Science.gov

Sample records for thermal conditioning technology

  1. Thermal Management Technology Status

    NASA Technical Reports Server (NTRS)

    Parish, R. C.

    1984-01-01

    The thermal control requirements of a large space station are considered. Motivations for advanced thermal technology are discussed. Two test programs, designed to evaluate the analytical and theoretical basis from which thermal technology directions are determined, are described.

  2. Heat Pipe Thermal Conditioning Panel

    NASA Technical Reports Server (NTRS)

    Saaski, E. W.

    1973-01-01

    The technology involved in designing and fabricating a heat pipe thermal conditioning panel to satisfy a broad range of thermal control system requirements on NASA spacecraft is discussed. The design specifications were developed for a 30 by 30 inch heat pipe panel. The fundamental constraint was a maximum of 15 gradient from source to sink at 300 watts input and a flux density of 2 watts per square inch. The results of the performance tests conducted on the panel are analyzed.

  3. Thermally activated technologies: Technology Roadmap

    SciTech Connect

    None, None

    2003-05-01

    The purpose of this Technology Roadmap is to outline a set of actions for government and industry to develop thermally activated technologies for converting America’s wasted heat resources into a reservoir of pollution-free energy for electric power, heating, cooling, refrigeration, and humidity control. Fuel flexibility is important. The actions also cover thermally activated technologies that use fossil fuels, biomass, and ultimately hydrogen, along with waste heat.

  4. INNOVATIVE THERMAL DESTRUCTION TECHNOLOGIES

    EPA Science Inventory

    Ten innovative technologies for thermally destroying hazardous wastes were selected and described in this paper. hese technologies were either supported by EPA's RCRA or SARA programs or developed by industry since 1980. wo of the important criteria used in selecting these techno...

  5. Thermal condition of Surtsey

    NASA Astrophysics Data System (ADS)

    Stefansson, V.; Axelsson, G.; Sigurdsson, O.; Gudmundsson, G.; Steingrimsson, B.

    1985-12-01

    The island Surtsey was created by a submarine volcanic eruption which started on the 14th of November 1963, 21 km southwest of the Westman Islands. Volcanic activity continued in this area for nearly 4 years. During the summer of 1979 a 181 m deep continuously cored borehole was drilled on the Surtsey island. Several temperature profiles have been measured in the hole since 1979. The results of these temperature measurements are used as the basis for a discussion of the thermal condition of Surtsey. The hypothesis that intrusions rather than pillow lavas are responsible for the excess heat content of Surtsey is favored. It is found that the 13 m thick discontinuous dike complex, observed in the drill core, is sufficient to explain the excess heat content in the vicinity of the borehole and the shape of the temperature profiles recorded. It is demonstrated that the heat transfer in Surtsey has been dominated by hydrothermal convection and that the system is vapor dominated above sea level. It is estimated that the permeability of a 40 m thick section of altered tuff below sea level is 4.1 × 10 -13 m 2, while the permeability of the unaltered tuff above sea level is estimated as 1.2 × 10 -10 m 2.

  6. Solar thermal technology

    NASA Astrophysics Data System (ADS)

    1984-08-01

    The accomplishments and progress of the US Department of energy solar thermal technology (STT) program during FY 1983 are documented. The focus of the STT program is research and development leading to the commercial readiness of three primary solar thermal concepts: the central receiver, parabolic dish, and parabolic trough. The hemispherical bowl and salt-gradient solar pond are also being studied. This development effort is complemented by numerous research and planning activities. A brief description of each technology and highlights of the fiscal year's technical activities is given. FY 1983 accomplishments are enumerated and a bibliography, list of contacts, acronyms, and definitions of terms relevant to solar thermal technology and the STT program are included.

  7. Centaur Propellant Thermal Conditioning Study

    NASA Technical Reports Server (NTRS)

    Blatt, M. H.; Pleasant, R. L.; Erickson, R. C.

    1976-01-01

    A wicking investigation revealed that passive thermal conditioning was feasible and provided considerable weight advantage over active systems using throttled vent fluid in a Centaur D-1s launch vehicle. Experimental wicking correlations were obtained using empirical revisions to the analytical flow model. Thermal subcoolers were evaluated parametrically as a function of tank pressure and NPSP. Results showed that the RL10 category I engine was the best candidate for boost pump replacement and the option showing the lowest weight penalty employed passively cooled acquisition devices, thermal subcoolers, dry ducts between burns and pumping of subcooler coolant back into the tank. A mixing correlation was identified for sizing the thermodynamic vent system mixer. Worst case mixing requirements were determined by surveying Centaur D-1T, D-1S, IUS, and space tug vehicles. Vent system sizing was based upon worst case requirements. Thermodynamic vent system/mixer weights were determined for each vehicle.

  8. Nuclear thermal propulsion technology overview

    NASA Technical Reports Server (NTRS)

    Stone, James R.

    1993-01-01

    Viewgraphs on nuclear thermal propulsion technology overview are presented. Topics covered include non-nuclear material; instrumentation, controls, and health monitoring; turbopumps; nozzle and extension; and exhaust plume characteristics.

  9. Thermal Skin fabrication technology

    NASA Technical Reports Server (NTRS)

    Milam, T. B.

    1972-01-01

    Advanced fabrication techniques applicable to Thermal Skin structures were investigated, including: (1) chemical machining; (2) braze bonding; (3) diffusion bonding; and (4) electron beam welding. Materials investigated were nickel and nickel alloys. Sample Thermal Skin panels were manufactured using the advanced fabrication techniques studied and were structurally tested. Results of the program included: (1) development of improved chemical machining processes for nickel and several nickel alloys; (2) identification of design geometry limits; (3) identification of diffusion bonding requirements; (4) development of a unique diffusion bonding tool; (5) identification of electron beam welding limits; and (6) identification of structural properties of Thermal Skin material.

  10. High temperature solar thermal technology

    NASA Technical Reports Server (NTRS)

    Leibowitz, L. P.; Hanseth, E. J.; Peelgren, M. L.

    1980-01-01

    Some advanced technology concepts under development for high-temperature solar thermal energy systems to achieve significant energy cost reductions and performance gains and thus promote the application of solar thermal power technology are presented. Consideration is given to the objectives, current efforts and recent test and analysis results in the development of high-temperature (950-1650 C) ceramic receivers, thermal storage module checker stoves, and the use of reversible chemical reactions to transport collected solar energy. It is pointed out that the analysis and testing of such components will accelerate the commercial deployment of solar energy.

  11. Solar thermal technology

    NASA Astrophysics Data System (ADS)

    1986-08-01

    This annual evaluation report provides the accomplishments and progress of government-funded activities initiated, renewed, or completed during Fiscal Year 1985 (October 1, 1984 through September 30, 1985). It highlights the program tasks conducted by participating national laboratories and by contracting industrial academic, or other research institutions. The focus of the STT Program is research and development leading to the commercial readiness of four primary solar thermal concepts: (1) central receiver; (2) parabolic dish; (3) parabolic trough; and (4) hemispherical bowl.

  12. The thermal conditions of Venus

    NASA Technical Reports Server (NTRS)

    Zharkov, Vladimir N.; Solomatov, V. S.

    1991-01-01

    Models of Venus' thermal evolution are examined. The following subject areas are covered: (1) modified approximation of parameterized convection; (2) description of the model; (3) numerical results and asymptotic solution of the MAPC equations; (4) magnetism and the thermal regime of the cores of Earth and Venus; and (5) the thermal regime of the Venusian crust.

  13. Conceptual Thermal Treatment Technologies Feasibility Study

    SciTech Connect

    Suer, A.

    1996-02-28

    This report presents a conceptual Thermal Treatment Technologies Feasibility Study (FS) for the Savannah River Site (SRS) focusing exclusively on thermal treatment technologies for contaminated soil, sediment, or sludge remediation projects.

  14. Cryogenic thermal control technology summaries

    NASA Technical Reports Server (NTRS)

    Stark, J. A.; Leonhard, K. E.; Bennett, F. O., Jr.

    1974-01-01

    A summarization and categorization is presented of the pertinent literature associated with cryogenic thermal control technology having potential application to in-orbit fluid transfer systems and/or associated space storage. Initially, a literature search was conducted to obtain pertinent documents for review. Reports determined to be of primary significance were summarized in detail. Each summary, where applicable, consists of; (1) report identification, (2) objective(s) of the work, (3) description of pertinent work performed, (4)major results, and (5) comments of the reviewer (GD/C). Specific areas covered are; (1) multilayer insulation of storage tanks with and without vacuum jacketing, (2) other insulation such as foams, shadow shields, microspheres, honeycomb, vent cooling and composites, (3) vacuum jacketed and composite fluid lines, and (4) low conductive tank supports and insulation penetrations. Reports which were reviewed and not summarized, along with reasons for not summarizing, are also listed.

  15. High Performance Thermal Interface Technology Overview

    E-print Network

    R. Linderman; T. Brunschwiler; B. Smith; B. Michel

    2008-01-07

    An overview on recent developments in thermal interfaces is given with a focus on a novel thermal interface technology that allows the formation of 2-3 times thinner bondlines with strongly improved thermal properties at lower assembly pressures. This is achieved using nested hierarchical surface channels to control the particle stacking with highly particle-filled materials. Reliability testing with thermal cycling has also demonstrated a decrease in thermal resistance after extended times with longer overall lifetime compared to a flat interface.

  16. NASA/Goddard Thermal Technology Overview 2012

    NASA Technical Reports Server (NTRS)

    Butler, Dan; Swanson, Ted

    2012-01-01

    New Technology program is underway at NASA NASA/GSFC's primary mission of science satellite development is healthy and vibrant, although new missions are scarce Future mission applications promise to be thermally challenging Direct technology funding is still very restricted

  17. Advanced thermal management technologies for defense electronics

    NASA Astrophysics Data System (ADS)

    Bloschock, Kristen P.; Bar-Cohen, Avram

    2012-05-01

    Thermal management technology plays a key role in the continuing miniaturization, performance improvements, and higher reliability of electronic systems. For the past decade, and particularly, the past 4 years, the Defense Advanced Research Projects Agency (DARPA) has aggressively pursued the application of micro- and nano-technology to reduce or remove thermal constraints on the performance of defense electronic systems. The DARPA Thermal Management Technologies (TMT) portfolio is comprised of five technical thrust areas: Thermal Ground Plane (TGP), Microtechnologies for Air-Cooled Exchangers (MACE), NanoThermal Interfaces (NTI), Active Cooling Modules (ACM), and Near Junction Thermal Transport (NJTT). An overview of the TMT program will be presented with emphasis on the goals and status of these efforts relative to the current State-of-the-Art. The presentation will close with future challenges and opportunities in the thermal management of defense electronics.

  18. Thermal Control Technologies for Complex Spacecraft

    NASA Technical Reports Server (NTRS)

    Swanson, Theodore D.

    2004-01-01

    Thermal control is a generic need for all spacecraft. In response to ever more demanding science and exploration requirements, spacecraft are becoming ever more complex, and hence their thermal control systems must evolve. This paper briefly discusses the process of technology development, the state-of-the-art in thermal control, recent experiences with on-orbit two-phase systems, and the emerging thermal control technologies to meet these evolving needs. Some "lessons learned" based on experience with on-orbit systems are also presented.

  19. High Spatial Resolution Thermal Satellite Technologies

    NASA Technical Reports Server (NTRS)

    Ryan, Robert

    2003-01-01

    This document in the form of viewslides, reviews various low-cost alternatives to high spatial resolution thermal satellite technologies. There exists no follow-on to Landsat 7 or ASTER high spatial resolution thermal systems. This document reviews the results of the investigation in to the use of new technologies to create a low-cost useful alternative. Three suggested technologies are examined. 1. Conventional microbolometer pushbroom modes offers potential for low cost Landsat Data Continuity Mission (LDCM) thermal or ASTER capability with at least 60-120 ground sampling distance (GSD). 2. Backscanning could produce MultiSpectral Thermal Imager performance without cooled detectors. 3. Cooled detector could produce hyperspectral thermal class system or extremely high spatial resolution class instrument.

  20. UPDATE OF INNOVATIVE THERMAL DESTRUCTION TECHNOLOGIES

    EPA Science Inventory

    Five innovative technologies for thermally destroying hazardous wastes were selected and described in the paper. They are Oxygen-Enriched Incineration, Westinghouse/O'Connor Combustor, Circulating Bed Combustion, Infrared System, and Plasma Arc. Two important criteria used in sel...

  1. Thermal field theories and shifted boundary conditions

    E-print Network

    Leonardo Giusti; Harvey B. Meyer

    2013-10-29

    The analytic continuation to an imaginary velocity of the canonical partition function of a thermal system expressed in a moving frame has a natural implementation in the Euclidean path-integral formulation in terms of shifted boundary conditions. The Poincare' invariance underlying a relativistic theory implies a dependence of the free-energy on the compact length L_0 and the shift xi only through the combination beta=L_0(1+xi^2)^(1/2). This in turn implies that the energy and the momentum distributions of the thermal theory are related, a fact which is encoded in a set of Ward identities among the correlators of the energy-momentum tensor. The latter have interesting applications in lattice field theory: they offer novel ways to compute thermodynamic potentials, and a set of identities to renormalize non-perturbatively the energy-momentum tensor. At fixed bare parameters the shifted boundary conditions also provide a simple method to vary the temperature in much smaller steps than with the standard procedure.

  2. Commercial application of thermal protection system technology

    NASA Technical Reports Server (NTRS)

    Dyer, Gordon L.

    1991-01-01

    The thermal protection system process technology is examined which is used in the manufacture of the External Tank for the Space Shuttle system and how that technology is applied by private business to create new products, new markets, and new American jobs. The term 'technology transfer' means different things to different people and has become one of the buzz words of the 1980s and 1990s. Herein, technology transfer is defined as a means of transferring technology developed by NASA's prime contractors to public and private sector industries.

  3. Thermal Management Using Pulsating Jet Cooling Technology

    NASA Astrophysics Data System (ADS)

    Alimohammadi, S.; Dinneen, P.; Persoons, T.; Murray, D. B.

    2014-07-01

    The existing methods of heat removal from compact electronic devises are known to be deficient as the evolving technology demands more power density and accordingly better cooling techniques. Impinging jets can be used as a satisfactory method for thermal management of electronic devices with limited space and volume. Pulsating flows can produce an additional enhancement in heat transfer rate compared to steady flows. This article is part of a comprehensive experimental and numerical study performed on pulsating jet cooling technology. The experimental approach explores heat transfer performance of a pulsating air jet impinging onto a flat surface for nozzle-to-surface distances 1 <= H/D <= 6, Reynolds numbers 1,300 <= Re <= 2,800 pulsation frequency 2Hz <= f <= 65Hz, and Strouhal number 0.0012 <= Sr = fD/Um <= 0.084. The time-resolved velocity at the nozzle exit is measured to quantify the turbulence intensity profile. The numerical methodology is firstly validated using the experimental local Nusselt number distribution for the steady jet with the same geometry and boundary conditions. For a time-averaged Reynolds number of 6,000, the heat transfer enhancement using the pulsating jet for 9Hz <= f <= 55Hz and 0.017 <= Sr <= 0.102 and 1 <= H/D <= 6 are calculated. For the same range of Sr number, the numerical and experimental methods show consistent results.

  4. NASA/Goddard Thermal Technology Overview 2014

    NASA Technical Reports Server (NTRS)

    Butler, Daniel; Swanson, Theodore D.

    2014-01-01

    This presentation summarizes the current plans and efforts at NASA Goddard to develop new thermal control technology for anticipated future missions. It will also address some of the programmatic developments currently underway at NASA, especially with respect to the Technology Development Program at NASA. While funding for basic technology development is still scarce, significant efforts are being made in direct support of flight programs. New technology development continues to be driven by the needs of future missions, and applications of these technologies to current Goddard programs will be addressed. Many of these technologies also have broad applicability to DOD, DOE, and commercial programs. Partnerships have been developed with the Air Force, Navy, and various universities to promote technology development. In addition, technology development activities supported by internal research and development (IRAD) program, the Small Business Innovative Research (SBIR) program, and the NASA Engineering and Safety Center (NESC), are reviewed in this presentation. Specific technologies addressed include; two-phase systems applications and issues on NASA missions, latest developments of electro-hydrodynamically pumped systems, development of high electrical conductivity coatings, and various other research activities. New Technology program underway at NASA, although funding is limited center dot NASA/GSFC's primary mission of science satellite development is healthy and vibrant, although new missions are scarce - now have people on overhead working new missions and proposals center dot Future mission applications promise to be thermally challenging center dot Direct technology funding is still very restricted - Projects are the best source for direct application of technology - SBIR thermal subtopic resurrected in FY 14 - Limited Technology development underway via IRAD, NESC, other sources - Administrator pushing to revive technology and educational programs at NASA - new HQ directorate established

  5. NASA Thermal Control Technologies for Robotic Spacecraft

    NASA Technical Reports Server (NTRS)

    Swanson, Theodore D.; Biur, Gajanana C.

    2002-01-01

    Technology development is inevitably a dynamic process in search of an elusive goal. It is never truly clear whether the need for a particular technology drives its development, or the existence of a new capability initiates new applications. Technology development for the thermal control of spacecraft presents an excellent example of this situation. Nevertheless, it is imperative to have a basic plan to help guide and focus such an effort. Although this plan will be a living document that changes with time to reflect technological developments, perceived needs, perceived opportunities, and the ever-changing funding environment, it is still a very useful tool. This presentation summarizes the current efforts at NASA/Goddard and NASA/JPL to develop new thermal control technology for future NASA missions.

  6. NASA Thermal Control Technologies for Robotic Spacecraft

    NASA Technical Reports Server (NTRS)

    Swanson, Theodore D.; Birur, Gajanana C.

    2003-01-01

    Technology development is inevitably a dynamic process in search of an elusive goal. It is never truly clear whether the need for a particular technology drives its development, or the existence of a new capability initiates new applications. Technology development for the thermal control of spacecraft presents an excellent example of this situation. Nevertheless, it is imperative to have a basic plan to help guide and focus such an effort. Although this plan will be a living document that changes with time to reflect technological developments, perceived needs, perceived opportunities, and the ever-changing funding environment, it is still a very useful tool. This presentation summarizes the current efforts at NASA/Goddard and NASA/JPL to develop new thermal control technology for future robotic NASA missions.

  7. Air Conditioning and Heating Technology--II.

    ERIC Educational Resources Information Center

    Gattone, Felix

    Twenty-eight chapters and numerous drawings provide information for instructors and students of air conditioning and heating technology. Chapter 1 lists the occupational opportunities in the field. Chapter 2 covers the background or development of the industry of air conditioning and heating technology. Chapter 3 includes some of the principle…

  8. Thermal protection in space technology

    NASA Technical Reports Server (NTRS)

    Salakhutdinov, G. M.

    1982-01-01

    The provision of heat protection for various elements of space flight apparata has great significance, particularly in the construction of manned transport vessels and orbital stations. A popular explanation of the methods of heat protection in rocket-space technology at the current stage as well as in perspective is provided.

  9. The research on thermal adaptability reinforcement technology for photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Su, Nana; Zhou, Guozhong

    2015-10-01

    Nowadays, Photovoltaic module contains more high-performance components in smaller space. It is also demanded to work in severe temperature condition for special use, such as aerospace. As temperature rises, the failure rate will increase exponentially which makes reliability significantly reduce. In order to improve thermal adaptability of photovoltaic module, this paper makes a research on reinforcement technologies. Thermoelectric cooler is widely used in aerospace which has harsh working environment. So, theoretical formulas for computing refrigerating efficiency, refrigerating capacity and temperature difference are described in detail. The optimum operating current of three classical working condition is obtained which can be used to guide the design of driven circuit. Taken some equipment enclosure for example, we use thermoelectric cooler to reinforce its thermal adaptability. By building physical model and thermal model with the aid of physical dimension and constraint condition, the model is simulated by Flotherm. The temperature field cloud is shown to verify the effectiveness of reinforcement.

  10. Thermal Interface Comparisons Under Flight Like Conditions

    NASA Technical Reports Server (NTRS)

    Rodriquez-Ruiz, Juan

    2008-01-01

    Thermal interface materials are used in bolted interfaces to promote good thermal conduction between the two. The mounting surface can include panels, heat pipes, electronics boxes, etc.. . On Lunar Reconnaissance Orbiter (LRO) project the results are directly applicable: a) Several high power avionics boxes b) Several interfaces from RWA to radiator through heat pipe network

  11. NASA's nuclear thermal propulsion technology project

    SciTech Connect

    Peecook, K.M.; Stone, J.R. )

    1992-07-01

    The nonnuclear subsystem technologies required for incorporating nuclear thermal propulsion (NTP) into space-exploration missions are discussed. Of particular interest to planned missions are such technologies as materials, instrumentation and controls, turbomachinery, CFD modeling, nozzle extension designs and models, and analyses of exhaust plumes. NASA studies are described and/or proposed for refractory metals and alloys, robotic NTP controls, and turbopump materials candidates. Alternative nozzle concepts such as aerospikes and truncated plugs are proposed, and numerical simulations are set forth for studying heavy molecules and the backstreaming of highly reactive free-radical hydrogen in the exhaust plume. The critical technologies described in the paper are central to the development of NTP, and NTP has the potential to facilitate a range of space exploration activities. 3 refs.

  12. Behavior of Materials Under Conditions of Thermal Stress

    NASA Technical Reports Server (NTRS)

    Manson, S S

    1954-01-01

    A review is presented of available information on the behavior of brittle and ductile materials under conditions of thermal stress and thermal shock. For brittle materials, a simple formula relating physical properties to thermal-shock resistance is derived and used to determine the relative significance of two indices currently in use for rating materials. For ductile materials, thermal-shock resistance depends upon the complex interrelation among several metallurgical variables which seriously affect strength and ductility. These variables are briefly discussed and illustrated from literature sources. The importance of simulating operating conditions in tests for rating materials is especially to be emphasized because of the importance of testing conditions in metallurgy. A number of practical methods that have been used to minimize the deleterious effects of thermal stress and thermal shock are outlined.

  13. Integrated Vehicle Thermal Management for Advanced Vehicle Propulsion Technologies

    SciTech Connect

    Bennion, K.; Thornton, M.

    2010-04-01

    A critical element to the success of new propulsion technologies that enable reductions in fuel use is the integration of component thermal management technologies within a viable vehicle package. Vehicle operation requires vehicle thermal management systems capable of balancing the needs of multiple vehicle systems that may require heat for operation, require cooling to reject heat, or require operation within specified temperature ranges. As vehicle propulsion transitions away from a single form of vehicle propulsion based solely on conventional internal combustion engines (ICEs) toward a wider array of choices including more electrically dominant systems such as plug-in hybrid electric vehicles (PHEVs), new challenges arise associated with vehicle thermal management. As the number of components that require active thermal management increase, so do the costs in terms of dollars, weight, and size. Integrated vehicle thermal management is one pathway to address the cost, weight, and size challenges. The integration of the power electronics and electric machine (PEEM) thermal management with other existing vehicle systems is one path for reducing the cost of electric drive systems. This work demonstrates techniques for evaluating and quantifying the integrated transient and continuous heat loads of combined systems incorporating electric drive systems that operate primarily under transient duty cycles, but the approach can be extended to include additional steady-state duty cycles typical for designing vehicle thermal management systems of conventional vehicles. The work compares opportunities to create an integrated low temperature coolant loop combining the power electronics and electric machine with the air conditioning system in contrast to a high temperature system integrated with the ICE cooling system.

  14. Monitoring Local Strain in a Thermal Barrier Coating System Under Thermal Mechanical Gas Turbine Operating Conditions

    NASA Astrophysics Data System (ADS)

    Manero, Albert; Sofronsky, Stephen; Knipe, Kevin; Meid, Carla; Wischek, Janine; Okasinski, John; Almer, Jonathan; Karlsson, Anette M.; Raghavan, Seetha; Bartsch, Marion

    2015-07-01

    Advances in aircraft and land-based turbine engines have been increasing the extreme loading conditions on traditional engine components and have incited the need for improved performance with the use of protective coatings. These protective coatings shield the load-bearing super alloy blades from the high-temperature combustion gases by creating a thermal gradient over their thickness. This addition extends the life and performance of blades. A more complete understanding of the behavior, failure mechanics, and life expectancy for turbine blades and their coatings is needed to enhance and validate simulation models. As new thermal-barrier-coated materials and deposition methods are developed, strides to effectively test, evaluate, and prepare the technology for industry deployment are of paramount interest. Coupling the experience and expertise of researchers at the University of Central Florida, The German Aerospace Center, and Cleveland State University with the world-class synchrotron x-ray beam at the Advanced Photon Source in Argonne National Laboratory, the synergistic collaboration has yielded previously unseen measurements to look inside the coating layer system for in situ strain measurements during representative service loading. These findings quantify the in situ strain response on multilayer thermal barrier coatings and shed light on the elastic and nonelastic properties of the layers and the role of mechanical load and internal cooling variations on the response. The article discusses the experimental configuration and development of equipment to perform in situ strain measurements on multilayer thin coatings and provides an overview of the achievements thus far.

  15. Mathematical modeling of critical conditions in the thermal explosion

    E-print Network

    Schellekens, Michel P.

    Mathematical modeling of critical conditions in the thermal explosion problem G. N. Gorelov and V. A. Sobolev1 Samara State University, Russia Abstract The paper is devoted to the thermal explosion of critical regimes thought of as regimes sep- arating the regions of explosive and nonexplosive ways

  16. Influence of contact conditions on thermal responses of the hand

    E-print Network

    Galie, Jessica Anne

    2009-01-01

    The objective of the research conducted for this thesis was to evaluate the influence of contact conditions on the thermal responses of the finger pad and their perceptual effects. A series of experiments investigated the ...

  17. Refrigeration and Air-Conditioning Technology Workshop

    NASA Astrophysics Data System (ADS)

    Lewis, P. J.; Counce, D. M.

    1993-12-01

    The Alternative Fluorocarbon Environmental Acceptability Study (AFEAS), a consortium of fluorocarbon manufacturers, and the U.S. Department of Energy (DOE) are collaborating on a project to evaluate the energy use and global warming impacts of CFC alternatives. The goal of this project is to identify technologies that could replace the use of CFC's in refrigeration, heating, and air-conditioning equipment; to evaluate the direct impacts of chemical emissions on global warming; and to compile accurate estimates of energy use and indirect CO2 emissions of substitute technologies. The first phase of this work focused on alternatives that could be commercialized before the year 2000. The second phase of the project is examining not-in-kind and next-generation technologies that could be developed to replace CFC's, HCFC's, and HFC's over a longer period. As part of this effort, Oak Ridge National Laboratory held a workshop on June 23-25, 1993. The preliminary agenda covered a broad range of alternative technologies and at least one speaker was invited to make a brief presentation at the workshop on each technology. Some of the invited speakers were unable to participate, and in a few cases other experts could not be identified. As a result, those technologies were not represented at the workshop. Each speaker was asked to prepare a five to seven page paper addressing six key issues concerning the technology he/she is developing. These points are listed in the sidebar. Each expert also spoke for 20 to 25 minutes at the workshop and answered questions from the other participants concerning the presentation and area of expertise. The primary goal of the presentations and discussions was to identify the developmental state of the technology and to obtain comparable data on system efficiencies.

  18. APPLICATION OF THERMAL DESORPTION TECHNOLOGIES TO HAZARDOUS WASTE SITES

    EPA Science Inventory

    Thermal desorption is a separation process frequently used to remediate many Superfund sites. Thermal desorption technologies are recommended and used because of (1) the wide range of organic contaminants effectively treated, (2) availability and mobility of commercial systems, ...

  19. Cryogenic Fluid Management Technology Development for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Taylor, B. D.; Caffrey, J.; Hedayat, A.; Stephens, J.; Polsgrove, R.

    2015-01-01

    Cryogenic fluid management technology is critical to the success of future nuclear thermal propulsion powered vehicles and long duration missions. This paper discusses current capabilities in key technologies and their development path. The thermal environment, complicated from the radiation escaping a reactor of a nuclear thermal propulsion system, is examined and analysis presented. The technology development path required for maintaining cryogenic propellants in this environment is reviewed. This paper is intended to encourage and bring attention to the cryogenic fluid management technologies needed to enable nuclear thermal propulsion powered deep space missions.

  20. Thermal human biometeorological conditions and subjective thermal sensation in pedestrian streets in Chengdu, China

    NASA Astrophysics Data System (ADS)

    Zeng, YuLang; Dong, Liang

    2015-01-01

    The outdoor thermal environment of a public space is highly relevant to the thermal perception of individuals, thereby affecting the use of space. This study aims to connect thermal human biometeorological conditions and subjective thermal sensation in hot and humid regions and to find its influence on street use. We performed a thermal comfort survey at three locations in a pedestrian precinct of Chengdu, China. Meteorological measurements and questionnaire surveys were used to assess the thermal sensation of respondents. The number of people visiting the streets was counted. Meanwhile, mean radiant temperature ( T mrt) and the physiological equivalent temperature (PET) index were used to evaluate the thermal environment. Analytical results reveal that weather and street design drive the trend of diurnal micrometeorological conditions of the street. With the same geometry and orientation, a street with no trees had wider ranges of meteorological parameters and a longer period of discomfort. The neutral temperature in Chengdu (24.4 °C PET) is similar to that in Taiwan, demonstrating substantial human tolerance to hot conditions in hot and humid regions. Visitors' thermal sensation votes showed the strongest positive relationships with air temperature. Overall comfort level was strongly related to every corresponding meteorological parameter, indicating the complexity of people's comfort in outdoor environments. In major alleys with multiple functions, the number of people in the street decreased as thermal indices increased; T mrt and PET had significant negative correlations with the number of people. This study aids in understanding pedestrian street use in hot and humid regions.

  1. Solar thermal technology report, FY 1981. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The activities of the Department of Energy's Solar Thermal Technology Program are discussed. Highlights of technical activities and brief descriptions of each technology are given. Solar thermal conversion concepts are discussed in detail, particularily concentrating collectors and salt-gradient solar ponds.

  2. Solar thermal technology report, FY 1981. Volume 1: Executive summary

    NASA Astrophysics Data System (ADS)

    1982-06-01

    The activities of the Department of Energy's Solar Thermal Technology Program are discussed. Highlights of technical activities and brief descriptions of each technology are given. Solar thermal conversion concepts are discussed in detail, particularily concentrating collectors and salt-gradient solar ponds.

  3. Nanoparticle Pre-Conditioning for Enhanced Thermal Therapies in Cancer

    PubMed Central

    Shenoi, Mithun M.; Shah, Neha B.; Griffin, Robert J.; Vercellotti, Gregory M.; Bischof, John C.

    2011-01-01

    Nanoparticles show tremendous promise in the safe and effective delivery of molecular adjuvants to enhance local cancer therapy. One important form of local cancer treatment that suffers from local recurrence and distant metastases is thermal therapy. Here we review a new concept involving the use of nanoparticle delivered adjuvants to “pre-condition” or alter the vascular and immunological biology of the tumor to enhance its susceptibility to thermal therapy. To this end, a number of opportunities to combine nanoparticles with vascular and immunologically active agents are reviewed. One specific example of pre-conditioning involves a gold nanoparticle tagged with a vascular targeting agent (i.e. TNF-?). This nanoparticle embodiment demonstrates pre-conditioning through a dramatic reduction in tumor blood flow and induction of vascular damage which recruits a strong and sustained inflammatory infiltrate in the tumor. The ability of this nanoparticle pre-conditioning to enhance subsequent heat or cold thermal therapy in a variety of tumor models is reviewed. Finally, the potential for future clinical imaging to judge the extent of pre-conditioning and thus the optimal timing and extent of combinatorial thermal therapy is discussed. PMID:21542691

  4. Technology Solutions Case Study: Preventing Thermal Bypass

    SciTech Connect

    none,

    2012-10-01

    This project highlights the importance of continuous air barriers in full alignment with insulation to prevent thermal bypasses and achieve high energy performance, and recommends use of ENERGY STAR's Thermal Bypass Inspection Checklist.

  5. Commercialization of aquifer thermal energy storage technology

    SciTech Connect

    Hattrup, M.P.; Weijo, R.O.

    1989-09-01

    Pacific Northwest Laboratory (PNL) conducted this study for the US Department of Energy's (DOE) Office of Energy Storage and Distribution. The purpose of the study was to develop and screen a list of potential entry market applications for aquifer thermal energy storage (ATES). Several initial screening criteria were used to identify promising ATES applications. These include the existence of an energy availability/usage mismatch, the existence of many similar applications or commercial sites, the ability to utilize proven technology, the type of location, market characteristics, the size of and access to capital investment, and the number of decision makers involved. The in-depth analysis identified several additional screening criteria to consider in the selection of an entry market application. This analysis revealed that the best initial applications for ATES are those where reliability is acceptable, and relatively high temperatures are allowable. Although chill storage was the primary focus of this study, applications that are good candidates for heat ATES were also of special interest. 11 refs., 3 tabs.

  6. Current Technology for Thermal Protection Systems

    NASA Technical Reports Server (NTRS)

    Scotti, Stephen J. (compiler)

    1992-01-01

    Interest in thermal protection systems for high-speed vehicles is increasing because of the stringent requirements of such new projects as the Space Exploration Initiative, the National Aero-Space Plane, and the High-Speed Civil Transport, as well as the needs for improved capabilities in existing thermal protection systems in the Space Shuttle and in turbojet engines. This selection of 13 papers from NASA and industry summarizes the history and operational experience of thermal protection systems utilized in the national space program to date, and also covers recent development efforts in thermal insulation, refractory materials and coatings, actively cooled structures, and two-phase thermal control systems.

  7. Estimating Thermal Inertia with a Maximum Entropy Boundary Condition

    NASA Astrophysics Data System (ADS)

    Nearing, G.; Moran, M. S.; Scott, R.; Ponce-Campos, G.

    2012-04-01

    Thermal inertia, P [Jm-2s-1/2K-1], is a physical property the land surface which determines resistance to temperature change under seasonal or diurnal heating. It is a function of volumetric heat capacity, c [Jm-3K-1], and thermal conductivity, k [Wm-1K-1] of the soil near the surface: P=?ck. Thermal inertia of soil varies with moisture content due the difference between thermal properties of water and air, and a number of studies have demonstrated that it is feasible to estimate soil moisture given thermal inertia (e.g. Lu et al, 2009, Murray and Verhoef, 2007). We take the common approach to estimating thermal inertia using measurements of surface temperature by modeling the Earth's surface as a 1-dimensional homogeneous diffusive half-space. In this case, surface temperature is a function of the ground heat flux (G) boundary condition and thermal inertia and a daily value of P was estimated by matching measured and modeled diurnal surface temperature fluctuations. The difficulty is in measuring G; we demonstrate that the new maximum entropy production (MEP) method for partitioning net radiation into surface energy fluxes (Wang and Bras, 2011) provides a suitable boundary condition for estimating P. Adding the diffusion representation of heat transfer in the soil reduces the number of free parameters in the MEP model from two to one, and we provided a sensitivity analysis which suggests that, for the purpose of estimating P, it is preferable to parameterize the coupled MEP-diffusion model by the ratio of thermal inertia of the soil to the effective thermal inertia of convective heat transfer to the atmosphere. We used this technique to estimate thermal inertia at two semiarid, non-vegetated locations in the Walnut Gulch Experimental Watershed in southeast AZ, USA and compared these estimates to estimates of P made using the Xue and Cracknell (1995) solution for a linearized ground heat flux boundary condition, and we found that the MEP-diffusion model produced superior thermal inertia estimates. The MEP-diffusion estimates also agreed well with P estimates made using a boundary condition measured with buried flux plates. We further demonstrated the new method using diurnal surface temperature fluctuations estimated from day/night MODIS image pairs and, excluding instances where the soil was extremely dry, found a strong relationship between estimated thermal inertia and measured 5 cm soil moisture. Lu, S., Ju, Z.Q., Ren, T.S. & Horton, R. (2009). A general approach to estimate soil water content from thermal inertia. Agricultural and Forest Meteorology, 149, 1693-1698. Murray, T. & Verhoef, A. (2007). Moving towards a more mechanistic approach in the determination of soil heat flux from remote measurements - I. A universal approach to calculate thermal inertia. Agricultural and Forest Meteorology, 147, 80-87. Wang, J.F. & Bras, R.L. (2011). A model of evapotranspiration based on the theory of maximum entropy production. Water Resources Research, 47. Xue, Y. & Cracknell, A.P. (1995). Advanced thermal inertia modeling. International Journal of Remote Sensing, 16, 431-446.

  8. The Effects of Nonuniform Thermal Boundary Condition on Thermal Stress Calculation of Water-Cooled W/Cu Divertors

    NASA Astrophysics Data System (ADS)

    Han, Le; Chang, Haiping; Zhang, Jingyang; Liu, Nan; Xu, Tiejun

    2014-10-01

    The thermal boundary condition has very important effects on the accuracy of thermal stress calculation of a water-cooled W/Cu divertor. In this paper, phase-change heat transfer was simulated based on the Euler homogeneous phase model, and local differences of liquid physical properties were considered under one-sided high heating conditions. The steady-state temperature field and thermal stress field under nonuniform thermal boundary conditions were obtained through numerical calculation. By comparison with the case of traditional uniform thermal boundary conditions, the results show that the distribution of thermal stress under nonuniform thermal boundary conditions exhibits the same trend as that under uniform thermal boundary conditions, but is larger in value. The maximum difference of maximum von Mises stress is up to 42% under the highest heating conditions. These results provide a valuable reference for the thermal stress calculation of water-cooled W/Cu divertors.

  9. Thermal Cyclic Behavior of Thermal and Environmental Barrier Coatings Investigated Under High-Heat-Flux Conditions

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Lee, Kang N.; Miller, Robert A.

    2002-01-01

    Environmental barrier coatings (EBC's) have been developed to protect silicon-carbide- (SiC) based ceramic components in gas turbine engines from high-temperature environmental attack. With continuously increasing demands for significantly higher engine operating temperature, future EBC systems must be designed for both thermal and environmental protection of the engine components in combustion gases. In particular, the thermal barrier functions of EBC's become a necessity for reducing the engine-component thermal loads and chemical reaction rates, thus maintaining the required mechanical properties and durability of these components. Advances in the development of thermal and environmental barrier coatings (TBC's and EBC's, respectively) will directly impact the successful use of ceramic components in advanced engines. To develop high-performance coating systems, researchers must establish advanced test approaches. In this study, a laser high-heat-flux technique was employed to investigate the thermal cyclic behavior of TBC's and EBC's on SiC-reinforced SiC ceramic matrix composite substrates (SiC/SiC) under high thermal gradient and thermal cycling conditions. Because the laser heat flux test approach can monitor the coating's real-time thermal conductivity variations at high temperature, the coating thermal insulation performance, sintering, and delamination can all be obtained during thermal cycling tests. Plasma-sprayed yttria-stabilized zirconia (ZrO2-8 wt% Y2O3) thermal barrier and barium strontium aluminosilicate-based environmental barrier coatings (BSAS/BSAS+mullite/Si) on SiC/SiC ceramic matrix composites were investigated in this study. These coatings were laser tested in air under thermal gradients (the surface and interface temperatures were approximately 1482 and 1300 C, respectively). Some coating specimens were also subject to alternating furnace cycling (in a 90-percent water vapor environment at 1300 C) and laser thermal gradient cycling tests (in air), to investigate the water vapor effect. All cyclic tests were conducted using a 60-min hot-time temperature.

  10. Porous materials for thermal management under extreme conditions.

    PubMed

    Clyne, T W; Golosnoy, I O; Tan, J C; Markaki, A E

    2006-01-15

    A brief analysis is presented of how heat transfer takes place in porous materials of various types. The emphasis is on materials able to withstand extremes of temperature, gas pressure, irradiation, etc. i.e. metals and ceramics, rather than polymers. A primary aim is commonly to maximize either the thermal resistance (i.e. provide insulation) or the rate of thermal equilibration between the material and a fluid passing through it (i.e. to facilitate heat exchange). The main structural characteristics concern porosity (void content), anisotropy, pore connectivity and scale. The effect of scale is complex, since the permeability decreases as the structure is refined, but the interfacial area for fluid-solid heat exchange is, thereby, raised. The durability of the pore structure may also be an issue, with a possible disadvantage of finer scale structures being poor microstructural stability under service conditions. Finally, good mechanical properties may be required, since the development of thermal gradients, high fluid fluxes, etc. can generate substantial levels of stress. There are, thus, some complex interplays between service conditions, pore architecture/scale, fluid permeation characteristics, convective heat flow, thermal conduction and radiative heat transfer. Such interplays are illustrated with reference to three examples: (i) a thermal barrier coating in a gas turbine engine; (ii) a Space Shuttle tile; and (iii) a Stirling engine heat exchanger. Highly porous, permeable materials are often made by bonding fibres together into a network structure and much of the analysis presented here is oriented towards such materials. PMID:18272456

  11. ALTERNATIVE TECHNOLOGIES FOR REFRIGERATION AND AIR-CONDITIONING APPLICATIONS

    EPA Science Inventory

    The report gives results of an assessment of refrigeration technologies that are alternatives to vapor compression refrigeration for use in five application categories: domestic air conditioning, commercial air conditioning, mobile air conditioning, domestic refrigeration, and co...

  12. Demonstration of Passive Fuel Cell Thermal Management Technology

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.; Jakupca, Ian; Colozza, Anthony; Wynne, Robert; Miller, Michael; Meyer, Al; Smith, William

    2012-01-01

    The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA Exploration program. The passive thermal management system relies on heat conduction within highly thermally conductive cooling plates to move the heat from the central portion of the cell stack out to the edges of the fuel cell stack. Using the passive approach eliminates the need for a coolant pump and other cooling loop components within the fuel cell system which reduces mass and improves overall system reliability. Previous development demonstrated the performance of suitable highly thermally conductive cooling plates and integrated heat exchanger technology to collect the heat from the cooling plates (Ref. 1). The next step in the development of this passive thermal approach was the demonstration of the control of the heat removal process and the demonstration of the passive thermal control technology in actual fuel cell stacks. Tests were run with a simulated fuel cell stack passive thermal management system outfitted with passive cooling plates, an integrated heat exchanger and two types of cooling flow control valves. The tests were run to demonstrate the controllability of the passive thermal control approach. Finally, successful demonstrations of passive thermal control technology were conducted with fuel cell stacks from two fuel cell stack vendors.

  13. Acoustic Emission Analysis of Damage Progression in Thermal Barrier Coatings Under Thermal Cyclic Conditions

    NASA Technical Reports Server (NTRS)

    Appleby, Matthew; Zhu, Dongming; Morscher, Gregory

    2015-01-01

    Damage evolution of electron beam-physical vapor deposited (EBVD-PVD) ZrO2-7 wt.% Y2O3 thermal barrier coatings (TBCs) under thermal cyclic conditions was monitored using an acoustic emission (AE) technique. The coatings were heated using a laser heat flux technique that yields a high reproducibility in thermal loading. Along with AE, real-time thermal conductivity measurements were also taken using infrared thermography. Tests were performed on samples with induced stress concentrations, as well as calcium-magnesium-alumino-silicate (CMAS) exposure, for comparison of damage mechanisms and AE response to the baseline (as-produced) coating. Analysis of acoustic waveforms was used to investigate damage development by comparing when events occurred, AE event frequency, energy content and location. The test results have shown that AE accumulation correlates well with thermal conductivity changes and that AE waveform analysis could be a valuable tool for monitoring coating degradation and provide insight on specific damage mechanisms.

  14. Lightweight Nonmetallic Thermal Protection Materials Technology (LNTPMT) Project

    NASA Technical Reports Server (NTRS)

    Flynn, Kevin; Gubert, Michael

    2005-01-01

    Contents include the following: Exploration systems research and technology program structure. Project objective. Overview of project. Candidate thermal protection system (PS) materials. Definition of reference missions and space environments. Technical performance metrics (TPMs).Testing (types of tests). Conclusion.

  15. Solar thermal technology evaluation, fiscal year 1982. Volume 2: Technical

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The technology base of solar thermal energy is investigated. The materials, components, subsystems, and processes capable of meeting specific energy cost targets are emphasized, as are system efficiency and reliability.

  16. Solar thermal technology evaluation, fiscal year 1982. Volume 2: Technical

    NASA Astrophysics Data System (ADS)

    1983-07-01

    The technology base of solar thermal energy is investigated. The materials, components, subsystems, and processes capable of meeting specific energy cost targets are emphasized, as are system efficiency and reliability.

  17. Guidelines on Thermal Comfort of Air Conditioned Indoor Environment

    NASA Astrophysics Data System (ADS)

    Miura, Toyohiko

    The thermal comfort of air conditioned indoor environment for workers depended, of course, on metabolic rate of work, race, sex, age, clothing, climate of the district and state of acclimatization. The attention of the author was directed to the seasonal variation and the sexual difference of comfortable temperature and a survey through a year was conducted on the thermal comfort, and health conditions of workers engaged in light work in a precision machine factory, in some office workers. Besides, a series of experiments were conducted for purpose of determinning the optimum temperature of cooling in summer time in relation to the outdoor temperature. It seemed that many of workers at present would prefer somewhat higher temperature than those before the World War II. Forty years ago the average homes and offices were not so well heated as today, and clothing worn on the average was considerably heavier.

  18. The processing of nanopowders by thermal plasma technology

    NASA Astrophysics Data System (ADS)

    Tong, Lirong; Reddy, Ramana G.

    2006-04-01

    The thermal plasma synthesis of nanopowders is a relatively new technology with great potential for future industrial applications. This article introduces research carried out in the plasma processing laboratory at the University of Alabama in Tuscaloosa, Alabama. Ceramic nanopowders and nanofibers (SiC, TiC, and B4C) and nanocomposite powders (TiC-Al(Ti), TiC-Fe(Ti), and TiN-Fe (Ti)) were successfully synthesized by thermal plasma technology.

  19. Solar thermal powered desalination: membrane versus distillation technologies

    E-print Network

    Solar thermal powered desalination: membrane versus distillation technologies G. Burgess and K Canberra ACT 0200 AUSTRALIA E-mail: greg.burgess@anu.edu.au Multiple Effect Distillation (MED) is generally assisted) desalination has been conducted. Solar thermal driven Multiple Effect Distillation (MED) has been

  20. Automated rapid thermal imaging systems technology

    E-print Network

    Phan, Long N., 1976-

    2012-01-01

    A major source of energy savings occurs on the thermal envelop of buildings, which amounts to approximately 10% of annual energy usage in the United States. To pursue these savings, energy auditors use closed loop energy ...

  1. Thermal conditions and functional requirements for molten fuel containment

    SciTech Connect

    Kang, C.S.; Torri, A.

    1980-05-01

    This paper discusses the configuration and functional requirements for the molten fuel containment system (MFCS) in the GCFR demonstration plant design. Meltdown conditions following a loss of shutdown cooling (LOSC) accident were studied to define the core debris volume for a realistic meltdown case. Materials and thicknesses of the molten fuel container were defined. Stainless steel was chosen as the sacrificial material and magnesium oxide was chosen as the crucible material. Thermal conditions for an expected quasi-steady state were analyzed. Highlights of the functional requirements which directly affect the MFCS design are discussed.

  2. Improvement for Thermal Energy Characteristics of Wood Biomass Pelletized Using a Half Carbonized Technology

    NASA Astrophysics Data System (ADS)

    Ishimura, Kenji; Ida, Tamio; Fuchihata, Manabu; Honjo, Takako; Sano, Hiroshi

    Biomass pellet utilities are popular in North European as a pellet stove and boiler et al. But, we have a lot of problem on wood biomass utilities in social situations and geography conditions. Especially, to move of biomass from mountain area to user side transportation coast rises. Therefore, we have to improve for thermal energy characteristics in biomass based on moving. This technology is new carbonized technology for improvement of biomass thermal energy characteristics. This technology controls heated temperature and pressed force by hot-press method. Fundamental properties of biomass show thermal decomposition and ultimate analysis. In these results, we suggest to occur a half carbonized phenomena for improvement of thermal energy. Half carbonized phenomena begin approximately 540K in sawdust and 580K in cellulose. And, total calorifi c value suddenly increases in these heated temperatures. Sawdust could suggest occurring lower 40K to compare cellulose.

  3. High-Temperature Adhesives for Thermally Stable Aero-Assist Technologies

    NASA Technical Reports Server (NTRS)

    Eberts, Kenneth; Ou, Runqing

    2013-01-01

    Aero-assist technologies are used to control the velocity of exploration vehicles (EVs) when entering Earth or other planetary atmospheres. Since entry of EVs in planetary atmospheres results in significant heating, thermally stable aero-assist technologies are required to avoid the high heating rates while maintaining low mass. Polymer adhesives are used in aero-assist structures because of the need for high flexibility and good bonding between layers of polymer films or fabrics. However, current polymer adhesives cannot withstand temperatures above 400 C. This innovation utilizes nanotechnology capabilities to address this need, leading to the development of high-temperature adhesives that exhibit high thermal conductivity in addition to increased thermal decomposition temperature. Enhanced thermal conductivity will help to dissipate heat quickly and effectively to avoid temperature rising to harmful levels. This, together with increased thermal decomposition temperature, will enable the adhesives to sustain transient high-temperature conditions.

  4. Thermal imaging of solid oxide cells operating under electrolysis conditions

    NASA Astrophysics Data System (ADS)

    Cumming, D. J.; Elder, R. H.

    2015-04-01

    Solid oxide fuel cells remain at the forefront of research into electrochemical energy conversion technology. More recent interest has focused on operating in electrolyser mode to convert steam or carbon dioxide into hydrogen or carbon monoxide, respectively. The mechanism of these reactions is not fully understood, particularly when operated in co-electrolysis mode using both steam and CO2. This contribution reports the use of a thermal camera to directly observe changes in the cell temperature during operation, providing a remote, non-contact and highly sensitive method for monitoring an operational cell.

  5. Photovoltaic-Thermal New Technology Demonstration

    SciTech Connect

    Dean, Jesse; McNutt, Peter; Lisell, Lars; Burch, Jay; Jones, Dennis; Heinicke, David

    2015-01-01

    Photovoltaic-thermal (PV-T) hybrid solar systems offer increased electricity production by cooling the PV panel, and using the removed thermal energy to heat water - all in the same footprint as a standard PV system. GPG's assessment of the nation's first large-scale PV-T system installed at the Thomas P. O'Neill, Jr. Federal Building in Boston, MA, provided numerous lessons learned in system design, and identified a target market of locations with high utility costs and electric hot water backup.

  6. Stability conditions, nonlinear dynamics, and thermal runaway in microbolometers

    SciTech Connect

    Brandao, G. B.; de Almeida, L. A. L.; Deep, G. S.; Lima, A. M. N.; Neff, H.

    2001-08-15

    The nonlinear dynamic behavior of microbolometers, operating at room temperature (300 K) under conditions of positive electrothermal feedback is investigated. An improved device model, based on the heat balance equation is developed. It takes into account the temperature dependence of the thermophysical parameters, such as thermal coupling coefficient between the sensor and its surroundings, and sensor heat capacity and its thermal resistance coefficient. Operational considerations for thermoresistive microbolometer with positive and negative temperature coefficient of resistance are discussed for both, constant current and constant voltage modes of operation. Analytical expressions are derived for predicting stable and unstable operation. Safety factors L{sub 0}, establishing the biasing conditions for stable device operation are proposed for the positive temperature coefficient of resistance and negative temperature coefficient of resistance type sensors. Limits for fast catastrophic destruction are provided, and the dynamic characteristics of the associated thermal runaway phenomenon is illustrated. This effect, as predicted by analysis and numerical simulation, was observed experimentally, confirming the validity of the proposed modeling approach for the microbolometer. {copyright} 2001 American Institute of Physics.

  7. Modeling of thermal plasma arc technology FY 1994 report

    SciTech Connect

    Hawkes, G.L.; Nguyen, H.D.; Paik, S.; McKellar, M.G.

    1995-03-01

    The thermal plasma arc process is under consideration to thermally treat hazardous and radioactive waste. A computer model for the thermal plasma arc technology was designed as a tool to aid in the development and use of the plasma arc-Joule beating process. The value of this computer model is to: (a) aid in understanding the plasma arc-Joule beating process as applied to buried waste or exhumed buried waste, (b) help design melter geometry and electrode configuration, (c) calculate the process capability of vitrifying waste (i.e., tons/hour), (d) develop efficient plasma and melter operating conditions to optimize the process and/or reduce safety hazards, (e) calculate chemical reactions during treatment of waste to track chemical composition of off-gas products, and composition of final vitrified waste form and (f) help compare the designs of different plasma-arc facilities. A steady-state model of a two-dimensional axisymmetric transferred plasma arc has been developed and validated. A parametric analysis was performed that studied the effects of arc length, plasma gas composition, and input power on the temperatures and velocity profiles of the slag and plasma gas. A two-dimensional transient thermo-fluid model of the US Bureau of Mines plasma arc melter has been developed. This model includes the growth of a slag pool. The thermo-fluid model is used to predict the temperature and pressure fields within a plasma arc furnace. An analysis was performed to determine the effects of a molten metal pool on the temperature, velocity, and voltage fields within the slag. A robust and accurate model for the chemical equilibrium calculations has been selected to determine chemical composition of final waste form and off-gas based on the temperatures and pressures within the plasma-arc furnace. A chemical database has been selected. The database is based on the materials to be processed in the plasma arc furnaces.

  8. Seasonal and clonal variations in technological and thermal properties of raw Hevea natural rubber

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was undertaken over a ten-month period, under the environmental conditions within the state of Mato Grosso, Brazil, to evaluate the causes of variation in technological and thermal properties of raw natural rubber from different clones of Hevea brasiliensis (GT 1, PR 255, FX 3864 and RRIM...

  9. Low-thrust chemical propulsion system propellant expulsion and thermal conditioning study

    NASA Technical Reports Server (NTRS)

    Merino, F.; Wakabayashi, I.; Pleasant, R. L.; Hill, M.

    1982-01-01

    Thermal conditioning systems for satisfying engine net positive suction pressure (NPSP) requirements, and propellant expulsion systems for achieving propellant dump during a return-to-launch site (RTLS) abort were studied for LH2/LO2 and LCH4/LO2 upper stage propellant combinations. A state-of-the-art thermal conditioning system employing helium injection beneath the liquid surface shows the lowest weight penalty for LO2 and LCH4. A technology system incorporating a thermal subcooler (heat exchanger) for engine NPSP results in the lowest weight penalty for the LH2 tank. A preliminary design of two state-of-the-art and two new technology systems indicates a weight penalty difference too small to warrant development of a LH2 thermal subcooler. Analysis results showed that the LH2/LO2 propellant expulsion system is optimized for maximum dump line diameters, whereas the LCH4/LO2 system is optimized for minimum dump line diameter (LCH4) and maximum dump line diameter (LO2). The primary uncertainty is the accurate determination of two-phase flow rates through the dump system; experimentation is not recommended because this uncertainty is not considered significant.

  10. Thermal and electrical conductivity of iron at Earth's core conditions.

    PubMed

    Pozzo, Monica; Davies, Chris; Gubbins, David; Alfè, Dario

    2012-05-17

    The Earth acts as a gigantic heat engine driven by the decay of radiogenic isotopes and slow cooling, which gives rise to plate tectonics, volcanoes and mountain building. Another key product is the geomagnetic field, generated in the liquid iron core by a dynamo running on heat released by cooling and freezing (as the solid inner core grows), and on chemical convection (due to light elements expelled from the liquid on freezing). The power supplied to the geodynamo, measured by the heat flux across the core-mantle boundary (CMB), places constraints on Earth's evolution. Estimates of CMB heat flux depend on properties of iron mixtures under the extreme pressure and temperature conditions in the core, most critically on the thermal and electrical conductivities. These quantities remain poorly known because of inherent experimental and theoretical difficulties. Here we use density functional theory to compute these conductivities in liquid iron mixtures at core conditions from first principles--unlike previous estimates, which relied on extrapolations. The mixtures of iron, oxygen, sulphur and silicon are taken from earlier work and fit the seismologically determined core density and inner-core boundary density jump. We find both conductivities to be two to three times higher than estimates in current use. The changes are so large that core thermal histories and power requirements need to be reassessed. New estimates indicate that the adiabatic heat flux is 15 to 16 terawatts at the CMB, higher than present estimates of CMB heat flux based on mantle convection; the top of the core must be thermally stratified and any convection in the upper core must be driven by chemical convection against the adverse thermal buoyancy or lateral variations in CMB heat flow. Power for the geodynamo is greatly restricted, and future models of mantle evolution will need to incorporate a high CMB heat flux and explain the recent formation of the inner core. PMID:22495307

  11. Cyclic Failure Mechanisms of Thermal and Environmental Barrier Coating Systems Under Thermal Gradient Test Conditions

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Lee, Kang N.; Miller, Robert A.

    2002-01-01

    Plasma-sprayed ZrO2-8wt%Y2O3 and mullite+BSAS/Si multilayer thermal and environmental barrier coating (TBC-EBC) systems on SiC/SiC ceramic matrix composite (CMC) substrates were thermally cyclic tested under high thermal gradients using a laser high-heat-flux rig in conjunction with furnace exposure in water-vapor environments. Coating sintering and interface damage were assessed by monitoring the real-time thermal conductivity changes during the laser heat-flux tests and by examining the microstructural changes after exposure. Sintering kinetics of the coating systems were also independently characterized using a dilatometer. It was found that the coating failure involved both the time-temperature dependent sintering and the cycle frequency dependent cyclic fatigue processes. The water vapor environments not only facilitated the initial coating conductivity increases due to enhanced sintering and interface reaction, but also promoted later conductivity reductions due to the accelerated coating cracking and delamination. The failure mechanisms of the coating systems are also discussed based on the cyclic test results and are correlated to the sintering and thermal stress behavior under the thermal gradient test conditions.

  12. Evaluation of thermal perception in schoolyards under Mediterranean climate conditions

    NASA Astrophysics Data System (ADS)

    Antoniadis, D.; Katsoulas, N.; Papanastasiou, D.; Christidou, V.; Kittas, C.

    2015-07-01

    The aim of this paper was to study qualitatively and quantitatively the thermal perception and corresponding heat stress conditions that prevail in two schoolyards in a coastal city in central Greece. For this purpose, meteorological parameters (i.e., wind speed, temperature, relative humidity, solar radiation) were recorded at 70 and 55 measuring points in the schoolyards, from 14:00 to 15:30 local time, during May and June of 2011. The measuring points were distributed so as to get measurements at points (a) directly exposed to the sun, (b) under the shadow of trees and building structures, and (c) near building structures. Cluster analysis was applied to group observations and revealed places that are microclimatically homogeneous. Thermal perception and heat stress conditions were assessed by means of the physiologically equivalent temperature (PET, °C), and the results are presented in relevant charts. The impact of material's albedo, radiation's reflection by structures and obstacles, and different tree species on thermal perception and heat stress conditions was also assessed. The analysis showed that trees triggered a reduction of incident solar radiation that ranged between 79 and 94 % depending on tree's species, crown dimension, tree height, and leaf area. PET values were mainly affected by solar radiation and wind speed. Trees caused a reduction of up to 37 % in PET values, while a 1-m s-1 increase in wind speed triggered a reduction of 3.7-5.0 °C in PET value. The effective shading area in the two schoolyards was small, being 27.5 and 11 %. The results of this study could be exploited by urban planning managers when designing or improving the outdoor environment of a school complex.

  13. Thermal Conductivity and Elastic Modulus Evolution of Thermal Barrier Coatings under High Heat Flux Conditions

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    1999-01-01

    Laser high heat flux test approaches have been established to obtain critical properties of ceramic thermal barrier coatings (TBCs) under near-realistic temperature and thermal gradients that may he encountered in advanced engine systems. Thermal conductivity change kinetics of a thin ceramic coating were continuously monitored in real time at various test temperatures. A significant thermal conductivity increase was observed during the laser simulated engine heat flux tests. For a 0.25 mm thick ZrO2-8%Y2O3 coating system, the overall thermal conductivity increased from the initial value of 1.0 W/m-K to 1. 15 W/m-K, 1. 19 W/m-K and 1.5 W/m-K after 30 hour testing at surface temperatures of 990C, 1100C, and 1320C. respectively. Hardness and modulus gradients across a 1.5 mm thick TBC system were also determined as a function of laser testing time using the laser sintering/creep and micro-indentation techniques. The coating Knoop hardness values increased from the initial hardness value of 4 GPa to 5 GPa near the ceramic/bond coat interface, and to 7.5 GPa at the ceramic coating surface after 120 hour testing. The ceramic surface modulus increased from an initial value of about 70 GPa to a final value of 125 GPa. The increase in thermal conductivity and the evolution of significant hardness and modulus gradients in the TBC systems are attributed to sintering-induced micro-porosity gradients under the laser-imposed high thermal gradient conditions. The test techniques provide a viable means for obtaining coating data for use in design, development, stress modeling, and life prediction for various thermal barrier coating applications.

  14. Assessing condition of turbine engine ceramic components through NDE technology.

    SciTech Connect

    Ellingson, W.A.; Sun, J.G.; Deemer, C.; Erdman, S.; Prested, C.

    2002-04-12

    Thermal barrier coatings (TBCs) and environmental barrier coatings (EBCs) are under development for hot-gas path components to allow higher gas-firing temperatures in advanced (high-efficiency, low-emission) gas turbines. Increasing dependence on the reliability of TBC and EBC components has driven the need for nondestructive evaluation (NDE) methods to assess the condition, or ''health status,'' of these coatings. NDE methods based on elastic optical scatter and thermal imaging have been applied to TBC-coated test specimens that were thermally cycled and to EBC-coated SiC/SiC components that were run in 4.5 MW(e) field-test turbines. One primary interest is to develop NDE methods that can predict a prespall condition. Resulting data suggest a correlation between laser scatter data and thermal cycles for TBC-coated specimens, and thermal imaging results have demonstrated prespall detection for an EBC-coated SiC/SiC combustor liner.

  15. Sintering Characteristics of Multilayered Thermal Barrier Coatings Under Thermal Gradient and Isothermal High Temperature Annealing Conditions

    NASA Technical Reports Server (NTRS)

    Rai, Amarendra K.; Schmitt, Michael P.; Bhattacharya, Rabi; Zhu, Dongming; Wolfe, Douglas E.

    2014-01-01

    Pyrochlore oxides have most of the relevant attributes for use as next generation thermal barrier coatings such as phase stability, low sintering kinetics and low thermal conductivity. One of the issues with the pyrochlore oxides is their lower toughness and therefore higher erosion rate compared to the current state-of-the-art TBC material, yttria (6 to 8 wt%) stabilized zirconia (YSZ). In this work, sintering characteristics were investigated for novel multilayered coating consisted of alternating layers of pyrochlore oxide viz Gd2Zr2O7 and t' low k (rare earth oxide doped YSZ). Thermal gradient and isothermal high temperature (1316 C) annealing conditions were used to investigate sintering and cracking in these coatings. The results are then compared with that of relevant monolayered coatings and a baseline YSZ coating.

  16. Overall Thermal Performance of Flexible Piping Under Simulated Bending Conditions

    NASA Technical Reports Server (NTRS)

    Fesmire, James E.; Augustynowicz, S. D.; Demko, J. A.; Thompson, Karen (Technical Monitor)

    2001-01-01

    Flexible, vacuum-insulated transfer lines for low-temperature applications have higher thermal losses than comparable rigid lines. Typical flexible piping construction uses corrugated tubes, inner and outer, with a multilayer insulation (MLI) system in the annular space. Experiments on vacuum insulation systems in a flexible geometry were conducted at the Cryogenics Test Laboratory of NASA Kennedy Space Center. The effects of bending were simulated by causing the inner tube to be eccentric with the outer tube. The effects of spacers were simulated in a controlled way by inserting spacer tubes for the length of the cylindrical test articles. Two material systems, standard MLI and a layered composite insulation (LCI), were tested under the full range of vacuum levels using a liquid nitrogen boiloff calorimeter to determine the apparent thermal conductivity (k-value). The results indicate that the flexible piping under simulated bending conditions significantly degrades the thermal performance of the insulation system. These data are compared to standard MLI for both straight and flexible piping configurations. The definition of an overall k-value for actual field installations (k(sub oafi)) is described for use in design and analysis of cryogenic piping systems.

  17. Conditional Neural Fields Toyota Technological Institute at Chicago

    E-print Network

    Bo, Liefeng

    Conditional Neural Fields Jian Peng Toyota Technological Institute at Chicago 6045 S. Kenwood Ave. Chicago, IL 60637 jpengwhu@gmail.com Liefeng Bo Toyota Technological Institute at Chicago 6045 S. Kenwood Ave. Chicago, IL 60637 liefengbo@gmail.com Jinbo Xu Toyota Technological Institute at Chicago 6045 S

  18. Current Issues in Human Spacecraft Thermal Control Technology

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene K.

