Science.gov

Sample records for thermodynamics quantum mechanics

  1. Black hole thermodynamics from near-horizon conformal quantum mechanics

    SciTech Connect

    Camblong, Horacio E.; Ordonez, Carlos R.

    2005-05-15

    The thermodynamics of black holes is shown to be directly induced by their near-horizon conformal invariance. This behavior is exhibited using a scalar field as a probe of the black hole gravitational background, for a general class of metrics in D spacetime dimensions (with D{>=}4). The ensuing analysis is based on conformal quantum mechanics, within a hierarchical near-horizon expansion. In particular, the leading conformal behavior provides the correct quantum statistical properties for the Bekenstein-Hawking entropy, with the near-horizon physics governing the thermodynamics from the outset. Most importantly: (i) this treatment reveals the emergence of holographic properties; (ii) the conformal coupling parameter is shown to be related to the Hawking temperature; and (iii) Schwarzschild-like coordinates, despite their 'coordinate singularity', can be used self-consistently to describe the thermodynamics of black holes.

  2. Thermal mechanics: A quantum mechanical analogue of nonequilibrium statistical thermodynamics

    NASA Astrophysics Data System (ADS)

    Zambrini, J.-C.; Yasue, K.

    1980-03-01

    A formal but not conventional equivalence between stochastic processes in nonequilibrium statistical thermodynamics and Schrdinger dynamics in quantum mechanics is shown. It is found, for each stochastic process described by a stochastic differential equation of It type, there exists a Schrdinger-like dynamics in which the absolute square of a wavefunction gives us the same probability distribution as the original stochastic process. In utilizing this equivalence between them, that is, rewriting the stochastic differential equation by an equivalent Schrdinger equation, it is possible to obtain the notion of deterministic limit of the stochastic process as a semi-classical limit of the "Schrdinger" equation. The deterministic limit thus obtained improves the conventional deterministic approximation in the sense of Onsager-Machlup. The present approach is valid for a general class of stochastic equations where local drifts and diffusion coefficients depend on the position. Two concrete examples are given. It should be noticed that the approach in the present form has nothing to do with the conventional one where only a formal similarity between the Fokker-Planck equation and the Schrdinger equation is considered.

  3. Probing phase-space noncommutativity through quantum mechanics and thermodynamics of free particles and quantum rotors

    NASA Astrophysics Data System (ADS)

    Santos, Jonas F. G.; Bernardini, Alex E.; Bastos, Catarina

    2015-11-01

    Novel quantization properties related to the state vectors and the energy spectrum of a two-dimensional system of free particles are obtained in the framework of noncommutative (NC) quantum mechanics (QM) supported by the Weyl-Wigner formalism. Besides reproducing the magnetic field aspect of a Zeeman-like effect, the momentum space NC parameter introduces mutual information properties quantified by the quantum purity related to the relevant coordinates of the corresponding Hilbert space. Supported by the QM in the phase-space, the thermodynamic limit is obtained, and the results are extended to three-dimensional systems. The noncommutativity imprints on the thermodynamic variables related to free particles are identified and, after introducing some suitable constraints to fix an axial symmetry, the analysis is extended to two- and- three dimensional quantum rotor systems, for which the quantization aspects and the deviation from standard QM results are verified.

  4. Similarity between quantum mechanics and thermodynamics: entropy, temperature, and Carnot cycle.

    PubMed

    Abe, Sumiyoshi; Okuyama, Shinji

    2011-02-01

    The similarity between quantum mechanics and thermodynamics is discussed. It is found that if the Clausius equality is imposed on the Shannon entropy and the analog of the quantity of heat, then the value of the Shannon entropy comes to formally coincide with that of the von Neumann entropy of the canonical density matrix, and pure-state quantum mechanics apparently transmutes into quantum thermodynamics. The corresponding quantum Carnot cycle of a simple two-state model of a particle confined in a one-dimensional infinite potential well is studied, and its efficiency is shown to be identical to the classical one. PMID:21405832

  5. Quantum Statistical Mechanical Derivation of the Second Law of Thermodynamics: A Hybrid Setting Approach

    NASA Astrophysics Data System (ADS)

    Tasaki, Hal

    2016-04-01

    Based on quantum statistical mechanics and microscopic quantum dynamics, we prove Planck's and Kelvin's principles for macroscopic systems in a general and realistic setting. We consider a hybrid quantum system that consists of the thermodynamic system, which is initially in thermal equilibrium, and the "apparatus" which operates on the former, and assume that the whole system evolves autonomously. This provides a satisfactory derivation of the second law for macroscopic systems.

  6. Quantum Statistical Mechanical Derivation of the Second Law of Thermodynamics: A Hybrid Setting Approach.

    PubMed

    Tasaki, Hal

    2016-04-29

    Based on quantum statistical mechanics and microscopic quantum dynamics, we prove Planck's and Kelvin's principles for macroscopic systems in a general and realistic setting. We consider a hybrid quantum system that consists of the thermodynamic system, which is initially in thermal equilibrium, and the "apparatus" which operates on the former, and assume that the whole system evolves autonomously. This provides a satisfactory derivation of the second law for macroscopic systems. PMID:27176507

  7. Developing and assessing research-based tools for teaching quantum mechanics and thermodynamics

    NASA Astrophysics Data System (ADS)

    Brown, Benjamin R.

    Research-based tools to educate college students in physics courses from introductory level to graduate level are essential for helping students with a diverse set of goals and backgrounds learn physics. This thesis explores issues related to student common difficulties with some topics in undergraduate quantum mechanics and thermodynamics courses. Student difficulties in learning quantum mechanics and thermodynamics are investigated by administering written tests and surveys to many classes and conducting individual interviews with a subset of students outside the class to unpack the cognitive mechanisms of the difficulties. The quantum mechanics research also focuses on using the research on student difficulties for the development and evaluation of a Quantum Interactive Learning Tutorial (QuILT) to help students learn about the time-dependence of expectation values using the context of Larmor precession of spin and evaluating the role of asking students to self-diagnose their mistakes on midterm examination on their performance on subsequent problem solving. The QuILT on Larmor precession of spin has both paper-pencil activities and a simulation component to help students learn these foundational issues in quantum mechanics. Preliminary evaluations suggest that the QuILT, which strives to help students build a robust knowledge structure of time-dependence of expectation values in quantum mechanics using a guided approach, is successful in helping students learn these topics in the junior-senior level quantum mechanics courses. The technique to help upper-level students in quantum mechanics courses effectively engage in the process of learning from their mistakes is also found to be effective. In particular, research shows that the self-diagnosis activity in upper-level quantum mechanics significantly helps students who are struggling and this activity can reduce the gap between the high and low achieving students on subsequent problem solving. Finally, a survey of Thermodynamic Processes and the First and Second Laws (STPFaSL) is developed and validated with the purpose of evaluating the effectiveness of these topics in a thermodynamics curriculum. The validity and reliability of this survey are discussed and the student difficulties with these topics among various groups from introductory students to physics graduate students are cataloged.

  8. Non-hermitian quantum thermodynamics.

    PubMed

    Gardas, Bartłomiej; Deffner, Sebastian; Saxena, Avadh

    2016-01-01

    Thermodynamics is the phenomenological theory of heat and work. Here we analyze to what extent quantum thermodynamic relations are immune to the underlying mathematical formulation of quantum mechanics. As a main result, we show that the Jarzynski equality holds true for all non-hermitian quantum systems with real spectrum. This equality expresses the second law of thermodynamics for isothermal processes arbitrarily far from equilibrium. In the quasistatic limit however, the second law leads to the Carnot bound which is fulfilled even if some eigenenergies are complex provided they appear in conjugate pairs. Furthermore, we propose two setups to test our predictions, namely with strongly interacting excitons and photons in a semiconductor microcavity and in the non-hermitian tight-binding model. PMID:27003686

  9. Non-hermitian quantum thermodynamics

    NASA Astrophysics Data System (ADS)

    Gardas, Bartłomiej; Deffner, Sebastian; Saxena, Avadh

    2016-03-01

    Thermodynamics is the phenomenological theory of heat and work. Here we analyze to what extent quantum thermodynamic relations are immune to the underlying mathematical formulation of quantum mechanics. As a main result, we show that the Jarzynski equality holds true for all non-hermitian quantum systems with real spectrum. This equality expresses the second law of thermodynamics for isothermal processes arbitrarily far from equilibrium. In the quasistatic limit however, the second law leads to the Carnot bound which is fulfilled even if some eigenenergies are complex provided they appear in conjugate pairs. Furthermore, we propose two setups to test our predictions, namely with strongly interacting excitons and photons in a semiconductor microcavity and in the non-hermitian tight-binding model.

  10. Non-hermitian quantum thermodynamics

    PubMed Central

    Gardas, Bartłomiej; Deffner, Sebastian; Saxena, Avadh

    2016-01-01

    Thermodynamics is the phenomenological theory of heat and work. Here we analyze to what extent quantum thermodynamic relations are immune to the underlying mathematical formulation of quantum mechanics. As a main result, we show that the Jarzynski equality holds true for all non-hermitian quantum systems with real spectrum. This equality expresses the second law of thermodynamics for isothermal processes arbitrarily far from equilibrium. In the quasistatic limit however, the second law leads to the Carnot bound which is fulfilled even if some eigenenergies are complex provided they appear in conjugate pairs. Furthermore, we propose two setups to test our predictions, namely with strongly interacting excitons and photons in a semiconductor microcavity and in the non-hermitian tight-binding model. PMID:27003686

  11. Perspective on quantum thermodynamics

    NASA Astrophysics Data System (ADS)

    Millen, James; Xuereb, André

    2016-01-01

    Classical thermodynamics is unrivalled in its range of applications and relevance to everyday life. It enables a description of complex systems, made up of microscopic particles, in terms of a small number of macroscopic quantities, such as work and entropy. As systems get ever smaller, fluctuations of these quantities become increasingly relevant, prompting the development of stochastic thermodynamics. Recently we have seen a surge of interest in exploring the quantum regime, where the origin of fluctuations is quantum rather than thermal. Many questions, such as the role of entanglement and the emergence of thermalisation, lie wide open. Answering these questions may lead to the development of quantum heat engines and refrigerators, as well as to vitally needed simple descriptions of quantum many-body systems.

  12. Experimental opto-mechanics with levitated nanoparticles: towards quantum control and thermodynamic cycles (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Kiesel, Nikolai; Blaser, Florian; Delic, Uros; Grass, David; Dechant, Andreas; Lutz, Eric; Bathaee, Marzieh; Aspelmeyer, Markus

    2015-08-01

    Combining optical levitation and cavity optomechanics constitutes a promising approach to prepare and control the motional quantum state of massive objects (>10^9 amu). This, in turn, would represent a completely new type of light-matter interface and has, for example, been predicted to enable experimental tests of macrorealistic models or of non-Newtonian gravity at small length scales. Such ideas have triggered significant experimental efforts to realizing such novel systems. To this end, we have recently successfully demonstrated cavity-cooling of a levitated sub-micron silica particle in a classical regime at a pressure of approximately 1mbar. Access to higher vacuum of approx. 10^-6 mbar has been demonstrated using 3D-feedback cooling in optical tweezers without cavity-coupling. Here we will illustrate our strategy towards trapping, 3D-cooling and quantum control of nanoparticles in ultra-high vacuum using cavity-based feedback cooling methods and clean particle loading with hollow-core photonic crystal fibers. We will also discuss the current experimental progress both in 3D-cavity cooling and HCPCF-based transport of nanoparticles. As yet another application of cavity-controlled levitated nanoparticles we will show how to implement a thermodynamic Sterling cycle operating in the underdamped regime. We present optimized protocols with respect to efficiency at maximum power in this little explored regime. We also show that the excellent level of control in our system will allow reproducing all relevant features of such optimized protocols. In a next step, this will enable studies of thermodynamics cycles in a regime where the quantization of the mechanical motion becomes relevant.

  13. Coherence and measurement in quantum thermodynamics

    NASA Astrophysics Data System (ADS)

    Kammerlander, P.; Anders, J.

    2016-02-01

    Thermodynamics is a highly successful macroscopic theory widely used across the natural sciences and for the construction of everyday devices, from car engines to solar cells. With thermodynamics predating quantum theory, research now aims to uncover the thermodynamic laws that govern finite size systems which may in addition host quantum effects. Recent theoretical breakthroughs include the characterisation of the efficiency of quantum thermal engines, the extension of classical non-equilibrium fluctuation theorems to the quantum regime and a new thermodynamic resource theory has led to the discovery of a set of second laws for finite size systems. These results have substantially advanced our understanding of nanoscale thermodynamics, however putting a finger on what is genuinely quantum in quantum thermodynamics has remained a challenge. Here we identify information processing tasks, the so-called projections, that can only be formulated within the framework of quantum mechanics. We show that the physical realisation of such projections can come with a non-trivial thermodynamic work only for quantum states with coherences. This contrasts with information erasure, first investigated by Landauer, for which a thermodynamic work cost applies for classical and quantum erasure alike. Repercussions on quantum work fluctuation relations and thermodynamic single-shot approaches are also discussed.

  14. Coherence and measurement in quantum thermodynamics

    PubMed Central

    Kammerlander, P.; Anders, J.

    2016-01-01

    Thermodynamics is a highly successful macroscopic theory widely used across the natural sciences and for the construction of everyday devices, from car engines to solar cells. With thermodynamics predating quantum theory, research now aims to uncover the thermodynamic laws that govern finite size systems which may in addition host quantum effects. Recent theoretical breakthroughs include the characterisation of the efficiency of quantum thermal engines, the extension of classical non-equilibrium fluctuation theorems to the quantum regime and a new thermodynamic resource theory has led to the discovery of a set of second laws for finite size systems. These results have substantially advanced our understanding of nanoscale thermodynamics, however putting a finger on what is genuinely quantum in quantum thermodynamics has remained a challenge. Here we identify information processing tasks, the so-called projections, that can only be formulated within the framework of quantum mechanics. We show that the physical realisation of such projections can come with a non-trivial thermodynamic work only for quantum states with coherences. This contrasts with information erasure, first investigated by Landauer, for which a thermodynamic work cost applies for classical and quantum erasure alike. Repercussions on quantum work fluctuation relations and thermodynamic single-shot approaches are also discussed. PMID:26916503

  15. Coherence and measurement in quantum thermodynamics.

    PubMed

    Kammerlander, P; Anders, J

    2016-01-01

    Thermodynamics is a highly successful macroscopic theory widely used across the natural sciences and for the construction of everyday devices, from car engines to solar cells. With thermodynamics predating quantum theory, research now aims to uncover the thermodynamic laws that govern finite size systems which may in addition host quantum effects. Recent theoretical breakthroughs include the characterisation of the efficiency of quantum thermal engines, the extension of classical non-equilibrium fluctuation theorems to the quantum regime and a new thermodynamic resource theory has led to the discovery of a set of second laws for finite size systems. These results have substantially advanced our understanding of nanoscale thermodynamics, however putting a finger on what is genuinely quantum in quantum thermodynamics has remained a challenge. Here we identify information processing tasks, the so-called projections, that can only be formulated within the framework of quantum mechanics. We show that the physical realisation of such projections can come with a non-trivial thermodynamic work only for quantum states with coherences. This contrasts with information erasure, first investigated by Landauer, for which a thermodynamic work cost applies for classical and quantum erasure alike. Repercussions on quantum work fluctuation relations and thermodynamic single-shot approaches are also discussed. PMID:26916503

  16. Equivalence of Quantum Heat Machines, and Quantum-Thermodynamic Signatures

    NASA Astrophysics Data System (ADS)

    Uzdin, Raam; Levy, Amikam; Kosloff, Ronnie

    2015-07-01

    Quantum heat engines (QHE) are thermal machines where the working substance is a quantum object. In the extreme case, the working medium can be a single particle or a few-level quantum system. The study of QHE has shown a remarkable similarity with macroscopic thermodynamical results, thus raising the issue of what is quantum in quantum thermodynamics. Our main result is the thermodynamical equivalence of all engine types in the quantum regime of small action with respect to Planck's constant. They have the same power, the same heat, and the same efficiency, and they even have the same relaxation rates and relaxation modes. Furthermore, it is shown that QHE have quantum-thermodynamic signature; i.e., thermodynamic measurements can confirm the presence of quantum effects in the device. We identify generic coherent and stochastic work extraction mechanisms and show that coherence enables power outputs that greatly exceed the power of stochastic (dephased) engines.

  17. Taming catalysts in quantum thermodynamics

    NASA Astrophysics Data System (ADS)

    Skrzypczyk, Paul

    2015-08-01

    Auxiliary quantum systems which can be borrowed to help facilitate thermodynamic processes but must be returned almost undisturbed—i.e. catalysts—are very powerful objects in quantum thermodynamics. In fact, they appear almost too powerful, since they allow for any state transformation to be carried out while being disturbed by an arbitrarily small amount. In their recent paper Ng et al (2015 New J. Phys. 17 085004) show how to tame catalysts in quantum thermodynamics by placing additional physical constraints on them, in terms of dimension and energy.

  18. Reply to "Comment on 'Similarity between quantum mechanics and thermodynamics: Entropy, temperature, and Carnot cycle' ''.

    PubMed

    Abe, Sumiyoshi

    2015-05-01

    In their Comment on the paper [Abe and Okuyama, Phys. Rev. E 83, 021121 (2011)], González-Díaz and Díaz-Solórzano discuss that the initial state of the quantum-mechanical analog of the Carnot cycle should be not in a pure state but in a mixed state due to a projective measurement of the system energy. Here, first the Comment is shown to miss the point. Then, second, multiple projective measurements are discussed as a generalization of the Comment, although they are not relevant to the work commented. PMID:26066283

  19. Reply to ``Comment on `Similarity between quantum mechanics and thermodynamics: Entropy, temperature, and Carnot cycle' ''

    NASA Astrophysics Data System (ADS)

    Abe, Sumiyoshi

    2015-05-01

    In their Comment on the paper [Abe and Okuyama, Phys. Rev. E 83, 021121 (2011), 10.1103/PhysRevE.83.021121], González-Díaz and Díaz-Solórzano discuss that the initial state of the quantum-mechanical analog of the Carnot cycle should be not in a pure state but in a mixed state due to a projective measurement of the system energy. Here, first the Comment is shown to miss the point. Then, second, multiple projective measurements are discussed as a generalization of the Comment, although they are not relevant to the work commented.

  20. Thermodynamic properties of multifunctional oxygenates in atmospheric aerosols from quantum mechanics and molecular dynamics: dicarboxylic acids.

    PubMed

    Tong, Chinghang; Blanco, Mario; Goddard, William A; Seinfeld, John H

    2004-07-15

    Ambient particulate matter contains polar multifunctional oxygenates that partition between the vapor and aerosol phases. Vapor pressure predictions are required to determine the gas-particle partitioning of such organic compounds. We present here a method based on atomistic simulations combined with the Clausius-Clapeyron equation to predict the liquid vapor pressure, enthalpies of vaporization, and heats of sublimation of atmospheric organic compounds. The resulting temperature-dependent vapor pressure equation is a function of the heat of vaporization at the normal boiling point [deltaHvap(Tb)], normal boiling point (Tb), and the change in heat capacity (liquid to gas) of the compound upon phase change [deltaCp(Tb)]. We show that heats of vaporization can be estimated from calculated cohesive energy densities (CED) of the pure compound obtained from multiple sampling molecular dynamics. The simulation method (CED) uses a generic force field (Dreiding) and molecular models with atomic charges determined from quantum mechanics. The heats of vaporization of five dicarboxylic acids [malonic (C3), succinic (C4), glutaric (C5), adipic (C6), and pimelic (C7)] are calculated at 500 K. Results are in agreement with experimental values with an averaged error of about 4%. The corresponding heats of sublimation at 298 K are also predicted using molecular simulations. Vapor pressures of the five dicarboxylic acids are also predicted using the derived Clausius-Clapeyron equation. Predicted liquid vapor pressures agree well with available literature data with an averaged error of 29%, while the predicted solid vapor pressures at ambient temperature differ considerably from a recent study by Bilde et al. (Environ. Sci. Technol. 2003, 37, 1371-1378) (an average of 70%). The difference is attributed to the linear dependence assumption thatwe used in the derived Clausius-Clapeyron equation. PMID:15298204

  1. Comment on "Similarity between quantum mechanics and thermodynamics: Entropy, temperature, and Carnot cycle".

    PubMed

    González-Díaz, L A; Díaz-Solórzano, S

    2015-05-01

    In the paper by Abe and Okuyama [Phys. Rev. E 83, 021121 (2011)], the quantum Carnot cycle of a simple two-state model of a particle confined in a one-dimensional infinite potential well is discussed. It is claimed that the state at the beginning of the quantum Carnot cycle is pure. After that, it is apparently transmuted to a mixed state if Clausius equality is imposed. We prove that this statement is incorrect. In particular, we prove that the state at the beginning of the cycle is mixed due to the process of measuring energy. PMID:26066282

  2. Comment on "Similarity between quantum mechanics and thermodynamics: Entropy, temperature, and Carnot cycle"

    NASA Astrophysics Data System (ADS)

    González-Díaz, L. A.; Díaz-Solórzano, S.

    2015-05-01

    In the paper by Abe and Okuyama [Phys. Rev. E 83, 021121 (2011), 10.1103/PhysRevE.83.021121], the quantum Carnot cycle of a simple two-state model of a particle confined in a one-dimensional infinite potential well is discussed. It is claimed that the state at the beginning of the quantum Carnot cycle is pure. After that, it is apparently transmuted to a mixed state if Clausius equality is imposed. We prove that this statement is incorrect. In particular, we prove that the state at the beginning of the cycle is mixed due to the process of measuring energy.

  3. Higher derivative corrections to black hole thermodynamics from supersymmetric matrix quantum mechanics.

    PubMed

    Hanada, Masanori; Hyakutake, Yoshifumi; Nishimura, Jun; Takeuchi, Shingo

    2009-05-15

    We perform a direct test of the gauge-gravity duality associated with the system of N D0-branes in type IIA superstring theory at finite temperature. Based on the fact that higher derivative corrections to the type IIA supergravity action start at the order of alpha;{'3}, we derive the internal energy in expansion around infinite 't Hooft coupling up to the subleading term with one unknown coefficient. The power of the subleading term is shown to be nicely reproduced by the Monte Carlo data obtained nonperturbatively on the gauge theory side at finite but large effective (dimensionless) 't Hooft coupling constant. This suggests, in particular, that the open strings attached to the D0-branes provide the microscopic origin of the black hole thermodynamics of the dual geometry including alpha;{'} corrections. The coefficient of the subleading term extracted from the fit to the Monte Carlo data provides a prediction for the gravity side. PMID:19518941

  4. Towards quantum thermodynamics in electronic circuits

    NASA Astrophysics Data System (ADS)

    Pekola, Jukka P.

    2015-02-01

    Electronic circuits operating at sub-kelvin temperatures are attractive candidates for studying classical and quantum thermodynamics: their temperature can be controlled and measured locally with exquisite precision, and they allow experiments with large statistical samples. The availability and rapid development of devices such as quantum dots, single-electron boxes and superconducting qubits only enhance their appeal. But although these systems provide fertile ground for studying heat transport, entropy production and work in the context of quantum mechanics, the field remains in its infancy experimentally. Here, we review some recent experiments on quantum heat transport, fluctuation relations and implementations of Maxwell's demon, revealing the rich physics yet to be fully probed in these systems.

  5. Thermodynamics of discrete quantum processes

    NASA Astrophysics Data System (ADS)

    Anders, Janet; Giovannetti, Vittorio

    2013-03-01

    We define thermodynamic configurations and identify two primitives of discrete quantum processes between configurations for which heat and work can be defined in a natural way. This allows us to uncover a general second law for any discrete trajectory that consists of a sequence of these primitives, linking both equilibrium and non-equilibrium configurations. Moreover, in the limit of a discrete trajectory that passes through an infinite number of configurations, i.e. in the reversible limit, we recover the saturation of the second law. Finally, we show that for a discrete Carnot cycle operating between four configurations one recovers Carnot's thermal efficiency.

  6. Quantum Maxwell's demon in thermodynamic cycles.

    PubMed

    Dong, H; Xu, D Z; Cai, C Y; Sun, C P

    2011-06-01

    We study the physical mechanism of Maxwell's demon (MD), which helps do extra work in thermodynamic cycles with the heat engine. This is exemplified with one molecule confined in an infinitely deep square potential with a movable solid wall. The MD is modeled as a two-level system (TLS) for measuring and controlling the motion of the molecule. The processes in the cycle are described in a quantum fashion. It is discovered that a MD with quantum coherence or one at a temperature lower than the molecule's heat bath can enhance the ability of the whole working substance, formed by the heat engine plus the MD, to do work outside. This observation reveals that the essential role of the MD is to drive the whole working substance off equilibrium, or equivalently, to work between two heat baths with different effective temperatures. The elaborate studies with this model explicitly reveal the effect of finite size off the classical limit or thermodynamic limit, which contradicts common sense on a Szilard heat engine (SHE). The quantum SHE's efficiency is evaluated in detail to prove the validity of the second law of thermodynamics. PMID:21797303

  7. Thermodynamics and statistical mechanics. [thermodynamic properties of gases

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The basic thermodynamic properties of gases are reviewed and the relations between them are derived from the first and second laws. The elements of statistical mechanics are then formulated and the partition function is derived. The classical form of the partition function is used to obtain the Maxwell-Boltzmann distribution of kinetic energies in the gas phase and the equipartition of energy theorem is given in its most general form. The thermodynamic properties are all derived as functions of the partition function. Quantum statistics are reviewed briefly and the differences between the Boltzmann distribution function for classical particles and the Fermi-Dirac and Bose-Einstein distributions for quantum particles are discussed.

  8. Quantum thermodynamics: a nonequilibrium Green's function approach.

    PubMed

    Esposito, Massimiliano; Ochoa, Maicol A; Galperin, Michael

    2015-02-27

    We establish the foundations of a nonequilibrium theory of quantum thermodynamics for noninteracting open quantum systems strongly coupled to their reservoirs within the framework of the nonequilibrium Green's functions. The energy of the system and its coupling to the reservoirs are controlled by a slow external time-dependent force treated to first order beyond the quasistatic limit. We derive the four basic laws of thermodynamics and characterize reversible transformations. Stochastic thermodynamics is recovered in the weak coupling limit. PMID:25768745

  9. Fundamental limitations for quantum and nanoscale thermodynamics.

    PubMed

    Horodecki, Michał; Oppenheim, Jonathan

    2013-01-01

    The relationship between thermodynamics and statistical physics is valid in the thermodynamic limit-when the number of particles becomes very large. Here we study thermodynamics in the opposite regime-at both the nanoscale and when quantum effects become important. Applying results from quantum information theory, we construct a theory of thermodynamics in these limits. We derive general criteria for thermodynamical state transitions, and, as special cases, find two free energies: one that quantifies the deterministically extractable work from a small system in contact with a heat bath, and the other that quantifies the reverse process. We find that there are fundamental limitations on work extraction from non-equilibrium states, owing to finite size effects and quantum coherences. This implies that thermodynamical transitions are generically irreversible at this scale. As one application of these methods, we analyse the efficiency of small heat engines and find that they are irreversible during the adiabatic stages of the cycle. PMID:23800725

  10. Fundamental limitations for quantum and nanoscale thermodynamics

    NASA Astrophysics Data System (ADS)

    Horodecki, Michał; Oppenheim, Jonathan

    2013-06-01

    The relationship between thermodynamics and statistical physics is valid in the thermodynamic limit—when the number of particles becomes very large. Here we study thermodynamics in the opposite regime—at both the nanoscale and when quantum effects become important. Applying results from quantum information theory, we construct a theory of thermodynamics in these limits. We derive general criteria for thermodynamical state transitions, and, as special cases, find two free energies: one that quantifies the deterministically extractable work from a small system in contact with a heat bath, and the other that quantifies the reverse process. We find that there are fundamental limitations on work extraction from non-equilibrium states, owing to finite size effects and quantum coherences. This implies that thermodynamical transitions are generically irreversible at this scale. As one application of these methods, we analyse the efficiency of small heat engines and find that they are irreversible during the adiabatic stages of the cycle.

  11. Thermodynamic universality of quantum Carnot engines.

    PubMed

    Gardas, Bartłomiej; Deffner, Sebastian

    2015-10-01

    The Carnot statement of the second law of thermodynamics poses an upper limit on the efficiency of all heat engines. Recently, it has been studied whether generic quantum features such as coherence and quantum entanglement could allow for quantum devices with efficiencies larger than the Carnot efficiency. The present study shows that this is not permitted by the laws of thermodynamics-independent of the model. We will show that rather the definition of heat has to be modified to account for the thermodynamic cost of maintaining non-Gibbsian equilibrium states. Our theoretical findings are illustrated for two experimentally relevant examples. PMID:26565187

  12. Thermodynamic universality of quantum Carnot engines

    DOE PAGESBeta

    Gardas, Bartłomiej; Deffner, Sebastian

    2015-10-12

    The Carnot statement of the second law of thermodynamics poses an upper limit on the efficiency of all heat engines. Recently, it has been studied whether generic quantum features such as coherence and quantum entanglement could allow for quantum devices with efficiencies larger than the Carnot efficiency. The present study shows that this is not permitted by the laws of thermodynamic —independent of the model. We will show that rather the definition of heat has to be modified to account for the thermodynamic cost of maintaining non-Gibbsian equilibrium states. As a result, our theoretical findings are illustrated for two experimentallymore » relevant examples.« less

  13. Thermodynamic universality of quantum Carnot engines

    SciTech Connect

    Gardas, Bartłomiej; Deffner, Sebastian

    2015-10-12

    The Carnot statement of the second law of thermodynamics poses an upper limit on the efficiency of all heat engines. Recently, it has been studied whether generic quantum features such as coherence and quantum entanglement could allow for quantum devices with efficiencies larger than the Carnot efficiency. The present study shows that this is not permitted by the laws of thermodynamic —independent of the model. We will show that rather the definition of heat has to be modified to account for the thermodynamic cost of maintaining non-Gibbsian equilibrium states. As a result, our theoretical findings are illustrated for two experimentally relevant examples.

