTech Connect

    Fleming, E; Wen, SY; Shi, L; da Silva, AK

    2013-12-01

    A thermodynamic model was developed to predict transient behavior of a thermal storage system, using phase change materials (PCMs), for a novel electric vehicle climate conditioning application. The main objectives of the paper are to consider the system's dynamic behavior, such as a dynamic air flow rate into the vehicle's cabin, and to characterize the transient heat transfer process between the thermal storage unit and the vehicle's cabin, while still maintaining accurate solution to the complex phase change heat transfer. The system studied consists of a heat transfer fluid circulating between either of the on-board hot and cold thermal storage units, which we refer to as thermal batteries, and a liquid-air heat exchanger that provides heat exchange with the incoming air to the vehicle cabin. Each thermal battery is a shell-and-tube configuration where a heat transfer fluid flows through parallel tubes, which are surrounded by PCM within a larger shell. The system model incorporates computationally inexpensive semianalytic solution to the conjugated laminar forced convection and phase change problem within the battery and accounts for airside heat exchange using the Number of Transfer Units (NTUs) method for the liquid-air heat exchanger. Using this approach, we are able to obtain an accurate solution to the complex heat transfer problem within the battery while also incorporating the impact of the airside heat transfer on the overall system performance. The implemented model was benchmarked against a numerical study for a melting process and against full system experimental data for solidification using paraffin wax as the PCM. Through modeling, we demonstrate the importance of capturing the airside heat exchange impact on system performance, and we investigate system response to dynamic operating conditions, e.g., air recirculation. (C) 2013 Elsevier Ltd. All rights reserved.

  17. Magnetic Refrigeration Technology for High Efficiency Air Conditioning

    SciTech Connect

    Boeder, A; Zimm, C

    2006-09-30

    Magnetic refrigeration was investigated as an efficient, environmentally friendly, flexible alternative to conventional residential vapor compression central air conditioning systems. Finite element analysis (FEA) models of advanced geometry active magnetic regenerator (AMR) beds were developed to minimize bed size and thus magnet mass by optimizing geometry for fluid flow and heat transfer and other losses. Conventional and magnetocaloric material (MCM) regenerator fabrication and assembly techniques were developed and advanced geometry passive regenerators were built and tested. A subscale engineering prototype (SEP) magnetic air conditioner was designed, constructed and tested. A model of the AMR cycle, combined with knowledge from passive regenerator experiments and FEA results, was used to design the regenerator beds. A 1.5 Tesla permanent magnet assembly was designed using FEA and the bed structure and plenum design was extensively optimized using FEA. The SEP is a flexible magnetic refrigeration platform, with individually instrumented beds and high flow rate and high frequency capability, although the current advanced regenerator geometry beds do not meet performance expectations, probably due to manufacturing and assembly tolerances. A model of the AMR cycle was used to optimize the design of a 3 ton capacity magnetic air conditioner, and the system design was iterated to minimize external parasitic losses such as heat exchanger pressure drop and fan power. The manufacturing cost for the entire air conditioning system was estimated, and while the estimated SEER efficiency is high, the magnetic air conditioning system is not cost competitive as currently configured. The 3 ton study results indicate that there are other applications where magnetic refrigeration is anticipated to have cost advantages over conventional systems, especially applications where magnetic refrigeration, through the use of its aqueous heat transfer fluid, could eliminate intermediate heat exchangers or oil distribution issues found in traditional vapor compression systems.

  18. Residential photovoltaic power conditioning technology for grid connected applications

    NASA Technical Reports Server (NTRS)

    Key, T. S.; Klein, J. W.

    1982-01-01

    Major advances in photovoltaic (PV) Power Conditioning (PC) with respect to performance and low-cost potential have been made. Solutions have been obtained to interface and control problems related to adapting available inverter designs to the grid-connected, residential photovoltaic experiments. A description is presented to contributing research and development activities. Attention is given to aspects of residential systems experience, conceptual design studies, questions of optimum topology development, and promising advanced designs for residential PV provided by development efforts of the private sector.

  19. Raising Nuclear Thermal Propulsion (NTP) Technology Readiness Above 3

    NASA Technical Reports Server (NTRS)

    Gerrish, Harold P., Jr.

    2014-01-01

    NTP development is currently supported by the NASA program office "Advanced Exploration Systems". The concept is a main propulsion option being considered for human missions to Mars in the 2030's. Major NTP development took place in the 1960's and 1970's under the Rover/NERVA program. The technology had matured to TRL 6 and was preparing to go to TRL 7 with a prototype flight engine before the program was cancelled. Over the last 40 years, a variety of continuations started, but only lasted a few years each. The Rover/NERVA infrastructure is almost all gone. The only remains are a few pieces of hardware, final reports and a few who worked the Rover/NERVA. Two types of nuclear fuel are being investigated to meet the current engine design specific impulse of 900 seconds compared to approximately 850 seconds demonstrated during Rover/NERVA. One is a continuation of composite fuel with new coatings to better control mid-band corrosion. The other type is a CERMET fuel made of Tungsten and UO2. Both fuels are being made from Rover/NERVA lessons learned, but with slightly different recipes to increase fuel endurance at higher operating temperatures. The technology readiness level (TRL) of these current modified reactor fuels is approximately TRL 3. To keep the development cost low and help mature the TRL level past 4 quickly, a few special non-nuclear test facilities have been made to test surrogate fuel, with depleted uranium, as coupons and full length elements. Both facilities utilize inductive heating and are licensed to handle depleted uranium. TRL 5 requires exposing the fuel to a nuclear environment and TRL 6 requires a prototype ground or flight engine system test. Currently, three different NTP ground test facility options are being investigated: exhaust scrubber, bore hole, and total exhaust containment. In parallel, a prototype flight demonstration test is also being studied. The first human mission to Mars in the 2030's is currently 2033. For an advanced propulsion concept to be seriously considered for use, the engine development plans need to show it is feasible and affordable to reach TRL 8 by 2027 and can be qualified for human mission use.

  20. Experimental study on occupant's thermal responses under the non-uniform conditions in vehicle cabin during the heating period

    NASA Astrophysics Data System (ADS)

    Zhang, Wencan; Chen, Jiqing; Lan, Fengchong

    2014-03-01

    The existing investigations on thermal comfort mostly focus on the thermal environment conditions, especially of the air-flow field and the temperature distributions in vehicle cabin. Less attention appears to direct to the thermal comfort or thermal sensation of occupants, even to the relationship between thermal conditions and thermal sensation. In this paper, a series of experiments were designed and conducted for understanding the non-uniform conditions and the occupant's thermal responses in vehicle cabin during the heating period. To accurately assess the transient temperature distribution in cabin in common daily condition, the air temperature at a number of positions is measured in a full size vehicle cabin under natural winter environment in South China by using a discrete thermocouples network. The occupant body is divided into nine segments, the skin temperature at each segment and the occupant's local thermal sensation at the head, body, upper limb and lower limb are monitored continuously. The skin temperature is observed by using a discrete thermocouples network, and the local thermal sensation is evaluated by using a seven-point thermal comfort survey questionnaire proposed by American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc(ASHRAE) Standard. The relationship between the skin temperature and the thermal sensation is discussed and regressed by statistics method. The results show that the interior air temperature is highly non-uniform over the vehicle cabin. The locations where the occupants sit have a significant effect on the occupant's thermal responses, including the skin temperature and the thermal sensation. The skin temperature and thermal sensation are quite different between body segments due to the effect of non-uniform conditions, clothing resistance, and the human thermal regulating system. A quantitative relationship between the thermal sensation and the skin temperature at each body segment of occupant in real life traffic is presented. The investigation result indicates that the skin temperature is a robust index to evaluate the thermal sensation. Applying the skin temperature to designing and controlling parameters of the heating, ventilation and air conditioning(HVAC) system may benefit the thermal comfort and reducing energy consumption.

  1. Heart Rate Variability in Sleeping Preterm Neonates Exposed to Cool and Warm Thermal Conditions

    PubMed Central

    Stphan-Blanchard, Erwan; Chardon, Karen; Lk, Andr; Delanaud, Stphane; Bach, Vronique; Telliez, Frdric

    2013-01-01

    Sudden infant death syndrome (SIDS) remains the main cause of postneonatal infant death. Thermal stress is a major risk factor and makes infants more vulnerable to SIDS. Although it has been suggested that thermal stress could lead to SIDS by disrupting autonomic functions, clinical and physiopathological data on this hypothesis are scarce. We evaluated the influence of ambient temperature on autonomic nervous activity during sleep in thirty-four preterm neonates (mean SD gestational age: 31.41.5 weeks, postmenstrual age: 36.20.9 weeks). Heart rate variability was assessed as a function of the sleep stage at three different ambient temperatures (thermoneutrality and warm and cool thermal conditions). An elevated ambient temperature was associated with a higher basal heart rate and lower short- and long-term variability in all sleep stages, together with higher sympathetic activity and lower parasympathetic activity. Our study results showed that modification of the ambient temperature led to significant changes in autonomic nervous system control in sleeping preterm neonates. The latter changes are very similar to those observed in infants at risk of SIDS. Our findings may provide greater insight into the thermally-induced disease mechanisms related to SIDS and may help improve prevention strategies. PMID:23840888

  2. Heavy oil reservoirs recoverable by thermal technology. Annual report

    SciTech Connect

    Kujawa, P.

    1981-02-01

    The purpose of this study was to compile data on reservoirs that contain heavy oil in the 8 to 25/sup 0/ API gravity range, contain at least ten million barrels of oil currently in place, and are non-carbonate in lithology. The reservoirs within these constraints were then analyzed in light of applicable recovery technology, either steam-drive or in situ combustion, and then ranked hierarchically as candidate reservoirs. The study is presented in three volumes. Volume I presents the project background and approach, the screening analysis, ranking criteria, and listing of candidate reservoirs. The economic and environmental aspects of heavy oil recovery are included in appendices to this volume. This study provides an extensive basis for heavy oil development, but should be extended to include carbonate reservoirs and tar sands. It is imperative to look at heavy oil reservoirs and projects on an individual basis; it was discovered that operators, and industrial and government analysts will lump heavy oil reservoirs as poor producers, however, it was found that upon detailed analysis, a large number, so categorized, were producing very well. A study also should be conducted on abandoned reservoirs. To utilize heavy oil, refiners will have to add various unit operations to their processes, such as hydrotreaters and hydrodesulfurizers and will require, in most cases, a lighter blending stock. A big problem in producing heavy oil is that of regulation; specifically, it was found that the regulatory constraints are so fluid and changing that one cannot settle on a favorable recovery and production plan with enough confidence in the regulatory requirements to commit capital to the project.

  3. Mathematical Modelling of Thermal Process to Aquatic Environment with Different Hydrometeorological Conditions

    PubMed Central

    Issakhov, Alibek

    2014-01-01

    This paper presents the mathematical model of the thermal process from thermal power plant to aquatic environment of the reservoir-cooler, which is located in the Pavlodar region, 17?Km to the north-east of Ekibastuz town. The thermal process in reservoir-cooler with different hydrometeorological conditions is considered, which is solved by three-dimensional Navier-Stokes equations and temperature equation for an incompressible flow in a stratified medium. A numerical method based on the projection method, divides the problem into three stages. At the first stage, it is assumed that the transfer of momentum occurs only by convection and diffusion. Intermediate velocity field is solved by fractional steps method. At the second stage, three-dimensional Poisson equation is solved by the Fourier method in combination with tridiagonal matrix method (Thomas algorithm). Finally, at the third stage, it is expected that the transfer is only due to the pressure gradient. Numerical method determines the basic laws of the hydrothermal processes that qualitatively and quantitatively are approximated depending on different hydrometeorological conditions. PMID:24991644

  4. Erosion resistance of cooled thermal sprayed coatings under simulated erosion conditions at waterwall in FBCs

    SciTech Connect

    Wang, B.Q.; Lee, S.W.

    1997-12-31

    The erosion-corrosion (E-C) behavior of cooled 1018 steel and several thermal sprayed coatings by bed ash, retrieved from an operating circulating fluidized bed combustor (CFBC) boiler firing biomass, was determined in laboratory tests using a nozzle type elevated temperature erosion tester. Test conditions attempted but not exactly to simulate the erosion conditions found at the refractory/bare-tube interface at the combustor waterwall of FBC boilers. The specimens were water-cooled on the backside. Material wastage rates were determined from the thickness loss measurements of specimens. Test results were compared with erosion-corrosion test results for isothermal specimens. The morphology of specimens was examined by scanning electron microscopy (SEM). It was found that the cooled specimens demonstrated higher erosion-corrosion wastage than those of the isothermal specimens. At a shallow impact angle of 30{degree} the effect of cooling specimens on the erosion wastage for thermal sprayed coatings was less than that for 1018 steel, while at a steep impact angle of 90{degree} this effect for thermal sprayed coatings was greater than that for 1018 steel. The hypersonic velocity oxygen fuel (HVOF) Cr{sub 3}C{sub 2} ceramic coating exhibited the highest E-C resistance due to its favorable composition and fine structure. The poor E-C resistance of arc-sprayed FeCrSiB coating was attributed to larger splat size, higher porosity and the presence of radial and tangential microcracks within the coating.

  5. Mathematical modelling of thermal process to aquatic environment with different hydrometeorological conditions.

    PubMed

    Issakhov, Alibek

    2014-01-01

    This paper presents the mathematical model of the thermal process from thermal power plant to aquatic environment of the reservoir-cooler, which is located in the Pavlodar region, 17 Km to the north-east of Ekibastuz town. The thermal process in reservoir-cooler with different hydrometeorological conditions is considered, which is solved by three-dimensional Navier-Stokes equations and temperature equation for an incompressible flow in a stratified medium. A numerical method based on the projection method, divides the problem into three stages. At the first stage, it is assumed that the transfer of momentum occurs only by convection and diffusion. Intermediate velocity field is solved by fractional steps method. At the second stage, three-dimensional Poisson equation is solved by the Fourier method in combination with tridiagonal matrix method (Thomas algorithm). Finally, at the third stage, it is expected that the transfer is only due to the pressure gradient. Numerical method determines the basic laws of the hydrothermal processes that qualitatively and quantitatively are approximated depending on different hydrometeorological conditions. PMID:24991644

  6. Solar thermal technologies as a bridge from fossil fuels to renewables

    NASA Astrophysics Data System (ADS)

    Dalvi, Vishwanath Haily; Panse, Sudhir V.; Joshi, Jyeshtharaj B.

    2015-11-01

    Integrating solar thermal systems into Rankine-cycle power plants can be done with minimal modification to the existing infrastructure. This presents an opportunity to introduce these technologies into the commercial space incrementally, to allow engineers to build familiarity with the systems before phasing out fossil-fuel energy with solar electricity. This paper shows that there is no thermodynamic barrier to injecting solar thermal heat into Rankine-cycle plants to offset even up to 50% fossil-fuel combustion with existing technology: with better solar-to-electricity efficiencies than conventionally deployed solar-thermal power plants. This strategy is economically preferable to installing carbon-capture and compression equipment for mitigating an equivalent amount of greenhouse-gas emissions. We suggest that such projects be encouraged by extending the same subsidy/incentives to the solar-thermal fraction of a `solar-aided’ plant that would be offered to a conventionally deployed solar-thermal power plant of similar capacity. Such a policy would prepare the ground for an incremental solar-thermal takeover of fossil-fuel power plants.

  7. Cold plasma - a non-thermal processing technology to inactivate human pathogens on foods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cold plasma is a novel non-thermal food processing technology, suitable for application to fresh and fresh-cut fruits and vegetables. Reductions of 3-5 logs have been achieved against human pathogens such as Salmonella and E. coli O157:H7 on fresh produce and against phytopathogens and spoilage orga...

  8. LOW TEMPERATURE THERMAL TREATMENT (LT3®) TECHNOLOGY - ROY F. WESTON, INC. - APPLICATIONS ANALYSIS REPORT

    EPA Science Inventory

    This report evaluates the Low Temperature Thermal Treatment (LT3®) system's ability to remove VOC and SVOC compounds from solid wastes. This evaluation is based on treatment performance and cost data from the Superfund Innovative Technology (SITE) demonstration and fi...

  9. LOW TEMPERATURE THERMAL TREATMENT (LT3) TECHNOLOGY - ROY F. WESTON, INC. - APPLICATIONS ANALYSIS REPORT

    EPA Science Inventory

    This report evaluates the Low Temperature Thermal Treatment (LT3) system's ability to remove VOC and SVOC compounds from solid wastes. This evaluation is based on treatment performance and cost data from the Superfund Innovative Technology (SITE) demonstration and fi...

  10. LOW THERMAL TREATMENT (LT3) TECHNOLOGY, ROY F. WESTON, INC. - APPLICATIONS ANALYSIS REPORT

    EPA Science Inventory

    This report evaluates the Low Temperature Thermal Treatment (LT3) system's ability to remove VOC and SVOC compounds from solid wastes. his evaluation is based on treatment performance and cost data from the Superfund Innovative Technology (SITE) demonstration and five other case ...

  11. Thermal Analysis of the NASA Integrated Vehicle Health Monitoring Experiment Technology for X-Vehicles (NITEX)

    NASA Technical Reports Server (NTRS)

    Hegab, Hisham E.

    2002-01-01

    The purpose of this project was to perform a thermal analysis for the NASA Integrated Vehicle Health Monitoring (IVHM) Technology Experiment for X-vehicles (NITEX). This electronics package monitors vehicle sensor information in flight and downlinks vehicle health summary information via telemetry. The experiment will be tested on the X-34 in an unpressurized compartment, in the vicinity of one of the vehicle's liquid oxygen tanks. The transient temperature profile for the electronics package has been determined using finite element analysis for possible mission profiles that will most likely expose the package to the most extreme hot and cold environmental conditions. From the analyses, it was determined that temperature limits for the electronics would be exceeded for the worst case cold environment mission profile. The finite element model used for the analyses was modified to examine the use of insulation to address this problem. Recommendations for insulating the experiment for the cold environment are presented, and were analyzed to determine their effect on a nominal mission profile.

  12. Thermal Analysis Of The NASA Integrated Vehicle Health Monitoring Experiment Technology For X-Vehicles (NITEX)

    NASA Technical Reports Server (NTRS)

    Hegab, Hisham E.

    2001-01-01

    The purpose of this project was to perform a thermal analysis for the NASA Integrated Vehicle Health Monitoring (IVHM) Technology Experiment for X-vehicles (NITEX). This electronics package monitors vehicle sensor information in flight and downlinks vehicle health summary information via telemetry. The experiment will be tested on the X-34 in an unpressurized compartment, in the vicinity of one of the vehicle's liquid oxygen tanks. The transient temperature profile for the electronics package has been determined using finite element analysis for possible mission profiles that will most likely expose the package to the most extreme hot and cold environmental conditions. From the analyses, it was determined that temperature limits for the electronics would be exceeded for the worst case cold environment mission profile. The finite element model used for the analyses was modified to examine the use of insulation to address this problem. Recommendations for insulating the experiment for the cold environment are presented, and were analyzed to determine their effect on a nominal mission profile.

  13. Thermal Analysis of the NASA Integrated Vehicle Health Monitoring Experiment Technology for X-Vehicles (NITEX)

    NASA Astrophysics Data System (ADS)

    Hegab, Hisham E.

    2002-06-01

    The purpose of this project was to perform a thermal analysis for the NASA Integrated Vehicle Health Monitoring (IVHM) Technology Experiment for X-vehicles (NITEX). This electronics package monitors vehicle sensor information in flight and downlinks vehicle health summary information via telemetry. The experiment will be tested on the X-34 in an unpressurized compartment, in the vicinity of one of the vehicle's liquid oxygen tanks. The transient temperature profile for the electronics package has been determined using finite element analysis for possible mission profiles that will most likely expose the package to the most extreme hot and cold environmental conditions. From the analyses, it was determined that temperature limits for the electronics would be exceeded for the worst case cold environment mission profile. The finite element model used for the analyses was modified to examine the use of insulation to address this problem. Recommendations for insulating the experiment for the cold environment are presented, and were analyzed to determine their effect on a nominal mission profile.

  14. Research and development project evaluation and selection methods for the Solar-Thermal-Technology Program

    SciTech Connect

    Krawiec, F.

    1983-02-01

    The ranking of R and D options for long-term, high-payoff research and development in the Solar Thermal Technology Program is discussed considering the four general classes of ranking methods: economic, decision theory, constrained optimization, and scoring. The scoring method is proposed as the most suitable ranking technique to develop a balanced portfolio of R and D program elements. Procedure for implementation of the scoring method for Solar Thermal Technology Program activities evaluation and selection is outlined. Practical applicability of the scoring method to evaluate and select the Solar Thermal Research Program activities is demonstrated. The major conclusion is that the scoring method, augmented with the usbjective probabilistic risk assessment procedure, is the most suitable ranking technique to develop a balanced portfolio of R and D program elements.

  15. Thermal Analysis of the Advanced Technology Large Aperture Space Telescope (ATLAST) 8 Meter Primary Mirror

    NASA Technical Reports Server (NTRS)

    Hornsby, Linda; Stahl, H. Philip; Hopkins, Randall C.

    2010-01-01

    The Advanced Technology Large Aperture Space Telescope (ATLAST) preliminary design concept consists of an 8 meter diameter monolithic primary mirror enclosed in an insulated, optical tube with stray light baffles and a sunshade. ATLAST will be placed in orbit about the Sun-Earth L2 and will experience constant exposure to the sun. The insulation on the optical tube and sunshade serve to cold bias the telescope which helps to minimize thermal gradients. The primary mirror will be maintained at 280K with an active thermal control system. The geometric model of the primary mirror, optical tube, sun baffles, and sunshade was developed using Thermal Desktop(R) SINDA/FLUINT(R) was used for the thermal analysis and the radiation environment was analyzed using RADCAD(R). A XX node model was executed in order to characterize the static performance and thermal stability of the mirror during maneuvers. This is important because long exposure observations, such as extra-solar terrestrial planet finding and characterization, require a very stable observatory wave front. Steady state thermal analyses served to predict mirror temperatures for several different sun angles. Transient analyses were performed in order to predict thermal time constant of the primary mirror for a 20 degree slew or 30 degree roll maneuver. This paper describes the thermal model and provides details of the geometry, thermo-optical properties, and the environment which influences the thermal performance. All assumptions that were used in the analysis are also documented. Parametric analyses are summarized for design parameters including primary mirror coatings and sunshade configuration. Estimates of mirror heater power requirements are reported. The thermal model demonstrates results for the primary mirror heated from the back side and edges using a heater system with multiple independently controlled zones.

  16. Thermal and laser conditioning of production- and rapid-growth KDP and KD*P crystals

    SciTech Connect

    Atherton, L.J.; Rainer, F.; De Yoreo, J.J.; Thomas, I.M.; Zaitseva, N.; De Marco, F.

    1994-01-13

    Large solid state lasers such as Beamlet and the proposed National Ignition Facility (NIF) require optical materials with extremely high damage thresholds. Potassium dihydrogen phosphate (KDP) and its deuterated analog (KD*P) both require some form of conditioning to reach the design fluence of these lasers. Both the bulk material and the crystal surfaces must have damage thresholds in excess of 16J/cm{sup 2} at 1053 nm and 11J/cm{sup 2} at 351 nm for 3-ns pulselengths. The use of ultrafiltration techniques has been demonstrated to produce bulk material with damage thresholds exceeding these requirements with the use of R:1 laser conditioning. More recent results at LLNL using large-area laser conditioning and thermal annealing are described for a variety of state-of-the-art KDP and KD*P crystals. Results on thermally annealed KD*P with a deuteration range of 60% to 80% are also presented, and compared to those of ordinary KDP.

  17. Modeling of Thermal Performance of Multiphase Nuclear Fuel Cell Under Variable Gravity Conditions

    NASA Technical Reports Server (NTRS)

    Ding, Z.; Anghaie, S.

    1996-01-01

    A unique numerical method has been developed to model the dynamic processes of bulk evaporation and condensation processes, associated with internal heat generation and natural convection under different gravity levels. The internal energy formulation, for the bulk liquid-vapor phase change problems in an encapsulated container, was employed. The equations, governing the conservation of mass, momentum and energy for both phases involved in phase change, were solved. The thermal performance of a multiphase uranium tetra-fluoride fuel element under zero gravity, micro-gravity and normal gravity conditions has been investigated. The modeling yielded results including the evolution of the bulk liquid-vapor phase change process, the evolution of the liquid-vapor interface, the formation and development of the liquid film covering the side wall surface, the temperature distribution and the convection flow field in the fuel element. The strong dependence of the thermal performance of such multiphase nuclear fuel cell on the gravity condition has been revealed. Under all three gravity conditions, 0-g, 10(exp -3)-g, and 1-g, the liquid film is formed and covers the entire side wall. The liquid film covering the side wall is more isothermalized at the wall surface, which can prevent the side wall from being over-heated. As the gravity increases, the liquid film is thinner, the temperature gradient is larger across the liquid film and smaller across the vapor phase. This investigation provides valuable information about the thermal performance of multi-phase nuclear fuel element for the potential space and ground applications.

  18. Thermal state of permafrost in urban environment under changing climatic conditions

    NASA Astrophysics Data System (ADS)

    Grebenets, V. I.; Kerimov, A. G.; Shiklomanov, N. I.; Streletskiy, D. A.; Shkoda, V. S.; Anduschenko, F. D.

    2014-12-01

    Large industrial centers on permafrost are characterized by a set of geocryological conditions different from natural environment. Thermal state of foundations on permafrost in areas of economic development depends on climate trends and upon technogenic impacts, such as type of impact, area of facility, permafrost temperature and duration of the technogenic pressure. Technogenic degradation of permafrost is evident in most urban centers on permafrost leading to deterioration of geotechnical environment and particularly foundations of buildings and structures. This situation is exacerbated by climate warming in such cities as Vorkuta, Chita, Nerungry, Salekhard and others where temperature rises at a rate of 0.4 - 1.2 oC/decade over the last 40 years. To evaluate impact of climate warming and technogenic factors on permafrost temperature regime and foundation bearing capacity we compared five facilities in Norilsk, the largest city on permafrost. The facilities were selected to represent different parts of the town, different ages of built-up environment and were located in different permafrost and lithological conditions. We found a leading role of technogenic factors relative to climatic ones in dynamics of thermal state of permafrost in urban environment. Climate warming in Norilsk (0.15 oC/decade) was a small contributor, but gave an additional input to deterioration of geotechnical environment on permafrost. At the same time, implementation of engineering solutions of permafrost temperature cooling (such as crawl spaces) result in lowering of permafrost temperature. Field surveys in Yamburg showed that under some facilities permafrost temperature decreased by 1-1.5 C oC over the last 15 years despite pronounced in the region climate warming of 0.5 oC/decade. This shows that despite deterioration of permafrost conditions in the most Arctic regions due to technogenic pressure and climate warming, implementation of adequate engineering solutions allows stabilization of permafrost thermal regime.

  19. Human thermal bioclimatic conditions associated with acute cardiovascular syndromes in Crete Island, Greece

    NASA Astrophysics Data System (ADS)

    Bleta, Anastasia G.; Nastos, Panagiotis T.

