Science.gov

Sample records for thermal power generated

  1. Solar energy thermally powered electrical generating system

    NASA Technical Reports Server (NTRS)

    Owens, William R. (Inventor)

    1989-01-01

    A thermally powered electrical generating system for use in a space vehicle is disclosed. The rate of storage in a thermal energy storage medium is controlled by varying the rate of generation and dissipation of electrical energy in a thermally powered electrical generating system which is powered from heat stored in the thermal energy storage medium without exceeding a maximum quantity of heat. A control system (10) varies the rate at which electrical energy is generated by the electrical generating system and the rate at which electrical energy is consumed by a variable parasitic electrical load to cause storage of an amount of thermal energy in the thermal energy storage system at the end of a period of insolation which is sufficient to satisfy the scheduled demand for electrical power to be generated during the next period of eclipse. The control system is based upon Kalman filter theory.

  2. Thermoelectric power generator for variable thermal power source

    DOEpatents

    Bell, Lon E; Crane, Douglas Todd

    2015-04-14

    Traditional power generation systems using thermoelectric power generators are designed to operate most efficiently for a single operating condition. The present invention provides a power generation system in which the characteristics of the thermoelectrics, the flow of the thermal power, and the operational characteristics of the power generator are monitored and controlled such that higher operation efficiencies and/or higher output powers can be maintained with variably thermal power input. Such a system is particularly beneficial in variable thermal power source systems, such as recovering power from the waste heat generated in the exhaust of combustion engines.

  3. Phase Change Material Thermal Power Generator

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.

    2013-01-01

    An innovative modification has been made to a previously patented design for the Phase Change Material (PCM) Thermal Generator, which works in water where ocean temperature alternatively melts wax in canisters, or allows the wax to re-solidify, causing high-pressure oil to flow through a hydraulic generator, thus creating electricity to charge a battery that powers the vehicle. In this modification, a similar thermal PCM device has been created that is heated and cooled by the air and solar radiation instead of using ocean temperature differences to change the PCM from solid to liquid. This innovation allows the device to use thermal energy to generate electricity on land, instead of just in the ocean.

  4. Low-cost distributed solar-thermal-electric power generation

    E-print Network

    Sanders, Seth

    Low-cost distributed solar-thermal-electric power generation A. Der Minassians, K. H. Aschenbach discuss the technical and economic feasibility of a low-cost distributed solar-thermal-electric power relative cost, solar electric energy systems have yet to be exploited on a widespread basis. It is believed

  5. Device for thermal transfer and power generation

    DOEpatents

    Weaver, Stanton Earl (Northville, NY); Arik, Mehmet (Niskayuna, NY)

    2011-04-19

    A system is provided. The system includes a device that includes top and bottom thermally conductive substrates positioned opposite to one another, wherein a top surface of the bottom thermally conductive substrate is substantially atomically flat and a thermal blocking layer disposed between the top and bottom thermally conductive substrates. The device also includes top and bottom electrodes separated from one another between the top and bottom thermally conductive substrates to define a tunneling path, wherein the top electrode is disposed on the thermal blocking layer and the bottom electrode is disposed on the bottom thermally conductive substrate.

  6. Field Fabrication of Solar-Thermal Powered Steam Turbines for Generation of Mechanical Power

    E-print Network

    Field Fabrication of Solar-Thermal Powered Steam Turbines for Generation of Mechanical Power by Amy OF SOLARTHERMAL POWERED STEAM TURBINES FOR GENERATION OF MECHANICAL POWER #12;FIELD FABRICATION OF SOLARTHERMAL POWERED STEAM TURBINES FOR GENERATION OF MECHANICAL POWER by AMY SUN Submitted to the program in Media

  7. Thermal investigation of a micro-gap thermionic power generator

    NASA Astrophysics Data System (ADS)

    Yacine Belbachir, Remi; An, Zhonglie; Ono, Takahito

    2014-08-01

    The demand for safe and clean energy sources has become more important than ever worldwide. Thermionic power generation is one of these energy sources, which directly converts heat into electrical energy using thermionic electrons. We developed a micro-gap thermionic power generator, which operates at relatively low temperature using SiC as an emitter. Electrons are emitted and travel from the heated SiC emitter to the collector electrode by thermionic emission. In this work, we have firstly demonstrated low temperature operation at 830?oC as a result of micro-gap between the emitter and collector electrodes. An output power density of 11.5?mW/cm2 is obtained. In addition, the heat losses from the emitter electrode are evaluated. Thermal conduction to the collector is by far the predominant thermal loss. In order to validate this result, a thermal resistance measurement device is built and the thermal resistance of the micro-gap is measured. Its value of 2.4?K/W allows for estimating in a more realistic way the heat loss by thermal conduction from the emitter to the collector via the gap. The newly estimated value still corresponds to a predominant thermal loss, hence highlighting the need for downsizing the SiO2 columns of the micro-gap in order to increase the power conversion efficiency.

  8. Stirling Engines for Low-Temperature Solar-Thermal-Electric Power Generation

    E-print Network

    Sanders, Seth

    Stirling Engines for Low-Temperature Solar-Thermal- Electric Power Generation Artin Der Minassians-Temperature Solar-Thermal-Electric Power Generation by Artin Der Minassians Karshenasi (Amirkabir University-Temperature Solar-Thermal-Electric Power Generation Copyright c 2007 by Artin Der Minassians #12;1 Abstract Stirling

  9. Advanced Stirling Radioisotope Generator (ASRG) Thermal Power Model in MATLAB

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen, J.

    2012-01-01

    This paper presents a one-dimensional steady-state mathematical thermal power model of the ASRG. It aims to provide a guideline of understanding how the ASRG works and what can change its performance. The thermal dynamics and energy balance of the generator is explained using the thermal circuit of the ASRG. The Stirling convertor performance map is used to represent the convertor. How the convertor performance map is coupled in the thermal circuit is explained. The ASRG performance characteristics under i) different sink temperatures and ii) over the years of mission (YOM) are predicted using the one-dimensional model. Two Stirling converter control strategies, i) fixing the hot-end of temperature of the convertor by adjusting piston amplitude and ii) fixing the piston amplitude, were tested in the model. Numerical results show that the first control strategy can result in a higher system efficiency than the second control strategy when the ambient gets warmer or the general-purpose heat source (GPHS) fuel load decays over the YOM. The ASRG performance data presented in this paper doesn't pertain to the ASRG flight unit. Some data of the ASRG engineering unit (EU) and flight unit that are available in public domain are used in this paper for the purpose of numerical studies.

  10. Solar thermal power generation. A bibliography with abstracts

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Bibliographies and abstracts are cited under the following topics: (1) energy overviews; (2) solar overviews; (3) conservation; (4) economics, law; (5) thermal power; (6) thermionic, thermoelectric; (7) ocean; (8) wind power; (9) biomass and photochemical; and (10) large photovoltaics.

  11. High-density thermoelectric power generation and nanoscale thermal metrology

    E-print Network

    Mayer, Peter (Peter Matthew), 1978-

    2007-01-01

    Thermoelectric power generation has been around for over 50 years but has seen very little large scale implementation due to the inherently low efficiencies and powers available from known materials. Recent material advances ...

  12. Advanced Stirling Radioisotope Generator Thermal Power Model in Thermal Desktop SINDA/FLUINT Analyzer

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen; Fabanich, William A.; Schmitz, Paul C.

    2012-01-01

    This paper presents a three-dimensional Advanced Stirling Radioisotope Generator (ASRG) thermal power model that was built using the Thermal Desktop SINDA/FLUINT thermal analyzer. The model was correlated with ASRG engineering unit (EU) test data and ASRG flight unit predictions from Lockheed Martin's Ideas TMG thermal model. ASRG performance under (1) ASC hot-end temperatures, (2) ambient temperatures, and (3) years of mission for the general purpose heat source fuel decay was predicted using this model for the flight unit. The results were compared with those reported by Lockheed Martin and showed good agreement. In addition, the model was used to study the performance of the ASRG flight unit for operations on the ground and on the surface of Titan, and the concept of using gold film to reduce thermal loss through insulation was investigated.

  13. A thermally efficient micro-reactor for thermophotovoltaic power generation

    E-print Network

    Nielsen, Ole Mattis, 1977-

    2006-01-01

    Hydrocarbon fuels exhibit very high energy densities, and micro-generators converting the stored chemical energy into electrical power are interesting alternatives to batteries in certain applications. The increasing demands ...

  14. The development of a solar thermal water purification, heating, and power generation system: A case study.

    E-print Network

    Wu, Mingshen

    The development of a solar thermal water purification, heating, and power generation system: A case, none of the existing concentrated solar power systems (trough, dish, and tower) that have been the potential of an invention directed to a water purification system that also recovers power from generated

  15. Power processing and control requirements of dispersed solar thermal electric generation systems

    NASA Technical Reports Server (NTRS)

    Das, R. L.

    1980-01-01

    Power Processing and Control requirements of Dispersed Receiver Solar Thermal Electric Generation Systems are presented. Kinematic Stirling Engines, Brayton Engines and Rankine Engines are considered as prime movers. Various types of generators are considered for ac and dc link generations. It is found that ac-ac Power Conversion is not suitable for implementation at this time. It is also found that ac-dc-ac Power Conversion with a large central inverter is more efficient than ac-dc-ac Power Conversion using small dispersed inverters. Ac-link solar thermal electric plants face potential stability and synchronization problems. Research and development efforts are needed in improving component performance characteristics and generation efficiency to make Solar Thermal Electric Generation economically attractive.

  16. Thermal optimization of second harmonic generation at high pump powers.

    PubMed

    Sahm, Alexander; Uebernickel, Mirko; Paschke, Katrin; Erbert, Götz; Tränkle, Günther

    2011-11-01

    We measure the temperature distribution of a 3 cm long periodically poled LiNbO? crystal in a single-pass second harmonic generation (SHG) setup at 488 nm. By means of three resistance heaters and directly mounted Pt100 sensors the crystal is subdivided in three sections. 9.4 W infrared pump light and 1.3 W of SHG light cause a de-homogenized temperature distribution of 0.2 K between the middle and back section. A sectional offset heating is used to homogenize the temperature in those two sections and thus increasing the conversion efficiency. A 15% higher SHG output power matching the prediction of our theoretical model is achieved. PMID:22109182

  17. Analytical investigation of thermal barrier coatings on advanced power generation gas turbines

    NASA Technical Reports Server (NTRS)

    Amos, D. J.

    1977-01-01

    An analytical investigation of present and advanced gas turbine power generation cycles incorporating thermal barrier turbine component coatings was performed. Approximately 50 parametric points considering simple, recuperated, and combined cycles (including gasification) with gas turbine inlet temperatures from current levels through 1644K (2500 F) were evaluated. The results indicated that thermal barriers would be an attractive means to improve performance and reduce cost of electricity for these cycles. A recommended thermal barrier development program has been defined.

  18. Novel Thermal Storage Technologies for Concentrating Solar Power Generation

    SciTech Connect

    Neti, Sudhakar; Oztekin, Alparslan; Chen, John; Tuzla, Kemal; Misiolek, Wojciech

    2013-06-20

    The technologies that are to be developed in this work will enable storage of thermal energy in 100 MWe solar energy plants for 6-24 hours at temperatures around 300oC and 850oC using encapsulated phase change materials (EPCM). Several encapsulated phase change materials have been identified, fabricated and proven with calorimetry. Two of these materials have been tested in an airflow experiment. A cost analysis for these thermal energy storage systems has also been conducted that met the targets established at the initiation of the project.

  19. A NOVEL SOLAR THERMAL COMBINED CYCLE FOR DISTRIBUTED POWER GENERATION

    EPA Science Inventory

    Impacts of this work will be seen in the areas of energy, poverty alleviation, improvement of quality of health care provision and quality of life, business development, and education. We will be directly preventing installation of polluting diesel generators while improving ...

  20. Thermal analysis of a simple-cycle gas turbine in biogas power generation

    SciTech Connect

    Yomogida, D.E.; Thinh, Ngo Dinh

    1995-09-01

    This paper investigates the technical feasibility of utilizing small simple-cycle gas turbines (25 kW to 125 kW) for biogas power generation through thermal analysis. A computer code, GTPower, was developed to evaluate the performance of small simple-cycle gas turbines specifically for biogas combustion. The 125 KW Solar Gas Turbine (Tital series) has been selected as the base case gas turbine for biogas combustion. After its design parameters and typical operating conditions were entered into GTPower for analysis, GTPower outputted expected values for the thermal efficiency and specific work. For a sensitivity analysis, the GTPower Model outputted the thermal efficiency and specific work. For a sensitivity analysis, the GTPower Model outputted the thermal efficiency and specific work profiles for various operating conditions encountered in biogas combustion. These results will assist future research projects in determining the type of combustion device most suitable for biogas power generation.

  1. Quantity, Quality, and Availability of Waste Heat from United States Thermal Power Generation.

    PubMed

    Gingerich, Daniel B; Mauter, Meagan S

    2015-07-21

    Secondary application of unconverted heat produced during electric power generation has the potential to improve the life-cycle fuel efficiency of the electric power industry and the sectors it serves. This work quantifies the residual heat (also known as waste heat) generated by U.S. thermal power plants and assesses the intermittency and transport issues that must be considered when planning to utilize this heat. Combining Energy Information Administration plant-level data with literature-reported process efficiency data, we develop estimates of the unconverted heat flux from individual U.S. thermal power plants in 2012. Together these power plants discharged an estimated 18.9 billion GJ(th) of residual heat in 2012, 4% of which was discharged at temperatures greater than 90 °C. We also characterize the temperature, spatial distribution, and temporal availability of this residual heat at the plant level and model the implications for the technical and economic feasibility of its end use. Increased implementation of flue gas desulfurization technologies at coal-fired facilities and the higher quality heat generated in the exhaust of natural gas fuel cycles are expected to increase the availability of residual heat generated by 10.6% in 2040. PMID:26061407

  2. Automated determinations of selenium in thermal power plant wastewater by sequential hydride generation and chemiluminescence detection.

    PubMed

    Ezoe, Kentaro; Ohyama, Seiichi; Hashem, Md Abul; Ohira, Shin-Ichi; Toda, Kei

    2016-02-01

    After the Fukushima disaster, power generation from nuclear power plants in Japan was completely stopped and old coal-based power plants were re-commissioned to compensate for the decrease in power generation capacity. Although coal is a relatively inexpensive fuel for power generation, it contains high levels (mgkg(-1)) of selenium, which could contaminate the wastewater from thermal power plants. In this work, an automated selenium monitoring system was developed based on sequential hydride generation and chemiluminescence detection. This method could be applied to control of wastewater contamination. In this method, selenium is vaporized as H2Se, which reacts with ozone to produce chemiluminescence. However, interference from arsenic is of concern because the ozone-induced chemiluminescence intensity of H2Se is much lower than that of AsH3. This problem was successfully addressed by vaporizing arsenic and selenium individually in a sequential procedure using a syringe pump equipped with an eight-port selection valve and hot and cold reactors. Oxidative decomposition of organoselenium compounds and pre-reduction of the selenium were performed in the hot reactor, and vapor generation of arsenic and selenium were performed separately in the cold reactor. Sample transfers between the reactors were carried out by a pneumatic air operation by switching with three-way solenoid valves. The detection limit for selenium was 0.008mgL(-1) and calibration curve was linear up to 1.0mgL(-1), which provided suitable performance for controlling selenium in wastewater to around the allowable limit (0.1mgL(-1)). This system consumes few chemicals and is stable for more than a month without any maintenance. Wastewater samples from thermal power plants were collected, and data obtained by the proposed method were compared with those from batchwise water treatment followed by hydride generation-atomic fluorescence spectrometry. PMID:26653491

  3. Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux

    DOEpatents

    Bowman, Charles D. (Los Alamos, NM)

    1992-01-01

    Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.

  4. Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux

    DOEpatents

    Bowman, C.D.

    1992-11-03

    Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.

  5. Thermal Analysis of Step 2 GPHS for Next Generation Radioisotope Power Source Missions

    NASA Astrophysics Data System (ADS)

    Pantano, David R.; Hill, Dennis H.

    2005-02-01

    The Step 2 General Purpose Heat Source (GPHS) is a slightly larger and more robust version of the heritage GPHS modules flown on previous Radioisotope Thermoelectric Generator (RTG) missions like Galileo, Ulysses, and Cassini. The Step 2 GPHS is to be used in future small radioisotope power sources, such as the Stirling Radioisotope Generator (SRG110) and the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG). New features include an additional central web of Fine Weave Pierced Fabric (FWPF) graphite in the aeroshell between the two Graphite Impact Shells (GIS) to improve accidental reentry and impact survivability and an additional 0.1-inch of thickness to the aeroshell broad faces to improve ablation protection. This paper details the creation of the thermal model using Thermal Desktop and AutoCAD interfaces and provides comparisons of the model to results of previous thermal analysis models of the heritage GPHS. The results of the analysis show an anticipated decrease in total thermal gradient from the aeroshell to the iridium clads compared to the heritage results. In addition, the Step 2 thermal model is investigated under typical SRG110 boundary conditions, with cover gas and gravity environments included where applicable, to provide preliminary guidance for design of the generator. Results show that the temperatures of the components inside the GPHS remain within accepted design limits during all envisioned mission phases.

  6. Consideration of Thermoelectric Power Generation by Using Hot Spring Thermal Energy or Industrial Waste Heat

    NASA Astrophysics Data System (ADS)

    Sasaki, Keiichi; Horikawa, Daisuke; Goto, Koichi

    2015-01-01

    Today, we face some significant environmental and energy problems such as global warming, urban heat island, and the precarious balance of world oil supply and demand. However, we have not yet found a satisfactory solution to these problems. Waste heat recovery is considered to be one of the best solutions because it can improve energy efficiency by converting heat exhausted from plants and machinery to electric power. This technology would also prevent atmospheric temperature increases caused by waste heat, and decrease fossil fuel consumption by recovering heat energy, thus also reducing CO2 emissions. The system proposed in this research generates electric power by providing waste heat or unharnessed thermal energy to built-in thermoelectric modules that can convert heat into electric power. Waste heat can be recovered from many places, including machinery in industrial plants, piping in electric power plants, waste incineration plants, and so on. Some natural heat sources such as hot springs and solar heat can also be used for this thermoelectric generation system. The generated power is expected to be supplied to auxiliary machinery around the heat source, stored as an emergency power supply, and so on. The attributes of this system are (1) direct power generation using hot springs or waste heat; (2) 24-h stable power generation; (3) stand-alone power system with no noise and no vibration; and (4) easy maintenance attributed to its simple structure with no moving parts. In order to maximize energy use efficiency, the temperature difference between both sides of the thermoelectric (TE) modules built into the system need to be kept as large as possible. This means it is important to reduce thermal resistance between TE modules and heat source. Moreover, the system's efficiency greatly depends on the base temperature of the heat sources and the material of the system's TE modules. Therefore, in order to make this system practical and efficient, it is necessary to choose the heat source first and then design the most appropriate structure for the source by applying analytical methods. This report describes how to design a prototype of a thermoelectric power generator using the analytical approach and the results of performance evaluation tests carried out in the field.

  7. Thermally cascaded thermoelectric generator

    NASA Technical Reports Server (NTRS)

    Flaherty, R.

    1970-01-01

    High efficiency thermoelectric generator utilizes a high-temperature thermoelectric material in thermal series with a low-temperature material. A thermally cascaded generator increases system efficiency.

  8. Integrating planning and design optimization for thermal power generation in developing economies: Designs for Vietnam

    NASA Astrophysics Data System (ADS)

    Pham, John Dinh Chuong

    In the twenty first century, global warming and climate change have become environmental issues worldwide. There is a need to reduce greenhouse gas emissions from thermal power plants through improved efficiency. This need is shared by both developed and developing countries. It is particularly important in rapidly developing economies (for example, Vietnam, South Korea, and China) where there is very significant need to increase generation capacity. This thesis addresses improving thermal power plant efficiency through an improved planning process that emphasizes integrated design. With the integration of planning and design considerations of key components in thermal electrical generation, along with the selection of appropriate up-to-date technologies, greater efficiency and reduction of emissions could be achieved. The major barriers to the integration of overall power plant optimization are the practice of individual island tendering packages, and the lack of coordinating efforts between major original equipment manufacturers (OEM). This thesis assesses both operational and design aspects of thermal power plants to identify opportunities for energy saving and the associated reduction of CO2 emissions. To demonstrate the potential of the integrated planning design approach, three advanced thermal power plants, using anthracite coal, oil and gas as their respective fuel, were developed as a case study. The three plant formulations and simulations were performed with the cooperation of several leading companies in the power industry including Babcock & Wilcox, Siemens KWU, Siemens-Westinghouse Power Corporation, Hitachi, Alstom Air Preheater, TLT-Covent, and ABB Flakt. The first plant is a conventional W-Flame anthracite coal-fired unit for base load operation. The second is a supercritical oil-fired plant with advanced steam condition, for two shifting and cycling operations. The third plant is a gas-fired combined cycle unit employing a modern steam-cooled gas turbine and a three-pressure heat recovery steam generator with reheat, for base load and load following operations. The oil-fired and gas-fired plants showed excellent gross thermal efficiency, 49.6 and 59.4 percent, respectively. Regarding the anthracite plant, based on a traditional subcritical pressure steam cycle, the unit gross efficiency was calculated at 42.3 percent. These efficiency values represent an increase of over 2 percent compared to the comparable plant class, operating today. This 2 percent efficiency gained translates into approximately 35,000 tonnes of greenhouse gas reduction, and a saving of 16,000 tonnes of coal, per year (based on 300MWe coal-fired plant). The positive results from the three simulations have demonstrated that by integrating planning and design optimization, significant gain of efficiency in thermal power plants is possible. This establishes the need for improved planning processes. It starts with a pre-planning process, before project tendering, to identify applicable operational issues and design features to enhance efficiency and reduce emissions. It should also include a pre-contract period to provide an opportunity for all OEM finalists to consolidate and fine-tune their designs for compatibility with those of others to achieve optimal performance. The inclusion of a period for final consolidation and integrated design enables the original goals of greater overall plant efficiency and greenhouse gas emissions reduction to be achieved beyond those available from current planning and contracting procedures.

  9. Solar thermal power generation: a bibliography with abstracts. Quarterly update, October-December 1979

    SciTech Connect

    Not Available

    1980-04-01

    This annotated bibliography contains the following subjects: energy overviews, solar overviews, energy conservation, economics and law, solar thermal power, thermionic and thermoelectric, ocean thermal energy conversion, biomass and photochemical energy, and large-scale photovoltaics. (MHR)

  10. Research and development on a distributed type solar thermal power generation plant

    NASA Astrophysics Data System (ADS)

    Sumida, I.; Tsukamoto, M.; Sakamoto, T.; Taki, T.; Sato, S.

    1983-12-01

    The R&D on a solar thermal power generation system of the plane parabolic type within the framework of the Japanese Sunshine Project is described. This system realizes high concentration of solar energy with a special concentrator module which combines 100 flat plate mirror heliostats of the central tower system with 5 parabolic troughs of the distributed system. A molten salt (KCl-LiCl) type thermal storage unit is used to superheat saturated steam supplied by accumulators to 300-350 C for 90 minutes after 5 hours of heat storage. Specifications and hydrodynamic characteristics for a 1000 kWe pilot plant in Nio, Kagawa, Japan, constructed in 1980 are given.

  11. Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation

    SciTech Connect

    Reddy, Ramana G.

    2013-10-23

    The explicit UA program objective is to develop low melting point (LMP) molten salt thermal energy storage media with high thermal energy storage density for sensible heat storage systems. The novel Low Melting Point (LMP) molten salts are targeted to have the following characteristics: 1. Lower melting point (MP) compared to current salts (<222ºC) 2. Higher energy density compared to current salts (>300 MJ/m3) 3. Lower power generation cost compared to current salt In terms of lower power costs, the program target the DOE's Solar Energy Technologies Program year 2020 goal to create systems that have the potential to reduce the cost of Thermal Energy Storage (TES) to less than $15/kWh-th and achieve round trip efficiencies greater than 93%. The project has completed the experimental investigations to determine the thermo-physical, long term thermal stability properties of the LMP molten salts and also corrosion studies of stainless steel in the candidate LMP molten salts. Heat transfer and fluid dynamics modeling have been conducted to identify heat transfer geometry and relative costs for TES systems that would utilize the primary LMP molten salt candidates. The project also proposes heat transfer geometry with relevant modifications to suit the usage of our molten salts as thermal energy storage and heat transfer fluids. The essential properties of the down-selected novel LMP molten salts to be considered for thermal storage in solar energy applications were experimentally determined, including melting point, heat capacity, thermal stability, density, viscosity, thermal conductivity, vapor pressure, and corrosion resistance of SS 316. The thermodynamic modeling was conducted to determine potential high temperature stable molten salt mixtures that have thermal stability up to 1000 °C. The thermo-physical properties of select potential high temperature stable (HMP) molten salt mixtures were also experimentally determined. All the salt mixtures align with the go/no-go goals stipulated by the DOE for this project. Energy densities of all salt mixtures were higher than that of the current solar salt. The salt mixtures costs have been estimated and TES system costs for a 2 tank, direct approach have been estimated for each of these materials. All estimated costs are significantly below the baseline system that used solar salt. These lower melt point salts offer significantly higher energy density per volume than solar salt – and therefore attractively smaller inventory and equipment costs. Moreover, a new TES system geometry has been recommended A variety of approaches were evaluated to use the low melting point molten salt. Two novel changes are recommended that 1) use the salt as a HTF through the solar trough field, and 2) use the salt to not only create steam but also to preheat the condensed feedwater for Rankine cycle. The two changes enable the powerblock to operate at 500°C, rather than the current 400°C obtainable using oil as the HTF. Secondly, the use of salt to preheat the feedwater eliminates the need to extract steam from the low pressure turbine for that purpose. Together, these changes result in a dramatic 63% reduction required for 6 hour salt inventory, a 72% reduction in storage volume, and a 24% reduction in steam flow rate in the power block. Round trip efficiency for the Case 5 - 2 tank “direct” system is estimated at >97%, with only small losses from time under storage and heat exchange, and meeting RFP goals. This attractive efficiency is available because the major heat loss experienced in a 2 tank “indirect” system - losses by transferring the thermal energy from oil HTF to the salt storage material and back to oil to run the steam generator at night - is not present for the 2 tank direct system. The higher heat capacity values for both LMP and HMP systems enable larger storage capacities for concentrating solar power.

  12. Metal Hydride Thermal Storage: Reversible Metal Hydride Thermal Storage for High-Temperature Power Generation Systems

    SciTech Connect

    2011-12-05

    HEATS Project: PNNL is developing a thermal energy storage system based on a Reversible Metal Hydride Thermochemical (RMHT) system, which uses metal hydride as a heat storage material. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at night—when the sun is not out—to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. PNNL’s metal hydride material can reversibly store heat as hydrogen cycles in and out of the material. In a RHMT system, metal hydrides remain stable in high temperatures (600- 800°C). A high-temperature tank in PNNL’s storage system releases heat as hydrogen is absorbed, and a low-temperature tank stores the heat until it is needed. The low-cost material and simplicity of PNNL’s thermal energy storage system is expected to keep costs down. The system has the potential to significantly increase energy density.

  13. Solar thermal power generation: a bibliography with abstracts. Quarterly update, July-September 1979

    SciTech Connect

    Not Available

    1980-02-01

    This annotated bibliography covers the following subjects: energy overviews, solar overviews, energy conservation, economics and law, solar thermal power, thermionic and thermoelectric, ocean thermal energy conversion, wind power, biomass and photochemical energy, and large scale photovoltaics. An author index and a keyword index are included. (MHR)

  14. Calculating the level of noise generated by steam jets discharged into the atmosphere at thermal power stations

    NASA Astrophysics Data System (ADS)

    Chugunkov, D. V.; Tupov, V. B.

    2007-06-01

    The specific features pertinent to the jets produced when steam is discharged into the atmosphere at thermal power stations are considered, and the noise generated by such jets is analyzed. A method for calculating the outflow of steam jets is proposed that uses the theory of jets having a high inefficiency ratio, and a formula for determining the overall level of acoustic power generated by a steam discharge is suggested, the parameters of which are related to the jet isobaric section.

  15. Summary assessment of solar thermal parabolic dish technology for electrical power generation

    NASA Technical Reports Server (NTRS)

    Penda, P. L.; Fujita, T.; Lucas, J. W.

    1985-01-01

    An assessment is provided of solar thermal parabolic dish technology for electrical power generation. The assessment is based on the development program undertaken by the Jet Propulsion Laboratory for the U.S. Department of Energy and covers the period from the initiation of the program in 1976 through mid-1984. The program was founded on developing components and subsystems that are integrated into parabolic dish power modules for test and evaluation. The status of the project is summarized in terms of results obtained through testing of modules, and the implications of these findings are assessed in terms of techno-economic projections and market potential. The techno-economic projections are based on continuation of an evolutionary technological development program and are related to the accomplishments of the program as of mid-1984. The accomplishments of the development effort are summarized for each major subsystem including concentrators, receivers, and engines. The ramifications of these accomplishments are assessed in the context of developmental objectives and strategies.

  16. Solar Thermal Power.

    ERIC Educational Resources Information Center

    McDaniels, David K.

    The different approaches to the generation of power from solar energy may be roughly divided into five categories: distributed collectors; central receivers; biomass; ocean thermal energy conversion; and photovoltaic devices. The first approach (distributed collectors) is the subject of this module. The material presented is designed to…

  17. Development and Demonstration of an Innovative Thermal Energy Storage System for Baseload Power Generation

    SciTech Connect

    D. Y. Goswami

    2012-09-04

    The objective of this project is to research and develop a thermal energy storage system (operating range 3000C ���¢�������� 450 0C ) based on encapsulated phase change materials (PCM) that can meet the utility-scale base-load concentrated solar power plant requirements at much lower system costs compared to the existing thermal energy storage (TES) concepts. The major focus of this program is to develop suitable encapsulation methods for existing low-cost phase change materials that would provide a cost effective and reliable solution for thermal energy storage to be integrated in solar thermal power plants. This project proposes a TES system concept that will allow for an increase of the capacity factor of the present CSP technologies to 75% or greater and reduce the cost to less than $20/kWht.

  18. Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators

    PubMed Central

    Bernardi, Michael P.; Dupré, Olivier; Blandre, Etienne; Chapuis, Pierre-Olivier; Vaillon, Rodolphe; Francoeur, Mathieu

    2015-01-01

    The impacts of radiative, electrical and thermal losses on the performances of nanoscale-gap thermophotovoltaic (nano-TPV) power generators consisting of a gallium antimonide cell paired with a broadband tungsten and a radiatively-optimized Drude radiator are analyzed. Results reveal that surface mode mediated nano-TPV power generation with the Drude radiator outperforms the tungsten radiator, dominated by frustrated modes, only for a vacuum gap thickness of 10?nm and if both electrical and thermal losses are neglected. The key limiting factors for the Drude- and tungsten-based devices are respectively the recombination of electron-hole pairs at the cell surface and thermalization of radiation with energy larger than the cell absorption bandgap. A design guideline is also proposed where a high energy cutoff above which radiation has a net negative effect on nano-TPV power output due to thermal losses is determined. It is shown that the power output of a tungsten-based device increases by 6.5% while the cell temperature decreases by 30?K when applying a high energy cutoff at 1.45?eV. This work demonstrates that design and optimization of nano-TPV devices must account for radiative, electrical and thermal losses. PMID:26112658

  19. Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators

    NASA Astrophysics Data System (ADS)

    Bernardi, Michael P.; Dupré, Olivier; Blandre, Etienne; Chapuis, Pierre-Olivier; Vaillon, Rodolphe; Francoeur, Mathieu

    2015-06-01

    The impacts of radiative, electrical and thermal losses on the performances of nanoscale-gap thermophotovoltaic (nano-TPV) power generators consisting of a gallium antimonide cell paired with a broadband tungsten and a radiatively-optimized Drude radiator are analyzed. Results reveal that surface mode mediated nano-TPV power generation with the Drude radiator outperforms the tungsten radiator, dominated by frustrated modes, only for a vacuum gap thickness of 10?nm and if both electrical and thermal losses are neglected. The key limiting factors for the Drude- and tungsten-based devices are respectively the recombination of electron-hole pairs at the cell surface and thermalization of radiation with energy larger than the cell absorption bandgap. A design guideline is also proposed where a high energy cutoff above which radiation has a net negative effect on nano-TPV power output due to thermal losses is determined. It is shown that the power output of a tungsten-based device increases by 6.5% while the cell temperature decreases by 30?K when applying a high energy cutoff at 1.45?eV. This work demonstrates that design and optimization of nano-TPV devices must account for radiative, electrical and thermal losses.

  20. Solar thermal electricity generation

    NASA Astrophysics Data System (ADS)

    Gasemagha, Khairy Ramadan

    1993-01-01

    This report presents the results of modeling the thermal performance and economic feasibility of large (utility scale) and small solar thermal power plants for electricity generation. A number of solar concepts for power systems applications have been investigated. Each concept has been analyzed over a range of plant power ratings from 1 MW(sub e) to 300 MW(sub e) and over a range of capacity factors from a no-storage case (capacity factor of about 0.25 to 0.30) up to intermediate load capacity factors in the range of 0.46 to 0.60. The solar plant's economic viability is investigated by examining the effect of various parameters on the plant costs (both capital and O & M) and the levelized energy costs (LEC). The cost components are reported in six categories: collectors, energy transport, energy storage, energy conversion, balance of plant, and indirect/contingency costs. Concentrator and receiver costs are included in the collector category. Thermal and electric energy transport costs are included in the energy transport category. Costs for the thermal or electric storage are included in the energy storage category; energy conversion costs are included in the energy conversion category. The balance of plant cost category comprises the structures, land, service facilities, power conditioning, instrumentation and controls, and spare part costs. The indirect/contingency category consists of the indirect construction and the contingency costs. The concepts included in the study are (1) molten salt cavity central receiver with salt storage (PFCR/R-C-Salt); (2) molten salt external central receiver with salt storage (PFCR/R-E-Salt); (3) sodium external central receiver with sodium storage (PFCR/RE-Na); (4) sodium external central receiver with salt storage (PFCR/R-E-Na/Salt); (5) water/steam external central receiver with oil/rock storage (PFCR/R-E-W/S); (6) parabolic dish with stirling engine conversion and lead acid battery storage (PFDR/SLAB); (7) parabolic dish with stirling engine conversion and redox advanced battery storage (PFDR/S-RAB); and (8) parabolic trough with oil/rock storage (LFDR/R-HT-45). Key annual efficiency and economic results of the study are highlighted in tabular format for plant sizes and capacity factor that resulted in the lowest LEC over the analysis range.

  1. Design and testing of a cavity-type, steam-generating, central receiver for a solar thermal power plant

    NASA Astrophysics Data System (ADS)

    Zoschak, R. J.; Wu, S. F.; Gorman, D. N.

    1980-04-01

    This paper focuses on the design and operating aspects of a 10-MWe cavity-type, natural-circulation, steam-generating receiver for a central-receiver thermal power plant. The development of the receiver concept and the basic design features are described. The solar energy input analysis, thermal/hydraulic performance, and structural design of the receiver are discussed along with its control concept and transient operation. The design, construction, and testing of a 5-MWt scaled-down version of the 10-MWe receiver are summarized with emphasis on test objectives, scaling criteria, and design similarities to the full-scale receiver.

  2. Thermal Cycling Behavior of Zinc Antimonide Thin Films for High Temperature Thermoelectric Power Generation Applications.

    PubMed

    Shim, Hyung Cheoul; Woo, Chang-Su; Han, Seungwoo

    2015-08-19

    The zinc antimonide compound ZnxSby is one of the most efficient thermoelectric materials known at high temperatures due to its exceptional low thermal conductivity. For this reason, it continues to be the focus of active research, especially regarding its glass-like atomic structure. However, before practical use in actual surroundings, such as near a vehicle manifold, it is imperative to analyze the thermal reliability of these materials. Herein, we present the thermal cycling behavior of ZnxSby thin films in nitrogen (N2) purged or ambient atmosphere. ZnxSby thin films were prepared by cosputtering and reached a power factor of 1.39 mW m(-1) K(-2) at 321 °C. We found maximum power factor values gradually decreased in N2 atmosphere due to increasing resistivity with repeated cycling, whereas the specimen in air kept its performance. X-ray diffraction and electron microscopy observations revealed that fluidity of Zn atoms leads to nanoprecipitates, porous morphologies, and even growth of a coating layer or fiber structures on the surface of ZnxSby after repetitive heating and cooling cycles. With this in mind, our results indicate that proper encapsulation of the ZnxSby surface would reduce these unwanted side reactions and the resulting degradation of thermoelectric performance. PMID:26226167

  3. Solar Thermal Electricity Generating System

    NASA Astrophysics Data System (ADS)

    Mishra, Sambeet; Tripathy, Pratyasha

    2012-08-01

    A Solar Thermal Electricity generating system also known as Solar Thermal Power plant is an emerging renewable energy technology, where we generate the thermal energy by concentrating and converting the direct solar radiationat medium/high temperature (300?C ñ 800?C). The resulting thermal energy is then used in a thermodynamic cycleto produce electricity, by running a heat engine, which turns a generator to make electricity. Solar thermal power is currently paving the way for the most cost-effective solar technology on a large scale and is heading to establish a cleaner, pollution free and secured future. Photovoltaic (PV) and solar thermal technologies are two main ways of generating energy from the sun, which is considered the inexhaustible source of energy. PV converts sunlight directly into electricity whereas in Solar thermal technology, heat from the sun's rays is concentrated to heat a fluid, whose steam powers a generator that produces electricity. It is similar to the way fossil fuel-burning power plants work except that the steam is produced by the collected heat rather than from the combustion of fossil fuels. In order to generate electricity, five major varieties of solar thermal technologies used are:* Parabolic Trough Solar Electric Generating System (SEGS).* Central Receiver Power Plant.* Solar Chimney Power Plant.* Dish Sterling System.* Solar Pond Power Plant.Most parts of India,Asia experiences a clear sunny weather for about 250 to 300 days a year, because of its location in the equatorial sun belt of the earth, receiving fairly large amount of radiation as compared to many parts of the world especially Japan, Europe and the US where development and deployment of solar technologies is maximum.Whether accompanied with this benefit or not, usually we have to concentrate the solar radiation in order to compensate for the attenuation of solar radiation in its way to earthís surface, which results in from 63,2 GW/m2 at the Sun to 1 kW/m2 at Earth¥s surface. The higher the concentration, the higher the temperatures we can achieve when converting solar radiation into thermal energy

  4. Development of a phase-change thermal storage system using modified anhydrous sodium hydroxide for solar electric power generation

    NASA Technical Reports Server (NTRS)

    Cohen, B. M.; Rice, R. E.; Rowny, P. E.

    1978-01-01

    A thermal storage system for use in solar power electricity generation was investigated analytically and experimentally. The thermal storage medium is principally anhydrous NaOH with 8% NaNO3 and 0.2% MnO2. Heat is charged into storage at 584 K and discharged from storage at 582 K by Therminol-66. Physical and thermophysical properties of the storage medium were measured. A mathematical simulation and computer program describing the operation of the system were developed. A 1/10 scale model of a system capable of storing and delivering 3.1 x 10 to the 6th power kJ of heat was designed, built, and tested. Tests included steady state charging, discharging, idling, and charge-discharge conditions simulating a solar daily cycle. Experimental data and computer-predicted results are correlated. A reference design including cost estimates of the full-size system was developed.

  5. Concentrating solar thermal power.

    PubMed

    Müller-Steinhagen, Hans

    2013-08-13

    In addition to wind and photovoltaic power, concentrating solar thermal power (CSP) will make a major contribution to electricity provision from renewable energies. Drawing on almost 30 years of operational experience in the multi-megawatt range, CSP is now a proven technology with a reliable cost and performance record. In conjunction with thermal energy storage, electricity can be provided according to demand. To date, solar thermal power plants with a total capacity of 1.3 GW are in operation worldwide, with an additional 2.3 GW under construction and 31.7 GW in advanced planning stage. Depending on the concentration factors, temperatures up to 1000°C can be reached to produce saturated or superheated steam for steam turbine cycles or compressed hot gas for gas turbine cycles. The heat rejected from these thermodynamic cycles can be used for sea water desalination, process heat and centralized provision of chilled water. While electricity generation from CSP plants is still more expensive than from wind turbines or photovoltaic panels, its independence from fluctuations and daily variation of wind speed and solar radiation provides it with a higher value. To become competitive with mid-load electricity from conventional power plants within the next 10-15 years, mass production of components, increased plant size and planning/operating experience will be accompanied by technological innovations. On 30 October 2009, a number of major industrial companies joined forces to establish the so-called DESERTEC Industry Initiative, which aims at providing by 2050 15 per cent of European electricity from renewable energy sources in North Africa, while at the same time securing energy, water, income and employment for this region. Solar thermal power plants are in the heart of this concept. PMID:23816910

  6. Next generation cooled long range thermal sights with minimum size, weight, and power

    NASA Astrophysics Data System (ADS)

    Breiter, R.; Ihle, T.; Wendler, J.; Rühlich, I.; Ziegler, J.

    2013-06-01

    Situational awareness and precise targeting at day, night and severe weather conditions are key elements for mission success in asymmetric warfare. To support these capabilities for the dismounted soldier, AIM has developed a family of stand-alone thermal weapon sights based on high performance cooled IR-modules which are used e.g. in the infantryman of the future program of the German army (IdZ). The design driver for these sights is a long ID range <1500m for the NATO standard target to cover the operational range of a platoon with the engagement range of .50 cal rifles, 40mm AGLs or for reconnaissance tasks. The most recent sight WBZG has just entered into serial production for the IdZ enhanced system of the German army with additional capabilities like a wireless data link to the soldier backbone computer. Minimum size, weight and power (SWaP) are most critical requirements for the dismounted soldiers' equipment and sometimes push a decision towards uncooled equipment with marginal performance referring to the outstanding challenges in current asymmetric warfare, e.g. the capability to distinguish between combatants and non-combatants in adequate ranges. To provide the uncompromised e/o performance with SWaP parameters close to uncooled, AIM has developed a new thermal weapon sight based on high operating temperature (HOT) MCT MWIR FPAs together with a new low power single piston stirling cooler. In basic operation the sight is used as a clip-on in front of the rifle scope. An additional eyepiece for stand-alone targeting with e.g. AGLs or a biocular version for relaxed surveillance will be available. The paper will present details of the technologies applied for such long range cooled sights with size, weight and power close to uncooled.

  7. Solar thermal power system

    DOEpatents

    Bennett, Charles L.

    2010-06-15

    A solar thermal power generator includes an inclined elongated boiler tube positioned in the focus of a solar concentrator for generating steam from water. The boiler tube is connected at one end to receive water from a pressure vessel as well as connected at an opposite end to return steam back to the vessel in a fluidic circuit arrangement that stores energy in the form of heated water in the pressure vessel. An expander, condenser, and reservoir are also connected in series to respectively produce work using the steam passed either directly (above a water line in the vessel) or indirectly (below a water line in the vessel) through the pressure vessel, condense the expanded steam, and collect the condensed water. The reservoir also supplies the collected water back to the pressure vessel at the end of a diurnal cycle when the vessel is sufficiently depressurized, so that the system is reset to repeat the cycle the following day. The circuital arrangement of the boiler tube and the pressure vessel operates to dampen flow instabilities in the boiler tube, damp out the effects of solar transients, and provide thermal energy storage which enables time shifting of power generation to better align with the higher demand for energy during peak energy usage periods.

  8. Thermal and environmental characteristics of the primary equipment of the 480-MW Razdan-5 power-generating plant operating as a combined-cycle plant

    NASA Astrophysics Data System (ADS)

    Sargsyan, K. B.; Eritsyan, S. Kh.; Petrosyan, G. S.; Avtandilyan, A. V.; Gevorkyan, A. R.; Klub, M. V.

    2015-01-01

    Results of thermal tests of 480-MW power-generating Unit 5 of Razdan Thermal Power Plant (hereinafter, Razdan-5 power unit) are presented. The tests were carried out by LvivORGRES after an integration trial of the power unit. The aim of the tests was thermal characterization of the steam boiler and the steam turbine when the power unit operates as a combined-cycle plant. The economic efficiency of the boiler and the turbine and the environmental characteristics of the power unit are determined and the calculated and the actual values are compared. The specific heat gross and net rates required for the power unit to generate the electric power are established.

  9. Innovative Application of Maintenance-Free Phase-Change Thermal Energy Storage for Dish-Engine Solar Power Generation

    SciTech Connect

    Qui, Songgang; Galbraith, Ross

    2013-01-23

    This final report summarizes the final results of the Phase II Innovative Application of Maintenance-Free Phase-Change Thermal Energy Storage for Dish-Engine Solar Power Generation project being performed by Infinia Corporation for the U.S. Department of Energy under contract DE-FC36-08GO18157 during the project period of September 1, 2009 - August 30, 2012. The primary objective of this project is to demonstrate the practicality of integrating thermal energy storage (TES) modules, using a suitable thermal salt phase-change material (PCM) as its medium, with a dish/Stirling engine; enabling the system to operate during cloud transients and to provide dispatchable power for 4 to 6 hours after sunset. A laboratory prototype designed to provide 3 kW-h of net electrical output was constructed and tested at Infinia's Ogden Headquarters. In the course of the testing, it was determined that the system's heat pipe network - used to transfer incoming heat from the solar receiver to both the Stirling generator heater head and to the phase change salt - did not perform to expectations. The heat pipes had limited capacity to deliver sufficient heat energy to the generator and salt mass while in a charging mode, which was highly dependent on the orientation of the device (vertical versus horizontal). In addition, the TES system was only able to extract about 30 to 40% of the expected amount of energy from the phase change salt once it was fully molten. However, the use of heat pipes to transfer heat energy to and from a thermal energy storage medium is a key technical innovation, and the project team feels that the limitations of the current device could be greatly improved with further development. A detailed study of manufacturing costs using the prototype TES module as a basis indicates that meeting DOE LCOE goals with this hardware requires significant efforts. Improvement can be made by implementing aggressive cost-down initiatives in design and materials, improving system performance by boosting efficiencies, and by refining cost estimates with vendor quotes in lieu of mass-based approaches. Although the prototype did not fully demonstrate performance and realize projected cost targets, the project team believes that these challenges can be overcome. The test data showed that the performance can be significantly improved by refining the heat pipe designs. However, the project objective for phase 3 is to design and test on sun the field ready systems, the project team feels that is necessary to further refine the prototype heat pipe design in the current prototype TES system before move on to field test units, Phase 3 continuation will not be pursued.

  10. Potential benefits of a ceramic thermal barrier coating on large power generation gas turbine

    NASA Technical Reports Server (NTRS)

    Clark, J. S.; Nainiger, J. J.

    1977-01-01

    Thermal barrier coating design option offers benefit in terms of reduced electricity costs when used in utility gas turbines. Options considered include: increased firing temperature, increased component life, reduced cooling air requirements, and increased corrosion resistance (resulting in increased tolerance for dirty fuels). Performance and cost data were obtained. Simple, recuperated and combined cycle applications were considered, and distillate and residual fuels were assumed. The results indicate that thermal barrier coatings could produce large electricity cost savings if these coatings permit turbine operation with residual fuels at distillate-rated firing temperatures. The results also show that increased turbine inlet temperature can result in substantial savings in fuel and capital costs.

  11. Geothermal Power Generation

    SciTech Connect

    2007-11-15

    The report provides an overview of the renewed market interest in using geothermal for power generation including a concise look at what's driving interest in geothermal power generation, the current status of geothermal power generation, and plans for the future. Topics covered in the report include: an overview of geothermal power generation including its history, the current market environment, and its future prospects; an analysis of the key business factors that are driving renewed interest in geothermal power generation; an analysis of the challenges that are hindering the implementation of geothermal power generation projects; a description of geothermal power generation technologies; a review of the economic drivers of geothermal power generation project success; profiles of the major geothermal power producing countries; and, profiles of the major geothermal power project developers.

  12. Generating random thermal momenta

    E-print Network

    Denes Molnar

    2012-12-09

    Generation of random thermal particle momenta is a basic task in many problems, such as microscopic studies of equilibrium and transport properties of systems, or the conversion of a fluid to particles. In heavy-ion physics, the (in)efficiency of the algorithm matters particularly in hybrid hydrodynamics + hadronic transport calculations. With popular software packages, such as UrQMD 3.3p1 or THERMINATOR, it can still take ten hours to generate particles for a single Pb+Pb "event" at the LHC from fluid dynamics output. Below I describe reasonably efficient simple algorithms using the MPC package, which should help speed momentum generation up by at least one order of magnitude. It is likely that this wheel has been reinvented many times instead of reuse, so there may very well exist older and/or better algorithms that I am not aware of (MPC has been around only since 2000). The main goal here is to encourage practitioners to use available efficient routines, and offer a few practical solutions.

  13. Development and Performance Evaluation of High Temperature Concrete for Thermal Energy Storage for Solar Power Generation

    SciTech Connect

    R. Panneer Selvam, Micah Hale and Matt strasser

    2013-03-31

    Thermal energy can be stored by the mechanism of sensible or latent heat or heat from chemical reactions. Sensible heat is the means of storing energy by increasing the temperature of the solid or liquid. Since the concrete as media cost per kWhthermal is $1, this seems to be a very economical material to be used as a TES. This research is focused on extending the concrete TES system for higher temperatures (500 �ºC to 600 �ºC) and increasing the heat transfer performance using novel construction techniques. To store heat at high temperature special concretes are developed and tested for its performance. The storage capacity costs of the developed concrete is in the range of $0.91-$3.02/kWhthermal Two different storage methods are investigated. In the first one heat is transported using molten slat through a stainless steel tube and heat is transported into concrete block through diffusion. The cost of the system is higher than the targeted DOE goal of $15/kWhthermal The increase in cost of the system is due to stainless steel tube to transfer the heat from molten salt to the concrete blocks.The other method is a one-tank thermocline system in which both the hot and cold fluid occupy the same tank resulting in reduced storage tank volume. In this model, heated molten salt enters the top of the tank which contains a packed bed of quartzite rock and silica sand as the thermal energy storage (TES) medium. The single-tank storage system uses about half the salt that is required by the two-tank system for a required storage capacity. This amounts to a significant reduction in the cost of the storage system. The single tank alternative has also been proven to be cheaper than the option which uses large concrete modules with embedded heat exchangers. Using computer models optimum dimensions are determined to have an round trip efficiency of 84%. Additionally, the cost of the structured concrete thermocline configuration provides the TES capacity cost of $33.80$/kWhthermal compared with $30.04/kWhthermal for a packed-bed thermocline (PBTC) configuration and $46.11/kWhthermal for a two-tank liquid configuration.

  14. MHD Power Generation

    ERIC Educational Resources Information Center

    Kantrowitz, Arthur; Rosa, Richard J.

    1975-01-01

    Explains the operation of the Magnetohydrodynamic (MHD) generator and advantages of the system over coal, oil or nuclear powered generators. Details the development of MHD generators in the United States and Soviet Union. (CP)

  15. Design of the 200 MWe (net) Tonghae Thermal Power Plant circulating fluidized bed steam generator

    SciTech Connect

    Maitland, J.; Schaker, Y.

    1997-12-31

    Combustion Engineering, Inc. (ABB-CE) has been awarded the contract to design a 200 MWe (net) CFB firing a Korean Anthracite fuel as a part of a plant located in Tonghae, Republic of Korea and owned and operated by Korea Electric Power Company (KEPCO). As part of the plant, this ABB-CE FLEXTECH{trademark} fluidized bed boiler will be required to fire a range of seven different fuels, achieve a boiler turndown to 30% load, and meet the customer`s steam and reheat steam temperature control and start-up time requirements. This paper discusses the above design considerations, heat duty distributions throughout the unit, and the boiler island auxiliary equipment system design.