    2008-01-01

    Efficient thermal management of Earth-orbiting human spacecraft, lunar transit spacecraft and landers, as well as a lunar habitat will require advanced thermal technology. These future spacecraft will require more sophisticated thermal control systems that can dissipate or reject greater heat loads at higher input heat fluxes while using fewer of the limited spacecraft mass, volume and power resources. The thermal control designs also must accommodate the harsh environments associated with these missions including dust and high sink temperatures. The lunar environment presents several challenges to the design and operation of active thermal control systems. During the Apollo program, landings were located and timed to occur at lunar twilight, resulting in a benign thermal environment. The long duration polar lunar bases that are foreseen in 15 years will see extremely cold thermal environments. Long sojourns remote from low-Earth orbit will require lightweight, but robust and reliable systems. Innovative thermal management components and systems are needed to accomplish the rejection of heat from lunar bases. Advances are required in the general areas of radiators, thermal control loops and equipment. Radiators on the Moon's poles must operate and survive in very cold environments. Also, the dusty environment of an active lunar base may require dust mitigation and removal techniques to maintain radiator performance over the long term.

  19. Chronic Heat Stress and Cognitive Development: An Example of Thermal Conditions Influencing Human Development

    ERIC Educational Resources Information Center

    Riniolo, Todd C.; Schmidt, Louis A.

    2006-01-01

    Although thermal conditions influence the development of living organisms in a wide variety of ways, this topic has been recently ignored in humans. This paper reintroduces thermal conditions as a topic of importance for developmentalists by presenting an example of how thermal conditions are hypothesized to influence a particular developmental…

  20. Thermal Management of Power Semiconductor Packages - Matching Cooling Technologies with Packaging Technologies (Presentation)

    SciTech Connect

    Bennion, K.; Moreno, G.

    2010-04-27

    Heat removal for power semiconductor devices is critical for robust operation. Because there are different packaging options, different thermal management technologies, and a range of applications, there is a need for a methodology to match cooling technologies and package configurations to target applications. To meet this need, a methodology was developed to compare the sensitivity of cooling technologies on the overall package thermal performance over a range of power semiconductor packaging configurations. The results provide insight into the trade-offs associated with cooling technologies and package configurations. The approach provides a method for comparing new developments in power semiconductor packages and identifying potential thermal control technologies for the package. The results can help users select the appropriate combination of packaging configuration and cooling technology for the desired application.

  1. Ceramic technology for solar thermal receivers

    NASA Technical Reports Server (NTRS)

    Kudirka, A. A.; Smoak, R. H.

    1981-01-01

    The high-temperature capability, resistance to corrosive environments and non-strategic nature of ceramics have prompted applications in the solar thermal field whose advantages over metallic devices of comparable performance may begin to be assessed. It is shown by a survey of point-focusing receiver designs employing a variety of ceramic compositions and fabrication methods that the state-of-the-art in structural ceramics is not sufficiently advanced to fully realize the promised benefits of higher temperature capabilities at lower cost than metallic alternatives. The ceramics considered include alumina, berylia, magnesia, stabilized zirconia, fused silica, silicon nitride, silicon carbide, mullite and cordierite, processed by such methods as isostatic pressing, dry pressing, slip casting, extrusion, calendaring and injection molding.

  2. Numerical Determination of Critical Conditions for Thermal Ignition

    NASA Technical Reports Server (NTRS)

    Luo, W.; Wake, G. C.; Hawk, C. W.; Litchford, R. J.

    2008-01-01

    The determination of ignition or thermal explosion in an oxidizing porous body of material, as described by a dimensionless reaction-diffusion equation of the form .tu = .2u + .e-1/u over the bounded region O, is critically reexamined from a modern perspective using numerical methodologies. First, the classic stationary model is revisited to establish the proper reference frame for the steady-state solution space, and it is demonstrated how the resulting nonlinear two-point boundary value problem can be reexpressed as an initial value problem for a system of first-order differential equations, which may be readily solved using standard algorithms. Then, the numerical procedure is implemented and thoroughly validated against previous computational results based on sophisticated path-following techniques. Next, the transient nonstationary model is attacked, and the full nonlinear form of the reaction-diffusion equation, including a generalized convective boundary condition, is discretized and expressed as a system of linear algebraic equations. The numerical methodology is implemented as a computer algorithm, and validation computations are carried out as a prelude to a broad-ranging evaluation of the assembly problem and identification of the watershed critical initial temperature conditions for thermal ignition. This numerical methodology is then used as the basis for studying the relationship between the shape of the critical initial temperature distribution and the corresponding spatial moments of its energy content integral and an attempt to forge a fundamental conjecture governing this relation. Finally, the effects of dynamic boundary conditions on the classic storage problem are investigated and the groundwork is laid for the development of an approximate solution methodology based on adaptation of the standard stationary model.

  3. Peptide Formation Mechanism on Montmorillonite Under Thermal Conditions

    NASA Astrophysics Data System (ADS)

    Fuchida, Shigeshi; Masuda, Harue; Shinoda, Keiji

    2014-02-01

    The oligomerization of amino acids is an essential process in the chemical evolution of proteins, which are precursors to life on Earth. Although some researchers have observed peptide formation on clay mineral surfaces, the mechanism of peptide bond formation on the clay mineral surface has not been clarified. In this study, the thermal behavior of glycine (Gly) adsorbed on montmorillonite was observed during heating experiments conducted at 150 °C for 336 h under dry, wet, and dry-wet conditions to clarify the mechanism. Approximately 13.9 % of the Gly monomers became peptides on montmorillonite under dry conditions, with diketopiperazine (cyclic dimer) being the main product. On the other hand, peptides were not synthesized in the absence of montmorillonite. Results of IR analysis showed that the Gly monomer was mainly adsorbed via hydrogen bonding between the positively charged amino groups and negatively charged surface sites (i.e., Lewis base sites) on the montmorillonite surface, indicating that the Lewis base site acts as a catalyst for peptide formation. In contrast, peptides were not detected on montmorillonite heated under wet conditions, since excess water shifted the equilibrium towards hydrolysis of the peptides. The presence of water is likely to control thermodynamic peptide production, and clay minerals, especially those with electrophilic defect sites, seem to act as a kinetic catalyst for the peptide formation reaction.

  4. Peptide formation mechanism on montmorillonite under thermal conditions.

    PubMed

    Fuchida, Shigeshi; Masuda, Harue; Shinoda, Keiji

    2014-02-01

    The oligomerization of amino acids is an essential process in the chemical evolution of proteins, which are precursors to life on Earth. Although some researchers have observed peptide formation on clay mineral surfaces, the mechanism of peptide bond formation on the clay mineral surface has not been clarified. In this study, the thermal behavior of glycine (Gly) adsorbed on montmorillonite was observed during heating experiments conducted at 150 °C for 336 h under dry, wet, and dry-wet conditions to clarify the mechanism. Approximately 13.9 % of the Gly monomers became peptides on montmorillonite under dry conditions, with diketopiperazine (cyclic dimer) being the main product. On the other hand, peptides were not synthesized in the absence of montmorillonite. Results of IR analysis showed that the Gly monomer was mainly adsorbed via hydrogen bonding between the positively charged amino groups and negatively charged surface sites (i.e., Lewis base sites) on the montmorillonite surface, indicating that the Lewis base site acts as a catalyst for peptide formation. In contrast, peptides were not detected on montmorillonite heated under wet conditions, since excess water shifted the equilibrium towards hydrolysis of the peptides. The presence of water is likely to control thermodynamic peptide production, and clay minerals, especially those with electrophilic defect sites, seem to act as a kinetic catalyst for the peptide formation reaction. PMID:24917118

  5. Thermal management system technology development for space station applications

    NASA Technical Reports Server (NTRS)

    Rankin, J. G.; Marshall, P. F.

    1983-01-01

    A short discussion of the history to date of the NASA thermal management system technology development program is presented, and the current status of several ongoing studies and hardware demonstration tasks is reported. One element of technology that is required for long-life, high-power orbital platforms/stations that is being developed is heat rejection and a space-constructable radiator system. Aspects of this project include high-efficiency fin concepts, a heat pipe quick-disconnect device, high-capacity heat pipes, and an alternate interface heat exchanger design. In the area of heat acquisition and transport, developments in a pumped two-phase transport loop, a capillary pumped transport loop using the concept of thermal utility are reported. An example of a thermal management system concept is provided.

  6. Predicting tree pollen season start dates using thermal conditions.

    PubMed

    Myszkowska, Dorota

    2014-01-01

    Thermal conditions at the beginning of the year determine the timing of pollen seasons of early flowering trees. The aims of this study were to quantify the relationship between the tree pollen season start dates and the thermal conditions just before the beginning of the season and to construct models predicting the start of the pollen season in a given year. The study was performed in Krakow (Southern Poland); the pollen data of Alnus, Corylus and Betula were obtained in 1991-2012 using a volumetric method. The relationship between the tree pollen season start, calculated by the cumulated pollen grain sum method, and a 5-day running means of maximum (for Alnus and Corylus) and mean (for Betula) daily temperature was found and used in the logistic regression models. The estimation of model parameters indicated their statistically significance for all studied taxa; the odds ratio was higher in models for Betula, comparing to Alnus and Corylus. The proposed model makes the accuracy of prediction in 83.58 % of cases for Alnus, in 84.29 % of cases for Corylus and in 90.41 % of cases for Betula. In years of model verification (2011 and 2012), the season start of Alnus and Corylus was predicted more precisely in 2011, while in case of Betula, the model predictions achieved 100 % of accuracy in both years. The correctness of prediction indicated that the data used for the model arrangement fitted the models well and stressed the high efficacy of model prediction estimated using the pollen data in 1991-2010. PMID:25110386

  7. Thermally Activated Desiccant Technology for Heat Recovery and Comfort

    SciTech Connect

    Jalalzadeh, A. A.

    2005-11-01

    Desiccant cooling is an important part of the diverse portfolio of Thermally Activated Technologies (TAT) designed for conversion of heat for the purpose of indoor air quality control. Thermally activated desiccant cooling incorporates a desiccant material that undergoes a cyclic process involving direct dehumidification of moist air and thermal regeneration. Desiccants fall into two categories: liquid and solid desiccants. Regardless of the type, solid or liquid, the governing principles of desiccant dehumidification systems are the same. In the dehumidification process, the vapor pressure of the moist air is higher than that of the desiccant, leading to transfer of moisture from the air to the desiccant material. By heating the desiccant, the vapor pressure differential is reversed in the regeneration process that drives the moisture from the desiccant. Figure 1 illustrates a rotary solid-desiccant dehumidifier. A burner or a thermally compatible source of waste heat can provide the required heat for regeneration.

  8. Technology to Empower Patients with Chronic Conditions Kay Connelly

    E-print Network

    Connelly, Kay

    Technology to Empower Patients with Chronic Conditions Kay Connelly connelly@indiana.edu Assistant the diagnosis. She learns that the pain associated with TN is so severe it has been dubbed the "suicide disease

  9. Thermal Denitration. Innovative Technology Summary Report

    SciTech Connect

    2001-09-01

    The major object of this work was to provide data for identifying and demonstrating a technically viable and cost-effective approach to condition LAW for immobilization. Pacific Northwest National Laboratory evaluated an approach that consisted of distillation followed by low-temperature denitration with a reductant addition. This process option minimizes volatilization of radionuclides and hazardous constituents, and converts most of the nitrate in the water to at least 50% nitrogen gas instead of NOx during LAW calcination, while still producing a groutable product. INEEL investigated high-temperature calcination for the LAW, a process already selected by INEEL for calcining high-level waste. Why is it necessary to remove the nitrate (denitrification)? The low-activity waste derived from the separation work performed on the sodium-bearing waste will be very acidic as will the high-activity waste from the redissolution of calcine. In addition, these waste streams will contain very high levels of nitrates; these nitrates are detrimental to grout waste forms. Thus, the nitrate must be removed from these waste streams before they are encapsulated in grout.

  10. Heating, Ventilating, and Air Conditioning. Energy Technology Series.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This course in heating, ventilating, and air conditioning is one of 16 courses in the Energy Technology Series developed for an Energy Conservation-and-Use Technology curriculum. Intended for use in two-year postsecondary technical institutions to prepare technicians for employment, the courses are also useful in industry for updating employees in…

  11. Limiting factors to advancing thermal battery technology for naval applications

    NASA Astrophysics Data System (ADS)

    Davis, Patrick B.; Winchester, Clinton S.

    1991-10-01

    Thermal batteries are primary reserve electrochemical power sources using molten salt electrolyte which experience little effective aging while in storage or dormant deployment. Thermal batteries are primarily used in military applications, and are currently used in a wide variety of Navy devices such as missiles, torpedoes, decays, and training targets, usually as power supplies in guidance, propulsion, and Safe/Arm applications. Technology developments have increased the available energy and power density ratings by an order of magnitude in the last ten years. Present thermal batteries, using lithium anodes and metal sulfide cathodes, are capable of performing applications where only less rugged and more expensive silver oxide/zinc or silver/magnesium chloride seawater batteries could serve previously. Additionally, these batteries are capable of supplanting lithium/thionyl chloride reserve batteries in a variety of specifically optimized designs. Increases in thermal battery energy and power density capabilities are not projected to continue with the current available technology. Several battery designs are now at the edge of feasibility and safety. Since future naval systems are likely to require continued growth of battery energy and power densities, there must be significant advances in battery technology. Specifically, anode alloy composition and new cathode materials must be investigated to allow for safe development and deployment of these high power, higher energy density batteries.

  12. Strategic Need for Multi-Purpose Thermal Hydraulic Loop for Support of Advanced Reactor Technologies

    SciTech Connect

    James E. O'Brien; Piyush Sabharwall; Su-Jong Yoon; Gregory K. Housley

    2014-09-01

    This report presents a conceptual design for a new high-temperature multi fluid, multi loop test facility for the INL to support thermal hydraulic, materials, and thermal energy storage research for nuclear and nuclear-hybrid applications. In its initial configuration, the facility will include a high-temperature helium loop, a liquid salt loop, and a hot water/steam loop. The three loops will be thermally coupled through an intermediate heat exchanger (IHX) and a secondary heat exchanger (SHX). Research topics to be addressed with this facility include the characterization and performance evaluation of candidate compact heat exchangers such as printed circuit heat exchangers (PCHEs) at prototypical operating conditions, flow and heat transfer issues related to core thermal hydraulics in advanced helium-cooled and salt-cooled reactors, and evaluation of corrosion behavior of new cladding materials and accident-tolerant fuels for LWRs at prototypical conditions. Based on its relevance to advanced reactor systems, the new facility has been named the Advanced Reactor Technology Integral System Test (ARTIST) facility. Research performed in this facility will advance the state of the art and technology readiness level of high temperature intermediate heat exchangers (IHXs) for nuclear applications while establishing the INL as a center of excellence for the development and certification of this technology. The thermal energy storage capability will support research and demonstration activities related to process heat delivery for a variety of hybrid energy systems and grid stabilization strategies. Experimental results obtained from this research will assist in development of reliable predictive models for thermal hydraulic design and safety codes over the range of expected advanced reactor operating conditions. Proposed/existing IHX heat transfer and friction correlations and criteria will be assessed with information on materials compatibility and instrumentation needs. The experimental database will guide development of appropriate predictive methods and be available for code verification and validation (V&V) related to these systems.

  13. Thermal control of the Lidar In-Space Technology Experiment

    NASA Technical Reports Server (NTRS)

    Carlson, Ann B.; Roettker, William A.

    1987-01-01

    The Lidar In-Space Technology Experiment (LITE) will employ lidar techniques to study the atmosphere from space. The LITE instrument will be flown in the Space Shuttle Payload Bay with an earth directed orientation. The experiment thermal control incorporates both active and passive techniques. The Laser Transmitter Module (LTM) and the system electronics will be actively cooled through the Shuttle pallet coolant loop. The receiver system and experiment platform will be passsively controlled through the use of insulation and component surface properties. This paper explains the thermal control techniques used and the analysis results, with primary focus on the receiver system.

  14. Novel Thermal Storage Technologies for Concentrating Solar Power Generation

    SciTech Connect

    Neti, Sudhakar; Oztekin, Alparslan; Chen, John; Tuzla, Kemal; Misiolek, Wojciech

    2013-06-20

    The technologies that are to be developed in this work will enable storage of thermal energy in 100 MWe solar energy plants for 6-24 hours at temperatures around 300oC and 850oC using encapsulated phase change materials (EPCM). Several encapsulated phase change materials have been identified, fabricated and proven with calorimetry. Two of these materials have been tested in an airflow experiment. A cost analysis for these thermal energy storage systems has also been conducted that met the targets established at the initiation of the project.

  15. Study of thermal management for space platform applications: Unmanned modular thermal management and radiator technologies

    NASA Technical Reports Server (NTRS)

    Oren, J. A.

    1981-01-01

    Candidate techniques for thermal management of unmanned modules docked to a large 250 kW platform were evaluated. Both automatically deployed and space constructed radiator systems were studied to identify characteristics and potential problems. Radiator coating requirements and current state-of-the-art were identified. An assessment of the technology needs was made and advancements were recommended.

  16. First responder thermal imaging cameras: establishment of representative performance testing conditions

    NASA Astrophysics Data System (ADS)

    Amon, Francine; Hamins, Anthony; Rowe, Justin

    2006-04-01

    Thermal imaging cameras are rapidly becoming integral equipment for first responders for use in structure fires and other emergencies. Currently there are no standardized performance metrics or test methods available to the users and manufacturers of these instruments. The Building and Fire Research Laboratory (BFRL) at the National Institute of Standards and Technology is conducting research to establish test conditions that best represent the environment in which these cameras are used. First responders may use thermal imagers for field operations ranging from fire attack and search/rescue in burning structures, to hot spot detection in overhaul activities, to detecting the location of hazardous materials. In order to develop standardized performance metrics and test methods that capture the harsh environment in which these cameras may be used, information has been collected from the literature, and from full-scale tests that have been conducted at BFRL. Initial experimental work has focused on temperature extremes and the presence of obscuring media such as smoke. In full-scale tests, thermal imagers viewed a target through smoke, dust, and steam, with and without flames in the field of view. The fuels tested were hydrocarbons (methanol, heptane, propylene, toluene), wood, upholstered cushions, and carpeting with padding. Gas temperatures, CO, CO II, and O II volume fraction, emission spectra, and smoke concentrations were measured. Simple thermal bar targets and a heated mannequin fitted in firefighter gear were used as targets. The imagers were placed at three distances from the targets, ranging from 3 m to 12 m.

  17. Evaluation Framework and Analyses for Thermal Energy Storage Integrated with Packaged Air Conditioning

    SciTech Connect

    Kung, F.; Deru, M.; Bonnema, E.

    2013-10-01

    Few third-party guidance documents or tools are available for evaluating thermal energy storage (TES) integrated with packaged air conditioning (AC), as this type of TES is relatively new compared to TES integrated with chillers or hot water systems. To address this gap, researchers at the National Renewable Energy Laboratory conducted a project to improve the ability of potential technology adopters to evaluate TES technologies. Major project outcomes included: development of an evaluation framework to describe key metrics, methodologies, and issues to consider when assessing the performance of TES systems integrated with packaged AC; application of multiple concepts from the evaluation framework to analyze performance data from four demonstration sites; and production of a new simulation capability that enables modeling of TES integrated with packaged AC in EnergyPlus. This report includes the evaluation framework and analysis results from the project.

  18. Dish concentrators for solar thermal energy: Status and technology development

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.

    1982-01-01

    Point-focusing concentrators under consideration for solar thermal energy use are reviewed. These concentrators differ in such characteristics as optical configuration, optical materials, structure for support of the optical elements and of the receiver, mount, foundation, drive, controls and enclosure. Concentrator performance and cost are considered. Technology development is outlined, including wind loads and aerodynamics; precipitation, sand, and seismic considerations; and maintenance and cleaning.

  19. Advanced Mirror Technology Development (AMTD) Thermal Trade Studies

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas

    2015-01-01

    Advanced Mirror Technology Development (AMTD) is being done at Marshall Space Flight Center (MSFC) in preparation for the next large aperture UVOIR space observatory. A key science mission of that observatory is the detection and characterization of 'Earth-like' exoplanets. Direct exoplanet observation requires a telescope to see a planet which will be 10(exp -10) times dimmer than its host star. To accomplish this using an internal coronagraph requires a telescope with an ultra-stable wavefront error (WFE). This paper investigates parametric relationships between primary mirror physical parameters and thermal WFE stability. Candidate mirrors are designed as a mesh and placed into a thermal analysis model to determine the temperature distribution in the mirror when it is placed inside of an actively controlled cylindrical shroud at Lagrange point 2. Thermal strains resulting from the temperature distribution are found and an estimation of WFE is found to characterize the effect that thermal inputs have on the optical quality of the mirror. This process is repeated for several mirror material properties, material types, and mirror designs to determine how to design a mirror for thermal stability.

  20. Development of Passive Fuel Cell Thermal Management Technology

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.; Jakupca, Ian; Colozza, Anthony

    2011-01-01

    The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA exploration program. The passive thermal management system relies on heat conduction within the cooling plate to move the heat from the central portion of the cell stack out to the edges of the fuel cell stack rather than using a pumped loop cooling system to convectively remove the heat. Using the passive approach eliminates the need for a coolant pump and other cooling loop components which reduces fuel cell system mass and improves overall system reliability. Previous analysis had identified that low density, ultra-high thermal conductivity materials would be needed for the cooling plates in order to achieve the desired reductions in mass and the highly uniform thermal heat sink for each cell within a fuel cell stack. A pyrolytic graphite material was identified and fabricated into a thin plate using different methods. Also a development project with Thermacore, Inc. resulted in a planar heat pipe. Thermal conductivity tests were done using these materials. The results indicated that lightweight passive fuel cell cooling is feasible.

  1. Prospects for using the technology of circulating fluidized bed for technically refitting Russian thermal power stations

    NASA Astrophysics Data System (ADS)

    Ryabov, G. A.; Folomeev, O. M.; Litun, D. S.; Sankin, D. A.; Dmitryukova, I. G.

    2009-01-01

    The present state and development of circulating fluidized bed (CFB) technology around the world are briefly reviewed. Questions of increasing the capacity of single boiler units and raising the parameters of steam are discussed. CFB boilers for 225- and 330-MW power units are described and their parameters are estimated as applied to the conditions of firing different Russian fuels. Indicators characterizing CFB boilers and pulverized-coal boilers are given. Capital outlays and operational costs for new coal-fired units are compared, and the results from this comparison are used to show the field of the most promising use of the CFB technology during technical refitting of Russian thermal power stations.

  2. A Study on Zoning Regulations' Impact on Thermal Comfort Conditions in Non-conditioned Apartment Buildings in Dhaka City 

    E-print Network

    Islam, Saiful

    2012-02-14

    neighborhoods, both of which demands ample open space. However, due to land scarcity and high population density, building developments lack open spaces and that results in unfavorable thermal comfort conditions in apartment buildings. Dhaka?s previous zoning...

  3. Solar parabolic dish thermal power systems - Technology and applications

    NASA Technical Reports Server (NTRS)

    Lucas, J. W.; Marriott, A. T.

    1979-01-01

    Activities of two projects at JPL in support of DOE's Small Power Systems Program are reported. These two projects are the Point-Focusing Distributed Receiver (PFDR) Technology Project and the Point-Focusing Thermal and Electric Applications (PFTEA) Project. The PFDR Technology Project's major activity is developing the technology of solar concentrators, receivers and power conversion subsystems suitable for parabolic dish or point-focusing distributed receiver power systems. Other PFDR activities include system integration and cost estimation under mass production, as well as the testing of the hardware. The PFTEA Project's first major activity is applications analysis, that is seeking ways to introduce PFDR systems into appropriate user sectors. The second activity is systems engineering and development wherein power plant systems are analyzed for specific applications. The third activity is the installation of a series of engineering experiments in various user environments to obtain actual operating experience

  4. Thermal conductivity measurements of particulate materials under Martian conditions

    NASA Technical Reports Server (NTRS)

    Presley, M. A.; Christensen, P. R.

    1993-01-01

    The mean particle diameter of surficial units on Mars has been approximated by applying thermal inertia determinations from the Mariner 9 Infrared Radiometer and the Viking Infrared Thermal Mapper data together with thermal conductivity measurement. Several studies have used this approximation to characterize surficial units and infer their nature and possible origin. Such interpretations are possible because previous measurements of the thermal conductivity of particulate materials have shown that particle size significantly affects thermal conductivity under martian atmospheric pressures. The transfer of thermal energy due to collisions of gas molecules is the predominant mechanism of thermal conductivity in porous systems for gas pressures above about 0.01 torr. At martian atmospheric pressures the mean free path of the gas molecules becomes greater than the effective distance over which conduction takes place between the particles. Gas particles are then more likely to collide with the solid particles than they are with each other. The average heat transfer distance between particles, which is related to particle size, shape and packing, thus determines how fast heat will flow through a particulate material.The derived one-to-one correspondence of thermal inertia to mean particle diameter implies a certain homogeneity in the materials analyzed. Yet the samples used were often characterized by fairly wide ranges of particle sizes with little information about the possible distribution of sizes within those ranges. Interpretation of thermal inertia data is further limited by the lack of data on other effects on the interparticle spacing relative to particle size, such as particle shape, bimodal or polymodal mixtures of grain sizes and formation of salt cements between grains. To address these limitations and to provide a more comprehensive set of thermal conductivities vs. particle size a linear heat source apparatus, similar to that of Cremers, was assembled to provide a means of measuring the thermal conductivity of particulate samples. In order to concentrate on the dependence of the thermal conductivity on particle size, initial runs will use spherical glass beads that are precision sieved into relatively small size ranges and thoroughly washed.

  5. Production of pig iron from red mud waste fines using thermal plasma technology

    NASA Astrophysics Data System (ADS)

    Jayasankar, K.; Ray, P. K.; Chaubey, A. K.; Padhi, A.; Satapathy, B. K.; Mukherjee, P. S.

    2012-08-01

    Red mud, an insoluble residue produced during alkali leaching of bauxite, is considered as a low-grade iron ore containing 30% to 50% iron. The present paper deals with the use of thermal plasma technology for producing pig iron from red mud waste fines. The smelting reduction of red mud was carried out in a 35 kW DC extended arc thermal plasma reactor. Red mud was properly mixed with fluxes and graphite (fixed carbon, 99%) as a reductant as per stoichiometric requirement. The effect of various process parameters like a reductant, fluxes and smelting time on iron recovery was studied and optimized. An optimum condition for the maximum recovery of iron was obtained. A new thermal plasma process applicable to direct iron making from red mud waste fines that would achieve significant utilization of red mud was proposed.

  6. Gaseous and particulate emissions from thermal power plants operating on different technologies.

    PubMed

    Athar, Makshoof; Ali, Mahboob; Khan, Misbahul Ain

    2010-07-01

    This paper presents the assessment of gaseous and particulate emissions from thermal power plants operating on different combustion technologies. Four thermal power plants operating on heavy furnace oil were selected for the study, among which three were based on diesel engine technology, while the fourth plant was based on oil-fired steam turbine technology. The stack emissions were monitored for critical air pollutants carbon monoxide, carbon dioxide, oxides of nitrogen, sulfur dioxide, particulate matter, lead, and mercury. The pollutant emissions were measured at optimum load conditions for a period of 6 months with an interval of 1 month. The results of stack emissions were compared with National Environmental Quality Standards of Pakistan and World Bank guidelines for thermal power plants, and few parameters were found higher than the permissible limits of emissions. It was observed that the emissions carbon monoxide, oxides of nitrogen, and particulate matters from diesel engine-based power plants were comparatively higher than the turbine-based power plants. The emissions of sulfur dioxide were high in all the plants, even the plants with different technologies, which was mainly due to high sulfur contents in fuel. PMID:19533397

  7. Condition Assessment Technologies for Water Transmission and Distribution Systems

    EPA Science Inventory

    As part of the U.S. Environmental Protection Agency’s (EPA’s) Aging Water Infrastructure Research Program, this research was conducted to identify and characterize the state of the technology for structural condition assessment of drinking water transmission and distribution syst...

  8. NASA-EPA automotive thermal reactor technology program

    NASA Technical Reports Server (NTRS)

    Blankenship, C. P.; Hibbard, R. R.

    1972-01-01

    The status of the NASA-EPA automotive thermal reactor technology program is summarized. This program is concerned primarily with materials evaluation, reactor design, and combustion kinetics. From engine dynamometer tests of candidate metals and coatings, two ferritic iron alloys (GE 1541 and Armco 18-SR) and a nickel-base alloy (Inconel 601) offer promise for reactor use. None of the coatings evaluated warrant further consideration. Development studies on a ceramic thermal reactor appear promising based on initial vehicle road tests. A chemical kinetic study has shown that gas temperatures of at least 900 K to 1000 K are required for the effective cleanup of carbon monoxide and hydrocarbons, but that higher temperatures require shorter combustion times and thus may permit smaller reactors.

  9. High temperature solar thermal technology: The North Africa Market

    SciTech Connect

    Not Available

    1990-12-01

    High temperature solar thermal (HTST) technology offers an attractive option for both industrialized and non-industrialized countries to generate electricity and industrial process steam. The purpose of this report is to assess the potential market for solar thermal applications in the North African countries of Algeria, Egypt, Morocco and Tunisia. North Africa was selected because of its outstanding solar resource base and the variety of applications to be found there. Diminishing oil and gas resources, coupled with expanding energy needs, opens a large potential market for the US industry. The US high temperature solar trough industry has little competition globally and could build a large market in these areas. The US is already familiar with certain solar markets in North Africa due to the supplying of substantial quantities of US-manufactured flat plate collectors to this region.

  10. Thermal Protection Materials Technology for NASA's Exploration Systems Mission Directorate

    NASA Technical Reports Server (NTRS)

    Valentine, Peter G.; Lawerence, Timtohy W.; Gubert, Michael K.; Flynn, Kevin C.; Milos, Frank S.; Kiser, James D.; Ohlhorst, Craig W.; Koenig, John R.

    2005-01-01

    To fulfill the President s Vision for Space Exploration - successful human and robotic missions between the Earth and other solar system bodies in order to explore their atmospheres and surfaces - NASA must reduce trip time, cost, and vehicle weight so that payload and scientific experiment capabilities are maximized. As a collaboration among NASA Centers, this project will generate products that will enable greater fidelity in mission/vehicle design trade studies, support risk reduction for material selections, assist in optimization of vehicle weights, and provide the material and process templates for development of human-rated qualification and certification Thermal Protection System (TPS) plans. Missions performing aerocapture, aerobraking, or direct aeroentry rely on technologies that reduce vehicle weight by minimizing the need for propellant. These missions use the destination planet s atmosphere to slow the spacecraft. Such mission profiles induce heating environments on the spacecraft that demand thermal protection heatshields. This program offers NASA essential advanced thermal management technologies needed to develop new lightweight nonmetallic TPS materials for critical thermal protection heatshields for future spacecraft. Discussion of this new program (a December 2004 new start) will include both initial progress made and a presentation of the work to be preformed over the four-year life of the program. Additionally, the relevant missions and environments expected for Exploration Systems vehicles will be presented, along with discussion of the candidate materials to be considered and of the types of testing to be performed (material property tests, space environmental effects tests, and Earth and Mars gases arc jet tests).

  11. Numerical modeling of physical vapor transport under microgravity conditions: Effect of thermal creep and stress

    NASA Technical Reports Server (NTRS)

    Mackowski, Daniel W.; Knight, Roy W.

    1993-01-01

    One of the most promising applications of microgravity (micro-g) environments is the manufacture of exotic and high-quality crystals in closed cylindrical ampoules using physical vapor transport (PVT) processes. The quality enhancements are believed to be due to the absence of buoyant convection in the weightless environment - resulting in diffusion-limited transport of the vapor. In a typical experiment, solid-phase sample material is initially contained at one end of the ampoule. The sample is made to sublime into the vapor phase and deposit onto the opposite end by maintaining the source at an elevated temperature with respect to the deposit. Identification of the physical factors governing both the rates and uniformity of crystal growth, and the optimization of the micro-g technology, will require an accurate modeling of the vapor transport within the ampoule. Previous micro-g modeling efforts have approached the problem from a 'classical' convective/diffusion formulation, in which convection is driven by the action of buoyancy on thermal and solutal density differences. The general conclusion of these works have been that in low gravity environments the effect of buoyancy on vapor transport is negligible, and vapor transport occurs in a diffusion-limited mode. However, it has been recently recognized than in the non-isothermal (and often low total pressure) conditions encountered in ampoules, the commonly-assumed no-slip boundary condition to the differential equations governing fluid motion can be grossly unrepresentative of the actual situation. Specifically, the temperature gradients can give rise to thermal creep flows at the ampoule side walls. In addition, temperature gradients in the vapor itself can, through the action of thermal stress, lead to bulk fluid convection.

  12. Cryogenic Fluid Management Technology Development for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Taylor, Brian; Caffrey, Jarvis; Hedayat, Ali; Stephens, Jonathan; Polsgrove, Robert

    2015-01-01

    The purpose of this paper is to investigate, facilitate a discussion and determine a path forward for technology development of cryogenic fluid management technology that is necessary for long duration deep space missions utilizing nuclear thermal propulsion systems. There are a number of challenges in managing cryogenic liquids that must be addressed before long durations missions into deep space, such as a trip to Mars can be successful. The leakage rate of hydrogen from pressure vessels, seals, lines and valves is a critical factor that must be controlled and minimized. For long duration missions, hydrogen leakage amounts to large increases in hydrogen and therefore vehicle mass. The size of a deep space vehicle, such as a mars transfer vehicle, must be kept small to control cost and the logistics of a multi launch, assembled in orbit vehicle. The boil off control of the cryogenic fluid is an additional obstacle to long duration missions. The boil off caused by heat absorption results in the growth of the propellant needs of the vehicle and therefore vehicle mass. This is a significant problem for a vehicle using nuclear (fission) propulsion systems. Radiation from the engines deposits large quantities of heat into the cryogenic fluid, greatly increasing boil off beyond that caused by environmental heat leakage. Addressing and resolving these challenges is critical to successful long duration space exploration. This paper discusses the state of the technology needed to address these challenges and discuss the path forward needed in technology development.

  13. ABIOTIC DEGRADATION OF TRICHLOROETHYLENE UNDER THERMAL REMEDIATION CONDITIONS

    EPA Science Inventory

    The degradation of TCE (C2HCl3) to carbon dioxide (CO2) and chloride (Cl-) has been reported to occur during thermal remediation of subsurface environments. The overall goal of this study was to evaluate abiotic degradation of TCE at el...

  14. Evaluation of airborne thermal, magnetic, and electromagnetic characterization technologies

    SciTech Connect

    Josten, N.E.

    1992-03-01

    The identification of Buried Structures (IBS) or Aerial Surveillance Project was initiated by the US Department of Energy (DOE) Office of Technology Development to demonstrate airborne methods for locating and identifying buried waste and ordnance at the Idaho National Engineering Laboratory (INEL). Two technologies were demonstrated: (a) a thermal infrared imaging system built by Martin Marietta Missile Systems and (b) a magnetic and electromagnetic (EM) geophysical surveying system operated by EBASCO Environmental. The thermal system detects small differences in ground temperature caused by uneven heating and cooling of the ground by the sun. Waste materials on the ground can be detected when the temperature of the waste is different than the background temperature. The geophysical system uses conventional magnetic and EM sensors. These sensors detect disturbances caused by magnetic or conductive waste and naturally occurring magnetic or conductive features of subsurface soils and rock. Both systems are deployed by helicopter. Data were collected at four INEL sites. Tests at the Naval Ordnance Disposal Area (NODA) were made to evaluate capabilities for detecting ordnance on the ground surface. Tests at the Cold Simulated Waste Demonstration Pit were made to evaluate capabilities for detecting buried waste at a controlled site, where the location and depth of buried materials are known. Tests at the Subsurface Disposal Area and Stationary Low-Power Reactor-1 burial area were made to evaluate capabilities for characterizing hazardous waste at sites that are typical of DOE buried waste sites nationwide.

  15. Mercury emissions control technologies for mixed waste thermal treatment

    SciTech Connect

    Chambers, A.; Knecht, M.; Soelberg, N.; Eaton, D.; Roberts, D.; Broderick, T.

    1997-12-31

    EPA has identified wet scrubbing at low mercury feedrates, as well as carbon adsorption via carbon injection into the offgas or via flow through fixed carbon beds, as control technologies that can be used to meet the proposed Maximum Achievable Control Technology (MACT) rule limit for mercury emissions from hazardous waste incinerators. DOE is currently funding demonstrations of gold amalgamation that may also control mercury to the desired levels. Performance data from a variety of sources was reviewed to determine ranges of achievable mercury control. Preliminary costs were estimated for using these technologies to control mercury emissions from mixed waste incineration. Mercury emissions control for mixed waste incineration may need to be more efficient than for incineration of other hazardous wastes because of higher mercury concentrations in some mixed waste streams. However, mercury control performance data for wet scrubbing and carbon adsorption is highly variable. More information is needed to demonstrate control efficiencies that are achievable under various design and operating conditions for wet scrubbing, carbon adsorption, and gold amalgamation technologies. Given certain assumptions made in this study, capital costs, operating costs, and lifecycle costs for carbon injection, carbon beds, and gold amalgamation generally vary for different assumed mercury feedrates and for different offgas flowrates. Assuming that these technologies can in fact provide the necessary mercury control performance, each of these technologies may be less costly than the others for certain mercury feedrates and the offgas flowrates.

  16. Thermal test results of the two-phase thermal bus technology demonstration loop

    NASA Technical Reports Server (NTRS)

    Edelstein, Fred; Liandris, Maria; Rankin, J. Gary

    1987-01-01

    A two-phase heat transport system, the Thermal Bus Technology Demonstrator, has been built and tested for NASA Johnson Space Center for application on Space Station. The loop is a separated two-phase system that uses evaporator flow control valves and liquid condenser flooding to achieve temperature control. Both ambient and thermal vacuum tests have been completed in NASA's Chamber A, initially using Freon-11 and then ammonia as the working fluid. Overall, the tests were quite successful, with the bus achieving all major test objectives, including operation at 19.5 kW and set points at 35 F (1.7 C), 70 F (21.1 C) and 104 F (40.0 C), load sharing, asymmetrical heating and isothermality around the loop. Low plate to vapor temperature drops were obtained for the monogroove cold plate using ammonia and are indicative of the high evaporative film coefficients obtainable with this design.

  17. Understanding Thermal Characteristics of Materials and Boundary Conditions

    E-print Network

    Colton, Jonathan S.

    is the square root of the product of the thermal conductivity, density and heat capacity. The units are a little for two typical times and impose two different values for the heat transfer coefficient (the value the equivalent heat transfer coefficient value is 1'209 W/m2 K down from an imposed value of 1'500 W/m2 K. When

  18. Thermal Environment for Classrooms. Central System Approach to Air Conditioning.

    ERIC Educational Resources Information Center

    Triechler, Walter W.

    This speech compares the air conditioning requirements of high-rise office buildings with those of large centralized school complexes. A description of one particular air conditioning system provides information about the system's arrangement, functions, performance efficiency, and cost effectiveness. (MLF)

  19. ANALYSIS OF THERMAL DECOMPOSITION PRODUCTS OF FLUE GAS CONDITIONING AGENTS

    EPA Science Inventory

    The report gives results of a study of reactions of several flue gas conditioning agents in a laboratory-scale facility simulating conditions in the flue gas train of a coal-burning power plant. Primary purposes of the study were to characterize the chemical species resulting fro...

  20. Structure of cadmium selen-telluride alloy films grown by the thermal-screen method under highly nonequilibrium conditions

    SciTech Connect

    Belyaev, A. P. Rubets, V. P.; Antipov, V. V.; Toshkhodzhaev, Kh. A.

    2009-06-15

    The results of technological experiments and structural investigations of films of CdSe{sub x}Te{sub 1-x} alloys synthesized by the thermal-screen method on heated and cooled substrates (under highly nonequilibrium conditions) are presented. It is shown that the synthesis of the entire range of compositions of alloy films with the structure from epitaxial to amorphous is possible from the mechanical mixture of CdSe and CdTe powders of the same composition under highly nonequilibrium conditions. The electron diffraction patterns and the microphotographs of film surfaces are reported.

  1. Balanced Flow Metering and Conditioning: Technology for Fluid Systems

    NASA Technical Reports Server (NTRS)

    Kelley, Anthony R.

    2006-01-01

    Revolutionary new technology that creates balanced conditions across the face of a multi-hole orifice plate has been developed, patented and exclusively licensed for commercialization. This balanced flow technology simultaneously measures mass flow rate, volumetric flow rate, and fluid density with little or no straight pipe run requirements. Initially, the balanced plate was a drop in replacement for a traditional orifice plate, but testing revealed substantially better performance as compared to the orifice plate such as, 10 times better accuracy, 2 times faster (shorter distance) pressure recovery, 15 times less acoustic noise energy generation, and 2.5 times less permanent pressure loss. During 2004 testing at MSFC, testing revealed several configurations of the balanced flow meter that match the accuracy of Venturi meters while having only slightly more permanent pressure loss. However, the balanced meter only requires a 0.25 inch plate and has no upstream or downstream straight pipe requirements. As a fluid conditioning device, the fluid usually reaches fully developed flow within 1 pipe diameter of the balanced conditioning plate. This paper will describe the basic balanced flow metering technology, provide performance details generated by testing to date and provide implementation details along with calculations required for differing degrees of flow metering accuracy.

  2. Improving Glass Walls Thermal Resistance In Air-Conditioned Buildings 

    E-print Network

    Galal, T.; Kulaib, A. M.; Alajmi, R.; Al-Ansary. A; Abuzaid, M.

    2010-01-01

    The solar radiation through an air conditioned building depends on what is called the building envelope. Building envelope consists of the surfaces that separate the inside from the building outdoors. Area, direction, and specifications of glass...

  3. Thermal requirement of indian mustard (Brassica juncea) at different phonological stages under late sown condition.

    PubMed

    Singh, Manoj Pratap; Lallu; Singh, N B

    2014-01-01

    Indian mustard [Brassica juncea (L.) Czern & Coss.] is a long day plant, which requires fairly cool climatic condition during growth and development for obtaining better seed yield. Various workers have correlated crop growth and development with energy requirement parameters, such as growing degree days (GDD), photo-thermal unit (PTU), helios thermal unit (HTU), photo-thermal index (PTI) and heat use efficiency (HUE). Therefore, GDD requirement for different phenological stages of 22 newly developed Indian mustard varieties was studies during winter (rabi) seasons of 2009-10 and 2010-11 at student instructional farm of C.S. Azad University of Agriculture and Technology, Kanpur, (Utter Pradesh). Study revealed that RH-8814, NRCDR-02 and BPR-549-9 recorded higher GDD (1703.0, 1662.9 and 1648.0), PTU (19129.8, 18694.2 and 18379.8), HTU (11397.7, 11072.2 and 10876.0), PTI (13.25, 13.14 and 13.08) and HUE (4.11, 3.84 and 3.71) at physiological maturity, while higher HUE was recorded (9.62, 8.99 and 8.91 kg ha(-1) degrees-day) at days after sowing (DAS) to 50 % flowering. On the basis of study mustard genotypes RH-8814, NRCDR-02 and BPR-549-9 were identified as most heat-tolerant, as they maintained higher values for energy related parameters. Seed yield was highly positively correlated with GDD (r = 0.61, 0.65 and 0.75), PTU (r = 0.66, 0.64 and 0.74), HTU(r = 0.79, 0.68 and 0.73) at the above these three phenological stages, while negatively correlated with PTI at anthesis and at maturity. Hence, these parents could be used in crossing programme for achieving further improvement. PMID:25242823

  4. Leakage Diagnostics, Sealant Longevity, Sizing and Technology Transfer in Residential Thermal

    E-print Network

    1 Leakage Diagnostics, Sealant Longevity, Sizing and Technology Transfer in Residential Thermal...................................................................................................... 11 2. DUCT SEALANTS AND LONGEVITY TESTING............................................................................................................................................... 11 LONGEVITY TESTING APPARATUS

  5. Advanced Mirror Technology Development (AMTD) Thermal Trade Studies

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas; Stahl, Phil; Arnold, Bill

    2015-01-01

    Advanced Mirror Technology Development (AMTD) is being done at Marshall Space Flight Center (MSFC) in preparation for the next Ultraviolet, Optical, Infrared (UVOIR) space observatory. A likely science mission of that observatory is the detection and characterization of 'Earth-like' exoplanets. Direct exoplanet observation requires a telescope to see a planet that is 10-10 times dimmer than its host star. To accomplish this using an internal coronagraph requires a telescope with an ultra-stable wavefront. This paper investigates two topics: 1) parametric relationships between a primary mirror's thermal parameters and wavefront stability, and 2) optimal temperature profiles in the telescope's shroud and heater plate that minimize static wavefront error (WFE) in the primary mirror.

  6. Status of reusable surface insulation thermal protection system technology programs

    NASA Technical Reports Server (NTRS)

    Greenshields, D. H.; Meyer, A. J.; Tillian, D. J.

    1972-01-01

    The development of three low-density rigidized insulation materials for the shuttle TPS application is reported. These materials consist of one high purity silica system and two systems based on mullite, an aluminum silicate. Both systems consist of fibers joined together with appropriate binders to obtain a rigidized insulation composite. Both material systems require the application of a glassy coating to provide a wear resistant, high emittance surface and to prevent the absorption of water by the fiber matrix. The technology program has addressed the development of water impervious coatings, methods of assembling the materials in design concepts while minimizing the thermal stress in the insulation, achieving compatibility between the RSI material and the structural system, and test evaluations to demonstrate the feasibility of the surface insulation concept.

  7. Advanced Mirror Technology Development (AMTD) thermal trade studies

    NASA Astrophysics Data System (ADS)

    Brooks, Thomas; Stahl, H. P.; Arnold, William R.

    2015-09-01

    Advanced Mirror Technology Development (AMTD) is being done at Marshall Space Flight Center (MSFC) in preparation for the next Ultraviolet, Optical, Infrared (UVOIR) space observatory. A likely science mission of that observatory is the detection and characterization of `Earth-like' exoplanets. Direct exoplanet observation requires a telescope to see a planet that is 10-10 times dimmer than its host star. To accomplish this using an internal coronagraph requires a telescope with an ultra-stable wavefront. This paper investigates two topics: 1) parametric relationships between a primary mirror's thermal parameters and wavefront stability, and 2) optimal temperature profiles in the telescope's shroud and heater plate that minimize static wavefront error (WFE) in the primary mirror.

  8. Dish concentrators for solar thermal energy - Status and technology development

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.

    1981-01-01

    Comparisons are presented of point-focusing, or 'dish' solar concentrator system features, development status, and performance levels demonstrated to date. In addition to the requirements of good optical efficiency and high geometric concentration ratios, the most important future consideration in solar thermal energy dish concentrator design will be the reduction of installed and lifetime costs, as well as the materials and labor costs of production. It is determined that technology development initiatives are needed in such areas as optical materials, design wind speeds and wind loads, structural configuration and materials resistance to prolonged exposure, and the maintenance of optical surfaces. The testing of complete concentrator systems, with energy-converting receivers and controls, is also necessary. Both reflector and Fresnel lens concentrator systems are considered.

  9. Mechanical and thermal buckling analysis of rectangular sandwich panels under different edge conditions

    NASA Technical Reports Server (NTRS)

    Ko, William L.

    1994-01-01

    The combined load (mechanical or thermal load) buckling equations were established for orthotropic rectangular sandwich panels under four different edge conditions by using the Rayleigh-Ritz method of minimizing the total potential energy of a structural system. Two-dimensional buckling interaction curves and three-dimensional buckling interaction surfaces were constructed for high-temperature honeycomb-core sandwich panels supported under four different edge conditions. The interaction surfaces provide overall comparison of the panel buckling strengths and the domains of symmetrical and antisymmetrical buckling associated with the different edge conditions. In addition, thermal buckling curves of these sandwich panels are presented. The thermal buckling conditions for the cases with and without thermal moments were found to be identical for the small deformation theory.

  10. Cellulose nanowhiskers from coconut husk fibers: effect of preparation conditions on their thermal and morphological behavior

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cellulose nanowhiskers were prepared by sulfuric acid hydrolysis from coconut husk fibers which had previously been submitted to a delignification process. The effects of preparation conditions on the thermal and morphological behavior of the nanocrystals were investigated. Cellulose nanowhisker sus...

  11. On the thermal boundary condition of the wave function of the Universe

    E-print Network

    Mariam Bouhmadi-Lopez; Paulo Vargas Moniz

    2007-01-12

    We broaden the domain of application of the recently proposed thermal boundary condition of the wave function of the Universe, which has been suggested as the basis of a dynamical selection principle on the landscape of string solutions.

  12. Long-term performance and cost goals for solar thermal technology

    NASA Astrophysics Data System (ADS)

    Williams, T. A.

    1985-04-01

    Long term performance and cost goals recently developed for the solar thermal technology are described. These goals were developed in support of the draft 1985 to 1989 National Solar Thermal Technology Program Five Year Research and Development Plan, and are intended to aid in planning research activities needed to make solar thermal energy an option which is both technically and economically attractive (DOE 1984). Goals were developed for both utility electric applications and for industrial process heat applications. Solar thermal technology goals are intended to provide targets, which when met, would result in the widespread usage of solar thermal technologies in the marketplace. The goals described include system goals and component goals. System goals are energy price targets which must be met for solar thermal to be economically viable in a given market. Component goals are performance and cost targets for the primary elements of a solar thermal plant (concentrators, receivers, etc.) which would allow achievement of the system level goal.

  13. Alkali Metal Thermal to Electric Converter (AMTEC) Technology Development for Potential Deep Space Scientific Missions

    NASA Technical Reports Server (NTRS)

    Mondt, J.; Sievers, R.

    1998-01-01

    This paper describes the alkali metal thermal to electric converter (AMTEC) technology development effort over the past year. The vapor-vapor AMTEC cell technology is being developed for use with either a solar or nuclear heat sources for space.

  14. Free vibrations of thermally stressed orthotropic plates with various boundary conditions

    NASA Technical Reports Server (NTRS)

    Bailey, C. D.; Greetham, J. C.

    1973-01-01

    An analytical investigation of the vibrations of thermally stressed orthotropic plates in the prebuckled region is presented. The investigation covers the broad class of trapezoidal plates with two opposite sides parallel. Each edge of the plate may be subjected to different uniform boundary conditions. variable thickness and arbitrary temperature distributions (analytical or experimental) for any desired combination of boundary conditions may be prescribed. Results obtained using this analysis are compared to experimental results obtained for isotropic plates with thermal stress, and to results contained in the literature for orthotropic plates without thermal stress. Good agreement exists for both sets of comparisons.

  15. Status of utility-interactive photovoltaic power conditioning technology

    NASA Technical Reports Server (NTRS)

    Key, T. S.; Krauthamer, S.

    1985-01-01

    Design options for utility-interactive photovoltaic power conditioning technology for unit ratings from 2kW to 5 MW are compared. Line- and self-commutated inverter designs for both single and three-phase applications are described. Efficiency, weight, and cost projections are provided for comparing the design options. New circuit designs that take advantage of advances in power semiconductor devices are found to be the most promising. Hardware efficiencies from 95 percent for single phase to 98 percent for three-phase applications are found.

  16. High Technology Centrifugal Compressor for Commercial Air Conditioning Systems

    SciTech Connect

    Ruckes, John

    2006-04-15

    R&D Dynamics, Bloomfield, CT in partnership with the State of Connecticut has been developing a high technology, oil-free, energy-efficient centrifugal compressor called CENVA for commercial air conditioning systems under a program funded by the US Department of Energy. The CENVA compressor applies the foil bearing technology used in all modern aircraft, civil and military, air conditioning systems. The CENVA compressor will enhance the efficiency of water and air cooled chillers, packaged roof top units, and other air conditioning systems by providing an 18% reduction in energy consumption in the unit capacity range of 25 to 350 tons of refrigeration The technical approach for CENVA involved the design and development of a high-speed, oil-free foil gas bearing-supported two-stage centrifugal compressor, CENVA encompassed the following high technologies, which are not currently utilized in commercial air conditioning systems: Foil gas bearings operating in HFC-134a; Efficient centrifugal impellers and diffusers; High speed motors and drives; and System integration of above technologies. Extensive design, development and testing efforts were carried out. Significant accomplishments achieved under this program are: (1) A total of 26 builds and over 200 tests were successfully completed with successively improved designs; (2) Use of foil gas bearings in refrigerant R134a was successfully proven; (3) A high speed, high power permanent magnet motor was developed; (4) An encoder was used for signal feedback between motor and controller. Due to temperature limitations of the encoder, the compressor could not operate at higher speed and in turn at higher pressure. In order to alleviate this problem a unique sensorless controller was developed; (5) This controller has successfully been tested as stand alone; however, it has not yet been integrated and tested as a system; (6) The compressor successfully operated at water cooled condensing temperatures Due to temperature limitations of the encoder, it could not be operated at air cooled condensing temperatures. (7) The two-stage impellers/diffusers worked well separately but combined did not match well.

  17. Energy efficient engine, high pressure turbine thermal barrier coating. Support technology report

    NASA Technical Reports Server (NTRS)

    Duderstadt, E. C.; Agarwal, P.

    1983-01-01

    This report describes the work performed on a thermal barrier coating support technology task of the Energy Efficient Engine Component Development Program. A thermal barrier coating (TBC) system consisting of a Ni-Cr-Al-Y bond cost layer and ZrO2-Y2O3 ceramic layer was selected from eight candidate coating systems on the basis of laboratory tests. The selection was based on coating microstructure, crystallographic phase composition, tensile bond and bend test results, erosion and impact test results, furnace exposure, thermal cycle, and high velocity dynamic oxidation test results. Procedures were developed for applying the selected TBC to CF6-50, high pressure turbine blades and vanes. Coated HPT components were tested in three kinds of tests. Stage 1 blades were tested in a cascade cyclic test rig, Stage 2 blades were component high cycle fatigue tested to qualify thermal barrier coated blades for engine testing, and Stage 2 blades and Stage 1 and 2 vanes were run in factory engine tests. After completion of the 1000 cycle engine test, the TBC on the blades was in excellent condition over all of the platform and airfoil except at the leading edge above midspan on the suction side of the airfoil. The coating damage appeared to be caused by particle impingement; adjacent blades without TBC also showed evidence of particle impingement.

  18. Lipid-derived aldehyde degradation under thermal conditions.

    PubMed

    Zamora, Rosario; Navarro, José L; Aguilar, Isabel; Hidalgo, Francisco J

    2015-05-01

    Nucleophilic degradation produced by reactive carbonyls plays a major role in food quality and safety. Nevertheless, these reactions are complex because reactive carbonyls are usually involved in various competitive reactions. This study describes the thermal degradation of 2-alkenals (2-pentenal and 2-octenal) and 2,4-alkadienals (2,4-heptadienal and 2,4-decadienal) in an attempt to both clarify the stability of aldehydes and determine new compounds that might also play a role in nucleophile/aldehyde reactions. The obtained results showed that alkenals and alkadienals decomposed rapidly in the presence of buffer and air to produce formaldehyde, acetaldehyde, and the aldehydes corresponding to the breakage of the carboncarbon double bonds: propanal, hexanal, 2-pentenal, 2-octenal, glyoxal, and fumaraldehyde. The activation energy of double bond breakage was relatively low (? 25 kJ/mol) and the yield of alkanals (10-18%) was higher than that of 2-alkenals (? 1%). All these results indicate that these reactions should be considered in order to fully understand the range of nucleophile/aldehyde adducts produced. PMID:25529656

  19. Comparative Experimental Study of Fixed Temperature and Fixed Heat Flux Boundary Conditions in Turbulent Thermal Convection.

    PubMed

    Huang, Shi-Di; Wang, Fei; Xi, Heng-Dong; Xia, Ke-Qing

    2015-10-01

    We report the first experimental study of the influences of the thermal boundary condition on turbulent thermal convection. Two configurations were examined: one had a constant heat flux at the bottom boundary and a constant temperature at the top (CFCT cell); the other had constant temperatures at both boundaries (CTCT cell). In addition to producing different temperature stability in the boundary layers, the differences in the boundary condition lead to rather unexpected changes in the flow dynamics. It is found that, surprisingly, reversals of the large-scale circulation occur more frequently in the CTCT cell than in the CFCT cell, despite the fact that in the former its flow strength is on average 9% larger than that in the latter. Our results not only show which aspects of the thermal boundary condition are important in thermal turbulence, but also reveal that, counterintuitively, the stability of the flow is not directly coupled to its strength. PMID:26550726

  20. Comparative Experimental Study of Fixed Temperature and Fixed Heat Flux Boundary Conditions in Turbulent Thermal Convection

    NASA Astrophysics Data System (ADS)

    Huang, Shi-Di; Wang, Fei; Xi, Heng-Dong; Xia, Ke-Qing

    2015-10-01

    We report the first experimental study of the influences of the thermal boundary condition on turbulent thermal convection. Two configurations were examined: one had a constant heat flux at the bottom boundary and a constant temperature at the top (CFCT cell); the other had constant temperatures at both boundaries (CTCT cell). In addition to producing different temperature stability in the boundary layers, the differences in the boundary condition lead to rather unexpected changes in the flow dynamics. It is found that, surprisingly, reversals of the large-scale circulation occur more frequently in the CTCT cell than in the CFCT cell, despite the fact that in the former its flow strength is on average 9% larger than that in the latter. Our results not only show which aspects of the thermal boundary condition are important in thermal turbulence, but also reveal that, counterintuitively, the stability of the flow is not directly coupled to its strength.

  1. A technical and economic evaluation of thermal spallation drilling technology

    SciTech Connect

    1984-07-10

    Thermal spallation of rock may be defined as a type of progressive rock failure caused by the creation of thermal stresses induced by a sudden application of heat from a high temperature source. This technology is applicable to only certain types of hard rock, such as dolomite, taconite, and granite. In 1981 and 1982, the deepest holes ever drilled by this process were drilled in granite to depths of 1086 feet and 425 feet respectively. Penetration rates at the bottom of the deeper hole reached a maximum of 100 ft/hr. Because of these high rates, considerable interest was generated concerning the use of this technology for the drilling of deep holes. Based on this interest, this study was undertaken to evaluate the technical and economic aspects of the technology in general. This methodology has been used for blasthole drilling, the cutting of chambers at the bottom of drilled holes, and the cutting of narrow grooves in rock. However, because of the very high temperatures generated by the flame jet and the application of the technology to only certain types of rock, other areas of use have been very limited. In this report, evaluation of the technology was performed by conceptually designing and costing a theoretical flame jet drilling rig. The design process reviews a number of different concepts of the various components needed, and then chooses those pieces of equipment that best suit the needs of the system and have the best chance of being properly developed. The final concept consists of a flexible umbilical hose containing several internal hoses for carrying the various required fluids. An evaluation of this system was then made to determine its operational characteristics. The drilling capabilities and the economics of this rig were then compared to a conventional rotary drilling rig by theoretically drilling two holes of approximately 15,000 feet in depth. This comparison was done by use of a spread sheet type computer program. The results of this study indicate that flame jet drilling performs significantly better in both time and cost. These results are due primarily to the high penetration rates, the reduced number of trips, and the decreased trip time due to the use of the umbilical. However, this significant time and cost advantage must be tempered by the fact that they are based on the assumption that the main components of the flame jet rig can be realistically and reliably built. Unfortunately, the use of an umbilical system presents very realistic and difficult design problems as hole depth extends beyond 7000 feet. Thus, unless a significant market for the use of this equipment can be found, further development of an umbilical type system is very questionable. An alternate system suggests by LASL may circumvent many of the problems stated. This concept consists of using concentric pipes and a down hole fluid separation system. Concentric pipe built by the Walker-Neer Manufacturing Company, Wichita Falls, Texas, has been used successfully in the drilling industry for years. Fluid separators have also been developed and used. Although this concept also presents problems, it may be worth investigating.

  2. INFLUENCE OF THERMAL CHALLENGE ON CONDITIONED FEEDING FORAYS OF JUVENILE RAINBOW TROUT

    EPA Science Inventory

    Juvenile rainbow trout (Salmo gairdneri) conditioned to traverse a 2.4-m-long channel to receive a food reward where subjected to in-transit thermal challenges. Conditioning was to a criterion that required 80% of the fish to leave the 'home' area and reach the 'reward' area with...

  3. NASA Office of Aeronautics and Space Technology Summer Workshop. Volume 8: Thermal control panel

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Technology deficiencies in the area of thermal control for future space missions are identified with emphasis on large space structures and cold controlled environments. Thermal control surfaces, heat pipes, and contamination are considered along with cryogenics, insulation, and design techniques. Major directions forecast for thermal control technology development and space experiments are: (1) extend the useful lifetime of cryogenic systems for space, (2) reduce temperature gradients, and (3) improve temperature stability.

  4. Status of thermal imaging technology as applied to conservation-update 1

    SciTech Connect

    Snow, F.J.; Wood, J.T.; Barthle, R.C.

    1980-07-01

    This document updates the 1978 report on the status of thermal imaging technology as applied to energy conservation in buildings. Thermal imaging technology is discussed in terms of airborne surveys, ground survey programs, and application needs such as standards development and lower cost equipment. Information on the various thermal imaging devices was obtained from manufacturer's standard product literature. Listings are provided of infrared projects of the DOE building diagnostics program, of aerial thermographic firms, and of aerial survey programs. (LCL)

  5. Performance Testing of Thermal Interface Filler Materials in a Bolted Aluminum Interface Under Thermal/Vacuum Conditions

    NASA Technical Reports Server (NTRS)

    Glasgow, S. D.; Kittredge, K. B.

    2003-01-01

    A thermal interface material is one of the many tools often used as part of the thermal control scheme for space-based applications. Historically, at Marshall Space Flight Center, CHO-THERM 1671 has primarily been used for applications where an interface material was deemed necessary. However, numerous alternatives have come on the market in recent years. It was decided that a number of these materials should be tested against each other to see if there were better performing alternatives. The tests were done strictly to compare the thermal performance of the materials relative to each other under repeatable conditions and do not take into consideration other design issues, such as off-gassing, electrical conduction, isolation, etc. The purpose of this Technical Memorandum is to detail the materials tested, test apparatus, procedures, and results of these tests. The results show that there are a number of better performing alternatives now available.

  6. Can Handheld Thermal Imaging Technology Improve Detection of Poachers in African Bushveldt?

    PubMed

    Hart, Adam G; Rolfe, Richard N; Dandy, Shantelle; Stubbs, Hannah; MacTavish, Dougal; MacTavish, Lynne; Goodenough, Anne E

    2015-01-01

    Illegal hunting (poaching) is a global threat to wildlife. Anti-poaching initiatives are making increasing use of technology, such as infrared thermography (IRT), to support traditional foot and vehicle patrols. To date, the effectiveness of IRT for poacher location has not been tested under field conditions, where thermal signatures are often complex. Here, we test the hypothesis that IRT will increase the distance over which a poacher hiding in African scrub bushveldt can be detected relative to a conventional flashlight. We also test whether any increase in effectiveness is related to the cost and complexity of the equipment by comparing comparatively expensive (22,000 USD) and relatively inexpensive (2000 USD) IRT devices. To test these hypotheses we employ a controlled, fully randomised, double-blind procedure to find a poacher in nocturnal field conditions in African bushveldt. Each of our 27 volunteer observers walked three times along a pathway using one detection technology on each pass in randomised order. They searched a prescribed search area of bushveldt within which the target was hiding. Hiding locations were pre-determined, randomised, and changed with each pass. Distances of first detection and positive detection were noted. All technologies could be used to detect the target. Average first detection distance for flashlight was 37.3 m, improving by 19.8 m to 57.1 m using LIRT and by a further 11.2m to 68.3m using HIRT. Although detection distances were significantly greater for both IRTs compared to flashlight, there was no significant difference between LIRT and HIRT. False detection rates were low and there was no significant association between technology and accuracy of detection. Although IRT technology should ideally be tested in the specific environment intended before significant investment is made, we conclude that IRT technology is promising for anti-poaching patrols and that for this purpose low cost IRT units are as effective as units ten times more expensive. PMID:26110865

  7. Can Handheld Thermal Imaging Technology Improve Detection of Poachers in African Bushveldt?

    PubMed Central

    Dandy, Shantelle; Stubbs, Hannah; MacTavish, Dougal; MacTavish, Lynne

    2015-01-01

    Illegal hunting (poaching) is a global threat to wildlife. Anti-poaching initiatives are making increasing use of technology, such as infrared thermography (IRT), to support traditional foot and vehicle patrols. To date, the effectiveness of IRT for poacher location has not been tested under field conditions, where thermal signatures are often complex. Here, we test the hypothesis that IRT will increase the distance over which a poacher hiding in African scrub bushveldt can be detected relative to a conventional flashlight. We also test whether any increase in effectiveness is related to the cost and complexity of the equipment by comparing comparatively expensive (22000 USD) and relatively inexpensive (2000 USD) IRT devices. To test these hypotheses we employ a controlled, fully randomised, double-blind procedure to find a poacher in nocturnal field conditions in African bushveldt. Each of our 27 volunteer observers walked three times along a pathway using one detection technology on each pass in randomised order. They searched a prescribed search area of bushveldt within which the target was hiding. Hiding locations were pre-determined, randomised, and changed with each pass. Distances of first detection and positive detection were noted. All technologies could be used to detect the target. Average first detection distance for flashlight was 37.3m, improving by 19.8m to 57.1m using LIRT and by a further 11.2m to 68.3m using HIRT. Although detection distances were significantly greater for both IRTs compared to flashlight, there was no significant difference between LIRT and HIRT. False detection rates were low and there was no significant association between technology and accuracy of detection. Although IRT technology should ideally be tested in the specific environment intended before significant investment is made, we conclude that IRT technology is promising for anti-poaching patrols and that for this purpose low cost IRT units are as effective as units ten times more expensive. PMID:26110865

  8. Field Demonstration of Multi-Sensor Technology for Condition Assessment of Wastewater Collection Systems (Abstract)

    EPA Science Inventory

    The purpose of the field demonstration program is to gather technically reliable cost and performance information on selected condition assessment technologies under defined field conditions. The selected technologies include zoom camera, focused electrode leak location (FELL), ...