  14. Thermodynamic universality of quantum Carnot engines

    NASA Astrophysics Data System (ADS)

    Gardas, Bart?omiej; Deffner, Sebastian

    2015-10-01

    The Carnot statement of the second law of thermodynamics poses an upper limit on the efficiency of all heat engines. Recently, it has been studied whether generic quantum features such as coherence and quantum entanglement could allow for quantum devices with efficiencies larger than the Carnot efficiency. The present study shows that this is not permitted by the laws of thermodynamicsindependent of the model. We will show that rather the definition of heat has to be modified to account for the thermodynamic cost of maintaining non-Gibbsian equilibrium states. Our theoretical findings are illustrated for two experimentally relevant examples.

  15. quantum mechanics

    PubMed Central

    Bender, Carl M; DeKieviet, Maarten; Klevansky, S. P.

    2013-01-01

    -symmetric quantum mechanics (PTQM) has become a hot area of research and investigation. Since its beginnings in 1998, there have been over 1000 published papers and more than 15 international conferences entirely devoted to this research topic. Originally, PTQM was studied at a highly mathematical level and the techniques of complex variables, asymptotics, differential equations and perturbation theory were used to understand the subtleties associated with the analytic continuation of eigenvalue problems. However, as experiments on -symmetric physical systems have been performed, a simple and beautiful physical picture has emerged, and a -symmetric system can be understood as one that has a balanced loss and gain. Furthermore, the phase transition can now be understood intuitively without resorting to sophisticated mathe- matics. Research on PTQM is following two different paths: at a fundamental level, physicists are attempting to understand the underlying mathematical structure of these theories with the long-range objective of applying the techniques of PTQM to understanding some of the outstanding problems in physics today, such as the nature of the Higgs particle, the properties of dark matter, the matter–antimatter asymmetry in the universe, neutrino oscillations and the cosmological constant; at an applied level, new kinds of -synthetic materials are being developed, and the phase transition is being observed in many physical contexts, such as lasers, optical wave guides, microwave cavities, superconducting wires and electronic circuits. The purpose of this Theme Issue is to acquaint the reader with the latest developments in PTQM. The articles in this volume are written in the style of mini-reviews and address diverse areas of the emerging and exciting new area of -symmetric quantum mechanics. PMID:23509390

  16. Quantum collapse and the second law of thermodynamics.

    PubMed

    Hormoz, Sahand

    2013-02-01

    A heat engine undergoes a cyclic operation while in equilibrium with the net result of conversion of heat into work. Quantum effects such as superposition of states can improve an engine's efficiency by breaking detailed balance, but this improvement comes at a cost due to excess entropy generated from collapse of superpositions on measurement. We quantify these competing facets for a quantum ratchet composed of an ensemble of pairs of interacting two-level atoms. We suggest that the measurement postulate of quantum mechanics is intricately connected to the second law of thermodynamics. More precisely, if quantum collapse is not inherently random, then the second law of thermodynamics can be violated. Our results challenge the conventional approach of simply quantifying quantum correlations as a thermodynamic work deficit. PMID:23496481

  17. Modified Noether theorem and arrow of time in quantum mechanics

    NASA Astrophysics Data System (ADS)

    Asadov, V. V.; Kechkin, O. V.

    2010-06-01

    Relativistic quantum mechanics is presented with modified Noether theorem. It was shown that Noether charges are related with thermodynamic potentials in such scheme. Broken symmetries generated by thermodynamic mode lead to gravity appearance as effective quantum field.

  18. Thermodynamic formalism for dissipative quantum walks

    NASA Astrophysics Data System (ADS)

    Garnerone, Silvano

    2012-09-01

    We consider the dynamical properties of dissipative continuous-time quantum walks on directed graphs. Using a large-deviation approach we construct a thermodynamic formalism allowing us to define a dynamical order parameter, and to identify transitions between dynamical regimes. For a particular class of dissipative quantum walks we propose a quantum generalization of the the classical PageRank vector, used to rank the importance of nodes in a directed graph. We also provide an example where one can characterize the dynamical transition from an effective classical random walk to a dissipative quantum walk as a thermodynamic crossover between distinct dynamical regimes.

  19. Thermodynamics of Weakly Measured Quantum Systems.

    PubMed

    Alonso, Jose Joaquin; Lutz, Eric; Romito, Alessandro

    2016-02-26

    We consider continuously monitored quantum systems and introduce definitions of work and heat along individual quantum trajectories that are valid for coherent superposition of energy eigenstates. We use these quantities to extend the first and second laws of stochastic thermodynamics to the quantum domain. We illustrate our results with the case of a weakly measured driven two-level system and show how to distinguish between quantum work and heat contributions. We finally employ quantum feedback control to suppress detector backaction and determine the work statistics. PMID:26967399

  20. Thermodynamics of Weakly Measured Quantum Systems

    NASA Astrophysics Data System (ADS)

    Alonso, Jose Joaquin; Lutz, Eric; Romito, Alessandro

    2016-02-01

    We consider continuously monitored quantum systems and introduce definitions of work and heat along individual quantum trajectories that are valid for coherent superposition of energy eigenstates. We use these quantities to extend the first and second laws of stochastic thermodynamics to the quantum domain. We illustrate our results with the case of a weakly measured driven two-level system and show how to distinguish between quantum work and heat contributions. We finally employ quantum feedback control to suppress detector backaction and determine the work statistics.

  1. Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    A development of quantum theory that was initiated in the 1920s by Werner Heisenberg (1901-76) and Erwin Schrödinger (1887-1961). The theory drew on a proposal made in 1925 Prince Louis de Broglie (1892-1987), that particles have wavelike properties (the wave-particle duality) and that an electron, for example, could in some respects be regarded as a wave with a wavelength that depended on its mo...

  2. Quantum Mechanics of Black Holes

    NASA Astrophysics Data System (ADS)

    Witten, Edward

    2012-08-01

    The popular conception of black holes reflects the behavior of the massive black holes found by astronomers and described by classical general relativity. These objects swallow up whatever comes near and emit nothing. Physicists who have tried to understand the behavior of black holes from a quantum mechanical point of view, however, have arrived at quite a different picture. The difference is analogous to the difference between thermodynamics and statistical mechanics. The thermodynamic description is a good approximation for a macroscopic system, but statistical mechanics describes what one will see if one looks more closely.

  3. Quantum mechanics of black holes.

    PubMed

    Witten, Edward

    2012-08-01

    The popular conception of black holes reflects the behavior of the massive black holes found by astronomers and described by classical general relativity. These objects swallow up whatever comes near and emit nothing. Physicists who have tried to understand the behavior of black holes from a quantum mechanical point of view, however, have arrived at quite a different picture. The difference is analogous to the difference between thermodynamics and statistical mechanics. The thermodynamic description is a good approximation for a macroscopic system, but statistical mechanics describes what one will see if one looks more closely. PMID:22859480

  4. Quantum stochastic thermodynamic on harmonic networks

    NASA Astrophysics Data System (ADS)

    Deffner, Sebastian

    2016-01-01

    Fluctuation theorems are symmetry relations for the probability to observe an amount of entropy production in a finite-time process. In a recent paper Pigeon et al (2016 New. J. Phys. 18 013009) derived fluctuation theorems for harmonic networks by means of the large deviation theory. Their novel approach is illustrated with various examples of experimentally relevant systems. As a main result, however, Pigeon et al provide new insight how to consistently formulate quantum stochastic thermodynamics, and provide new and robust tools for the study of the thermodynamics of quantum harmonic networks.

  5. Learning in quantum mechanics

    NASA Astrophysics Data System (ADS)

    Gardner, David E.

    This thesis describes qualitative research conducted to understand the problems students have when learning quantum mechanics. It differs from previous studies on educational issues associated with quantum mechanics in that I have examined the difficulties from the students' perspective. Three questions guided this research: What are the experiences of students learning quantum mechanics? What conceptual difficulties do students have with quantum mechanics? and, How do students approach learning quantum mechanics? From these questions, two themes emerged. First, students do not consider the quantum mechanical concepts of wave-particle duality or the uncertainty principle to be important sources of difficulties for them. Second, many of the difficulties students encounter are not related to conceptual understanding of specific topics, but stem from a mindset that is incongruent with the nature and structure of quantum mechanics. The implications for teaching are that the nature and structure of quantum mechanics should be emphasized and be an explicit part of instruction.

  6. Quantum walk, entanglement and thermodynamic laws

    NASA Astrophysics Data System (ADS)

    Romanelli, Alejandro

    2015-09-01

    We consider a special dynamics of a quantum walk (QW) on a line. The walker, initially localized at the origin of the line with arbitrary chirality, evolves to an asymptotic stationary state. In this stationary state a measurement is performed and the state resulting from this measurement is used to start a second QW evolution to achieve a second asymptotic stationary state. In previous works, we developed the thermodynamics associated with the entanglement between the coin and position degrees of freedom in the QW. Here we study the application of the first and second laws of thermodynamics to the process between the two stationary states mentioned above. We show that: (i) the entropy change has upper and lower bounds that are obtained analytically as functions of the initial conditions. (ii) the energy change is associated to a heat-transfer process.

  7. Friction Force: From Mechanics to Thermodynamics

    ERIC Educational Resources Information Center

    Ferrari, Christian; Gruber, Christian

    2010-01-01

    We study some mechanical problems in which a friction force is acting on a system. Using the fundamental concepts of state, time evolution and energy conservation, we explain how to extend Newtonian mechanics to thermodynamics. We arrive at the two laws of thermodynamics and then apply them to investigate the time evolution and heat transfer of…

  8. Friction Force: From Mechanics to Thermodynamics

    ERIC Educational Resources Information Center

    Ferrari, Christian; Gruber, Christian

    2010-01-01

    We study some mechanical problems in which a friction force is acting on a system. Using the fundamental concepts of state, time evolution and energy conservation, we explain how to extend Newtonian mechanics to thermodynamics. We arrive at the two laws of thermodynamics and then apply them to investigate the time evolution and heat transfer of

  9. Facing quantum mechanical reality.

    PubMed

    Rohrlich, F

    1983-09-23

    Two recent precision experiments provide conclusive evidence against any local hidden variables theory and in favor of standard quantum mechanics. Therefore the epistemology and the ontology of quantum mechanics must now be taken more seriously than ever before. The consequences of the standard interpretation of quantum mechanics are summarized in nontechnical language. The implications of the finiteness of Planck's constant (h > 0) for the quantum world are as strange as the implications of the finiteness of the speed of light (c < infinity for space and time in relativity theory. Both lead to realities beyond our common experience that cannot be rejected. PMID:17776308

  10. Low-temperature thermodynamics with quantum coherence

    PubMed Central

    Narasimhachar, Varun; Gour, Gilad

    2015-01-01

    Thermal operations are an operational model of non-equilibrium quantum thermodynamics. In the absence of coherence between energy levels, exact state transition conditions under thermal operations are known in terms of a mathematical relation called thermo-majorization. But incorporating coherence has turned out to be challenging, even under the relatively tractable model wherein all Gibbs state-preserving quantum channels are included. Here we find a mathematical generalization of thermal operations at low temperatures, ‘cooling maps', for which we derive the necessary and sufficient state transition condition. Cooling maps that saturate recently discovered bounds on coherence transfer are realizable as thermal operations, motivating us to conjecture that all cooling maps are thermal operations. Cooling maps, though a less-conservative generalization to thermal operations, are more tractable than Gibbs-preserving operations, suggesting that cooling map-like models at general temperatures could be of use in gaining insight about thermal operations. PMID:26138621

  11. Statistical mechanics based on fractional classical and quantum mechanics

    SciTech Connect

    Korichi, Z.; Meftah, M. T.

    2014-03-15

    The purpose of this work is to study some problems in statistical mechanics based on the fractional classical and quantum mechanics. At first stage we have presented the thermodynamical properties of the classical ideal gas and the system of N classical oscillators. In both cases, the Hamiltonian contains fractional exponents of the phase space (position and momentum). At the second stage, in the context of the fractional quantum mechanics, we have calculated the thermodynamical properties for the black body radiation, studied the Bose-Einstein statistics with the related problem of the condensation and the Fermi-Dirac statistics.

  12. Nonthermal Quantum Channels as a Thermodynamical Resource

    NASA Astrophysics Data System (ADS)

    Navascués, Miguel; García-Pintos, Luis Pedro

    2015-07-01

    Quantum thermodynamics can be understood as a resource theory, whereby thermal states are free and the only allowed operations are unitary transformations commuting with the total Hamiltonian of the system. Previous literature on the subject has just focused on transformations between different state resources, overlooking the fact that quantum operations which do not commute with the total energy also constitute a potentially valuable resource. In this Letter, given a number of nonthermal quantum channels, we study the problem of how to integrate them in a thermal engine so as to distill a maximum amount of work. We find that, in the limit of asymptotically many uses of each channel, the distillable work is an additive function of the considered channels, computable for both finite dimensional quantum operations and bosonic channels. We apply our results to bound the amount of distillable work due to the natural nonthermal processes postulated in the Ghirardi-Rimini-Weber (GRW) collapse model. We find that, although GRW theory predicts the possibility of extracting work from the vacuum at no cost, the power which a collapse engine could, in principle, generate is extremely low.

  13. Thermodynamics of Quantum Gases for the Entire Range of Temperature

    ERIC Educational Resources Information Center

    Biswas, Shyamal; Jana, Debnarayan

    2012-01-01

    We have analytically explored the thermodynamics of free Bose and Fermi gases for the entire range of temperature, and have extended the same for harmonically trapped cases. We have obtained approximate chemical potentials for the quantum gases in closed forms of temperature so that the thermodynamic properties of the quantum gases become…

  14. Thermodynamics of Quantum Gases for the Entire Range of Temperature

    ERIC Educational Resources Information Center

    Biswas, Shyamal; Jana, Debnarayan

    2012-01-01

    We have analytically explored the thermodynamics of free Bose and Fermi gases for the entire range of temperature, and have extended the same for harmonically trapped cases. We have obtained approximate chemical potentials for the quantum gases in closed forms of temperature so that the thermodynamic properties of the quantum gases become

  15. Foundations of quantum theory and thermodynamics

    NASA Astrophysics Data System (ADS)

    Olkhov, Victor

    1998-12-01

    Physical reasons to support the statement that Quantum theory (Quantum Gravity in particular as well as Classical Gravity) loose applicability due to Thermodynamical effects are presented. The statement is based on several points: 1. N.Bohr requirement that measuring units must have macro size is one of common fundamentals of Quantum theory. 2. The Reference System-the base notion of Classical and Quantum theory and of any observation process as well, must be protected from any external Thermal influence to provide precise measurements of Time and Distance. 3. No physical screen or process, that can reduce or reflect the action of Gravity is known and hence nothing can cool or protect the measuring units of the Reference System from heating by Thermal Gravity fluctuations. 4. Thermal Gravity fluctuations-Thermal fluctuations of Gravity free fall acceleration, are induced by Thermal behavior of matter and Thermal properties of Electromagnetic fields, but usually are neglected as near zero values. Matter heat Gravity and Gravity heat Matter. Thermal fluctuations of Gravity free fall acceleration act as a Universal Heater on any kind of Matter or Field. 5. Nevertheless the usual Thermal properties of Gravity are negligible, they can be dramatically increased by Gravity Blue Shift (near Gravitational Radius) or usual Doppler effects. 6. If Thermal action of Gravity become significant all measurements of Time and Distance that determine the Reference System notion, must depend on the Thermal properties of Gravity, like Temperature or Entropy, and that violate applicability of the Reference System notion and Quantum and Classical theories as well. If so, Thermal notions, like Temperature or Entropy, become more fundamental than common Time and Distance characters. The definition of the Temperature of the Gravity fluctuations and it's possible measurements are suggested.

  16. Thermodynamics of quantum-jump-conditioned feedback control

    NASA Astrophysics Data System (ADS)

    Strasberg, Philipp; Schaller, Gernot; Brandes, Tobias; Esposito, Massimiliano

    2013-12-01

    We consider open quantum systems weakly coupled to thermal reservoirs and subjected to quantum feedback operations triggered with or without delay by monitored quantum jumps. We establish a thermodynamic description of such systems and analyze how the first and second law of thermodynamics are modified by the feedback. We apply our formalism to study the efficiency of a qubit subjected to a quantum feedback control and operating as a heat pump between two reservoirs. We also demonstrate that quantum feedbacks can be used to stabilize coherences in nonequilibrium stationary states which in some cases may even become pure quantum states.

  17. Is quantum mechanics exact?

    SciTech Connect

    Kapustin, Anton

    2013-06-15

    We formulate physically motivated axioms for a physical theory which for systems with a finite number of degrees of freedom uniquely lead to quantum mechanics as the only nontrivial consistent theory. Complex numbers and the existence of the Planck constant common to all systems arise naturally in this approach. The axioms are divided into two groups covering kinematics and basic measurement theory, respectively. We show that even if the second group of axioms is dropped, there are no deformations of quantum mechanics which preserve the kinematic axioms. Thus, any theory going beyond quantum mechanics must represent a radical departure from the usual a priori assumptions about the laws of nature.

  18. Fundamentals of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Tang, C. L.

    2005-06-01

    Quantum mechanics has evolved from a subject of study in pure physics to one with a wide range of applications in many diverse fields. The basic concepts of quantum mechanics are explained in this book in a concise and easy-to-read manner emphasising applications in solid state electronics and modern optics. Following a logical sequence, the book is focused on the key ideas and is conceptually and mathematically self-contained. The fundamental principles of quantum mechanics are illustrated by showing their application to systems such as the hydrogen atom, multi-electron ions and atoms, the formation of simple organic molecules and crystalline solids of practical importance. It leads on from these basic concepts to discuss some of the most important applications in modern semiconductor electronics and optics. Containing many homework problems and worked examples, the book is suitable for senior-level undergraduate and graduate level students in electrical engineering, materials science and applied physics. Clear exposition of quantum mechanics written in a concise and accessible style Precise physical interpretation of the mathematical foundations of quantum mechanics Illustrates the important concepts and results by reference to real-world examples in electronics and optoelectronics Contains homeworks and worked examples, with solutions available for instructors

  19. Empirical quantum mechanics

    NASA Astrophysics Data System (ADS)

    Nishimura, Hirokazu

    1996-06-01

    Machida and Namiki developed a many-Hilbert-spaces formalism for dealing with the interaction between a quantum object and a measuring apparatus. Their mathematically rugged formalism was polished first by Araki from an operator-algebraic standpoint and then by Ozawa for Boolean quantum mechanics, which approaches a quantum system with a compatible family of continuous superselection rules from a notable and perspicacious viewpoint. On the other hand, Foulis and Randall set up a formal theory for the empirical foundation of all sciences, at the hub of which lies the notion of a manual of operations. They deem an operation as the set of possible outcomes and put down a manual of operations at a family of partially overlapping operations. Their notion of a manual of operations was incorporated into a category-theoretic standpoint into that of a manual of Boolean locales by Nishimura, who looked upon an operation as the complete Boolean algebra of observable events. Considering a family of Hilbert spaces not over a single Boolean locale but over a manual of Boolean locales as a whole, Ozawa's Boolean quantum mechanics is elevated into empirical quantum mechanics, which is, roughly speaking, the study of quantum systems with incompatible families of continuous superselection rules. To this end, we are obliged to develop empirical Hilbert space theory. In particular, empirical versions of the square root lemma for bounded positive operators, the spectral theorem for (possibly unbounded) self-adjoint operators, and Stone's theorem for one-parameter unitary groups are established.

  20. Gravity and Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Blencowe, Miles

    The emergence of the macroscopic classical world from the microscopic quantum world is commonly understood to be a consequence of the fact that any given quantum system is open, unavoidably interacting with unobserved environmental degrees of freedom that will cause initial quantum superposition states of the system to decohere, resulting in classical mixtures of either-or alternatives. A fundamental question concerns how large a macroscopic object can be placed in a manifest quantum state, such as a center of mass quantum superposition state, under conditions where the effects of the interacting environmental degrees of freedom are reduced (i.e. in ultrahigh vacuum and at ultralow temperatures). Recent experiments have in fact demonstrated manifest quantum behavior in nano-to-micron-scale mechanical systems. Gravity has been invoked in various ways as playing a possible fundamental role in enforcing classicality of matter systems beyond a certain scale. Adopting the viewpoint that the standard perturbative quantization of general relativity provides an effective description of quantum gravity that is valid at ordinary energies, we show that it is possible to describe quantitatively how gravity as an environment can induce the decoherence of matter superposition states. The justification for such an approach follows from the fact that we are considering laboratory scale systems, where the matter is localized to regions of small curvature. As with other low energy effects, such as the quantum gravity correction to the Newtonian potential between two ordinary masses, it should be possible to quantitatively evaluate gravitationally induced decoherence rates by employing standard perturbative quantum gravity as an effective field theory; whatever the final form the eventual correct quantum theory of gravity takes, it must converge in its predictions with the effective field theory description at low energies. Research supported by the National Science Foundation (NSF) and the Foundational Questions Institute (FQXi).

  1. Time Asymmetric Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Bohm, Arno R.; Gadella, Manuel; Kielanowski, Piotr

    2011-09-01

    The meaning of time asymmetry in quantum physics is discussed. On the basis of a mathematical theorem, the Stone-von Neumann theorem, the solutions of the dynamical equations, the Schrödinger equation (1) for states or the Heisenberg equation (6a) for observables are given by a unitary group. Dirac kets require the concept of a RHS (rigged Hilbert space) of Schwartz functions; for this kind of RHS a mathematical theorem also leads to time symmetric group evolution. Scattering theory suggests to distinguish mathematically between states (defined by a preparation apparatus) and observables (defined by a registration apparatus (detector)). If one requires that scattering resonances of width Γ and exponentially decaying states of lifetime τ=h/Γ should be the same physical entities (for which there is sufficient evidence) one is led to a pair of RHS's of Hardy functions and connected with it, to a semigroup time evolution t0≤t<∞, with the puzzling result that there is a quantum mechanical beginning of time, just like the big bang time for the universe, when it was a quantum system. The decay of quasi-stable particles is used to illustrate this quantum mechanical time asymmetry. From the analysis of these processes, we show that the properties of rigged Hilbert spaces of Hardy functions are suitable for a formulation of time asymmetry in quantum mechanics.

  2. Quantum coherence, time-translation symmetry and thermodynamics

    NASA Astrophysics Data System (ADS)

    Korzekwa, Kamil; Lostaglio, Matteo; Jennings, David; Rudolph, Terry

    The first law of thermodynamics imposes not just a constraint on the energy content of systems in extreme quantum regimes but also symmetry constraints related to the thermodynamic processing of quantum coherence. We show that this thermodynamic symmetry decomposes any quantum state into mode operators that quantify the coherence present in the state. We then establish general upper and lower bounds for the evolution of quantum coherence under arbitrary thermal operations, valid for any temperature. We identify primitive coherence manipulations and show that the transfer of coherence between energy levels manifests irreversibility not captured by free energy. Moreover, the recently developed thermomajorization relations on block-diagonal quantum states are observed to be special cases of this symmetry analysis.

  3. A thermodynamical formalism describing mechanical interactions

    NASA Astrophysics Data System (ADS)

    Andrade, R. F. S.; Souza, A. M. C.; Curado, E. M. F.; Nobre, F. D.

    2014-10-01

    The dynamical behavior of an overdamped mechanical model devoid of any usual thermal effects is analyzed by a formalism that is similar to usual thermodynamics, and completely independent of any ad hoc assumption of a probability distribution of states in phase space of the mechanical model. It leads to the definition of a new entropy function, which does not coincide with the usual thermodynamical entropy. The new step making the difference to previous studies of this system is the identification of two non-equivalent mechanical interaction mechanisms, which are defined and identified as work and pseudo-heat. Together with the introduced effective temperature θ, they make it possible to characterize the equivalent to isothermal, adiabatic, isobaric, and isochoric processes. Three statements, formally analogous to the zeroth, first, and second law of thermodynamics, are issued. The statement of the second law results from the asymmetry in the way energy can be exchanged along the two processes. A Carnot cycle is defined, for which the efficiency is expressed in terms of θ in the operating pseudo-heat reservoirs. The analogous Clausius theorem for the system operating an arbitrary reversible cycle is proved, leading to the new entropy function. Consequences of the extension of thermodynamic formalism to mechanical models with different processes of transferring energy are discussed.

  4. Quantum mechanics over sets

    NASA Astrophysics Data System (ADS)

    Ellerman, David

    2014-03-01

    In models of QM over finite fields (e.g., Schumacher's ``modal quantum theory'' MQT), one finite field stands out, Z2, since Z2 vectors represent sets. QM (finite-dimensional) mathematics can be transported to sets resulting in quantum mechanics over sets or QM/sets. This gives a full probability calculus (unlike MQT with only zero-one modalities) that leads to a fulsome theory of QM/sets including ``logical'' models of the double-slit experiment, Bell's Theorem, QIT, and QC. In QC over Z2 (where gates are non-singular matrices as in MQT), a simple quantum algorithm (one gate plus one function evaluation) solves the Parity SAT problem (finding the parity of the sum of all values of an n-ary Boolean function). Classically, the Parity SAT problem requires 2n function evaluations in contrast to the one function evaluation required in the quantum algorithm. This is quantum speedup but with all the calculations over Z2 just like classical computing. This shows definitively that the source of quantum speedup is not in the greater power of computing over the complex numbers, and confirms the idea that the source is in superposition.

  5. Epigenetics: Biology's Quantum Mechanics

    PubMed Central

    Jorgensen, Richard A.

    2011-01-01

    The perspective presented here is that modern genetics is at a similar stage of development as were early formulations of quantum mechanics theory in the 1920s and that in 2010 we are at the dawn of a new revolution in genetics that promises to enrich and deepen our understanding of the gene and the genome. The interrelationships and interdependence of two views of the gene – the molecular biological view and the epigenetic view – are explored, and it is argued that the classical molecular biological view is incomplete without incorporation of the epigenetic perspective and that in a sense the molecular biological view has been evolving to include the epigenetic view. Intriguingly, this evolution of the molecular view toward the broader and more inclusive epigenetic view of the gene has an intriguing, if not precise, parallel in the evolution of concepts of atomic physics from Newtonian mechanics to quantum mechanics that are interesting to consider. PMID:22639577

  6. Lorentz covariant statistical mechanics and thermodynamics of the relativistic ideal gas and preferred frame

    SciTech Connect

    Kowalski, K.; Rembielinski, J.; Smolinski, K. A.

    2007-08-15

    The Lorentz covariant classical and quantum statistical mechanics and thermodynamics of an ideal relativistic gas of bradyons (particles slower than light), luxons (particles moving with the speed of light), and tachyons (hypothetical particles faster than light) is discussed. The Lorentz covariant formulation is based on the preferred frame approach which among others enables a consistent, free of paradoxes description of tachyons. The thermodynamic functions within the covariant approach are obtained both in the classical and quantum case.

  7. Quantum Rényi relative entropies affirm universality of thermodynamics.

    PubMed

    Misra, Avijit; Singh, Uttam; Bera, Manabendra Nath; Rajagopal, A K

    2015-10-01

    We formulate a complete theory of quantum thermodynamics in the Rényi entropic formalism exploiting the Rényi relative entropies, starting from the maximum entropy principle. In establishing the first and second laws of quantum thermodynamics, we have correctly identified accessible work and heat exchange in both equilibrium and nonequilibrium cases. The free energy (internal energy minus temperature times entropy) remains unaltered, when all the entities entering this relation are suitably defined. Exploiting Rényi relative entropies we have shown that this "form invariance" holds even beyond equilibrium and has profound operational significance in isothermal process. These results reduce to the Gibbs-von Neumann results when the Rényi entropic parameter α approaches 1. Moreover, it is shown that the universality of the Carnot statement of the second law is the consequence of the form invariance of the free energy, which is in turn the consequence of maximum entropy principle. Further, the Clausius inequality, which is the precursor to the Carnot statement, is also shown to hold based on the data processing inequalities for the traditional and sandwiched Rényi relative entropies. Thus, we find that the thermodynamics of nonequilibrium state and its deviation from equilibrium together determine the thermodynamic laws. This is another important manifestation of the concepts of information theory in thermodynamics when they are extended to the quantum realm. Our work is a substantial step towards formulating a complete theory of quantum thermodynamics and corresponding resource theory. PMID:26565222

  8. Internal dissipation and heat leaks in quantum thermodynamic cycles

    NASA Astrophysics Data System (ADS)

    Correa, Luis A.; Palao, José P.; Alonso, Daniel

    2015-09-01

    The direction of the steady-state heat currents across a generic quantum system connected to multiple baths may be engineered to realize virtually any thermodynamic cycle. In spite of their versatility, such continuous energy-conversion systems are generally unable to operate at maximum efficiency due to non-negligible sources of irreversible entropy production. In this paper we introduce a minimal model of irreversible absorption chiller. We identify and characterize the different mechanisms responsible for its irreversibility, namely heat leaks and internal dissipation, and gauge their relative impact in the overall cooling performance. We also propose reservoir engineering techniques to minimize these detrimental effects. Finally, by looking into a known three-qubit embodiment of the absorption cooling cycle, we illustrate how our simple model may help to pinpoint the different sources of irreversibility naturally arising in more complex practical heat devices.