  16. Ocean thermal gradient hydraulic power plant.

    PubMed

    Beck, E J

    1975-07-25

    Solar energy stored in the oceans may be used to generate power by exploiting ploiting thermal gradients. A proposed open-cycle system uses low-pressure steam to elevate vate water, which is then run through a hydraulic turbine to generate power. The device is analogous to an air lift pump. PMID:17813707

  17. Use of biogas for cogeneration of heat and electricity for local application: performance evaluation of an engine power generator and a sludge thermal dryer.

    PubMed

    Lobato, L C S; Chernicharo, C A L; Pujatti, F J P; Martins, O M; Melo, G C B; Recio, A A R

    2013-01-01

    A small unit of cogeneration of energy and heat was tested at the Centre for Research and Training on Sanitation UFMG/COPASA - CePTS, located at the Arrudas Sewage Treatment Plant, in Belo Horizonte, Minas Gerais, Brazil. The unit consisted of an engine power generator adapted to run on biogas, a thermal dryer prototype and other peripherals (compressor, biogas storage tank, air blower, etc.). The heat from engine power generator exhaust gases was directed towards the thermal dryer prototype to dry the sludge and disinfect it. The results showed that the experimental apparatus is self-sufficient in electricity, even producing a surplus, available for other uses. The tests of drying and disinfection of sludge lasted 7 h, leading to an increase in solids content from 4 to 8% (50% reduction in sludge volume). Although the drying of sludge was not possible (only thickening was achieved), the disinfection process proved very effective, enabling the complete inactivation of helminth eggs. PMID:23128634

  18. Wind power generating system

    SciTech Connect

    Schachle, Ch.; Schachle, E. C.; Schachle, J. R.; Schachle, P. J.

    1985-03-12

    Normally feathered propeller blades of a wind power generating system unfeather in response to the actuation of a power cylinder that responds to actuating signals. Once operational, the propellers generate power over a large range of wind velocities. A maximum power generation design point signals a feather response of the propellers so that once the design point is reached no increase in power results, but the system still generates power. At wind speeds below this maximum point, propeller speed and power output optimize to preset values. The propellers drive a positive displacement pump that in turn drives a positive displacement motor of the swash plate type. The displacement of the motor varies depending on the load on the system, with increasing displacement resulting in increasing propeller speeds, and the converse. In the event of dangerous but not clandestine problems developing in the system, a control circuit dumps hydraulic pressure from the unfeathering cylinder resulting in a predetermined, lower operating pressure produced by the pump. In the event that a problem of potentially cladestine consequence arises, the propeller unfeathering cylinder immediately unloads. Upon startup, a bypass around the motor is blocked, applying a pressure across the motor. The motor drives the generator until the generator reaches a predetermined speed whereupon the generator is placed in circuit with a utility grid and permitted to motor up to synchronous speed.

  19. A Power And Thermal System with Thermoelectric Generators At 930 C For Solar Probe Inside 0.1 AU

    NASA Technical Reports Server (NTRS)

    Choi, Michael K.; Powers, Edward I. (Technical Monitor)

    2001-01-01

    The Power System for Solar Probe is required to provide an electrical power of 100 W to 200 W over a wide range of radial distances from the Sun. The distance varies from 5.2 AU (i.e., Jupiter gravity assist orbit) and 4 solar radii. The solar intensity varies by nearly 5 orders of magnitude. Radioactive Thermoelectric Generator (RTG) is one way to meet the power requirement. However, the use of an RTG presents a politically expensive risk for the mission. An alternative is a totally non-nuclear and intrinsically conservative method, which uses mostly developed technologies. This paper presents an innovative concept, which uses thermoelectric generators with a high temperature cooling system to meet the power requirement inside 0. 1 AU. In this concept, Silicon Germanium (SiGe)/Gallium Phosphorus (GaP) thermoelectric generators use the infrared radiation from the spacecraft primary heat shield as an energy source, and a liquid sodium high temperature cooling system to maintain the SiGe/GaP thermoelectric generators at 1200 K. It allows a routine access by interplanetary probes to the innermost regions of the heliosphere, which is prudent to the scientific community.

  20. Thermal and dynamic analysis of the RING (Radiatively-cooled, Inertially-driven Nuclear Generator) power system radiator

    SciTech Connect

    Apley, W.J.; Babb, A.L.

    1989-01-01

    The nuclear option for a space-based power system appears most suitable for missions that require long-term, sustained operation at power levels above 100 kWe. Systems currently available operate at relatively low thermal efficiencies (6--10%). Thus, a 100 kWe system must discharge nearly 2 MWth of waste heat through the comparatively inefficient process of radiative cooling. The impact of the resultant radiator assembly size on overall power system weight is significant, and has led to proposals for radiators with potentially higher efficiencies. Examples include the: liquid droplet radiator; fabric radiator; bubble membrane radiator; rotating film radiator; and dust radiator. 14 refs., 2 figs., 2 tabs.

  1. Electrical power generating system. [for windpowered generation

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (inventor)

    1981-01-01

    An alternating current power generation system adopted to inject power in an already powered power line is discussed. The power generating system solves to adjustably coup an induction motor, as a generator, to an ac power line wherein the motor and power line are connected through a triac. The triac is regulated to normally turn on at a relatively late point in each half cycle of its operation, whereby at less than operating speed, and thus when the induction motor functions as a motor rather than as a generator, power consumption from the line is substantially reduced. The principal application will be for windmill powered generation.

  2. Assessment of generic solar thermal systems for large power applications: analysis of electric power generating costs for systems larger than 10 MWe

    SciTech Connect

    Apley, W.J.; Bird, S.P.; Brown, D.R.; Drost, M.K.; Fort, J.A.; Garrett-Price, B.A.; Patton, W.P.; Williams, T.A.

    1980-11-01

    Seven generic types of collectors, together with associated subsystems for electric power generation, were considered. The collectors can be classified into three categories: (1) two-axis tracking (with compound-curvature reflecting surfaces); (2) one-axis tracking (with single-curvature reflecting surfaces); and (3) nontracking (with low-concentration reflecting surfaces). All seven collectors were analyzed in conceptual system configurations with Rankine-cycle engines. In addition, two of the collectors were analyzed with Brayton-cycle engines, and one was analyzed with a Stirling-cycle engine. With these engine options, and the consideration of both thermal and electrical storage for the Brayton-cycle central receiver, 11 systems were formulated for analysis. Conceptual designs developed for the 11 systems were based on common assumptions of available technology in the 1990 to 2000 time frame. No attempt was made to perform a detailed optimization of each conceptual design. Rather, designs best suited for a comparative evaluation of the concepts were formulated. Costs were estimated on the basis of identical assumptions, ground rules, methodologies, and unit costs of materials and labor applied uniformly to all of the concepts. The computer code SOLSTEP was used to analyze the thermodynamic performance characteristics and energy costs of the 11 concepts. Year-long simulations were performed using meteorological and insolation data for Barstow, California. Results for each concept include levelized energy costs and capacity factors for various combinations of storage capacity and collector field size.

  3. Magnetohydrodynamic power generation

    NASA Technical Reports Server (NTRS)

    Smith, J. L.

    1984-01-01

    Magnetohydrodynamic (MHD) Power Generation is a concise summary of MHD theory, history, and future trends. Results of the major international MHD research projects are discussed. Data from MHD research is included. Economics of initial and operating costs are considered.

  4. Power-Generation Characteristics After Vibration and Thermal Stresses of Thermoelectric Unicouples with CoSb3/Ti/Mo(Cu) Interfaces

    NASA Astrophysics Data System (ADS)

    Bae, Kwang Ho; Choi, Soon-Mok; Kim, Kyung-Hun; Choi, Hyoung-Seuk; Seo, Won-Seon; Kim, Il-Ho; Lee, Soonil; Hwang, Hae Jin

    2015-06-01

    Reliability tests for thermoelectric unicouples were carried out to investigate the adhesion properties of CoSb3/Ti/Mo(Cu) interfaces. The n-type In0.25 Co3.95Ni0.05Sb12 and p-type In0.25Co3FeSb12 bulks were prepared for fabricating a thermoelectric unicouple (one p- n couple) by an induction melting and a spark plasma sintering process. Mo-Cu alloy was selected as an electrode for the unicouples due to its high melting temperature and proper work function value. Many thermoelectric unicouples with the CoSb3/Ti/Mo(Cu) interfaces were fabricated with the proper brazing materials by means of a repeated firing process. Reliability of the unicouples with the interfaces was evaluated by a vibration test and a thermal cycling test. After the thermal cycling and vibration tests, the power-generation characteristics of the unicouples were compared with the unicouples before the tests. Even after the vibration test, electrical power with a power density of 0.5 W/cm2 was generated. The Ti-interlayer is considered as a possible candidate for making a reliable unicouple with high adhesion strength. With the thermal cycling test, the resistance of the unicouple increased and the electrical power from the unicouple decreased. A failure mode by the thermal cycling test was ascribed to a complex effect of micro-cracks originated from the thermal stress and oxidation problem of the thermoelectric materials; that is, a thick oxide layer more than 300 ?m was detected after a high-temperature durability test of n-type In0.25Co3.95Ni0.05Sb12 material at 773 K in air for 7 days.

  5. Future trends in power generation cost by power resource

    NASA Astrophysics Data System (ADS)

    1992-08-01

    The Japan Energy Economy Research Institute has been evaluating power generation cost by each power resource every year focusing on nuclear power generation. The Institute is surveying the cost evaluations by power resources in France, Britain and the U.S.A., the nuclear generation advanced nations. The OECD is making power generation cost estimation using a hypothesis which uniforms basically the conditions varying in different member countries. In model power generation cost calculations conducted by the Ministry of International Trade and Industry of Japan, nuclear power generation is the most economical system in any fiscal year. According to recent calculations performed by the Japan Energy Economy Research Institute, the situation is such that it is difficult to distinguish the economical one from others among the power generation systems in terms of generation costs except for thermal power generation. Economic evaluations are given on estimated power generation costs based on construction costs for nuclear and thermal power plants, nuclear fuel cycling cost, and fuel cost data on petroleum, LNG and coal. With regard to the future trends, scenario analyses are made on generation costs, that assume fluctuations in fuel prices and construction costs, the important factors to give economic influence on power generation.

  6. Generating a representative signal of coal ash content to anticipate combustion control in a thermal power station.

    PubMed

    Prieto-Fernández, Ismael; Santurio-Díaz, José M; Folgueras-Díaz, Belén; López-Bobo, M Rosario; Fernández-Viar, Pedro

    2004-05-01

    This paper describes the possibilities of continuously measuring coal ash in the boiler feeding circuit of a thermal power station so that the measurement can be used as a signal for the boiler combustion control system. An installation was designed, at semi-industrial scale, that could faithfully reproduce the operation of a belt feeder. In order to measure the ash content, a natural radioactivity meter was installed and a large number of coal samples with different ranks and grain sizes were tested, eventually showing the possibility of achieving the objective. PMID:15082052

  7. JV Task 46 - Development and Testing of a Thermally Integrated SOFC-Gasification System for Biomass Power Generation

    SciTech Connect

    Phillip Hutton; Nikhil Patel; Kyle Martin; Devinder Singh

    2008-02-01

    The Energy & Environmental Research Center has designed a biomass power system using a solid oxide fuel cell (SOFC) thermally integrated with a downdraft gasifier. In this system, the high-temperature effluent from the SOFC enables the operation of a substoichiometric air downdraft gasifier at an elevated temperature (1000 C). At this temperature, moisture in the biomass acts as an essential carbon-gasifying medium, reducing the equivalence ratio at which the gasifier can operate with complete carbon conversion. Calculations show gross conversion efficiencies up to 45% (higher heating value) for biomass moisture levels up to 40% (wt basis). Experimental work on a bench-scale gasifier demonstrated increased tar cracking within the gasifier and increased energy density of the resultant syngas. A series of experiments on wood chips demonstrated tar output in the range of 9.9 and 234 mg/m{sup 3}. Both button cells and a 100-watt stack was tested on syngas from the gasifier. Both achieved steady-state operation with a 22% and 15% drop in performance, respectively, relative to pure hydrogen. In addition, tar tolerance testing on button cells demonstrated an upper limit of tar tolerance of approximately 1%, well above the tar output of the gasifier. The predicted system efficiency was revised down to 33% gross and 27% net system efficiency because of the results of the gasifier and fuel cell experiments. These results demonstrate the feasibility and benefits of thermally integrating a gasifier and a high-temperature fuel cell in small distributed power systems.

  8. Peak power ratio generator

    DOEpatents

    Moyer, Robert D. (Albuquerque, NM)

    1985-01-01

    A peak power ratio generator is described for measuring, in combination with a conventional power meter, the peak power level of extremely narrow pulses in the gigahertz radio frequency bands. The present invention in a preferred embodiment utilizes a tunnel diode and a back diode combination in a detector circuit as the only high speed elements. The high speed tunnel diode provides a bistable signal and serves as a memory device of the input pulses for the remaining, slower components. A hybrid digital and analog loop maintains the peak power level of a reference channel at a known amount. Thus, by measuring the average power levels of the reference signal and the source signal, the peak power level of the source signal can be determined.

  9. Oscillating fluid power generator

    DOEpatents

    Morris, David C

    2014-02-25

    A system and method for harvesting the kinetic energy of a fluid flow for power generation with a vertically oriented, aerodynamic wing structure comprising one or more airfoil elements pivotably attached to a mast. When activated by the moving fluid stream, the wing structure oscillates back and forth, generating lift first in one direction then in the opposite direction. This oscillating movement is converted to unidirectional rotational movement in order to provide motive power to an electricity generator. Unlike other oscillating devices, this device is designed to harvest the maximum aerodynamic lift forces available for a given oscillation cycle. Because the system is not subjected to the same intense forces and stresses as turbine systems, it can be constructed less expensively, reducing the cost of electricity generation. The system can be grouped in more compact clusters, be less evident in the landscape, and present reduced risk to avian species.

  10. Thermophillic and thermotolerant fungi isolated from the thermal effluent of nuclear power generating reactors: dispersal of human opportunistic and veterinary pathogenic fungi.

    PubMed

    Rippon, J W; Gerhold, R; Heath, M

    1980-03-31

    Over a period of a year, samples of water, foam, microbial mat, soil and air were obtained from areas associated with the cooling canal of a nuclear power station. The seventeen sample sites included water in the cooling canal that was thermally enriched and soil and water adjacent to, upstream, downstream and at a distance from the generator. Air samples were taken at the plant and at various distances from the plant. Fifty-two species of thermotolerant and thermophilic fungi were isolated. Of these, eleven species are grouped as opportunistic Mucorales or opportunistic Aspergillus sp. One veterinary pathogen was also isolated (Dactylaria gallopava). The opportunistic/pathogenic fungi were found primarily in the intake bay, the discharge bay and the cooling canal. Smaller numbers were obtained at both upstream and downstream locations. Soil samples near the cooling canal reflected an enrichment of thermophilous organisms, the previously mentioned opportunistic Mucorales and Aspergillus spp. Their numbers were found to be greater than that usually encountered in a mesophilic environment. However, air and soil samples taken at various distances from the power station indicated no greater abundance of these thermophilous fungi than would be expected from a thermal enriched environment. Our results indicate that there was no significant dissemination of thermophilous fungi from the thermal enriched effluents to the adjacent environment. These findings are consistent with the results of other investigators. PMID:7374746

  11. Microfabricated thermoelectric power-generation devices

    NASA Technical Reports Server (NTRS)

    Fleurial, Jean-Pierre (Inventor); Ryan, Margaret A. (Inventor); Borshchevsky, Alex (Inventor); Phillips, Wayne (Inventor); Kolawa, Elizabeth A. (Inventor); Snyder, G. Jeffrey (Inventor); Caillat, Thierry (Inventor); Kascich, Thorsten (Inventor); Mueller, Peter (Inventor)

    2004-01-01

    A device for generating power to run an electronic component. The device includes a heat-conducting substrate (composed, e.g., of diamond or another high thermal conductivity material) disposed in thermal contact with a high temperature region. During operation, heat flows from the high temperature region into the heat-conducting substrate, from which the heat flows into the electrical power generator. A thermoelectric material (e.g., a BiTe alloy-based film or other thermoelectric material) is placed in thermal contact with the heat-conducting substrate. A low temperature region is located on the side of the thermoelectric material opposite that of the high temperature region. The thermal gradient generates electrical power and drives an electrical component.

  12. Microfabricated thermoelectric power-generation devices

    NASA Technical Reports Server (NTRS)

    Fleurial, Jean-Pierre (Inventor); Ryan, Margaret A. (Inventor); Borshchevsky, Alex (Inventor); Phillips, Wayne (Inventor); Kolawa, Elizabeth A. (Inventor); Snyder, G. Jeffrey (Inventor); Caillat, Thierry (Inventor); Kascich, Thorsten (Inventor); Mueller, Peter (Inventor)

    2002-01-01

    A device for generating power to run an electronic component. The device includes a heat-conducting substrate (composed, e.g., of diamond or another high thermal conductivity material) disposed in thermal contact with a high temperature region. During operation, heat flows from the high temperature region into the heat-conducting substrate, from which the heat flows into the electrical power generator. A thermoelectric material (e.g., a BiTe alloy-based film or other thermoelectric material) is placed in thermal contact with the heat-conducting substrate. A low temperature region is located on the side of the thermoelectric material opposite that of the high temperature region. The thermal gradient generates electrical power and drives an electrical component.

  13. Wind power. [electricity generation

    NASA Technical Reports Server (NTRS)

    Savino, J. M.

    1975-01-01

    A historical background on windmill use, the nature of wind, wind conversion system technology and requirements, the economics of wind power and comparisons with alternative systems, data needs, technology development needs, and an implementation plan for wind energy are presented. Considerable progress took place during the 1950's. Most of the modern windmills feature a wind turbine electricity generator located directly at the top of their rotor towers.

  14. Spectrophotovoltaic orbital power generation

    NASA Technical Reports Server (NTRS)

    Onffroy, J. R.

    1980-01-01

    The feasibilty of a spectrophotovoltaic orbital power generation system that optically concentrates solar energy is demonstrated. A dichroic beam-splitting mirror is used to divide the solar spectrum into two wavebands. Absorption of these wavebands by GaAs and Si solar cell arrays with matched energy bandgaps increases the cell efficiency while decreasing the amount of heat that must be rejected. The projected cost per peak watt if this system is $2.50/W sub p.

  15. Generator powered plasma focus

    SciTech Connect

    Fowler, C. M.

    2002-01-01

    An earlier set of experiments will be described briefly, in which plate flux compression generators were used to power a Plasma Focus. Currents, voltages and 'rundown times' obtained in these experiments are shown to agree well with a simple model. This same model is then used to show how dramatic operational improvements could be obtained with use of an appropriate fuse, provided the model remained valid.

  16. High power microwave generator

    DOEpatents

    Ekdahl, Carl A. (Albuquerque, NM)

    1986-01-01

    A microwave generator efficiently converts the energy of an intense relativistic electron beam (REB) into a high-power microwave emission using the Smith-Purcell effect which is related to Cerenkov radiation. Feedback for efficient beam bunching and high gain is obtained by placing a cylindrical Smith-Purcell transmission grating on the axis of a toroidal resonator. High efficiency results from the use of a thin cold annular highly-magnetized REB that is closely coupled to the resonant structure.

  17. High power microwave generator

    DOEpatents

    Ekdahl, C.A.

    1983-12-29

    A microwave generator efficiently converts the energy of an intense relativistic electron beam (REB) into a high-power microwave emission using the Smith-Purcell effect which is related to Cerenkov radiation. Feedback for efficient beam bunching and high gain is obtained by placing a cylindrical Smith-Purcell transmission grating on the axis of a toroidal resonator. High efficiency results from the use of a thin cold annular highly-magnetized REB that is closely coupled to the resonant structure.

  18. COMPREHENSIVE STANDARDS: THE POWER GENERATION CASE

    EPA Science Inventory

    This study presents an illustrative data base of material quantities and environmental effluents in the fuel cycles for alternative technologies of thermally generated power. The entire fuel cycle for each of the alternative ten technologies is outlined for a representative power...

  19. Innovative technologies for full utilization of ash generated at coal-fired thermal power stations for producing alumina and construction materials

    NASA Astrophysics Data System (ADS)

    Delitsyn, L. M.; Vlasov, A. S.; Borodina, T. I.; Ezhova, N. N.; Sudareva, S. V.

    2013-04-01

    The possibility of full 100% usage of ash from coal-fired thermal power stations for producing raw materials for the cement and alumina industries is considered, and it is shown that comprehensive processing of ash from coal-fired thermal power stations is required for this purpose.

  20. Power Electronics Thermal Control (Presentation)

    SciTech Connect

    Narumanchi, S.

    2010-05-05

    Thermal management plays an important part in the cost of electric drives in terms of power electronics packaging. Very promising results have been obtained by using microporous coatings and skived surfaces in conjunction with single-phase and two-phase flows. Sintered materials and thermoplastics with embedded fibers show significant promise as thermal interface materials, or TIMs. Appropriate cooling technologies depend on the power electronics package application and reliability.

  1. GEOTHERMAL POWER GENERATION PLANT

    SciTech Connect

    Boyd, Tonya

    2013-12-01

    Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196oF resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OIT’s Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Cooling water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the “waste” water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the “waste” water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.

  2. HEITSCH, R OMISCH --HYDRO-STORAGE SUBPROBLEMS IN POWER GENERATION 1 Hydro-Storage Subproblems in Power Generation

    E-print Network

    Römisch, Werner

    in Power Generation: An Approach with a Relaxation Method for Network Flow Problems Holger Heitsch for a power utility that owns a hydro-thermal power generation system and the application of the new algoHEITSCH, R ¨OMISCH -- HYDRO-STORAGE SUBPROBLEMS IN POWER GENERATION 1 Hydro-Storage Subproblems

  3. Thermal Model Predictions of Advanced Stirling Radioisotope Generator Performance

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen J.; Fabanich, William Anthony; Schmitz, Paul C.

    2014-01-01

    This presentation describes the capabilities of three-dimensional thermal power model of advanced stirling radioisotope generator (ASRG). The performance of the ASRG is presented for different scenario, such as Venus flyby with or without the auxiliary cooling system.

  4. Power generating apparatus

    SciTech Connect

    Vukovic, M.

    1981-02-10

    Power generating apparatus comprising a float mounted on a support which is pivotally mounted to a base the support being secured to a beam extending rearwardly of the base to a vertically extending elongated structure carrying a pair of vertically moveable gear racks in guideways. Each rack is engaged by a gear wheel driven by movement of the racks and one-way drive means connects each gear wheel to an output shaft. Driving weights are secured to each rack to drive the racks in opposite directions under the action of gravity forces acting on the weights, the driving motion causing the output shaft to rotate in a given direction. The free end of the beam is connected to a cross-arm vertically moveable on a guide on the elongate structure, the cross-arm having motion transmitting means to raise each of the weights during vertical movement of the crossarm resulting from movement of the float.

  5. Automotive Power Generation and Control

    E-print Network

    Caliskan, Vahe

    This paper describes some new developments in the application of power electronics to automotive power generation and control. A new load-matching technique is introduced that uses a simple switched-mode rectifier to achieve ...

  6. Selecting the thermal circuit and profile of a Russian large new-generation power-generating gas turbine unit and a combined-cycle plant built around it

    NASA Astrophysics Data System (ADS)

    Favorskii, O. N.; Polishchuk, V. L.

    2010-02-01

    Proposals on the most advisable lines in which the Russian industry can develop advanced new-generation gas-turbine units and combined-cycle plants competitive in the first half of the 21st century are formulated.

  7. Thermally matched fluid cooled power converter

    DOEpatents

    Radosevich, Lawrence D.; Kannenberg, Daniel G.; Kaishian, Steven C.; Beihoff, Bruce C.

    2005-06-21

    A thermal support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. Power electronic circuits are thermally matched, such as between component layers and between the circuits and the support. The support may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  8. Independent power generator

    NASA Technical Reports Server (NTRS)

    Young, R. N. (inventor)

    1978-01-01

    A gas turbine powered aircraft auxiliary power system is described which is capable of efficiently supplying all aircraft auxiliary services both in flight and on the ground and is further capable of operating independently of the aircraft main engines. The system employs multiple gas turbine compressor stages, thereby accomplishing cabin pressurization, ventilation and heating.

  9. Advanced coal-fired power generation systems

    SciTech Connect

    Tagishi, Akinori; Nakamura, Shozo

    1999-07-01

    From a viewpoint of location of power stations, much is expected of thermal power generation systems. At present LNG (liquefied natural gas) is less expensive than coal, hence utilization of coal is not necessarily advantageous. However, diversifying usable fuels is necessary from a viewpoint of energy risk. Consequently, coal is expected to play a major part in the near future. This coal-fired power generation will be supported by the following three key technologies: (1) Pulverized coal-fired power generation with USC (Ultra-Super Critical) steam plants which will continue to be developed as the main coal application technology for 20 or more years. (2) PFBC (Pressurized Fluidized Bed Combustion) power generation emphasizing both sulfur removal from the furnace and improved efficiency. (3) IGCC (Integrated coal Gasification Combined Cycle) power generation for clean coal usage with higher efficiency. Hitachi intends to continue work in these areas in the future Hitachi will strive to realize, as early as possible, practical applications of the advanced technologies on coal-fired power generation systems.

  10. Power generation systems and methods

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor); Chao, Yi (Inventor)

    2011-01-01

    A power generation system includes a plurality of submerged mechanical devices. Each device includes a pump that can be powered, in operation, by mechanical energy to output a pressurized output liquid flow in a conduit. Main output conduits are connected with the device conduits to combine pressurized output flows output from the submerged mechanical devices into a lower number of pressurized flows. These flows are delivered to a location remote of the submerged mechanical devices for power generation.

  11. Mesofluidic magnetohydrodynamic power generation

    E-print Network

    Fucetola, Jay J

    2012-01-01

    Much of the previous research into magnetohydrodynamics has involved large-scale systems. This thesis explores the miniaturization and use of devices to convert the power dissipated within an expanding gas flow into ...

  12. Geothermal power generation

    SciTech Connect

    Crane, G.K.

    1981-01-01

    The Southern California Edison Co. geothermal program is described in general. The individual power plant projects are described: Brawley 10 MW, Heber 45 MW and Salton Sea 9 MW. Related geothermal activities are mentioned.

  13. Levelized Power Generation Cost Codes

    Energy Science and Technology Software Center (ESTSC)

    1996-04-30

    LPGC is a set of nine microcomputer programs for estimating power generation costs for large steam-electric power plants. These programs permit rapid evaluation using various sets of economic and technical ground rules. The levelized power generation costs calculated may be used to compare the relative economics of nuclear and coal-fired plants based on life-cycle costs. Cost calculations include capital investment cost, operation and maintenance cost, fuel cycle cost, decommissioning cost, and total levelized power generationmore »cost. These programs can be used for quick analyses of power generation costs using alternative economic parameters, such as interest rate, escalation rate, inflation rate, plant lead times, capacity factor, fuel prices, etc. The two major types of electric generating plants considered are pressurized water reactor (PWR) and pulverized coal-fired plants. Data are also provided for the Large Scale Prototype Breeder (LSPB) type liquid metal reactor.« less

  14. Spectrophotovoltaic orbital power generation

    NASA Technical Reports Server (NTRS)

    Knowles, G.; Carroll, J.

    1983-01-01

    A subscale model of a photovoltaic power system employing spectral splitting and 1000:1 concentration was fabricated and tested. The 10-in. aperture model demonstrated 15.5% efficiency with 86% of the energy produced by a GaAs solar cell and 14% of the energy produced by an Si cell. The calculated efficiency of the system using the same solar cells, but having perfect optics, would be approximately 20%. The model design, component measurements, test results, and mathematical model are presented.

  15. High power microwave generator

    DOEpatents

    Minich, Roger W. (Patterson, CA)

    1988-01-01

    A device (10) for producing high-powered and coherent microwaves is described. The device comprises an evacuated, cylindrical, and hollow real cathode (20) that is driven to inwardly field emit relativistic electrons. The electrons pass through an internally disposed cylindrical and substantially electron-transparent cylindrical anode (24), proceed toward a cylindrical electron collector electrode (26), and form a cylindrical virtual cathode (32). Microwaves are produced by spatial and temporal oscillations of the cylindrical virtual cathode (32), and by electrons that reflex back and forth between the cylindrical virtual cathode (32) and the cylindrical real cathode (20).

  16. Tide operated power generating apparatus

    SciTech Connect

    Kertzman, H. Z.

    1981-02-03

    An improved tide operated power generating apparatus is disclosed in which a hollow float, rising and falling with the ocean tide, transmits energy to a power generator. The improvement comprises means for filling the float with water during the incoming tide to provide a substantial increase in the float dead weight during the outgoing tide. Means are further provided to then empty the float before the outgoing tide whereby the float becomes free to rise again on the next incoming tide.

  17. Kinetics of thermal donor generation in silicon

    NASA Technical Reports Server (NTRS)

    Mao, B.-Y.; Lagowski, J.; Gatos, H. C.

    1984-01-01

    The generation kinetics of thermal donors at 450 C in Czochralski-grown silicon was found to be altered by high-temperature preannealing (e.g., 1100 C for 30 min). Thus, when compared with as-grown Si, high-temperature preannealed material exhibits a smaller concentration of generated thermal donors and a faster thermal donor saturation. A unified mechanism of nucleation and oxygen diffusion-controlled growth (based on solid-state plate transformation theory) is proposed to account for generation kinetics of thermal donors at 450 C, in as-grown and high-temperature preannealed Czochralski silicon crystals. This mechanism is consistent with the main features of the models which have been proposed to explain the formation of oxygen thermal donors in silicon.

  18. Entropy generation method to quantify thermal comfort

    NASA Technical Reports Server (NTRS)

    Boregowda, S. C.; Tiwari, S. N.; Chaturvedi, S. K.

    2001-01-01

    The present paper presents a thermodynamic approach to assess the quality of human-thermal environment interaction and quantify thermal comfort. The approach involves development of entropy generation term by applying second law of thermodynamics to the combined human-environment system. The entropy generation term combines both human thermal physiological responses and thermal environmental variables to provide an objective measure of thermal comfort. The original concepts and definitions form the basis for establishing the mathematical relationship between thermal comfort and entropy generation term. As a result of logic and deterministic approach, an Objective Thermal Comfort Index (OTCI) is defined and established as a function of entropy generation. In order to verify the entropy-based thermal comfort model, human thermal physiological responses due to changes in ambient conditions are simulated using a well established and validated human thermal model developed at the Institute of Environmental Research of Kansas State University (KSU). The finite element based KSU human thermal computer model is being utilized as a "Computational Environmental Chamber" to conduct series of simulations to examine the human thermal responses to different environmental conditions. The output from the simulation, which include human thermal responses and input data consisting of environmental conditions are fed into the thermal comfort model. Continuous monitoring of thermal comfort in comfortable and extreme environmental conditions is demonstrated. The Objective Thermal Comfort values obtained from the entropy-based model are validated against regression based Predicted Mean Vote (PMV) values. Using the corresponding air temperatures and vapor pressures that were used in the computer simulation in the regression equation generates the PMV values. The preliminary results indicate that the OTCI and PMV values correlate well under ideal conditions. However, an experimental study is needed in the future to fully establish the validity of the OTCI formula and the model. One of the practical applications of this index is that could it be integrated in thermal control systems to develop human-centered environmental control systems for potential use in aircraft, mass transit vehicles, intelligent building systems, and space vehicles.

  19. Next generation thermal control coatings

    NASA Astrophysics Data System (ADS)

    Grieser, James L.; Swisher, Richard L.; Phipps, James A.; Pelleymounter, Douglas R.; Hildreth, Eugene N.

    1991-01-01

    Spacecraft and space structures have an obvious need for thern*ial control coatings to inininiize tentperature excursions due to sun/shade cycles and to dissipate internally developed heat. Sheldahl Inc. ha produced a new thermal control coating utilizing TefloriA. F. 2400 (amorphous fluoropolymer) a product recently developed by the Dupont Co. With this new Teflon coating ce/c ratios of 0. 14 on aluminura are easily obtainable. Sheldahl''s coatings have been prepared on a range of substrates and tested for space conipatibility. Testing done to date includes temperature cycling salt fog exposure vacuum bakes vacuum outgassing abrasion testing and sortie synergistic effects. 2.

  20. Thermal control system for Space Station Freedom photovoltaic power module

    NASA Technical Reports Server (NTRS)

    Hacha, Thomas H.; Howard, Laura

    1994-01-01

    The electric power for Space Station Freedom (SSF) is generated by the solar arrays of the photovoltaic power modules (PVM's) and conditioned, controlled, and distributed by a power management and distribution system. The PVM's are located outboard of the alpha gimbals of SSF. A single-phase thermal control system is being developed to provide thermal control of PVM electrical equipment and energy storage batteries. This system uses ammonia as the coolant and a direct-flow deployable radiator. The description and development status of the PVM thermal control system is presented.

  1. Thermal control system for Space Station Freedom photovoltaic power module

    NASA Technical Reports Server (NTRS)

    Hacha, Thomas H.; Howard, Laura S.

    1992-01-01

    The electric power for Space Station Freedom (SSF) is generated by the solar arrays of the photovoltaic power modules (PVM's) and conditioned, controlled, and distributed by a power management and distribution system. The PVM's are located outboard of the alpha gimbals of SSF. A single-phase thermal control system is being developed to provide thermal control of PVM electrical equipment and energy storage batteries. This system uses ammonia as the coolant and a direct-flow deployable radiator. This paper presents the description and development status of the PVM thermal control system.

  2. Solid state pulsed power generator

    SciTech Connect

    Tao, Fengfeng; Saddoughi, Seyed Gholamali; Herbon, John Thomas

    2014-02-11

    A power generator includes one or more full bridge inverter modules coupled to a semiconductor opening switch (SOS) through an inductive resonant branch. Each module includes a plurality of switches that are switched in a fashion causing the one or more full bridge inverter modules to drive the semiconductor opening switch SOS through the resonant circuit to generate pulses to a load connected in parallel with the SOS.

  3. Investigations for biogas operated MHD power generators

    SciTech Connect

    Dahiya, R.P.; Chand, A.; Sharma, S.C.

    1983-12-01

    Biogas is produced from the anaerobic fermentation of the organic matter containing cellulose, such as agricultural wastes, human wastes, animal wastes, etc. It contains methane (50-70%), carbon dioxide (30-50%), and very small amounts of hydrogen and hydrogen sulphide. Adequate quantities of raw material to generate biogas are normally available in rural areas, and therefore, there is a possibility that almost all the energy requirements of the rural sector may be fulfilled by biogas. Presently in the rural sector, biogas is used mainly to provide thermal energy (for cooking, etc.), and up to a limited extent, to meet the electrical energy requirements by running electrical generators with engines powered by a mixture of oil and biogas. In this paper, the authors propose a scheme in which biogas can be used to generate electricity more efficiently by using magnetohydrodynamic (MHD) power generators. Investigations have been carried out to make feasibility studies for biogas-operated open cycle MHD power generators. Composition, temperature and electrical conductivity of the seeded (with potassium) combustion products of biogas-air/oxygen systems have been analytically investigated for different percentages of CO/sub 2/ in biogas and at various combustor pressures for a seeding ratio of 1 percent by weight. The effect of preheating and enrichment of air on temperature and electrical conductivity of the seeded combustion plasmas has also been studied.

  4. Windmill having thermal and electric power output

    SciTech Connect

    Kenney, C.E.

    1980-11-25

    A windmill is described which has thermal and electric power output and includes windmill blades rotatably mounted and connected to a speed increaser mechanism of gears and shafts and a centrifugal compressor connected to the windmill thru the speed increaser to be driven by virtue of the wind applied to the blades of the windmill itself. A directional control is connected to the windmill head to have the windmill blades face into the wind, as desired. The compressor is connected to an insulated heat storage tank which contains storage material, such as brick, and the compressor discharge velocity and pressure difference are converted to heat, and the compressor fluid is returned to the compressor thru a screen which protects the compressor, and there is a flow control which automatically compensates for changes in density of the circulated air or compressor fluid. Also, a gas turbine generator can be connected with the compressor to be driven thereby, and electric elements could be connected with the generator for producing electricity. Two other embodiments show an impeller type of air brake and a valve and a heat-sensitive control, for generating heat or power.

  5. Homopolar generator power supply system

    SciTech Connect

    Weldon, W. F.; Gully, J. H.

    1985-10-01

    A high-energy, high-current homopolar generator pulsed power supply system that is compact and field portable. The power supply system includes a homopolar generator (HPG), an auxiliary supply and drive system, both mounted on a skid frame, and a control system coupled to the HPG and drive system. The homopolar generator has a split rotor with insulation between the halves and a recess in the periphery. A stator ring and field coil, for producing a magnetic field through which the rotor halves make two simultaneous voltage-generating passes, are disposed within the recess in the rotor. Air-actuated brush mechanisms inside and outside the recess contact surfaces of the rotor and collect discharge current. The auxiliary supply and drive system includes a motoring system comprising hydraulic motors for driving the HPG to speed, a bearing lubrication system, a generator for energizing the field coil, and a brush actuator air supply system, all of which are driven by a prime mover. The control system comprises a logic controller for executing a prescribed sequence of steps including turning on the prime mover, initiating motoring of the HPG, energizing the field coil, and initiating the discharge of electrical current.

  6. Next Generation Geothermal Power Plants

    SciTech Connect

    Brugman, John; Hattar, Mai; Nichols, Kenneth; Esaki, Yuri

    1995-09-01

    A number of current and prospective power plant concepts were investigated to evaluate their potential to serve as the basis of the next generation geothermal power plant (NGGPP). The NGGPP has been envisaged as a power plant that would be more cost competitive (than current geothermal power plants) with fossil fuel power plants, would efficiently use resources and mitigate the risk of reservoir under-performance, and minimize or eliminate emission of pollutants and consumption of surface and ground water. Power plant concepts were analyzed using resource characteristics at ten different geothermal sites located in the western United States. Concepts were developed into viable power plant processes, capital costs were estimated and levelized busbar costs determined. Thus, the study results should be considered as useful indicators of the commercial viability of the various power plants concepts that were investigated. Broadly, the different power plant concepts that were analyzed in this study fall into the following categories: commercial binary and flash plants, advanced binary plants, advanced flash plants, flash/binary hybrid plants, and fossil/geothed hybrid plants. Commercial binary plants were evaluated using commercial isobutane as a working fluid; both air-cooling and water-cooling were considered. Advanced binary concepts included cycles using synchronous turbine-generators, cycles with metastable expansion, and cycles utilizing mixtures as working fluids. Dual flash steam plants were used as the model for the commercial flash cycle. The following advanced flash concepts were examined: dual flash with rotary separator turbine, dual flash with steam reheater, dual flash with hot water turbine, and subatmospheric flash. Both dual flash and binary cycles were combined with other cycles to develop a number of hybrid cycles: dual flash binary bottoming cycle, dual flash backpressure turbine binary cycle, dual flash gas turbine cycle, and binary gas turbine cycle. Results of this study indicate that dual flash type plants are preferred at resources with temperatures above 400 F. Closed loop (binary type) plants are preferred at resources with temperatures below 400 F. A rotary separator turbine upstream of a dual flash plant can be beneficial at Salton Sea, the hottest resource, or at high temperature resources where there is a significant variance in wellhead pressures from well to well. Full scale demonstration is required to verify cost and performance. Hot water turbines that recover energy from the spent brine in a dual flash cycle improve that cycle's brine efficiency. Prototype field tests of this technology have established its technical feasibility. If natural gas prices remain low, a combustion turbine/binary hybrid is an economic option for the lowest temperature sites. The use of mixed fluids appear to be an attractive low risk option. The synchronous turbine option as prepared by Barber-Nichols is attractive but requires a pilot test to prove cost and performance. Dual flash binary bottoming cycles appear promising provided that scaling of the brine/working fluid exchangers is controllable. Metastable expansion, reheater, Subatmospheric flash, dual flash backpressure turbine, and hot dry rock concepts do not seem to offer any cost advantage over the baseline technologies. If implemented, the next generation geothermal power plant concept may improve brine utilization but is unlikely to reduce the cost of power generation by much more than 10%. Colder resources will benefit more from the development of a next generation geothermal power plant than will hotter resources. All values presented in this study for plant cost and for busbar cost of power are relative numbers intended to allow an objective and meaningful comparison of technologies. The goal of this study is to assess various technologies on an common basis and, secondarily, to give an approximate idea of the current costs of the technologies at actual resource sites. Absolute costs at a given site will be determined by the specifics of a given pr

  7. Local control of reactive power by distributed photovoltaic generators

    SciTech Connect

    Chertkov, Michael; Turitsyn, Konstantin; Sulc, Petr; Backhaus, Scott

    2010-01-01

    High penetration levels of distributed photovoltaic (PV) generation on an electrical distribution circuit may severely degrade power quality due to voltage sags and swells caused by rapidly varying PV generation during cloud transients coupled with the slow response of existing utility compensation and regulation equipment. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We suggest a local control scheme that dispatches reactive power from each PV inverter based on local instantaneous measurements of the real and reactive components of the consumed power and the real power generated by the PVs. Using one adjustable parameter per circuit, we balance the requirements on power quality and desire to minimize thermal losses. Numerical analysis of two exemplary systems, with comparable total PV generation albeit a different spatial distribution, show how to adjust the optimization parameter depending on the goal. Overall, this local scheme shows excellent performance; it's capable of guaranteeing acceptable power quality and achieving significant saving in thermal losses in various situations even when the renewable generation in excess of the circuit own load, i.e. feeding power back to the higher-level system.

  8. Solar thermal organic rankine cycle for micro-generation

    NASA Astrophysics Data System (ADS)

    Alkahli, N. A.; Abdullah, H.; Darus, A. N.; Jalaludin, A. F.

    2012-06-01

    The conceptual design of an Organic Rankine Cycle (ORC) driven by solar thermal energy is developed for the decentralized production of electricity of up to 50 kW. Conventional Rankine Cycle uses water as the working fluid whereas ORC uses organic compound as the working fluid and it is particularly suitable for low temperature applications. The ORC and the solar collector will be sized according to the solar flux distribution in the Republic of Yemen for the required power output of 50 kW. This will be a micro power generation system that consists of two cycles, the solar thermal cycle that harness solar energy and the power cycle, which is the ORC that generates electricity. As for the solar thermal cycle, heat transfer fluid (HTF) circulates the cycle while absorbing thermal energy from the sun through a parabolic trough collector and then storing it in a thermal storage to increase system efficiency and maintains system operation during low radiation. The heat is then transferred to the organic fluid in the ORC via a heat exchanger. The organic fluids to be used and analyzed in the ORC are hydrocarbons R600a and R290.

  9. Reliability Evaluation of Electric Power Generation Systems with Solar Power 

    E-print Network

    Samadi, Saeed

    2013-11-08

    Conventional power generators are fueled by natural gas, steam, or water flow. These generators can respond to fluctuating load by varying the fuel input that is done by a valve control. Renewable power generators such as wind or solar, however...

  10. Clean power generation from coal

    SciTech Connect

    Butler, J.W.; Basu, P.

    2007-09-15

    The chapter gives an overview of power generation from coal, describing its environmental impacts, methods of cleaning coal before combustion, combustion methods, and post-combustion cleanup. It includes a section on carbon dioxide capture, storage and utilization. Physical, chemical and biological cleaning methods are covered. Coal conversion techniques covered are: pulverized coal combustion, fluidized-bed combustion, supercritical boilers, cyclone combustion, magnetohydrodynamics and gasification. 66 refs., 29 figs., 8 tabs.

  11. INTEGRATED CONTROL OF NEXT GENERATION POWER SYSTEM

    SciTech Connect

    2010-02-28

    Control methodologies provide the necessary data acquisition, analysis and corrective actions needed to maintain the state of an electric power system within acceptable operating limits. These methods are primarily software-based algorithms that are nonfunctional unless properly integrated with system data and the appropriate control devices. Components of the control of power systems today include protective relays, supervisory control and data acquisition (SCADA), distribution automation (DA), feeder automation, software agents, sensors, control devices and communications. Necessary corrective actions are still accomplished using large electromechanical devices such as vacuum, oil and gas-insulated breakers, capacitor banks, regulators, transformer tap changers, reclosers, generators, and more recently FACTS (flexible AC transmission system) devices. The recent evolution of multi-agent system (MAS) technologies has been reviewed and effort made to integrate MAS into next generation power systems. A MAS can be defined as ��a loosely-coupled network of problem solvers that work together to solve problems that are beyond their individual capabilities��. These problem solvers, often called agents, are autonomous and may be heterogeneous in nature. This project has shown that a MAS has significant advantages over a single, monolithic, centralized problem solver for next generation power systems. Various communication media are being used in the electric power system today, including copper, optical fiber and power line carrier (PLC) as well as wireless technologies. These technologies have enabled the deployment of substation automation (SA) at many facilities. Recently, carrier and wireless technologies have been developed and demonstrated on a pilot basis. Hence, efforts have been made by this project to penetrate these communication technologies as an infrastructure for next generation power systems. This project has thus pursued efforts to use specific MAS methods as well as pertinent communications protocols to imbed and assess such technologies in a real electric power distribution system, specifically the Circuit of the Future (CoF) developed by Southern California Edison (SCE). By modeling the behavior and communication for the components of a MAS, the operation and control of the power distribution circuit have been enhanced. The use of MAS to model and integrate a power distribution circuit offers a significantly different approach to the design of next generation power systems. For example, ways to control a power distribution circuit that includes a micro-grid while considering the impacts of thermal constraints, and integrating voltage control and renewable energy sources on the main power system have been pursued. Both computer simulations and laboratory testbeds have been used to demonstrate such technologies in electric power distribution systems. An economic assessment of MAS in electric power systems was also performed during this project. A report on the economic feasibility of MAS for electric power systems was prepared, and particularly discusses the feasibility of incorporating MAS in transmission and distribution (T&D) systems. Also, the commercial viability of deploying MAS in T&D systems has been assessed by developing an initial case study using utility input to estimate the benefits of deploying MAS. In summary, the MAS approach, which had previously been investigated with good success by APERC for naval shipboard applications, has now been applied with promising results for enhancing an electric power distribution circuit, such as the Circuit of the Future developed by Southern California Edison. The results for next generation power systems include better ability to reconfigure circuits, improve protection and enhance reliability.

  12. Development of a portable thermophotovoltaic power generator

    SciTech Connect

    Becker, F.E.; Doyle, E.F.; Shukla, K.

    1997-03-01

    A 150 Watt thermophotovoltaic (TPV) power generator is being developed. The technical approach taken in the design focused on optimizing the integrated performance of the primary subsystems in order to yield high energy conversion efficiency and cost effectiveness. An important aspect of the approach is the use of a selective emitter radiating to a bandgap matched photovoltaic array to minimize thermal and optical recuperation requirements, as well as the non-recoverable heat losses. For the initial prototype system, fibrous ytterbia emitters radiating in a band centered at 980 nm are matched with high efficiency silicon photoconverters. The integrated system includes a dielectric stack filter for optical energy recovery and a ceramic recuperator for thermal energy recovery. The system has been operated with air preheat temperatures up to 1350K. The design of the system and development status are presented. {copyright} {ital 1997 American Institute of Physics.}

  13. Dispersed solar thermal generation employing parabolic dish-electric transport with field modulated generator systems

    NASA Technical Reports Server (NTRS)

    Ramakumar, R.; Bahrami, K.

    1981-01-01

    This paper discusses the application of field modulated generator systems (FMGS) to dispersed solar-thermal-electric generation from a parabolic dish field with electric transport. Each solar generation unit is rated at 15 kWe and the power generated by an array of such units is electrically collected for insertion into an existing utility grid. Such an approach appears to be most suitable when the heat engine rotational speeds are high (greater than 6000 r/min) and, in particular, if they are operated in the variable speed mode and if utility-grade a.c. is required for direct insertion into the grid without an intermediate electric energy storage and reconversion system. Predictions of overall efficiencies based on conservative efficiency figures for the FMGS are in the range of 25 per cent and should be encouraging to those involved in the development of cost-effective dispersed solar thermal power systems.

  14. Wind wheel electric power generator

    NASA Technical Reports Server (NTRS)

    Kaufman, J. W. (inventor)

    1980-01-01

    Wind wheel electric power generator apparatus includes a housing rotatably mounted upon a vertical support column. Primary and auxiliary funnel-type, venturi ducts are fixed onto the housing for capturing wind currents and conducting to a bladed wheel adapted to be operatively connected with the generator apparatus. Additional air flows are also conducted onto the bladed wheel; all of the air flows positively effecting rotation of the wheel in a cumulative manner. The auxiliary ducts are disposed at an acute angle with respect to the longitudinal axis of the housing, and this feature, together with the rotatability of the housing and the ducts, permits capture of wind currents within a variable directional range.

  15. Power Generation: The Next 30 Years

    ERIC Educational Resources Information Center

    Holcomb, Robert W.

    1970-01-01

    Discusses pollution problems associated with power production. Estimates power consumption in the 1980's and the availability of fossil and nuclear fuel resources. Emphasizes needed research on air pollution, nuclear pollution, and thermal pollution. (EB)

  16. Waste Heat Recovery Power Generation with WOWGen 

    E-print Network

    Romero, M.

    2009-01-01

    applications of heat recovery power generation can be found in Industry (e.g. steel, glass, cement, lime, pulp and paper, refining and petrochemicals), Power Generation (CHP, biomass, biofuel, traditional fuels, gasifiers, diesel engines) and Natural Gas...

  17. Hybrid Wind Power Balance Control Strategy using Thermal Power, Hydro Power and Flow Batteries

    E-print Network

    MacDonald, Mark

    Hybrid Wind Power Balance Control Strategy using Thermal Power, Hydro Power and Flow Batteries the con- trolled use of hybrid flow battery, thermal and hydro power plant system, to support wind power of a reasonable size flow battery is sufficient to correct the load and wind power imbalance. Corresponding author

  18. Improved lumped parameter thermal modelling of synchronous generators 

    E-print Network

    Mejuto, Carlos

    2010-01-01

    Within the existing available mix of numerical and analytical thermal analysis options, lumped parameter thermal modelling is selected as the operational backbone to develop an improved novel synchronous generator thermal ...

  19. Pv-Thermal Solar Power Assembly

    DOEpatents

    Ansley, Jeffrey H. (El Cerrito, CA); Botkin, Jonathan D. (El Cerrito, CA); Dinwoodie, Thomas L. (Piedmont, CA)

    2001-10-02

    A flexible solar power assembly includes a flexible photovoltaic device attached to a flexible thermal solar collector. The solar power assembly can be rolled up for transport and then unrolled for installation on a surface, such as the roof or side wall of a building or other structure, by use of adhesive and/or other types of fasteners.

  20. Solar Thermal Power Systems parabolic dish project

    NASA Technical Reports Server (NTRS)

    Truscello, V. C.

    1981-01-01

    The status of the Solar Thermal Power Systems Project for FY 1980 is summarized. Included is: a discussion of the project's goals, program structure, and progress in parabolic dish technology. Analyses and test results of concentrators, receivers, and power converters are discussed. Progress toward the objectives of technology feasibility, technology readiness, system feasibility, and system readiness are covered.

  1. The small community solar thermal power experiment

    NASA Technical Reports Server (NTRS)

    Kiceniuk, T.

    1982-01-01

    the objectives and current status of the Small Community Solar Thermal Power Experiment are discussed. The adjustments in programs goals made in response to the changing emphasis in the area of solar energy in national policy are addressed. Planned fabrication and testing activities for the test bed concentrator, power conversion assembly, and control system are outlined.