  9. Novel Thermal Powered Technology for UUV Persistent Surveillance

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.; Chao, Yi

    2006-01-01

    Buoyancy Generation: Various technology attempts include melting a wax, which pushes directly against a piston (U.S. Patent 5,291,847) or against a bladder (Webb Research), using ammonia or Freon 21 (U.S. Patent 5,303,552), and using solar heat to expand an oil (www.space.com, April, 10, 2002). All these heat-activated buoyancy control designs have thus far proved impractical and have ultimately failed during repeated cycling in ocean testing. JPL has demonstrated fully reversible 10 C encapsulated wax phase change, which can be used to change buoyancy without electrical hydraulic pumps. This technique has greatly improved heat transfer and much better reversibility than previous designs. Power Generation: Ocean Thermal Energy Conversion (OTEC) systems have been designed that transfer deep, cold sea water to the surface to generate electricity using turbine cycles with ammonia or water as the working fluid. JPL has designed several UUV systems: 1) Using a propeller water turbine to generate power on a gliding submersible; 2) Employing a compact CO2 turbine cycle powered by moving through thermoclines; and 3) Using melted wax to directly produce power through a piston-geared generator.

  10. Technological boundary conditions for nuclear electric space power plants

    NASA Astrophysics Data System (ADS)

    Fraas, A. P.

    A serious attempt to assess the potential and feasibility of the many candidates for nuclear electric space power applications must confront some basic technological facts that limit what one can reasonably hope to accomplish with ay given concept. First, the upper limit to the efficiency of any thermodynamic cycle was defined by Carnot, and the subsequent 160 years has not only disclosed the character and magnitude of the many losses that regretably but inevitably make the efficiency of any actual cycle much less than that of an ideal cycle, but has also shown the upper temperature limit attainable with the materials available for any actual cycle. The cycle efficiency determines not only the thermal energy output of the reactor required for any given electrical power output (and thus the size and weight of the reactor and shield assembly), but also the size and weight of the radiator to reject the waste heat. Materials considerations such as corrosion, strength, and radiation damage at elevated temperatures establish basic limits on the design of the reactor, shield, turbine, generator, and other key components. Allowable radiation doses to personnel, lubricants, elastomers, and electronic components determine the size, weight, and shape of the reactor shield after account is taken of such factors as activation of the reactor coolant, directional differences in the degree of shielding required for the spacecraft in question, and radiation scattering from structures such as the radiator. Further, an exceptionally high reliability with essentially no maintenance is required.

  11. Thermal stress on ZnO surge arresters in polluted conditions; Part I: Laboratory test methods

    SciTech Connect

    Vitet, S. ); Stenstrom, L.; Lundquist, J )

    1992-10-01

    The thermal performance of ZnO surge arresters in polluted conditions were studied in the laboratory and the field. Part I of the paper deals with laboratory test methods such as the salt fog, solid layer, partial wetting, and slurry method. The thermal stress imposed on the arresters by the different test methods in terms of pollution severity and temperature rise, is discussed in this paper.

  12. Immunologic Applications of Conditional Gene Modification Technology in the Mouse

    PubMed Central

    Sharma, Suveena; Zhu, Jinfang

    2014-01-01

    Since the success of homologous recombination in altering mouse genome and the discovery of Cre-loxP system, the combination of these two breakthroughs has created important applications for studying the immune system in the mouse. Here, we briefly summarize the general principles of this technology and its applications in studying immune cell development and responses; such implications include conditional gene knockout and inducible and/or tissue-specific gene over-expression, as well as lineage fate mapping. We then discuss the pros and cons of a few commonly used Cre-expressing mouse lines for studying lymphocyte development and functions. We also raise several general issues, such as efficiency of gene deletion, leaky activity of Cre, and Cre toxicity, all of which may have profound impacts on data interpretation. Finally, we selectively list some useful links to the Web sites as valuable mouse resources. PMID:24700321

  13. Modeling ground thermal conditions and the limit of permafrost within the nearshore zone of the Mackenzie Delta, Canada

    E-print Network

    Moorman, Brian

    the duration of time ice is bottomfast and the thermal insulation of the overlying snowpack [Stevens et alModeling ground thermal conditions and the limit of permafrost within the nearshore zone examines the interrelated effects of snow and ice on ground thermal conditions beneath regions of shallow

  14. Thermal and Mechanical Microspacecraft Technologies for Deep Space Systems Program X2000 Future Deliveries

    NASA Technical Reports Server (NTRS)

    Birur, Gajanana C.; Bruno, Robin J.

    1999-01-01

    Thermal and mechanical technologies are an important part of the Deep Space Systems Technology (DSST) Program X2000 Future Deliveries (FD) microspacecraft. A wide range of future space missions are expected to utilize the technologies and the architecture developed by DSST FD. These technologies, besides being small in physical size, make the tiny spacecraft robust and flexible. The DSST FD architecture is designed to be highly reliable and suitable for a wide range of missions such as planetary landers/orbiters/flybys, earth orbiters, cometary flybys/landers/sample returns, etc. Two of the key ideas used in the development of thermal and mechanical technologies and architectures are: 1) to include several of the thermal and mechanical functions in any given single spacecraft element and 2) the architecture be modular so that it can easily be adapted to any of the future missions. One of the thermal architectures being explored for the DSST FD microspacecraft is the integrated thermal energy management of the complete spacecraft using a fluid loop. The robustness and the simplicity of the loop and the flexibility with which it can be integrated in the spacecraft have made it attractive for applications to DSST FD. Some of the thermal technologies to be developed as a part of this architecture are passive and active cooling loops, electrically variable emittance surfaces, miniature thermal switches, and specific high density electronic cooling technologies. In the mechanical area, multifunction architecture for the structural elements will be developed. The multifunction aspect is expected to substantially reduce the mass and volume of the spacecraft. Some of the technologies that will be developed are composite material panels incorporating electronics, cabling, and thermal elements in them. The paper describes the current state of the technologies and progress to be made in the thermal and mechanical technologies and approaches for the DSST Future Deliveries microspacecraft.

  15. SSTAC/ARTS review of the draft Integrated Technology Plan (ITP). Volume 3: Space power and thermal management

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Viewgraphs of briefings from the SSTAC/ARTS review of the draft integrated technology plan on thermal power and thermal management are presented. Topics covered include: space energy conversion research and technology; space photovoltaic energy conversion; chemical energy conversion and storage; thermal energy conversion; power management; thermal management; space nuclear power; high capacity power; surface power and thermal management; space platforms power and thermal management; and project SELENE.

  16. A SINDA thermal model using CAD/CAE technologies

    NASA Astrophysics Data System (ADS)

    Rodriguez, Jose A.; Spencer, Steve

    The approach to thermal analysis described by this paper is a technique that incorporates Computer Aided Design (CAD) and Computer Aided Engineering (CAE) to develop a thermal model that has the advantages of Finite Element Methods (FEM) without abandoning the unique advantages of Finite Difference Methods (FDM) in the analysis of thermal systems. The incorporation of existing CAD geometry, the powerful use of a pre and post processor and the ability to do interdisciplinary analysis, will be described.

  17. A SINDA thermal model using CAD/CAE technologies

    NASA Technical Reports Server (NTRS)

    Rodriguez, Jose A.; Spencer, Steve

    1992-01-01

    The approach to thermal analysis described by this paper is a technique that incorporates Computer Aided Design (CAD) and Computer Aided Engineering (CAE) to develop a thermal model that has the advantages of Finite Element Methods (FEM) without abandoning the unique advantages of Finite Difference Methods (FDM) in the analysis of thermal systems. The incorporation of existing CAD geometry, the powerful use of a pre and post processor and the ability to do interdisciplinary analysis, will be described.

  18. Mechanically Pumped Fluid Loop (MPFL) Technologies for Thermal Control of Future Mars Rovers

    NASA Technical Reports Server (NTRS)

    Birur, Gaj; Bhandari, Pradeep; Prina, Mauro; Bame, Dave; Yavrouian, Andre; Plett, Gary

    2006-01-01

    Mechanically pumped fluid loop has been the basis of thermal control architecture for the last two Mars lander and rover missions and is the key part of the MSL thermal architecture. Several MPFL technologies are being developed for the MSL rover include long-life pumps, thermal control valves, mechanical fittings for use with CFC-11 at elevated temperatures of approx.100 C. Over three years of life tests and chemical compatibility tests on these MPFL components show that MPFL technology is mature for use on MSL. The advances in MPFL technologies for MSL Rover will benefit any future MPFL applications on NASA s Moon, Mars and Beyond Program.

  19. Real-time condition monitoring of thermal power plants feed-pumps by rolling bearings supports vibration

    NASA Astrophysics Data System (ADS)

    Kostyukov, V. N.; Tarasov, E. V.

    2012-05-01

    The report addresses the real-time condition monitoring of technical state and automatic diagnosis of auxiliary equipment for bearings supports vibration, for example, control of the feed-pump operating modes of thermal power stations. The causes that lead to premature birth and development of defects in rolling bearings are identified and the development of activities ensuring safe and continuous operation of the auxiliary equipment of thermal power stations is carried out. Collection and analysis of vibration parameters of pumping units during their operation at the operating modes of the technological process are realized by means of real-time technical condition monitoring. Spectral analysis of vibration parameters of one of the pumps showed the presence of frequency components, which mark violations in the operating practices of the pump, the imbalance development and, as a consequence, the development of defects in the bearings by long-term operation of the unit. Timely warning of the personnel on the operation of the unit with the "INTOLERABLE" technical state and automatic warning issuance of the need to change the technological process allowed to recover the estimated pump operation mode in due time and prevent further development of defects in equipment.

  20. Human-biometeorological conditions and thermal perception in a Mediterranean coastal park.

    PubMed

    Saaroni, Hadas; Pearlmutter, David; Hatuka, Tali

    2015-10-01

    This study looks at the interrelation of human-biometeorological conditions, physiological thermal stress and subjective thermal perception in the design and use of a new waterfront park in Tel-Aviv, Israel. Our initial assumption was that the park's design would embody a comprehensive response to the area's ever-increasing heat stress and water shortage. However, almost half of it is covered by grass lawns, irrigated with fresh water, while the remaining area is mainly covered with concrete paving, with minimal shading and sparse trees. We hypothesized that stressful thermal conditions would prevail in the park in the summer season and would be expressed in a high discomfort perception of its users. Thermo-physiological stress conditions in a typical summer month were compared with the subjective comfort perceptions of pedestrians surveyed in the park. It was found that even during mid-day hours, the level of thermal stress tends to be relatively mild, owing largely to the strong sea breeze and despite the high intensity of solar radiation. Moreover, it appears that the largely favorable perception of comfort among individuals may also result from socio-cultural aspects related to their satisfaction with the park's aesthetic attractiveness and in fact its very existence. Adaptive planning is proposed for such vulnerable regions, which are expected to experience further aggravation in thermal comfort due to global as well as localized warming trends. PMID:25527044

  1. Human-biometeorological conditions and thermal perception in a Mediterranean coastal park

    NASA Astrophysics Data System (ADS)

    Saaroni, Hadas; Pearlmutter, David; Hatuka, Tali

    2015-10-01

    This study looks at the interrelation of human-biometeorological conditions, physiological thermal stress and subjective thermal perception in the design and use of a new waterfront park in Tel-Aviv, Israel. Our initial assumption was that the park's design would embody a comprehensive response to the area's ever-increasing heat stress and water shortage. However, almost half of it is covered by grass lawns, irrigated with fresh water, while the remaining area is mainly covered with concrete paving, with minimal shading and sparse trees. We hypothesized that stressful thermal conditions would prevail in the park in the summer season and would be expressed in a high discomfort perception of its users. Thermo-physiological stress conditions in a typical summer month were compared with the subjective comfort perceptions of pedestrians surveyed in the park. It was found that even during mid-day hours, the level of thermal stress tends to be relatively mild, owing largely to the strong sea breeze and despite the high intensity of solar radiation. Moreover, it appears that the largely favorable perception of comfort among individuals may also result from socio-cultural aspects related to their satisfaction with the park's aesthetic attractiveness and in fact its very existence. Adaptive planning is proposed for such vulnerable regions, which are expected to experience further aggravation in thermal comfort due to global as well as localized warming trends.

  2. Technology for Space Station Evolution. Volume 5: Structures and Materials/Thermal Control System

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA's Office of Aeronautics and Space Technology (OAST) conducted a workshop on technology for space station evolution on 16-19 Jan. 1990. The purpose of this workshop was to collect and clarify Space Station Freedom technology requirements for evolution and to describe technologies that can potentially fill those requirements. These proceedings are organized into an Executive Summary and Overview and five volumes containing the Technology Discipline Presentations. Volume 5 consists of the technology discipline sections for Structures/Materials and the Thermal Control System. For each technology discipline, there is a level 3 subsystem description, along with papers.

  3. Thermal storage technologies for solar industrial process heat applications

    NASA Technical Reports Server (NTRS)

    Gordon, L. H.

    1979-01-01

    The state-of-the-art of thermal storage subsystems for the intermediate and high temperature (100 C to 600 C) solar industrial process heat generation is presented. Primary emphasis is focused on buffering and diurnal storage as well as total energy transport. In addition, advanced thermal storage concepts which appear promising for future solar industrial process heat applications are discussed.

  4. Heat loss of heat pipelines in moisture conditions of thermal insulation

    NASA Astrophysics Data System (ADS)

    Polovnikov, V. Yu.; Gubina, E. V.

    2014-08-01

    Results of numerical simulation of heat and mass transfer in a wet fibroporous material in conditions of evaporation and steam diffusion were obtained. Values of heat and mass fluxes were established. The contribution of evaporation effect to total heat flux and need to consider volume fractions of water and steam into the structure of fibroporous material in calculation of effective thermal conductivity were shown. Nonstationarity of heat and mass transfer in conditions of considered problem can be ignored.

  5. Monitoring Thermal Performance of Hollow Bricks with Different Cavity Fillers in Difference Climate Conditions

    NASA Astrophysics Data System (ADS)

    Pavlík, Zbyšek; Jerman, Miloš; Fo?t, Jan; ?erný, Robert

    2015-03-01

    Hollow brick blocks have found widespread use in the building industry during the last decades. The increasing requirements to the thermal insulation properties of building envelopes given by the national standards in Europe led the brick producers to reduce the production of common solid bricks. Brick blocks with more or less complex systems of internal cavities replaced the traditional bricks and became dominant on the building ceramics market. However, contrary to the solid bricks where the thermal conductivity can easily be measured by standard methods, the complex geometry of hollow brick blocks makes the application of common techniques impossible. In this paper, a steady-state technique utilizing a system of two climatic chambers separated by a connecting tunnel for sample positioning is used for the determination of the thermal conductivity, thermal resistance, and thermal transmittance ( U value) of hollow bricks with the cavities filled by air, two different types of mineral wool, polystyrene balls, and foam polyurethane. The particular brick block is provided with the necessary temperature- and heat-flux sensors and thermally insulated in the tunnel. In the climatic chambers, different temperatures are set. After steady-state conditions are established in the measuring system, the effective thermal properties of the brick block are calculated using the measured data. Experimental results show that the best results are achieved with hydrophilic mineral wool as a cavity filler; the worst performance exhibits the brick block with air-filled cavities.

  6. Catheter-based ultrasound technology for image-guided thermal therapy: Current technology and applications

    PubMed Central

    Salgaonkar, Vasant A.; Diederich, Chris J.

    2015-01-01

    Catheter-based ultrasound (CBUS) is being applied to deliver minimally invasive thermal therapy to solid cancer tumors, benign tissue growth, vascular disease, and tissue remodeling. Compared to other energy modalities used in catheter-based surgical interventions, unique features of ultrasound result in conformable and precise energy delivery with high selectivity, fast treatment times, and larger treatment volumes. Here, a concise review of CBUS technology being currently utilized in animal and clinical studies or being developed for future applications is presented. CBUS devices have been categorized into interstitial, endoluminal and endovascular/cardiac applications. Basic applicator designs, site specific evaluations and possible treatment applications have been discussed in brief. Particular emphasis has been given on ablation studies that incorporate image-guidance for applicator placement, therapy monitoring, feedback control, and post-procedure assessment. Examples of devices included here span the entire spectrum of development cycle from preliminary simulation based design studies to implementation in clinical investigations. The use of CBUS under image guidance has the potential for significantly improving precision and applicability of thermal therapy delivery. PMID:25799287

  7. Solid phase synthesis of hydantoins by thermal cyclization and screening of reaction conditions using APOS 1200.

    PubMed

    Karnbrock, W; Deeg, M; Gerhardt, J; Rapp, W

    1998-01-01

    A novel strategy for solid-phase synthesis of hydantoins with high optical purity is described using a thermal pH-neutral cyclization and simultaneous release from resin. Hereby even hydantoins bearing a pH-sensitive side chain (protection) are available. The reaction conditions are well screened applying the parallel organic synthesizer APOS 1200. PMID:10729901

  8. Mechanical and thermal buckling analysis of sandwich panels under different edge conditions

    NASA Technical Reports Server (NTRS)

    Ko, William L.

    1993-01-01

    By using the Rayleigh-Ritz method of minimizing the total potential energy of a structural system, combined load (mechanical or thermal load) buckling equations are established for orthotropic rectangular sandwich panels supported under four different edge conditions. Two-dimensional buckling interaction curves and three dimensional buckling interaction surfaces are constructed for high-temperature honeycomb-core sandwich panels supported under four different edge conditions. The interaction surfaces provide easy comparison of the panel buckling strengths and the domains of symmetrical and antisymmetrical buckling associated with the different edge conditions. Thermal buckling curves of the sandwich panels also are presented. The thermal buckling conditions for the cases with and without thermal moments were found to be identical for the small deformation theory. In sandwich panels, the effect of transverse shear is quite large, and by neglecting the transverse shear effect, the buckling loads could be overpredicted considerably. Clamping of the edges could greatly increase buckling strength more in compression than in shear.

  9. Thermal stress on ZnO surge arresters in polluted conditions; Part II: Field test results

    SciTech Connect

    Vitet, S. ); Schei, A. ); Stenstrom, L.; Lundquist, J. )

    1992-10-01

    The thermal performance of ZnO surge arresters in polluted conditions were studied in the laboratory and the field. This paper describes the results from field tests in areas of marine and industrial pollution, and a comparison is made with laboratory test results.

  10. Sub-continuumThermal Simulationsof Deep Sub-MicronDevices under ESD Conditions

    E-print Network

    -phonon collisions, which transport heat out of the device. The phonon-phonon mean free path is approximately 300 nm because hot energy \\ Phonon-phonon I/ ?' (pmean free path Heat I I ourc I I I \\ ', Non-equilibrium regionSub-continuumThermal Simulationsof Deep Sub-MicronDevices under ESD Conditions Per G. Sverdrup

  11. [The progress in retrieving land surface temperature based on thermal infrared and microwave remote sensing technologies].

    PubMed

    Zhang, Jia-Hua; Li, Xin; Yao, Feng-Mei; Li, Xian-Hua

    2009-08-01

    Land surface temperature (LST) is an important parameter in the study on the exchange of substance and energy between land surface and air for the land surface physics process at regional and global scales. Many applications of satellites remotely sensed data must provide exact and quantificational LST, such as drought, high temperature, forest fire, earthquake, hydrology and the vegetation monitor, and the models of global circulation and regional climate also need LST as input parameter. Therefore, the retrieval of LST using remote sensing technology becomes one of the key tasks in quantificational remote sensing study. Normally, in the spectrum bands, the thermal infrared (TIR, 3-15 microm) and microwave bands (1 mm-1 m) are important for retrieval of the LST. In the present paper, firstly, several methods for estimating the LST on the basis of thermal infrared (TIR) remote sensing were synthetically reviewed, i. e., the LST measured with an ground-base infrared thermometer, the LST retrieval from mono-window algorithm (MWA), single-channel algorithm (SCA), split-window techniques (SWT) and multi-channels algorithm(MCA), single-channel & multi-angle algorithm and multi-channels algorithm & multi-angle algorithm, and retrieval method of land surface component temperature using thermal infrared remotely sensed satellite observation. Secondly, the study status of land surface emissivity (epsilon) was presented. Thirdly, in order to retrieve LST for all weather conditions, microwave remotely sensed data, instead of thermal infrared data, have been developed recently, and the LST retrieval method from passive microwave remotely sensed data was also introduced. Finally, the main merits and shortcomings of different kinds of LST retrieval methods were discussed, respectively. PMID:19839318

  12. Overview of non-thermal mixed waste treatment technologies: Treatment of mixed waste (ex situ); Technologies and short descriptions

    SciTech Connect

    1995-07-01

    This compendium contains brief summaries of new and developing non- thermal treatment technologies that are candidates for treating hazardous or mixed (hazardous plus low-level radioactive) wastes. It is written to be all-encompassing, sometimes including concepts that presently constitute little more than informed ``ideas``. It bounds the universe of existing technologies being thought about or considered for application on the treatment of such wastes. This compendium is intended to be the very first step in a winnowing process to identify non-thermal treatment systems that can be fashioned into complete ``cradle-to-grave`` systems for study. The purpose of the subsequent systems paper studies is to investigate the cost and likely performance of such systems treating a representative sample of U.S. Department of Energy (DOE) mixed low level wastes (MLLW). The studies are called Integrated Non-thermal Treatment Systems (INTS) Studies and are being conducted by the Office of Science and Technology (OST) of the Environmental Management (EM) of the US Department of Energy. Similar studies on Integrated Thermal Treatment Systems have recently been published. These are not designed nor intended to be a ``downselection`` of such technologies; rather, they are simply a systems evaluation of the likely costs and performance of various non- thermal technologies that have been arranged into systems to treat sludges, organics, metals, soils, and debris prevalent in MLLW.

  13. Development and validation of nonthermal and advanced thermal food safety intervention technologies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alternative nonthermal and thermal food safety interventions are gaining acceptance by the food processing industry and consumers. These technologies include high pressure processing, ultraviolet and pulsed light, ionizing radiation, pulsed and radiofrequency electric fields, cold atmospheric plasm...

  14. OVERVIEW OF CONVENTIONAL AND INNOVATIVE LAND-BASED THERMAL TECHNOLOGIES FOR WASTE DISPOSAL

    EPA Science Inventory

    For more than the past two decades, the USEPA has been aggressive in its research, development, performance testing, and in encouragement of the regulated use of proven thermal destruction (or incineration) technologies for the environmentally acceptable treatment and disposal of...

  15. Implementations of electric vehicle system based on solar energy in Singapore assessment of solar thermal technologies

    E-print Network

    Liu, Xiaogang, M. Eng. Massachusetts Institute of Technology

    2009-01-01

    To build an electric car plus renewable energy system for Singapore, solar thermal technologies were investigated in this report in the hope to find a suitable "green" energy source for this small island country. Among all ...

  16. Thermal plasma technology for the treatment of wastes: a critical review.

    PubMed

    Gomez, E; Rani, D Amutha; Cheeseman, C R; Deegan, D; Wise, M; Boccaccini, A R

    2009-01-30

    This review describes the current status of waste treatment using thermal plasma technology. A comprehensive analysis of the available scientific and technical literature on waste plasma treatment is presented, including the treatment of a variety of hazardous wastes, such as residues from municipal solid waste incineration, slag and dust from steel production, asbestos-containing wastes, health care wastes and organic liquid wastes. The principles of thermal plasma generation and the technologies available are outlined, together with potential applications for plasma vitrified products. There have been continued advances in the application of plasma technology for waste treatment, and this is now a viable alternative to other potential treatment/disposal options. Regulatory, economic and socio-political drivers are promoting adoption of advanced thermal conversion techniques such as thermal plasma technology and these are expected to become increasingly commercially viable in the future. PMID:18499345

  17. Determination of Creep Behavior of Thermal Barrier Coatings Under Laser Imposed High Thermal and Stress Gradient Conditions

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    1999-01-01

    A laser sintering/creep technique has been established to determine the creep behavior of thermal barrier coatings under steady-state high heat flux conditions. For a plasma sprayed zirconia-8 wt. % yttria coating, a significant primary creep strain and a low apparent creep activation energy were observed. Possible creep mechanisms involved include stress induced mechanical sliding and temperature and stress enhanced cation diffusion through the splat and grain boundaries. The elastic modulus evolution, stress response, and total accumulated creep strain variation across the ceramic coating are simulated using a finite difference approach. The modeled creep response is consistent with experimental observations.

  18. Thermal plasma waste remediation technology: Historical perspective and current trends. Final report

    SciTech Connect

    Counts, D.A.; Sartwell, B.D.; Peterson, S.H.; Kirkland, R.; Kolak, N.P.

    1999-01-29

    The idea of utilizing thermal plasma technology for waste processing goes back to the mid-1970`s during the energy crisis. Since then, more interest has been shown by universities, industry, and government in developing thermal plasma waste processing technology for hazardous and non-hazardous waste treatment. Much of the development has occurred outside of the United States, most significantly in Japan and France, while the market growth for thermal plasma waste treatment technology has remained slow in the United States. Despite the slow expansion of the market in the United States, since the early 1990`s there has been an increase in interest in utilizing thermal plasma technology for environmental remediation and treatment in lieu of the more historical methods of incineration and landfilling. Currently within the Department of Defense there are several demonstration projects underway, and details of some of these projects are provided. Prior to these efforts by the U.S. Government, the State of New York had investigated the use of thermal plasma technology for treating PCB contaminated solvent wastes from the Love Canal cleanup. As interest continues to expand in the application of thermal plasma technology for waste treatment and remediation, more and more personnel are becoming involved with treatment, regulation, monitoring, and commercial operations and many have little understanding of this emerging technology. To address these needs, this report will describe: (1) characteristics of plasmas; (2) methods for generating sustained thermal plasmas; (3) types of thermal plasma sources for waste processing; (4) the development of thermal plasma waste treatment systems; and (5) Department of Defense plasma arc waste treatment demonstration projects.

  19. Nuclear thermal propulsion technology: Results of an interagency panel in FY 1991

    NASA Astrophysics Data System (ADS)

    Clark, John S.; McDaniel, Patrick; Howe, Steven; Helms, Ira; Stanley, Marland

    1993-04-01

    NASA LeRC was selected to lead nuclear propulsion technology development for NASA. Also participating in the project are NASA MSFC and JPL. The U.S. Department of Energy will develop nuclear technology and will conduct nuclear component, subsystem, and system testing at appropriate DOE test facilities. NASA program management is the responsibility of NASA/RP. The project includes both nuclear electric propulsion (NEP) and nuclear thermal propulsion (NTP) technology development. This report summarizes the efforts of an interagency panel that evaluated NTP technology in 1991. Other panels were also at work in 1991 on other aspects of nuclear propulsion, and the six panels worked closely together. The charters for the other panels and some of their results are also discussed. Important collaborative efforts with other panels are highlighted. The interagency (NASA/DOE/DOD) NTP Technology Panel worked in 1991 to evaluate nuclear thermal propulsion concepts on a consistent basis. Additionally, the panel worked to continue technology development project planning for a joint project in nuclear propulsion for the Space Exploration Initiative (SEI). Five meetings of the panel were held in 1991 to continue the planning for technology development of nuclear thermal propulsion systems. The state-of-the-art of the NTP technologies was reviewed in some detail. The major technologies identified were as follows: fuels, coatings, and other reactor technologies; materials; instrumentation, controls, health monitoring and management, and associated technologies; nozzles; and feed system technology, including turbopump assemblies.

  20. Technological change in Swiss thermal waste treatment: An expert-based socio-technical analysis

    SciTech Connect

    Spoerri, Andy; Lang, Daniel J.; Staeubli, Beat; Scholz, Roland W.

    2010-07-15

    Understanding technological change provides a crucial basis for governing sustainability transitions. In this paper we present an analysis of technological change using the example of Swiss thermal waste processing. In recent years, increased concerns about the low quality of residues from grate-firing systems led to the examination of alternative technologies. Yet despite clear indications of a potential better performance with respect to residue quality, none of these alternatives has been adopted. Based on a two-stage knowledge integration among 15 leading experts, in a retrospective analysis we identified factors that have significantly affected technological change in Swiss thermal waste processing. These factors were then related to three technological options representing different types of technological change, i.e., from incremental improvements of the existing to the implementation of a new technology. The results indicate that technological change is currently in a technological lock-in and provide detailed insights on the causes. The lock-in results in the step-wise further development of the status quo grate-firing system despite its limitations for improving the residue qualities. Almost all factors (legal, economic, societal, technological) of the existing 'thermal waste management' system have been well adapted to the cost- and energy-efficient grate-firing technology, blocking innovative technologies from entering the Swiss market. In addition, pressures from the context, e.g., societal pressure related to landfill risks, have not been strong enough to promote non-incremental change.

  1. Nuclear thermal propulsion technology: Results of an interagency panel in FY 1991

    NASA Technical Reports Server (NTRS)

    Clark, John S.; Mcdaniel, Patrick; Howe, Steven; Helms, Ira; Stanley, Marland

    1993-01-01

    NASA LeRC was selected to lead nuclear propulsion technology development for NASA. Also participating in the project are NASA MSFC and JPL. The U.S. Department of Energy will develop nuclear technology and will conduct nuclear component, subsystem, and system testing at appropriate DOE test facilities. NASA program management is the responsibility of NASA/RP. The project includes both nuclear electric propulsion (NEP) and nuclear thermal propulsion (NTP) technology development. This report summarizes the efforts of an interagency panel that evaluated NTP technology in 1991. Other panels were also at work in 1991 on other aspects of nuclear propulsion, and the six panels worked closely together. The charters for the other panels and some of their results are also discussed. Important collaborative efforts with other panels are highlighted. The interagency (NASA/DOE/DOD) NTP Technology Panel worked in 1991 to evaluate nuclear thermal propulsion concepts on a consistent basis. Additionally, the panel worked to continue technology development project planning for a joint project in nuclear propulsion for the Space Exploration Initiative (SEI). Five meetings of the panel were held in 1991 to continue the planning for technology development of nuclear thermal propulsion systems. The state-of-the-art of the NTP technologies was reviewed in some detail. The major technologies identified were as follows: fuels, coatings, and other reactor technologies; materials; instrumentation, controls, health monitoring and management, and associated technologies; nozzles; and feed system technology, including turbopump assemblies.

  2. Thermal performance of a Concrete Cool Roof under different climatic conditions of Mexico

    DOE PAGESBeta

    Hernández-Pérez, I.; Álvarez, G.; Gilbert, H.; Xamán, J.; Chávez, Y.; Shah, B.

    2014-11-27

    A cool roof is an ordinary roof with a reflective coating on the exterior surface which has a high solar reflectance and high thermal emittance. These properties let the roof keep a lower temperature than a standard roof under the same conditions. In this work, the thermal performance of a concrete roof with and without insulation and with two colors has been analyzed using the finite volume method. The boundary conditions of the external roof surface were taken from hourly averaged climatic data of four cities. For the internal surface, it is considered that the building is air-conditioned and themore »inside air has a constant temperature. The interior surface temperature and the heat flux rates into the roofs were obtained for two consecutive days in order to assess the benefits of a cool roofs in different climates.« less

  3. Thermal performance of a Concrete Cool Roof under different climatic conditions of Mexico

    SciTech Connect

    Hernández-Pérez, I.; Álvarez, G.; Gilbert, H.; Xamán, J.; Chávez, Y.; Shah, B.

    2014-11-27

    A cool roof is an ordinary roof with a reflective coating on the exterior surface which has a high solar reflectance and high thermal emittance. These properties let the roof keep a lower temperature than a standard roof under the same conditions. In this work, the thermal performance of a concrete roof with and without insulation and with two colors has been analyzed using the finite volume method. The boundary conditions of the external roof surface were taken from hourly averaged climatic data of four cities. For the internal surface, it is considered that the building is air-conditioned and the inside air has a constant temperature. The interior surface temperature and the heat flux rates into the roofs were obtained for two consecutive days in order to assess the benefits of a cool roofs in different climates.

  4. Bayesian Framework Approach for Prognostic Studies in Electrolytic Capacitor under Thermal Overstress Conditions

    NASA Technical Reports Server (NTRS)

    Kulkarni, Chetan S.; Celaya, Jose R.; Goebel, Kai; Biswas, Gautam

    2012-01-01

    Electrolytic capacitors are used in several applications ranging from power supplies for safety critical avionics equipment to power drivers for electro-mechanical actuator. Past experiences show that capacitors tend to degrade and fail faster when subjected to high electrical or thermal stress conditions during operations. This makes them good candidates for prognostics and health management. Model-based prognostics captures system knowledge in the form of physics-based models of components in order to obtain accurate predictions of end of life based on their current state of heal th and their anticipated future use and operational conditions. The focus of this paper is on deriving first principles degradation models for thermal stress conditions and implementing Bayesian framework for making remaining useful life predictions. Data collected from simultaneous experiments are used to validate the models. Our overall goal is to derive accurate models of capacitor degradation, and use them to remaining useful life in DC-DC converters.

  5. Fuel Savings and Emission Reductions from Next-Generation Mobile Air Conditioning Technology in India

    SciTech Connect

    Chaney, L.; Thundiyil, K.; Andersen, S.; Chidambaram, S.; Abbi, Y. P.

    2007-01-01

    Up to 19.4% of vehicle fuel consumption in India is devoted to air conditioning (A/C). Indian A/C fuel consumption is almost four times the fuel penalty in the United States and close to six times that in the European Union because India's temperature and humidity are higher and because road congestion forces vehicles to operate inefficiently. Car A/C efficiency in India is an issue worthy of national attention considering the rate of increase of A/C penetration into the new car market, India's hot climatic conditions and high fuel costs. Car A/C systems originally posed an ozone layer depletion concern. Now that industrialized and many developing countries have moved away from ozone-depleting substances per Montreal Protocol obligations, car A/C impact on climate has captured the attention of policy makers and corporate leaders. Car A/C systems have a climate impact from potent global warming potential gas emissions and from fuel used to power the car A/Cs. This paper focuses on car A/C fuel consumption in the context of the rapidly expanding Indian car market and how new technological improvements can result in significant fuel savings and consequently, emission reductions. A 19.4% fuel penalty is associated with A/C use in the typical Indian passenger car. Car A/C fuel use and associated tailpipe emissions are strong functions of vehicle design, vehicle use, and climate conditions. Several techniques: reducing thermal load, improving vehicle design, improving occupants thermal comfort design, improving equipment, educating consumers on impacts of driver behaviour on MAC fuel use, and others - can lead to reduced A/C fuel consumption.

  6. The asymptotic equivalence of fixed heat flux and fixed temperature thermal boundary conditions for rapidly rotating convection

    E-print Network

    Calkins, Michael A; Julien, Keith; Nieves, David; Driggs, Derek; Marti, Philippe

    2015-01-01

    The influence of fixed temperature and fixed heat flux thermal boundary conditions on rapidly rotating convection in the plane layer geometry is investigated for the case of stress-free mechanical boundary conditions. It is shown that whereas the leading order system satisfies fixed temperature boundary conditions implicitly, a double boundary layer structure is necessary to satisfy the fixed heat flux thermal boundary conditions. The boundary layers consist of a classical Ekman layer adjacent to the solid boundaries that adjust viscous stresses to zero, and a layer in thermal wind balance just outside the Ekman layers adjusts the temperature such that the fixed heat flux thermal boundary conditions are satisfied. The influence of these boundary layers on the interior geostrophically balanced convection is shown to be asymptotically weak, however. Upon defining a simple rescaling of the thermal variables, the leading order reduced system of governing equations are therefore equivalent for both boundary condit...

  7. Thermal Energy Storage for Space Cooling--Federal Technology Alert

    SciTech Connect

    Brown, Daryl R

    2000-12-31

    Cool storage technology can be used to significantly reduce energy costs by allowing energy-intensive, electrically driven cooling equipment to be predominantly operated during off peak hours when electricity rates are lower. This Federal Technology Alert, which is sponsored by DOE's Federal Energy Management Program (FEMP), describes the basic types of cool storage technologies and cooling system integration options. In addition, it defines the savings potential in the federal sector, presents application advice, and describes the performance experience of specific federal users. The results of a case study of a GSA building using cool storage technology are also provided.

  8. Thermal Energy for Space Cooling--Federal Technology Alert

    SciTech Connect

    Brown, Daryl R.

    2000-12-31

    Cool storage technology can be used to significantly reduce energy costs by allowing energy-intensive, electrically driven cooling equipment to be predominantly operated during off peak hours when electricity rates are lower. This Federal Technology Alert, which is sponsored by DOE's Federal Energy Management Program (FEMP), describes the basic types of cool storage technologies and cooling system integration options. In addition, it defines the savings potential in the federal sector, presents application advice, and describes the performance experience of specific federal users. The results of a case study of a GSA building using cool storage technology are also provided.

  9. Advanced Thermal Control Technologies for "CEV" (New Name: ORION)

    NASA Technical Reports Server (NTRS)

    Golliher, Eric; Westheimer, David; Ewert, Michael; Hasan, Mojib; Anderson, Molly; Tuan, George; Beach, Duane

    2007-01-01

    NASA is currently investigating several technology options for advanced human spaceflight. This presentation covers some recent developments that relate to NASA's Orion spacecraft and future Lunar missions.

  10. Comparison of Dynamic Characteristics for an Inflatable Solar Concentrator in Atmospheric and Thermal Vacuum Conditions

    NASA Technical Reports Server (NTRS)

    Slade, Kara N.; Tinker, Michael L.; Lassiter, John O.; Engberg, Robert

    2000-01-01

    Dynamic testing of an inflatable solar concentrator structure in a thermal vacuum chamber as well as in ambient laboratory conditions is described in detail. Unique aspects of modal testing for the extremely lightweight inflatable are identified, including the use of a noncontacting laser vibrometer measurement system. For the thermal vacuum environment, mode shapes and frequency response functions are compared for three different test article inflation pressures at room temperature. Modes that persist through all the inflation pressure regimes are identified, as well as modes that are unique for each pressure. In atmospheric pressure and room temperature conditions, dynamic measurements were obtained for the expected operational inflation pressure of 0.5 psig. Experimental mode shapes and frequency response functions for ambient conditions are described and compared to the 0.5 psig results from the thermal vacuum tests. Only a few mode shapes were identified that occurred in both vacuum and atmospheric environments. This somewhat surprising result is discussed in detail, and attributed at least partly to 1.) large differences in modal damping, and 2.) significant differences in the mass of air contained by the structure, in the two environments. Results of this investigation point out the necessity of testing inflatable space structures in vacuum conditions before they can be launched. Ground testing in atmospheric pressure is not sufficient for predicting on-orbit dynamics of non-rigidized inflatable systems.

  11. Thermal Stability of Amino Acids in Siliceous Ooze under Alkaline Hydrothermal Condition

    NASA Astrophysics Data System (ADS)

    Yamaoka, K.; Kawahata, H.; Gupta, L. P.; Ito, M.; Masuda, H.

    2006-12-01

    Hydrothermal systems have been considered as a suitable environment for the origin and evolution of life on the primitive Earth. For the assessment of this hypothesis, it is required to investigate behaviors of basic biomolecules, such as amino acids (AAs), under hydrothermal condition. Although many experiments on the thermal stability of the AAs in hydrothermal systems have been carried out, most of them were conducted under the neutral and/or acidic condition. The primitive life is assumed to arise after the formation of oceanic and continental crust. In contrast to submarine hydrothermal water at mid-oceanic ridge, hot springs located in rift valley in Eastern Africa often have high pH (alkaline condition) due to enrichment of sodium carbonate and volatile gases. In this study, siliceous ooze was reacted with NaCl solution with added sodium carbonate at elevated temperature (100-300°C) to evaluate the thermal stability of the AAs under the alkaline hydrothermal systems. The AAs existed in sediment as peptide-forms were eluted from the solid to the liquid phase and decomposed through the hydrolysis of peptide bonds. Its comparison with the results from similar experiments by using the same sediment sample under the neutral condition revealed that the elution rate of AAs under the alkaline condition was faster than that under the neutral condition. In contrast, the decomposition rate of AAs was retarded under the alkaline condition. Besides, AAs were remained both in the solid and liquid phase even after heating at 300°C for 240 hr. Our results indicate that the thermal stability of the AAs is higher in alkaline solution, which provides more comfortable opportunity for the primitive life to evolve in hydrothermal systems in the thick continental crust.

  12. Evaluation of critical nuclear power plant electrical cable response to severe thermal fire conditions

    NASA Astrophysics Data System (ADS)

    Taylor, Gabriel James

    The failure of electrical cables exposed to severe thermal fire conditions are a safety concern for operating commercial nuclear power plants (NPPs). The Nuclear Regulatory Commission (NRC) has promoted the use of risk-informed and performance-based methods for fire protection which resulted in a need to develop realistic methods to quantify the risk of fire to NPP safety. Recent electrical cable testing has been conducted to provide empirical data on the failure modes and likelihood of fire-induced damage. This thesis evaluated numerous aspects of the data. Circuit characteristics affecting fire-induced electrical cable failure modes have been evaluated. In addition, thermal failure temperatures corresponding to cable functional failures have been evaluated to develop realistic single point thermal failure thresholds and probability distributions for specific cable insulation types. Finally, the data was used to evaluate the prediction capabilities of a one-dimension conductive heat transfer model used to predict cable failure.

  13. Influence of thermal boundary conditions on the current-driven resistive transition in VO2 microbridges

    NASA Astrophysics Data System (ADS)

    Manca, Nicola; Kanki, Teruo; Tanaka, Hidekazu; Marré, Daniele; Pellegrino, Luca

    2015-10-01

    We investigate the resistive switching behaviour of VO2 microbridges under current bias as a function of temperature and thermal coupling with the heat bath. Upon increasing the electrical current bias, the formation of the metallic phase can progress smoothly or through sharp jumps. The magnitude and threshold current values of these sharp resistance drops show random behaviour and are dramatically influenced by thermal dissipation conditions. Our results also evidence how the propagation of the metallic phase induced by electrical current in VO2, and thus the shape of the resulting high-conductivity path, are not predictable. We discuss the origin of the switching events through a simple electro-thermal model based on the domain structure of VO2 films that can be useful to improve the stability and controllability of future VO2-based devices.

  14. Thermal behavior of soy protein fractions depending on their preparation methods, individual interactions, and storage conditions.

    PubMed

    Sobral, Pablo A; Palazolo, Gonzalo G; Wagner, Jorge R

    2010-09-22

    Different soy protein isolates (SPI) and whey soy protein (WSP) samples were obtained from fresh and stored soybean flour. Some samples were subjected to a long, cold storage. DSC thermograms of SPI showed the two characteristic endotherms, corresponding to denaturation of ?-conglycinin and glycinin. Low value of denaturation enthalpy and high glycinin denaturation temperature were related to a reduction of protein solubility of SPI. DSC thermograms of WSP also showed two characteristic endotherms, corresponding to Kunitz trypsin inhibitor and lectin. The methods and conditions of preparation and storage of WSP samples were factors that modified their thermal behavior. Some SPI-WSP mixtures (1:1) exhibited more complex thermograms and higher denaturation temperatures. Thermograms of SPI-denatured WSP mixtures showed that the thermal stabilization of soybean storage proteins was attributed to protein-protein interactions. The differences in the thermal behavior of single or mixed SPI and WSP could not be explained on the basis of mineral content. PMID:20806895

  15. Field Demonstration of Condition Assessment Technologies for Wastewater Collection Systems

    EPA Science Inventory

    Reliable information on pipe condition is needed to accurately estimate the remaining service life of wastewater collection system assets. Although inspections with conventional closed-circuit television (CCTV) have been the mainstay of pipeline condition assessment for decades,...

  16. Thermal Infrared Imaging Spectrometer - An advanced optics technology instrument

    NASA Technical Reports Server (NTRS)

    Mahoney, Colin; Labaw, Clayton; Sobel, Harold; Kahle, Anne

    1990-01-01

    Through the use of a special optical filter, the Thermal Infrared Imaging Spectrometer, an airborne multispectral IR imaging instrument operating in the thermal emission region (7.5-14 microns), will achieve signal-to-noise ratios greater than 600 with ambient temperature optics. This instrument will be used to do compositional surface mapping of the terrain, and will refine the ability to categorize rock families and types by providing much higher spectral resolution in the emission region than was previously available. Details of the optical system, the detector, the cooler system, and the support electronics are described.

  17. Technology Demonstration: Acoustic Condition Assessment of Wastewater Collection Systems

    EPA Science Inventory

    The overall objective of this EPA-funded study was to demonstrate innovative sewer line assessment technologies that are designed for rapid deployment using portable equipment. This study focused on demonstration of technologies that are suitable for smaller diameter pipes (less ...

  18. Heat Transfer and Thermal Stability Research for Advanced Hydrocarbon Fuel Technologies

    NASA Technical Reports Server (NTRS)

    DeWitt, Kenneth; Stiegemeier, Benjamin

    2005-01-01

    In recent years there has been increased interest in the development of a new generation of high performance boost rocket engines. These efforts, which will represent a substantial advancement in boost engine technology over that developed for the Space Shuttle Main Engines in the early 1970s, are being pursued both at NASA and the United States Air Force. NASA, under its Space Launch Initiative s Next Generation Launch Technology Program, is investigating the feasibility of developing a highly reliable, long-life, liquid oxygen/kerosene (RP-1) rocket engine for launch vehicles. One of the top technical risks to any engine program employing hydrocarbon fuels is the potential for fuel thermal stability and material compatibility problems to occur under the high-pressure, high-temperature conditions required for regenerative fuel cooling of the engine combustion chamber and nozzle. Decreased heat transfer due to carbon deposits forming on wetted fuel components, corrosion of materials common in engine construction (copper based alloys), and corrosion induced pressure drop increases have all been observed in laboratory tests simulating rocket engine cooling channels. To mitigate these risks, the knowledge of how these fuels behave in high temperature environments must be obtained. Currently, due to the complexity of the physical and chemical process occurring, the only way to accomplish this is empirically. Heated tube testing is a well-established method of experimentally determining the thermal stability and heat transfer characteristics of hydrocarbon fuels. The popularity of this method stems from the low cost incurred in testing when compared to hot fire engine tests, the ability to have greater control over experimental conditions, and the accessibility of the test section, facilitating easy instrumentation. These benefits make heated tube testing the best alternative to hot fire engine testing for thermal stability and heat transfer research. This investigation used the Heated Tube Facility at the NASA Glenn Research Center to perform a thermal stability and heat transfer characterization of RP-1 in an environment simulating that of a high chamber pressure, regenerative cooled rocket engine. The first step in the research was to investigate the carbon deposition process of previous heated tube experiments by performing scanning electron microscopic analysis in conjunction with energy dispersive spectroscopy on the tube sections. This analysis gave insight into the carbon deposition process and the effect that test conditions played in the formation of deleterious coke. Furthermore, several different formations were observed and noted. One other crucial finding of this investigation was that in sulfur containing hydrocarbon fuels, the interaction of the sulfur components with copper based wall materials presented a significant corrosion problem. This problem in many cases was more life limiting than those posed by the carbon deposition process. The results of this microscopic analysis was detailed and presented at the December 2003 JANNAF Air-Breathing Propulsion Meeting as a Materials Compatibility and Thermal Stability Analysis of common Hydrocarbon Fuels (reference 1).

  19. Proceedings of the Annual Solar Thermal Technology Research and Development Conference

    NASA Astrophysics Data System (ADS)

    Couch, W. A.

    1989-02-01

    The Annual Solar Thermal Technology Research and Development Conference is being held at the Holiday Inn Crowne Plaza in Arlington, Virgina, March 8 and 9, 1989. This year the conference is meeting in conjunction with SOLTECH '89. SOLTECH '89 is a jointly sponsored meeting of the Solar Energy Industries Association, Interstate Solar Coordination Council, Sandia National Laboratories and the Solar Energy Research Institute. This report contains the agenda, extended abstracts and most significant visual aids used by the speakers during the Solar Thermal Technology research and development sessions. The program is divided into three sessions: Solar Electric Technology, Non-Electric Research and Development and Applications, and Concentrators.

  20. Proceedings of the annual solar thermal technology research and development conference

    SciTech Connect

    Couch, W.A.

    1989-02-01

    The Annual Solar Thermal Technology Research and Development Conference is being held at the Holiday Inn Crowne Plaza in Arlington, Virgina, Marh 8 and 9, 1989. This year the conference is meeting in conjunction with SOLTECH '89. SOLTECH '89 is a jointly sponsored meeting of the Solar Energy Industries Association, Interstate Solar Coordination Council, Sandia National Laboratories and the Solar Energy Research Institute. This report contains the agenda, extended abstracts and most significant visual aids used by the speakers during the Solar Thermal Technology research and development sessions. The program is divided into three sessions: Solar Electric Technology, Non-Electric Research and Development and Applications, and Concentrators.

  1. Analytical Methodology Used To Assess/Refine Observatory Thermal Vacuum Test Conditions For the Landsat 8 Data Continuity Mission

    NASA Technical Reports Server (NTRS)

    Fantano, Louis

    2015-01-01

    Thermal and Fluids Analysis Workshop Silver Spring, MD NCTS 21070-15 The Landsat 8 Data Continuity Mission, which is part of the United States Geologic Survey (USGS), launched February 11, 2013. A Landsat environmental test requirement mandated that test conditions bound worst-case flight thermal environments. This paper describes a rigorous analytical methodology applied to assess refine proposed thermal vacuum test conditions and the issues encountered attempting to satisfy this requirement.

  2. SITE TECHNOLOGY CAPSULE: CLEAN BERKSHIRES, INC. THERMAL DESORPTION SYSTEM

    EPA Science Inventory

    The thermal desorption process devised by Clean Berkshires, Inc., works by vaporizing the organic contaminants from the soil with heat, isolating the contaminant! in a gas stream, and then destroying them in a high efficiency afterburner. The processed solids are either replaced ...

  3. Thermal neutral format based on the step technology

    NASA Technical Reports Server (NTRS)

    Almazan, P. Planas; Legal, J. L.

    1995-01-01

    The exchange of models is one of the most serious problems currently encountered in the practice of spacecraft thermal analysis. Essentially, the problem originates in the diversity of computing environments that are used across different sites, and the consequent proliferation of native tool formats. Furthermore, increasing pressure to reduce the development's life cycle time has originated a growing interest in the so-called spacecraft concurrent engineering. In this context, the realization of the interdependencies between different disciplines and the proper communication between them become critical issues. The use of a neutral format represents a step forward in addressing these problems. Such a means of communication is adopted by consensus. A neutral format is not directly tied to any specific tool and it is kept under stringent change control. Currently, most of the groups promoting exchange formats are contributing with their experience to STEP, the Standard for Exchange of Product Model Data, which is being developed under the auspices of the International Standards Organization (ISO 10303). This paper presents the different efforts made in Europe to provide the spacecraft thermal analysis community with a Thermal Neutral Format (TNF) based on STEP. Following an introduction with some background information, the paper presents the characteristics of the STEP standard. Later, the first efforts to produce a STEP Spacecraft Thermal Application Protocol are described. Finally, the paper presents the currently harmonized European activities that follow up and extend earlier work on the area.

  4. Porous materials produced from incineration ash using thermal plasma technology.

    PubMed

    Yang, Sheng-Fu; Chiu, Wen-Tung; Wang, To-Mai; Chen, Ching-Ting; Tzeng, Chin-Ching

    2014-06-01

    This study presents a novel thermal plasma melting technique for neutralizing and recycling municipal solid waste incinerator (MSWI) ash residues. MSWI ash residues were converted into water-quenched vitrified slag using plasma vitrification, which is environmentally benign. Slag is adopted as a raw material in producing porous materials for architectural and decorative applications, eliminating the problem of its disposal. Porous materials are produced using water-quenched vitrified slag with Portland cement and foaming agent. The true density, bulk density, porosity and water absorption ratio of the foamed specimens are studied here by varying the size of the slag particles, the water-to-solid ratio, and the ratio of the weights of the core materials, including the water-quenched vitrified slag and cement. The thermal conductivity and flexural strength of porous panels are also determined. The experimental results show the bulk density and the porosity of the porous materials are 0.9-1.2 g cm(-3) and 50-60%, respectively, and the pore structure has a closed form. The thermal conductivity of the porous material is 0.1946 W m(-1) K(-1). Therefore, the slag composite materials are lightweight and thermal insulators having considerable potential for building applications. PMID:23948051

  5. High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems

    SciTech Connect

    Baechler, M.; Gilbride, T.; Ruiz, K.; Steward, H.; Love, P.

    2007-06-01

    This document is the sixth volume of the Building America Best Practices Series. It presents information that is useful throughout the United States for enhancing the energy efficiency practices in the specific climate zones that are presented in the first five Best Practices volumes. It provides an introduction to current photovoltaic and solar thermal building practices. Information about window selection and shading is included.

  6. TECHNOLOGY ASSESSMENT OF SOLAR THERMAL ENERGY APPLICATIONS IN WASTEWATER TREATMENT

    EPA Science Inventory

    Three major areas were identified for which solar thermal energy usage has potential applicability in Publicly Owned Treatment Works. These areas include space and domestic water heating, anaerobic digester heating, and sludge drying. The report contains a detailed analysis of so...

  7. CALORSTOCK 1994: Thermal energy storage. Better economy, environment, technology

    NASA Astrophysics Data System (ADS)

    Kangas, M. T.; Lund, P. D.

    This publication is the second volume of the Proceedings of CALORSTOCK'94, the Sixth International Conference on Thermal Energy Storage held in Espoo, Finland on 22-25 Aug. 1994. This volume contains 51 presentations from the following six sessions: Chemical storage; Heat storage and environment; Central solar heating plants with seasonal storage; Water storage pits and tanks; Cooling; and National activities.

  8. Thermal Behavior of Aerospace Spur Gears in Normal and Loss-of-Lubrication Conditions

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.

    2015-01-01

    Testing of instrumented spur gears operating at aerospace rotorcraft conditions was conducted. The instrumented gears were operated in a normal and in a loss-of-lubrication environment. Thermocouples were utilized to measure the temperature at various locations on the test gears and a test utilized a full-field, high-speed infrared thermal imaging system. Data from thermocouples was recorded during all testing at 1 Hz. One test had the gears shrouded and a second test was run without the shrouds to permit the infrared thermal imaging system to take date during loss-of-lubrication operation. Both tests using instrumented spur gears were run in normal and loss-of-lubrication conditions. Also the result from four other loss-of-lubrication tests will be presented. In these tests two different torque levels were used while operating at the same rotational speed (10000 rpm).

  9. Hybrid heating systems optimization of residential environment to have thermal comfort conditions by numerical simulation.

    PubMed

    Jahantigh, Nabi; Keshavarz, Ali; Mirzaei, Masoud

    2015-01-01

    The aim of this study is to determine optimum hybrid heating systems parameters, such as temperature, surface area of a radiant heater and vent area to have thermal comfort conditions. DOE, Factorial design method is used to determine the optimum values for input parameters. A 3D model of a virtual standing thermal manikin with real dimensions is considered in this study. Continuity, momentum, energy, species equations for turbulent flow and physiological equation for thermal comfort are numerically solved to study heat, moisture and flow field. K - ?RNG Model is used for turbulence modeling and DO method is used for radiation effects. Numerical results have a good agreement with the experimental data reported in the literature. The effect of various combinations of inlet parameters on thermal comfort is considered. According to Pareto graph, some of these combinations that have significant effect on the thermal comfort require no more energy can be used as useful tools. A better symmetrical velocity distribution around the manikin is also presented in the hybrid system. PMID:26052442

  10. Response of SiC/SiC to Transient Thermal Conditions: A Review

    SciTech Connect

    Jones, Russell H.

    2001-06-30

    The database on thermal shock behavior of SiC/SiC composites is very limited. The existing data suggests continuous fiber ceramic matrix composites, such as SiC/SiC, exhibit very good thermal shock characteristics but most data was obtained for -Delta T conditions as a result of quenching from an elevated temperature. Thermal shock in a fusion energy system will result from plasma discharge and will result in a +Delta T. One study was reported for SiC/SiC composites given a +Delta T with no loss in strength following 25 cycles at a heating rate of 1700 degrees C/s. Monolithic SiC failed in 1.5 cycles at a heating rate of 1400 degrees C/s. Thermal fatigue test results also suggest that SiC/SiC composites will exhibit little or no degradation for 100's of cycles. It was estimated that radiation could, in an extreme case, cause a reduction in the thermal shock performance from a calculated Delta Tc of 957K to about 300K if the fiber strength is reduced by 50%. Newer composites with greater radiation resistance should have a much smaller change in the Delta Tc.

  11. Graphite Ablation and Thermal Response Simulation Under Arc-Jet Flow Conditions

    NASA Technical Reports Server (NTRS)

    Chen, Y.-K.; Milos, F. S.; Reda, D. C.; Stewart, D. A.; Venkatapathy, Ethiraj (Technical Monitor)

    2002-01-01

    The Two-dimensional Implicit Thermal Response and Ablation program, TITAN, was developed and integrated with a Navier-Stokes solver, GIANTS, for multidimensional ablation and shape change simulation of thermal protection systems in hypersonic flow environments. The governing equations in both codes are demoralized using the same finite-volume approximation with a general body-fitted coordinate system. Time-dependent solutions are achieved by an implicit time marching technique using Gauess-Siedel line relaxation with alternating sweeps. As the first part of a code validation study, this paper compares TITAN-GIANTS predictions with thermal response and recession data obtained from arc-jet tests recently conducted in the Interaction Heating Facility (IHF) at NASA Ames Research Center. The test models are graphite sphere-cones. Graphite was selected as a test material to minimize the uncertainties from material properties. Recession and thermal response data were obtained from two separate arc-jet test series. The first series was at a heat flux where graphite ablation is mainly due to sublimation, and the second series was at a relatively low heat flux where recession is the result of diffusion-controlled oxidation. Ablation and thermal response solutions for both sets of conditions, as calculated by TITAN-GIANTS, are presented and discussed in detail. Predicted shape change and temperature histories generally agree well with the data obtained from the arc-jet tests.

  12. Numerical Experiments of Coolant Mixing in a Lower Plenum of PWR Under Asymmetric Thermal- Hydraulics Conditions

    SciTech Connect

    Masanori Ohtani; Akito Kozuru; Yasuyuki Kashimoto; Mitsuto Montani; Koutaro Takeda; Yasushi Makino

    2006-07-01

    Asymmetric thermal-hydraulic conditions among primary loops during a postulated steam line break (SLB) induce a non-uniform temperature distribution at a core inlet. When coolant of lower temperature intrudes into a part of core, it leads to a reactivity insertion and a local power increase. Therefore, an appropriate model for the core inlet temperature distribution is required for a realistic SLB analysis. In this study, numerical experiments were conducted to examine the core inlet temperature distribution under the asymmetric thermal-hydraulic coolant conditions among primary loops. 3D steady-state calculations were carried out for Japanese standard Pressurized Water Reactor (PWR) such as 2, 3, 4 loop types and an advanced PWR. Since the flow in a reactor vessel involves time-dependent velocity fluctuations due to a high Reynolds number condition and a complicated geometry of flow path, the turbulent mixing might be enhanced. Hence, the turbulent thermal diffusivity for the steady-state calculation was examined based on experimental results and another transient calculation. As a result, it was confirmed that (1) the turbulent mixing in a downcomer and a lower plenum were enhanced due to time-dependent velocity fluctuations and therefore the turbulent thermal diffusivity for steady-state calculation was specified to be greater, (2) the core inlet temperature distribution predicted by a steady-state calculation reasonably agreed with a experimental data, (3) the patterns of core inlet temperature distribution were comprehended to be dependent on the plant type, i.e. the number of primary loop and (4) under a low flow rate condition, the coolant of lower temperature appeared on the opposite side of the affected loop due to the effect of a natural convection. (authors)

  13. Numerical Investigation of Thermal Stress Convention in Nonisothermal Gases Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Mackowski, D. W.

    1999-01-01

    Reported here are our results of our numerical/theoretical investigation into the effects of thermal stress in nonisothermal gases under microgravity conditions. The first part of the report consists of a brief summary of the accomplishments and conclusions of our work. The second part consists of two manuscripts, one being a paper presented at the 1998 MSAD Fluid Physics workshop, and the other to appear in Physics of Fluids.

  14. Integration of Thermal Indoor Conditions into Operational Heat Health Warning Systems

    NASA Astrophysics Data System (ADS)

    Koppe, C.; Becker, P.; Pfafferott, J.

    2009-09-01

    The 2003 heat wave in Western Europe with altogether 35,000 to 50,000 deaths in Europe, several thousands of which occurred in Germany, has clearly pointed out the danger arising from long periods with high heat load. As a consequence, Germany, as many other European countries, has started to implement a Heat Health Warning System (HHWS). The German HHWS is based on the ‘Perceived Temperature'. The 'Perceived Temperature' is determined through a heat budget model of the human organism which includes the main thermophysiologically relevant mechanisms of heat exchange with the atmosphere. The most important meteorological ambience parameters included in the model are air temperature, humidity, wind speed and radiation fluxes in the short-wave and long-wave ranges. In addition to using a heat budget model for the assessment of the thermal load, the German HHWS also takes into account that the human body reacts in different ways to its thermal environment due to physiological adaptation (short-term acclimatisation) and short-term behavioural adaptation. The restriction of such an approach, like the majority of approaches used to issue heat warnings, is that the threshold for a warning is generally derived from meteorological observations and that warnings are issued on the basis of weather forecasts. Both, the observed data and the weather forecasts are only available for outside conditions. The group of people who are most at risk of suffering from a heat wave, however, are the elderly and frail who mainly stay inside. The indoor situation, which varies largely from the conditions outside, is not taken into account by most of the warning systems. To overcome this limitation the DWD, in co-operation with the Fraunhofer Institute for Solar Energy Systems, has developed a model which simulates the thermal conditions in the indoor environment. As air-conditioning in private housing in Germany is not very common, the thermal indoor conditions depend on the outside conditions, on the building characteristics, and on the inhabitants' behaviour. The thermal building simulation model estimates the indoor heat load based of the predicted meteorological outside conditions by calculating the operative indoor temperature. The building types prevailing in Germany are quite heterogeneous. It was therefore decided to use for the thermal simulation a so-called "realistic worst-case” building type. In addition, a differentiation is made between two types of user behaviour: the active user opens the windows during the cold hours of the day and uses shading devices whereas the passive user does nothing to keep the heat outside. Since 2007, the DWD has been using the simulation of the indoor thermal conditions as an additional source of information for heat warnings. The information on the indoor conditions has proved very valuable for the decision whether to issue a heat warning or not.

  15. Reliable source of conditional non-Gaussian states from single-mode thermal fields

    E-print Network

    A. Allevi; A. Andreoni; M. Bondani; M. G. Genoni; S. Olivares

    2010-03-30

    We address both theoretically and experimentally the generation of pulsed non-Gaussian states from classical Gaussian ones by means of conditional measurements. The setup relies on a beam splitter and a pair of linear photodetectors able to resolve up to tens of photons in the two outputs. We show the reliability of the setup and the good agreement with the theory for a single-mode thermal field entering the beam splitter and present a thorough characterization of the photon statistics of the conditional states.

  16. Game Changing Technology: Woven Thermal Protection Systems - Duration: 56 seconds.

    NASA Video Gallery

    New woven composite materials are an advanced space technology that mark a major milestone toward development of the space systems that will enable extending human and robotic presence throughout t...