  9. Internal dissipation and heat leaks in quantum thermodynamic cycles.

    PubMed

    Correa, Luis A; Palao, José P; Alonso, Daniel

    2015-09-01

    The direction of the steady-state heat currents across a generic quantum system connected to multiple baths may be engineered to realize virtually any thermodynamic cycle. In spite of their versatility, such continuous energy-conversion systems are generally unable to operate at maximum efficiency due to non-negligible sources of irreversible entropy production. In this paper we introduce a minimal model of irreversible absorption chiller. We identify and characterize the different mechanisms responsible for its irreversibility, namely heat leaks and internal dissipation, and gauge their relative impact in the overall cooling performance. We also propose reservoir engineering techniques to minimize these detrimental effects. Finally, by looking into a known three-qubit embodiment of the absorption cooling cycle, we illustrate how our simple model may help to pinpoint the different sources of irreversibility naturally arising in more complex practical heat devices. PMID:26465455

  10. Quantum Mechanics, Volume 2

    NASA Astrophysics Data System (ADS)

    Cohen-Tannoudji, Claude; Diu, Bernard; Laloe, Frank

    1986-06-01

    Beginning students of quantum mechanics frequently have difficulty separating essential underlying principles from the specific examples to which these principles have historically been applied. This book is especially designed to eliminate that difficulty. Fourteen chapters, augmented by 14 "complementary sections," provide a clarity of organization, careful attention to pedagogical details, and a wealth of topics and examples that allow physics professors to tailor courses to meet students' specific needs. Each chapter starts with a clear exposition of the problem to be treated and then logically develops the physical and mathematical concept. These chapters emphasize the underlying principles of the material, undiluted by extensive references to applications and practical examples. (Such applications and practical examples are contained in the complementary sections.) The book begins with a qualitative introduction to quantum mechanical ideas using simple optical analogies and continues with a systematic presentation of the mathematical tools and postulates of quantum mechanics as well as a discussion of their physical content. Applications follow, starting with the simplest ones (two-level systems, the harmonic oscillator, etc.), and becoming gradually more complicated (the hydrogen atom, approximation methods, etc.). The complementary sections each expand this basic knowledge, supplying a wide range of applications and related topics which make use of the essential skills. Here the authors include carefully written, detailed expositions of a large number of special problems and more advanced topics-integrated as an essential portion of the text. These topics, however, are not interdependent; this allows professors to direct their quantum mechanics courses toward both physics and chemistry students.

  11. Quantum thermodynamics for a model of an expanding Universe

    NASA Astrophysics Data System (ADS)

    Liu, Nana; Goold, John; Fuentes, Ivette; Vedral, Vlatko; Modi, Kavan; Bruschi, David Edward

    2016-02-01

    We investigate the thermodynamical properties of quantum fields in curved spacetime. Our approach is to consider quantum fields in curved spacetime as a quantum system undergoing an out-of-equilibrium transformation. The non-equilibrium features are studied by using a formalism which has been developed to derive fluctuation relations and emergent irreversible features beyond the linear response regime. We apply these ideas to an expanding Universe scenario, therefore avoiding assumptions on the relation between entropy and quantum matter. We provide a fluctuation theorem which allows us to understand particle production due to the expansion of the Universe as an entropic increase. Our results pave the way towards a different understanding of the thermodynamics of relativistic and quantum systems in our Universe.

  12. Quantum chemical approach to estimating the thermodynamics of metabolic reactions.

    PubMed

    Jinich, Adrian; Rappoport, Dmitrij; Dunn, Ian; Sanchez-Lengeling, Benjamin; Olivares-Amaya, Roberto; Noor, Elad; Even, Arren Bar; Aspuru-Guzik, Alán

    2014-01-01

    Thermodynamics plays an increasingly important role in modeling and engineering metabolism. We present the first nonempirical computational method for estimating standard Gibbs reaction energies of metabolic reactions based on quantum chemistry, which can help fill in the gaps in the existing thermodynamic data. When applied to a test set of reactions from core metabolism, the quantum chemical approach is comparable in accuracy to group contribution methods for isomerization and group transfer reactions and for reactions not including multiply charged anions. The errors in standard Gibbs reaction energy estimates are correlated with the charges of the participating molecules. The quantum chemical approach is amenable to systematic improvements and holds potential for providing thermodynamic data for all of metabolism. PMID:25387603

  13. Work extraction and thermodynamics for individual quantum systems

    NASA Astrophysics Data System (ADS)

    Skrzypczyk, Paul; Short, Anthony J.; Popescu, Sandu

    2014-06-01

    Thermodynamics is traditionally concerned with systems comprised of a large number of particles. Here we present a framework for extending thermodynamics to individual quantum systems, including explicitly a thermal bath and work-storage device (essentially a ‘weight’ that can be raised or lowered). We prove that the second law of thermodynamics holds in our framework, and gives a simple protocol to extract the optimal amount of work from the system, equal to its change in free energy. Our results apply to any quantum system in an arbitrary initial state, in particular including non-equilibrium situations. The optimal protocol is essentially reversible, similar to classical Carnot cycles, and indeed, we show that it can be used to construct a quantum Carnot engine.

  14. Quantum Chemical Approach to Estimating the Thermodynamics of Metabolic Reactions

    NASA Astrophysics Data System (ADS)

    Jinich, Adrian; Rappoport, Dmitrij; Dunn, Ian; Sanchez-Lengeling, Benjamin; Olivares-Amaya, Roberto; Noor, Elad; Even, Arren Bar; Aspuru-Guzik, Alán

    2014-11-01

    Thermodynamics plays an increasingly important role in modeling and engineering metabolism. We present the first nonempirical computational method for estimating standard Gibbs reaction energies of metabolic reactions based on quantum chemistry, which can help fill in the gaps in the existing thermodynamic data. When applied to a test set of reactions from core metabolism, the quantum chemical approach is comparable in accuracy to group contribution methods for isomerization and group transfer reactions and for reactions not including multiply charged anions. The errors in standard Gibbs reaction energy estimates are correlated with the charges of the participating molecules. The quantum chemical approach is amenable to systematic improvements and holds potential for providing thermodynamic data for all of metabolism.

  15. Thermodynamical properties of Strunz’s quantum dissipative models

    SciTech Connect

    Zen, Freddy P.; Sulaiman, A.

    2015-09-30

    The existence of the negative of specific heat from quantum dissipative theory is investigated. Strunz’s quantum dissipative model will be used in this studies. The thermodynamical properties will be studied starts out from the thermo-dynamic partition function of the dissipative system. The path integral technique is used to calculate the partition function under consideration. The results shows that the specific heat can be negative if the damping parameter more than a half the oscillator frequency and also occur at low temperatures. For damping factor greater than the frequency of harmonic oscillator then specific heat will oscillate at low temperatures and approaching normal conditions at a high temperature.

  16. The second laws of quantum thermodynamics.

    PubMed

    Brandão, Fernando; Horodecki, Michał; Ng, Nelly; Oppenheim, Jonathan; Wehner, Stephanie

    2015-03-17

    The second law of thermodynamics places constraints on state transformations. It applies to systems composed of many particles, however, we are seeing that one can formulate laws of thermodynamics when only a small number of particles are interacting with a heat bath. Is there a second law of thermodynamics in this regime? Here, we find that for processes which are approximately cyclic, the second law for microscopic systems takes on a different form compared to the macroscopic scale, imposing not just one constraint on state transformations, but an entire family of constraints. We find a family of free energies which generalize the traditional one, and show that they can never increase. The ordinary second law relates to one of these, with the remainder imposing additional constraints on thermodynamic transitions. We find three regimes which determine which family of second laws govern state transitions, depending on how cyclic the process is. In one regime one can cause an apparent violation of the usual second law, through a process of embezzling work from a large system which remains arbitrarily close to its original state. These second laws are relevant for small systems, and also apply to individual macroscopic systems interacting via long-range interactions. By making precise the definition of thermal operations, the laws of thermodynamics are unified in this framework, with the first law defining the class of operations, the zeroth law emerging as an equivalence relation between thermal states, and the remaining laws being monotonicity of our generalized free energies. PMID:25675476

  17. The second laws of quantum thermodynamics

    PubMed Central

    Brandão, Fernando; Horodecki, Michał; Ng, Nelly; Oppenheim, Jonathan; Wehner, Stephanie

    2015-01-01

    The second law of thermodynamics places constraints on state transformations. It applies to systems composed of many particles, however, we are seeing that one can formulate laws of thermodynamics when only a small number of particles are interacting with a heat bath. Is there a second law of thermodynamics in this regime? Here, we find that for processes which are approximately cyclic, the second law for microscopic systems takes on a different form compared to the macroscopic scale, imposing not just one constraint on state transformations, but an entire family of constraints. We find a family of free energies which generalize the traditional one, and show that they can never increase. The ordinary second law relates to one of these, with the remainder imposing additional constraints on thermodynamic transitions. We find three regimes which determine which family of second laws govern state transitions, depending on how cyclic the process is. In one regime one can cause an apparent violation of the usual second law, through a process of embezzling work from a large system which remains arbitrarily close to its original state. These second laws are relevant for small systems, and also apply to individual macroscopic systems interacting via long-range interactions. By making precise the definition of thermal operations, the laws of thermodynamics are unified in this framework, with the first law defining the class of operations, the zeroth law emerging as an equivalence relation between thermal states, and the remaining laws being monotonicity of our generalized free energies. PMID:25675476

  18. Mechanical quantum resonators

    NASA Astrophysics Data System (ADS)

    Cleland, A. N.; Geller, M. R.

    2005-09-01

    We describe the design for a solid-state quantum computational architecture based on the integration of GHz-frequency mechanical resonators with Josephson phase qubits, which have the potential for demonstrating a variety of single- and multi-qubit operations critical to quantum computation. The computational qubits are eigenstates of large-area, current-biased Josephson junctions. Two or more qubits are capacitively coupled to a piezoelectric nanoelectromechanical disk resonator, which enables coherent coupling of the qubits. The integrated system is analogous to one or more few-level atoms (the Josephson junction qubits) in an electromagnetic cavity (the nanomechanical resonator). However, here we can individually tune the level spacing of the "atoms" and control their "electromagnetic" interaction strength. We show that quantum states prepared in a Josephson junction can be passed to the nanomechanical resonator and stored there, and then can be passed back to the original junction or transferred to another with high fidelity. The resonator can also be used to produce maximally entangled Bell states between a pair of Josephson junctions.

  19. Supersymmetric Quantum Mechanics

    SciTech Connect

    David, J.; Fernandez, C.

    2010-10-11

    Supersymmetric quantum mechanics (SUSY QM) is a powerful tool for generating new potentials with known spectra departing from an initial solvable one. In these lecture notes we will present some general formulae concerning SUSY QM of first second order for one-dimensional arbitrary systems, we will illustrate the method through the trigonometric Poeschl-Teller potentials. Some intrinsically related subjects, as the algebraic structure inherited by the new Hamiltonians and the corresponding coherent states will be analyzed. The technique will be as well implemented for periodic potentials, for which the corresponding spectrum is composed of allowed bands separated by energy gaps.

  20. Statistical Mechanics and Thermodynamics of Viral Evolution

    NASA Astrophysics Data System (ADS)

    Jones, Barbara; Kaufman, James

    Using methods drawn from physics we study the life cycle of viruses. We analyze a model of viral infection and evolution using the ``grand canonical ensemble'' and formalisms from statistical mechanics and thermodynamics. Using this approach we determine possible genetic states of a model virus and host as a function of two independent pressures-immune response and system temperature. We show the system has a real thermodynamic temperature, and discover a new phase transition between a positive temperature regime of normal replication and a negative temperature ``disordered'' phase of the virus. We distinguish this from previous observations of a phase transition that arises as a function of mutation rate. From an evolutionary biology point of view, at steady state the viruses naturally evolve to distinct quasispecies. The approach used here could be refined to apply to real biological systems, perhaps providing insight into immune escape, the emergence of novel pathogens and other results of viral evolution.

  1. Advanced Concepts in Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Esposito, Giampiero; Marmo, Giuseppe; Miele, Gennaro; Sudarshan, George

    2014-11-01

    Preface; 1. Introduction: the need for a quantum theory; 2. Experimental foundations of quantum theory; 3. Waves and particles; 4. Schrödinger picture, Heisenberg picture and probabilistic aspects; 5. Integrating the equations of motion; 6. Elementary applications: 1-dimensional problems; 7. Elementary applications: multidimensional problems; 8. Coherent states and related formalism; 9. Introduction to spin; 10. Symmetries in quantum mechanics; 11. Approximation methods; 12. Modern pictures of quantum mechanics; 13. Formulations of quantum mechanics and their physical implications; 14. Exam problems; Glossary of geometric concepts; References; Index.

  2. Quantum Mechanics as Dualism

    NASA Astrophysics Data System (ADS)

    Jones, Robert

    2011-03-01

    I do not agree with mind-body dualism. Today the consensus view is that thought and mind is a combination of processes like memory, generalization, comparison, deduction, organization, induction, classification, feature detection, analogy, etc. performed by computational machinery. (R. Jones, Trans. of the Kansas Acad. Sci., vol. 109, # 3/4, 2006 and www.robert-w-jones.com, philosopher, theory of thought) But I believe that quantum mechanics is a more plausible dualist theory of reality. The quantum mechanical wave function is nonphysical, it exists in a 3N space (for an N body system) not in (x,y,z,t) 4-space, and does not possess physical properties. But real physical things like energy (which do exist in our 4-space world) influence the wave function and the wave function, in its turn, influences real physical things, like where a particle can be found in 4-space. The coupling between the spirit-like wave function and things found in the real (4-space) world (like energy) is via mathematical equations like the Schrodinger equation and Born normalization.

  3. Thermodynamics of discrete-charge quantum circuits

    NASA Astrophysics Data System (ADS)

    Utreras-Díaz, C. A.; Laroze, D.

    2015-11-01

    We study a dilute gas made of quantum circuits with discrete charge, interacting with a thermal reservoir at absolute temperature T, using Boltzmann statistics. This system is described by a quantum Hamiltonian that explicitly includes the effect of the discrete nature of the electric charge within a circuit approach. The eigenfunctions can be expressed as solutions of the Mathieu equation, and the energy spectrum is related to its characteristic values. We also make a comparative numerical study of the thermal properties, between the quantum case with discrete charge, and the so-called semiclassical approximation.

  4. Diagrammatic quantum mechanics

    NASA Astrophysics Data System (ADS)

    Kauffman, Louis H.; Lomonaco, Samuel J.

    2015-05-01

    This paper explores how diagrams of quantum processes can be used for modeling and for quantum epistemology. The paper is a continuation of the discussion where we began this formulation. Here we give examples of quantum networks that represent unitary transformations by dint of coherence conditions that constitute a new form of non-locality. Local quantum devices interconnected in space can form a global quantum system when appropriate coherence conditions are maintained.

  5. Emergence of equilibrium thermodynamic properties in quantum pure states. I. Theory

    SciTech Connect

    Fresch, Barbara; Moro, Giorgio J.

    2010-07-21

    Investigation on foundational aspects of quantum statistical mechanics recently entered a renaissance period due to novel intuitions from quantum information theory and to increasing attention on the dynamical aspects of single quantum systems. In the present contribution a simple but effective theoretical framework is introduced to clarify the connections between a purely mechanical description and the thermodynamic characterization of the equilibrium state of an isolated quantum system. A salient feature of our approach is the very transparent distinction between the statistical aspects and the dynamical aspects in the description of isolated quantum systems. Like in the classical statistical mechanics, the equilibrium distribution of any property is identified on the basis of the time evolution of the considered system. As a consequence equilibrium properties of quantum system appear to depend on the details of the initial state due to the abundance of constants of the motion in the Schroedinger dynamics. On the other hand the study of the probability distributions of some functions, such as the entropy or the equilibrium state of a subsystem, in statistical ensembles of pure states reveals the crucial role of typicality as the bridge between macroscopic thermodynamics and microscopic quantum dynamics. We shall consider two particular ensembles: the random pure state ensemble and the fixed expectation energy ensemble. The relation between the introduced ensembles, the properties of a given isolated system, and the standard quantum statistical description are discussed throughout the presentation. Finally we point out the conditions which should be satisfied by an ensemble in order to get meaningful thermodynamical characterization of an isolated quantum system.

  6. Emergence of equilibrium thermodynamic properties in quantum pure states. I. Theory

    NASA Astrophysics Data System (ADS)

    Fresch, Barbara; Moro, Giorgio J.

    2010-07-01

    Investigation on foundational aspects of quantum statistical mechanics recently entered a renaissance period due to novel intuitions from quantum information theory and to increasing attention on the dynamical aspects of single quantum systems. In the present contribution a simple but effective theoretical framework is introduced to clarify the connections between a purely mechanical description and the thermodynamic characterization of the equilibrium state of an isolated quantum system. A salient feature of our approach is the very transparent distinction between the statistical aspects and the dynamical aspects in the description of isolated quantum systems. Like in the classical statistical mechanics, the equilibrium distribution of any property is identified on the basis of the time evolution of the considered system. As a consequence equilibrium properties of quantum system appear to depend on the details of the initial state due to the abundance of constants of the motion in the Schrödinger dynamics. On the other hand the study of the probability distributions of some functions, such as the entropy or the equilibrium state of a subsystem, in statistical ensembles of pure states reveals the crucial role of typicality as the bridge between macroscopic thermodynamics and microscopic quantum dynamics. We shall consider two particular ensembles: the random pure state ensemble and the fixed expectation energy ensemble. The relation between the introduced ensembles, the properties of a given isolated system, and the standard quantum statistical description are discussed throughout the presentation. Finally we point out the conditions which should be satisfied by an ensemble in order to get meaningful thermodynamical characterization of an isolated quantum system.

  7. Second law of thermodynamics with discrete quantum feedback control.

    PubMed

    Sagawa, Takahiro; Ueda, Masahito

    2008-02-29

    A new thermodynamic inequality is derived which leads to the maximum work that can be extracted from multi-heat-baths with the assistance of discrete quantum feedback control. The maximum work is determined by the free-energy difference and a generalized mutual information content between the thermodynamic system and the feedback controller. This maximum work can exceed that in conventional thermodynamics and, in the case of a heat cycle with two heat baths, the heat efficiency can be greater than that of the Carnot cycle. The consistency of our results with the second law of thermodynamics is ensured by the fact that work is needed for information processing of the feedback controller. PMID:18352605

  8. Thermodynamics and mechanics of photochemcially reacting polymers

    NASA Astrophysics Data System (ADS)

    Long, Rong; Qi, H. Jerry; Dunn, Martin L.

    2013-11-01

    We develop a thermodynamics and mechanics theory for polymers that when irradiated with light, undergo photochemical reactions that alter their macromolecular structure, e.g., by bond breaking and/or reformation, and in turn affect their mechanical and physical behavior. This emerging class of highly-engineered active materials shows great promise for myriad applications and is a subset of a broader class of polymers with covalent bonds that can be dynamically tuned with various environmental stimuli. We formulate a general thermodynamic and kinetic framework to model the complex photochemical-thermal-mechanical coupling in these materials. Our theory considers the behavior of a polymer that is subjected to the combination of mechanical and thermal loading while simultaneously irradiated by light with multiple frequency components and directions. We introduce an approach to model the photochemical reactions that can change the network topology, resulting chemical species transport, heat conduction and finite deformation. We describe the interaction of the material with light via a radiometric description and show how it can be linked to a full electromagnetic treatment when appropriate and if desired. Our approach is sufficiently general to permit the modeling of various materials that operate via different photochemical reaction mechanisms. After formulating the general theory, we specialize it to a polymer that when irradiated with light undergoes a series of photochemical reactions that cause chain scission and reformation which continuously rearrange the polymer network into a stress-free configuration. Based on the operant physical mechanisms we develop a constitutive model using a polymer chain decomposition and evolution approach to track the molecular structure changes during simultaneous irradiation and mechanical loading. In the special case of isothermal conditions with monochromatic and unidirectional irradiation, we recover a previous model based on intuitive ad-hoc assumptions and thus put it on strong thermodynamic footing. Finally we use our model to simulate the behavior of a polymer that is biaxially stretched and then irradiated with light from one side. We simulate the process and emphasize the spontaneous bending that occurs due to inhomogeneous photoinduced stress relaxation. From our theory, we obtain an analytical expression of a characteristic time for photo-induced stress relaxation in terms of the dominating system parameters.

  9. Nilpotent Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Frydryszak, Andrzej M.

    We develop a generalized quantum mechanical formalism based on the nilpotent commuting variables (η-variables). In the nonrelativistic case such formalism provides natural realization of a two-level system (qubit). Using the space of η-wavefunctions, η-Hilbert space and generalized Schrödinger equation we study properties of pure multiqubit systems and also properties of some composed, hybrid models: fermion-qubit, boson-qubit. The fermion-qubit system can be truly supersymmetric, with both SUSY partners having identical spectra. It is a novel feature that SUSY transformations relate here only nilpotent object. The η-eigenfunctions of the Hamiltonian for the qubit-qubit system give the set of Bloch vectors as a natural basis.

  10. PT quantum mechanics.

    PubMed

    Bender, Carl M; DeKieviet, Maarten; Klevansky, S P

    2013-04-28

    PT-symmetric quantum mechanics (PTQM) has become a hot area of research and investigation. Since its beginnings in 1998, there have been over 1000 published papers and more than 15 international conferences entirely devoted to this research topic. Originally, PTQM was studied at a highly mathematical level and the techniques of complex variables, asymptotics, differential equations and perturbation theory were used to understand the subtleties associated with the analytic continuation of eigenvalue problems. However, as experiments on PT-symmetric physical systems have been performed, a simple and beautiful physical picture has emerged, and a PT-symmetric system can be understood as one that has a balanced loss and gain. Furthermore, the PT phase transition can now be understood intuitively without resorting to sophisticated mathematics. Research on PTQM is following two different paths: at a fundamental level, physicists are attempting to understand the underlying mathematical structure of these theories with the long-range objective of applying the techniques of PTQM to understanding some of the outstanding problems in physics today, such as the nature of the Higgs particle, the properties of dark matter, the matter-antimatter asymmetry in the universe, neutrino oscillations and the cosmological constant; at an applied level, new kinds of PT-synthetic materials are being developed, and the PT phase transition is being observed in many physical contexts, such as lasers, optical wave guides, microwave cavities, superconducting wires and electronic circuits. The purpose of this Theme Issue is to acquaint the reader with the latest developments in PTQM. The articles in this volume are written in the style of mini-reviews and address diverse areas of the emerging and exciting new area of PT-symmetric quantum mechanics. PMID:23509390

  11. Information Thermodynamics applied to the MERA quantum circuit

    NASA Astrophysics Data System (ADS)

    Passias, Vasilios; Chua, Victor; Tiwari, Apoorv; Ryu, Shinsei

    We interpret the MERA (Multiscale Entanglement Renormalization Ansatz) tensor network as a unitary quantum circuit to study excited states of quantum spin-chains. Contrary to the common use of MERA as a variational ground state ansatz, the quantum circuit defined by MERA - adapted to a fixed ground state - is employed as a diagnostic tool to study dynamically evolving excited state wavefunctions. Outputs of the quantum computation emanating from the isometry tensors, which are normally approximate tensor product states, now fluctuate strongly. These ``bulk'' degrees of freedom in the MERA which act as logical qubits are studied using tools from quantum information theory and information thermodynamics. A local temperature scale based on Landauer's information erasure principle is defined to measure their degree of fluctuation. We investigate properties of this temperature against the expectations of Luttinger's theorem which relates weak field gravity to heat flow. This work was supported by the Gordon and Betty Moore Foundation.

  12. Comment on "Thermodynamics of quantum crystalline membranes"

    NASA Astrophysics Data System (ADS)

    Kats, E. I.; Lebedev, V. V.

    2014-11-01

    Amorim et al. [Phys. Rev. B 89, 224307 (2014), 10.1103/PhysRevB.89.224307] reported the theoretical investigation of quantum crystalline membranes. In this Comment we dismiss the validity of their calculations based on a "natural" estimation of the ultraviolet divergent contributions into correlation functions. We claim that such calculations give qualitatively the wrong results.

  13. Decoherence in quantum mechanics and quantum cosmology

    NASA Technical Reports Server (NTRS)

    Hartle, James B.

    1992-01-01

    A sketch of the quantum mechanics for closed systems adequate for cosmology is presented. This framework is an extension and clarification of that of Everett and builds on several aspects of the post-Everett development. It especially builds on the work of Zeh, Zurek, Joos and Zeh, and others on the interactions of quantum systems with the larger universe and on the ideas of Griffiths, Omnes, and others on the requirements for consistent probabilities of histories.

  14. Principles of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Landé, Alfred

    2013-10-01

    Preface; Introduction: 1. Observation and interpretation; 2. Difficulties of the classical theories; 3. The purpose of quantum theory; Part I. Elementary Theory of Observation (Principle of Complementarity): 4. Refraction in inhomogeneous media (force fields); 5. Scattering of charged rays; 6. Refraction and reflection at a plane; 7. Absolute values of momentum and wave length; 8. Double ray of matter diffracting light waves; 9. Double ray of matter diffracting photons; 10. Microscopic observation of ρ (x) and σ (p); 11. Complementarity; 12. Mathematical relation between ρ (x) and σ (p) for free particles; 13. General relation between ρ (q) and σ (p); 14. Crystals; 15. Transition density and transition probability; 16. Resultant values of physical functions; matrix elements; 17. Pulsating density; 18. General relation between ρ (t) and σ (є); 19. Transition density; matrix elements; Part II. The Principle of Uncertainty: 20. Optical observation of density in matter packets; 21. Distribution of momenta in matter packets; 22. Mathematical relation between ρ and σ; 23. Causality; 24. Uncertainty; 25. Uncertainty due to optical observation; 26. Dissipation of matter packets; rays in Wilson Chamber; 27. Density maximum in time; 28. Uncertainty of energy and time; 29. Compton effect; 30. Bothe-Geiger and Compton-Simon experiments; 31. Doppler effect; Raman effect; 32. Elementary bundles of rays; 33. Jeans' number of degrees of freedom; 34. Uncertainty of electromagnetic field components; Part III. The Principle of Interference and Schrödinger's equation: 35. Physical functions; 36. Interference of probabilities for p and q; 37. General interference of probabilities; 38. Differential equations for Ψp (q) and Xq (p); 39. Differential equation for фβ (q); 40. The general probability amplitude Φβ' (Q); 41. Point transformations; 42. General theorem of interference; 43. Conjugate variables; 44. Schrödinger's equation for conservative systems; 45. Schrödinger's equation for non-conservative systems; 46. Pertubation theory; 47. Orthogonality, normalization and Hermitian conjugacy; 48. General matrix elements; Part IV. The Principle of Correspondence: 49. Contact transformations in classical mechanics; 50. Point transformations; 51. Contact transformations in quantum mechanics; 52. Constants of motion and angular co-ordinates; 53. Periodic orbits; 54. De Broglie and Schrödinger function; correspondence to classical mechanics; 55. Packets of probability; 56. Correspondence to hydrodynamics; 57. Motion and scattering of wave packets; 58. Formal correspondence between classical and quantum mechanics; Part V. Mathematical Appendix: Principle of Invariance: 59. The general theorem of transformation; 60. Operator calculus; 61. Exchange relations; three criteria for conjugacy; 62. First method of canonical transformation; 63. Second method of canonical transformation; 64. Proof of the transformation theorem; 65. Invariance of the matrix elements against unitary transformations; 66. Matrix mechanics; Index of literature; Index of names and subjects.

  15. Dissipative Forces and Quantum Mechanics

    ERIC Educational Resources Information Center

    Eck, John S.; Thompson, W. J.

    1977-01-01

    Shows how to include the dissipative forces of classical mechanics in quantum mechanics by the use of non-Hermetian Hamiltonians. The Ehrenfest theorem for such Hamiltonians is derived, and simple examples which show the classical correspondences are given. (MLH)

  16. The second law of quantum thermodynamics as an equality

    NASA Astrophysics Data System (ADS)

    Oppenheim, Jonathan

    The traditional second law of thermodynamics says that the average amount of work required to change one state into another while in contact with a heat reservoir, must be at least as large as the change in free energy of the system. Here, we consider a fine-grained notion of the free energy, and show that in terms of it, the second law can be written as an equality. We also obtain a generalisation of the Jarzynski fluctuation theorem which holds for arbitrary initial states, not just the case of an initial thermal state. We derive a generalisation of Gibbs-stochasticity, a condition originally found in the approach to thermodynamics inspired by quantum information theory. This generalisation directly incorporates the case of fluctuating work and serves as a parent equation which can be used to derive the second law equality and the generalisation of the Jarzynski equation. We further show that each of these three generalisations can be seen as the quasi-classical limit of three fully quantum identities. This allows for more general and fully quantum fluctuation relations from the information theoretic approach to quantum thermodynamics.

  17. On Non-Equilibrium Thermodynamics of Space-Time and Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Munkhammar, Joakim

    Based on recent results from general relativistic statistical mechanics and black hole information transfer limits, a space-time entropy-action equivalence is proposed as a generalization of the holographic principle. With this conjecture, the action principle can be replaced by the second law of thermodynamics, and for the Einstein-Hilbert action the Einstein field equations are conceptually the result of thermodynamic equilibrium. For non-equilibrium situations, Jaynes' information-theoretic approach to maximum entropy production is adopted instead of the second law of thermodynamics. As it turns out for appropriate choices of constants, quantum gravity is obtained. For the special case of a free particle the Bekenstein-Verlinde entropy-to-displacement relation of holographic gravity and thus the traditional holographic principle emerges. Although Jacobson's original thermodynamic equilibrium approach proposed that gravity might not necessarily be quantized, this particular non-equilibrium treatment might require it.

  18. Ab initio quantum-mechanical study of the effects of the inclusion of iron on thermoelastic and thermodynamic properties of periclase (MgO)

    NASA Astrophysics Data System (ADS)

    Scanavino, Isacco; Belousov, Roman; Prencipe, Mauro

    2012-09-01

    We calculated the thermodynamic and thermoelastic properties of periclase and ferropericlase, the latter having a stoichiometric composition of (Fe0.03Mg0.97)O, at pressures and temperatures which are typical of the Earth's lower mantle. The static lattice energies and vibrational frequencies were derived through ab initio calculations carried out at the hybrid HF/DFT level. The thermodynamic properties were calculated by following a standard statistical-thermodynamics approach, within the limit of the quasi-harmonic approximation. A third-order Birch-Murnaghan equation of state fit to the static E( V) data of periclase yielded K 0 = 163.8 GPa, K' = 4.3, and V 0 = 75.09 Å3. The fit at 300 K and 0.1 MPa on the P( V) data yielded K 0 = 160.1 GPa, K' = 4.2, and V 0 = 75.99 Å3. Such results successfully reproduced the best available experimental and previous computational data. The presence of iron with low-spin configuration in the structure had the effects (1) to reduce the cell volume, both at the static (74.19 Å3) and at the ambient conditions (75.14 Å3); (2) to increase the bulk modulus (respectively 172.2 GPa at the static limit, and 167.4 GPa at 298 K and 0.1 MPa), and (3) to decrease the thermal expansion (2.79 * 10-5 K-1 for periclase and 2.60 * 10-5 K-1 for ferropericlase at 300 K). Since the discussed parameters were also calculated at high pressure and temperature conditions simultaneously, the reliability of the quasi-harmonic approximation was tested by evaluating the shape of the potential energy curve, at conditions which simulate those of the Earth's lower mantle. Such test confirmed the applicability of this approximation over all the P/T range considered.