  2. Alternative biomass sources for thermal energy generation

    NASA Astrophysics Data System (ADS)

    Steensen, Torge; Müller, Sönke; Dresen, Boris; Büscher, Olaf

    2015-04-01

    Traditionally, renewable biomass energy sources comprise forests, agriculture and other large vegetation units. With the increasing demand on those landscape elements, including conflicts of interest to nature conservation and food production, the research focus should also incorporate smaller vegetation entities. In this study, we highlight the availability of small-scale features like roadside vegetation or hedges, which are rarely featured in maps. Roadside vegetation, however, is well known and regularly trimmed to allow the passing of traffic but the cut material is rarely harvested. Here, we combine a remote-sensing-based approach to quantify the seasonal biomass harvests with a GIS-based method to outline optimal transportation routes to, and the location of, storage units and power plants. Our main data source will be ESA's upcoming Sentinel-2 optical satellite. Spatial resolution of 10 meters in the visible and near infrared requires the use of spectral unmixing to derive end member spectra of the targeted biomass objects. Additional stereo-matching and LIDAR measurements allow the accompanying height estimate to derive the biomass volume and its changes over time. GIS data bases from the target areas allow the discrimination between traditional, large features (e.g. forests and agriculture) as well as previously unaccounted for, smaller vegetation units. With the mapped biomass occurrence and additional, GIS-based infrastructure information, we can outline transport routes that take into account local restrictions like nature reserve areas, height or weight limitations as well as transport costs in relation to potential gains. This information can then be processed to outline optimal places for power plants. To simulate the upcoming Sentinel-2 data sets, we use airborne data from the AISA Eagle, spatially and spectrally down-sampled to match Sentinel 2's resolution. Our test scenario is an area in western Germany, the Kirchheller Heide, close to the city of Bottrop-Kirchhellen in the state of North Rhine-Westphalia. This region consists of nature reserves, forests, farmland and a few villages. To present a qualitative comparison between simulated and true biomass volume, we conducted field work by mapping the spatial extent of the desired biomass occurrences in the area. First results indicate a qualitative match of about 75%. Our research highlights the small-scale biomass features that have not been incorporated in previous biomass estimates. With the regular trimming and the accompanied raw material that becomes available, a new sector of thermal energy generation can be outlined. An automated quantification using satellite and GIS data will allow a regular monitoring of the vegetation growth and an assessment of the transport routes and costs as well as the location of the prospective power plants. In the endeavour of creating a sustainable energy supply, these biomass units should not be neglected, especially since the usage of the traditional units is limited due to competing interests in food production and nature conservation.

  3. Environmental aspects of power generation

    SciTech Connect

    Kalika, V.; Frant, S.

    1999-10-01

    This article presents a new approach to developing proper strategies for multicriteria medium- and long-term power generation expansion planning. The desired strategies present a predetermined number of appropriate planning alternatives, which should be selected from a vast initial set in accordance with the given multiple criteria. These multiple criteria, caused by considering environmental criteria (such as SO{sub 2}, NO{sub x}, and particulate emissions minimization) together with economic and other criteria, make multicriteria analysis a cornerstone of the proposed approach. The proposed multicriteria analysis includes determining a criteria assessment vector for each initial alternative and multicriteria optimization of a set of such initial criteria assessment vectors. The basic issue of this article is to reflect development of calculation models for the environmental criteria (to create the criteria assessment vectors) together with appropriate environmental investigations. Suitable solution methodology and software, applied to the conditions prevailing in Israel, have been developed for the proposed approach.

  4. Thermal Model Predictions of Advanced Stirling Radioisotope Generator Performance

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen J.; Fabanich, William Anthony; Schmitz, Paul C.

    2014-01-01

    This paper presents recent thermal model results of the Advanced Stirling Radioisotope Generator (ASRG). The three-dimensional (3D) ASRG thermal power model was built using the Thermal Desktop(trademark) thermal analyzer. The model was correlated with ASRG engineering unit test data and ASRG flight unit predictions from Lockheed Martin's (LM's) I-deas(trademark) TMG thermal model. The auxiliary cooling system (ACS) of the ASRG is also included in the ASRG thermal model. The ACS is designed to remove waste heat from the ASRG so that it can be used to heat spacecraft components. The performance of the ACS is reported under nominal conditions and during a Venus flyby scenario. The results for the nominal case are validated with data from Lockheed Martin. Transient thermal analysis results of ASRG for a Venus flyby with a representative trajectory are also presented. In addition, model results of an ASRG mounted on a Cassini-like spacecraft with a sunshade are presented to show a way to mitigate the high temperatures of a Venus flyby. It was predicted that the sunshade can lower the temperature of the ASRG alternator by 20 C for the representative Venus flyby trajectory. The 3D model also was modified to predict generator performance after a single Advanced Stirling Convertor failure. The geometry of the Microtherm HT insulation block on the outboard side was modified to match deformation and shrinkage observed during testing of a prototypic ASRG test fixture by LM. Test conditions and test data were used to correlate the model by adjusting the thermal conductivity of the deformed insulation to match the post-heat-dump steady state temperatures. Results for these conditions showed that the performance of the still-functioning inboard ACS was unaffected.

  5. Thermal adaptation generates a diversity of thermal limits in a rainforest ant community.

    PubMed

    Kaspari, Michael; Clay, Natalie A; Lucas, Jane; Yanoviak, Stephen P; Kay, Adam

    2015-03-01

    The Thermal Adaptation Hypothesis posits that the warmer, aseasonal tropics generates populations with higher and narrower thermal limits. It has largely been tested among populations across latitudes. However, considerable thermal heterogeneity exists within ecosystems: across 31 trees in a Panama rainforest, surfaces exposed to sun were 8 °C warmer and varied more in temperature than surfaces in the litter below. Tiny ectotherms are confined to surfaces and are variously submerged in these superheated boundary layer environments. We quantified the surface CTmin and CTmax s (surface temperatures at which individuals grew torpid and lost motor control, respectively) of 88 ant species from this forest; they ranged in average mass from 0.01 to 57 mg. Larger ants had broader thermal tolerances. Then, for 26 of these species we again tested body CTmax s using a thermal dry bath to eliminate boundary layer effects: body size correlations observed previously disappeared. In both experiments, consistent with Thermal Adaptation, CTmax s of canopy ants averaged 3.5-5 °C higher than populations that nested in the shade of the understory. We impaled thermocouples in taxidermy mounts to further quantify the factors shaping operative temperatures for four ant species representing the top third (1-30 mg) of the size distribution. Extrapolations suggest the smallest 2/3rds of species reach thermal equilibrium in <10s. Moreover, the large ants that walk above the convective superheated surface air also showed more net heating by solar radiation, with operative temperatures up to 4 °C higher than surrounding air. The thermal environments of this Panama rainforest generate a range of CTmax subsuming 74% of those previously recorded for ant populations worldwide. The Thermal Adaptation Hypothesis can be a powerful tool in predicting diversity of thermal limits within communities. Boundary layer temperatures are likely key to predicting the future of Earth's tiny terrestrial ectotherm populations. PMID:25242246

  6. Identifying and bounding uncertainties in nuclear reactor thermal power calculations

    SciTech Connect

    Phillips, J.; Hauser, E.; Estrada, H.

    2012-07-01

    Determination of the thermal power generated in the reactor core of a nuclear power plant is a critical element in the safe and economic operation of the plant. Direct measurement of the reactor core thermal power is made using neutron flux instrumentation; however, this instrumentation requires frequent calibration due to changes in the measured flux caused by fuel burn-up, flux pattern changes, and instrumentation drift. To calibrate the nuclear instruments, steam plant calorimetry, a process of performing a heat balance around the nuclear steam supply system, is used. There are four basic elements involved in the calculation of thermal power based on steam plant calorimetry: The mass flow of the feedwater from the power conversion system, the specific enthalpy of that feedwater, the specific enthalpy of the steam delivered to the power conversion system, and other cycle gains and losses. Of these elements, the accuracy of the feedwater mass flow and the feedwater enthalpy, as determined from its temperature and pressure, are typically the largest contributors to the calorimetric calculation uncertainty. Historically, plants have been required to include a margin of 2% in the calculation of the reactor thermal power for the licensed maximum plant output to account for instrumentation uncertainty. The margin is intended to ensure a cushion between operating power and the power for which safety analyses are performed. Use of approved chordal ultrasonic transit-time technology to make the feedwater flow and temperature measurements (in place of traditional differential-pressure- based instruments and resistance temperature detectors [RTDs]) allows for nuclear plant thermal power calculations accurate to 0.3%-0.4% of plant rated power. This improvement in measurement accuracy has allowed many plant operators in the U.S. and around the world to increase plant power output through Measurement Uncertainty Recapture (MUR) up-rates of up to 1.7% of rated power, while also decreasing the probability of significant over-power events. This paper will examine the basic elements involved in calculation of thermal power using ultrasonic transit-time technology and will discuss the criteria for bounding uncertainties associated with each element in order to achieve reactor thermal power calculations to within 0.3% to 0.4%. (authors)

  7. Solar thermal power systems point-focusing thermal and electric applications projects. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Marriott, A.

    1980-01-01

    The activities of the Point-Focusing Thermal and Electric Applications (PETEA) project for the fiscal year 1979 are summarized. The main thrust of the PFTEA Project, the small community solar thermal power experiment, was completed. Concept definition studies included a small central receiver approach, a point-focusing distributed receiver system with central power generation, and a point-focusing distributed receiver concept with distributed power generation. The first experiment in the Isolated Application Series was initiated. Planning for the third engineering experiment series, which addresses the industrial market sector, was also initiated. In addition to the experiment-related activities, several contracts to industry were let and studies were conducted to explore the market potential for point-focusing distributed receiver (PFDR) systems. System analysis studies were completed that looked at PFDR technology relative to other small power system technology candidates for the utility market sector.

  8. Electrical power generation by mechanically modulating electrical double layers.

    PubMed

    Moon, Jong Kyun; Jeong, Jaeki; Lee, Dongyun; Pak, Hyuk Kyu

    2013-01-01

    Since Michael Faraday and Joseph Henry made their great discovery of electromagnetic induction, there have been continuous developments in electrical power generation. Most people today get electricity from thermal, hydroelectric, or nuclear power generation systems, which use this electromagnetic induction phenomenon. Here we propose a new method for electrical power generation, without using electromagnetic induction, by mechanically modulating the electrical double layers at the interfacial areas of a water bridge between two conducting plates. We find that when the height of the water bridge is mechanically modulated, the electrical double layer capacitors formed on the two interfacial areas are continuously charged and discharged at different phases from each other, thus generating an AC electric current across the plates. We use a resistor-capacitor circuit model to explain the results of this experiment. This observation could be useful for constructing a micro-fluidic power generation system in the near future. PMID:23403587

  9. Small solar thermal electric power plants with early commercial potential

    NASA Technical Reports Server (NTRS)

    Jones, H. E.; Bisantz, D. J.; Clayton, R. N.; Heiges, H. H.; Ku, A. C.

    1979-01-01

    Cost-effective small solar thermal electric power plants (1- to 10-MW nominal size) offer an attractive way of helping the world meet its future energy needs. The paper describes the characteristics of a conceptual near-term plant (about 1 MW) and a potential 1990 commercial version. The basic system concept is one in which steam is generated using two-axis tracking, parabolic dish, and point-focusing collectors. The steam is transported through low-loss piping to a central steam turbine generator unit where it is converted to electricity. The plants have no energy storage and their output power level varies with the solar insolation level. This system concept, which is firmly based on state-of-the-art technology, is projected to offer one of the fastest paths for U.S. commercialization of solar thermal electric power plants through moderate technology advances and mass production.

  10. Miniature Gas-Turbine Power Generator

    NASA Technical Reports Server (NTRS)

    Wiberg, Dean; Vargo, Stephen; White, Victor; Shcheglov, Kirill

    2003-01-01

    A proposed microelectromechanical system (MEMS) containing a closed- Brayton-cycle turbine would serve as a prototype of electric-power generators for special applications in which high energy densities are required and in which, heretofore, batteries have been used. The system would have a volume of about 6 cm3 and would operate with a thermal efficiency >30 percent, generating up to 50 W of electrical power. The energy density of the proposed system would be about 10 times that of the best battery-based systems now available, and, as such, would be comparable to that of a fuel cell. The working gas for the turbine would be Xe containing small quantities of CO2, O2, and H2O as gaseous lubricants. The gas would be contained in an enclosed circulation system, within which the pressure would typically range between 5 and 50 atm (between 0.5 and 5 MPa). The heat for the Brayton cycle could be supplied by any of a number of sources, including a solar concentrator or a combustor burning a hydrocarbon or other fuel. The system would include novel heat-transfer and heat-management components. The turbine would be connected to an electric power generator/starter motor. The system would include a main rotor shaft with gas bearings; the bearing surfaces would be made of a ceramic material coated with nanocrystalline diamond. The shaft could withstand speed of 400,000 rpm or perhaps more, with bearing-wear rates less than 10(exp -)4 those of silicon bearings and 0.05 to 0.1 those of SiC bearings, and with a coefficient of friction about 0.1 that of Si or SiC bearings. The components of the system would be fabricated by a combination of (1) three-dimensional xray lithography and (2) highly precise injection molding of diamond-compatible metals and ceramic materials. The materials and fabrication techniques would be suitable for mass production. The disadvantages of the proposed system are that unlike a battery-based system, it could generate a perceptible amount of sound, and, if it were to burn fuel, then it would also generate exhaust, similarly to other combustion-based power sources.

  11. Small spacecraft power and thermal subsystems

    NASA Technical Reports Server (NTRS)

    Eakman, D.; Lambeck, R.; Mackowski, M.; Slifer, L., Jr.

    1994-01-01

    This white paper provides a general guide to the conceptual design of satellite power and thermal control subsystems with special emphasis on the unique design aspects associated with small satellites. The operating principles of these technologies are explained and performance characteristics of current and projected components are provided. A tutorial is presented on the design process for both power and thermal subsystems, with emphasis on unique issues relevant to small satellites. The ability of existing technology to meet future performance requirements is discussed. Conclusions and observations are presented that stress cost-effective, high-performance design solutions.

  12. Thermal storage requirements for parabolic dish solar power plants

    NASA Technical Reports Server (NTRS)

    Wen, L.; Steele, H.

    1980-01-01

    The cost effectiveness of a high temperature thermal storage system is investigated for a representative parabolic dish solar power plant. The plant supplies electrical power in accordance with a specific, seasonally varying demand profile. The solar power received by the plant is supplemented by power from fuel combustion. The cost of electricity generated by the solar power plant is calculated, using the cost of mass-producible subsystems (specifically, parabolic dishes, receivers, and power conversion units) now being designed for this type of solar plant. The trade-off between fuel and thermal storage is derived in terms of storage effectiveness, the cost of storage devices, and the cost of fuel. Thermal storage requirements, such as storage capacity, storage effectiveness, and storage cost are established based on the cost of fuel and the overall objective of minimizing the cost of the electricity produced by the system. As the cost of fuel increases at a rate faster than general inflation, thermal storage systems in the $40 to $70/kWthr range could become cost effective in the near future.

  13. PV/thermal solar power assembly

    DOEpatents

    Ansley, Jeffrey H.; Botkin, Jonathan D.; Dinwoodie, Thomas L.

    2004-01-13

    A flexible solar power assembly (2) includes a flexible photovoltaic device (16) attached to a flexible thermal solar collector (4). The solar power assembly can be rolled up for transport and then unrolled for installation on a surface, such as the roof (20, 25) or side wall of a building or other structure, by use of adhesive and/or other types of fasteners (23).

  14. solar thermal power systems advanced solar thermal technology project, advanced subsystems development

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The preliminary design for a prototype small (20 kWe) solar thermal electric generating unit was completed, consisting of several subsystems. The concentrator and the receiver collect solar energy and a thermal buffer storage with a transport system is used to provide a partially smoothed heat input to the Stirling engine. A fossil-fuel combustor is included in the receiver designs to permit operation with partial or no solar insolation (hybrid). The engine converts the heat input into mechanical action that powers a generator. To obtain electric power on a large scale, multiple solar modules will be required to operate in parallel. The small solar electric power plant used as a baseline design will provide electricity at remote sites and small communities.

  15. Pulse power applications of flux compression generators

    SciTech Connect

    Fowler, C.M.; Caird, R.S.; Erickson, D.J.; Freeman, B.L.

    1981-01-01

    Characteristics are presented for two different types of explosive driven flux compression generators and a megavolt pulse transformer. Status reports are given for rail gun and plasma focus programs for which the generators serve as power sources.

  16. Space Station Freedom solar dynamic power generation

    NASA Technical Reports Server (NTRS)

    Springer, T.; Friefeld, Jerry M.

    1990-01-01

    Viewgraphs on Space Station Freedom solar dynamic power generation are presented. Topics covered include: prime contract activity; key solar dynamic power module requirements; solar dynamic heat receiver technology; and solar concentrator advanced development.

  17. Economic dispatch control for large scale thermal power systems

    SciTech Connect

    Not Available

    1986-01-01

    A realistic model for economic dispatch control (EDC) which is valid for large scale thermal power system is described. This model properly accounts for the nonlinearities of the generation cost-curves introduced by the operation constraints of thermal units. The methodology of this model computes the optimal readjustments of generation schedules such that their total generation output meets the system demand, including the Area Control Error (ACE). The objective function to be minimized is the instantaneous operating cost of a power system subjected to several equality and inequality constraints, which represent the performance characteristics and operation limitations of the various units in the system as well as the active power loss in the transmission network. The generation cost curves and the active losses are represented using one of two models. The first model includes the exact piecewise linear curve formulation and the well known loss formula, while the second one considers a second order polynomial approximation of the generation cost curves and assumes that the active network losses are independent on the generation configuration and have constant percentage value from the total system demand. Each of these models has its merits to EDC strategies. 10 references, 7 figures, 3 tables.

  18. Thermoelectric power generator with intermediate loop

    DOEpatents

    Bel,; Lon E. (Altadena, CA); Crane, Douglas Todd (Pasadena, CA)

    2009-10-27

    A thermoelectric power generator is disclosed for use to generate electrical power from heat, typically waste heat. An intermediate heat transfer loop forms a part of the system to permit added control and adjustability in the system. This allows the thermoelectric power generator to more effectively and efficiently generate power in the face of dynamically varying temperatures and heat flux conditions, such as where the heat source is the exhaust of an automobile, or any other heat source with dynamic temperature and heat flux conditions.

  19. Thermoelectric power generator with intermediate loop

    DOEpatents

    Bell, Lon E; Crane, Douglas Todd

    2013-05-21

    A thermoelectric power generator is disclosed for use to generate electrical power from heat, typically waste heat. An intermediate heat transfer loop forms a part of the system to permit added control and adjustability in the system. This allows the thermoelectric power generator to more effectively and efficiently generate power in the face of dynamically varying temperatures and heat flux conditions, such as where the heat source is the exhaust of an automobile, or any other heat source with dynamic temperature and heat flux conditions.

  20. Solar driven liquid metal MHD power generator

    SciTech Connect

    Lee, J.H.; Hohl, F.

    1981-05-01

    A method for solar electric power generation in space is described. A solar energy collector focuses solar energy onto a solar oven which is attached to a mixer which in turn is attached to the channel of a MHD generator. Gas enters the oven and a liquid metal enters the mixer. The gas/liquid metal mixture is heated by the collected solar energy and moves through the MHD generator thereby generating electrical power. The mixture is then separated and recycled. NASA

  1. Integrated engine generator for aircraft secondary power

    NASA Technical Reports Server (NTRS)

    Secunde, R. R.

    1972-01-01

    An integrated engine-generator for aircraft secondary power generation is described. The concept consists of an electric generator located inside a turbojet or turbofan engine and both concentric with and driven by one of the main engine shafts. The electric power conversion equipment and generator controls are located in the aircraft. When properly rated, the generator serves as an engine starter as well as a source of electric power. This configuration reduces or eliminates the need for an external gear box on the engine and permits reduction in the nacelle diameter.

  2. Alternative solution of power supply for new spacecraft generation

    NASA Astrophysics Data System (ADS)

    Bourgasov, Michail P.; Tchuyan, Rostislav K.; Tolyarenko, Nikolai V.

    1996-02-01

    The power supply for new generation of the long life spacecraft is one of the complicated problem staying in front of designers within practically all the space vehicle life phases. Up to day the most widespread solution consists of the own on board power supply system for each spacecraft including main (usually solar arrays or radioisotope thermal electric units) and redundant (usually chemical accumulating batteries) power sources. The technical and cost efficiency aspects of an advanced scheme of spacecraft power supply by the directional power beams from board of several Space Power Plants is analyzed. Practically all possible spacecraft types are included into the study: systems of communication satellites in the LEO and GEO, navigation and remote sensing satellites operated in the orbits with altitudes to 25000 km, surveillance and technology space platforms into LEO, as well as orbital maneuvering vehicle equipped with electrical propulsion to transport payloads from LEO into operational orbit. The preliminary evaluation of PowerSat's and servicing spacecraft systems orbital configuration is presented. Side by side with some characteristics of the power generation units (on base of solar arrays, solar thermal dynamics facilities, nuclear power plants) the brief discussion of electric thrusters and power transmission system is provided. The perspectives and ways of the further studies for all of main PowerSat's subsystems are nominated.

  3. Local Control of Reactive Power by Distributed Photovoltaic Generators

    E-print Network

    Turitsyn, Konstantin S; Backhaus, Scott; Chertkov, Misha

    2010-01-01

    High penetration levels of distributed photovoltaic (PV) generation on an electrical distribution circuit may severely degrade power quality due to voltage sags and swells caused by rapidly varying PV generation during cloud transients coupled with the slow response of existing utility compensation and regulation equipment. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We suggest a local control scheme that dispatches reactive power from each PV inverter based on local instantaneous measurements of the real and reactive components of the consumed power and the re...

  4. Estimating the service life of thermal power equipment in accordance with the new national standard

    NASA Astrophysics Data System (ADS)

    Dubov, A. A.

    2011-11-01

    A methodical approach for estimating the service life of thermal power equipment at thermal power stations in accordance with recommendations of the modern national standards is presented. The approach is intended for specialists of power stations, joint generating companies, territorial generating companies, expert organizations, etc. Experience gained with implementing the described methodical approach is considered taking estimation of the service life of steam pipeline bends as an example.

  5. Solar thermal power systems. Summary report

    SciTech Connect

    Not Available

    1980-06-01

    The work accomplished by the Aerospace Corporation from April 1973 through November 1979 in the mission analysis of solar thermal power systems is summarized. Sponsorship of this effort was initiated by the National Science Foundation, continued by the Energy Research and Development Administration, and most recently directed by the United States Department of Energy, Division of Solar Thermal Systems. Major findings and conclusions are sumarized for large power systems, small power systems, solar total energy systems, and solar irrigation systems, as well as special studies in the areas of energy storage, industrial process heat, and solar fuels and chemicals. The various data bases and computer programs utilized in these studies are described, and tables are provided listing financial and solar cost assumptions for each study. An extensive bibliography is included to facilitate review of specific study results and methodology.

  6. Proceedings of the Fifth Parabolic Dish Solar Thermal Power Program

    NASA Technical Reports Server (NTRS)

    Lucas, J. W. (editor)

    1984-01-01

    The proceedings of the Fifth Parabolic Dish Solar Thermal Power Program Annual Review are presented. The results of activities within the Parabolic Dish Technology and Module/Systems Development element of the Department of Energy's Solar Thermal Energy Systems Program were emphasized. Among the topics discussed were: overall Project and Program aspects, Stirling and Brayton module development, concentrator and engine/receiver development along with associated hardware and test results; distributed systems operating experience; international parabolic dish development activities; and non-DOE-sponsored domestic dish activities. Solar electric generation was also addressed.

  7. FUTURE POWER GRID INITIATIVE Next Generation Network

    E-print Network

    FUTURE POWER GRID INITIATIVE Next Generation Network Simulations for Power System Applications-Simulation synchronizes a cooperative simulation of connected components--each component modeled by its vetted next-generation concepts and tools for grid operation and planning and ensure a more secure, efficient

  8. Pneumatic tire-based piezoelectric power generation

    NASA Astrophysics Data System (ADS)

    Makki, Noaman; Pop-Iliev, Remon

    2011-03-01

    Plug-in Hybrid Electric Vehicles (PHEVs) and Extended Range Electric Vehicles (EREVs) currently mainly rely on Internal Combustion Engines (ICE) utilizing conventional fuels to recharge batteries in order to extend their range. Even though Piezo-based power generation devices have surfaced in recent years harvesting vibration energy, their output has only been sufficient to power up sensors and other such smaller devices. The permanent need for a cleaner power generation technique still remains. This paper investigates the possibility of using piezoceramics for power generation within the vehicle's wheel assembly by exploiting the rotational motion of the wheel and the continuously variable contact point between the pneumatic tire and the road.

  9. Options for Control of Reactive Power by Distributed Photovoltaic Generators

    E-print Network

    Sulc, Petr; Backhaus, Scott; Chertkov, Michael

    2010-01-01

    High penetration levels of distributed photovoltaic(PV) generation on an electrical distribution circuit present several challenges and opportunities for distribution utilities. Rapidly varying irradiance conditions may cause voltage sags and swells that cannot be compensated by slowly responding utility equipment resulting in a degradation of power quality. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We discuss and compare via simulation various design options for control systems to manage the reactive power generated by these inverters. An important design de...

  10. The generative powers of demolition

    E-print Network

    Muskopf, Christopher Jon Dalton, 1975-

    2005-01-01

    When examining the factory within the urban fabric, especially those cases that are abandoned and considered obsolete, it may be possible to see the first generative act as one of un-building. Considering demolition as an ...

  11. Thermal buffering of receivers for parabolic dish solar thermal power plants

    NASA Technical Reports Server (NTRS)

    Manvi, R.; Fujita, T.; Gajanana, B. C.; Marcus, C. J.

    1980-01-01

    A parabolic dish solar thermal power plant comprises a field of parabolic dish power modules where each module is composed of a two-axis tracking parabolic dish concentrator which reflects sunlight (insolation) into the aperture of a cavity receiver at the focal point of the dish. The heat generated by the solar flux entering the receiver is removed by a heat transfer fluid. In the dish power module, this heat is used to drive a small heat engine/generator assembly which is directly connected to the cavity receiver at the focal point. A computer analysis is performed to assess the thermal buffering characteristics of receivers containing sensible and latent heat thermal energy storage. Parametric variations of the thermal inertia of the integrated receiver-buffer storage systems coupled with different fluid flow rate control strategies are carried out to delineate the effect of buffer storage, the transient response of the receiver-storage systems and corresponding fluid outlet temperature. It is concluded that addition of phase change buffer storage will substantially improve system operational characteristics during periods of rapidly fluctuating insolation due to cloud passage.

  12. 78 FR 32385 - Exelon Generation Company, LLC; CER Generation II, LLC; Constellation Mystic Power, LLC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-30

    ... Energy Regulatory Commission Exelon Generation Company, LLC; CER Generation II, LLC; Constellation Mystic Power, LLC; Constellation NewEnergy, Inc.; Constellation Power Source Generation, Inc.; Criterion Power..., CER Generation II, LLC, Constellation Mystic Power, LLC, Constellation NewEnergy, Inc.,...

  13. Dislocation Generation by Thermal Stresses in Si: Modeling and Experiments

    SciTech Connect

    Sopori, B.; Sheldon, P.; Rupnowski, P.; Balzar, D.

    2005-11-01

    We developed a finite-element modeling program to predict the thermally generated dislocation distribution in a wafer. This model uses measured parameters that are determined from generating dislocations under a known optical flux.

  14. An Implanted, Stimulated Muscle Powered Piezoelectric Generator

    NASA Technical Reports Server (NTRS)

    Lewandowski, Beth; Gustafson, Kenneth; Kilgore, Kevin

    2007-01-01

    A totally implantable piezoelectric generator system able to harness power from electrically activated muscle could be used to augment the power systems of implanted medical devices, such as neural prostheses, by reducing the number of battery replacement surgeries or by allowing periods of untethered functionality. The features of our generator design are no moving parts and the use of a portion of the generated power for system operation and regulation. A software model of the system has been developed and simulations have been performed to predict the output power as the system parameters were varied within their constraints. Mechanical forces that mimic muscle forces have been experimentally applied to a piezoelectric generator to verify the accuracy of the simulations and to explore losses due to mechanical coupling. Depending on the selection of system parameters, software simulations predict that this generator concept can generate up to approximately 700 W of power, which is greater than the power necessary to drive the generator, conservatively estimated to be 50 W. These results suggest that this concept has the potential to be an implantable, self-replenishing power source and further investigation is underway.

  15. Where solar thermal meets photovoltaic for high-efficiency power conversion

    E-print Network

    Bierman, David M. (David Matthew)

    2014-01-01

    To develop disruptive techniques which generate power from the Sun, one must understand the aspects of existing technologies that limit performance. Solar thermal and solar photovoltaic schemes dominate today's solar market ...

  16. Solar power generation and distribution

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The production of electricity from solar energy is discussed. The economics of the proposed generation and distribution systems are analyzed. The use of photovoltaics for converting solar energy to home heating is proposed. The problems of energy distribution are analyzed from the standpoint of equipment costs and complexity.

  17. Novel Thermal Powered Technology for UUV Persistent Surveillance

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.; Chao, Yi

    2006-01-01

    Buoyancy Generation: Various technology attempts include melting a wax, which pushes directly against a piston (U.S. Patent 5,291,847) or against a bladder (Webb Research), using ammonia or Freon 21 (U.S. Patent 5,303,552), and using solar heat to expand an oil (www.space.com, April, 10, 2002). All these heat-activated buoyancy control designs have thus far proved impractical and have ultimately failed during repeated cycling in ocean testing. JPL has demonstrated fully reversible 10 C encapsulated wax phase change, which can be used to change buoyancy without electrical hydraulic pumps. This technique has greatly improved heat transfer and much better reversibility than previous designs. Power Generation: Ocean Thermal Energy Conversion (OTEC) systems have been designed that transfer deep, cold sea water to the surface to generate electricity using turbine cycles with ammonia or water as the working fluid. JPL has designed several UUV systems: 1) Using a propeller water turbine to generate power on a gliding submersible; 2) Employing a compact CO2 turbine cycle powered by moving through thermoclines; and 3) Using melted wax to directly produce power through a piston-geared generator.

  18. Power Smoothing and MPPT for Grid-connected Wind Power Generation with Doubly Fed Induction Generator

    NASA Astrophysics Data System (ADS)

    Kai, Takaaki; Tanaka, Yuji; Kaneda, Hirotoshi; Kobayashi, Daichi; Tanaka, Akio

    Recently, doubly fed induction generator (DFIG) and synchronous generator are mostly applied for wind power generation, and variable speed control and power factor control are executed for high efficiently for wind energy capture and high quality for power system voltage. In variable speed control, a wind speed or a generator speed is used for maximum power point tracking. However, performances of a wind generation power fluctuation due to wind speed variation have not yet investigated for those controls. The authors discuss power smoothing by those controls for the DFIG inter-connected to 6.6kV distribution line. The performances are verified using power system simulation software PSCAD/EMTDC for actual wind speed data and are examined from an approximate equation of wind generation power fluctuation for wind speed variation.

  19. Thermal emf generated by laser emission along thin metal films

    NASA Astrophysics Data System (ADS)

    Konov, V. I.; Nikitin, P. I.; Satiukov, D. G.; Uglov, S. A.

    1991-07-01

    Substantial pulse thermal emf values (about 1.5 V) have been detected along the substrate during the interaction of laser emission with thin metal films (Ni, Ti, and Bi) sprayed on corrugated substrates. Relationships are established between the irradiation conditions and parameters of the generated electrical signals. Possible mechanisms of thermal emf generation and promising applications are discussed.

  20. Electrical machines technology for aerospace power generators

    NASA Astrophysics Data System (ADS)

    Vaidya, Jayant G.

    Electric power generators for aerospace and aircraft applications are now required to be more reliable. It is noted that the wound field synchronous generator has been the workhorse for producing 400-Hz AC electric power for many years. Substantial evolution has occurred over the years by replacing low-speed generators with the 24,000-rpm design. The quality of the AC waveform produced by the wound field generators is excellent, the excitation power requirement is low, and control of output power is easily accomplished under abnormal operating conditions. Other changing requirements include variety of power types, increased reliability, and higher speeds and temperatures. It is pointed out that wound field synchronous generators have limitations due to rotating windings and rotating rectifiers. Other options such as self-regulating permanent magnet generators, switched reluctance generators, reluctance generators, flux switches overcome these limitations. It is suggested that the selection from these options must be based on the specific requirements for a given application, evaluating overall system constraints such as weight, performance, and cost.

  1. Low thermal resistance power module assembly

    DOEpatents

    Hassani, Vahab (Denver, CO); Vlahinos, Andreas (Castle Rock, CO); Bharathan, Desikan (Arvada, CO)

    2007-03-13

    A power module assembly with low thermal resistance and enhanced heat dissipation to a cooling medium. The assembly includes a heat sink or spreader plate with passageways or openings for coolant that extend through the plate from a lower surface to an upper surface. A circuit substrate is provided and positioned on the spreader plate to cover the coolant passageways. The circuit substrate includes a bonding layer configured to extend about the periphery of each of the coolant passageways and is made up of a substantially nonporous material. The bonding layer may be solder material which bonds to the upper surface of the plate to provide a continuous seal around the upper edge of each opening in the plate. The assembly includes power modules mounted on the circuit substrate on a surface opposite the bonding layer. The power modules are positioned over or proximal to the coolant passageways.

  2. Hybrid solar-fossil fuel power generation

    E-print Network

    Sheu, Elysia J. (Elysia Ja-Zeng)

    2012-01-01

    In this thesis, a literature review of hybrid solar-fossil fuel power generation is first given with an emphasis on system integration and evaluation. Hybrid systems are defined as those which use solar energy and fuel ...

  3. Solar thermoelectrics for small scale power generation

    E-print Network

    Amatya, Reja

    2012-01-01

    In the past two decades, there has been a surge in the research of new thermoelectric (TE) materials, driven party by the need for clean and sustainable power generation technology. Utilizing the Seebeck effect, the ...

  4. Analysis of power generation processes using petcoke 

    E-print Network

    Jayakumar, Ramkumar

    2009-05-15

    Petroleum coke or petcoke, a refinery byproduct, has generally been considered as an unusable byproduct because of its high sulfur content. However energy industries now view petcoke as a potential feedstock for power generation because it has...

  5. Cascading Closed Loop Cycle Power Generation 

    E-print Network

    Romero, M.

    2008-01-01

    marketed as WOWGen®. The WOW Energies patents represent the production of efficient power from low, medium and high temperature heat generated from the combustion of fuels; heat from renewable energy sources such as solar and geothermal heat; or waste heat...

  6. Power generation method including membrane separation

    DOEpatents

    Lokhandwala, Kaaeid A. (Union City, CA)

    2000-01-01

    A method for generating electric power, such as at, or close to, natural gas fields. The method includes conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas by means of a membrane separation step. This step creates a leaner, sweeter, drier gas, which is then used as combustion fuel to run a turbine, which is in turn used for power generation.

  7. Solar thermal electric power information user study

    SciTech Connect

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1981-02-01

    The results of a series of telephone interviews with groups of users of information on solar thermal electric power are described. These results, part of a larger study on many different solar technologies, identify types of information each group needed and the best ways to get information to each group. The report is 1 of 10 discussing study results. The overall study provides baseline data about information needs in the solar community. An earlier study identified the information user groups in the solar community and the priority (to accelerate solar energy commercialization) of getting information to each group. In the current study only high-priority groups were examined. Results from five solar thermal electric power groups of respondents are analyzed: DOE-Funded Researchers, Non-DOE-Funded Researchers, Representatives of Utilities, Electric Power Engineers, and Educators. The data will be used as input to the determination of information products and services the Solar Energy Research Institute, the Solar Energy Information Data Bank Network, and the entire information outreach community should be preparing and disseminating.

  8. Residential Solar Combined Heat and Power Generation using Solar Thermoelectric Generation

    NASA Astrophysics Data System (ADS)

    Ohara, B.; Wagner, M.; Kunkle, C.; Watson, P.; Williams, R.; Donohoe, R.; Ugarte, K.; Wilmoth, R.; Chong, M. Zachary; Lee, H.

    2015-06-01

    Recent reports on improved efficiencies of solar thermoelectric generation (STEG) systems have generated interest in STEGs as a competitive power generation system. In this paper, the design of a combined cooling and power utilizing concentrated solar power is discussed. Solar radiation is concentrated into a receiver connected to thermoelectric modules, which are used as a topping cycle to generate power and high grade heat necessary to run an absorption chiller. Modeling of the overall system is discussed with experimental data to validate modeling results. A numerical modeling approach is presented which considers temperature variation of the source and sink temperatures and is used to maximize combined efficiency. A system is built with a demonstrated combined efficiency of 32% in actual working conditions with power generation of 3.1 W. Modeling results fell within 3% of the experimental results verifying the approach. An optimization study is performed on the mirror concentration ration and number of modules for thermal load matching and is shown to improve power generation to 26.8 W.

  9. Solar driven liquid metal MHD power generator

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Hohl, F. (inventors)

    1983-01-01

    A solar energy collector focuses solar energy onto a solar oven which is attached to a mixer which in turn is attached to the channel of a MHD generator. Gas enters the oven and a liquid metal enters the mixer. The gas/liquid metal mixture is heated by the collected solar energy and moves through the MHD generator thereby generating electrical power. The mixture is then separated and recycled.

  10. Solar driven liquid metal mhd power generator

    SciTech Connect

    Hohl, F.; Lee, J.H.

    1983-06-14

    A solar energy collector focuses solar energy onto a solar oven which is attached to a mixer which in turn is attached to the channel of a mhd generator. Gas enters the oven and a liquid metal enters the mixer. The gas/liquid metal mixture is heated by the collected solar energy and moves through the mhd generator thereby generating electrical power. The mixture is then separated and recycled.

  11. Solar driven liquid metal MHD power generator

    NASA Astrophysics Data System (ADS)

    Lee, J. H.; Hohl, F.

    1983-06-01

    A solar energy collector focuses solar energy onto a solar oven which is attached to a mixer which in turn is attached to the channel of a MHD generator. Gas enters the oven and a liquid metal enters the mixer. The gas/liquid metal mixture is heated by the collected solar energy and moves through the MHD generator thereby generating electrical power. The mixture is then separated and recycled.

  12. Integrated propulsion and power modeling for bimodal nuclear thermal rockets

    NASA Astrophysics Data System (ADS)

    Clough, Joshua

    Bimodal nuclear thermal rocket (BNTR) engines have been shown to reduce the weight of space vehicles to the Moon, Mars, and beyond by utilizing a common reactor for propulsion and power generation. These savings lead to reduced launch vehicle costs and/or increased mission safety and capability. Experimental work of the Rover/NERVA program demonstrated the feasibility of NTR systems for trajectories to Mars. Numerous recent studies have demonstrated the economic and performance benefits of BNTR operation. Relatively little, however, is known about the reactor-level operation of a BNTR engine. The objective of this dissertation is to develop a numerical BNTR engine model in order to study the feasibility and component-level impact of utilizing a NERVA-derived reactor as a heat source for both propulsion and power. The primary contribution is to provide the first-of-its-kind model and analysis of a NERVA-derived BNTR engine. Numerical component models have been modified and created for the NERVA reactor fuel elements and tie tubes, including 1-D coolant thermodynamics and radial thermal conduction with heat generation. A BNTR engine system model has been created in order to design and analyze an engine employing an expander-cycle nuclear rocket and Brayton cycle power generator using the same reactor. Design point results show that a 316 MWt reactor produces a thrust and specific impulse of 66.6 kN and 917 s, respectively. The same reactor can be run at 73.8 kWt to produce the necessary 16.7 kW electric power with a Brayton cycle generator. This demonstrates the feasibility of BNTR operation with a NERVA-derived reactor but also indicates that the reactor control system must be able to operate with precision across a wide power range, and that the transient analysis of reactor decay heat merits future investigation. Results also identify a significant reactor pressure-drop limitation during propulsion and power-generation operation that is caused by poor tie tube thermal conductivity. This leads to the conclusion that, while BNTR operation is possible with a NERVA-derived reactor, doing so requires careful consideration of the Brayton cycle design point and fuel element survivability.

  13. Fiscalini Farms Renewable Energy Power Generation Project

    SciTech Connect

    2009-02-01

    Funded by the American Recovery and Reinvestment Act of 2009 Fiscalini Farms L.P., in collaboration with University of the Pacific, Biogas Energy, Inc., and the University of California at Berkeley will measure and analyze the efficiency and regulatory compliance of a renewable energy system for power generation. The system will utilize digester gas from an anaerobic digester located at the Fiscalini Farms dairy for power generation with a reciprocating engine. The project will provide power, efficiency, emissions, and cost/benefit analysis for the system and evaluate its compliance with federal and California emissions standards.

  14. ENHANCED THERMAL VACUUM TEST CAPABILITY FOR RADIOISOTOPE POWER SYSTEMS AT THE IDAHO NATIONAL LABORATORY BETTER SIMULATES ENVIRONMENTAL CONDITIONS OF SPACE

    SciTech Connect

    J. C. Giglio; A. A. Jackson

    2012-03-01

    The Idaho National Laboratory (INL) is preparing to fuel and test the Advanced Stirling Radioisotope Generator (ASRG), the next generation space power generator. The INL identified the thermal vacuum test chamber used to test past generators as inadequate. A second vacuum chamber was upgraded with a thermal shroud to process the unique needs and to test the full power capability of the new generator. The thermal vacuum test chamber is the first of its kind capable of testing a fueled power system to temperature that accurately simulate space. This paper outlines the new test and set up capabilities at the INL.

  15. Phase change material thermal power generator

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor); Chao, Yi (Inventor); Valdez, Thomas I. (Inventor)

    2011-01-01

    An energy producing device, for example a submersible vehicle for descending or ascending to different depths within water or ocean, is disclosed. The vehicle comprises a temperature-responsive material to which a hydraulic fluid is associated. A pressurized storage compartment stores the fluid as soon as the temperature-responsive material changes density. The storage compartment is connected with a hydraulic motor, and a valve allows fluid passage from the storage compartment to the hydraulic motor. An energy storage component, e.g. a battery, is connected with the hydraulic motor and is charged by the hydraulic motor when the hydraulic fluid passes through the hydraulic motor. Upon passage in the hydraulic motor, the fluid is stored in a further storage compartment and is then sent back to the area of the temperature-responsive material.

  16. Phase Change Material Thermal Power Generator

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor); Chao, Yi (Inventor); Valdez, Thomas I. (Inventor)

    2014-01-01

    An energy producing device, for example a submersible vehicle for descending or ascending to different depths within water or ocean, is disclosed. The vehicle comprises a temperature-responsive material to which a hydraulic fluid is associated. A pressurized storage compartment stores the fluid as soon as the temperature-responsive material changes density. The storage compartment is connected with a hydraulic motor, and a valve allows fluid passage from the storage compartment to the hydraulic motor. An energy storage component, e.g. a battery, is connected with the hydraulic motor and is charged by the hydraulic motor when the hydraulic fluid passes through the hydraulic motor. Upon passage in the hydraulic motor, the fluid is stored in a further storage compartment and is then sent back to the area of the temperature-responsive material.

  17. Autonomous quantum thermal machine for generating steady-state entanglement

    E-print Network

    Jonatan Bohr Brask; Nicolas Brunner; Géraldine Haack; Marcus Huber

    2015-11-24

    We discuss a simple quantum thermal machine for the generation of steady-state entanglement between two interacting qubits. The machine is autonomous in the sense that it uses only incoherent interactions with thermal baths, but no source of coherence or external control. By weakly coupling the qubits to thermal baths at different temperatures, inducing a heat current through the system, steady-state entanglement is generated far from thermal equilibrium. Finally, we discuss two possible implementations, using superconducting flux qubits or a semiconductor double quantum dot. Experimental prospects for steady-state entanglement are promising in both systems.

  18. Autonomous quantum thermal machine for generating steady-state entanglement

    NASA Astrophysics Data System (ADS)

    Bohr Brask, Jonatan; Haack, Géraldine; Brunner, Nicolas; Huber, Marcus

    2015-11-01

    We discuss a simple quantum thermal machine for the generation of steady-state entanglement between two interacting qubits. The machine is autonomous in the sense that it uses only incoherent interactions with thermal baths, but no source of coherence or external control. By weakly coupling the qubits to thermal baths at different temperatures, inducing a heat current through the system, steady-state entanglement is generated far from thermal equilibrium. Finally, we discuss two possible implementations, using superconducting flux qubits or a semiconductor double quantum dot. Experimental prospects for steady-state entanglement are promising in both systems.

  19. Utilization of wind power of artificially generated mesoscale convection in the troposphere

    NASA Astrophysics Data System (ADS)

    Kinoshita, Mikio

    Prospects on utilization of wind power of artificially generated mesoscale convection is studied. Thermal energy is converted to kinetic energy by the convection in the troposphere with high efficiency. The artificially generated mesoscale convection is considered to be applicable for artificial precipitation of rain, and solar/wind power plants in subtropical arid regions where solar thermal energy is abundant. Performance of several 100 GW class power plants is also studied theoretically. The utilization of wind power of artificially generated mesoscale convection is considered to be feasible for a new major energy sources for human activities, and for development in the subtropical developing countries.

  20. High power terahertz generation using 1550?nm plasmonic photomixers

    SciTech Connect

    Berry, Christopher W.; Hashemi, Mohammad R.; Jarrahi, Mona; Preu, Sascha; Lu, Hong; Gossard, Arthur C.

    2014-07-07

    We present a 1550?nm plasmonic photomixer operating under pumping duty cycles below 10%, which offers significantly higher terahertz radiation power levels compared to previously demonstrated photomixers. The record-high terahertz radiation powers are enabled by enhancing the device quantum efficiency through use of plasmonic contact electrodes, and by mitigating thermal breakdown at high optical pump power levels through use of a low duty cycle optical pump. The repetition rate of the optical pump can be specifically selected at a given pump duty cycle to control the spectral linewidth of the generated terahertz radiation. At an average optical pump power of 150 mW with a pump modulation frequency of 1 MHz and pump duty cycle of 2%, we demonstrate up to 0.8 mW radiation power at 1 THz, within each continuous wave radiation cycle.

  1. A Thermoelectric Generator Using Porous Si Thermal Isolation

    PubMed Central

    Hourdakis, Emmanouel; Nassiopoulou, Androula G.

    2013-01-01

    In this paper we report on a thermoelectric generator (TEG) using thermal isolation provided by a thick porous Si layer locally formed on the Si wafer and thermocouples composed of p-doped polycrystalline Si/Al. The “hot” contacts of the thermocouples lie on the porous Si layer, while the “cold” contacts lie on bulk crystalline Si. A housing was also designed and fabricated in order to transfer any external temperature change on the “hot” contacts of the thermocouples, the “cold” contacts being isolated from the “hot” contacts by a thick resist layer. The fabrication of the sensing element (Si die) is fully compatible with batch Si processing. The output power of the thermoelectric generator depends on the porous Si isolation layer thickness, porosity, structure and morphology. For a mesoporous Si layer of 60% porosity and a macroscopic temperature differential of 10 K, an output power of 0.39 ?W/cm2 was measured for a 50 ?m thick porous Si layer. PMID:24152923

  2. New Generation Power System for Space Applications

    NASA Technical Reports Server (NTRS)

    Jones, Loren; Carr, Greg; Deligiannis, Frank; Lam, Barbara; Nelson, Ron; Pantaleon, Jose; Ruiz, Ian; Treicler, John; Wester, Gene; Sauers, Jim; Giampoli, Paul; Haskell, Russ; Mulvey, Jim; Repp, John

    2004-01-01

    The Deep Space Avionics (DSA) Project is developing a new generation of power system building blocks. Using application specific integrated circuits (ASICs) and power switching modules a scalable power system can be constructed for use on multiple deep space missions including future missions to Mars, comets, Jupiter and its moons. The key developments of the DSA power system effort are five power ASICs and a mod ule for power switching. These components enable a modular and scalab le design approach, which can result in a wide variety of power syste m architectures to meet diverse mission requirements and environments . Each component is radiation hardened to one megarad) total dose. The power switching module can be used for power distribution to regular spacecraft loads, to propulsion valves and actuation of pyrotechnic devices. The number of switching elements per load, pyrotechnic firin gs and valve drivers can be scaled depending on mission needs. Teleme try data is available from the switch module via an I2C data bus. The DSA power system components enable power management and distribution for a variety of power buses and power system architectures employing different types of energy storage and power sources. This paper will describe each power ASIC#s key performance characteristics as well a s recent prototype test results. The power switching module test results will be discussed and will demonstrate its versatility as a multip urpose switch. Finally, the combination of these components will illu strate some of the possible power system architectures achievable fro m small single string systems to large fully redundant systems.

  3. 43 CFR 431.6 - Power generation estimates.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...2011-10-01 2011-10-01 false Power generation estimates. 431.6 Section...THE INTERIOR GENERAL REGULATIONS FOR POWER GENERATION, OPERATION, MAINTENANCE...PROJECT, ARIZONA/NEVADA § 431.6 Power generation estimates....

  4. 43 CFR 431.6 - Power generation estimates.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...2010-10-01 2010-10-01 false Power generation estimates. 431.6 Section...THE INTERIOR GENERAL REGULATIONS FOR POWER GENERATION, OPERATION, MAINTENANCE...PROJECT, ARIZONA/NEVADA § 431.6 Power generation estimates....

  5. 43 CFR 431.4 - Power generation responsibilities.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...2013-10-01 2013-10-01 false Power generation responsibilities. 431.4...THE INTERIOR GENERAL REGULATIONS FOR POWER GENERATION, OPERATION, MAINTENANCE...PROJECT, ARIZONA/NEVADA § 431.4 Power generation responsibilities....

  6. 43 CFR 431.4 - Power generation responsibilities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...2010-10-01 2010-10-01 false Power generation responsibilities. 431.4...THE INTERIOR GENERAL REGULATIONS FOR POWER GENERATION, OPERATION, MAINTENANCE...PROJECT, ARIZONA/NEVADA § 431.4 Power generation responsibilities....

  7. 43 CFR 431.4 - Power generation responsibilities.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...2014-10-01 2014-10-01 false Power generation responsibilities. 431.4...THE INTERIOR GENERAL REGULATIONS FOR POWER GENERATION, OPERATION, MAINTENANCE...PROJECT, ARIZONA/NEVADA § 431.4 Power generation responsibilities....

  8. 43 CFR 431.4 - Power generation responsibilities.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...2012-10-01 2011-10-01 true Power generation responsibilities. 431.4...THE INTERIOR GENERAL REGULATIONS FOR POWER GENERATION, OPERATION, MAINTENANCE...PROJECT, ARIZONA/NEVADA § 431.4 Power generation responsibilities....

  9. 43 CFR 431.6 - Power generation estimates.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...2013-10-01 2013-10-01 false Power generation estimates. 431.6 Section...THE INTERIOR GENERAL REGULATIONS FOR POWER GENERATION, OPERATION, MAINTENANCE...PROJECT, ARIZONA/NEVADA § 431.6 Power generation estimates....

  10. 43 CFR 431.4 - Power generation responsibilities.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...2011-10-01 2011-10-01 false Power generation responsibilities. 431.4...THE INTERIOR GENERAL REGULATIONS FOR POWER GENERATION, OPERATION, MAINTENANCE...PROJECT, ARIZONA/NEVADA § 431.4 Power generation responsibilities....