  17. Combined effects of Fenton peroxidation and CaO conditioning on sewage sludge thermal drying.

    PubMed

    Liu, Huan; Liu, Peng; Hu, Hongyun; Zhang, Qiang; Wu, Zhenyu; Yang, Jiakuan; Yao, Hong

    2014-12-01

    Joint application of Fenton's reagent and CaO can dramatically enhance sludge dewaterability, thus are also likely to affect subsequent thermal drying process. This study investigated the synergistic effects of the two conditioners on the thermal drying behavior of sewage sludge and the emission characteristics of main sulfur-/nitrogen-containing gases. According to the results, Fenton peroxidation combined with CaO conditioning efficiently promoted sludge heat transfer, reduced the amounts of both free and bound water, and created porous structure in solids to provide evaporation channels, thus producing significant positive effects on sludge drying performance. In this case, the required time for drying was shortened to one-third. Additionally, joint usage of Fenton's reagent and CaO did not increase the losses of organic matter during sludge drying process. Meanwhile, they facilitated the formation of sulfate and sulfonic acid/sulfone, leading to sulfur retention in dried sludge. Both of Fenton peroxidation and CaO conditioning promoted the oxidation, decomposition, and/or dissolution of protein and inorganic nitrogen in sludge pre-treatment. As a consequence, the emissions of sulfurous and nitrogenous gases from dewatered sludge drying were greatly suppressed. These indicate that combining Fenton peroxidation with CaO conditioning is a promising strategy to improve drying efficiency of sewage sludge and to control sulfur and nitrogen contaminants during sludge thermal drying process. PMID:25289973

  18. Woven Thermal Protection System Based Heat-shield for Extreme Entry Environments Technology (HEEET)

    NASA Technical Reports Server (NTRS)

    Chinnapongse, Ronald; Ellerbe, Donald; Stackpoole, Maragaret; Venkatapathy, Ethiraj; Beerman, Adam; Feldman, Jay; Peterson Keith; Prabhu, Dinesh; Dillman, Robert; Munk, Michelle

    2013-01-01

    NASA's future robotic missions utilizing an entry system into Venus and the outer planets, namely, Saturn, Uranus, Neptune, result in extremely severe entry conditions that exceed the capabilities of state of the art low to mid density ablators such as PICA or Avcoat. Therefore mission planners typically assume the use of a fully dense carbon phenolic heat shield similar to what was flown on Pioneer Venus and Galileo. Carbon phenolic (CP) is a robust TPS material however its high density and relatively high thermal conductivity constrain mission planners to steep entries, with high heat fluxes and pressures and short entry durations, in order for CP to be feasible from a mass perspective. The high entry conditions pose challenges for certification in existing ground based test facilities and the longer-­-term sustainability of CP will continue to pose challenges. In 2012 the Game Changing Development Program (GCDP) in NASA's Space Technology Mission Directorate funded NASA ARC to investigate the feasibility of a Woven Thermal Protection System (WTPS) to meet the needs of NASA's most challenging entry missions. This project was highly successful demonstrating that a Woven TPS solution compares favorably to CP in performance in simulated reentry environments and provides the opportunity to manufacture graded materials that should result in overall reduced mass solutions and enable a much broader set of missions than does CP. Building off the success of the WTPS project GCDP has funded a follow on project to further mature and scale up the WTPS concept for insertion into future NASA robotic missions. The matured WTPS will address the CP concerns associated with ground based test limitations and sustainability. This presentation will briefly discuss results from the WTPS Project and the plans for WTPS maturation into a heat-­-shield for extreme entry environment.

  19. Woven Thermal Protection System Based Heat-shield for Extreme Entry Environments Technology (HEEET)

    NASA Technical Reports Server (NTRS)

    Ellerby, Donald; Venkatapathy, Ethiraj; Stackpoole, Margaret; Chinnapongse, Ronald; Munk, Michelle; Dillman, Robert; Feldman, Jay; Prabhu, Dinesh; Beerman, Adam

    2013-01-01

    NASA's future robotic missions utilizing an entry system into Venus and the outer planets, namely, Saturn, Uranus, Neptune, result in extremely high entry conditions that exceed the capabilities of state of the art low to mid density ablators such as PICA or Avcoat. Therefore mission planners typically assume the use of a fully dense carbon phenolic heat shield similar to what was flown on Pioneer Venus and Galileo. Carbon phenolic is a robust TPS material however its high density and relatively high thermal conductivity constrain mission planners to steep entries, with high heat fluxes and pressures and short entry durations, in order for CP to be feasible from a mass perspective. The high entry conditions pose challenges for certification in existing ground based test facilities and the longer-term sustainability of CP will continue to pose challenges. In 2012 the Game Changing Development Program (GCDP) in NASA's Space Technology Mission Directorate funded NASA ARC to investigate the feasibility of a Woven Thermal Protection System (WTPS) to meet the needs of NASA's most challenging entry missions. This project was highly successful demonstrating that a Woven TPS solution compares favorably to CP in performance in simulated reentry environments and provides the opportunity to manufacture graded materials that should result in overall reduced mass solutions and enable a much broader set of missions than does CP. Building off the success of the WTPS project GCDP has funded a follow on project to further mature and scale up the WTPS concept for insertion into future NASA robotic missions. The matured WTPS will address the CP concerns associated with ground based test limitations and sustainability. This presentation will briefly discuss results from the WTPS Project and the plans for WTPS maturation into a heat-shield for extreme entry environment.

  20. CALORSTOCK'94. Thermal energy storage. Better economy, environment, technology

    NASA Astrophysics Data System (ADS)

    Kangas, M. T.; Lund, P. D.

    This publication is the first volume of the proceedings of CALORSTOCK'94, the sixth international conference on thermal energy storage held in Espoo, Finland on August 22-25, 1994. This volume contains 58 presentations from the following six sessions: Aquifer storage, Integration into energy systems, Simulation models and design tools, IEA energy conservation through energy storage programme workshop, Earth coupled storage, and District heating and utilities.

  1. Supporting technology for enhanced oil recovery - EOR thermal processes

    SciTech Connect

    1995-03-01

    This report contains the results of efforts under the six tasks of the Eighth Amendment and Extension of Annex IV, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Agreement. The report is presented in sections and each section contains one or more reports prepared by various individuals or groups describing the results of efforts under each of the tasks. A statement of each task, taken from the agreement, is presented on the first page of each section.

  2. Experimental study on occupant's thermal responses under the non-uniform conditions in vehicle cabin during the heating period

    NASA Astrophysics Data System (ADS)

    Zhang, Wencan; Chen, Jiqing; Lan, Fengchong

    2014-03-01

    The existing investigations on thermal comfort mostly focus on the thermal environment conditions, especially of the air-flow field and the temperature distributions in vehicle cabin. Less attention appears to direct to the thermal comfort or thermal sensation of occupants, even to the relationship between thermal conditions and thermal sensation. In this paper, a series of experiments were designed and conducted for understanding the non-uniform conditions and the occupant's thermal responses in vehicle cabin during the heating period. To accurately assess the transient temperature distribution in cabin in common daily condition, the air temperature at a number of positions is measured in a full size vehicle cabin under natural winter environment in South China by using a discrete thermocouples network. The occupant body is divided into nine segments, the skin temperature at each segment and the occupant's local thermal sensation at the head, body, upper limb and lower limb are monitored continuously. The skin temperature is observed by using a discrete thermocouples network, and the local thermal sensation is evaluated by using a seven-point thermal comfort survey questionnaire proposed by American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc(ASHRAE) Standard. The relationship between the skin temperature and the thermal sensation is discussed and regressed by statistics method. The results show that the interior air temperature is highly non-uniform over the vehicle cabin. The locations where the occupants sit have a significant effect on the occupant's thermal responses, including the skin temperature and the thermal sensation. The skin temperature and thermal sensation are quite different between body segments due to the effect of non-uniform conditions, clothing resistance, and the human thermal regulating system. A quantitative relationship between the thermal sensation and the skin temperature at each body segment of occupant in real life traffic is presented. The investigation result indicates that the skin temperature is a robust index to evaluate the thermal sensation. Applying the skin temperature to designing and controlling parameters of the heating, ventilation and air conditioning(HVAC) system may benefit the thermal comfort and reducing energy consumption.

  3. Thermodynamic model of a thermal storage air conditioning system with dynamic behavior

    SciTech Connect

    Fleming, E; Wen, SY; Shi, L; da Silva, AK

    2013-12-01

    A thermodynamic model was developed to predict transient behavior of a thermal storage system, using phase change materials (PCMs), for a novel electric vehicle climate conditioning application. The main objectives of the paper are to consider the system's dynamic behavior, such as a dynamic air flow rate into the vehicle's cabin, and to characterize the transient heat transfer process between the thermal storage unit and the vehicle's cabin, while still maintaining accurate solution to the complex phase change heat transfer. The system studied consists of a heat transfer fluid circulating between either of the on-board hot and cold thermal storage units, which we refer to as thermal batteries, and a liquid-air heat exchanger that provides heat exchange with the incoming air to the vehicle cabin. Each thermal battery is a shell-and-tube configuration where a heat transfer fluid flows through parallel tubes, which are surrounded by PCM within a larger shell. The system model incorporates computationally inexpensive semianalytic solution to the conjugated laminar forced convection and phase change problem within the battery and accounts for airside heat exchange using the Number of Transfer Units (NTUs) method for the liquid-air heat exchanger. Using this approach, we are able to obtain an accurate solution to the complex heat transfer problem within the battery while also incorporating the impact of the airside heat transfer on the overall system performance. The implemented model was benchmarked against a numerical study for a melting process and against full system experimental data for solidification using paraffin wax as the PCM. Through modeling, we demonstrate the importance of capturing the airside heat exchange impact on system performance, and we investigate system response to dynamic operating conditions, e.g., air recirculation. (C) 2013 Elsevier Ltd. All rights reserved.

  4. Report on Condition Assessment Technology of Wastewater Collection Systems

    EPA Science Inventory

    The wastewater collection system infrastructure in the United States is recognized as being in poor condition and in urgent need of condition assessment and rehabilitation. As part of an effort to address aging infrastructure needs, the U.S. Environmental Protection Agency (USEP...

  5. Flash thermal conditioning of olive pastes during the olive oil mechanical extraction process: impact on the structural modifications of pastes and oil quality.

    PubMed

    Esposto, Sonia; Veneziani, Gianluca; Taticchi, Agnese; Selvaggini, Roberto; Urbani, Stefania; Di Maio, Ilona; Sordini, Beatrice; Minnocci, Antonio; Sebastiani, Luca; Servili, Maurizio

    2013-05-22

    The quality of virgin olive oil (VOO) is strictly related to the concentrations of phenolic and volatile compounds, which are strongly affected by the operative conditions of the VOO mechanical extraction process. The aim of this work is to study the impact of a new technology such as flash thermal conditioning (FTC) on olive paste structural modification and on VOO quality. The evaluation of olive paste structure modification by cryo-scanning electron microscopy (cryo-SEM) showed that the application of FTC after crushing produces significant differences in terms of the breaking of the parenchyma cells and aggregation of oil droplets in comparison to the crushed pastes. The virgin olive oil flash thermal conditioning (VOO-FTC) featured a higher concentration of volatile compounds compared to that in the control, particularly of all saturated and unsaturated aldehydes and esters, whereas the phenolic concentration was higher in VOO obtained from the traditional process (VOO-C). PMID:23590117

  6. 76 FR 77578 - In the Matter of: Brendan Technologies, Inc., CenterStaging Corp., PGMI, Inc., Thermal Energy...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-13

    ...Technologies, Inc., CenterStaging Corp., PGMI, Inc., Thermal Energy Storage, Inc., and Trinity3 Corporation; Order of...current and accurate information concerning the securities of Thermal Energy Storage, Inc. because it has not filed any...

  7. A Rubric for Self-Assessment of Essential Technology Conditions in Schools

    ERIC Educational Resources Information Center

    Steckelberg, Allen L.; Li, Lan; Liu, Xiongyi; Kozak, Mike

    2008-01-01

    This article describes the development of a Web-based instrument that is part of a strategic planning initiative in technology in K-12 schools in Nebraska. The instrument provides rubrics for self-assessment of essential conditions necessary for integrating and adopting of technology. Essential conditions were defined by an extended panel of…

  8. Field Demonstration of Electro-Scan Defect Location Technology for Condition Assessment of Wastewater Collection Systems

    EPA Science Inventory

    The purpose of the field demonstration program is to gather technically reliable cost and performance information on selected condition assessment technologies under defined field conditions. The selected technologies include zoom camera, electro-scan (FELL-41), and a multi-sens...

  9. Heart rate variability in sleeping preterm neonates exposed to cool and warm thermal conditions.

    PubMed

    Stéphan-Blanchard, Erwan; Chardon, Karen; Léké, André; Delanaud, Stéphane; Bach, Véronique; Telliez, Frédéric

    2013-01-01

    Sudden infant death syndrome (SIDS) remains the main cause of postneonatal infant death. Thermal stress is a major risk factor and makes infants more vulnerable to SIDS. Although it has been suggested that thermal stress could lead to SIDS by disrupting autonomic functions, clinical and physiopathological data on this hypothesis are scarce. We evaluated the influence of ambient temperature on autonomic nervous activity during sleep in thirty-four preterm neonates (mean ± SD gestational age: 31.4±1.5 weeks, postmenstrual age: 36.2±0.9 weeks). Heart rate variability was assessed as a function of the sleep stage at three different ambient temperatures (thermoneutrality and warm and cool thermal conditions). An elevated ambient temperature was associated with a higher basal heart rate and lower short- and long-term variability in all sleep stages, together with higher sympathetic activity and lower parasympathetic activity. Our study results showed that modification of the ambient temperature led to significant changes in autonomic nervous system control in sleeping preterm neonates. The latter changes are very similar to those observed in infants at risk of SIDS. Our findings may provide greater insight into the thermally-induced disease mechanisms related to SIDS and may help improve prevention strategies. PMID:23840888

  10. REVIEW OF MOBILE THERMAL TECHNOLOGIES FOR SOLID WASTE DESTRUCTION

    EPA Science Inventory

    Incineration has been dopted as a proven technology to dispose of: azardous waste regulated under the Resource Conservation and Recovery Act (RCRA); Toxic substances under the Toxic Substances Control Act (TSCA); Sludge waste under the Clean Water Act; Hazardous substances under ...

  11. Mathematical Modelling of Thermal Process to Aquatic Environment with Different Hydrometeorological Conditions

    PubMed Central

    Issakhov, Alibek

    2014-01-01

    This paper presents the mathematical model of the thermal process from thermal power plant to aquatic environment of the reservoir-cooler, which is located in the Pavlodar region, 17?Km to the north-east of Ekibastuz town. The thermal process in reservoir-cooler with different hydrometeorological conditions is considered, which is solved by three-dimensional Navier-Stokes equations and temperature equation for an incompressible flow in a stratified medium. A numerical method based on the projection method, divides the problem into three stages. At the first stage, it is assumed that the transfer of momentum occurs only by convection and diffusion. Intermediate velocity field is solved by fractional steps method. At the second stage, three-dimensional Poisson equation is solved by the Fourier method in combination with tridiagonal matrix method (Thomas algorithm). Finally, at the third stage, it is expected that the transfer is only due to the pressure gradient. Numerical method determines the basic laws of the hydrothermal processes that qualitatively and quantitatively are approximated depending on different hydrometeorological conditions. PMID:24991644

  12. Thermal Technology Development Activities at the Goddard Space Flight Center - 2001

    NASA Technical Reports Server (NTRS)

    Butler, Dan

    2002-01-01

    This presentation provides an overview of thermal technology development activities carried out at NASA's Goddard Space Flight Center during 2001. Specific topics covered include: two-phase systems (heat pipes, capillary pumped loops, vapor compression systems and phase change materials), variable emittance systems, advanced coatings, high conductivity materials and electrohydrodynamic (EHD) thermal coatings. The application of these activities to specific space missions is also discussed.

  13. Development of the Variable Emittance Thermal Suite for the Space Technology 5 Microsatellite

    NASA Technical Reports Server (NTRS)

    Douglas, Donya M.; Swanson, Theodore; Osiander, Robert; Champion, John; Darrin, Ann Garrison; Biter, William; Chandrasekhar, Prasanna; Obenschain, Arthur (Technical Monitor)

    2001-01-01

    The advent of very small satellites, such as nano and microsatellites, logically leads to a requirement for smaller thermal control subsystems. In addition, the thermal control needs of the smaller spacecraft/instrument may well be different from more traditional situations. For example, power for traditional heaters may be very limited or unavailable, mass allocations may be severely limited, and fleets of nano/microsatellites will require a generic thermal design as the cost of unique designs will be prohibitive. Some applications may require significantly increased power levels while others may require extremely low heat loss for extended periods. Small spacecraft will have low thermal capacitance thus subjecting them to large temperature swings when either the heat generation rate changes or the thermal sink temperature changes. This situation, combined with the need for tighter temperature control, will present a challenging situation during transient operation. The use of "off-the-shelf" commercial spacecraft buses for science instruments will also present challenges. Older thermal technology, such as heaters, thermostats, and heat pipes, will almost certainly not be sufficient to meet the requirements of these new spacecraft/instruments. They are generally too heavy, not scalable to very small sizes, and may consume inordinate amounts of power. Hence there is a strong driver to develop new technology to meet these emerging needs. Variable emittance coatings offer an exciting alternative to traditional control methodologies and are one of the technologies that will be flown on Space Technology 5, a mission of three microsatellites designed to validate "enabling" technologies. Several studies have identified variable emittance coatings as applicable to a wide range of spacecraft, and to potentially offer substantial savings in mass and/or power over traditional approaches. This paper discusses the development of the variable emittance thermal suite for ST-5. More specifically, it provides a description of and the infusion and validation plans for the variable emittance coatings.

  14. Technology Demonstration: Acoustic Condition Assessment of Wastewater Collection Systems

    EPA Science Inventory

    The overall objective of this demonstration project was to evaluate technologies that are designed for rapid deployment using portable equipment that can result in significant cost-savings to wastewater utilities. Smaller diameter pipes (i.e., less than 12-inch diameter) are gen...

  15. Gene targeting in embryonic stem cells, II: conditional technologies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genome modification via transgenesis has allowed researchers to link genotype and phenotype as an alternative approach to the characterization of random mutations through evolution. The synergy of technologies from the fields of embryonic stem (ES) cells, gene knockouts, and protein-mediated recombi...

  16. Analysis of technological conditions influence on efficiency of oilfield treatment

    NASA Astrophysics Data System (ADS)

    Usheva, N. V.; Moizes, O. E.; Kuzmenko, E. A.; Kim, S. F.; Khlebnikova, E. S.; Dyalilova, S. N.; Filippova, T. V.

    2015-11-01

    The results of influence of process parameters on oil quality and recommended effective technological modes of oilfield treatment processes are presented in this paper. It is shown that the parameters that significantly affect the efficiency of oil processes are temperature and water-oil emulsion flow rate with a given number of working process units and the structure of flowsheet flows.

  17. Thermal processing of bone: in vitro response of mesenchymal cells to bone-conditioned medium.

    PubMed

    Sawada, K; Caballé-Serrano, J; Schuldt Filho, G; Bosshardt, D D; Schaller, B; Buser, D; Gruber, R

    2015-08-01

    The autoclaving, pasteurization, and freezing of bone grafts to remove bacteria and viruses, and for preservation, respectively, is considered to alter biological properties during graft consolidation. Fresh bone grafts release paracrine-like signals that are considered to support tissue regeneration. However, the impact of the autoclaving, pasteurization, and freezing of bone grafts on paracrine signals remains unknown. Therefore, conditioned medium was prepared from porcine cortical bone chips that had undergone thermal processing. The biological properties of the bone-conditioned medium were assessed by examining the changes in expression of target genes in oral fibroblasts. The data showed that conditioned medium obtained from bone chips that had undergone pasteurization and freezing changed the expression of adrenomedullin, pentraxin 3, BTB/POZ domain-containing protein 11, interleukin 11, NADPH oxidase 4, and proteoglycan 4 by at least five-fold in oral fibroblasts. Bone-conditioned medium obtained from autoclaved bone chips, however, failed to change the expression of the respective genes. Also, when bone-conditioned medium was prepared from fresh bone chips, autoclaving blocked the capacity of bone-conditioned medium to modulate gene expression. These in vitro results suggest that pasteurization and freezing of bone grafts preserve the release of biologically active paracrine signals, but autoclaving does not. PMID:25868709

  18. Thermalization, Isotropization and Elliptic Flow from Nonequilibrium Initial Conditions with a Saturation Scale

    E-print Network

    Marco Ruggieri; Francesco Scardina; Salvatore Plumari; Vincenzo Greco

    2014-07-09

    In this article we report on our results about the computation of the elliptic flow of the quark-gluon-plasma produced in relativistic heavy ion collisions, simulating the expansion of the fireball by solving the relativistic Boltzmann equation for the parton distribution function tuned at a fixed shear viscosity to entropy density ratio $\\eta/s$. Our main goal is to put emphasis on the role of a saturation scale in the initial gluon spectrum, which makes the initial distribution far from a thermalized one. We find that the presence of the saturation scale reduces the efficiency in building-up the elliptic flow, even if the thermalization process is quite fast $\\tau_{therm} \\approx 0.8 \\,\\rm fm/c$ and the pressure isotropization even faster $\\tau_{isotr} \\approx 0.3 \\,\\rm fm/c$. The impact of the non-equilibrium implied by the saturation scale manifests for non-central collisions and can modify the estimate of the viscosity respect to the assumption of full thermalization in $p_T$-space. We find that the estimate of $\\eta/s$ is modified from $\\eta/s \\approx 2/4\\pi$ to $\\eta/s \\approx 1/4\\pi$ at RHIC and from $\\eta/s \\approx 3/4\\pi$ to $\\eta/s \\approx 2/4\\pi$ at LHC. We complete our investigation by a study of the thermalization and isotropization times of the fireball for different initial conditions and values of $\\eta/s$ showing how the latter affects both isotropization and thermalization. Lastly, we have seen that the range of values explored by the phase-space distribution function $f$ is such that at $p_T<0.5\\, \\rm GeV$ the inner part of the fireball stays with occupation number significantly larger than unity despite the fast longitudinal expansion, which might suggest the possibility of the formation of a transient Bose-Einstein Condensate.

  19. Heavy oil reservoirs recoverable by thermal technology. Annual report

    SciTech Connect

    Kujawa, P.

    1981-02-01

    This volume contains reservoir, production, and project data for target reservoirs thermally recoverable by steam drive which are equal to or greater than 2500 feet deep and contain heavy oil in the 8 to 25/sup 0/ API gravity range. Data were collected from three source types: hands-on (A), once-removed (B), and twice-removed (C). In all cases, data were sought depicting and characterizing individual reservoirs as opposed to data covering an entire field with more than one producing interval or reservoir. The data sources are listed at the end of each case. This volume also contains a complete listing of operators and projects, as well as a bibliography of source material.

  20. Thermal and laser conditioning of production- and rapid-growth KDP and KD*P crystals

    SciTech Connect

    Atherton, L.J.; Rainer, F.; De Yoreo, J.J.; Thomas, I.M.; Zaitseva, N.; De Marco, F.

    1994-01-13

    Large solid state lasers such as Beamlet and the proposed National Ignition Facility (NIF) require optical materials with extremely high damage thresholds. Potassium dihydrogen phosphate (KDP) and its deuterated analog (KD*P) both require some form of conditioning to reach the design fluence of these lasers. Both the bulk material and the crystal surfaces must have damage thresholds in excess of 16J/cm{sup 2} at 1053 nm and 11J/cm{sup 2} at 351 nm for 3-ns pulselengths. The use of ultrafiltration techniques has been demonstrated to produce bulk material with damage thresholds exceeding these requirements with the use of R:1 laser conditioning. More recent results at LLNL using large-area laser conditioning and thermal annealing are described for a variety of state-of-the-art KDP and KD*P crystals. Results on thermally annealed KD*P with a deuteration range of 60% to 80% are also presented, and compared to those of ordinary KDP.

  1. solar thermal power systems advanced solar thermal technology project, advanced subsystems development

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The preliminary design for a prototype small (20 kWe) solar thermal electric generating unit was completed, consisting of several subsystems. The concentrator and the receiver collect solar energy and a thermal buffer storage with a transport system is used to provide a partially smoothed heat input to the Stirling engine. A fossil-fuel combustor is included in the receiver designs to permit operation with partial or no solar insolation (hybrid). The engine converts the heat input into mechanical action that powers a generator. To obtain electric power on a large scale, multiple solar modules will be required to operate in parallel. The small solar electric power plant used as a baseline design will provide electricity at remote sites and small communities.

  2. The Jet Principle: Technologies Provide Border Conditions for Global Learning

    ERIC Educational Resources Information Center

    Ahamer, Gilbert

    2012-01-01

    Purpose: The purpose of this paper is to first define the "jet principle" of (e-)learning as providing dynamically suitable framework conditions for enhanced learning procedures that combine views from multiple cultures of science. Second it applies this principle to the case of the "Global Studies" curriculum, a unique interdisciplinary…

  3. Thermal state of permafrost in urban environment under changing climatic conditions

    NASA Astrophysics Data System (ADS)

    Grebenets, V. I.; Kerimov, A. G.; Shiklomanov, N. I.; Streletskiy, D. A.; Shkoda, V. S.; Anduschenko, F. D.

    2014-12-01

    Large industrial centers on permafrost are characterized by a set of geocryological conditions different from natural environment. Thermal state of foundations on permafrost in areas of economic development depends on climate trends and upon technogenic impacts, such as type of impact, area of facility, permafrost temperature and duration of the technogenic pressure. Technogenic degradation of permafrost is evident in most urban centers on permafrost leading to deterioration of geotechnical environment and particularly foundations of buildings and structures. This situation is exacerbated by climate warming in such cities as Vorkuta, Chita, Nerungry, Salekhard and others where temperature rises at a rate of 0.4 - 1.2 oC/decade over the last 40 years. To evaluate impact of climate warming and technogenic factors on permafrost temperature regime and foundation bearing capacity we compared five facilities in Norilsk, the largest city on permafrost. The facilities were selected to represent different parts of the town, different ages of built-up environment and were located in different permafrost and lithological conditions. We found a leading role of technogenic factors relative to climatic ones in dynamics of thermal state of permafrost in urban environment. Climate warming in Norilsk (0.15 oC/decade) was a small contributor, but gave an additional input to deterioration of geotechnical environment on permafrost. At the same time, implementation of engineering solutions of permafrost temperature cooling (such as crawl spaces) result in lowering of permafrost temperature. Field surveys in Yamburg showed that under some facilities permafrost temperature decreased by 1-1.5 C oC over the last 15 years despite pronounced in the region climate warming of 0.5 oC/decade. This shows that despite deterioration of permafrost conditions in the most Arctic regions due to technogenic pressure and climate warming, implementation of adequate engineering solutions allows stabilization of permafrost thermal regime.

  4. Human thermal bioclimatic conditions associated with acute cardiovascular syndromes in Crete Island, Greece

    NASA Astrophysics Data System (ADS)

    Bleta, Anastasia G.; Nastos, Panagiotis T.

    2013-04-01

    The aim of this study is to quantify the association between bioclimatic conditions and daily counts of admissions for non-fatal acute cardiovascular (acute coronary syndrome, arrhythmia, decompensation of heart failure) syndromes (ACS) registered by the two main hospitals in Heraklion, Crete Island, during a five-year period 2008-2012. The bioclimatic conditions analyzed are based on human thermal bioclimatic indices such as the Physiological Equivalent Temperature (PET) and the Universal Thermal Climate Index (UTCI). Mean daily meteorological parameters, such as air temperature, relative humidity, wind speed and cloudiness, were acquired from the meteorological station of Heraklion (Hellenic National Meteorological Service). These parameters were used as input variables in modeling the aforementioned thermal indices, in order to interpret the grade of the thermo-physiological stress. The PET and UTCI analysis was performed by the use of the radiation and bioclimate model, "RayMan", which is well-suited to calculate radiation fluxes and human biometeorological indices. Generalized linear models (GLM) were applied to time series of daily numbers of outpatients with ACS against bioclimatic variations, after controlling for possible confounders and adjustment for season and trends. The interpretation of the results of this analysis suggests a significant association between cold weather and increased coronary heart disease incidence, especially in the elderly and males. Additionally, heat stress plays an important role in the configuration of daily ACS outpatients, even in temperate climate, as that in Crete Island. In this point it is worth mentioning that Crete Island is frequently affected by Saharan outbreaks, which are associated in many cases with miscellaneous phenomena, such as Föhn winds - hot and dry winds - causing extreme bioclimatic conditions (strong heat stress). Taking into consideration the projected increased ambient temperature in the future, ACS exacerbation is very likely to happen during the warm period, against mitigation during the cold period of the year.

  5. Role of atomic vacancies and boundary conditions on ballistic thermal transport in graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Scuracchio, P.; Costamagna, S.; Peeters, F. M.; Dobry, A.

    2014-07-01

    Quantum thermal transport in armchair and zigzag graphene nanoribbons is investigated in the presence of single atomic vacancies and subject to different boundary conditions. We start with a full comparison of the phonon polarizations and energy dispersions as given by a fifth-nearest-neighbor force-constant model (5NNFCM) and by elasticity theory of continuum membranes (ETCM). For free-edge ribbons, we discuss the behavior of an additional acoustic edge-localized flexural mode, known as fourth acoustic branch (4ZA), which has a small gap when it is obtained by the 5NNFCM. Then, we show that ribbons with supported edges have a sample-size dependent energy gap in the phonon spectrum which is particularly large for in-plane modes. Irrespective to the calculation method and the boundary condition, the dependence of the energy gap for the low-energy optical phonon modes against the ribbon width W is found to be proportional to 1/W for in-plane, and 1/W2 for out-of-plane phonon modes. Using the 5NNFCM, the ballistic thermal conductance and its contributions from every single phonon mode are then obtained by the nonequilibrium Green's function technique. We found that, while edge and central localized single atomic vacancies do not affect the low-energy transmission function of in-plane phonon modes, they reduce considerably the contributions of the flexural modes. On the other hand, in-plane modes contributions are strongly dependent on the boundary conditions and at low temperatures can be highly reduced in supported-edge samples. These findings could open a route to engineer graphene based devices where it is possible to discriminate the relative contribution of polarized phonons and to tune the thermal transport on the nanoscale.

  6. Modeling of Thermal Performance of Multiphase Nuclear Fuel Cell Under Variable Gravity Conditions

    NASA Technical Reports Server (NTRS)

    Ding, Z.; Anghaie, S.

    1996-01-01

    A unique numerical method has been developed to model the dynamic processes of bulk evaporation and condensation processes, associated with internal heat generation and natural convection under different gravity levels. The internal energy formulation, for the bulk liquid-vapor phase change problems in an encapsulated container, was employed. The equations, governing the conservation of mass, momentum and energy for both phases involved in phase change, were solved. The thermal performance of a multiphase uranium tetra-fluoride fuel element under zero gravity, micro-gravity and normal gravity conditions has been investigated. The modeling yielded results including the evolution of the bulk liquid-vapor phase change process, the evolution of the liquid-vapor interface, the formation and development of the liquid film covering the side wall surface, the temperature distribution and the convection flow field in the fuel element. The strong dependence of the thermal performance of such multiphase nuclear fuel cell on the gravity condition has been revealed. Under all three gravity conditions, 0-g, 10(exp -3)-g, and 1-g, the liquid film is formed and covers the entire side wall. The liquid film covering the side wall is more isothermalized at the wall surface, which can prevent the side wall from being over-heated. As the gravity increases, the liquid film is thinner, the temperature gradient is larger across the liquid film and smaller across the vapor phase. This investigation provides valuable information about the thermal performance of multi-phase nuclear fuel element for the potential space and ground applications.

  7. Optimization of Remediation Conditions using Vadose Zone Monitoring Technology

    NASA Astrophysics Data System (ADS)

    Dahan, O.; Mandelbaum, R.; Ronen, Z.

    2010-12-01

    Success of in-situ bio-remediation of the vadose zone depends mainly on the ability to change and control hydrological, physical and chemical conditions of subsurface. These manipulations enables the development of specific, indigenous, pollutants degrading bacteria or set the environmental conditions for seeded bacteria. As such, the remediation efficiency is dependent on the ability to implement optimal hydraulic and chemical conditions in deep sections of the vadose zone. Enhanced bioremediation of the vadose zone is achieved under field conditions through infiltration of water enriched with chemical additives. Yet, water percolation and solute transport in unsaturated conditions is a complex process and application of water with specific chemical conditions near land surface dose not necessarily result in promoting of desired chemical and hydraulic conditions in deeper sections of the vadose zone. A newly developed vadose-zone monitoring system (VMS) allows continuous monitoring of the hydrological and chemical properties of the percolating water along deep sections of the vadose zone. Implementation of the VMS at sites that undergoes active remediation provides real time information on the chemical and hydrological conditions in the vadose zone as the remediation process progresses. Manipulating subsurface conditions for optimal biodegradation of hydrocarbons is demonstrated through enhanced bio-remediation of the vadose zone at a site that has been contaminated with gasoline products in Tel Aviv. The vadose zone at the site is composed of 6 m clay layer overlying a sandy formation extending to the water table at depth of 20 m bls. The upper 5 m of contaminated soil were removed for ex-situ treatment, and the remaining 15 m vadose zone is treated in-situ through enhanced bioremedaition. Underground drip irrigation system was installed below the surface on the bottom of the excavation. Oxygen and nutrients releasing powder (EHCO, Adventus) was spread below the irrigation system to enrich the percolating water. The vadose zone monitoring system that was installed at the site allowed accurate monitoring of the wetting cycles, including: (1) wetting front propagation velocities, (2) temporal variation of the sediment water content, (2) chemical composition of the percolating water, (3) isotopic composition of BTEX compounds, (4) variations in nutrient concentration, and (5) variations in the vadose zone redox potential. Preliminary results showed that the wetting front crossed the entire vadose zone in four days reaching maximum water content values of 12 to 18 %. Temporal variation in the sediment BTEX concentrations indicated significant reduction in highly soluble and mobile compounds such as MTBE. Yet the chemical composition of the water samples through the first sampling campaign indicated that the limiting factor for biodegradation at the first wetting cycle was insufficient nitrogen. Results from each wetting cycles were used to improve the following wetting cycles in order to optimize the vadose zone conditions for microbial activity while minimizing leaching of contaminants to the groundwater.

  8. The optimum levels of the thermal protection of residential buildings under climatic conditions of Russia

    NASA Astrophysics Data System (ADS)

    Filippov, S. P.; Dil'man, M. D.; Ionov, M. S.

    2013-11-01

    The present paper reports the results of determining the optimum values of the resistance of building envelopes to heat transfer for both existing and newly constructed buildings for regions of Russia with different climatic conditions. An analysis for the sensitivity of obtained optimum solutions to changes in external factors has been made. The potential of energy saving in both the existing housing stock and in newly constructed buildings due to the improvement of thermal protection performance of buildings to the optimum level has been determined.

  9. Radiative property degradation of water impinging on thermally-controlled surfaces under space conditions.

    NASA Technical Reports Server (NTRS)

    Maples, D.; Spiller, M. H.; Maples, G.

    1973-01-01

    Review of the results of an investigation aimed at determining experimentally the directional monochromatic reflectance changes caused under high-vacuum space conditions by a water spray impinging on thermally controlled surfaces consisting of three paint specimens (Z93, S13G, and 92-007) and an aluminum foil. The first two paints and the aluminum foil suffered considerable physical damage, but only small changes resulted in the reflectance of the paints while the reflectance of the aluminum foil decreased with increase in exposure time to the water jet. Only the 92-007 Dow Corning paint retained the same physical and reflective characteristics.

  10. Hypothetical accident condition thermal analysis and testing of a Type B drum package

    SciTech Connect

    Hensel, S.J.; Alstine, M.N. Van; Gromada, R.J.

    1995-07-01

    A thermophysical property model developed to analytically determine the thermal response of cane fiberboard when exposed to temperatures and heat fluxes associated with the 10 CFR 71 hypothetical accident condition (HAC) has been benchmarked against two Type B drum package fire test results. The model 9973 package was fire tested after a 30 ft. top down drop and puncture, and an undamaged model 9975 package containing a heater (21W) was fire tested to determine content heat source effects. Analysis results using a refined version of a previously developed HAC fiberboard model compared well against the test data from both the 9973 and 9975 packages.

  11. Genotypic Influence on Aversive Conditioning in Honeybees, Using a Novel Thermal Reinforcement Procedure

    PubMed Central

    Junca, Pierre; Carcaud, Julie; Moulin, Sibyle; Garnery, Lionel; Sandoz, Jean-Christophe

    2014-01-01

    In Pavlovian conditioning, animals learn to associate initially neutral stimuli with positive or negative outcomes, leading to appetitive and aversive learning respectively. The honeybee (Apis mellifera) is a prominent invertebrate model for studying both versions of olfactory learning and for unraveling the influence of genotype. As a queen bee mates with about 15 males, her worker offspring belong to as many, genetically-different patrilines. While the genetic dependency of appetitive learning is well established in bees, it is not the case for aversive learning, as a robust protocol was only developed recently. In the original conditioning of the sting extension response (SER), bees learn to associate an odor (conditioned stimulus - CS) with an electric shock (unconditioned stimulus - US). This US is however not a natural stimulus for bees, which may represent a potential caveat for dissecting the genetics underlying aversive learning. We thus first tested heat as a potential new US for SER conditioning. We show that thermal stimulation of several sensory structures on the bee’s body triggers the SER, in a temperature-dependent manner. Moreover, heat applied to the antennae, mouthparts or legs is an efficient US for SER conditioning. Then, using microsatellite analysis, we analyzed heat sensitivity and aversive learning performances in ten worker patrilines issued from a naturally inseminated queen. We demonstrate a strong influence of genotype on aversive learning, possibly indicating the existence of a genetic determinism of this capacity. Such determinism could be instrumental for efficient task partitioning within the hive. PMID:24828422

  12. Genotypic influence on aversive conditioning in honeybees, using a novel thermal reinforcement procedure.

    PubMed

    Junca, Pierre; Carcaud, Julie; Moulin, Sibyle; Garnery, Lionel; Sandoz, Jean-Christophe

    2014-01-01

    In Pavlovian conditioning, animals learn to associate initially neutral stimuli with positive or negative outcomes, leading to appetitive and aversive learning respectively. The honeybee (Apis mellifera) is a prominent invertebrate model for studying both versions of olfactory learning and for unraveling the influence of genotype. As a queen bee mates with about 15 males, her worker offspring belong to as many, genetically-different patrilines. While the genetic dependency of appetitive learning is well established in bees, it is not the case for aversive learning, as a robust protocol was only developed recently. In the original conditioning of the sting extension response (SER), bees learn to associate an odor (conditioned stimulus - CS) with an electric shock (unconditioned stimulus - US). This US is however not a natural stimulus for bees, which may represent a potential caveat for dissecting the genetics underlying aversive learning. We thus first tested heat as a potential new US for SER conditioning. We show that thermal stimulation of several sensory structures on the bee's body triggers the SER, in a temperature-dependent manner. Moreover, heat applied to the antennae, mouthparts or legs is an efficient US for SER conditioning. Then, using microsatellite analysis, we analyzed heat sensitivity and aversive learning performances in ten worker patrilines issued from a naturally inseminated queen. We demonstrate a strong influence of genotype on aversive learning, possibly indicating the existence of a genetic determinism of this capacity. Such determinism could be instrumental for efficient task partitioning within the hive. PMID:24828422

  13. Indexes system of technological condition assessment of economic branches

    NASA Astrophysics Data System (ADS)

    Chuvashova, M. N.; Avramchikova, N. T.; Antamoshkin, A. N.

    2015-10-01

    The increased level of innovative production process, connected with the current trends, points out the necessity of economic diversification of the whole national economy as well as regional economies in order to increase competitiveness and stable development. Russian regional economies are characterized with local directive of development and innovative processes have evident local vector. Intensive development of Siberian regional economies, which depends on oil and mining industries, considerably falls behind the world indicators according to the GRP output per head. To improve the quality of economic space the authors have suggested a new scientific approach, which allows qualitative assessment inside the economic space of resource-based regions, based on principles of high technological modes development inside economic branches taking into account density, regular enterprise distribution and connectivity of commercial organizations as well as secures innovative development of regional economy and its competitiveness. In this context it is necessary to develop a modern system of indexes, characterizing the structure of economic branches in accordance with present technological modes and at the same time the dynamics of appropriate structural shifts in regional economies of this type.

  14. Numerical simulation of the thermal conditions in a sea bay water area used for water supply to nuclear power plants

    SciTech Connect

    Sokolov, A. S.

    2013-07-15

    Consideration is given to the numerical simulation of the thermal conditions in sea water areas used for both water supply to and dissipation of low-grade heat from a nuclear power plant on the shore of a sea bay.

  15. Results of thermal performance evaluation of the Owens-Illinois sunpack liquid solar collector at indoor conditions

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Test procedures and results of the thermal performance of a liquid, evacuated tube, solar collector under simulated conditions are presented. The collector tested was a module used on the early demonstration projects.

  16. Supporting technology for enhanced oil recovery for thermal processes

    SciTech Connect

    Reid, T.B.; Bolivar, J.

    1997-12-01

    This report contains the results of efforts under the six tasks of the Ninth Amendment and Extension of Annex IV, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Agreement. The report is presented in sections (for each of the 6 tasks) and each section contains one or more reports prepared by various individuals or groups describing the results of efforts under each of the tasks. A statement of each task, taken from the agreement, is presented on the first page of each section. The tasks are numbered 62 through 67. The first, second, third, fourth fifth, sixth, seventh, eighth, and ninth reports on Annex IV, [Venezuela MEM/USA-DOE Fossil Energy Report IV-1, IV-2, IV-3, IV-4, IV-5, IV-6, IV-7, and IV-8 (DOE/BETC/SP-83/15, DOE/BC-84/6/SP, DOE/BC-86/2/SP, DOE/BC-87/2/SP, DOE/BC-90/1/SP, DOE/BC-90/1/SP) (DOE/BC-92/1/SP, DOE/BC-93/3/SP, and DOE/BC-95/3/SP)] contain the results from the first 61 tasks. Those reports are dated April 1983, August 1984, March 1986, July 1987, November 1988, October 1991, February 1993, and March 1995 respectively.

  17. Multiphase Flow Technology Impacts on Thermal Control Systems for Exploration

    NASA Technical Reports Server (NTRS)

    McQuillen, John; Sankovic, John; Lekan, Jack

    2006-01-01

    The Two-Phase Flow Facility (TPHIFFy) Project focused on bridging the critical knowledge gap by developing and demonstrating critical multiphase fluid products for advanced life support, thermal management and power conversion systems that are required to enable the Vision for Space Exploration. Safety and reliability of future systems will be enhanced by addressing critical microgravity fluid physics issues associated with flow boiling, condensation, phase separation, and system stability. The project included concept development, normal gravity testing, and reduced gravity aircraft flight campaigns, in preparation for the development of a space flight experiment implementation. Data will be utilized to develop predictive models that could be used for system design and operation. A single fluid, two-phase closed thermodynamic loop test bed was designed, assembled and tested. The major components in this test bed include: a boiler, a condenser, a phase separator and a circulating pump. The test loop was instrumented with flow meters, thermocouples, pressure transducers and both high speed and normal speed video cameras. A low boiling point surrogate fluid, FC-72, was selected based on scaling analyses using preliminary designs for operational systems. Preliminary results are presented which include flow regime transitions and some observations regarding system stability.

  18. Thermal Analysis of the NASA Integrated Vehicle Health Monitoring Experiment Technology for X-Vehicles (NITEX)

    NASA Technical Reports Server (NTRS)

    Hegab, Hisham E.

    2002-01-01

    The purpose of this project was to perform a thermal analysis for the NASA Integrated Vehicle Health Monitoring (IVHM) Technology Experiment for X-vehicles (NITEX). This electronics package monitors vehicle sensor information in flight and downlinks vehicle health summary information via telemetry. The experiment will be tested on the X-34 in an unpressurized compartment, in the vicinity of one of the vehicle's liquid oxygen tanks. The transient temperature profile for the electronics package has been determined using finite element analysis for possible mission profiles that will most likely expose the package to the most extreme hot and cold environmental conditions. From the analyses, it was determined that temperature limits for the electronics would be exceeded for the worst case cold environment mission profile. The finite element model used for the analyses was modified to examine the use of insulation to address this problem. Recommendations for insulating the experiment for the cold environment are presented, and were analyzed to determine their effect on a nominal mission profile.

  19. Thermal Analysis Of The NASA Integrated Vehicle Health Monitoring Experiment Technology For X-Vehicles (NITEX)

    NASA Technical Reports Server (NTRS)

    Hegab, Hisham E.

    2001-01-01

    The purpose of this project was to perform a thermal analysis for the NASA Integrated Vehicle Health Monitoring (IVHM) Technology Experiment for X-vehicles (NITEX). This electronics package monitors vehicle sensor information in flight and downlinks vehicle health summary information via telemetry. The experiment will be tested on the X-34 in an unpressurized compartment, in the vicinity of one of the vehicle's liquid oxygen tanks. The transient temperature profile for the electronics package has been determined using finite element analysis for possible mission profiles that will most likely expose the package to the most extreme hot and cold environmental conditions. From the analyses, it was determined that temperature limits for the electronics would be exceeded for the worst case cold environment mission profile. The finite element model used for the analyses was modified to examine the use of insulation to address this problem. Recommendations for insulating the experiment for the cold environment are presented, and were analyzed to determine their effect on a nominal mission profile.

  20. Thermal Analysis of the NASA Integrated Vehicle Health Monitoring Experiment Technology for X-Vehicles (NITEX)

    NASA Astrophysics Data System (ADS)

    Hegab, Hisham E.

    2002-06-01

    The purpose of this project was to perform a thermal analysis for the NASA Integrated Vehicle Health Monitoring (IVHM) Technology Experiment for X-vehicles (NITEX). This electronics package monitors vehicle sensor information in flight and downlinks vehicle health summary information via telemetry. The experiment will be tested on the X-34 in an unpressurized compartment, in the vicinity of one of the vehicle's liquid oxygen tanks. The transient temperature profile for the electronics package has been determined using finite element analysis for possible mission profiles that will most likely expose the package to the most extreme hot and cold environmental conditions. From the analyses, it was determined that temperature limits for the electronics would be exceeded for the worst case cold environment mission profile. The finite element model used for the analyses was modified to examine the use of insulation to address this problem. Recommendations for insulating the experiment for the cold environment are presented, and were analyzed to determine their effect on a nominal mission profile.

  1. Three-Dimensional Mixed Convection Flow of Viscoelastic Fluid with Thermal Radiation and Convective Conditions

    PubMed Central

    Hayat, Tasawar; Ashraf, Muhammad Bilal; Alsulami, Hamed H.; Alhuthali, Muhammad Shahab

    2014-01-01

    The objective of present research is to examine the thermal radiation effect in three-dimensional mixed convection flow of viscoelastic fluid. The boundary layer analysis has been discussed for flow by an exponentially stretching surface with convective conditions. The resulting partial differential equations are reduced into a system of nonlinear ordinary differential equations using appropriate transformations. The series solutions are developed through a modern technique known as the homotopy analysis method. The convergent expressions of velocity components and temperature are derived. The solutions obtained are dependent on seven sundry parameters including the viscoelastic parameter, mixed convection parameter, ratio parameter, temperature exponent, Prandtl number, Biot number and radiation parameter. A systematic study is performed to analyze the impacts of these influential parameters on the velocity and temperature, the skin friction coefficients and the local Nusselt number. It is observed that mixed convection parameter in momentum and thermal boundary layers has opposite role. Thermal boundary layer is found to decrease when ratio parameter, Prandtl number and temperature exponent are increased. Local Nusselt number is increasing function of viscoelastic parameter and Biot number. Radiation parameter on the Nusselt number has opposite effects when compared with viscoelastic parameter. PMID:24608594

  2. Fluid Pressure, Thermal and Chemical Effects in Conditioning Permeability and Triggered Seismicity in Enhanced Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Elsworth, D.; Izadi, G.; Zheng, B.; Taron, J.

    2011-12-01

    The evolution of permeability, heat or diffusive transfer area and triggered seismicity are intimately linked in forced-circulation systems such as EGS, CCS and unconventional hydrocarbon reservoirs where conditions are pushed far-from-equilibrium. We explore this evolution subject to coupled THMC processes in a prototypical EGS reservoir. We accommodate the influence of early-time changes in effective stress, mid-time changes in thermal stresses and ultimately incorporate long-term changes due to chemical effects. We develop a micromechanical model to represent the failure process and apply this model to represent energy release from individual critically oriented fractures. The changing stress state is calculated from the pore pressure, thermal drawdown and chemical effects for a coupled THMC model with dual porosity. This model is applied to a doublet geometry to explore the spatial and temporal migration for permeability evolution, access to reactive surface area and the triggering of seismicity as stimulation then production proceeds. Seismic activity is initially concentrated around the near-wellbore injection region. It is earliest for closely spaced fractures in reservoir rocks where the thermal drawdown of stress is largest at early times and results in numerous low-magnitude events. These observations are used to define the evolution of spatial changes within the reservoir and their migration with production, dependent on the mobilization of relic fractures.

  3. Thermal stability of the human body under hyperbaric environmental conditions: a theoretical study.

    PubMed

    Kandjov, I M

    2001-10-01

    I report here a theoretical study of the dependence on ambient pressure of heat and mass (water vapour) rate transfer processes between the human body and its gaseous surroundings, for monocomponent gases (N2, O2, He) and/or diatomic gas mixtures (He-O2, N2-O2). Heat and water vapour rate transport are described by the following rate transfer parameters: the convective heat transfer coefficient (hc), the evaporative heat transfer coefficient (he) and the Lewis relationship (LR). It is shown that the thermal stability of the human body under hyperbaric conditions is proportional to the evaporative resistance. It is also shown that in a He atmosphere the change in the thermal state caused by a heat load of 1 W x m(-2) at sea level is equivalent to the effect of a heat flow of 0.186 W x m(-2) at 30 atmospheres absolute. This indicates that the thermal state of the body is more prone to instability at increasing ambient pressures. PMID:11718287

  4. TEM Observations of Corrosion Behaviors of Platinized Carbon Blacks under Thermal and Electrochemical Conditions

    SciTech Connect

    Liu, Z.Y.; Zhang, J.L.; Yu, P.T.; Zhang, J.X.; Makharia, R.; More, Karren Leslie; Stach, Eric

    2010-01-01

    Carbon blacks such as Vulcan XC-72 are widely used to support platinum (Pt) or Pt alloy catalysts in proton exchange membrane fuel cells. Despite their widespread use, carbon blacks are susceptible to corrosion during fuel cell operations. In this work, the corrosion behaviors of platinized Vulcan XC-72 nanoparticles under thermal and electrochemical conditions were monitored by transmission electron microscopy (TEM). The thermal corrosion experiment was carried out in a gas-cell TEM, which allows for a direct observation of the thermal oxidation behavior of the nanoparticles. The electrochemical corrosion experiment was performed outside of the TEM by loading the nanoparticles on a TEM grid and then electrochemically corroding them step by step followed by taking TEM images from exactly the same nanoparticles after each step. This work revealed four types of structural changes: (i) total removal of structurally weak aggregates, (ii) breakdown of aggregates via neck-breaking, (iii) center-hollowed primary particles caused by an inside-out corrosion starting from the center to outer region, and (iv) gradual decrease in the size of primary particles caused by a uniform removal of material from the surface. These structural changes took place in sequence or simultaneously depending on the competition of carbon corrosion dynamical processes. The results obtained from this work provide insight on carbon corrosion and its effects on fuel cells' long-term performance and durability.

  5. Diurnal cool thermal energy storage: Research programs, technological developments, and commercial status

    SciTech Connect

    Wise, M A

    1992-01-01

    This report presents an overview of the major federal and private research and development efforts in diurnal cool thermal energy storage for electric load management in buildings. Included are brief technical descriptions and research histories of the technologies and applications of cool thermal storage. The goals, accomplishments, and funding levels of major thermal storage research programs also are summarized. The report concludes with the results of recent field performance evaluations of cool thermal storage installations and a discussion of the current commercial status of thermal storage equipment, including utility participation programs. This report was sponsored by the Technology and Consumer Products (TCP) Division within the Office of Conservation of the US Department of Energy. This report is part of TCP's ongoing effort to examine and evaluate technology developments and research efforts in the areas of lighting, space heating and cooling, water heating, refrigeration, and other building energy conversion equipment. Information obtained through this effort is used as an input in developing the US research agenda in these areas.

  6. Surface thermal capacity and its effects on the boundary conditions at fluid-fluid interfaces.

    PubMed

    Das, Kausik S; Ward, C A

    2007-06-01

    We have formulated a generalization of the energy boundary condition for fluid-fluid interfaces that includes the transport of the Gibbs excess internal energy. A newly measured surface property - the surface thermal capacity c(sigma) - appears in the result, and couples the temperature and velocity fields. If this term is not included in the energy boundary condition at liquid-vapor interfaces, the energy-conservation principle cannot be satisfied during steady-state evaporation of H(2)O(l) or D(2)O(l) . The c(sigma) term is possibly important in a number of other circumstances, and its importance can be determined from the magnitude of two nondimensional numbers. PMID:17677317

  7. Creep and Environmental Durability of EBC/CMCs Under Imposed Thermal Gradient Conditions

    NASA Technical Reports Server (NTRS)

    Appleby, Matthew; Morscher, Gregory N.; Zhu, Dongming

    2013-01-01

    Interest in SiC fiber-reinforced SiC ceramic matrix composite (CMC) environmental barrier coating (EBC) systems for use in high temperature structural applications has prompted the need for characterization of material strength and creep performance under complex aerospace turbine engine environments. Stress-rupture tests have been performed on SiC/SiC composites systems, with varying fiber types and coating schemes to demonstrate material behavior under isothermal conditions. Further testing was conducted under exposure to thermal stress gradients to determine the effect on creep resistance and material durability. In order to understand the associated damage mechanisms, emphasis is placed on experimental techniques as well as implementation of non-destructive evaluation; including electrical resistivity monitoring. The influence of environmental and loading conditions on life-limiting material properties is shown.

  8. Experimental investigation of panel radiator heat output enhancement for efficient thermal use under actual operating conditions

    NASA Astrophysics Data System (ADS)

    Calisir, Tamer; Baskaya, Senol; Onur Yazar, Hakan; Yucedag, Sinan

    2015-05-01

    In this study the heat output of a panel-convector-convector-panel radiator (PCCP) under controlled laboratory conditions under Turkish household and especially Ankara conditions was investigated experimentally. In this sense, investigations were performed for different heating water mass flow rates, water inlet temperatures and radiator inlet and outlet connection positions, which are most commonly used in Turkey. An experimental setup was built for this purpose in a test room where temperature was controlled and held constant during the experiments. Inlet and outlet water temperatures and mass flow rates were measured and heat output of the radiator was calculated. Infrared thermal camera visualizations of the steel panel radiator front surface were also performed.

  9. Infrared survey of 50 buildings constructed during 100 years: thermal performances and damage conditions

    NASA Astrophysics Data System (ADS)

    Ljungberg, Sven-Ake

    1995-03-01

    Different building constructions and craftsmanship give rise to different thermal performance and damage conditions. The building stock of most industrial countries consists of buildings of various age, and constructions, from old historic buildings with heavy stone or wooden construction, to new buildings with heavy or light concrete construction, or modern steel or wooden construction. In this paper the result from a detailed infrared survey of 50 buildings from six Swedish military camps is presented. The presentation is limited to a comparison of thermal performance and damage conditions of buildings of various ages, functions, and constructions, of a building period of more than 100 years. The result is expected to be relevant even to civilian buildings. Infrared surveys were performed during 1992-1993, with airborne, and mobile short- and longwave infrared systems, out- and indoor thermography. Interpretation and analysis of infrared data was performed with interactive image and analyzing systems. Field inspections were carried out with fiber optics system, and by ocular inspections. Air-exchange rate was measured in order to quantify air leakages through the building envelope, indicated in thermograms. The objects studied were single-family houses, barracks, office-, service-, school- and exercise buildings, military hotels and restaurants, aircraft hangars, and ship factory buildings. The main conclusions from this study are that most buildings from 1880 - 1940 have a solid construction with a high quality of craftsmanship, relatively good thermal performance, due to extremely thick walls, and adding insulation at the attic floor. From about 1940 - 1960 the quality of construction, thermal performance and craftsmanship seem to vary a lot. Buildings constructed during the period of 1960 - 1990 have in general the best thermal performance due to a better insulation capacity, however, also one finds here the greatest variety of problems. The result from this study is to be incorporated in planning of short- and long term maintenance programs of the Swedish Defence. In general the military buildings are expected to have better status than civilian buildings, due to the more rigorous control during the building process, performed by military building authorities.

  10. Heavy oil reservoirs recoverable by thermal technology. Annual report

    SciTech Connect

    Kujawa, P.

    1981-02-01

    This volume contains reservoir, production, and project data for target reservoirs which contain heavy oil in the 8 to 25/sup 0/ API gravity range and are susceptible to recovery by in situ combustion and steam drive. The reservoirs for steam recovery are less than 2500 feet deep to comply with state-of-the-art technology. In cases where one reservoir would be a target for in situ combustion or steam drive, that reservoir is reported in both sections. Data were collectd from three source types: hands-on (A), once-removed (B), and twice-removed (C). In all cases, data were sought depicting and characterizing individual reservoirs as opposed to data covering an entire field with more than one producing interval or reservoir. The data sources are listed at the end of each case. This volume also contains a complete listing of operators and projects, as well as a bibliography of source material.

  11. Solar thermal technologies as a bridge from fossil fuels to renewables

    NASA Astrophysics Data System (ADS)

    Dalvi, Vishwanath Haily; Panse, Sudhir V.; Joshi, Jyeshtharaj B.

    2015-11-01

    Integrating solar thermal systems into Rankine-cycle power plants can be done with minimal modification to the existing infrastructure. This presents an opportunity to introduce these technologies into the commercial space incrementally, to allow engineers to build familiarity with the systems before phasing out fossil-fuel energy with solar electricity. This paper shows that there is no thermodynamic barrier to injecting solar thermal heat into Rankine-cycle plants to offset even up to 50% fossil-fuel combustion with existing technology: with better solar-to-electricity efficiencies than conventionally deployed solar-thermal power plants. This strategy is economically preferable to installing carbon-capture and compression equipment for mitigating an equivalent amount of greenhouse-gas emissions. We suggest that such projects be encouraged by extending the same subsidy/incentives to the solar-thermal fraction of a `solar-aided’ plant that would be offered to a conventionally deployed solar-thermal power plant of similar capacity. Such a policy would prepare the ground for an incremental solar-thermal takeover of fossil-fuel power plants.

  12. Cold plasma - a non-thermal processing technology to inactivate human pathogens on foods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cold plasma is a novel non-thermal food processing technology, suitable for application to fresh and fresh-cut fruits and vegetables. Reductions of 3-5 logs have been achieved against human pathogens such as Salmonella and E. coli O157:H7 on fresh produce and against phytopathogens and spoilage orga...

  13. LOW TEMPERATURE THERMAL TREATMENT (LT3®) TECHNOLOGY - ROY F. WESTON, INC. - APPLICATIONS ANALYSIS REPORT

    EPA Science Inventory

    This report evaluates the Low Temperature Thermal Treatment (LT3®) system's ability to remove VOC and SVOC compounds from solid wastes. This evaluation is based on treatment performance and cost data from the Superfund Innovative Technology (SITE) demonstration and fi...

  14. Magnetic Refrigeration Technology for High Efficiency Air Conditioning

    SciTech Connect

    Boeder, A; Zimm, C

    2006-09-30

    Magnetic refrigeration was investigated as an efficient, environmentally friendly, flexible alternative to conventional residential vapor compression central air conditioning systems. Finite element analysis (FEA) models of advanced geometry active magnetic regenerator (AMR) beds were developed to minimize bed size and thus magnet mass by optimizing geometry for fluid flow and heat transfer and other losses. Conventional and magnetocaloric material (MCM) regenerator fabrication and assembly techniques were developed and advanced geometry passive regenerators were built and tested. A subscale engineering prototype (SEP) magnetic air conditioner was designed, constructed and tested. A model of the AMR cycle, combined with knowledge from passive regenerator experiments and FEA results, was used to design the regenerator beds. A 1.5 Tesla permanent magnet assembly was designed using FEA and the bed structure and plenum design was extensively optimized using FEA. The SEP is a flexible magnetic refrigeration platform, with individually instrumented beds and high flow rate and high frequency capability, although the current advanced regenerator geometry beds do not meet performance expectations, probably due to manufacturing and assembly tolerances. A model of the AMR cycle was used to optimize the design of a 3 ton capacity magnetic air conditioner, and the system design was iterated to minimize external parasitic losses such as heat exchanger pressure drop and fan power. The manufacturing cost for the entire air conditioning system was estimated, and while the estimated SEER efficiency is high, the magnetic air conditioning system is not cost competitive as currently configured. The 3 ton study results indicate that there are other applications where magnetic refrigeration is anticipated to have cost advantages over conventional systems, especially applications where magnetic refrigeration, through the use of its aqueous heat transfer fluid, could eliminate intermediate heat exchangers or oil distribution issues found in traditional vapor compression systems.

  15. The influence of local effects on thermal sensation under non-uniform environmental conditions--gender differences in thermophysiology, thermal comfort and productivity during convective and radiant cooling.

    PubMed

    Schellen, L; Loomans, M G L C; de Wit, M H; Olesen, B W; van Marken Lichtenbelt, W D

    2012-09-10

    Applying high temperature cooling concepts, i.e. high temperature cooling (T(supply) is 16-20°C) HVAC systems, in the built environment allows the reduction in the use of (high quality) energy. However, application of high temperature cooling systems can result in whole body and local discomfort of the occupants. Non-uniform thermal conditions, which may occur due to application of high temperature cooling systems, can be responsible for discomfort. Contradictions in literature exist regarding the validity of the often used predicted mean vote (PMV) index for both genders, and the index is not intended for evaluating the discomfort due to non-uniform environmental conditions. In some cases, however, combinations of local and general discomfort factors, for example draught under warm conditions, may not be uncomfortable. The objective of this study was to investigate gender differences in thermophysiology, thermal comfort and productivity in response to thermal non-uniform environmental conditions. Twenty healthy subjects (10 males and 10 females, age 20-29 years) were exposed to two different experimental conditions: a convective cooling situation (CC) and a radiant cooling situation (RC). During the experiments physiological responses, thermal comfort and productivity were measured. The results show that under both experimental conditions the actual mean thermal sensation votes significantly differ from the PMV-index; the subjects are feeling colder than predicted. Furthermore, the females are more uncomfortable and dissatisfied compared to the males. For females, the local sensations and skin temperatures of the extremities have a significant influence on whole body thermal sensation and are therefore important to consider under non-uniform environmental conditions. PMID:22877870

  16. Residential photovoltaic power conditioning technology for grid connected applications

    NASA Technical Reports Server (NTRS)

    Key, T. S.; Klein, J. W.

    1982-01-01

    Major advances in photovoltaic (PV) Power Conditioning (PC) with respect to performance and low-cost potential have been made. Solutions have been obtained to interface and control problems related to adapting available inverter designs to the grid-connected, residential photovoltaic experiments. A description is presented to contributing research and development activities. Attention is given to aspects of residential systems experience, conceptual design studies, questions of optimum topology development, and promising advanced designs for residential PV provided by development efforts of the private sector.

  17. Thermal resistance of attic loose-fill insulations decreases under simulated winter conditions

    SciTech Connect

    Graves, R.S.; Wilkes, K.E.; McElroy, D.L.

    1994-05-01

    Two absolute techniques were used to measure the thermal resistance of attic loose-fill insulations: the Large Scale Climate Simulator (LSCS) and the Unguarded Thin-Heater Apparatus (UTHA). Two types of attic loose-fill insulations (unbonded and bonded/cubed) were tested under simulated winter conditions. To simulate winter conditions for an attic insulation, the specimens were tested with heat flow up, large temperature differences, and an air gap. The specimens were tested either with a constant mean temperature (30 or 21{degrees}C) and an increasing temperature difference or with a constant base temperature (21{degrees}C) and an increasing temperature difference (i.e., a decreasing mean temperature). The UTHA test specimens had a nominal thickness of 0.2 m of loose-fill insulation. The LSCS test specimens had a nominal thickness of 0.3 m of loose-fill insulation contained in a 4.2 by 5 m attic test module with a gypsum board base. The module had a gabled attic with a 5 in 12 slope roof. The tests yielded the surface-to-surface thermal resistance, R, which includes the thermal resistance due to gypsum, insulation, and any wood joists. Tests with and without an air gap were conducted in the UTHA. Surface-to-surface thermal resistance results from the LSCS and the UTHA show similar trends for these two types of loose-fill insulation when tested under simulated winter conditions. Tests with no air gap gave values of R that agreed with the bag label R-value for the insulations; R increased with lower mean temperatures. These no-gap values of R were 2 to 5% greater than the values of R obtained with an air gap for temperature differences of less than 22{degrees}C. For larger temperature differences R decreased, and at temperature differences of over 40{degrees}C, the R values were 50% less than those at small temperature differences.

  18. Research and development project evaluation and selection methods for the Solar-Thermal-Technology Program

    SciTech Connect

    Krawiec, F.

    1983-02-01

    The ranking of R and D options for long-term, high-payoff research and development in the Solar Thermal Technology Program is discussed considering the four general classes of ranking methods: economic, decision theory, constrained optimization, and scoring. The scoring method is proposed as the most suitable ranking technique to develop a balanced portfolio of R and D program elements. Procedure for implementation of the scoring method for Solar Thermal Technology Program activities evaluation and selection is outlined. Practical applicability of the scoring method to evaluate and select the Solar Thermal Research Program activities is demonstrated. The major conclusion is that the scoring method, augmented with the usbjective probabilistic risk assessment procedure, is the most suitable ranking technique to develop a balanced portfolio of R and D program elements.

  19. Influence of thermal challenge on conditioned feeding forays of juvenile rainbow trout

    SciTech Connect

    Munson, B.H.; McCormick, J.H.; Collins, H.L.

    1980-01-01

    Juvenile rainbow trout (Salmo gairdneri) conditioned to traverse a 2.4-m-long channel to receive a food reward were subjected to in-transit thermal challenges. Conditioning was to a criterion that required 80% of the fish to leave the home area and reach the reward area within 2 minutes of release. Challenges were at successive 3 C increments above acclimation or the previous challenge temperature. Fish were first observed to delay their entrance into the intervening heated water at challenge temperatures of 12 to 15 C above acclimation. At each increment above 12 to 15 C over acclimation temperature, delay in transit increased; however, complete group inhibition was never achieved. Above their critical thermal maximum (CTM) the reward was achieved even at the expense of deaths among the achievers. Responses were the same whether fish were challenged individually or as groups. Fish exposed to their CTM without prior challenges at less stressful temperatures responded similarly to those receiving progressively greater challenges.