  19. Statistical Mechanics and Thermodynamics of Viral Evolution

    PubMed Central

    Jones, Barbara A.; Lessler, Justin; Bianco, Simone; Kaufman, James H.

    2015-01-01

    This paper uses methods drawn from physics to study the life cycle of viruses. The paper analyzes a model of viral infection and evolution using the "grand canonical ensemble" and formalisms from statistical mechanics and thermodynamics. Using this approach we enumerate all possible genetic states of a model virus and host as a function of two independent pressures–immune response and system temperature. We prove the system has a real thermodynamic temperature, and discover a new phase transition between a positive temperature regime of normal replication and a negative temperature “disordered” phase of the virus. We distinguish this from previous observations of a phase transition that arises as a function of mutation rate. From an evolutionary biology point of view, at steady state the viruses naturally evolve to distinct quasispecies. This paper also reveals a universal relationship that relates the order parameter (as a measure of mutational robustness) to evolvability in agreement with recent experimental and theoretical work. Given that real viruses have finite length RNA segments that encode proteins which determine virus fitness, the approach used here could be refined to apply to real biological systems, perhaps providing insight into immune escape, the emergence of novel pathogens and other results of viral evolution. PMID:26422205

  20. Thermodynamic properties of a quantum Hall anti-dot interferometer

    NASA Astrophysics Data System (ADS)

    Levy Schreier, Sarah; Stern, Ady; Rosenow, Bernd; Halperin, Bertrand I.

    2016-02-01

    We study quantum Hall interferometers in which the interference loop encircles a quantum anti-dot. We base our study on thermodynamic considerations, which we believe reflect the essential aspects of interference transport phenomena. We find that similar to the more conventional Fabry-Perot quantum Hall interferometers, in which the interference loop forms a quantum dot, the anti-dot interferometer is affected by the electro-static Coulomb interaction between the edge modes defining the loop. We show that in the Aharonov-Bohm regime, in which effects of fractional statistics should be visible, is easier to access in interferometers based on anti-dots than in those based on dots. We discuss the relevance of our results to recent measurements on anti-dots interferometers.

  1. Thermodynamics of spherically symmetric spacetimes in loop quantum gravity

    NASA Astrophysics Data System (ADS)

    Mäkelä, Jarmo

    2015-06-01

    The choice of the area operator in loop quantum gravity is by no means unique. In addition to the area operator commonly used in loop quantum gravity there is also an area operator introduced by Krasnov in 1998, which gives uniformly spaced area spectra for the horizons of spacetime. Using Krasnov's area operator we consider the thermodynamics of spherically symmetric spacetimes equipped with horizons in loop quantum gravity. Among other things, our approach implies, in a pretty simple manner, that every horizon of spacetime emits thermal radiation and possesses entropy which, in the natural units, is one-quarter of its area. When applied to the de Sitter spacetime loop quantum gravity provides an explanation both to the presence and the smallness of the cosmological constant.

  2. Thermodynamics of CaMgSi2O6-KAlSi2O6 clinopyroxene solid solution: Quantum mechanical and static lattice energy calculations

    NASA Astrophysics Data System (ADS)

    Vinograd, V. L.; Safonov, O. G.; Wilson, D. J.; Gale, J. D.; Perchuk, L. L.; Winkler, B.

    2007-12-01

    K-enriched clinopyroxenes are often found in mineral assemblages formed at high and ultrahigh pressures, such as inclusions in diamonds, eclogitic and peridotitic xenoliths in kimberlites and lamproites. Thermodynamic properties of the solid solution between diopside and potassium jadeite cannot be studied experimentally due to impossibility to synthesize crystals with more than 25% of KAlSi2O6. Here we show that the missing thermodynamic information can be obtained with the aid of computer simulations. A set of empirical interatomic potentials has been used for calculation of static lattice energies of 800 different structures in a 2x2x4 supercell of C2/c pyroxene with compositions intermediate between diopside (Di) and K-jadeite (KJd), as well as with different ordering states of the exchangeable K/Ca and Mg/Al cations. Excess static energies of these structures were cluster expanded in a basis set of 37 pair-interaction parameters. These parameters were used to constrain Monte Carlo simulations of temperature-dependent properties in the range of 273-2023 K and to calculate a T-X phase diagram for the solid solution. The simulations predicted the formation of stable intermediate compounds at 1/3, 5/12, 1/2, 7/12 and 2/3 of the KJd mole fraction. The compound at 1/2 with a space group P2/b is analogous to omphacite in the diopside - jadeite system. However, the cation distribution in this phase is inverted: K and Ca in K-omphacite occupy positions which would be Ca-rich and Na-rich, respectively, in Na-omphacite. The standard enthalpies and volumes of KJd and K-omphacite were estimated from first principles calculations, while the standard entropies, thermal expansion coefficients and bulk moduli were predicted on the basis of the force field lattice dynamics. The activity-composition relations in the disordered C2/c phase were approximated with respect to Di and KJd end-members with a Redlich-Kister polynomial. Using these results and thermodynamic data available in literature, the isopleths of KJd in CaMgSi2O6-KAlSi2O6 clinopyroxene in assemblages with sanidine + coesite, Si-wadeite + kyanite + coesite, Si-wadeite + kyanite + stishovite and hollandite + stishovite were computed. The predicted isopleths permit an estimation of the pressure or temperature of equilibration of K-clinopyroxenes in assemblages with sanidine and hollandite.

  3. Thermodynamic properties of Th xU 1-xO 2 (0 < x < 1) based on quantum-mechanical calculations and Monte-Carlo simulations

    NASA Astrophysics Data System (ADS)

    Shuller, Lindsay C.; Ewing, Rodney C.; Becker, Udo

    2011-05-01

    Th xU 1-xO 2+y binary compositions occur in nature, uranothorianite, and as a mixed oxide nuclear fuel. As a nuclear fuel, important properties, such as the melting point, thermal conductivity, and the thermal expansion coefficient change as a function of composition. Additionally, for direct disposal of Th xU 1-xO 2, the chemical durability changes as a function of composition, with the dissolution rate decreasing with increasing thoria content. UO 2 and ThO 2 have the same isometric structure, and the ionic radii of 8-fold coordinated U 4+ and Th 4+ are similar (1.14 nm and 1.19 nm, respectively). Thus, this binary is expected to form a complete solid solution. However, atomic-scale measurements or simulations of cation ordering and the associated thermodynamic properties of the Th xU 1-xO 2 system have yet to be determined. A combination of density-functional theory, Monte-Carlo methods, and thermodynamic integration are used to calculate thermodynamic properties of the Th xU 1-xO 2 binary (Δ H mix, Δ G mix, Δ S mix, phase diagram). The Gibbs free energy of mixing (Δ G mix) shows a miscibility gap at equilibration temperatures below 1000 K (e.g., E exsoln = 0.13 kJ/(mol cations) at 750 K). Such a miscibility gap may indicate possible exsolution (i.e., phase separation upon cooling). A unique approach to evaluate the likelihood and kinetics of forming interfaces between U-rich and Th-rich has been chosen that compares the energy gain of forming separate phases with estimated energy losses of forming necessary interfaces. The result of such an approach is that the thermodynamic gain of phase separation does not overcome the increase in interface energy between exsolution lamellae for thin exsolution lamellae (10 Å). Lamella formation becomes energetically favorable with a reduction of the interface area and, thus, an increase in lamella thickness to >45 Å. However, this increase in lamellae thickness may be diffusion limited. Monte-Carlo simulations converge to an exsolved structure [lamellae || (2 1 1¯)] only for very low equilibration temperatures (below room temperature). In addition to the weak tendency to exsolve, there is an ordered arrangement of Th and U in the solid solution [alternating U and Th layers || {1 0 0}] that is energetically favored for the homogeneously mixed 50% Th configurations. Still, this tendency to order is so weak that ordering is seldom reached due to kinetic hindrances. The configurational entropy of mixing (Δ S mix) is approximately equal to the point entropy at all temperatures, indicating that the system is not ordered.

  4. Communication: Quantum mechanics without wavefunctions

    SciTech Connect

    Schiff, Jeremy; Poirier, Bill

    2012-01-21

    We present a self-contained formulation of spin-free non-relativistic quantum mechanics that makes no use of wavefunctions or complex amplitudes of any kind. Quantum states are represented as ensembles of real-valued quantum trajectories, obtained by extremizing an action and satisfying energy conservation. The theory applies for arbitrary configuration spaces and system dimensionalities. Various beneficial ramifications--theoretical, computational, and interpretational--are discussed.

  5. Phase space quantum mechanics - Direct

    SciTech Connect

    Nasiri, S.; Sobouti, Y.; Taati, F.

    2006-09-15

    Conventional approach to quantum mechanics in phase space (q,p), is to take the operator based quantum mechanics of Schroedinger, or an equivalent, and assign a c-number function in phase space to it. We propose to begin with a higher level of abstraction, in which the independence and the symmetric role of q and p is maintained throughout, and at once arrive at phase space state functions. Upon reduction to the q- or p-space the proposed formalism gives the conventional quantum mechanics, however, with a definite rule for ordering of factors of noncommuting observables. Further conceptual and practical merits of the formalism are demonstrated throughout the text.

  6. Precision Tests of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Weinberg, Steven

    2014-03-01

    It is proposed to set stringent limits on possible nonlinear corrections to ordinary quantum mechanics by searching for the detuning of resonant transitions. A suggested nonlinear generalization of quantum mechanics is used to show that such detuning would be expected in the rf transition in 9Be+ ions that is used to set frequency standards. Measurements at the National Bureau of Standards already set limits of order 10-21 on the fraction of the energy of the 9Be nucleus that could be due to nonlinear corrections to quantum mechanics, with good prospects of improving this by 2-3 orders of magnitude.

  7. Quantum Mechanics in Insulators

    SciTech Connect

    Aeppli, G.

    2009-08-20

    Atomic physics is undergoing a large revival because of the possibility of trapping and cooling ions and atoms both for individual quantum control as well as collective quantum states, such as Bose-Einstein condensates. The present lectures start from the 'atomic' physics of isolated atoms in semiconductors and insulators and proceed to coupling them together to yield magnets undergoing quantum phase transitions as well as displaying novel quantum states with no classical analogs. The lectures are based on: G.-Y. Xu et al., Science 317, 1049-1052 (2007); G. Aeppli, P. Warburton, C. Renner, BT Technology Journal, 24, 163-169 (2006); H. M. Ronnow et al., Science 308, 392-395 (2005) and N. Q. Vinh et al., PNAS 105, 10649-10653 (2008).

  8. Quantum Mechanics in Insulators

    NASA Astrophysics Data System (ADS)

    Aeppli, G.

    2009-08-01

    Atomic physics is undergoing a large revival because of the possibility of trapping and cooling ions and atoms both for individual quantum control as well as collective quantum states, such as Bose-Einstein condensates. The present lectures start from the `atomic' physics of isolated atoms in semiconductors and insulators and proceed to coupling them together to yield magnets undergoing quantum phase transitions as well as displaying novel quantum states with no classical analogs. The lectures are based on: G.-Y. Xu et al., Science 317, 1049-1052 (2007); G. Aeppli, P. Warburton, C. Renner, BT Technology Journal, 24, 163-169 (2006); H. M. Ronnow et al., Science 308, 392-395 (2005) and N. Q. Vinh et al., PNAS 105, 10649-10653 (2008).

  9. Quantum mechanics from invariance principles

    NASA Astrophysics Data System (ADS)

    Moldoveanu, Florin

    2015-07-01

    Quantum mechanics is an extremely successful theory of nature and yet it lacks an intuitive axiomatization. In contrast, the special theory of relativity is well understood and is rooted into natural or experimentally justified postulates. Here we introduce an axiomatization approach to quantum mechanics which is very similar to special theory of relativity derivation. The core idea is that a composed system obeys the same laws of nature as its components. This leads to a Jordan-Lie algebraic formulation of quantum mechanics. The starting assumptions are minimal: the laws of nature are invariant under time evolution, the laws of nature are invariant under tensor composition, the laws of nature are relational, together with the ability to define a physical state (positivity). Quantum mechanics is singled out by a fifth experimentally justified postulate: nature violates Bell's inequalities.

  10. Double quantum dot coupled to a quantum point contact: a stochastic thermodynamics approach

    NASA Astrophysics Data System (ADS)

    Bulnes Cuetara, Gregory; Esposito, Massimiliano

    2015-09-01

    We study the nonequilibrium properties of an electronic circuit composed of a double quantum dot (DQD) channel capacitively coupled to a quantum point contact (QPC) within the framework of stochastic thermodynamics. We show that the transition rates describing the dynamics satisfy a nontrivial local detailed balance and that the statistics of energy and particle currents across both channels obeys a fluctuation theorem. We analyze two regimes where the device operates as a thermodynamic machine and study its output power and efficiency fluctuations. We show that the electrons tunneling through the QPC without interacting with the DQD have a strong effect on the device efficiency.

  11. Gravitational Thermodynamics for Interstellar Gas and Weakly Degenerate Quantum Gas

    NASA Astrophysics Data System (ADS)

    Zhu, Ding Yu; Shen, Jian Qi

    2016-03-01

    The temperature distribution of an ideal gas in gravitational fields has been identified as a longstanding problem in thermodynamics and statistical physics. According to the principle of entropy increase (i.e., the principle of maximum entropy), we apply a variational principle to the thermodynamical entropy functional of an ideal gas and establish a relationship between temperature gradient and gravitational field strength. As an illustrative example, the temperature and density distributions of an ideal gas in two simple but typical gravitational fields (i.e., a uniform gravitational field and an inverse-square gravitational field) are considered on the basis of entropic and hydrostatic equilibrium conditions. The effect of temperature inhomogeneity in gravitational fields is also addressed for a weakly degenerate quantum gas (e.g., Fermi and Bose gas). The present gravitational thermodynamics of a gas would have potential applications in quantum fluids, e.g., Bose-Einstein condensates in Earth’s gravitational field and the temperature fluctuation spectrum in cosmic microwave background radiation.

  12. Quantum Mechanical Analysis of Nonenzymatic Nucleotidyl Transfer Reactions: Kinetic and Thermodynamic Effects of β–γ Bridging Groups of dNTP Substrates

    PubMed Central

    2015-01-01

    Rate (k) and equilibrium (K) constants for the reaction of tetrahydrofuranol with a series of Mg2+ complexes of methyl triphosphate analogues, CH3O-P(O2)-O-P(O2)-X-PO34–, X = O, CH2, CHCH3, C(CH3)2, CFCH3, CHF, CHCl, CHBr, CFCl, CF2, CCl2, and CBr2, forming phosphate diester and pyrophosphate or bisphosphonate in aqueous solution were evaluated by B3LYP/TZVP//HF/6-31G* quantum chemical calculations and Langevin dipoles and polarized continuum solvation models. The calculated log k and log K values were found to depend linearly on the experimental pKa4 of the conjugate acid of the corresponding pyrophosphate or bisphosphonate leaving group. The calculated slopes of these Brønsted linear free energy relationships were βlg = −0.89 and βeq = −0.93, respectively. The studied compounds also followed the linear relationship Δlog k = 0.8Δlog K, which became less steep, Δlog k = 0.6Δlog K, after the range of studied compounds was extended to include analogues that were doubly protonated on γ-phosphate, CH3O-P(O2)-O-P(O2)-X-PO3H22–. The scissile Pα–Olg bond length in studied methyl triphosphate analogues slightly increases with decreasing pKa of the leaving group; concomitantly, the CH3OPα(O2) moiety becomes more positive. These structural effects indicate that substituents with low pKa can facilitate both Pα–Olg bond breaking and the Pα–Onuc bond forming process, thus explaining the large negative βlg calculated for the transition state geometry that has significantly longer Pα–Onuc distance than the Pα–Olg distance. PMID:24901652

  13. Emergent quantum mechanics without wavefunctions

    NASA Astrophysics Data System (ADS)

    Mesa Pascasio, J.; Fussy, S.; Schwabl, H.; Grössing, G.

    2016-03-01

    We present our model of an Emergent Quantum Mechanics which can be characterized by “realism without pre-determination”. This is illustrated by our analytic description and corresponding computer simulations of Bohmian-like “surreal” trajectories, which are obtained classically, i.e. without the use of any quantum mechanical tool such as wavefunctions. However, these trajectories do not necessarily represent ontological paths of particles but rather mappings of the probability density flux in a hydrodynamical sense. Modelling emergent quantum mechanics in a high-low intesity double slit scenario gives rise to the “quantum sweeper effect” with a characteristic intensity pattern. This phenomenon should be experimentally testable via weak measurement techniques.

  14. Quantum Mechanics of the Einstein-Hopf Model.

    ERIC Educational Resources Information Center

    Milonni, P. W.

    1981-01-01

    The Einstein-Hopf model for the thermodynamic equilibrium between the electromagnetic field and dipole oscillators is considered within the framework of quantum mechanics. Both the wave and particle aspects of the Einstein fluctuation formula are interpreted in terms of the fundamental absorption and emission processes. (Author/SK)

  15. Thermodynamics of antiferromagnetic nanoparticles and macroscopic quantum effects observed by Mssbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Chuev, Mikhail A.

    2013-01-01

    A quantum-mechanical model for describing thermodynamic properties of an ensemble of ideal antiferromagnetic nanoparticles with axial magnetic anisotropy is developed in the first approximation of slowly relaxing macrospins of magnetic sublattices. This model clarifies principally the difference in thermodynamic behavior of ferromagnetic and antiferromagnetic particles revealed in spectroscopic measurements. In particular, one can now qualitatively describe specific (non-superparamagnetic) temperature evolution of the 57Fe Mssbauer spectra of antiferromagnetic nanoparticles, which has been often observed for almost half a century and looks like a quantum superposition of well resolved magnetic hyperfine structure and single line (or quadrupolar doublet of lines) with the temperature-dependent partial spectral areas. This approach can be easily generalized for describing uncompensated antiferromagnetic and ferrimagnetic nanoparticles as well as magnetic relaxation processes, which would allow one to take directly into account the magnetic nature inherent to the particles in analyzing a large amount of experimental data collected so far.

  16. The thermodynamic cost of driving quantum systems by their boundaries

    PubMed Central

    Barra, Felipe

    2015-01-01

    The laws of thermodynamics put limits to the efficiencies of thermal machines. Analogues of these laws are now established for quantum engines weakly and passively coupled to the environment providing a framework to find improvements to their performance. Systems whose interaction with the environment is actively controlled do not fall in that framework. Here we consider systems actively and locally coupled to the environment, evolving with a so-called boundary-driven Lindblad equation. Starting from a unitary description of the system plus the environment we simultaneously obtain the Lindblad equation and the appropriate expressions for heat, work and entropy-production of the system extending the framework for the analysis of new, and some already proposed, quantum heat engines. We illustrate our findings in spin 1/2 chains and explain why an XX chain coupled in this way to a single heat bath relaxes to thermodynamic-equilibrium while and XY chain does not. Additionally, we show that an XX chain coupled to a left and a right heat baths behaves as a quantum engine, a heater or refrigerator depending on the parameters, with efficiencies bounded by Carnot efficiencies. PMID:26445899

  17. The thermodynamic cost of driving quantum systems by their boundaries.

    PubMed

    Barra, Felipe

    2015-01-01

    The laws of thermodynamics put limits to the efficiencies of thermal machines. Analogues of these laws are now established for quantum engines weakly and passively coupled to the environment providing a framework to find improvements to their performance. Systems whose interaction with the environment is actively controlled do not fall in that framework. Here we consider systems actively and locally coupled to the environment, evolving with a so-called boundary-driven Lindblad equation. Starting from a unitary description of the system plus the environment we simultaneously obtain the Lindblad equation and the appropriate expressions for heat, work and entropy-production of the system extending the framework for the analysis of new, and some already proposed, quantum heat engines. We illustrate our findings in spin 1/2 chains and explain why an XX chain coupled in this way to a single heat bath relaxes to thermodynamic-equilibrium while and XY chain does not. Additionally, we show that an XX chain coupled to a left and a right heat baths behaves as a quantum engine, a heater or refrigerator depending on the parameters, with efficiencies bounded by Carnot efficiencies. PMID:26445899

  18. The thermodynamic cost of driving quantum systems by their boundaries

    NASA Astrophysics Data System (ADS)

    Barra, Felipe

    2015-10-01

    The laws of thermodynamics put limits to the efficiencies of thermal machines. Analogues of these laws are now established for quantum engines weakly and passively coupled to the environment providing a framework to find improvements to their performance. Systems whose interaction with the environment is actively controlled do not fall in that framework. Here we consider systems actively and locally coupled to the environment, evolving with a so-called boundary-driven Lindblad equation. Starting from a unitary description of the system plus the environment we simultaneously obtain the Lindblad equation and the appropriate expressions for heat, work and entropy-production of the system extending the framework for the analysis of new, and some already proposed, quantum heat engines. We illustrate our findings in spin 1/2 chains and explain why an XX chain coupled in this way to a single heat bath relaxes to thermodynamic-equilibrium while and XY chain does not. Additionally, we show that an XX chain coupled to a left and a right heat baths behaves as a quantum engine, a heater or refrigerator depending on the parameters, with efficiencies bounded by Carnot efficiencies.

  19. Thermodynamics of information exchange between two coupled quantum dots

    NASA Astrophysics Data System (ADS)

    Kutvonen, Aki; Sagawa, Takahiro; Ala-Nissila, Tapio

    2016-03-01

    We propose a setup based on two coupled quantum dots where thermodynamics of a measurement can be quantitatively characterized. The information obtained in the measurement can be utilized by performing feedback in a manner apparently breaking the second law of thermodynamics. In this way the setup can be operated as a Maxwell's demon, where both the measurement and feedback are performed separately by controlling an external parameter. This is analogous to the case of the original Szilard engine. Since the setup contains both the microscopic demon and the engine itself, the operation of the whole measurement-feedback cycle can be explained in detail at the level of single realizations. In addition, we derive integral fluctuation relations for both the bare and coarse-grained entropy productions in the setup.

  20. Quantum Mechanics and Narratability

    NASA Astrophysics Data System (ADS)

    Myrvold, Wayne C.

    2016-05-01

    As has been noted by several authors, in a relativistic context, there is an interesting difference between classical and quantum state evolution. For a classical system, a state history of a quantum system given along one foliation uniquely determines, without any consideration of the system's dynamics, a state history along any other foliation. This is not true for quantum state evolution; there are cases in which a state history along one foliation is compatible with multiple distinct state histories along some other, a phenomenon that David Albert has dubbed "non-narratability." In this article, we address the question of whether non-narratability is restricted to the sorts of special states that so far have been used to illustrate it. The results of the investigation suggest that there has been a misplaced emphasis on underdetermination of state histories; though this is generic for the special cases that have up until now been considered, involving bipartite systems in pure entangled states, it fails generically in cases in which more component systems are taken into account, and for bipartite systems that have some entanglement with their environment. For such cases, if we impose relativistic causality constraints on the evolution, then, except for very special states, a state history along one foliation uniquely determines a state history along any other. But this in itself is a marked difference between classical and quantum state evolution, because, in a classical setting, no considerations of dynamics at all are needed to go from a state history along one foliation to a state history along another.

  1. Quantum ballistic evolution in quantum mechanics: Application to quantum computers

    NASA Astrophysics Data System (ADS)

    Benioff, Paul

    1996-08-01

    Quantum computers are important examples of processes whose evolution can be described in terms of iterations of single-step operators or their adjoints. Based on this, Hamiltonian evolution of processes with associated step operators T is investigated here. The main limitation of this paper is to processes which evolve quantum ballistically, i.e., motion restricted to a collection of nonintersecting or distinct paths on an arbitrary basis. The main goal of this paper is proof of a theorem which gives necessary and sufficient conditions that T must satisfy so that there exists a Hamiltonian description of quantum ballistic evolution for the process, namely, that T is a partial isometry and is orthogonality preserving and stable on some basis. Simple examples of quantum ballistic evolution for quantum Turing machines with one and with more than one type of elementary step are discussed. It is seen that for nondeterministic machines the basis set can be quite complex with much entanglement present. It is also proven that, given a step operator T for an arbitrary deterministic quantum Turing machine, it is decidable if T is stable and orthogonality preserving, and if quantum ballistic evolution is possible. The proof fails if T is a step operator for a nondeterministic machine. It is an open question if such a decision procedure exists for nondeterministic machines. This problem does not occur in classical mechanics. Also the definition of quantum Turing machines used here is compared with that used by other authors.

  2. Quantum Chemistry and Non-Equilibrium Thermodynamics: Does Chaos Play a Role in Quantum Chemical Calculations?

    NASA Astrophysics Data System (ADS)

    Andr, J.-M.; Andr, M.-Cl.; Fripiat, J. G.; Lambert, C.

    2007-12-01

    The theory of solitons in polyacetylene chains is reviewed with the emphasis on the force that drives the phenomenon. Then, the origin of bifurcation schemes in non-equilibrium thermodynamics is summarized. Examples of bifurcations schemes and of chaotic behaviors in quantum chemical calculations are given.

  3. Self-Referential Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Mitchell, Mark Kenneth

    1993-01-01

    A nonlinear quantum mechanics based upon the nonlinear logarithmic Schrodinger equation, is developed which has the property of self-reference, that is, the nonlinear term is dependent upon the square of the wavefunction. The self-referential system is examined in terms of its mathematical properties, the definition of the wavefunction, and the nonlinear system in the feedback between equation and solution. Theta operators are introduced which make possible new operations in the quantum phase. Two interpretations are presented utilizing the nonlinear quantum system: the idealistic interpretation based upon consciousness focused upon the measurement problem, and the statistical interpretation focused upon stochastic quantum fluctuations. Experimental properties are examined, beginning with a proposed analog of the Bohm-Aharonov experiment. Interference due to difference in path length for a split electron beam is effected in a region of spacetime where electromagnetic field and the vector potential are enclosed within but screened to be zero at the paths. If the wavefunction's geometrical phase contribution along the paths is different, then there should be interference induced purely by the wave-function alone. A positive result would be due to a purely wavefunction dependent effect. The spin phase of the wavefunction is postulated to be the source of the zitterbewegung of the electron. Reduction of the wavefunction in measurement is examined for self -referential quantum systems arising from consciousness and then arising from a stochastic quantum spacetime model. These results are applied to the mind-brain as a quantum processor producing a behavioral double slit experiment (ideation experiments) and nonlocal transferred potentials in an EPR-style experiment. Looking at the universe as a whole as a quantum self-referential system, leads to a modified zitterbewegung Wheeler-DeWitt equation; and, the transition from quantum-to-classical on a cosmological scale for the measurement problem is accomplished for an expanding-only deSitter quantum spacetime.

  4. QUANTUM MECHANICS. Quantum squeezing of motion in a mechanical resonator.

    PubMed

    Wollman, E E; Lei, C U; Weinstein, A J; Suh, J; Kronwald, A; Marquardt, F; Clerk, A A; Schwab, K C

    2015-08-28

    According to quantum mechanics, a harmonic oscillator can never be completely at rest. Even in the ground state, its position will always have fluctuations, called the zero-point motion. Although the zero-point fluctuations are unavoidable, they can be manipulated. Using microwave frequency radiation pressure, we have manipulated the thermal fluctuations of a micrometer-scale mechanical resonator to produce a stationary quadrature-squeezed state with a minimum variance of 0.80 times that of the ground state. We also performed phase-sensitive, back-action evading measurements of a thermal state squeezed to 1.09 times the zero-point level. Our results are relevant to the quantum engineering of states of matter at large length scales, the study of decoherence of large quantum systems, and for the realization of ultrasensitive sensing of force and motion. PMID:26315431

  5. Quantum Mechanical Earth: Where Orbitals Become Orbits

    ERIC Educational Resources Information Center

    Keeports, David

    2012-01-01

    Macroscopic objects, although quantum mechanical by nature, conform to Newtonian mechanics under normal observation. According to the quantum mechanical correspondence principle, quantum behavior is indistinguishable from classical behavior in the limit of very large quantum numbers. The purpose of this paper is to provide an example of the…

  6. Quantum Mechanical Earth: Where Orbitals Become Orbits

    ERIC Educational Resources Information Center

    Keeports, David

    2012-01-01

    Macroscopic objects, although quantum mechanical by nature, conform to Newtonian mechanics under normal observation. According to the quantum mechanical correspondence principle, quantum behavior is indistinguishable from classical behavior in the limit of very large quantum numbers. The purpose of this paper is to provide an example of the

  7. Quantum refrigerators and the third law of thermodynamics.

    PubMed

    Levy, Amikam; Alicki, Robert; Kosloff, Ronnie

    2012-06-01

    The rate of temperature decrease of a cooled quantum bath is studied as its temperature is reduced to absolute zero. The third law of thermodynamics is then quantified dynamically by evaluating the characteristic exponent ζ of the cooling process dT(t)/dt∼-T^{ζ} when approaching absolute zero, T→0. A continuous model of a quantum refrigerator is employed consisting of a working medium composed either by two coupled harmonic oscillators or two coupled two-level systems. The refrigerator is a nonlinear device merging three currents from three heat baths: a cold bath to be cooled, a hot bath as an entropy sink, and a driving bath which is the source of cooling power. A heat-driven refrigerator (absorption refrigerator) is compared to a power-driven refrigerator. When optimized, both cases lead to the same exponent ζ, showing a lack of dependence on the form of the working medium and the characteristics of the drivers. The characteristic exponent is therefore determined by the properties of the cold reservoir and its interaction with the system. Two generic heat bath models are considered: a bath composed of harmonic oscillators and a bath composed of ideal Bose/Fermi gas. The restrictions on the interaction Hamiltonian imposed by the third law are discussed. In the Appendices, the theory of periodically driven open systems and its implication for thermodynamics are outlined. PMID:23005070

  8. Zero-Brane Quantum Mechanics

    SciTech Connect

    Kabat, D.; Pouliot, P.