  11. Application of the subatmospheric engine to solar thermal power

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The development of a natural gas-fired Brayton engine is discussed. It is intended to be the prime mover for a 10-ton commercial heat pump. This engine has many attractive features that make it an ideal candidate for solar thermal-power generation applications. The unique feature of this engine is its subatmospheric mode of operation. It operates between atmospheric pressure and a partial vacuum. This means that heat is added to the cycle at atmospheric pressure; this permits the receiver to be unpressurized, greatly simplifying its design and cost.

  12. Method of operating a thermal engine powered by a chemical reaction

    DOEpatents

    Ross, John (Stanford, CA); Escher, Claus (Nieder-Ronstadt, DE)

    1988-01-01

    The invention involves a novel method of increasing the efficiency of a thermal engine. Heat is generated by a non-linear chemical reaction of reactants, said heat being transferred to a thermal engine such as Rankine cycle power plant. The novel method includes externally perturbing one or more of the thermodynamic variables of said non-linear chemical reaction.

  13. Method of operating a thermal engine powered by a chemical reaction

    DOEpatents

    Ross, J.; Escher, C.

    1988-06-07

    The invention involves a novel method of increasing the efficiency of a thermal engine. Heat is generated by a non-linear chemical reaction of reactants, said heat being transferred to a thermal engine such as Rankine cycle power plant. The novel method includes externally perturbing one or more of the thermodynamic variables of said non-linear chemical reaction. 7 figs.

  14. Utilizing Radioisotope Power System Waste Heat for Spacecraft Thermal Management

    NASA Technical Reports Server (NTRS)

    Pantano, David R.; Dottore, Frank; Geng, Steven M.; Schrieber, Jeffrey G.; Tobery, E. Wayne; Palko, Joseph L.

    2005-01-01

    One of the advantages of using a Radioisotope Power System (RPS) for deep space or planetary surface missions is the readily available waste heat, which can be used to maintain electronic components within a controlled temperature range, to warm propulsion tanks and mobility actuators, and to gasify liquid propellants. Previous missions using Radioisotope Thermoelectric Generators (RTGs) dissipated a very large quantity of waste heat due to the relatively low efficiency of the thermoelectric conversion technology. The next generation RPSs, such as the 110-watt Stirling Radioisotope Generator (SRG110) will have much higher conversion efficiencies than their predecessors and therefore may require alternate approaches to transferring waste heat to the spacecraft. RTGs, with efficiencies of approx. 6 to 7% and 200 C housing surface temperatures, would need to use large and heavy radiator heat exchangers to transfer the waste heat to the internal spacecraft components. At the same time, sensitive spacecraft instruments must be shielded from the thermal radiation by using the heat exchangers or additional shields. The SRG110, with an efficiency around 22% and 50 C nominal housing surface temperature, can use the available waste heat more efficiently by more direct heat transfer methods such as heat pipes, thermal straps, or fluid loops. The lower temperatures allow the SRG110 much more flexibility to the spacecraft designers in configuring the generator without concern of overheating nearby scientific instruments, thereby eliminating the need for thermal shields. This paper will investigate using a high efficiency SRG110 for spacecraft thermal management and outline potential methods in several conceptual missions (Lunar Rover, Mars Rover, and Titan Lander) to illustrate the advantages with regard to ease of assembly, less complex interfaces, and overall mass savings.

  15. Thermoelectric Fabrics: Toward Power Generating Clothing

    PubMed Central

    Du, Yong; Cai, Kefeng; Chen, Song; Wang, Hongxia; Shen, Shirley Z.; Donelson, Richard; Lin, Tong

    2015-01-01

    Herein, we demonstrate that a flexible, air-permeable, thermoelectric (TE) power generator can be prepared by applying a TE polymer (e.g. poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate)) coated commercial fabric and subsequently by linking the coated strips with a conductive connection (e.g. using fine metal wires). The poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) coated fabric shows very stable TE properties from 300?K to 390?K. The fabric device can generate a TE voltage output (V) of 4.3?mV at a temperature difference (?T) of 75.2?K. The potential for using fabric TE devices to harvest body temperature energy has been discussed. Fabric-based TE devices may be useful for the development of new power generating clothing and self-powered wearable electronics. PMID:25804132

  16. Thermoelectric Fabrics: Toward Power Generating Clothing

    NASA Astrophysics Data System (ADS)

    Du, Yong; Cai, Kefeng; Chen, Song; Wang, Hongxia; Shen, Shirley Z.; Donelson, Richard; Lin, Tong

    2015-03-01

    Herein, we demonstrate that a flexible, air-permeable, thermoelectric (TE) power generator can be prepared by applying a TE polymer (e.g. poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate)) coated commercial fabric and subsequently by linking the coated strips with a conductive connection (e.g. using fine metal wires). The poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) coated fabric shows very stable TE properties from 300 K to 390 K. The fabric device can generate a TE voltage output (V) of 4.3 mV at a temperature difference (?T) of 75.2 K. The potential for using fabric TE devices to harvest body temperature energy has been discussed. Fabric-based TE devices may be useful for the development of new power generating clothing and self-powered wearable electronics.

  17. Thermoelectric fabrics: toward power generating clothing.

    PubMed

    Du, Yong; Cai, Kefeng; Chen, Song; Wang, Hongxia; Shen, Shirley Z; Donelson, Richard; Lin, Tong

    2015-01-01

    Herein, we demonstrate that a flexible, air-permeable, thermoelectric (TE) power generator can be prepared by applying a TE polymer (e.g. poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate)) coated commercial fabric and subsequently by linking the coated strips with a conductive connection (e.g. using fine metal wires). The poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) coated fabric shows very stable TE properties from 300?K to 390?K. The fabric device can generate a TE voltage output (V) of 4.3?mV at a temperature difference (?T) of 75.2?K. The potential for using fabric TE devices to harvest body temperature energy has been discussed. Fabric-based TE devices may be useful for the development of new power generating clothing and self-powered wearable electronics. PMID:25804132

  18. Sixth Northwest Conservation and Electric Power Plan Appendix I: Generating Resources -Background

    E-print Network

    ............................................................................... 26 Woody Residue Power Plants ..................................................................................... 38 Concentrating Solar Thermal Power Plant ............................................................................... 44 Wind Power Plants

  19. The New Generation of Thermal Mapping

    ERIC Educational Resources Information Center

    Patterson, Valerie B.

    2012-01-01

    Thermal imaging was used 60+ years ago to enable the targeting of heat-seeking missiles and seeing opposing forces at night. Today thermograpy is employed for myriad uses, from turning on faucets, to tracking and attacking enemies from aerial spy drones, to identifying the scope of moisture infiltration in building envelopes. Thermography for…

  20. Value of Concentrating Solar Power and Thermal Energy Storage

    SciTech Connect

    Sioshansi, R.; Denholm, P.

    2010-02-01

    This paper examines the value of concentrating solar power (CSP) and thermal energy storage (TES) in four regions in the southwestern United States. Our analysis shows that TES can increase the value of CSP by allowing more thermal energy from a CSP plant?s solar field to be used, by allowing a CSP plant to accommodate a larger solar field, and by allowing CSP generation to be shifted to hours with higher energy prices. We analyze the sensitivity of CSP value to a number of factors, including the optimization period, price and solar forecasting, ancillary service sales, capacity value and dry cooling of the CSP plant. We also discuss the value of CSP plants and TES net of capital costs.

  1. Low thermal resistance power module assembly

    DOEpatents

    Hassani, Vahab (Denver, CO); Vlahinos, Andreas (Castle Rock, CO); Bharathan, Desikan (Arvada, CO)

    2010-12-28

    A power module assembly (400) with low thermal resistance and enhanced heat dissipation to a cooling medium. The assembly includes a heat sink or spreader plate (410) with passageways or openings (414) for coolant that extend through the plate from a lower surface (411) to an upper surface (412). A circuit substrate (420) is provided and positioned on the spreader plate (410) to cover the coolant passageways. The circuit substrate (420) includes a bonding layer (422) configured to extend about the periphery of each of the coolant passageways and is made up of a substantially nonporous material. The bonding layer (422) may be solder material which bonds to the upper surface (412) of the plate to provide a continuous seal around the upper edge of each opening (414) in the plate. The assembly includes power modules (430) mounted on the circuit substrate (420) on a surface opposite the bonding layer (422). The power modules (430) are positioned over or proximal to the coolant passageways.

  2. Research and Development for Novel Thermal Energy Storage Systems (TES) for Concentrating Solar Power (CSP)

    SciTech Connect

    Faghri, Amir; Bergman, Theodore L; Pitchumani, Ranga

    2013-09-26

    The overall objective was to develop innovative heat transfer devices and methodologies for novel thermal energy storage systems for concentrating solar power generation involving phase change materials (PCMs). Specific objectives included embedding thermosyphons and/or heat pipes (TS/HPs) within appropriate phase change materials to significantly reduce thermal resistances within the thermal energy storage system of a large-scale concentrating solar power plant and, in turn, improve performance of the plant. Experimental, system level and detailed comprehensive modeling approaches were taken to investigate the effect of adding TS/HPs on the performance of latent heat thermal energy storage (LHTES) systems.

  3. Entropy-generated power and its efficiency.

    PubMed

    Golubeva, N; Imparato, A; Esposito, M

    2013-10-01

    We propose a simple and analytically solvable model for a motor that generates mechanical motion by exploiting an entropic force arising from the topology of the underlying phase space. We show that the generation of mechanical forces in our system is surprisingly robust to local changes in kinetic and topological parameters. Furthermore, we find that the efficiency at maximum power of the motor may show discontinuities. PMID:24229124

  4. Safe Operation of Backup Power Generators 

    E-print Network

    Smith, David

    2006-04-19

    are useful when temporary or remote electric power is needed, but they can also be deadly. The primary hazards to avoid when us- ing a generator are carbon monoxide (CO) poison- ing from generator exhaust fumes, electrocution and fire. Carbon monoxide... danger Carbon monoxide is an odorless, colorless gas byproduct of incomplete combustion of fuels, such as natural gas, heating oil and diesel. This toxic gas interferes with the blood?s ability to carry oxygen to internal organs. People exposed...

  5. Advanced Coal-Based Power Generations

    NASA Technical Reports Server (NTRS)

    Robson, F. L.

    1982-01-01

    Advanced power-generation systems using coal-derived fuels are evaluated in two-volume report. Report considers fuel cells, combined gas- and steam-turbine cycles, and magnetohydrodynamic (MHD) energy conversion. Presents technological status of each type of system and analyzes performance of each operating on medium-Btu fuel gas, either delivered via pipeline to powerplant or generated by coal-gasification process at plantsite.

  6. Nonlinear Generation of Electromagnetic Waves Through Scattering by Thermal Electrons

    NASA Astrophysics Data System (ADS)

    Tejero, E. M.; Crabtree, C. E.; Blackwell, D. D.; Amatucci, B.; Mithaiwala, M.; Rudakov, L.; Ganguli, G.

    2014-12-01

    Nonlinear interactions involving whistler wave turbulence are important contributors to radiation belt dynamics, including the acceleration and loss of trapped electrons. Given sufficient whistler energy density, nonlinear scattering from thermal electrons can substantially change the wave normal angle, while inducing a small frequency shift [Ganguli et al., 2010]. This nonlinear process is being studied in the NRL Space Physics Simulation Chamber (SPSC) in scaled magnetospheric conditions. The plasma response as a function of transmitted lower hybrid wave amplitude is monitored with magnetic loop antennas. Measurements of the magnetic field vectors for the pump and daughter waves allow for the determination of wave distribution functions, which indicate the power distribution as a function of wave-normal angle and azimuthal angle. The wave distribution functions measured in the experiment demonstrate a dramatic change in propagation direction when the launched wave amplitude exceeds a small threshold (?B / B ~ 4 × 10-7). The experimental results support the theory of electromagnetic whistler wave generation through nonlinear scattering of electrostatic lower hybrid waves by thermal electrons in the Earth's magnetosphere [Crabtree et al, 2012].

  7. Modeling of solar thermal selective surfaces and thermoelectric generators

    E-print Network

    McEnaney, Kenneth

    2010-01-01

    A thermoelectric generator is a solid-state device that converts a heat flux into electrical power via the Seebeck effect. When a thermoelectric generator is inserted between a solar-absorbing surface and a heat sink, a ...

  8. A numerical investigation of a thermodielectric power generation system

    NASA Astrophysics Data System (ADS)

    Sklar, Akiva A.

    The performance of a novel micro-thermodielectric power generation system was investigated in order to determine if thermodielectric power generation can be practically employed and if its performance can compete with current portable power generation technologies. Thermodielectric power generation is a direct energy conversion technology that converts heat directly into high voltage direct current. It requires dielectric (i.e., capacitive) materials whose charge storing capabilities are a function of temperature. This property can be exploited by heating these materials after they are charged; as their temperature increases, their charge storage capability decreases, forcing them to eject a portion of their surface charge. This ejected charge can then be supplied to an appropriate electronic storage device. There are several advantages associated with thermodielectric energy conversion; first, it requires heat addition at relatively low conventional power generation temperatures, i.e., less than 600 °K, and second, devices that utilize it have the potential for excellent power density and device reliability. The predominant disadvantage of using this power generation technique is that the device must operate in an unsteady manner; this can lead to substantial heat transfer losses that limit the device's thermal efficiency. The studied power generation system was designed so that the power generating components of the system (i.e., the thermodielectric materials) are integrated within a micro-scale heat exchange apparatus designed specifically to provide the thermodielectric materials with the unsteady heating and cooling necessary for efficient power generation. This apparatus is designed to utilize a liquid as a working fluid in order to maximize its heat transfer capabilities, minimize the size of the heat exchanger, and maximize the power density of the power generation system. The thermodielectric materials are operated through a power generation cycle that consists of four processes; the first process is a charging process, during which an electric field is applied to a thermodielectric material, causing it to acquire electrical charge on its surface (this process is analogous to the isentropic compression process of a Brayton cycle). The second process is a heating process in which the temperature of the dielectric material is increased via heat transfer from an external source. During this process, the thermodielectric material is forced to eject a portion of its surface charge because its charge storing capability decreases as the temperature increases; the ejected charge is intended for capture by external circuitry connected to the thermodielectric material, where it can be routed to an electrochemical storage device or an electromechanical device requiring high voltage direct current. The third process is a discharging process, during which the applied electric field is reduced to its initial strength (analogous to the isentropic expansion process of a Brayton cycle). The final process is a cooling process in which the temperature of the dielectric material is decreased via heat transfer from an external source, returning it to its initial temperature. Previously, predicting the performance of a thermodielectric power generator was hindered by a poor understanding of the material's thermodynamic properties and the effect unsteady heat transfer losses have on system performance. In order to improve predictive capabilities in this study, a thermodielectric equation of state was developed that relates the strength of the applied electric field, the amount of surface charge stored by the thermodielectric material, and its temperature. This state equation was then used to derive expressions for the material's thermodynamic states (internal energy, entropy), which were subsequently used to determine the optimum material properties for power generation. Next, a numerical simulation code was developed to determine the heat transfer capabilities of a micro-scale parallel plate heat recuperator (MPPHR), a device desig

  9. Thermal Design of Power Electronic Circuits

    E-print Network

    Künzi, R

    2015-01-01

    The heart of every switched mode converter consists of several switching semiconductor elements. Due to their non-ideal behaviour there are ON state and switching losses heating up the silicon chip. That heat must effectively be transferred to the environment in order to prevent overheating or even destruction of the element. For a cost-effective design, the semiconductors should be operated close to their thermal limits. Unfortunately the chip temperature cannot be measured directly. Therefore a detailed understanding of how losses arise, including their quantitative estimation, is required. Furthermore, the heat paths to the environment must be understood in detail. This paper describes the main issues of loss generation and its transfer to the environment and how it can be estimated by the help of datasheets and/or experiments.

  10. Thermal Powered Reciprocating-Force Motor

    NASA Technical Reports Server (NTRS)

    Tatum, III, Paul F. (Inventor); McDow Elliott, Amelia (Inventor)

    2015-01-01

    A thermal-powered reciprocating-force motor includes a shutter switchable between a first position that passes solar energy and a second position that blocks solar energy. A shape memory alloy (SMA) actuator is coupled to the shutter to control switching thereof between the shutter's first and second position. The actuator is positioned with respect to the shutter such that (1) solar energy impinges on the SMA when the shutter is in its first position so that the SMA experiences contraction in length until the shutter is switched to its second position, and (2) solar energy is impeded from impingement on the SMA when the shutter is in its second position so that the SMA experiences extension in length. Elastic members coupled to the actuator apply a force to the SMA that aids in its extension in length until the shutter is switched to its first position.

  11. Thermal analyses of power subsystem components

    NASA Technical Reports Server (NTRS)

    Morehouse, Jeffrey H.

    1990-01-01

    The hiatus in the Space Shuttle (Orbiter) program provided time for an in-depth examination of all the subsystems and their past performance. Specifically, problems with reliability and/or operating limits were and continue to be of major engineering concern. The Orbiter Auxiliary Power Unit (APU) currently operates with electric resistance line heaters which are controlled with thermostats. A design option simplification of this heater subsystem is being considered which would use self-regulating heaters. A determination of the properties and thermal operating characteristics of these self-regulating heaters was needed. The Orbiter fuel cells are cooled with a freon loop. During a loss of external heat exchanger coolant flow, the single pump circulating the freon is to be left running. It was unknown what temperature and flow rate transient conditions of the freon would provide the required fuel cell cooling and for how long. The overall objective was the development of the thermal characterization and subsequent analysis of both the proposed self-regulating APU heater and the fuel cell coolant loop subsystem. The specific objective of the APU subsystem effort was to determine the feasibility of replacing the current heater and thermostat arrangement with a self-regulating heater. The specific objective of the fuel cell coolant subsystem work was to determine the tranient coolant temperature and associated flow rates during a loss-of-external heat exchanger flow.

  12. Advanced Soldier Thermoelectric Power System for Power Generation from Battlefield Heat Sources

    SciTech Connect

    Hendricks, Terry J.; Hogan, Tim; Case, Eldon D.; Cauchy, Charles J.

    2010-09-01

    The U.S. military uses large amounts of fuel during deployments and battlefield operations. This project sought to develop a lightweight, small form-factor, soldier-portable advanced thermoelectric (TE) system prototype to recover and convert waste heat from various deployed military equipment (i.e., diesel generators/engines, incinerators, vehicles, and potentially mobile kitchens), with the ultimate purpose of producing power for soldier battery charging, advanced capacitor charging, and other battlefield power applications. The technical approach employed microchannel technology, a unique “power panel” approach to heat exchange/TE system integration, and newly-characterized LAST (lead-antimony-silver-telluride) and LASTT (lead-antimony-silver-tin-telluride) TE materials segmented with bismuth telluride TE materials in designing a segmented-element TE power module and system. This project researched never-before-addressed system integration challenges (thermal expansion, thermal diffusion, electrical interconnection, thermal and electrical interfaces) of designing thin “power panels” consisting of alternating layers of thin, microchannel heat exchangers (hot and cold) sandwiching thin, segmented-element TE power generators. The TE properties, structurally properties, and thermal fatigue behavior of LAST and LASTT materials were developed and characterized such that the first segmented-element TE modules using LAST / LASTT materials were fabricated and tested at hot-side temperatures = 400 °C and cold-side temperatures = 40 °C. LAST / LASTT materials were successfully segmented with bismuth telluride and electrically interconnected with diffusion barrier materials and copper strapping within the module electrical circuit. A TE system design was developed to produce 1.5-1.6 kW of electrical energy using these new TE modules from the exhaust waste heat of 60-kW Tactical Quiet Generators as demonstration vehicles.

  13. Microelectromechanical power generator and vibration sensor

    DOEpatents

    Roesler, Alexander W. (Tijeras, NM); Christenson, Todd R. (Albuquerque, NM)

    2006-11-28

    A microelectromechanical (MEM) apparatus is disclosed which can be used to generate electrical power in response to an external source of vibrations, or to sense the vibrations and generate an electrical output voltage in response thereto. The MEM apparatus utilizes a meandering electrical pickup located near a shuttle which holds a plurality of permanent magnets. Upon movement of the shuttle in response to vibrations coupled thereto, the permanent magnets move in a direction substantially parallel to the meandering electrical pickup, and this generates a voltage across the meandering electrical pickup. The MEM apparatus can be fabricated by LIGA or micromachining.

  14. Diagnosis of thermal efficiency of power station by heat balance analysis method

    SciTech Connect

    Umezawa, Shuichi

    1999-07-01

    The thermal efficiency of thermal power stations is a topic of every-growing interest in view of saving fuel resources and reducing cost. When the thermal efficiency is reduced at a thermal power station, it is very important to identify which equipment caused the change. In order to make more accurate diagnosis of plant efficiency, a thermal efficiency diagnostic technique applying the heat balance analysis method has been developed. The method is characterized by taking the data on generator output, which is the most precise among all plant equipment, as the standard value to analyze the heat balance of the plant in operation. What's more, iterative calculation is converged to minimize any deviations in data of individual items in overall plant whose precision is difficult to certify. The technique has been applied to two thermal power stations in which outputs are 1,000 MW and 600 MW of the TEPCO.

  15. Spin-on-doping for output power improvement of silicon nanowire array based thermoelectric power generators

    SciTech Connect

    Xu, B. Fobelets, K.

    2014-06-07

    The output power of a silicon nanowire array (NWA)-bulk thermoelectric power generator (TEG) with Cu contacts is improved by spin-on-doping (SOD). The Si NWAs used in this work are fabricated via metal assisted chemical etching (MACE) of 0.01–0.02 ? cm resistivity n- and p-type bulk, converting ~4% of the bulk thickness into NWs. The MACE process is adapted to ensure crystalline NWs. Current-voltage and Seebeck voltage-temperature measurements show that while SOD mainly influences the contact resistance in bulk, it influences both contact resistance and power factor in NWA-bulk based TEGs. According to our experiments, using Si NWAs in combination with SOD increases the output power by an order of 3 under the same heating power due to an increased power factor, decreased thermal conductivity of the NWA and reduced Si-Cu contact resistance.

  16. Turbostar: an ICF reactor using both direct and thermal power conversion. Revision 1

    SciTech Connect

    Pitts, J.H.

    1986-07-31

    Combining direct and thermal power conversion results in a 52% gross plant efficiency with DT fuel and 68% with advanced DD fuel. We maximize the fraction of fusion-yield energy converted to kinetic energy in a liquid-lithium blanket, and use this energy directly with turbine generators to produce electricity. We use the remainder of the energy to produce electricity in a standard Rankine thermal power conversion cycle.

  17. Plasma plume MHD power generator and method

    DOEpatents

    Hammer, J.H.

    1993-08-10

    A method is described of generating power at a situs exposed to the solar wind which comprises creating at separate sources at the situs discrete plasma plumes extending in opposed directions, providing electrical communication between the plumes at their source and interposing a desired electrical load in the said electrical communication between the plumes.

  18. Global Climate Change - The Power Generation Challenge

    EPA Science Inventory

    The planet continues to warm; O.5 C from the 1970’s to the 2000’s. Also, worldwide CO2 emissions have increased at a 3% annual growth rate from 2000 to 2010. Such emissions are driven by fossil fuel combustion, especially in the power generation sector, & especial...

  19. Thermoelectric unicouple used for power generation

    NASA Technical Reports Server (NTRS)

    Caillat, Thierry (Inventor); Zoltan, Andrew (Inventor); Zoltan, Leslie (Inventor); Snyder, Jeffrey (Inventor)

    2004-01-01

    A high-efficiency thermoelectric unicouple is used for power generation. The unicouple is formed with a plurality of legs, each leg formed of a plurality of segments. The legs are formed in a way that equalizes certain aspects of the different segments. Different materials are also described.

  20. Exergetic analysis of parabolic trough solar thermal power plants

    NASA Astrophysics Data System (ADS)

    Petrakopoulou, F.; Ruperez, B.; San Miguel, G.

    2014-12-01

    A very important component to achieve sustainable development in the energy sector is the improvement of energy efficiency of widely applied thermodynamic processes. Evaluation and optimization methods of energy processes play a crucial role in fulfilling this goal. A suitable method for the evaluation and optimization of energy conversion systems has been proven to be the exergetic analysis. In this work, two parabolic trough solar thermal power plants are simulated in detail using commercial software, and they are further analysed and compared using an exergetic analysis. The first plant uses a thermal fluid to produce the steam required in a steam generator, while the second one produces the steam directly in the solar field. The analysis involves the evaluation of the individual components of the power plants, as well as the performance evaluation of the overall structures. The main goal is to detect thermodynamic inefficiencies of the two different configurations and propose measures to minimize those. We find that the two examined plants have similar main sources of exergy destruction: the solar field (parabolic trough solar collectors), followed by the steam generator. This reveals the importance of an optimal design of these particular components, which could reduce inefficiencies present in the system. The differences in the exergy destruction and exergetic efficiencies of individual components of the two plants are analyzed in detail based on comparable operational conditions.

  1. 78 FR 32385 - Exelon Generation Company, LLC; CER Generation II, LLC; Constellation Mystic Power, LLC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-30

    ...EL13-64-000] Exelon Generation Company, LLC; CER Generation II, LLC; Constellation Mystic Power, LLC; Constellation NewEnergy, Inc.; Constellation Power Source Generation, Inc.; Criterion Power Partners, LLC; Notice of...

  2. Recent advances in RF power generation

    SciTech Connect

    Tallerico, P.J.

    1990-01-01

    This paper is a review of the progress and methods used in RF generation for particle accelerators. The frequencies of interest are from a few megahertz to 100 GHz, and the powers are for super linear collider applications, but in this case the pulses are short, generally below 1 {mu}s. The very high-power, short-pulse generators are only lightly reviewed here, and for more details the reader should follow the specialized references. Different RF generators excel over various parts of the frequency spectrum. Below 100 MHz solid-state devices and gridded tubes prevail, while the region between 400 MHz and 3 GHz, the cyclotron-resonant devices predominate, and above 250 GHz, Free-Electron Lasers and ubitrons are the most powerful generators. The emphasis for this review is on microwave generation at frequencies below 20 GHz, so the cyclotron-resonant devices are only partially reviewed, while the progress on free-electron laser and ubitrons is not reviewed in this paper. 39 refs., 4 figs.

  3. Energy storage and thermal control system design status. [for space station power supplies

    NASA Technical Reports Server (NTRS)

    Simons, Stephen N.; Willhoite, Bryan C.; Van Ommering, Gert

    1989-01-01

    The Space Station Freedom electric power system (EPS) will initially rely on photovoltaics for power generation and Ni/H2 batteries for electrical energy storage. The current design for the development status of two major subsystems in the PV Power Module is discussed. The energy storage subsystem comprised of high capacity Ni/H2 batteries and the single-phase thermal control system that rejects the excess heat generated by the batteries and other components associated with power generation andstorage is described.

  4. Photovoltaic Power Generation in the Stellar Environments

    E-print Network

    T. E. Girish; S. Aranya

    2010-12-03

    In this paper we have studied the problem of photovoltaic power generation near selected stars in the solar neighborhood. The nature of the optical radiation from a star will depend on its luminosity,HR classification and spectral characteristics. The solar celloperation in the habitable zones of the stars is similar to AM1.0 operation near earth.Thecurrent space solar cell technology can be adopted for power generation near G,K and Mtype stars. Silicon solar cells with good near IR response are particularly suitable in theenvironments of M type stars which are most abundant in the universe. . Photovoltaicpower generation near binary stars like Sirius and Alpha Centauri is also discussed.

  5. Optical generation of radio-frequency power

    SciTech Connect

    Hietala, V.M.; Vawter, G.A.; Brennan, T.M.; Hammons, B.E.; Meyer, W.J.

    1994-11-01

    An optical technique for high-power radio-frequency (RF) signal generation is described. The technique uses a unique photodetector based on a traveling-wave design driven by an appropriately modulated light source. The traveling-wave photodetector (TWPD) exhibits simultaneously a theoretical quantum efficiency approaching 100 % and a very large electrical bandwidth. Additionally, it is capable of dissipating the high-power levels required for the RF generation technique. The modulated light source is formed by either the beating together of two lasers or by the direct modulation of a light source. A system example is given which predicts RF power levels of 100`s of mW`s at millimeter wave frequencies with a theoretical ``wall-plug`` efficiency approaching 34%.

  6. Fresnel Concentrators for Space Solar Power and Solar Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Bradford, Rodney; Parks, Robert W.; Craig, Harry B. (Technical Monitor)

    2001-01-01

    Large deployable Fresnel concentrators are applicable to solar thermal propulsion and multiple space solar power generation concepts. These concentrators can be used with thermophotovoltaic, solar thermionic, and solar dynamic conversion systems. Thin polyimide Fresnel lenses and reflectors can provide tailored flux distribution and concentration ratios matched to receiver requirements. Thin, preformed polyimide film structure components assembled into support structures for Fresnel concentrators provide the capability to produce large inflation-deployed concentrator assemblies. The polyimide film is resistant to the space environment and allows large lightweight assemblies to be fabricated that can be compactly stowed for launch. This work addressed design and fabrication of lightweight polyimide film Fresnel concentrators, alternate materials evaluation, and data management functions for space solar power concepts, architectures, and supporting technology development.

  7. INDUCTION HEATING OF CARBON-FIBER COMPOSITES: THERMAL GENERATION MODEL

    EPA Science Inventory

    A theory of local and global mechanisms of heat generation and distribution in carbon-fiber-based composites subjected to an alternating magnetic field has been proposed. A model that predicts the strength and distribution of thermal generation through the thickness of carbon-fib...

  8. DOWNHOLE POWER GENERATION AND WIRELESS COMMUNICATIONS

    SciTech Connect

    Paul Tubel

    2003-04-24

    The second quarter of the project was dedicated to convert the conceptual designs for the wireless tool and power generator into mechanical and electrical drawings as well as software code to create the new system. The tasks accomplished during this report period were: (1) Basic mechanical design for the wireless communications system was created and the detailed drawings were started. (2) Basic design for the power generator system was created and the detailed machining drawings were started. The generator design was modified to provide a direct action between the wellbore fluid flow and the piezoelectric stack to generate energy. The new design eliminates the inefficiencies related to picking up outside the tubing wall the pressure fluctuations occurring inside the tubing walls. (3) The new piezoelectric acoustic generator design was created and ordered from the manufacturer. The system will be composed of 40 ceramic wafers electrically connected in parallel and compressed into a single generator assembly. (4) The acoustic two-way communications requirements were also defined and the software and hardware development were started. (5) The electrical hardware development required to transmit information to the surface and to receive commands from the surface was started.

  9. Thermoelectric power generation for hybrid-electric vehicle auxiliary power

    NASA Astrophysics Data System (ADS)

    Headings, Leon M.; Washington, Gregory N.; Midlam-Mohler, Shawn; Heremans, Joseph P.

    2009-03-01

    The plug-in hybrid-electric vehicle (PHEV) concept allows for a moderate driving range in electric mode but uses an onboard range extender to capitalize on the high energy density of fuels using a combustion-based generator, typically using an internal combustion engine. An alternative being developed here is a combustion-based thermoelectric generator in order to develop systems technologies which capitalize on the high power density and inherent benefits of solid-state thermoelectric power generation. This thermoelectric power unit may find application in many military, industrial, and consumer applications including range extension for PHEVs. In this research, a baseline prototype was constructed using a novel multi-fuel atomizer with diesel fuel, a conventional thermoelectric heat exchange configuration, and a commercially available bismuth telluride module (maximum 225°C). This prototype successfully demonstrated the viability of diesel fuel for thermoelectric power generation, provided a baseline performance for evaluating future improvements, provided the mechanism to develop simulation and analysis tools and methods, and highlighted areas requiring development. The improvements in heat transfer efficiency using catalytic combustion were evaluated, the system was redesigned to operate at temperatures around 500 °C, and the performance of advanced high temperature thermoelectric modules was examined.

  10. Thermal power systems small power systems application project: Siting issues for solar thermal power plants with small community applications

    NASA Technical Reports Server (NTRS)

    Holbeck, H. J.; Ireland, S. J.

    1979-01-01

    The siting issues associated with small, dispersed solar thermal power plants for utility/small community applications of less than 10 MWe are reported. Some specific requirements are refered to the first engineering experiment for the Small Power Systems Applications (SPSA) Project. The background for the subsequent issue discussions is provided. The SPSA Project and the requirements for the first engineering experiment are described, and the objectives and scope for the report as a whole. A overview of solar thermal technologies and some technology options are discussed.

  11. CONVERTING ENERGY FROM RECLAIMED HEAT: THERMAL ELECTRIC GENERATOR

    EPA Science Inventory

    The use of solar energy acquiring devices has been slow to gain acceptance due to their overall low power generation versus high cost of a solar system. The goal of this project is to construct a model which increases the overall power generation of a solar building system by...

  12. Coal Gasification for Power Generation, 3. edition

    SciTech Connect

    2007-11-15

    The report provides a concise look at the challenges faced by coal-fired generation, the ability of coal gasification to address these challenges, and the current state of IGCC power generation. Topics covered include: an overview of Coal Generation including its history, the current market environment, and the status of coal gasification; a description of gasification technology including processes and systems; an analysis of the key business factors that are driving increased interest in coal gasification; an analysis of the barriers that are hindering the implementation of coal gasification projects; a discussion of Integrated Gasification Combined Cycle (IGCC) technology; an evaluation of IGCC versus other generation technologies; a discussion of IGCC project development options; a discussion of the key government initiatives supporting IGCC development; profiles of the key gasification technology companies participating in the IGCC market; and, a detailed description of existing and planned coal IGCC projects.

  13. Electrical power generation from insect flight

    NASA Astrophysics Data System (ADS)

    Reissman, Timothy; MacCurdy, Robert B.; Garcia, Ephrahim

    2011-03-01

    This article presents an implementation of a miniature energy harvester (weighing 0.292 grams) on an insect (hawkmoth Manduca sexta) in un-tethered flight. The harvester utilizes a piezoelectric transducer which converts the vibratory motion induced by the insect's flight into electrical power (generating up to 59 ?WRMS). By attaching a low-power management circuit (weighing 0.200 grams) to the energy harvester and accumulating the converted energy onboard the flying insect, we are able to visually demonstrate pulsed power delivery (averaging 196 mW) by intermittently flashing a light emitting diode. This self-recharging system offers biologists a new means for powering onboard electronics used to study small flying animals. Using this approach, the lifetime of the electronics would be limited only by the lifetime of the individuals, a vast improvement over current methods.

  14. Isotope powered Stirling generator for terrestrial applications

    SciTech Connect

    Tingey, G.L.; Sorensen, G.C.; Ross, B.A.

    1995-01-01

    An electric power supply, small enough to be man-portable, is being developed for remote, terrestrial applications. This system is designed for an operating lifetime of five years without maintenance or refueling. A small Radioisotope Stirling Generator (RSG) has been developed. The energy source of the generator is a 60 watt plutonium-238 fuel clad used in the General Purpose Heat Sources (GPHS) developed for space applications. A free piston Stirling Engine drives a linear alternator to convert the heat to power. The system weighs about 7.5 kg and produces 11 watts AC power with a conversion efficiency of 18.5%. Two engine models have been designed, fabricated, and tested to date: (a) a developmental model instrumented to confirm and test parameters, and (b) an electrically heated model with an electrical heater equipped power input leads. Critical components have been tested for 10,000 to 20,000 hours. One complete generator has been operating for over 11,000 hours. Radioisotope heated prototypes are expected to be fabricated and tested in late 1995.

  15. Output power analyses for the thermodynamic cycles of thermal power plants

    NASA Astrophysics Data System (ADS)

    Sun, Chen; Cheng, Xue-Tao; Liang, Xin-Gang

    2014-05-01

    Thermal power plant is one of the important thermodynamic devices, which is very common in all kinds of power generation systems. In this paper, we use a new concept, entransy loss, as well as exergy destruction, to analyze the single reheating Rankine cycle unit and the single stage steam extraction regenerative Rankine cycle unit in power plants. This is the first time that the concept of entransy loss is applied to the analysis of the power plant Rankine cycles with reheating and steam extraction regeneration. In order to obtain the maximum output power, the operating conditions under variant vapor mass flow rates are optimized numerically, as well as the combustion temperatures and the off-design flow rates of the flue gas. The relationship between the output power and the exergy destruction rate and that between the output power and the entransy loss rate are discussed. It is found that both the minimum exergy destruction rate and the maximum entransy loss rate lead to the maximum output power when the combustion temperature and heat capacity flow rate of the flue gas are prescribed. Unlike the minimum exergy destruction rate, the maximum entransy loss rate is related to the maximum output power when the highest temperature and heat capacity flow rate of the flue gas are not prescribed.

  16. Utilizing Radioisotope Power System Waste Heat for Spacecraft Thermal Management

    NASA Technical Reports Server (NTRS)

    Pantano, David R.; Dottore, Frank; Tobery, E. Wayne; Geng, Steven M.; Schreiber, Jeffrey G.; Palko, Joseph L.

    2005-01-01

    An advantage of using a Radioisotope Power System (RPS) for deep space or planetary surface missions is the readily available waste heat, which can be used for a number of beneficial purposes including: maintaining electronic components within a controlled temperature range, warming propulsion tanks and mobility actuators, and maintaining liquid propellants above their freezing temperature. Previous missions using Radioisotope Thermoelectric Generators (RTGs) dissipated large quantities of waste heat due to the low efficiency of the thermoelectric conversion technology. The next generation RPSs, such as the 110-Watt Stirling Radioisotope Generator (SRG110) will have higher conversion efficiencies, thereby rejecting less waste heat at a lower temperature and may require alternate approaches to transferring waste heat to the spacecraft. RTGs, with efficiencies of 6 to 7 percent, reject their waste heat at the relatively high heat rejection temperature of 200 C. This is an advantage when rejecting heat to space; however, transferring heat to the internal spacecraft components requires a large and heavy radiator heat exchanger. At the same time, sensitive spacecraft instruments must be shielded from the thermal radiation of the RTG. The SRG110, with an efficiency around 22 percent and 50 C nominal housing surface temperature, can readily transfer the available waste heat directly via heat pipes, thermal straps, or fluid loops. The lower temperatures associated with the SRG110 avoid the chances of overheating other scientific components, eliminating the need for thermal shields. This provides the spacecraft designers more flexibility when locating the generator for a specific mission. A common misconception with high-efficiency systems is that there is not enough waste heat for spacecraft thermal management. This paper will dispel this misconception and investigate the use of a high-efficiency SRG110 for spacecraft thermal management and outline potential methods of waste heat utilization in several conceptual missions (Lunar Rover, Mars Rover, and Titan Lander). The advantages associated with the SRG110 as they relate to ease of assembly, less complex interfaces, and overall mass savings for a spacecraft will be highlighted.

  17. Solar Power Satellite Thermal Control Approach

    NASA Astrophysics Data System (ADS)

    Sacchi, E.; Cassisa, G.; Gottero, M.

    2004-12-01

    The concept of generating solar power in space and transmitting it to earth or any other desired destination such as a planet, moon, or to charge a space vehicle via microwaves, stems from a wide variety of human needs and necessities. It is now a well-known fact that world population increases at a very rapid rate, nearly 80 millions or more per year, and the world-wide energy demand seems to double in the course of the present century. If technology has to advance at the present rate, in phase with high living standards, energy growth must not lag behind. These estimates are based on the population growth rate in the developing countries and the simultaneous increase in per capita energy consumption in these countries, coupled with economical boost. In most of the underdeveloped countries energy needs are of small scales, faraway from the power distribution line and can be very easily satisfied by harnessing solar energy. Furthermore, the Earth temperature has increased by 0.5° to 1° F during the past century. This rise in temperature is believed to have been caused by the use of oil, coal, and natural gas (fossil fuels) for transportation and energy production. Actually, fossil fuel combustion-based power plants are the dominant sources for energy demands. Therefore, increased power production will accelerate the production of greenhouse gases (predominantly CO2). To cope with their energy needs, countries could be engaged in the use of nuclear energy, which could accelerate the diffusion of nuclear arms as a bye- product.

  18. 18 CFR 801.12 - Electric power generation.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...generation. (a) Significant uses are presently being made of the waters of the basin for the generation of electric power at hydro, pumped storage, and thermoelectric generating stations. Increased demands for electric power throughout the East...

  19. 18 CFR 801.12 - Electric power generation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...generation. (a) Significant uses are presently being made of the waters of the basin for the generation of electric power at hydro, pumped storage, and thermoelectric generating stations. Increased demands for electric power throughout the East...

  20. 46 CFR 111.10-4 - Power requirements, generating sources.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 4 2014-10-01 2014-10-01 false Power requirements, generating sources. 111.10-4...ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Supply § 111.10-4 Power requirements, generating sources....

  1. 46 CFR 111.10-4 - Power requirements, generating sources.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 4 2012-10-01 2012-10-01 false Power requirements, generating sources. 111.10-4...ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Supply § 111.10-4 Power requirements, generating sources....

  2. 46 CFR 111.10-4 - Power requirements, generating sources.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 4 2013-10-01 2013-10-01 false Power requirements, generating sources. 111.10-4...ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Supply § 111.10-4 Power requirements, generating sources....

  3. 46 CFR 111.10-4 - Power requirements, generating sources.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 4 2011-10-01 2011-10-01 false Power requirements, generating sources. 111.10-4...ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Supply § 111.10-4 Power requirements, generating sources....

  4. ZERO EMISSION POWER GENERATION TECHNOLOGY DEVELOPMENT

    SciTech Connect

    Ronald Bischoff; Stephen Doyle

    2005-01-20

    Clean Energy Systems (CES) was previously funded by DOE's ''Vision 21'' program. This program provided a proof-of-concept demonstration that CES' novel gas generator (combustor) enabled production of electrical power from fossil fuels without pollution. CES has used current DOE funding for additional design study exercises which established the utility of the CES-cycle for retrofitting existing power plants for zero-emission operations and for incorporation in zero-emission, ''green field'' power plant concepts. DOE funding also helped define the suitability of existing steam turbine designs for use in the CES-cycle and explored the use of aero-derivative turbines for advanced power plant designs. This work is of interest to the California Energy Commission (CEC) and the Norwegian Ministry of Petroleum & Energy. California's air quality districts have significant non-attainment areas in which CES technology can help. CEC is currently funding a CES-cycle technology demonstration near Bakersfield, CA. The Norwegian government is supporting conceptual studies for a proposed 40 MW zero-emission power plant in Stavager, Norway which would use the CES-cycle. The latter project is called Zero-Emission Norwegian Gas (ZENG). In summary, current engineering studies: (1) supported engineering design of plant subsystems applicable for use with CES-cycle zero-emission power plants, and (2) documented the suitability and availability of steam turbines for use in CES-cycle power plants, with particular relevance to the Norwegian ZENG Project.

  5. Reliability and safety of thermal power stations in Russia at the present stage: problems and future objectives

    NASA Astrophysics Data System (ADS)

    Rezinskikh, V. F.; Grin', E. A.

    2010-01-01

    Matters of ensuring reliable and safe operation of power-generating equipment are briefly analyzed, and the main objectives thermal power engineering faces in this respect are formulated. The fundamental aspects that must be taken into account in extending the service life of the main heat-generating and mechanical equipment at thermal power stations are outlined. Selection of new advanced materials for the manufacture of equipment in retrofitting existing and constructing new power facilities is discussed. Proposals on supporting and improving the set of regulatory documents for diagnosing power-generating equipment and extending its service life are given.

  6. Electrokinetic Power Generation from Liquid Water Microjets

    SciTech Connect

    Duffin, Andrew M.; Saykally, Richard J.

    2008-02-15

    Although electrokinetic effects are not new, only recently have they been investigated for possible use in energy conversion devices. We have recently reported the electrokinetic generation of molecular hydrogen from rapidly flowing liquid water microjets [Duffin et al. JPCC 2007, 111, 12031]. Here, we describe the use of liquid water microjets for direct conversion of electrokinetic energy to electrical power. Previous studies of electrokinetic power production have reported low efficiencies ({approx}3%), limited by back conduction of ions at the surface and in the bulk liquid. Liquid microjets eliminate energy dissipation due to back conduction and, measuring only at the jet target, yield conversion efficiencies exceeding 10%.

  7. Improvement of water treatment at thermal power plants

    NASA Astrophysics Data System (ADS)

    Larin, B. M.; Bushuev, E. N.; Larin, A. B.; Karpychev, E. A.; Zhadan, A. V.

    2015-04-01

    Prospective and existing technologies for water treatment at thermal power plants, including pretreatment, ion exchange, and membrane method are considered. The results obtained from laboratory investigations and industrial tests of the proposed technologies carried out at different thermal power plants are presented. The possibilities of improving the process and environmental indicators of water treatment plants are shown.

  8. Thermal-To-Electric Converter With Greater Power Density

    NASA Technical Reports Server (NTRS)

    Williams, Roger M.; Suitor, Jerry W.; Jeffries-Nakamura, Barbara; Underwood, Mark L.; Ryan, Margaret A.; O'Connor, Dennis

    1992-01-01

    Proposed design for alkali-metal thermal-to-electric converter (AMTEC) incorporates refinements to increase power density and reduce input temperature below typical prior design. Converter has compact, planar configuration. Cells stacked densely with remote condenser for thermal efficiency and high power density. Either liquid- or vapor-fed cells utilized. Heat fed-in at lower temperature.

  9. Development of General-Purpose Software to Analyze the Static Thermal Characteristic of Nuclear Power Plant

    NASA Astrophysics Data System (ADS)

    Nakao, Yoshinobu; Koda, Eiichi; Takahashi, Toru

    We have developed the general-purpose software by which static thermal characteristic of the power generation system is analyzed easily. This software has the notable features as follows. -It has the new algorithm to solve non-linear simultaneous equations to analyze the static thermal characteristics such as heat and mass balance, efficiencies, etc. of various power generation systems. -It has the flexibility for setting calculation conditions. -It is able to be executed on the personal computer easily and quickly. We ensured that it is able to construct heat and mass balance diagrams of main steam system of nuclear power plant and calculate the power output and efficiencies of the system. Furthermore, we evaluated various heat recovery measures of steam generator blowdown water and found that this software could be a useful operation aid for planning effective changes in support of power stretch.

  10. Options for Control of Reactive Power by Distributed Photovoltaic Generators

    E-print Network

    Petr Sulc; Konstantin Turitsyn; Scott Backhaus; Michael Chertkov

    2010-08-04

    High penetration levels of distributed photovoltaic(PV) generation on an electrical distribution circuit present several challenges and opportunities for distribution utilities. Rapidly varying irradiance conditions may cause voltage sags and swells that cannot be compensated by slowly responding utility equipment resulting in a degradation of power quality. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We discuss and compare via simulation various design options for control systems to manage the reactive power generated by these inverters. An important design decision that weighs on the speed and quality of communication required is whether the control should be centralized or distributed (i.e. local). In general, we find that local control schemes are capable for maintaining voltage within acceptable bounds. We consider the benefits of choosing different local variables on which to control and how the control system can be continuously tuned between robust voltage control, suitable for daytime operation when circuit conditions can change rapidly, and loss minimization better suited for nighttime operation.

  11. Application of field-modulated generator systems to dispersed solar thermal electric generation

    NASA Technical Reports Server (NTRS)

    Ramakumar, R.

    1979-01-01

    The state-of-the-art of field modulated generation system (FMGS) is presented, and the application of FMGS to dispersed solar thermal electric generation is discussed. The control and monitoring requirements for solar generation system are defined. A comparison is presented between the FMGS approach and other options and the technological development needs are discussed.

  12. Plasma focus experiments powered by explosive generators

    SciTech Connect

    Freeman, B.L.; Caird, R.S.; Erickson, D.J.; Fowler, C.M.; Garn, W.B.; Kruse, H.W.; King, J.C.; Bartram, D.E.; Kruse, P.J.

    1983-01-01

    The plasma focus project began as an effort to develop an intense, pulsed, expendable neutron radiographic source. Since previous efforts to power a plasma focus with explosive generators had been successful, we proposed to couple our plate generators to a coaxial-geometry plasma focus to achieve this goal. Utilizing a small capacitor bank and a selected set of diagnostics, the explosive experiments were successfully conducted with maximum currents of 1.5 MA to 2.4 MA. A maximum neutron yield of approx. 3 x 10/sup 11/ (DD) neutrons was achieved at the 2.4 MA level. Since the neutron yield did scale as a power of the maximum delivered current, and the neutron-producing source region was small, we conclude that this approach is an attractive option to achieve a neutron radiographic source. The need for a reliable open-circuiting switch at several megamperes has resulted in postponement of the project.

  13. ADVANCED CO2 CYCLE POWER GENERATION

    SciTech Connect

    A. Nehrozoglu

    2004-01-01

    Research is being conducted under United States Department of Energy (DOE) Contract DE-FC26-02NT41621 to develop a conceptual design and determine the performance characteristics of a new IGCC plant configuration that facilitates CO{sub 2} removal for sequestration. This new configuration will be designed to achieve CO{sub 2} sequestration without the need for water gas shifting and CO{sub 2} separation, and may eliminate the need for a separate sequestration compressor. This research introduces a novel concept of using CO{sub 2} as a working fluid for an advanced coal gasification based power generation system, where it generates power with high system efficiency while concentrating CO{sub 2} for sequestration. This project supports the DOE research objective of development of concepts for the capture and storage of CO{sub 2}.

  14. Heat Management in Thermoelectric Power Generators

    E-print Network

    Zebarjadi, Mona

    2015-01-01

    Thermoelectric power generators are used to convert heat into electricity. Like any other heat engine, the performance of a thermoelectric generator increases as the temperature difference on the sides increases. It is generally assumed that as more heat is forced through the thermoelectric legs, their performance increases. Therefore, insulations are typically used to minimize the heat losses and to confine the heat transport through the thermoelectric legs. In this paper we show that to some extend it is beneficial to purposely open heat loss channels in order to establish a larger temperature gradient and therefore to increase the overall efficiency and achieve larger electric power output. We define a modified Biot number (Bi) as an indicator of requirements for sidewall insulation. We show that if Bi1, it lowers the conversion efficiency.

  15. High-performance flat-panel solar thermoelectric generators with high thermal concentration

    NASA Astrophysics Data System (ADS)

    Kraemer, Daniel; Poudel, Bed; Feng, Hsien-Ping; Caylor, J. Christopher; Yu, Bo; Yan, Xiao; Ma, Yi; Wang, Xiaowei; Wang, Dezhi; Muto, Andrew; McEnaney, Kenneth; Chiesa, Matteo; Ren, Zhifeng; Chen, Gang

    2011-07-01

    The conversion of sunlight into electricity has been dominated by photovoltaic and solar thermal power generation. Photovoltaic cells are deployed widely, mostly as flat panels, whereas solar thermal electricity generation relying on optical concentrators and mechanical heat engines is only seen in large-scale power plants. Here we demonstrate a promising flat-panel solar thermal to electric power conversion technology based on the Seebeck effect and high thermal concentration, thus enabling wider applications. The developed solar thermoelectric generators (STEGs) achieved a peak efficiency of 4.6% under AM1.5G (1?kW?m-2) conditions. The efficiency is 7-8 times higher than the previously reported best value for a flat-panel STEG, and is enabled by the use of high-performance nanostructured thermoelectric materials and spectrally-selective solar absorbers in an innovative design that exploits high thermal concentration in an evacuated environment. Our work opens up a promising new approach which has the potential to achieve cost-effective conversion of solar energy into electricity.