    2013-04-01

    The aim of this study is to quantify the association between bioclimatic conditions and daily counts of admissions for non-fatal acute cardiovascular (acute coronary syndrome, arrhythmia, decompensation of heart failure) syndromes (ACS) registered by the two main hospitals in Heraklion, Crete Island, during a five-year period 2008-2012. The bioclimatic conditions analyzed are based on human thermal bioclimatic indices such as the Physiological Equivalent Temperature (PET) and the Universal Thermal Climate Index (UTCI). Mean daily meteorological parameters, such as air temperature, relative humidity, wind speed and cloudiness, were acquired from the meteorological station of Heraklion (Hellenic National Meteorological Service). These parameters were used as input variables in modeling the aforementioned thermal indices, in order to interpret the grade of the thermo-physiological stress. The PET and UTCI analysis was performed by the use of the radiation and bioclimate model, "RayMan", which is well-suited to calculate radiation fluxes and human biometeorological indices. Generalized linear models (GLM) were applied to time series of daily numbers of outpatients with ACS against bioclimatic variations, after controlling for possible confounders and adjustment for season and trends. The interpretation of the results of this analysis suggests a significant association between cold weather and increased coronary heart disease incidence, especially in the elderly and males. Additionally, heat stress plays an important role in the configuration of daily ACS outpatients, even in temperate climate, as that in Crete Island. In this point it is worth mentioning that Crete Island is frequently affected by Saharan outbreaks, which are associated in many cases with miscellaneous phenomena, such as Fhn winds - hot and dry winds - causing extreme bioclimatic conditions (strong heat stress). Taking into consideration the projected increased ambient temperature in the future, ACS exacerbation is very likely to happen during the warm period, against mitigation during the cold period of the year.

  20. Role of atomic vacancies and boundary conditions on ballistic thermal transport in graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Scuracchio, P.; Costamagna, S.; Peeters, F. M.; Dobry, A.

    2014-07-01

    Quantum thermal transport in armchair and zigzag graphene nanoribbons is investigated in the presence of single atomic vacancies and subject to different boundary conditions. We start with a full comparison of the phonon polarizations and energy dispersions as given by a fifth-nearest-neighbor force-constant model (5NNFCM) and by elasticity theory of continuum membranes (ETCM). For free-edge ribbons, we discuss the behavior of an additional acoustic edge-localized flexural mode, known as fourth acoustic branch (4ZA), which has a small gap when it is obtained by the 5NNFCM. Then, we show that ribbons with supported edges have a sample-size dependent energy gap in the phonon spectrum which is particularly large for in-plane modes. Irrespective to the calculation method and the boundary condition, the dependence of the energy gap for the low-energy optical phonon modes against the ribbon width W is found to be proportional to 1/W for in-plane, and 1/W2 for out-of-plane phonon modes. Using the 5NNFCM, the ballistic thermal conductance and its contributions from every single phonon mode are then obtained by the nonequilibrium Green's function technique. We found that, while edge and central localized single atomic vacancies do not affect the low-energy transmission function of in-plane phonon modes, they reduce considerably the contributions of the flexural modes. On the other hand, in-plane modes contributions are strongly dependent on the boundary conditions and at low temperatures can be highly reduced in supported-edge samples. These findings could open a route to engineer graphene based devices where it is possible to discriminate the relative contribution of polarized phonons and to tune the thermal transport on the nanoscale.

  1. Radiative property degradation of water impinging on thermally-controlled surfaces under space conditions.

    NASA Technical Reports Server (NTRS)

    Maples, D.; Spiller, M. H.; Maples, G.

    1973-01-01

    Review of the results of an investigation aimed at determining experimentally the directional monochromatic reflectance changes caused under high-vacuum space conditions by a water spray impinging on thermally controlled surfaces consisting of three paint specimens (Z93, S13G, and 92-007) and an aluminum foil. The first two paints and the aluminum foil suffered considerable physical damage, but only small changes resulted in the reflectance of the paints while the reflectance of the aluminum foil decreased with increase in exposure time to the water jet. Only the 92-007 Dow Corning paint retained the same physical and reflective characteristics.

  2. Computer Modeling of Flow, Thermal Condition and Ash Deposition in a Hot-Gas Filtration Device

    SciTech Connect

    Ahmadi, G.; Mazaheri, A.; Liu, C.; Gamwo, I.K.

    2002-09-19

    The objective of the present study is to develop a computational model for simulating the gas flow, thermal condition and ash transport and deposition pattern in the hot-gas filtration systems. The computational model is to provide a virtual tool for design and operation modifications. Particular attention is given to the Particle Control Device (PCD) at the Power Systems Development Facility (PSDF) in Wilsonville, Alabama. For evaluation of gas velocity and temperature field in the vessel, the FLUENT commercial CFD computer code is used. Ash particle transport and deposition pattern was analyzed with the Lagrangian particle tracking approach.

  3. The Calculation of the Heat Required for Wing Thermal Ice Prevention in Specified Icing Conditions

    NASA Technical Reports Server (NTRS)

    Bergrun, Norman R.; Jukoff, David; Schlaff, Bernard A.; Neel, Carr B., Jr.

    1947-01-01

    Flight tests were made in natural icing conditions with two 8-ft-chord heated airfoils of different sections. Measurements of meteorological variables conducive to ice formation were made simultaneously with the procurement of airfoil thermal data. The extent of knowledge on the meteorology of icing, the impingement of water drops on airfoil surfaces, and the processes of heat transfer and evaporation from a wetted airfoil surface have been increased to a point where the design of heated wings on a fundamental, wet-air basis now can be undertaken with reasonable certainty.

  4. Three-Dimensional Mixed Convection Flow of Viscoelastic Fluid with Thermal Radiation and Convective Conditions

    PubMed Central

    Hayat, Tasawar; Ashraf, Muhammad Bilal; Alsulami, Hamed H.; Alhuthali, Muhammad Shahab

    2014-01-01

    The objective of present research is to examine the thermal radiation effect in three-dimensional mixed convection flow of viscoelastic fluid. The boundary layer analysis has been discussed for flow by an exponentially stretching surface with convective conditions. The resulting partial differential equations are reduced into a system of nonlinear ordinary differential equations using appropriate transformations. The series solutions are developed through a modern technique known as the homotopy analysis method. The convergent expressions of velocity components and temperature are derived. The solutions obtained are dependent on seven sundry parameters including the viscoelastic parameter, mixed convection parameter, ratio parameter, temperature exponent, Prandtl number, Biot number and radiation parameter. A systematic study is performed to analyze the impacts of these influential parameters on the velocity and temperature, the skin friction coefficients and the local Nusselt number. It is observed that mixed convection parameter in momentum and thermal boundary layers has opposite role. Thermal boundary layer is found to decrease when ratio parameter, Prandtl number and temperature exponent are increased. Local Nusselt number is increasing function of viscoelastic parameter and Biot number. Radiation parameter on the Nusselt number has opposite effects when compared with viscoelastic parameter. PMID:24608594

  5. Fluid Pressure, Thermal and Chemical Effects in Conditioning Permeability and Triggered Seismicity in Enhanced Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Elsworth, D.; Izadi, G.; Zheng, B.; Taron, J.

    2011-12-01

    The evolution of permeability, heat or diffusive transfer area and triggered seismicity are intimately linked in forced-circulation systems such as EGS, CCS and unconventional hydrocarbon reservoirs where conditions are pushed far-from-equilibrium. We explore this evolution subject to coupled THMC processes in a prototypical EGS reservoir. We accommodate the influence of early-time changes in effective stress, mid-time changes in thermal stresses and ultimately incorporate long-term changes due to chemical effects. We develop a micromechanical model to represent the failure process and apply this model to represent energy release from individual critically oriented fractures. The changing stress state is calculated from the pore pressure, thermal drawdown and chemical effects for a coupled THMC model with dual porosity. This model is applied to a doublet geometry to explore the spatial and temporal migration for permeability evolution, access to reactive surface area and the triggering of seismicity as stimulation then production proceeds. Seismic activity is initially concentrated around the near-wellbore injection region. It is earliest for closely spaced fractures in reservoir rocks where the thermal drawdown of stress is largest at early times and results in numerous low-magnitude events. These observations are used to define the evolution of spatial changes within the reservoir and their migration with production, dependent on the mobilization of relic fractures.

  6. Influence of Thermal Treatment Conditions on the Properties of Dental Silicate Cements.

    PubMed

    Voicu, Georgeta; Popa, Alexandru Mihai; Badanoiu, Alina Ioana; Iordache, Florin

    2016-01-01

    In this study the sol-gel process was used to synthesize a precursor mixture for the preparation of silicate cement, also called mineral trioxide aggregate (MTA) cement. This mixture was thermally treated under two different conditions (1400 °C/2 h and 1450 °C/3 h) followed by rapid cooling in air. The resulted material (clinker) was ground for one hour in a laboratory planetary mill (v = 150 rot/min), in order to obtain the MTA cements. The setting time and mechanical properties, in vitro induction of apatite formation by soaking in simulated body fluid (SBF) and cytocompatibility of the MTA cements were assessed in this study. The hardening processes, nature of the reaction products and the microstructural characteristics were also investigated. The anhydrous and hydrated cements were characterized by different techniques e.g., X-ray diffraction (XRD), scanning electron microscopy (SEM), infrared spectroscopy (FT-IR) and thermal analysis (DTA-DTG-TG). The setting time of the MTA cement obtained by thermal treatment at 1400 °C/2 h (MTA1) was 55 min and 15 min for the MTA cement obtained at 1450 °C/3 h (MTA2). The compressive strength values were 18.5 MPa (MTA1) and 22.9 MPa (MTA2). Both MTA cements showed good bioactivity (assessed by an in vitro test), good cytocompatibility and stimulatory effect on the proliferation of cells. PMID:26901185

  7. Limiting factors to advancing thermal-battery technology for naval applications

    SciTech Connect

    Davis, P.B.; Winchester, C.S.

    1991-10-01

    Thermal batteries are primary reserve electrochemical power sources using molten salt electrolyte which experience little effective aging while in storage or dormant deployment. Thermal batteries are primarily used in military applications, and are currently used in a wide variety of Navy devices such as missiles, torpedoes, decays, and training targets, usually as power supplies in guidance, propulsion, and Safe/Arm applications. Technology developments have increased the available energy and power density ratings by an order of magnitude in the last ten years. Present thermal batteries, using lithium anodes and metal sulfide cathodes, are capable of performing applications where only less rugged and more expensive silver oxide/zinc or silver/magnesium chloride seawater batteries could serve previously. Additionally, these batteries are capable of supplanting lithium/thionyl chloride reserve batteries in a variety of specifically optimized designs. Increases in thermal battery energy and power density capabilities are not projected to continue with the current available technology. Several battery designs are now at the edge of feasibility and safety. Since future naval systems are likely to require continued growth of battery energy and Power densities, there must be significant advances in battery technology. Specifically, anode alloy composition and new cathode materials must be investigated to allow for safe development and deployment of these high power, higher energy density batteries.

  8. Genotypic influence on aversive conditioning in honeybees, using a novel thermal reinforcement procedure.

    PubMed

    Junca, Pierre; Carcaud, Julie; Moulin, Sibyle; Garnery, Lionel; Sandoz, Jean-Christophe

    2014-01-01

    In Pavlovian conditioning, animals learn to associate initially neutral stimuli with positive or negative outcomes, leading to appetitive and aversive learning respectively. The honeybee (Apis mellifera) is a prominent invertebrate model for studying both versions of olfactory learning and for unraveling the influence of genotype. As a queen bee mates with about 15 males, her worker offspring belong to as many, genetically-different patrilines. While the genetic dependency of appetitive learning is well established in bees, it is not the case for aversive learning, as a robust protocol was only developed recently. In the original conditioning of the sting extension response (SER), bees learn to associate an odor (conditioned stimulus - CS) with an electric shock (unconditioned stimulus - US). This US is however not a natural stimulus for bees, which may represent a potential caveat for dissecting the genetics underlying aversive learning. We thus first tested heat as a potential new US for SER conditioning. We show that thermal stimulation of several sensory structures on the bee's body triggers the SER, in a temperature-dependent manner. Moreover, heat applied to the antennae, mouthparts or legs is an efficient US for SER conditioning. Then, using microsatellite analysis, we analyzed heat sensitivity and aversive learning performances in ten worker patrilines issued from a naturally inseminated queen. We demonstrate a strong influence of genotype on aversive learning, possibly indicating the existence of a genetic determinism of this capacity. Such determinism could be instrumental for efficient task partitioning within the hive. PMID:24828422

  9. Genotypic Influence on Aversive Conditioning in Honeybees, Using a Novel Thermal Reinforcement Procedure

    PubMed Central

    Junca, Pierre; Carcaud, Julie; Moulin, Sibyle; Garnery, Lionel; Sandoz, Jean-Christophe

    2014-01-01

    In Pavlovian conditioning, animals learn to associate initially neutral stimuli with positive or negative outcomes, leading to appetitive and aversive learning respectively. The honeybee (Apis mellifera) is a prominent invertebrate model for studying both versions of olfactory learning and for unraveling the influence of genotype. As a queen bee mates with about 15 males, her worker offspring belong to as many, genetically-different patrilines. While the genetic dependency of appetitive learning is well established in bees, it is not the case for aversive learning, as a robust protocol was only developed recently. In the original conditioning of the sting extension response (SER), bees learn to associate an odor (conditioned stimulus - CS) with an electric shock (unconditioned stimulus - US). This US is however not a natural stimulus for bees, which may represent a potential caveat for dissecting the genetics underlying aversive learning. We thus first tested heat as a potential new US for SER conditioning. We show that thermal stimulation of several sensory structures on the bee’s body triggers the SER, in a temperature-dependent manner. Moreover, heat applied to the antennae, mouthparts or legs is an efficient US for SER conditioning. Then, using microsatellite analysis, we analyzed heat sensitivity and aversive learning performances in ten worker patrilines issued from a naturally inseminated queen. We demonstrate a strong influence of genotype on aversive learning, possibly indicating the existence of a genetic determinism of this capacity. Such determinism could be instrumental for efficient task partitioning within the hive. PMID:24828422

  10. Infrared survey of 50 buildings constructed during 100 years: thermal performances and damage conditions

    NASA Astrophysics Data System (ADS)

    Ljungberg, Sven-Ake

    1995-03-01

    Different building constructions and craftsmanship give rise to different thermal performance and damage conditions. The building stock of most industrial countries consists of buildings of various age, and constructions, from old historic buildings with heavy stone or wooden construction, to new buildings with heavy or light concrete construction, or modern steel or wooden construction. In this paper the result from a detailed infrared survey of 50 buildings from six Swedish military camps is presented. The presentation is limited to a comparison of thermal performance and damage conditions of buildings of various ages, functions, and constructions, of a building period of more than 100 years. The result is expected to be relevant even to civilian buildings. Infrared surveys were performed during 1992-1993, with airborne, and mobile short- and longwave infrared systems, out- and indoor thermography. Interpretation and analysis of infrared data was performed with interactive image and analyzing systems. Field inspections were carried out with fiber optics system, and by ocular inspections. Air-exchange rate was measured in order to quantify air leakages through the building envelope, indicated in thermograms. The objects studied were single-family houses, barracks, office-, service-, school- and exercise buildings, military hotels and restaurants, aircraft hangars, and ship factory buildings. The main conclusions from this study are that most buildings from 1880 - 1940 have a solid construction with a high quality of craftsmanship, relatively good thermal performance, due to extremely thick walls, and adding insulation at the attic floor. From about 1940 - 1960 the quality of construction, thermal performance and craftsmanship seem to vary a lot. Buildings constructed during the period of 1960 - 1990 have in general the best thermal performance due to a better insulation capacity, however, also one finds here the greatest variety of problems. The result from this study is to be incorporated in planning of short- and long term maintenance programs of the Swedish Defence. In general the military buildings are expected to have better status than civilian buildings, due to the more rigorous control during the building process, performed by military building authorities.

  11. Boundary Condition in Liquid Thin Films Revealed through the Thermal Fluctuations of Their Free Surfaces.

    PubMed

    Pottier, B; Frétigny, C; Talini, L

    2015-06-01

    We investigate the properties of nanometric liquid films with a new noninvasive technique. We measure the spontaneous thermal fluctuations of the free surfaces of liquids to probe their hydrodynamic boundary condition at a solid wall. The surface fluctuations of a silicon oil film could be described with a no-slip boundary condition for film thicknesses down to 20 nm. Oppositely, a 4 nm negative slip length had to be introduced to describe the behavior of n-hexadecane, consistently with previous surface force apparatus data on the same system. Our results demonstrate that at vanishing flow a nanometric solidlike layer close to the wall may exist according to the nature of the liquid. PMID:26196646

  12. [Effects of atmospheric thermally stratified condition on sensible heat within forest canopy].

    PubMed

    Diao, Yi-Wei; Wang, An-Zhi; Guan, De-Xin; Jin, Chang-Jie; Pei, Tie-Fan

    2010-01-01

    By using Eulerian second-order closure model, this paper studied the source-sink distribution and flux characteristics of sensible heat within forest canopy under atmospheric thermally stratified condition. In the daytime, a notable feature for the atmospheric stratification of forest canopy was the unstable stratification above the canopy and the stable stratification under the canopy. The changes of temperature profile indicated there was a 'hot spot' at about 2/3 of canopy height. The counter-gradient fluxes within the canopy were discovered by modeling the heat flux under weak stable atmospheric condition. Simulations of the diurnal variation of sensible heat flux were consistent with the measurements (R2 = 0.9035, P < 0.01). Adding buoyancy in the sensible heat balance equation could increase the simulation accuracy of inversion model, and improve the simulation capability for heat flux balance. PMID:20387436

  13. Experimental investigation of panel radiator heat output enhancement for efficient thermal use under actual operating conditions

    NASA Astrophysics Data System (ADS)

    Calisir, Tamer; Baskaya, Senol; Onur Yazar, Hakan; Yucedag, Sinan

    2015-05-01

    In this study the heat output of a panel-convector-convector-panel radiator (PCCP) under controlled laboratory conditions under Turkish household and especially Ankara conditions was investigated experimentally. In this sense, investigations were performed for different heating water mass flow rates, water inlet temperatures and radiator inlet and outlet connection positions, which are most commonly used in Turkey. An experimental setup was built for this purpose in a test room where temperature was controlled and held constant during the experiments. Inlet and outlet water temperatures and mass flow rates were measured and heat output of the radiator was calculated. Infrared thermal camera visualizations of the steel panel radiator front surface were also performed.

  14. Improvement of the Thermal Environment around the Air-cooled Outdoor Units of Air Conditioning System

    NASA Astrophysics Data System (ADS)

    Narumi, Daisuke; Tanaka, Kitoshi; Shimoda, Yoshiyuki; Mizuno, Minoru

    This paper describes the numerical (CFD) analyses for thermal environment around the air-cooled outdoor units of air conditioning system installed on a roof of building to investigate the mechanism of Short-Circuit (SC) phenomenon. Especially, we focused on the effect of the condition of airflow around the air-cooled outdoor cooling units and the density of heat discharge. And then we developed the prediction formula to estimate the average or maximum rising inlet air temperature without CFD analyses and evaluated an effect of the decreasing inlet air temperature by applying various countermeasures. Based on these analyses, we proposed the method to estimate the required area for installing the air-cooled outdoor units and showed the possibility of decreasing the required area by applying various countermeasures.

  15. Creep and Environmental Durability of EBC/CMCs Under Imposed Thermal Gradient Conditions

    NASA Technical Reports Server (NTRS)

    Appleby, Matthew; Morscher, Gregory N.; Zhu, Dongming

    2013-01-01

    Interest in SiC fiber-reinforced SiC ceramic matrix composite (CMC) environmental barrier coating (EBC) systems for use in high temperature structural applications has prompted the need for characterization of material strength and creep performance under complex aerospace turbine engine environments. Stress-rupture tests have been performed on SiC/SiC composites systems, with varying fiber types and coating schemes to demonstrate material behavior under isothermal conditions. Further testing was conducted under exposure to thermal stress gradients to determine the effect on creep resistance and material durability. In order to understand the associated damage mechanisms, emphasis is placed on experimental techniques as well as implementation of non-destructive evaluation; including electrical resistivity monitoring. The influence of environmental and loading conditions on life-limiting material properties is shown.

  16. SOFI/Substrate integrity testing for cryogenic propellant tanks at extreme thermal gradient conditions

    NASA Astrophysics Data System (ADS)

    Haynes, M.; Fabian, P.

    2015-12-01

    Liquid propellant tank insulation for space flight requires low weight as well as high insulation factors. Use of Spray-On Foam Insulation (SOFI) is an accepted, cost effective technique for insulating a single wall cryogenic propellant tank and has been used extensively throughout the aerospace industry. Determining the bond integrity of the SOFI to the metallic substrate as well as its ability to withstand the in-service strains, both mechanical and thermal, is critical to the longevity of the insulation. This determination has previously been performed using highly volatile, explosive cryogens, which increases the test costs enormously, as well as greatly increasing the risk to both equipment and personnel. CTD has developed a new test system, based on a previous NASA test that simulates the mechanical and thermal strains associated with filling a large fuel tank with a cryogen. The test enables a relatively small SOFI/substrate sample to be monitored for any deformations, delaminations, or disjunctures during the cooling and mechanical straining process of the substrate, and enables the concurrent application of thermal and physical strains to two specimens at the same time. The thermal strains are applied by cooling the substrate to the desired cryogen temperature (from 4 K to 250 K) while maintaining the outside surface of the SOFI foam at ambient conditions. Multiple temperature monitoring points are exercised to ensure even cooling across the substrate, while at the same time, surface temperatures of the SOFI can be monitored to determine the heat flow. The system also allows for direct measurement of the strains in the substrate during the test. The test system as well as test data from testing at 20 K, for liquid Hydrogen simulation, will be discussed.

  17. Proceedings of the 1993 Non-Fluorocarbon Insulation, Refrigeration and Air Conditioning Technology Workshop

    NASA Astrophysics Data System (ADS)

    Sessions included: HFC blown polyurethanes, carbon dioxide blown foam and extruded polystyrenes, plastic foam insulations, evacuated panel insulation, refrigeration and air conditioning, absorption and adsorption and stirling cycle refrigeration, innovative cooling technologies, and natural refrigerants. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  18. Proceedings of the 1993 non-fluorocarbon insulation, refrigeration and air conditioning technology workshop

    SciTech Connect

    Not Available

    1994-09-01

    Sessions included: HFC blown polyurethanes, carbon dioxide blown foam and extruded polystyrenes, plastic foam insulations, evacuated panel insulation, refrigeration and air conditioning, absorption and adsorption and stirling cycle refrigeration, innovative cooling technologies, and natural refrigerants. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  19. Line-focus solar thermal energy technology development. FY 79 annual report for Department 4720

    SciTech Connect

    Bergeron, K D; Champion, R L; Hunke, R W

    1980-04-01

    The primary role of the Solar Energy Projects Department II (4720) is the development, evaluation, and testing of line-focus solar thermal technology. This report of FY 79 progress and accomplishments is divided into two parts: (1) Component and Subsystem Development including the design and analysis of collector modules, their components, and associated materials and processes, and (2) Systems and Applications Development, involving larger configurations of solar thermal line-focus systems. The emphasis is on parabolic troughs, but significant efforts on hemispherical bowls, compound parabolic collectors, and dishes for the Solar Total Energy Project are also described.

  20. A novel microfabrication technology on organic substrates application to a thermal flow sensor

    NASA Astrophysics Data System (ADS)

    Kaltsas, G.; Petropoulos, A.; Tsougeni, K.; Pagonis, D. N.; Speliotis, T.; Gogolides, E.; Nassiopoulou, A. G.

    2007-12-01

    A new technology that allows the formation of thermal sensors on organic substrates by combining the standard PCB technology with the well established microelectronic techniques, is proposed. The obtained structures consist of low thermal conductivity material, therefore the heat dissipation to the substrate is minimized, which result to the enhancement of the device sensitivity and the improvement of the corresponding response time. The proposed technology exhibits a series of advantageous characteristics such as significant cost reduction, elimination of both wire-die bonding and die cutting, direct integration with electronics and potential expansion on flexible substrates. Furthermore, the final structure provides a planar surface, which allows for further lithographic steps to take place, but is also a major advantage for specific type of applications such as non-invasive flow measurements. In the context of the proposed technology, a thermal gas flow sensor was fabricated and tested in a specially designed experimental set-up. The sensor consisted of three thin Pt strips directly connected to the copper tracks of the organic substrate. The middle Pt resistor act as a heater while the other two serve as temperature sensing elements.

  1. Chemiluminescence as a condition monitoring method for thermal aging and lifetime prediction of an HTPB elastomer.

    SciTech Connect

    Gillen, Kenneth Todd; Minier, Leanna M. G.; Celina, Mathias Christopher; Trujillo, Ana B.

    2007-03-01

    Chemiluminescence (CL) has been applied as a condition monitoring technique to assess aging related changes in a hydroxyl-terminated-polybutadiene based polyurethane elastomer. Initial thermal aging of this polymer was conducted between 110 and 50 C. Two CL methods were applied to examine the degradative changes that had occurred in these aged samples: isothermal 'wear-out' experiments under oxygen yielding initial CL intensity and 'wear-out' time data, and temperature ramp experiments under inert conditions as a measure of previously accumulated hydroperoxides or other reactive species. The sensitivities of these CL features to prior aging exposure of the polymer were evaluated on the basis of qualifying this method as a quick screening technique for quantification of degradation levels. Both the techniques yielded data representing the aging trends in this material via correlation with mechanical property changes. Initial CL rates from the isothermal experiments are the most sensitive and suitable approach for documenting material changes during the early part of thermal aging.

  2. Present and Future Human Thermal Bioclimatic Conditions and Impacts on Respiratory Admissions in Crete Island, Greece

    NASA Astrophysics Data System (ADS)

    Bleta, Anastasia; Nastos, Panagiotis

    2015-04-01

    The objective of this study is to assess and quantify the association between present and future human thermal bioclimatic conditions and daily counts of respiratory problems in Heraklion city, Crete Island, Greece. The bioclimatic conditions were analyzed in terms of the Physiologically Equivalent Temperature (PET) and Universal Thermal Climate Index (UTCI), which are two of the most popular human thermal indices based on the human energy balance. The PET and UTCI analysis was performed by the application of the bioclimate model, "RayMan", which is well-suited to calculate radiation fluxes and human biometeorological indices. Future changes in meteorological parameters such as air temperature, relative humidity, wind speed and cloudiness (used as input variables in the estimation of PET and UTCI) were derived by the simulations of the regional atmospheric climate model KNMI under SRES A1B, for the near (2021-2050) and far (2071-2100) future with respect to the reference period 1961-1990. Generalized linear models (GLM) with Poisson distribution were applied to the time series of daily numbers of outpatients (total, males and females) with respiratory problems against present and future bioclimatic changes, after controlling for possible confounders and adjustment for season and trends. The interpretation of the results of this analysis suggests a significant association between cold weather and increased respiratory admissions. For the near future, the projected increase of 1.6oC in PET may result in reducing the incidence of respiratory problemsby almost 3% against 7.5% in the far future, when PET is projected to increase by 4oC.