    1996-08-01

    We consider low energy, nonrelativistic scattering of two Dirichlet zero-branes as an exercise in quantum mechanics. For weak string coupling and sufficiently small velocity, the dynamics is governed by an effective U(2) gauge theory in 0+1 dimensions. At low energies, {ital D}-brane scattering can reliably probe distances much shorter than the string scale. The only length scale in the quantum mechanics problem is the eleven-dimensional Planck length. This provides evidence for the role of scales shorter than the string length in the weakly coupled dynamics of type IIA strings. {copyright} {ital 1996 The American Physical Society.}

  9. Faster than Hermitian quantum mechanics.

    PubMed

    Bender, Carl M; Brody, Dorje C; Jones, Hugh F; Meister, Bernhard K

    2007-01-26

    Given an initial quantum state |psi(I)> and a final quantum state |psi(F)>, there exist Hamiltonians H under which |psi(I)> evolves into |psi(F)>. Consider the following quantum brachistochrone problem: subject to the constraint that the difference between the largest and smallest eigenvalues of H is held fixed, which H achieves this transformation in the least time tau? For Hermitian Hamiltonians tau has a nonzero lower bound. However, among non-Hermitian PT-symmetric Hamiltonians satisfying the same energy constraint, tau can be made arbitrarily small without violating the time-energy uncertainty principle. This is because for such Hamiltonians the path from |psi(I)> to |psi(F)> can be made short. The mechanism described here is similar to that in general relativity in which the distance between two space-time points can be made small if they are connected by a wormhole. This result may have applications in quantum computing. PMID:17358747

  10. Remarks on Osmosis, Quantum Mechanics, and Gravity

    NASA Astrophysics Data System (ADS)

    Carroll, Robert

    2012-05-01

    Some relations of the quantum potential to Weyl geometry are indicated with applications to the Friedmann equations for a toy quantum cosmology. Osmotic velocity and pressure are briefly discussed in terms of quantum mechanics and superfluids with connections to gravity.

  11. Thermodynamics and mechanism of protonated asparagine decomposition.

    PubMed

    Heaton, Amy L; Armentrout, Peter B

    2009-05-01

    Deamidation of the amino acid asparagine (Asn) is a primary route for spontaneous post-translational protein modification biologically and is a pH dependent process. Here we present a full molecular description of the deamidation and (H(2)O + CO) loss reactions of protonated asparagine, H(+)(Asn), by studying its collision-induced dissociation (CID) with Xe using a guided ion beam (GIB) tandem mass spectrometer. Analysis of the kinetic energy-dependent CID cross sections provides the 0 K barriers for the deamidation and (H(2)O + CO) loss reactions after accounting for unimolecular decay rates, internal energy of reactant ions, multiple ion-molecule collisions, and competition among the decay channels. Relaxed potential energy surface scans performed at the B3LYP/6-31G(d) level identify the transition-state (TS) and intermediate reaction species for these processes, structures that are further optimized at the B3LYP/6-311+G(d,p) level. Intrinsic reaction coordinate (IRC) calculations are also performed at this level on the rate-limiting reaction TSs to validate the molecular details and energy dependence of these species. Single point energies of the key optimized TSs and intermediates are calculated at B3LYP, B3P86, and MP2(full) levels using a 6-311+G(2d,2p) basis set. A number of alternative high-energy mechanisms for (H(2)O + CO) loss from H(+)(Asn) are also investigated. Combining both experimental work and quantum chemical calculations allows for a complete characterization of the elementary steps of these reactions as well as a comprehensive evaluation of the complex behavior of the deamidation reaction. PMID:19201618

  12. Renormalization group in quantum mechanics

    SciTech Connect

    Polony, J.

    1996-12-01

    The running coupling constants are introduced in quantum mechanics and their evolution is described with the help of the renormalization group equation. The harmonic oscillator and the propagation on curved spaces are presented as examples. The Hamiltonian and the Lagrangian scaling relations are obtained. These evolution equations are used to construct low energy effective models. Copyright {copyright} 1996 Academic Press, Inc.

  13. Aton, Relativity, and Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Phillips, Alfred, Jr.

    2006-03-01

    In the mechanics of the Aton, we have shown that the Davisson-Germer experiments and other crystal based experiments can be modeled without recourse to particle-wave notions. We have also shown that the energy levels of the hydrogen atom and the helium atom can be calculated accurately with Atonic Mechanics, subject to the limits of three-body effects in the latter atom. Using the Aton concept, we now provide a way to unify Einstein's Relativity with what we commonly refer to as quantum mechanics. We note that entanglement is an intrinsic part of the mechanics of the Aton.

  14. Quantum Mechanics: A Conceptual Approach

    NASA Astrophysics Data System (ADS)

    Hameka, Hendrik F.

    2004-03-01

    A unique introductory text on quantum mechanics, from basic principles to historical perspective. Includes description of the historical developments that led to the discovery of QM, often left out of other textbooks. Emphasizes basic concepts that were essential in this discovery, placing them in context and making them more understandable to students. Written in an easy-to-understand style and assuming no prior knowledge of the topic, this book provides a solid foundation for future study of quantum chemistry. Includes problem sets for student use.

  15. Effective equations for the quantum pendulum from momentous quantum mechanics

    SciTech Connect

    Hernandez, Hector H.; Chacon-Acosta, Guillermo

    2012-08-24

    In this work we study the quantum pendulum within the framework of momentous quantum mechanics. This description replaces the Schroedinger equation for the quantum evolution of the system with an infinite set of classical equations for expectation values of configuration variables, and quantum dispersions. We solve numerically the effective equations up to the second order, and describe its evolution.

  16. The quantum and thermodynamical characteristics of fission taking into account adiabatic and nonadiabatic modes of motion

    SciTech Connect

    Kadmensky, S. G.

    2007-09-15

    In the framework of the quantum theory of spontaneous and low-energy induced fission, the nature of quantum and thermodynamical properties of a fissioning system is analyzed taking into account adiabatic and nonadiabatic modes of motion for different fission stages. It is shown that, owing to the influence of the Coriolis interaction, the states of the fissile nucleus and of primary fission products are cold and strongly nonequilibrium. The important role of superfluid and pairing nucleon-nucleon correlations for binary and ternary fission is demonstrated. The mechanism of pumping of high values of relative orbital momenta and spins of fission fragments for binary and ternary fission and the nonevaporation mechanism of formation of third particles for ternary fission are investigated. The anisotropies and P-odd, P-even, and T-odd asymmetries for angular distributions of fission products are analyzed.

  17. Irreversible Work and Inner Friction in Quantum Thermodynamic Processes

    NASA Astrophysics Data System (ADS)

    Plastina, F.; Alecce, A.; Apollaro, T. J. G.; Falcone, G.; Francica, G.; Galve, F.; Lo Gullo, N.; Zambrini, R.

    2014-12-01

    We discuss the thermodynamics of closed quantum systems driven out of equilibrium by a change in a control parameter and undergoing a unitary process. We compare the work actually done on the system with the one that would be performed along ideal adiabatic and isothermal transformations. The comparison with the latter leads to the introduction of irreversible work, while that with the former leads to the introduction of inner friction. We show that these two quantities can be treated on an equal footing, as both can be linked with the heat exchanged in thermalization processes and both can be expressed as relative entropies. Furthermore, we show that a specific fluctuation relation for the entropy production associated with the inner friction exists, which allows the inner friction to be written in terms of its cumulants.

  18. Irreversible work and inner friction in quantum thermodynamic processes.

    PubMed

    Plastina, F; Alecce, A; Apollaro, T J G; Falcone, G; Francica, G; Galve, F; Lo Gullo, N; Zambrini, R

    2014-12-31

    We discuss the thermodynamics of closed quantum systems driven out of equilibrium by a change in a control parameter and undergoing a unitary process. We compare the work actually done on the system with the one that would be performed along ideal adiabatic and isothermal transformations. The comparison with the latter leads to the introduction of irreversible work, while that with the former leads to the introduction of inner friction. We show that these two quantities can be treated on an equal footing, as both can be linked with the heat exchanged in thermalization processes and both can be expressed as relative entropies. Furthermore, we show that a specific fluctuation relation for the entropy production associated with the inner friction exists, which allows the inner friction to be written in terms of its cumulants. PMID:25615295

  19. Thermodynamics and Mechanical Equivalent of Heat

    NASA Astrophysics Data System (ADS)

    Kipnis, Nahum

    2014-10-01

    This paper is the first part of a three-part project `How the principle of energy conservation evolved between 1842 and 1870: the view of a participant'. This paper aims at showing how the new ideas of Mayer and Joule were received, what constituted the new theory in the period under study, and how it was supported experimentally. A connection was found between the new theory and thermodynamics which benefited both of them. Some considerations are offered about the desirability of taking a historical approach to teaching energy and its conservation.

  20. Principles of thermodynamics and statistical mechanics

    SciTech Connect

    Lawden, D.F.

    1987-01-01

    This book gives a careful examination of the principles and concepts on which thermodynamics theories are based. It provides a foundation for understanding how theory is applied to many situations in physics and engineering. Applications to such areas as gases, crystals, and magnets are developed to illustrate general methods of analysis, giving the reader the background knowledge needed to pursue any particular area through further reading. The author's experience has allowed him to take special care with concepts that are most difficult for students. Numerous sets of exercises are included.

  1. Improving student understanding of quantum mechanics

    NASA Astrophysics Data System (ADS)

    Singh, Chandralekha

    2015-04-01

    Learning quantum mechanics is challenging for many students. We are investigating the difficulties that upper-level students have in learning quantum mechanics. To help improve student understanding of quantum concepts, we are developing quantum interactive learning tutorials (QuILTs) and tools for peer-instruction. Many of the QuILTs employ computer simulations to help students visualize and develop better intuition about quantum phenomena. We will discuss the common students' difficulties and research-based tools we are developing to bridge the gap between quantitative and conceptual aspects of quantum mechanics and help students develop a solid grasp of quantum concepts. Support from the National Science Foundation is gratefully acknowledged.

  2. The Grammatical Universe and the Laws of Thermodynamics and Quantum Entanglement

    SciTech Connect

    Marcer, Peter J.; Rowlands, Peter

    2010-11-24

    The universal nilpotent computational rewrite system (UNCRS) is shown to formalize an irreversible process of evolution in conformity with the First, Second and Third Laws of Thermodynamics, in terms of a single algebraic creation operator (ikE+ip+jm) which delivers the whole quantum mechanical language apparatus, where k, i, j are quaternions units and E, p, m are energy, momentum and rest mass. This nilpotent evolution describes 'a dynamic zero totality universe' in terms of its fermion states (each of which, by Pauli exclusion, is unique and nonzero), where, together with their boson interactions, these define physics at the fundamental level. (The UNCRS implies that the inseparability of objects and fields in the quantum universe is based on the fact that the only valid mathematical representations are all automorphisms of the universe itself, and that this is the mathematical meaning of quantum entanglement. It thus appears that the nilpotent fermion states are in fact what is called the splitting field in Quantum Mechanics of the Galois group which leads to the roots of the corresponding algebraic equation, and concerns in this case the alternating group of even permutations which are themselves automorphisms). In the nilpotent evolutionary process: (i) the Quantum Carnot Engine (QCE) extended model of thermodynamic irreversibility, consisting of a single heat bath of an ensemble of Standard Model elementary particles, retains a small amount of quantum coherence / entanglement, so as to constitute new emergent fermion states of matter, and (ii) the metric (E{sup 2}-p{sup 2}m{sup 2}) = 0 ensures the First Law of the conservation of energy operates at each nilpotent stage, so that (iii) prior to each creation (and implied corresponding annihilation / conserve operation), E and m can be postulated to constitute dark energy and matter respectively. It says that the natural language form of the rewrite grammar of the evolution consists of the well known precepts of the Laws of Thermodynamics, formalized by the UNCRS regress, so as to become (as UNCRS rewrites already published at CASYS), firstly the Quantum Laws of Physics in the form of the generalized Dirac equation and later at higher stages of QCE ensemble complexity, the Laws of Life in the form of Nature's (DNA / RNA genetic) Code and then subsequently those of Intelligence and Consciousness (Nature's Rules).

  3. The Grammatical Universe and the Laws of Thermodynamics and Quantum Entanglement

    NASA Astrophysics Data System (ADS)

    Marcer, Peter J.; Rowlands, Peter

    2010-11-01

    The universal nilpotent computational rewrite system (UNCRS) is shown to formalize an irreversible process of evolution in conformity with the First, Second and Third Laws of Thermodynamics, in terms of a single algebraic creation operator (ikE+ip+jm) which delivers the whole quantum mechanical language apparatus, where k, i, j are quaternions units and E, p, m are energy, momentum and rest mass. This nilpotent evolution describes `a dynamic zero totality universe' in terms of its fermion states (each of which, by Pauli exclusion, is unique and nonzero), where, together with their boson interactions, these define physics at the fundamental level. (The UNCRS implies that the inseparability of objects and fields in the quantum universe is based on the fact that the only valid mathematical representations are all automorphisms of the universe itself, and that this is the mathematical meaning of quantum entanglement. It thus appears that the nilpotent fermion states are in fact what is called the splitting field in Quantum Mechanics of the Galois group which leads to the roots of the corresponding algebraic equation, and concerns in this case the alternating group of even permutations which are themselves automorphisms). In the nilpotent evolutionary process: (i) the Quantum Carnot Engine (QCE) extended model of thermodynamic irreversibility, consisting of a single heat bath of an ensemble of Standard Model elementary particles, retains a small amount of quantum coherence / entanglement, so as to constitute new emergent fermion states of matter, and (ii) the metric (E2-p2m2) = 0 ensures the First Law of the conservation of energy operates at each nilpotent stage, so that (iii) prior to each creation (and implied corresponding annihilation / conserve operation), E and m can be postulated to constitute dark energy and matter respectively. It says that the natural language form of the rewrite grammar of the evolution consists of the well known precepts of the Laws of Thermodynamics, formalized by the UNCRS regress, so as to become (as UNCRS rewrites already published at CASYS), firstly the Quantum Laws of Physics in the form of the generalized Dirac equation and later at higher stages of QCE ensemble complexity, the Laws of Life in the form of Nature's (DNA / RNA genetic) Code and then subsequently those of Intelligence and Consciousness (Nature's Rules).

  4. Quantum mechanics and the psyche

    NASA Astrophysics Data System (ADS)

    Galli Carminati, G.; Martin, F.

    2008-07-01

    In this paper we apply the last developments of the theory of measurement in quantum mechanics to the phenomenon of consciousness and especially to the awareness of unconscious components. Various models of measurement in quantum mechanics can be distinguished by the fact that there is, or there is not, a collapse of the wave function. The passive aspect of consciousness seems to agree better with models in which there is no collapse of the wave function, whereas in the active aspect of consciousness—i.e., that which goes together with an act or a choice—there seems to be a collapse of the wave function. As an example of the second possibility we study in detail the photon delayed-choice experiment and its consequences for subjective or psychological time. We apply this as an attempt to explain synchronicity phenomena. As a model of application of the awareness of unconscious components we study the mourning process. We apply also the quantum paradigm to the phenomenon of correlation at a distance between minds, as well as to group correlations that appear during group therapies or group training. Quantum entanglement leads to the formation of group unconscious or collective unconscious. Finally we propose to test the existence of such correlations during sessions of group training.

  5. On determining absolute entropy without quantum theory or the third law of thermodynamics

    NASA Astrophysics Data System (ADS)

    Steane, Andrew M.

    2016-04-01

    We employ classical thermodynamics to gain information about absolute entropy, without recourse to statistical methods, quantum mechanics or the third law of thermodynamics. The Gibbs–Duhem equation yields various simple methods to determine the absolute entropy of a fluid. We also study the entropy of an ideal gas and the ionization of a plasma in thermal equilibrium. A single measurement of the degree of ionization can be used to determine an unknown constant in the entropy equation, and thus determine the absolute entropy of a gas. It follows from all these examples that the value of entropy at absolute zero temperature does not need to be assigned by postulate, but can be deduced empirically.

  6. The Effects of Quantum Delocalization on the Structural and Thermodynamic Properties of Many-Body Systems

    NASA Astrophysics Data System (ADS)

    Deckman, Jason

    The following dissertation is an account of my research in the Mandelshtam group at UC Irvine beginning in the Fall of 2006 and ending in the Summer of 2011. My general area of study falls within the realm of equilibrium quantum statistical mechanics, a discipline which attempts to relate molecular-scale properties to time averaged, macroscopic observables. The major tools used herein are the Variational Gaussian Wavepacket (VGW) approximation for quantum calculations, and Monte-Carlo methods, particularly parallel tempering, for global optimization and the prediction of equilibrium thermodynamic properties. Much of my work used these two methods to model both small and bulk systems at equilibrium where quantum effects are significant. All the systems considered are characterized by inter-molecular van der Waals forces, which are weak but significant electrostatic attractions between atoms and molecules and posses a 1/r6 dependence. The research herein begins at the microscopic level, starting with Lennard-Jones (LJ) clusters, then later shifts to the macroscopic for a study involving bulk para-hydrogen. For the LJ clusters the structural transitions induced by a changing deBoer parameter, Λ, a measure of quantum delocalization of the constituent particles, are investigated over a range of cluster sizes, N. From the data a "phase" diagram as a function of Λ and N is constructed, which depicts the structural motifs favored at different size and quantum parameter. Comparisons of the "quantum induced" structural transitions depicted in the latter are also made with temperature induced transitions and those caused by varying the range of the Morse potential. Following this, the structural properties of binary para-Hydrogen/ ortho-Deuterium clusters are investigated using the VGW approximation and Monte-Carlo methods within the GMIN framework. The latter uses the "Basin-Hopping" algorithm, which simplifies the potential energy landscape, and coupled with the VGW approximation, an efficient and viable method for predicting equilibrium quantum mechanical properties is demonstrated. In the next chapter my contribution to the numerical implementation of the Thermal Gaussian Molecular Dynamics (TGMD) method is discussed. Within TGMD, a mapping of a quantum system to a classical is performed by means of an effective Hamiltonian, H eff, which is computed within the VGW framework. Using the classical dynamical equations of motion with Heff, the properties of a quantum system can be modeled within a classical framework. After this, the bulk system of fluid para-Hydrogen is investigated using the VGW in the NPT ensemble in an attempt to derive the thermodynamic properties at the phase transition and construct the equation of state. The dissertation then concludes with a discussion on the adaptation of the VGW methodology to any molecular system.

  7. Geometrical Phases in Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Christian, Joy Julius

    In quantum mechanics, the path-dependent geometrical phase associated with a physical system, over and above the familiar dynamical phase, was initially discovered in the context of adiabatically changing environments. Subsequently, Aharonov and Anandan liberated this phase from the original formulation of Berry, which used Hamiltonians, dependent on curves in a classical parameter space, to represent the cyclic variations of the environments. Their purely quantum mechanical treatment, independent of Hamiltonians, instead used the non-trivial topological structure of the projective space of one-dimensional subspaces of an appropriate Hilbert space. The geometrical phase, in their treatment, results from a parallel transport of the time-dependent pure quantum states along a curve in this space, which is endowed with an abelian connection. Unlike Berry, they were able to achieve this without resort to an adiabatic approximation or to a time-independent eigenvalue equation. Prima facie, these two approaches are conceptually quite different. After a review of both approaches, an exposition bridging this apparent conceptual gap is given; by rigorously analyzing a model composite system, it is shown that, in an appropriate correspondence limit, the Berry phase can be recovered as a special case from the Aharonov-Anandan phase. Moreover, the model composite system is used to show that Berry's correction to the traditional Born-Oppenheimer energy spectra indeed brings the spectra closer to the exact results. Then, an experimental arrangement to measure geometrical phases associated with cyclic and non-cyclic variations of quantum states of an entangled composite system is proposed, utilizing the fundamental ideas of the recently opened field of two-particle interferometry. This arrangement not only resolves the controversy regarding the true nature of the phases associated with photon states, but also unequivocally predicts experimentally accessible geometrical phases in a truly quantum regime, and allows, for the first time, the measurements of such phases associated with arbitrary non-cyclic evolutions of entangled linear-momentum photon -states. This non-classical manifestation of the geometrical phases is due to the entangled character of linear-momentum photon-states of two correlated photons produced by parametric down-conversion in non-linear crystals. Finally, the non-local aspect of the geometrical phase is contrasted with the fundamental non-locality of quantum mechanics due to the entangled character of quantum states.

  8. Quantum Mechanics Beyond Hilbert Space

    NASA Astrophysics Data System (ADS)

    Antoine, J.-P.

    Going Beyond Hilbert Space Why? The Different Formalisms What Does One Obtain? The Mathematical Formalism Rigged Hilbert Spaces Scales and Lattices of Hilbert Spaces Partial Inner Product Spaces Operators on PIP-Spaces Application in Quantum Mechanics: The Fock-Bargmann Representation - Revisited A RHS of Entire Functions A LHS of Entire Functions Around ℑ Application in Scattering Theory RHS: Resonances, Gamow Vectors, Arrow of Time LHS: Integral Equations vs. Complex Scaling Conclusion

  9. Reexamination of the purity entanglement measure: Peculiarities of a truly thermodynamic quantum correlation measure

    NASA Astrophysics Data System (ADS)

    Batle, J.; Ooi, C. H. Raymond; Abdalla, S.

    2015-12-01

    The purity entanglement measure introduced by Los Alamos group a decade ago is reexamined in the light of interesting features. The role played by purity, reaching a real thermodynamic limit, in detecting quantum phase transitions is studied with a different system, the bond-alternating X Y model in an external magnetic field. The properties of this system are described as well. By considering the dynamics of the original X Y model, we observe that nonergodicity is also grasped by the purity measure, in accordance with other quantum correlation measures that have no common physical or mathematical relation. Adiabaticity is not recovered from the dynamic to the static case, in accordance with one of the consequences of the celebrated Kibble-Zurek mechanism.

  10. Sharpening the second law of thermodynamics with the quantum Bayes theorem.

    PubMed

    Gharibyan, Hrant; Tegmark, Max

    2014-09-01

    We prove a generalization of the classic Groenewold-Lindblad entropy inequality, combining decoherence and the quantum Bayes theorem into a simple unified picture where decoherence increases entropy while observation decreases it. This provides a rigorous quantum-mechanical version of the second law of thermodynamics, governing how the entropy of a system (the entropy of its density matrix, partial-traced over the environment and conditioned on what is known) evolves under general decoherence and observation. The powerful tool of spectral majorization enables both simple alternative proofs of the classic Lindblad and Holevo inequalities without using strong subadditivity, and also novel inequalities for decoherence and observation that hold not only for von Neumann entropy, but also for arbitrary concave entropies. PMID:25314413

  11. Treating time travel quantum mechanically

    NASA Astrophysics Data System (ADS)

    Allen, John-Mark A.

    2014-10-01

    The fact that closed timelike curves (CTCs) are permitted by general relativity raises the question as to how quantum systems behave when time travel to the past occurs. Research into answering this question by utilizing the quantum circuit formalism has given rise to two theories: Deutschian-CTCs (D-CTCs) and "postselected" CTCs (P-CTCs). In this paper the quantum circuit approach is thoroughly reviewed, and the strengths and shortcomings of D-CTCs and P-CTCs are presented in view of their nonlinearity and time-travel paradoxes. In particular, the "equivalent circuit model"—which aims to make equivalent predictions to D-CTCs, while avoiding some of the difficulties of the original theory—is shown to contain errors. The discussion of D-CTCs and P-CTCs is used to motivate an analysis of the features one might require of a theory of quantum time travel, following which two overlapping classes of alternate theories are identified. One such theory, the theory of "transition probability" CTCs (T-CTCs), is fully developed. The theory of T-CTCs is shown not to have certain undesirable features—such as time-travel paradoxes, the ability to distinguish nonorthogonal states with certainty, and the ability to clone or delete arbitrary pure states—that are present with D-CTCs and P-CTCs. The problems with nonlinear extensions to quantum mechanics are discussed in relation to the interpretation of these theories, and the physical motivations of all three theories are discussed and compared.

  12. The Mechanism of Quantum Computation

    NASA Astrophysics Data System (ADS)

    Castagnoli, Giuseppe

    2008-08-01

    I provide an alternative way of seeing quantum computation. First, I describe an idealized classical problem solving machine whose coordinates are submitted to a nonfunctional relation representing all the problem constraints; moving an input part, reversibly and nondeterministically produces a solution through a many body interaction. The machine can be considered the many body generalization of another perfect machine, the bouncing ball model of reversible computation. The mathematical description of the machine’s motion, as it is, is applicable to quantum problem solving, an extension of the quantum algorithms that comprises the physical representation of the interdependence between the problem and the solution. The configuration space of the classical machine is replaced by the phase space of the quantum machine. The relation between the coordinates of the machine parts now applies to the populations of the reduced density operators of the parts of the computer register throughout state vector reduction. Thus, reduction produces the solution of the problem under a nonfunctional relation representing the problem-solution interdependence. At the light of this finding, the quantum speed up turns out to be “precognition” of the solution, namely the reduction of the initial ignorance of the solution due to backdating, to before running the algorithm, a part of the state vector reduction on the solution (a time-symmetric part in the case of unstructured problems); as such, it is bounded by state vector reduction through an entropic inequality. The computation mechanism under discussion might also explain the wholeness appearing in the introspective analysis of perception.

  13. Quantum Mechanics: Myths and Facts

    NASA Astrophysics Data System (ADS)

    Nikolić, Hrvoje

    2007-11-01

    A common understanding of quantum mechanics (QM) among students and practical users is often plagued by a number of “myths”, that is, widely accepted claims on which there is not really a general consensus among experts in foundations of QM. These myths include wave-particle duality, time-energy uncertainty relation, fundamental randomness, the absence of measurement-independent reality, locality of QM, nonlocality of QM, the existence of well-defined relativistic QM, the claims that quantum field theory (QFT) solves the problems of relativistic QM or that QFT is a theory of particles, as well as myths on black-hole entropy. The fact is that the existence of various theoretical and interpretational ambiguities underlying these myths does not yet allow us to accept them as proven facts. I review the main arguments and counterarguments lying behind these myths and conclude that QM is still a not-yet-completely-understood theory open to further fundamental research.

  14. Quantum mechanical effects from deformation theory

    SciTech Connect

    Much, A.

    2014-02-15

    We consider deformations of quantum mechanical operators by using the novel construction tool of warped convolutions. The deformation enables us to obtain several quantum mechanical effects where electromagnetic and gravitomagnetic fields play a role. Furthermore, a quantum plane can be defined by using the deformation techniques. This in turn gives an experimentally verifiable effect.

  15. Teaching Quantum Mechanics on an Introductory Level.

    ERIC Educational Resources Information Center

    Muller, Rainer; Wiesner, Hartmut

    2002-01-01

    Presents a new research-based course on quantum mechanics in which the conceptual issues of quantum mechanics are taught at an introductory level. Involves students in the discovery of how quantum phenomena deviate from classical everyday experiences. (Contains 31 references.) (Author/YDS)

  16. Jarzynski equality in PT-symmetric quantum mechanics

    DOE PAGESBeta

    Deffner, Sebastian; Saxena, Avadh

    2015-04-13

    We show that the quantum Jarzynski equality generalizes to PT -symmetric quantum mechanics with unbroken PT -symmetry. In the regime of broken PT -symmetry the Jarzynski equality does not hold as also the CPT -norm is not preserved during the dynamics. These findings are illustrated for an experimentally relevant system – two coupled optical waveguides. It turns out that for these systems the phase transition between the regimes of unbroken and broken PT -symmetry is thermodynamically inhibited as the irreversible work diverges at the critical point.

  17. Jarzynski equality in PT-symmetric quantum mechanics

    SciTech Connect

    Deffner, Sebastian; Saxena, Avadh

    2015-04-13

    We show that the quantum Jarzynski equality generalizes to PT -symmetric quantum mechanics with unbroken PT -symmetry. In the regime of broken PT -symmetry the Jarzynski equality does not hold as also the CPT -norm is not preserved during the dynamics. These findings are illustrated for an experimentally relevant system two coupled optical waveguides. It turns out that for these systems the phase transition between the regimes of unbroken and broken PT -symmetry is thermodynamically inhibited as the irreversible work diverges at the critical point.

  18. Description of quantum coherence in thermodynamic processes requires constraints beyond free energy

    PubMed Central

    Lostaglio, Matteo; Jennings, David; Rudolph, Terry

    2015-01-01

    Recent studies have developed fundamental limitations on nanoscale thermodynamics, in terms of a set of independent free energy relations. Here we show that free energy relations cannot properly describe quantum coherence in thermodynamic processes. By casting time-asymmetry as a quantifiable, fundamental resource of a quantum state, we arrive at an additional, independent set of thermodynamic constraints that naturally extend the existing ones. These asymmetry relations reveal that the traditional Szilárd engine argument does not extend automatically to quantum coherences, but instead only relational coherences in a multipartite scenario can contribute to thermodynamic work. We find that coherence transformations are always irreversible. Our results also reveal additional structural parallels between thermodynamics and the theory of entanglement. PMID:25754774

  19. Statistical Mechanical Proof of the Second Law of Thermodynamics based on Volume Entropy

    NASA Astrophysics Data System (ADS)

    Campisi, Michele

    2007-10-01

    As pointed out in [M. Campisi. Stud. Hist. Phil. M. P. 36 (2005) 275-290] the volume entropy (that is the logarithm of the volume of phase space enclosed by the constant energy hyper-surface) provides a good mechanical analogue of thermodynamic entropy because it satisfies the heat theorem and it is an adiabatic invariant. This property explains the ``equal'' sign in Clausius principle (Sf>=Si) in a purely mechanical way and suggests that the volume entropy might explain the ``larger than'' sign (i.e. the Law of Entropy Increase) if non adiabatic transformations were considered. Based on the principles of quantum mechanics here we prove that, provided the initial equilibrium satisfy the natural condition of decreasing ordering of probabilities, the expectation value of the volume entropy cannot decrease for arbitrary transformations performed by some external sources of work on a insulated system. This can be regarded as a rigorous quantum mechanical proof of the Second Law.