  16. High-performance flat-panel solar thermoelectric generators with high thermal concentration.

    PubMed

    Kraemer, Daniel; Poudel, Bed; Feng, Hsien-Ping; Caylor, J Christopher; Yu, Bo; Yan, Xiao; Ma, Yi; Wang, Xiaowei; Wang, Dezhi; Muto, Andrew; McEnaney, Kenneth; Chiesa, Matteo; Ren, Zhifeng; Chen, Gang

    2011-07-01

    The conversion of sunlight into electricity has been dominated by photovoltaic and solar thermal power generation. Photovoltaic cells are deployed widely, mostly as flat panels, whereas solar thermal electricity generation relying on optical concentrators and mechanical heat engines is only seen in large-scale power plants. Here we demonstrate a promising flat-panel solar thermal to electric power conversion technology based on the Seebeck effect and high thermal concentration, thus enabling wider applications. The developed solar thermoelectric generators (STEGs) achieved a peak efficiency of 4.6% under AM1.5G (1 kW m(-2)) conditions. The efficiency is 7-8 times higher than the previously reported best value for a flat-panel STEG, and is enabled by the use of high-performance nanostructured thermoelectric materials and spectrally-selective solar absorbers in an innovative design that exploits high thermal concentration in an evacuated environment. Our work opens up a promising new approach which has the potential to achieve cost-effective conversion of solar energy into electricity. PMID:21532584

  17. A high power spacecraft thermal management system

    NASA Technical Reports Server (NTRS)

    Ku, J.; Kroliczek, E. J.; Mccabe, M. E., Jr.; Benner, S. M.

    1988-01-01

    This paper describes the design and test results of an ammonia hybrid capillary pumped loop thermal control system. As a hytbrid, the system can operate as either a passive, capillary pumped loop, or, as a mechanically pumped system. The system is comprised of an evaporator section, a condenser section, 10 meters of liquid and vapor transport lines, a mechanical pump, and a reservoir. In the evaporator section, four capillary pumps are each integrated into three cold plates. The mechanical pump is installed in the liquid line and is in series with the capillary pumps. Testing has demonstrated that in the capillary pumped mode, the HPSTM can acquire and transport a total heat load of between 120 W and 24 kW, with a maximum heat flux density of 4.3 W/sq cm in the evaporator section. In the mechanically pumped configuration, a heat acquisition potential of 50 kW (9 W/sq cm heat flux density) has been demonstrated. The hybrid system still retains the proven capillary capabilities of temperature control, heat load sharing and fluid flow control between evaporator plates, rapid power cycling, and pressure priming recovery of deprimed evaporators.

  18. Utility interconnection issues for wind power generation

    NASA Technical Reports Server (NTRS)

    Herrera, J. I.; Lawler, J. S.; Reddoch, T. W.; Sullivan, R. L.

    1986-01-01

    This document organizes the total range of utility related issues, reviews wind turbine control and dynamic characteristics, identifies the interaction of wind turbines to electric utility systems, and identifies areas for future research. The material is organized at three levels: the wind turbine, its controls and characteristics; connection strategies as dispersed or WPSs; and the composite issue of planning and operating the electric power system with wind generated electricity.

  19. ICAN: High power neutral beam generation

    NASA Astrophysics Data System (ADS)

    Moustaizis, S. D.; Lalousis, P.; Perrakis, K.; Auvray, P.; Larour, J.; Ducret, J. E.; Balcou, P.

    2015-10-01

    During the last few years there is an increasing interest on the development of alternative high power new negative ion source for Tokamak applications. The proposed new neutral beam device presents a number of advantages with respect to: the density current, the acceleration voltage, the relative compact dimension of the negative ion source, and the coupling of a high power laser beam for photo-neutralization of the negative ion beam. Here we numerically investigate, using a multi-fluid 1-D code, the acceleration and the extraction of high power ion beam from a Magnetically Insulated Diode (MID). The diode configuration will be coupled to a high power device capable of extracting a current up to few kA with an accelerating voltage up to MeV. An efficiency of up to 92% of the coupling of the laser beam, is required in order to obtain a high power, up to GW, neutral beam. The new high energy, high average power, high efficiency (up to 30%) ICAN fiber laser is proposed for both the plasma generation and the photo-neutralizer configuration [1].

  20. The Fourth Generation of Nuclear Power

    SciTech Connect

    Lake, James Alan

    2000-11-01

    The outlook for nuclear power in the U.S. is currently very bright. The economics, operations and safety performance of U.S. nuclear power plants is excellent. In addition, both the safety and economic regulation of nuclear power are being changed to produce better economic parameters for future nuclear plant operations and the licenses for plant operations are being extended to 60 years. There is further a growing awareness of the value of clean, emissions-free nuclear power. These parameters combine to form a firm foundation for continued successful U.S. nuclear plant operations, and even the potential In order to realize a bright future for nuclear power, we must respond successfully to five challenges: • Nuclear power must remain economically competitive, • The public must remain confident in the safety of the plants and the fuel cycle. • Nuclear wastes and spent fuel must be managed and the ultimate disposition pathways for nuclear wastes must be politically settled. • The proliferation potential of the commercial nuclear fuel cycle must continue to be minimized, and • We must assure a sustained manpower supply for the future and preserve the critical nuclear technology infrastructure. The Generation IV program is conceived to focus the efforts of the international nuclear community on responding to these challenges.

  1. Thermoacoustic power effect on the refrigeration performance of thermal separators

    NASA Astrophysics Data System (ADS)

    Liang, S. B.; Li, X. L.; Ma, H. B.

    2003-09-01

    An experimental investigation on the refrigeration processes occurring in a receiving tube of a thermal separator was conducted in order to determine the primary factors affecting the refrigeration performance of this new type of refrigerator. In the current investigation, the gas in the system is divided into the oscillating gas and driving gas. While the compression/expansion of the oscillating gas caused by the driving gas determines the refrigeration process occurring in the receiving tube of the thermal separator, the temperature gradient on the receiving tube significantly affects the acoustic power generation and refrigeration performance. Experimental results demonstrate that when the tube-wall temperature difference near the open end of the receiving tube increases, the refrigeration coefficient increases. Using the information presented in the paper, a new cryogenic refrigeration system was developed, and the experimental data shows that the temperature of the cryogenic air flow in the system could reach -130 °C within 50 min. It suggests that the thermal separator investigated in the paper can be employed in the field of cryogenic engineering.

  2. Applicability of advanced automotive heat engines to solar thermal power

    NASA Technical Reports Server (NTRS)

    Beremand, D. G.; Evans, D. G.; Alger, D. L.

    1981-01-01

    The requirements of a solar thermal power system are reviewed and compared with the predicted characteristics of automobile engines under development. A good match is found in terms of power level and efficiency when the automobile engines, designed for maximum powers of 65-100 kW (87 to 133 hp) are operated to the nominal 20-40 kW electric output requirement of the solar thermal application. At these reduced power levels it appears that the automotive gas turbine and Stirling engines have the potential to deliver the 40+ percent efficiency goal of the solar thermal program.

  3. Cummins Power Generation SECA Phase 1

    SciTech Connect

    Charles Vesely

    2007-08-17

    The following report documents the progress of the Cummins Power Generation (CPG) SECA Phase 1 SOFC development and final testing under the U.S. Department of Energy Solid State Energy Conversion Alliance (SECA) contract DE-FC26-01NT41244. This report overviews and summarizes CPG and partner research development leading to successful demonstration of the SECA Phase 1 objectives and significant progress towards SOFC commercialization. Significant Phase 1 Milestones: (1) Demonstrated: (a) Operation meeting Phase 1 requirements on commercial natural gas. (b) LPG and Natural Gas CPOX fuel reformers. (c) SOFC systems on dry CPOX reformate. (c) Steam reformed Natural Gas operation. (d) Successful start-up and shut-down of SOFC system without inert gas purge. (e) Utility of stack simulators as a tool for developing balance of plant systems. (2) Developed: (a) Low cost balance of plant concepts and compatible systems designs. (b) Identified low cost, high volume components for balance of plant systems. (c) Demonstrated high efficiency SOFC output power conditioning. (d) Demonstrated SOFC control strategies and tuning methods. The Phase 1 performance test was carried out at the Cummins Power Generation facility in Minneapolis, Minnesota starting on October 2, 2006. Performance testing was successfully completed on January 4, 2007 including the necessary steady-state, transient, efficiency, and peak power operation tests.

  4. Comparison of advanced engines for parabolic dish solar thermal power plants

    NASA Technical Reports Server (NTRS)

    Fujita, T.; Bowyer, J. M.; Gajanana, B. C.

    1980-01-01

    A paraboloidal dish solar thermal power plant produces electrical energy by a two-step conversion process. The collector subsystem is composed of a two-axis tracking paraboloidal concentrator and a cavity receiver. The concentrator focuses intercepted sunlight (direct, normal insolation) into a cavity receiver whose aperture encircles the focal point of the concentrator. At the internal wall of the receiver the electromagnetic radiation is converted to thermal energy. A heat engine/generator assembly then converts the thermal energy captured by the receiver to electricity. Developmental activity has been concentrated on small power modules which employ 11- to 12-meter diameter dishes to generate nominal power levels of approximately 20 kWe. A comparison of advanced heat engines for the dish power module is presented in terms of the performance potential of each engine with its requirements for advanced technology development. Three advanced engine possibilities are the Brayton (gas turbine), Brayton/Rankine combined cycle, and Stirling engines.

  5. Embedded Thermal Control for Subsystems for Next Generation Spacecraft Applications

    NASA Technical Reports Server (NTRS)

    Didion, Jeffrey R.

    2015-01-01

    Thermal Fluids and Analysis Workshop, Silver Spring MD NCTS 21070-15. NASA, the Defense Department and commercial interests are actively engaged in developing miniaturized spacecraft systems and scientific instruments to leverage smaller cheaper spacecraft form factors such as CubeSats. This paper outlines research and development efforts among Goddard Space Flight Center personnel and its several partners to develop innovative embedded thermal control subsystems. Embedded thermal control subsystems is a cross cutting enabling technology integrating advanced manufacturing techniques to develop multifunctional intelligent structures to reduce Size, Weight and Power (SWaP) consumption of both the thermal control subsystem and overall spacecraft. Embedded thermal control subsystems permit heat acquisition and rejection at higher temperatures than state of the art systems by employing both advanced heat transfer equipment (integrated heat exchangers) and high heat transfer phenomena. The Goddard Space Flight Center Thermal Engineering Branch has active investigations seeking to characterize advanced thermal control systems for near term spacecraft missions. The embedded thermal control subsystem development effort consists of fundamental research as well as development of breadboard and prototype hardware and spaceflight validation efforts. This paper will outline relevant fundamental investigations of micro-scale heat transfer and electrically driven liquid film boiling. The hardware development efforts focus upon silicon based high heat flux applications (electronic chips, power electronics etc.) and multifunctional structures. Flight validation efforts include variable gravity campaigns and a proposed CubeSat based flight demonstration of a breadboard embedded thermal control system. The CubeSat investigation is technology demonstration will characterize in long-term low earth orbit a breadboard embedded thermal subsystem and its individual components to develop optimized operational schema.

  6. Optical and thermal parameter effects on laser-generated ultrasound

    SciTech Connect

    Telschow, K.L. ); Conant, R.J. )

    1990-09-01

    The use of a pulsed laser source for the generation of elastic waves in materials is investigated, taking into account optical penetration into the material. Under appropriate conditions, a significant feature of the laser-generated elastic waveform is a precursor (sharp spike) signaling the arrival of the longitudinal wave. The shape of this precursor signal is strongly dependent on the optical and thermal properties of the material. This paper shows that the observed precursor can be understood through the use of models that account for optical penetration and thermal diffusion into the material.

  7. Evaluation Of Different Power Conditioning Options For Stirling Generators

    NASA Astrophysics Data System (ADS)

    Garrigos, A.; Blanes, J. M.; Carrasco, J. A.; Maset, E.; Montalban, G.; Ejea, J.; Ferreres, A.; Sanchis, E.

    2011-10-01

    Free-piston Stirling engines are an interesting alternative for electrical power systems, especially in deep space missions where photovoltaic systems are not feasible. This kind of power generators contains two main parts, the Stirling machine and the linear alternator that converts the mechanical energy from the piston movement to electrical energy. Since the generated power is in AC form, several aspects should be assessed to use such kind of generators in a spacecraft power system: AC/DC topologies, power factor correction, power regulation techniques, integration into the power system, etc. This paper details power generator operation and explores different power conversion approaches.

  8. BATTERY STORAGE CONTROL FOR STEADYING RENEWABLE POWER GENERATION

    E-print Network

    BATTERY STORAGE CONTROL FOR STEADYING RENEWABLE POWER GENERATION By Shengyuan (Mike) Chen, Emilie-626-7370 URL: http://www.ima.umn.edu #12;Battery Storage Control for Steadying Renewable Power Generation by storing excess power to a battery during excess generation, and then releasing the energy when power

  9. Future Photovoltaic Power Generation for Space-Based Power Utilities

    NASA Astrophysics Data System (ADS)

    Bailey, S.; Landis, G.; Raffaelle, R.; Hepp, A.

    2002-01-01

    A recent NASA program, Space Solar Power Exploratory Research and Technology (SERT), investigated the technologies needed to provide cost-competitive ground baseload electrical power from space based solar energy conversion. This goal mandated low cost, light weight gigawatt (GW) power generation. Investment in solar power generation technologies would also benefit high power military, commercial and science missions. These missions are generally those involving solar electric propulsion, surface power systems to sustain an outpost or a permanent colony on the surface of the moon or mars, space based lasers or radar, or as large earth orbiting power stations which can serve as central utilities for other orbiting spacecraft, or as in the SERT program, potentially beaming power to the earth itself. This paper will discuss requirements for the two latter options, the current state of the art of space solar cells, and a variety of both evolving thin film cells as well as new technologies which may impact the future choice of space solar cells for a high power mission application. The space world has primarily transitioned to commercially available III-V (GaInP/GaAs/Ge) cells with 24-26% air mass zero (AMO) efficiencies. Research in the III-V multi-junction solar cells has focused on fabricating either lattice-mismatched materials with optimum stacking bandgaps or new lattice matched materials with optimum bandgaps. In the near term this will yield a 30% commercially available space cell and in the far term possibly a 40% cell. Cost reduction would be achieved if these cells could be grown on a silicon rather than a germanium substrate since the substrate is ~65% of the cell cost or, better yet, on a polyimide or possibly a ceramic substrate. An overview of multi-junction cell characteristics will be presented here. Thin film cells require substantially less material and have promised the advantage of large area, low cost manufacturing. However, space cell requirements dictate a more complicated trade space. Until recently the focus in space cells has been on efficiency rather than cost. In a several billion-dollar spacecraft the cell cost is relatively small at even a thousand dollars per watt, which is approximately the current array cost. This has primarily been true for spacecraft with power needs from a few hundred watts to tens of kilowatts. However, deployment of a large earth orbiting space power system will require major advances in the photovoltaic array weight, stability in the space environment, efficiency, and ultimately the cost of production and deployment of such arrays. The development of large space power systems, and a host of other proposed space missions, will require the development of viable thin film arrays. The specific power required is almost 40 times what is presently available in commercial arrays. While high efficiency ultra lightweight arrays are not likely to become commercially available anytime soon, advances in thin film photovoltaics may still impact other space technologies (i.e., thin film integrated power supplies) and thus support a broad range of missions in the next decade. Mission examples include micro- air vehicles, ultra-long duration balloons (e.g. Olympus), deep space solar electric propulsion (SEP) "Tug" Array, Mars SEP Array, and Mars surface power outpost. A discussion of the state of the art of thin film cells and their characteristics will be included, particularly focused on their applicability to the space environment. This survey of thin film cells will also include a discussion of inorganic/organic solar cells and their adaptability to the space environment. Enhancements to the efficiency of thin film cells, such as intermediate band quantum dots will be discussed and results presented for current cell configurations.

  10. Power Generator with Thermo-Differential Modules

    NASA Technical Reports Server (NTRS)

    Saiz, John R.; Nguyen, James

    2010-01-01

    A thermoelectric power generator consists of an oven box and a solar cooker/solar reflector unit. The solar reflector concentrates sunlight into heat and transfers the heat into the oven box via a heat pipe. The oven box unit is surrounded by five thermoelectric modules and is located at the bottom end of the solar reflector. When the heat is pumped into one side of the thermoelectric module and ejected from the opposite side at ambient temperatures, an electrical current is produced. Typical temperature accumulation in the solar reflector is approximately 200 C (392 F). The heat pipe then transfers heat into the oven box with a loss of about 40 percent. At the ambient temperature of about 20 C (68 F), the temperature differential is about 100 C (180 F) apart. Each thermoelectric module, generates about 6 watts of power. One oven box with five thermoelectric modules produces about 30 watts. The system provides power for unattended instruments in remote areas, such as space colonies and space vehicles, and in polar and other remote regions on Earth.

  11. Accelerator Generation and Thermal Separation (AGATS) of Technetium-99m

    SciTech Connect

    2010-01-01

    Accelerator Generation and Thermal Separation (AGATS) of Technetium-99m is a linear electron accelerator-based technology for producing medical imaging radioisotopes from a separation process that heats, vaporizes and condenses the desired radioisotope. You can learn more about INL's education programs at http://www.facebook.com/idahonationallaboratory.

  12. Accelerator Generation and Thermal Separation (AGATS) of Technetium-99m

    ScienceCinema

    None

    2013-05-28

    Accelerator Generation and Thermal Separation (AGATS) of Technetium-99m is a linear electron accelerator-based technology for producing medical imaging radioisotopes from a separation process that heats, vaporizes and condenses the desired radioisotope. You can learn more about INL's education programs at http://www.facebook.com/idahonationallaboratory.

  13. Power Modeling and Thermal Management Techniques for Manycores

    E-print Network

    Simunic, Tajana

    Power Modeling and Thermal Management Techniques for Manycores Rajib Nath Computer Science number of cores in manycore archi- tectures, along with technology scaling, results in high power in such processors, we need an accurate online estimate of the power consumption. In this paper, we present the first

  14. Spindle position regulation for wind power generators

    NASA Astrophysics Data System (ADS)

    Tsai, Nan-Chyuan; Chiang, Chao-Wen

    2010-04-01

    The three-time-scale plant model of a wind power generator, including a wind turbine, a flexible vertical shaft, a variable inertia flywheel (VIF) module, an active magnetic bearing (AMB) unit and the applied wind sequence, is constructed. In order to make the wind power generator be still able to operate as the spindle speed exceeds its rated speed, the VIF is equipped so that the spindle speed can be appropriately slowed down once any stronger wind field is exerted. Currently, most of wind energy input is, as a matter of fact, a waste since the commercially available wind power generators only operate for fairly mild or low-speed wind field. To prevent any potential damage due to collision by shaft against conventional bearings, the AMB unit is proposed to replace the traditional bearings and regulate the shaft position deviation. By singular perturbation order-reduction technique, a lower-order plant model can be established for the synthesis of feedback controller. It is found that two major system parameter uncertainties, an additive uncertainty and a multiplicative uncertainty, are constituted by the wind turbine and the VIF, respectively. The upper bounds of system parameters variation can be therefore estimated and the frequency shaping sliding mode control (FSSMC) loop is proposed to account for these uncertainties and suppress the unmodeled higher-order plant dynamics. At last, the efficacy of the FSSMC is verified by intensive computer and experimental simulations for regulation on position deviation of the shaft and counter-balance of unpredictable wind disturbance.

  15. Dynamic modeling and control strategies for a micro-CSP plant with thermal storage powered by the Organic Rankine cycle

    E-print Network

    Ireland, Melissa Kara

    2014-01-01

    Organic Rankine cycle (ORC) systems are gaining ground as a means of effectively providing sustainable energy. Coupling small-scale ORCs powered by scroll expander- generators with solar thermal collectors and storage can ...

  16. Neutron generator power supply modeling in EMMA

    SciTech Connect

    Robinson, A.C.; Farnsworth, A.V.; Montgomery, S.T.; Peery, J.S; Merewether, K.O.

    1996-12-01

    Sandia National Laboratories has prime responsibility for neutron generator design and manufacturing, and is committed to developing predictive tools for modeling neutron generator performance. An important aspect of understanding component performance is explosively driven ferroelectric power supply modeling. EMMA (ElectroMechanical Modeling in ALEGRA) is a three dimensional compile time version of Sandia`s ALEGRA code. The code is built on top of the general ALEGRA framework for parallel shock-physics computations but also includes additional capability for modeling the electric potential field in dielectrics. The overall package includes shock propagation due to explosive detonation, depoling of ferroelectric ceramics, electric field calculation and coupling with a general lumped element circuit equation system. The AZTEC parallel iterative solver is used to solve for the electric potential. The DASPK differential algebraic equation package is used to solve the circuit equation system. Sample calculations are described.

  17. Next Generation Thermal Barrier Coatings for the Gas Turbine Industry

    NASA Astrophysics Data System (ADS)

    Curry, Nicholas; Markocsan, Nicolaie; Li, Xin-Hai; Tricoire, Aurélien; Dorfman, Mitch

    2011-01-01

    The aim of this study is to develop the next generation of production ready air plasma sprayed thermal barrier coating with a low conductivity and long lifetime. A number of coating architectures were produced using commercially available plasma spray guns. Modifications were made to powder chemistry, including high purity powders, dysprosia stabilized zirconia powders, and powders containing porosity formers. Agglomerated & sintered and homogenized oven spheroidized powder morphologies were used to attain beneficial microstructures. Dual layer coatings were produced using the two powders. Laser flash technique was used to evaluate the thermal conductivity of the coating systems from room temperature to 1200 °C. Tests were performed on as-sprayed samples and samples were heat treated for 100 h at 1150 °C. Thermal conductivity results were correlated to the coating microstructure using image analysis of porosity and cracks. The results show the influence of beneficial porosity on reducing the thermal conductivity of the produced coatings.

  18. A Thermal and Electrical Analysis of Power Semiconductor Devices

    NASA Technical Reports Server (NTRS)

    Vafai, Kambiz

    1997-01-01

    The state-of-art power semiconductor devices require a thorough understanding of the thermal behavior for these devices. Traditional thermal analysis have (1) failed to account for the thermo-electrical interaction which is significant for power semiconductor devices operating at high temperature, and (2) failed to account for the thermal interactions among all the levels involved in, from the entire device to the gate micro-structure. Furthermore there is a lack of quantitative studies of the thermal breakdown phenomenon which is one of the major failure mechanisms for power electronics. This research work is directed towards addressing. Using a coupled thermal and electrical simulation, in which the drift-diffusion equations for the semiconductor and the energy equation for temperature are solved simultaneously, the thermo-electrical interactions at the micron scale of various junction structures are thoroughly investigated. The optimization of gate structure designs and doping designs is then addressed. An iterative numerical procedure which incorporates the thermal analysis at the device, chip and junction levels of the power device is proposed for the first time and utilized in a BJT power semiconductor device. In this procedure, interactions of different levels are fully considered. The thermal stability issue is studied both analytically and numerically in this research work in order to understand the mechanism for thermal breakdown.

  19. Diagnosis of automotive fuel cell power generators

    NASA Astrophysics Data System (ADS)

    Hissel, D.; Péra, M. C.; Kauffmann, J. M.

    Most of car manufacturers around the world have launched important research programs on the integration of fuel cell (FC) power generators into cars. Despite the first achievements, fuel cell systems are still badly known, particularly when talking about fault diagnosis and predictive maintenance. This paper proposes a first step in this way by introducing a simple but also efficient diagnosis-oriented model of a proton exchange membrane fuel cell (PEMFC). The considered diagnosis model is here a fuzzy one and is tuned thanks to genetic algorithms.

  20. Technological renovation of thermal power plants as a long-term check factor of electricity price growth

    NASA Astrophysics Data System (ADS)

    Veselov, F. V.; Novikova, T. V.; Khorshev, A. A.

    2015-12-01

    The paper focuses on economic aspects of the Russian thermal generation sector's renovation in a competitive market environment. Capabilities of the existing competitive electricity and capacity pricing mechanisms, created during the wholesale market reform, to ensure the wide-scale modernization of thermal power plants (TPPs) are estimated. Some additional stimulating measures to focus the investment process on the renovation of the thermal generation sector are formulated, and supplementing and supporting costs are assessed. Finally, the systemic effect of decelerating wholesale electricity prices caused by efficiency improvements at thermal power plants is analyzed depending on the scales of renovation and fuel prices.

  1. Evaluation of steam generator feedwater nozzles for the effects of thermal stratification

    SciTech Connect

    Qashu, R.; El-Akily, N.M.; Kuo, A.

    1995-12-01

    The potential for thermal stratification in the main feedwater (FW) line of a Pressurized Water Reactor (PWR) plant exists whenever the auxiliary feedwater is initiated. The thermal stratification phenomenon is attributed to the difference in density between the hotter normal feedwater, initially in the pipe, and the colder auxiliary feedwater introduced into the piping. The effect of thermal stratification on the fatigue life is two fold: the global bending due to the bowing effect caused by thermal stratification, and the local effect due to the fluctuation in the level of the hot-cold interface. This paper deals with the global and local effects of thermal stratification in the main feedwater line on the fatigue life of the steam generator feedwater nozzle. This nozzle, which is attached to the main feedwater line, is subjected to the effects of thermal stratification in the main feedwater line and in the nozzle itself due to the difference in the water density between the auxiliary feedwater and the steam generator. It should be noted that steam generator feedwater nozzle cracking has been a concern in the nuclear power industry since the late 1970`s.

  2. Piezoelectric power generation for civil infrastructure systems

    NASA Astrophysics Data System (ADS)

    Erturk, A.; Inman, D. J.

    2011-04-01

    Civil infrastructure systems (CIS) employ various small electronic components ranging from temperature and humidity sensors used in buildings to acoustics emission sensors used for damage detection in bridges. Other than solar energy that has already found several applications in CIS; moving loads, surface strain fluctuations, and wind energy available in the vicinity of CIS constitute important sources of energy that can be converted into electricity. This paper focuses on low power generation from these energy sources using piezoelectric transduction. Moving loads caused by travelling vehicles can be used for exciting piezoceramics located on the road. Structural vibrations resulting from various sources such as support motions and interaction of CIS with the surrounding fluid may yield local surface strain fluctuations. Wind energy is available not only due to regular atmospheric flow but also due to the motion of vehicles travelling at relatively high speeds. This paper investigates and formulates (1) the electromechanical moving load problem for slender bridges with a piezoelectric cantilever and with embedded piezoceramics, (2) the problem of piezoelectric power generation from surface strain fluctuations using a piezoceramic patch, and (3) piezoelectric energy harvesting from wind excitation through aeroelastic flutter.

  3. Combined Thermal and Power Energy Management Optimization 

    E-print Network

    Ahner, D. J.; Priestley, R. R.

    1991-01-01

    . In contrast to the conventional utility power plant optimization, the algorithm for cogeneration plants is much more complex. The incremental relationships for a utility power plant may be expressed by a single plant fuel input versus power output... characteristic. However, cogeneration applications often require the consideration of multiple energy sources, individual plant equipment incremental performance, the simultaneous demands for power and process heat at various energy levels and complex...

  4. Insuring Electric Power for Critical Services After Disasters with Building-Sited Electric Generating Technologies 

    E-print Network

    Jackson, J.

    2006-01-01

    the delivery of critical services. While emergency generators are available in some facilities, these systems are designed for short-term use and support limited functions. The substantial investment required to insure emergency power for all critical... generator applications, these technologies are integrated in building energy systems to provide some portion of a facility’s electricity and thermal energy needs including space heating and air conditioning. In the event of a power outage...

  5. Simulation of nonequilibrium thermal effects in power LDMOS transistors

    E-print Network

    Walker, D. Greg

    indicate that, under similar operating conditions, nonequilibrium behavior is more significant in the case. Thermal nonequilibrium refers to the condition when charge carriers are not able to transfer their excessSimulation of nonequilibrium thermal effects in power LDMOS transistors A. Raman, D.G. Walker *, T

  6. Solar thermal powered desalination: membrane versus distillation technologies

    E-print Network

    Solar thermal powered desalination: membrane versus distillation technologies G. Burgess and K Canberra ACT 0200 AUSTRALIA E-mail: greg.burgess@anu.edu.au Multiple Effect Distillation (MED) is generally assisted) desalination has been conducted. Solar thermal driven Multiple Effect Distillation (MED) has been

  7. Rotary-Atomizer Electric Power Generator

    NASA Astrophysics Data System (ADS)

    Nguyen, Trieu; Tran, Tuan; de Boer, Hans; van den Berg, Albert; Eijkel, Jan C. T.

    2015-03-01

    We report experimental and theoretical results on a ballistic energy-conversion method based on a rotary atomizer working with a droplet acceleration-deceleration cycle. In a rotary atomizer, liquid is fed onto the center of a rotating flat surface, where it spreads out under the action of the centrifugal force and creates "atomized" droplets at its edge. The advantage of using a rotary atomizer is that the centrifugal force exerted on the fluid on a smooth, large surface is not only a robust form of acceleration, as it avoids clogging, but also easily allows high throughput, and produces high electrical power. We successfully demonstrate an output power of 4.9 mW and a high voltage up to 3120 V. At present, the efficiency of the system is still low (0.14%). However, the conversion mechanism of the system is fully interpreted in this paper, permitting a conceptual understanding of system operation and providing a roadmap for system optimization. This observation will open up a road for building power-generation systems in the near future.

  8. Commitment of Electric Power Generators under Stochastic Market Prices

    E-print Network

    Mazumdar, Mainak

    Commitment of Electric Power Generators under Stochastic Market Prices Jorge Valenzuela 1 November 2001 1 Corresponding author. #12;1 Commitment of Electric Power Generators under Stochastic Market Prices Abstract A formulation for the commitment of electric power generators under a deregulated

  9. 43 CFR 418.16 - Using water for power generation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...2011-10-01 2011-10-01 false Using water for power generation. 418.16 Section 418...Operations and Management § 418.16 Using water for power generation. All use of Project water for power generation must be incidental to...

  10. 43 CFR 418.16 - Using water for power generation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...2013-10-01 2013-10-01 false Using water for power generation. 418.16 Section 418...Operations and Management § 418.16 Using water for power generation. All use of Project water for power generation must be incidental to...

  11. 43 CFR 418.16 - Using water for power generation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...2012-10-01 2011-10-01 true Using water for power generation. 418.16 Section 418...Operations and Management § 418.16 Using water for power generation. All use of Project water for power generation must be incidental to...

  12. 43 CFR 418.16 - Using water for power generation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...2014-10-01 2014-10-01 false Using water for power generation. 418.16 Section 418...Operations and Management § 418.16 Using water for power generation. All use of Project water for power generation must be incidental to...

  13. 43 CFR 418.16 - Using water for power generation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Using water for power generation. 418.16... Operations and Management § 418.16 Using water for power generation. All use of Project water for power generation must be incidental to releases charged against Project diversions, precautionary...

  14. 43 CFR 418.16 - Using water for power generation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...2010-10-01 false Using water for power generation. 418.16 Section 418.16 Public...Management § 418.16 Using water for power generation. All use of Project water for power generation must be incidental to releases...

  15. Coupled generator and combustor performance calculations for potential early commercial MHD power plants

    NASA Technical Reports Server (NTRS)

    Dellinger, T. C.; Hnat, J. G.; Marston, C. H.

    1979-01-01

    A parametric study of the performance of the MHD generator and combustor components of potential early commercial open-cycle MHD/steam power plants is presented. Consideration is given to the effects of air heater system concept, MHD combustor type, coal type, thermal input power, oxygen enrichment of the combustion, subsonic and supersonic generator flow and magnetic field strength on coupled generator and combustor performance. The best performance is found to be attained with a 3000 F, indirectly fired air heater, no oxygen enrichment, Illinois no. 6 coal, a two-stage cyclone combustor with 85% slag rejection, a subsonic generator, and a magnetic field configuration yielding a constant transverse electric field of 4 kV/m. Results indicate that optimum net MHD generator power is generally compressor-power-limited rather than electric-stress-limited, with optimum net power a relatively weak function of operating pressure.

  16. Thermal Energy Corporation Combined Heat and Power Project

    SciTech Connect

    E. Bruce Turner; Tim Brown; Ed Mardiat

    2011-12-31

    To meet the planned heating and cooling load growth at the Texas Medical Center (TMC), Thermal Energy Corporation (TECO) implemented Phase 1 of a Master Plan to install an additional 32,000 tons of chilled water capacity, a 75,000 ton-hour (8.8 million gallon) Thermal Energy Storage (TES) tank, and a 48 MW Combined Heat and Power (CHP) system. The Department of Energy selected TMC for a $10 million grant award as part of the Financial Assistance Funding Opportunity Announcement, U.S. Department of Energy National Energy Technology, Recovery Act: Deployment of Combined Heat and Power (CHP) Systems, District Energy Systems, Waste Energy Recovery Systems, and Efficiency Industrial Equipment Funding Opportunity Number: DE-FOA-0000044 to support the installation of a new 48 MW CHP system at the TMC located just outside downtown Houston. As the largest medical center in the world, TMC is home to many of the nationâ??s best hospitals, physicians, researchers, educational institutions, and health care providers. TMC provides care to approximately six million patients each year, and medical instruction to over 71,000 students. A medical center the size of TMC has enormous electricity and thermal energy demands to help it carry out its mission. Reliable, high-quality steam and chilled water are of utmost importance to the operations of its many facilities. For example, advanced medical equipment, laboratories, laundry facilities, space heating and cooling all rely on the generation of heat and power. As result of this project TECO provides this mission critical heating and cooling to TMC utilizing a system that is both energy-efficient and reliable since it provides the capability to run on power independent of the already strained regional electric grid. This allows the medical center to focus on its primary mission â?? providing top quality medical care and instruction â?? without worrying about excessive energy costs or the loss of heating and cooling due to the risk of power outages. TECOâ??s operation is the largest Chilled Water District Energy System in the United States. The company used DOEâ??s funding to help install a new high efficiency CHP system consisting of a Combustion Turbine and a Heat Recovery Steam Generator. This CHP installation was just part of a larger project undertaken by TECO to ensure that it can continue to meet TMCâ??s growing needs. The complete efficiency overhaul that TECO undertook supported more than 1,000 direct and indirect jobs in manufacturing, engineering, and construction, with approximately 400 of those being jobs directly associated with construction of the combined heat and power plant. This showcase industrial scale CHP project, serving a critical component of the nationâ??s healthcare infrastructure, directly and immediately supported the energy efficiency and job creation goals established by ARRA and DOE. It also provided an unsurpassed model of a district energy CHP application that can be replicated within other energy intensive applications in the industrial, institutional and commercial sectors.

  17. Thermal performance monitoring and assessment in Dukovany nuclear power plant

    SciTech Connect

    Madron, F.; Papuga, J.; Pliska, J.

    2006-07-01

    Competition in the European electricity market forces generators to achieve - in compliance with safety and environmental standards - efficiency of production as high as possible. This efficiency or heat rate is an important indicator of both the condition of the plant equipment and the quality of plant operation. Similar thermal performance indicators can also be calculated for components of the plant equipment such as heat exchangers. However, it is not easy to quantify these indicators with sufficient precision so that the results can be used for conduct of plant operation in near-real time and for predictive maintenance. This paper describes a present state of the system monitoring and evaluating thermal performance of the reactor units in Dukovany Nuclear Power Plant. The system provides information on actual and desirable (should-be) values of thermal performance indicators for control room operators, performance engineers and maintenance planners. The system is designed to monitor steady states and has two main functions: data validation and process simulation. Data validation is based on data reconciliation methodology and carried out with Recon software by Chemplant Technology. A detailed model of the secondary side for mass and heat balancing has been made up by means of the Recon's graphical editor; now it contains roughly 300 flows and employs data of about 200 measurements. Main advantages of the data reconciliation are: - reconciled data are consistent with the model, - reconciled data are more precise than data directly measured with consequence that the thermal power of steam generators is determined with substantially lower uncertainty than before - data reconciliation represents a solid basis for detection and identification of data corrupted by gross errors. Simulation is performed with a different analytical model of plant components configured into secondary side. The model has been developed by I and C Energo. Main purposes of simulation are: - the calculation of performance indicators and output capacity for a desirable state of the plant equipment and mode of operation. Boundary conditions for the calculation are taken from the preceding data reconciliation procedure. Control room operators (in near-real time) and performance engineers then can compare an actual and ideal state of the performance indicators. - 'what-if' analysis and efficiency optimization based on varying user selected parameters of the plant components and flow-sheet structure changes. The system is integrated into an overall nuclear power plant process information system and data warehouse. The solution is based on the Industrial SQL server database and the InTouch human machine interface by Invensys' Wonderware. The system nowadays works with hourly averages of process data and monitors secondary side of the Dukovany units No. 1 and 3 from steam generators to alternators. A detailed description of the system and some obtained results are presented. (authors)

  18. Nanostructured thermal batteries with high power density

    NASA Astrophysics Data System (ADS)

    Au, Ming

    Nanostructured FeS 2 has been synthesized and used as the cathode material in LiSi/FeS 2 thermal batteries. With the same weight, the nanostructured cathode pellets are 23% thinner than conventional counterparts resulting in 31% increase of pellet density. Therefore, the volume of batteries can be reduced significantly. With the nanostructure, the electrode materials of the thermal batteries react more rapidly and completely during discharge resulting with a remarkable increase of energy output. The discharge tests show that the energy density of the nanostructured thermal batteries is two times higher (109 J/g) than the conventional counterpart (58 J/g). The nanostructured pellets are more robust mechanically than the conventional counterparts that could increase productivity and lower manufacturing cost.

  19. 18 CFR 801.12 - Electric power generation.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Electric power generation. 801.12 Section 801.12 Conservation of Power and Water Resources SUSQUEHANNA RIVER BASIN COMMISSION GENERAL...

  20. 18 CFR 801.12 - Electric power generation.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Electric power generation. 801.12 Section 801.12 Conservation of Power and Water Resources SUSQUEHANNA RIVER BASIN COMMISSION GENERAL...

  1. 18 CFR 801.12 - Electric power generation.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Electric power generation. 801.12 Section 801.12 Conservation of Power and Water Resources SUSQUEHANNA RIVER BASIN COMMISSION GENERAL...

  2. 18 CFR 801.12 - Electric power generation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Electric power... COMMISSION GENERAL POLICIES § 801.12 Electric power generation. (a) Significant uses are presently being made of the waters of the basin for the generation of electric power at hydro, pumped storage,...

  3. Effects of Thermal Cycling on Control and Irradiated EPC 2nd Generation GaN FETs

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Scheick, Leif; Lauenstein, Jean-Marie; Casey, Megan; Hammoud, Ahmad

    2013-01-01

    The power systems for use in NASA space missions must work reliably under harsh conditions including radiation, thermal cycling, and exposure to extreme temperatures. Gallium nitride semiconductors show great promise, but information pertaining to their performance is scarce. Gallium nitride N-channel enhancement-mode field effect transistors made by EPC Corporation in a 2nd generation of manufacturing were exposed to radiation followed by long-term thermal cycling in order to address their reliability for use in space missions. Results of the experimental work are presented and discussed.

  4. Solar Probe Plus MAG Sensor Thermal Design for Low Heater Power and Extreme Thermal Environment

    NASA Technical Reports Server (NTRS)

    Choi, Michael K.

    2015-01-01

    The heater power available for the Solar Probe Plus FIELDS MAG sensor is less than half of the heritage value for other missions. Nominally the MAG sensors are in the spacecraft's umbra. In the worst hot case, approximately 200 spacecraft communication downlinks, up to 10 hours each, are required at 0.7 AU. These downlinks require the spacecraft to slew 45 deg. about the Y-axis, exposing the MAG sensors and boom to sunlight. This paper presents the thermal design to meet the MAG sensor thermal requirements in the extreme thermal environment and with low heater power. A thermal balance test on the MAG sensor engineering model has verified the thermal design and correlated the thermal model for flight temperature predictions.

  5. Advanced staged combustion system for power generation

    SciTech Connect

    Rehmat, A.; Goyal, A.

    1993-12-31

    To respond to the increasing market need for a new generation of plants with a substantial improvement in efficiency and a reduction in capital cost, the Institute of Gas Technology has developed an advanced staged, fluidized-bed combustion system concept. The staged fluidized-bed partial combustor produces the fuel gas at about 1500 F. The fuel gas, after particulate removal, is directed to a gas turbine followed by a steam cycle. Adequate sulfur capture and solids waste stabilization are attained by separating calcination, carbonization, and gasification/combustion steps in the staged fluidized beds. Intermediate gas cooling is avoided during the process to maximize the power production. The coal-to-electricity conversion efficiency of the system approaches 49 percent, which exceeds the efficiencies of the other emerging technologies.

  6. New power politics will determine generation's path

    SciTech Connect

    Maize, K.; Neville, A.; Peltier, R.

    2009-01-15

    The US power industry's story in 2009 will be all about change, to borrow a now-familiar theme. Though the new administration's policy specifics had not been revealed as this report was prepared, it appears that flat load growth in 2009 will give the new Obama administration a unique opportunity to formulate new energy policy without risking that the lights will go out. New coal projects are now facing increasing difficulties. It looks as though the electricity supply industry will continue to muddle through. It may see an advancement in infrastructure investment, significant new generation or new technology development. It also faces the possibility that policies necessary to achieving those goals will not materialize, for political and economic reasons. 4 figs.

  7. Metal Hydrides for High-Temperature Power Generation

    DOE PAGESBeta

    Ronnebro, Ewa; Whyatt, Greg A.; Powell, Michael R.; Westman, Matthew P.; Zheng, Feng; Fang, Zhigang Zak

    2015-08-10

    Metal hydrides can be utilized for hydrogen storage and for thermal energy storage (TES) applications. By using TES with solar technologies, heat can be stored from sun energy to be used later which enables continuous power generation. We are developing a TES technology based on a dual-bed metal hydride system, which has a high-temperature (HT) metal hydride operating reversibly at 600-800°C to generate heat as well as a low-temperature (LT) hydride near room temperature that is used for hydrogen storage during sun hours until there is a need to produce electricity, such as during night time, a cloudy day, ormore »during peak hours. We proceeded from selecting a high-energy density, low-cost HT-hydride based on performance characterization on gram size samples, to scale-up to kilogram quantities and design, fabrication and testing of a 1.5kWh, 200kWh/m3 bench-scale TES prototype based on a HT-bed of titanium hydride and a hydrogen gas storage instead of a LT-hydride. COMSOL Multiphysics was used to make performance predictions for cylindrical hydride beds with varying diameters and thermal conductivities. Based on experimental and modeling results, a bench-scale prototype was designed and fabricated and we successfully showed feasibility to meet or exceed all performance targets.« less

  8. Metal Hydrides for High-Temperature Power Generation

    SciTech Connect

    Ronnebro, Ewa; Whyatt, Greg A.; Powell, Michael R.; Westman, Matthew P.; Zheng, Feng; Fang, Zhigang Zak

    2015-08-10

    Metal hydrides can be utilized for hydrogen storage and for thermal energy storage (TES) applications. By using TES with solar technologies, heat can be stored from sun energy to be used later which enables continuous power generation. We are developing a TES technology based on a dual-bed metal hydride system, which has a high-temperature (HT) metal hydride operating reversibly at 600-800°C to generate heat as well as a low-temperature (LT) hydride near room temperature that is used for hydrogen storage during sun hours until there is a need to produce electricity, such as during night time, a cloudy day, or during peak hours. We proceeded from selecting a high-energy density, low-cost HT-hydride based on performance characterization on gram size samples, to scale-up to kilogram quantities and design, fabrication and testing of a 1.5kWh, 200kWh/m3 bench-scale TES prototype based on a HT-bed of titanium hydride and a hydrogen gas storage instead of a LT-hydride. COMSOL Multiphysics was used to make performance predictions for cylindrical hydride beds with varying diameters and thermal conductivities. Based on experimental and modeling results, a bench-scale prototype was designed and fabricated and we successfully showed feasibility to meet or exceed all performance targets.

  9. Rankline-Brayton engine powered solar thermal aircraft

    DOEpatents

    Bennett, Charles L. (Livermore, CA)

    2012-03-13

    A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  10. Rankine-Brayton engine powered solar thermal aircraft

    DOEpatents

    Bennett, Charles L. (Livermore, CA)

    2009-12-29

    A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  11. Yb :CALGO as material for high power ultrafast laser and focus on thermal conductivity variation

    NASA Astrophysics Data System (ADS)

    Jaffrès, A.; Ricaud, S.; Suganuma, A.; Viana, B.; Loiseau, P.; Georges, P.; Druon, F.

    2013-03-01

    Thermal conductivity values of laser material Yb3+:CaGdAlO4 (CALGO) with various doping rate in Yb3+ were measured experimentally and compared to predictive values obtained by modelling. The observed variation of the thermal conductivity with the Yb3+ content could be explained by changing the ratio of site substitution Gd3+/Ca2+ by Yb3+. The influence of velocity sound and interionic distance values on thermal conductivity was also studied. Finally, laser results obtained with a 2%Yb:CALGO thin-disk were presented, strengthening the potential of Yb:CALGO for high power laser and ultra-short pulses generation.

  12. Investigation of thermal storage and steam generator issues

    SciTech Connect

    Not Available

    1993-08-01

    A review and evaluation of steam generator and thermal storage tank designs for commercial nitrate salt technology showed that the potential exists to procure both on a competitive basis from a number of qualified vendors. The report outlines the criteria for review and the results of the review, which was intended only to assess the feasibility of each design, not to make a comparison or select the best concept.

  13. Thermal management of next-generation contact-cooled synchrotron x-ray mirrors

    SciTech Connect

    Khounsary, A.

    1999-10-29

    In the past decade, several third-generation synchrotrons x-ray sources have been constructed and commissioned around the world. Many of the major problems in the development and design of the optical components capable of handling the extremely high heat loads of the generated x-ray beams have been resolved. It is expected, however, that in the next few years even more powerful x-ray beams will be produced at these facilities, for example, by increasing the particle beam current. In this paper, the design of a next generation of synchrotron x-ray mirrors is discussed. The author shows that the design of contact-cooled mirrors capable of handing x-ray beam heat fluxes in excess of 500 W/mm{sup 2} - or more than three times the present level - is well within reach, and the limiting factor is the thermal stress rather then thermally induced slope error.

  14. Limits to solar power conversion efficiency with applications to quantum and thermal systems

    NASA Technical Reports Server (NTRS)

    Byvik, C. E.; Buoncristiani, A. M.; Smith, B. T.

    1983-01-01

    An analytical framework is presented that permits examination of the limit to the efficiency of various solar power conversion devices. Thermodynamic limits to solar power efficiency are determined for both quantum and thermal systems, and the results are applied to a variety of devices currently considered for use in space systems. The power conversion efficiency for single-threshold energy quantum systems receiving unconcentrated air mass zero solar radiation is limited to 31 percent. This limit applies to photovoltaic cells directly converting solar radiation, or indirectly, as in the case of a thermophotovoltaic system. Photoelectrochemical cells rely on an additional chemical reaction at the semiconductor-electrolyte interface, which introduces additional second-law demands and a reduction of the solar conversion efficiency. Photochemical systems exhibit even lower possible efficiencies because of their relatively narrow absorption bands. Solar-powered thermal engines in contact with an ambient reservoir at 300 K and operating at maximum power have a peak conversion efficiency of 64 percent, and this occurs for a thermal reservoir at a temperature of 2900 K. The power conversion efficiency of a solar-powered liquid metal magnetohydrodydnamic generator, a solar-powered steam turbine electric generator, and an alkali metal thermoelectric converter is discussed.

  15. ERDA's central receiver solar thermal power system studies

    NASA Technical Reports Server (NTRS)

    Lippy, L. J.; Heaton, T. R.

    1977-01-01

    The utilization of solar energy for electrical power production was studied. Efforts underway on the central receiver solar thermal power system are presented. Preliminary designs are included of pilot plant utilizing large numbers of heliostats in a collector field. Safety hazards are also discussed, as well as the most beneficial location of such a plant within the United States.

  16. Generation of Multitemporal Thermal Orthophotos from Uav Data

    NASA Astrophysics Data System (ADS)

    Pech, K.; Stelling, N.; Karrasch, P.; Maas, H.-G.

    2013-08-01

    The paper deals with using a TIR camera on an UAV for acquiring multitemporal thermal images of a building block against the background of detecting, monitoring and analysing urban heat islands. It is motivated by a research project called EO2HEAVEN (Earth Observation and Environmental Modelling for the Mitigation of Health Risks) which analyses the influence of environmental effects to human health. Therefore, the aim is the generation of thermal orthophotos from UAV data which can be used for further thematic analysis. The paper describes the data acquisition on the one hand and the processing of the obtained data on the other hand. The data acquisition comprises three image flights at different times of day from which only the first two missions could be processed until now. The low image contrasts, the radiometric differences between images as well as the poor initial positioning and orientation values limit the suitability of available software for automatic tie point measurement so that this step was outsourced and implemented in C++. The following aerial triangulation and orthophoto generation was realised in TerraPhoto (Terrasolid). However, two orthophotos could be generated with a geometric resolution of 15 cm. Furthermore, the radiation temperatures from the thermal images were compared to ground measurements to check the correctness of the camera measurements.

  17. Power MOSFET Thermal Instability Operation Characterization Support

    NASA Technical Reports Server (NTRS)

    Shue, John L.; Leidecker, Henning

    2010-01-01

    Metal-oxide semiconductor field-effect transistors (MOSFETs) are used extensively in flight hardware and ground support equipment. In the quest for faster switching times and lower "on resistance," the MOSFETs designed from 1998 to the present have achieved most of their intended goals. In the quest for lower on resistance and higher switching speeds, the designs now being produced allow the charge-carrier dominated region (once small and outside of the area of concern) to become important and inside the safe operating area (SOA). The charge-carrier dominated region allows more current to flow as the temperature increases. The higher temperatures produce more current resulting in the beginning of thermal runaway. Thermal runaway is a problem affecting a wide range of modern MOSFETs from more than one manufacturer. This report contains information on MOSFET failures, their causes and test results and information dissemination.

  18. The application of simulation modeling to the cost and performance ranking of solar thermal power plants

    NASA Technical Reports Server (NTRS)

    Rosenberg, L. S.; Revere, W. R.; Selcuk, M. K.

    1981-01-01

    Small solar thermal power systems (up to 10 MWe in size) were tested. The solar thermal power plant ranking study was performed to aid in experiment activity and support decisions for the selection of the most appropriate technological approach. The cost and performance were determined for insolation conditions by utilizing the Solar Energy Simulation computer code (SESII). This model optimizes the size of the collector field and energy storage subsystem for given engine generator and energy transport characteristics. The development of the simulation tool, its operation, and the results achieved from the analysis are discussed.

  19. Power Generation from Nuclear Reactors in Aerospace Applications

    NASA Technical Reports Server (NTRS)

    English, Robert E.

    1982-01-01

    Power generation in nuclear powerplants in space is addressed. In particular, the states of technology of the principal competitive concepts for power generation are assessed. The possible impact of power conditioning on power generation is also discussed. For aircraft nuclear propulsion, the suitability of various technologies is cursorily assessed for flight in the Earth's atmosphere; a program path is suggested to ease the conditions of first use of aircraft nuclear propulsion.

  20. Power generation from nuclear reactors in aerospace applications

    SciTech Connect

    English, R.E.

    1982-01-01

    Power generation in nuclear powerplants in space is addressed. In particular, the states of technology of the principal competitive concepts for power generation are assessed. The possible impact of power conditioning on power generation is also discussed. For aircraft nuclear propulsion, the suitability of various technologies is cursorily assessed for flight in the Earth's atmosphere. A program path is suggested to ease the conditions of first use of aircraft nuclear propulsion.

  1. Non-Equilibrium Plasma MHD Electrical Power Generation at Tokyo Tech

    SciTech Connect

    Murakami, T.; Okuno, Y.; Yamasaki, H.