  3. Thermal manipulation during embryogenesis improves certain semen parameters in layer breeder chicken during hot climatic conditions.

    PubMed

    Shanmugam, M; Vinoth, A; Rajaravindra, K S; Rajkumar, U

    2015-10-01

    Thermal manipulation during incubation has been shown to improve post hatch performance in poultry. The aim of the present experiment was to evaluate thermal manipulation on semen quality of roosters during hot climatic conditions. Eggs obtained after artificial insemination from Dahlem Red layer breeders were randomly divided into two groups control (C) and heat exposed (HE). C group eggs were incubated at 37.5C throughout the incubation period while the HE group eggs were exposed to higher temperature 40.5C from 15th to 17th day of incubation for 3h each day. The relative humidity was maintained at 65% in both the groups throughout incubation. The chicks hatched were reared separately under standard husbandry conditions. During high ambient temperature semen from roosters (45 weeks of age) was collected and evaluated for different gross parameters, sperm chromatin integrity and sperm HSP27 and HSP70 gene expression by real-time PCR. The seminal plasma was evaluated for lipid peroxidation, ferric ion reducing antioxidant power (FRAP), triiodothyronine (T3) and matrix metalloproteinase-2 (MMP-2) activity. The shed average Temperature Humidity Index (THI) during the experiment period was 78.55. The percent live sperm and FRAP level were significantly (P<0.05) higher and sperm gene expressions were significantly (P<0.05) lower in the HE group. No differences in other parameters were observed between the groups. Thus from the results it could be concluded that thermal manipulation during incubation improves certain semen parameters of roosters at high ambient temperature. PMID:26386679

  4. Behavioural Responses to Thermal Conditions Affect Seasonal Mass Change in a Heat-Sensitive Northern Ungulate

    PubMed Central

    van Beest, Floris M.; Milner, Jos M.

    2013-01-01

    Background Empirical tests that link temperature-mediated changes in behaviour (activity and resource selection) to individual fitness or condition are currently lacking for endotherms yet may be critical to understanding the effect of climate change on population dynamics. Moose (Alces alces) are thought to suffer from heat stress in all seasons so provide a good biological model to test whether exposure to non-optimal ambient temperatures influence seasonal changes in body mass. Seasonal mass change is an important fitness correlate of large herbivores and affects reproductive success of female moose. Methodology/Principal Findings Using GPS-collared adult female moose from two populations in southern Norway we quantified individual differences in seasonal activity budget and resource selection patterns as a function of seasonal temperatures thought to induce heat stress in moose. Individual body mass was recorded in early and late winter, and autumn to calculate seasonal mass changes (n?=?52 over winter, n?=?47 over summer). We found large individual differences in temperature-dependent resource selection patterns as well as within and between season variability in thermoregulatory strategies. As expected, individuals using an optimal strategy, selecting young successional forest (foraging habitat) at low ambient temperatures and mature coniferous forest (thermal shelter) during thermally stressful conditions, lost less mass in winter and gained more mass in summer. Conclusions/Significance This study provides evidence that behavioural responses to temperature have important consequences for seasonal mass change in moose living in the south of their distribution in Norway, and may be a contributing factor to recently observed declines in moose demographic performance. Although the mechanisms that underlie the observed temperature mediated habitat-fitness relationship remain to be tested, physiological state and individual variation in thermal tolerance are likely contributory factors. Climate-related effects on animal behaviour, and subsequently fitness, are expected to intensify as global warming continues. PMID:23776584

  5. Validation of Perceptual Strain Index to Evaluate the Thermal Strain in Experimental Hot Conditions

    PubMed Central

    Dehghan, Habibollah; Ghanbary Sartang, Ayoub

    2015-01-01

    Background: The incidence of heat stress is one of the most common problems in workplaces and industries. Many heat stress indices have been developed, and these indices have some disadvantages. The purpose of this study is to validate the perceptual strain index (PeSI) in experimental hot conditions. Methods: This study is of cross-sectional carried out on 15 men at five different thermal conditions (35°C, 30°C, 27°C, 24°C, and 21°C) in a climate chamber and on a treadmill at three levels of light (2.4 kph), medium (4.8 kph) and heavy activity (6.3 kph). Heart rate and oral temperature were respectively measured to calculate the physiological strain index. Also, thermal sensation and rate perceive exertion were respectively measured to calculate the PeSI. Finally, the correlation between the indices was analyzed using Pearson correlation test and regression analysis. Results: Pearson correlation test showed a high correlation (r = 0.94) between the PeSI and physiological strain index (P = 0/001). It was also observed a high correlation between the PeSI and the oral temperature (r = 0.78, P = 0/001) and the heart rate (r = 0.90, P = 0/001). In addition, there was found a moderate correlation (r = 0.71) between the PeSI and the wet bulb glob temperature (P = 0/001). However, there was no correlation between the PeSI and the body mass index (r = 0.0009, P = 0.79). Conclusions: The research findings showed when there is no access to other forms of methods to evaluate the heat stress, it can be used the PeSI in evaluating the strain because of its favorable correlation with the thermal strain. PMID:26425333

  6. Thermal Screen Printing. Technology Learning Activity. Teacher Edition. Technology Education Series.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This curriculum guide provides technology learning activities designed to prepare students in grades 6-10 to work in the world of the future. The 8-day course provides exploratory, hands-on learning activities and information that can enhance the education of students of all types in an integrated curriculum that provides practical applications of

  7. A novel active suppression technology against thermal drift for ultra-precision spherical capacitive sensors

    NASA Astrophysics Data System (ADS)

    Cui, Junning; Lu, Yesheng; Sun, Tao; Ou, Yaodong

    2015-02-01

    In order to solve the problem of thermal drift and further improve the performance for sensors with extreme demand for precision, based on analysis of shortcomings of existing compensation methods and characteristics of thermal drift, a novel active suppression technology against thermal drift is proposed. Considering the change of properties of reference elements in sensors caused by temperature variation is the most major factor that introduces thermal drift error, a special thermal structure is designed to provide a small environmental chamber with sub-structure design of high performance heat isolation, heat conduction and homogenization of temperature, and the temperature in the environmental chamber is controlled with high precision based on bilateral temperature adjusting with thermo electronic cooler (TEC) devices, and a compound control algorithm of Bang-Bang and anti-windup PID. Experimental results with an ultra-precision spherical capacitive sensor show thermal drift error is significantly eliminated and the precision of the sensor can reach the level of several resolutions.

  8. Results of thermal performance evaluation of the Owens-Illinois sunpack liquid solar collector at indoor conditions

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Test procedures and results of the thermal performance of a liquid, evacuated tube, solar collector under simulated conditions are presented. The collector tested was a module used on the early demonstration projects.

  9. Numerical simulation of the thermal conditions in a sea bay water area used for water supply to nuclear power plants

    SciTech Connect

    Sokolov, A. S.

    2013-07-15

    Consideration is given to the numerical simulation of the thermal conditions in sea water areas used for both water supply to and dissipation of low-grade heat from a nuclear power plant on the shore of a sea bay.

  10. Effect of thermal shock on the decomposition of rocks under controlled laboratory conditions

    NASA Astrophysics Data System (ADS)

    Kasanin-Grubin, Milica; Vezmar, Tijuana; Kuhn, Nikolaus J.

    2013-04-01

    The major factor determining the rate of weathering of a given rock are the climatic conditions of the surrounding environment, most notably type and amount of precipitation and temperature. For the latter, average annual temperature and where applicable, the frequency of freezing and thawing are often considered to be relevant for weathering. The rate of temperature change is mostly ignored. However, a rapid change in temperature, referred to as thermal shock could have more severe consequences of rock deterioration then gradual heating and cooling of rocks is gradual. Thermal shock induces a stress of such a magnitude that the material is unable to adjust fast enough and so it breaks down. The aim of this study is to examine the importance of mechanical decomposition of rocks when treated with thermal shock by freezing. The rate of decomposition of rocks of various sizes was measured based on their weight loss. In addition, they were immersed in water after freezing and the electrical conductivity and pH of the water were measured as an index for thermal-shock induced micro-fracturing. Samples of three rock types were chosen for the experiment: limestone, tuffaceous rock and basalt. Samples were examined in two separate cycles: (i) 24h immersion in ultra-clean water followed by 24h drying at 30o and (ii) 24h immersion, 24h temperature shock by freezing at -20?C and 6h thawing. Each cycle was repeated approximately 20 times. In each cycle three different sizes of rock were examined: <16mm, 16-8mm and 8-5mm. Limestone mass decreased for both cycles, although more distinctly after repeated thermal shocks. Furthermore, the rate of decay decreased with increasing rock size. Tuffaceous rock exposed to cycle (i) also showed a significant weight loss. Somewhat surprisingly, the mass of the tuffaceous rock exposed to thermal shock increased by about 13% in all sample size groups. It is possible that pore volume increased during experiment and that the rocks became capable of absorbing more water, but the rock was elastic enough not to break under stress. On the basalt, as expected, the rate of weight loss was the smallest. Cylce (ii) samples also showed more intensive mass reduction. Electrical conductivity and pH of the immersion water were constant throughout the experiment and did not change with the number of cycles. This implies that no significant chemical disintegration occurred. The results show that thermal shock can have a rock type-specific effect on physical weathering. The lacking effect on chemical weathering is expected due to the design of the experiment. Under natural conditions, with non-pH neutral water, the declining rock stability, indicated by the loss of mass, especially of the limestone, will mostly likely also enhance leaching and thus chemical weathering.

  11. The influence of local effects on thermal sensation under non-uniform environmental conditions--gender differences in thermophysiology, thermal comfort and productivity during convective and radiant cooling.

    PubMed

    Schellen, L; Loomans, M G L C; de Wit, M H; Olesen, B W; van Marken Lichtenbelt, W D

    2012-09-10

    Applying high temperature cooling concepts, i.e. high temperature cooling (T(supply) is 16-20°C) HVAC systems, in the built environment allows the reduction in the use of (high quality) energy. However, application of high temperature cooling systems can result in whole body and local discomfort of the occupants. Non-uniform thermal conditions, which may occur due to application of high temperature cooling systems, can be responsible for discomfort. Contradictions in literature exist regarding the validity of the often used predicted mean vote (PMV) index for both genders, and the index is not intended for evaluating the discomfort due to non-uniform environmental conditions. In some cases, however, combinations of local and general discomfort factors, for example draught under warm conditions, may not be uncomfortable. The objective of this study was to investigate gender differences in thermophysiology, thermal comfort and productivity in response to thermal non-uniform environmental conditions. Twenty healthy subjects (10 males and 10 females, age 20-29 years) were exposed to two different experimental conditions: a convective cooling situation (CC) and a radiant cooling situation (RC). During the experiments physiological responses, thermal comfort and productivity were measured. The results show that under both experimental conditions the actual mean thermal sensation votes significantly differ from the PMV-index; the subjects are feeling colder than predicted. Furthermore, the females are more uncomfortable and dissatisfied compared to the males. For females, the local sensations and skin temperatures of the extremities have a significant influence on whole body thermal sensation and are therefore important to consider under non-uniform environmental conditions. PMID:22877870

  12. History of Sulphur Content Effects on the Thermal Stability of RP-1 under Heated Conditions

    NASA Technical Reports Server (NTRS)

    Irvine, Solveig A.; Schoettmer, Amanda K.; Bates, Ronald W.; Meyer, Michael L.

    2004-01-01

    As technologies advance in the aerospace industry, a strong desire has emerged to design more efficient, longer life, reusable liquid hydrocarbon fueled rocket engines. To achieve this goal, a more complete understanding of the thermal stability and chemical makeup of the hydrocarbon propellant is needed. Since the main fuel used in modern liquid hydrocarbon systems is RP-1, there is concern that Standard Grade RP-1 may not be a suitable propellant for future-generation rocket engines due to concern over the outdated Mil-Specification for the fuel. This current specification allows high valued limits on contaminants such as sulfur compounds, and also lacks specification of required thermal stability qualifications for the fuel. Previous studies have highlighted the detrimental effect of high levels of mercaptan sulfur content (^50 ppm) on copper rocket engine materials, but the fuel itself has not been studied. While the role of sulfur in other fuels (e.g., aviation, diesel, and automotive fuels) has been extensively studied, little has been reported on the effects of sulfur levels in rocket fuels. Lower RP-1 sulfur concentrations need to be evaluated and an acceptable sulfur limit established before RP-1 can be recommended for use as the propellant for future launch vehicles. (5 tables, 8 figures, 9 refs.)

  13. Impact of Thermal and Nonthermal Processing Technologies on Unfermented Apple Cider Aroma Volatiles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aroma composition and microbial quality of identical lots of apple cider treated by pulsed electric field (PEF), ultraviolet irradiation (UV), or thermal pasteurization and stored at 4 C were compared at 0, 2 and 4 weeks. Conditions for all three treatments were adjusted to produce identical 5 log ...

  14. The asymptotic equivalence of fixed heat flux and fixed temperature thermal boundary conditions for rapidly rotating convection

    NASA Astrophysics Data System (ADS)

    Calkins, Michael A.; Hale, Kevin; Julien, Keith; Nieves, David; Driggs, Derek; Marti, Philippe

    2015-12-01

    The influence of fixed temperature and fixed heat flux thermal boundary conditions on rapidly rotating convection in the plane layer geometry is investigated for the case of stress-free mechanical boundary conditions. It is shown that whereas the leading order system satisfies fixed temperature boundary conditions implicitly, a double boundary layer structure is necessary to satisfy the fixed heat flux thermal boundary conditions. The boundary layers consist of a classical Ekman layer adjacent to the solid boundaries that adjust viscous stresses to zero, and a layer in thermal wind balance just outside the Ekman layers adjusts the temperature such that the fixed heat flux thermal boundary conditions are satisfied. The influence of these boundary layers on the interior geostrophically balanced convection is shown to be asymptotically weak, however. Upon defining a simple rescaling of the thermal variables, the leading order reduced system of governing equations are therefore equivalent for both boundary conditions. These results imply that any horizontal thermal variation along the boundaries that varies on the scale of the convection has no leading order influence on the interior convection.

  15. Effects of service condition on rolling contact fatigue failure mechanism and lifetime of thermal spray coatingsA review

    NASA Astrophysics Data System (ADS)

    Cui, Huawei; Cui, Xiufang; Wang, Haidou; Xing, Zhiguo; Jin, Guo

    2015-01-01

    The service condition determines the Rolling Contact Fatigue(RCF) failure mechanism and lifetime under ascertain material structure integrity parameter of thermal spray coating. The available literature on the RCF testing of thermal spray coatings under various condition services is considerable; it is generally difficult to synthesize all of the result to obtain a comprehensive understanding of the parameters which has a great effect on a thermal spray coating's resistance of RCF. The effects of service conditions(lubrication states, contact stresses, revolve speed, and slip ratio) on the changing of thermal spray coatings' contact fatigue lifetime is introduced systematically. The effects of different service condition on RCF failure mechanism of thermal spray coating from the change of material structure integrity are also summarized. Moreover, In order to enhance the RCF performance, the parameter optimal design formula of service condition and material structure integrity is proposed based on the effect of service condition on thermal spray coatings' contact fatigue lifetime and RCF failure mechanism. The shortage of available literature and the forecast focus in future researches are discussed based on available research. The explicit result of RCF lifetime law and parameter optimal design formula in term of lubrication states, contact stresses, revolve speed, and slip ratio, is significant to improve the RCF performance on the engineering application.

  16. Focusing on the future: Solar thermal energy systems emerge as competitive technologies with major economic potential

    NASA Astrophysics Data System (ADS)

    1989-03-01

    Hundreds of thousands of U.S. citizens are now receiving a portion of their daily demand for electricity from large-scale solar thermal electric generating stations-power plants that use concentrated solar energy to drive electric power generators. Just as with coal, fuel oil, natural gas, and nuclear energy, concentrated solar energy can create working temperatures of around 600C and much higher. Also, solar power plants contribute almost nothing to the atmospheric greenhouse effect and pose few, if any, of the other environmental problems associated with conventional energy sources. As a result of research and development within the national Solar Thermal Technology Program of the U.S. Department of Energy (DOE), solar thermal energy is on the threshold of competing economically with conventional power plants and is now viable for international markets. Its potential for spurring American economic growth and exports is significant.

  17. Active infrared thermal imaging technology to detect the corrosion defects in aircraft cargo door

    NASA Astrophysics Data System (ADS)

    Chen, Dapeng; Zhang, Cunlin; Zeng, Zhi; Xing, Chunfei; Li, Yanhong

    2009-11-01

    Aircraft fuselage material corrosion problems have been major aviation security issues, which hinder the development of aviation industry. How can we use non-destructive testing methods to detect the internal corrosion defects from the outside of the fuselage, to find the hidden safety problems in advance and update the defective equipment and materials, has great significance for the prevention of accidents. Nowadays, the active infrared thermal imaging technology as a new nondestructive technology has been gradually used on a wide variety of materials, such as composite, metal and so on. This article makes use of this technology on an aircraft cargo door specimen to detect the corrosion defects. Firstly, use High-energy flash pulse to excite the specimen, and use the thermal image processing software to splice the thermal images, so the thermal images of the overall specimen can be showed. Then, heat the defects by ultrasonic excitation, this will cause vibration and friction or thermoelastic effects in the places of defects, so the ultrasonic energy will dissipate into heat and manifested in the uneven temperature of surface. An Infrared camera to capture the changes of temperature of material surface, send data to the computer and records the thermal information of the defects. Finally, extracting data and drawing infrared radiation-time curve of some selected points of interest to analyze the signal changes in heat of defects further more. The results of the experiments show that both of the two ways of heat excitation show a clear position and shape of defects, and the ultrasonic method has more obvious effect of excitation to the defects, and a higher signal to noise ratio than the flash pulse excitation, but flash pulse method do not contact the specimen in the process of excitation, and shows the location and shape of defects in the overall of the specimen has its advantages.

  18. Innovative nuclear thermal propulsion technology evaluation: Results of the NASA/DOE Task Team study

    SciTech Connect

    Howe, S. ); Borowski, S. . Lewis Research Center); Motloch, C. ); Helms, I. ); Diaz, N.; Anghaie, S. ); Latham, T. (United

    1991-01-01

    In response to findings from two NASA/DOE nuclear propulsion workshops held in the summer of 1990, six task teams were formed to continue evaluation of various nuclear propulsion concepts. The Task Team on Nuclear Thermal Propulsion (NTP) created the Innovative Concepts Subpanel to evaluate thermal propulsion concepts which did not utilize solid fuel. The Subpanel endeavored to evaluate each of the concepts on a level technological playing field,'' and to identify critical technologies, issues, and early proof-of-concept experiments. The concepts included the liquid core fission, the gas core fission, the fission foil reactors, explosively driven systems, fusion, and antimatter. The results of the studies by the panel will be provided. 13 refs., 6 figs., 2 tabs.

  19. Thermal power systems, point-focusing distributed receiver technology project. Volume 2: Detailed report

    NASA Technical Reports Server (NTRS)

    Lucas, J.

    1979-01-01

    Thermal or electrical power from the sun's radiated energy through Point-Focusing Distributed Receiver technology is the goal of this Project. The energy thus produced must be economically competitive with other sources. The Project supports the industrial development of technology and hardware for extracting energy from solar power to achieve the stated goal. Present studies are working to concentrate the solar energy through mirrors or lenses, to a working fluid or gas, and through a power converter change to an energy source useful to man. Rankine-cycle and Brayton-cycle engines are currently being developed as the most promising energy converters for our near future needs.

  20. Design Factors for Applying Cryogen Storage and Delivery Technology to Solar Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Millis, Marc G.

    1996-01-01

    Thermodynamic Vent System (TVS) and Multilayer Insulation (MLI) technology, originally developed for long term storage of cryogen propellants in microgravity, is ideally suited for propellant storage and delivery systems for solar thermal propulsion. With this technology the heat-induced pressure rise in the tank provides the propellant delivery pressure without the need for an auxiliary pressurant system, and propellant delivery is used to remove the excess heat to control tank pressure. The factors to consider in designing such a balanced system, are presented. An example of a minimum system design is presented along with examples of laboratory-tested hardware.

  1. Innovative nuclear thermal propulsion technology evaluation - Results of the NASA/DOE task team study

    NASA Technical Reports Server (NTRS)

    Howe, Steven D.; Borowski, Stanley; Motloch, Chet; Helms, Ira; Diaz, Nils; Anghaie, Samim; Latham, Thomas

    1991-01-01

    In response to findings from two NASA/DOE nuclear propulsion workshops, six task teams were created to continue evaluation of various propulsion concepts, from which evolved an innovative concepts subpanel to evaluate thermal propulsion concepts which did not utilize solid fuel. This subpanel endeavored to evaluate each concept on a level technology basis, and to identify critical issues, technologies, and early proof-of-concept experiments. Results of the concept studies including the liquid core fission, the gas core fission, the fission foil reactors, explosively driven systems, fusion, and antimatter are presented.

  2. A long-term strategic plan for development of solar thermal electric technology

    SciTech Connect

    Williams, T.A.; Burch, G.; Chavez, J.M.; Mancini, T.R.; Tyner, C.E.

    1997-06-01

    Solar thermal electric (STE) technologies--parabolic troughs, power towers, and dish/engine systems--can convert sunlight into electricity efficiently and with minimum effect on the environment. These technologies currently range from developmental to early commercial stages of maturity. This paper summarizes the results of a recent strategic planning effort conducted by the US department of Energy (DOE) to develop a long-term strategy for the development of STE technologies. The planning team led by DOE included representatives from the solar thermal industry, domestic utilities, state energy offices, and Sun{center_dot}Lab (the cooperative Sandia National laboratories/National Renewable Energy Laboratory partnership that supports the STE Program) as well as project developers. The plan was aimed at identifying specific activities necessary to achieve the DOE vision of 20 gigawatts of installed STE capability by the year 2020. The planning team developed five strategies that both build on the strengths of, and opportunities for, STE technology and address weaknesses and threats. These strategies are to: support future commercial opportunities for STE technologies; demonstrate improved performance and reliability of STE components and systems; reduce STE energy costs; develop advanced STE systems and applications; and address nontechnical barriers and champion STE power. The details of each of these strategies are discussed.

  3. A long-term strategic plan for development of solar thermal electric technology

    SciTech Connect

    Williams, T.A.; Burch, G.D.; Chavez, J.M.; Mancini, T.R.; Tyner, C.E.

    1997-06-01

    Solar thermal electric (STE) technologies--parabolic troughs, power towers, and dish/engine systems--can convert sunlight into electricity efficiently and with minimum effect on the environment. These technologies currently range from developmental to early commercial stages of maturity. This paper summarizes the results of a recent strategic planning effort conducted by the US Department of Energy (DOE) to develop a long-term strategy for the development of STE technologies (DOE, 1996). The planning team led by DOE included representatives from the solar thermal industry, domestic utilities, state energy offices, and Sun-Lab (the cooperative Sandia National Laboratories/National Renewable Energy Laboratory partnership that supports the STE Program) as well as project developers. The plan was aimed at identifying specific activities necessary to achieve the DOE vision of 20 gigawatts of installed STE capacity by the year 2020. The planning team developed five strategies that both build on the strengths of, and opportunities for, STE technology and address weaknesses and threats. These strategies are to support future commercial opportunities for STE technologies; demonstrate improved performance and reliability of STE components and systems; reduce STE energy costs; develop advanced STE systems and applications; and address nontechnical barriers and champion STE power. The details of each of these strategies are discussed.

  4. Building Thermal Envelope Systems and Materials (BTESM) and research utilization/technology transfer

    SciTech Connect

    Burn, G.

    1990-07-01

    The Monthly Report of the Building Thermal Envelope Systems and Materials (BTESM) Programs is a monthly update of both in-house ORNL projects and subcontract activities in the research areas of building materials, wall systems, foundations, roofs, building diagnostics, and research utilization and technology transfer. Presentations are not stand-alone paragraphs every month. Their principal values are the short-time lapse between accomplishment and reporting and their evolution over a period of several months..

  5. Technology Potential of Thermal Energy Storage (TES) Systems in Federal Facilities

    SciTech Connect

    Chvala, William D.

    2001-07-31

    This document presents the findings of a technology market assessment for thermal energy storage (TES) in space cooling applications. The potential impact of TES in Federal facilities is modeled using the Federal building inventory with the appropriate climatic and energy cost data. In addition, this assessment identified acceptance issues and major obstacles through interviews with energy services companies (ESCOs), TES manufacturers, and Federal facility staff.

  6. Thermal Energy for Lunar In Situ Resource Utilization: Technical Challenges and Technology Opportunities

    NASA Technical Reports Server (NTRS)

    Gordon, Pierce E. C.; Colozza, Anthony J.; Hepp, Aloysius F.; Heller, Richard S.; Gustafson, Robert; Stern, Ted; Nakamura, Takashi

    2011-01-01

    Oxygen production from lunar raw materials is critical for sustaining a manned lunar base but is very power intensive. Solar concentrators are a well-developed technology for harnessing the Sun s energy to heat regolith to high temperatures (over 1375 K). The high temperature and potential material incompatibilities present numerous technical challenges. This study compares and contrasts different solar concentrator designs that have been developed, such as Cassegrains, offset parabolas, compound parabolic concentrators, and secondary concentrators. Differences between concentrators made from lenses and mirrors, and between rigid and flexible concentrators are also discussed. Possible substrate elements for a rigid mirror concentrator are selected and then compared, using the following (target) criteria: (low) coefficient of thermal expansion, (high) modulus of elasticity, and (low) density. Several potential lunar locations for solar concentrators are compared; environmental and processing-related challenges related to dust and optical surfaces are addressed. This brief technology survey examines various sources of thermal energy that can be utilized for materials processing on the lunar surface. These include heat from nuclear or electric sources and solar concentrators. Options for collecting and transporting thermal energy to processing reactors for each source are examined. Overall system requirements for each thermal source are compared and system limitations, such as maximum achievable temperature are discussed.

  7. In-Flight Thermal Performance of the Lidar In-Space Technology Experiment

    NASA Technical Reports Server (NTRS)

    Roettker, William

    1995-01-01

    The Lidar In-Space Technology Experiment (LITE) was developed at NASA s Langley Research Center to explore the applications of lidar operated from an orbital platform. As a technology demonstration experiment, LITE was developed to gain experience designing and building future operational orbiting lidar systems. Since LITE was the first lidar system to be flown in space, an important objective was to validate instrument design principles in such areas as thermal control, laser performance, instrument alignment and control, and autonomous operations. Thermal and structural analysis models of the instrument were developed during the design process to predict the behavior of the instrument during its mission. In order to validate those mathematical models, extensive engineering data was recorded during all phases of LITE's mission. This inflight engineering data was compared with preflight predictions and, when required, adjustments to the thermal and structural models were made to more accurately match the instrument s actual behavior. The results of this process for the thermal analysis and design of LITE are presented in this paper.

  8. Thermal performance of a scramjet combustor operating at Mach 5.6 flight conditions. Final report, May 1996--May 1997

    SciTech Connect

    Stouffer, S.D.; Neumann, R.D.; Emmer, D.S.