  20. Atomistic-level non-equilibrium model for chemically reactive systems based on steepest-entropy-ascent quantum thermodynamics

    NASA Astrophysics Data System (ADS)

    Li, Guanchen; Al-Abbasi, Omar; von Spakovsky, Michael R.

    2014-10-01

    This paper outlines an atomistic-level framework for modeling the non-equilibrium behavior of chemically reactive systems. The framework called steepest- entropy-ascent quantum thermodynamics (SEA-QT) is based on the paradigm of intrinsic quantum thermodynamic (IQT), which is a theory that unifies quantum mechanics and thermodynamics into a single discipline with wide applications to the study of non-equilibrium phenomena at the atomistic level. SEA-QT is a novel approach for describing the state of chemically reactive systems as well as the kinetic and dynamic features of the reaction process without any assumptions of near-equilibrium states or weak-interactions with a reservoir or bath. Entropy generation is the basis of the dissipation which takes place internal to the system and is, thus, the driving force of the chemical reaction(s). The SEA-QT non-equilibrium model is able to provide detailed information during the reaction process, providing a picture of the changes occurring in key thermodynamic properties (e.g., the instantaneous species concentrations, entropy and entropy generation, reaction coordinate, chemical affinities, reaction rate, etc). As an illustration, the SEA-QT framework is applied to an atomistic-level chemically reactive system governed by the reaction mechanism F + H2 leftrightarrow FH + H.

  1. Quantum mechanical light harvesting mechanisms in photosynthesis

    NASA Astrophysics Data System (ADS)

    Scholes, Gregory

    2012-02-01

    More than 10 million billion photons of light strike a leaf each second. Incredibly, almost every red-coloured photon is captured by chlorophyll pigments and initiates steps to plant growth. Last year we reported that marine algae use quantum mechanics in order to optimize photosynthesis [1], a process essential to its survival. These and other insights from the natural world promise to revolutionize our ability to harness the power of the sun. In a recent review [2] we described the principles learned from studies of various natural antenna complexes and suggested how to utilize that knowledge to shape future technologies. We forecast the need to develop ways to direct and regulate excitation energy flow using molecular organizations that facilitate feedback and control--not easy given that the energy is only stored for a billionth of a second. In this presentation I will describe new results that explain the observation and meaning of quantum-coherent energy transfer. [4pt] [1] Elisabetta Collini, Cathy Y. Wong, Krystyna E. Wilk, Paul M. G. Curmi, Paul Brumer, and Gregory D. Scholes, ``Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature'' Nature 463, 644-648 (2010).[0pt] [2] Gregory D. Scholes, Graham R. Fleming, Alexandra Olaya-Castro and Rienk van Grondelle, ``Lessons from nature about solar light harvesting'' Nature Chem. 3, 763-774 (2011).

  2. Molecular thermodynamics of metabolism: quantum thermochemical calculations for key metabolites.

    PubMed

    Hadadi, N; Ataman, M; Hatzimanikatis, V; Panayiotou, C

    2015-04-28

    The present work is the first of a series of papers aiming at a coherent and unified development of the thermodynamics of metabolism and the rationalization of feasibility analysis of metabolic pathways. The focus in this part is on high-level quantum chemical calculations of the thermochemical quantities of relatively heavy metabolites such as amino acids/oligopeptides, nucleosides, saccharides and their derivatives in the ideal gas state. The results of this study will be combined with the corresponding hydration/solvation results in subsequent parts of this work in order to derive the desired thermochemical quantities in aqueous solutions. The above metabolites exist in a vast conformational/isomerization space including rotational conformers, tautomers or anomers exhibiting often multiple or cooperative intramolecular hydrogen bonding. We examine the challenges posed by these features for the reliable estimation of thermochemical quantities. We discuss conformer search, conformer distribution and averaging processes. We further consider neutral metabolites as well as protonated and deprotonated metabolites. In addition to the traditional presentation of gas-phase acidities, basicities and proton affinities, we also examine heats and free energies of ionic species. We obtain simple linear relations between the thermochemical quantities of ions and the formation quantities of their neutral counterparts. Furthermore, we compare our calculations with reliable experimental measurements and predictive calculations from the literature, when available. Finally, we discuss the next steps and perspectives for this work. PMID:25799954

  3. Thermodynamic Derivation of the Equilibrium Distribution Functions of Statistical Mechanics.

    ERIC Educational Resources Information Center

    Stoeckly, Beth

    1979-01-01

    Presents a simplified derivation of the equilibrium distribution functions. The derivation proceeds from the change in the Helmholtz free energy when a particle is added to a system of fixed temperature, volume, and chemical potential. The derivations show the relationship between statistical mechanics and macroscopic thermodynamics. (Author/GA)

  4. Quantum mechanics in complex systems

    NASA Astrophysics Data System (ADS)

    Hoehn, Ross Douglas

    This document should be considered in its separation; there are three distinct topics contained within and three distinct chapters within the body of works. In a similar fashion, this abstract should be considered in three parts. Firstly, we explored the existence of multiply-charged atomic ions by having developed a new set of dimensional scaling equations as well as a series of relativistic augmentations to the standard dimensional scaling procedure and to the self-consistent field calculations. Secondly, we propose a novel method of predicting drug efficacy in hopes to facilitate the discovery of new small molecule therapeutics by modeling the agonist-protein system as being similar to the process of Inelastic Electron Tunneling Spectroscopy. Finally, we facilitate the instruction in basic quantum mechanical topics through the use of quantum games; this method of approach allows for the generation of exercises with the intent of conveying the fundamental concepts within a first year quantum mechanics classroom. Furthermore, no to be mentioned within the body of the text, yet presented in appendix form, certain works modeling the proliferation of cells types within the confines of man-made lattices for the purpose of facilitating artificial vascular transplants. In Chapter 2, we present a theoretical framework which describes multiply-charged atomic ions, their stability within super-intense laser fields, also lay corrections to the systems due to relativistic effects. Dimensional scaling calculations with relativistic corrections for systems: H, H-, H 2-, He, He-, He2-, He3- within super-intense laser fields were completed. Also completed were three-dimensional self consistent field calculations to verify the dimensionally scaled quantities. With the aforementioned methods the system's ability to stably bind 'additional' electrons through the development of multiple isolated regions of high potential energy leading to nodes of high electron density is shown. These nodes are spaced far enough from each other to minimized the electronic repulsion of the electrons, while still providing adequate enough attraction so as to bind the excess elections into orbitals. We have found that even with relativistic considerations these species are stably bound within the field. It was also found that performing the dimensional scaling calculations for systems within the confines of laser fields to be a much simpler and more cost-effective method than the supporting D=3 SCF method. The dimensional scaling method is general and can be extended to include relativistic corrections to describe the stability of simple molecular systems in super-intense laser fields. Chapter 3, we delineate the model, and aspects therein, of inelastic electron tunneling and map this model to the protein environment. G protein-coupled receptors (GPCRs) constitute a large family of receptors that sense molecules outside of a cell and activate signal transduction pathways inside the cell. Modeling how an agonist activates such a receptor is important for understanding a wide variety of physiological processes and it is of tremendous value for pharmacology and drug design. Inelastic electron tunneling spectroscopy (IETS) has been proposed as the mechanism by which olfactory GPCRs are activated by an encapsulated agonist. In this note we apply this notion to GPCRs within the mammalian nervous system using ab initio quantum chemical modeling. We found that non-endogenous agonists of the serotonin receptor share a singular IET spectral aspect both amongst each other and with the serotonin molecule: a peak that scales in intensity with the known agonist activities. We propose an experiential validation of this model by utilizing lysergic acid dimethylamide (DAM-57), an ergot derivative, and its isotopologues in which hydrogen atoms are replaced by deuterium. If validated our theory may provide new avenues for guided drug design and better in silico prediction of efficacies. Our final chapter, explores methods which may be explored to assist in the early instruction in quantum mechanics. The learning of quantum mechanics is contingent upon an understanding of the physical significance of the mathematics that one must perform. Concepts such as normalization, superposition, interference, probability amplitude and entanglement can prove challenging for the beginning student. This paper outlines several class exercises that use a non-classical version of tic-tac-toe to instruct several topics in an undergraduate quantum mechanics course. Quantum tic-tac-toe (QTTT) is a quantum analogue of classical tic-tac-toe (CTTT) benefiting from the use of superposition in movement, qualitative (and later quantitative) displays of entanglement and state collapse due to observation. QTTT can be used for the benefit of the students understanding in several other topics with the aid of proper discussion.

  5. Mechanism for quantum speedup in open quantum systems

    NASA Astrophysics Data System (ADS)

    Liu, Hai-Bin; Yang, W. L.; An, Jun-Hong; Xu, Zhen-Yu

    2016-02-01

    The quantum speed limit (QSL) time for open system characterizes the most efficient response of the system to the environmental influences. Previous results showed that the non-Markovianity governs the quantum speedup. Via studying the dynamics of a dissipative two-level system, we reveal that the non-Markovian effect is only the dynamical way of the quantum speedup, while the formation of the system-environment bound states is the essential reason for the quantum speedup. Our attribution of the quantum speedup to the energy-spectrum character can supply another vital path for experiments when the quantum speedup shows up without any dynamical calculations. The potential experimental observation of our quantum speedup mechanism in the circuit QED system is discussed. Our results may be of both theoretical and experimental interest in exploring the ultimate QSL in realistic environments, and may open new perspectives for devising active quantum speedup devices.

  6. Quantum squeezing of a mechanical resonator

    NASA Astrophysics Data System (ADS)

    Lei, Chan U.; Weinstein, Aaron; Suh, Junho; Wollman, Emma; Schwab, Keith

    Generating nonclassical states of a macroscopic object has been a subject of considerable interest. It offers a route toward fundamental test of quantum mechanics in an unexplored regime. However, a macroscopic quantum state is very susceptible to decoherence due to the environment. One way to generate robust quantum states is quantum reservoir engineering. In this work, we utilize the reservoir engineering scheme developed by Kronwald et al. to generate a steady quantum squeezed state of a micron-scale mechanical oscillator in an electromechanical system. Together with the backaction evading measurement technique, we demonstrate a quantum nondemolition measurement of the mechanical quadratures to characterize the quantum squeezed state. By measuring the quadrature variances of the mechanical motion, more than 3dB squeezing below the zero-point level has been achieved.

  7. Heisenberg and the Interpretation of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Camilleri, Kristian

    2009-02-01

    Preface; 1. Introduction; Part I. The Emergence of Quantum Mechanics: 2. Quantum mechanics and the principle of observability; 3. The problem of interpretation; Part II. The Heisenberg-Bohr Dialogue: 4. The wave-particle duality; 5. Indeterminacy and the limits of classical concepts: the turning point in Heisenberg's thought; 6. Heisenberg and Bohr: divergent viewpoints of complementarity; Part III. Heisenberg's Epistemology and Ontology of Quantum Mechanics: 7. The transformation of Kantian philosophy; 8. The linguistic turn in Heisenberg's thought; Conclusion; References; Index.

  8. Heisenberg and the Interpretation of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Camilleri, Kristian

    2011-09-01

    Preface; 1. Introduction; Part I. The Emergence of Quantum Mechanics: 2. Quantum mechanics and the principle of observability; 3. The problem of interpretation; Part II. The Heisenberg-Bohr Dialogue: 4. The wave-particle duality; 5. Indeterminacy and the limits of classical concepts: the turning point in Heisenberg's thought; 6. Heisenberg and Bohr: divergent viewpoints of complementarity; Part III. Heisenberg's Epistemology and Ontology of Quantum Mechanics: 7. The transformation of Kantian philosophy; 8. The linguistic turn in Heisenberg's thought; Conclusion; References; Index.

  9. A Bit of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Oss, Stefano; Rosi, Tommaso

    2015-04-01

    We have developed an app for iOS-based smart-phones/tablets that allows a 3-D, complex phase-based colorful visualization of hydrogen atom wave functions. Several important features of the quantum behavior of atomic orbitals can easily be made evident, thus making this app a useful companion in introductory modern physics classes. There are many reasons why quantum mechanical systems and phenomena are difficult both to teach and deeply understand. They are described by equations that are generally hard to visualize, and they often oppose the so-called "common sense" based on the human perception of the world, which is built on mental images such as locality and causality. Moreover students cannot have direct experience of those systems and solutions, and generally do not even have the possibility to refer to pictures, videos, or experiments to fill this gap. Teachers often encounter quite serious troubles in finding out a sensible way to speak about the wonders of quantum physics at the high school level, where complex formalisms are not accessible at all. One should however consider that this is quite a common issue in physics and, more generally, in science education. There are plenty of natural phenomena whose models (not only at microscopic and atomic levels) are of difficult, if not impossible, visualization. Just think of certain kinds of waves, fields of forces, velocities, energy, angular momentum, and so on. One should also notice that physical reality is not the same as the images we make of it. Pictures (formal, abstract ones, as well as artists' views) are a convenient bridge between these two aspects.

  10. Speakable and Unspeakable in Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Bell, J. S.; Aspect, Introduction by Alain

    2004-06-01

    List of papers on quantum philosophy by J. S. Bell; Preface; Acknowledgements; Introduction by Alain Aspect; 1. On the problem of hidden variables in quantum mechanics; 2. On the Einstein-Rosen-Podolsky paradox; 3. The moral aspects of quantum mechanics; 4. Introduction to the hidden-variable question; 5. Subject and object; 6. On wave packet reduction in the Coleman-Hepp model; 7. The theory of local beables; 8. Locality in quantum mechanics: reply to critics; 9. How to teach special relativity; 10. Einstein-Podolsky-Rosen experiments; 11. The measurement theory of Everett and de Broglie's pilot wave; 12. Free variables and local causality; 13. Atomic-cascade photons and quantum-mechanical nonlocality; 14. de Broglie-Bohm delayed choice double-slit experiments and density matrix; 15. Quantum mechanics for cosmologists; 16. Bertlmann's socks and the nature of reality; 17. On the impossible pilot wave; 18. Speakable and unspeakable in quantum mechanics; 19. Beables for quantum field theory; 20. Six possible worlds of quantum mechanics; 21. EPR correlations and EPR distributions; 22. Are there quantum jumps?; 23. Against 'measurement'; 24. La Nouvelle cuisine.

  11. BOOK REVIEWS: Quantum Mechanics: Fundamentals

    NASA Astrophysics Data System (ADS)

    Whitaker, A.

    2004-02-01

    This review is of three books, all published by Springer, all on quantum theory at a level above introductory, but very different in content, style and intended audience. That of Gottfried and Yan is of exceptional interest, historical and otherwise. It is a second edition of Gottfried’s well-known book published by Benjamin in 1966. This was written as a text for a graduate quantum mechanics course, and has become one of the most used and respected accounts of quantum theory, at a level mathematically respectable but not rigorous. Quantum mechanics was already solidly established by 1966, but this second edition gives an indication of progress made and changes in perspective over the last thirty-five years, and also recognises the very substantial increase in knowledge of quantum theory obtained at the undergraduate level. Topics absent from the first edition but included in the second include the Feynman path integral, seen in 1966 as an imaginative but not very useful formulation of quantum theory. Feynman methods were given only a cursory mention by Gottfried. Their practical importance has now been fully recognised, and a substantial account of them is provided in the new book. Other new topics include semiclassical quantum mechanics, motion in a magnetic field, the S matrix and inelastic collisions, radiation and scattering of light, identical particle systems and the Dirac equation. A topic that was all but totally neglected in 1966, but which has flourished increasingly since, is that of the foundations of quantum theory. John Bell’s work of the mid-1960s has led to genuine theoretical and experimental achievement, which has facilitated the development of quantum optics and quantum information theory. Gottfried’s 1966 book played a modest part in this development. When Bell became increasingly irritated with the standard theoretical approach to quantum measurement, Viki Weisskopf repeatedly directed him to Gottfried’s book. Gottfried had devoted a chapter of his book to these matters, titled ‘The Measurement Process and the Statistical Interpretation of Quantum Mechanics’. Gottfried considered the von Neumann or Dirac ‘collapse of state-vector’ (or ‘reduction postulate’ or ‘projection postulate’) was unsatisfactory, as he argued that it led inevitably to the requirement to include ‘consciousness’ in the theory. He replaced this by a more mathematically and conceptually sophisticated treatment in which, following measurement, the density matrix of the correlated measured and measuring systems, rho, is replaced by hat rho, in which the interference terms from rho have been removed. rho represents a pure state, and hat rho a mixture, but Gottfried argued that they are ‘indistinguishable’, and that we may make our replacement, ‘safe in the knowledge that the error will never be found’. Now our combined state is represented as a mixture, it is intuitive, Gottfried argued, to interpret it in a probabilistic way, |cm|2 being the probability of obtaining the mth measurement result. Bell liked Gottfried’s treatment little more than the cruder ‘collapse’ idea of von Neumann, and when, shortly before Bell’s death, his polemical article ‘Against measurement’ was published in the August 1990 issue of Physics World (pages 33-40), his targets included, not only Landau and Lifshitz’s classic Quantum Mechanics, pilloried for its advocacy of old-fashioned collapse, and a paper by van Kampen in Physica, but also Gottfried’s approach. Bell regarded his replacement of rho by hat rho as a ‘butchering’ of the density matrix, and considered, in any case, that even the butchered density matrix should represent co-existence of different terms, not a set of probabilities. Gottfried has replied to Bell ( Physics World, October 1991, pages 34-40; Nature 405, 533-36 (2000)). He has also become a major commentator on Bell’s work, for example editing the section on quantum foundations in the World Scientific edition of Bell’s collected works. Thus it is exceedingly interesting to discover how he has responded to Bell’s criticisms in the new edition of the book. To commence with general discussion of the new book, the authors recognise that the graduate student of today almost certainly has substantial experience of wave mechanics, and is probably familiar with the Dirac formalism. The 1966 edition had what seems, at least in retrospect, a relatively soft opening covering the basic ideas of wave mechanics and a substantial number of applications; it did not reach the Dirac formalism in the first two hundred pages, though it then moved on to tackle rather advanced topics, including a very substantial section on symmetries, which tackled a range of sophisticated issues. The new edition has been almost entirely rewritten; even at the level of basic text, it is difficult to trace sentences or paragraphs that have moved unscathed from one edition to the next. As well as the new topics, many of the old ones are discussed in much greater depth, and the general organisation is entirely different. As compared with the steady rise in level of the 1966 edition, the level of this book is fairly consistent throughout, and from the perspective of a beginning graduate student, I would estimate, a little tough. A brief introductory chapter gives a useful, though not particularly straightforward, discussion of complementarity, uncertainty and superposition, and concludes with an informative though very short summary of the discovery of quantum mechanics, together with a few nice photographs of some of its founders. There follow two substantial chapters which are preparation for the later study of actual systems. The first, called ‘The Formal Framework’ is a fairly comprehensive survey of the methods of quantum theory---Hilbert space, Dirac notation, mixtures, the density matrix, entanglement, canonical quantization, equations of motion, symmetries, conservation laws, propagators, Green’s functions, semiclassical quantum mechanics. The level of mathematical rigour is stated as ‘typical of the bulk of theoretical physics literature---slovenly’; those unhappy with this are directed to the well-known books of Jordan and Thirring. The next chapter---‘Basic Tools’---explains a set of topics which students will need to use when studying particular systems---angular momentum and its addition, free particles, the two-body system, and the standard approximation techniques. There follow chapters on low-dimensional systems---harmonic oscillator, Aharanov--Bohm effect, one-dimensional scattering, WKB and so on; hydrogenic atoms---the Kepler problem, fine and hyperfine structure, Zeeman and Stark effects; and on two-electron atoms---spin and statistics. As in the first edition, there is a substantial treatment of symmetries, including time reversal, Galileo transformations, the rotation group, the Wigner-Eckart theorem and the Berry phase. There are two long chapters on scattering---elastic and inelastic respectively, including an account of the S matrix. The treatment of electrodynamics is much extended and modernised compared to that in the first edition. There are discussions of the quantization of the free field, causality and uncertainty in electrodynamics, vacuum fluctuations including the Casimir effect and the Lamb shift, and radiative transitions. There is a treatment of quantum optics, but this a only a brief introduction to a rapidly expanding subject, designed to facilitate understanding of the experiments on Bell’s inequalities discussed in the later chapter on interpretation. Other topics are the photoeffect in hydrogen, scattering of photons, resonant scattering and spontaneous decay. Identical particles are discussed, with a treatment of second quantization and an introduction to Bose--Einstein condensation, and the last chapter is a brief introduction to relativistic quantum mechanics, including the Dirac equation, the electromagnetic interaction of a Dirac particle, the scattering of ultra-relativistic electrons and a treatment of bound states in a Coulomb field. Gottfried and Yan’s response both to the growing interest in work on foundational matters in general, and to the specific criticism of Bell on the previous edition is included in the chapter entitled `Interpretation'. This chapter appears to be something of a hybrid. The first four sections broadly discuss hidden variables. An account of the Einstein--Podolsky--Rosen approach is followed by a general study of hidden variables, including a discussion of what the authors call the Bell--Kochen--Specker theorem. Bell’s theorem is analysed in some detail; also included are the Clauser--Horne inequality and the experimental test of the Bell inequality by Aspect. There is an interesting discussion of locality. Granted that both quantum mechanics and experiment (the latter admittedly with a remaining loophole) are in conflict with what the authors call a classical conception of locality as embodied in the Bell inequality, they ask whether quantum mechanics is actually non-local if one uses a definition of locality entailing no ingredients unknown to quantum mechanics. Their answer is that it is a matter of taste. In the statistical distribution of measurement outcomes on separate systems in entangled states, there is no hint of non-locality and no question of superluminal signalling. But quantum mechanics displays perfect correlations between distant outcomes, even though Bell’s theorem demonstrates that pre-existing values cannot be assumed. The second part of this chapter is a discussion of the measurement procedure similar to that in the first edition. The authors aim to show how measurement results are obtained and displayed, and how the appropriate probabilities are determined. The expression of this intention, however, is accompanied by the statement that they are not attempting to derive the statistical interpretation of quantum mechanics, which is assumed, but to examine whether it gives a consistent account of measurement. The conclusion is that after a measurement, interference terms are ‘effectively’ absent; the set of ‘one-to-one correlations between states of the apparatus and the object’ has the same form as that of everyday statistics and is thus a probability distribution. This probability distribution refers to potentialities, only one of which is actually realized in any one trial. Opinions may differ on whether their treatment is any less vulnerable to criticisms such as those of Bell. To sum up, Gottfried and Yan’s book contains a vast amount of knowledge and understanding. As well as explaining the way in which quantum theory works, it attempts to illuminate fundamental aspects of the theory. A typical example is the ‘fable’ elaborated in Gottfried’s article in Nature cited above, that if Newton were shown Maxwell’s equations and the Lorentz force law, he could deduce the meaning of E and B, but if Maxwell were shown Schrödinger’s equation, he could not deduce the meaning of Psi. For use with a well-constructed course (and, of course, this is the avowed purpose of the book; a useful range of problems is provided for each chapter), or for the relative expert getting to grips with particular aspects of the subject or aiming for a deeper understanding, the book is certainly ideal. It might be suggested, though, that, even compared to the first edition, the isolated learner might find the wide range of topics, and the very large number of mathematical and conceptual techniques, introduced in necessarily limited space, somewhat overwhelming. The second book under consideration, that of Schwabl, contains ‘Advanced’ elements of quantum theory; it is designed for a course following on from one for which Gottfried and Yan, or Schwabl’s own `Quantum Mechanics' might be recommended. It is the second edition in English, and is a translation of the third German edition. It has a restricted range of general topics, and consists of three parts entitled `Nonrelativistic Many-Particle Systems', `Relativistic Wave Equations', and `Relativistic Fields'. Thus it studies in some depth areas of physics which are either dealt with in an introductory fashion, or not reached at all, by Gottfried and Yan. Despite its more advanced level, this book may actually be the more accessible to an isolated learner, because the various aspects are developed in an unhurried fashion; the author remarks that ‘the inclusion of all mathematical steps and full presentation of intermediate calculations ensures ease of understanding’. Many useful student problems are included. The presentation is said to be rigorous, but again this is a book for the physicist rather than the mathematician. The treatment of many-particle systems begins with a rather general introduction to second quantization, and then applies this formalism to spin-1/2 fermions and bosons. The study of fermions includes consideration of the Fermi sphere, the electron gas, and the Hartree--Fock equations for atoms; that of bosons includes Bose--Einstein condensation, Bogoliubov theory of the weakly interacting Bose gas, and a brief account of superfluidity. The last section of this part of the book investigates in detail the dynamics of many-particle systems on a microscopic quantum-mechanical basis using, in particular, the dynamical correlation functions. In the second part which considers relativistic wave equations, the Klein--Gordon and Dirac equations are derived, and the Lorentz covariance of the Dirac equation is established. The role of angular momentum in relativistic quantum mechanics is explained, as a preliminary to the study of the energy levels in a Coulomb potential using both the Klein--Gordon and Dirac equations, the latter being solved exactly for the hydrogen atom. For larger atoms, the Foldy--Wouthuysen transformation is explained, and also relativistic corrections and the Lamb shift. There is an interesting chapter on the physical interpretation of the Dirac equation, including such topics as the negative energy solutions, the Zitterbewegung and the Klein paradox. The last chapter in this part of the book is an extensive treatment of the symmetries and other properties of the Dirac equation, including the behaviour under rotation, translation, reflection, charge conjugation and time reversal. Helicity is explained, and the behaviour of zero-mass fermions is discussed; even though it now seems certain that neutrinos do not have zero-mass, this treatment provides a good approximation to their behaviour if they have high enough momenta. The last section on relativistic fields contains chapters on the quantization of relativistic fields, the free Klein--Gordon and Dirac fields, quantization of the radiation field, interacting fields and quantum electrodynamics, including the S matrix, Wick’s theorem and Feynman diagrams. Schwabl’s book would be excellent for those requiring a detailed presentation of the topics it includes, at a level of rigour appropriate to the physicist. It includes a substantial number of interesting problems. The third book under consideration, that by Gustafson and Sigal is very different from the others. In academic level, at least the initial sections may actually be slightly lower; the book covers a one-term course taken by senior undergraduates or junior graduate students in mathematics or physics, and the initial chapters are on basic topics, such as the physical background, basic dynamics, observables and the uncertainty principle. However the level of mathematical sophistication is far higher than in the other books. While the mathematical prerequisites are modest---real and complex analysis, elementary differential equations and preferably Lebesgue integration, a third of the book is made up of what are called mathematical supplements---on operator adjoints, the Fourier transform, tensor products, the trace and trace class operators, the Trotter product formula, operator determinants, the calculus of variations (a substantial treatment in a full chapter), spectral projections, and the projecting-out procedure. On the basis of these supplements, the level of mathematical sophistication and difficulty is increased substantially in the middle section of the book, where the topics considered are many-particle systems, density matrices, positive temperatures, the Feynman path integral, and quasi-classical analysis, and there is a final substantial step for the concluding chapters on resonances, an introduction to quantum field theory, and quantum electrodynamics of non-relativistic particles. A supplementary chapter contains an interesting approach to the remormalization group due to Bach, Fröhlich and Sigal himself. This book is well-written, and the topics discussed have been well thought-out. It would provide a useful approach to quantum theory for the mathematician, and would also provide access for the physicist to some mathematically advanced methods and topics, but the physicist would definitely have to be prepared to work hard at the mathematics required.

  12. Chelate effect and thermodynamics of metal complex formation in solution: a quantum chemical study.

    PubMed

    Vallet, Valérie; Wahlgren, Ulf; Grenthe, Ingmar

    2003-12-01

    The accuracy of quantum chemical predictions of structures and thermodynamic data for metal complexes depends both on the quantum chemical methods and the chemical models used. A thermodynamic analogue of the Eigen-Wilkins mechanism for ligand substitution reactions (Model A) turns out to be sufficiently simple to catch the essential chemistry of complex formation reactions and allows quantum chemical calculations at the ab initio level of thermodynamic quantities both in gas phase and solution; the latter by using the conductor-like polarizable continuum (CPCM) model. Model A describes the complex formation as a two-step reaction: 1. [M(H2O)x](aq) + L(aq) <==>[M(H2O)x], L(aq); 2. [M(H2O)x], L(aq) <==>[M(H2O)(x-1)L],(H2O)(aq). The first step, the formation of an outer-sphere complex is described using the Fuoss equation and the second, the intramolecular exchange between an entering ligand from the second and water in the first coordination shell, using quantum chemical methods. The thermodynamic quantities for this model were compared to those for the reaction: [M(H2O)x](aq) + L(aq) <==>[M(H2O)(x-1)L](aq) + (H2O)(aq) (Model B), as calculated for each reactant and product separately. The models were tested using complex formation between Zn(2+) and ammonia, methylamine, and ethylenediamine, and complex formation and chelate ring closure reactions in binary and ternary UO(2)(2+)-oxalate systems. The results show that the Gibbs energy of reaction for Model A are not strongly dependent on the number of water ligands and the structure of the second coordination sphere; it provides a much more precise estimate of the thermodynamics of complex formation reactions in solution than that obtained from Model B. The agreement between the experimental and calculated data for the formation of Zn(NH(3))(2+)(aq) and Zn(NH(3))(2)(2+)(aq) is better than 8 kJ/mol for the former, as compared to 30 kJ/mol or larger, for the latter. The Gibbs energy of reaction obtained for the UO(2)(2+) oxalate systems using model B differs between 80 and 130 kJ/mol from the experimental results, whereas the agreement with Model A is better. The errors in the quantum chemical estimates of the entropy and enthalpy of reaction are somewhat larger than those for the Gibbs energy, but still in fair agreement with experiments; adding water molecules in the second coordination sphere improves the agreement significantly. Reasons for the different performance of the two models are discussed. The quantum chemical data were used to discuss the microscopic basis of experimental enthalpy and entropy data, to determine the enthalpy and entropy contributions in chelate ring closure reactions and to discuss the origin of the so-called "chelate effect". Contrary to many earlier suggestions, this is not even in the gas phase, a result of changes in translation entropy contributions. There is no simple explanation of the high stability of chelate complexes; it is a result of both enthalpy and entropy contributions that vary from one system to the other. PMID:14640672

  13. Quantum mechanics without potential function

    SciTech Connect

    Alhaidari, A. D.; Ismail, M. E. H.