    2008-02-21

    This paper reviews the recent activities on radio-frequency (rf) electromagnetic-field-assisted magnetohydrodynamic (MHD) power generation experiments at the Tokyo Institute of Technology. An inductively coupled rf field (13.56 MHz) is continuously supplied to the disk-shaped Hall-type MHD generator. The first part of this paper describes a method of obtaining increased power output from a pure Argon plasma MHD power generator by incorporating an rf power source to preionize and heat the plasma. The rf heating enhances ionization of the Argon and raises the temperature of the free electron population above the nominally low 4500 K temperatures obtained without rf heating. This in turn enhances the plasma conductivity making MHD power generation feasible. We demonstrate an enhanced power output when rf heating is on approximately 5 times larger than the input power of the rf generator. The second part of this paper is a demonstration of a physical phenomenon of the rf-stabilization of the ionization instability, that had been conjectured for some time, but had not been seen experimentally. The rf heating suppresses the ionization instability in the plasma behavior and homogenizes the nonuniformity of the plasma structures. The power-generating performance is significantly improved with the aid of the rf power under wide seeding conditions. The increment of the enthalpy extraction ratio of around 2% is significantly greater than the fraction of the net rf power, that is, 0.16%, to the thermal input.

  2. Calculation of guaranteed mean power from wind turbine generators

    NASA Technical Reports Server (NTRS)

    Spera, D. A.

    1981-01-01

    A method for calculating the 'guaranteed mean' power output of a wind turbine generator is proposed. The term 'mean power' refers to the average power generated at specified wind speeds during short-term tests. Correlation of anemometers, the method of bins for analyzing non-steady data, the PROP Code for predicting turbine power, and statistical analysis of deviations in test data from theory are discussed. Guaranteed mean power density for the Clayton Mod-OA system was found to be 8 watts per square meter less than theoretical power density at all power levels, with a confidence level of 0.999. This amounts to 4 percent of rated power.

  3. Thermal-hydraulics for space power, propulsion, and thermal management system design

    SciTech Connect

    Krotiuk, W.J.

    1990-01-01

    The present volume discusses thermal-hydraulic aspects of current space projects, Space Station thermal management systems, the thermal design of the Space Station Free-Flying Platforms, the SP-100 Space Reactor Power System, advanced multi-MW space nuclear power concepts, chemical and electric propulsion systems, and such aspects of the Space Station two-phase thermal management system as its mechanical pumped loop and its capillary pumped loop's supporting technology. Also discussed are the startup thaw concept for the SP-100 Space Reactor Power System, calculational methods and experimental data for microgravity conditions, an isothermal gas-liquid flow at reduced gravity, low-gravity flow boiling, computations of Space Shuttle high pressure cryogenic turbopump ball bearing two-phase coolant flow, and reduced-gravity condensation.

  4. 13. INTERIOR OF POWER PLANT LOOKING EASTNORTHEAST. 1925 GE GENERATOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. INTERIOR OF POWER PLANT LOOKING EAST-NORTHEAST. 1925 GE GENERATOR IN FOREGROUND, WITH C. 1910 GENERATOR COVER IN BACKGROUND. STEEL FRAME SUPPORTS HOISTING MECHANISM USED TO MOVE, REPAIR, OR REPLACE GENERATORS. - Potomac Power Plant, On West Virginia Shore of Potomac River, about 1 mile upriver from confluence with Shenandoah River, Harpers Ferry, Jefferson County, WV

  5. Coal and Coal/Biomass-Based Power Generation

    EPA Science Inventory

    For Frank Princiotta's book, Global Climate Change--The Technology Challenge Coal is a key, growing component in power generation globally. It generates 50% of U.S. electricity, and criteria emissions from coal-based power generation are being reduced. However, CO2 emissions m...

  6. Power generation with laterally packaged piezoelectric fine wires

    E-print Network

    Wang, Zhong L.

    Power generation with laterally packaged piezoelectric fine wires Rusen Yang1 , Yong Qin1 , Liming­8 . Previously reported nanowire generators9­11 were based on vertically aligned piezoelectric nanowires we report a flexible power generator that is based on cyclic stretching­releasing of a piezoelectric

  7. Power Generation Using Different Cation, Anion, and Ultrafiltration

    E-print Network

    Power Generation Using Different Cation, Anion, and Ultrafiltration Membranes in Microbial Fuel during power generation. An anion exchange membrane (AEM) produced the largest power density (up to 610 m (Nafion), a cation exchange membrane (CEM), or three different ultrafiltration (UF) membranes

  8. 18 CFR 801.12 - Electric power generation.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... COMMISSION GENERAL POLICIES § 801.12 Electric power generation. (a) Significant uses are presently being made of the waters of the basin for the generation of electric power at hydro, pumped storage, and... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Electric...

  9. 18 CFR 801.12 - Electric power generation.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... COMMISSION GENERAL POLICIES § 801.12 Electric power generation. (a) Significant uses are presently being made of the waters of the basin for the generation of electric power at hydro, pumped storage, and... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Electric...

  10. 18 CFR 801.12 - Electric power generation.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... COMMISSION GENERAL POLICIES § 801.12 Electric power generation. (a) Significant uses are presently being made of the waters of the basin for the generation of electric power at hydro, pumped storage, and... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Electric...

  11. 18 CFR 801.12 - Electric power generation.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... COMMISSION GENERAL POLICIES § 801.12 Electric power generation. (a) Significant uses are presently being made of the waters of the basin for the generation of electric power at hydro, pumped storage, and... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Electric...

  12. Integrated engine-generator concept for aircraft electric secondary power

    NASA Technical Reports Server (NTRS)

    Secunde, R. R.; Macosko, R. P.; Repas, D. S.

    1972-01-01

    The integrated engine-generator concept of locating an electric generator inside an aircraft turbojet or turbofan engine concentric with, and driven by, one of the main engine shafts is discussed. When properly rated, the generator can serve as an engine starter as well as a generator of electric power. The electric power conversion equipment and generator controls are conveniently located in the aircraft. Preliminary layouts of generators in a large engine together with their physical sizes and weights indicate that this concept is a technically feasible approach to aircraft secondary power.

  13. A global fouling factor methodology for analyzing steam generator thermal performance degradation

    SciTech Connect

    Kreider, M.A.; White, G.A.; Varrin, R.D. Jr.

    1998-06-01

    Over the past few years, steam generator (SG) thermal performance degradation has led to decreased plant efficiency and power output at numerous PWR nuclear power plants with recirculating-type SGs. The authors have developed and implemented methodologies for quantitatively evaluating the various sources of SG performance degradation, both internal and external to the SG pressure boundary. These methodologies include computation of the global fouling factor history, evaluation of secondary deposit thermal resistance using deposit characterization data, and consideration of pressure loss causes unrelated to the tube bundle, such as hot-leg temperature streaming and SG moisture separator fouling. In order to evaluate the utility of the global fouling factor methodology, the authors performed case studies for a number of PWR SG designs. Key results from two of these studies are presented here. In tandem with the fouling-factor analyses, a study evaluated for each plant the potential causes of pressure loss. The combined results of the global fouling factor calculations and the pressure-loss evaluations demonstrated two key points: (1) that the available thermal margin against fouling, which can vary substantially from plant to plant, has an important bearing on whether a given plant exhibits losses in electrical generating capacity, and (2) that a wide variety of causes can result in SG thermal performance degradation.

  14. Thermal-Hydraulic Analyses of Steam Generator Tube Rupture Accident for the Kori Nuclear Unit 1 Pressurized Thermal Shock Study

    SciTech Connect

    Hong, Soon-Joon; Kim, Jae-Hak; Kim, Yong-Soo; Park, Goon-Cherl

    2002-06-15

    This paper discusses a thermal-hydraulic analysis methodology using RETRAN-3D and assembles system analyses for pressurized thermal shock resulting from a steam generator tube rupture accident in Kori Nuclear Unit 1. Through a systematic definition of sequences and thermal-hydraulic analyses using RETRAN-3D, the most important parameters on downcomer overcooling were identified. The break location that leads to the most significant overcooling was found to be the hot leg side in the loop that does not contain the charging flow inlet. The initial power level had a large effect on the downcomer overcooling. The closure failure of the pressurizer power operated relief valves and the termination failure of the safety injection were found to be the most significant operator actions. In contrast, auxiliary feedwater control failure had little effect on overcooling, and the steam dump valve closure failure merely resulted in a temperature rise in the latter half of the transient. Through these analyses, recommendations for sequence grouping and against downcomer overcooling are provided.

  15. Direct charge radioisotope activation and power generation

    DOEpatents

    Lal, Amit (Madison, WI); Li, Hui (Madison, WI); Blanchard, James P. (Madison, WI); Henderson, Douglass L. (Madison, WI)

    2002-01-01

    An activator has a base on which is mounted an elastically deformable micromechanical element that has a section that is free to be displaced toward the base. An absorber of radioactively emitted particles is formed on the base or the displaceable section of the deformable element and a source is formed on the other of the displaceable section or the base facing the absorber across a small gap. The radioactive source emits charged particles such as electrons, resulting in a buildup of charge on the absorber, drawing the absorber and source together and storing mechanical energy as the deformable element is bent. When the force between the absorber and the source is sufficient to bring the absorber into effective electrical contact with the source, discharge of the charge between the source and absorber allows the deformable element to spring back, releasing the mechanical energy stored in the element. An electrical generator such as a piezoelectric transducer may be secured to the deformable element to convert the released mechanical energy to electrical energy that can be used to provide power to electronic circuits.

  16. Advanced gasification-based biomass power generation

    SciTech Connect

    Williams, R.H.; Larson, E.D.

    1993-12-31

    A promising strategy for modernizing bioenergy is the production of electricity or the cogeneration of electricity and heat using gasified biomass with advanced conversion technologies. Major advances that have been made in coal gasification technology, to marry the gas turbine to coal, are readily adaptable to biomass applications. Integrating biomass gasifiers with aeroderivative gas turbines in particular makes it possible to achieve high efficiencies and low unit capital costs at the modest scales required for bioenergy systems. Electricity produced with biomass-integrated gasifier/gas turbine (BIG/GT) power systems not only offers major environmental benefits but also would be competitive with electricity produced from fossil fuels and nuclear energy under a wide range of circumstances. Initial applications will be with biomass residues generated in the sugarcane, pulp and paper, and other agro- and forest-product industries. Eventually, biomass grown for energy purposes on dedicated energy farms will also be used to fuel these gas turbine systems. Continuing improvements in jet engine and biomass gasification technologies will lead to further gains in the performance of BIG/GT systems over the next couple of decades. Fuel cells operated on gasified biomass offer the promise of even higher performance levels in the period beyond the turn of the century. 79 refs., 21 figs., 11 tabs.

  17. Power Electronics Thermal Management R&D (Presentation)

    SciTech Connect

    Waye, S.

    2014-11-01

    This project will investigate and develop thermal-management strategies for wide bandgap (WBG)-based power electronics systems. Research will be carried out to deal with thermal aspects at the module- and system-level. Module-level research will focus on die- and substrate-integrated cooling strategies and heat-transfer enhancement technologies. System-level research will focus on thermal-management strategies for the entire power electronics system to enable smart packaging solutions. One challenge with WBG device-based power electronics is that although losses in the form of heat may be lower, the footprint of the components is also likely to be reduced to reduce cost, weight, and volume. Combined with higher operational temperatures, this creates higher heat fluxes which much be removed from a smaller footprint, requiring advanced cooling strategies.

  18. Neuro-Fuzzy Computational Technique to Control Load Frequency in Hydro-Thermal Interconnected Power System

    NASA Astrophysics Data System (ADS)

    Prakash, S.; Sinha, S. K.

    2015-09-01

    In this research work, two areas hydro-thermal power system connected through tie-lines is considered. The perturbation of frequencies at the areas and resulting tie line power flows arise due to unpredictable load variations that cause mismatch between the generated and demanded powers. Due to rising and falling power demand, the real and reactive power balance is harmed; hence frequency and voltage get deviated from nominal value. This necessitates designing of an accurate and fast controller to maintain the system parameters at nominal value. The main purpose of system generation control is to balance the system generation against the load and losses so that the desired frequency and power interchange between neighboring systems are maintained. The intelligent controllers like fuzzy logic, artificial neural network (ANN) and hybrid fuzzy neural network approaches are used for automatic generation control for the two area interconnected power systems. Area 1 consists of thermal reheat power plant whereas area 2 consists of hydro power plant with electric governor. Performance evaluation is carried out by using intelligent (ANFIS, ANN and fuzzy) control and conventional PI and PID control approaches. To enhance the performance of controller sliding surface i.e. variable structure control is included. The model of interconnected power system has been developed with all five types of said controllers and simulated using MATLAB/SIMULINK package. The performance of the intelligent controllers has been compared with the conventional PI and PID controllers for the interconnected power system. A comparison of ANFIS, ANN, Fuzzy and PI, PID based approaches shows the superiority of proposed ANFIS over ANN, fuzzy and PI, PID. Thus the hybrid fuzzy neural network controller has better dynamic response i.e., quick in operation, reduced error magnitude and minimized frequency transients.

  19. Thermally tuned optical fiber for true time delay generation

    NASA Astrophysics Data System (ADS)

    Howley, Brie; Shi, Zhong; Jiang, Yongqiang; T. Chen, Ray

    2005-02-01

    A new technique for generating a continuous range of true time delay values is introduced. Heating optical fiber in order to change the effective index of the guided mode produces time delays. A 45-m section of single-mode silica fiber is demonstrated to produce a continuous range of time delay values from 0 to 211 ps over a temperature tuning range of 50°C (30-80°C). A thermal time delay factor is introduced and found to be 0.096 ps/m° C for Corning LEAF fiber. A 7.66-m section of multimode Lucina polymer fiber is demonstrated to produce a range of time delay values from 0 to 32 ps over a temperature tuning range of 30°C (30-60°C). The thermal time delay factor for this fiber is -0.1427 ps/m° C.

  20. Optical Property Evaluation of Next Generation Thermal Control Coatings

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; Deshpande, Mukund S.; Pierson, Edward A.

    2010-01-01

    Next generation white thermal control coatings were developed via the Small Business Innovative Research program utilizing lithium silicate chemistry as a binder. Doping of the binder with additives yielded a powder that was plasma spray capable and that could be applied to light weight polymers and carbon-carbon composite surfaces. The plasma sprayed coating had acceptable beginning-of-life and end-of-live optical properties, as indicated by a successful 1.5 year exposure to the space environment in low Earth orbit. Recent studies also showed the coating to be durable to simulated space environments consisting of 1 keV and 10 keV electrons, 4.5 MeV electrons, and thermal cycling. Large scale deposition was demonstrated on a polymer matrix composite radiator panel, leading to the selection of the coating for use on the Gravity Recovery And Interior Laboratory (GRAIL) mission.

  1. Generator powered electrically heated diesel particulate filter

    DOEpatents

    Gonze, Eugene V; Paratore, Jr., Michael J

    2014-03-18

    A control circuit for a vehicle powertrain includes a switch that selectivity interrupts current flow between a first terminal and a second terminal. A first power source provides power to the first terminal and a second power source provides power to the second terminal and to a heater of a heated diesel particulate filter (DPF). The switch is opened during a DPF regeneration cycle to prevent the first power source from being loaded by the heater while the heater is energized.

  2. Generation of saffron volatiles by thermal carotenoid degradation.

    PubMed

    Carmona, Manuel; Zalacain, Amaya; Salinas, M Rosario; Alonso, Gonzalo L

    2006-09-01

    Generation of volatiles by thermal treatments has been studied in saffron spice for two reasons: (a) to determine volatile profile changes during simulated aging processes and (b) to study the volatile generation pathway. During the aging process, while the amounts of C10 compounds such as safranal and HTCC increase, the amounts of C9 compounds such as isophorone and 2,6,6-trimethylcyclohexane-1,4-dione decrease. A new compound tentatively identified as 4,5,6,7-tetrahydro-7,7-dimethyl-5-oxo-3H-isobenzofuranone seems to play a very important role in the aging process. The importance of this compound, structurally similar to dihydroactindiolide, was also confirmed when the saffron volatile fraction was analyzed via the degradation of the linear chain of crocetin and crocetin esters and is reported for the first time in this paper. Thermal degradation studies of zeaxanthin, crocetin, and trans and cis crocetin esters isomers allowed us to propose different mechanisms which explain saffron volatile generation depending on the crocetin ester isomer structure. PMID:16939346

  3. Solar thermal power systems. Annual technical progress report, FY 1979

    SciTech Connect

    Braun, Gerald W.

    1980-06-01

    The Solar Thermal Power Systems Program is the key element in the national effort to establish solar thermal conversion technologies within the major sectors of the national energy market. It provides for the development of concentrating mirror/lens heat collection and conversion technologies for both central and dispersed receiver applications to produce electricity, provide heat at its point of use in industrial processes, provide heat and electricity in combination for industrial, commercial, and residential needs, and ultimately, drive processes for production of liquid and gaseous fuels. This report is the second Annual Technical Progress Report for the Solar Thermal Power Systems Program and is structured according to the organization of the Solar Thermal Power Systems Program on September 30, 1979. Emphasis is on the technical progress of the projects rather than on activities and individual contractor efforts. Each project description indicates its place in the Solar Thermal Power Systems Program, a brief history, the significant achievements and real progress during FY 1979, also future project activities as well as anticipated significant achievements are forecast. (WHK)

  4. Thermal management system options for high power space platforms

    NASA Technical Reports Server (NTRS)

    Sadunas, J. A.; Lehtinen, A.; Parish, R.

    1985-01-01

    Thermal Management System (TMS) design options for a high power (75kWe), low earth orbit, multimodule space platform were investigated. The approach taken was to establish a baseline TMS representative of current technology, and to make incremental improvements through successive subsystem trades that lead to a candidate TMS. The TMS trades included centralized and decentralized transport, single-phase and two-phase transport, alternate working fluids, liquid loop and heat pipe radiators, deployed fixed, body mounted and steerable radiators, and thermal storage. The subsystem options were evaluated against criteria such as weight, TMS power requirement, reliability, system isothermality penalty, and growth potential.

  5. Generating Functions for the Powers of Fibonacci Sequences

    ERIC Educational Resources Information Center

    Terrana, D.; Chen, H.

    2007-01-01

    In this note, based on the Binet formulas and the power-reducing techniques, closed forms of generating functions for the powers of Fibonacci sequences are presented. The corresponding results are extended to some other famous sequences as well.

  6. Present and future trends in high power generation

    NASA Astrophysics Data System (ADS)

    Vanheijster, Rob M. E. M.; Schouten, Jan M.

    1995-03-01

    Modern warfare requires high levels of microwave power for various applications. Semiconductors are only suitable for low and medium power levels, for high power generation microwave tubes are the most effective solution. The paper will give an overview of present and future trends in high power microwave systems, based on electron beam tubes.

  7. 46 CFR 111.10-4 - Power requirements, generating sources.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Supply § 111.10-4 Power requirements, generating sources. (a... power interruption. (e) Vessels with electric propulsion that have two or more constant-voltage... is not capable of providing continuous electrical power may be utilized as a supplemental...

  8. 46 CFR 111.10-4 - Power requirements, generating sources.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Supply § 111.10-4 Power requirements, generating sources. (a... power interruption. (e) Vessels with electric propulsion that have two or more constant-voltage... is not capable of providing continuous electrical power may be utilized as a supplemental...

  9. 46 CFR 111.10-4 - Power requirements, generating sources.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Supply § 111.10-4 Power requirements, generating sources. (a... power interruption. (e) Vessels with electric propulsion that have two or more constant-voltage... is not capable of providing continuous electrical power may be utilized as a supplemental...

  10. Study of Low Voltage Ride Through Performance for Wind Power Generation with Doubly Fed Induction Generator

    NASA Astrophysics Data System (ADS)

    Hirawata, Ryoya; Kai, Takaaki

    Recently, the introduction of wind power generation is increasing rapidly. The ratio of wind power generation to the capacity of a total generation is getting higher and higher. When the phase-to-phase fault occurs in the power system, the frequency of power system is lower due to disconnecting of the wind power generation with doubly fed induction generator (DFIG). Therefore, the power system might become unstable. This paper describes the LVRT (low voltage ride through) performance improvement scheme of the wind power generation with DFIG. The wind power generation is disconnected from the grid in case of the power system fault. It is independently in operation from the grid by controlling of the inverter equipped in the generation. After clearance of the power system fault, the wind power generation is immediately re-connected to the grid. As a result, instability in the power system disappears. The performance of LVRT is confirmed by using simulation software PSCAD/EMTDC. The simulation result shows an excellent result to the three-phase short-circuit fault of the voltage dip 100%.

  11. Experimental and numerical investigation of hydro power generator ventilation

    NASA Astrophysics Data System (ADS)

    Jamshidi, H.; Nilsson, H.; Chernoray, V.

    2014-03-01

    Improvements in ventilation and cooling offer means to run hydro power generators at higher power output and at varying operating conditions. The electromagnetic, frictional and windage losses generate heat. The heat is removed by an air flow that is driven by fans and/or the rotor itself. The air flow goes through ventilation channels in the stator, to limit the electrical insulation temperatures. The temperature should be kept limited and uniform in both time and space, avoiding thermal stresses and hot-spots. For that purpose it is important that the flow of cooling air is distributed uniformly, and that flow separation and recirculation are minimized. Improvements of the air flow properties also lead to an improvement of the overall efficiency of the machine. A significant part of the windage losses occurs at the entrance of the stator ventilation channels, where the air flow turns abruptly from tangential to radial. The present work focuses exclusively on the air flow inside a generator model, and in particular on the flow inside the stator channels. The generator model design of the present work is based on a real generator that was previously studied. The model is manufactured taking into consideration the needs of both the experimental and numerical methodologies. Computational Fluid Dynamics (CFD) results have been used in the process of designing the experimental setup. The rotor and stator are manufactured using rapid-prototyping and plexi-glass, yielding a high geometrical accuracy, and optical experimental access. A special inlet section is designed for accurate air flow rate and inlet velocity profile measurements. The experimental measurements include Particle Image Velocimetry (PIV) and total pressure measurements inside the generator. The CFD simulations are performed based on the OpenFOAM CFD toolbox, and the steady-state frozen rotor approach. Specific studies are performed, on the effect of adding "pick-up" to spacers, and the effects of the inlet fan blades on the flow rate through the model. The CFD results capture the experimental flow details to a reasonable level of accuracy.

  12. Ames Lab 101: Next Generation Power Lines

    SciTech Connect

    Russell, Alan

    2010-01-01

    Ames Laboratory scientist Alan Russell discusses the need to develop new power lines that are stronger and more conductive as a way to address the problem of the nation's aging and inadequate power grid.

  13. Ames Lab 101: Next Generation Power Lines

    ScienceCinema

    Russell, Alan

    2012-08-29

    Ames Laboratory scientist Alan Russell discusses the need to develop new power lines that are stronger and more conductive as a way to address the problem of the nation's aging and inadequate power grid.

  14. Neural-net based real-time economic dispatch for thermal power plants

    SciTech Connect

    Djukanovic, M.; Milosevic, B.; Calovic, M.; Sobajic, D.J.

    1996-12-01

    This paper proposes the application of artificial neural networks to real-time optimal generation dispatch of thermal units. The approach can take into account the operational requirements and network losses. The proposed economic dispatch uses an artificial neural network (ANN) for generation of penalty factors, depending on the input generator powers and identified system load change. Then, a few additional iterations are performed within an iterative computation procedure for the solution of coordination equations, by using reference-bus penalty-factors derived from the Newton-Raphson load flow. A coordination technique for environmental and economic dispatch of pure thermal systems, based on the neural-net theory for simplified solution algorithms and improved man-machine interface is introduced. Numerical results on two test examples show that the proposed algorithm can efficiently and accurately develop optimal and feasible generator output trajectories, by applying neural-net forecasts of system load patterns.

  15. On thermal fluctuations and the generating functional in relativistic hydrodynamics

    NASA Astrophysics Data System (ADS)

    Harder, Michael; Kovtun, Pavel; Ritz, Adam

    2015-07-01

    We discuss a real-time generating functional for correlation functions in dis-sipative relativistic hydrodynamics which takes into account thermal fluctuations of thehydrodynamic variables. Starting from the known form of these correlation functions in the linearized regime, we integrate to find a generating functional which we can interpret within the CTP formalism, provided the space-time and internal global symmetries are realized in a specific manner in the ( r, a) sectors. We then verify that this symmetry real-ization, when implemented in an effective action for hydrodynamic fields in the ( r, a) basis, leads to a consistent derivative expansion for the constitutive relations at the nonlinear level, modulo constraints associated with the existence of an equilibrium state.

  16. A thermally self-sustained micro solid-oxide fuel-cell stack with high power density

    E-print Network

    Haile, Sossina M.

    A thermally self-sustained micro solid-oxide fuel-cell stack with high power density Zongping Shao1 efficiency and energy density, together with rapid refuelling capability, render fuel cells highly attractive for portable power generation1,2 . Accordingly, polymer-electrolyte direct- methanol fuel cells

  17. A Vector Control for Grid-connected Wind Power Generation with Doubly Fed Induction Generator

    NASA Astrophysics Data System (ADS)

    Kai, Takaaki; Tanaka, Yuji; Kaneda, Hirotoshi; Kobayashi, Daichi; Tanaka, Akio

    Recently, doubly fed induction generator (DFIG) and synchronous generator are mostly applied for wind power generation due to high efficiently for wind energy capture. An inverter system is required to control wind turbine speed and power factor in those generators. The inverter rating of the synchronous generator equals to generator rating. However, DFIG has the advantage that the inverter rating is about 25% to the generator rating. The paper describes a vector control of DFIG inter-connected to power line. The performance of proposed vector control is examined using power system simulation software PSCAD/EMTDC for the DFIG inter-connected to 6.6kv distribution line. The results show good dynamic responses and high accuracy to the stator active power control and the stator reactive power control.

  18. Alternative power generation concepts for space

    SciTech Connect

    Brandhorst, H.W. Jr.; Juhasz, A.J.; Jones, B.I.

    1994-09-01

    With the advent of the NASA Space Station, there has emerged a general realization that large quantities of power in space are necessary and, in fact, enabling. This realization has led to the examination of alternative options to the ubiquitous solar array/battery power system. Several factors led to the consideration of solar dynamic and nuclear power systems. These include better scaling to high power levels, higher efficiency conversion and storage subsystems, and lower system specific mass. The objective of this paper is to present the results of trade and optimization studies that high-light the potential of solar and nuclear dynamic systems relative to photovoltaic power systems.

  19. Investigation and study on compressed air storage power generation system, part 2

    NASA Astrophysics Data System (ADS)

    1989-03-01

    Compressed air storage power generation system (CAES) was studied. As a system for response to peak loads, both output and efficiency were better than those of the previous year due to the study on the temperature of the turbine's inlet. As a system for response to peak and middle loads, steam power generation, which makes use of exhaust heat from the aftercooler and the low pressure turbine's outlet, was integrated into the system, and its heat efficiency was better than that of the usual thermal power generation. However, it is inferior to the latest LNG combined cycle power generation and it does not appeal much as a middle load power source. Deformation strength characteristics of the underground cavity rocks were clarified, and a multi-structure lining method was suggested. Its location area is restricted by the layer distribution. Construction cost per kW is 220,000 yen, and the power generation prime cost is a little higher than that of pumped storage power generation. As a pumped storage power station has difficulty in finding suitable location and is higher in costs, CAES can be put into existence as a system for response to peak loads in view of economy in the future.

  20. Assessment of the potential of solar thermal small power systems in small utilities

    NASA Technical Reports Server (NTRS)

    Steitz, P.; Mayo, L. G.; Perkins, S. P., Jr.

    1978-01-01

    The potential economic benefit of small solar thermal electric power systems to small municipal and rural electric utilities is assessed. Five different solar thermal small power system configurations were considered in three different solar thermal technologies. The configurations included: (1) 1 MW, 2 MW, and 10 MW parabolic dish concentrators with a 15 kW heat engine mounted at the focal point of each dish, these systems utilized advanced battery energy storage; (2) a 10 MW system with variable slat concentrators and central steam Rankine energy conversion, this system utilized sensible thermal energy storage; and (3) a 50 MW central receiver system consisting of a field of heliostats concentrating energy on a tower-mounted receiver and a central steam Rankine conversion system, this system also utilized sensible thermal storage. The results are summarized in terms of break-even capital costs. The break-even capital cost was defined as the solar thermal plant capital cost which would have to be achieved in order for the solar thermal plants to penetrate 10 percent of the reference small utility generation mix by the year 2000. The calculated break-even capital costs are presented.

  1. Role of heat generation and thermal diffusion during frontal photopolymerization

    NASA Astrophysics Data System (ADS)

    Hennessy, Matthew G.; Vitale, Alessandra; Cabral, João T.; Matar, Omar K.

    2015-08-01

    Frontal photopolymerization (FPP) is a rapid and versatile solidification process that can be used to fabricate complex three-dimensional structures by selectively exposing a photosensitive monomer-rich bath to light. A characteristic feature of FPP is the appearance of a sharp polymerization front that propagates into the bath as a planar traveling wave. In this paper, we introduce a theoretical model to determine how heat generation during photopolymerization influences the kinetics of wave propagation as well as the monomer-to-polymer conversion profile, both of which are relevant for FPP applications and experimentally measurable. When thermal diffusion is sufficiently fast relative to the rate of polymerization, the system evolves as if it were isothermal. However, when thermal diffusion is slow, a thermal wavefront develops and propagates at the same rate as the polymerization front. This leads to an accumulation of heat behind the polymerization front which can result in a significant sharpening of the conversion profile and acceleration of the growth of the solid. Our results also suggest that a novel way to tailor the dynamics of FPP is by imposing a temperature gradient along the growth direction.

  2. Self power generating piezoelectric elements applied to switching circuits

    NASA Astrophysics Data System (ADS)

    Imai, T.; Fujimoto, S.; Ichiki, M.

    2014-11-01

    In this study, we focused on lead zirconate titanate (PZT) as a power generating piezoelectric element. Niobium was added to each of the PZT elements to improve their power generation characteristics. The purpose of the study was to develop a high-efficiency PZT generator element that utilizes the vibration loads in the support members of a structure. We have previously reported the power generation characteristics of laminated PZT elements under vibration loads. Effect of vibration load, vibration frequency and number of PZT layers on generation characteristics of PZT elements was evaluated in the vibration test. We evaluate the power generation of laminated PZT elements and present the results of an experiment using a switching circuit as a load circuit in order to confirm the suitability of the laminated PZT element as a power source.

  3. Modular Analysis of Automobile Exhaust Thermoelectric Power Generation System

    NASA Astrophysics Data System (ADS)

    Deng, Y. D.; Zhang, Y.; Su, C. Q.

    2015-06-01

    In this paper, an automobile exhaust thermoelectric power generation system is packaged into a model with its own operating principles. The inputs are the engine speed and power, and the output is the power generated by the system. The model is divided into two submodels. One is the inlet temperature submodel, and the other is the power generation submodel. An experimental data modeling method is adopted to construct the inlet temperature submodel, and a theoretical modeling method is adopted to construct the power generation submodel. After modeling, simulation is conducted under various engine operating conditions to determine the variation of the power generated by the system. Finally, the model is embedded into a Honda Insight vehicle model to explore the energy-saving effect of the system on the vehicle under Economic Commission for Europe and cyc-constant_60 driving cycles.

  4. Study of Thermal Control Systems for orbiting power systems

    NASA Technical Reports Server (NTRS)

    Howell, H. R.

    1981-01-01

    Thermal control system designs were evaluated for the 25 kW power system. Factors considered include long operating life, high reliability, and meteoroid hazards to the space radiator. Based on a cost advantage, the bumpered pumped fluid radiator is recommended for the initial 25 kW power system and intermediate versions up to 50 kW. For advanced power systems with heat rejection rates above 50 kW the lower weight of the advanced heat pipe radiator offsets the higher cost and this design is recommended. The power system payloads heat rejection allocations studies show that a centralized heat rejection system is the most weight and cost effective approach. The thermal interface between the power system and the payloads was addressed and a concept for a contact heat exchanger that eliminates fluid transfer between the power system and the payloads was developed. Finally, a preliminary design of the thermal control system, with emphasis on the radiator and radiator deployment mechanism, is presented.

  5. Generation of quantum steering and interferometric power in the dynamical Casimir effect

    NASA Astrophysics Data System (ADS)

    Sabín, Carlos; Adesso, Gerardo

    2015-10-01

    We analyze the role of the dynamical Casimir effect as a resource for quantum technologies, such as quantum cryptography and quantum metrology. In particular, we consider the generation of Einstein-Podolsky-Rosen steering and Gaussian interferometric power, two useful forms of asymmetric quantum correlations, in superconducting waveguides modulated by superconducting quantum interferometric devices. We show that while a certain value of squeezing is required to overcome thermal noise and give rise to steering, any nonzero squeezing produces interferometric power which in fact increases with thermal noise.

  6. Parabolic Dish Solar Thermal Power Annual Program Review Proceedings

    NASA Technical Reports Server (NTRS)

    Lucas, J. W.

    1982-01-01

    The results of activities of the parabolic dish technology and applications development element of DOE's Solar Thermal Energy System Program are presented. Topics include the development and testing of concentrators, receivers, and power conversion units; system design and development for engineering experiments; economic analysis and marketing assessment; and advanced development activities. A panel discussion concerning industrial support sector requirements is also documented.

  7. Prospects for solving environmental problems pertinent to thermal power stations

    NASA Astrophysics Data System (ADS)

    Tumanovskii, A. G.; Kotler, V. R.

    2007-06-01

    Possible ways to protect the atmosphere and water basin against harmful emissions and effluent waters discharged from thermal power stations are considered. Data on the effectiveness of different methods for removing NO x , SO2, and ash particles, as well as heavy metals and CO2, from these emissions and discharges are presented.

  8. Comparison of electrochemical and thermal storage for hybrid parabolic dish solar power plants

    NASA Technical Reports Server (NTRS)

    Steele, H. L.; Wen, L.

    1981-01-01

    The economic and operating performance of a parabolic point focus array of solar electricity generators combined with either battery or thermal energy storage are examined. Noting that low-cost, mass-producible power generating units are under development for the point focus of distributed dishes, that Zn-Cl battery tests will begin in 1981 and a 100 kWh Na-S battery in 1983, the state of thermal storage requires acceleration to reach the prototype status of the batteries. Under the assumptions of 10,000 units/yr with an expected 30 yr lifetime, cost comparisons are developed for 10 types of advanced batteries. A 5 MWe plant with full thermal or 80% battery storage discharge when demand occurs in conditions of no insolation is considered, specifically for Fe-Cr redox batteries. A necessity for the doubling of fuel prices from 1980 levels by 1990 is found in order to make the systems with batteries economically competitive.

  9. Thermal Unit Commitment Including Optimal AC Power Flow Constraints

    E-print Network

    of the coupling between generator time- spanning constraints and system-wide instantaneous constraints constraints involving more machines is achieved by sharing price informa- tion that is updated from one i at time t qi;t: Reactive power output for generator i at time t ui;t: On/o status (one or zero

  10. Possible ways of reducing the effect of thermal power facilities on the environment

    NASA Astrophysics Data System (ADS)

    Zroichikov, N. A.; Prokhorov, V. B.; Tupov, V. B.; Arkhipov, A. M.; Fomenko, M. V.

    2015-02-01

    The main trends in the integrated solution of thermal power engineering environmental problems are pointed out taking the Mosenergo power company as an example, and the data are given with respect to the structure of the power engineering equipment of the city of Moscow and its change, energy consumption, and generation of heat and electric energy. The dynamics of atmospheric air pollution of Moscow from 1990 to 2010, as well as the main measures on reducing the adverse effect of the power engineering equipment operation, is given. The results of original designs by the Department of Boiler Installations and Power Engineering Ecology (KU&EE) are given concerning the reduction of nitrogen oxides emissions and the decrease of the noise impact produced by the power engineering equipment.

  11. Heat Transfer and Thermophotovoltaic Power Generation in Oil-fired Heating Systems

    SciTech Connect

    Butcher, T.; Hammonds, J.S.; Horne, E.; Kamath, B.; Carpenter, J.; Woods, D.R.

    2010-10-21

    The focus of this study is the production of electric power in an oil-fired, residential heatingsystem using thermophotovoltaic (TPV) conversion devices. This work uses experimental, computational, and analytical methods to investigate thermal mechanisms that drive electric power production in the TPV systems. An objective of this work is to produce results that will lead to the development of systems that generate enough electricity such that the boiler is self-powering. An important design constraint employed in this investigation is the use of conventional, yellow-flame oil burners, integrated with a typical boiler. The power production target for the systems developed here is 100 W - the power requirement for a boiler that uses low-power auxiliary components. The important heattransfer coupling mechanisms that drive power production in the systems studied are discussed. The results of this work may lead to the development of systems that export power to the home electric system.

  12. HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER

    SciTech Connect

    BROWN,LC; BESENBRUCH,GE; LENTSCH,RD; SCHULTZ,KR; FUNK,JF; PICKARD,PS; MARSHALL,AC; SHOWALTER,SK

    2003-06-01

    OAK B202 HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER. Combustion of fossil fuels, used to power transportation, generate electricity, heat homes and fuel industry provides 86% of the world's energy. Drawbacks to fossil fuel utilization include limited supply, pollution, and carbon dioxide emissions. Carbon dioxide emissions, thought to be responsible for global warming, are now the subject of international treaties. Together, these drawbacks argue for the replacement of fossil fuels with a less-polluting potentially renewable primary energy such as nuclear energy. Conventional nuclear plants readily generate electric power but fossil fuels are firmly entrenched in the transportation sector. Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. Hydrogen will be particularly advantageous when coupled with fuel cells. Fuel cells have higher efficiency than conventional battery/internal combustion engine combinations and do not produce nitrogen oxides during low-temperature operation. Contemporary hydrogen production is primarily based on fossil fuels and most specifically on natural gas. When hydrogen is produced using energy derived from fossil fuels, there is little or no environmental advantage. There is currently no large scale, cost-effective, environmentally attractive hydrogen production process available for commercialization, nor has such a process been identified. The objective of this work is to find an economically feasible process for the production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the primary energy source. Hydrogen production by thermochemical water-splitting (Appendix A), a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or, in the case of a hybrid thermochemical process, by a combination of heat and electrolysis, could meet these goals. Hydrogen produced from fossil fuels has trace contaminants (primarily carbon monoxide) that are detrimental to precious metal catalyzed fuel cells, as is now recognized by many of the world's largest automobile companies. Thermochemical hydrogen will not contain carbon monoxide as an impurity at any level. Electrolysis, the alternative process for producing hydrogen using nuclear energy, suffers from thermodynamic inefficiencies in both the production of electricity and in electrolytic parts of the process. The efficiency of electrolysis (electricity to hydrogen) is currently about 80%. Electric power generation efficiency would have to exceed 65% (thermal to electrical) for the combined efficiency to exceed the 52% (thermal to hydrogen) calculated for one thermochemical cycle. Thermochemical water-splitting cycles have been studied, at various levels of effort, for the past 35 years. They were extensively studied in the late 70s and early 80s but have received little attention in the past 10 years, particularly in the U.S. While there is no question about the technical feasibility and the potential for high efficiency, cycles with proven low cost and high efficiency have yet to be developed commercially. Over 100 cycles have been proposed, but substantial research has been executed on only a few. This report describes work accomplished during a three-year project whose objective is to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high temperature nuclear reactor as the energy source.'' The emphasis of the first phase was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen from water in which the primary energy input is high temperature heat from an advanced nuclear reactor and to select one (or, at most three) for further detailed consideration. During Phase 1, an exhaustive literature search was performed to locate all cycles previously proposed. The cycles located were screened using objective criteria to determine which could benefit, in terms of efficien

  13. 43 CFR 431.6 - Power generation estimates.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Power generation estimates. 431.6 Section... BOULDER CANYON PROJECT, ARIZONA/NEVADA § 431.6 Power generation estimates. Reclamation shall submit annually on or before April 15 to Western and Contractors, an estimated annual operation schedule for...

  14. DOWNHOLE POWER GENERATION AND WIRELESS COMMUNICATIONS FOR INTELLIGENT COMPLETIONS APPLICATIONS

    SciTech Connect

    Paul Tubel

    2004-02-01

    The development work during this quarter was focused in the assembly of the downhole power generator hardware and its electronics module. The quarter was also spent in the development of the surface system electronics and software to extract the acoustic data transmitted from downhole to the surface from the noise generated by hydrocarbon flow in wells and to amplify very small acoustic signals to increase the distance between the downhole tool and the surface receiver. The tasks accomplished during this report period were: (1) Assembly of the downhole power generator mandrel for generation of electrical power due to flow in the wellbore. (2) Test the piezoelectric wafers to assure that they are performing properly prior to integrating them to the mechanical power generator mandrel. (3) Coat the power generator wafers to prevent water from shorting the power generator wafers. (4) Test of the power generator using a water tower and an electric pump to create a water flow loop. (5) Test the power harvesting electronics module. (6) Upgrade the signal condition and amplification from downhole into the surface system. (7) Upgrade the surface processing system capability to process data faster. (8) Create a new filtering technique to extract the signal from noise after the data from downhole is received at the surface system.

  15. Thermal control of power supplies with electronic packaging techniques

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The analysis, design, and development work to reduce the weight and size of a standard modular power supply with a 350 watt output was summarized. By integrating low cost commercial heat pipes in the redesign of this power supply, weight was reduced by 30% from that of the previous design. The temperature was also appreciably reduced, increasing the environmental capability of the unit. A demonstration unit with a 100 watt output and a 15 volt regulator module, plus simulated output modules, was built and tested to evaluate the thermal performance of the redesigned power supply.

  16. Thermal Analysis and Testing of a Small Radioisotope Power System Concept

    NASA Astrophysics Data System (ADS)

    Woods, Brian G.; Arnold, Lindsay C.; Balint, Tibor S.

    2006-01-01

    Oregon State University (OSU) is conducting an experimental study into the thermal behavior of a GPHS based small RPS concept. The subject RPS configuration is applicable for a number of Mars surface missions, such as using them to power small rovers and small static landers. Each module will use a single GPHS module to generate about 20-25W of electric power. Initial designs for similar RPS concepts have been completed and initial numerical analysis models have been developed by NASA's JPL. The primary purpose of this research project is to develop an experimental model of the GPHS module based small RPS concept and generate operational data that can be used to validate the thermal analysis codes and methodologies. The validation of codes and methodologies is to be completed by JPL. Five mission phases have been identified for the subject RPS concept. This experimental program focuses on one of these mission phases, earth storage. This paper addresses model design, construction, and testing.

  17. New generation low power radiation survey instruments

    SciTech Connect

    Waechter, D.A.; Bjarke, G.O.; Trujillo, F.; Umbarger, C.J.; Wolf, M.A.

    1984-02-01

    A number of new, ultra-low-powered radiation instruments have recently been developed at Los Alamos. Among these are two instruments which use a novel power source to eliminate costly batteries. The newly developed gamma detecting radiac, nicknamed the Firefly, and the alpha particle detecting instrument, called the Simple Cordless Alpha Monitor, both use recent advances in miniaturization and powersaving electronics to yield devices which are small, rugged, and very power-frugal. The two instruments consume so little power that the need for batteries to run them is eliminated. They are, instead, powered by a charged capacitor which will operate the instruments for an hour or more. Use of a capacitor as a power source eliminates many problems commonly associated with battery-operated instruments, such as having to open the case to change batteries, battery storage life, availability of batteries in the field, and some savings in weight. Both line power and mechanical sources are used to charge the storage capacitors which power the instruments.

  18. Thermocline Thermal Storage Test for Large-Scale Solar Thermal Power Plants

    SciTech Connect

    ST.LAURENT,STEVEN J.

    2000-08-14

    Solar thermal-to-electric power plants have been tested and investigated at Sandia National Laboratories (SNL) since the late 1970s, and thermal storage has always been an area of key study because it affords an economical method of delivering solar-electricity during non-daylight hours. This paper describes the design considerations of a new, single-tank, thermal storage system and details the benefits of employing this technology in large-scale (10MW to 100MW) solar thermal power plants. Since December 1999, solar engineers at Sandia National Laboratories' National Solar Thermal Test Facility (NSTTF) have designed and are constructing a thermal storage test called the thermocline system. This technology, which employs a single thermocline tank, has the potential to replace the traditional and more expensive two-tank storage systems. The thermocline tank approach uses a mixture of silica sand and quartzite rock to displace a significant portion of the volume in the tank. Then it is filled with the heat transfer fluid, a molten nitrate salt. A thermal gradient separates the hot and cold salt. Loading the tank with the combination of sand, rock, and molten salt instead of just molten salt dramatically reduces the system cost. The typical cost of the molten nitrate salt is $800 per ton versus the cost of the sand and rock portion at $70 per ton. Construction of the thermocline system will be completed in August 2000, and testing will run for two to three months. The testing results will be used to determine the economic viability of the single-tank (thermocline) storage technology for large-scale solar thermal power plants. Also discussed in this paper are the safety issues involving molten nitrate salts and other heat transfer fluids, such as synthetic heat transfer oils, and the impact of these issues on the system design.

  19. Thermal effects in high average power optical parametric amplifiers.

    PubMed

    Rothhardt, Jan; Demmler, Stefan; Hädrich, Steffen; Peschel, Thomas; Limpert, Jens; Tünnermann, Andreas

    2013-03-01

    Optical parametric amplifiers (OPAs) have the reputation of being average power scalable due to the instantaneous nature of the parametric process (zero quantum defect). This Letter reveals serious challenges originating from thermal load in the nonlinear crystal caused by absorption. We investigate these thermal effects in high average power OPAs based on beta barium borate. Absorption of both pump and idler waves is identified to contribute significantly to heating of the nonlinear crystal. A temperature increase of up to 148 K with respect to the environment is observed and mechanical tensile stress up to 40 MPa is found, indicating a high risk of crystal fracture under such conditions. By restricting the idler to a wavelength range far from absorption bands and removing the crystal coating we reduce the peak temperature and the resulting temperature gradient significantly. Guidelines for further power scaling of OPAs and other nonlinear devices are given. PMID:23455291

  20. Thermal Cycling and High Temperature Reverse Bias Testing of Control and Irradiated Gallium Nitride Power Transistors

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Boomer, Kristen T.; Scheick, Leif; Lauenstein, Jean-Marie; Casey, Megan; Hammoud, Ahmad

    2014-01-01

    The power systems for use in NASA space missions must work reliably under harsh conditions including radiation, thermal cycling, and exposure to extreme temperatures. Gallium nitride semiconductors show great promise, but information pertaining to their performance is scarce. Gallium nitride N-channel enhancement-mode field effect transistors made by EPC Corporation in a 2nd generation of manufacturing were exposed to radiation followed by long-term thermal cycling and testing under high temperature reverse bias conditions in order to address their reliability for use in space missions. Result of the experimental work are presented and discussed.

  1. Nuclear power generation and fuel cycle report 1997

    SciTech Connect

    1997-09-01

    Nuclear power is an important source of electric energy and the amount of nuclear-generated electricity continued to grow as the performance of nuclear power plants improved. In 1996, nuclear power plants supplied 23 percent of the electricity production for countries with nuclear units, and 17 percent of the total electricity generated worldwide. However, the likelihood of nuclear power assuming a much larger role or even retaining its current share of electricity generation production is uncertain. The industry faces a complex set of issues including economic competitiveness, social acceptance, and the handling of nuclear waste, all of which contribute to the uncertain future of nuclear power. Nevertheless, for some countries the installed nuclear generating capacity is projected to continue to grow. Insufficient indigenous energy resources and concerns over energy independence make nuclear electric generation a viable option, especially for the countries of the Far East.

  2. Future Photovoltaic Power Generation for Space-Based Power Utilities

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila; Landis, Geoffrey; Hepp, Aloysius; Raffaelle, Ryne

    2002-01-01

    This paper discusses requirements for large earth orbiting power stations that can serve as central utilities for other orbiting spacecraft, or for beaming power to the earth itself. The current state of the art of space solar cells, and a variety of both evolving thin film cells as well as new technologies that may impact the future choice of space solar cells for high power mission applications are addressed.

  3. Power loss in AMTEC, an advanced space power generation cell

    NASA Astrophysics Data System (ADS)

    Lodhi, M. A. K.; Vijayaraghavan, P.; Chaudhury, M. S.

    2001-03-01

    Recently a lot of work has been done in designing the Alkali Metal Thermo Electric Converter (AMTEC), a power cell, primarily aimed at for deep space exploration, and later on for terrestrial use. During an extended testing of AMTEC the maximum power output was found rapidly decreasing (more so in the begining) with time. This is one of the major problems yet to overcome in AMTEC technology before it could be used for deep space expolration. We have throughly analyzed AMTEC by computer simulation and identified major causes for power degradation associated with its components namely, its electrolyte and electrodes. Some suggestions are offered to reduce the power degradation rate.

  4. Analysis of a combined refrigerator-generator space power system

    NASA Technical Reports Server (NTRS)

    Klann, J. L.

    1973-01-01

    Compatibility of the Brayton power and refrigeration cycles is considered. Performance of the power- and cryo-loop is plotted against compressor pressure ratio. The power- and cryo-loop performance is determined by dividing the compressor work between the two loops in proportion to mass flow rate. Cycle efficiency is defined as the ratio of shaft power available in the power loop to the net thermal input from the heat source. The available shaft power is the excess of the power turbine work over the compressor work needed in the power loop. The best power loop efficiency occurred at a compressor pressure ratio of 1.8, and the best cryo-loop performance was at a compressor pressure ratio of 2.1. Good individual cycle performance occurred over a fairly large range in compressor pressure ratio.

  5. Thermally regenerative hydrogen/oxygen fuel cell power cycles

    NASA Technical Reports Server (NTRS)

    Morehouse, J. H.

    1986-01-01

    Two innovative thermodynamic power cycles are analytically examined for future engineering feasibility. The power cycles use a hydrogen-oxygen fuel cell for electrical energy production and use the thermal dissociation of water for regeneration of the hydrogen and oxygen. The TDS (thermal dissociation system) uses a thermal energy input at over 2000 K to thermally dissociate the water. The other cycle, the HTE (high temperature electrolyzer) system, dissociates the water using an electrolyzer operating at high temperature (1300 K) which receives its electrical energy from the fuel cell. The primary advantages of these cycles is that they are basically a no moving parts system, thus having the potential for long life and high reliability, and they have the potential for high thermal efficiency. Both cycles are shown to be classical heat engines with ideal efficiency close to Carnot cycle efficiency. The feasibility of constructing actual cycles is investigated by examining process irreversibilities and device efficiencies for the two types of cycles. The results show that while the processes and devices of the 2000 K TDS exceed current technology limits, the high temperature electrolyzer system appears to be a state-of-the-art technology development. The requirements for very high electrolyzer and fuel cell efficiencies are seen as determining the feasbility of the HTE system, and these high efficiency devices are currently being developed. It is concluded that a proof-of-concept HTE system experiment can and should be conducted.

  6. Nuclear power generation and fuel cycle report 1996

    SciTech Connect

    1996-10-01

    This report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the worldwide nuclear fuel market. Long term projections of U.S. nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed. A discussion on decommissioning of nuclear power plants is included.

  7. Synchrophasor Applications for Wind Power Generation

    SciTech Connect

    Muljadi, E.; Zhang, Y. C.; Allen, A.; Singh, M.; Gevorgian, V.; Wan, Y. H.

    2014-02-01

    The U.S. power industry is undertaking several initiatives that will improve the operations of the electric power grid. One of those is the implementation of wide-area measurements using phasor measurement units to dynamically monitor the operations and status of the network and provide advanced situational awareness and stability assessment. The overviews of synchrophasors and stability analyses in this report are intended to present the potential future applications of synchrophasors for power system operations under high penetrations of wind and other renewable energy sources.

  8. Optimal distributed power generation under network load constraints

    E-print Network

    Utrecht, Universiteit

    , mainly because of the development of novel components for decentral power generation (solar panels, small wind turbines and heat pumps). This gives rise to the question how many units of each type (solar panel problem can be solved efficiently. We also modeled the case were the power consumption and decentral power

  9. Primary electric power generation systems for advanced-technology engines

    NASA Technical Reports Server (NTRS)

    Cronin, M. J.