  20. The asymptotic equivalence of fixed heat flux and fixed temperature thermal boundary conditions for rapidly rotating convection

    NASA Astrophysics Data System (ADS)

    Calkins, Michael A.; Hale, Kevin; Julien, Keith; Nieves, David; Driggs, Derek; Marti, Philippe

    2015-12-01

    The influence of fixed temperature and fixed heat flux thermal boundary conditions on rapidly rotating convection in the plane layer geometry is investigated for the case of stress-free mechanical boundary conditions. It is shown that whereas the leading order system satisfies fixed temperature boundary conditions implicitly, a double boundary layer structure is necessary to satisfy the fixed heat flux thermal boundary conditions. The boundary layers consist of a classical Ekman layer adjacent to the solid boundaries that adjust viscous stresses to zero, and a layer in thermal wind balance just outside the Ekman layers adjusts the temperature such that the fixed heat flux thermal boundary conditions are satisfied. The influence of these boundary layers on the interior geostrophically balanced convection is shown to be asymptotically weak, however. Upon defining a simple rescaling of the thermal variables, the leading order reduced system of governing equations are therefore equivalent for both boundary conditions. These results imply that any horizontal thermal variation along the boundaries that varies on the scale of the convection has no leading order influence on the interior convection.

  1. Validation of Perceptual Strain Index to Evaluate the Thermal Strain in Experimental Hot Conditions

    PubMed Central

    Dehghan, Habibollah; Ghanbary Sartang, Ayoub

    2015-01-01

    Background: The incidence of heat stress is one of the most common problems in workplaces and industries. Many heat stress indices have been developed, and these indices have some disadvantages. The purpose of this study is to validate the perceptual strain index (PeSI) in experimental hot conditions. Methods: This study is of cross-sectional carried out on 15 men at five different thermal conditions (35°C, 30°C, 27°C, 24°C, and 21°C) in a climate chamber and on a treadmill at three levels of light (2.4 kph), medium (4.8 kph) and heavy activity (6.3 kph). Heart rate and oral temperature were respectively measured to calculate the physiological strain index. Also, thermal sensation and rate perceive exertion were respectively measured to calculate the PeSI. Finally, the correlation between the indices was analyzed using Pearson correlation test and regression analysis. Results: Pearson correlation test showed a high correlation (r = 0.94) between the PeSI and physiological strain index (P = 0/001). It was also observed a high correlation between the PeSI and the oral temperature (r = 0.78, P = 0/001) and the heart rate (r = 0.90, P = 0/001). In addition, there was found a moderate correlation (r = 0.71) between the PeSI and the wet bulb glob temperature (P = 0/001). However, there was no correlation between the PeSI and the body mass index (r = 0.0009, P = 0.79). Conclusions: The research findings showed when there is no access to other forms of methods to evaluate the heat stress, it can be used the PeSI in evaluating the strain because of its favorable correlation with the thermal strain. PMID:26425333

  2. Raising Nuclear Thermal Propulsion (NTP) Technology Readiness Above 3

    NASA Technical Reports Server (NTRS)

    Gerrish, Harold P., Jr.

    2014-01-01

    NTP development is currently supported by the NASA program office "Advanced Exploration Systems". The concept is a main propulsion option being considered for human missions to Mars in the 2030's. Major NTP development took place in the 1960's and 1970's under the Rover/NERVA program. The technology had matured to TRL 6 and was preparing to go to TRL 7 with a prototype flight engine before the program was cancelled. Over the last 40 years, a variety of continuations started, but only lasted a few years each. The Rover/NERVA infrastructure is almost all gone. The only remains are a few pieces of hardware, final reports and a few who worked the Rover/NERVA. Two types of nuclear fuel are being investigated to meet the current engine design specific impulse of 900 seconds compared to approximately 850 seconds demonstrated during Rover/NERVA. One is a continuation of composite fuel with new coatings to better control mid-band corrosion. The other type is a CERMET fuel made of Tungsten and UO2. Both fuels are being made from Rover/NERVA lessons learned, but with slightly different recipes to increase fuel endurance at higher operating temperatures. The technology readiness level (TRL) of these current modified reactor fuels is approximately TRL 3. To keep the development cost low and help mature the TRL level past 4 quickly, a few special non-nuclear test facilities have been made to test surrogate fuel, with depleted uranium, as coupons and full length elements. Both facilities utilize inductive heating and are licensed to handle depleted uranium. TRL 5 requires exposing the fuel to a nuclear environment and TRL 6 requires a prototype ground or flight engine system test. Currently, three different NTP ground test facility options are being investigated: exhaust scrubber, bore hole, and total exhaust containment. In parallel, a prototype flight demonstration test is also being studied. The first human mission to Mars in the 2030's is currently 2033. For an advanced propulsion concept to be seriously considered for use, the engine development plans need to show it is feasible and affordable to reach TRL 8 by 2027 and can be qualified for human mission use.

  3. Thermal Analysis of the Advanced Technology Large Aperture Space Telescope (ATLAST) 8 Meter Primary Mirror

    NASA Technical Reports Server (NTRS)

    Hornsby, Linda; Stahl, H. Philip; Hopkins, Randall C.

    2010-01-01

    The Advanced Technology Large Aperture Space Telescope (ATLAST) preliminary design concept consists of an 8 meter diameter monolithic primary mirror enclosed in an insulated, optical tube with stray light baffles and a sunshade. ATLAST will be placed in orbit about the Sun-Earth L2 and will experience constant exposure to the sun. The insulation on the optical tube and sunshade serve to cold bias the telescope which helps to minimize thermal gradients. The primary mirror will be maintained at 280K with an active thermal control system. The geometric model of the primary mirror, optical tube, sun baffles, and sunshade was developed using Thermal Desktop(R) SINDA/FLUINT(R) was used for the thermal analysis and the radiation environment was analyzed using RADCAD(R). A XX node model was executed in order to characterize the static performance and thermal stability of the mirror during maneuvers. This is important because long exposure observations, such as extra-solar terrestrial planet finding and characterization, require a very stable observatory wave front. Steady state thermal analyses served to predict mirror temperatures for several different sun angles. Transient analyses were performed in order to predict thermal time constant of the primary mirror for a 20 degree slew or 30 degree roll maneuver. This paper describes the thermal model and provides details of the geometry, thermo-optical properties, and the environment which influences the thermal performance. All assumptions that were used in the analysis are also documented. Parametric analyses are summarized for design parameters including primary mirror coatings and sunshade configuration. Estimates of mirror heater power requirements are reported. The thermal model demonstrates results for the primary mirror heated from the back side and edges using a heater system with multiple independently controlled zones.

  4. Effect of thermal shock on the decomposition of rocks under controlled laboratory conditions

    NASA Astrophysics Data System (ADS)

    Kasanin-Grubin, Milica; Vezmar, Tijuana; Kuhn, Nikolaus J.

    2013-04-01

    The major factor determining the rate of weathering of a given rock are the climatic conditions of the surrounding environment, most notably type and amount of precipitation and temperature. For the latter, average annual temperature and where applicable, the frequency of freezing and thawing are often considered to be relevant for weathering. The rate of temperature change is mostly ignored. However, a rapid change in temperature, referred to as thermal shock could have more severe consequences of rock deterioration then gradual heating and cooling of rocks is gradual. Thermal shock induces a stress of such a magnitude that the material is unable to adjust fast enough and so it breaks down. The aim of this study is to examine the importance of mechanical decomposition of rocks when treated with thermal shock by freezing. The rate of decomposition of rocks of various sizes was measured based on their weight loss. In addition, they were immersed in water after freezing and the electrical conductivity and pH of the water were measured as an index for thermal-shock induced micro-fracturing. Samples of three rock types were chosen for the experiment: limestone, tuffaceous rock and basalt. Samples were examined in two separate cycles: (i) 24h immersion in ultra-clean water followed by 24h drying at 30o and (ii) 24h immersion, 24h temperature shock by freezing at -20?C and 6h thawing. Each cycle was repeated approximately 20 times. In each cycle three different sizes of rock were examined: <16mm, 16-8mm and 8-5mm. Limestone mass decreased for both cycles, although more distinctly after repeated thermal shocks. Furthermore, the rate of decay decreased with increasing rock size. Tuffaceous rock exposed to cycle (i) also showed a significant weight loss. Somewhat surprisingly, the mass of the tuffaceous rock exposed to thermal shock increased by about 13% in all sample size groups. It is possible that pore volume increased during experiment and that the rocks became capable of absorbing more water, but the rock was elastic enough not to break under stress. On the basalt, as expected, the rate of weight loss was the smallest. Cylce (ii) samples also showed more intensive mass reduction. Electrical conductivity and pH of the immersion water were constant throughout the experiment and did not change with the number of cycles. This implies that no significant chemical disintegration occurred. The results show that thermal shock can have a rock type-specific effect on physical weathering. The lacking effect on chemical weathering is expected due to the design of the experiment. Under natural conditions, with non-pH neutral water, the declining rock stability, indicated by the loss of mass, especially of the limestone, will mostly likely also enhance leaching and thus chemical weathering.

  5. Heavy oil reservoirs recoverable by thermal technology. Annual report

    SciTech Connect

    Kujawa, P.

    1981-02-01

    The purpose of this study was to compile data on reservoirs that contain heavy oil in the 8 to 25/sup 0/ API gravity range, contain at least ten million barrels of oil currently in place, and are non-carbonate in lithology. The reservoirs within these constraints were then analyzed in light of applicable recovery technology, either steam-drive or in situ combustion, and then ranked hierarchically as candidate reservoirs. The study is presented in three volumes. Volume I presents the project background and approach, the screening analysis, ranking criteria, and listing of candidate reservoirs. The economic and environmental aspects of heavy oil recovery are included in appendices to this volume. This study provides an extensive basis for heavy oil development, but should be extended to include carbonate reservoirs and tar sands. It is imperative to look at heavy oil reservoirs and projects on an individual basis; it was discovered that operators, and industrial and government analysts will lump heavy oil reservoirs as poor producers, however, it was found that upon detailed analysis, a large number, so categorized, were producing very well. A study also should be conducted on abandoned reservoirs. To utilize heavy oil, refiners will have to add various unit operations to their processes, such as hydrotreaters and hydrodesulfurizers and will require, in most cases, a lighter blending stock. A big problem in producing heavy oil is that of regulation; specifically, it was found that the regulatory constraints are so fluid and changing that one cannot settle on a favorable recovery and production plan with enough confidence in the regulatory requirements to commit capital to the project.

  6. History of Sulphur Content Effects on the Thermal Stability of RP-1 under Heated Conditions

    NASA Technical Reports Server (NTRS)

    Irvine, Solveig A.; Schoettmer, Amanda K.; Bates, Ronald W.; Meyer, Michael L.

    2004-01-01

    As technologies advance in the aerospace industry, a strong desire has emerged to design more efficient, longer life, reusable liquid hydrocarbon fueled rocket engines. To achieve this goal, a more complete understanding of the thermal stability and chemical makeup of the hydrocarbon propellant is needed. Since the main fuel used in modern liquid hydrocarbon systems is RP-1, there is concern that Standard Grade RP-1 may not be a suitable propellant for future-generation rocket engines due to concern over the outdated Mil-Specification for the fuel. This current specification allows high valued limits on contaminants such as sulfur compounds, and also lacks specification of required thermal stability qualifications for the fuel. Previous studies have highlighted the detrimental effect of high levels of mercaptan sulfur content (^50 ppm) on copper rocket engine materials, but the fuel itself has not been studied. While the role of sulfur in other fuels (e.g., aviation, diesel, and automotive fuels) has been extensively studied, little has been reported on the effects of sulfur levels in rocket fuels. Lower RP-1 sulfur concentrations need to be evaluated and an acceptable sulfur limit established before RP-1 can be recommended for use as the propellant for future launch vehicles. (5 tables, 8 figures, 9 refs.)

  7. Proceedings of the 1993 Non-Fluorocarbon Insulation, Refrigeration and Air Conditioning Technology Workshop

    NASA Astrophysics Data System (ADS)

    Sessions included: HFC blown polyurethanes, carbon dioxide blown foam and extruded polystyrenes, plastic foam insulations, evacuated panel insulation, refrigeration and air conditioning, absorption and adsorption and stirling cycle refrigeration, innovative cooling technologies, and natural refrigerants. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  8. Proceedings of the 1993 non-fluorocarbon insulation, refrigeration and air conditioning technology workshop

    SciTech Connect

    Not Available

    1994-09-01

    Sessions included: HFC blown polyurethanes, carbon dioxide blown foam and extruded polystyrenes, plastic foam insulations, evacuated panel insulation, refrigeration and air conditioning, absorption and adsorption and stirling cycle refrigeration, innovative cooling technologies, and natural refrigerants. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  9. Line-focus solar thermal energy technology development. FY 79 annual report for Department 4720

    SciTech Connect

    Bergeron, K D; Champion, R L; Hunke, R W

    1980-04-01

    The primary role of the Solar Energy Projects Department II (4720) is the development, evaluation, and testing of line-focus solar thermal technology. This report of FY 79 progress and accomplishments is divided into two parts: (1) Component and Subsystem Development including the design and analysis of collector modules, their components, and associated materials and processes, and (2) Systems and Applications Development, involving larger configurations of solar thermal line-focus systems. The emphasis is on parabolic troughs, but significant efforts on hemispherical bowls, compound parabolic collectors, and dishes for the Solar Total Energy Project are also described.

  10. A novel microfabrication technology on organic substrates application to a thermal flow sensor

    NASA Astrophysics Data System (ADS)

    Kaltsas, G.; Petropoulos, A.; Tsougeni, K.; Pagonis, D. N.; Speliotis, T.; Gogolides, E.; Nassiopoulou, A. G.

    2007-12-01

    A new technology that allows the formation of thermal sensors on organic substrates by combining the standard PCB technology with the well established microelectronic techniques, is proposed. The obtained structures consist of low thermal conductivity material, therefore the heat dissipation to the substrate is minimized, which result to the enhancement of the device sensitivity and the improvement of the corresponding response time. The proposed technology exhibits a series of advantageous characteristics such as significant cost reduction, elimination of both wire-die bonding and die cutting, direct integration with electronics and potential expansion on flexible substrates. Furthermore, the final structure provides a planar surface, which allows for further lithographic steps to take place, but is also a major advantage for specific type of applications such as non-invasive flow measurements. In the context of the proposed technology, a thermal gas flow sensor was fabricated and tested in a specially designed experimental set-up. The sensor consisted of three thin Pt strips directly connected to the copper tracks of the organic substrate. The middle Pt resistor act as a heater while the other two serve as temperature sensing elements.

  11. Impact of Thermal and Nonthermal Processing Technologies on Unfermented Apple Cider Aroma Volatiles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aroma composition and microbial quality of identical lots of apple cider treated by pulsed electric field (PEF), ultraviolet irradiation (UV), or thermal pasteurization and stored at 4 C were compared at 0, 2 and 4 weeks. Conditions for all three treatments were adjusted to produce identical 5 log ...

  12. A comparative analysis of human thermal conditions in outdoor urban spaces in the summer season in Singapore and Changsha, China.

    PubMed

    Yang, Wei; Wong, Nyuk Hien; Zhang, Guoqiang

    2013-11-01

    This paper presents the comparative analysis between the findings from two field surveys of human thermal conditions in outdoor urban spaces during the summer season. The first survey was carried out from August 2010 to May 2011 in Singapore and the second survey was carried out from June 2010 to August 2010 in Changsha, China. The physiologically equivalent temperature (PET) was utilized as the thermal index to assess the thermal conditions. Differences were found between the two city respondents in terms of thermal sensation, humidity sensation, and wind speed sensation. No big difference was found between the two city respondents regarding the sun sensation. The two city respondents had similar neutral PET of 28.1 °C for Singapore and 27.9 °C for Changsha, respectively. However, Singapore respondents were more sensitive to PET change than Changsha respondents and the acceptable PET range for Changsha respondents was wider than that for Singapore respondents. Besides, the two city respondents had different thermal expectations with the preferred PET of 25.2 °C and 22.1 °C for Singapore and Changsha, respectively. The results also reveal that Changsha respondents were more tolerant than Singapore respondents under hot conditions. Finally, two regression models were proposed for Singapore and Changsha to predict the human thermal sensation in a given outdoor thermal environment. PMID:23250734

  13. Effect of fee-for-service air-conditioning management in balancing thermal comfort and energy usage

    NASA Astrophysics Data System (ADS)

    Chen, Chen-Peng; Hwang, Ruey-Lung; Shih, Wen-Mei

    2014-02-01

    Balancing thermal comfort with the requirement of energy conservation presents a challenge in hot and humid areas where air-conditioning (AC) is frequently used in cooling indoor air. A field survey was conducted in Taiwan to demonstrate the adaptive behaviors of occupants in relation to the use of fans and AC in a school building employing mixed-mode ventilation where AC use was managed under a fee-for-service mechanism. The patterns of using windows, fans, and AC as well as the perceptions of students toward the thermal environment were examined. The results of thermal perception evaluation in relation to the indoor thermal conditions were compared to the levels of thermal comfort predicted by the adaptive models described in the American Society of Heating, Refrigerating, and Air-Conditioning Engineers Standard 55 and EN 15251 and to that of a local model for evaluating thermal adaption in naturally ventilated buildings. A thermal comfort-driven adaptive behavior model was established to illustrate the probability of fans/AC use at specific temperature and compared to the temperature threshold approach to illustrate the potential energy saving the fee-for-service mechanism provided. The findings of this study may be applied as a reference for regulating the operation of AC in school buildings of subtropical regions.

  14. G-jitter induced magnetohydrodynamics flow of nanofluid with constant convective thermal and solutal boundary conditions.

    PubMed

    Uddin, Mohammed J; Khan, Waqar A; Ismail, Ahmad Izani Md

    2015-01-01

    Taking into account the effect of constant convective thermal and mass boundary conditions, we present numerical solution of the 2-D laminar g-jitter mixed convective boundary layer flow of water-based nanofluids. The governing transport equations are converted into non-similar equations using suitable transformations, before being solved numerically by an implicit finite difference method with quasi-linearization technique. The skin friction decreases with time, buoyancy ratio, and thermophoresis parameters while it increases with frequency, mixed convection and Brownian motion parameters. Heat transfer rate decreases with time, Brownian motion, thermophoresis and diffusion-convection parameters while it increases with the Reynolds number, frequency, mixed convection, buoyancy ratio and conduction-convection parameters. Mass transfer rate decreases with time, frequency, thermophoresis, conduction-convection parameters while it increases with mixed convection, buoyancy ratio, diffusion-convection and Brownian motion parameters. To the best of our knowledge, this is the first paper on this topic and hence the results are new. We believe that the results will be useful in designing and operating thermal fluids systems for space materials processing. Special cases of the results have been compared with published results and an excellent agreement is found. PMID:25933066

  15. Thermal traction contact performance evaluation under fully flooded and starved conditions

    NASA Technical Reports Server (NTRS)

    Tevaarwerk, J. L.

    1985-01-01

    Ultra high speed traction tests were performed on two traction fluids commonly employed. Traction data on these fluids is required for purposes of traction drive design optimization techniques. To obtain the traction data, an existing twin disc traction test machine was employed. This machine was modified to accommodate the range of test variables. All the data reported was obtained under conditions of side slip, a technique whereby only low power levels are required to simulate real traction drive contacts. Theoretical traction predictions were performed for a representative number of curves that showed the influence of rolling velocity, of contact pressure and of aspect ratio. To establish the accuracy of the thermal model the predictions were performed ith increasing levels of independence of experimentally determined parameters. In the final resulting prediction only two non linear thermal parameters were used for the prediction of 15 different traction curves covering the entire range of variables as used in the investigation, with the exception of the influence of asperity traction. Comparison of these theoretical curves and corresponding experimental traces show very good agreement.

  16. G-Jitter Induced Magnetohydrodynamics Flow of Nanofluid with Constant Convective Thermal and Solutal Boundary Conditions

    PubMed Central

    Uddin, Mohammed J.; Khan, Waqar A.; Ismail, Ahmad Izani Md.

    2015-01-01

    Taking into account the effect of constant convective thermal and mass boundary conditions, we present numerical solution of the 2-D laminar g-jitter mixed convective boundary layer flow of water-based nanofluids. The governing transport equations are converted into non-similar equations using suitable transformations, before being solved numerically by an implicit finite difference method with quasi-linearization technique. The skin friction decreases with time, buoyancy ratio, and thermophoresis parameters while it increases with frequency, mixed convection and Brownian motion parameters. Heat transfer rate decreases with time, Brownian motion, thermophoresis and diffusion-convection parameters while it increases with the Reynolds number, frequency, mixed convection, buoyancy ratio and conduction-convection parameters. Mass transfer rate decreases with time, frequency, thermophoresis, conduction-convection parameters while it increases with mixed convection, buoyancy ratio, diffusion-convection and Brownian motion parameters. To the best of our knowledge, this is the first paper on this topic and hence the results are new. We believe that the results will be useful in designing and operating thermal fluids systems for space materials processing. Special cases of the results have been compared with published results and an excellent agreement is found. PMID:25933066

  17. Simulating the thermal operating conditions in the thermal wells of ground-source heat-pump heat supply systems. Part I: Porous moisture freezing processes in soil

    NASA Astrophysics Data System (ADS)

    Vasilyev, G. P.; Peskov, N. V.; Lichman, V. A.; Gornov, V. F.; Kolesova, M. V.

    2015-08-01

    The mathematical models laid down in the new blocks of the INSOLAR.GSHP.12 software system simulating unsteady operating conditions of ground-source heat-pump (GSHP) heat supply systems are presented. The new model blocks take into account the effect the freezing of porous moisture in soil has on the GSHP system performance efficiency. Illustration is given to the need of taking into account the porous moisture freezing/thawing processes in soil, and the results from investigations devoted to the opening possibilities of constructing adaptive GSHP systems with controlled intensity of heat transfer in the soil-thermal well system are presented. The development of software simulating the porous moisture phase state variation processes in soil was preceded by development of mathematical equations representing the thermal conditions of soil body involving porous moisture freezing/thawing processes. A description of these equations is also given in the article. In constructing the mathematical model, the notion "effective thermal conductivity" of soil was introduced for taking into account the latent heat of phase transition that releases during the freezing of moisture. The above-mentioned effective thermal conductivity of soil involves two components: the soil thermal conductivity coefficient itself and an additional term modifying the thermal conductivity value for taking into account the influence of phase transition. For quantitatively evaluating the soil effective thermal conductivity component that takes into account the influence of phase transition, the soil freezing zone radius around the thermal well was determined. The obtained analytic solutions have been implemented in the form of computer program blocks, after which a "numerical experiment" was carried out for estimating the effect the porous moisture freezing/thawing processes have on the soil thermal conditions. It was demonstrated during that experiment that the soil thermal conductivities determined without taking the porous moisture freezing/thawing phase transitions can differ from those determined with taking these transitions into account by a factor of 2 or more. A conclusion has been drawn from these findings about the importance of taking the phase transition phenomena into account in modeling the parameters of thermal wells and of the GSHP system as a whole.

  18. The detectability of Arctic leads using thermal imagery under varying atmospheric conditions

    NASA Technical Reports Server (NTRS)

    Stone, Robert S.; Key, Jeffrey R.

    1993-01-01

    The way in which thermal contrast between leads of varying widths and thickness can be distinguished from the background multiyear ice surface under varying atmospheric conditions is examined. The normalized brightness temperature difference between image pixels that include lead fractions and of the background ice is employed to determine thresholds of detection accounting for sensor FOV and various atmospheric phenomena that influence the Arctic radiation balance during winter. Surface temperatures are prescribed as a function of ice thickness, and the effects of the intervening atmosphere are simulated by varying the optical depths of hypothetic cloud or haze layers varying in microphysical characteristics. It is found that the limits of lead detection may be determined as a function of pixel lead fraction and atmospheric optical depth if suitable values of normalized contrast are used as detection criteria.

  19. Photopyroelectric Monitoring of Olive's Ripening Conditions and Olive Oil Quality Using Pulsed Wideband IR Thermal Source

    NASA Astrophysics Data System (ADS)

    Abu-Taha, M. I.; Sarahneh, Y.; Saleh, A. M.

    The present study is based on band absorption of radiation from pulsed wideband infrared (IR) thermal source (PWBS) in conjunction with polyvinylidene fluoride film (PVDF). It is the first time to be employed to monitor the ripening state of olive fruit. Olive's characteristics vary at different stages of ripening, and hence, cultivation of olives at the right time is important in ensuring the best oil quality and maximizes the harvest yield. The photopyroelectric (PPE) signal resulting from absorption of wideband infrared (IR) radiation by fresh olive juice indicates the ripening stage of olives, i.e., allows an estimate of the suitable harvest time. The technique was found to be very useful in discriminating between olive oil samples according to geographical region, shelf life, some storage conditions, and deliberate adulteration. Our results for monitoring oil accumulation in olives during the ripening season agree well with the complicated analytical studies carried out by other researchers.

  20. Enhanced violation of a Leggett-Garg inequality under nonequilibrium thermal conditions

    E-print Network

    Juan C. Castillo; Ferney J. Rodríguez; Luis Quiroga

    2013-08-08

    We investigate both analytically and numerically violations of a Leggett-Garg inequality (LGI) for a composite quantum system in contact with two separate reservoirs at different temperatures. Remarkably we find that LGI violations can be enhanced when a heat current is established at low temperatures in a steady-state regime. Based on a Kraus operator decomposition of the non-unitary evolution for a system formed by two interacting spins or quantum bits, we provide analytical support for power law relations between dissipation strength and mean temperature in the borderlines separating parameter regions where non-equilibrium conditions affect differently the maximal LGI violation. Furthermore, a correspondence between spatial and temporal correlation inequalities is shown to persist even in such nonequilibrium thermal settings.

  1. A novel active suppression technology against thermal drift for ultra-precision spherical capacitive sensors

    NASA Astrophysics Data System (ADS)

    Cui, Junning; Lu, Yesheng; Sun, Tao; Ou, Yaodong

    2015-02-01

    In order to solve the problem of thermal drift and further improve the performance for sensors with extreme demand for precision, based on analysis of shortcomings of existing compensation methods and characteristics of thermal drift, a novel active suppression technology against thermal drift is proposed. Considering the change of properties of reference elements in sensors caused by temperature variation is the most major factor that introduces thermal drift error, a special thermal structure is designed to provide a small environmental chamber with sub-structure design of high performance heat isolation, heat conduction and homogenization of temperature, and the temperature in the environmental chamber is controlled with high precision based on bilateral temperature adjusting with thermo electronic cooler (TEC) devices, and a compound control algorithm of Bang-Bang and anti-windup PID. Experimental results with an ultra-precision spherical capacitive sensor show thermal drift error is significantly eliminated and the precision of the sensor can reach the level of several resolutions.

  2. Relevant influence of limestone crystallinity on CO? capture in the Ca-looping technology at realistic calcination conditions.

    PubMed

    Valverde, J M; Sanchez-Jimenez, P E; Perez-Maqueda, L A

    2014-08-19

    We analyze the role of limestone crystallinity on its CO2 capture performance when subjected to carbonation/calcination cycles at conditions mimicking the Ca-looping (CaL) technology for postcombustion CO2 capture. The behavior of raw and pretreated limestones (milled and thermally annealed) is investigated by means of thermogravimetric analysis (TGA) tests under realistic sorbent regeneration conditions, which necessarily involve high CO2 partial pressure in the calciner and quick heating rates. The pretreatments applied lead to contrasting effects on the solid crystal structure and, therefore, on its resistance to solid-state diffusion. Our results show that decarbonation at high CO2 partial pressure is notably promoted by decreasing solid crystallinity. CaO regeneration is fully achieved under high CO2 partial pressure at 900 °C in short residence times for the milled limestone whereas complete regeneration for raw limestone requires a minimum calcination temperature of about 950 °C. Such a reduction of the calcination temperature and the consequent mitigation of multicyclic capture capacity decay would serve to enhance the efficiency of the CaL technology. On the other hand, the results of our study suggest that the use of highly crystalline limestones would be detrimental since excessively high calcination temperatures should be required to attain full decarbonation at realistic conditions. PMID:25029532

  3. NREL's Energy-Saving Technology for Air Conditioning Cuts Peak Power Loads Without Using Harmful Refrigerants (Fact Sheet)

    SciTech Connect

    Not Available

    2012-07-01

    This fact sheet describes how the DEVAP air conditioner was invented, explains how the technology works, and why it won an R&D 100 Award. Desiccant-enhanced evaporative (DEVAP) air-conditioning will provide superior comfort for commercial buildings in any climate at a small fraction of the electricity costs of conventional air-conditioning equipment, releasing far less carbon dioxide and cutting costly peak electrical demand by an estimated 80%. Air conditioning currently consumes about 15% of the electricity generated in the United States and is a major contributor to peak electrical demand on hot summer days, which can lead to escalating power costs, brownouts, and rolling blackouts. DEVAP employs an innovative combination of air-cooling technologies to reduce energy use by up to 81%. DEVAP also shifts most of the energy needs to thermal energy sources, reducing annual electricity use by up to 90%. In doing so, DEVAP is estimated to cut peak electrical demand by nearly 80% in all climates. Widespread use of this cooling cycle would dramatically cut peak electrical loads throughout the country, saving billions of dollars in investments and operating costs for our nation's electrical utilities. Water is already used as a refrigerant in evaporative coolers, a common and widely used energy-saving technology for arid regions. The technology cools incoming hot, dry air by evaporating water into it. The energy absorbed by the water as it evaporates, known as the latent heat of vaporization, cools the air while humidifying it. However, evaporative coolers only function when the air is dry, and they deliver humid air that can lower the comfort level for building occupants. And even many dry climates like Phoenix, Arizona, have a humid season when evaporative cooling won't work well. DEVAP extends the applicability of evaporative cooling by first using a liquid desiccant-a water-absorbing material-to dry the air. The dry air is then passed to an indirect evaporative cooling stage, in which the incoming air is in thermal contact with a moistened surface that evaporates the water into a separate air stream. As the evaporation cools the moistened surface, it draws heat from the incoming air without adding humidity to it. A number of cooling cycles have been developed that employ indirect evaporative cooling, but DEVAP achieves a superior efficiency relative to its technological siblings.

  4. A quantitative sensitivity analysis on the behaviour of common thermal indices under hot and windy conditions in Doha, Qatar

    NASA Astrophysics Data System (ADS)

    Fröhlich, Dominik; Matzarakis, Andreas

    2015-02-01

    Human thermal perception is best described through thermal indices. The most popular thermal indices applied in human bioclimatology are the perceived temperature (PT), the Universal Thermal Climate Index (UTCI), and the physiologically equivalent temperature (PET). They are analysed focusing on their sensitivity to single meteorological input parameters under the hot and windy meteorological conditions observed in Doha, Qatar. It can be noted, that the results for the three indices are distributed quite differently. Furthermore, they respond quite differently to modifications in the input conditions. All of them show particular limitations and shortcomings that have to be considered and discussed. While the results for PT are unevenly distributed, UTCI shows limitations concerning the input data accepted. PET seems to respond insufficiently to changes in vapour pressure. The indices should therefore be improved to be valid for several kinds of climates.

  5. Innovative nuclear thermal propulsion technology evaluation: Results of the NASA/DOE Task Team study

    SciTech Connect

    Howe, S. ); Borowski, S. . Lewis Research Center); Motloch, C. ); Helms, I. ); Diaz, N.; Anghaie, S. ); Latham, T. (United

    1991-01-01

    In response to findings from two NASA/DOE nuclear propulsion workshops held in the summer of 1990, six task teams were formed to continue evaluation of various nuclear propulsion concepts. The Task Team on Nuclear Thermal Propulsion (NTP) created the Innovative Concepts Subpanel to evaluate thermal propulsion concepts which did not utilize solid fuel. The Subpanel endeavored to evaluate each of the concepts on a level technological playing field,'' and to identify critical technologies, issues, and early proof-of-concept experiments. The concepts included the liquid core fission, the gas core fission, the fission foil reactors, explosively driven systems, fusion, and antimatter. The results of the studies by the panel will be provided. 13 refs., 6 figs., 2 tabs.

  6. Space power thermal management materials and fabrication technologies for commerical use

    NASA Astrophysics Data System (ADS)

    Rosenfeld, John H.; Anderson, William G.; Horner-Richardson, Kevin; Hartenstine, John R.; Keller, Robert F.; Beals, James T.

    1995-01-01

    This paper describes three materials technologies, developed for space nuclear power thermal management, with exciting and varied applications in other fields. Six dual-use applications are presented. The three basic technologies are described: (1) Refractory-metal/ceramic layered composites can be made into thin, rigid, vacuum tight shells. These shells can be tailored for excellent impact resistance and/or excellent corrision/erosion properties. Dual use applications range from micrometeroid shield radiators for spacecraft to erosion resistant waste-stream heat recovery for corrosive exhaust. (2.) Porous metal technology was initially developed to produce wicks for liquid metal heat pipes. This technology is being developed in several new directions. Porous metal heat exchangers feature extraordinarily high specific surface ratios and have absorbed heat fluxes in excess of 100 MW/m2. Porous metal structures are highly compliant, so the technology has been expanded to produce a compliant interface for the attachment of materials with widely different coefficients of thermal expansion such as low expansion carbon-carbon to high expansion metals. (3.) The paper also describes a process, developed for space nuclear power (thermionics), which achieves 100% dense tungsten by plasma spraying. This could have major application in the reprocessing of spent nuclear fuel or other pyrochemical processes, where it would replace gun-drilled tungsten-molybdenum tubes with pure tungsten tubes of smaller diameter, longer, and thiner walled. The process could produce pure tungsten components in complex shapes for arcjet thrusters and other electric propulsion devices.

  7. Continental Scientific Drilling (CSD): Technology Barriers to Deep Drilling Studies in Thermal Regimes

    SciTech Connect

    Kolstad, George A.; Rowley, John C.

    1987-01-16

    This report is the proceedings of a workshop. The primary thrust of these discussion was to identify the major key technology barriers to the Department of Energy (DOE) supported Thermal Regimes CSD projects and to set priorities for research and development. The major technological challenge is the high temperature to be encountered at depth. Specific problems derived from this issue were widely recognized among the participants and are reflected in this summary. A major concern for the projected Thermal Regimes CSD boreholes was the technology required for continuous coring, in contrast to that required for drilling without core or spot coring. Current commercial technology bases for these two techniques are quite different. The DOE has successfully fielded projects that used both technologies, i.e, shallow continuous coring (Inyo Domes and Valles Caldera) and deeper drilling with spot cores (Imperial Valley-SSSDP). It was concluded that future scientific objectives may still require both approaches, but continuous coring is the most likely requirement in the near term. (DJE-2005)

  8. Thermal power systems, point-focusing distributed receiver technology project. Volume 2: Detailed report

    NASA Technical Reports Server (NTRS)

    Lucas, J.

    1979-01-01

    Thermal or electrical power from the sun's radiated energy through Point-Focusing Distributed Receiver technology is the goal of this Project. The energy thus produced must be economically competitive with other sources. The Project supports the industrial development of technology and hardware for extracting energy from solar power to achieve the stated goal. Present studies are working to concentrate the solar energy through mirrors or lenses, to a working fluid or gas, and through a power converter change to an energy source useful to man. Rankine-cycle and Brayton-cycle engines are currently being developed as the most promising energy converters for our near future needs.

  9. Design Factors for Applying Cryogen Storage and Delivery Technology to Solar Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Millis, Marc G.

    1996-01-01

    Thermodynamic Vent System (TVS) and Multilayer Insulation (MLI) technology, originally developed for long term storage of cryogen propellants in microgravity, is ideally suited for propellant storage and delivery systems for solar thermal propulsion. With this technology the heat-induced pressure rise in the tank provides the propellant delivery pressure without the need for an auxiliary pressurant system, and propellant delivery is used to remove the excess heat to control tank pressure. The factors to consider in designing such a balanced system, are presented. An example of a minimum system design is presented along with examples of laboratory-tested hardware.

  10. Innovative nuclear thermal propulsion technology evaluation - Results of the NASA/DOE task team study

    NASA Technical Reports Server (NTRS)

    Howe, Steven D.; Borowski, Stanley; Motloch, Chet; Helms, Ira; Diaz, Nils; Anghaie, Samim; Latham, Thomas

    1991-01-01

    In response to findings from two NASA/DOE nuclear propulsion workshops, six task teams were created to continue evaluation of various propulsion concepts, from which evolved an innovative concepts subpanel to evaluate thermal propulsion concepts which did not utilize solid fuel. This subpanel endeavored to evaluate each concept on a level technology basis, and to identify critical issues, technologies, and early proof-of-concept experiments. Results of the concept studies including the liquid core fission, the gas core fission, the fission foil reactors, explosively driven systems, fusion, and antimatter are presented.

  11. NREL's Advanced Thermal Conversion Laboratory at the Center for Buildings and Thermal Systems: On the Cutting-Edge of HVAC and CHP Technology (Revised)

    SciTech Connect

    Not Available

    2005-09-01

    This brochure describes how the unique testing capabilities of NREL's Advanced Thermal Conversion Laboratory at the Center For Buildings and Thermal Systems can help industry meet the challenge of developing the next generation of heating, ventilating, and air-conditioning (HVAC) and combined heat and power (CHP) equipment and concepts.

  12. Engine Operating Conditions that Cause Thermal-Fatigue Cracks in Turbojet-Engine Buckets

    NASA Technical Reports Server (NTRS)

    Johnston, James R.; Weeton, John W.; Signorelli, Robert A.

    1959-01-01

    Five engine tests were conducted to definitely establish the failure mechanism of leading-edge cracking and to determine which conditions of engine operation cause the failures. Five groups of S-616 and M-252 buckets from master lots were run consecutively in the same J47-25 engine. The tests included a steady-state run at full-power conditions, rapid cycling between idle and rated speed, and three different start-stop tests. The first start-stop test consisted of cycles of start and stop with 5 minutes of idle speed before each stop; the second included cycles of start and stop but with 15 minutes of rated speed before each stop; the third consisted of cycles of gradual starts and normal stops with 5 minutes at idle speed before each stop. The test results demonstrated that the primary cause of leading-edge cracking was thermal fatigue produced by repeated engine starts. The leading edge of the bucket experiences plastic flow in compression during starts and consequently is subjected to a tensile stress when the remainder of the bucket becomes heated and expands. Crack initiation was accelerated when rated-speed operation was added to each normal start-stop cycle. This acceleration of crack formation was attributed to localized creep damage and perhaps to embrittlement resulting from overaging. It was demonstrated that leading-edge cracking can be prevented simply by starting the engine gradually.

  13. Building Thermal Envelope Systems and Materials (BTESM) and research utilization/technology transfer

    SciTech Connect

    Burn, G.

    1990-07-01

    The Monthly Report of the Building Thermal Envelope Systems and Materials (BTESM) Programs is a monthly update of both in-house ORNL projects and subcontract activities in the research areas of building materials, wall systems, foundations, roofs, building diagnostics, and research utilization and technology transfer. Presentations are not stand-alone paragraphs every month. Their principal values are the short-time lapse between accomplishment and reporting and their evolution over a period of several months..

  14. Thermal Energy for Lunar In Situ Resource Utilization: Technical Challenges and Technology Opportunities

    NASA Technical Reports Server (NTRS)

    Gordon, Pierce E. C.; Colozza, Anthony J.; Hepp, Aloysius F.; Heller, Richard S.; Gustafson, Robert; Stern, Ted; Nakamura, Takashi

    2011-01-01

    Oxygen production from lunar raw materials is critical for sustaining a manned lunar base but is very power intensive. Solar concentrators are a well-developed technology for harnessing the Sun s energy to heat regolith to high temperatures (over 1375 K). The high temperature and potential material incompatibilities present numerous technical challenges. This study compares and contrasts different solar concentrator designs that have been developed, such as Cassegrains, offset parabolas, compound parabolic concentrators, and secondary concentrators. Differences between concentrators made from lenses and mirrors, and between rigid and flexible concentrators are also discussed. Possible substrate elements for a rigid mirror concentrator are selected and then compared, using the following (target) criteria: (low) coefficient of thermal expansion, (high) modulus of elasticity, and (low) density. Several potential lunar locations for solar concentrators are compared; environmental and processing-related challenges related to dust and optical surfaces are addressed. This brief technology survey examines various sources of thermal energy that can be utilized for materials processing on the lunar surface. These include heat from nuclear or electric sources and solar concentrators. Options for collecting and transporting thermal energy to processing reactors for each source are examined. Overall system requirements for each thermal source are compared and system limitations, such as maximum achievable temperature are discussed.

  15. Thermal Screen Printing. Technology Learning Activity. Teacher Edition. Technology Education Series.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This curriculum guide provides technology learning activities designed to prepare students in grades 6-10 to work in the world of the future. The 8-day course provides exploratory, hands-on learning activities and information that can enhance the education of students of all types in an integrated curriculum that provides practical applications of…

  16. Experimental investigation on the photovoltaic-thermal solar heat pump air-conditioning system on water-heating mode

    SciTech Connect

    Fang, Guiyin; Hu, Hainan; Liu, Xu

    2010-09-15

    An experimental study on operation performance of photovoltaic-thermal solar heat pump air-conditioning system was conducted in this paper. The experimental system of photovoltaic-thermal solar heat pump air-conditioning system was set up. The performance parameters such as the evaporation pressure, the condensation pressure and the coefficient of performance (COP) of heat pump air-conditioning system, the water temperature and receiving heat capacity in water heater, the photovoltaic (PV) module temperature and the photovoltaic efficiency were investigated. The experimental results show that the mean photovoltaic efficiency of photovoltaic-thermal (PV/T) solar heat pump air-conditioning system reaches 10.4%, and can improve 23.8% in comparison with that of the conventional photovoltaic module, the mean COP of heat pump air-conditioning system may attain 2.88 and the water temperature in water heater can increase to 42 C. These results indicate that the photovoltaic-thermal solar heat pump air-conditioning system has better performances and can stably work. (author)

  17. Liquid Methane Conditioning Capabilities Developed at the NASA Glenn Research Center's Small Multi- Purpose Research Facility (SMiRF) for Accelerated Lunar Surface Storage Thermal Testing

    NASA Technical Reports Server (NTRS)

    Bamberger, Helmut H.; Robinson, R. Craig; Jurns, John M.; Grasl, Steven J.

    2011-01-01

    Glenn Research Center s Creek Road Cryogenic Complex, Small Multi-Purpose Research Facility (SMiRF) recently completed validation / checkout testing of a new liquid methane delivery system and liquid methane (LCH4) conditioning system. Facility checkout validation was conducted in preparation for a series of passive thermal control technology tests planned at SMiRF in FY10 using a flight-like propellant tank at simulated thermal environments from 140 to 350K. These tests will validate models and provide high quality data to support consideration of LCH4/LO2 propellant combination option for a lunar or planetary ascent stage.An infrastructure has been put in place which will support testing of large amounts of liquid methane at SMiRF. Extensive modifications were made to the test facility s existing liquid hydrogen system for compatibility with liquid methane. Also, a new liquid methane fluid conditioning system will enable liquid methane to be quickly densified (sub-cooled below normal boiling point) and to be quickly reheated to saturation conditions between 92 and 140 K. Fluid temperatures can be quickly adjusted to compress the overall test duration. A detailed trade study was conducted to determine an appropriate technique to liquid conditioning with regard to the SMiRF facility s existing infrastructure. In addition, a completely new roadable dewar has been procured for transportation and temporary storage of liquid methane. A new spherical, flight-representative tank has also been fabricated for integration into the vacuum chamber at SMiRF. The addition of this system to SMiRF marks the first time a large-scale liquid methane propellant test capability has been realized at Glenn.This work supports the Cryogenic Fluid Management Project being conducted under the auspices of the Exploration Technology Development Program, providing focused cryogenic fluid management technology efforts to support NASA s future robotic or human exploration missions.

  18. Engineering the Technology: Basic Conditions To Transfer Technology Innovation to Industrial Production.

    ERIC Educational Resources Information Center

    Jones, Ary Marques

    This paper discusses the need for engineering education to address research and development, applied research, and technology transfer. It is important that engineering education considers as a major objective for engineering students the need of bridging the gap between what is produced in laboratories and the full scale of industrial production.…

  19. CARBON-RICH GIANT PLANETS: ATMOSPHERIC CHEMISTRY, THERMAL INVERSIONS, SPECTRA, AND FORMATION CONDITIONS

    SciTech Connect

    Madhusudhan, Nikku; Mousis, Olivier; Johnson, Torrence V.; Lunine, Jonathan I.

    2011-12-20

    The recent inference of a carbon-rich atmosphere, with C/O {>=} 1, in the hot Jupiter WASP-12b motivates the exotic new class of carbon-rich planets (CRPs). We report a detailed study of the atmospheric chemistry and spectroscopic signatures of carbon-rich giant (CRG) planets, the possibility of thermal inversions in their atmospheres, the compositions of icy planetesimals required for their formation via core accretion, and the apportionment of ices, rock, and volatiles in their envelopes. Our results show that CRG atmospheres probe a unique region in composition space, especially at high temperature (T). For atmospheres with C/O {>=} 1, and T {approx}> 1400 K in the observable atmosphere, most of the oxygen is bound up in CO, while H{sub 2}O is depleted and CH{sub 4} is enhanced by up to two or three orders of magnitude each, compared to equilibrium compositions with solar abundances (C/O = 0.54). These differences in the spectroscopically dominant species for the different C/O ratios cause equally distinct observable signatures in the spectra. As such, highly irradiated transiting giant exoplanets form ideal candidates to estimate atmospheric C/O ratios and to search for CRPs. We also find that the C/O ratio strongly affects the abundances of TiO and VO, which have been suggested to cause thermal inversions in highly irradiated hot Jupiter atmospheres. A C/O = 1 yields TiO and VO abundances of {approx}100 times lower than those obtained with equilibrium chemistry assuming solar abundances, at P {approx} 1 bar. Such a depletion is adequate to rule out thermal inversions due to TiO/VO even in the most highly irradiated hot Jupiters, such as WASP-12b. We estimate the compositions of the protoplanetary disk, the planetesimals, and the envelope of WASP-12b, and the mass of ices dissolved in the envelope, based on the observed atmospheric abundances. Adopting stellar abundances (C/O = 0.44) for the primordial disk composition and low-temperature formation conditions (T {approx}< 30 K) for WASP-12b lead to a C/O ratio of 0.27 in accreted planetesimals, and, consequently, in the planet's envelope. In contrast, a C/O ratio of 1 in the envelope of WASP-12b requires a substantial depletion of oxygen in the disk, i.e., by a factor of {approx}0.41 for the same formation conditions. This scenario also satisfies the constraints on the C/H and O/H ratios reported for WASP-12b. If, alternatively, hotter conditions prevailed in a stellar composition disk such that only H{sub 2}O is condensed, the remaining gas can potentially have a C/O {approx} 1. However, a high C/O in WASP-12b caused predominantly by gas accretion would preclude superstellar C/H ratios which also fit the data.

  20. Latitudinal Discontinuity in Thermal Conditions along the Nearshore of Central-Northern Chile

    PubMed Central

    Tapia, Fabian J.; Largier, John L.; Castillo, Manuel; Wieters, Evie A.; Navarrete, Sergio A.

    2014-01-01

    Over the past decade, evidence of abrupt latitudinal changes in the dynamics, structure and genetic variability of intertidal and subtidal benthic communities along central-northern Chile has been found consistently at 30–32°S. Changes in the advective and thermal environment in nearshore waters have been inferred from ecological patterns, since analyses of in situ physical data have thus far been missing. Here we analyze a unique set of shoreline temperature data, gathered over 4–10 years at 15 sites between 28–35°S, and combine it with satellite-derived winds and sea surface temperatures to investigate the latitudinal transition in nearshore oceanographic conditions suggested by recent ecological studies. Our results show a marked transition in thermal conditions at 30–31°S, superimposed on a broad latitudinal trend, and small-scale structures associated with cape-and-bay topography. The seasonal cycle dominated temperature variability throughout the region, but its relative importance decreased abruptly south of 30–31°S, as variability at synoptic and intra-seasonal scales became more important. The response of shoreline temperatures to meridional wind stress also changed abruptly at the transition, leading to a sharp drop in the occurrence of low-temperature waters at northern sites, and a concurrent decrease in corticated algal biomass. Together, these results suggest a limitation of nitrate availability in nearshore waters north of the transition. The localized alongshore change results from the interaction of latitudinal trends (e.g., wind stress, surface warming, inertial period) with a major headland-bay system (Punta Lengua de Vaca at 30.25°S), which juxtaposes a southern stretch of coast characterized by upwelling with a northern stretch of coast characterized by warm surface waters and stratification. This transition likely generates a number of latitude-dependent controls on ecological processes in the nearshore that can explain species-specific effects, and add strength to the suggestion of an oceanography-driven, major spatial transition in coastal communities at 30–31°S. PMID:25334020

  1. Solar thermal power systems point-focusing distributed receiver /PFDR/ technology - A project description

    NASA Technical Reports Server (NTRS)

    Lucas, J. W.; Roschke, E. J.

    1978-01-01

    The goal of the Project is to support the industrial development of PFDR technology that will provide favorable life-cycle costs per unit of electrical or thermal energy produced. The technology will be made available in the early 1980s for applications project experiments. PFDR systems utilize concentrator dishes to furnish energy to their own individual receivers and power conversion subsystems. Initial effort is with steam Rankine and gas Brayton cycles. Periodic assessments will be made to confirm or change the cycles initially selected. Subsystems will be designed, fabricated and tested together in modules as appropriate. This paper describes PFDR systems briefly, outlines the project goals and organization, discusses the plans and current status of the project, and lists the benefits of PFDR technology concepts.

  2. Thermal power systems point-focusing distributed receiver technology project. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Lucas, J.

    1979-01-01

    Thermal or electrical power from the sun's radiated energy through Point-Focusing Distributed Receiver Technology is the goal of this project. The energy thus produced must be technically, as well as economically, competitive with other energy sources. This project is to support the industrial development of the required technology to achieve the above stated goal. Solar energy is concentrated by either a reflecting surface or a lense to a receiver where it is transferred to a working liquid or gas. Receiver temperatures are in the 1000 - 2000 F range. Conceptual design studies are expected to identify power conversion units with a viable place in the solar energy future. Rankine and Brayton cycle engines are under investigation. This report details the Jet Propulsion Laboratory's accomplishments with point-focusing technology in Fy 1978.

  3. Effects of BEOL on self-heating and thermal coupling in SiGe multi-finger HBTs under real operating condition

    NASA Astrophysics Data System (ADS)

    Dwivedi, A. D. D.; Chakravorty, Anjan; D'Esposito, Rosario; Sahoo, Amit Kumar; Fregonese, Sebastien; Zimmer, Thomas

    2016-01-01

    Effects of the back-end-of-line layers up to metal-1 on the self-heating and thermal coupling in a multi-finger silicon germanium heterojunction bipolar transistor (SiGe MFT) are investigated. It is observed that the rise in junction temperature is overestimated if the BEOL effects are not considered. A new method for estimating the thermal coupling coefficients is proposed emulating the real operating condition. The proposed methodology demonstrates that the thermal coupling is increased in real operating condition and the estimated coupling coefficients are almost independent of the dissipated power. Further an empirical closed-form formulation is proposed for estimating the coupling coefficients analytically and for subsequently using in compact model simulation. The formulation is found to predict the coefficients quite accurately. Compact model simulations using the analytically obtained coupling coefficients show excellent model agreement with the static and dynamic 3D TCAD simulation data for junction temperature. Finally the model is validated against the measured data corresponding to an SiGe MFT fabricated using B55 technology from ST microelectronics.

  4. TECHNOLOGY DEMONSTRATION SUMMARY: THE AMERICAN COMBUSTION PYRETRON THERMAL DESTRUCTION SYSTEM AT THE U.S. EPA'S COMBUSTION FACILITY

    EPA Science Inventory

    The American Combustion Pyretron Thermal Destruction System at the U.S. EPA's Combustion Research Facility. Under the auspices of the Superfund Innovative Technology Evaluation, or SITE, program, a critical assessment was made of the American Combustion Pyretron™ oxygen enha...

  5. Application and development of technologies for engine-condition-based maintenance of emergency diesel generators

    SciTech Connect

    Choi, K. H.; Sang, G.; Choi, L. Y. S.; Lee, B. O.

    2012-07-01

    The emergency diesel generator (EDG) of a nuclear power plant has the role of supplying emergency electric power to protect the reactor core system in the event of the loss of offsite power supply. Therefore, EDGs should be subject to periodic surveillance testing to verify their ability to supply specified frequencies and voltages at design power levels within a limited time. To maintain optimal reliability of EDGs, condition monitoring/diagnosis technologies must be developed. Changing from periodic disassemble maintenance to condition-based maintenance (CBM) according to predictions of equipment condition is recommended. In this paper, the development of diagnosis technology for CBM and the application of a diesel engine condition-analysis system are described. (authors)

  6. Fast access to the CMS detector condition data employing HTML5 technologies

    NASA Astrophysics Data System (ADS)

    Pierro, Giuseppe Antonio; Cavallari, Francesca; Di Guida, Salvatore; Innocente, Vincenzo

    2011-12-01

    This paper focuses on using HTML version 5 (HTML5) for accessing condition data for the CMS experiment, evaluating the benefits and risks posed by the use of this technology. According to the authors of HTML5, this technology attempts to solve issues found in previous iterations of HTML and addresses the needs of web applications, an area previously not adequately covered by HTML. We demonstrate that employing HTML5 brings important benefits in terms of access performance to the CMS condition data. The combined use of web storage and web sockets allows increasing the performance and reducing the costs in term of computation power, memory usage and network bandwidth for client and server. Above all, the web workers allow creating different scripts that can be executed using multi-thread mode, exploiting multi-core microprocessors. Web workers have been employed in order to substantially decrease the web page rendering time to display the condition data stored in the CMS condition database.

  7. Gypsum scale formation on a heated copper plate under natural convection conditions and produced water remediation technologies review

    E-print Network

    Mirhi, Mohamad H. (Mohamad Hussein)

    2013-01-01

    Scaling or crystallization fouling of unwanted salts is one of the most challenging and expensive problems encountered in different applications such as heat exchangers and thermal water treatment technologies. Formation ...

  8. A thermal model for analysis of hermetic reciprocating compressors under the on-off cycling operating condition

    NASA Astrophysics Data System (ADS)

    Lohn, S. K.; Diniz, M. C.; Deschamps, C. J.

    2015-08-01

    The on-off cycling operating condition of compressors is very common in low capacity refrigeration systems, being characterized by alternate periods in which the compressor is either operating (on) or idle (off). Thermal interactions between the compressor components affect its performance during the operating period and establish the initial condition for the compressor start up from idle condition. This paper presents a numerical model to predict the temperature field of hermetic reciprocating compressors under on-off cycling conditions. The model adopts a lumped formulation for control volumes formed in the fluid solution domain and the finite volume method to solve heat conduction in the solid components. Some required heat transfer coefficients were experimentally adjusted. Predictions for temperature were compared to measurements and good agreement was observed, especially for the thermal transient during the period in which the compressor is off.

  9. Thermal stabilities of drops of burning thermoplastics under the UL 94 vertical test conditions.

    PubMed

    Wang, Yong; Zhang, Jun

    2013-02-15

    The properties of polymer melts will strongly affect the fire hazard of the pool induced by polymer melt flow. In this study the thermal stabilities of eight thermoplastic polymers as well as their melting drops generated under the UL 94 vertical burning test conditions were investigated by thermogravimetric experiments. It was found that the kinetic compensation effect existed for the decomposition reactions of the polymers and their drops. For polymethylmethacrylate (PMMA), high impact polystyrene (HIPS), poly(acrylonitrile-butadiene-styrene) (ABS), polyamide 6 (PA6), polypropylene (PP) and low density polyethylene (LDPE), the onset decomposition temperature and the two decomposition kinetic parameters (the pre-exponential factor and the activation energy) of the drop were less than those of the polymer. However, the onset decomposition temperature and the two kinetic parameters of PC's drop were greater than those of polycarbonate (PC). Interestingly, for polyethylenevinylacetate (EVA18) the drop hardly contained the vinyl acetate chain segments. Similarly, for the PMMA/LDPE blends and the PMMA/PP blends, when the volume fraction of PMMA was less than 50% the drop hardly contained PMMA, implying that the blend would not drip until PMMA burned away and its surface temperature approached the decomposition temperature of the continuous phase composed of LDPE or PP. PMID:23298738

  10. Optimal Deployment of Thermal Energy Storage under Diverse Economic and Climate Conditions

    SciTech Connect

    DeForest, Nicolas; Mendes, Goncalo; Stadler, Michael; Feng, Wei; Lai, Judy; Marnay, Chris

    2014-04-15

    This paper presents an investigation of the economic benefit of thermal energy storage (TES) for cooling, across a range of economic and climate conditions. Chilled water TES systems are simulated for a large office building in four distinct locations, Miami in the U.S.; Lisbon, Portugal; Shanghai, China; and Mumbai, India. Optimal system size and operating schedules are determined using the optimization model DER-CAM, such that total cost, including electricity and amortized capital costs are minimized. The economic impacts of each optimized TES system is then compared to systems sized using a simple heuristic method, which bases system size as fraction (50percent and 100percent) of total on-peak summer cooling loads. Results indicate that TES systems of all sizes can be effective in reducing annual electricity costs (5percent-15percent) and peak electricity consumption (13percent-33percent). The investigation also indentifies a number of criteria which drive TES investment, including low capital costs, electricity tariffs with high power demand charges and prolonged cooling seasons. In locations where these drivers clearly exist, the heuristically sized systems capture much of the value of optimally sized systems; between 60percent and 100percent in terms of net present value. However, in instances where these drivers are less pronounced, the heuristic tends to oversize systems, and optimization becomes crucial to ensure economically beneficial deployment of TES, increasing the net present value of heuristically sized systems by as much as 10 times in some instances.

  11. Optical stimulation of the hearing and deaf cochlea under thermal and stress confinement condition

    NASA Astrophysics Data System (ADS)

    Schultz, M.; Baumhoff, P.; Kallweit, N.; Sato, M.; Krüger, A.; Ripken, T.; Lenarz, T.; Kral, A.

    2014-03-01

    There is a controversy, to which extend cochlear stimulation with near infrared laser pulses at a wavelength of 1860 nm is based on optoacoustic stimulation of intact hair cells or -in contrast- is based on direct stimulation of the nerve cells in absence of functional hair cells. Thermal and stress confinement conditions apply, because of the pulse duration range (5 ns, 10 ?s-20 ms) of the two lasers used. The dependency of the signal characteristics on pulse peak power and pulse duration was investigated in this study. The compound action potential (CAP) was measured during stimulation of the cochlea of four anaesthetized guinea pigs, which were hearing at first and afterwards acutely deafened using intracochlear neomycin-rinsing. For comparison hydrophone measurements in a water tank were performed to investigate the optoacoustic signals at different laser interaction regimes. With rising pulse peak power CAPs of the hearing animals showed first a threshold, then a positively correlated and finally a saturating dependency. CAPs also showed distinct responses at laser onset and offset separated with the pulse duration. At pulse durations shorter than physiological response times the signals merged. Basically the same signal characteristics were observed in the optoacoustic hydrophone measurements, scaled with the sensitivity and response time of the hydrophone. Taking together the qualitative correspondence in the signal response and the absence of any CAPs in deafened animals our results speak in favor of an optoacoustic stimulation of intact hair cells rather than a direct stimulation of nerve cells.

  12. 76 FR 77578 - In the Matter of: Brendan Technologies, Inc., CenterStaging Corp., PGMI, Inc., Thermal Energy...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-13

    ... From the Federal Register Online via the Government Printing Office SECURITIES AND EXCHANGE COMMISSION In the Matter of: Brendan Technologies, Inc., CenterStaging Corp., PGMI, Inc., Thermal Energy... information concerning the securities of Thermal Energy Storage, Inc. because it has not filed any...

  13. Multi-Evaporator Miniature Loop Heat Pipe for Small Spacecraft Thermal Control. Part 1; New Technologies and Validation Approach

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Ottenstein, Laura; Douglas, Donya; Hoang, Triem

    2010-01-01

    Under NASA s New Millennium Program Space Technology 8 (ST 8) Project, four experiments Thermal Loop, Dependable Microprocessor, SAILMAST, and UltraFlex - were conducted to advance the maturity of individual technologies from proof of concept to prototype demonstration in a relevant environment , i.e. from a technology readiness level (TRL) of 3 to a level of 6. This paper presents the new technologies and validation approach of the Thermal Loop experiment. The Thermal Loop is an advanced thermal control system consisting of a miniature loop heat pipe (MLHP) with multiple evaporators and multiple condensers designed for future small system applications requiring low mass, low power, and compactness. The MLHP retains all features of state-of-the-art loop heat pipes (LHPs) and offers additional advantages to enhance the functionality, performance, versatility, and reliability of the system. Details of the thermal loop concept, technical advances, benefits, objectives, level 1 requirements, and performance characteristics are described. Also included in the paper are descriptions of the test articles and mathematical modeling used for the technology validation. An MLHP breadboard was built and tested in the laboratory and thermal vacuum environments for TRL 4 and TRL 5 validations, and an MLHP proto-flight unit was built and tested in a thermal vacuum chamber for the TRL 6 validation. In addition, an analytical model was developed to simulate the steady state and transient behaviors of the MLHP during various validation tests. Capabilities and limitations of the analytical model are also addressed.

  14. Suitability of different comfort indices for the prediction of thermal conditions in tree-covered outdoor spaces in arid cities

    NASA Astrophysics Data System (ADS)

    Ruiz, María Angélica; Correa, Erica Norma

    2015-10-01

    Outdoor thermal comfort is one of the most influential factors in the habitability of a space. Thermal level is defined not only by climate variables but also by the adaptation of people to the environment. This study presents a comparison between inductive and deductive thermal comfort models, contrasted with subjective reports, in order to identify which of the models can be used to most correctly predict thermal comfort in tree-covered outdoor spaces of the Mendoza Metropolitan Area, an intensely forested and open city located in an arid zone. Interviews and microclimatic measurements were carried out in winter 2010 and in summer 2011. Six widely used indices were selected according to different levels of complexity: the Temperature-Humidity Index (THI), Vinje's Comfort Index (PE), Thermal Sensation Index (TS), the Predicted Mean Vote (PMV), the COMFA model's energy balance (S), and the Physiological Equivalent Temperature (PET). The results show that the predictive models evaluated show percentages of predictive ability lower than 25 %. Despite this low indicator, inductive methods are adequate for obtaining a diagnosis of the degree and frequency in which a space is comfortable or not whereas deductive methods are recommended to influence urban design strategies. In addition, it is necessary to develop local models to evaluate perceived thermal comfort more adequately. This type of tool is very useful in the design and evaluation of the thermal conditions in outdoor spaces, based not only to climatic criteria but also subjective sensations.

  15. Surface wetting and its effect on body and surface temperatures of domestic laying hens at different thermal conditions.

    PubMed

    Mutaf, S; Kahraman, N Seber; Firat, M Z

    2008-12-01

    This study investigated the efficacy of surface wetting at different thermal conditions on core body, head, and dorsal surface temperatures in laying hens. Hens were sprinkled on the head and dorsal surface by releasing a sprinkling dosage of 10 mL.bird(-1). The first measurement was taken presprinkling, and the second was taken immediately postsprinkling and then repeated every 5 min for 20 min. The cooling water needs for intermittent partial surface wetting to relieve acute heat stress in the laying hens were quantified for 48 domestic laying hens under 4 experimental thermal conditions. The hens were kept at 4 thermal conditions at average dry-bulb temperatures of 31.30 +/- 0.03, 33.20 +/- 0.08, 36.01 +/- 0.12, and 40.24 +/- 0.08 degrees C; RH of 67.68 +/- 0.37, 51.78 +/- 1.98, 24.59 +/- 0.90, and 16.12 +/- 1.55%; and air velocities of 0.09 +/- 0.00, 0.07 +/- 0.00, 0.08 +/- 0.00, and 0.09 +/- 0.00 m.s(-1), respectively. The differences in core body, head, and dorsal surface temperatures among the 4 thermal groups were 0.15, 0.18, 0.23, and 0.22 degrees C for core body temperature; 1.63, 1.44, 2.51, and 0.97 degrees C for core head temperature; and 1.23, 1.37, 1.41, and 0.64 degrees C for core dorsal temperature at thermal conditions 1, 2, 3, and 4, respectively. There were significant differences in core body, head, and dorsal surface temperatures among the 4 thermal condition groups. It was concluded that the spraying interval was directly proportional to the product of the vapor pressure deficit and the thermal resistance of convective mass transfer of the wetted hens, because there were no significant differences in the air velocity among the 4 thermal condition groups and the air velocity was very low. PMID:19038798

  16. Calculation and visual displaying of the water chemistry conditions in return cooling systems at thermal power stations

    NASA Astrophysics Data System (ADS)

    Ochkov, V. F.; Orlov, K. A.; Ivanov, E. N.; Makushin, A. A.