    2015-07-15

    In the standard formulation of quantum mechanics, one starts by proposing a potential function that models the physical system. The potential is then inserted into the Schrödinger equation, which is solved for the wavefunction, bound states energy spectrum, and/or scattering phase shift. In this work, however, we propose an alternative formulation in which the potential function does not appear. The aim is to obtain a set of analytically realizable systems, which is larger than in the standard formulation and may or may not be associated with any given or previously known potential functions. We start with the wavefunction, which is written as a bounded infinite sum of elements of a complete basis with polynomial coefficients that are orthogonal on an appropriate domain in the energy space. Using the asymptotic properties of these polynomials, we obtain the scattering phase shift, bound states, and resonances. This formulation enables one to handle not only the well-known quantum systems but also previously untreated ones. Illustrative examples are given for two- and three-parameter systems.

  14. Bohmian mechanics and quantum field theory.

    PubMed

    Dürr, Detlef; Goldstein, Sheldon; Tumulka, Roderich; Zanghì, Nino

    2004-08-27

    We discuss a recently proposed extension of Bohmian mechanics to quantum field theory. For more or less any regularized quantum field theory there is a corresponding theory of particle motion, which, in particular, ascribes trajectories to the electrons or whatever sort of particles the quantum field theory is about. Corresponding to the nonconservation of the particle number operator in the quantum field theory, the theory describes explicit creation and annihilation events: the world lines for the particles can begin and end. PMID:15447078

  15. Quantum mechanics: A new chapter?

    NASA Astrophysics Data System (ADS)

    Hofer, Werner A.

    2012-12-01

    We review the conceptual problems in quantum mechanics on a fundamental level. It is shown that the proposed model of extended electrons and a clear understanding of rotations in three dimensional space solve a large part of these problems, in particular the problems related to the ontological status and physical meaning of wavefunctions. It also solves the problem of non-locality. The experimental results obtained in Yves Couder's group and theoretical results by Gerdard Grössing indicate that the wave-like distribution of trajectories of electrons in interference experiments are most likely due to the quantized interactions leading to a discrete set of transferred momenta. A separate experimental confirmation of this interpretation for double-slit interferometry of photons has been given by the group of Steinberg.

  16. Kindergarten Quantum Mechanics: Lecture Notes

    SciTech Connect

    Coecke, Bob

    2006-01-04

    These lecture notes survey some joint work with Samson Abramsky as it was presented by me at several conferences in the summer of 2005. It concerns 'doing quantum mechanics using only pictures of lines, squares, triangles and diamonds'. This picture calculus can be seen as a very substantial extension of Dirac's notation, and has a purely algebraic counterpart in terms of so-called Strongly Compact Closed Categories (introduced by Abramsky and I which subsumes my Logic of Entanglement. For a survey on the 'what', the 'why' and the 'hows' I refer to a previous set of lecture notes. In a last section we provide some pointers to the body of technical literature on the subject.

  17. Statistical mechanical studies on the information processing with quantum fluctuation

    NASA Astrophysics Data System (ADS)

    Otsubo, Yosuke; Inoue, Jun-Ichi; Nagata, Kenji; Okada, Masato

    2014-03-01

    Quantum fluctuation induces the tunneling between states in a system and then can be used in combinatorial optimization problems. Such an algorithm is called quantum adiabatic computing. In this work, we investigate the quality of an information processing based on Bayes inference with the quantum fluctuation through the statistical mechanical approach. We then focus on the error correcting codes and CDMA multiuser demodulation which are described by conventional solvable spin glass models and can be analyzed by replica method in the thermodynamic limit. Introducing the quantum fluctuation into the decoding process of each problem, which is called quantum maximizer of the posteriori probability (QMPM) estimate, we analyze the decoding quality and then compare the results with those by the conventional MPM estimate which corresponds to finite temperature decoding From our limited results, the MPM based on the quantum fluctuation seems to achieve the same decoding quality as the thermal MPM does. We clarify the relationship between the optimal amplitude of transverse field and temperature for the mixture of quantum and classical MPMs. This work is supported by JSPS KAKENHI Grant Numbers 12J06501, 25330283, 25120009.

  18. Quantum and Thermodynamic Properties of Spontaneous and Low-Energy Induced Fission of Nuclei

    SciTech Connect

    Kadmensky, S.G.

    2005-12-01

    It is shown that A. Bohr's concept of transition fission states can be matched with the properties of Coriolis interaction if an axisymmetric fissile nucleus near the scission point remains cold despite a nonadiabatic character of nuclear collective deformation motion. The quantum and thermodynamic properties of various stages of binary and ternary fission after the descent of a fissile nucleus from the outer saddle point are studied within quantum-mechanical fission theory. It is shown that two-particle nucleon-nucleon correlations--in particular, superfluid correlations--play an important role in the formation of fission products and in the classification of fission transitions. The distributions of thermalized primary fission fragments with respect to spins and their projections onto the symmetry axis of the fissile nucleus and fission fragments are constructed, these distributions determining the properties of prompt neutrons and gamma rays emitted by these fragments. A new nonevaporation mechanism of third-particle production in ternary fission is proposed. This mechanism involves transitions of third particles from the cluster states of the fissile-nucleus neck to high-energy states under effects of the shake-off type that are due to the nonadiabatic character of nuclear collective deformation motion.

  19. Relativity of representations in quantum mechanics

    NASA Astrophysics Data System (ADS)

    de la Torre, A. C.

    2002-03-01

    Only the position representation is used in introductory quantum mechanics and the momentum representation is not usually presented until advanced undergraduate courses. To emphasize the relativity of the representations of the abstract formulation of quantum mechanics, two examples of representations related to the operators αX+(1-α)P and 1/2(XP+PX) are presented.

  20. Pseudospectra in non-Hermitian quantum mechanics

    NASA Astrophysics Data System (ADS)

    Krejčiřík, D.; Siegl, P.; Tater, M.; Viola, J.

    2015-10-01

    We propose giving the mathematical concept of the pseudospectrum a central role in quantum mechanics with non-Hermitian operators. We relate pseudospectral properties to quasi-Hermiticity, similarity to self-adjoint operators, and basis properties of eigenfunctions. The abstract results are illustrated by unexpected wild properties of operators familiar from PT -symmetric quantum mechanics.

  1. Quantum Mechanics with a Little Less Mystery

    ERIC Educational Resources Information Center

    Cropper, William H.

    1969-01-01

    Suggests the "route of the inquiring mind in presenting the esoteric quantum mechanical postulates and concepts in an understandable form. Explains that the quantum mechanical postulates are but useful mathematical forms to express thebroader principles of superposition and correspondence. Briefly describes some of the features which makes the…

  2. Statistical Mechanics of Nanoscale Metallic Materials Based on Thermodynamic Availability

    NASA Astrophysics Data System (ADS)

    Cammarata, Robert

    2013-03-01

    When characterizing the equilibrium behavior of small metallic systems, capillary effects can strongly influence the thermal behavior and need to be taken into account in a complete thermodynamic analysis. Although a variety of approaches have been offered to incorporate these effects, they sometimes invoke certain intensive thermodynamic quantities (e.g., chemical potentials) that are not well-defined when dealing with a physically and/or chemically inhomogeneous interfacial region.It has been proposed that many of these difficulties can be resolved by employing the thermodynamic availability function rather than the conventional free energy potentials [R.C. Cammarata, Phil Mag. 88, 927 (2008); R.C. Cammarata, Sol. State Phys. 61, 1 (2009)]. When applied to statistical mechanical calculations, capillary effects on nanoscale system behavior can be obtained in a natural and rigorous way. This procedure will be briefly reviewed and then applied to nanoscale metallic fluid and solid systems. Important issues contrasting the thermodynamic differences between fluid and solid surfaces and how they need to be included in order to obtain physically meaningful results will be discussed. Applications to gas adsorption and nucleation will be presented.

  3. Polymer quantum mechanics and its continuum limit

    SciTech Connect

    Corichi, Alejandro; Vukasinac, Tatjana; Zapata, Jose A.

    2007-08-15

    A rather nonstandard quantum representation of the canonical commutation relations of quantum mechanics systems, known as the polymer representation, has gained some attention in recent years, due to its possible relation with Planck scale physics. In particular, this approach has been followed in a symmetric sector of loop quantum gravity known as loop quantum cosmology. Here we explore different aspects of the relation between the ordinary Schroedinger theory and the polymer description. The paper has two parts. In the first one, we derive the polymer quantum mechanics starting from the ordinary Schroedinger theory and show that the polymer description arises as an appropriate limit. In the second part we consider the continuum limit of this theory, namely, the reverse process in which one starts from the discrete theory and tries to recover back the ordinary Schroedinger quantum mechanics. We consider several examples of interest, including the harmonic oscillator, the free particle, and a simple cosmological model.

  4. Quantum Fluctuations and Thermodynamic Processes in the Presence of Closed Timelike Curves

    NASA Astrophysics Data System (ADS)

    Tanaka, Tsunefumi

    1997-10-01

    A closed timelike curve (CTC) is a closed loop in spacetime whose tangent vector is everywhere timelike. A spacetime which contains CTC's will allow time travel. One of these spacetimes is Grant space. It can be constructed from Minkowski space by imposing periodic boundary conditions in spatial directions and making the boundaries move toward each other. If Hawking's chronology protection conjecture is correct, there must be a physical mechanism preventing the formation of CTC's. Currently the most promising candidate for the chronology protection mechanism is the back reaction of the metric to quantum vacuum fluctuations. In this thesis the quantum fluctuations for a massive scalar field, a self-interacting field, and for a field at nonzero temperature are calculated in Grant space. The stress-energy tensor is found to remain finite everywhere in Grant space for the massive scalar field with sufficiently large field mass. Otherwise it diverges on chronology horizons like the stress-energy tensor for a massless scalar field. If CTC's exist they will have profound effects on physical processes. Causality can be protected even in the presence of CTC's if the self-consistency condition is imposed on all processes. Simple classical thermodynamic processes of a box filled with ideal gas in the presence of CTC's are studied. If a system of boxes is closed, its state does not change as it travels through a region of spacetime with CTC's. But if the system is open, the final state will depend on the interaction with the environment. The second law of thermodynamics is shown to hold for both closed and open systems. A similar problem is investigated at a statistical level for a gas consisting of multiple selves of a single particle in a spacetime with CTC's.

  5. Quantum-mechanical Brayton engine working with a particle in a one-dimensional harmonic trap

    NASA Astrophysics Data System (ADS)

    Wang, H.

    2013-05-01

    Based on the quantum version of thermodynamic processes, a quantum-mechanical Brayton engine model has been established. Expressions for the power output and efficiency of the engine are derived. Some fundamental optimal relations and general performance characteristic curves of the cycle are obtained. Furthermore, we note that it is possible to resist the reduction in efficiency, caused by compression of the adiabatic process, by decreasing the amount of energy levels of the quantum system. The results obtained here will provide theoretical guidance for the design of some new quantum-mechanical engines.

  6. Quantum thermodynamics of the driven resonant level model

    NASA Astrophysics Data System (ADS)

    Bruch, Anton; Thomas, Mark; Viola Kusminskiy, Silvia; von Oppen, Felix; Nitzan, Abraham

    2016-03-01

    We present a consistent thermodynamic theory for the resonant level model in the wide-band limit, whose level energy is driven slowly by an external force. The problem of defining "system" and "bath" in the strong-coupling regime is circumvented by considering as the system everything that is influenced by the externally driven level. The thermodynamic functions that are obtained to first order beyond the quasistatic limit fulfill the first and second law with a positive entropy production, successfully connect to the forces experienced by the external driving, and reproduce the correct weak-coupling limit of stochastic thermodynamics.

  7. Limitations on the Evolution of Quantum Coherences: Towards Fully Quantum Second Laws of Thermodynamics

    NASA Astrophysics Data System (ADS)

    Ćwikliński, Piotr; Studziński, Michał; Horodecki, Michał; Oppenheim, Jonathan

    2015-11-01

    The second law of thermodynamics places a limitation into which states a system can evolve into. For systems in contact with a heat bath, it can be combined with the law of energy conservation, and it says that a system can only evolve into another if the free energy goes down. Recently, it's been shown that there are actually many second laws, and that it is only for large macroscopic systems that they all become equivalent to the ordinary one. These additional second laws also hold for quantum systems, and are, in fact, often more relevant in this regime. They place a restriction on how the probabilities of energy levels can evolve. Here, we consider additional restrictions on how the coherences between energy levels can evolve. Coherences can only go down, and we provide a set of restrictions which limit the extent to which they can be maintained. We find that coherences over energy levels must decay at rates that are suitably adapted to the transition rates between energy levels. We show that the limitations are matched in the case of a single qubit, in which case we obtain the full characterization of state-to-state transformations. For higher dimensions, we conjecture that more severe constraints exist. We also introduce a new class of thermodynamical operations which allow for greater manipulation of coherences and study its power with respect to a class of operations known as thermal operations.

  8. Limitations on the Evolution of Quantum Coherences: Towards Fully Quantum Second Laws of Thermodynamics.

    PubMed

    Ćwikliński, Piotr; Studziński, Michał; Horodecki, Michał; Oppenheim, Jonathan

    2015-11-20

    The second law of thermodynamics places a limitation into which states a system can evolve into. For systems in contact with a heat bath, it can be combined with the law of energy conservation, and it says that a system can only evolve into another if the free energy goes down. Recently, it's been shown that there are actually many second laws, and that it is only for large macroscopic systems that they all become equivalent to the ordinary one. These additional second laws also hold for quantum systems, and are, in fact, often more relevant in this regime. They place a restriction on how the probabilities of energy levels can evolve. Here, we consider additional restrictions on how the coherences between energy levels can evolve. Coherences can only go down, and we provide a set of restrictions which limit the extent to which they can be maintained. We find that coherences over energy levels must decay at rates that are suitably adapted to the transition rates between energy levels. We show that the limitations are matched in the case of a single qubit, in which case we obtain the full characterization of state-to-state transformations. For higher dimensions, we conjecture that more severe constraints exist. We also introduce a new class of thermodynamical operations which allow for greater manipulation of coherences and study its power with respect to a class of operations known as thermal operations. PMID:26636834

  9. Quantum Mechanical Models Of The Fermi Shuttle

    SciTech Connect

    Sternberg, James

    2011-06-01

    The Fermi shuttle is a mechanism in which high energy electrons are produced in an atomic collision by multiple collisions with a target and a projectile atom. It is normally explained purely classically in terms of the electron's orbits prescribed in the collision. Common calculations to predict the Fermi shuttle use semi-classical methods, but these methods still rely on classical orbits. In reality such collisions belong to the realm of quantum mechanics, however. In this paper we discuss several purely quantum mechanical calculations which can produce the Fermi shuttle. Being quantum mechanical in nature, these calculations produce these features by wave interference, rather than by classical orbits.

  10. Experiments on cloaking in optics, thermodynamics and mechanics.

    PubMed

    Kadic, Muamer; Bückmann, Tiemo; Schittny, Robert; Wegener, Martin

    2015-08-28

    Spatial coordinate transformations can be used to transform boundaries, material parameters or discrete lattices. We discuss fundamental constraints in regard to cloaking and review our corresponding experiments in optics, thermodynamics and mechanics. For example, we emphasize three-dimensional broadband visible-frequency carpet cloaking, transient thermal cloaking, three-dimensional omnidirectional macroscopic broadband cloaking for diffuse light throughout the entire visible range, cloaking for flexural waves in thin plates and three-dimensional elasto-static core-shell cloaking using pentamode mechanical metamaterials. PMID:26217050

  11. Causal structure in categorical quantum mechanics

    NASA Astrophysics Data System (ADS)

    Lal, Raymond Ashwin

    Categorical quantum mechanics is a way of formalising the structural features of quantum theory using category theory. It uses compound systems as the primitive notion, which is formalised by using symmetric monoidal categories. This leads to an elegant formalism for describing quantum protocols such as quantum teleportation. In particular, categorical quantum mechanics provides a graphical calculus that exposes the information flow of such protocols in an intuitive way. However, the graphical calculus also reveals surprising features of these protocols; for example, in the quantum teleportation protocol, information appears to flow `backwards-in-time'. This leads to question of how causal structure can be described within categorical quantum mechanics, and how this might lead to insight regarding the structural compatibility between quantum theory and relativity. This thesis is concerned with the project of formalising causal structure in categorical quantum mechanics. We begin by studying an abstract view of Bell-type experiments, as described by `no-signalling boxes', and we show that under time-reversal no-signalling boxes generically become signalling. This conflicts with the underlying symmetry of relativistic causal structure. This leads us to consider the framework of categorical quantum mechanics from the perspective of relativistic causal structure. We derive the properties that a symmetric monoidal category must satisfy in order to describe systems in such a background causal structure. We use these properties to define a new type of category, and this provides a formal framework for describing protocols in spacetime. We explore this new structure, showing how it leads to an understanding of the counter-intuitive information flow of protocols in categorical quantum mechanics. We then find that the formal properties of our new structure are naturally related to axioms for reconstructing quantum theory, and we show how a reconstruction scheme based on purification can be formalised using the structures of categorical quantum mechanics. Finally, we discuss the philosophical aspects of using category theory to describe fundamental physics. We consider a recent argument that category-theoretic formulations of physics, such as categorical quantum mechanics, can be used to support a variant of structural realism. We argue against this claim. The work of this thesis suggests instead that the philosophy of categorical quantum mechanics is subtler than either operationalism or realism.

  12. Emergence of classical theories from quantum mechanics

    NASA Astrophysics Data System (ADS)

    Hájíček, P.

    2012-05-01

    Three problems stand in the way of deriving classical theories from quantum mechanics: those of realist interpretation, of classical properties and of quantum measurement. Recently, we have identified some tacit assumptions that lie at the roots of these problems. Thus, a realist interpretation is hindered by the assumption that the only properties of quantum systems are values of observables. If one simply postulates the properties to be objective that are uniquely defined by preparation then all difficulties disappear. As for classical properties, the wrong assumption is that there are arbitrarily sharp classical trajectories. It turns out that fuzzy classical trajectories can be obtained from quantum mechanics by taking the limit of high entropy. Finally, standard quantum mechanics implies that any registration on a quantum system is disturbed by all quantum systems of the same kind existing somewhere in the universe. If one works out systematically how quantum mechanics must be corrected so that there is no such disturbance, one finds a new interpretation of von Neumann's "first kind of dynamics", and so a new way to a solution of the quantum measurement problem. The present paper gives a very short review of this work.

  13. Consecutive Measurements in Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Glick, Jennifer R.; Adami, Christoph

    The physics of quantum measurement still continues to puzzle with no resolution in sight between competing interpretations, in particular because no interpretation has so far produced predictions that would be falsifiable via experiment. Here we present an analysis of consecutive projective measurements performed on a quantum state using quantum information theory, where the entanglement between the quantum system and a measuring device is explicitly taken into account, and where the consecutive measurements increase the joint Hilbert space while the wavefunction of the joint system never collapses. Using this relative-state formalism we rederive well-known results for the pairwise correlation between any two measurement devices, but show that considering the joint as well as conditional entropy of three devices reveals a difference between the collapse and no-collapse pictures of quantum measurement that is experimentally testable. This research was funded by a Michigan State University Enrichment Fellowship.

  14. The transactional interpretation of quantum mechanics

    NASA Astrophysics Data System (ADS)

    Cramer, John G.

    1986-07-01

    The interpretational problems of quantum mechanics are considered. The way in which the standard Copenhagen interpretation of quantum mechanics deals with these problems is reviewed. A new interpretation of the formalism of quantum mechanics, the transactional interpretation, is presented. The basic element of this interpretation is the transaction describing a quantum event as an exchange of advanced and retarded waves, as implied by the work of Wheeler and Feynman, Dirac, and others. The transactional interpretation is explicitly nonlocal and thereby consistent with recent tests of the Bell inequality, yet is relativistically invariant and fully causal. A detailed comparison of the transactional and Copenhagen interpretations is made in the context of well-known quantum-mechanical Gedankenexperimente and "paradoxes." The transactional interpretation permits quantum-mechanical wave functions to be interpreted as real waves physically present in space rather than as "mathematical representations of knowledge" as in the Copenhagen interpretation. The transactional interpretation is shown to provide insight into the complex character of the quantum-mechanical state vector and the mechanism associated with its "collapse." It also leads in a natural way to justification of the Heisenberg uncertainty principle and the Born probability law (P=ψψ*), basic elements of the Copenhagen interpretation.

  15. Strange Bedfellows: Quantum Mechanics and Data Mining

    SciTech Connect

    Weinstein, Marvin; /SLAC

    2009-12-16

    Last year, in 2008, I gave a talk titled Quantum Calisthenics. This year I am going to tell you about how the work I described then has spun off into a most unlikely direction. What I am going to talk about is how one maps the problem of finding clusters in a given data set into a problem in quantum mechanics. I will then use the tricks I described to let quantum evolution lets the clusters come together on their own.

  16. Quantum Mechanics for Security Related Tasks

    NASA Astrophysics Data System (ADS)

    Sheikholeslam, Seyed Arash

    This thesis considers the use of quantum mechanics for information security related tasks. Two secure quantum bit commitment protocols are introduced and the security of the protocols against attackers is discussed. The use of quantum entanglement breaking channels for making a protocol secure is considered and some security bounds are given. Entanglement measurement in multipartite systems and a universal entanglement measure are also introduced and discussed.

  17. Consistency of PT-symmetric quantum mechanics

    NASA Astrophysics Data System (ADS)

    Brody, Dorje C.

    2016-03-01

    In recent reports, suggestions have been put forward to the effect that parity and time-reversal (PT) symmetry in quantum mechanics is incompatible with causality. It is shown here, in contrast, that PT-symmetric quantum mechanics is fully consistent with standard quantum mechanics. This follows from the surprising fact that the much-discussed metric operator on Hilbert space is not physically observable. In particular, for closed quantum systems in finite dimensions there is no statistical test that one can perform on the outcomes of measurements to determine whether the Hamiltonian is Hermitian in the conventional sense, or PT-symmetric—the two theories are indistinguishable. Nontrivial physical effects arising as a consequence of PT symmetry are expected to be observed, nevertheless, for open quantum systems with balanced gain and loss.

  18. An analysis of quantum effects on the thermodynamic properties of cryogenic hydrogen using the path integral method

    SciTech Connect

    Nagashima, H.; Tsuda, S.; Tsuboi, N.; Koshi, M.; Hayashi, K. A.; Tokumasu, T.

    2014-04-07

    In this paper, we describe the analysis of the thermodynamic properties of cryogenic hydrogen using classical molecular dynamics (MD) and path integral MD (PIMD) method to understand the effects of the quantum nature of hydrogen molecules. We performed constant NVE MD simulations across a wide density–temperature region to establish an equation of state (EOS). Moreover, the quantum effect on the difference of molecular mechanism of pressure–volume–temperature relationship was addressed. The EOS was derived based on the classical mechanism idea only using the MD simulation results. Simulation results were compared with each MD method and experimental data. As a result, it was confirmed that although the EOS on the basis of classical MD cannot reproduce the experimental data of saturation property of hydrogen in the high-density region, the EOS on the basis of PIMD well reproduces those thermodynamic properties of hydrogen. Moreover, it was clarified that taking quantum effects into account makes the repulsion force larger and the potential well shallower. Because of this mechanism, the intermolecular interaction of hydrogen molecules diminishes and the virial pressure increases.

  19. Quantum mechanics and the generalized uncertainty principle

    SciTech Connect

    Bang, Jang Young; Berger, Micheal S.

    2006-12-15

    The generalized uncertainty principle has been described as a general consequence of incorporating a minimal length from a theory of quantum gravity. We consider a simple quantum mechanical model where the operator corresponding to position has discrete eigenvalues and show how the generalized uncertainty principle results for minimum uncertainty wave packets.

  20. A Reconstruction of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Kochen, Simon

    2015-05-01

    We show that exactly the same intuitively plausible definitions of state, observable, symmetry, dynamics, and compound systems of the classical Boolean structure of intrinsic properties of systems lead, when applied to the structure of extrinsic, relational quantum properties, to the standard quantum formalism, including the Schrödinger equation and the von Neumann-Lüders Projection Rule. This approach is then applied to resolving the paradoxes and difficulties of the orthodox interpretation.

  1. Mechanical equivalent of quantum heat engines.

    PubMed

    Arnaud, Jacques; Chusseau, Laurent; Philippe, Fabrice

    2008-06-01

    Quantum heat engines employ as working agents multilevel systems instead of classical gases. We show that under some conditions quantum heat engines are equivalent to a series of reservoirs at different altitudes containing balls of various weights. A cycle consists of picking up at random a ball from one reservoir and carrying it to the next, thereby performing or absorbing some work. In particular, quantum heat engines, employing two-level atoms as working agents, are modeled by reservoirs containing balls of weight 0 or 1. The mechanical model helps us prove that the maximum efficiency of quantum heat engines is the Carnot efficiency. Heat pumps and negative temperatures are considered. PMID:18643212

  2. Continuum mechanics beyond the second law of thermodynamics

    PubMed Central

    Ostoja-Starzewski, M.; Malyarenko, A.

    2014-01-01

    The results established in contemporary statistical physics indicating that, on very small space and time scales, the entropy production rate may be negative, motivate a generalization of continuum mechanics. On account of the fluctuation theorem, it is recognized that the evolution of entropy at a material point is stochastically (not deterministically) conditioned by the past history, with an increasing trend of average entropy production. Hence, the axiom of Clausius–Duhem inequality is replaced by a submartingale model, which, by the Doob decomposition theorem, allows classification of thermomechanical processes into four types depending on whether they are conservative or not and/or conventional continuum mechanical or not. Stochastic generalizations of thermomechanics are given in the vein of either thermodynamic orthogonality or primitive thermodynamics, with explicit models formulated for Newtonian fluids with, respectively, parabolic or hyperbolic heat conduction. Several random field models of the martingale component, possibly including spatial fractal and Hurst effects, are proposed. The violations of the second law are relevant in those situations in continuum mechanics where very small spatial and temporal scales are involved. As an example, we study an acceleration wavefront of nanoscale thickness which randomly encounters regions in the medium characterized by a negative viscosity coefficient. PMID:25383037

  3. Quantum mechanical stabilization of Minkowski signature wormholes

    SciTech Connect

    Visser, M.

    1989-05-19

    When one attempts to construct classical wormholes in Minkowski signature Lorentzian spacetimes violations of both the weak energy hypothesis and averaged weak energy hypothesis are encountered. Since the weak energy hypothesis is experimentally known to be violated quantum mechanically, this suggests that a quantum mechanical analysis of Minkowski signature wormholes is in order. In this note I perform a minisuperspace analysis of a simple class of Minkowski signature wormholes. By solving the Wheeler-de Witt equation for pure Einstein gravity on this minisuperspace the quantum mechanical wave function of the wormhole is obtained in closed form. The wormhole is shown to be quantum mechanically stabilized with an average radius of order the Planck length. 8 refs.

  4. Quantum mechanical streamlines. I - Square potential barrier

    NASA Technical Reports Server (NTRS)

    Hirschfelder, J. O.; Christoph, A. C.; Palke, W. E.

    1974-01-01

    Exact numerical calculations are made for scattering of quantum mechanical particles hitting a square two-dimensional potential barrier (an exact analog of the Goos-Haenchen optical experiments). Quantum mechanical streamlines are plotted and found to be smooth and continuous, to have continuous first derivatives even through the classical forbidden region, and to form quantized vortices around each of the nodal points. A comparison is made between the present numerical calculations and the stationary wave approximation, and good agreement is found between both the Goos-Haenchen shifts and the reflection coefficients. The time-independent Schroedinger equation for real wavefunctions is reduced to solving a nonlinear first-order partial differential equation, leading to a generalization of the Prager-Hirschfelder perturbation scheme. Implications of the hydrodynamical formulation of quantum mechanics are discussed, and cases are cited where quantum and classical mechanical motions are identical.

  5. Supersymmetric q-deformed quantum mechanics

    SciTech Connect

    Traikia, M. H.; Mebarki, N.

    2012-06-27

    A supersymmetric q-deformed quantum mechanics is studied in the weak deformation approximation of the Weyl-Heisenberg algebra. The corresponding supersymmetric q-deformed hamiltonians and charges are constructed explicitly.

  6. Quantum mechanics: Thought experiments made real

    NASA Astrophysics Data System (ADS)

    Martín, Fernando

    2015-02-01

    Elegant experiments performed with X-rays and a double slit formed from molecular oxygen have finally made it possible to realize and test a long-standing and famous gedanken experiment in quantum mechanics.

  7. Fundamental Quantum Mechanics--A Graphic Presentation

    ERIC Educational Resources Information Center

    Wise, M. N.; Kelley, T. G.