    1997-10-01

    This report describes the experimental data and the procedures used in acquiring and reducing the thermal loads data during tests of a hydrocarbon-fueled scramjet combustor at United Technologies Research Center (UTRC). This research effort is part of the UTRC effort to develop dual-mode scramjet combustor technology to support the development of Mach S missile technology. The objective of the thermal loads testing was to map the thermal and mechanical loads, including heat transfer, dynamic and static pressures, and skin friction in a scramjet combustor during direct-connect scramjet tests. The tests were conducted at the UTRC Ramject/Scramjet direct-connect combustor test facility in East Hartford, CT.

  9. Effects of Thermal and Cryogenic Conditionings on Flexural Behavior of Thermally Shocked Cu-Al2O3 Micro and NanoComposites

    NASA Astrophysics Data System (ADS)

    Dash, Khushbu; Panda, Sujata; Ray, Bankim Chandra

    2013-10-01

    This investigation has used flexural test to explore the effects of thermal treatments, i.e., high-temperature and cryogenic environments on the mechanical property of Al2O3 particulate-reinforced Cu metal matrix micro and nanocomposites in ex-situ and in-situ conditions. Cu-5 vol. pct Al2O3 micro (10 ?m)- and nanocomposites (<50 nm) fabricated by powder metallurgy route were subjected to up-thermal shock cycle [193 K to 353 K (-80 C to 80 C)] and down-thermal shock cycle [353 K to 193 K (from 80 C to -80 C)] for different time periods followed by 3-point bend test. One batch of specimens (micro and nanocomposites) was conditioned at 353 K and 193 K (80 C and -80 C) separately followed by 3-point flexural test. High-temperature flexural test was performed at 373 K and 523 K (80 C and 250 C) on the micro and nanocomposites. All the fractured samples obtained after various thermal treatments were studied under scanning electron microscope (SEM). The development of thermal stresses quite often results in concentration of residual stresses at the particle/matrix interface eventually weakening it. Enhancement of flexural strength was recorded for down- as well as for up-thermal shock in microcomposites. The high-temperature flexural strengths of micro and nanocomposites are lower than those at ambient temperature. The amelioration and declination in mechanical properties as a consequence of thermal shock, thermal conditioning, and high-temperature flexural testing have been discussed in the light of fractography.

  10. Anaerobic digestion of raw and thermally hydrolyzed wastewater solids under various operational conditions.

    PubMed

    Wilson, Christopher A; Tanneru, Charan T; Banjade, Sarita; Murthy, Sudhir N; Novak, John T

    2011-09-01

    In this study, high-solids anaerobic digestion of thermally pretreated wastewater solids (THD) was compared with conventional mesophilic anaerobic digestion (MAD). Operational conditions, such as pretreatment temperature (150 to 170 degrees C), solids retention time (15 to 20 days), and digestion temperature (37 to 42 degrees C), were varied for the seven THD systems operated. Volatile solids reduction (VSR) by THD ranged from 56 to 62%, compared with approximately 50% for MAD. Higher VSR contributed to 24 to 59% increased biogas production (m3/kg VSR-d) from THD relative to MAD. The high-solids conditions of the THD feed resulted in high total ammonia-nitrogen (proportional to solids loading) and total alkalinity concentrations in excess of 14 g/L as calcium carbonate (CaCO3). Increased pH in THD reactors caused 5 to 8 times more un-ionized ammonia to be present than in MAD, and this likely led to inhibition of aceticlastic methanogens, resulting in accumulation of residual volatile fatty acids between 2 and 6 g/L as acetic acid. The THD produced biosolids cake that possessed low organic sulfur-based biosolids odor and dewatered to between 33 and 39% total solids. Dual conditioning with cationic polymer and ferric chloride was shown to be an effective strategy for mitigating dissolved organic nitrogen and UV-quenching compounds in the return stream following centrifugal dewatering of THD biosolids. PMID:22073729

  11. Influence of thermal boundary conditions on heat transfer from a cylinder in cross flow

    NASA Technical Reports Server (NTRS)

    Papell, S. S.

    1981-01-01

    Local heat transfer data over the leading surface of a cylinder in crossflow were obtained for a Reynolds number range of 50,000. The cylinder was operated at both uniform-wall-temperature and uniform-heat-flux thermal ance of 80 deg from the front stagnation point, the uniform-wall-temperature heat transfer coefficients were as much as 66 percent lower than the uniform-heat-flux data. Between the stagnation point and 60 deg around the cylinder, there were no significant differences in the data. This region of the cylinder is within the cylindrical curvature region of the front end of a real turbine so it was concluded that either thermal boundary condition could be used to model turbine flow over that region of the blade. Results of evaluating the exponent x in the fundamental relationship Nu=f(Re) sup x, which is used in data correlation show the exponent varies as a function of local position on the cylinder even in the laminar flow region. The value of x increases linearly from 0.50 at the stagnation point to 0.59 at 60 deg around the cylinder. This linear trend continued into the separation region at 80 deg for the uniform-wall-temperature data, but x increased markedly in the separation region for the uniform-heat-flux data.

  12. G-jitter induced magnetohydrodynamics flow of nanofluid with constant convective thermal and solutal boundary conditions.

    PubMed

    Uddin, Mohammed J; Khan, Waqar A; Ismail, Ahmad Izani Md

    2015-01-01

    Taking into account the effect of constant convective thermal and mass boundary conditions, we present numerical solution of the 2-D laminar g-jitter mixed convective boundary layer flow of water-based nanofluids. The governing transport equations are converted into non-similar equations using suitable transformations, before being solved numerically by an implicit finite difference method with quasi-linearization technique. The skin friction decreases with time, buoyancy ratio, and thermophoresis parameters while it increases with frequency, mixed convection and Brownian motion parameters. Heat transfer rate decreases with time, Brownian motion, thermophoresis and diffusion-convection parameters while it increases with the Reynolds number, frequency, mixed convection, buoyancy ratio and conduction-convection parameters. Mass transfer rate decreases with time, frequency, thermophoresis, conduction-convection parameters while it increases with mixed convection, buoyancy ratio, diffusion-convection and Brownian motion parameters. To the best of our knowledge, this is the first paper on this topic and hence the results are new. We believe that the results will be useful in designing and operating thermal fluids systems for space materials processing. Special cases of the results have been compared with published results and an excellent agreement is found. PMID:25933066

  13. G-Jitter Induced Magnetohydrodynamics Flow of Nanofluid with Constant Convective Thermal and Solutal Boundary Conditions

    PubMed Central

    Uddin, Mohammed J.; Khan, Waqar A.; Ismail, Ahmad Izani Md.

    2015-01-01

    Taking into account the effect of constant convective thermal and mass boundary conditions, we present numerical solution of the 2-D laminar g-jitter mixed convective boundary layer flow of water-based nanofluids. The governing transport equations are converted into non-similar equations using suitable transformations, before being solved numerically by an implicit finite difference method with quasi-linearization technique. The skin friction decreases with time, buoyancy ratio, and thermophoresis parameters while it increases with frequency, mixed convection and Brownian motion parameters. Heat transfer rate decreases with time, Brownian motion, thermophoresis and diffusion-convection parameters while it increases with the Reynolds number, frequency, mixed convection, buoyancy ratio and conduction-convection parameters. Mass transfer rate decreases with time, frequency, thermophoresis, conduction-convection parameters while it increases with mixed convection, buoyancy ratio, diffusion-convection and Brownian motion parameters. To the best of our knowledge, this is the first paper on this topic and hence the results are new. We believe that the results will be useful in designing and operating thermal fluids systems for space materials processing. Special cases of the results have been compared with published results and an excellent agreement is found. PMID:25933066

  14. Thermal traction contact performance evaluation under fully flooded and starved conditions

    NASA Technical Reports Server (NTRS)

    Tevaarwerk, J. L.

    1985-01-01

    Ultra high speed traction tests were performed on two traction fluids commonly employed. Traction data on these fluids is required for purposes of traction drive design optimization techniques. To obtain the traction data, an existing twin disc traction test machine was employed. This machine was modified to accommodate the range of test variables. All the data reported was obtained under conditions of side slip, a technique whereby only low power levels are required to simulate real traction drive contacts. Theoretical traction predictions were performed for a representative number of curves that showed the influence of rolling velocity, of contact pressure and of aspect ratio. To establish the accuracy of the thermal model the predictions were performed ith increasing levels of independence of experimentally determined parameters. In the final resulting prediction only two non linear thermal parameters were used for the prediction of 15 different traction curves covering the entire range of variables as used in the investigation, with the exception of the influence of asperity traction. Comparison of these theoretical curves and corresponding experimental traces show very good agreement.

  15. Numerical simulations of thermal convection in rotating spherical shells under laboratory conditions

    NASA Astrophysics Data System (ADS)

    Garcia, Ferran; Sánchez, Juan; Net, Marta

    2014-05-01

    An exhaustive study, based on numerical three-dimensional simulations, of the Boussinesq thermal convection of a fluid confined in a rotating spherical shell is presented. A moderately low Prandtl number fluid (σ=0.1) bounded by differentially-heated solid spherical shells is mainly considered. Asymptotic power laws for the mean physical properties of the flows are obtained in the limit of low Rossby number and compared with laboratory experiments and with previous numerical results computed by taking either stress-free boundary conditions or quasi-geostrophic restrictions, and with geodynamo models. Finally, using parameters as close as possible to those of the Earth's outer core, some estimations of the characteristic time and length scales of convection are given.

  16. The detectability of Arctic leads using thermal imagery under varying atmospheric conditions

    NASA Technical Reports Server (NTRS)

    Stone, Robert S.; Key, Jeffrey R.

    1993-01-01

    The way in which thermal contrast between leads of varying widths and thickness can be distinguished from the background multiyear ice surface under varying atmospheric conditions is examined. The normalized brightness temperature difference between image pixels that include lead fractions and of the background ice is employed to determine thresholds of detection accounting for sensor FOV and various atmospheric phenomena that influence the Arctic radiation balance during winter. Surface temperatures are prescribed as a function of ice thickness, and the effects of the intervening atmosphere are simulated by varying the optical depths of hypothetic cloud or haze layers varying in microphysical characteristics. It is found that the limits of lead detection may be determined as a function of pixel lead fraction and atmospheric optical depth if suitable values of normalized contrast are used as detection criteria.

  17. Photopyroelectric Monitoring of Olive's Ripening Conditions and Olive Oil Quality Using Pulsed Wideband IR Thermal Source

    NASA Astrophysics Data System (ADS)

    Abu-Taha, M. I.; Sarahneh, Y.; Saleh, A. M.

    The present study is based on band absorption of radiation from pulsed wideband infrared (IR) thermal source (PWBS) in conjunction with polyvinylidene fluoride film (PVDF). It is the first time to be employed to monitor the ripening state of olive fruit. Olive's characteristics vary at different stages of ripening, and hence, cultivation of olives at the right time is important in ensuring the best oil quality and maximizes the harvest yield. The photopyroelectric (PPE) signal resulting from absorption of wideband infrared (IR) radiation by fresh olive juice indicates the ripening stage of olives, i.e., allows an estimate of the suitable harvest time. The technique was found to be very useful in discriminating between olive oil samples according to geographical region, shelf life, some storage conditions, and deliberate adulteration. Our results for monitoring oil accumulation in olives during the ripening season agree well with the complicated analytical studies carried out by other researchers.

  18. NREL's Energy-Saving Technology for Air Conditioning Cuts Peak Power Loads Without Using Harmful Refrigerants (Fact Sheet)

    SciTech Connect

    Not Available

    2012-07-01

    This fact sheet describes how the DEVAP air conditioner was invented, explains how the technology works, and why it won an R&D 100 Award. Desiccant-enhanced evaporative (DEVAP) air-conditioning will provide superior comfort for commercial buildings in any climate at a small fraction of the electricity costs of conventional air-conditioning equipment, releasing far less carbon dioxide and cutting costly peak electrical demand by an estimated 80%. Air conditioning currently consumes about 15% of the electricity generated in the United States and is a major contributor to peak electrical demand on hot summer days, which can lead to escalating power costs, brownouts, and rolling blackouts. DEVAP employs an innovative combination of air-cooling technologies to reduce energy use by up to 81%. DEVAP also shifts most of the energy needs to thermal energy sources, reducing annual electricity use by up to 90%. In doing so, DEVAP is estimated to cut peak electrical demand by nearly 80% in all climates. Widespread use of this cooling cycle would dramatically cut peak electrical loads throughout the country, saving billions of dollars in investments and operating costs for our nation's electrical utilities. Water is already used as a refrigerant in evaporative coolers, a common and widely used energy-saving technology for arid regions. The technology cools incoming hot, dry air by evaporating water into it. The energy absorbed by the water as it evaporates, known as the latent heat of vaporization, cools the air while humidifying it. However, evaporative coolers only function when the air is dry, and they deliver humid air that can lower the comfort level for building occupants. And even many dry climates like Phoenix, Arizona, have a humid season when evaporative cooling won't work well. DEVAP extends the applicability of evaporative cooling by first using a liquid desiccant-a water-absorbing material-to dry the air. The dry air is then passed to an indirect evaporative cooling stage, in which the incoming air is in thermal contact with a moistened surface that evaporates the water into a separate air stream. As the evaporation cools the moistened surface, it draws heat from the incoming air without adding humidity to it. A number of cooling cycles have been developed that employ indirect evaporative cooling, but DEVAP achieves a superior efficiency relative to its technological siblings.

  19. Heating, ventilating, and air conditioning deactivation thermal analysis of PUREX Plant

    SciTech Connect

    Chen, W.W.; Gregonis, R.A.

    1997-08-01

    Thermal analysis was performed for the proposed Plutonium Uranium Extraction Plant exhaust system after deactivation. The purpose of the analysis was to determine if enough condensation will occur to plug or damage the filtration components. A heat transfer and fluid flow analysis was performed to evaluate the thermal characteristics of the underground duct system, the deep-bed glass fiber filter No. 2, and the high-efficiency particulate air filters in the fourth filter building. The analysis is based on extreme variations of air temperature, relative humidity, and dew point temperature using 15 years of Hanford Site weather data as a basis. The results will be used to evaluate the need for the electric heaters proposed for the canyon exhaust to prevent condensation. Results of the analysis indicate that a condition may exist in the underground ductwork where the duct temperature can lead or lag changes in the ambient air temperature. This condition may contribute to condensation on the inside surfaces of the underground exhaust duct. A worst case conservative analysis was performed assuming that all of the water is removed from the moist air over the inside surface of the concrete duct area in the fully developed turbulent boundary layer while the moist air in the free stream will not condense. The total moisture accumulated in 24 hours is negligible. Water puddling would not be expected. The results of the analyses agree with plant operating experiences. The filters were designed to resist high humidity and direct wetting, filter plugging caused by slight condensation in the upstream duct is not a concern. 19 refs., 2 figs.

  20. Relevant influence of limestone crystallinity on CO? capture in the Ca-looping technology at realistic calcination conditions.

    PubMed

    Valverde, J M; Sanchez-Jimenez, P E; Perez-Maqueda, L A

    2014-08-19

    We analyze the role of limestone crystallinity on its CO2 capture performance when subjected to carbonation/calcination cycles at conditions mimicking the Ca-looping (CaL) technology for postcombustion CO2 capture. The behavior of raw and pretreated limestones (milled and thermally annealed) is investigated by means of thermogravimetric analysis (TGA) tests under realistic sorbent regeneration conditions, which necessarily involve high CO2 partial pressure in the calciner and quick heating rates. The pretreatments applied lead to contrasting effects on the solid crystal structure and, therefore, on its resistance to solid-state diffusion. Our results show that decarbonation at high CO2 partial pressure is notably promoted by decreasing solid crystallinity. CaO regeneration is fully achieved under high CO2 partial pressure at 900 C in short residence times for the milled limestone whereas complete regeneration for raw limestone requires a minimum calcination temperature of about 950 C. Such a reduction of the calcination temperature and the consequent mitigation of multicyclic capture capacity decay would serve to enhance the efficiency of the CaL technology. On the other hand, the results of our study suggest that the use of highly crystalline limestones would be detrimental since excessively high calcination temperatures should be required to attain full decarbonation at realistic conditions. PMID:25029532

  1. Simulating the thermal operating conditions in the thermal wells of ground-source heat-pump heat supply systems. Part I: Porous moisture freezing processes in soil

    NASA Astrophysics Data System (ADS)

    Vasilyev, G. P.; Peskov, N. V.; Lichman, V. A.; Gornov, V. F.; Kolesova, M. V.

    2015-08-01

    The mathematical models laid down in the new blocks of the INSOLAR.GSHP.12 software system simulating unsteady operating conditions of ground-source heat-pump (GSHP) heat supply systems are presented. The new model blocks take into account the effect the freezing of porous moisture in soil has on the GSHP system performance efficiency. Illustration is given to the need of taking into account the porous moisture freezing/thawing processes in soil, and the results from investigations devoted to the opening possibilities of constructing adaptive GSHP systems with controlled intensity of heat transfer in the soil-thermal well system are presented. The development of software simulating the porous moisture phase state variation processes in soil was preceded by development of mathematical equations representing the thermal conditions of soil body involving porous moisture freezing/thawing processes. A description of these equations is also given in the article. In constructing the mathematical model, the notion "effective thermal conductivity" of soil was introduced for taking into account the latent heat of phase transition that releases during the freezing of moisture. The above-mentioned effective thermal conductivity of soil involves two components: the soil thermal conductivity coefficient itself and an additional term modifying the thermal conductivity value for taking into account the influence of phase transition. For quantitatively evaluating the soil effective thermal conductivity component that takes into account the influence of phase transition, the soil freezing zone radius around the thermal well was determined. The obtained analytic solutions have been implemented in the form of computer program blocks, after which a "numerical experiment" was carried out for estimating the effect the porous moisture freezing/thawing processes have on the soil thermal conditions. It was demonstrated during that experiment that the soil thermal conductivities determined without taking the porous moisture freezing/thawing phase transitions can differ from those determined with taking these transitions into account by a factor of 2 or more. A conclusion has been drawn from these findings about the importance of taking the phase transition phenomena into account in modeling the parameters of thermal wells and of the GSHP system as a whole.

  2. Human thermal comfort conditions and urban planning in hot-humid climates—The case of Cuba

    NASA Astrophysics Data System (ADS)

    Rodríguez Algeciras, José Abel; Coch, Helena; De la Paz Pérez, Guillermo; Chaos Yeras, Mabel; Matzarakis, Andreas

    2015-12-01

    Climate regional characteristics, urban environmental conditions, and outdoors thermal comfort requirements of residents are important for urban planning. Basic studies of urban microclimate can provide information and useful resources to predict and improve thermal conditions in hot-humid climatic regions. The paper analyzes the thermal bioclimate and its influence as urban design factor in Cuba, using Physiologically Equivalent Temperature (PET). Simulations of wind speed variations and shade conditions were performed to quantify changes in thermal bioclimate due to possible modifications in urban morphology. Climate data from Havana, Camagüey, and Santiago of Cuba for the period 2001 to 2012 were used to calculate PET with the RayMan model. The results show that changes in meteorological parameters influence the urban microclimate, and consequently modify the thermal conditions in outdoors spaces. Shade is the predominant strategy to improve urban microclimate with more significant benefits in terms of PET higher than 30 °C. For climatic regions such as the analyzed ones, human thermal comfort can be improved by a wind speed modification for thresholds of PET above 30 °C, and by a wind speed decreases in conditions below 26 °C. The improvement of human thermal conditions is crucial for urban sustainability. On this regards, our study is a contribution for urban designers, due to the possibility of taking advantage of results for improving microclimatic conditions based on urban forms. The results may enable urban planners to create spaces that people prefer to visit, and also are usable in the reconfiguration of cities.

  3. Effect of fee-for-service air-conditioning management in balancing thermal comfort and energy usage

    NASA Astrophysics Data System (ADS)

    Chen, Chen-Peng; Hwang, Ruey-Lung; Shih, Wen-Mei

    2014-02-01

    Balancing thermal comfort with the requirement of energy conservation presents a challenge in hot and humid areas where air-conditioning (AC) is frequently used in cooling indoor air. A field survey was conducted in Taiwan to demonstrate the adaptive behaviors of occupants in relation to the use of fans and AC in a school building employing mixed-mode ventilation where AC use was managed under a fee-for-service mechanism. The patterns of using windows, fans, and AC as well as the perceptions of students toward the thermal environment were examined. The results of thermal perception evaluation in relation to the indoor thermal conditions were compared to the levels of thermal comfort predicted by the adaptive models described in the American Society of Heating, Refrigerating, and Air-Conditioning Engineers Standard 55 and EN 15251 and to that of a local model for evaluating thermal adaption in naturally ventilated buildings. A thermal comfort-driven adaptive behavior model was established to illustrate the probability of fans/AC use at specific temperature and compared to the temperature threshold approach to illustrate the potential energy saving the fee-for-service mechanism provided. The findings of this study may be applied as a reference for regulating the operation of AC in school buildings of subtropical regions.

  4. Effect of fee-for-service air-conditioning management in balancing thermal comfort and energy usage.

    PubMed

    Chen, Chen-Peng; Hwang, Ruey-Lung; Shih, Wen-Mei

    2014-11-01

    Balancing thermal comfort with the requirement of energy conservation presents a challenge in hot and humid areas where air-conditioning (AC) is frequently used in cooling indoor air. A field survey was conducted in Taiwan to demonstrate the adaptive behaviors of occupants in relation to the use of fans and AC in a school building employing mixed-mode ventilation where AC use was managed under a fee-for-service mechanism. The patterns of using windows, fans, and AC as well as the perceptions of students toward the thermal environment were examined. The results of thermal perception evaluation in relation to the indoor thermal conditions were compared to the levels of thermal comfort predicted by the adaptive models described in the American Society of Heating, Refrigerating, and Air-Conditioning Engineers Standard 55 and EN 15251 and to that of a local model for evaluating thermal adaption in naturally ventilated buildings. A thermal comfort-driven adaptive behavior model was established to illustrate the probability of fans/AC use at specific temperature and compared to the temperature threshold approach to illustrate the potential energy saving the fee-for-service mechanism provided. The findings of this study may be applied as a reference for regulating the operation of AC in school buildings of subtropical regions. PMID:24510118

  5. Thermal power systems point-focusing distributed receiver technology project. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Lucas, J.

    1979-01-01

    Thermal or electrical power from the sun's radiated energy through Point-Focusing Distributed Receiver Technology is the goal of this project. The energy thus produced must be technically, as well as economically, competitive with other energy sources. This project is to support the industrial development of the required technology to achieve the above stated goal. Solar energy is concentrated by either a reflecting surface or a lense to a receiver where it is transferred to a working liquid or gas. Receiver temperatures are in the 1000 - 2000 F range. Conceptual design studies are expected to identify power conversion units with a viable place in the solar energy future. Rankine and Brayton cycle engines are under investigation. This report details the Jet Propulsion Laboratory's accomplishments with point-focusing technology in Fy 1978.

  6. Technology of melting REM-Fe-Co-B alloys for thermally stable magnets

    NASA Astrophysics Data System (ADS)

    Min, P. G.; Vadeev, V. E.; Evgenov, A. G.; Piskorskii, V. P.

    2015-11-01

    A technology of making REM-Fe-Co-B (REM = rare-earth metal) alloys for thermally stable magnets is developed. This technology ensures a stable chemical composition (REM content deviation of ±1.0 wt % from the calculated value, Co and B content deviation of ±0.5 wt %) and a low impurity content (Al or Ni ≤ 0.2 wt %, [O] ≤ 0.1 wt %). This technology makes it possible to make Pr-Dy-Fe-Co-B alloys and more complex compositions with additional REM, e.g., gadolinium. Fe-Pr and Fe-Dy master alloys are chosen and melted, and the possibility of using them to make Pr-Dy-Fe-Co-B alloys is studied.

  7. Solar thermal power systems point-focusing distributed receiver /PFDR/ technology - A project description

    NASA Technical Reports Server (NTRS)

    Lucas, J. W.; Roschke, E. J.

    1978-01-01

    The goal of the Project is to support the industrial development of PFDR technology that will provide favorable life-cycle costs per unit of electrical or thermal energy produced. The technology will be made available in the early 1980s for applications project experiments. PFDR systems utilize concentrator dishes to furnish energy to their own individual receivers and power conversion subsystems. Initial effort is with steam Rankine and gas Brayton cycles. Periodic assessments will be made to confirm or change the cycles initially selected. Subsystems will be designed, fabricated and tested together in modules as appropriate. This paper describes PFDR systems briefly, outlines the project goals and organization, discusses the plans and current status of the project, and lists the benefits of PFDR technology concepts.

  8. Investigation of thermal degradation with extrusion-based dispensing modules for 3D bioprinting technology.

    PubMed

    Lee, Hyungseok; Yoo, James J; Kang, Hyun-Wook; Cho, Dong-Woo

    2016-01-01

    Recently, numerous three-dimensional (3D) bioprinting systems have been introduced for the artificial regeneration of tissues. Among them, the extrusion-based dispensing module is the most widely used because of the processability it gives various biomaterials. The module uses high forces and temperature to dispense materials through a micro-nozzle. Generally, the harsh conditions induce thermal degradation of the material in the dispensing procedure. The thermal degradation affects the properties of the materials, and the change of the properties should be carefully controlled, because it severely affects the regeneration of tissues. Therefore, in this research, the relationship between the dispensing module and the thermal degradation of material was investigated. Extrusion-based dispensing modules can be divided into the syringe type (ST) and filament type (FT) based on working principles. We prepared a poly lactic-co-glycolic acid (PLGA) scaffold with the two methods at various time points. Then, the characteristics of the printed scaffolds were assessed by measuring molecular weight (M w), glass transition temperature (T g), in vitro degradation, compressive modulus, and cytocompatibility. The results showed that the PLGA scaffold with the FT dispensing module maintained its properties regardless of printing time points. In contrast, severe thermal degradation was observed in the scaffold group prepared by the ST dispensing module. Consequentially, it was obvious that the FT dispensing module was more suitable for producing scaffolds without severe thermal degradation. PMID:26844711

  9. Radical-assisted melanoidin formation during thermal processing of foods as well as under physiological conditions.

    PubMed

    Hofmann, T; Bors, W; Stettmaier, K

    1999-02-01

    Color-generating reactions of protein-bound lysine with carbohydrates were studied under thermal as well as under physiological conditions to gain insights into the role of protein/carbohydrate reactions in the formation of food melanoidins as well as nonenzymatic browning products in vivo. EPR spectroscopy of orange-brown melanoidins, which were isolated from heated aqueous solutions of bovine serum albumin and glycolaldehyde, revealed the protein-bound 1,4-bis(5-amino-5-carboxy-1-pentyl)pyrazinium radical cation (CROSSPY) as a previously unknown type of cross-linking amino acid leading to protein dimerization. To verify their formation in foods, wheat bread crust and roasted cocoa as well as coffee beans, showing elevated nonenzymatic browning, were investigated by EPR spectroscopy. An intense radical was detected, which, by comparison with the radical formed upon reaction bovine serum albumin with glycolaldehyde, was identified as the protein-bound CROSSPY. The radical-assisted protein oligomerization as well as the browning of bovine serum albumin in the presence of glycolaldehyde occurred also rapidly under physiological conditions, thereby suggesting CROSSPY formation to be probably involved also in nonenzymatic glycation reactions in vivo. PMID:10563905

  10. Engine Operating Conditions that Cause Thermal-Fatigue Cracks in Turbojet-Engine Buckets

    NASA Technical Reports Server (NTRS)

    Johnston, James R.; Weeton, John W.; Signorelli, Robert A.