    1983-01-01

    The advantages of the all electric airplane are discussed. In the all electric airplane the generator is the sole source of electric power; it powers the primary and secondary flight controls, the environmentals, and the landing gear. Five candidates for all electric power systems are discussed and compared. Cost benefits of the all electric airplane are discussed.

  10. Compensation of Strong Thermal Lensing in High Optical Power Cavities

    E-print Network

    C. Zhao; J. Degallaix; L. Ju; Y. Fan; D. G. Blair; B. J. J. Slagmolen; M. B. Gray; C. M. Mow Lowry; D. E. McClellandl; D. J. Hosken; D. Mudge; A. Brooks; J. Munch; P. J. Veitch; M. A. Barton; G. Billingsley

    2006-02-28

    In an experiment to simulate the conditions in high optical power advanced gravitational wave detectors such as Advanced LIGO, we show that strong thermal lenses form in accordance with predictions and that they can be compensated using an intra-cavity compensation plate heated on its cylindrical surface. We show that high finesse ~1400 can be achieved in cavities with internal compensation plates, and that the cavity mode structure can be maintained by thermal compensation. It is also shown that the measurements allow a direct measurement of substrate optical absorption in the test mass and the compensation plate.

  11. Thermal power spectrum in the CFT driven cosmology

    SciTech Connect

    Barvinsky, A.O.

    2013-10-01

    We present an overview of the recently suggested cosmological model driven by conformal field theory (CFT) with the initial conditions in the form of the microcanonical density matrix. In particular, we discuss the origin of inflationary stage in this model and a novel feature — the thermal nature of the primordial power spectrum of the CMB anisotropy. The relevant effect of ''temperature of the relic temperature anisotropy'' can be responsible for a thermal contribution to the red tilt of this spectrum, additional to its conventional vacuum component. The amplification of this effect due to recently established a-theorem in CFT is briefly discussed.

  12. In Hot Water: Thermoelectric Power and Thermal Pollution

    NASA Astrophysics Data System (ADS)

    Madden, N. T.

    2010-12-01

    The use of surface water for thermoelectric power plant cooling significantly impacts river water temperatures, posing risks to aquatic ecosystems. In addition, surface water temperatures in summer can exceed limits for power plant compliance with thermal effluent limitations, jeopardizing energy security during periods of peak power demand. For example, Brown's Ferry Nuclear Plant in Alabama curtailed power production by 50% for over 40 days in July-August of 2010 when river temperatures exceeded 90°F. Future increases in surface water temperatures due to climate change may further endanger energy security. This study examines summer intake and outflow water temperature data reported by power plants during peak production months across the United States to determine the impact of thermoelectric power plants on surface water temperatures in the summer. Initial results indicate that U.S. coal plants (n= 625) raised water temperatures by an average of 17°F (± 12°F) and discharged cooling water with median peak temperatures of 100°F (± 13°F) in the summer of 2005, the last year when this data was reliably reported. Further analysis will extend the time period of this study from 2000-2005 and expand the scope to various energy sources and cooling technologies. In addition, we explore regional variation to assess the relative threat that thermal pollution poses to energy security across the U.S.

  13. The generation of pollution-free electrical power from solar energy.

    NASA Technical Reports Server (NTRS)

    Cherry, W. R.

    1971-01-01

    Projections of the U.S. electrical power demands over the next 30 years indicate that the U.S. could be in grave danger from power shortages, undesirable effluence, and thermal pollution. An appraisal of nonconventional methods of producing electrical power is conducted, giving particular attention to the conversion of solar energy into commercial quantities of electrical power by solar cells. It is found that 1% of the land area of the 48 states could provide the total electrical power requirements of the U.S. in the year 1990. The ultimate method of generating vast quantities of electrical power would be from a series of synchronous satellites which beam microwave power back to earth to be used wherever needed. Present high manufacturing costs of solar cells could be substantially reduced by using massive automated techniques employing abundant low cost materials.

  14. Photovoltaic power generation system for factory

    SciTech Connect

    Hirabayashi, M.; Horigome, T.; Kitu, Y.; Murozono, M.; Uesugi, K.; Yokoyama, H.

    1984-08-01

    As part of the national R and D program on energy resources named the Sunshine Project, the New Energy Development Organization (NEDO) pursues construction and operation of residential and large size photovoltaic power(PV) systems, in the range 3 to 1000 kWp. The PV system described herein has a 100 kWp solar cell array installed for supplying DC power output to the DC load at an automobile battery manufacturing plant. In this system, the solar cell array's output is designed to be less than the DC power consumption in electrical demand of the plant. A power supply from utility is used to back up the shortage and variation of the array's output due to the change of insolation. As a result, the system has no linkage for flow of any excess power back to the utility grid. This solar cell array is installed with azimuth angle of 20/sup 0/ west of due south and with tilt angle of 20/sup 0/, in order to obtain maximum utilization factor of solar energy to meet the load requirement.

  15. 4. 5-MW fuel cell tackles Tokyo's power generation problems

    SciTech Connect

    Rastler, D.M.; Kobayashi, M.; Handley, L.M.

    1987-03-01

    Dispersed phosphoric acid fuel cell generators may be one of the answers to Tokyo's power-generation problem. Fuel cells combine fuel and oxygen, without combustion, to produce electricity. Because of their size - 10 to 50 MW - generators can be sited within the city, close to the load demand. The fuel cell's low emissions, high efficiency, rapid deployment, and low noise levels make this new kind of generator particularly attractive for the Tokyo metropolitan area. To test the feasibility of using fuel cell generators to help supply electricity, the Tokyo Electric Power Co. (TEPCo) has been operating the world's largest fuel cell power plant since 1983. TEPCo's 4.5-MW demonstration plant is providing valuable information and experience in the areas of design, operation, and maintenance of fuel cell power plant equipment.

  16. Combined fuel and air staged power generation system

    SciTech Connect

    Rabovitser, Iosif K; Pratapas, John M; Boulanov, Dmitri

    2014-05-27

    A method and apparatus for generation of electric power employing fuel and air staging in which a first stage gas turbine and a second stage partial oxidation gas turbine power operated in parallel. A first portion of fuel and oxidant are provided to the first stage gas turbine which generates a first portion of electric power and a hot oxidant. A second portion of fuel and oxidant are provided to the second stage partial oxidation gas turbine which generates a second portion of electric power and a hot syngas. The hot oxidant and the hot syngas are provided to a bottoming cycle employing a fuel-fired boiler by which a third portion of electric power is generated.

  17. A mechatronic power boosting design for piezoelectric generators

    NASA Astrophysics Data System (ADS)

    Liu, Haili; Liang, Junrui; Ge, Cong

    2015-10-01

    It was shown that the piezoelectric power generation can be boosted by using the synchronized switch power conditioning circuits. This letter reports a self-powered and self-sensing mechatronic design in substitute of the auxiliary electronics towards a compact and universal synchronized switch solution. The design criteria are derived based on the conceptual waveforms and a two-degree-of-freedom analytical model. Experimental result shows that, compared to the standard bridge rectifier interface, the mechatronic design leads to an extra 111% increase of generated power from the prototyped piezoelectric generator under the same deflection magnitude excitation. The proposed design has introduced a valuable physical insight of electromechanical synergy towards the improvement of piezoelectric power generation.

  18. Coupling an induction motor type generator to ac power lines. [making windmill generators compatible with public power lines

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (inventor)

    1984-01-01

    A system for coupling an induction motor type generator to an A.C. power line includes an electronic switch means that is controlled by a control system and is regulated to turn on at a relatively late point in each half cycle of its operation. The energizing power supplied by the line to the induction motor type generator is decreased and the net power delivered to the line is increased.

  19. Sustainable wind powered generation and utilization for West Africa

    SciTech Connect

    Soboyejo, A.B.O.

    1997-09-01

    Due to the poor economic situations in several West African countries, the existing electrical and mechanical engineering power generating systems cannot be properly maintained. The existing power generating systems have been working at very poor efficiencies and poor levels of reliability. Engineering infra-structures, particularly for the rural areas, cannot function properly because of the poor reliability of the existing power generating systems. In order to provide effective solutions to this problem, the use of wind powered systems is being recommended for West African countries and possibly other countries where fairly constant high wind speeds are available. The results of the technical investigations carried out during the last thirty years, in order to provide alternative wind powered generating systems, and which are easier to maintain than the existing power generating systems, together with the engineering applications of the wind powered systems, for small scale water supply and electrical power generating systems for homes and rural areas; will be highlighted and discussed in this paper.

  20. Protective, Modular Wave Power Generation System

    SciTech Connect

    Vvedensky, Jane M.; Park, Robert Y.

    2012-11-27

    The concept of small wave energy conversion modules that can be built into large, scalable arrays, in the same vein as solar panels, has been developed. This innovation lends itself to an organic business and development model, and enables the use of large-run manufacturing technology to reduce system costs. The first prototype module has been built to full-scale, and tested in a laboratory wave channel. The device has been shown to generate electricity and dissipate wave energy. Improvements need to be made to the electrical generator and a demonstration of an array of modules should be made in natural conditions.

  1. Radio Point Sources and the Thermal SZ Power Spectrum

    E-print Network

    Gilbert P. Holder

    2002-08-26

    Radio point sources are strongly correlated with clusters of galaxies, so a significant fraction of the thermal Sunyaev-Zel'dovich (SZ) effect signal could be affected by point source contamination. Based on empirical estimates of the radio galaxy population, it is shown that the rms temperature fluctuations of the thermal SZ effect could be underestimated by as much as 30% at an observing frequency of 30 GHz at l>1000. The effect is larger at higher multipoles. If the recent report of excess power at small angular scales is to be explained by the thermal SZ effect, then radio point sources at an observing frequency of 30 GHz must be a surprisingly weak contaminant of the SZ effect for low-mass clusters.

  2. Low-Cost Radiator for Fission Power Thermal Control

    NASA Technical Reports Server (NTRS)

    Maxwell, Taylor; Tarau, Calin; Anderson, William; Hartenstine, John; Stern, Theodore; Walmsley, Nicholas; Briggs, Maxwell

    2014-01-01

    NASA Glenn Research Center (GRC) is developing fission power system technology for future Lunar surface power applications. The systems are envisioned in the 10 to 100kW(sub e) range and have an anticipated design life of 8 to 15 years with no maintenance. NASA GRC is currently setting up a 55 kW(sub e) non-nuclear system ground test in thermal-vacuum to validate technologies required to transfer reactor heat, convert the heat into electricity, reject waste heat, process the electrical output, and demonstrate overall system performance. Reducing the radiator mass, size, and cost is essential to the success of the program. To meet these goals, Advanced Cooling Technologies, Inc. (ACT) and Vanguard Space Technologies, Inc. (VST) are developing a single facesheet radiator with heat pipes directly bonded to the facesheet. The facesheet material is a graphite fiber reinforced composite (GFRC) and the heat pipes are titanium/water. By directly bonding a single facesheet to the heat pipes, several heavy and expensive components can be eliminated from the traditional radiator design such as, POC(TradeMark) foam saddles, aluminum honeycomb, and a second facesheet. A two-heat pipe radiator prototype, based on the single facesheet direct-bond concept, was fabricated and tested to verify the ability of the direct-bond joint to withstand coefficient of thermal expansion (CTE) induced stresses during thermal cycling. The thermal gradients along the bonds were measured before and after thermal cycle tests to determine if the performance degraded. Overall, the results indicated that the initial uniformity of the adhesive was poor along one of the heat pipes. However, both direct bond joints showed no measureable amount of degradation after being thermally cycled at both moderate and aggressive conditions.

  3. Analyses of MTI Imagery of Power Plant Thermal Discharge

    SciTech Connect

    Garrett, A.J.

    2001-06-27

    MTI images of thermal discharge from three power plants are analyzed in this paper with the aid of a 3-D hydrodynamic code. The power plants use different methods to dissipate waste heat in the environment: a cooling lake at Comanche Peak, ocean discharge at Pilgrim and cooling canals at Turkey Point. This paper shows that it is possible to reproduce the temperature distributions captured in MTI imagery with accurate code inputs, but the key parameters change from site to site. Wind direction and speed are the most important parameters at Pilgrim, whereas air temperatures and dewpoint temperatures are most important at Comanche Peak and Turkey Point. This paper also shows how the combination of high-resolution thermal imagery and hydrodynamic simulation lead to better understanding of the mechanisms by which waste heat is dissipated in the environment.

  4. Generating power with drained coal mine methane

    SciTech Connect

    2005-09-01

    The article describes the three technologies most commonly used for generating electricity from coal mine methane: internal combustion engines, gas turbines, and microturbines. The most critical characteristics and features of these technologies, such as efficiency, output and size are highlighted. 5 refs.

  5. Downshot firing technologies for Chinese power generation

    SciTech Connect

    Zhou, J.; Xue, G.S.

    1997-12-31

    The rapid and continuous developing economy in China demands more power. The indigenous coal reserves provide the resource for power demand. Burning low Volatile Matter (VM) coals is a Chinese energy policy. More new power plants burning low VM coals will be planned, and will create an opportunity for boiler suppliers. There are concerns regarding the utilization of low VM coals. The combustion related concerns are the difficulties on ignition, flame stabilization and char burnout. The emission related concern is primarily on the high NOx emissions. The available combustion technologies can handle these difficulties with considerable and acceptable boiler performance, but the high NOx emissions problem remains to be solved. B and W has been dedicated to lowering NOx emissions for many years, and has accumulated a great amount of experience. B and W`s downshot boilers in the Shang An Power Plant are operating efficiently with excellent performance. This paper briefly introduces B and W`s downshot W-flame firing technology and the great achievements at the Shang An Units.

  6. Solar parabolic dish thermal power systems - Technology and applications

    NASA Technical Reports Server (NTRS)

    Lucas, J. W.; Marriott, A. T.

    1979-01-01

    Activities of two projects at JPL in support of DOE's Small Power Systems Program are reported. These two projects are the Point-Focusing Distributed Receiver (PFDR) Technology Project and the Point-Focusing Thermal and Electric Applications (PFTEA) Project. The PFDR Technology Project's major activity is developing the technology of solar concentrators, receivers and power conversion subsystems suitable for parabolic dish or point-focusing distributed receiver power systems. Other PFDR activities include system integration and cost estimation under mass production, as well as the testing of the hardware. The PFTEA Project's first major activity is applications analysis, that is seeking ways to introduce PFDR systems into appropriate user sectors. The second activity is systems engineering and development wherein power plant systems are analyzed for specific applications. The third activity is the installation of a series of engineering experiments in various user environments to obtain actual operating experience

  7. Simulating the Value of Concentrating Solar Power with Thermal Energy Storage in a Production Cost Model

    SciTech Connect

    Denholm, P.; Hummon, M.

    2012-11-01

    Concentrating solar power (CSP) deployed with thermal energy storage (TES) provides a dispatchable source of renewable energy. The value of CSP with TES, as with other potential generation resources, needs to be established using traditional utility planning tools. Production cost models, which simulate the operation of grid, are often used to estimate the operational value of different generation mixes. CSP with TES has historically had limited analysis in commercial production simulations. This document describes the implementation of CSP with TES in a commercial production cost model. It also describes the simulation of grid operations with CSP in a test system consisting of two balancing areas located primarily in Colorado.

  8. 3D numerical thermal stress analysis of the high power target for the SLC Positron Source

    SciTech Connect

    Reuter, E.M.; Hodgson, J.A.

    1991-05-01

    The volumetrically nonuniform power deposition of the incident 33 GeV electron beam in the SLC Positron Source Target is hypothesized to be the most likely cause target failure. The resultant pulsed temperature distributions are known to generate complicated stress fields with no known closed-form analytical solution. 3D finite element analyses of these temperature distributions and associated thermal stress fields in the new High Power Target are described here. Operational guidelines based on the results of these analyses combined with assumptions made about the fatigue characteristics of the exotic target material are proposed. 6 refs., 4 figs.

  9. Development of Light Powered Sensor Networks for Thermal Comfort Measurement

    PubMed Central

    Lee, Dasheng

    2008-01-01

    Recent technological advances in wireless communications have enabled easy installation of sensor networks with air conditioning equipment control applications. However, the sensor node power supply, through either power lines or battery power, still presents obstacles to the distribution of the sensing systems. In this study, a novel sensor network, powered by the artificial light, was constructed to achieve wireless power transfer and wireless data communications for thermal comfort measurements. The sensing node integrates an IC-based temperature sensor, a radiation thermometer, a relative humidity sensor, a micro machined flow sensor and a microprocessor for predicting mean vote (PMV) calculation. The 935 MHz band RF module was employed for the wireless data communication with a specific protocol based on a special energy beacon enabled mode capable of achieving zero power consumption during the inactive periods of the nodes. A 5W spotlight, with a dual axis tilt platform, can power the distributed nodes over a distance of up to 5 meters. A special algorithm, the maximum entropy method, was developed to estimate the sensing quantity of climate parameters if the communication module did not receive any response from the distributed nodes within a certain time limit. The light-powered sensor networks were able to gather indoor comfort-sensing index levels in good agreement with the comfort-sensing vote (CSV) preferred by a human being and the experimental results within the environment suggested that the sensing system could be used in air conditioning systems to implement a comfort-optimal control strategy.

  10. Pressurized circulating fluidized-bed combustion for power generation

    SciTech Connect

    Weimer, R.F.

    1995-08-01

    Second-generation Pressurized Circulating Fluidized Bed Combustion (PCFBC) is the culmination of years of effort in the development of a new generation of power plants which can operate on lower-quality fuels with substantially improved efficiencies, meet environmental requirements, and provide a lower cost of electricity. Air Products was selected in the DOE Clean Coal Technology Round V program to build, own, and operate the first commercial power plant using second-generation PCFBC technology, to be located at an Air Products chemicals manufacturing facility in Calvert City, Kentucky. This paper describes the second-generation PCFBC concept and its critical technology components.

  11. 78 FR 41907 - Effluent Limitations Guidelines and Standards for the Steam Electric Power Generating Point...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-12

    ...Guidelines and Standards for the Steam Electric Power Generating Point Source Category...Guidelines and Standards for the Steam Electric Power Generating Point Source Category...Electric power generation, Power plants, Waste treatment and...

  12. High Speed and High Functional Inverter Power Supplies for Plasma Generation and Control, and their Performance

    NASA Astrophysics Data System (ADS)

    Uesugi, Yoshihiko; Razzak, Mohammad A.; Kondo, Kenji; Kikuchi, Yusuke; Takamura, Shuichi; Imai, Takahiro; Toyoda, Mitsuhiro

    The Rapid development of high power and high speed semiconductor switching devices has led to their various applications in related plasma fields. Especially, a high speed inverter power supply can be used as an RF power source instead of conventional linear amplifiers and a power supply to control the magnetic field in a fusion plasma device. In this paper, RF thermal plasma production and plasma heating experiments are described emphasis placed on using a static induction transistor inverter at a frequency range between 200 kHz and 2.5 MHz as an RF power supply. Efficient thermal plasma production is achieved experimentally by using a flexible and easily operated high power semiconductor inverter power supply. Insulated gate bipolar transistor (IGBT) inverter power supplies driven by a high speed digital signal processor are applied as tokamak joule coil and vertical coil power supplies to control plasma current waveform and plasma equilibrium. Output characteristics, such as the arbitrary bipolar waveform generation of a pulse width modulation (PWM) inverter using digital signal processor (DSP) can be successfully applied to tokamak power supplies for flexible plasma current operation and fast position control of a small tokamak.

  13. Power plant V - Thek generating station

    NASA Astrophysics Data System (ADS)

    Pons, M.

    The design and operating features of a 10 MWe parabolic dish concentrator steam-cycle generating plant are described. The dishes which have 75 sq m area with a concentration factor of 265, were proved in the Themis project. The total field for the 10 MWe would cover 63,100 sq m and require 842 units. Using a water-steam cycle at 50 bars, temperature would never surpass 264 C, with an after-generator condition of 33 bars at 204 C. Preheating the water is intended with a fused salt reservoir containing 570 tons in 350 cu m container, around which condensed water would flow. Maintaining the primary loop at mildly elevated temperatures would permit uninterrupted operation during cloudy periods. A total shutdown would occur if cloudy conditions last more than one hour, and start-up would involve reheating the primary loop, recharging the storage, and then respinning the turbine.

  14. Plasma plume MHD power generator and method

    DOEpatents

    Hammer, James H. (Livermore, CA)

    1993-01-01

    Highly-conducting plasma plumes are ejected across the interplanetary magnetic field from a situs that is moving relative to the solar wind, such as a spacecraft or an astral body, such as the moon, having no magnetosphere that excludes the solar wind. Discrete plasma plumes are generated by plasma guns at the situs extending in opposite directions to one another and at an angle, preferably orthogonal, to the magnetic field direction of the solar wind plasma. The opposed plumes are separately electrically connected to their source by a low impedance connection. The relative movement between the plasma plumes and the solar wind plasma creates a voltage drop across the plumes which is tapped by placing the desired electrical load between the electrical connections of the plumes to their sources. A portion of the energy produced may be used in generating the plasma plumes for sustained operation.

  15. Analysis of Wind Power Generation of Texas 

    E-print Network

    Liu, Z.; Haberl, J.; Subbarao, K.; Baltazar, J. C.

    2007-01-01

    ? Prediction of Power Production in Base Year Using Daily Regression Model for Each Wind Farm (22 subsites). Method 1 Improvement ? Daily Regression Model Based on Synthesized On-site Wind Using Artificial Neural Nets (ANN). Future Work ? Energy Systems...&M University Page 32 NOAA variables used in Artificial Neural Nets (ANN): Wind speeds Wind directions, account for terrain effects Dry bulb temperatures, account for weather fronts Dew point temperatures, account for clouds Determination of the architecture...

  16. Power generating system and method utilizing hydropyrolysis

    DOEpatents

    Tolman, R.

    1986-12-30

    A vapor transmission cycle is described which burns a slurry of coal and water with some of the air from the gas turbine compressor, cools and cleans the resulting low-Btu fuel gas, burns the clean fuel gas with the remaining air from the compressor, and extracts the available energy in the gas turbine. The cycle lends itself to combined-cycle cogeneration for the production of steam, absorption cooling, and electric power.

  17. Solar powered Stirling cycle electrical generator

    NASA Technical Reports Server (NTRS)

    Shaltens, Richard K.

    1991-01-01

    Under NASA's Civil Space Technology Initiative (CSTI), the NASA Lewis Research Center is developing the technology needed for free-piston Stirling engines as a candidate power source for space systems in the late 1990's and into the next century. Space power requirements include high efficiency, very long life, high reliability, and low vibration. Furthermore, system weight and operating temperature are important. The free-piston Stirling engine has the potential for a highly reliable engine with long life because it has only a few moving parts, non-contacting gas bearings, and can be hermetically sealed. These attributes of the free-piston Stirling engine also make it a viable candidate for terrestrial applications. In cooperation with the Department of Energy, system designs are currently being completed that feature the free-piston Stirling engine for terrestrial applications. Industry teams were assembled and are currently completing designs for two Advanced Stirling Conversion Systems utilizing technology being developed under the NASA CSTI Program. These systems, when coupled with a parabolic mirror to collect the solar energy, are capable of producing about 25 kW of electricity to a utility grid. Industry has identified a niche market for dish Stirling systems for worldwide remote power application. They believe that these niche markets may play a major role in the introduction of Stirling products into the commercial market.

  18. Self-powered wireless sensor system using MEMS piezoelectric micro power generator (PMPG)

    E-print Network

    Xia, YuXin, M.B.A. Sloan School of Management.

    2006-01-01

    A thin-film lead zirconate titanate, Pb(Zr,Ti)03, MEMS Piezoelectric Micro Power Generator (PMPG) has been integrated with a commercial wireless sensor node (Telos), to demonstrate a self-powered RF temperature sensor ...

  19. Low-Power Maximum Power Point Tracker with Digital Control for Thermophotovoltaic Generators

    E-print Network

    Pilawa, Robert

    This paper describes the design, optimization, and evaluation of the power electronics circuitry for a low-power portable thermophotovotaic (TPV) generator system. TPV system is based on a silicon micro-reactor design and ...

  20. Inspection of transparent polymers by photothermal detection of ultraviolet-laser generated thermal waves

    NASA Astrophysics Data System (ADS)

    Eickmeier, Achim; Bahners, Thomas; Schollmeyer, Eckhard

    1991-11-01

    The concept of photothermal wave imaging has been adapted to the nondestructive inspection of transparent polymeric samples by specific generation of thermal waves. Utilization of light sources according to the absorption properties of the material secured pure surface heating which is necessary for sensible measurements. Thickness profiles of thin films made of poly(ethylene terephthalate), which are transparent in the visible spectrum, could be measured using a pulsed KrF laser. Examples for the nondestructive inspection of complex textile samples such as coated fabrics are presented.The photothermal analysis (PTA) of optically generated thermal waves is a powerful tool for nondestructive, contactless inspection and evaluation of intrinsic properties of a sample.1,2 The method has been used for the observation of dynamic processes in adhesives, for the inspection of coatings on metal and of carbon fiber composites. A modulated light source, e.g., a chopped HeNe- or Ar+ laser, is used for local, modulated heating at the sample's surface resulting in a time- and space-dependent temperature modulation which propagates through the material. In the case of a homogeneous layer heated only in a small volume at the surface the solution of the heat diffusion equation gives a heavily damped thermal wave T(x,y,z;t). In a one-dimensional model3 only the direction z perpendicular to the surface is considered and we obtain

  1. Evaluation of Ash Toxicity Generated From the Thermal Plasma Pyrolysis of Used Automobile Tires

    NASA Astrophysics Data System (ADS)

    Chang, J. S.; Novog, D. R.; Jamal, S.

    1996-10-01

    The disposal of used tires represents a severe environmental problem. As the heat content of the rubber tires is even higher than that of coal it should be considered as a future source of alternate fuel for power generation. There have been attempts to burn old tires directly in cofired boilers for production of electricity. However, there are several environmental concerns since the combustion flue gas may contain a significant concentration heavy metals (Fe, Zn, Cd, As, etc.). One technique currently being developed is the pyrolyzation of rubber tires by a thermal plasma to produce combustible gases. In this work, ashes generated during the plasma pyrolysis of used automobile tires using a DC Argon thermal plasma were analyzed using Neutron Activation Analysis (NAA) and produced syngas composition was analyzed by FT-IR.. The gas analysis indicates a significant quantity of combustible gases (CH4, C2H2, C2H4, CO, H2 etc..) was produced from the thermal plasma pyrolysis of used tires. The results also indicate that a majority of the heavy metals present in used tires were concentrated in the ashes deposited in reaction chamber wall and in the two-stage filtering system. Furthermore the heavy metal concentration decreases significantly with increasing distance from the plasma torch. Toxic components such as Zn, As and Cl were also collected in the filtering process.

  2. ePOWER Seminar AC solar cells: A new breed of PV power generation

    E-print Network

    Fletcher, Robin

    ePOWER Seminar AC solar cells: A new breed of PV power generation Professor Faisal Khan Assistant will provide a guideline for solar cell designers to fabricate various discrete components in a power converter-junction solar cells. Prof. Khan is the founder of the Power Engineering and Automation Research Lab (PEARL

  3. Improving heat capture for power generation in coal gasification plants

    E-print Network

    Botros, Barbara Brenda

    2011-01-01

    Improving the steam cycle design to maximize power generation is demonstrated using pinch analysis targeting techniques. Previous work models the steam pressure level in composite curves based on its saturation temperature ...

  4. Power Generation From Waste Heat Using Organic Rankine Cycle Systems 

    E-print Network

    Prasad, A.

    1980-01-01

    Many efforts are currently being pursued to develop and implement new energy technologies aimed at meeting our national energy goals The use of organic Rankine cycle engines to generate power from waste heat provides a near term means to greatly...

  5. APPLICATION OF MEMBRANE TECHNOLOGY TO POWER GENERATION WATERS

    EPA Science Inventory

    Three membrane technlogies (reverse osmosis, ultrafiltration, and electrodialysis) for wastewater treatment and reuse at electric generating power plants were examined. Recirculating condenser water, ash sluice water, coal pile drainage, boiler blowdown and makeup treatment waste...

  6. A power conditioning system for radioisotope thermoelectric generator energy sources

    NASA Technical Reports Server (NTRS)

    Gillis, J. A., Jr.

    1974-01-01

    The use of radioisotope thermoelectric generators (RTG) as the primary source of energy in unmanned spacecraft is discussed. RTG output control, power conditioning system requirements, the electrical design, and circuit performance are also discussed.

  7. Generation of high power tunable multicycle teraherz pulses

    E-print Network

    Chen, Zhao

    We demonstrate generation of high-power, multicycle, and frequency-tunable terahertz pulses with microjoule energies by tilting the intensity front of a quasi-sinusoidal intensity-modulated optical waveform. The spatiotemporally ...

  8. Novel power saving architecture for FBG based OCDMA code generation

    NASA Astrophysics Data System (ADS)

    Osadola, Tolulope B.; Idris, Siti K.; Glesk, Ivan

    2013-10-01

    A novel architecture for generating incoherent, 2-dimensional wavelength hopping-time spreading optical CDMA codes is presented. The architecture is designed to facilitate the reuse of optical source signal that is unused after an OCDMA code has been generated using fiber Bragg grating based encoders. Effective utilization of available optical power is therefore achieved by cascading several OCDMA encoders thereby enabling 3dB savings in optical power.

  9. THERMAL STRESS CALCULATIONS FOR HEATPIPE-COOLED REACTOR POWER SYSTEMS.

    SciTech Connect

    Kapernick, R. J.; Guffee, R. M.

    2001-01-01

    A heatpipe-cooled fast reactor concept has been under development at Los Alamos National Laboratory for the past several years, to be used as a power source for nuclear electric propulsion (NEP) or as a planetary surface power system. The reactor core consists of an array of modules that are held together by a core lateral restraint system. Each module comprises a single heatpipe surrounded by 3-6 clad fuel pins. As part of the design development and performance assessment activities for these reactors, specialized methods and models have been developed to perform thermal and stress analyses of the core modules. The methods have been automated so that trade studies can be readily performed, looking at design options such as module size, heatpipe and clad thickness, use of sleeves to contain the fuel, material type, etc. This paper describes the methods and models that have been developed, and presents thermal and stress analysis results for a Mars surface power system and a NEP power source.

  10. Power flattening techniques for radioisotopic thermoelectric generators

    NASA Astrophysics Data System (ADS)

    Eastman, G. Y.

    1984-03-01

    The objective of this program is the investigation of a novel means of reducing the potential ecologic hazards that may be associated with radioisotopic thermoelectric generators (RTG's). A number of short lived isotopes have lower toxicities and are more ecologically acceptable than the Plutonium 238 used at present. In addition, the shorter half lives significantly reduce the time period during which isotope encapsulation must be assured (approx. 10 half lives). The technical approach involves the use of a gas controlled heat pipe to maintain a nearly constant heat input to the thermoelectric converter in spite of the decay profile of a short live heat pipe-RTG system is expected to operate over at least two isotope half lives (4:1 turndown ratio), supplying a thermoelectric module with the heat required to generate one watt of electricity. The end product of the program is a proof of principle heat pipe demonstrating the desired heat transport and turndown capability. The program has three items of work: Survey of Technology Base; Design of Proof of Principle Heat Pipe; Heat Pipe Fabrication and Test.

  11. Performance assessment of OTEC power systems and thermal power plants, volume 1

    NASA Astrophysics Data System (ADS)

    Leidenfrost, W.; Liley, P. E.; McDonald, A. T.; Mudawwar, I.; Pearson, J. T.

    1985-05-01

    The focus of this report is on closed-cycle ocean thermal energy conversion (OTEC) power systems under research at Purdue University. The working operations of an OTEC power plant are briefly discussed. Methods of improving the performance of OTEC power systems are presented. Brief discussions on the methods of heat exchanger analysis and design are provided, as are the thermophysical properties of the working fluids and seawater. An interactive code capable of analyzing OTEC power system performance is included for use with an IBM personal computer.

  12. Performance assessment of OTEC power systems and thermal power plants. Final report. Volume I

    SciTech Connect

    Leidenfrost, W.; Liley, P.E.; McDonald, A.T.; Mudawwar, I.; Pearson, J.T.

    1985-05-01

    The focus of this report is on closed-cycle ocean thermal energy conversion (OTEC) power systems under research at Purdue University. The working operations of an OTEC power plant are briefly discussed. Methods of improving the performance of OTEC power systems are presented. Brief discussions on the methods of heat exchanger analysis and design are provided, as are the thermophysical properties of the working fluids and seawater. An interactive code capable of analyzing OTEC power system performance is included for use with an IBM personal computer.

  13. A Course Case Study: Nuclear Power Generation and the Environment

    ERIC Educational Resources Information Center

    Schlesinger, Allen B.

    1975-01-01

    Describes a course that uses the Ft. Calhoun nuclear power plant as a case study. The course involves three component parts: physics of fission events, engineering requirements, and economic considerations; environmental impact from radiation and thermal effluents; and the impact of social, political and legal factors. (GS)

  14. New generation MOSFET design for battery powered portable applications

    NASA Astrophysics Data System (ADS)

    Deb Roy, Sukhendu; Sodhi, Ritu; Sapp, Steven

    2012-10-01

    This article reviews some of challenges that the Power MOSFET designers need to address to meet the ever growing market demand for reducing power consumption in battery-powered portable applications. The critical power MOSFET design parameters such as threshold voltage (Vth), drain-source breakdown voltage (BVdss), on-resistance (Rdson), package footprint, gate-drive voltage, and Figure of Merit (FOM) have been discussed. It has been highlighted that the scaling features and ultra-low on-resistance of the Trench Power MOSFETs can be advantageously utilized for powerloss management. The MOSFET design requirements in battery protection circuits and load switches have been presented. It has been emphasized that the Power MOSFET designers need to trade-off between on-resistance and maximum current capability in smaller footprint packages. The merits of Wafer Level Chip Scale Package (WLCSP) in achieving minimum foot print, ultra-low on-resistance, and improved thermal characteristics have been discussed.

  15. Sea thermal power; A survey study for the Arab coastal waters

    SciTech Connect

    Abdell-AAL, H.K.; Khan, M.M. )

    1990-01-01

    One of the promising types of renewable energy resource that has potential applications in the Arab world is proposed and described in this article. Known as ocean thermal energy conversion (OTEC), its feasibility is investigated for the Red Sea and the Arabian Gulf/Gulf of Oman. Data on thermal gradients are surveyed, collected, and reported. Promising parameters have been identified for some specific locations along these coastal waters. The proposed system can serve the dual purpose of providing electric power and desalinated water, which is needed by the Arab world. Construction strategies for the OTEC systems are introduced. Building plant-ship for utilizing the generated power in the production of hydrogen is recommended. Thus energy could be transported as LH{sub 2} (liquid hydrogen), MeOH (methanol), or NH{sub 3} (ammonia) for end-use consumption or export.

  16. Power enhancement of heat engines via correlated thermalization in a three-level “working fluid”

    NASA Astrophysics Data System (ADS)

    Gelbwaser-Klimovsky, David; Niedenzu, Wolfgang; Brumer, Paul; Kurizki, Gershon

    2015-09-01

    We explore means of maximizing the power output of a heat engine based on a periodically-driven quantum system that is constantly coupled to hot and cold baths. It is shown that the maximal power output of such a heat engine whose “working fluid” is a degenerate V-type three-level system is that generated by two independent two-level systems. Hence, level degeneracy is a thermodynamic resource that may effectively double the power output. The efficiency, however, is not affected. We find that coherence is not an essential asset in such multilevel-based heat engines. The existence of two thermalization pathways sharing a common ground state suffices for power enhancement.

  17. Power enhancement of heat engines via correlated thermalization in a three-level “working fluid”

    PubMed Central

    Gelbwaser-Klimovsky, David; Niedenzu, Wolfgang; Brumer, Paul; Kurizki, Gershon

    2015-01-01

    We explore means of maximizing the power output of a heat engine based on a periodically-driven quantum system that is constantly coupled to hot and cold baths. It is shown that the maximal power output of such a heat engine whose “working fluid” is a degenerate V-type three-level system is that generated by two independent two-level systems. Hence, level degeneracy is a thermodynamic resource that may effectively double the power output. The efficiency, however, is not affected. We find that coherence is not an essential asset in such multilevel-based heat engines. The existence of two thermalization pathways sharing a common ground state suffices for power enhancement. PMID:26394838

  18. Power enhancement of heat engines via correlated thermalization in a three-level "working fluid".

    PubMed

    Gelbwaser-Klimovsky, David; Niedenzu, Wolfgang; Brumer, Paul; Kurizki, Gershon

    2015-01-01

    We explore means of maximizing the power output of a heat engine based on a periodically-driven quantum system that is constantly coupled to hot and cold baths. It is shown that the maximal power output of such a heat engine whose "working fluid" is a degenerate V-type three-level system is that generated by two independent two-level systems. Hence, level degeneracy is a thermodynamic resource that may effectively double the power output. The efficiency, however, is not affected. We find that coherence is not an essential asset in such multilevel-based heat engines. The existence of two thermalization pathways sharing a common ground state suffices for power enhancement. PMID:26394838

  19. Natural rubber for sustainable high-power electrical energy generation

    E-print Network

    Suo, Zhigang

    Natural rubber for sustainable high-power electrical energy generation Rainer Kaltseis electronics and distributed sensors. Here we show that natural rubber can be used to construct generators of high performance and low cost. Natural rubber has higher elastic modulus, fracture energy

  20. Thermoelectric Power Generation Allison Duh and Joel Dungan

    E-print Network

    Lavaei, Javad

    Thermoelectric Power Generation Allison Duh and Joel Dungan May 15, 2013 #12;Introduction A thermoelectric generator (TEG) is a device that converts heat energy directly into electrical energy. Thermoelectric systems capitalize on semiconductor charge carriers excited by a temperature difference to convert

  1. 10. Interior view, east side of power plant, generator bases ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Interior view, east side of power plant, generator bases in foreground, electrical panels and fuel tanks in background looking northeast - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  2. The Environmental Impact of Electrical Power Generation: Nuclear and Fossil.

    ERIC Educational Resources Information Center

    Pennsylvania State Dept. of Education, Harrisburg.

    This text was written to accompany a course concerning the need, environmental costs, and benefits of electrical power generation. It was compiled and written by a committee drawn from educators, health physicists, members of industry and conservation groups, and environmental scientists. Topics include: the increasing need for electrical power

  3. SSTAC/ARTS review of the draft Integrated Technology Plan (ITP). Volume 3: Space power and thermal management

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Viewgraphs of briefings from the SSTAC/ARTS review of the draft integrated technology plan on thermal power and thermal management are presented. Topics covered include: space energy conversion research and technology; space photovoltaic energy conversion; chemical energy conversion and storage; thermal energy conversion; power management; thermal management; space nuclear power; high capacity power; surface power and thermal management; space platforms power and thermal management; and project SELENE.

  4. Thermal vacuum life test facility for radioisotope thermoelectric generators

    NASA Astrophysics Data System (ADS)

    Deaton, R. L.; Goebel, C. J.; Amos, W. R.

    In the late 1970's, the Department of Energy (DOE) assigned Monsanto Research Corporation, Mound Facility, now operated by EG and G Mound Applied Technologies, the responsibility for assembling and testing General Purpose Heat Source (GPHS) radioisotope thermoelectric generators (RTGs). Assembled and tested were five RTGs, which included four flight units and one non-flight qualification unit. Figure 1 shows the RTG, which was designed by General Electric AstroSpace Division (GE/ASD) to produce 285 W of electrical power. A detailed description of the processes for RTG assembly and testing is presented by Amos and Goebel (1989). The RTG performance data are described by Bennett, et al., (1986). The flight units will provide electrical power for the National Aeronautics and Space Administration's (NASA) Galileo mission to Jupiter (two RTGs) and the joint NASA/European Space Agency (ESA) Ulysses mission to study the polar regions of the sun (one RTG). The remaining flight unit will serve as the spare for both missions, and a non-flight qualification unit was assembled and tested to ensure that performance criteria were adequately met.

  5. Modeling the Ocean Tide for Tidal Power Generation Applications

    NASA Astrophysics Data System (ADS)

    Kawase, M.; Gedney, M.

    2014-12-01

    Recent years have seen renewed interest in the ocean tide as a source of energy for electrical power generation. Unlike in the 1960s, when the tidal barrage was the predominant method of power extraction considered and implemented, the current methodology favors operation of a free-stream turbine or an array of them in strong tidal currents. As tidal power generation moves from pilot-scale projects to actual array implementations, numerical modeling of tidal currents is expected to play an increasing role in site selection, resource assessment, array design, and environmental impact assessment. In this presentation, a simple, coupled ocean/estuary model designed for research into fundamental aspects of tidal power generation is described. The model consists of a Pacific Ocean-size rectangular basin and a connected fjord-like embayment with dimensions similar to that of Puget Sound, Washington, one of the potential power generation sites in the United States. The model is forced by an idealized lunar tide-generating potential. The study focuses on the energetics of a tidal system including tidal power extraction at both global and regional scales. The hyperbolic nature of the governing shallow water equations means consequence of tidal power extraction cannot be limited to the local waters, but is global in extent. Modeling power extraction with a regional model with standard boundary conditions introduces uncertainties of 3 ~ 25% in the power extraction estimate depending on the level of extraction. Power extraction in the model has a well-defined maximum (~800 MW in a standard case) that is in agreement with previous theoretical studies. Natural energy dissipation and tidal power extraction strongly interact; for a turbine array of a given capacity, the higher the level of natural dissipation the lower the power the array can extract. Conversely, power extraction leads to a decrease in the level of natural dissipation (Figure) as well as the tidal range and the current speed. In the standard case considered, at the maximum power extraction the tidal range in the estuary is reduced by 37% and the natural dissipation by 78% from the unperturbed state. Thus, environmental consequences of power generation are likely to become the limiting factor on the scale of resource development before the physical maximum is reached.

  6. Aluminide Coatings for Power-Generation Applications

    SciTech Connect

    Zhang, Y

    2003-11-17

    Aluminide coatings are of interest for many high temperature applications because of the possibility of improving the oxidation of structural alloys by forming a protective external alumina scale. In order to develop a comprehensive lifetime evaluation approach for aluminide coatings used in fossil energy systems, some of the important issues have been addressed in this report for aluminide coatings on Fe-based alloys (Task I) and on Ni-based alloys (Task II). In Task I, the oxidation behavior of iron aluminide coatings synthesized by chemical vapor deposition (CVD) was studied in air + 10vol.% H{sub 2}O in the temperature range of 700-800 C and the interdiffusion behavior between the coating and substrate was investigated in air at 500-800 C. Commercial ferritic (Fe-9Cr-1Mo) and type 304L (Fe-18Cr-9Ni, nominally) austenitic stainless steels were used as the substrates. For the oxidation study, the as-deposited coating consisted of a thin (<5 {micro}m), Al-rich outer layer above a thicker (30-50 {micro}m), lower Al inner layer. The specimens were cycled to 1000 1-h cycles at 700 C and 500 1-h cycles at 800 C, respectively. The CVD coating specimens showed excellent performance in the water vapor environment at both temperatures, while the uncoated alloys were severely attacked. These results suggest that an aluminide coating can substantially improve resistance to water vapor attack under these conditions. For the interdiffusion study, the ferritic and austenitic steels were coated with relatively thicker aluminide coatings consisting of a 20-25 {micro}m outer layer and a 150-250 {micro}m inner layer. The composition profiles before and after interdiffusion testing (up to 5,000h) were measured by electron probe microanalysis (EPMA). The decrease of the Al content at the coating surface was not significant after extended diffusion times ({le} 5,000h) at temperatures {le} 700 C. More interdiffusion occurred at 800 C in coatings on both Fe- 9Cr-1Mo and 304L alloys; a two-phase microstructure was formed in the outer coating layer on 304L after interdiffusion of 2,000h at 800 C. The interdiffusion behavior was simulated using a computer model COSIM (Coating Oxidation and Substrate Interdiffusion Model), which was originally developed for MCrAlY overlay coatings by NASA. Complimentary modeling work using a mathematic model from Heckel et al. also was conducted. Reasonable agreement was observed between the simulated and experimental composition profiles, particularly for aluminide coatings on Fe-9Cr-1Mo ferritic steels. In Task II, the research focused on the CVD aluminide bond coats for thermal barrier coatings (TBC). The martensitic phase transformation in single-phase {beta}-NiAl and (Ni,Pt)Al coatings was studied and compared. After isothermal exposure to 1150 C for 100 hours, the {beta} phase in both types of coatings was transformed to a martensite phase during cooling to room temperature. Martensitic transformation also was observed in the (Ni,Pt)Al bond coat with and without the ceramic top layer after thermal cycling at 1150 C (700 1-h cycles). Such transformation resulted from Al depletion in the coating due to the formation of the Al{sub 2}O{sub 3} scale on coating surface and interdiffusion between the coating and superalloy substrate. The volume changes associated with the martensitic transformation could affect the coating surface stability (''rumpling'') and thus contributing to TBC failure. To elucidate the effect of Hf levels in the superalloy substrate on the oxidation performance, directionally-solidified Rene 142 superalloys containing three different Hf contents with and without aluminide coatings were cyclically oxidized at 1100 and 1150 C in air. Poor scale adhesion was observed for all bare and NiAl-coated Rene 142 superalloys, as compared with single-crystal superalloys such as Rene N5. Spallation occurred at relatively early stages disregarding the Hf contents in the superalloys. Finally, a platinum plating system has been set up at Tennessee Technological University to carefully control the Pt pla

  7. Next generation geothermal power plants. Draft final report

    SciTech Connect

    Brugman, John; Hattar, John; Nichols, Kenneth; Esaki, Yuri

    1994-12-01

    The goal of this project is to develop concepts for the next generation geothermal power plant(s) (NGGPP). This plant, compared to existing plants, will generate power for a lower levelized cost and will be more competitive with fossil fuel fired power plants. The NGGPP will utilize geothermal resources efficiently and will be equipped with contingencies to mitigate the risk of reservoir performance. The NGGPP design will attempt to minimize emission of pollutants and consumption of surface water and/or geothermal fluids for cooling service.

  8. Lamp for generating high power ultraviolet radiation

    DOEpatents

    Morgan, Gary L. (Elkridge, MD); Potter, James M. (Los Alamos, NM)

    2001-01-01

    The apparatus is a gas filled ultraviolet generating lamp for use as a liquid purifier. The lamp is powred by high voltage AC, but has no metallic electrodes within or in contact with the gas enclosure which is constructed as two concentric quartz cylinders sealed together at their ends with the gas fill between the cylinders. Cooling liquid is pumped through the volume inside the inner quartz cylinder where an electrically conductive pipe spaced from the inner cylinder is used to supply the cooling liquid and act as the high voltage electrode. The gas enclosure is enclosed within but spaced from a metal housing which is connected to operate as the ground electrode of the circuit and through which the treated fluid flows. Thus, the electrical circuit is from the central pipe, and through the cooling liquid, the gas enclosure, the treated liquid on the outside of the outer quartz cylinder, and to the housing. The high voltage electrode is electrically isolated from the source of cooling liquid by a length of insulated hose which also supplies the cooling liquid.

  9. CLASSIFICATION OF NON-HEAT GENERATING OUTDOOR OBJECTS IN THERMAL SCENES FOR AUTONOMOUS ROBOTS

    E-print Network

    Shaw, Leah B.

    objects. We have used a mobile bot to systematically capture thermal infrared imagery for two categoriesCLASSIFICATION OF NON-HEAT GENERATING OUTDOOR OBJECTS IN THERMAL SCENES FOR AUTONOMOUS ROBOTS describes a physics-based adaptive Bayesian pattern classification model that uses a passive thermal

  10. UF6 breeder reactor power plants for electric power generation

    NASA Technical Reports Server (NTRS)

    Rust, J. H.; Clement, J. D.; Hohl, F.

    1976-01-01

    The reactor concept analyzed is a U-233F6 core surrounded by a molten salt (Li(7)F, BeF2, ThF4) blanket. Nuclear survey calculations were carried out for both spherical and cylindrical geometries. Thermodynamic cycle calculations were performed for a variety of Rankine cycles. A conceptual design is presented along with a system layout for a 1000 MW stationary power plant. Advantages of the gas core breeder reactor (GCBR) are as follows: (1) high efficiency; (2) simplified on-line reprocessing; (3) inherent safety considerations; (4) high breeding ratio; (5) possibility of burning all or most of the long-lived nuclear waste actinides; and (6) possibility of extrapolating the technology to higher temperatures and MHD direct conversion.

  11. A Study on Optimal Operation of Power Generation by Waste

    NASA Astrophysics Data System (ADS)

    Sugahara, Hideo; Aoyagi, Yoshihiro; Kato, Masakazu

    This paper proposes the optimal operation of power generation by waste. Refuse is taken as a new energy resource of biomass. Although some fossil fuel origin refuse like plastic may be mixed in, CO2 emission is not counted up except for above fossil fuel origin refuse for the Kyoto Protocol. Incineration is indispensable for refuse disposal and power generation by waste is environment-friendly and power system-friendly using synchronous generators. Optimal planning is a key point to make much of this merit. The optimal plan includes refuse incinerator operation plan with refuse collection and maintenance scheduling of refuse incinerator plant. In this paper, it has been made clear that the former plan increases generation energy through numerical simulations. Concerning the latter plan, a method to determine the maintenance schedule using genetic algorithm has been established. In addition, taking environmental load of CO2 emission into account, this is expected larger merits from environment and energy resource points of view.

  12. Thermal management in high average power pulsed compression systems

    SciTech Connect

    Wavrik, R.W.; Reed, K.W.; Harjes, H.C.; Weber, G.J.; Butler, M.; Penn, K.J.; Neau, E.L.

    1992-01-01

    High average power repetitively pulsed compression systems offer a potential source of electron beams which may be applied to sterilization of wastes, treatment of food products, and other environmental and consumer applications. At Sandia National Laboratory, the Repetitive High Energy Pulsed Power (RHEPP) program is developing a 7 stage magnetic pulse compressor driving a linear induction voltage adder with an electron beam diode load. The RHEPP machine is being design to deliver 350 kW of average power to the diode in 60 ns FWHM, 2.5 MV, 3 kJ pulses at a repetition rate of 120 Hz. In addition to the electrical design considerations, the repetition rate requires thermal management of the electrical losses. Steady state temperatures must be kept below the material degradation temperatures to maximize reliability and component life. The optimum design is a trade off between thermal management, maximizing overall electrical performance of the system, reliability, and cost effectiveness. Cooling requirements and configurations were developed for each of the subsystems of RHEPP. Finite element models that combine fluid flow and heat transfer were used to screen design concepts. The analysis includes one, two, and three dimensional heat transfer using surface heat transfer coefficients and boundary layer models. Experiments were conducted to verify the models as well as to evaluate cooling channel fabrication materials and techniques in Metglas wound cores. 10 refs.

  13. Thermal management in high average power pulsed compression systems

    SciTech Connect

    Wavrik, R.W.; Reed, K.W.; Harjes, H.C.; Weber, G.J.; Butler, M.; Penn, K.J.; Neau, E.L.