    2013-07-01

    Matters concerned with treatment of cooling water at thermal power stations are addressed. Problems arising during operation of return cooling systems equipped with cooling towers are analyzed. The software used for monitoring, control, and indication of the hydraulic and water chemistry operating conditions of the circulation system at the Yaivinsk district power station is considered.

  17. A study of the thermal decomposition of adulterated cocaine samples under optimized aerobic pyrolytic conditions.

    PubMed

    Gostic, T; Klemenc, S; Stefane, B

    2009-05-30

    The pyrolysis behaviour of pure cocaine base as well as the influence of various additives was studied using conditions that are relevant to the smoking of illicit cocaine by humans. For this purpose an aerobic pyrolysis device was developed and the experimental conditions were optimized. In the first part of our study the optimization of some basic experimental parameters of the pyrolysis was performed, i.e., the furnace temperature, the sampling start time, the heating period, the sampling time, and the air-flow rate through the system. The second part of the investigation focused on the volatile products formed during the pyrolysis of a pure cocaine free base and mixtures of cocaine base and adulterants. The anaesthetics lidocaine, benzocaine, procaine, the analgesics phenacetine and paracetamol, and the stimulant caffeine were used as the adulterants. Under the applied experimental conditions complete volatilization of the samples was achieved, i.e., the residuals of the studied compounds were not detected in the pyrolysis cell. Volatilization of the pure cocaine base showed that the cocaine recovery available for inhalation (adsorbed on traps) was approximately 76%. GC-MS and NMR analyses of the smoke condensate revealed the presence of some additional cocaine pyrolytic products, such as anhydroecgonine methyl ester (AEME), benzoic acid (BA) and carbomethoxycycloheptatrienes (CMCHTs). Experiments with different cocaine-adulterant mixtures showed that the addition of the adulterants changed the thermal behaviour of the cocaine. The most significant of these was the effect of paracetamol. The total recovery of the cocaine (adsorbed on traps and in a glass tube) from the 1:1 cocaine-paracetamol mixture was found to be only 3.0+/-0.8%, versus 81.4+/-2.9% for the pure cocaine base. The other adulterants showed less-extensive effects on the recovery of cocaine, but the pyrolysis of the cocaine-procaine mixture led to the formation of some unique pyrolytic products. Two of them were identified as para-aminobenzoic acid (p-ABA) and 2-(diethylamino)ethylbenzoate (DEAEB). PMID:19278799

  18. EPA FIELD DEMONSTRATION OF INNOVATIVE CONDITION ASSESSMENT TECHNOLOGIES FOR WATER MAINS AT LOUISVILLE, KY

    EPA Science Inventory

    This presentation will describe a series of field demonstrations of innovative leak detection/location and condition assessment technologies that was sponsored by the U.S. Environmental Protection Agency (EPA), conducted by EPA’s contractor (Battelle), and hosted by the Louisvil...

  19. EPA Field Demonstration of Innovative Condition Assessment Technologies for Water Mains at Louisville, KY - slides

    EPA Science Inventory

    This presentation will describe a series of field demonstrations of innovative leak detection/location and condition assessment technologies that was sponsored by the U.S. Environmental Protection Agency (EPA), conducted by EPA’s contractor (Battelle), and hosted by the Louisvill...

  20. Field Demonstration of Innovative Condition Assessment Technologies for Water Mains: Leak Detection and Location

    EPA Science Inventory

    Three leak detection/location technologies were demonstrated on a 76-year-old, 2,057-ft-long portion of a cement-lined, 24-in. cast iron water main in Louisville, KY. This activity was part of a series of field demonstrations of innovative leak detection/location and condition a...

  1. Condition Assessment of Ferrous Water Transmission and Distribution Systems State of Technology Review Report

    EPA Science Inventory

    This White Paper was developed to serve as the basis for discussion at a Technology Forum on Condition Assessment of Water Transmission and Distribution Systems that was held on September 9 and 10, 2008, at Edison, NJ. It was distributed to the Forum participants for review in a...

  2. Discrimination techniques employing both reflective and thermal multispectral signals. [for remote sensor technology

    NASA Technical Reports Server (NTRS)

    Malila, W. A.; Crane, R. B.; Richardson, W.

    1973-01-01

    Recent improvements in remote sensor technology carry implications for data processing. Multispectral line scanners now exist that can collect data simultaneously and in registration in multiple channels at both reflective and thermal (emissive) wavelengths. Progress in dealing with two resultant recognition processing problems is discussed: (1) More channels mean higher processing costs; to combat these costs, a new and faster procedure for selecting subsets of channels has been developed. (2) Differences between thermal and reflective characteristics influence recognition processing; to illustrate the magnitude of these differences, some explanatory calculations are presented. Also introduced, is a different way to process multispectral scanner data, namely, radiation balance mapping and related procedures. Techniques and potentials are discussed and examples presented.

  3. Thermal and Structural Performance of Woven Carbon Cloth For Adaptive Deployable Entry and Placement Technology

    NASA Technical Reports Server (NTRS)

    Arnold, James O.; Peterson, Keith H.; Yount, Bryan C.; Schneider, Nigel; Chavez-Garcia, Jose

    2013-01-01

    Arcjet testing and analysis of a three-dimensional (3D) woven carbon fabric has shown that it can be used as a thermal protection system and as a load bearing structural component for a low ballistic coefficient hypersonic decelerator called ADEPT (Adaptive Deployable Entry and Placement Technology). Results of arcjet tests proved that the 3D woven carbon fabric can withstand flight-like heating while under flight-like biaxial mechanical loads representative of those encountered during shallow entry flight path angles into the atmosphere of Venus. Importantly, the arcjet test results have been used to extend a preliminary material thermal response model based on previous testing of the same 3D woven carbon fabric under uni-axial mechanical loading.

  4. Multi-Purpose Thermal Hydraulic Loop: Advanced Reactor Technology Integral System Test (ARTIST) Facility for Support of Advanced Reactor Technologies

    SciTech Connect

    James E. O'Brien; Piyush Sabharwall; SuJong Yoon

    2001-11-01

    Effective and robust high temperature heat transfer systems are fundamental to the successful deployment of advanced reactors for both power generation and non-electric applications. Plant designs often include an intermediate heat transfer loop (IHTL) with heat exchangers at either end to deliver thermal energy to the application while providing isolation of the primary reactor system. In order to address technical feasibility concerns and challenges a new high-temperature multi-fluid, multi-loop test facility “Advanced Reactor Technology Integral System Test facility” (ARTIST) is under development at the Idaho National Laboratory. The facility will include three flow loops: high-temperature helium, molten salt, and steam/water. Details of some of the design aspects and challenges of this facility, which is currently in the conceptual design phase, are discussed

  5. The potential impact of ZT=4 thermoelectric materials on solar thermal energy conversion technologies.

    SciTech Connect

    Xie, M.; Gruen, D. M.; Materials Science Division; Michigan Technological Univ.

    2010-03-02

    State-of-the-art methodologies for the conversion of solar thermal power to electricity are based on conventional electromagnetic induction techniques. If appropriate ZT = 4 thermoelectric materials were available, it is likely that conversion efficiencies of 30-40% could be achieved. The availability of all solid state electricity generation would be a long awaited development in part because of the elimination of moving parts. This paper presents a preliminary examination of the potential performance of ZT = 4 power generators in comparison with Stirling engines taking into account specific mass, volume and cost as well as system reliability. High-performance thermoelectrics appear to have distinct advantages over magnetic induction technologies.

  6. Atomistic Simulations of Chemical Reactivity of TATB Under Thermal and Shock Conditions

    SciTech Connect

    Manaa, M R; Reed, E J; Fried, L E

    2009-09-23

    The study of chemical transformations that occur at the reactive shock front of energetic materials provides important information for the development of predictive models at the grain-and continuum scales. A major shortcoming of current high explosives models is the lack of chemical kinetics data of the reacting explosive in the high pressure and temperature regimes. In the absence of experimental data, long-time scale atomistic molecular dynamics simulations with reactive chemistry become a viable recourse to provide an insight into the decomposition mechanism of explosives, and to obtain effective reaction rate laws. These rates can then be incorporated into thermo-chemical-hydro codes (such as Cheetah linked to ALE3D) for accurate description of the grain and macro scales dynamics of reacting explosives. In this talk, I will present quantum simulations of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) crystals under thermal decomposition (high density and temperature) and shock compression conditions. This is the first time that condensed phase quantum methods have been used to study the chemistry of insensitive high explosives. We used the quantum-based, self-consistent charge density functional tight binding method (SCC{_}DFTB) to calculate the interatomic forces for reliable predictions of chemical reactions, and to examine electronic properties at detonation conditions for a relatively long time-scale on the order of several hundreds of picoseconds. For thermal decomposition of TATB, we conducted constant volume-temperature simulations, ranging from 0.35 to 2 nanoseconds, at {rho} = 2.87 g/cm{sup 3} at T = 3500, 3000, 2500, and 1500 K, and {rho} = 2.9 g/cm{sup 3} and 2.72 g/cm{sup 3}, at T = 3000 K. We also simulated crystal TATB's reactivity under steady overdriven shock compression using the multi-scale shock technique. We conducted shock simulations with specified shock speeds of 8, 9, and 10 km/s for up to 0.43 ns duration, enabling us to track the reactivity of TATB well into the formation of several stable gas products, such as H{sub 2}O, N{sub 2}, and CO{sub 2}. Although complex chemical transformations are occurring continuously in the dynamical, high temperature, reactive environment of our simulations, a simple overall scheme for the decomposition of TATB emerges: Water is the earliest decomposition products to form, followed by a polymerization (or condensation) process in which several TATB remaining fragments are joined together, initiating the early step in the formation of high-nitrogen clusters, along with stable products such as N{sub 2} and CO{sub 2}. Remarkably, these clusters with high concentration of carbon and nitrogen (and little oxygen) remain dynamically stable for the remaining period of the simulations. Our simulations, thus, reveal a hitherto unidentified region of high concentrations of nitrogen-rich heterocyclic clusters in reacting TATB, whose persistence impede further reactivity towards final products of fluid N{sub 2} and solid carbon. These simulations also predict significant populations of charged species such as NCO{sup -}, H{sup +}, OH{sup -}, H{sub 3}O{sup +}, and O{sup -2}, the first such observation in a reacting explosive. Finally, A reduced four steps, global reaction mechanism with Arrhenius kinetic rates for the decomposition of TATB, along with comparative Cheetah decomposition kinetics at various temperatures has been constructed and will be discussed.

  7. Impact of thermal and nonthermal processing technologies on unfermented apple cider aroma volatiles.

    PubMed

    Azhu Valappil, Zareena; Fan, Xuetong; Zhang, Howard Q; Rouseff, Russell L

    2009-02-11

    Aroma composition and microbial quality of identical lots of apple cider treated by pulsed electric field (PEF), ultraviolet irradiation (UV), or thermal pasteurization stored at 4 degrees C were compared at 0 and 4 weeks. Conditions were optimized to achieve identical 5 log reductions in Escherichia coli K12 for each treatment. PEF and thermal pasteurization maintained acceptable microbial quality for 4 weeks, but UV samples fermented after 2 weeks. Twenty-eight volatiles were quantified using gas chromatography-mass spectrometry (GC-MS) and odor activity values (OAV) determined. OAVs of 69:hexyl acetate, 41:hexanal, 25:2-methylbutyl acetate, 23:2-methyl ethyl butyrate, and 14:2-(E)-hexenal were observed for the control cider. Significant differences (p < 0.05) in the levels of these odorants were observed between treated apple ciders only after 4 weeks of storage. Thermal samples lost 30% of the major ester and aldehyde volatiles during storage with significant decreases (p < 0.05) in butyl acetate, 2-methylbutyl acetate, hexanal, and 2-(E)-hexenal. In UV cider, hexanal and 2-(E)-hexenal were completely lost after 4 weeks of storage. Microbial spoilage in UV cider after 4 weeks of storage was chemically confirmed by the detection of the microbial metabolite 1,3-pentadiene. PEF cider lost <2% of its total ester and aldehydes after 4 weeks of storage and was preferred by 91% of the sensory panel over thermally treated cider. PMID:19154152

  8. Regularities of acoustic emission and thermoemission memory effect in coal specimens under varying thermal conditions

    SciTech Connect

    Shkuratnik, V.L.; Kuchurin, S.V.; Vinnikov, V.A.

    2007-07-15

    The experimental data on acoustic emission regularities are presented for specimens of different genetic coal types exposed to a wide range of cyclic heating modes. Peculiarities of formation and manifestation of thermal-emission memory effect depending on amplitude and duration of the thermal-field action are revealed.

  9. Response of body size and developmental time of Tribolium castaneum to constant versus fluctuating thermal conditions.

    PubMed

    Ma?ek, D; Drobniak, S; Gozdek, A; Pawlik, K; Kramarz, P

    2015-07-01

    Temperature has profound effects on biological functions at all levels of organization. In ectotherms, body size is usually negatively correlated with ambient temperature during development, a phenomenon known as The Temperature-Size Rule (TSR). However, a growing number of studies have indicated that temperature fluctuations have a large influence on life history traits and the implications of such fluctuations for the TSR are unknown. Our study investigated the effect of different constant and fluctuating temperatures on the body mass and development time of red flour beetles (Tribolium castaneum Herbst, 1797); we also examined whether the sexes differed in their responses to thermal conditions. We exposed the progeny of half-sib families of a T. castaneum laboratory strain to one of four temperature regimes: constant 30°C, constant 25°C, fluctuating with a daily mean of 30°C, or fluctuating with a daily mean of 25°C. Sex-specific development time and body mass at emergence were determined. Beetles developed the fastest and had the greatest body mass upon emergence when they were exposed to a constant temperature of 30°C. This pattern was reversed when beetles experienced a constant temperature of 25°C: slowest development and lowest body mass upon emergence were observed. Fluctuations changed those effects significantly - impact of temperature on development time was smaller, while differences in body mass disappeared completely. Our results do not fit TSR predictions. Furthermore, regardless of the temperature regime, females acquired more mass, while there were no differences between sexes in development time to eclosion. This finding fails to support one of the explanations for smaller male size: that selection favors the early emergence of males. We found no evidence of genotype × environment interactions for selected set of traits. PMID:25965024

  10. Dish/Stirling systems: Overview of an emerging commercial solar thermal electric technology

    SciTech Connect

    Strachan, J.W.; Diver, R.B.; Estrada, C.

    1995-11-01

    Dish/Stirling is a solar thermal electric technology which couples parabolic, point-focusing solar collectors and heat engines which employ the Stirling thermodynamic cycle. Since the late 1970s, the development of Dish/Stirling systems intended for commercial use has been in progress in Germany, Japan, and the US. In the next several years it is expected that one or more commercial systems will enter the market place. This paper provides a general overview of this emerging technology, including: a description of the fundamental principles of operation of Dish/Stirling systems; a presentation of the major components of the systems (concentrator, receiver, engine/alternator, and controls); an overview of the actual systems under development around the world, with a discussion of some of the technical issues and challenges facing the Dish/Stirling developers. A brief discussion is also presented of potential applications for small Dish/Stirling systems in northern Mexico.

  11. Improving the efficiency of thermal power equipment based on technologies using surfactants

    NASA Astrophysics Data System (ADS)

    Nikolaeva, L. A.; Zueva, O. S.

    2015-10-01

    The formation of deposits on the functional surfaces of the equipment of heating systems and their corrosion are one of the major energetic problems. To improve the operational efficiency of thermal power equipment, surface-active agents (surfactants) are widely used, which are applied for the treatment of the working surfaces before use, during use, to prevent the parking corrosion, as well as while performing periodic chemical cleanings of power equipment. The tests have been performed, and the technology of application of Auge Neo Ac 56 acid product (MAHIM, Kazan) has been developed, designed to remove mineral deposits and scale from cooling and boiler systems without mechanical influence on them and without disassembly of technological equipment.

  12. Thermal flow sensor for ultra-low velocities based on printed circuit board technology

    NASA Astrophysics Data System (ADS)

    Nguyen, N. T.; Huang, X. Y.; Toh, K. C.

    2001-12-01

    This paper presents a new thermal flow sensor for ultra-low velocities. The sensor was fabricated with the standard printed circuit board (PCB) technology. The technology and the simple sensor design would reduce costs in fabrication and packaging. A one-dimensional analytical model is presented in order to understand the working principle and to optimize the sensitivity. A two-dimensional finite element analysis (FEA) model is also presented. The paper describes the experimental investigations of the temperature field around a heater under the influence of forced convection. The experimental and theoretical optimization results lead to the design of the PCB sensor whose characteristics are presented at the end of the paper. With the current calibration facility, the sensor is able to measure air flow velocities less than 80 mm s-1.

  13. Recommendations for strengthening the infrared technology component of any condition monitoring program

    NASA Astrophysics Data System (ADS)

    Nicholas, Jack R., Jr.; Young, R. K.

    1999-03-01

    This presentation provides insights of a long term 'champion' of many condition monitoring technologies and a Level III infra red thermographer. The co-authors present recommendations based on their observations of infra red and other components of predictive, condition monitoring programs in manufacturing, utility and government defense and energy activities. As predictive maintenance service providers, trainers, informal observers and formal auditors of such programs, the co-authors provide a unique perspective that can be useful to practitioners, managers and customers of advanced programs. Each has over 30 years experience in the field of machinery operation, maintenance, and support the origins of which can be traced to and through the demanding requirements of the U.S. Navy nuclear submarine forces. They have over 10 years each of experience with programs in many different countries on 3 continents. Recommendations are provided on the following: (1) Leadership and Management Support (For survival); (2) Life Cycle View (For establishment of a firm and stable foundation for a program); (3) Training and Orientation (For thermographers as well as operators, managers and others); (4) Analyst Flexibility (To innovate, explore and develop their understanding of machinery condition); (5) Reports and Program Justification (For program visibility and continued expansion); (6) Commitment to Continuous Improvement of Capability and Productivity (Through application of updated hardware and software); (7) Mutual Support by Analysts (By those inside and outside of the immediate organization); (8) Use of Multiple Technologies and System Experts to Help Define Problems (Through the use of correlation analysis of data from up to 15 technologies. An example correlation analysis table for AC and DC motors is provided.); (9) Root Cause Analysis (Allows a shift from reactive to proactive stance for a program); (10) Master Equipment Identification and Technology Application (To place the condition monitoring program in perspective); (11) Use of procedures for Predictive, Condition Monitoring and maintenance in general (To get consistent results); (12) Developing a scheme for predictive, condition monitoring personnel qualification and certification (To provide a career path and incentive to advance skill level and value to the company); (13) Analyst Assignment to Technologies and Related Duties (To make intelligent use of the skills of individuals assigned); (14) Condition Monitoring Analyst Selection Criteria (Key attributes for success are mentioned.); (15) Design and Modification to Support Monitoring (For old and new machinery to facilitate data acquisition); (16) Establishment of a Museum of Components and Samples Pulled from Service for Cause (For orientation and awareness training of operators and managers and exchange of information between analysts); (17) Goals (To promote a proactive program approach for machinery condition improvement).

  14. Non-thermal plasma based technologies for the after-treatment of automotive exhaust particulates and marine diesel exhaust NOx

    SciTech Connect

    McAdams, R; Beech, P; Gillespie, R; Guy, C; Jones,S; Liddell, T; Morgan, R; Shawcross, J; Weeks, D; Hughes, D; Oesterle, J; Eberspdcher,

    2003-08-24

    The trend in environmental legislation is such that primary engine modifications will not be sufficient to meet all future emissions requirements and exhaust aftertreatment technologies will need to be employed. One potential solution that is well placed to meet those requirements is non-thermal plasma technology. This paper will describe our work with some of our partners in the development of a plasma based diesel particulate filter (DPF) and plasma assisted catalytic reduction (PACR) for NOx removal. This paper describes the development of non-thermal plasma technology for the aftertreatment of particulates from a passenger car engine and NOx from a marine diesel exhaust application.

  15. The thermal conductivity of rock under hydrothermal conditions: Measurements and applications

    SciTech Connect

    Williams, C.F.; Sass, J.H.

    1996-12-31

    The thermal conductivities of most major rock-forming minerals vary with both temperature and confining pressure, leading to substantial changes in the thermal properties of some rocks at the high temperatures characteristic of geothermal systems. In areas with large geothermal gradients, the successful use of near-surface heat flow measurements to predict temperatures at depth depends upon accurate corrections for varying thermal conductivity. Previous measurements of the thermal conductivity of dry rock samples as a function of temperature were inadequate for porous rocks and susceptible to thermal cracking effects m nonporous rocks. We have developed an instrument for measuring the thermal conductivity of water-saturated rocks at temperatures from 20 to 350{degrees}C and confining pressures up to 100 MPa. A transient line-source of heat is applied through a needle probe centered within the rock sample, which in turn is enclosed within a heated pressure vessel with independent controls on pore and confining pressure. Application of this technique to samples of Franciscan graywacke from The Geysers reveals a significant change in thermal conductivity with temperature. At reservoir-equivalent temperatures of 250{degrees}C, the conductivity of the graywacke decreases by approximately 25 % relative to the room temperature value. Where heat how is constant with depth within the caprock overlying the reservoir, this reduction in conductivity with temperature leads to a corresponding increase in the geothermal gradient. Consequently, reservoir temperatures are encountered at depths significantly shallower than those predicted by assuming a constant temperature gradient with depth. We have derived general equations for estimating the thermal conductivity of most metamorphic and igneous rocks and some sedimentary rocks at elevated temperature from knowledge of the room temperature thermal conductivity.

  16. The thermal conductivity of rock under hydrothermal conditions: measurements and applications

    SciTech Connect

    Williams, Colin F.; Sass, John H.

    1996-01-24

    The thermal conductivities of most major rock-forming minerals vary with both temperature and confining pressure, leading to substantial changes in the thermal properties of some rocks at the high temperatures characteristic of geothermal systems. In areas with large geothermal gradients, the successful use of near-surface heat flow measurements to predict temperatures at depth depends upon accurate corrections for varying thermal conductivity. Previous measurements of the thermal conductivity of dry rock samples as a function of temperature were inadequate for porous rocks and susceptible to thermal cracking effects in nonporous rocks. We have developed an instrument for measuring the thermal conductivity of water-saturated rocks at temperatures from 20 to 350 °C and confining pressures up to 100 MPa. A transient line-source of heat is applied through a needle probe centered within the rock sample, which in turn is enclosed within a heated pressure vessel with independent controls on pore and confining pressure. Application of this technique to samples of Franciscan graywacke from The Geysers reveals a significant change in thermal conductivity with temperature. At reservoir-equivalent temperatures of 250 °C, the conductivity of the graywacke decreases by approximately 25% relative to the room temperature value. Where heat flow is constant with depth within the caprock overlying the reservoir, this reduction in conductivity with temperature leads to a corresponding increase in the geothermal gradient. Consequently, reservoir temperature are encountered at depths significantly shallower than those predicted by assuming a constant temperature gradient with depth. We have derived general equations for estimating the thermal conductivity of most metamorphic and igneous rocks and some sedimentary rocks at elevated temperature from knowledge of the room temperature thermal conductivity. Application of these equations to geothermal exploration should improve estimates of subsurface temperatures derived from heat flow measurements.

  17. Life cycle assessment of thermal waste-to-energy technologies: review and recommendations.

    PubMed

    Astrup, Thomas Fruergaard; Tonini, Davide; Turconi, Roberto; Boldrin, Alessio

    2015-03-01

    Life cycle assessment (LCA) has been used extensively within the recent decade to evaluate the environmental performance of thermal Waste-to-Energy (WtE) technologies: incineration, co-combustion, pyrolysis and gasification. A critical review was carried out involving 250 individual case-studies published in 136 peer-reviewed journal articles within 1995 and 2013. The studies were evaluated with respect to critical aspects such as: (i) goal and scope definitions (e.g. functional units, system boundaries, temporal and geographic scopes), (ii) detailed technology parameters (e.g. related to waste composition, technology, gas cleaning, energy recovery, residue management, and inventory data), and (iii) modeling principles (e.g. energy/mass calculation principles, energy substitution, inclusion of capital goods and uncertainty evaluation). Very few of the published studies provided full and transparent descriptions of all these aspects, in many cases preventing an evaluation of the validity of results, and limiting applicability of data and results in other contexts. The review clearly suggests that the quality of LCA studies of WtE technologies and systems including energy recovery can be significantly improved. Based on the review, a detailed overview of assumptions and modeling choices in existing literature is provided in conjunction with practical recommendations for state-of-the-art LCA of Waste-to-Energy. PMID:25052337

  18. Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies, Class III

    SciTech Connect

    City of Long Beach; Tidelands Oil Production Company; University of Southern California; David K. Davies and Associates

    2002-09-30

    The objective of this project was to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. The successful application of these technologies would result in expanding their implementation throughout the Wilmington Field and, through technology transfer, to other slope and basin clastic (SBC) reservoirs.

  19. Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies, Class III

    SciTech Connect

    City of Long Beach; Tidelands Oil Production Company; University of Southern California; David K. Davies and Associates

    2002-09-30

    The objective of this project was to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. It was hoped that the successful application of these technologies would result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs.

  20. Thermal conductivity of vertically aligned carbon nanotube arrays: Growth conditions and tube inhomogeneity

    SciTech Connect

    Bauer, Matthew L.; Pham, Quang N.; Saltonstall, Christopher B.; Norris, Pamela M.

    2014-10-13

    The thermal conductivity of vertically aligned carbon nanotube arrays (VACNTAs) grown on silicon dioxide substrates via chemical vapor deposition is measured using a 3? technique. For each sample, the VACNTA layer and substrate are pressed to a heating line at varying pressures to extract the sample's thermophysical properties. The nanotubes' structure is observed via transmission electron microscopy and Raman spectroscopy. The presence of hydrogen and water vapor in the fabrication process is tuned to observe the effect on measured thermal properties. The presence of iron catalyst particles within the individual nanotubes prevents the array from achieving the overall thermal conductivity anticipated based on reported measurements of individual nanotubes and the packing density.

  1. Conditionals

    E-print Network

    von Fintel, Kai

    2011-01-01

    This article introduces the classic accounts of the meaning of conditionals (material implication, strict implication, variably strict conditional) and discusses the difference between indicative and subjunctive/counterfactual ...

  2. Hafnia-Based Nanostructured Thermal Barrier Coatings for Advanced Hydrogen Turbine Technology

    SciTech Connect

    Ramana, Chintalapalle; Choudhuri, Ahsan

    2013-01-31

    Thermal barrier coatings (TBCs) are critical technologies for future gas turbine engines of advanced coal based power generation systems. TBCs protect engine components and allow further increase in engine temperatures for higher efficiency. In this work, nanostructured HfO{sub 2}-based coatings, namely Y{sub 2}O{sub 3}-stabilized HfO{sub 2} (YSH), Gd{sub 2}O{sub 3}-stabilized HfO{sub 2} (GSH) and Y{sub 2}O{sub 3}-stabilized ZrO{sub 2}-HfO{sub 2} (YSZH) were investigated for potential TBC applications in hydrogen turbines. Experimental efforts are aimed at creating a fundamental understanding of these TBC materials. Nanostructured ceramic coatings of YSH, GSH and YSZH were grown by physical vapor deposition methods. The effects of processing parameters and ceramic composition on the microstructural evolution of YSH, GSH and YSZH nanostructured coatings was studied using combined X-ray diffraction (XRD) and Electron microscopy analyses. Efforts were directed to derive a detailed understanding of crystal-structure, morphology, and stability of the coatings. In addition, thermal conductivity as a function of composition in YSH, YSZH and GSH coatings was determined. Laboratory experiments using accelerated test environments were used to investigate the relative importance of various thermo-mechanical and thermo-chemical failure modes of TBCs. Effects of thermal cycling, oxidation and their complex interactions were evaluated using a syngas combustor rig.

  3. A novel test method for measuring the thermal properties of clothing ensembles under dynamic conditions

    NASA Astrophysics Data System (ADS)

    Wan, X.; Fan, J.

    2008-06-01

    The dynamic thermal properties of clothing ensembles are important to thermal transient comfort, but have so far not been properly quantified. In this paper, a novel test procedure and new index based on measurements on the sweating fabric manikin-Walter are proposed to quantify and measure the dynamic thermal properties of clothing ensembles. Experiments showed that the new index is correlated to the changing rate of the body temperature of the wearer, which is an important indicator of thermal transient comfort. Clothing ensembles having higher values of the index means the wearer will have a faster changing rate of body temperature and shorter duration before approaching a dangerous thermo-physiological state, when he changes from 'resting' to 'exercising' mode. Clothing should therefore be designed to reduce the value of the index.

  4. Thermal Stability of Beta-Alumina Solid Electrolyte Under AMTEC Operating Conditions

    NASA Technical Reports Server (NTRS)

    Williams, R.; Homer, M.; Kulleck, J.; Lara, L.; Kisor, A.; Cortez, R.; Shields, V.; Ryan, M.

    1999-01-01

    A critical component of alkali metal thermal-to electric converter (AMTEC) devices for long duration space missions is the sodium beta-alumina solid electrolyte ceramic (BASE), for which there exists no substitute.

  5. Assessment of thermal load on transported goats administered with ascorbic acid during the hot-dry conditions

    NASA Astrophysics Data System (ADS)

    Minka, N. S.; Ayo, J. O.

    2012-03-01

    The major factor in the induction of physiological stress during road transportation of livestock is the complex fluctuations of the thermal transport microenvironment, encountered when animals are transported across different ecological zones. Recommended guidelines on optimum "on-board" conditions in which goats should be transported are lacking, and there are no acceptable ranges and limits for the thermal loads to which goats may be subjected during long-distance road transportation in hot-dry conditions. Panting score (PS), rectal temperature (RT), heart rate (HR) and respiratory rate (RR) were employed as reliable stress indices to assess the effects of different thermal loads, measured as temperature humidity index (THI), encountered in the vehicle during 12 h of road transportation of 40 goats, and to suggest the administration of 100 mg/kg body weight of ascorbic acid (AA) as an ameliorating agent. The results obtained showed that the PS, RT, HR and RR rose above normal reference values with increase in the THI and journey duration. The rise in PS value, which is a visual indicator of the severity of thermal load, was the most pronounced. The results suggest that values of THI in the vehicle up to 94.6 constitute no risk, while at of 100 it presents a moderate risk and above 100 may result in severe stress. The relationships between the thermal load and the physiological variables were positive and significant ( P < 0.05). They reflect the degree of stress imposed by each THI value during the transportation, and may be used as recommended ranges and limit thermal load values in transported goats. The results demonstrated that administration of 100 mg/kg body weight of AA before road transportation mitigated the risk of adverse effects of high THI values and other stress factors due to road transportation in goats.

  6. Potential Applications of Concentrated Solar Thermal Technologies in the Australian Minerals Processing and Extractive Metallurgical Industry

    NASA Astrophysics Data System (ADS)

    Eglinton, Thomas; Hinkley, Jim; Beath, Andrew; Dell'Amico, Mark

    2013-12-01

    The Australian minerals processing and extractive metallurgy industries are responsible for about 20% of Australia's total greenhouse gas (GHG) emissions. This article reviews the potential applications of concentrated solar thermal (CST) energy in the Australian minerals processing industry to reduce this impact. Integrating CST energy into these industries would reduce their reliance upon conventional fossil fuels and reduce GHG emissions. As CST technologies become more widely deployed and cheaper, and as fuel prices rise, CST energy will progressively become more competitive with conventional energy sources. Some of the applications identified in this article are expected to become commercially competitive provided the costs for pollution abatement and GHG mitigation are internalized. The areas of potential for CST integration identified in this study can be classed as either medium/low-temperature or high-temperature applications. The most promising medium/low-grade applications are electricity generation and low grade heating of liquids. Electricity generation with CST energy—also known as concentrated solar power—has the greatest potential to reduce GHG emissions out of all the potential applications identified because of the 24/7 dispatchability when integrated with thermal storage. High-temperature applications identified include the thermal decomposition of alumina and the calcination of limestone to lime in solar kilns, as well as the production of syngas from natural gas and carbonaceous materials for various metallurgical processes including nickel and direct reduced iron production. Hybridization and integration with thermal storage could enable CST to sustain these energy-intensive metallurgical processes continuously. High-temperature applications are the focus of this paper.

  7. Assessment of the State of the Art of Flight Control Technologies as Applicable to Adverse Conditions

    NASA Technical Reports Server (NTRS)

    Reveley, Mary s.; Briggs, Jeffrey L.; Leone, Karen M.; Kurtoglu, Tolga; Withrow, Colleen A.

    2010-01-01

    Literature from academia, industry, and other Government agencies was surveyed to assess the state of the art in current Integrated Resilient Aircraft Control (IRAC) aircraft technologies. Over 100 papers from 25 conferences from the time period 2004 to 2009 were reviewed. An assessment of the general state of the art in adaptive flight control is summarized first, followed by an assessment of the state of the art as applicable to 13 identified adverse conditions. Specific areas addressed in the general assessment include flight control when compensating for damage or reduced performance, retrofit software upgrades to flight controllers, flight control through engine response, and finally test and validation of new adaptive controllers. The state-of-the-art assessment applicable to the adverse conditions include technologies not specifically related to flight control, but may serve as inputs to a future flight control algorithm. This study illustrates existing gaps and opportunities for additional research by the NASA IRAC Project

  8. Development of air conditioning technologies to reduce CO2 emissions in the commercial sector

    PubMed Central

    Yoshida, Yukiko

    2006-01-01

    Background Architectural methods that take into account global environmental conservation generally concentrate on mitigating the heat load of buildings. Here, we evaluate the reduction of carbon dioxide (CO2) emissions that can be achieved by improving heating, ventilating, and air conditioning (HVAC) technologies. Results The Climate Change Research Hall (CCRH) of the National Institute for Environmental Studies (NIES) is used as a case study. CCRH was built in line with the "Green Government Buildings" program of the Government Buildings Department at the Ministry of Land, Infrastructure and Transport in Japan. We have assessed the technology used in this building, and found that there is a possibility to reduce energy consumption in the HVAC system by 30%. Conclusion Saving energy reduces CO2 emissions in the commercial sector, although emission factors depend on the country or region. Consequently, energy savings potential may serve as a criterion in selecting HVAC technologies with respect to emission reduction targets. PMID:17062161

  9. Remote Sensing of In-Flight Icing Conditions: Operational, Meteorological, and Technological Considerations

    NASA Technical Reports Server (NTRS)

    Ryerson, Charles C.

    2000-01-01

    Remote-sensing systems that map aircraft icing conditions in the flight path from airports or aircraft would allow icing to be avoided and exited. Icing remote-sensing system development requires consideration of the operational environment, the meteorological environment, and the technology available. Operationally, pilots need unambiguous cockpit icing displays for risk management decision-making. Human factors, aircraft integration, integration of remotely sensed icing information into the weather system infrastructures, and avoid-and-exit issues need resolution. Cost, maintenance, power, weight, and space concern manufacturers, operators, and regulators. An icing remote-sensing system detects cloud and precipitation liquid water, drop size, and temperature. An algorithm is needed to convert these conditions into icing potential estimates for cockpit display. Specification development requires that magnitudes of cloud microphysical conditions and their spatial and temporal variability be understood at multiple scales. The core of an icing remote-sensing system is the technology that senses icing microphysical conditions. Radar and microwave radiometers penetrate clouds and can estimate liquid water and drop size. Retrieval development is needed; differential attenuation and neural network assessment of multiple-band radar returns are most promising to date. Airport-based radar or radiometers are the most viable near-term technologies. A radiometer that profiles cloud liquid water, and experimental techniques to use radiometers horizontally, are promising. The most critical operational research needs are to assess cockpit and aircraft system integration, develop avoid-and-exit protocols, assess human factors, and integrate remote-sensing information into weather and air traffic control infrastructures. Improved spatial characterization of cloud and precipitation liquid-water content, drop-size spectra, and temperature are needed, as well as an algorithm to convert sensed conditions into a measure of icing potential. Technology development also requires refinement of inversion techniques. These goals can be accomplished with collaboration among federal agencies including NASA, the FAA, the National Center for Atmospheric Research, NOAA, and the Department of Defense. This report reviews operational, meteorological, and technological considerations in developing the capability to remotely map in-flight icing conditions from the ground and from the air.

  10. Comparison of the effects of aging conditions and type of soluble copper used on JP-5 fuel thermal stability

    SciTech Connect

    Pande, S.G.; Hardy, D.R.

    1996-10-01

    Our earlier studies indicate that the precursors that lead to thermal deposits can be formed/accelerated when the fuel is aged in the presence of copper. For convenience, the aging of jet fuels in the presence of copper has been studied using: (1) copper II ethyl acetoacetate (CuEA); and (2) accelerated aging in a Low Pressure Reactor. Long term studies are being conducted to establish that a reliable correlation exists between such lab tests and field conditions viz., storage at ambient conditions in the presence of copper-nickel alloy for an equivalent period. To date, the results for only one of the three fuels being examined are available. Thermal stabilities of the aged and non aged fuel were determined using the gravimetric JFTOT.

  11. Study Task for Determining the Effects of Boost-Phase Environments on Densified Propellants Thermal Conditions for Expendable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Haberbusch, Mark S.; Meyer, Michael L. (Technical Monitor)

    2002-01-01

    A thermodynamic study has been conducted that investigated the effects of the boost-phase environment on densified propellant thermal conditions for expendable launch vehicles. Two thermodynamic models were developed and utilized to bound the expected thermodynamic conditions inside the cryogenic liquid hydrogen and oxygen propellant tanks of an Atlas IIAS/Centaur launch vehicle during the initial phases of flight. The ideal isentropic compression model was developed to predict minimum pressurant gas requirements. The thermal equilibrium model was developed to predict the maximum pressurant gas requirements. The models were modified to simulate the required flight tank pressure profiles through ramp pressurization, liquid expulsion, and tank venting. The transient parameters investigated were: liquid temperature, liquid level, and pressurant gas consumption. Several mission scenarios were analyzed using the thermodynamic models, and the results indicate that flying an Atlas IIAS launch vehicle with densified propellants is feasible and beneficial but may require some minor changes to the vehicle.

  12. Rock thermal conductivity at the cap rock and initial conditions in two-phase volcanic hydrothermal systems

    SciTech Connect

    Mario Cesar Suarez Arriaga

    1993-01-28

    Numerical experiments are performed to investigate the rock thermal conductivity influence in the formation of the thermodynamic initial conditions of two-phase systems located in volcanic rocks. These systems exhibit pressure and temperature profiles characterized by a sudden change or discontinuity in their vertical gradients. Vapor dominated, two-phase fluids are found at the upper reservoir's levels. Liquid is the dominated phase within the layers below some critical point. Numerical results presented in this paper, suggest that the vertical location of this point of discontinuity be controlled by the thermal conductivity existing between the limit of the reservoir and the caprock. Too high values could originate liquid dominated reservoirs. Small values would be at the origin of vapor dominated reservoirs. A characteristic middle value could be responsible for the formation of a counter flow mechanism originating the initial conditions observed at some locations of the Los Azufres, Mexico, geothermal field.

  13. Energy and global warming impacts of next generation refrigeration and air conditioning technologies

    SciTech Connect

    Sand, J.R.; Fischer, S.K.; Baxter, V.D.

    1996-10-01

    Significant developments have occurred in hydrofluorocarbon (HFC) and the application of ammonia and hydrocarbons as refrigerant working fluids since the original TEWI (Total Equivalent Warming Impact) report in 1991. System operating and performance data on alternative refrigerants and refrigeration technologies justify and updated evaluation of these new alternative refrigerants and competing technologies in well-characterized applications. Analytical and experimental results are used to show quantitative comparisons between HFCS, HFC blends, hydrocarbons, and ammonia, used as refrigerants. An objective evaluation is presented for commercial and near commercial non-CFC refrigerants/blowing agents and alternative refrigeration technologies. This information is needed for objective and quantitative decisions on policies addressing greenhouse gas emissions from refrigeration and air conditioning equipment. The evaluation assesses the energy use and global warming impacts of refrigeration and air conditioning technologies that could be commercialized during the phase out of HCFCS. Quantitative comparison TEWI for two application areas are presented. Opportunities for significant reductions in TEWI are seen with currently known refrigerants through improved maintenance and servicing practices and improved product designs.

  14. Plasticity of the thermal requirements of exotherms and adaptation to environmental conditions

    PubMed Central

    Honek, Alois; Martinkova, Zdenka; Lukas, Jan; Dixon, Anthony F G

    2014-01-01

    In exothermal organisms, temperature is an important determinant of the rate of ecophysiological processes, which monotonically increase between the minimum (td min) and maximum (td max) temperatures typical for each species. In insects, td min and td max are correlated and there is a approximately 20°C interval (thermal window WT = td max ? td min) between them over which insects can develop. We assumed that other exotherms have similar thermal windows because the thermal kinetics of their physiological processes are similar. In this study, we determined the thermal requirements for germination in plants. Seeds of 125 species of Central European wild herbaceous and crop plants were germinated at nine constant temperatures between 5 and 37°C, and the time to germination of 50% of the seeds D and rate of germination R (=1/D) were determined for each temperature and the Lactin model used to determine td min, td max, and WT. The average width of the thermal windows for seeds was significantly wider (mean 24°C, 95% CI 22.7–24.2°C), varied more (between 14.5 and 37.5°C) and development occurred at lower temperatures than recorded for insects. The limiting temperatures for germination, td min and td max, were not coupled, so the width of the thermal window increased with both a decrease in td min and/or increase in td max. Variation in WT was not associated with taxonomic affiliation, adult longevity, or domestication of the different species, but tends to vary with seed size. Plants are poor at regulating their temperature and cannot move to a more suitable location and as a consequence have to cope with wider ranges in temperatures than insects and possibly do this by having wider thermal windows. Synthesis: The study indicated specificity of WT in different exotherm taxa and/or their development stages. PMID:25247067

  15. The dynamics of thermal regime changes of a local working zone in conditions of its heating by gas infrared radiators

    NASA Astrophysics Data System (ADS)

    Nee, A.

    2015-10-01

    Mathematical modeling of unsteady heat transfer in a closed rectangular area with a local heat supply object in a conjugate formulation in working conditions of radiation source of energy is passed. Fields of temperatures and stream functions, illustrating the influence of a local typical object on thermal regime are received. The effect of Grashof number on dimensionless heat transfer coefficient - Nusselt number is investigated. The influence of nonconducted heat supply object on heat transfer rate in solution domain is showed.

  16. Apparatus for determining past-service conditions and remaining life of thermal barrier coatings and components having such coatings

    DOEpatents

    Srivastava, Alok Mani (Niskayuna, NY); Setlur, Anant Achyut (Niskayuna, NY); Comanzo, Holly Ann (Niskayuna, NY); Devitt, John William (Clifton Park, NY); Ruud, James Anthony (Delmar, NY); Brewer, Luke Nathaniel (Rexford, NY)

    2004-05-04

    An apparatus for determining past-service conditions and/or remaining useful life of a component of a combustion engine and/or a thermal barrier coating ("TBC") of the component comprises a radiation source that provides the exciting radiation to the TBC to excite a photoluminescent ("PL") material contained therein, a radiation detector for detecting radiation emitted by the PL material, and means for relating a characteristic of an emission spectrum of the PL material to the amount of a crystalline phase in the TBC, thereby inferring the past-service conditions or the remaining useful life of the component or the TBC.

  17. Analytical Predictions of Thermal Stress in the Stardust PICA Heatshield Under Reentry Flight Conditions

    NASA Technical Reports Server (NTRS)

    Squire, Thomas; Milos, Frank; Agrawal, Parul

    2009-01-01

    We performed finite element analyses on a model of the Phenolic Impregnated Carbon Ablator (PICA) heatshield from the Stardust sample return capsule (SRC) to predict the thermal stresses in the PICA material during reentry. The heatshield on the Stardust SRC was a 0.83 m sphere cone, fabricated from a single piece of 5.82 cm-thick PICA. The heatshield performed successfully during Earth reentry of the SRC in January 2006. Material response analyses of the full, axisymmetric PICA heatshield were run using the Two-Dimensional Implicit Ablation, Pyrolysis, and Thermal Response Program (TITAN). Peak surface temperatures were predicted to be 3385K, while the temperature at the PICA backface remained at the estimated initial cold-soak temperature of 278K. Surface recession and temperature distribution results from TITAN, at several points in the reentry trajectory, were mapped onto an axisymmetric finite element model of the heatshield. We used the finite element model to predict the thermal stresses in the PICA from differential thermal expansion. The predicted peak compressive stress in the PICA heatshield was 1.38 MPa. Although this level of stress exceeded the chosen design limit for compressive stresses in PICA tiles for the design of the Orion crew exploration vehicle heatshield, the Stardust heatshield exhibited no obvious mechanical failures from thermal stress. The analyses of the Stardust heatshield were used to assess and adjust the level of conservatism in the finite element analyses in support of the Orion heatshield design.

  18. Direct chemical oxidation: a non-thermal technology for the destruction of organic wastes

    SciTech Connect

    Balazs, G.B.; Cooper, J. F.; Lewis, P. R.; Adamson, M. G.

    1998-02-01

    Direct Chemical Oxidation (DCO) is a non-thermal, ambient pressure, aqueous-based technology for the oxidative destruction of the organic components of hazardous or mixed waste streams. The process has been developed for applications in waste treatment and chemical demilitarization and decontamination at LLNL since 1992, and is applicable to the destruction of virtually all solid or liquid organics, including: chlorosolvents, oils and greases, detergents, organic-contaminated soils or sludges, explosives, chemical and biological warfare agents, and PCB's. [1-15] The process normally operates at 80-100 C, a heating requirement which increases the difficulty of surface decontamination of large objects or, for example, treatment of a wide area contaminated soil site. The driver for DCO work in FY98 was thus to investigate the use of catalysts to demonstrate the effectiveness of the technology for organics destruction at temperatures closer to ambient. In addition, DCO is at a sufficiently mature stage of development that technology transfer to a commercial entity was a logical next step, and was thus included in FY98 tasks.

  19. Study on the Technology and Method of Land Cover Classification for Geographic National Conditions Surveying

    NASA Astrophysics Data System (ADS)

    Jia, Y.; Li, H. T.; Gu, H. Y.; Han, Y. S.

    2013-07-01

    Land Cover is the basis of geographic national conditions monitoring, extracting land cover information timely and accurately has become one of important tasks in the geographic national conditions surveying project. For the current situation of complex land cover type and large amount of data, there has emerged various new classification techniques and methods. However, the big difficult of classification?the large amount of data, the heavy workload of post-editing and other factors have seriously hampered the progress of the project. In this paper, it chooses high-resolution remote sensing image as original data, comprehensivly elaborates present research situation of oriented land cover classification. By the systematical analysis and summary of the basic and key problems of the land cover classification technology, relying on the geographic national information classification and standard system, discusses the available methods preliminarily to improve the accuracy of land cover classification which based on geographic national conditions surveying.

  20. Tuning preparation conditions towards optimized separation performance of thermally polymerized organo-silica monolithic columns in capillary liquid chromatography.

    PubMed

    Gharbharan, Deepa; Britsch, Denae; Soto, Gabriela; Weed, Anna-Marie Karen; Svec, Frantisek; Zajickova, Zuzana

    2015-08-21

    Tuning of preparation conditions, such as variations in the amount of a porogen, concentration of an aqueous acid catalyst, and adjustment in polymerization temperature and time, towards optimized chromatographic performance of thermally polymerized monolithic capillaries prepared from 3-(methacryloyloxy)propyltrimethoxysilane has been carried out. Performance of capillary columns in reversed-phase liquid chromatography was assessed utilizing various sets of solutes. Results describing hydrophobicity, steric selectivity, and extent of hydrogen bonding enabled comparison of performance of hybrid monolithic columns prepared under thermal (TSG) and photopolymerized (PSG) conditions. Reduced amounts of porogen in the polymerization mixture, and prolonged reaction times were necessary for the preparation of monolithic columns with enhanced retention and column efficiency that reached to 111,000 plates/m for alkylbenzenes with shorter alkyl chains. Both increased concentration of catalyst and higher temperature resulted in faster polymerization but inevitably in insufficient time for pore formation. Thermally polymerized monoliths produced surfaces, which were slightly more hydrophobic (a methylene selectivity of 1.28±0.002 TSG vs 1.20±0.002 PSG), with reduced number of residual silanols (a caffeine/phenol selectivity of 0.13±0.001 TSG vs 0.17±0.003 PSG). However, steric selectivity of 1.70±0.01 was the same for both types of columns. The batch-to-batch repeatability was better using thermal initiation compared to monolithic columns prepared under photopolymerized conditions. RSD for retention factor of benzene was 3.7% for TSG capillaries (n=42) vs. 6.6% for PSG capillaries (n=18). A similar trend was observed for columns prepared within the same batch. PMID:26169907

  1. Intense Non-Thermal ECE Bursts from TFTR Plasmas Heavily Conditioned with Lithium

    E-print Network

    Budny, Robert

    reduce edge recycling and density: - leads to improved beam penetration. · Experiments with extensive Li/83528 Comp. INTENSE NON-THERMAL ECE ASSOCIATED WITH REDUCED EDGE DENSITY AND RECYCLING TFTR 0 50 0 Etot (MJ (keV) 1 4 1 3 83526 GPC - 1 Ch#3, R~336 cm Trad (keV) PPPL Fast (500 kHz digitized) GPC-1 data show

  2. Low-thrust chemical propulsion system propellant expulsion and thermal conditioning study. Executive summary

    NASA Technical Reports Server (NTRS)

    Merino, F.; Wakabayashi, I.; Pleasant, R. L.; Hill, M.

    1982-01-01

    Preferred techniques for providing abort pressurization and engine feed system net positive suction pressure (NPSP) for low thrust chemical propulsion systems (LTPS) were determined. A representative LTPS vehicle configuration is presented. Analysis tasks include: propellant heating analysis; pressurant requirements for abort propellant dump; and comparative analysis of pressurization techniques and thermal subcoolers.

  3. Solar thermal technology development: Estimated market size and energy cost savings. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Gates, W. R.

    1983-01-01

    Estimated future energy cost savings associated with the development of cost-competitive solar thermal technologies (STT) are discussed. Analysis is restricted to STT in electric applications for 16 high-insolation/high-energy-price states. The fuel price scenarios and three 1990 STT system costs are considered, reflecting uncertainty over future fuel prices and STT cost projections. STT R&D is found to be unacceptably risky for private industry in the absence of federal support. Energy cost savings were projected to range from $0 to $10 billion (1990 values in 1981 dollars), dependng on the system cost and fuel price scenario. Normal R&D investment risks are accentuated because the Organization of Petroleum Exporting Countries (OPEC) cartel can artificially manipulate oil prices and undercut growth of alternative energy sources. Federal participation in STT R&D to help capture the potential benefits of developing cost-competitive STT was found to be in the national interest.

  4. Environmentally sound thermal energy extraction from coal and wastes using high temperature air combustion technology

    SciTech Connect

    Yoshikawa, Kunio

    1999-07-01

    High temperature air combustion is one of promising ways of burning relatively low BTU gas obtained from gasification of low grade coal or wastes. In this report, the author proposes a new power generation system coupled with high temperature air gasification of coal/wastes and high temperature air combustion of the syngas from coal/wastes. This system is realized by employing Multi-staged Enthalpy Extraction Technology (MEET). The basic idea of the MEET system is that coal or wastes are gasified with high temperature air of about 1,000 C, then the generated syngas is cooled in a heat recovery boiler to be cleaned-up in a gas cleanup system (desulfurization, desalinization and dust removal). Part of thermal energy contained in this cleaned-up syngas is used for high temperature air preheating, and the complete combustion of the fuel gas is done using also high temperature air for driving gas turbines or steam generation in a boiler.

  5. Building America Best Practices Series, Volume 6: High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems

    SciTech Connect

    Baechler, Michael C.; Gilbride, Theresa L.; Ruiz, Kathleen A.; Steward, Heidi E.; Love, Pat M.

    2007-06-04

    This guide is was written by PNNL for the US Department of Energy's Building America program to provide information for residential production builders interested in building near zero energy homes. The guide provides indepth descriptions of various roof-top photovoltaic power generating systems for homes. The guide also provides extensive information on various designs of solar thermal water heating systems for homes. The guide also provides construction company owners and managers with an understanding of how solar technologies can be added to their homes in a way that is cost effective, practical, and marketable. Twelve case studies provide examples of production builders across the United States who are building energy-efficient homes with photovoltaic or solar water heating systems.

  6. Current Development of Nuclear Thermal Propulsion technologies at the Center for Space Nuclear Research

    SciTech Connect

    Robert C. O'Brien; Steven K. Cook; Nathan D. Jerred; Steven D. Howe; Ronald Samborsky; Daniel Brasuell

    2012-09-01

    Nuclear power and propulsion has been considered for space applications since the 1950s. Between 1955 and 1972 the US built and tested over twenty nuclear reactors / rocket engines in the Rover/NERVA programs1. The Aerojet Corporation was the prime contractor for the NERVA program. Modern changes in environmental laws present challenges for the redevelopment of the nuclear rocket. Recent advances in fuel fabrication and testing options indicate that a nuclear rocket with a fuel composition that is significantly different from those of the NERVA project can be engineered; this may be needed to ensure public support and compliance with safety requirements. The Center for Space Nuclear Research (CSNR) is pursuing a number of technologies, modeling and testing processes to further the development of safe, practical and affordable nuclear thermal propulsion systems.

  7. The small community solar thermal power experiment. Parabolic dish technology for industrial process heat application

    NASA Astrophysics Data System (ADS)

    Polzien, R. E.; Rodriguez, D.

    1981-04-01

    Aspects of incorporating a thermal energy transport system (ETS) into a field of parabolic dish collectors for industrial process heat (IPH) applications were investigated. Specific objectives are to: (1) verify the mathematical optimization of pipe diameters and insulation thicknesses calculated by a computer code; (2) verify the cost model for pipe network costs using conventional pipe network construction; (3) develop a design and the associated production costs for incorporating risers and downcomers on a low cost concentrator (LCC); (4) investigate the cost reduction of using unconventional pipe construction technology. The pipe network design and costs for a particular IPH application, specifically solar thermally enhanced oil recovery (STEOR) are analyzed. The application involves the hybrid operation of a solar powered steam generator in conjunction with a steam generator using fossil fuels to generate STEOR steam for wells. It is concluded that the STEOR application provides a baseline pipe network geometry used for optimization studies of pipe diameter and insulation thickness, and for development of comparative cost data, and operating parameters for the design of riser/downcomer modifications to the low cost concentrator.

  8. Characterization of a thermal neutron beam monitor based on gas electron multiplier technology

    NASA Astrophysics Data System (ADS)

    Croci, Gabriele; Cazzaniga, Carlo; Claps, Gerardo; Tardocchi, Marco; Rebai, Marica; Murtas, Fabrizio; Vassallo, Espedito; Caniello, Roberto; Cippo, Enrico Perelli; Grosso, Giovanni; Rigato, Valentino; Gorini, Giuseppe

    2014-08-01

    Research into valid alternatives to 3He detectors is fundamental to the affordability of new neutron spallation sources like the European Spallation Source (ESS). In the case of ESS it is also essential to develop high-rate detectors that can fully exploit the increase of neutron flux relative to present neutron sources. One of the technologies fulfilling these requirements is the gas electron multiplier (GEM), since it can combine a high rate capability (MHz/mm2), a coverage area up to 1 m2 and a space resolution better than 0.5 mm. Its use as a neutron detector requires conversion of neutrons into charged particles. This paper describes the realization and characterization of a thermal neutron GEM-based beam monitor equipped with a cathode containing ^{10}B for neutron conversion. This device is constituted by a triple GEM detector whose cathode is made of an aluminum sheet covered by a 1 ? m thick ^{{nat}}B4C layer. The method used to realize a long-lasting ^{{nat}}B4C layer is described and the properties of such a layer have been determined. The detector performances (measured on the ISIS-VESUVIO beam line) in terms of beam profile reconstruction, imaging, and measurement of the thermal neutron beam energy spectrum are compatible with those obtained by standard beam monitors.

  9. Survey of the supporting research and technology for the thermal protection of the Galileo Probe

    NASA Technical Reports Server (NTRS)

    Howe, J. T.; Pitts, W. C.; Lundell, J. H.

    1981-01-01

    The Galileo Probe, which is scheduled to be launched in 1985 and to enter the hydrogen-helium atmosphere of Jupiter up to 1,475 days later, presents thermal protection problems that are far more difficult than those experienced in previous planetary entry missions. The high entry speed of the Probe will cause forebody heating rates orders of magnitude greater than those encountered in the Apollo and Pioneer Venus missions, severe afterbody heating from base-flow radiation, and thermochemical ablation rates for carbon phenolic that rival the free-stream mass flux. This paper presents a comprehensive survey of the experimental work and computational research that provide technological support for the Probe's heat-shield design effort. The survey includes atmospheric modeling; both approximate and first-principle computations of flow fields and heat-shield material response; base heating; turbulence modelling; new computational techniques; experimental heating and materials studies; code validation efforts; and a set of 'consensus' first-principle flow-field solutions through the entry maneuver, with predictions of the corresponding thermal protection requirements.

  10. The small community solar thermal power experiment. Parabolic dish technology for industrial process heat application

    NASA Technical Reports Server (NTRS)

    Polzien, R. E.; Rodriguez, D.

    1981-01-01

    Aspects of incorporating a thermal energy transport system (ETS) into a field of parabolic dish collectors for industrial process heat (IPH) applications were investigated. Specific objectives are to: (1) verify the mathematical optimization of pipe diameters and insulation thicknesses calculated by a computer code; (2) verify the cost model for pipe network costs using conventional pipe network construction; (3) develop a design and the associated production costs for incorporating risers and downcomers on a low cost concentrator (LCC); (4) investigate the cost reduction of using unconventional pipe construction technology. The pipe network design and costs for a particular IPH application, specifically solar thermally enhanced oil recovery (STEOR) are analyzed. The application involves the hybrid operation of a solar powered steam generator in conjunction with a steam generator using fossil fuels to generate STEOR steam for wells. It is concluded that the STEOR application provides a baseline pipe network geometry used for optimization studies of pipe diameter and insulation thickness, and for development of comparative cost data, and operating parameters for the design of riser/downcomer modifications to the low cost concentrator.

  11. Assessment of Technologies for the Space Shuttle External Tank Thermal Protection System and Recommendations for Technology Improvement. Part 2; Structural Analysis Technologies and Modeling Practices

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Nemeth, Michael P.; Hilburger, Mark W.

    2004-01-01

    A technology review and assessment of modeling and analysis efforts underway in support of a safe return to flight of the thermal protection system (TPS) for the Space Shuttle external tank (ET) are summarized. This review and assessment effort focuses on the structural modeling and analysis practices employed for ET TPS foam design and analysis and on identifying analysis capabilities needed in the short-term and long-term. The current understanding of the relationship between complex flight environments and ET TPS foam failure modes are reviewed as they relate to modeling and analysis. A literature review on modeling and analysis of TPS foam material systems is also presented. Finally, a review of modeling and analysis tools employed in the Space Shuttle Program is presented for the ET TPS acreage and close-out foam regions. This review includes existing simplified engineering analysis tools are well as finite element analysis procedures.

  12. Condition monitoring through advanced sensor and computational technology : final report (January 2002 to May 2005).

    SciTech Connect

    Kim, Jung-Taek; Luk, Vincent K.

    2005-05-01

    The overall goal of this joint research project was to develop and demonstrate advanced sensors and computational technology for continuous monitoring of the condition of components, structures, and systems in advanced and next-generation nuclear power plants (NPPs). This project included investigating and adapting several advanced sensor technologies from Korean and US national laboratory research communities, some of which were developed and applied in non-nuclear industries. The project team investigated and developed sophisticated signal processing, noise reduction, and pattern recognition techniques and algorithms. The researchers installed sensors and conducted condition monitoring tests on two test loops, a check valve (an active component) and a piping elbow (a passive component), to demonstrate the feasibility of using advanced sensors and computational technology to achieve the project goal. Acoustic emission (AE) devices, optical fiber sensors, accelerometers, and ultrasonic transducers (UTs) were used to detect mechanical vibratory response of check valve and piping elbow in normal and degraded configurations. Chemical sensors were also installed to monitor the water chemistry in the piping elbow test loop. Analysis results of processed sensor data indicate that it is feasible to differentiate between the normal and degraded (with selected degradation mechanisms) configurations of these two components from the acquired sensor signals, but it is questionable that these methods can reliably identify the level and type of degradation. Additional research and development efforts are needed to refine the differentiation techniques and to reduce the level of uncertainties.

  13. Thermal characteristics of non-edible oils as phase change materials candidate to application of air conditioning chilled water system

    NASA Astrophysics Data System (ADS)

    Irsyad, M.; Indartono, Y. S.; Suwono, A.; Pasek, A. D.

    2015-09-01

    The addition of phase change material in the secondary refrigerant has been able to reduce the energy consumption of air conditioning systems in chilled water system. This material has a high thermal density because its energy is stored as latent heat. Based on material melting and freezing point, there are several non-edible oils that can be studied as a phase change material candidate for the application of chilled water systems. Forests and plantations in Indonesia have great potential to produce non-edible oil derived from the seeds of the plant, such as; Calophyllum inophyllum, Jatropha curcas L, and Hevea braziliensis. Based on the melting temperature, these oils can further studied to be used as material mixing in the secondary refrigerant. Thermal characteristics are obtained from the testing of T-history, Differential Scanning Calorimetric (DSC) and thermal conductivity materials. Test results showed an increase in the value of the latent heat when mixed with water with the addition of surfactant. Thermal characteristics of each material of the test results are shown completely in discussion section of this article.

  14. Image-Guided Ablation of Malignant Liver Tumors: Recommendations for Clinical Validation of Novel Thermal and Non-Thermal Technologies – A Western Perspective

    PubMed Central

    Lencioni, Riccardo; de Baere, Thierry; Martin, Robert C.; Nutting, Charles W.; Narayanan, Govindarajan

    2015-01-01

    Background Image-guided ablation is used to treat patients with unresectable malignant hepatic tumors that are limited in number and size, especially hepatocellular carcinoma (HCC) and colorectal hepatic metastases. While radiofrequency ablation (RFA) has been the most popular technique, several alternate options for focal tissue destruction have recently attracted attention. These technologies appear to be able to overcome some specific limitations of RFA. Currently, there is no accepted algorithm for the use of the different techniques for image-guided ablation. Summary A panel of physicians practicing in North America or Europe met to develop a set of recommendations aimed at providing directions for clinical validation of energy-based, thermal and non-thermal image-guided ablation technologies in the treatment of malignant liver tumors. The recommendations were developed through a critical appraisal of potential advantages and disadvantages of each ablation technology, based on experimental findings and available data, as well as on critical considerations for their clinical validation in hepatic tumor treatment from a Western perspective. Key Messages Significant variability appears to exist among the different equipment and devices within each type of technology. A comprehensive understanding of the data and a critical appraisal of the efficacy and safety profile of each ablation system is required. Clinical practice guidelines should include specific information of the recommended techniques and protocols instead of a generic indication of the technology.

  15. Heating, ventilating, air conditioning deactivation thermal analysis of the PUREX plant

    SciTech Connect

    Chen, W.W., Westinghouse Hanford

    1996-06-14

    Thermal analysis was performed for the proposed PUREX exhaust system after deactivation. The purpose of the analysis was to determine if condensation will occur in a sufficient quantity to plug or damage the filtration components. A heat transfer and fluid flow analysis was performed to evaluate the thermal characteristics of the underground duct system, the deep bed glass fiber (DBGF) filter No. 2, and the HEPA filters in the fourth filter building. The analysis is based on the extreme variations of air temperature, relative humidity, and dew point temperature using fifteen years of Hanford weather data as a basis. The results will be used to evaluate the need for electric heaters that are proposed for the PUREX canyon exhaust to prevent condensation.

  16. Thermal stability of beta''-alumina solid electrolyte under AMTEC operating conditions

    NASA Astrophysics Data System (ADS)

    Williams, Roger M.; Homer, Margie L.; Kulleck, James; Lara, Liana; Kisor, Adam K.; Cortez, Roger H.; Shields, Virgil B.; Ryan, Margaret A.

    2000-01-01

    A critical component of alkali metal thermal-to electric converter (AMTEC) devices for long duration space missions is the sodium beta''-alumina solid electrolyte ceramic (BASE), for which there exists no substitute. The major phase in this ceramic, sodium beta''-alumina shows no evidence of thermal decomposition in AMTEC environments including clean liquid sodium and low pressure sodium gas, at temperatures below 1173K, or in vacuum below 1273K. This paper presents additional results of ionic conductivity and exchange current studies in sodium exposure test cells (SETCs) to characterize the changes occurring in BASE below 1273K in low pressure sodium vapor. Also presented are additional annealing studies to characterize the kinetics of processes occurring in the BASE ceramic in the AMTEC operating regime. .

  17. Thermal fatigue experiment of screw cooling tube under one-sided heating condition

    NASA Astrophysics Data System (ADS)

    Ezato, Koichiro; Suzuki, Satoshi; Sato, Kazuyoshi; Akiba, Masato

    2004-08-01

    This paper presents the results of thermal fatigue experiments of a cooling tube with a helical triangular fin on its inner cooling surface, namely a screw tube. The screw tube is directly machined in a CuCrZr heat sink bar with slits at its heated side. The thermal fatigue experiments are carried out at 20 and 30 MW/m 2. Water leakages from fatigue cracks, found at the slit of the heat sink, occurred at around 4500th and 1400th cycles at 20 and 30 MW/m 2, respectively. These results show good agreement with lifetime predictions using Manson-Coffin's law based on finite element analyses. Fractographic observations show the fatigue cracks starting from the outer heated surface at the slit region of the cooling channel and propagating toward its inner surface.