    1959-01-01

    Five engine tests were conducted to definitely establish the failure mechanism of leading-edge cracking and to determine which conditions of engine operation cause the failures. Five groups of S-616 and M-252 buckets from master lots were run consecutively in the same J47-25 engine. The tests included a steady-state run at full-power conditions, rapid cycling between idle and rated speed, and three different start-stop tests. The first start-stop test consisted of cycles of start and stop with 5 minutes of idle speed before each stop; the second included cycles of start and stop but with 15 minutes of rated speed before each stop; the third consisted of cycles of gradual starts and normal stops with 5 minutes at idle speed before each stop. The test results demonstrated that the primary cause of leading-edge cracking was thermal fatigue produced by repeated engine starts. The leading edge of the bucket experiences plastic flow in compression during starts and consequently is subjected to a tensile stress when the remainder of the bucket becomes heated and expands. Crack initiation was accelerated when rated-speed operation was added to each normal start-stop cycle. This acceleration of crack formation was attributed to localized creep damage and perhaps to embrittlement resulting from overaging. It was demonstrated that leading-edge cracking can be prevented simply by starting the engine gradually.

  11. Clinical Trial on the Characteristics of Zheng Classification of Pulmonary Diseases Based on Infrared Thermal Imaging Technology

    PubMed Central

    Ni, Jin-xia; Gao, Si-hua; Li, Yu-hang; Ma, Shi-lei; Tian, Tian; Mo, Fang-fang; Wang, Liu-qing; Zhu, Wen-zeng

    2013-01-01

    Zheng classification study based on infrared thermal imaging technology has not been reported before. To detect the relative temperature of viscera and bowels of different syndromes patients with pulmonary disease and to summarize the characteristics of different Zheng classifications, the infrared thermal imaging technology was used in the clinical trial. The results showed that the infrared thermal images characteristics of different Zheng classifications of pulmonary disease were distinctly different. The influence on viscera and bowels was deeper in phlegm-heat obstructing lung syndrome group than in cold-phlegm obstructing lung syndrome group. It is helpful to diagnose Zheng classification and to improve the diagnosis rate by analyzing the infrared thermal images of patients. The application of infrared thermal imaging technology provided objective measures for medical diagnosis and treatment in the field of Zheng studies and provided a new methodology for Zheng classification. PMID:23606873

  12. Mt. Washington Icing Sensors Project (MWISP) Tests Technologies for Remote Sensing of Icing Conditions

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew L.

    2000-01-01

    The Mt. Washington Icing Sensors Project (MWISP) was an intensive multiagency field test of remote-sensing technologies and methods for in-flight icing detection. This field test was the first comprehensive examination of multiple remote-sensing technologies, and it included ground and airborne in situ measurements for comparison. The data gathered will allow the assessment of icing remote-sensing technologies leading toward the development of ground-based and airborne systems. These systems will provide flight crews with the information required for avoiding or exiting hazardous icing conditions.

  13. A quantitative sensitivity analysis on the behaviour of common thermal indices under hot and windy conditions in Doha, Qatar

    NASA Astrophysics Data System (ADS)

    Frhlich, Dominik; Matzarakis, Andreas

    2015-02-01

    Human thermal perception is best described through thermal indices. The most popular thermal indices applied in human bioclimatology are the perceived temperature (PT), the Universal Thermal Climate Index (UTCI), and the physiologically equivalent temperature (PET). They are analysed focusing on their sensitivity to single meteorological input parameters under the hot and windy meteorological conditions observed in Doha, Qatar. It can be noted, that the results for the three indices are distributed quite differently. Furthermore, they respond quite differently to modifications in the input conditions. All of them show particular limitations and shortcomings that have to be considered and discussed. While the results for PT are unevenly distributed, UTCI shows limitations concerning the input data accepted. PET seems to respond insufficiently to changes in vapour pressure. The indices should therefore be improved to be valid for several kinds of climates.

  14. Thermal modeling of nickel-hydrogen battery cells operating under transient orbital conditions

    NASA Technical Reports Server (NTRS)

    Schrage, Dean S.

    1991-01-01

    An analytical study of the thermal operating characteristics of nickel-hydrogen battery cells is presented. Combined finite-element and finite-difference techniques are employed to arrive at a computationally efficient composite thermal model representing a series-cell arrangement operating in conjunction with a radiately coupled baseplate and coldplate thermal bus. An aggressive, low-mass design approach indicates that thermal considerations can and should direct the design of the thermal bus arrangement. Special consideration is given to the potential for mixed conductive and convective processes across the hydrogen gap. Results of a compressible flow model are presented and indicate the transfer process is suitably represented by molecular conduction. A high-fidelity thermal model of the cell stack (and related components) indicates the presence of axial and radial temperature gradients. A detailed model of the thermal bus reveals the thermal interaction of individual cells and is imperative for assessing the intercell temperature gradients.

  15. TECHNOLOGY DEMONSTRATION SUMMARY: THE AMERICAN COMBUSTION PYRETRON THERMAL DESTRUCTION SYSTEM AT THE U.S. EPA'S COMBUSTION FACILITY

    EPA Science Inventory

    The American Combustion Pyretron Thermal Destruction System at the U.S. EPA's Combustion Research Facility. Under the auspices of the Superfund Innovative Technology Evaluation, or SITE, program, a critical assessment was made of the American Combustion Pyretron oxygen enha...

  16. Assessing the impact of thermal acclimation on physiological condition in the zebrafish model.

    PubMed

    Vergauwen, Lucia; Knapen, Dries; Hagenaars, An; De Boeck, Gudrun; Blust, Ronny

    2013-01-01

    The zebrafish has become a valuable vertebrate model organism in a wide range of scientific disciplines, but current information concerning the physiological temperature response of adult zebrafish is rather scarce. In this study, zebrafish were experimentally acclimated for 28 days to 18, 26 or 34 C and a suite of non-invasive and invasive methods was applied to determine the thermal dependence of zebrafish physiological condition. With decreasing temperature, the metabolic rate of zebrafish decreased, as shown by the decreasing oxygen uptake and ammonia excretion rates, limiting the critical swimming speed, probably due to a decreased muscle fibre power output. In response to exercise, fuel stores were mobilized to the liver as shown by the increased hepatosomatic index, liver total absolute energetic value and liver carbohydrate concentration but due to the low metabolic rate they could not be adequately addressed to power swimming activity at 18 C. Conversely, the increased metabolic performance at high temperature came with an increased metabolic cost resulting in decreased energy status reflected particularly well by the non-invasive condition factor and invasive measures of carcass protein concentration, carcass total absolute energetic value and liver carbohydrate concentration. We showed that the combined measurement of the relative condition factor and critical swimming speed is a powerful non-invasive tool for long-term follow-up studies. Invasive methods were redundant for measuring general energy status but they provided detailed information concerning metabolic reorganization. With this study we proved that the usefulness of the zebrafish as a model organism can easily be expanded to include physiological studies and we provided a reference dataset for the selection of measures of physiological responses for future studies using the zebrafish. PMID:22872185

  17. Fast access to the CMS detector condition data employing HTML5 technologies

    NASA Astrophysics Data System (ADS)

    Pierro, Giuseppe Antonio; Cavallari, Francesca; Di Guida, Salvatore; Innocente, Vincenzo

    2011-12-01

    This paper focuses on using HTML version 5 (HTML5) for accessing condition data for the CMS experiment, evaluating the benefits and risks posed by the use of this technology. According to the authors of HTML5, this technology attempts to solve issues found in previous iterations of HTML and addresses the needs of web applications, an area previously not adequately covered by HTML. We demonstrate that employing HTML5 brings important benefits in terms of access performance to the CMS condition data. The combined use of web storage and web sockets allows increasing the performance and reducing the costs in term of computation power, memory usage and network bandwidth for client and server. Above all, the web workers allow creating different scripts that can be executed using multi-thread mode, exploiting multi-core microprocessors. Web workers have been employed in order to substantially decrease the web page rendering time to display the condition data stored in the CMS condition database.

  18. Application and development of technologies for engine-condition-based maintenance of emergency diesel generators

    SciTech Connect

    Choi, K. H.; Sang, G.; Choi, L. Y. S.; Lee, B. O.

    2012-07-01

    The emergency diesel generator (EDG) of a nuclear power plant has the role of supplying emergency electric power to protect the reactor core system in the event of the loss of offsite power supply. Therefore, EDGs should be subject to periodic surveillance testing to verify their ability to supply specified frequencies and voltages at design power levels within a limited time. To maintain optimal reliability of EDGs, condition monitoring/diagnosis technologies must be developed. Changing from periodic disassemble maintenance to condition-based maintenance (CBM) according to predictions of equipment condition is recommended. In this paper, the development of diagnosis technology for CBM and the application of a diesel engine condition-analysis system are described. (authors)

  19. Do sex, body size and reproductive condition influence the thermal preferences of a large lizard? A study in Tupinambis merianae.

    PubMed

    Cecchetto, Nicolas Rodolfo; Naretto, Sergio

    2015-10-01

    Body temperature is a key factor in physiological processes, influencing lizard performances; and life history traits are expected to generate variability of thermal preferences in different individuals. Gender, body size and reproductive condition may impose specific requirements on preferred body temperatures. If these three factors have different physiological functions and thermal requirements, then the preferred temperature may represent a compromise that optimizes these physiological functions. Therefore, the body temperatures that lizards select in a controlled environment may reflect a temperature that maximizes their physiological needs. The tegu lizard Tupinambis merianae is one of the largest lizards in South America and has wide ontogenetic variation in body size and sexual dimorphism. In the present study we evaluate intraspecific variability of thermal preferences of T. merianae. We determined the selected body temperature and the rate at which males and females attain their selected temperature, in relation to body size and reproductive condition. We also compared the behavior in the thermal gradient between males and females and between reproductive condition of individuals. Our study show that T. merianae selected body temperature within a narrow range of temperatures variation in the laboratory thermal gradient, with 36.241.49C being the preferred temperature. We observed no significant differences between sex, body size and reproductive condition in thermal preferences. Accordingly, we suggest that the evaluated categories of T. merianae have similar thermal requirements. Males showed higher rates to obtain heat than females and reproductive females, higher rates than non-reproductive ones females. Moreover, males and reproductive females showed a more dynamic behavior in the thermal gradient. Therefore, even though they achieve the same selected temperature, they do it differentially. PMID:26590472

  20. Multi-Purpose Thermal Hydraulic Loop: Advanced Reactor Technology Integral System Test (ARTIST) Facility for Support of Advanced Reactor Technologies

    SciTech Connect

    James E. O'Brien; Piyush Sabharwall; SuJong Yoon

    2001-11-01

    Effective and robust high temperature heat transfer systems are fundamental to the successful deployment of advanced reactors for both power generation and non-electric applications. Plant designs often include an intermediate heat transfer loop (IHTL) with heat exchangers at either end to deliver thermal energy to the application while providing isolation of the primary reactor system. In order to address technical feasibility concerns and challenges a new high-temperature multi-fluid, multi-loop test facility Advanced Reactor Technology Integral System Test facility (ARTIST) is under development at the Idaho National Laboratory. The facility will include three flow loops: high-temperature helium, molten salt, and steam/water. Details of some of the design aspects and challenges of this facility, which is currently in the conceptual design phase, are discussed

  1. Determination of the Thermal Properties of Sands as Affected by Water Content, Drainage/Wetting, and Porosity Conditions for Sands With Different Grain Sizes

    NASA Astrophysics Data System (ADS)

    Smits, K. M.; Sakaki, T.; Limsuwat, A.; Illangasekare, T. H.

    2009-05-01

    It is widely recognized that liquid water, water vapor and temperature movement in the subsurface near the land/atmosphere interface are strongly coupled, influencing many agricultural, biological and engineering applications such as irrigation practices, the assessment of contaminant transport and the detection of buried landmines. In these systems, a clear understanding of how variations in water content, soil drainage/wetting history, porosity conditions and grain size affect the soil's thermal behavior is needed, however, the consideration of all factors is rare as very few experimental data showing the effects of these variations are available. In this study, the effect of soil moisture, drainage/wetting history, and porosity on the thermal conductivity of sandy soils with different grain sizes was investigated. For this experimental investigation, several recent sensor based technologies were compiled into a Tempe cell modified to have a network of sampling ports, continuously monitoring water saturation, capillary pressure, temperature, and soil thermal properties. The water table was established at mid elevation of the cell and then lowered slowly. The initially saturated soil sample was subjected to slow drainage, wetting, and secondary drainage cycles. After liquid water drainage ceased, evaporation was induced at the surface to remove soil moisture from the sample to obtain thermal conductivity data below the residual saturation. For the test soils studied, thermal conductivity increased with increasing moisture content, soil density and grain size while thermal conductivity values were similar for soil drying/wetting behavior. Thermal properties measured in this study were then compared with independent estimates made using empirical models from literature. These soils will be used in a proposed set of experiments in intermediate scale test tanks to obtain data to validate methods and modeling tools used for landmine detection.

  2. 76 FR 77578 - In the Matter of: Brendan Technologies, Inc., CenterStaging Corp., PGMI, Inc., Thermal Energy...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-13

    ... From the Federal Register Online via the Government Publishing Office SECURITIES AND EXCHANGE COMMISSION In the Matter of: Brendan Technologies, Inc., CenterStaging Corp., PGMI, Inc., Thermal Energy... information concerning the securities of Thermal Energy Storage, Inc. because it has not filed any...

  3. Remediation case studies: Ex situ soil treatment technologies (bioremediation, solvent extraction, thermal desorption). Volume 7

    SciTech Connect

    1998-09-01

    The case studies in this volume describe ten applications of ex situ soil treatment technologies, including three applications of land treatment (bioremediation), one application of solvent extraction, and six applications of thermal desorption. Two of the land treatment applications were full-scale remediations of sites contaminated with polycyclic aromatic hydrocarbons (PAHs) and petroleum hydrocarbons, and one was a field demonstration at a site contaminated with pesticides. The solvent extraction application was a full-scale application to treat soil contaminated with PCBs. All six thermal desorption applications were full-scale, and involved treatment of soil contaminated with chlorinated solvents, petroleum hydrocarbons, PAHs, and pesticides. All case studies in this volume are for completed applications.

  4. Discrimination techniques employing both reflective and thermal multispectral signals. [for remote sensor technology

    NASA Technical Reports Server (NTRS)

    Malila, W. A.; Crane, R. B.; Richardson, W.

    1973-01-01

    Recent improvements in remote sensor technology carry implications for data processing. Multispectral line scanners now exist that can collect data simultaneously and in registration in multiple channels at both reflective and thermal (emissive) wavelengths. Progress in dealing with two resultant recognition processing problems is discussed: (1) More channels mean higher processing costs; to combat these costs, a new and faster procedure for selecting subsets of channels has been developed. (2) Differences between thermal and reflective characteristics influence recognition processing; to illustrate the magnitude of these differences, some explanatory calculations are presented. Also introduced, is a different way to process multispectral scanner data, namely, radiation balance mapping and related procedures. Techniques and potentials are discussed and examples presented.

  5. Design of the Thermal Control System for the Space Technology 5 Microsatellite

    NASA Technical Reports Server (NTRS)

    Douglas, Donya; Michalek, Ted; Swanson, Ted; Brodeur, Stephen (Technical Monitor)

    2001-01-01

    The New Millennium Program's (NMP) Space Technology 5 (ST-5) Project, currently in Phase B of the design process, is slated to launch three 20-kg class spin stabilized microsatellites in late 2003. The proposed orbit is highly elliptical and could result in an earth shadow eclipse of almost 2 hours. Although ST-5's maximum eclipse is only 2 hours, future missions could involve eclipses as long as 8 hours. As spacecraft size, mass, and available resources decrease and eclipse duration increases, thermal engineers will be challenged to design simple but robust thermal control systems that meet temperature requirements for all phases of the mission. This paper presents the results of a study of three design concepts and preliminary analysis of the design selected for ST-5.

  6. Thermal and Structural Performance of Woven Carbon Cloth For Adaptive Deployable Entry and Placement Technology

    NASA Technical Reports Server (NTRS)

    Arnold, James O.; Peterson, Keith H.; Yount, Bryan C.; Schneider, Nigel; Chavez-Garcia, Jose

    2013-01-01

    Arcjet testing and analysis of a three-dimensional (3D) woven carbon fabric has shown that it can be used as a thermal protection system and as a load bearing structural component for a low ballistic coefficient hypersonic decelerator called ADEPT (Adaptive Deployable Entry and Placement Technology). Results of arcjet tests proved that the 3D woven carbon fabric can withstand flight-like heating while under flight-like biaxial mechanical loads representative of those encountered during shallow entry flight path angles into the atmosphere of Venus. Importantly, the arcjet test results have been used to extend a preliminary material thermal response model based on previous testing of the same 3D woven carbon fabric under uni-axial mechanical loading.

  7. CARBON-RICH GIANT PLANETS: ATMOSPHERIC CHEMISTRY, THERMAL INVERSIONS, SPECTRA, AND FORMATION CONDITIONS

    SciTech Connect

    Madhusudhan, Nikku; Mousis, Olivier; Johnson, Torrence V.; Lunine, Jonathan I.

    2011-12-20

    The recent inference of a carbon-rich atmosphere, with C/O {>=} 1, in the hot Jupiter WASP-12b motivates the exotic new class of carbon-rich planets (CRPs). We report a detailed study of the atmospheric chemistry and spectroscopic signatures of carbon-rich giant (CRG) planets, the possibility of thermal inversions in their atmospheres, the compositions of icy planetesimals required for their formation via core accretion, and the apportionment of ices, rock, and volatiles in their envelopes. Our results show that CRG atmospheres probe a unique region in composition space, especially at high temperature (T). For atmospheres with C/O {>=} 1, and T {approx}> 1400 K in the observable atmosphere, most of the oxygen is bound up in CO, while H{sub 2}O is depleted and CH{sub 4} is enhanced by up to two or three orders of magnitude each, compared to equilibrium compositions with solar abundances (C/O = 0.54). These differences in the spectroscopically dominant species for the different C/O ratios cause equally distinct observable signatures in the spectra. As such, highly irradiated transiting giant exoplanets form ideal candidates to estimate atmospheric C/O ratios and to search for CRPs. We also find that the C/O ratio strongly affects the abundances of TiO and VO, which have been suggested to cause thermal inversions in highly irradiated hot Jupiter atmospheres. A C/O = 1 yields TiO and VO abundances of {approx}100 times lower than those obtained with equilibrium chemistry assuming solar abundances, at P {approx} 1 bar. Such a depletion is adequate to rule out thermal inversions due to TiO/VO even in the most highly irradiated hot Jupiters, such as WASP-12b. We estimate the compositions of the protoplanetary disk, the planetesimals, and the envelope of WASP-12b, and the mass of ices dissolved in the envelope, based on the observed atmospheric abundances. Adopting stellar abundances (C/O = 0.44) for the primordial disk composition and low-temperature formation conditions (T {approx}< 30 K) for WASP-12b lead to a C/O ratio of 0.27 in accreted planetesimals, and, consequently, in the planet's envelope. In contrast, a C/O ratio of 1 in the envelope of WASP-12b requires a substantial depletion of oxygen in the disk, i.e., by a factor of {approx}0.41 for the same formation conditions. This scenario also satisfies the constraints on the C/H and O/H ratios reported for WASP-12b. If, alternatively, hotter conditions prevailed in a stellar composition disk such that only H{sub 2}O is condensed, the remaining gas can potentially have a C/O {approx} 1. However, a high C/O in WASP-12b caused predominantly by gas accretion would preclude superstellar C/H ratios which also fit the data.

  8. Carbon-rich Giant Planets: Atmospheric Chemistry, Thermal Inversions, Spectra, and Formation Conditions

    NASA Astrophysics Data System (ADS)

    Madhusudhan, Nikku; Mousis, Olivier; Johnson, Torrence V.; Lunine, Jonathan I.

    2011-12-01

    The recent inference of a carbon-rich atmosphere, with C/O >= 1, in the hot Jupiter WASP-12b motivates the exotic new class of carbon-rich planets (CRPs). We report a detailed study of the atmospheric chemistry and spectroscopic signatures of carbon-rich giant (CRG) planets, the possibility of thermal inversions in their atmospheres, the compositions of icy planetesimals required for their formation via core accretion, and the apportionment of ices, rock, and volatiles in their envelopes. Our results show that CRG atmospheres probe a unique region in composition space, especially at high temperature (T). For atmospheres with C/O >= 1, and T >~ 1400 K in the observable atmosphere, most of the oxygen is bound up in CO, while H2O is depleted and CH4 is enhanced by up to two or three orders of magnitude each, compared to equilibrium compositions with solar abundances (C/O = 0.54). These differences in the spectroscopically dominant species for the different C/O ratios cause equally distinct observable signatures in the spectra. As such, highly irradiated transiting giant exoplanets form ideal candidates to estimate atmospheric C/O ratios and to search for CRPs. We also find that the C/O ratio strongly affects the abundances of TiO and VO, which have been suggested to cause thermal inversions in highly irradiated hot Jupiter atmospheres. A C/O = 1 yields TiO and VO abundances of ~100 times lower than those obtained with equilibrium chemistry assuming solar abundances, at P ~ 1 bar. Such a depletion is adequate to rule out thermal inversions due to TiO/VO even in the most highly irradiated hot Jupiters, such as WASP-12b. We estimate the compositions of the protoplanetary disk, the planetesimals, and the envelope of WASP-12b, and the mass of ices dissolved in the envelope, based on the observed atmospheric abundances. Adopting stellar abundances (C/O = 0.44) for the primordial disk composition and low-temperature formation conditions (T <~ 30 K) for WASP-12b lead to a C/O ratio of 0.27 in accreted planetesimals, and, consequently, in the planet's envelope. In contrast, a C/O ratio of 1 in the envelope of WASP-12b requires a substantial depletion of oxygen in the disk, i.e., by a factor of ~0.41 for the same formation conditions. This scenario also satisfies the constraints on the C/H and O/H ratios reported for WASP-12b. If, alternatively, hotter conditions prevailed in a stellar composition disk such that only H2O is condensed, the remaining gas can potentially have a C/O ~ 1. However, a high C/O in WASP-12b caused predominantly by gas accretion would preclude superstellar C/H ratios which also fit the data.

  9. CMC thermal protection system for future reusable launch vehicles: Generic shingle technological maturation and tests

    NASA Astrophysics Data System (ADS)

    Pichon, T.; Barreteau, R.; Soyris, P.; Foucault, A.; Parenteau, J. M.; Prel, Y.; Guedron, S.

    2009-07-01

    Experimental re-entry demonstrators are currently being developed in Europe, with the objective of increasing the technology readiness level (TRL) of technologies applicable to future reusable launch vehicles. Among these are the Pre-X programme, currently funded by CNES, the French Space Agency, and which is about to enter into development phase B, and the IXV, within the future launcher preparatory programme (FLPP) funded by ESA. One of the major technologies necessary for such vehicles is the thermal protection system (TPS), and in particular the ceramic matrix composites (CMC) based windward TPS. In support of this goal, technology maturation activities named "generic shingle" were initiated beginning of 2003 by SPS, under a CNES contract, with the objective of performing a test campaign of a complete shingle of generic design, in preparation of the development of a re-entry experimental vehicle decided in Europe. The activities performed to date include: the design, manufacturing of two C/SiC panels, finite element model (FEM) calculation of the design, testing of technological samples extracted from a dedicated panel, mechanical pressure testing of a panel, and a complete study of the attachment system. Additional testing is currently under preparation on the panel equipped with its insulation, seal, attachment device, and representative portion of cold structure, to further assess its behaviour in environments relevant to its application The paper will present the activities that will have been performed in 2006 on the prediction and preparation of these modal characterization, dynamic, acoustic as well as thermal and thermo-mechanical tests. Results of these tests will be presented and the lessons learned will be discussed.

  10. Multi-Evaporator Miniature Loop Heat Pipe for Small Spacecraft Thermal Control. Part 1; New Technologies and Validation Approach

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Ottenstein, Laura; Douglas, Donya; Hoang, Triem

    2010-01-01

    Under NASA s New Millennium Program Space Technology 8 (ST 8) Project, four experiments Thermal Loop, Dependable Microprocessor, SAILMAST, and UltraFlex - were conducted to advance the maturity of individual technologies from proof of concept to prototype demonstration in a relevant environment , i.e. from a technology readiness level (TRL) of 3 to a level of 6. This paper presents the new technologies and validation approach of the Thermal Loop experiment. The Thermal Loop is an advanced thermal control system consisting of a miniature loop heat pipe (MLHP) with multiple evaporators and multiple condensers designed for future small system applications requiring low mass, low power, and compactness. The MLHP retains all features of state-of-the-art loop heat pipes (LHPs) and offers additional advantages to enhance the functionality, performance, versatility, and reliability of the system. Details of the thermal loop concept, technical advances, benefits, objectives, level 1 requirements, and performance characteristics are described. Also included in the paper are descriptions of the test articles and mathematical modeling used for the technology validation. An MLHP breadboard was built and tested in the laboratory and thermal vacuum environments for TRL 4 and TRL 5 validations, and an MLHP proto-flight unit was built and tested in a thermal vacuum chamber for the TRL 6 validation. In addition, an analytical model was developed to simulate the steady state and transient behaviors of the MLHP during various validation tests. Capabilities and limitations of the analytical model are also addressed.

  11. Latitudinal Discontinuity in Thermal Conditions along the Nearshore of Central-Northern Chile

    PubMed Central

    Tapia, Fabian J.; Largier, John L.; Castillo, Manuel; Wieters, Evie A.; Navarrete, Sergio A.