    1992-08-01

    High average power repetitively pulsed compression systems offer a potential source of electron beams which may be applied to sterilization of wastes, treatment of food products, and other environmental and consumer applications. At Sandia National Laboratory, the Repetitive High Energy Pulsed Power (RHEPP) program is developing a 7 stage magnetic pulse compressor driving a linear induction voltage adder with an electron beam diode load. The RHEPP machine is being design to deliver 350 kW of average power to the diode in 60 ns FWHM, 2.5 MV, 3 kJ pulses at a repetition rate of 120 Hz. In addition to the electrical design considerations, the repetition rate requires thermal management of the electrical losses. Steady state temperatures must be kept below the material degradation temperatures to maximize reliability and component life. The optimum design is a trade off between thermal management, maximizing overall electrical performance of the system, reliability, and cost effectiveness. Cooling requirements and configurations were developed for each of the subsystems of RHEPP. Finite element models that combine fluid flow and heat transfer were used to screen design concepts. The analysis includes one, two, and three dimensional heat transfer using surface heat transfer coefficients and boundary layer models. Experiments were conducted to verify the models as well as to evaluate cooling channel fabrication materials and techniques in Metglas wound cores. 10 refs.

  14. Strategies for emission reduction from thermal power plants.

    PubMed

    Prisyazhniuk, Vitaly A

    2006-07-01

    Major polluters of man's environment are thermal power stations (TPS) and power plants, which discharge into the atmosphere the basic product of carbon fuel combustion, CO2, which results in a build-up of the greenhouse effect and global warm-up of our planet's climate. This paper is intended to show that the way to attain environmental safety of the TPS and to abide by the decisions of the Kyoto Protocol lies in raising the efficiency of the heat power stations and reducing their fuel consumption by using nonconventional thermal cycles. Certain equations have been derived to define the quantitative interrelationship between the growth of efficiency of the TPS, decrease in fuel consumption and reduction of discharge of dust, fuel combustion gases, and heat into the environment. New ideas and new technological approaches that result in raising the efficiency of the TPS are briefly covered: magneto-hydrodynamic resonance, the Kalina cycle, and utilizing the ambient heat by using, as the working medium, low-boiling substances. PMID:16338058

  15. Rankine engine solar power generation. I - Performance and economic analysis

    NASA Technical Reports Server (NTRS)

    Gossler, A. A.; Orrock, J. E.

    1981-01-01

    Results of a computer simulation of the performance of a solar flat plate collector powered electrical generation system are presented. The simulation was configured to include locations in New Mexico, North Dakota, Tennessee, and Massachusetts, and considered a water-based heat-transfer fluid collector system with storage. The collectors also powered a Rankine-cycle boiler filled with a low temperature working fluid. The generator was considered to be run only when excess solar heat and full storage would otherwise require heat purging through the collectors. All power was directed into the utility grid. The solar powered generator unit addition was found to be dependent on site location and collector area, and reduced the effective solar cost with collector areas greater than 400-670 sq m. The sites were economically ranked, best to worst: New Mexico, North Dakota, Massachusetts, and Tennessee.

  16. Atmospheric pressure gasification process for power generation

    SciTech Connect

    Morris, M.

    1996-12-31

    Since 1987 TPS Termiska Processer AB has been working on the development of both a biomass-fueled circulating fluidized bed (CFB) gasification process and a downstream dolomite catalytic tar removal process. The combined process has been developed in a 2 MWth pilot plant which was built originally for investigating the use of the product gas in a diesel motor cogeneration plant. A prototype gasification plant comprising two waste-fueled 15 MWth CFB gasifiers has been installed in Greve-in-Chianti, Italy. Since 1990, TPS has been working on the development of a biomass-fueled integrated gasification combined-cycle scheme utilizing both a CFB gasifier and a CFB tar cracker. In 1992, TPS was contracted by the Global Environmental Facility (GEF) to perform work for Phase II of the Brazilian BIG-GT (Biomass Integrated Gasification-Gas Turbine) project. This stage of the project involved both experimental and engineering studies and the basic engineering for a 30 MWe eucalyptus-fueled power plant in Brazil. The plant is based on the GE LM 2500 gas turbine. During this stage of the project the TPS process was in competition with a process from a pressurized gasification technology vendor. However, in 1995 TPS was selected for participation in Phase III of the project. Phase III of the project includes construction and commissioning of the plant. Involvement in the Brazilian BIG-GT project has served as a springboard for the participation of TPS in similar projects in the Netherlands and the UK. In the UK, ARBRE Energy Limited is constructing a coppice-fueled 8 MWe plant with support from the EU THERMIE program and the UKs NFFO (Non Fossil Fuel Obligation). The design contract will be awarded in late 1996. In the Netherlands, a number of projects for biomass and wastes are being pursued by TPS in cooperation with Royal Schelde of the Netherlands.

  17. MEMS-Based Power Generation Techniques for Implantable Biosensing Applications

    PubMed Central

    Lueke, Jonathan; Moussa, Walied A.

    2011-01-01

    Implantable biosensing is attractive for both medical monitoring and diagnostic applications. It is possible to monitor phenomena such as physical loads on joints or implants, vital signs, or osseointegration in vivo and in real time. Microelectromechanical (MEMS)-based generation techniques can allow for the autonomous operation of implantable biosensors by generating electrical power to replace or supplement existing battery-based power systems. By supplementing existing battery-based power systems for implantable biosensors, the operational lifetime of the sensor is increased. In addition, the potential for a greater amount of available power allows additional components to be added to the biosensing module, such as computational and wireless and components, improving functionality and performance of the biosensor. Photovoltaic, thermovoltaic, micro fuel cell, electrostatic, electromagnetic, and piezoelectric based generation schemes are evaluated in this paper for applicability for implantable biosensing. MEMS-based generation techniques that harvest ambient energy, such as vibration, are much better suited for implantable biosensing applications than fuel-based approaches, producing up to milliwatts of electrical power. High power density MEMS-based approaches, such as piezoelectric and electromagnetic schemes, allow for supplemental and replacement power schemes for biosensing applications to improve device capabilities and performance. In addition, this may allow for the biosensor to be further miniaturized, reducing the need for relatively large batteries with respect to device size. This would cause the implanted biosensor to be less invasive, increasing the quality of care received by the patient. PMID:22319362

  18. Inorganic membranes for carbon capture and power generation

    NASA Astrophysics Data System (ADS)

    Snider, Matthew T.

    Inorganic membranes are under consideration for cost-effective reductions of carbon emissions from coal-fired power plants, both in the capture of pollutants post-firing and in the direct electrochemical conversion of coal-derived fuels for improved plant efficiency. The suitability of inorganic membrane materials for these purposes stems as much from thermal and chemical stability in coal plant operating conditions as from high performance in gas separations and power generation. Hydrophilic, micro-porous zeolite membrane structures are attractive for separating CO2 from N2 in gaseous waste streams due to the attraction of CO2 to the membrane surface and micropore walls that gives the advantage to CO2 transport. Recent studies have indicated that retention of the templating agent used in zeolite synthesis can further block N2 from the micropore interior and significantly improve CO2/N2 selectivity. However, the role of the templating agent in micro-porous transport has not been well investigated. In this work, gas sorption studies were conducted by high-pressure thermo-gravimetric analysis on Zeolite Y membrane materials to quantify the effect of the templating agent on CO2, N2, and H2O adsorption/desorption, as well as to examine the effect of humidification on overall membrane performance. In equilibrium conditions, the N2 sorption enthalpy was nearly unchanged by the presence of the templating agent, but the N2 pore occupation was reduced ˜1000x. Thus, the steric nature of the blocking of N2 from the micropores by the templating agent was confirmed. CO2 and H2O sorption enthalpies were similarly unaffected by the templating agent, and the micropore occupations were only reduced as much as the void volume taken up by the templating agent. Thus, the steric blocking effect did not occur for molecules more strongly attracted to the micropore walls. Additionally, in time-transient measurements the CO 2 and H2O mobilities were significantly enhanced by the presence of the templating agent. This meant that small restrictions in the micropores were beneficial to the transport of molecules with some attraction to the micropore walls. Further evidence of this effect were discovered in transport studies on Zeolite Y membranes, in which small amounts of residual water were observed to enhance the CO2 permeance in a similar way as the templating agent in the powder. However, the effect was only observed for dry CO 2 streams and previously humidified membranes. H2O affinity for the zeolite framework was so high and mobility in the micropores was so low that even 0.8 mol% H2O included in the gas stream was enough to reduce CO2 transport by 100x. This poses a serious concern for carbon capture by zeolite Y membrane in coal-fired power plants: the waste stream must be dehumidified first. In the long-term, raising the efficiencies of fossil-fuel power plants is preferable to post-combustion capture for cost- and resource-effective carbon emissions reduction. Supplementing combustion of the fuel with electrochemical conversion by solid oxide fuel cell (SOFC) shows promise in this effort. Thin-film (<1microm thick) SOFCs have recently exhibited power densities at low temperature (LT) that rival those of thick-film, high-temperature designs, with improved stability and quick ramp times. Low operating temperatures also provide the potential for fast, high-volume production, but so far high-performing LT-SOFCs have all been made by micro-fabrication methods. In this work, thin-film LT-SOFC modules were fabricated by colloidal processing and their performance was demonstrated. Nano-particulate colloid syntheses, dip-coating, and rapid thermal processing methods yielded fine-particle membrane microstructures, with high porosity and conductivity in the platinum/gadolinium-doped ceria (GDC) composite electrodes and density in the yttria-stabilized zirconia (YSZ) electrolytes. Power densities of >1000 W/m2 at 450°C and ˜5000 W/m2 at 600°C were achieved, and the modules ran >100hrs at peak power after 8 thermal cycles. Thus it wa

  19. Prognostics Approach for Power MOSFET Under Thermal-Stress

    NASA Technical Reports Server (NTRS)

    Galvan, Jose Ramon Celaya; Saxena, Abhinav; Kulkarni, Chetan S.; Saha, Sankalita; Goebel, Kai

    2012-01-01

    The prognostic technique for a power MOSFET presented in this paper is based on accelerated aging of MOSFET IRF520Npbf in a TO-220 package. The methodology utilizes thermal and power cycling to accelerate the life of the devices. The major failure mechanism for the stress conditions is dieattachment degradation, typical for discrete devices with leadfree solder die attachment. It has been determined that dieattach degradation results in an increase in ON-state resistance due to its dependence on junction temperature. Increasing resistance, thus, can be used as a precursor of failure for the die-attach failure mechanism under thermal stress. A feature based on normalized ON-resistance is computed from in-situ measurements of the electro-thermal response. An Extended Kalman filter is used as a model-based prognostics techniques based on the Bayesian tracking framework. The proposed prognostics technique reports on preliminary work that serves as a case study on the prediction of remaining life of power MOSFETs and builds upon the work presented in [1]. The algorithm considered in this study had been used as prognostics algorithm in different applications and is regarded as suitable candidate for component level prognostics. This work attempts to further the validation of such algorithm by presenting it with real degradation data including measurements from real sensors, which include all the complications (noise, bias, etc.) that are regularly not captured on simulated degradation data. The algorithm is developed and tested on the accelerated aging test timescale. In real world operation, the timescale of the degradation process and therefore the RUL predictions will be considerable larger. It is hypothesized that even though the timescale will be larger, it remains constant through the degradation process and the algorithm and model would still apply under the slower degradation process. By using accelerated aging data with actual device measurements and real sensors (no simulated behavior), we are attempting to assess how such algorithm behaves under realistic conditions.

  20. An assessment of ocean thermal energy conversion as an advanced electric generation methodology

    NASA Astrophysics Data System (ADS)

    Heydt, Gerald T.

    1993-03-01

    Ocean thermal energy conversion (OTEC) is a process that employs the temperature difference between surface and deep ocean water to alternately evaporate and condense a working fluid. In the open-cycle OTEC configuration, the working fluid is seawater. In the closed-cycle configuration, a working fluid such as propane is used. In this paper, OTEC is assessed for its practical merits for electric power generation, and the history of the process is reviewed. Because the OTEC principle operates under a small net temperature difference regime, rather large amounts of seawater and working fluid are required. The energy requirements for pumping these fluids may be greater than the energy recovered from the OTEC engine itself. The concept of net power production is discussed. The components of a typical OTEC plant are discussed with emphasis on the evaporator heat exchanger. Operation of an OTEC electric generating station is discussed, including transient operation. Perhaps the most encouraging aspect of OTEC is the recent experiments and efforts at the Natural Energy Laboratory in Hawaii, which are discussed in the paper. Remarks are made on bottlenecks and the future of OTEC as an advanced electric generation methodology.

  1. An assessment of ocean thermal energy conversion as an advanced electric generation methodology

    SciTech Connect

    Heydt, G.T. . School of Electrical Engineering)

    1993-03-01

    Ocean thermal energy conversion (OTEC) is a process that employs the temperature difference between surface and deep ocean water to alternately evaporate and condense a working fluid. In the open-cycle OTEC configuration, the working fluid is seawater. In the closed-cycle configuration, a working fluid such as propane is used. In this paper, OTEC is assessed for its practical merits for electric power generation. The process is not new--and its history is reviewed. Because the OTEC principle operates under a small net temperature difference regime, rather large amounts of seawater and working fluid are required. The energy requirements for pumping these fluids may be greater than the energy recovered from the OTEC engine itself. The concept of net power production is discussed. The components of a typical OTEC plant are discussed with emphasis on the evaporator heat exchanger. Operation of an OTEC electric generating station is discussed, including transient operation. Perhaps the most encouraging aspect of OTEC is the recent experiments and efforts at the Natural Energy Laboratory--Hawaii (NELH). The NELH work is summarized in the paper. Remarks are made on bottlenecks and the future of OTEC as an advanced electric generation methodology.

  2. Phase 1 of the First Small Power System Experiment (engineering Experiment No. 1). Volume 3: Experimental System Descriptions. [development and testing of a solar thermal power plant

    NASA Technical Reports Server (NTRS)

    Holl, R. J.

    1979-01-01

    The design and development of a modular solar thermal power system for application in the 1 to 10 MWe range is described. The system consists of five subsystems: the collector, power conversion, energy transport, energy storage, and the plant control subsystem. The collector subsystem consists of concentrator, receiver, and tower assemblies. The energy transport subsystem uses a mixture of salts with a low melting temperature to transport thermal energy. A steam generator drives a steam Rankine cycle turbine which drives an electrical generator to produce electricity. Thermal and stress analysis tests are performed on each subsystem in order to determine the operational reliability, the minimum risk of failure, and the maintenance and repair characteristics.

  3. Directions in US Air Force space power energy generation and distribution technology

    NASA Astrophysics Data System (ADS)

    Reinhardt, Kitt; Keener, Dave; Schuller, Mike

    1997-01-01

    Recent trends in the development of high efficiency, light-weight, reliable and cost-effective space power technologies needed to support the development of near-term, next-generation government and commercial satellites will be discussed. Significant advancements in light-weight and reduced volume electrical power system (EPS) components are required to enable the design of future smallsats with power requirements of less than 1000 W to monster-sats having projected power demands ranging from 10-50 kW for civilian and military communications and space based radar needs. For these missions increased emphasis is placed on reducing total satellite mass to enable use of smaller, less costly, and easier to deploy launch vehicles. In support of these requirements a complement of power generation, power management and distribution, and energy storage technologies are under development at the Air Force Phillips Laboratory Space and Missiles Technology Directorate. Specific technologies presented in this paper include high efficiency multijunction solar cells, low-cost thin-film solar cells, ultra light-weight flexible solar arrays, solar electric thermal converters, and high-voltage (70-130 V) and high-efficiency power management and distribution (PMAD) electronics. The projected impact of EPS subsystem performance on existing, near-term, and next-generation 10-50 kW military satellites will be discussed, along with technical issues and status of EPS component development.

  4. Large-scale terrestrial solar cell power generation cost: A preliminary assessment

    NASA Technical Reports Server (NTRS)

    Spakowski, A. E.; Shure, L. I.

    1972-01-01

    A cost study was made to assess the potential of the large-scale use of solar cell power for terrestrial applications. The incentive is the attraction of a zero-pollution source of power for wide-scale use. Unlike many other concepts for low-pollution power generation, even thermal pollution is avoided since only the incident solar flux is utilized. To provide a basis for comparison and a perspective for evaluation, the pertinent technology was treated in two categories: current and optimistic. Factors considered were solar cells, array assembly, power conditioning, site preparation, buildings, maintenance, and operation. The capital investment was assumed to be amortized over 30 years. The useful life of the solar cell array was assumed to be 10 years, and the cases of zero and 50-percent performance deg-radation were considered. Land costs, taxes, and profits were not included in this study because it was found too difficult to provide good generalized estimates of these items. On the basis of the factors considered, it is shown that even for optimistic projections of technology, electric power from large-sclae terrestrial use of solar cells is approximately two to three orders of magnitude more costly than current electric power generation from either fossil or nuclear fuel powerplants. For solar cell power generation to be a viable competitor on a cost basis, technological breakthroughs would be required in both solar cell and array fabrication and in site preparation.

  5. Coal-fired high performance power generating system

    SciTech Connect

    Not Available

    1992-07-01

    The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) by the year 2000 that is capable of > 47% thermal efficiency; NO[sub x] SO [sub x] and Particulates < 25% NSPS; Cost of electricity 10% lower; coal > 65% of heat input and all solid wastes benign. In order to achieve these goals our team has outlined a research plan based on an optimized analysis of a 250 MW[sub e] combined cycle system applicable to both frame type and aeroderivative gas turbines. Under the constraints of the cycle analysis we have designed a high temperature advanced furnace (HITAF) which integrates several combustor and air heater designs with appropriate ash management procedures. Most of this report discusses the details of work on these components, and the R D Plan for future work. The discussion of the combustor designs illustrates how detailed modeling can be an effective tool to estimate NO[sub x] production, minimum burnout lengths, combustion temperatures and even particulate impact on the combustor walls. When our model is applied to the long flame concept it indicates that fuel bound nitrogen will limit the range of coals that can use this approach. For high nitrogen coals a rapid mixing, rich-lean, deep staging combustor will be necessary. The air heater design has evolved into two segments: a convective heat exchanger downstream of the combustion process; a radiant panel heat exchanger, located in the combustor walls; The relative amount of heat transferred either radiatively or convectively will depend on the combustor type and the ash properties.

  6. On-line diagnostic system for power generators

    SciTech Connect

    Skormin, V.A.; Goodenough, G.S.; Huber, R.K.

    1996-12-31

    A novel approach to diagnostics of a power generator is developed. It utilizes readily available data acquired by the existing computer-based monitoring/control system. Diagnostic procedures detect various trends in the generator data and interpret these trends in the generator data and interpret these trends as changes in the generator performance caused by incipient failures. Results of trend analyses, subjected to statistical validation, facilitate failure prediction and identification thus providing the justification for service when needed. The procedures are incorporated in a diagnostic system implemented in a PC interfaced with the existing VAX-based process monitoring and control system. The diagnostic system provides graphical display of the diagnostic messages.

  7. Optimization of Piezoelectric Electrical Generators Powered by Random Vibrations

    E-print Network

    Lefeuvre, E; Richard, C; Petit, L; Guyomar, D

    2007-01-01

    This paper compares the performances of a vibrationpowered electrical generators using PZT piezoelectric ceramic associated to two different power conditioning circuits. A new approach of the piezoelectric power conversion based on a nonlinear voltage processing is presented and implemented with a particular power conditioning circuit topology. Theoretical predictions and experimental results show that the nonlinear processing technique may increase the power harvested by a factor up to 4 compared to the Standard optimization technique. Properties of this new technique are analyzed in particular in the case of broadband, random vibrations, and compared to those of the Standard interface.

  8. Low-Power Maximum Power Point Tracker with Digital Control for Thermophotovoltaic Generators

    E-print Network

    Perreault, Dave

    Low-Power Maximum Power Point Tracker with Digital Control for Thermophotovoltaic Generators Robert present experimental data from a compact, highly efficient peak power tracker and show how the proposed tracker is verified with low-bandgap PV cells illuminated by a quartz halogen lamp producing a PV diode

  9. Thermal energy storage for a space solar dynamic power system

    NASA Technical Reports Server (NTRS)

    Faget, N. M.; Fraser, W. M., Jr.; Simon, W. E.

    1985-01-01

    In the past, NASA has employed solar photovoltaic devices for long-duration missions. Thus, the Skylab system has operated with a silicon photovoltaic array and a nickel-cadmium electrochemical system energy storage system. Difficulties regarding the employment of such a system for the larger power requirements of the Space Station are related to a low orbit system efficiency and the large weight of the battery. For this reason the employment of a solar dynamic power system (SDPS) has been considered. The primary components of an SDPS include a concentrating mirror, a heat receiver, a thermal energy storage (TES) system, a thermodynamic heat engine, an alternator, and a heat rejection system. The heat-engine types under consideration are a Brayton cycle engine, an organic Rankine cycle engine, and a free-piston/linear-alternator Stirling cycle engine. Attention is given to a system description, TES integration concepts, and a TES technology assessment.

  10. Development of encapsulated lithium hydride thermal energy storage for space power systems

    SciTech Connect

    Morris, D.G.; Foote, J.P.; Olszewski, M.

    1987-12-01

    Inclusion of thermal energy storage in a pulsed space power supply will reduce the mass of the heat rejection system. In this mode, waste heat generated during the brief high-power burst operation is placed in the thermal store; later, the heat in the store is dissipated to space via the radiator over the much longer nonoperational period of the orbit. Thus, the radiator required is of significantly smaller capacity. Scoping analysis indicates that use of lithium hydride as the thermal storage medium results in system mass reduction benefits for burst periods as long as 800 s. A candidate design for the thermal energy storage component utilizes lithium hydride encapsulated in either 304L stainless steel or molybdenum in a packed-bed configuration with a lithium or sodium-potassium (NaK) heat transport fluid. Key issues associated with the system design include phase-change induced stresses in the shell, lithium hydride and shell compatibility, lithium hydride dissociation and hydrogen loss from the system, void presence and movement associated with the melt-freeze process, and heat transfer limitations on obtaining the desired energy storage density. 58 refs., 40 figs., 11 tabs.

  11. 78 FR 4873 - Electrical Protective Equipment Standard and the Electric Power Generation, Transmission, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-23

    ...requirements of the Standard. Electric Power Generation, Transmission...1910.137), and Electric Power Generation, Transmission...CFR 1910.137) and Electric Power Generation, Transmission...Comments on This Notice and Internet Access to Comments and...

  12. 76 FR 11436 - Application to Export Electric Energy; Ontario Power Generation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-02

    ...Export Electric Energy; Ontario Power Generation AGENCY: Office of Electricity Delivery...SUMMARY: Ontario Power Generation Inc. (OPG) has applied to renew its...and Corporate Strategy, Ontario Power Generation Inc., [[Page 11437

  13. 78 FR 285 - Supplemental Final Environmental Impact Statement for Healy Power Generation Unit #2, Healy, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-03

    ...Statement for Healy Power Generation Unit...the existing Healy power plant, now known as Healy...50 MW coal- fired steam generator owned by...generating electrical power for commercial use...remainder of the plant's operational...

  14. A self-sensing magnetorheological damper with power generation

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Liao, Wei-Hsin

    2012-02-01

    Magnetorheological (MR) dampers are promising for semi-active vibration control of various dynamic systems. In the current MR damper systems, a separate power supply and dynamic sensor are required. To enable the MR damper to be self-powered and self-sensing in the future, in this paper we propose and investigate a self-sensing MR damper with power generation, which integrates energy harvesting, dynamic sensing and MR damping technologies into one device. This MR damper has self-contained power generation and velocity sensing capabilities, and is applicable to various dynamic systems. It combines the advantages of energy harvesting—reusing wasted energy, MR damping—controllable damping force, and sensing—providing dynamic information for controlling system dynamics. This multifunctional integration would bring great benefits such as energy saving, size and weight reduction, lower cost, high reliability, and less maintenance for the MR damper systems. In this paper, a prototype of the self-sensing MR damper with power generation was designed, fabricated, and tested. Theoretical analyses and experimental studies on power generation were performed. A velocity-sensing method was proposed and experimentally validated. The magnetic-field interference among three functions was prevented by a combined magnetic-field isolation method. Modeling, analysis, and experimental results on damping forces are also presented.

  15. Power fluctuations smoothing and regulations in wind turbine generator systems

    NASA Astrophysics Data System (ADS)

    Babazadehrokni, Hamed

    Wind is one of the most popular renewable energy sources and it has the potential to become the biggest energy source in future. Since the wind does not always blow constantly, the output wind power is not constant which may make some problem for the power grid. According to the grid code which is set by independent system operator, ISO, wind turbine generator systems need to follow some standards such as the predetermined acceptable power fluctuations. In order to smooth the output powers, the energy storage system and some power electronics modules are employed. The utilized power electronics modules in the wind turbine system can pursue many different goals, such as maintaining the voltage stability, frequency stability, providing the available and predetermined output active and reactive power. On the other side, the energy storage system can help achieving some of these goals but its main job is to store the extra energy when not needed and release the stored energy when needed. The energy storage system can be designed in different sizes, material and also combination of different energy storage systems (hybrid designs). Combination of power electronics devises and also energy storage system helps the wind turbine systems to smooth the output power according to the provided standards. In addition prediction of wind speed may improve the performance of wind turbine generator systems. In this research study all these three topics are studied and the obtained results are written in 10 papers which 7 of them are published and three of them are under process.

  16. Electrostatic Power Generation from Negatively Charged, Simulated Lunar Regolith

    NASA Technical Reports Server (NTRS)

    Choi, Sang H.; King, Glen C.; Kim, Hyun-Jung; Park, Yeonjoon

    2010-01-01

    Research was conducted to develop an electrostatic power generator for future lunar missions that facilitate the utilization of lunar resources. The lunar surface is known to be negatively charged from the constant bombardment of electrons and protons from the solar wind. The resulting negative electrostatic charge on the dust particles, in the lunar vacuum, causes them to repel each other minimizing the potential. The result is a layer of suspended dust about one meter above the lunar surface. This phenomenon was observed by both Clementine and Surveyor spacecrafts. During the Apollo 17 lunar landing, the charged dust was a major hindrance, as it was attracted to the astronauts' spacesuits, equipment, and the lunar buggies. The dust accumulated on the spacesuits caused reduced visibility for the astronauts, and was unavoidably transported inside the spacecraft where it caused breathing irritation [1]. In the lunar vacuum, the maximum charge on the particles can be extremely high. An article in the journal "Nature", titled "Moon too static for astronauts?" (Feb 2, 2007) estimates that the lunar surface is charged with up to several thousand volts [2]. The electrostatic power generator was devised to alleviate the hazardous effects of negatively charged lunar soil by neutralizing the charged particles through capacitive coupling and thereby simultaneously harnessing power through electric charging [3]. The amount of power generated or collected is dependent on the areal coverage of the device and hovering speed over the lunar soil surface. A thin-film array of capacitors can be continuously charged and sequentially discharged using a time-differentiated trigger discharge process to produce a pulse train of discharge for DC mode output. By controlling the pulse interval, the DC mode power can be modulated for powering devices and equipment. In conjunction with a power storage system, the electrostatic power generator can be a power source for a lunar rover or other systems. The negatively charged lunar soil would also be neutralized mitigating some of the adverse effects resulting from lunar dust.

  17. Performance of a Thermally Stable Polyaromatic Hydrocarbon in a Simulated Concentrating Solar Power Loop

    SciTech Connect

    McFarlane, Joanna; Bell, Jason R; Felde, David K; Joseph III, Robert Anthony; Qualls, A L; Weaver, Samuel P

    2014-01-01

    Polyaromatic hydrocarbon thermal fluids showing thermally stability to 600 C have been tested for solar thermal-power applications. Although static thermal tests showed promising results for 1-phenylnaphthalene, loop testing at temperatures to 450 C indicated that the fluid isomerized and degraded at a slow rate. In a loop with a temperature high enough to drive the isomerization, the higher melting point byproducts tended to condense onto cooler surfaces. So, as experienced in loop operation, eventually the internal channels of cooler components in trough solar electric generating systems, such as the waste heat rejection exchanger, may become coated or clogged affecting loop performance. Thus, pure 1-phenylnaphthalene, without addition of stabilizers, does not appear to be a fluid that would have a sufficiently long lifetime (years to decades) to be used in a loop at the temperatures greater than 500 C. The performance of a concentrating solar loop using high temperature fluids was modeled based on the National Renewable Laboratory Solar Advisory Model. It was determined that a solar-to-electricity efficiency of up to 30% and a capacity factor of near 60% could be achieved using a high efficiency collector and 12 h thermal energy storage.

  18. Thermochemical seasonal energy storage for solar thermal power

    SciTech Connect

    Barnhart, J.S.

    1984-01-01

    During the many years that thermochemical energy storage has been under investigation, the concept has been plagued with two persistent problems: high capital cost and poor efficiency. Literally hundreds of chemical reactions have also been carried out. For short-term storage, thermochemical systems suffer in comparison with highly efficient sensible storage media such as molten salts. Long-term storage, on the other hand, is not cost-competitive with systems employing fossil backup power. Thermochemical storage will play a significant role in solar thermal electric conversion only under highly select circumstances. The portion of electric demand served by solar plants must be sufficiently high that the balance of the grid cannot fully supplant seasonal storage. High fossil fuel costs must preclude the use of gas turbines for backup power. Significant breakthroughs in the development of one or more chemical reaction systems must occur. Ingeniously integrated systems must be employed to enhance the efficiency and cost-effectiveness of thermochemical storage. A promising integration scheme discussed herein consists of using sensible storage for diurnal cycling in parallel with thermochemical seasonal storage. Under the most favorable circumstances, thermochemical storage can be expected to play a small but perhaps vital role in supplying baseload energy from solar thermal electric conversion plants.

  19. Integration of ocean thermal energy conversion power plants with existing power systems

    SciTech Connect

    Arunasalam, N.

    1986-01-01

    The problem of integrating an Ocean Thermal Energy Conversion (OTEC) power plant with existing power systems is studied. A nonlinear model of an OTEC power system is developed. The dynamics of the large local induction motor load, and the coaxial cable connection to the mainland are included in the model. The effect of the motor load and the coaxial cable on the steady-state stability of the OTEC power plant is investigated using linearized analysis. The transient stability of the OTEC system is investigated through simulation. The contribution made by the motor load and the coaxial cable to the transient stability is studied. The occurrence of self excitation phenomena is analyzed using linear methods and simulation. The effects of wave and vessel motion on the electrical power output of the OTEC plant is investigated.

  20. Improvement in thermal barriers to intense terahertz generation from photoconductive antennas

    SciTech Connect

    Ropagnol, X.; Bouvier, Marcel; Reid, M.; Ozaki, T.

    2014-07-28

    We study the generation of free-space terahertz (THz) pulses at low THz frequencies using 6H-SiC and 4H-SiC photoconductive antennas. We investigate the dependence of the THz electric field radiated from the biased SiC emitters on the applied bias field and on the incident optical fluence. In this work, bias fields as high as 32?kV/cm, and optical fluences up to 2.5?mJ/cm{sup 2} (for the 400?nm laser), and 7.5?mJ/cm{sup 2} (for the 800?nm laser) were used. THz generation with back- and front-side illumination of the antennas is also examined. It is found that the SiC antenna, when illuminated from the backside, generates higher THz electric fields. The performance of 6H-SiC and ZnSe photoconductive antennas are compared. We show that, taking advantage of the superior thermal properties of SiC compare with ZnSe, the THz output power generated with the 6H-SiC photoconductive antenna under optimum conditions is 2.3 times larger that with a ZnSe photoconductive antenna.

  1. Rotating Detonation Combustion: A Computational Study for Stationary Power Generation

    NASA Astrophysics Data System (ADS)

    Escobar, Sergio

    The increased availability of gaseous fossil fuels in The US has led to the substantial growth of stationary Gas Turbine (GT) usage for electrical power generation. In fact, from 2013 to 2104, out of the 11 Tera Watts-hour per day produced from fossil fuels, approximately 27% was generated through the combustion of natural gas in stationary GT. The thermodynamic efficiency for simple-cycle GT has increased from 20% to 40% during the last six decades, mainly due to research and development in the fields of combustion science, material science and machine design. However, additional improvements have become more costly and more difficult to obtain as technology is further refined. An alternative to improve GT thermal efficiency is the implementation of a combustion regime leading to pressure-gain; rather than pressure loss across the combustor. One concept being considered for such purpose is Rotating Detonation Combustion (RDC). RDC refers to a combustion regime in which a detonation wave propagates continuously in the azimuthal direction of a cylindrical annular chamber. In RDC, the fuel and oxidizer, injected from separated streams, are mixed near the injection plane and are then consumed by the detonation front traveling inside the annular gap of the combustion chamber. The detonation products then expand in the azimuthal and axial direction away from the detonation front and exit through the combustion chamber outlet. In the present study Computational Fluid Dynamics (CFD) is used to predict the performance of Rotating Detonation Combustion (RDC) at operating conditions relevant to GT applications. As part of this study, a modeling strategy for RDC simulations was developed. The validation of the model was performed using benchmark cases with different levels of complexity. First, 2D simulations of non-reactive shock tube and detonation tubes were performed. The numerical predictions that were obtained using different modeling parameters were compared with analytical solutions in order to quantify the numerical error in the simulations. Additionally, experimental data from laboratory scale combustors was used to validate 2D and 3D numerical simulations. The effects of different modeling parameters on RDC predictions was also studied. The validated simulation strategy was then used to assess the performance of RDC for different combustion chamber geometries and operating conditions relevant to GT applications. As a result, the limiting conditions for which continuous detonation and pressure gain combustion can be achieved were predicted and the effect of operating conditions on flow structures and RDC performance was assessed. The modeling strategy and the results from this study could be further used to design more efficient and more stable RDC systems.

  2. Simultaneous Power and Thermal Integrity Driven Via Stapling in 3D ICs

    E-print Network

    He, Lei

    Simultaneous Power and Thermal Integrity Driven Via Stapling in 3D ICs Hao Yu, Joanna Ho, Lei He The existing work on via-stapling in 3D integrated circuits op- timizes power and thermal integrity separately and thermal integrity driven via- stapling in 3D design. The transient temperature and supply volt- age

  3. Diagnosis of Thermal Efficiency of Advanced Combined Cycle Power Plants Using Optical Torque Sensors

    NASA Astrophysics Data System (ADS)

    Umezawa, Shuichi

    A new optical torque measurement method was applied to diagnosis of thermal efficiency of advanced combined cycle, i.e. ACC, plants. Since the ACC power plant comprises a steam turbine and a gas turbine and both of them are connected to the same generator, it is difficult to identify which turbine in the plant deteriorates the performance when the plant efficiency is reduced. The sensor measures axial distortion caused by power transmission by use of He-Ne laser beams, small stainless steel reflectors having bar-code patterns, and a technique of signal processing featuring high frequency. The sensor was applied to the ACC plants of TOKYO ELECTRIC POWER COMPANY, TEPCO, following the success in the application to the early combined cycle plants of TEPCO. The sensor performance was inspected over a year. After an improvement related to the signal process, it is considered that the sensor performance has reached a practical use level.

  4. Diagnosis of Thermal Efficiency of Combined Cycle Power Plants Using Optical Torque Sensors

    NASA Astrophysics Data System (ADS)

    Umezawa, Shuichi

    A new optical torque measurement method is proposed for diagnosis of thermal efficiency of combined cycle power plants. In the case that the plant comprises a steam turbine and a gas turbine, both of which are connected to the same generator, it is difficult to identify which turbine causes deterioration of performance when the plant efficiency is reduced. Therefore, an optical torque sensor has been developed to measure the output of each turbine, which are important data to analyze performance of each machineries in a plant. The sensor measures axial distortion caused by power transmission by use of He-Ne laser beams, small stainless steel reflectors having bar-code patterns, and a technique of signal processing featuring high frequency. It was applied to TOKYO ELECTRIC POWER COMPANY (TEPCO) commercial plants. Following system improvements, it is concluded that error factors can be eliminated and sensor performance can reach a practical use level.

  5. Auxiliary Payload Power System thermal control. [for space shuttle

    NASA Technical Reports Server (NTRS)

    Nagel, R. G.

    1976-01-01

    The Auxiliary Payload Power System (APPS) provides supplementary power and cooling to Space Processing Application (SPA) experiments to be mounted in the APPS and the Spacelab in the Shuttle Payload Bay. SPA experiment operations are planned for early Shuttle flights. This paper presents thermal control study results for preliminary analysis and design definition of the APPS. A 100/sq m, three-wing, pumped-fluid, deployable radiator with separate APPS equipment and SPA experiments coolant loops was selected as the baseline. The system is capable of rejecting the heat (approximately 26 kw) associated with the production and consumption of approximately 16 kw of electrical power produced by the APPS fuel cells for a worst case radiator orientation. For the most favorable orientation, the heat rejection and power capability approach 38 and 24 kw, respectively. Alternate approaches were evaluated, such as heat pipes for the radiator and alternate fluids for the coolant loops. Emphasis was placed on using Shuttle developed hardware: coolant pumps, heat exchangers, fluids, and radiator technology.

  6. Design considerations for an implantable, muscle powered piezoelectric system for generating electrical power.

    PubMed

    Lewandowski, B E; Kilgore, K L; Gustafson, K J

    2007-04-01

    A totally implantable piezoelectric generator system able to harness power from electrically activated muscle would augment the power systems of implanted functional electrical stimulation devices by reducing the number of battery replacement surgeries or by allowing periods of untethered functionality. The generator design contains no moving parts and uses a portion of the generated power for system operation. A software model of the system was developed and simulations performed to predict the output power as the system parameters were varied within their constraints. Mechanical forces that mimic muscle forces were experimentally applied to a piezoelectric generator to verify the accuracy of the simulations and to explore losses due to mechanical coupling. Depending on the selection of system parameters, software simulations predict that this generator concept can generate up to 690 microW of power, which is greater than the power necessary to drive the generator, conservatively estimated to be 46 microW. These results suggest that this concept has the potential to be an implantable, self-replenishing power source and warrants further investigation. PMID:17295066

  7. Lunar base thermal management/power system analysis and design

    NASA Technical Reports Server (NTRS)

    Mcghee, Jerry R.

    1992-01-01

    A compilation of several lunar surface thermal management and power system studies completed under contract and IR&D is presented. The work includes analysis and preliminary design of all major components of an integrated thermal management system, including loads determination, active internal acquisition and transport equipment, external transport systems (active and passive), passive insulation, solar shielding, and a range of lunar surface radiator concepts. Several computer codes were utilized in support of this study, including RADSIM to calculate radiation exchange factors and view factors, RADIATOR (developed in-house) for heat rejection system sizing and performance analysis over a lunar day, SURPWER for power system sizing, and CRYSTORE for cryogenic system performance predictions. Although much of the work was performed in support of lunar rover studies, any or all of the results can be applied to a range of surface applications. Output data include thermal loads summaries, subsystem performance data, mass, and volume estimates (where applicable), integrated and worst-case lunar day radiator size/mass and effective sink temperatures for several concepts (shielded and unshielded), and external transport system performance estimates for both single and two-phase (heat pumped) transport loops. Several advanced radiator concepts are presented, along with brief assessments of possible system benefits and potential drawbacks. System point designs are presented for several cases, executed in support of the contract and IR&D studies, although the parametric nature of the analysis is stressed to illustrate applicability of the analysis procedure to a wide variety of lunar surface systems. The reference configuration(s) derived from the various studies will be presented along with supporting criteria. A preliminary design will also be presented for the reference basing scenario, including qualitative data regarding TPS concerns and issues.

  8. New detonation concepts for propulsion and power generation

    NASA Astrophysics Data System (ADS)

    Braun, Eric M.

    A series of related analytical and experimental studies are focused on utilizing detonations for emerging propulsion and power generation devices. An understanding of the physical and thermodynamic processes for this unsteady thermodynamic cycle has taken over 100 years to develop. An overview of the thermodynamic processes and development history is provided. Thermodynamic cycle analysis of detonation-based systems has often been studied using surrogate models. A real gas model is used for a thermal efficiency prediction of a detonation wave based on the work and heat specified by process path diagrams and a control volume analysis. A combined first and second law analysis aids in understanding performance trends for different initial conditions. A cycle analysis model for an airbreathing, rotating detonation wave engine (RDE) is presented. The engine consists of a steady inlet system with an isolator which delivers air into an annular combustor. A detonation wave continuously rotates around the combustor with side relief as the flow expands towards the nozzle. Air and fuel enter the combustor when the rarefaction wave pressure behind the detonation front drops to the inlet supply pressure. To create a stable RDE, the inlet pressure is matched in a convergence process with the average combustor pressure by increasing the annulus channel width with respect to the isolator channel. Performance of this engine is considered using several parametric studies. RDEs require a fuel injection system that can cycle beyond the limits of mechanical valves. Fuel injectors composed of an orifice connected to a small plenum cavity were mounted on a detonation tube. These fuel injectors, termed fluidic valves, utilize their geometry and a supply pressure to deliver fuel and contain no moving parts. Their behavior is characterized in order to determine their feasibility for integration with high-frequency RDEs. Parametric studies have been conducted with the type of fuel injected, the orifice diameter, and the plenum cavity pressure. Results indicate that the detonation wave pressure temporarily interrupts the fluidic valve supply, but the wave products can be quickly expelled by the fresh fuel supply to allow for refueling. The interruption time of the valve scales with injection and detonation wave pressure ratios as well as a characteristic time. The feasibility of using a detonation wave as a source for producing power in conjunction with a linear generator is considered. Such a facility can be constructed by placing a piston--spring system at the end of a pulsed detonation engine (PDE). Once the detonation wave reflects off the piston, oscillations of the system drive the linear generator. An experimental facility was developed to explore the interaction of a gaseous detonation wave with the piston. Experimental results were then used to develop a model for the interaction. Governing equations for two engine designs are developed and trends are established to indicate a feasible design space for future development.

  9. Proceedings of the 1995 international joint power generation conference -- Volume 3: Power. PWR-Volume 28

    SciTech Connect

    Fruchtman, I.; Hartman, S.; Moore, B.; Henry, R.; Karg, D.; Curley, M.; Reid, S.; Sykes, B.

    1995-12-31

    This book is volume three of the proceedings of the 1995 International Joint Power Generation Conference. The topics of the papers include trends in power production, independent power production, cogeneration, efficiency and reliability enhancement, fossil fuel combustion, steam turbine design and operation, boiler design and operation, power plant testing government regulations, flue gas desulfurization, NO{sub x} control, and life extension for older stations.

  10. 89. Photocopied August 1978. POWER HOUSE, GENERATOR ROOM, VIEW LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    89. Photocopied August 1978. POWER HOUSE, GENERATOR ROOM, VIEW LOOKING EAST FROM ABOUT THE CENTER, FEBRUARY 26, 1918, AFTER MICHIGAN NORTHERN HAD BROUGHT THE GENERATOR INSTALLATION UP TO FULL CAPACITY. THE NARROW PANEL WESTINGHOUSE SWITCHBOARD INSTALLED IN 1916-17 IS AT THE UPPER RIGHT. THE NEW GENERAL ELECTRIC GENERATORS ARE BELOW THE GALLERY. NOTE THE D.C. EXCITER UNIT ON EXTENDED SHAFT ON THE UNIT IN THE FOREGROUND. A SIMILAR TYPE OF INSTALLATION WAS FOUND AT PENSTOCKS 45 THROUGH 48 AND 62 THROUGH 73. WHAT SEEM TO BE EXTENDED SHAFT UNITS IN THE BACKGROUND ARE MERELY THE OLD STANLEY ALTERNATORS BEFORE THEY HAD BEEN REMOVED FROM THE GENERATOR ROOM. (878) - Michigan Lake Superior Power Company, Portage Street, Sault Ste. Marie, Chippewa County, MI

  11. Fiber optic signal amplifier using thermoelectric power generation

    DOEpatents

    Hart, M.M.

    1995-04-18

    A remote fiber optic signal amplifier for use as a repeater/amplifier, such as in transoceanic communications, powered by a Pu{sub 238} or Sr{sub 90} thermoelectric generator. The amplifier comprises a unit with connections on the receiving and sending sides of the communications system, and an erbium-doped fiber amplifier connecting each sending fiber to each receiving fiber. The thermoelectric generator, preferably a Pu{sub 238} or Sr{sub 90} thermoelectric generator delivers power to the amplifiers through a regulator. The heat exchange surfaces of the thermoelectric generator are made of materials resistant to corrosion and biological growth and are directly exposed to the outside, such as the ocean water in transoceanic communications. 2 figs.

  12. Fiber optic signal amplifier using thermoelectric power generation

    DOEpatents

    Hart, Mark M. (Aiken, SC)

    1995-01-01

    A remote fiber optic signal amplifier for use as a repeater/amplifier, such as in transoceanic communications, powered by a Pu.sub.238 or Sr.sub.90 thermoelectric generator. The amplifier comprises a unit with connections on the receiving and sending sides of the communications system, and an erbium-doped fiber amplifier connecting each sending fiber to each receiving fiber. The thermoelectric generator, preferably a Pu.sub.238 or Sr.sub.90 thermoelectric generator delivers power to the amplifiers through a regulator. The heat exchange surfaces of the thermoelectric generator are made of materials resistant to corrosion and biological growth and are directly exposed to the outside, such as the ocean water in transoceanic communications.

  13. Fiber optic signal amplifier using thermoelectric power generation

    DOEpatents

    Hart, M.M.

    1993-01-01

    A remote fiber optic signal amplifier for use as a repeater/amplifier, such as in transoceanic communication, powered by a Pu{sub 238} or Sr{sub 90} thermoelectric generator. The amplifier comprises a unit with connections on the receiving and sending sides of the communications system, and an erbium-doped fiber amplifier connecting each sending fiber to each receiving fiber. The thermoelectric generator, preferably a Pu{sub 238} or Sr{sub 90} thermoelectric generator delivers power to the amplifiers through a regulator. The heat exchange surfaces of the thermoelectric generator are made of material resistant to corrosion and biological growth and are directly exposed to the outside, such as the ocean water in transoceanic communications.

  14. Experiments on H2-O2MHD power generation

    NASA Technical Reports Server (NTRS)

    Smith, J. M.

    1980-01-01

    Magnetohydrodynamic power generation experiments utilizing a cesium-seeded H2-O2 working fluid were carried out using a diverging area Hall duct having an entrance Mach number of 2. The experiments were conducted in a high-field strength cryomagnet facility at field strengths up to 5 tesla. The effects of power takeoff location, axial duct location within the magnetic field, generator loading, B-field strength, and electrode breakdown voltage were investigated. For the operating conditions of these experiments, it is found that the power output increases with the square of the B-field and can be limited by choking of the channel or interelectrode voltage breakdown which occurs at Hall fields greater than 50 volts/insulator. Peak power densities of greater than 100 MW/cu M were achieved.

  15. Anticorrosion and halobios control for tidal power generating units

    NASA Astrophysics Data System (ADS)

    Shen, J. C.; Ding, L. X.

    2012-11-01

    The anticorrosion and halobios control is the key techniquesrelated to the safety and durability of tidal power generating units. The technique of material application, antifouling coating and cathodic protection are often adopted. The technical research, application, updating and development are carried on Jiangxia Tidal Power Station, which is based on the old Unit 1-Unit 5 operated for nearly 30 years, and the new Unit 6 operated in 2007. It is found that stainless steeland the antifouling coating used in Unit 1- Unit 5 are very effective, but cathodic protection is often likely to fail because of the limitation of structure and installation. Analyses and studies for anticorrosion and halobios control techniques of tidal power generating units according to theory, experience and actual effects have been done, which can be for reference to the tidal power station designers and builders.

  16. Solving the Unit Commitment Problem in Power Generation by Primal and Dual Methods

    E-print Network

    Römisch, Werner

    operation planning is ad- dressed. For a real power system comprising coal- and gas- red thermal and pumped on the shares of nuclear, conventional thermal, hydro and pumped-storage hydro power in the underlying commitment. In the present paper we consider a power system comprising coal- and gas- red thermal units

  17. Thermal energy storage for integrated gasification combined-cycle power plants

    SciTech Connect

    Drost, M.K.; Antoniak, Z.I.; Brown, D.R.; Somasundaram, S.

    1990-07-01

    There are increasingly strong indications that the United States will face widespread electrical power generating capacity constraints in the 1990s; most regions of the country could experience capacity shortages by the year 2000. The demand for new generating capacity occurs at a time when there is increasing emphasis on environmental concerns. The integrated gasification combined-cycle (IGCC) power plant is an example of an advanced coal-fired technology that will soon be commercially available. The IGCC concept has proved to be efficient and cost-effective while meeting all current environmental regulations on emissions; however, the operating characteristics of the IGCC system have limited it to base load applications. The integration of thermal energy storage (TES) into an IGCC plant would allow it to meet cyclic loads while avoiding undesirable operating characteristics such as poor turn-down capability, impaired part-load performance, and long startup times. In an IGCC plant with TES, a continuously operated gasifier supplies medium-Btu fuel gas to a continuously operated gas turbine. The thermal energy from the fuel gas coolers and the gas turbine exhaust is stored as sensible heat in molten nitrate salt; heat is extracted during peak demand periods to produce electric power in a Rankine steam power cycle. The study documented in this report was conducted by Pacific Northwest Laboratory (PNL) and consists of a review of the technical and economic feasibility of using TES in an IGCC power plant to produce intermediate and peak load power. The study was done for the US Department of Energy's (DOE) Office of Energy Storage and Distribution. 11 refs., 5 figs., 18 tabs.

  18. Development of a Thermal Oxidizer for Distributed Microturbine Based Generation

    SciTech Connect

    Tom Barton

    2009-03-01

    This project concerns the replacement of the catalytic bed in a microturbine with a thermal oxidizer. The advantage of a thermal oxidizer over a traditional combustion chamber is that the length and temperature of the device allows the volatile species to oxidize relatively slowly and without a flame front. With no flame, the temperature increase throughout the unit is spread over a much larger volume so there is no hot spot for thermal NO{sub x} formation, and the gas Btu level does not have to be above the ignition concentration. Project specific objectives included assessment of the materials and performance requirements of the thermal oxidizer, design the thermal oxidizer system, fabrication of the thermal oxidizer, testing of the oxidizer's performance in concert with the microturbine and comparison of the performance of the oxidizer with catalytic beds and traditional combustion chambers. The thermal oxidizer was designed and fabricated with the assistance of High Country Fabrication of Casper, Wyoming. The design consists of a long set of tubes surrounded by a packed bed of loose ceramic material. The outer vessel containing the tubes and packing is a 3-foot diameter steel shell with multiple layers of thermal insulation. After the metal components were fabricated, the vessel was shipped to Denver where the insulation was poured. The unit was shipped to the cosponsor site for integration with the 100 kW microturbine device. Connection of the thermal oxidizer to the Elliot microturbine turned out to be problematic. The high flow rate of gas tended to push the hot zone out of the oxidizer as assembled. The research team identified several approaches to improve the oxidizer performance including a longer gas path, increased residence time, higher surface area packing material and improved combustion catalysts. The cosponsor is working with an engineering form with oxidizer experience to reconfigure the hardware before moving to a field trial on landfill gas.

  19. New geothermal heat extraction process to deliver clean power generation

    ScienceCinema

    Pete McGrail

    2012-12-31

    A new method for capturing significantly more heat from low-temperature geothermal resources holds promise for generating virtually pollution-free electrical energy. Scientists at the Department of Energys Pacific Northwest National Laboratory will determine if their innovative approach can safely and economically extract and convert heat from vast untapped geothermal resources. The goal is to enable power generation from low-temperature geothermal resources at an economical cost. In addition to being a clean energy source without any greenhouse gas emissions, geothermal is also a steady and dependable source of power.

  20. Combined solar and fossil fuel systems for electric power generation

    NASA Astrophysics Data System (ADS)

    Li, K. W.; Cashman, J.

    The paper is intended to present a parametric study for the combined solar and fossil fuel system for electric power generation. The combined system is so designed that the solar energy will be utilized to a maximum extent at the time when the solar energy is available. The balance of energy requirement is met by burning fossil fuels such as coal, oil and natural gas. The basic system arrangement is the partial heating of feedwater by solar energy. The study includes an identification of major parameters affecting the solar energy utilization as a supplementary fuel for electric power generation. In addition a break-even cost analysis is made.