  18. Thermal Analysis of the Vulnerability of the Spacesuit Battery Design to Short-Circuit Conditions (Presentation)

    SciTech Connect

    Kim, G. H.; Chaney, L.; Smith, K.; Pesaran, A.; Darcy, E.

    2010-04-22

    NREL researchers created a mathematical model of a full 16p-5s spacesuit battery for NASA that captures electrical/thermal behavior during shorts to assess the vulnerability of the battery to pack-internal (cell-external) shorts. They found that relocating the short from battery pack-external (experimental validation) to pack-internal (modeling study) causes substantial additional heating of cells, which can lead to cell thermal runaway. All three layers of the bank-to-bank separator must fail for the pack-internal short scenario to occur. This finding emphasizes the imperative of battery pack assembly cleanliness. The design is tolerant to pack-internal shorts when stored at 0% state of charge.

  19. Thermal monitoring of transport infrastructures by infrared thermography coupled with inline local atmospheric conditions survey

    NASA Astrophysics Data System (ADS)

    Dumoulin, J.

    2013-09-01

    An infrared system architecture (software and hardware) has been studied and developed to allow long term monitoring of transport infrastructures in a standalone configuration. It is based on the implementation of low cost infrared thermal cameras (equipped with uncooled microbolometer focal plane array) available on the market coupled with other measurement systems. All data collected feed simplified radiative models running on GPU available on small PC to produce corrected thermal map of the surveyed structure at selected time step. Furthermore, added Web-enabled capabilities of this new infrared measurement system are also presented and discussed. A prototype of this system was tested and evaluated on real infrastructure opened to traffic. Results obtained by image and signal processing are presented. Finally, conclusions and perspectives for new implementation and new functionalities are presented and discussed.

  20. Normal Condition on Transport Thermal Analysis and Testing of a Type B Drum Package

    SciTech Connect

    Jerrell, J.W.; van Alstine, M.N.; Gromada, R.J.

    1995-03-21

    Increasing the content limits of radioactive material packagings can save money and increase transportation safety by decreasing the total number of shipments required to transport large quantities of material. The contents of drum packages can be limited by unacceptable containment vessel pressures and temperatures due to the thermal properties of the insulation. The purpose of this work is to understand and predict the effects of insulation properties on containment system performance.

  1. Energy Comparison Between Conventional and Chilled Water Thermal Storage Air Conditioning Systems 

    E-print Network

    Sebzali, M.; Hussain, H. J.; Ameer, B.

    2010-01-01

    profiles is minimal. This is because the building cooling demand is the same in all AC system designs and the differences in the profiles stems mainly from the differences in the heat gains by the auxiliary systems. The heat gains of auxiliary systems... by between 4.5% and 6.9% compared with conventional systems, where chillers and pumps significantly contribute to this reduction. Keywords: peak power demand; cooling demand; Kuwait; air cooled; energy consumption; clinic INTRODUCTION Cool thermal...

  2. Solar thermal technologies - Potential benefits to U.S. utilities and industry

    NASA Technical Reports Server (NTRS)

    Terasawa, K. L.; Gates, W. R.

    1983-01-01

    Solar energy systems were investigated which complement nuclear and coal technologies as a means of reducing the U.S. dependence on imported petroleum. Solar Thermal Energy Systems (STES) represents an important category of solar energy technologies. STES can be utilized in a broad range of applications servicing a variety of economic sectors, and they can be deployed in both near-term and long-term markets. The net present value of the energy cost savings attributable to electric utility and IPH applications of STES were estimated for a variety of future energy cost scenarios and levels of R&D success. This analysis indicated that the expected net benefits of developing an STES option are significantly greater than the expected costs of completing the required R&D. In addition, transportable fuels and chemical feedstocks represent a substantial future potential market for STES. Due to the basic nature of this R&D activity, however, it is currently impossible to estimate the value of STES in these markets. Despite this fact, private investment in STES R&D is not anticipated due to the high level of uncertainty characterizing the expected payoffs. Previously announced in STAR as N83-10547

  3. Summary assessment of solar thermal parabolic dish technology for electrical power generation

    NASA Technical Reports Server (NTRS)

    Penda, P. L.; Fujita, T.; Lucas, J. W.

    1985-01-01

    An assessment is provided of solar thermal parabolic dish technology for electrical power generation. The assessment is based on the development program undertaken by the Jet Propulsion Laboratory for the U.S. Department of Energy and covers the period from the initiation of the program in 1976 through mid-1984. The program was founded on developing components and subsystems that are integrated into parabolic dish power modules for test and evaluation. The status of the project is summarized in terms of results obtained through testing of modules, and the implications of these findings are assessed in terms of techno-economic projections and market potential. The techno-economic projections are based on continuation of an evolutionary technological development program and are related to the accomplishments of the program as of mid-1984. The accomplishments of the development effort are summarized for each major subsystem including concentrators, receivers, and engines. The ramifications of these accomplishments are assessed in the context of developmental objectives and strategies.

  4. Thermalization, Isotropization and Elliptic Flow from Nonequilibrium Initial Conditions with a Saturation Scale

    E-print Network

    Ruggieri, Marco; Plumari, Salvatore; Greco, Vincenzo

    2013-01-01

    In this article we report on our results about the computation of the elliptic flow of the quark-gluon-plasma produced in relativistic heavy ion collisions, simulating the expansion of the fireball by solving the relativistic Boltzmann equation for the parton distribution function tuned at a fixed shear viscosity to entropy density ratio $\\eta/s$. Our main goal is to put emphasis on the role of a saturation scale in the initial gluon spectrum, which makes the initial distribution far from a thermalized one. We find that the presence of the saturation scale reduces the efficiency in building-up the elliptic flow, even if the thermalization process is quite fast $\\tau_{therm} \\approx 0.8 \\,\\rm fm/c$ and the pressure isotropization even faster $\\tau_{isotr} \\approx 0.3 \\,\\rm fm/c$. The impact of the non-equilibrium implied by the saturation scale manifests for non-central collisions and can modify the estimate of the viscosity respect to the assumption of full thermalization in $p_T$-space. We find that the esti...

  5. Power conditioning subsystems for photovoltaic central-station power plants - Technology and performance

    NASA Technical Reports Server (NTRS)

    Krauthamer, S.; Das, R.; Bulawka, A.

    1985-01-01

    Central-Station (CS) Photovoltaic (PV) systems have the potential of economically displacing significant amounts of centrally generated electricity. However, the technical viability and, to some extent, the economic viability of central-station PV generation technology will depend upon the availability of large power conditioners that are efficient, safe, reliable, and economical. This paper is an overview of the technical and cost requirements that must be met to develop economically viable power conditioning subsystems (PCS) for central-station power plants. The paper also examines various already commercially available PCS hardware that may be suitable for use in today's central PV power stations.

  6. Characterization of Al2O3 Supported Nickel Catalysts Derived from RFNon-thermal Plasma Technology

    SciTech Connect

    Jang, Ben W; Helleson, Michael J; Shi, Chunkai; Rondinone, Adam Justin; Schwartz, Viviane; Liang, Chengdu; Overbury, Steven {Steve} H

    2008-01-01

    Catalysts derived from non-thermal plasma techniques have previously shown unusual and highly advantageous catalytic properties including room temperature reduction, unusual metal particle structure and metal-support interactions, and enhanced selectivity and stability. This study focuses on the characterization of Al2O3 supported Ni catalysts derived from the RF non-thermal plasma technique with in-situ XRD, TPR-MS and STEM and on relating the results to the enhanced activity and stability of benzene hydrogenation. The results suggest that catalysts with plasma treatments before impregnation are relatively easier to be reduced and result in better activities under mild reduction conditions. These plasma treatments stabilize the nickel particle sizes of air(B) and H2(B) catalysts at 600 C by slowing down the sintering process. Plasma treatments after the impregnation of precursors, on the other hand, tend to delay the growth of nickel particles below 600 C, forming smaller Ni particles, but with a sudden increase in particle size near 600 C. It suggests that the structure of Ni nitrate and the metal-support interaction have been altered by the plasma treatments. The reduction patterns of plasma 1 treated catalysts are, therefore, changed. The catalyst with a combination plasma treatment demonstrates that the effect of a combination plasma treatment is larger than either the plasma treatment before or after the impregnation alone. Both plasma treatments before and after the impregnation of metal precursor play important roles in modifying supported metal catalysts.

  7. The role of snow cover in ground thermal conditions in three sites with contrasted topography in Sierra Nevada (Spain)

    NASA Astrophysics Data System (ADS)

    Oliva, Marc; Salvador, Ferran; Gómez Ortiz, Antonio; Salvà, Montserrat

    2014-05-01

    Snow cover has a high capacity to insulate the soil from the external thermal influences. In regions of high snowfall, such as the summit areas of the highest Iberian mountain ranges, the presence of a thick snow cover may condition the existence or inexistence of permafrost conditions. In order to analyze the impact of the thickness, duration and interannual variability of snow cover on the ground thermal regime in the massif of Sierra Nevada, we have analyzed soil temperatures at a depth of 2 cm for the period 2006-2012 in three sites of contrasting topography as well as air temperatures for the same period: (a) Corral del Veleta (3100 m) in a rock glacier located in the northern Veleta cirque, with high and persistent snow cover. (b) Collado de los Machos (3300 m), in a summit area with relict stone circles, with little snow accumulation due to wind effect. (c) Río Seco (3000 m), in a solifluction lobe located in this southern glacial cirque with moderate snowfall. Considering the air and 2 cm depth soil temperature records, the freezing degree-days were calculated for each year from November to May in order to characterize the role of snow as a thermal insulator of the ground during the cold season (Frauenfeld et al., 2007). In all cases, the highest values of freezing degree-days correspond to years with little snowfall (2006-2007, 2007-2008, 2011-2012), while in years with a thicker snow cover (2008-2009, 2009-2010, 2010-2011) the total freezing degree-days were significantly lower. The accumulation of freezing degree-days is maximum at the wind-exposed site of Collado de los Machos, where the wind redistributes snow and favours the penetration of cold into the ground. The opposite pattern occurs in the Veleta cirque, where most persistent snow cover conditions determine lower accumulated freezing degree-days than in Collado de los Machos and Rio Seco.

  8. Thermal and Evolved Gas Behavior of Calcite Under Mars Phoenix TEGA Operating Conditions

    NASA Technical Reports Server (NTRS)

    Ming, D.W.; Niles, P.B.; Morris, R.V.; Boynton, W.V.; Golden, D.C.; Lauer, H.V.; Sutter, B.

    2009-01-01

    The Mars Phoenix Scout Mission with its diverse instrument suite successfully examined several soils on the Northern plains of Mars. The Thermal and Evolved Gas Analyzer (TEGA) was employed to detect organic and inorganic materials by coupling a differential scanning calorimeter (DSC) with a magnetic-sector mass spectrometer (MS). Martian soil was heated up to 1000 C in the DSC ovens and evolved gases from mineral decomposition products were examined with the MS. TEGA s DSC has the capability to detect endothermic and exothermic reactions during heating that are characteristic of minerals present in the Martian soil. Initial TEGA results indicated the presence of endothermic peaks with onset temperatures that ranged from 675 C to 750 C with corresponding CO2 release. This result suggests the presence of calcite (CaCO3. CaO + CO2). Organic combustion to CO2 is not likely since this mostly occurs at temperatures below 550 C. Fe-carbonate and Mg-carbonate are not likely because their decomposition temperatures are less than 600 C. TEGA enthalpy determinations suggest that calcite, may occur in the Martian soil in concentrations of approx.1 to 5 wt. %. The detection of calcite could be questioned based on previous results that suggest Mars soils are mostly acidic. However, the Phoenix landing site soil pH was measured at pH 8.3 0.5, which is typical of terrestrial soils where pH is controlled by calcite solubility. The range of onset temperatures and calcite concentration as calculated by TEGA is poorly con-strained in part because of limited thermal data of cal-cite at reduced pressures. TEGA operates at <30 mbar while most calcite literature thermal data was obtained at 1000 mbar or higher pressures.

  9. Determining the influence of Itaipu Lake on thermal conditions for soybean development in adjacent lands.

    PubMed

    Wagner-Riddle, C; Werner, S S; Caramori, P; Ricce, W S; Nitsche, P; von Bertoldi, P; de Souza, E F

    2015-10-01

    Previous numerical simulations have suggested that the area adjacent to Itaipu Lake in Southern Brazil is significantly affecting the local thermal regime through development of a lake breeze. This has led to concerns that soybean growth and development, and consequently yield, has been affected by the creation of the artificial lake in this important agricultural region, but a systematic climatological study of the thermal effects of Itaipu Lake has not been conducted. The objectives of this study were to assess the spatial pattern of minimum and maximum air temperatures in a 10-km-wide area adjacent to Itaipu Lake as affected by distance from the water. Measurements were conducted over 3 years in seven transects along the shore of Itaipu Lake, with five weather stations placed in each transect. Phenological observations in soybean fields surrounding the weather stations were also conducted. Generalized additive models for location, scale, and shape (GAMLSS) analysis indicated no difference in the temperature time series as distance from water increased. Semivariograms showed that the random components in the air temperature were predominant and that there was no spatial structure to the signal. Wind direction measured over the three growing seasons demonstrated that, on average, the development of a lake breeze is limited to a few locations and a few hours of the day, supporting the temporal and spatial analysis. Phenological observations did not show differences in the timing of critical soybean stages. We suggest that the concerns that soybean development is potentially affected by the presence of Itaipu Lake are not supported by the thermal environment observed. PMID:25716222

  10. Determining the influence of Itaipu Lake on thermal conditions for soybean development in adjacent lands

    NASA Astrophysics Data System (ADS)

    Wagner-Riddle, C.; Werner, S. S.; Caramori, P.; Ricce, W. S.; Nitsche, P.; von Bertoldi, P.; de Souza, E. F.

    2015-10-01

    Previous numerical simulations have suggested that the area adjacent to Itaipu Lake in Southern Brazil is significantly affecting the local thermal regime through development of a lake breeze. This has led to concerns that soybean growth and development, and consequently yield, has been affected by the creation of the artificial lake in this important agricultural region, but a systematic climatological study of the thermal effects of Itaipu Lake has not been conducted. The objectives of this study were to assess the spatial pattern of minimum and maximum air temperatures in a 10-km-wide area adjacent to Itaipu Lake as affected by distance from the water. Measurements were conducted over 3 years in seven transects along the shore of Itaipu Lake, with five weather stations placed in each transect. Phenological observations in soybean fields surrounding the weather stations were also conducted. Generalized additive models for location, scale, and shape (GAMLSS) analysis indicated no difference in the temperature time series as distance from water increased. Semivariograms showed that the random components in the air temperature were predominant and that there was no spatial structure to the signal. Wind direction measured over the three growing seasons demonstrated that, on average, the development of a lake breeze is limited to a few locations and a few hours of the day, supporting the temporal and spatial analysis. Phenological observations did not show differences in the timing of critical soybean stages. We suggest that the concerns that soybean development is potentially affected by the presence of Itaipu Lake are not supported by the thermal environment observed.

  11. Kinetics of thermal de-chlorination of PVC under pyrolytic conditions

    SciTech Connect

    Castro, Alexandra; Soares, Delfim; Vilarinho, Candida; Castro, Fernando

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer Several tests were performed in DTA/TGA for understanding the thermal behavior of pure PVC. Black-Right-Pointing-Pointer We did a kinetic model for the de-chlorination of PVC molecule. Black-Right-Pointing-Pointer A temperature of 340 Degree-Sign C was defined as the optimum temperature for breaking the bond of chlorine in the PVC molecule. Black-Right-Pointing-Pointer The experimental validation of this temperature, led to a removal rate of 99.9% chlorine. - Abstract: Although PVC-containing wastes are an important potential source of energy they are frequently disposed in landfill. In thermal treatment processes such as pyrolysis and gasification, the presence of poly(vinyl chloride) (PVC), a compound with 56.7% of chlorine, may cause problems concerned with environmental protection, as consequence of the formation of hydrochloric acid, chlorine gas and dioxins, as well as corrosion phenomena of the reactor/equipment materials. Thus, a possible solution may involve a previous removal of the chlorine from PVC containing waste through a pyrolysis process at low temperatures before the material being submitted to a subsequent thermal treatment, for energetic valorization. In this work, a kinetic model for the thermal decomposition of PVC has been developed, in view of its de-chlorination. DTA/TGA testing at different temperatures indicated a first order reaction and an activation energy of 133,800 J/mol. An almost completed de-chlorination reaction was obtained at 340 Degree-Sign C under an inert atmosphere. The resulted material is a C{sub n}H{sub n} type polymer with potential to be used in an energy recovery process. Validation test performed at laboratory scale indicate that the temperature of 340 Degree-Sign C enables the removal of {approx}99.9% of the chlorine present in PVC. The chloride can be fixed in the form of an aqueous solution of HCl or calcium chloride, driving to an alternative full process with environmental benefits and reduction of the costs associated to the PCV - containing materials/wastes management.

  12. Simulations of jet fuel thermal-oxidative degradation and flow characteristics of injected jet fuel under supercritical conditions

    NASA Astrophysics Data System (ADS)

    Duangthip, Thammarat

    The purpose of this dissertation is to study thermal degradation of jet fuel and the injection of jet fuel under supercritical condition. This dissertation is organized into three main parts described below. In the first part, computational fluid dynamics incorporating pseudo-detailed chemical kinetics with surface mechanisms are used to simulate the effects of the surface type on liquid phase thermal-oxidation. Two hydroperoxide decomposition mechanisms are used for oxidation simulations. The first hydroperoxide decomposition mechanism employs a simple catalyzed hydroperoxide decomposition reaction at surface. The second mechansim uses adsorption and decomposition/desorption of hydroperoxide to/from the surface. The results of thermal oxidation simulations were compared to the measurement of jet fuel flowing within untreated and treated surface. The effects of the surface material on thermal oxidation were simulated by adjusting the activation energy of the surface reaction. For both hydroperoxide mechanisms, simulations of dissolved O2 consumption agree reasonably well with dissolved O2 measurements. In the second part, surface deposition mechanisms are added to the pseudodetailed chemical kinetic mechanism to simulate surface deposition from jet fuel. Three deposition mechanisms are used to simulate surface deposition under isothermal flowing condition while two surface deposition mechanisms are used under non-isothermal flowing conditions. It is shown that a deposition mechanism with simple adsorption of products resulting from autoxidation provides the most reasonable simulation of surface deposition under both isothermal and non-isothermal flows. In addition, it is concluded that pseudo-detailed chemical kinetics with a simple surface mechanism may be used to reasonably simulate surface deposition of jet fuels. In the last part, computational fluid dynamics simulations of jet fuel injection under supercritical conditions were performed using n-decane as a surrogate fuel. The simulations and measurements (performed elsewhere) obtained from the recorded images show that n-decane is a reasonable surrogate fuel for predictions of the spreading angle and jet penetration length. Measurements and computations show that jet penetration and spreading angle are dependent on the fuel exit temperature and mass flow rate. It was also found that the numerical predictions of the jet centerline fuel mass fraction agreed well with established correlations. It was concluded that n-decane or a similar hydrocarbon surrogate fuel can be used for calculations of the heat transfer and fluid dynamics of non-reacting supercritical jet fuel which has a similar critical temperature and pressure. (Abstract shortened by UMI.)

  13. Sensing technologies to measure metabolic activities in soil and assess its health conditions

    NASA Astrophysics Data System (ADS)

    De Cesare, Fabrizio; Macagnano, Antonella

    2013-04-01

    Soil is a complex ecosystem comprised of several and mutually interacting components, both abiotic (organo-mineral associations) and biotic (microbial and pedofaunal populations and plants), where a single parameter depends on other factors and affects the same and other factors, so that a network of influences among organisms coexists with the reciprocal actions between organisms and their environment. Therefore, it is difficult to undoubtedly determine what is the cause and what the effect within relationships between factors and processes. Soil is commonly studied through the evaluation and measurement of single parameters (e.g. the content of soil organic matter (SOM), microbial biomass, enzyme activities, pH, etc.), events (e.g. soil erosion, compaction, etc.) and processes (e.g. soil respiration, carbon fluxes, nitrification/denitrification, etc.), often carried out in laboratory conditions in order to limit the number of factors acting within the ecosystem under study, but missing the information about the global soil environment that way. In the last decade, several scientists have proposed and suggested the need for a holistic approach to soil ecosystems in different contexts. Recently, we have applied a sensing system developed in the last decades and capable of analysing complex mixtures of gases and volatiles (odours or aromas) in atmospheres, namely called electronic nose (EN). Typically, ENs are devices consisting of an array of differentially and partially specific, despite selective, sensors upon diverse coatings of sensitive films, i.e. interacting with single analytes of the same chemical class, despite not highly specific for a single substance, only, but showing also lower extent of cross-selectivity towards compounds of other chemical classes. ENs can be used in the classifications of odours by processing the collected responses of all sensors in the array through pattern recognition analyses, in order to obtain a chemical fingerprint (olfactory fingerprint) typical of the analysed air sample. Due to these features, we decided to apply such a sensing technology to the analyses of soil atmospheres, because several processes in soil, both abiotic and biotic, result in gas and/or volatile production and the dynamics of such releases may also be affected by several additional environmental factors, such as soil moisture, temperature, gas exchange rates with outer atmosphere, adsorption/desorption processes, etc. Then, the analysis of soil atmosphere may provide information about global soil conditions (e.g. soil quality and health), according to a holistic approach, where several factors are contemporarily taken into account. At the same time, the use of such a technology, if adequately trained on purpose, can supply information about a single or a pool of processes sharing similar features, which occur in soil over a certain period of time and mostly affecting soil atmosphere. According to these premises and hypotheses, we demonstrated that EN is an useful technology to measure soil microbial activity, through its correlation to specific metabolic activities occurring in soil (i.e. global and specific respiration and some enzyme activities), but also soil microbial biomass. On the basis of such evidences, we also were able to use this technology to assess the quality and health conditions of soil ecosystems in terms of metabolic indices previously identified, according to some metabolic parameters and biomass quantification of microbial populations. In other studies, we also applied EN technology, despite using a different set of sensors in the array, to analyse the atmosphere of soil ecosystems in order to assess their environmental conditions after contamination with polycyclic aromatic hydrocarbons (PAHs) (i.e. semivolatile - SVOCs - organic pollutants). In this case, EN technology resulted capable of distinguishing between contaminated and uncontaminated soils, according to the differences in a list of substances, occurring in the atmospheres of differently treated soils, which were identified throu

  14. Thermophysical properties of nitrogen plasmas under thermal equilibrium and non-equilibrium conditions

    SciTech Connect

    Wang Weizong; Rong Mingzhe; Yan, J. D.; Spencer, Joseph W.; Murphy, A. B.

    2011-11-15

    Calculated thermophysical properties of nitrogen plasmas in and out of thermal equilibrium are presented. The cut-off of the partition functions due to the lowering of the ionization potential has been taken into account, together with the contributions from different core excited electronic states. The species composition and thermodynamic properties are determined numerically using the Newton-Raphson iterative method, taking into account the corrections due to Coulomb interactions. The transport properties including diffusion coefficient, viscosity, thermal conductivity, and electrical conductivity are calculated using the most recent collision interaction potentials by adopting Devoto's electron and heavy particle decoupling approach, expanded to the third-order approximation (second-order for viscosity) in the framework of Chapman-Enskog method. Results are presented in the pressure range of 0.1 atm-10 atm and in electron temperature range from 300 to 40 000 K, with the ratio of electron temperature to heavy-particle temperature varied from 1 to 20. Results are compared with those from previous works, and the influences of different definitions of the Debye length are discussed.

  15. Thermal conditions in freezing chambers and prediction of the thermophysiological responses of workers

    NASA Astrophysics Data System (ADS)

    Raimundo, A. M.; Oliveira, A. V. M.; Gaspar, A. R.; Quintela, D. A.

    2015-02-01

    The present work is dedicated to the assessment of the cold thermal strain of human beings working within freezing chambers. To obtain the present results, both field measurements and a numerical procedure based on a modified version of the Stolwijk thermoregulation model were used. Eighteen freezing chambers were considered. A wide range of physical parameters of the cold stores, the workers clothing insulation, and the working and recovering periods were observed. The combination of these environmental and individual parameters lead to different levels of thermal stress, which were grouped under three categories. Some good practices were observed in the field evaluations, namely situations with appropriate level of clothing protection and limited duration of exposure to cold avoiding unacceptable level of hypothermia. However, the clothing ensembles normally used by the workers do not provide the minimum required insulation, which suggests the possibility of the whole body cooling for levels higher than admissible. The numerical predictions corroborate the main conclusions of the field survey. The results obtained with both methodologies clearly show that, for the low temperature of the freezing chambers, the clothing insulation is insufficient, the exposure periods are too long, and the recovering periods are inadequate. Thus, high levels of physiological strain can indeed be reached by human beings under such working environments.

  16. Influence of calcium hydroxide on the fate of perfluorooctanesulfonate under thermal conditions.

    PubMed

    Wang, Fei; Lu, Xingwen; Shih, Kaimin; Liu, Chengshuai

    2011-09-15

    To explore the potential fate and transport of perfluorochemicals in the thermal treatment of sludge, perfluorooctanesulfonate (PFOS), a perfluorochemical species commonly dominant in wastewater sludge, was mixed with hydrated lime (Ca(OH)(2)) to quantitatively observe their interaction under different temperatures. The phase compositions of the mixtures after the reactions were qualitatively identified and quantitatively determined using X-ray diffraction technique. The results of the thermogravimetry and differential scanning calorimetry analyses indicate that PFOS gasified directly during the thermal treatment process when the temperature was increased to around 425 °C. However, the formation of CaF(2) at 350 °C suggests that the presence of Ca(OH)(2) in the mixture can lead to the decomposition of PFOS at 350 °C, which is lower than the decomposition temperature of PFOS alone (425 °C). The increase of temperature promoted a solid state reaction between PFOS and Ca(OH)(2), and also enhanced the interaction between the gaseous products of PFOS and CaO (or Ca(OH)(2)). The preferred Ca/F molar ratio to achieve fluorine stabilization by Ca(OH)(2) was above 1:1 in the experiment involving 400 °C and 600 °C treatment. It also showed that equilibrium efficiency is achieved within 5 min at 400 °C and within 1 min above 600°C. PMID:21719193

  17. Thermal conditions in freezing chambers and prediction of the thermophysiological responses of workers.

    PubMed

    Raimundo, A M; Oliveira, A V M; Gaspar, A R; Quintela, D A

    2015-11-01

    The present work is dedicated to the assessment of the cold thermal strain of human beings working within freezing chambers. To obtain the present results, both field measurements and a numerical procedure based on a modified version of the Stolwijk thermoregulation model were used. Eighteen freezing chambers were considered. A wide range of physical parameters of the cold stores, the workers clothing insulation, and the working and recovering periods were observed. The combination of these environmental and individual parameters lead to different levels of thermal stress, which were grouped under three categories. Some good practices were observed in the field evaluations, namely situations with appropriate level of clothing protection and limited duration of exposure to cold avoiding unacceptable level of hypothermia. However, the clothing ensembles normally used by the workers do not provide the minimum required insulation, which suggests the possibility of the whole body cooling for levels higher than admissible. The numerical predictions corroborate the main conclusions of the field survey. The results obtained with both methodologies clearly show that, for the low temperature of the freezing chambers, the clothing insulation is insufficient, the exposure periods are too long, and the recovering periods are inadequate. Thus, high levels of physiological strain can indeed be reached by human beings under such working environments. PMID:25691118

  18. Thermal conditions in freezing chambers and prediction of the thermophysiological responses of workers

    NASA Astrophysics Data System (ADS)

    Raimundo, A. M.; Oliveira, A. V. M.; Gaspar, A. R.; Quintela, D. A.

    2015-11-01

    The present work is dedicated to the assessment of the cold thermal strain of human beings working within freezing chambers. To obtain the present results, both field measurements and a numerical procedure based on a modified version of the Stolwijk thermoregulation model were used. Eighteen freezing chambers were considered. A wide range of physical parameters of the cold stores, the workers clothing insulation, and the working and recovering periods were observed. The combination of these environmental and individual parameters lead to different levels of thermal stress, which were grouped under three categories. Some good practices were observed in the field evaluations, namely situations with appropriate level of clothing protection and limited duration of exposure to cold avoiding unacceptable level of hypothermia. However, the clothing ensembles normally used by the workers do not provide the minimum required insulation, which suggests the possibility of the whole body cooling for levels higher than admissible. The numerical predictions corroborate the main conclusions of the field survey. The results obtained with both methodologies clearly show that, for the low temperature of the freezing chambers, the clothing insulation is insufficient, the exposure periods are too long, and the recovering periods are inadequate. Thus, high levels of physiological strain can indeed be reached by human beings under such working environments.

  19. Thermal performance simulation of a solar cavity receiver under windy conditions

    SciTech Connect

    Fang, J.B.; Wei, J.J.; Dong, X.W.; Wang, Y.S.

    2011-01-15

    Solar cavity receiver plays a dominant role in the light-heat conversion. Its performance can directly affect the efficiency of the whole power generation system. A combined calculation method for evaluating the thermal performance of the solar cavity receiver is raised in this paper. This method couples the Monte-Carlo method, the correlations of the flow boiling heat transfer, and the calculation of air flow field. And this method can ultimately figure out the surface heat flux inside the cavity, the wall temperature of the boiling tubes, and the heat loss of the solar receiver with an iterative solution. With this method, the thermal performance of a solar cavity receiver, a saturated steam receiver, is simulated under different wind environments. The highest wall temperature of the boiling tubes is about 150 C higher than the water saturation temperature. And it appears in the upper middle parts of the absorbing panels. Changing the wind angle or velocity can obviously affect the air velocity inside the receiver. The air velocity reaches the maximum value when the wind comes from the side of the receiver (flow angle {alpha} = 90 ). The heat loss of the solar cavity receiver also reaches a maximum for the side-on wind. (author)

  20. Annealing condition influences thermal hysteresis of fungal type ice-binding proteins.

    PubMed

    Xiao, Nan; Hanada, Yuichi; Seki, Haruhiko; Kondo, Hidemasa; Tsuda, Sakae; Hoshino, Tamotsu

    2014-02-01

    The Antarctic sea ice diatom Navicular glaciei produced ice-binding protein (NagIBP) that is similar to the antifreeze protein (TisAFP) from snow mold Typhula ishikariensis. In the thermal hysteresis range of NagIBP, ice growth was completely inhibited. At the freezing point, the ice grew in a burst to 6 direction perdicular to the c-axis of ice crystal. This burst pattern is similar to TisAFP and other hyperactive AFPs. The thermal hysteresis of NagIBP and TisAFP could be increased by decreasing a cooling rate to allow more time for the proteins to bind ice. This suggests the possible second binding of proteins occurs on the ice surface, which might increase the hysteresises to a sufficient level to prevent freezing of the brine pockets which habitat of N. glaciei. The secondary ice binding was described as that after AFP molecules bind onto the flat ice plane irreversibly, which was based on adsorption-inhibition mechanism model at the ice-water interface, convex ice front was formed and overgrew during normal TH measurement (no annealing) until uncontrolled growth at the nonequilibrium freezing point. The results suggested that NagIBP is a hyperactive AFP that is expressed for freezing avoidance. PMID:24201106

  1. Condition Monitoring of a Thermally Aged HTPB/IPDI Elastomer by NMR CP Recovery Times

    SciTech Connect

    ASSINK,ROGER A.; LANG,DAVID; CELINA,MATHIAS C.

    2000-07-24

    A hydroxy-terminated polybutadiene (HTPB)/isophorone diisocyanate (IPDI) elastomer is commonly used as propellant binder material. The thermal degradation of the binder is believed to be an important parameter governing the performance of the propellant. The aging of these binders can be monitored by mechanical property measurements such as modulus or tensile elongation. These techniques, however, are not easily adapted to binder agents that are dispersed throughout a propellant. In this paper the authors investigated solid state NMR relaxation times as a means to predict the mechanical properties of the binder as a function of aging time. {sup 1}H spin-lattice and spin-spin relaxation times were found to be insensitive to the degree of thermal degradation of the elastomer. Apparently these relaxation times depend on localized motions that are only weakly correlated with mechanical properties. A strong correlation was found between the {sup 13}C cross-polarization (CP) NMR time constant, T{sub cp}, and the tensile elongation at break of the elastomer as a function of aging time. A ramped-amplitude CP experiment was shown to be less sensitive to imperfections in setting critical instrumental parameters for this mobile material.

  2. Influence of EB-PVD TBC Microstructure on Thermal Barrier Coating System Performance Under Cyclic Conditions

    SciTech Connect

    Leyens, C.; Pint, B.A.; Schulz, U.; Wright, I.G.

    1999-04-12

    The lifetimes of electron beam physical vapor deposited (EB-PVD) thermal barrier coating systems (TBCs) with three different microstructures of the Y2O3-stabilized ZrO, YSZ) ceramic top layer were investigated in lh thermal cycles at 1100 and 1150°C in flowing oxygen. Single crystal alloys CMSX-4 and Rene N5 that had been coated with an EB-PVD NiCoCrAlY bond coat were chosen as substrate materials. At 1150°C all samples failed after 80-100, lh cycles, predominantly at the bond coat/alumina interface after cooling down from test temperature. The alumina scale remained adherent to the YSZ after spallation. Despite the different YSZ microstructures no clear tendency regarding differences in spallation behavior were observed at 1150°C. At 1100°C the minimum lifetime was 750 , lh cycles for CMSX-4, whereas the first Rene N5 specimen failed after 1750, lh cycles. The longest TBC lifetime on CMSX-4 substrates was 1250, lh cycles, whereas the respective Rene N5 specimens have not yet failed after 2300, lh cycles. The failure mode at 1100°C was identical to that at 115O?C, i.e. the TBC spalled off the surface exposing bare metal after cooling. Even though not all specimens have failed to date, the available results at 1100°C suggested that both, the substrate alloy chemistry and the YSZ microstructure significantly affect the spallation resistance of the TBC.

  3. THERMAL ANALYSIS OF A SOLID BREEDER TBM UNDER ITER OPERATIONAL CONDITIONS A. Abou-Sena, A. Ying, M. Youssef, M. Abdou

    E-print Network

    Abdou, Mohamed

    THERMAL ANALYSIS OF A SOLID BREEDER TBM UNDER ITER OPERATIONAL CONDITIONS A. Abou-Sena, A. Ying, M, are contained and cooled by cooling plates. Under the US TBM program, two blanket concepts: (i) helium cooled SB

  4. Pilot Testing of WRI'S Novel Mercury Control Technology by Pre-Combustion Thermal Treatment of Coal

    SciTech Connect

    Alan Bland; Jesse Newcomer; Kumar Sellakumar

    2008-08-17

    The challenges to the coal-fired power industry continue to focus on the emission control technologies, such as mercury, and plant efficiency improvements. An alternate approach to post-combustion control of mercury, while improving plant efficiency deals with Western Research Institute's (WRI)'s patented pre-combustion mercury removal and coal upgrading technology. WRI was awarded under the DOE's Phase III Mercury program, to evaluate the effectiveness of WRI's novel thermal pretreatment process to achieve >50% mercury removal, and at costs of <$30,000/lb of Hg removed. WRI has teamed with Etaa Energy, Energy and Environmental Research Center (EERC), Foster Wheeler North America Corp. (FWNA), and Washington Division of URS (WD-URS), and with project co-sponsors including Electric Power Research Institute (EPRI), Southern Company, Basin Electric Power Cooperative (BEPC), Montana-Dakota Utilities (MDU), North Dakota Industrial Commission (NDIC), Detroit Edison (DTE), and SaskPower to undertake this evaluation. The technical objectives of the project were structured in two phases: Phase I--coal selection and characterization, and bench-and PDU-scale WRI process testing and; and Phase II--pilot-scale pc combustion testing, design of an integrated boiler commercial configuration, its impacts on the boiler performance and the economics of the technology related to market applications. This report covers the results of the Phase I testing. The conclusion of the Phase I testing was that the WRI process is a technically viable technology for (1) removing essentially all of the moisture from low rank coals, thereby raising the heating value of the coal by about 30% for subbituminous coals and up to 40% for lignite coals, and (2) for removing volatile trace mercury species (up to 89%) from the coal prior to combustion. The results established that the process meets the goals of DOE of removing <50% of the mercury from the coals by pre-combustion methods. As such, further testing, demonstration and economic analysis as described in the Phase II effort is warranted and should be pursued.

  5. Hydrodynamic and thermal effects of drag and heat transfer coefficients under laminar unsteady flow conditions in porous media

    NASA Astrophysics Data System (ADS)

    Pathak, Mihir G.; Mulcahey, Thomas; Ghiaasiaan, S. Mostafa

    2012-06-01

    Solid-fluid thermal interactions during unsteady flow in porous media play an important role in the regenerators and heat exchangers of pulse tube cryocoolers. Porelevel thermal processes in porous media under laminar unsteady flow conditions have recently been investigated and have been shown to produce significantly larger heat transfer coefficients compared to those in steady flow [1]. The objective of this investigation was to study pore-level hydrodynamic and thermal phenomena during pulsating sinusoidal flow through a generic, two-dimensional porous medium by numerical analysis. The investigated porous media are periodic arrays of rectangular cylinders, and are meant to represent tube bundles in micro heat exchangers. Furthermore, an examination of the effects of flow pulsations on the drag and heat transfer coefficients that are encountered in the standard, volume-average energy equations was carried out. Detailed numerical data for the typical 75% porous configuration, with flow pulsation frequencies of 20, 40, and 80 Hz were obtained at mean flow - Reynolds numbers in the range 0-1000. Based on these numerical results, the instantaneous as well as cycle-average drag coefficients and heat transfer coefficients, to be used in the standard unsteady volume- average momentum and energy conservation equations, were derived.

  6. Thermoconvective instability and local thermal non-equilibrium in a porous layer with isoflux-isothermal boundary conditions

    NASA Astrophysics Data System (ADS)

    Celli, Michele; Barletta, Antonio; Storesletten, Leiv

    2014-04-01

    The effects of lack of local thermal equilibrium between the solid phase and the fluid phase are taken into account for the convective stability analysis of a horizontal porous layer. The layer is bounded by a pair of plane parallel walls which are impermeable and such that the lower wall is subject to a uniform flux heating, while the upper wall is isothermal. The local thermal non-equilibrium is modelled through a two-temperature formulation of the energy exchange between the phases, resulting in a pair of local energy balance equations: one for each phase. Small-amplitude disturbances of the basic rest state are envisaged to test the stability. Then, the standard normal mode procedure is adopted to detect the onset conditions of convective rolls. Beyond the Darcy-Rayleigh number, playing the role of order parameter for the transition to instability, the relevant dimensionless parameters are the inter-phase heat transfer parameter and the thermal conductivity ratio. The disturbance governing equations, formulated as an eigenvalue problem, are solved numerically by a shooting method. Results are reported for the neutral stability curves and for the critical values for the onset of instability.

  7. Boundary-element shape sensitivity analysis for thermal problems with nonlinear boundary conditions

    NASA Technical Reports Server (NTRS)

    Kane, James H.; Wang, Hua

    1991-01-01

    Implicit differentiation of the discretized boundary integral equations governing the conduction of heat in solid objects subjected to nonlinear boundary conditions is shown to generate an accurate and economical approach for the computation of shape sensitivities for this class of problems. This approach involves the employment of analytical derivatives of boundary-element kernel functions with respect to shape design variables. A formulation is presented that can consistently account for both temperature-dependent convection and radiation boundary conditions. Several iterative strategies are presented for the solution of the resulting sets of nonlinear equations and the computational performances examined in detail. Multizone analysis and zone condensation strategies are demonstrated to provide substantive computational economies in this process for models with either localized nonlinear boundary conditions or regions of geometric insensitivity to design variables. A series of nonlinear example problems are presented that have closed-form solutions.

  8. Fast transient thermal analysis of non-Fourier heat conduction using Tikhonov well-conditioned asymptotic waveform evaluation.

    PubMed

    Rana, Sohel; Kanesan, Jeevan; Reza, Ahmed Wasif; Ramiah, Harikrishnan

    2014-01-01

    Non-Fourier heat conduction model with dual phase lag wave-diffusion model was analyzed by using well-conditioned asymptotic wave evaluation (WCAWE) and finite element method (FEM). The non-Fourier heat conduction has been investigated where the maximum likelihood (ML) and Tikhonov regularization technique were used successfully to predict the accurate and stable temperature responses without the loss of initial nonlinear/high frequency response. To reduce the increased computational time by Tikhonov WCAWE using ML (TWCAWE-ML), another well-conditioned scheme, called mass effect (ME) T-WCAWE, is introduced. TWCAWE with ME (TWCAWE-ME) showed more stable and accurate temperature spectrum in comparison to asymptotic wave evaluation (AWE) and also partial Pade AWE without sacrificing the computational time. However, the TWCAWE-ML remains as the most stable and hence accurate model to analyze the fast transient thermal analysis of non-Fourier heat conduction model. PMID:25019096

  9. Fast Transient Thermal Analysis of Non-Fourier Heat Conduction Using Tikhonov Well-Conditioned Asymptotic Waveform Evaluation

    PubMed Central

    Reza, Ahmed Wasif

    2014-01-01

    Non-Fourier heat conduction model with dual phase lag wave-diffusion model was analyzed by using well-conditioned asymptotic wave evaluation (WCAWE) and finite element method (FEM). The non-Fourier heat conduction has been investigated where the maximum likelihood (ML) and Tikhonov regularization technique were used successfully to predict the accurate and stable temperature responses without the loss of initial nonlinear/high frequency response. To reduce the increased computational time by Tikhonov WCAWE using ML (TWCAWE-ML), another well-conditioned scheme, called mass effect (ME) T-WCAWE, is introduced. TWCAWE with ME (TWCAWE-ME) showed more stable and accurate temperature spectrum in comparison to asymptotic wave evaluation (AWE) and also partial Pade AWE without sacrificing the computational time. However, the TWCAWE-ML remains as the most stable and hence accurate model to analyze the fast transient thermal analysis of non-Fourier heat conduction model. PMID:25019096

  10. Extreme variation in basal thermal conditions of the central Greenland Ice Sheet due to anomalous lithosphere structure

    NASA Astrophysics Data System (ADS)

    Rogozhina, Irina; Petrunin, Alexey; Vaughan, Alan P. M.; Kukkonen, Ilmo T.; Kaban, Mikhail K.; Koulakov, Ivan; Thomas, Maik

    2013-04-01

    At the Earth's surface, heat fluxes from the interior are generally insignificant when compared with fluxes from the sun and atmosphere; however, in areas permanently blanketed by ice these become very important. Modelling studies show that they are key to understanding the internal thermal structure of ice sheets and the distribution of melt water at their bases, information which is crucial for planning deep ice drilling campaigns and climate reconstructions. Unfortunately, the challenging conditions in ice-covered regions make measurement difficult in exactly the places where it is needed most. Until now, proxy methodologies have been considered best for determining geothermal heat flux (GHF) beneath ice sheets. Our method is to use a novel interdisciplinary approach, integrating a time-evolved climate-ice-lithosphere coupled model with a wide range of data such as direct ice-core measurements, past climate reconstructions and indirect estimates of the lithospheric thermal state. Here we show that the oldest (and thickest) part of the Greenland Ice Sheet (GIS) is strongly thermally influenced by both GHF increasing from west to east and glaciation-induced perturbations of the thermal structure of the upper crust. A pronounced lateral gradient in GHF across the Summit region of the GIS is due to anomalously thin lithosphere, which has only about 25 to 66% of the thickness typical for Archaean to early Proterozoic areas. Our findings suggest that the thermal basal conditions of the present-day central GIS are characterized by surprising rapid lateral variations in ice temperatures of up to 12°C along relatively small distances of 100 to 150 km. We reveal two areas of rapid basal melt in central Greenland, only one of which was previously predicted by ice-penetrating radar measurements and age-depth relations from internal layering (Fahnestock et al. [2001]). The endothermic phase transition associated with rapid basal ice melt is found to increase subglacial heat flow in the uppermost layers of the crust by a factor of three to values well above 100 mW/m2. Fahnestock, M., Abdalati, W., Joughin, I., Brozena, J. & Gogineni, P. High geothermal heat flow, Basal melt, and the origin of rapid ice flow in central Greenland. Science 294, 2338-2342 (2001)

  11. Status of not-in-kind refrigeration technologies for household space conditioning, water heating and food refrigeration

    SciTech Connect

    Bansal, Pradeep; Vineyard, Edward Allan; Abdelaziz, Omar

    2012-01-01

    This paper presents a review of the next generation not-in-kind technologies to replace conventional vapor compression refrigeration technology for household applications. Such technologies are sought to provide energy savings or other environmental benefits for space conditioning, water heating and refrigeration for domestic use. These alternative technologies include: thermoacoustic refrigeration, thermoelectric refrigeration, thermotunneling, magnetic refrigeration, Stirling cycle refrigeration, pulse tube refrigeration, Malone cycle refrigeration, absorption refrigeration, adsorption refrigeration, and compressor driven metal hydride heat pumps. Furthermore, heat pump water heating and integrated heat pump systems are also discussed due to their significant energy saving potential for water heating and space conditioning in households. The paper provides a snapshot of the future R&D needs for each of the technologies along with the associated barriers. Both thermoelectric and magnetic technologies look relatively attractive due to recent developments in the materials and prototypes being manufactured.

  12. Waking the sleeping giant: Introducing new heat exchanger technology into the residential air-conditioning marketplace

    SciTech Connect

    Chapp, T.; Voss, M.; Stephens, C.

    1998-07-01

    The Air Conditioning Industry has made tremendous strides in improvements to the energy efficiency and reliability of its product offerings over the past 40 years. These improvement can be attributed to enhancements of components, optimization of the energy cycle, and modernized and refined manufacturing techniques. During this same period, energy consumption for space cooling has grown significantly. In January of 1992, the minimum efficiency requirement for central air conditioning equipment was raised to 10 SEER. This efficiency level is likely to increase further under the auspices of the National Appliance Energy Conservation Act (NAECA). A new type of heat exchanger was developed for air conditioning equipment by Modine Manufacturing Company in the early 1990's. Despite significant advantages in terms of energy efficiency, dehumidification, durability, and refrigerant charge there has been little interest expressed by the air conditioning industry. A cooperative effort between Modine, various utilities, and several state energy offices has been organized to test and demonstrate the viability of this heat exchanger design throughout the nation. This paper will review the fundamentals of heat exchanger design and document this simple, yet novel technology. These experiences involving equipment retrofits have been documented with respect to the performance potential of air conditioning system constructed with PF{trademark} Heat Exchangers (generically referred to as microchannel heat exchangers) from both an energy efficiency as well as a comfort perspective. The paper will also detail the current plan to introduce 16 to 24 systems into an extended field test throughout the US which commenced in the Fall of 1997.

  13. Advanced technologies for scalable ATLAS conditions database access on the grid

    NASA Astrophysics Data System (ADS)

    Basset, R.; Canali, L.; Dimitrov, G.; Girone, M.; Hawkings, R.; Nevski, P.; Valassi, A.; Vaniachine, A.; Viegas, F.; Walker, R.; Wong, A.

    2010-04-01

    During massive data reprocessing operations an ATLAS Conditions Database application must support concurrent access from numerous ATLAS data processing jobs running on the Grid. By simulating realistic work-flow, ATLAS database scalability tests provided feedback for Conditions Db software optimization and allowed precise determination of required distributed database resources. In distributed data processing one must take into account the chaotic nature of Grid computing characterized by peak loads, which can be much higher than average access rates. To validate database performance at peak loads, we tested database scalability at very high concurrent jobs rates. This has been achieved through coordinated database stress tests performed in series of ATLAS reprocessing exercises at the Tier-1 sites. The goal of database stress tests is to detect scalability limits of the hardware deployed at the Tier-1 sites, so that the server overload conditions can be safely avoided in a production environment. Our analysis of server performance under stress tests indicates that Conditions Db data access is limited by the disk I/O throughput. An unacceptable side-effect of the disk I/O saturation is a degradation of the WLCG 3D Services that update Conditions Db data at all ten ATLAS Tier-1 sites using the technology of Oracle Streams. To avoid such bottlenecks we prototyped and tested a novel approach for database peak load avoidance in Grid computing. Our approach is based upon the proven idea of pilot job submission on the Grid: instead of the actual query, an ATLAS utility library sends to the database server a pilot query first.

  14. Identification of the epoxy curing mechanism under isothermal conditions by thermal analysis and infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Yamasaki, Hideki; Morita, Shigeaki

    2014-07-01

    A curing reaction of bisphenol A diglycidyl ether epoxy resin with 4,4?-diaminodicyclohexyl methane hardener was investigated by means of modulated differential scanning calorimetry (MDSC), thermal scanning rheometer (TSR), near-infrared (NIR) and mid-infrared (MIR) spectroscopy. The relation between change in the physical properties and molecular structures during the isothermal curing reaction were studied. MDSC and NIR results corroborated vitrification with the secondary to tertiary amine conversion; the process afforded a three-dimensional cross-linking structure. TSR estimation of the gelation point was corroborated with the NIR-determined maximum concentration of the generated secondary amine. Two-dimensional correlation spectroscopy confirmed that reaction between the primary amine and epoxy occurred more rapidly than any other functional group reaction. The ether groups were generated at the early stage of the curing reaction, and their formation occurred immediately with the generation of hydroxyl groups.

  15. Field Demonstration of Electro-Scan Defect Location Technology for Condition Assessment of Wastewater Collection Systems - Paper

    EPA Science Inventory

    A USEPA-sponsored field demonstration program was conducted to gather technically reliable cost and performance information on the electro-scan (FELL -41) pipeline condition assessment technology. Electro-scan technology can be used to estimate the magnitude and location of pote...

  16. Thermal imaging of cucumber leaves affected by downy mildew and environmental conditions.

    PubMed

    Oerke, E-C; Steiner, U; Dehne, H-W; Lindenthal, M

    2006-01-01

    Pathogenesis of Pseudoperonospora cubensis causing downy mildew of cucumber resulted in changes in the metabolic processes within cucumber leaves including the transpiration rate. Due to the negative correlation between transpiration rate and leaf temperature, digital infrared thermography permitted a non-invasive monitoring and an indirect visualization of downy mildew development. Depending on the stage of pathogenesis and the topology of chloroses and necroses, infection resulted in a typical temperature pattern. Spatial heterogeneity of the leaf temperature could be quantified by the maximum temperature difference (MTD) within a leaf. The MTD increased during pathogenesis with the formation of necrotic tissue and was related to disease severity as described by linear and quadratic regression curves. Under controlled conditions, changes in temperature of infected leaves allowed the discrimination between healthy and infected areas in thermograms, even before visible symptoms of downy mildew appeared. Environmental conditions during thermographic measurement, in particular air temperature and humidity, as well as water content and age of the leaf influenced the temperature of its surface. Conditions enhancing the transpiration rate facilitated the detection of changes in leaf temperature of infected leaves at early stages of infection. As modified by environmental conditions, MTD alone is not suitable for the quantification of downy mildew severity in the field. PMID:16714311

  17. EFFECTS OF CHRONIC EXERCISE CONDITIONING ON THERMAL RESPONSES TO LIPOPOLYSACCHARIDE AND TURPENTINE ABSCESS IN FEMALE RATS.

    EPA Science Inventory

    Chronic exercise conditioning has been shown to alter basal thermoregulatory processes as well as the response to inflammatory agents. Two such agents, lipopolysaccharide (LPS) and turpentine (TPT) are inducers of fever in rats. LPS, given intraperitoneally (i.p.), involves a sys...

  18. Thermal Inactivation of Listeria Monocytogenes in Ground Beef Under Isothermal and Dynamic Temperature Conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this research was to compare the suitability of three kinetic models for describing the survival of Listeria monocytogenes in ground beef under both isothermal and dynamic temperature conditions. Ground beef (93% lean), inoculated with a 4 strain cocktail of L. monocytogenes, was s...

  19. Establishing in situ conditions of Hanford waste tanks subjected to the aging effects of thermal degradation and creep of concrete

    SciTech Connect

    Julyk, L.J.; Weis, M.P.; Dyrness, A.D.

    1993-10-01

    Some of the underground reinforced-concrete waste-storage tanks at the US Department of Energy`s Hanford Site have been exposed to high temperatures (greater than 200{degrees}F) generated by radioactive liquid wastes. Establishment of the in situ conditions of these tanks is the first step toward their remediation. In this environment concrete damage can result in the form of mechanical property degradation, increased creep response, and cracking from thermal expansion and load redistribution. Regression analyses of data from tests on Hanford-concrete mix designs conducted in the mid-1970`s provided mechanical property correlations that are a function of time at temperature. Creep compliance functions were developed on the bases of literature reviews and limited Hanford Site test data. The property-degradation correlations are thermal-history dependent because of the irreversible nature of the degradation processes. In addition, tests were conducted to determine the thermal expansion coefficient of the Hanford concrete. This paper discusses the implementation of these correlations into a nonlinear concrete constitutive subroutine that is linked to a general-purpose finite- element computer code. The methodology used to treat variable temperature histories is illustrated. A case study of the Hanford Site`s buried, high-heat, single-shell, waste storage tank 241-C-106 illustrates the degradation history predicted over its service life. In addition, this paper provides a statistically based discussion of the effects of potential batch-to-batch variation of concrete strength. It addresses material property uncertainties, including the thermal-expansion coefficient.

  20. Solar thermal technologies benefits assessment: Objectives, methodologies and results for 1981

    NASA Technical Reports Server (NTRS)

    Gates, W. R.

    1982-01-01

    The economic and social benefits of developing cost competitive solar thermal technologies (STT) were assessed. The analysis was restricted to STT in electric applications for 16 high insolation/high energy price states. Three fuel price scenarios and three 1990 STT system costs were considered, reflecting uncertainty over fuel prices and STT cost projections. After considering the numerous benefits of introducing STT into the energy market, three primary benefits were identified and evaluated: (1) direct energy cost savings were estimated to range from zero to $50 billion; (2) oil imports may be reduced by up to 9 percent, improving national security; and (3) significant environmental benefits can be realized in air basins where electric power plant emissions create substantial air pollution problems. STT research and development was found to be unacceptably risky for private industry in the absence of federal support. The normal risks associated with investments in research and development are accentuated because the OPEC cartel can artificially manipulate oil prices and undercut the growth of alternative energy sources.

  1. Health Monitoring Technology for Thermal Protection Systems on Reusable Hypersonic Vehicles

    NASA Technical Reports Server (NTRS)

    Milos, Frank S.; Watters, D. G.; Heinemann, J. M.; Karunaratne, K. S.; Arnold, Jim (Technical Monitor)

    2001-01-01

    Integrated subsystem health diagnostics is an area where major improvements have been identified for potential implementation into the design of new reusable launch vehicles (RLVs) in order to reduce life cycle costs, to increase safety margins, and to improve mission reliability. This talk summarizes a joint effort between NASA Ames and industry partners to develop rapid non-contact diagnostic tools for health and performance monitoring of thermal protection systems (TPS) on future RLVs. The specific goals for TPS health monitoring are to increase the speed and reliability of TPS inspections for improved operability at lower cost. The technology being developed includes a 3-D laser scanner for examining the exterior surface of the TPS, and a subsurface microsensor suite for monitoring the health and performance of the TPS. The sensor suite consists of passive overlimit sensors and sensors for continuous parameter monitoring in flight. The sensors are integrated with radio-frequency identification (RFID) microchips to enable wireless communication of-the sensor data to an external reader that may be a hand-held scanner or a large portal. Prototypes of the laser system and both types of subsurface sensors have been developed. The laser scanner was tested on Shuttle Orbiter Columbia and was able to dimension surface chips and holes on a variety of TPS materials. The temperature-overlimit microsensor has a diameter under 0.05 inch (suitable for placement in gaps between ceramic TPS tiles) and can withstand 700 F for 15 minutes.

  2. Technology development plan: Geotechnical survey systems for OTEC (Ocean Thermal Energy Conversion) cold water pipes

    NASA Astrophysics Data System (ADS)

    Valent, Philip J.; Riggins, Michael

    1989-04-01

    An overview is given of current and developing technologies and techniques for performing geotechnical investigations for siting and designing Cold Water Pipes (CWP) for shelf-resting Ocean Thermal Energy Conversion (OTEC) power plants. The geotechnical in situ tools used to measure the required parameters and the equipment/systems used to deploy these tools are identified. The capabilities of these geotechnical tools and deployment systems are compared to the data requirements for the CWP foundation/anchor design, and shortfalls are identified. For the last phase of geotechnical data gathering for design, a drillship will be required to perform soil boring work, to obtain required high quality sediment samples for laboratory dynamic testing, and to perform deep penetration in situ tests. To remedy shortfalls and to reduce the future OTEC CWP geotechnical survey costs, it is recommended that a seafloor resting machine be developed to advance the friction cone penetrometer, and also probably a pressuremeter, to provide geotechnical parameters to shallow subseafloor penetrations on slopes of 35 deg and in water depths to 1300 m.

  3. Metallic Thermal Protection System Technology Development: Concepts, Requirements and Assessment Overview

    NASA Technical Reports Server (NTRS)

    Dorsey, John T.; Poteet, Carl C.; Chen, Roger R.; Wurster, Kathryn E.

    2002-01-01

    A technology development program was conducted to evolve an earlier metallic thermal protection system (TPS) panel design, with the goals of: improving operations features, increasing adaptability (ease of attaching to a variety of tank shapes and structural concepts), and reducing weight. The resulting Adaptable Robust Metallic Operable Reusable (ARMOR) TPS system incorporates a high degree of design flexibility (allowing weight and operability to be traded and balanced) and can also be easily integrated with a large variety of tank shapes, airframe structural arrangements and airframe structure/material concepts. An initial attempt has been made to establish a set of performance based TPS design requirements. A set of general (FARtype) requirements have been proposed, focusing on defining categories that must be included for a comprehensive design. Load cases required for TPS design must reflect the full flight envelope, including a comprehensive set of limit loads, However, including additional loads. such as ascent abort trajectories, as ultimate load cases, and on-orbit debris/micro-meteoroid hypervelocity impact, as one of the discrete -source -damage load cases, will have a significant impact on system design and resulting performance, reliability and operability. Although these load cases have not been established, they are of paramount importance for reusable vehicles, and until properly included, all sizing results and assessments of reliability and operability must be considered optimistic at a minimum.

  4. Simulating the thermal operating conditions in the thermal wells of ground-source heat-pump heat supply systems. Part II: Consideration of porous moisture phase transitions in soil

    NASA Astrophysics Data System (ADS)

    Vasilyev, G. P.; Peskov, N. V.; Lichman, V. A.; Gornov, V. F.; Kolesova, M. V.

    2015-10-01

    The mathematical model describing unsteady thermal operating conditions of ground-source heat-pump (GSHP) heat supply systems that takes into account porous moisture condensation/evaporation processes and that is laid down in the basis of the corresponding block of the INSOLAR.GSHP.12 software system is considered. The results of numerical and laboratory experiments confirming that the GSHP performance efficiency depends essentially on the phase transition processes of moisture contained in the soil strata porous space are presented. The problem of correctly taking into account the heat of porous moisture condensation/evaporation phenomena in simulating the thermal processes occurring in the soil strata surrounding GSHP thermal wells is considered. A mathematical description of porous moisture condensation/evaporation processes for a vertical thermal well in the cylindrical coordinate system is given. A numerical experiment on estimating the effect the porous moisture condensation/evaporation processes have on the soil thermal conditions was carried out after the mathematical model had been implemented in a software block. The presented results obtained from the performed numerical experiment show that the temperature levels of soil adjacent to the thermal well determined with and without taking the heat of porous moisture condensation processes may differ from each other by more than 3°C. The results from experimentally approbating the application of a so-called effective soil thermal conductivity coefficient that takes into account the latent heat of porous moisture phase transitions in soil in modeling the GSHP thermal operating conditions are presented. The results of the performed experiments show that porous moisture phase transitions may have a very significant influence on the effective thermal conductivity of soil. The effective thermal conductivity values of soil may differ from each other by several times depending on the soil system operating conditions.

  5. Exploring thermal and mechanical properties of selected transition elements under extreme conditions: Experiments at high pressures and high temperatures

    NASA Astrophysics Data System (ADS)

    Hrubiak, Rostislav

    Transition metals (Ti, Zr, Hf, Mo, W, V, Nb, Ta, Pd, Pt, Cu, Ag, and Au) are essential building units of many materials and have important industrial applications. Therefore, it is important to understand their thermal and physical behavior when they are subjected to extreme conditions of pressure and temperature. This dissertation presents: • An improved experimental technique to use lasers for the measurement of thermal conductivity of materials under conditions of very high pressure (P, up to 50 GPa) and temperature (T up to 2500 K). • An experimental study of the phase relationship and physical properties of selected transition metals, which revealed new and unexpected physical effects of thermal conductivity in Zr, and Hf under high P-T.. • New phase diagrams created for Hf, Ti and Zr from experimental data. • P-T dependence of the lattice parameters in ?-hafnium. Contrary to prior reports, the ?-? phase transition in hafnium has a negative dT/dP slope. • New data on thermodynamic and physical properties of several transition metals and their respective high P-T phase diagrams. • First complete thermodynamic database for solid phases of 13 common transition metals was created. This database has: All the thermochemical data on these elements in their standard state (mostly available and compiled); All the equations of state (EoS) formulated from pressure-volume-temperature data (measured as a part of this study and from literature); Complete thermodynamic data for selected elements from standard to extreme conditions. The thermodynamic database provided by this study can be used with available thermodynamic software to calculate all thermophysical properties and phase diagrams at high P-T conditions. For readers who do not have access to this software, tabulated values of all thermodynamic and volume data for the 13 metals at high P-T are included in the APPENDIX. In the APPENDIX, a description of several other high-pressure studies of selected oxide systems is also included. Thermophysical properties (Cp, H, S, G) of the high P-T ?-phase of Ti, Zr and Hf were determined during the optimization of the EoS parameters and are presented in this study for the first time. These results should have important implications in understanding hexagonal-close-packed to simple-hexagonal phase transitions in transition metals and other materials.

  6. Effects of buoyancy-driven flow and thermal boundary conditions on physical vapor transport

    NASA Technical Reports Server (NTRS)

    Nadarajah, Arunan; Rosenberger, Franz; Alexander, J. I. D.

    1992-01-01

    A 2D numerical model was developed in order to ascertain if reduced gravity conditions are beneficial to physical vapor transport (PVT) and to determine its tolerance limits to residual accelerations. This was solved using the PHOENICS finite-volume code. Reduction of gravitational accelerations to less than 0.1 g0 was found to be sufficient to suppress buoyancy-driven convection to an extent that diffusion was the dominant transport mode, whence a greater uniformity in the growth rate could be obtained. It is shown that a uniform temperature gradient on the ampoule walls causes the vapor to be supersaturated throughout the ampoule, potentially resulting in undesirable nucleation at the walls. A 'hump' in the wall temperature profile can be used to avoid this. The prevailing transport conditions determine the size of the hump needed.

  7. Journal of Materials Processing Technology 181 (2007) 206212 Experimental measurements of the effective thermal conductivity

    E-print Network

    Abdou, Mohamed

    2007-01-01

    of the effective thermal conductivity of a lithium titanate (Li2TiO3) pebbles-packed bed Ali Abou-Sena, Alice Ying of the fusion blanket. Specifically, the effective thermal conductivity of lithium ceramic pebble beds to conduct the required measurements. The objective of this study is to measure the effective thermal

  8. Nuclear Thermal Propulsion (NTP): A Proven Growth Technology for Human NEO/Mars Exploration Missions

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.

    2012-01-01

    The nuclear thermal rocket (NTR) represents the next "evolutionary step" in high performance rocket propulsion. Unlike conventional chemical rockets that produce their energy through combustion, the NTR derives its energy from fission of Uranium-235 atoms contained within fuel elements that comprise the engine s reactor core. Using an "expander" cycle for turbopump drive power, hydrogen propellant is raised to a high pressure and pumped through coolant channels in the fuel elements where it is superheated then expanded out a supersonic nozzle to generate high thrust. By using hydrogen for both the reactor coolant and propellant, the NTR can achieve specific impulse (Isp) values of 900 seconds (s) or more - twice that of today s best chemical rockets. From 1955 - 1972, twenty rocket reactors were designed, built and ground tested in the Rover and NERVA (Nuclear Engine for Rocket Vehicle Applications) programs. These programs demonstrated: (1) high temperature carbide-based nuclear fuels; (2) a wide range of thrust levels; (3) sustained engine operation; (4) accumulated lifetime at full power; and (5) restart capability - all the requirements needed for a human Mars mission. Ceramic metal "cermet" fuel was pursued as well, as a backup option. The NTR also has significant "evolution and growth" capability. Configured as a "bimodal" system, it can generate its own electrical power to support spacecraft operational needs. Adding an oxygen "afterburner" nozzle introduces a variable thrust and Isp capability and allows bipropellant operation. In NASA s recent Mars Design Reference Architecture (DRA) 5.0 study, the NTR was selected as the preferred propulsion option because of its proven technology, higher performance, lower launch mass, versatile vehicle design, simple assembly, and growth potential. In contrast to other advanced propulsion options, no large technology scale-ups are required for NTP either. In fact, the smallest engine tested during the Rover program - the 25,000 lbf (25 klbf) "Pewee" engine is sufficient when used in a clustered engine arrangement. The "Copernicus" crewed spacecraft design developed in DRA 5.0 has significant capability and a human exploration strategy is outlined here that uses Copernicus and its key components for precursor near Earth object (NEO) and Mars orbital missions prior to a Mars landing mission. The paper also discusses NASA s current activities and future plans for NTP development that include system-level Technology Demonstrations - specifically ground testing a small, scalable NTR by 2020, with a flight test shortly thereafter.