    2014-01-01

    Over the past decade, evidence of abrupt latitudinal changes in the dynamics, structure and genetic variability of intertidal and subtidal benthic communities along central-northern Chile has been found consistently at 3032S. Changes in the advective and thermal environment in nearshore waters have been inferred from ecological patterns, since analyses of in situ physical data have thus far been missing. Here we analyze a unique set of shoreline temperature data, gathered over 410 years at 15 sites between 2835S, and combine it with satellite-derived winds and sea surface temperatures to investigate the latitudinal transition in nearshore oceanographic conditions suggested by recent ecological studies. Our results show a marked transition in thermal conditions at 3031S, superimposed on a broad latitudinal trend, and small-scale structures associated with cape-and-bay topography. The seasonal cycle dominated temperature variability throughout the region, but its relative importance decreased abruptly south of 3031S, as variability at synoptic and intra-seasonal scales became more important. The response of shoreline temperatures to meridional wind stress also changed abruptly at the transition, leading to a sharp drop in the occurrence of low-temperature waters at northern sites, and a concurrent decrease in corticated algal biomass. Together, these results suggest a limitation of nitrate availability in nearshore waters north of the transition. The localized alongshore change results from the interaction of latitudinal trends (e.g., wind stress, surface warming, inertial period) with a major headland-bay system (Punta Lengua de Vaca at 30.25S), which juxtaposes a southern stretch of coast characterized by upwelling with a northern stretch of coast characterized by warm surface waters and stratification. This transition likely generates a number of latitude-dependent controls on ecological processes in the nearshore that can explain species-specific effects, and add strength to the suggestion of an oceanography-driven, major spatial transition in coastal communities at 3031S. PMID:25334020

  12. Latitudinal discontinuity in thermal conditions along the nearshore of central-northern Chile.

    PubMed

    Tapia, Fabian J; Largier, John L; Castillo, Manuel; Wieters, Evie A; Navarrete, Sergio A

    2014-01-01

    Over the past decade, evidence of abrupt latitudinal changes in the dynamics, structure and genetic variability of intertidal and subtidal benthic communities along central-northern Chile has been found consistently at 30-32S. Changes in the advective and thermal environment in nearshore waters have been inferred from ecological patterns, since analyses of in situ physical data have thus far been missing. Here we analyze a unique set of shoreline temperature data, gathered over 4-10 years at 15 sites between 28-35S, and combine it with satellite-derived winds and sea surface temperatures to investigate the latitudinal transition in nearshore oceanographic conditions suggested by recent ecological studies. Our results show a marked transition in thermal conditions at 30-31S, superimposed on a broad latitudinal trend, and small-scale structures associated with cape-and-bay topography. The seasonal cycle dominated temperature variability throughout the region, but its relative importance decreased abruptly south of 30-31S, as variability at synoptic and intra-seasonal scales became more important. The response of shoreline temperatures to meridional wind stress also changed abruptly at the transition, leading to a sharp drop in the occurrence of low-temperature waters at northern sites, and a concurrent decrease in corticated algal biomass. Together, these results suggest a limitation of nitrate availability in nearshore waters north of the transition. The localized alongshore change results from the interaction of latitudinal trends (e.g., wind stress, surface warming, inertial period) with a major headland-bay system (Punta Lengua de Vaca at 30.25S), which juxtaposes a southern stretch of coast characterized by upwelling with a northern stretch of coast characterized by warm surface waters and stratification. This transition likely generates a number of latitude-dependent controls on ecological processes in the nearshore that can explain species-specific effects, and add strength to the suggestion of an oceanography-driven, major spatial transition in coastal communities at 30-31S. PMID:25334020

  13. Experimental investigation on the photovoltaic-thermal solar heat pump air-conditioning system on water-heating mode

    SciTech Connect

    Fang, Guiyin; Hu, Hainan; Liu, Xu

    2010-09-15

    An experimental study on operation performance of photovoltaic-thermal solar heat pump air-conditioning system was conducted in this paper. The experimental system of photovoltaic-thermal solar heat pump air-conditioning system was set up. The performance parameters such as the evaporation pressure, the condensation pressure and the coefficient of performance (COP) of heat pump air-conditioning system, the water temperature and receiving heat capacity in water heater, the photovoltaic (PV) module temperature and the photovoltaic efficiency were investigated. The experimental results show that the mean photovoltaic efficiency of photovoltaic-thermal (PV/T) solar heat pump air-conditioning system reaches 10.4%, and can improve 23.8% in comparison with that of the conventional photovoltaic module, the mean COP of heat pump air-conditioning system may attain 2.88 and the water temperature in water heater can increase to 42 C. These results indicate that the photovoltaic-thermal solar heat pump air-conditioning system has better performances and can stably work. (author)

  14. New technologies for modeling fire and disturbed conditions in forest and rangelands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Historically, considerable resources have been invested in methods to predict erosion on agricultural lands. Technologies developed for agricultural conditions tended to focus on long term average annual erosion rates from sites that are tilled annually, or regularly as part of some rotation. Techno...

  15. Condition Assessment of Ferrous Water Transmission and Distribution Systems State of Technology Review Report

    EPA Science Inventory

    This White Paper was developed to serve as the basis for discussion at a Technology Forum on Condition Assessment of Water Transmission and Distribution Systems that was held on September 9 and 10, 2008, at Edison, NJ. It was distributed to the Forum participants for review in a...

  16. EPA Field Demonstration of Innovative Condition Assessment Technologies for Water Mains at Louisville, KY - slides

    EPA Science Inventory

    This presentation will describe a series of field demonstrations of innovative leak detection/location and condition assessment technologies that was sponsored by the U.S. Environmental Protection Agency (EPA), conducted by EPAs contractor (Battelle), and hosted by the Louisvill...

  17. EPA FIELD DEMONSTRATION OF INNOVATIVE CONDITION ASSESSMENT TECHNOLOGIES FOR WATER MAINS AT LOUISVILLE, KY

    EPA Science Inventory

    This presentation will describe a series of field demonstrations of innovative leak detection/location and condition assessment technologies that was sponsored by the U.S. Environmental Protection Agency (EPA), conducted by EPAs contractor (Battelle), and hosted by the Louisvil...

  18. EPA FIELD DEMONSTRATION OF INNOVATIVE CONDITION ASSESSMENT TECHNOLOGIES FOR WATER MAINS AT LOUISVILLE, KY

    EPA Science Inventory

    This presentation will describe a series of field demonstrations of innovative leak detection/location and condition assessment technologies that was sponsored by the U.S. Environmental Protection Agency (EPA), conducted by EPA’s contractor (Battelle), and hosted by the Louisvil...

  19. Field Demonstration of Innovative Condition Assessment Technologies for Water Mains: Leak Detection and Location

    EPA Science Inventory

    Three leak detection/location technologies were demonstrated on a 76-year-old, 2,057-ft-long portion of a cement-lined, 24-in. cast iron water main in Louisville, KY. This activity was part of a series of field demonstrations of innovative leak detection/location and condition a...

  20. EPA Field Demonstration of Innovative Condition Assessment Technologies for Water Mains at Louisville, KY - slides

    EPA Science Inventory

    This presentation will describe a series of field demonstrations of innovative leak detection/location and condition assessment technologies that was sponsored by the U.S. Environmental Protection Agency (EPA), conducted by EPA’s contractor (Battelle), and hosted by the Louisvill...

  1. The potential impact of ZT=4 thermoelectric materials on solar thermal energy conversion technologies.

    SciTech Connect

    Xie, M.; Gruen, D. M.; Materials Science Division; Michigan Technological Univ.

    2010-03-02

    State-of-the-art methodologies for the conversion of solar thermal power to electricity are based on conventional electromagnetic induction techniques. If appropriate ZT = 4 thermoelectric materials were available, it is likely that conversion efficiencies of 30-40% could be achieved. The availability of all solid state electricity generation would be a long awaited development in part because of the elimination of moving parts. This paper presents a preliminary examination of the potential performance of ZT = 4 power generators in comparison with Stirling engines taking into account specific mass, volume and cost as well as system reliability. High-performance thermoelectrics appear to have distinct advantages over magnetic induction technologies.

  2. Impact of thermal and nonthermal processing technologies on unfermented apple cider aroma volatiles.

    PubMed

    Azhu Valappil, Zareena; Fan, Xuetong; Zhang, Howard Q; Rouseff, Russell L

    2009-02-11

    Aroma composition and microbial quality of identical lots of apple cider treated by pulsed electric field (PEF), ultraviolet irradiation (UV), or thermal pasteurization stored at 4 degrees C were compared at 0 and 4 weeks. Conditions were optimized to achieve identical 5 log reductions in Escherichia coli K12 for each treatment. PEF and thermal pasteurization maintained acceptable microbial quality for 4 weeks, but UV samples fermented after 2 weeks. Twenty-eight volatiles were quantified using gas chromatography-mass spectrometry (GC-MS) and odor activity values (OAV) determined. OAVs of 69:hexyl acetate, 41:hexanal, 25:2-methylbutyl acetate, 23:2-methyl ethyl butyrate, and 14:2-(E)-hexenal were observed for the control cider. Significant differences (p < 0.05) in the levels of these odorants were observed between treated apple ciders only after 4 weeks of storage. Thermal samples lost 30% of the major ester and aldehyde volatiles during storage with significant decreases (p < 0.05) in butyl acetate, 2-methylbutyl acetate, hexanal, and 2-(E)-hexenal. In UV cider, hexanal and 2-(E)-hexenal were completely lost after 4 weeks of storage. Microbial spoilage in UV cider after 4 weeks of storage was chemically confirmed by the detection of the microbial metabolite 1,3-pentadiene. PEF cider lost <2% of its total ester and aldehydes after 4 weeks of storage and was preferred by 91% of the sensory panel over thermally treated cider. PMID:19154152

  3. Liquid Methane Conditioning Capabilities Developed at the NASA Glenn Research Center's Small Multi- Purpose Research Facility (SMiRF) for Accelerated Lunar Surface Storage Thermal Testing

    NASA Technical Reports Server (NTRS)

    Bamberger, Helmut H.; Robinson, R. Craig; Jurns, John M.; Grasl, Steven J.

    2011-01-01

    Glenn Research Center s Creek Road Cryogenic Complex, Small Multi-Purpose Research Facility (SMiRF) recently completed validation / checkout testing of a new liquid methane delivery system and liquid methane (LCH4) conditioning system. Facility checkout validation was conducted in preparation for a series of passive thermal control technology tests planned at SMiRF in FY10 using a flight-like propellant tank at simulated thermal environments from 140 to 350K. These tests will validate models and provide high quality data to support consideration of LCH4/LO2 propellant combination option for a lunar or planetary ascent stage.An infrastructure has been put in place which will support testing of large amounts of liquid methane at SMiRF. Extensive modifications were made to the test facility s existing liquid hydrogen system for compatibility with liquid methane. Also, a new liquid methane fluid conditioning system will enable liquid methane to be quickly densified (sub-cooled below normal boiling point) and to be quickly reheated to saturation conditions between 92 and 140 K. Fluid temperatures can be quickly adjusted to compress the overall test duration. A detailed trade study was conducted to determine an appropriate technique to liquid conditioning with regard to the SMiRF facility s existing infrastructure. In addition, a completely new roadable dewar has been procured for transportation and temporary storage of liquid methane. A new spherical, flight-representative tank has also been fabricated for integration into the vacuum chamber at SMiRF. The addition of this system to SMiRF marks the first time a large-scale liquid methane propellant test capability has been realized at Glenn.This work supports the Cryogenic Fluid Management Project being conducted under the auspices of the Exploration Technology Development Program, providing focused cryogenic fluid management technology efforts to support NASA s future robotic or human exploration missions.

  4. Seasonal flows on dark martian slopes, thermal condition for liquescence of salts

    NASA Astrophysics Data System (ADS)

    Kossacki, Konrad J.; Markiewicz, Wojciech J.

    2014-05-01

    RSLs are narrow, dark albedo features on relatively steep slopes that appear during warm seasons and fade in the cold ones. So far they have only been observed in mid-latitudes where surface temperature is too high, periodically exceeding 300 K, for the presence of shallow ground ice. We attempt to determine what conditions are needed for the liquescence of salt to occur exactly when the RSLs are observed. If the eutectic temperature is exceeded, and humidity is high enough, salts may produce liquid brines through absorption of water vapor and liquescence. We calculate regolith temperature as a function of time and depth, for different macroscopic distributions of salt, for two different microphysical models of the distribution of salt on the regolith grains. Model parameters which are varied include surface albedo, thermal inertia of the dry regolith, the depths at which salt is present, and the salt content. We find that it is possible, for liquescence of magnesium perchlorate to occur where and when RSLs have been observed, but only within a very narrow range of parameters.

  5. Optimal Deployment of Thermal Energy Storage under Diverse Economic and Climate Conditions

    SciTech Connect

    DeForest, Nicolas; Mendes, Goncalo; Stadler, Michael; Feng, Wei; Lai, Judy; Marnay, Chris

    2014-04-15

    This paper presents an investigation of the economic benefit of thermal energy storage (TES) for cooling, across a range of economic and climate conditions. Chilled water TES systems are simulated for a large office building in four distinct locations, Miami in the U.S.; Lisbon, Portugal; Shanghai, China; and Mumbai, India. Optimal system size and operating schedules are determined using the optimization model DER-CAM, such that total cost, including electricity and amortized capital costs are minimized. The economic impacts of each optimized TES system is then compared to systems sized using a simple heuristic method, which bases system size as fraction (50percent and 100percent) of total on-peak summer cooling loads. Results indicate that TES systems of all sizes can be effective in reducing annual electricity costs (5percent-15percent) and peak electricity consumption (13percent-33percent). The investigation also indentifies a number of criteria which drive TES investment, including low capital costs, electricity tariffs with high power demand charges and prolonged cooling seasons. In locations where these drivers clearly exist, the heuristically sized systems capture much of the value of optimally sized systems; between 60percent and 100percent in terms of net present value. However, in instances where these drivers are less pronounced, the heuristic tends to oversize systems, and optimization becomes crucial to ensure economically beneficial deployment of TES, increasing the net present value of heuristically sized systems by as much as 10 times in some instances.

  6. Scar prevention by laser-assisted scar healing (LASH) using thermal post-conditioning

    NASA Astrophysics Data System (ADS)

    Goss, Alban; Iarmarcovai, Gwen; Capon, Alexandre; Cornil, Alain; Mordon, Serge

    2009-02-01

    An 810-nm diode laser system was developed to accelerate and improve the healing process in surgical scars. Using thermal post-conditioning, the laser system provides a localised moderate heating whose maximum temperature is controlled to prevent tissue damage and stimulate the heat shock proteins (HSP) synthesis. The 810-nm wavelength allows a deep penetration of the light into the dermis, without damaging the epidermis. The time along which surgical incision is treated (continuous wave) must therefore be selected carefully with respect to the temperature precision achieved within the heated volume. A top-hat profile is preferred to a Gaussian profile in order to ensure the skin surface temperature is homogenised, as is the temperature of the heated volume. The spot shape will depend on the medical indication. The treatment should be made safe and controlled by means of a safety strip containing an RFID chip which will transmit the various operating settings to the laser device. A clinical trial aims at evaluating the 810 nm-diode laser in surgical incisions, with only one laser treatment immediately after skin closure, of patients with Fitzpatrick skin types I to IV. Surgical incisions were divided into two fields, with only portions randomly selected receiving laser treatment. At the final scar analysis (12 months) of the pilot study, the treated portion scored significantly better for both surgeon (P = 0.046) and patients (P = 0.025). Further studies may be warranted to better understand the cellular mechanisms leading to Laser-Assisted Skin Healing (LASH).

  7. Thermal stabilities of drops of burning thermoplastics under the UL 94 vertical test conditions.

    PubMed

    Wang, Yong; Zhang, Jun

    2013-02-15

    The properties of polymer melts will strongly affect the fire hazard of the pool induced by polymer melt flow. In this study the thermal stabilities of eight thermoplastic polymers as well as their melting drops generated under the UL 94 vertical burning test conditions were investigated by thermogravimetric experiments. It was found that the kinetic compensation effect existed for the decomposition reactions of the polymers and their drops. For polymethylmethacrylate (PMMA), high impact polystyrene (HIPS), poly(acrylonitrile-butadiene-styrene) (ABS), polyamide 6 (PA6), polypropylene (PP) and low density polyethylene (LDPE), the onset decomposition temperature and the two decomposition kinetic parameters (the pre-exponential factor and the activation energy) of the drop were less than those of the polymer. However, the onset decomposition temperature and the two kinetic parameters of PC's drop were greater than those of polycarbonate (PC). Interestingly, for polyethylenevinylacetate (EVA18) the drop hardly contained the vinyl acetate chain segments. Similarly, for the PMMA/LDPE blends and the PMMA/PP blends, when the volume fraction of PMMA was less than 50% the drop hardly contained PMMA, implying that the blend would not drip until PMMA burned away and its surface temperature approached the decomposition temperature of the continuous phase composed of LDPE or PP. PMID:23298738

  8. Periodic two-dimensional cavity flow: Effect of linear horizontal thermal boundary condition

    SciTech Connect

    Jones, D.N. ); Briggs, D.G. )

    1989-02-01

    A two-dimensional air-filled cavity with isothermal vertical walls adiabatic top and bottom surfaces has been extensively studied both numerically and experimentally. When the aspect ratio is of order one and the Rayleigh number is less than about 10{sup 9} this geometry produces a highly stable and reproducible laminar flow. The result is quite different when the upper and lower surfaces are subjected to a destabilizing boundary condition, i.e., a linear temperature variation between the hot and cold vertical walls. At a critical Rayleigh number between 10{sup 6} and 10{sup 7} the flow becomes periodic and thus appears to fall into the category of instability of the type known as Hopf bifurcation. Briggs and Jones (1985) report velocity variations measured ner the vertical surfaces that vary by nearly {plus minus} 20% about the mean. Other unexplained behavior reported by Briggs and Jones (1985) consisted of jumps exhibited hysteresis effect, which resulted in some overlap between regimes. This paper presents the results of additional measurements, which indicate that the periodic flow is characterized by the convection of hot and cold pairs of thermals around the enclosure.

  9. Optical stimulation of the hearing and deaf cochlea under thermal and stress confinement condition

    NASA Astrophysics Data System (ADS)

    Schultz, M.; Baumhoff, P.; Kallweit, N.; Sato, M.; Krüger, A.; Ripken, T.; Lenarz, T.; Kral, A.

    2014-03-01

    There is a controversy, to which extend cochlear stimulation with near infrared laser pulses at a wavelength of 1860 nm is based on optoacoustic stimulation of intact hair cells or -in contrast- is based on direct stimulation of the nerve cells in absence of functional hair cells. Thermal and stress confinement conditions apply, because of the pulse duration range (5 ns, 10 μs-20 ms) of the two lasers used. The dependency of the signal characteristics on pulse peak power and pulse duration was investigated in this study. The compound action potential (CAP) was measured during stimulation of the cochlea of four anaesthetized guinea pigs, which were hearing at first and afterwards acutely deafened using intracochlear neomycin-rinsing. For comparison hydrophone measurements in a water tank were performed to investigate the optoacoustic signals at different laser interaction regimes. With rising pulse peak power CAPs of the hearing animals showed first a threshold, then a positively correlated and finally a saturating dependency. CAPs also showed distinct responses at laser onset and offset separated with the pulse duration. At pulse durations shorter than physiological response times the signals merged. Basically the same signal characteristics were observed in the optoacoustic hydrophone measurements, scaled with the sensitivity and response time of the hydrophone. Taking together the qualitative correspondence in the signal response and the absence of any CAPs in deafened animals our results speak in favor of an optoacoustic stimulation of intact hair cells rather than a direct stimulation of nerve cells.

  10. Dish/Stirling systems: Overview of an emerging commercial solar thermal electric technology

    SciTech Connect

    Strachan, J.W.; Diver, R.B.; Estrada, C.

    1995-11-01

    Dish/Stirling is a solar thermal electric technology which couples parabolic, point-focusing solar collectors and heat engines which employ the Stirling thermodynamic cycle. Since the late 1970s, the development of Dish/Stirling systems intended for commercial use has been in progress in Germany, Japan, and the US. In the next several years it is expected that one or more commercial systems will enter the market place. This paper provides a general overview of this emerging technology, including: a description of the fundamental principles of operation of Dish/Stirling systems; a presentation of the major components of the systems (concentrator, receiver, engine/alternator, and controls); an overview of the actual systems under development around the world, with a discussion of some of the technical issues and challenges facing the Dish/Stirling developers. A brief discussion is also presented of potential applications for small Dish/Stirling systems in northern Mexico.

  11. Thermal flow sensor for ultra-low velocities based on printed circuit board technology

    NASA Astrophysics Data System (ADS)

    Nguyen, N. T.; Huang, X. Y.; Toh, K. C.

    2001-12-01

    This paper presents a new thermal flow sensor for ultra-low velocities. The sensor was fabricated with the standard printed circuit board (PCB) technology. The technology and the simple sensor design would reduce costs in fabrication and packaging. A one-dimensional analytical model is presented in order to understand the working principle and to optimize the sensitivity. A two-dimensional finite element analysis (FEA) model is also presented. The paper describes the experimental investigations of the temperature field around a heater under the influence of forced convection. The experimental and theoretical optimization results lead to the design of the PCB sensor whose characteristics are presented at the end of the paper. With the current calibration facility, the sensor is able to measure air flow velocities less than 80 mm s-1.

  12. Improving the efficiency of thermal power equipment based on technologies using surfactants

    NASA Astrophysics Data System (ADS)

    Nikolaeva, L. A.; Zueva, O. S.

    2015-10-01

    The formation of deposits on the functional surfaces of the equipment of heating systems and their corrosion are one of the major energetic problems. To improve the operational efficiency of thermal power equipment, surface-active agents (surfactants) are widely used, which are applied for the treatment of the working surfaces before use, during use, to prevent the parking corrosion, as well as while performing periodic chemical cleanings of power equipment. The tests have been performed, and the technology of application of Auge Neo Ac 56 acid product (MAHIM, Kazan) has been developed, designed to remove mineral deposits and scale from cooling and boiler systems without mechanical influence on them and without disassembly of technological equipment.

  13. Life cycle assessment of thermal waste-to-energy technologies: review and recommendations.

    PubMed

    Astrup, Thomas Fruergaard; Tonini, Davide; Turconi, Roberto; Boldrin, Alessio

    2015-03-01

    Life cycle assessment (LCA) has been used extensively within the recent decade to evaluate the environmental performance of thermal Waste-to-Energy (WtE) technologies: incineration, co-combustion, pyrolysis and gasification. A critical review was carried out involving 250 individual case-studies published in 136 peer-reviewed journal articles within 1995 and 2013. The studies were evaluated with respect to critical aspects such as: (i) goal and scope definitions (e.g. functional units, system boundaries, temporal and geographic scopes), (ii) detailed technology parameters (e.g. related to waste composition, technology, gas cleaning, energy recovery, residue management, and inventory data), and (iii) modeling principles (e.g. energy/mass calculation principles, energy substitution, inclusion of capital goods and uncertainty evaluation). Very few of the published studies provided full and transparent descriptions of all these aspects, in many cases preventing an evaluation of the validity of results, and limiting applicability of data and results in other contexts. The review clearly suggests that the quality of LCA studies of WtE technologies and systems including energy recovery can be significantly improved. Based on the review, a detailed overview of assumptions and modeling choices in existing literature is provided in conjunction with practical recommendations for state-of-the-art LCA of Waste-to-Energy. PMID:25052337

  14. Integrated thermal and nonthermal treatment technology and subsystem cost sensitivity analysis

    SciTech Connect

    Harvego, L.A.; Schafer, J.J.

    1997-02-01

    The U.S. Department of Energy`s (DOE) Environmental Management Office of Science and Technology (EM-50) authorized studies on alternative systems for treating contact-handled DOE mixed low-level radioactive waste (MLLW). The on-going Integrated Thermal Treatment Systems` (ITTS) and the Integrated Nonthermal Treatment Systems` (INTS) studies satisfy this request. EM-50 further authorized supporting studies including this technology and subsystem cost sensitivity analysis. This analysis identifies areas where technology development could have the greatest impact on total life cycle system costs. These areas are determined by evaluating the sensitivity of system life cycle costs relative to changes in life cycle component or phase costs, subsystem costs, contingency allowance, facility capacity, operating life, and disposal costs. For all treatment systems, the most cost sensitive life cycle phase is the operations and maintenance phase and the most cost sensitive subsystem is the receiving and inspection/preparation subsystem. These conclusions were unchanged when the sensitivity analysis was repeated on a present value basis. Opportunity exists for technology development to reduce waste receiving and inspection/preparation costs by effectively minimizing labor costs, the major cost driver, within the maintenance and operations phase of the life cycle.

  15. A study of the thermal decomposition of adulterated cocaine samples under optimized aerobic pyrolytic conditions.

    PubMed

    Gostic, T; Klemenc, S; Stefane, B

    2009-05-30

    The pyrolysis behaviour of pure cocaine base as well as the influence of various additives was studied using conditions that are relevant to the smoking of illicit cocaine by humans. For this purpose an aerobic pyrolysis device was developed and the experimental conditions were optimized. In the first part of our study the optimization of some basic experimental parameters of the pyrolysis was performed, i.e., the furnace temperature, the sampling start time, the heating period, the sampling time, and the air-flow rate through the system. The second part of the investigation focused on the volatile products formed during the pyrolysis of a pure cocaine free base and mixtures of cocaine base and adulterants. The anaesthetics lidocaine, benzocaine, procaine, the analgesics phenacetine and paracetamol, and the stimulant caffeine were used as the adulterants. Under the applied experimental conditions complete volatilization of the samples was achieved, i.e., the residuals of the studied compounds were not detected in the pyrolysis cell. Volatilization of the pure cocaine base showed that the cocaine recovery available for inhalation (adsorbed on traps) was approximately 76%. GC-MS and NMR analyses of the smoke condensate revealed the presence of some additional cocaine pyrolytic products, such as anhydroecgonine methyl ester (AEME), benzoic acid (BA) and carbomethoxycycloheptatrienes (CMCHTs). Experiments with different cocaine-adulterant mixtures showed that the addition of the adulterants changed the thermal behaviour of the cocaine. The most significant of these was the effect of paracetamol. The total recovery of the cocaine (adsorbed on traps and in a glass tube) from the 1:1 cocaine-paracetamol mixture was found to be only 3.0+/-0.8%, versus 81.4+/-2.9% for the pure cocaine base. The other adulterants showed less-extensive effects on the recovery of cocaine, but the pyrolysis of the cocaine-procaine mixture led to the formation of some unique pyrolytic products. Two of them were identified as para-aminobenzoic acid (p-ABA) and 2-(diethylamino)ethylbenzoate (DEAEB). PMID:19278799

  16. Thermal Fatigue Testing of Plasma Transfer Arc Stellite Coatings on Hot Work Tool Steels under Steel Thixoforming Conditions

    NASA Astrophysics Data System (ADS)

    Birol, Yucel; Kayihan, Agca B.

    2011-11-01

    The thermal fatigue performance of Stellite 12 coating deposited on X32CrMoV33 hot work tool steel via the plasma transfer arc (PTA) process was investigated under steel thixoforming conditions. Stellite 12 coating has made a favorable impact on the thermal fatigue performance of the X32CrMoV33 hot work tool steel. The latter survived steel thixoforming conditions lasting much longer, for a total of 5000 cycles, when coated with a PTA Stellite 12 layer. This marked improvement is attributed to the higher resistance to oxidation and to temper softening of the Stellite 12 alloy. The Cr-rich oxides, which form during thermal cycling, provide adequate protection to high-temperature oxidation. In contrast to hot work tool steel, Stellite 12 alloy enjoys hardening upon thermal exposure under steel thixoforming conditions. This increase in the strength of the coating is produced by the formation of carbides and contributes to the superior thermal fatigue resistance of the Stellite 12 alloy. When the crack finally initiates, it propagates via the fracture of hard interdendritic carbides. The transformation of M7C3 to M23C6, which is more voluminous than M7C3, promotes crack propagation.

  17. Hafnia-Based Nanostructured Thermal Barrier Coatings for Advanced Hydrogen Turbine Technology

    SciTech Connect

    Ramana, Chintalapalle; Choudhuri, Ahsan

    2013-01-31

    Thermal barrier coatings (TBCs) are critical technologies for future gas turbine engines of advanced coal based power generation systems. TBCs protect engine components and allow further increase in engine temperatures for higher efficiency. In this work, nanostructured HfO{sub 2}-based coatings, namely Y{sub 2}O{sub 3}-stabilized HfO{sub 2} (YSH), Gd{sub 2}O{sub 3}-stabilized HfO{sub 2} (GSH) and Y{sub 2}O{sub 3}-stabilized ZrO{sub 2}-HfO{sub 2} (YSZH) were investigated for potential TBC applications in hydrogen turbines. Experimental efforts are aimed at creating a fundamental understanding of these TBC materials. Nanostructured ceramic coatings of YSH, GSH and YSZH were grown by physical vapor deposition methods. The effects of processing parameters and ceramic composition on the microstructural evolution of YSH, GSH and YSZH nanostructured coatings was studied using combined X-ray diffraction (XRD) and Electron microscopy analyses. Efforts were directed to derive a detailed understanding of crystal-structure, morphology, and stability of the coatings. In addition, thermal conductivity as a function of composition in YSH, YSZH and GSH coatings was determined. Laboratory experiments using accelerated test environments were used to investigate the relative importance of various thermo-mechanical and thermo-chemical failure modes of TBCs. Effects of thermal cycling, oxidation and their complex interactions were evaluated using a syngas combustor rig.

  18. Suitability of different comfort indices for the prediction of thermal conditions in tree-covered outdoor spaces in arid cities

    NASA Astrophysics Data System (ADS)

    Ruiz, María Angélica; Correa, Erica Norma

    2015-10-01

    Outdoor thermal comfort is one of the most influential factors in the habitability of a space. Thermal level is defined not only by climate variables but also by the adaptation of people to the environment. This study presents a comparison between inductive and deductive thermal comfort models, contrasted with subjective reports, in order to identify which of the models can be used to most correctly predict thermal comfort in tree-covered outdoor spaces of the Mendoza Metropolitan Area, an intensely forested and open city located in an arid zone. Interviews and microclimatic measurements were carried out in winter 2010 and in summer 2011. Six widely used indices were selected according to different levels of complexity: the Temperature-Humidity Index (THI), Vinje's Comfort Index (PE), Thermal Sensation Index (TS), the Predicted Mean Vote (PMV), the COMFA model's energy balance (S), and the Physiological Equivalent Temperature (PET). The results show that the predictive models evaluated show percentages of predictive ability lower than 25 %. Despite this low indicator, inductive methods are adequate for obtaining a diagnosis of the degree and frequency in which a space is comfortable or not whereas deductive methods are recommended to influence urban design strategies. In addition, it is necessary to develop local models to evaluate perceived thermal comfort more adequately. This type of tool is very useful in the design and evaluation of the thermal conditions in outdoor spaces, based not only to climatic criteria but also subjective sensations.

  19. A thermal model for analysis of hermetic reciprocating compressors under the on-off cycling operating condition

    NASA Astrophysics Data System (ADS)

    Lohn, S. K.; Diniz, M. C.; Deschamps, C. J.

    2015-08-01

    The on-off cycling operating condition of compressors is very common in low capacity refrigeration systems, being characterized by alternate periods in which the compressor is either operating (on) or idle (off). Thermal interactions between the compressor components affect its performance during the operating period and establish the initial condition for the compressor start up from idle condition. This paper presents a numerical model to predict the temperature field of hermetic reciprocating compressors under on-off cycling conditions. The model adopts a lumped formulation for control volumes formed in the fluid solution domain and the finite volume method to solve heat conduction in the solid components. Some required heat transfer coefficients were experimentally adjusted. Predictions for temperature were compared to measurements and good agreement was observed, especially for the thermal transient during the period in which the compressor is off.

  20. Recommendations for strengthening the infrared technology component of any condition monitoring program

    NASA Astrophysics Data System (ADS)

    Nicholas, Jack R., Jr.; Young, R. K.

    1999-03-01

    This presentation provides insights of a long term 'champion' of many condition monitoring technologies and a Level III infra red thermographer. The co-authors present recommendations based on their observations of infra red and other components of predictive, condition monitoring programs in manufacturing, utility and government defense and energy activities. As predictive maintenance service providers, trainers, informal observers and formal auditors of such programs, the co-authors provide a unique perspective that can be useful to practitioners, managers and customers of advanced programs. Each has over 30 years experience in the field of machinery operation, maintenance, and support the origins of which can be traced to and through the demanding requirements of the U.S. Navy nuclear submarine forces. They have over 10 years each of experience with programs in many different countries on 3 continents. Recommendations are provided on the following: (1) Leadership and Management Support (For survival); (2) Life Cycle View (For establishment of a firm and stable foundation for a program); (3) Training and Orientation (For thermographers as well as operators, managers and others); (4) Analyst Flexibility (To innovate, explore and develop their understanding of machinery condition); (5) Reports and Program Justification (For program visibility and continued expansion); (6) Commitment to Continuous Improvement of Capability and Productivity (Through application of updated hardware and software); (7) Mutual Support by Analysts (By those inside and outside of the immediate organization); (8) Use of Multiple Technologies and System Experts to Help Define Problems (Through the use of correlation analysis of data from up to 15 technologies. An example correlation analysis table for AC and DC motors is provided.); (9) Root Cause Analysis (Allows a shift from reactive to proactive stance for a program); (10) Master Equipment Identification and Technology Application (To place the condition monitoring program in perspective); (11) Use of procedures for Predictive, Condition Monitoring and maintenance in general (To get consistent results); (12) Developing a scheme for predictive, condition monitoring personnel qualification and certification (To provide a career path and incentive to advance skill level and value to the company); (13) Analyst Assignment to Technologies and Related Duties (To make intelligent use of the skills of individuals assigned); (14) Condition Monitoring Analyst Selection Criteria (Key attributes for success are mentioned.); (15) Design and Modification to Support Monitoring (For old and new machinery to facilitate data acquisition); (16) Establishment of a Museum of Components and Samples Pulled from Service for Cause (For orientation and awareness training of operators and managers and exchange of information between analysts); (17) Goals (To promote a proactive program approach for machinery condition improvement).

  1. Effects of BEOL on self-heating and thermal coupling in SiGe multi-finger HBTs under real operating condition

    NASA Astrophysics Data System (ADS)

    Dwivedi, A. D. D.; Chakravorty, Anjan; D'Esposito, Rosario; Sahoo, Amit Kumar; Fregonese, Sebastien; Zimmer, Thomas

    2016-01-01

    Effects of the back-end-of-line layers up to metal-1 on the self-heating and thermal coupling in a multi-finger silicon germanium heterojunction bipolar transistor (SiGe MFT) are investigated. It is observed that the rise in junction temperature is overestimated if the BEOL effects are not considered. A new method for estimating the thermal coupling coefficients is proposed emulating the real operating condition. The proposed methodology demonstrates that the thermal coupling is increased in real operating condition and the estimated coupling coefficients are almost independent of the dissipated power. Further an empirical closed-form formulation is proposed for estimating the coupling coefficients analytically and for subsequently using in compact model simulation. The formulation is found to predict the coefficients quite accurately. Compact model simulations using the analytically obtained coupling coefficients show excellent model agreement with the static and dynamic 3D TCAD simulation data for junction temperature. Finally the model is validated against the measured data corresponding to an SiGe MFT fabricated using B55 technology from ST microelectronics.

  2. Non-thermal plasma based technologies for the after-treatment of automotive exhaust particulates and marine diesel exhaust NOx

    SciTech Connect

    McAdams, R; Beech, P; Gillespie, R; Guy, C; Jones,S; Liddell, T; Morgan, R; Shawcross, J; Weeks, D; Hughes, D; Oesterle, J; Eberspdcher,

    2003-08-24

    The trend in environmental legislation is such that primary engine modifications will not be sufficient to meet all future emissions requirements and exhaust aftertreatment technologies will need to be employed. One potential solution that is well placed to meet those requirements is non-thermal plasma technology. This paper will describe our work with some of our partners in the development of a plasma based diesel particulate filter (DPF) and plasma assisted catalytic reduction (PACR) for NOx removal. This paper describes the development of non-thermal plasma technology for the aftertreatment of particulates from a passenger car engine and NOx from a marine diesel exhaust application.

  3. Hydrogen-control systems for severe LWR accident conditions - a state-of-technology report

    SciTech Connect

    Hilliard, R K; Postma, A K; Jeppson, D W

    1983-03-01

    This report reviews the current state of technology regarding hydrogen safety issues in light water reactor plants. Topics considered in this report relate to control systems and include combustion prevention, controlled combustion, minimization of combustion effects, combination of control concepts, and post-accident disposal. A companion report addresses hydrogen generation, distribution, and combustion. The objectives of the study were to identify the key safety issues related to hydrogen produced under severe accident conditions, to describe the state of technology for each issue, and to point out ongoing programs aimed at resolving the open issues.

  4. Energy efficiency and comfort conditions in passive solar buildings: Effect of thermal mass at equatorial high altitudes

    NASA Astrophysics Data System (ADS)

    Ogoli, David Mwale

    This dissertation is based on the philosophy that architectural design should not just be a function of aesthetics, but also of energy-efficiency, advanced technologies and passive solar strategies. A lot of published literature is silent regarding buildings in equatorial highland regions. This dissertation is part of the body of knowledge that attempts to provide a study of energy in buildings using thermal mass. The objectives were to establish (1) effect of equatorial high-altitude climate on thermal mass, (2) effect of thermal mass on moderating indoor temperatures, (3) effect of thermal mass in reducing heating and cooling energy, and (4) the amount of time lag and decrement factor of thermal mass. Evidence to analyze the effect of thermal mass issues came from three sources. First, experimental physical models involving four houses were parametrically conducted in Nairobi, Kenya. Second, energy computations were made using variations in thermal mass for determining annual energy usage and costs. Third, the data gathered were observed, evaluated, and compared with currently published research. The findings showed that: (1) Equatorial high-altitude climates that have diurnal temperature ranging about 10--15C allow thermal mass to moderate indoor temperatures; (2) Several equations were established that indicate that indoor mean radiant temperatures can be predicted from outdoor temperatures; (3) Thermal mass can reduce annual energy for heating and cooling by about 71%; (4) Time lag and decrement of 200mm thick stone and concrete thermal mass can be predicted by a new formula; (5) All windows on a building should be shaded. East and west windows when shaded save 51% of the cooling energy. North and south windows when fully shaded account for a further 26% of the cooling energy; (6) Insulation on the outside of a wall reduces energy use by about 19.6% below the levels with insulation on the inside. The basic premise of this dissertation is that decisions that affect a building's use regarding thermal mass occur during early design stages. The intention is to present new knowledge to architects regarding the use of thermal mass in equatorial high altitude climates for energy-efficiency through passive solar strategies.

  5. Regularities of acoustic emission and thermoemission memory effect in coal specimens under varying thermal conditions

    SciTech Connect

    Shkuratnik, V.L.; Kuchurin, S.V.; Vinnikov, V.A.

    2007-07-15

    The experimental data on acoustic emission regularities are presented for specimens of different genetic coal types exposed to a wide range of cyclic heating modes. Peculiarities of formation and manifestation of thermal-emission memory effect depending on amplitude and duration of the thermal-field action are revealed.

  6. Potential Applications of Concentrated Solar Thermal Technologies in the Australian Minerals Processing and Extractive Metallurgical Industry

    NASA Astrophysics Data System (ADS)

    Eglinton, Thomas; Hinkley, Jim; Beath, Andrew; Dell'Amico, Mark

    2013-12-01

    The Australian minerals processing and extractive metallurgy industries are responsible for about 20% of Australia's total greenhouse gas (GHG) emissions. This article reviews the potential applications of concentrated solar thermal (CST) energy in the Australian minerals processing industry to reduce this impact. Integrating CST energy into these industries would reduce their reliance upon conventional fossil fuels and reduce GHG emissions. As CST technologies become more widely deployed and cheaper, and as fuel prices rise, CST energy will progressively become more competitive with conventional energy sources. Some of the applications identified in this article are expected to become commercially competitive provided the costs for pollution abatement and GHG mitigation are internalized. The areas of potential for CST integration identified in this study can be classed as either medium/low-temperature or high-temperature applications. The most promising medium/low-grade applications are electricity generation and low grade heating of liquids. Electricity generation with CST energy—also known as concentrated solar power—has the greatest potential to reduce GHG emissions out of all the potential applications identified because of the 24/7 dispatchability when integrated with thermal storage. High-temperature applications identified include the thermal decomposition of alumina and the calcination of limestone to lime in solar kilns, as well as the production of syngas from natural gas and carbonaceous materials for various metallurgical processes including nickel and direct reduced iron production. Hybridization and integration with thermal storage could enable CST to sustain these energy-intensive metallurgical processes continuously. High-temperature applications are the focus of this paper.

  7. Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies, Class III

    SciTech Connect

    City of Long Beach; Tidelands Oil Production Company; University of Southern California; David K. Davies and Associates

    2002-09-30

    The objective of this project was to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. It was hoped that the successful application of these technologies would result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs.

  8. Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies, Class III

    SciTech Connect

    City of Long Beach; Tidelands Oil Production Company; University of Southern California; David K. Davies and Associates

    2002-09-30

    The objective of this project was to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. The successful application of these technologies would result in expanding their implementation throughout the Wilmington Field and, through technology transfer, to other slope and basin clastic (SBC) reservoirs.

  9. Atomistic Simulations of Chemical Reactivity of TATB Under Thermal and Shock Conditions

    SciTech Connect

    Manaa, M R; Reed, E J; Fried, L E

    2009-09-23

    The study of chemical transformations that occur at the reactive shock front of energetic materials provides important information for the development of predictive models at the grain-and continuum scales. A major shortcoming of current high explosives models is the lack of chemical kinetics data of the reacting explosive in the high pressure and temperature regimes. In the absence of experimental data, long-time scale atomistic molecular dynamics simulations with reactive chemistry become a viable recourse to provide an insight into the decomposition mechanism of explosives, and to obtain effective reaction rate laws. These rates can then be incorporated into thermo-chemical-hydro codes (such as Cheetah linked to ALE3D) for accurate description of the grain and macro scales dynamics of reacting explosives. In this talk, I will present quantum simulations of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) crystals under thermal decomposition (high density and temperature) and shock compression conditions. This is the first time that condensed phase quantum methods have been used to study the chemistry of insensitive high explosives. We used the quantum-based, self-consistent charge density functional tight binding method (SCC{_}DFTB) to calculate the interatomic forces for reliable predictions of chemical reactions, and to examine electronic properties at detonation conditions for a relatively long time-scale on the order of several hundreds of picoseconds. For thermal decomposition of TATB, we conducted constant volume-temperature simulations, ranging from 0.35 to 2 nanoseconds, at {rho} = 2.87 g/cm{sup 3} at T = 3500, 3000, 2500, and 1500 K, and {rho} = 2.9 g/cm{sup 3} and 2.72 g/cm{sup 3}, at T = 3000 K. We also simulated crystal TATB's reactivity under steady overdriven shock compression using the multi-scale shock technique. We conducted shock simulations with specified shock speeds of 8, 9, and 10 km/s for up to 0.43 ns duration, enabling us to track the reactivity of TATB well into the formation of several stable gas products, such as H{sub 2}O, N{sub 2}, and CO{sub 2}. Although complex chemical transformations are occurring continuously in the dynamical, high temperature, reactive environment of our simulations, a simple overall scheme for the decomposition of TATB emerges: Water is the earliest decomposition products to form, followed by a polymerization (or condensation) process in which several TATB remaining fragments are joined together, initiating the early step in the formation of high-nitrogen clusters, along with stable products such as N{sub 2} and CO{sub 2}. Remarkably, these clusters with high concentration of carbon and nitrogen (and little oxygen) remain dynamically stable for the remaining period of the simulations. Our simulations, thus, reveal a hitherto unidentified region of high concentrations of nitrogen-rich heterocyclic clusters in reacting TATB, whose persistence impede further reactivity towards final products of fluid N{sub 2} and solid carbon. These simulations also predict significant populations of charged species such as NCO{sup -}, H{sup +}, OH{sup -}, H{sub 3}O{sup +}, and O{sup -2}, the first such observation in a reacting explosive. Finally, A reduced four steps, global reaction mechanism with Arrhenius kinetic rates for the decomposition of TATB, along with comparative Cheetah decomposition kinetics at various temperatures has been constructed and will be discussed.

  10. Response of body size and developmental time of Tribolium castaneum to constant versus fluctuating thermal conditions.

    PubMed

    Ma?ek, D; Drobniak, S; Gozdek, A; Pawlik, K; Kramarz, P

    2015-07-01

    Temperature has profound effects on biological functions at all levels of organization. In ectotherms, body size is usually negatively correlated with ambient temperature during development, a phenomenon known as The Temperature-Size Rule (TSR). However, a growing number of studies have indicated that temperature fluctuations have a large influence on life history traits and the implications of such fluctuations for the TSR are unknown. Our study investigated the effect of different constant and fluctuating temperatures on the body mass and development time of red flour beetles (Tribolium castaneum Herbst, 1797); we also examined whether the sexes differed in their responses to thermal conditions. We exposed the progeny of half-sib families of a T. castaneum laboratory strain to one of four temperature regimes: constant 30C, constant 25C, fluctuating with a daily mean of 30C, or fluctuating with a daily mean of 25C. Sex-specific development time and body mass at emergence were determined. Beetles developed the fastest and had the greatest body mass upon emergence when they were exposed to a constant temperature of 30C. This pattern was reversed when beetles experienced a constant temperature of 25C: slowest development and lowest body mass upon emergence were observed. Fluctuations changed those effects significantly - impact of temperature on development time was smaller, while differences in body mass disappeared completely. Our results do not fit TSR predictions. Furthermore, regardless of the temperature regime, females acquired more mass, while there were no differences between sexes in development time to eclosion. This finding fails to support one of the explanations for smaller male size: that selection favors the early emergence of males. We found no evidence of genotype environment interactions for selected set of traits. PMID:25965024

  11. Simulations of Chemical Reactivity of Insensitive Energetic Materials Under Thermal and Shock Conditions

    NASA Astrophysics Data System (ADS)

    Manaa, Riad; Reed, Evan; Fried, Laurence; Goldman, Nir

    2011-06-01

    Results of quantum based simulations of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) crystals under thermal decomposition (high density and temperature) and shock compression conditions are presented. We conducted constant volume-temperature simulations, ranging from 0.35 to 2 nanoseconds, at ? = 2.87 g/cm3 at T= 3500, 3000, 2500, and 1500 K, and ? = 2.9 g/cm3and 2.72 g/cm3, at T = 3000 K. We also simulated crystal TATB's reactivity under steady overdriven shock compression at shock speeds of 8, 9, and 10 km/s for up to 0.43 ns duration. These simulations have enabled us to track the reactivity of TATB well into the formation of several stable gas products, such as H2O, N2, and CO2. Our simulations revealed a hitherto unidentified region of high concentrations of nitrogen-rich heterocyclic clusters in reacting TATB, whose persistence impede further reactivity towards final products of fluid N2 and solid carbon. Our simulations also predict significant populations of charged species such as NCO-, H+, OH-, H3O+, and O-2, the first such observation in a reacting explosive. A reduced four steps, global reaction mechanism with Arrhenius kinetic rates for the decomposition of TATB, along with comparative thermo-chemical decomposition kinetics has been constructed and will be discussed. This work performed under the auspices of the U.S. DoE Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  12. Dynamical and radiative forcing of the summer mesopause circulation and thermal structure. 1: Mean solstice conditions

    SciTech Connect

    Fritts, D.C.; Luo, Z.

    1995-02-01

    We present here a simple eigenvalue model which illustrates the sensitivity of the mean circulation and thermal structure near the high-latitude summer mesopause to dynamical and radiative processes under solstice conditions. Dynamical forcing is provided by gravity wave energy and momentum fluxes and their divergence which contribute both a zonal body force and implied turbulent heating and transport in the mesopause region. These profiles are chosen to be consistent with measurements of gravity wave fluxes and energy densities at high latitudes. Radiative forcing represents the effects of solar heating, non-local thermodynamic equilibrium (LTE) CO2 cooling, and LTE O3 cooling below 70 km and is parameterized as a height-dependent relaxation toward an equilibrium temperature profile accounting for both radiative and chemical influences. Gravity wave momentum flux divergence forces a mean vertical motion related to the meridional gradient of the density-weighted momentum flux through the `downward control principle` and a mean meridional circulation required to balance the zonal body force. The model exhibits strong sensitivity to dynamical forcing and implies significant constraints on wave influences at mesopause altitudes. For plausible wave fluxes and energy densities, the model yields a mean vertical motion of approximately 0.05 m/s, a mean meridional jet of approximately 10 to 15 m/s, and a mesopause temperature of approximately 130 K at Arctic latitudes, all of which are in good agreement with observations. The eigenvalue solution also yields estimates of the induced turbulent heating and vertical diffusion that may pose useful guidelines in modeling studies. Seasonal variations in the mesopause structure are the subject of a companion paper.

  13. Assessment of the State of the Art of Flight Control Technologies as Applicable to Adverse Conditions

    NASA Technical Reports Server (NTRS)

    Reveley, Mary s.; Briggs, Jeffrey L.; Leone, Karen M.; Kurtoglu, Tolga; Withrow, Colleen A.

    2010-01-01

    Literature from academia, industry, and other Government agencies was surveyed to assess the state of the art in current Integrated Resilient Aircraft Control (IRAC) aircraft technologies. Over 100 papers from 25 conferences from the time period 2004 to 2009 were reviewed. An assessment of the general state of the art in adaptive flight control is summarized first, followed by an assessment of the state of the art as applicable to 13 identified adverse conditions. Specific areas addressed in the general assessment include flight control when compensating for damage or reduced performance, retrofit software upgrades to flight controllers, flight control through engine response, and finally test and validation of new adaptive controllers. The state-of-the-art assessment applicable to the adverse conditions include technologies not specifically related to flight control, but may serve as inputs to a future flight control algorithm. This study illustrates existing gaps and opportunities for additional research by the NASA IRAC Project

  14. Development of air conditioning technologies to reduce CO2 emissions in the commercial sector

    PubMed Central

    Yoshida, Yukiko

    2006-01-01

    Background Architectural methods that take into account global environmental conservation generally concentrate on mitigating the heat load of buildings. Here, we evaluate the reduction of carbon dioxide (CO2) emissions that can be achieved by improving heating, ventilating, and air conditioning (HVAC) technologies. Results The Climate Change Research Hall (CCRH) of the National Institute for Environmental Studies (NIES) is used as a case study. CCRH was built in line with the "Green Government Buildings" program of the Government Buildings Department at the Ministry of Land, Infrastructure and Transport in Japan. We have assessed the technology used in this building, and found that there is a possibility to reduce energy consumption in the HVAC system by 30%. Conclusion Saving energy reduces CO2 emissions in the commercial sector, although emission factors depend on the country or region. Consequently, energy savings potential may serve as a criterion in selecting HVAC technologies with respect to emission reduction targets. PMID:17062161

  15. The thermal conductivity of rock under hydrothermal conditions: Measurements and applications

    SciTech Connect

    Williams, C.F.; Sass, J.H.

    1996-12-31

    The thermal conductivities of most major rock-forming minerals vary with both temperature and confining pressure, leading to substantial changes in the thermal properties of some rocks at the high temperatures characteristic of geothermal systems. In areas with large geothermal gradients, the successful use of near-surface heat flow measurements to predict temperatures at depth depends upon accurate corrections for varying thermal conductivity. Previous measurements of the thermal conductivity of dry rock samples as a function of temperature were inadequate for porous rocks and susceptible to thermal cracking effects m nonporous rocks. We have developed an instrument for measuring the thermal conductivity of water-saturated rocks at temperatures from 20 to 350{degrees}C and confining pressures up to 100 MPa. A transient line-source of heat is applied through a needle probe centered within the rock sample, which in turn is enclosed within a heated pressure vessel with independent controls on pore and confining pressure. Application of this technique to samples of Franciscan graywacke from The Geysers reveals a significant change in thermal conductivity with temperature. At reservoir-equivalent temperatures of 250{degrees}C, the conductivity of the graywacke decreases by approximately 25 % relative to the room temperature value. Where heat how is constant with depth within the caprock overlying the reservoir, this reduction in conductivity with temperature leads to a corresponding increase in the geothermal gradient. Consequently, reservoir temperatures are encountered at depths significantly shallower than those predicted by assuming a constant temperature gradient with depth. We have derived general equations for estimating the thermal conductivity of most metamorphic and igneous rocks and some sedimentary rocks at elevated temperature from knowledge of the room temperature thermal conductivity.

  16. The thermal conductivity of rock under hydrothermal conditions: measurements and applications

    SciTech Connect

    Williams, Colin F.; Sass, John H.

    1996-01-24

    The thermal conductivities of most major rock-forming minerals vary with both temperature and confining pressure, leading to substantial changes in the thermal properties of some rocks at the high temperatures characteristic of geothermal systems. In areas with large geothermal gradients, the successful use of near-surface heat flow measurements to predict temperatures at depth depends upon accurate corrections for varying thermal conductivity. Previous measurements of the thermal conductivity of dry rock samples as a function of temperature were inadequate for porous rocks and susceptible to thermal cracking effects in nonporous rocks. We have developed an instrument for measuring the thermal conductivity of water-saturated rocks at temperatures from 20 to 350 °C and confining pressures up to 100 MPa. A transient line-source of heat is applied through a needle probe centered within the rock sample, which in turn is enclosed within a heated pressure vessel with independent controls on pore and confining pressure. Application of this technique to samples of Franciscan graywacke from The Geysers reveals a significant change in thermal conductivity with temperature. At reservoir-equivalent temperatures of 250 °C, the conductivity of the graywacke decreases by approximately 25% relative to the room temperature value. Where heat flow is constant with depth within the caprock overlying the reservoir, this reduction in conductivity with temperature leads to a corresponding increase in the geothermal gradient. Consequently, reservoir temperature are encountered at depths significantly shallower than those predicted by assuming a constant temperature gradient with depth. We have derived general equations for estimating the thermal conductivity of most metamorphic and igneous rocks and some sedimentary rocks at elevated temperature from knowledge of the room temperature thermal conductivity. Application of these equations to geothermal exploration should improve estimates of subsurface temperatures derived from heat flow measurements.