  9. Assessment of the thermal-hydraulic technology of the transition phase of a core-disruptive accident in a LMFBR

    SciTech Connect

    Greene, G.A.; Ginsberg, T.; Kazimi, M.S.

    1982-11-01

    The technology of thermal hydraulic aspects of the transition phase accident sequence in liquid metal fast breeder reactors has been reviewed. Previous analyses of the transition phase accident sequence have been reviewed and the current understanding of major thermal hydraulic phenomenology has been assessed. As a result of the foregoing, together with a scoping analysis of the transition phase accident sequence, major transition phase issues have been defined and research needs have been identified. The major conclusion of transition phase scoping analysis is that fuel dispersal cannot be relied upon to rule out the possibility of recriticalities during this stage of the accident.

  10. Cultural repertoires and food-related household technology within colonia households under conditions of material hardship

    PubMed Central

    2012-01-01

    Introduction Mexican-origin women in the U.S. living in colonias (new-destination Mexican-immigrant communities) along the Texas-Mexico border suffer from a high incidence of food insecurity and diet-related chronic disease. Understanding environmental factors that influence food-related behaviors among this population will be important to improving the well-being of colonia households. This article focuses on cultural repertoires that enable food choice and the everyday uses of technology in food-related practice by Mexican-immigrant women in colonia households under conditions of material hardship. Findings are presented within a conceptual framework informed by concepts drawn from sociological accounts of technology, food choice, culture, and material hardship. Methods Field notes were provided by teams of promotora-researchers (indigenous community health workers) and public-health professionals trained as participant observers. They conducted observations on three separate occasions (two half-days during the week and one weekend day) within eight family residences located in colonias near the towns of Alton and San Carlos, Texas. English observations were coded inductively and early observations stressed the importance of technology and material hardship in food-related behavior. These observations were further explored and coded using the qualitative data package Atlas.ti. Results Technology included kitchen implements used in standard and adapted configurations and household infrastructure. Residents employed tools across a range of food-related activities identified as forms of food acquisition, storage, preparation, serving, feeding and eating, cleaning, and waste processing. Material hardships included the quality, quantity, acceptability, and uncertainty dimensions of food insecurity, and insufficient consumption of housing, clothing and medical care. Cultural repertoires for coping with material hardship included reliance on inexpensive staple foods and dishes, and conventional and innovative technological practices. These repertoires expressed the creative agency of women colonia residents. Food-related practices were constrained by climate, animal and insect pests, women’s gender roles, limitations in neighborhood and household infrastructure, and economic and material resources. Conclusions This research points to the importance of socioeconomic and structural factors such as gender roles, economic poverty and material hardship as constraints on food choice and food-related behavior. In turn, it emphasizes the innovative practices employed by women residents of colonias to prepare meals under these constraints. PMID:22587790

  11. Deuterium isotopic exchangeability of resin and amber at low thermal stress under hydrous conditions

    NASA Astrophysics Data System (ADS)

    Gonzalez, G.; Tappert, R.; Wolfe, A. P.; Muehlenbachs, K.

    2012-04-01

    Hydrous deuterium-exchange experiments have shown that a significant fraction of the original D/H composition of bulk kerogens, bitumens and expelled oils may participate in isotopic exchange reactions during burial diagenesis. However, it is unknown to what extent plant-derived secondary metabolites, namely resins and their fossil counterpart amber, exchange hydrogen isotopes following their biosynthesis. This situation hinders the application of resin D/H measurements in paleoenvironmental reconstruction. Here, we assess explicitly hydrogen exchange in resins and ambers using a series of immersion experiments in deuterated (D-enriched) waters over a period of several months at several temperatures. We are especially interested in assessing whether significant H-isotopic exchange occurs between resins and meteoric waters during early thermal maturation and polymerization. At 90°C, equivalent to ~3km of burial in most diagenetic regimes, modern conifer and angiosperm resins have an average post-metabolic H exchange of 4.6%, compared to only 1.1% for mature, polymerized ambers. At 55°C the degree of exchange is considerably lower: 1.9% for resins and 0.6% for ambers. These results indicate that most D/H isotopic exchange occurs prior to polymerization reactions, thereby confirming that D/H measurements from amber constitute a potentially sensitive proxy for environmental change.

  12. Assessment of ocean thermal energy conversion

    E-print Network

    Muralidharan, Shylesh

    2012-01-01

    Ocean thermal energy conversion (OTEC) is a promising renewable energy technology to generate electricity and has other applications such as production of freshwater, seawater air-conditioning, marine culture and chilled-soil ...

  13. The optimization of technological condition in the fermentation process of glutamate by pattern recognition method.

    PubMed

    Xu, C; Chen, C; Wang, H; Sun, J

    1994-01-01

    The technological condition in the fermentation process of fermentation glutamate (such as pH value, temperature, ventilation rate, etc.) were optimized by computerized pattern recognition method. The visible optimum region may be found based on the mapping from the multi-dimensional pattern space into a plane. It is then transformed along the reciprocal direction into the original data space using Monte Carlo simulation, so the orientation of optimization and the best combination of all parameters can be determined. A new mathematical model is being proposed based on the experimental evidence in production. The transfer ratio of glucose to glutamic acid, the production capacity and the glutamic acid concentration increase 2.9%, 1.45% and 2.65% respectively by operating this optimization method. The method has been widely extended to factories and has granted in decreasing the expense of raw materials and that of the production cost. PMID:7803686

  14. Introduction Analysis of Refrigerating and Air-Conditioning Technologies in Micro Grid Type Food Industrial Park

    NASA Astrophysics Data System (ADS)

    Shimazaki, Yoichi

    The aim of this study was to evaluate the refrigerating and air-conditioning technologies in cases of introducing both cogeneration system and energy network in food industrial park. The energy data of 14 factories were classified into steam, hot water, heating, cooling, refrigerating, freezing and electric power by interviews. The author developed a micro grid model based on linear programming so as to minimize the total system costs. The industrial park was divided into the 2,500 square meter mesh in order to take steam transport into consideration. Four cases were investigated. It was found that the electric power driven freezer was introduced compared with the ammonia absorption freezer. The ammonia absorption freezer was introduced in the factory that there is a little steam demand and large freezing demand at the same time.

  15. Japanese power electronics inverter technology and its impact on the American air conditioning industry

    SciTech Connect

    Ushimaru, Kenji.

    1990-08-01

    Since 1983, technological advances and market growth of inverter- driven variable-speed heat pumps in Japan have been dramatic. The high level of market penetration was promoted by a combination of political, economic, and trade policies in Japan. A unique environment was created in which the leading domestic industries-- microprocessor manufacturing, compressors for air conditioning and refrigerators, and power electronic devices--were able to direct the development and market success of inverter-driven heat pumps. As a result, leading US variable-speed heat pump manufacturers should expect a challenge from the Japanese producers of power devices and microprocessors. Because of the vertically-integrated production structure in Japan, in contrast to the out-sourcing culture of the United States, price competition at the component level (such as inverters, sensors, and controls) may impact the structure of the industry more severely than final product sales. 54 refs., 47 figs., 1 tab.

  16. Clutter sensitivity test under controlled field conditions Resonant Microstrip Patch Antenna (RMPA) sensor technology

    SciTech Connect

    1996-06-27

    Theoretical research, controlled laboratory tests, and these field test results show that nonmetallic (and metallic) shallowly buried objects can be detected and imaged with the Resonant Microstrip Patch Antenna (RMPA) sensor. The sensor can be modeled as a high Q cavity which capitalizes on its resonant condition sensitivity to scattered waves from buried objects. When the RMPA sensor is swept over a shallowly buried object, the RMPA fed-point impedance (resistance), measured with a Maxwell bridge, changes by tens of percent. The significant change in unprocessed impedance data can be presented in two-dimensional and three-dimensional graphical displays over the survey area. This forms silhouette images of the objects without the application of computationally intensive data processing algorithms. Because RMPA employed electromagnetic waves to illuminate the shallowly buried object, a number of questions and issues arise in the decision to fund or deny funding of the reconfiguration of the RMPA technology into a nonmetallic (metallic) land mine detector.

  17. The P-T conditions of garnet inclusion formation in diamond: thermal expansion of synthetic end-member pyrope

    NASA Astrophysics Data System (ADS)

    Milani, Sula; Mazzucchelli, Matteo; Nestola, Fabrizio; Alvaro, Matteo; Angel, Ross J.; Geiger, Charles A.; Domeneghetti, Chiara

    2013-04-01

    Pyrope, Mg3Al2Si3O12, due to the abundance of garnet in Earths's upper mantle, has been studied many times. A number of different investigations have measured its physical and thermodynamic properties at high temperature or pressure and, even more recently, under simultaneous high P-T conditions (e.g. Zou et al., 2012). This abstract reports thermal expansion results on pyrope, as part of a much wider project on the determination of the physical properties of garnet, in order to obtain geobarometric information on the formation conditions of its inclusion in diamond. Our experimental approach is based on the elastic method (e.g. Izraeli et al., 1999; Howell et al., 2010; Nestola et al., 2011; Howell et al., 2012), which takes into account the thermoelastic properties of both diamond and any tiny solid phase inclusion within it. The method requires accurate and precise knowledge of thermal expansion and compressibility behavior in order to calculate precisely the pressure and temperature formation conditions of the diamond-inclusion pair. Thus, in order to do this, we measured the thermal expansion of an end-member synthetic single crystal of pyrope up to 1100 K at 52 different temperatures. This was done by measuring the ao unit-cell edge with high precision and accuracy under heating and cooling conditions. This allows excellent experimental reproducibility, which is also checked by monitoring any diffraction peak broadening over the entire range of temperatures. Fitting the temperature-volume data to the thermal expansion equation of Berman (1988), we obtained a room temperature volume-thermal expansion coefficient equal to 2.72(2)×10-5K-1. Using the same pyrope crystal, in situ high-pressure measurements are now in progress in order to determine its isothermal bulk modulus. The use of our results, along with the dK/dT data of Zou et al ( 2012), we plan to calculate the pressure of formation of diamonds containing pyrope-rich garnet inclusions. References Berman, R.G. (1988) J. Petrol., 29, 445-522. Zou Y., Irifune T., Greaux S., Whitaker M.L., Ohfuji H., Shinmei T., Higo Y., Baosheng L. (2012) Abstract n° MR43C-2333, AGU FALL MEETING 2012. Howell, D., Wood, I.G., Dobson, D.P., Jones, A.P., Nasdala, L., Harris, J.W. (2010) Contrib. Mineral. Petrol., 160, 705-717. Howell, D., Wood, I.G., Nestola, F., Nimis, P., Nasdala, L. (2012) Eur. J. Mineral., ,. Izraeli, E.S., Harris, J.W., Navon, O. (1999) Earth Planet Sci. Lett., 173, 351-360. Nestola, F., Nimis, P., Ziberna, L., Longo, M., Marzoli, A., Harris, J.W., Manghnani, M.H., Fedortchouk, Y. (2011) Earth Plan. Sc. Lett., 305, 249-255.

  18. Ajax, XSLT and SVG: Displaying ATLAS conditions data with new web technologies

    NASA Astrophysics Data System (ADS)

    Roe, S. A.; ATLAS Collaboration

    2010-04-01

    The combination of three relatively recent technologies is described which allows an easy path from database retrieval to interactive web display. SQL queries on an Oracle database can be performed in a manner which directly return an XML description of the result, and Ajax techniques (Asynchronous JavaScript And XML) are used to dynamically inject the data into a web display accompanied by an XSLT transform template which determines how the data will be formatted. By tuning the transform to generate SVG (Scalable Vector Graphics) a direct graphical representation can be produced in the web page while retaining the database data as the XML source, allowing dynamic links to be generated in the web representation, but programmatic use of the data when used from a user application. With the release of the SVG 1.2 Tiny draft specification, the display can also be tailored for display on mobile devices. The technologies are described and a sample application demonstrated, showing conditions data from the ATLAS Semiconductor Tracker.

  19. Conceptual Model of Hydrologic and Thermal Conditions of the Eastbank Aquifer System near Rocky Reach Dam, Douglas County, Washington

    USGS Publications Warehouse

    van Heeswijk, Marijke; Cox, Stephen E.; Huffman, Raegan L.; Curran, Christopher A.

    2008-01-01

    The Lower and Combined Aquifers of the Eastbank Aquifer system, located in a river-terrace deposit along the Columbia River near Rocky Reach Dam, Washington, are primarily recharged by the Columbia River and provide water to the Eastbank Hatchery and the regional water system servicing the cities of Wenatchee, East Wenatchee, and parts of unincorporated Chelan and Douglas Counties. In 2006, mean annual pumpage from the aquifers by the hatchery and regional water system was about 43 and 16 cubic feet per second, respectively. Reportedly, temperatures of ground water pumped by the hatchery have been increasing, thereby making water potentially too warm for salmonid fish production. An evaluation of hourly ground-water and river temperatures from January 1991 through August 2007 indicates increasing interannual trends in temperatures in most of the Lower and Combined Aquifers from 1999 through 2006 that correspond to increasing trends in the annual mean and annual maximum river temperatures during the same period of 0.07 and 0.17?C per year, respectively. There were no trends in the annual minimum river temperatures from 1999 through 2006, and there were no trends in the annual minimum, mean, and maximum river temperatures from 1991 through 1998 and from 1991 through 2007. Increases in river temperatures from 1999 through 2006 are within the natural variability of the river temperatures. Most of the Lower and Combined Aquifers reached thermal equilibrium?defined by constant time lags between changes in river temperatures and subsequent changes in ground-water temperatures?during 1991?98. The only exceptions are the Combined Aquifer north of the well field of the regional water system, which had not reached thermal equilibrium by 2006, and the Lower Aquifer west of the well fields of the hatchery and the regional water system, which reached thermal equilibrium prior to 1991. Because most of the Lower and Combined Aquifers were in thermal equilibrium from 1999 through 2006 and seasonal pumpage patterns were relatively stable, reported trends of increasing temperatures of water pumped by the hatchery well field are most likely explained by increasing trends in river temperatures. Most of the water pumped by the hatchery well field recharges in an area west to southwest of the well field about 2 months prior to the time it is pumped from the aquifer. The northern extent of the hatchery well field may pump some colder water from a bedrock depression to the north and west of the well field. The conceptual model of hydrologic and thermal conditions is supported by analyses of historical water temperatures, water-level data collected on July 18, 2007, and dissolved-constituent and bacterial concentrations in samples collected on August 20?22, 2007.

  20. Study of aerosol radiative properties under different relative humidity conditions in the thermal infrared region

    NASA Astrophysics Data System (ADS)

    Kuo, C. P.; Yang, P.; Nasiri, S. L.; Liu, X.

    2014-12-01

    In the aerosol transport process, the optical properties of aerosol particles can vary due to humidification or mixing with other kinds of aerosols. Previous studies have shown mixing dust with other types of aerosol tends to make the aerosol more spectrally absorptive, but the degree of impact of relative humidity (RH) along the transport path is not clear. To investigate this effect, we conduct a numerical study to estimate the radiative sensitivity of aerosols under various relative humidity conditions. Specifically, the OPAC (Optical Properties of Aerosols and Clouds) database is used, which provides the optical properties (i.e., the extinction, scattering and absorption coefficient, single-scattering albedo, asymmetry factor and phase function) of ten types of aerosols under various relative humidity conditions. Lookup tables (LUTs) of the bidirectional reflectivity, transmissivity and effective emissivity will be computed for the ten aerosol types for input to the high-spectral-resolution radiative transfer model (HRTM). Using these LUTs, the HTRM can calculate top-of-atmospheric brightness temperatures, which we can use to determine the degree of radiative sensitivity in the infrared spectral region. Furthermore, comparisons between simulations and MODIS observations will be presented.

  1. Protozoa and metazoa relations to technological conditions of non-woven textile filters for wastewater treatment.

    PubMed

    Spycha?a, Marcin; Sowi?ska, Aleksandra; Starzyk, Justyna; Mas?owski, Adam

    2015-01-01

    The objective of this study was a preliminary identification of basic groups of micro-organisms in the cross-sectional profile of geotextile filters for septic tank effluent (STE) treatment and their relations to technological conditions. Reactors with textile filters treating wastewater were investigated on a semi-technical scale. Filters were vertically situated and STE was filtered through them under hydrostatic pressure at a wastewater surface height of 7-20?cm. Filters were made of four layers of non-woven TS 20 geotextile of 0.9?mm thickness. Various groups of organisms were observed; the most abundant group comprised free-swimming and crawling ciliates, less abundant were stalked ciliates and the least numerous were nematodes. The individual counts of all groups of micro-organisms investigated during the study were variable according to time and space. The high abundance of Opercularia, a commonly observed genus of stalked ciliates, was related to the high efficiency of wastewater treatment and dissolved oxygen concentration of about 1.0?g/m3. Numbers of free-swimming and crawling ciliates had a tendency to decrease in relation to the depth of filter cross-sectional profile. The variability in counts of particular groups of organisms could be related to the local stress conditions. No correlation between identified organism count and total mass concentration in the cross-sectional filter profile was found. PMID:25704123

  2. A Modeling Study Evaluating the Thermal-Hydrological Conditions In and Near Waste Emplacement Tunnels At Yucca Mountain

    SciTech Connect

    J.T. Birkholzer; N. Halecky; S.W> Webb; P.F. Peterson; G.S. Bodvarsson

    2006-10-11

    In heated tunnels such as those designated for emplacement of radioactive waste at the proposed geologic repository at Yucca Mountain, temperature gradients cause natural convection processes that may significantly influence the moisture conditions in the tunnels and in the surrounding fractured rock. Large-scale convection cells in the heated tunnels would provide an effective mechanism for turbulent mixing and axial transport of vapor generated from evaporation of pore water in the nearby formation. As a result, vapor would be transported from the elevated-temperature sections of the tunnels into cool end sections (where no waste is emplaced), would condense there, and subsequently drain into underlying rock units. To study these processes, we have developed a new simulation method that couples existing tools for simulating thermal-hydrological (TH) conditions in the fractured formation with a module that approximates turbulent natural convection in heated emplacement drifts. The new method simultaneously handles (1) the flow and energy transport processes in the fractured rock, (2) the flow and energy transport processes in the cavity, and (3) the heat and mass exchange at the rock-cavity interface. An application is presented studying the future TH conditions within and near a representative waste emplacement tunnel at Yucca Mountain. Particular focus is on the potential for condensation along the emplacement section, a possible result of heat output differences between individual waste packages.

  3. A Conceptual Design Study on the Application of Liquid Metal Heat Transfer Technology to the Solar Thermal Power Plant

    NASA Technical Reports Server (NTRS)

    Zimmerman, W. F.; Robertson, C. S.; Ehde, C. L.; Divakaruni, S. M.; Stacy, L. E.

    1979-01-01

    Alkali metal heat transfer technology was used in the development of conceptual designs for the transport and storage of sensible and latent heat thermal energy in distributed concentrator, solar Stirling power conversion systems at a power level of 15 kWe per unit. Both liquid metal pumped loop and heat pipe thermal transport were considered; system configurations included: (1) an integrated, focal mounted sodium heat pipe solar receiver (HPSR) with latent heat thermal energy storage; (2) a liquid sodium pumped loop with the latent heat storage, Stirling engine-generator, pump and valves located on the back side of the concentrator; and (3) similar pumped loops serving several concentrators with more centralized power conversion and storage. The focus mounted HPSR was most efficient, lightest and lowest in estimated cost. Design confirmation testing indicated satisfactory performance at all angles of inclination of the primary heat pipes to be used in the solar receiver.

  4. Leptin Signaling Is Required for Adaptive Changes in Food Intake, but Not Energy Expenditure, in Response to Different Thermal Conditions

    PubMed Central

    Kaiyala, Karl J.; Ogimoto, Kayoko; Nelson, Jarrell T.; Schwartz, Michael W.; Morton, Gregory J.

    2015-01-01

    Survival of free-living animals depends on the ability to maintain core body temperature in the face of rapid and dramatic changes in their thermal environment. If food intake is not adjusted to meet the changing energy demands associated with changes of ambient temperature, a serious challenge to body energy stores can occur. To more fully understand the coupling of thermoregulation to energy homeostasis in normal animals and to investigate the role of the adipose hormone leptin to this process, comprehensive measures of energy homeostasis and core temperature were obtained in leptin-deficient ob/ob mice and their wild-type (WT) littermate controls when housed under cool (14°C), usual (22°C) or ? thermoneutral (30°C) conditions. Our findings extend previous evidence that WT mice robustly defend normothermia in response to either a lowering (14°C) or an increase (30°C) of ambient temperature without changes in body weight or body composition. In contrast, leptin-deficient, ob/ob mice fail to defend normothermia at ambient temperatures lower than thermoneutrality and exhibit marked losses of both body fat and lean mass when exposed to cooler environments (14°C). Our findings further demonstrate a strong inverse relationship between ambient temperature and energy expenditure in WT mice, a relationship that is preserved in ob/ob mice. However, thermal conductance analysis indicates defective heat retention in ob/ob mice, irrespective of temperature. While a negative relationship between ambient temperature and energy intake also exists in WT mice, this relationship is disrupted in ob/ob mice. Thus, to meet the thermoregulatory demands of different ambient temperatures, leptin signaling is required for adaptive changes in both energy intake and thermal conductance. A better understanding of the mechanisms coupling thermoregulation to energy homeostasis may lead to the development of new approaches for the treatment of obesity. PMID:25756181

  5. Final report from VFL technologies for the pilot-scale thermal treatment of Lower East Fork Poplar Creek floodplain soils

    SciTech Connect

    1994-09-01

    The Lower East Fork Poplar Creek (LEFPC) extends fourteen (14) miles through Oak Ridge, TN. The Creek sediments and surrounding floodplain soils are contaminated with mercury compounds. This project involved a comprehensive pilot demonstration on thermal desorption of these soils to validate the feasibility of the remedial technology which had been identified in previous studies. Thermal desorption is a technology that utilizes heating or drying of soils to induce volatilization of contaminants. These contaminants are then vaporized and either incinerated or condensed in the second stage of desorption. Mercury (Hg), which was the principal contaminate of concern, was collected by condensers in a vapor collection system. This type of system insured that the toxic mercury vapors did not escape to the atmosphere.

  6. Conformal Ablative Thermal Protection System for Planetary and Human Exploration Missions:An Overview of the Technology Maturation Effort

    NASA Technical Reports Server (NTRS)

    Beck, Robin A S.; Arnold, James O.; Gasch, Matthew J.; Stackpoole, Margaret M.; Prabhu, Dinesh K.; Szalai, Christine E.; Wercinski, Paul F.; Venkatapathy, Ethiraj

    2013-01-01

    The Office of Chief Technologist, NASA identified the need for research and technology development in part from NASAs Strategic Goal 3.3 of the NASA Strategic Plan to develop and demonstrate the critical technologies that will make NASAs exploration, science, and discovery missions more affordable and more capable. Furthermore, the Game Changing Development Program is a primary avenue to achieve the Agencys 2011 strategic goal to Create the innovative new space technologies for our exploration, science, and economic future. The National Research Council (NRC) Space Technology Roadmaps and Priorities report highlights six challenges and they are: Mass to Surface, Surface Access, Precision Landing, Surface Hazard Detection and Avoidance, Safety and Mission Assurance, and Affordability. In order for NASA to meet these challenges, the report recommends immediate focus on Rigid and Flexible Thermal Protection Systems. Rigid TPS systems such as Avcoat or SLA are honeycomb based and PICA is in the form of tiles. The honeycomb systems are manufactured using techniques that require filling of each (38 cell) by hand, and in a limited amount of time all of the cells must be filled and the heatshield must be cured. The tile systems such as PICA pose a different challenge as the low strain-to-failure and manufacturing size limitations require large number of small tiles with gap-fillers between the tiles. Recent investments in flexible ablative systems have given rise to the potential for conformal ablative TPS. A conformal TPS over a rigid aeroshell has the potential to solve a number of challenges faced by traditional rigid TPS materials. The high strain-to-failure nature of the conformal ablative materials will allow integration of the TPS with the underlying aeroshell structure much easier and enable monolithic-like configuration and larger segments (or parts) to be used. By reducing the overall part count, the cost of installation (based on cost comparisons between blanket and tile materials on shuttle) should be significantly reduced. The conformal ablator design will include a simplified design of seams between gore panels, which should eliminate the need for gap filler design, and should accommodate a wider range of allowable carrier structure imperfections when compared to a rigid material such as PICA.The Conformal TPS development project leverages the past investments made by earlier projects with a goal to develop and deliver a TRL 5 conformal TPS capable of 250 Wcm2 for missions such as MSL or COTS missions. The capabilities goal for the conformal TPS is similar to an MSL design reference mission (250 Wcm2) with matching pressures and shear environments. Both conformal and flexible carbon-felt based materials were successfully tested in stagnation aerothermal environments above 500 Wcm2 under earlier programs. Results on a myriad of materials developed during FY11 were used to determine which materials to start with in FY12. In FY12, the conformal TPS element focused on establishing materials requirements based on MSL-type and COTS Low Earth orbit (LEO) conditions (q 250 Wcm2) to develop and deliver a Conformal Ablative TPS. In FY13, development and refining metrics for mission utilization of conformal ablator technology along with assessment for potential mission stakeholders will be carried out.

  7. Solvated Electron Technology{sup TM}. Non-Thermal Alternative to Waste Incineration

    SciTech Connect

    Foutz, W.L.; Rogers, J.E.; Mather, J.D.

    2008-07-01

    Solvated Electron Technology (SET{sup TM}) is a patented non-thermal alternative to incineration for treating Toxic Substances Control Act (TSCA) and other mixed waste by destroying organic hazardous components. SET{sup TM} is a treatment process that destroys the hazardous components in mixed waste by chemical reduction. The residual material meets land disposal restriction (LDR) and TSCA requirements for disposal. In application, contaminated materials are placed into a treatment cell and mixed with the solvated electron solution. In the case of PCBs or other halogenated contaminants, chemical reactions strip the halogen ions from the chain or aromatic ring producing sodium chloride and high molecular weight hydrocarbons. At the end of the reaction, ammonia within the treatment cell is removed and recycled. The reaction products (such as sodium salts) produced in the process remain with the matrix. The SET{sup TM} process is 99.999% effective in destroying: polychlorinated biphenyls (PCBs); trichloroethane (TCA) and trichloroethene (TCE); dioxins; polycyclic aromatic hydrocarbons (PAHs); benzene, toluene, xylene (BTX); pesticides; fungicides; herbicides; chlorofluorocarbons (CFCs); hydro-chlorofluorocarbons (HCFCs), explosives and chemical-warfare agents; and has successfully destroyed many of the wastes listed in 40 Code of Federal Regulations (CFR) 261. In September 2007, U.S. Environmental Protection Agency (EPA) issued a Research and Development permit for SET for chemical destruction of 'pure' Pyranol, which is 60% PCBs. These tests were completed in November 2007. SET{sup TM} is recognized by EPA as a non-thermal process equivalent to incineration and three SET{sup TM} systems have been permitted by EPA as commercial mobile PCB destruction units. This paper describes in detail the results of select bench-, pilot-, and commercial-scale treatment of hazardous and mixed wastes for EPA, Department of Energy (DOE), and the Department of Defense(DoD), and the applicability of SET{sup TM} to currently problematic waste streams that have very limited treatment alternatives. In summary: SET{sup TM} operates as a non-thermal destruction process under low pressure. The process occurs in a closed system producing no hazardous off-gases and no regulated by-products such as dioxins or furans or their precursors. Advantages of SET{sup TM} include: - Organic contaminants are destroyed, not just removed, diluted or concentrated. - Operates as a closed system - produces no regulated secondary wastes. - Holds an EPA permit for PCB destruction. - Operates at ambient temperatures (70 deg. F). - Portable and sets up quickly in less than 4000 square feet of space. - Scalable to accommodate any size waste stream. - Requires minimal amounts of power, water and infrastructure. - Applicable to heterogeneous waste streams in all phases. The SET{sup TM} process is 99.9999% effective in destroying organic constituents of RCRA and TSCA waste, explosives and chemical-warfare agents; and has successfully destroyed many of the wastes listed in 40 Code of Federal Regulations (CFR) 261. The residual material meets land disposal restriction (LDR) and TSCA requirements for disposal. In November 2007, Commodore completed a treatability study on Pyranol to determine the effectiveness of SET{sup TM} treatment on oil containing 600,000 PPM PCBs. Laboratory results proved destruction of PCBs to less than 1 PPM at low temperatures and pressures. SET{sup TM} is a proven, safe and cost-effective alternative to incineration for some of the most difficult waste treatment problems that exist today. (authors)

  8. Electrical conductivity of the thermal dusty plasma under the conditions of a hybrid plasma environment simulation facility

    NASA Astrophysics Data System (ADS)

    Zhukhovitskii, Dmitry I.; Petrov, Oleg F.; Hyde, Truell W.; Herdrich, Georg; Laufer, Rene; Dropmann, Michael; Matthews, Lorin S.

    2015-05-01

    We discuss the inductively heated plasma generator (IPG) facility in application to the generation of the thermal dusty plasma formed by the positively charged dust particles and the electrons emitted by them. We develop a theoretical model for the calculation of plasma electrical conductivity under typical conditions of the IPG. We show that the electrical conductivity of dusty plasma is defined by collisions with the neutral gas molecules and by the electron number density. The latter is calculated in the approximations of an ideal and strongly coupled particle system and in the regime of weak and strong screening of the particle charge. The maximum attainable electron number density and corresponding maximum plasma electrical conductivity prove to be independent of the particle emissivity. Analysis of available experiments is performed, in particular, of our recent experiment with plasma formed by the combustion products of a propane-air mixture and the CeO2 particles injected into it. A good correlation between the theory and experimental data points to the adequacy of our approach. Our main conclusion is that a level of the electrical conductivity due to the thermal ionization of the dust particles is sufficiently high to compete with that of the potassium-doped plasmas.

  9. On the role of thermal heterogeneities on the rheology of MgO under conditions of the Earth's lower mantle

    NASA Astrophysics Data System (ADS)

    Amodeo, J.; Schuberth, B. S. A.; Bunge, H.-P.; Carrez, Ph.; Cordier, P.

    2015-05-01

    The Earth's mantle is characterised by large thermal heterogeneities associated with hot rising plumes and cold downwelling slabs. These lateral temperature variations in excess of 1000 K may have a crucial influence on the rheology of mantle rocks. Here we use a numerical multiscale model that allows us to make predictions from first principles with no adjustable parameters on the deformation of MgO under the extreme conditions of mantle pressure, temperature and strain rate, in order to investigate the sensitivity of mantle viscosity to the temperature heterogeneities inferred from a global high resolution mantle circulation model. Our results show that under the very low strain rates of the mantle, MgO deforms mostly at low stresses (few tens of MPa) in an athermal regime, where the deformation is insensitive to both temperature and strain rate, leading to a very weak phase throughout much of the upper half of the lower mantle. In its lower half, the weak phase gives way to high material strength with thermally activated viscosities in the cold downwelling slabs, while much of the hot upwelling flow remains in the athermal regime, resulting in large lateral variations in the inferred material strength of MgO. Our results suggest the presence of large lateral viscosity variations in the deepest parts of the lower mantle, associated in particular with the graveyard of old subducted oceanic lithosphere.

  10. Differential Scanning Calorimetry and Evolved Gas Analysis at Mars Ambient Conditions Using the Thermal Evolved Gas Analyser (TEGA)

    NASA Technical Reports Server (NTRS)

    Musselwhite, D. S.; Boynton, W. V.; Ming, D. W.; Quadlander, G.; Kerry, K. E.; Bode, R. C.; Bailey, S. H.; Ward, M. G.; Pathare, A. V.; Lorenz, R. D.

    2000-01-01

    Differential Scanning Calorimetry (DSC) combined with evolved gas analysis (EGA) is a well developed technique for the analysis of a wide variety of sample types with broad application in material and soil sciences. However, the use of the technique for samples under conditions of pressure and temperature as found on other planets is one of current development and cutting edge research. The Thermal Evolved Gas Analyzer (TEGA), which was designed, built and tested at the University of Arizona's Lunar and Planetary Lab (LPL), utilizes DSC/EGA. TEGA, which was sent to Mars on the ill-fated Mars Polar Lander, was to be the first application of DSC/EGA on the surface of Mars as well as the first direct measurement of the volatile-bearing mineralogy in martian soil. Additional information is available in the original extended abstract.

  11. Differential Scanning Calorimetry and Evolved Gas Analysis at Mars Ambient Conditions Using the Thermal Evolved Gas Analyzer (TEGA)

    NASA Technical Reports Server (NTRS)

    Musselwhite, D. S.; Boynton, W. V.; Ming, Douglas W.; Quadlander, G.; Kerry, K. E.; Bode, R. C.; Bailey, S. H.; Ward, M. G.; Pathare, A. V.; Lorenz, R. D.

    2000-01-01

    Differential Scanning Calorimetry (DSC) combined with evolved gas analysis (EGA) is a well developed technique for the analysis of a wide variety of sample types with broad application in material and soil sciences. However, the use of the technique for samples under conditions of pressure and temperature as found on other planets is one of current C development and cutting edge research. The Thermal Evolved Gas Analyzer (MGA), which was designed, built and tested at the University of Arizona's Lunar and Planetary Lab (LPL), utilizes DSC/EGA. TEGA, which was sent to Mars on the ill-fated Mars Polar Lander, was to be the first application of DSC/EGA on the surface of Mars as well as the first direct measurement of the volatile-bearing mineralogy in martian soil.

  12. A Review of Large-Scale Fracture Experiments Relevant to Pressure Vessel Integrity Under Pressurized Thermal Shock Conditions

    SciTech Connect

    Pugh, C.E.

    2001-01-29

    Numerous large-scale fracture experiments have been performed over the past thirty years to advance fracture mechanics methodologies applicable to thick-wall pressure vessels. This report first identifies major factors important to nuclear reactor pressure vessel (RPV) integrity under pressurized thermal shock (PTS) conditions. It then covers 20 key experiments that have contributed to identifying fracture behavior of RPVs and to validating applicable assessment methodologies. The experiments are categorized according to four types of specimens: (1) cylindrical specimens, (2) pressurized vessels, (3) large plate specimens, and (4) thick beam specimens. These experiments were performed in laboratories in six different countries. This report serves as a summary of those experiments, and provides a guide to references for detailed information.

  13. Human Milk Composition and Preservation: Evaluation of High-Pressure Processing as a Non-Thermal Pasteurisation Technology.

    PubMed

    Sousa, Sílvia G; Delgadillo, Ivonne; Saraiva, Jorge A

    2014-10-14

    Human milk is seen not only as a food, but as a functional and dynamic biologic system. It provides nutrients, bioactive components and immune factors, promoting adequate and healthy growth of newborn infants. When mothers cannot supply their children, donated breast milk is the nutrition recommended by the World Health Organization (WHO), as it is a better alternative than infant formula. However, because of the manner in which donor milk is handled in human milk banks (HMB) many of the properties ascribed to mother's own milk are diminished or destroyed. The major process responsible for these losses is Holder pasteurisation. High-pressure processing (HPP) is a novel non-thermal pasteurisation technology that is being increasingly applied in food industries worldwide, primarily as an alternative to thermal treatment. This is due to its capacity to inactivate microorganisms while preserving both nutritional and bioactive components of foods. This review describes human milk composition and preservation, and critically discusses HMB importance and practices, highlighting HPP as a potential non-thermal pasteurisation technology for human milk preservation. HPP technology is described and the few currently existing studies of its effects in human milk are presented. PMID:25313944

  14. Molecular basis of canalization in an ascidian species complex adapted to different thermal conditions

    PubMed Central

    Sato, Atsuko; Kawashima, Takeshi; Fujie, Manabu; Hughes, Samantha; Satoh, Noriyuki; Shimeld, Sebastian M.

    2015-01-01

    Canalization is a result of intrinsic developmental buffering that ensures phenotypic robustness under genetic variation and environmental perturbation. As a consequence, animal phenotypes are remarkably consistent within a species under a wide range of conditions, a property that seems contradictory to evolutionary change. Study of laboratory model species has uncovered several possible canalization mechanisms, however, we still do not understand how the level of buffering is controlled in natural populations. We exploit wild populations of the marine chordate Ciona intestinalis to show that levels of buffering are maternally inherited. Comparative transcriptomics show expression levels of genes encoding canonical chaperones such as Hsp70 and Hsp90 do not correlate with buffering. However the expression of genes encoding endoplasmic reticulum (ER) chaperones does correlate. We also show that ER chaperone genes are widely conserved amongst animals. Contrary to previous beliefs that expression level of Heat Shock Proteins (HSPs) can be used as a measurement of buffering levels, we propose that ER associated chaperones comprise a cellular basis for canalization. ER chaperones have been neglected by the fields of development, evolution and ecology, but their study will enhance understanding of both our evolutionary past and the impact of global environmental change. PMID:26577490

  15. Prefibrillar Formation Conditions of ?-Lactoglobulin by Titration and Chaotropes Urea and KSCN Under Thermal Load

    NASA Astrophysics Data System (ADS)

    Babcock, Jeremiah; Valdez, Rolando; Brancaleon, Lorenzo

    2009-10-01

    The harmful growth of toxic oligomers in the formation of protein amyloid fibrils have been connected to degenerative diseases like Alzheimer's and Huntington's diseases. Understanding the fundamental mechanisms behind protein unfolding and subsequent fibrillogenesis may provide a way to stop the process from occurring. The purpose of this study was to identify favorable fibril growth conditions for a globular model protein ?-lactoglobulin using the chaotropes urea and KSCN, along with titration of a pH 7.04 phosphate buffer solution at 40 ^oC over five days. Time-resolved and steady-state fluorescence was used to examine the shift in emission of the tryptophan amino acids over the applied denaturation ranges. BLG, a dimer in native form, monomerized and partially unfolded at 5 M Urea, 2 M KSCN and at pH 2 in phosphate buffer in vitro. Exposure of the solutions to continuous heat over time caused a increase in the lifetimes and red shift in the emission spectra, indicating the possible beginning of nucleation. The study has provided a base for continuation of the study of oligomerization and subsequent fibrillation of BLG, which may provide a fundamental mechanism of formation transferable to other proteins in vivo.

  16. Seasonal thermal energy storage

    SciTech Connect

    Allen, R.D.; Kannberg, L.D.; Raymond, J.R.

    1984-05-01

    This report describes the following: (1) the US Department of Energy Seasonal Thermal Energy Storage Program, (2) aquifer thermal energy storage technology, (3) alternative STES technology, (4) foreign studies in seasonal thermal energy storage, and (5) economic assessment.

  17. Thermal energy storage for space cooling. Technology for reducing on-peak electricity demand and cost

    SciTech Connect

    2000-12-01

    Cool storage technology can be used to significantly reduce energy costs by allowing energy intensive, electrically driven cooling equipment to be predominantly operated during off-peak hours when electricity rates are lower. In addition, some system configurations may result in lower first costs and/or lower operating costs. Cool storage systems of one type or another could potentially be cost-effectively applied in most buildings with a space cooling system. A survey of approximately 25 manufacturers providing cool storage systems or components identified several thousand current installations, but less than 1% of these were at Federal facilities. With the Federal sector representing nearly 4% of commercial building floor space and 5% of commercial building energy use, Federal utilization would appear to be lagging. Although current applications are relatively few, the estimated potential annual savings from using cool storage in the Federal sector is $50 million. There are many different types of cool storage systems representing different combinations of storage media, charging mechanisms, and discharging mechanisms. The basic media options are water, ice, and eutectic salts. Ice systems can be further broken down into ice harvesting, ice-on-coil, ice slurry, and encapsulated ice options. Ice-on-coil systems may be internal melt or external melt and may be charged and discharged with refrigerant or a single-phase coolant (typically a water/glycol mixture). Independent of the technology choice, cool storage systems can be designed to provide full storage or partial storage, with load-leveling and demand-limiting options for partial storage. Finally, storage systems can be operated on a chiller-priority or storage priority basis whenever the cooling load is less than the design conditions. The first section describes the basic types of cool storage technologies and cooling system integration options. The next three sections define the savings potential in the Federal sector, present application advice, and describe the performance experience of specific Federal users. A step-by-step methodology illustrating how to evaluate cool storage options is presented next, followed by a case study of a GSA building using cool storage. Latter sections list manufacturers, selected Federal users, and reference materials. Finally, the appendixes give Federal life-cycle costing procedures and results for a case study.

  18. Influence of nanoparticle addition on the formation and growth of intermetallic compounds (IMCs) in Cu/Sn-Ag-Cu/Cu solder joint during different thermal conditions

    NASA Astrophysics Data System (ADS)

    Tan, Ai Ting; Tan, Ai Wen; Yusof, Farazila

    2015-06-01

    Nanocomposite lead-free solders are gaining prominence as replacements for conventional lead-free solders such as Sn-Ag-Cu solder in the electronic packaging industry. They are fabricated by adding nanoparticles such as metallic and ceramic particles into conventional lead-free solder. It is reported that the addition of such nanoparticles could strengthen the solder matrix, refine the intermetallic compounds (IMCs) formed and suppress the growth of IMCs when the joint is subjected to different thermal conditions such as thermal aging and thermal cycling. In this paper, we first review the fundamental studies on the formation and growth of IMCs in lead-free solder joints. Subsequently, we discuss the effect of the addition of nanoparticles on IMC formation and their growth under several thermal conditions. Finally, an outlook on the future growth of research in the fabrication of nanocomposite solder is provided.

  19. Survey of thermal imaging technology and applications at the Savannah River Site

    SciTech Connect

    Not Available

    1989-10-09

    This memorandum is an introduction to thermal imaging systems and their use. Emission of infrared radiation from ideal and real materials is described, as are methods of detection in modern thermal imaging systems. Typical specifications and features of commercially available thermal imaging systems are described, and uses of thermal imaging are discussed. At the Savannah River Site (SRS), thermal imaging has been used extensively to measure the temperature of surface water that carries heat from the reactors to the Savannah River. Other uses at SRS have been surveying roof insulation and moisture, evaluating insulation of prototype glass melters at the TNX facility, and locating leaks in the Concentrate Transfer System. Future recommended programs include evaluating thermal imaging for general monitoring of plant facilities, especially electrical conduits, processes occurring at elevated temperature, and radioactive storage areas that generate significant amounts of waste heat. Research on the resistance weld techniques used in tritium reservoir handling (pinch welding and reclamation welding) may profit from high speed thermal image monitoring of heat generated during welding, and other Process Development activities may also benefit from high-speed thermal image monitoring. 12 refs., 1 fig.

  20. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect

    Unknown

    2001-08-08

    The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California, through the testing and application of advanced reservoir characterization and thermal production technologies. The hope is that successful application of these technologies will result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which are common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs, including: (1) Development of three-dimensional (3-D) deterministic and stochastic reservoir simulation models--thermal or otherwise--to aid in reservoir management of the steamflood and post-steamflood phases and subsequent development work. (2) Development of computerized 3-D visualizations of the geologic and reservoir simulation models to aid reservoir surveillance and operations. (3) Perform detailed studies of the geochemical interactions between the steam and the formation rock and fluids. (4) Testing and proposed application of a novel alkaline-steam well completion technique for the containment of the unconsolidated formation sands and control of fluid entry and injection profiles. (5) Installation of a 2100 ft, 14 inch insulated, steam line beneath a harbor channel to supply steam to an island location. (6) Testing and proposed application of thermal recovery technologies to increase oil production and reserves: (a) Performing pilot tests of cyclic steam injection and production on new horizontal wells. (b) Performing pilot tests of hot water-alternating-steam (WAS) drive in the existing steam drive area to improve thermal efficiency. (7) Perform a pilot steamflood with the four horizontal injectors and producers using a pseudo steam-assisted gravity-drainage (SAGD) process. (8) Advanced reservoir management, through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring and evaluation.

  1. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect

    Scott Hara

    2001-06-27

    The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. The successful application of these technologies will result in expanding their implementation throughout the Wilmington Field and, through technology transfer, to other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which are common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs.

  2. Influence of storage conditions on the structure, thermal behavior, and formation of enzyme-resistant starch in extruded starches.

    PubMed

    Chanvrier, Hélène; Uthayakumaran, Surjani; Appelqvist, Ingrid A M; Gidley, Michael J; Gilbert, Elliot P; López-Rubio, Amparo

    2007-11-28

    Starch structures from an extrusion process were stored at different temperatures to allow for molecular rearrangement (retrogradation); their thermal characteristics (DSC) and resistance to amylase digestion were measured and compared. The structure of four native and processed starches containing different amylose/amylopectin compositions (3.5, 30.8, 32, and 80% amylose content, respectively) before and after digestion was studied with small-angle X-ray scattering (SAXS) and X-ray diffraction (XRD). Rearrangement of the amylose molecules was observed for each storage condition as measured by the DSC endotherm at around 145 degrees C. The crystalline organization of the starches after processing and storage was qualitatively different to that of the native starches. However, there was no direct correlation between the initial crystallinity and the amount of enzyme-resistant starch (ERS) measured after in vitro digestion, and only in the case of high-amylose starch did the postprocess conditioning used lead to a small increase in the amount of starch remaining after the enzymatic treatment. From the results obtained, it can be concluded that retrograded amylose is not directly correlated with ERS and alternative mechanisms must be responsible for ERS formation. PMID:17960881

  3. [In-patient department technologies in the surgical treatment of outpatients in the conditions of military hospital].

    PubMed

    Andriienko, M M

    2009-01-01

    The study is devoted to a scientific substantiation, development, introduction and management of the system of in-patient department equivalent technologies in surgical treatment of outpatients in the condition of military hospital. The author has shown necessity of wide introduction into practice surgery at pre-hospital stages of military treatment-and-prophylactic service using in-patient equivalent technologies (a day hospital, a hospital in-home, a one-day surgical department) is proved. Components of medical, economic and social efficiency of introduction of a qualitatively new system of surgical treatment provided in outpatient condition of military hospital are presented in the hospital. PMID:20455460

  4. Thermal Conductivity and Sintering Behavior of Advanced Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    2002-01-01

    Advanced thermal barrier coatings, having significantly reduced long-term thermal conductivities, are being developed using an approach that emphasizes real-time monitoring of thermal conductivity under conditions that are engine-like in terms of temperatures and heat fluxes. This is in contrast to the traditional approach where coatings are initially optimized in terms of furnace and burner rig durability with subsequent measurement in the as-processed or furnace-sintered condition. The present work establishes a laser high-heat-flux test as the basis for evaluating advanced plasma-sprayed and physical vapor-deposited thermal barrier coatings under the NASA Ultra Efficient Engine Technology (UEET) Program. The candidate coating materials for this program are novel thermal barrier coatings that are found to have significantly reduced thermal conductivities due to an oxide-defect-cluster design. Critical issues for designing advanced low conductivity coatings with improved coating durability are also discussed.

  5. Evaluation of Representative Smart Grid Investment Grant Project Technologies: Thermal Energy Storage

    SciTech Connect

    Tuffner, Francis K.; Bonebrake, Christopher A.

    2012-02-14

    This document is one of a series of reports estimating the benefits of deploying technologies similar to those implemented on the Smart Grid Investment Grant (SGIG) projects. Four technical reports cover the various types of technologies deployed in the SGIG projects, distribution automation, demand response, energy storage, and renewables integration. A fifth report in the series examines the benefits of deploying these technologies on a national level. This technical report examines the impacts of energy storage technologies deployed in the SGIG projects.

  6. Technology Evaluation for Conditioning of Hanford Tank Waste Using Solids Segregation and Size Reduction

    SciTech Connect

    Restivo, Michael L.; Stone, M. E.; Herman, D. T.; Lambert, Daniel P.; Duignan, Mark R.; Smith, Gary L.; Wells, Beric E.; Lumetta, Gregg J.; Enderlin, Carl W.; Adkins, Harold E.

    2014-04-24

    The Savannah River National Laboratory and the Pacific Northwest National Laboratory team performed a literature search on current and proposed technologies for solids segregation and size reduction of particles in the slurry feed from the Hanford Tank Farm. The team also investigated technology research performed on waste tank slurries, both real and simulated, and reviewed academic theory applicable to solids segregation and size reduction. This review included text book applications and theory, commercial applications suitable for a nuclear environment, research of commercial technologies suitable for a nuclear environment, and those technologies installed in a nuclear environment, including technologies implemented at Department of Energy facilities. Information on each technology is provided in this report along with the advantages and disadvantages of the technologies for this application. Any technology selected would require testing to verify the ability to meet the High-Level Waste Feed Waste Acceptance Criteria to the Hanford Tank Waste Treatment and Immobilization Plant Pretreatment Facility.

  7. Description of recommended non-thermal mixed waste treatment technologies: Version 1.0

    SciTech Connect

    1995-08-01

    This document contains description of the technologies selected for inclusions in the Integrated Nonthermal Treatment Systems (INTS) Study. The purpose of these descriptions is to provide a more complete description of the INTS technologies. It supplements the summary descriptions of candidate nonthermal technologies that were considered for the INTS.

  8. Convective heat transfer from a nude body under calm conditions: assessment of the effects of walking with a thermal manikin.

    PubMed

    Oliveira, A Virgílio M; Gaspar, Adélio R; Francisco, Sara C; Quintela, Divo A

    2012-03-01

    The present experimental work is dedicated to the analysis of the effect of walking on the thermal insulation of the air layer (I (a)) and on the convective heat transfer coefficients (h (conv)) of the human body. Beyond the standing static posture, three step rates were considered: 20, 30 and 45 steps/min. This corresponds to walking speeds of approximately 0.23, 0.34 and 0.51 m/s, respectively. The experiments took place in a climate chamber with an articulated thermal manikin with 16 independent parts. The indoor environment was controlled through the inner wall temperatures since the objective of the tests was restricted to the influence of the walking movements under calm conditions. Five set points were selected: 10, 15, 20, 25 and 30°C, and the operative temperature within the test chamber varied between 11.9 and 29.6°C. The highest and lowest I ( a ) values obtained were equal to 0.87 and 0.71 clo, respectively, and the reduction in insulation due to walking ranged between 9.8 and 11.5%. The convective coefficients (h (conv)) for the whole body and for the different body segments were also determined for each step rate. In the case of the whole body, for the standing static reference posture, the mean value of h (conv) was equal to 3.3 W/m(2)°C and a correlation [Nu = Nu(Gr)] for natural convection is also presented in good agreement with previous results. For the other postures, the values of h (conv) were equal to 3.7, 3.9 and 4.2 W/m(2)°C, respectively for 20, 30 and 45 steps/min. PMID:21553333

  9. Nuclear Thermal Propulsion (NTP): A Proven, Growth Technology for Fast Transit Human Missions to Mars

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.

    2014-01-01

    The "fast conjunction" long surface stay mission option was selected for NASA's recent Mars Design Reference Architecture (DRA) 5.0 study because it provided adequate time at Mars (approx. 540 days) for the crew to explore the planet's geological diversity while also reducing the "1-way" transit times to and from Mars to approx. 6 months. Short transit times are desirable in order to reduce the debilitating physiological effects on the human body that can result from prolonged exposure to the zero-gravity (0-gE) and radiation environments of space. Recent measurements from the RAD detector attached to the Curiosity rover indicate that astronauts would receive a radiation dose of approx. 0.66 Sv (approx. 66 rem)-the limiting value established by NASA-during their 1-year journey in deep space. Proven nuclear thermal rocket (NTR) technology, with its high thrust and high specific impulse (Isp approx. 900 s), can cut 1-way transit times by as much as 50 percent by increasing the propellant capacity of the Mars transfer vehicle (MTV). No large technology scale-ups in engine size are required for these short transit missions either since the smallest engine tested during the Rover program-the 25 klbf "Pewee" engine is sufficient when used in a clustered arrangement of three to four engines. The "Copernicus" crewed MTV developed for DRA 5.0 is a 0-gE design consisting of three basic components: (1) the NTP stage (NTPS); (2) the crewed payload element; and (3) an integrated "saddle truss" and LH2 propellant drop tank assembly that connects the two elements. With a propellant capacity of approx. 190 t, Copernicus can support 1-way transit times ranging from approx. 150 to 220 days over the 15-year synodic cycle. The paper examines the impact on vehicle design of decreasing transit times for the 2033 mission opportunity. With a fourth "upgraded" SLS/HLV launch, an "in-line" LH2 tank element can be added to Copernicus allowing 1-way transit times of 130 days. To achieve 100 to 120 day transit times, Copernicus' saddle truss/drop tank assembly is replaced by a "star truss" assembly with paired modular drop tanks to further increase the vehicle's propellant capacity. The HLV launch count increases (from approx. 5 to 7) and a fourth engine is needed to reduce total mission burn time and gravity losses. Using a "split mission" approach, the NTPS, in-line tank and the saddle truss/LH2 drop tank elements can be configured as a pre-deployed Earth Return Vehicle/propellant tanker supporting 90-day crewed mission transits. The split mission approach also eliminates the need for on-orbit assembly. Mission scenario descriptions, key features and operational characteristics for five different vehicle configurations are presented.

  10. Validation of a solvent-free sampler for the determination of low molecular weight aliphatic isocyanates under thermal degradation conditions.

    PubMed

    Boutin, M; Lesage, J; Ostiguy, C; Pauluhn, J

    2005-09-01

    During the thermal degradation of 1,6-hexamethylenediiso- cyanate-based (HDI) car paint, the eight most abundant isocyanates generated are isocyanic acid, methyl isocyanate, ethyl isocyanate, propyl isocyanate, butyl isocyanate, pentyl isocyanate, hexyl isocyanate, and 1,6-hexamethylenediisocyanate. For the first time, a method using solvent-free samplers is proposed and validated for the simultaneous sampling of all these isocyanates. The sampling efficiency during thermal degradation of car paint can be affected by the formation of dust and aerosols and by the emission of many chemicals, such as isocyanic acid, anhydrides, amines, and alcohols that consume the reagent or interfere in the derivatization procedure. Sampling was performed using cassettes containing two 1-(2-methoxyphenyl)piperazine (MOPIP)-coated glass fiber filters (MFs) (approximately 4.9 mg per filter) and compared with bubblers containing 15 mL of MOPIP solution in toluene (1.0 mg/mL(-1)) and with bubblers backed with MFs. A DIN 53436 laboratory scale furnace was used to generate the isocyanates under thermal degradation conditions. For an aliphatic isocyanate concentration of approximately 42 microg(NCO) m(-3), no significant difference in sampling efficiency was observed between the three techniques studied, thus confirming the sampling efficiency of the MFs. The samples were analyzed using high-performance liquid chromatography coupled with electrospray/tandem mass spectrometry. Quantification was performed in daughter mode monitoring (MOPIP+H)(+) fragments. For concentrations between 0.013 microg(NCO) mL(-1) and 0.52 microg(NCO) mL(-1) for the monoisocyanates, and between 0.026 microg(NCO) mL(-1) and 1.04 microg(NCO) mL(-1) for the HDI, the correlation coefficients were in the 0.9974-0.9996 range (n = 18). Analytical reproducibility and precision were better than 95.4% and 94.9%, respectively, for all the isocyanates. The instrumental detection limits, defined as three times the standard deviation measured at the lowest point on the calibration curve were in the 1.8-3.0 ng(NCO) mL(-1) range (n = 8), which corresponds to about 0.37-0.60 microg(NCO) m(-3) for a 15-L air sample when the filters are desorbed in 3 mL. PMID:16091349

  11. Fast Algorithms for Thermal Analysis of 3-D VLSI Chips

    E-print Network

    Mazumder, Pinaki

    /(mK)], g: power density [W/m3], : thermal diffusivity[m2/s], h: heat transfer coefficient. =k/pc: p and interconnects 5. Development of appropriate Heat Sinking Technology Goal: To Design Commercial High Equation Boundary Condition: Steady-State Thermal Analysis T: temperature [K], k: thermal conductivity [W

  12. Application of Sleeper Cab Thermal Management Technologies to Reduce Idle Climate Control Loads in Long-Haul Trucks

    SciTech Connect

    Lustbader, J. A.; Venson, T.; Adelman, S.; Dehart, C.; Yeakel, S.; Castillo, M. S.

    2012-10-01

    Each intercity long-haul truck in the U.S. idles approximately 1,800 hrs per year, primarily for sleeper cab hotel loads. Including workday idling, over 2 billion gallons of fuel are used annually for truck idling. NREL's CoolCab project works closely with industry to design efficient thermal management systems for long-haul trucks that keep the cab comfortable with minimized engine idling and fuel use. The impact of thermal load reduction technologies on idle reduction systems were characterized by conducting thermal soak tests, overall heat transfer tests, and 10-hour rest period A/C tests. Technologies evaluated include advanced insulation packages, a solar reflective film applied to the vehicle's opaque exterior surfaces, a truck featuring both film and insulation, and a battery-powered A/C system. Opportunities were identified to reduce heating and cooling loads for long-haul truck idling by 36% and 34%, respectively, which yielded a 23% reduction in battery pack capacity of the idle-reduction system. Data were also collected for development and validation of a CoolCalc HVAC truck cab model. CoolCalc is an easy-to-use, simplified, physics-based HVAC load estimation tool that requires no meshing, has flexible geometry, excludes unnecessary detail, and is less time-intensive than more detailed computer-aided engineering modeling approaches.

  13. Thermal-fluid and electrochemical modeling and performance study of a planar solid oxide electrolysis cell : analysis on SOEC resistances, size, and inlet flow conditions.

    SciTech Connect

    Yildiz, B.; Smith, J.; Sofu, T.; Nuclear Engineering Division

    2008-06-25

    Argonne National Laboratory and Idaho National Laboratory researchers are analyzing the electrochemical and thermal-fluid behavior of solid oxide electrolysis cells (SOECs) for high temperature steam electrolysis using computational fluid dynamics (CFD) techniques. The major challenges facing commercialization of steam electrolysis technology are related to efficiency, cost, and durability of the SOECs. The goal of this effort is to guide the design and optimization of performance for high temperature electrolysis (HTE) systems. An SOEC module developed by FLUENT Inc. as part of their general CFD code was used for the SOEC analysis by INL. ANL has developed an independent SOEC model that combines the governing electrochemical mechanisms based on first principals to the heat transfer and fluid dynamics in the operation of SOECs. The ANL model was embedded into the commercial STAR-CD CFD software, and is being used for the analysis of SOECs by ANL. The FY06 analysis performed by ANL and reported here covered the influence of electrochemical properties, SOEC component resistances and their contributing factors, SOEC size and inlet flow conditions, and SOEC flow configurations on the efficiency and expected durability of these systems. Some of the important findings from the ANL analysis are: (1) Increasing the inlet mass flux while going to larger cells can be a compromise to overcome increasing thermal and current density gradients while increasing the cell size. This approach could be beneficial for the economics of the SOECs; (2) The presence of excess hydrogen at the SOEC inlet to avoid Ni degradation can result in a sizeable decrease in the process efficiency; (3) A parallel-flow geometry for SOEC operation (if such a thing be achieved without sealing problems) yields smaller temperature gradients and current density gradients across the cell, which is favorable for the durability of the cells; (4) Contact resistances can significantly influence the total cell resistance and cell temperatures over a large range of operating potentials. Thus it is important to identify and avoid SOEC stack conditions leading to such high resistances due to poor contacts.

  14. Candidate thermal energy storage technologies for solar industrial process heat applications

    NASA Technical Reports Server (NTRS)

    Furman, E. R.

    1979-01-01

    A number of candidate thermal energy storage system elements were identified as having the potential for the successful application of solar industrial process heat. These elements which include storage media, containment and heat exchange are shown.

  15. TECHNOLOGY EVALUATION FOR CONDITIONING OF HANFORD TANK WASTE USING SOLIDS SEGREGATION AND SIZE REDUCTION

    SciTech Connect

    Restivo, M.; Stone, M.; Herman, D.; Lambert, D.; Duignan, M.; SMITH, G.; WELLS, B.; LUMETTA, G.; ENDRELIN, C.; ADKINS, H.

    2014-04-15

    The Savannah River National Laboratory (SRNL) and the Pacific Northwest National Laboratory (PNNL) team performed a literature search on current and proposed technologies for solids segregation and size reduction of particles in the slurry feed from the Hanford Tank Farm (HTF). The team also investigated technology research performed on waste tank slurries, both real and simulated, and reviewed academic theory applicable to solids segregation and size reduction. This review included text book applications and theory, commercial applications suitable for a nuclear environment, research of commercial technologies suitable for a nuclear environment, and those technologies installed in a nuclear environment, including technologies implemented at Department of Energy (DOE) facilities. Information on each technology is provided in this report along with the advantages and disadvantages of the technologies for this application.

  16. As Thermal Infrared (IR) technology improves, it moves towards real-time video imagery and increas-ingly higher resolution. This creates a two-fold technology disparity between collection and analysis

    E-print Network

    As Thermal Infrared (IR) technology improves, it moves towards real-time video imagery and increas components). ·Study and model the deconstruction of hi-res imagery to de- velop formula for artificially

  17. 77 FR 12059 - Using Innovative Technologies and Other Conditions of Safe Use To Expand Which Drug Products Can...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-28

    ... in pharmacies or on the Internet could lead consumers through an algorithm for a particular drug... SERVICES Food and Drug Administration Using Innovative Technologies and Other Conditions of Safe Use To Expand Which Drug Products Can Be Considered Nonprescription; Public Hearing AGENCY: Food and...

  18. Global warming impacts of ozone-safe refrigerants and refrigeration, heating, and air-conditioning technologies

    SciTech Connect

    Fischer, S.; Sand, J.; Baxter, V.

    1997-12-01

    International agreements mandate the phase-out of many chlorine containing compounds that are used as the working fluid in refrigeration, air-conditioning, and heating equipment. Many of the chemical compounds that have been proposed, and are being used in place of the class of refrigerants eliminated by the Montreal Protocol are now being questioned because of their possible contributions to global warming. Natural refrigerants are put forth as inherently superior to manufactured refrigerants because they have very low or zero global warming potentials (GWPs). Questions are being raised about whether or not these manufactured refrigerants, primarily hydrofluorocarbons (HFCs), should be regulated and perhaps phased out in much the same manner as CFCs and HCFCs. Several of the major applications of refrigerants are examined in this paper and the results of an analysis of their contributions to greenhouse warming are presented. Supermarket refrigeration is shown to be an application where alternative technologies have the potential to reduce emissions of greenhouse gases (GHG) significantly with no clear advantage to either natural or HFC refrigerants. Mixed results are presented for automobile air conditioners with opportunities to reduce GHG emissions dependent on climate and comfort criteria. GHG emissions for hermetic and factory built systems (i.e. household refrigerators/freezers, unitary equipment, chillers) are shown to be dominated by energy use with much greater potential for reduction through efficiency improvements than by selection of refrigerant. The results for refrigerators also illustrate that hydrocarbon and carbon dioxide blown foam insulation have lower overall effects on GHG emissions than HFC blown foams at the cost of increased energy use.

  19. Efficacy of the blizzard blanket or blizzard blanket plus thermal angel in preventing hypothermia in a hemorrhagic shock victim (Sus scrofa) under operational conditions.

    PubMed

    Bridges, Elizabeth; Schmelz, Joseph; Evers, Karen

    2007-01-01

    The prevention of hypothermia in military casualties under field conditions is challenging. The efficacy of a baffled reflective Blanket (Blizzard Blanket), a portable intravenous fluid warmer (Thermal Angel), and wool Blankets (control) in preventing hypothermia was tested under military field conditions in a swine hemorrhagic shock model. Fifteen pigs were bled at 10 degrees C. After 45 minutes, Hextend was administered (groups 1 and 3, at 10 degrees C; group 2, via Thermal Angel); groups 2 and 3 were encircled with a Blizzard Blanket. After 120 minutes, the pigs were moved to 21 degrees C to simulate a field hospital; group 1 was covered with Blankets. Blood was administered (groups 1 and 3, at 4 degrees C; group 2, via Thermal Angel) with 180 minutes of monitoring. The core temperature was <35 degrees C in five of five control pigs, four of five Blizzard-only pigs, and one of five Thermal Angel plus Blizzard Blanket pigs. The Blizzard Blanket limited but did not prevent hypothermia. The Thermal Angel plus Blizzard Blanket combination prevented hypothermia. The Thermal Angel is useful for bolus administration when electricity is limited; its military field use is constrained by battery weight and battery life. PMID:17274259

  20. Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies

    SciTech Connect

    Scott Hara

    1998-03-03

    The project involves improving thermal recovery techniques in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. using advanced reservoir characterization and thermal production technologies. The existing steamflood in the Tar zone of Fault Block (FB) II-A has been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing a 2100 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.