  17. Thermal comfort in air-conditioned buildings in hot and humid climates - why are we not getting it right?

    PubMed

    Sekhar, S C

    2016-02-01

    While there are plenty of anecdotal experiences of overcooled buildings in summer, evidence from field studies suggests that there is indeed an issue of overcooling in tropical buildings. The findings suggest that overcooled buildings are not a consequence of occupant preference but more like an outcome of the HVAC system design and operation. Occupants' adaptation in overcooled indoor environments through additional clothing cannot be regarded as an effective mitigating strategy for cold thermal discomfort. In the last two decades or so, several field studies and field environmental chamber studies in the tropics provided evidence for occupants' preference for a warmer temperature with adaptation methods such as elevated air speeds. It is important to bear in mind that indoor humidity levels are not compromised as they could have an impact on the inhaled air condition that could eventually affect perceived air quality. This review article has attempted to track significant developments in our understanding of the thermal comfort issues in air-conditioned office and educational buildings in hot and humid climates in the last 25years, primarily on occupant preference for thermal comfort in such climates. The issue of overcooled buildings, by design intent or otherwise, is discussed in some detail. Finally, the article has explored some viable adaptive thermal comfort options that show considerable promise for not only improving thermal comfort in tropical buildings but are also energy efficient and could be seen as sustainable solutions. PMID:25626476

  18. Direct chemical oxidation: a non-thermal technology for the destruction of organic wastes

    SciTech Connect

    Balazs, G.B.; Cooper, J. F.; Lewis, P. R.; Adamson, M. G.

    1998-02-01

    Direct Chemical Oxidation (DCO) is a non-thermal, ambient pressure, aqueous-based technology for the oxidative destruction of the organic components of hazardous or mixed waste streams. The process has been developed for applications in waste treatment and chemical demilitarization and decontamination at LLNL since 1992, and is applicable to the destruction of virtually all solid or liquid organics, including: chlorosolvents, oils and greases, detergents, organic-contaminated soils or sludges, explosives, chemical and biological warfare agents, and PCB's. [1-15] The process normally operates at 80-100 C, a heating requirement which increases the difficulty of surface decontamination of large objects or, for example, treatment of a wide area contaminated soil site. The driver for DCO work in FY98 was thus to investigate the use of catalysts to demonstrate the effectiveness of the technology for organics destruction at temperatures closer to ambient. In addition, DCO is at a sufficiently mature stage of development that technology transfer to a commercial entity was a logical next step, and was thus included in FY98 tasks.

  19. Thermal conductivity of vertically aligned carbon nanotube arrays: Growth conditions and tube inhomogeneity

    SciTech Connect

    Bauer, Matthew L.; Pham, Quang N.; Saltonstall, Christopher B.; Norris, Pamela M.

    2014-10-13

    The thermal conductivity of vertically aligned carbon nanotube arrays (VACNTAs) grown on silicon dioxide substrates via chemical vapor deposition is measured using a 3ω technique. For each sample, the VACNTA layer and substrate are pressed to a heating line at varying pressures to extract the sample's thermophysical properties. The nanotubes' structure is observed via transmission electron microscopy and Raman spectroscopy. The presence of hydrogen and water vapor in the fabrication process is tuned to observe the effect on measured thermal properties. The presence of iron catalyst particles within the individual nanotubes prevents the array from achieving the overall thermal conductivity anticipated based on reported measurements of individual nanotubes and the packing density.

  20. Thermal conductivity of vertically aligned carbon nanotube arrays: Growth conditions and tube inhomogeneity

    NASA Astrophysics Data System (ADS)

    Bauer, Matthew L.; Pham, Quang N.; Saltonstall, Christopher B.; Norris, Pamela M.

    2014-10-01

    The thermal conductivity of vertically aligned carbon nanotube arrays (VACNTAs) grown on silicon dioxide substrates via chemical vapor deposition is measured using a 3? technique. For each sample, the VACNTA layer and substrate are pressed to a heating line at varying pressures to extract the sample's thermophysical properties. The nanotubes' structure is observed via transmission electron microscopy and Raman spectroscopy. The presence of hydrogen and water vapor in the fabrication process is tuned to observe the effect on measured thermal properties. The presence of iron catalyst particles within the individual nanotubes prevents the array from achieving the overall thermal conductivity anticipated based on reported measurements of individual nanotubes and the packing density.

  1. Investigation of Thermal Stress Convection in Nonisothermal Gases under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Mackowski, Daniel W.

    1999-01-01

    The project has sought to ascertain the veracity of the Burnett relations, as applied to slow moving, highly nonisothermal gases, by comparison of convection and stress predictions with those generated by the DSMC method. The Burnett equations were found to provide reasonable descriptions of the pressure distribution and normal stress in stationary gases with a 1-D temperature gradient. Continuum/Burnett predictions of thermal stress convection in 2-D heated enclosures, however, are not quantitatively supported by DSMC results. For such situations, it appears that thermal creep flows, generated at the boundaries of the enclosure, will be significantly larger than the flows resulting from thermal stress in the gas.

  2. Remote Sensing of In-Flight Icing Conditions: Operational, Meteorological, and Technological Considerations

    NASA Technical Reports Server (NTRS)

    Ryerson, Charles C.

    2000-01-01

    Remote-sensing systems that map aircraft icing conditions in the flight path from airports or aircraft would allow icing to be avoided and exited. Icing remote-sensing system development requires consideration of the operational environment, the meteorological environment, and the technology available. Operationally, pilots need unambiguous cockpit icing displays for risk management decision-making. Human factors, aircraft integration, integration of remotely sensed icing information into the weather system infrastructures, and avoid-and-exit issues need resolution. Cost, maintenance, power, weight, and space concern manufacturers, operators, and regulators. An icing remote-sensing system detects cloud and precipitation liquid water, drop size, and temperature. An algorithm is needed to convert these conditions into icing potential estimates for cockpit display. Specification development requires that magnitudes of cloud microphysical conditions and their spatial and temporal variability be understood at multiple scales. The core of an icing remote-sensing system is the technology that senses icing microphysical conditions. Radar and microwave radiometers penetrate clouds and can estimate liquid water and drop size. Retrieval development is needed; differential attenuation and neural network assessment of multiple-band radar returns are most promising to date. Airport-based radar or radiometers are the most viable near-term technologies. A radiometer that profiles cloud liquid water, and experimental techniques to use radiometers horizontally, are promising. The most critical operational research needs are to assess cockpit and aircraft system integration, develop avoid-and-exit protocols, assess human factors, and integrate remote-sensing information into weather and air traffic control infrastructures. Improved spatial characterization of cloud and precipitation liquid-water content, drop-size spectra, and temperature are needed, as well as an algorithm to convert sensed conditions into a measure of icing potential. Technology development also requires refinement of inversion techniques. These goals can be accomplished with collaboration among federal agencies including NASA, the FAA, the National Center for Atmospheric Research, NOAA, and the Department of Defense. This report reviews operational, meteorological, and technological considerations in developing the capability to remotely map in-flight icing conditions from the ground and from the air.

  3. Energy and global warming impacts of next generation refrigeration and air conditioning technologies

    SciTech Connect

    Sand, J.R.; Fischer, S.K.; Baxter, V.D.

    1996-10-01

    Significant developments have occurred in hydrofluorocarbon (HFC) and the application of ammonia and hydrocarbons as refrigerant working fluids since the original TEWI (Total Equivalent Warming Impact) report in 1991. System operating and performance data on alternative refrigerants and refrigeration technologies justify and updated evaluation of these new alternative refrigerants and competing technologies in well-characterized applications. Analytical and experimental results are used to show quantitative comparisons between HFCS, HFC blends, hydrocarbons, and ammonia, used as refrigerants. An objective evaluation is presented for commercial and near commercial non-CFC refrigerants/blowing agents and alternative refrigeration technologies. This information is needed for objective and quantitative decisions on policies addressing greenhouse gas emissions from refrigeration and air conditioning equipment. The evaluation assesses the energy use and global warming impacts of refrigeration and air conditioning technologies that could be commercialized during the phase out of HCFCS. Quantitative comparison TEWI for two application areas are presented. Opportunities for significant reductions in TEWI are seen with currently known refrigerants through improved maintenance and servicing practices and improved product designs.

  4. Robust Vehicle Detection under Various Environmental Conditions Using an Infrared Thermal Camera and Its Application to Road Traffic Flow Monitoring

    PubMed Central

    Iwasaki, Yoichiro; Misumi, Masato; Nakamiya, Toshiyuki

    2013-01-01

    We have already proposed a method for detecting vehicle positions and their movements (henceforth referred to as our previous method) using thermal images taken with an infrared thermal camera. Our experiments have shown that our previous method detects vehicles robustly under four different environmental conditions which involve poor visibility conditions in snow and thick fog. Our previous method uses the windshield and its surroundings as the target of the Viola-Jones detector. Some experiments in winter show that the vehicle detection accuracy decreases because the temperatures of many windshields approximate those of the exterior of the windshields. In this paper, we propose a new vehicle detection method (henceforth referred to as our new method). Our new method detects vehicles based on tires' thermal energy reflection. We have done experiments using three series of thermal images for which the vehicle detection accuracies of our previous method are low. Our new method detects 1,417 vehicles (92.8%) out of 1,527 vehicles, and the number of false detection is 52 in total. Therefore, by combining our two methods, high vehicle detection accuracies are maintained under various environmental conditions. Finally, we apply the traffic information obtained by our two methods to traffic flow automatic monitoring, and show the effectiveness of our proposal. PMID:23774988

  5. Thermal Stability of Beta-Alumina Solid Electrolyte Under AMTEC Operating Conditions

    NASA Technical Reports Server (NTRS)

    Williams, R.; Homer, M.; Kulleck, J.; Lara, L.; Kisor, A.; Cortez, R.; Shields, V.; Ryan, M.

    1999-01-01

    A critical component of alkali metal thermal-to electric converter (AMTEC) devices for long duration space missions is the sodium beta-alumina solid electrolyte ceramic (BASE), for which there exists no substitute.

  6. A novel test method for measuring the thermal properties of clothing ensembles under dynamic conditions

    NASA Astrophysics Data System (ADS)

    Wan, X.; Fan, J.

    2008-06-01

    The dynamic thermal properties of clothing ensembles are important to thermal transient comfort, but have so far not been properly quantified. In this paper, a novel test procedure and new index based on measurements on the sweating fabric manikin-Walter are proposed to quantify and measure the dynamic thermal properties of clothing ensembles. Experiments showed that the new index is correlated to the changing rate of the body temperature of the wearer, which is an important indicator of thermal transient comfort. Clothing ensembles having higher values of the index means the wearer will have a faster changing rate of body temperature and shorter duration before approaching a dangerous thermo-physiological state, when he changes from 'resting' to 'exercising' mode. Clothing should therefore be designed to reduce the value of the index.

  7. Study over thermal state of gas turbine engine metal-ceramic rotor blades and nozzle guide vanes under thermal shock and thermal-cyclic loading conditions

    NASA Astrophysics Data System (ADS)

    Soudarev, A. V.; Souryaninov, A. A.; Podgorets, V. Ya.; Grishaev, V. V.; Tikhoplav, V. Yu; Molchanov, A. S.; Soudarev, B. V.

    2004-05-01

    To ensure a reliable operation of the 2.5 MW gas turbine engine (GTE- 2.5)[1] with the inlet gas temperature TIT=1623 K, studies were performed over the thermal state of the nozzle guide vanes and rotor blades with the temperatures, rates and flows of the working media and cooling air simulating all the potential turbine stage operating duties. The steady state and thermal-cyclic tests having been accomplished, there was no visible defect on the rotor blades and the nozzle vanes. Afterwards, they survived the endurance tests at the rated cooling. Therefore, the functionality of the shell thin-wall hybrid nozzle vanes and rotor blades under the variable operating duties of the gas turbine at the shock and cyclic loads of the working media temperature variations has been demonstrated.

  8. Assessment of Technologies for the Space Shuttle External Tank Thermal Protection System and Recommendations for Technology Improvement. Part 2; Structural Analysis Technologies and Modeling Practices

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Nemeth, Michael P.; Hilburger, Mark W.

    2004-01-01

    A technology review and assessment of modeling and analysis efforts underway in support of a safe return to flight of the thermal protection system (TPS) for the Space Shuttle external tank (ET) are summarized. This review and assessment effort focuses on the structural modeling and analysis practices employed for ET TPS foam design and analysis and on identifying analysis capabilities needed in the short-term and long-term. The current understanding of the relationship between complex flight environments and ET TPS foam failure modes are reviewed as they relate to modeling and analysis. A literature review on modeling and analysis of TPS foam material systems is also presented. Finally, a review of modeling and analysis tools employed in the Space Shuttle Program is presented for the ET TPS acreage and close-out foam regions. This review includes existing simplified engineering analysis tools are well as finite element analysis procedures.

  9. Turonian Ultra-thermal Conditions as Recorded in the High Canadian Arctic: Faunal Controls and Tectomagmatic Boundary Conditions

    NASA Astrophysics Data System (ADS)

    Bono, R.; Tarduno, J. A.; Cottrell, R. D.; Higgins, P.; Brinkman, D. B.

    2010-12-01

    Fossil vertebrate discoveries in the High Canadian Arctic over the last decade are reviewed here. These have defined an interval of extreme climatic warmth in the Arctic region during Turonian (ca 90 Ma) times. The discussion is broadened to include a review of Arctic tectonic and magmatic conditions during the Late Cretaceous, and will include an outline of work to further refine paleotemperature estimates. The discovery of fossil champsosaurs from sedimentary rocks of Axel Heiberg Island suggested a minimum mean annual temperature of 14 degrees C (Tarduno et. al., 1998) when paleomagnetic data indicate that the site was at Arctic paleolatitudes (Tarduno et al., 2002). Work conducted on several faunal groups support the initial report of warm conditions. Fish fossils record an expansion of ranges toward the poles (Friedman et al., 2003), whereas turtle diversity is unusually high, consistent with warm temperatures (Brinkman and Tarduno, 2005). The fossil champsosaurs define a population dominated by juveniles, incompatible with cold conditions (Vandermark et al., 2007). Aurorachelys gaffneyi, a large macrobaenid fossil turtle with affinities to Asia, suggests the possibility of migration over a warm brackish Arctic Ocean, possibly dotted with islands related to unusually vigorous magmatic activity (Vandermark et al., 2009). The fossil vertebrates were found in sedimentary rocks overlying continental flood basalts of the Strand Fiord Formation, which may be the onland expression of magmatism that formed Alpha Ridge of the Arctic Ocean. If correct, CO2 outgassing related to this volcanism, together with outgassing at several other sites of coeval magmatism, may have been responsible for the interval of extreme climatic warmth.

  10. Potential impact of ZT = 4 thermoelectric materials on solar thermal energy conversion technologies.

    PubMed

    Xie, Ming; Gruen, Dieter M

    2010-11-18

    State-of-the-art methodologies for the conversion of solar thermal power to electricity are based on conventional electromagnetic induction techniques. If appropriate ZT = 4 thermoelectric materials were available, it is likely that conversion efficiencies of 30-40% could be achieved. The availability of all solid state electricity generation would be a long awaited development in part because of the elimination of moving parts. This paper presents a preliminary examination of the potential performance of ZT = 4 power generators in comparison with Stirling engines taking into account specific mass, volume and cost as well as system reliability. High-performance thermoelectrics appear to have distinct advantages over magnetic induction technologies. PMID:20196558

  11. Current Development of Nuclear Thermal Propulsion technologies at the Center for Space Nuclear Research

    SciTech Connect

    Robert C. O'Brien; Steven K. Cook; Nathan D. Jerred; Steven D. Howe; Ronald Samborsky; Daniel Brasuell

    2012-09-01

    Nuclear power and propulsion has been considered for space applications since the 1950s. Between 1955 and 1972 the US built and tested over twenty nuclear reactors / rocket engines in the Rover/NERVA programs1. The Aerojet Corporation was the prime contractor for the NERVA program. Modern changes in environmental laws present challenges for the redevelopment of the nuclear rocket. Recent advances in fuel fabrication and testing options indicate that a nuclear rocket with a fuel composition that is significantly different from those of the NERVA project can be engineered; this may be needed to ensure public support and compliance with safety requirements. The Center for Space Nuclear Research (CSNR) is pursuing a number of technologies, modeling and testing processes to further the development of safe, practical and affordable nuclear thermal propulsion systems.

  12. Building America Best Practices Series, Volume 6: High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems

    SciTech Connect

    Baechler, Michael C.; Gilbride, Theresa L.; Ruiz, Kathleen A.; Steward, Heidi E.; Love, Pat M.

    2007-06-04

    This guide is was written by PNNL for the US Department of Energy's Building America program to provide information for residential production builders interested in building near zero energy homes. The guide provides indepth descriptions of various roof-top photovoltaic power generating systems for homes. The guide also provides extensive information on various designs of solar thermal water heating systems for homes. The guide also provides construction company owners and managers with an understanding of how solar technologies can be added to their homes in a way that is cost effective, practical, and marketable. Twelve case studies provide examples of production builders across the United States who are building energy-efficient homes with photovoltaic or solar water heating systems.

  13. Solar thermal technology development: Estimated market size and energy cost savings. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Gates, W. R.

    1983-01-01

    Estimated future energy cost savings associated with the development of cost-competitive solar thermal technologies (STT) are discussed. Analysis is restricted to STT in electric applications for 16 high-insolation/high-energy-price states. The fuel price scenarios and three 1990 STT system costs are considered, reflecting uncertainty over future fuel prices and STT cost projections. STT R&D is found to be unacceptably risky for private industry in the absence of federal support. Energy cost savings were projected to range from $0 to $10 billion (1990 values in 1981 dollars), dependng on the system cost and fuel price scenario. Normal R&D investment risks are accentuated because the Organization of Petroleum Exporting Countries (OPEC) cartel can artificially manipulate oil prices and undercut growth of alternative energy sources. Federal participation in STT R&D to help capture the potential benefits of developing cost-competitive STT was found to be in the national interest.

  14. Stability Behaviour of the Atlantic Thermohaline Circulation Under Different Climate Conditions: The Thermal Component

    NASA Astrophysics Data System (ADS)

    Knorr, G.; Eichinger, R.; Lohmann, G.; Prange, M.; Barker, S.

    2010-05-01

    During the Last Glacial Maximum the Atlantic Thermohaline Circulation (THC) was characterized by a southward shift of the North Atlantic deep water (NADW) formation sites and a relatively shallow NADW- overturning cell, compared to the present mode of operation. Furthermore, abrupt climate events during the last glacial are associated with rapid changes in the THC and accompanying changes of the inter-hemispheric northward oceanic heat transport. Using an interhemispheric box model of the Atlantic THC, coupled to a moist energy balance model of the atmosphere we present a new approach, which is based on the assumption that a completely sea ice covered North Atlantic would inhibit the generation of deep water. Therefore we introduce a dependence of the overturning strength from the sea ice extent in the North Atlantic. This approach can be viewed as a loss of efficiency of the inter-hemispheric density gradient in driving the overturning with cooler climate conditions. The transition from the present day climate to a colder climate forces the Atlantic THC to collapse in an intermediate climate state. This change in the stability behaviour is a consequence of the model response to gradual changes in the outgoing infra-red radiation at the top of the atmosphere. At cooler climate states the increasing atmosphere-ocean temperature contrast and associated ocean heat loss dominates the insulating effect of sea ice on North Atlantic temperature and promotes a sea ice growth. This effect is amplified by a weaker overturning circulation and decreased northward oceanic heat transport, which leads to a positive feedback loop and the existence of multiple equilibria in an intermediate climate state. Based on the reduction of the system to key variables governing the stability, we will also discuss the internal and structural stability of the system with the aid of numerical and analytical solutions to gain a deeper understanding of the underlying dynamics. A comparison with proxy records and more complex circulation models shows that the presented concept is in agreement with elements of rapid climate change in time and space. This suggests that the influence of a changing background climate on the thermal component of the Atlantic THC is a key component of abrupt climate changes, which complements the traditional freshwater forcing approach to a unified concept.

  15. The U.S. Department of Energy`s role in commercialization of solar thermal electric technology

    SciTech Connect

    Burch, G.D.; Tyner, C.E.

    1994-10-01

    The U.S. Department of Energy (DOE) has supported the development of solar thermal electric (STE) technology since the early 1970s. From its inception, the program has held a long-term goal of nurturing STE technologies from the research and development (R&D) stage through technology development, ultimately leading to commercialization. Within the last few years, the focus of this work -has shifted from R&D to cost-shared cooperative projects with industry. These projects are targeted not just at component development, but at complete systems, marketing approaches, and commercialization plans. This changing emphasis has brought new industry into the program and is significantly accelerating solar thermal`s entry into the marketplace. Projects such as Solar Two in the power tower area, a number of dish/Stirling joint ventures in the modular power area, and operations and maintenance (O&M) cost reduction studies will be discussed as examples of this new focus.

  16. The small community solar thermal power experiment. Parabolic dish technology for industrial process heat application

    NASA Astrophysics Data System (ADS)

    Polzien, R. E.; Rodriguez, D.

    1981-04-01

    Aspects of incorporating a thermal energy transport system (ETS) into a field of parabolic dish collectors for industrial process heat (IPH) applications were investigated. Specific objectives are to: (1) verify the mathematical optimization of pipe diameters and insulation thicknesses calculated by a computer code; (2) verify the cost model for pipe network costs using conventional pipe network construction; (3) develop a design and the associated production costs for incorporating risers and downcomers on a low cost concentrator (LCC); (4) investigate the cost reduction of using unconventional pipe construction technology. The pipe network design and costs for a particular IPH application, specifically solar thermally enhanced oil recovery (STEOR) are analyzed. The application involves the hybrid operation of a solar powered steam generator in conjunction with a steam generator using fossil fuels to generate STEOR steam for wells. It is concluded that the STEOR application provides a baseline pipe network geometry used for optimization studies of pipe diameter and insulation thickness, and for development of comparative cost data, and operating parameters for the design of riser/downcomer modifications to the low cost concentrator.

  17. Characterization of a thermal neutron beam monitor based on gas electron multiplier technology

    NASA Astrophysics Data System (ADS)

    Croci, Gabriele; Cazzaniga, Carlo; Claps, Gerardo; Tardocchi, Marco; Rebai, Marica; Murtas, Fabrizio; Vassallo, Espedito; Caniello, Roberto; Cippo, Enrico Perelli; Grosso, Giovanni; Rigato, Valentino; Gorini, Giuseppe

    2014-08-01

    Research into valid alternatives to 3He detectors is fundamental to the affordability of new neutron spallation sources like the European Spallation Source (ESS). In the case of ESS it is also essential to develop high-rate detectors that can fully exploit the increase of neutron flux relative to present neutron sources. One of the technologies fulfilling these requirements is the gas electron multiplier (GEM), since it can combine a high rate capability (MHz/mm2), a coverage area up to 1 m2 and a space resolution better than 0.5 mm. Its use as a neutron detector requires conversion of neutrons into charged particles. This paper describes the realization and characterization of a thermal neutron GEM-based beam monitor equipped with a cathode containing ^{10}B for neutron conversion. This device is constituted by a triple GEM detector whose cathode is made of an aluminum sheet covered by a 1 μ m thick ^{{nat}}B4C layer. The method used to realize a long-lasting ^{{nat}}B4C layer is described and the properties of such a layer have been determined. The detector performances (measured on the ISIS-VESUVIO beam line) in terms of beam profile reconstruction, imaging, and measurement of the thermal neutron beam energy spectrum are compatible with those obtained by standard beam monitors.

  18. Integration of screen-printing and rapid thermal processing technologies for silicon solar cell fabrication

    SciTech Connect

    Doshi, P.; Mejia, J.; Tate, K.; Rohatgi, A.

    1996-08-01

    For the first time, the potentially cost-effective technologies of rapid thermal processing (RTP) and screen-printing (SP) have been combined into a single process sequence to achieve solar cell efficiencies as high as 14.7% on 0.2 {Omega}-cm FZ and 14.8% on 3 {Omega}-cm Cz silicon. These results were achieved without application of a nonhomogeneous (selective) emitter, texturing, or oxide passivation. By tailoring the RTP thermal cycles for emitter diffusion and firing of the screen-printed silver contacts, fill factor values >0.79 were realized on emitters with a sheet resistance ({rho}{sub s}) of {approximately}20 {Omega}/{open_square} and grid shading <6%. Such high fill factors clearly demonstrate that screen-printed contacts can be fired on extremely shallow RTP emitters (x{sub j} = 0.25 {minus} 0.3 {micro}m) without shunting cells. IQE analysis depicts a strong preference for shallow emitter junction depths to achieve optimal short wavelength response of these unpassivated emitters. In some cases, front contacts were printed through plasma enhanced chemical vapor deposited (PECVD) SiN/SiO{sub 2} dielectrics which prevented the shunting of shallow emitters by serving as partial barriers minimizing the diffusion of metallic species from the contacts. The firing of screen-printed contacts through these PECVD films, achieved the multiple purposes of contact formation, efficient front surface passivation due to annealing of the SiN, and high quality antireflection (AR).

  19. The small community solar thermal power experiment. Parabolic dish technology for industrial process heat application

    NASA Technical Reports Server (NTRS)

    Polzien, R. E.; Rodriguez, D.

    1981-01-01

    Aspects of incorporating a thermal energy transport system (ETS) into a field of parabolic dish collectors for industrial process heat (IPH) applications were investigated. Specific objectives are to: (1) verify the mathematical optimization of pipe diameters and insulation thicknesses calculated by a computer code; (2) verify the cost model for pipe network costs using conventional pipe network construction; (3) develop a design and the associated production costs for incorporating risers and downcomers on a low cost concentrator (LCC); (4) investigate the cost reduction of using unconventional pipe construction technology. The pipe network design and costs for a particular IPH application, specifically solar thermally enhanced oil recovery (STEOR) are analyzed. The application involves the hybrid operation of a solar powered steam generator in conjunction with a steam generator using fossil fuels to generate STEOR steam for wells. It is concluded that the STEOR application provides a baseline pipe network geometry used for optimization studies of pipe diameter and insulation thickness, and for development of comparative cost data, and operating parameters for the design of riser/downcomer modifications to the low cost concentrator.

  20. Plasticity of the thermal requirements of exotherms and adaptation to environmental conditions

    PubMed Central

    Honek, Alois; Martinkova, Zdenka; Lukas, Jan; Dixon, Anthony F G

    2014-01-01

    In exothermal organisms, temperature is an important determinant of the rate of ecophysiological processes, which monotonically increase between the minimum (td min) and maximum (td max) temperatures typical for each species. In insects, td min and td max are correlated and there is a approximately 20°C interval (thermal window WT = td max − td min) between them over which insects can develop. We assumed that other exotherms have similar thermal windows because the thermal kinetics of their physiological processes are similar. In this study, we determined the thermal requirements for germination in plants. Seeds of 125 species of Central European wild herbaceous and crop plants were germinated at nine constant temperatures between 5 and 37°C, and the time to germination of 50% of the seeds D and rate of germination R (=1/D) were determined for each temperature and the Lactin model used to determine td min, td max, and WT. The average width of the thermal windows for seeds was significantly wider (mean 24°C, 95% CI 22.7–24.2°C), varied more (between 14.5 and 37.5°C) and development occurred at lower temperatures than recorded for insects. The limiting temperatures for germination, td min and td max, were not coupled, so the width of the thermal window increased with both a decrease in td min and/or increase in td max. Variation in WT was not associated with taxonomic affiliation, adult longevity, or domestication of the different species, but tends to vary with seed size. Plants are poor at regulating their temperature and cannot move to a more suitable location and as a consequence have to cope with wider ranges in temperatures than insects and possibly do this by having wider thermal windows. Synthesis: The study indicated specificity of WT in different exotherm taxa and/or their development stages. PMID:25247067