    1977-01-01

    Describes a presentation of basic quantum mechanics for nonscience majors that relies on a computer-generated graphic display to circumvent the usual mathematical difficulties. It allows a detailed treatment of free-particle motion in a wave picture. (MLH)

  8. Uncertainty in quantum mechanics: faith or fantasy?

    PubMed

    Penrose, Roger

    2011-12-13

    The word 'uncertainty', in the context of quantum mechanics, usually evokes an impression of an essential unknowability of what might actually be going on at the quantum level of activity, as is made explicit in Heisenberg's uncertainty principle, and in the fact that the theory normally provides only probabilities for the results of quantum measurement. These issues limit our ultimate understanding of the behaviour of things, if we take quantum mechanics to represent an absolute truth. But they do not cause us to put that very 'truth' into question. This article addresses the issue of quantum 'uncertainty' from a different perspective, raising the question of whether this term might be applied to the theory itself, despite its unrefuted huge success over an enormously diverse range of observed phenomena. There are, indeed, seeming internal contradictions in the theory that lead us to infer that a total faith in it at all levels of scale leads us to almost fantastical implications. PMID:22042902

  9. Macroscopic quantum mechanics in a classical spacetime.

    PubMed

    Yang, Huan; Miao, Haixing; Lee, Da-Shin; Helou, Bassam; Chen, Yanbei

    2013-04-26

    We apply the many-particle Schrödinger-Newton equation, which describes the coevolution of a many-particle quantum wave function and a classical space-time geometry, to macroscopic mechanical objects. By averaging over motions of the objects' internal degrees of freedom, we obtain an effective Schrödinger-Newton equation for their centers of mass, which can be monitored and manipulated at quantum levels by state-of-the-art optomechanics experiments. For a single macroscopic object moving quantum mechanically within a harmonic potential well, its quantum uncertainty is found to evolve at a frequency different from its classical eigenfrequency-with a difference that depends on the internal structure of the object-and can be observable using current technology. For several objects, the Schrödinger-Newton equation predicts semiclassical motions just like Newtonian physics, yet quantum uncertainty cannot be transferred from one object to another. PMID:23679686

  10. Macroscopic Quantum Mechanics, Tunnelling, and Classical Gravity

    NASA Astrophysics Data System (ADS)

    Good, Deborah C.; McLain, Marie A. P.; Carr, Lincoln D.

    2014-03-01

    Macroscopic quantum mechanics is an active area of experimental research, which could benefit from understanding the effects of gravitational interactions in tunnelling. The Schrödinger-Newton equation is one method for describing Newtonian gravitational interactions in quantum mechanics. While the Schrödinger-Newton equation has been thoroughly described for the single-particle case, there are still open questions in the many-body case. Therefore, we investigate semi-classical solutions to the Schrödinger-Newton equation for the many-body quantum tunnelling case using a variational-WKB method.

  11. Lagrangian dynamics for classical, Brownian, and quantum mechanical particles

    NASA Astrophysics Data System (ADS)

    Pavon, Michele

    1996-07-01

    In the framework of Nelson's stochastic mechanics [E. Nelson, Dynamical Theories of Brownian Motion (Princeton University, Princeton, 1967); F. Guerra, Phys. Rep. 77, 263 (1981); E. Nelson, Quantum Fluctuations (Princeton University, Princeton, 1985)] we seek to develop the particle counterpart of the hydrodynamic results of M. Pavon [J. Math. Phys. 36, 6774 (1995); Phys. Lett. A 209, 143 (1995)]. In particular, a first form of Hamilton's principle is established. We show that this variational principle leads to the correct equations of motion for the classical particle, the Brownian particle in thermodynamical equilibrium, and the quantum particle. In the latter case, the critical process q satisfies a stochastic Newton law. We then introduce the momentum process p, and show that the pair (q,p) satisfies canonical-like equations.

  12. Quantum thermodynamics of nonequilibrium. Onsager reciprocity and dispersion-dissipation relations

    SciTech Connect

    Beretta, G.P.

    1987-04-01

    A generalized Onsager reciprocity theorem emerges as an exact consequence of the structure of the nonlinear equation of motion of quantum thermodynamics and is valid for all the dissipative nonequilibrium states, close and far from stable thermodynamic equilibrium, of an isolated system composed of a single constituent of matter with a finite-dimensional Hilbert space. In addition, a dispersion-dissipation theorem results in a precise relation between the generalized dissipative conductivity that describes the mutual interrelation between dissipative rates of a pair of observables and the codispersions of the same observables and the generators of the motion. These results are presented together with a review of quantum thermodynamic postulates and general results.

  13. Conformal quantum mechanics and holographic quench

    NASA Astrophysics Data System (ADS)

    Järvelä, Jarkko; Keränen, Ville; Keski-Vakkuri, Esko

    2016-02-01

    Recently, there has been much interest in holographic computations of two-point nonequilibrium Green functions from anti-de Sitter- (AdS-)Vaidya backgrounds. In the strongly coupled quantum field theory on the boundary, the dual interpretation of the background is an equilibration process called a holographic quench. The two-dimensional AdS-Vaidya spacetime is a special case, dual to conformal quantum mechanics. We study how the quench is incorporated into a Hamiltonian H +θ (t )Δ H and into correlation functions. With the help of recent work on correlation functions in conformal quantum mechanics, we first rederive the known two-point functions, and then compute nonequilibrium three- and four-point functions. We also compute the three-point function Witten diagram in the two-dimensional AdS-Vaidya background, and find agreement with the conformal quantum mechanics result.

  14. A "Bit" of Quantum Mechanics

    ERIC Educational Resources Information Center

    Oss, Stefano; Rosi, Tommaso

    2015-01-01

    We have developed an app for iOS-based smart-phones/tablets that allows a 3-D, complex phase-based colorful visualization of hydrogen atom wave functions. Several important features of the quantum behavior of atomic orbitals can easily be made evident, thus making this app a useful companion in introductory modern physics classes. There are many…

  15. A "Bit" of Quantum Mechanics

    ERIC Educational Resources Information Center

    Oss, Stefano; Rosi, Tommaso

    2015-01-01

    We have developed an app for iOS-based smart-phones/tablets that allows a 3-D, complex phase-based colorful visualization of hydrogen atom wave functions. Several important features of the quantum behavior of atomic orbitals can easily be made evident, thus making this app a useful companion in introductory modern physics classes. There are many

  16. On reconciling quantum mechanics and local realism

    NASA Astrophysics Data System (ADS)

    Graft, Donald A.

    2013-10-01

    Accepting nonlocal quantum correlations requires us to reject special relativity and/or probability theory. We can retain both by revising our interpretation of quantum mechanics regarding the handling of separated systems, as quantum mechanics conflicts with local realism only in its treatment of separated systems. We cannot use the joint probability formula for cases of separated measurements. We use the marginals (partial traces) together with whatever priors we have from an understanding of the system. This program can reconcile quantum mechanics with local realism. An apparent obstacle to this program is the experimental evidence, but we argue that the experiments have been misinterpreted, and that when correctly interpreted they confirm local realism. We describe a local realistic account of one important Einstein-Poldosky-Rosen-Bohm (EPRB) experiment (Weihs et al6) that claims to demonstrate nonlocal entanglement. We present a local realistic system (experiment) that can be calibrated into both quantum and classical correlation domains via adjustment of parameters (`hidden variables') of the apparatus. Weihs incorrectly dismisses these parameters as uncritical. Nonlocal entanglement is seen to be an error. The rest of quantum mechanics remains intact, and remains highly valued as a powerful probability calculus for observables. Freed from the incoherent idea of nonlocal entanglement, we can leverage powerful classical ideas, such as semiclassical radiation theory, stochastic dynamics, classical noncommutativity/contextuality, measurement effects on state, etc., to augment or complement quantum mechanics. When properly interpreted and applied, quantum mechanics lives in peaceful harmony with the local realist conception, and both perspectives offer useful paradigms for describing systems.

  17. Predicting Thermodynamic Properties of PBXTHs with New Quantum Topological Indexes.

    PubMed

    Xiao, Fangzhu; Peng, Guowen; Nie, Changming; Yu, Limei

    2016-01-01

    Novel group quantitative structure-property relationship (QSPR) models on the thermodynamic properties of PBXTHs were presented, by the multiple linear regression (MLR) analysis method. Four thermodynamic properties were studied: the entropy (Sθ), the standard enthalpy of formation (ΔfHθ), the standard Gibbs energy of formation (ΔfGθ), and the relative standard Gibbs energy of formation (ΔRGθ). The results by the formula indicate that the calculated and predicted data in this study are in good agreement with those in literature and the deviation is within the experimental errors. To validate the estimation reliability for internal samples and the predictive ability for other samples, leave-one-out (LOO) cross validation (CV) and external validation were performed, and the results show that the models are satisfactory. PMID:26900689

  18. Predicting Thermodynamic Properties of PBXTHs with New Quantum Topological Indexes

    PubMed Central

    Peng, Guowen; Yu, Limei

    2016-01-01

    Novel group quantitative structure-property relationship (QSPR) models on the thermodynamic properties of PBXTHs were presented, by the multiple linear regression (MLR) analysis method. Four thermodynamic properties were studied: the entropy (Sθ), the standard enthalpy of formation (ΔfHθ), the standard Gibbs energy of formation (ΔfGθ), and the relative standard Gibbs energy of formation (ΔRGθ). The results by the formula indicate that the calculated and predicted data in this study are in good agreement with those in literature and the deviation is within the experimental errors. To validate the estimation reliability for internal samples and the predictive ability for other samples, leave-one-out (LOO) cross validation (CV) and external validation were performed, and the results show that the models are satisfactory. PMID:26900689

  19. Testing quantum mechanics and quantum gravity with cavity optomechanics

    NASA Astrophysics Data System (ADS)

    Vitali, David

    Cavity optomechanical setups represents a promising platform for testing quantum mechanics and its validity at a macroscopic scale. Here we present two different examples. We first show the result of an experiment which, by a high sensitive measurement of the free evolution of the nanomechanical resonator probed by an optical field, has improved by many orders of magnitude the bounds on commutator deformation parameters which characterize a wide class of approaches to quantum gravity. In the second case we propose an experiment able to discriminate unambiguously collapse models, postulating the existence of intrinsic noise which modifies quantum mechanics and is responsible for the emergence of macroscopic classicality, from standard environmental sources of decoherence. In particular, we show that the stationary state of a trapped nanosphere is particularly sensitive, under specific experimental conditions, to the interplay between the cavity size, the trapping frequency and the momentum diffusion induced by the collapse models, allowing to detect them even in the presence of standard environmental noises.

  20. Measurements and mathematical formalism of quantum mechanics

    NASA Astrophysics Data System (ADS)

    Slavnov, D. A.

    2007-03-01

    A scheme for constructing quantum mechanics is given that does not have Hilbert space and linear operators as its basic elements. Instead, a version of algebraic approach is considered. Elements of a noncommutative algebra (observables) and functionals on this algebra (elementary states) associated with results of single measurements are used as primary components of the scheme. On the one hand, it is possible to use within the scheme the formalism of the standard (Kolmogorov) probability theory, and, on the other hand, it is possible to reproduce the mathematical formalism of standard quantum mechanics, and to study the limits of its applicability. A short outline is given of the necessary material from the theory of algebras and probability theory. It is described how the mathematical scheme of the paper agrees with the theory of quantum measurements, and avoids quantum paradoxes.

  1. Optimal guidance law in quantum mechanics

    SciTech Connect

    Yang, Ciann-Dong Cheng, Lieh-Lieh

    2013-11-15

    Following de Broglie’s idea of a pilot wave, this paper treats quantum mechanics as a problem of stochastic optimal guidance law design. The guidance scenario considered in the quantum world is that an electron is the flight vehicle to be guided and its accompanying pilot wave is the guidance law to be designed so as to guide the electron to a random target driven by the Wiener process, while minimizing a cost-to-go function. After solving the stochastic optimal guidance problem by differential dynamic programming, we point out that the optimal pilot wave guiding the particle’s motion is just the wavefunction Ψ(t,x), a solution to the Schrödinger equation; meanwhile, the closed-loop guidance system forms a complex state–space dynamics for Ψ(t,x), from which quantum operators emerge naturally. Quantum trajectories under the action of the optimal guidance law are solved and their statistical distribution is shown to coincide with the prediction of the probability density function Ψ{sup ∗}Ψ. -- Highlights: •Treating quantum mechanics as a pursuit-evasion game. •Reveal an interesting analogy between guided flight motion and guided quantum motion. •Solve optimal quantum guidance problem by dynamic programming. •Gives a formal proof of de Broglie–Bohm’s idea of a pilot wave. •The optimal pilot wave is shown to be a wavefunction solved from Schrödinger equation.

  2. Testing the limits of quantum mechanical superpositions

    NASA Astrophysics Data System (ADS)

    Arndt, Markus; Hornberger, Klaus

    2014-04-01

    Quantum physics has intrigued scientists and philosophers alike, because it challenges our notions of reality and locality -- concepts that we have grown to rely on in our macroscopic world. It is an intriguing open question whether the linearity of quantum mechanics extends into the macroscopic domain. Scientific progress over the past decades inspires hope that this debate may be settled by table-top experiments.

  3. Improving students' understanding of quantum mechanics

    NASA Astrophysics Data System (ADS)

    Singh, Chandralekha

    2011-03-01

    Learning quantum mechanics is especially challenging, in part due to the abstract nature of the subject. We have been conducting investigations of the difficulties that students have in learning quantum mechanics. To help improve student understanding of quantum concepts, we are developing quantum interactive learning tutorials (QuILTs) as well as tools for peer-instruction. The goal of QuILTs and peer-instruction tools is to actively engage students in the learning process and to help them build links between the formalism and the conceptual aspects of quantum physics without compromising the technical content. They focus on helping students integrate qualitative and quantitative understanding, confront and resolve their misconceptions and difficulties, and discriminate between concepts that are often confused. In this talk, I will give examples from my research in physics education of how students' prior knowledge relevant for quantum mechanics can be assessed, and how learning tools can be designed to help students develop a robust knowledge structure and critical thinking skills. Supported by the National Science Foundation.

  4. Quantum Mechanics, Spacetime Locality, and Gravity

    NASA Astrophysics Data System (ADS)

    Nomura, Yasunori

    2013-08-01

    Quantum mechanics introduces the concept of probability at the fundamental level, yielding the measurement problem. On the other hand, recent progress in cosmology has led to the "multiverse" picture, in which our observed universe is only one of the many, bringing an apparent arbitrariness in defining probabilities, called the measure problem. In this paper, we discuss how these two problems are related with each other, developing a picture for quantum measurement and cosmological histories in the quantum mechanical universe. In order to describe the cosmological dynamics correctly within the full quantum mechanical context, we need to identify the structure of the Hilbert space for a system with gravity. We argue that in order to keep spacetime locality, the Hilbert space for dynamical spacetime must be defined only in restricted spacetime regions: in and on the (stretched) apparent horizon as viewed from a fixed reference frame. This requirement arises from eliminating all the redundancies and overcountings in a general relativistic, global spacetime description of nature. It is responsible for horizon complementarity as well as the "observer dependence" of horizons/spacetime—these phenomena arise to represent changes of the reference frame in the relevant Hilbert space. This can be viewed as an extension of the Poincaré transformation in the quantum gravitational context. Given an initial condition, the evolution of the multiverse state obeys the laws of quantum mechanics—it evolves deterministically and unitarily. The beginning of the multiverse, however, is still an open issue.

  5. Ergodic properties of a generic nonintegrable quantum many-body system in the thermodynamic limit.

    PubMed

    Prosen, T

    1999-10-01

    We study a generic but simple nonintegrable quantum many-body system of locally interacting particles, namely, a kicked-parameter (t,V) model of spinless fermions on a one-dimensional lattice (equivalent to a kicked Heisenberg XX-Z chain of 1/2 spins). The statistical properties of the dynamics (quantum ergodicity and quantum mixing) and the nature of quantum transport in the thermodynamic limit are considered as the kick parameters (which control the degree of nonintegrability) are varied. We find and demonstrate ballistic transport and nonergodic, nonmixing dynamics (implying infinite conductivity at all temperatures) in the integrable regime of zero or very small kick parameters, and more generally and importantly, also in the nonintegrable regime of intermediate values of kicked parameters, whereas only for sufficiently large kick parameters do we recover quantum ergodicity and mixing implying normal (diffusive) transport. We propose an order parameter (charge stiffness D) which controls the phase transition from nonmixing and nonergodic dynamics (ordered phase, D>0) to mixing and ergodic dynamics (disordered phase, D=0) in the thermodynamic limit. Furthermore, we find exponential decay of time correlation functions in the regime of mixing dynamics. The results are obtained consistently within three different numerical and analytical approaches: (i) time evolution of a finite system and direct computation of time correlation functions, (ii) full diagonalization of finite systems and statistical analysis of stationary data, and (iii) algebraic construction of quantum invariants of motion of an infinite system, in particular the time-averaged observables. PMID:11970231

  6. Quantum mechanics on York slices

    NASA Astrophysics Data System (ADS)

    Roser, Philipp

    2016-03-01

    For some time the York time parameter has been identified as a candidate for a physically meaningful time in cosmology. An associated Hamiltonian may be found by solving the Hamiltonian constraint for the momentum conjugate to the York time variable, although an explicit solution can only be found in highly symmetric cases. The Poisson structure of the remaining variables is not canonical. Here we quantise this dynamics in an anisotropic minisuperspace model via a natural extension of canonical quantisation. The resulting quantum theory has no momentum representation. Instead the position basis takes a fundamental role. We illustrate how the quantum theory and the modified representation of its momentum operators lead to a consistent theory in the presence of the constraints that arose during the Hamiltonian reduction. The quantised reduced Hamiltonian is Hermitian, although the momentum operators are not, the causes and implications of which we discuss. We are able to solve for the eigenspectrum of the Hamiltonian. Finally we discuss how far the results of this model extend to the general non-homogeneous case, in particular perturbation theory with York time.

  7. Sticky Spheres in Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Penrose, M. D.; Penrose, O.; Stell, G.

    For a 3-dimensional system of hard spheres of diameter D and mass m with an added attractive square-well two-body interaction of width a and depth ɛ, let BD, a denote the quantum second virial coefficient. Let BD denote the quantum second virial coefficient for hard spheres of diameter D without the added attractive interaction. We show that in the limit a → 0 at constant α: = ℰma2/(2ħ2) with α < π2/8, \\[ B_{D, a} =B_D -a \\left(\\frac{\\tan\\surd (2\\alpha)}{\\surd (2\\alpha)} -1\\right) \\frac{d}{dD} B_D +o (a) . \\] The result is true equally for Boltzmann, Bose and Fermi statistics. The method of proof uses the mathematics of Brownian motion. For α > π2/8, we argue that the gaseous phase disappears in the limit a → 0, so that the second virial coefficient becomes irrelevant.

  8. Multichannel framework for singular quantum mechanics

    SciTech Connect

    Camblong, Horacio E.; Epele, Luis N.; Fanchiotti, Huner; García Canal, Carlos A.; Ordóñez, Carlos R.

    2014-01-15

    A multichannel S-matrix framework for singular quantum mechanics (SQM) subsumes the renormalization and self-adjoint extension methods and resolves its boundary-condition ambiguities. In addition to the standard channel accessible to a distant (“asymptotic”) observer, one supplementary channel opens up at each coordinate singularity, where local outgoing and ingoing singularity waves coexist. The channels are linked by a fully unitary S-matrix, which governs all possible scenarios, including cases with an apparent nonunitary behavior as viewed from asymptotic distances. -- Highlights: •A multichannel framework is proposed for singular quantum mechanics and analogues. •The framework unifies several established approaches for singular potentials. •Singular points are treated as new scattering channels. •Nonunitary asymptotic behavior is subsumed in a unitary multichannel S-matrix. •Conformal quantum mechanics and the inverse quartic potential are highlighted.

  9. Quantum Mechanics and the Principle of Least Radix Economy

    NASA Astrophysics Data System (ADS)

    Garcia-Morales, Vladimir

    2015-03-01

    A new variational method, the principle of least radix economy, is formulated. The mathematical and physical relevance of the radix economy, also called digit capacity, is established, showing how physical laws can be derived from this concept in a unified way. The principle reinterprets and generalizes the principle of least action yielding two classes of physical solutions: least action paths and quantum wavefunctions. A new physical foundation of the Hilbert space of quantum mechanics is then accomplished and it is used to derive the Schrödinger and Dirac equations and the breaking of the commutativity of spacetime geometry. The formulation provides an explanation of how determinism and random statistical behavior coexist in spacetime and a framework is developed that allows dynamical processes to be formulated in terms of chains of digits. These methods lead to a new (pre-geometrical) foundation for Lorentz transformations and special relativity. The Parker-Rhodes combinatorial hierarchy is encompassed within our approach and this leads to an estimate of the interaction strength of the electromagnetic and gravitational forces that agrees with the experimental values to an error of less than one thousandth. Finally, it is shown how the principle of least-radix economy naturally gives rise to Boltzmann's principle of classical statistical thermodynamics. A new expression for a general (path-dependent) nonequilibrium entropy is proposed satisfying the Second Law of Thermodynamics.

  10. Mechanical AGN feedback: controlling the thermodynamical evolution of elliptical galaxies

    NASA Astrophysics Data System (ADS)

    Gaspari, M.; Brighenti, F.; Temi, P.

    2012-07-01

    A fundamental gap in the current understanding of galaxies concerns the thermodynamical evolution of ordinary, baryonic matter. On the one hand, radiative emission drastically decreases the thermal energy content of the interstellar plasma (ISM), inducing a slow cooling flow towards the centre. On the other hand, the active galactic nucleus (AGN) struggles to prevent the runaway cooling catastrophe, injecting huge amount of energy into the ISM. The present study intends to investigate thoroughly the role of mechanical AGN feedback in (isolated or massive) elliptical galaxies, extending and completing the mass range of tested cosmic environments. Our previously successful feedback models in galaxy clusters and groups demonstrated that AGN outflows, self-regulated by cold gas accretion, are able to quench the cooling flow properly without destroying the cool core. Via three-dimensional hydrodynamic simulations (FLASH 3.3), also including stellar evolution, we show that massive mechanical AGN outflows can indeed solve the cooling-flow problem for the entire life of the galaxy, at the same time reproducing typical observational features and constraints such as buoyant underdense bubbles, elliptical shock cocoons, sonic ripples, dredge-up of metals, subsonic turbulence and extended filamentary or nuclear cold gas. In order to avoid overheating and totally emptying the isolated galaxy, the frequent mechanical AGN feedback should be less powerful and efficient (ɛ˜ 10-4) compared with the heating required for more massive and bound ellipticals surrounded by the intragroup medium (ɛ˜ 10-3).

  11. Space and time from quantum mechanics

    NASA Astrophysics Data System (ADS)

    Chew, G. F.

    1992-09-01

    Classical mechanics historically preceded quantum mechanics and thus far has not been displaced from primary status; the path to construction of quantum theory has remained rooted in classical ideas about objective reality within space and time. Use of a less correct theory as underpinning for a more correct theory not only is unaesthetic but has spawned the perplexing and never-resolved puzzle of measurement. A growing number of physicist-philosophers torture themselves these days over the collapse of the quantum-mechanical state vector when measurement is performed. Additionally, the pointlike structure of the spacetime manifold underlying local classical fields has endowed quantum theory with mathematical dilemmas. It has been proposed by Gell-Mann and Hartle that objectively-realistic ideas such as measurement may lack a priori status, the predominantly classical present universe having evolved as a relic of the big bang. Other authors have suggested that spacetime itself need not be a priori but may stem from quantum mechanics. Haag has written recently that spacetime without (quantum) events is probably a meaningless concept. Henry Stapp and I have for several years been exploring a simple quantum system devoid of classical underpinning, even spacetime, but admitting within the Hilbert space a special Lie-group-related category of vector known as a coherent state. Groups unitarily representable in our Hilbert space include the Poincare group, which relates to 3 + 1 spacetime. Coherent states generally are labeled by parameters associated with unitary group representations, and it has long been recognized that when such parameters become large a classical objective interpretation may result. Stapp and I have been attempting to understand space and time via large coherent-state parameters. Six years ago I presented to this gathering a preliminary report on our enterprise; in this paper I provide an update.

  12. Space and time from quantum mechanics

    SciTech Connect

    Chew, G.F.

    1992-09-16

    Classical mechanics historically preceded quantum mechanics and thus far has not been displaced from primary status; the path to construction of quantum theory has remained rooted in classical ideas about objective reality within space and time. Use of a less correct theory as underpinning for a more correct theory not only is unaesthetic but has spawned the perplexing and never-resolved puzzle of measurement. A growing number of physicist-philosophers torture themselves these days over collapse of the quantum-mechanical state vector when measurement is performed. Additionally, pointlike structure of the spacetime manifold underlying local classical fields has endowed quantum theory with mathematical dilemmas. It has been proposed by Gell-Mann and Hartle that objectively-realistic ideas such as measurement may lack a priori status, the predominantly classical present universe having evolved as a relic of the big bang. Other authors have suggested that spacetime itself need not be a priori but may stem from quantum mechanics. Haag has written recently that spacetime without (quantum) events is probably a meaningless concept. Henry Stapp and I have for several years been exploring a simple quantum system devoid of classical underpinning, even spacetime, but admitting within the Hilbert space a special Lie-group-related category of vector known as coherent state. Groups unitarily representable in our Hilbert space include the Poincare group, which relates to 3 + 1 spacetime. Coherent states generally are labeled by parameters associated with unitary group representations, and it has long been recognized that when such parameters become large a classical objective interpretation may result. Stapp and I have been attempting to understand space and time via large coherent-state parameters. Six years ago I presented to this gathering a preliminary report on our enterprise; in this paper I provide an update.

  13. Two basic Uncertainty Relations in Quantum Mechanics

    SciTech Connect

    Angelow, Andrey

    2011-04-07

    In the present article, we discuss two types of uncertainty relations in Quantum Mechanics-multiplicative and additive inequalities for two canonical observables. The multiplicative uncertainty relation was discovered by Heisenberg. Few years later (1930) Erwin Schroedinger has generalized and made it more precise than the original. The additive uncertainty relation is based on the three independent statistical moments in Quantum Mechanics-Cov(q,p), Var(q) and Var(p). We discuss the existing symmetry of both types of relations and applicability of the additive form for the estimation of the total error.

  14. A new introductory quantum mechanics curriculum

    NASA Astrophysics Data System (ADS)

    Kohnle, Antje; Bozhinova, Inna; Browne, Dan; Everitt, Mark; Fomins, Aleksejs; Kok, Pieter; Kulaitis, Gytis; Prokopas, Martynas; Raine, Derek; Swinbank, Elizabeth

    2014-01-01

    The Institute of Physics New Quantum Curriculum consists of freely available online learning and teaching materials (quantumphysics.iop.org) for a first course in university quantum mechanics starting from two-level systems. This approach immediately immerses students in inherently quantum-mechanical aspects by focusing on experiments that have no classical explanation. It allows from the start a discussion of the interpretive aspects of quantum mechanics and quantum information theory. This paper gives an overview of the resources available from the IOP website. The core text includes around 80 articles which are co-authored by leading experts, arranged in themes, and can be used flexibly to provide a range of alternative approaches. Many of the articles include interactive simulations with accompanying activities and problem sets that can be explored by students to enhance their understanding. Much of the linear algebra needed for this approach is included in the resource. Solutions to activities are available to instructors. The resources can be used in a variety of ways, from being supplemental to existing courses to forming a complete programme.

  15. Emergence of Quantum Mechanics from a Sub-Quantum Statistical Mechanics

    NASA Astrophysics Data System (ADS)

    Grössing, Gerhard

    2015-10-01

    A research program within the scope of theories on "Emergent Quantum Mechanics" is presented, which has gained some momentum in recent years. Via the modeling of a quantum system as a non-equilibrium steady-state maintained by a permanent throughput of energy from the zero-point vacuum, the quantum is considered as an emergent system. We implement a specific "bouncer-walker" model in the context of an assumed sub-quantum statistical physics, in analogy to the results of experiments by Couder and Fort on a classical wave-particle duality. We can thus give an explanation of various quantum mechanical features and results on the basis of a "21st century classical physics", such as the appearance of Planck's constant, the Schrödinger equation, etc. An essential result is given by the proof that averaged particle trajectories' behaviors correspond to a specific type of anomalous diffusion termed "ballistic" diffusion on a sub-quantum level...

  16. Quantum Theory and Thermodynamics of Schwarzschild Black Holes

    NASA Astrophysics Data System (ADS)

    Kastrup, Hans A.

    2002-12-01

    Starting from a symplectic reduction of the pure Schwarzschild gravitational system in D ≥ 4 space-time dimensions and an ensuing quantization in terms of the group SU(1,1) yields a universal spectrum AD-2 α n + k, n = 0, 1,...,k ∈ (0, 1] fixed, of the horizon area, and, because AD-2(M) is a function of the mass M, a corresponding spectrum of M. Attributing the Z(2)-valued degree of freedom "orientation" to each basic area quantum yields a degeneracy of the levels which, combined with the mass spectrum, implies the Bekenstein entropy and the Hawking temperature, up to a constant.

  17. The effects of the size of nanocrystalline materials on their thermodynamic and mechanical properties

    PubMed Central

    2014-01-01

    This work has considered the intrinsic influence of bond energy on the macroscopic, thermodynamic, and mechanical properties of crystalline materials. A general criterion is proposed to evaluate the properties of nanocrystalline materials. The interrelation between the thermodynamic and mechanical properties of nanomaterials is presented and the relationship between the variation of these properties and the size of the nanomaterials is explained. The results of our work agree well with thermodynamics, molecular dynamics simulations, and experimental results. This method is of significance in investigating the size effects of nanomaterials and provides a new approach for studying their thermodynamic and mechanical properties. PMID:25288913

  18. Local thermodynamical equilibrium and the frame for a quantum relativistic fluid

    NASA Astrophysics Data System (ADS)

    Becattini, Francesco; Bucciantini, Leda; Grossi, Eduardo; Tinti, Leonardo

    2015-05-01

    We discuss the concept of local thermodynamical equilibrium in relativistic hydrodynamics in flat spacetime in a quantum statistical framework without an underlying kinetic description, suitable for strongly interacting fluids. We show that the appropriate definition of local equilibrium naturally leads to the introduction of a relativistic hydrodynamical frame in which the four-velocity vector is the one of a relativistic thermometer at equilibrium with the fluid, parallel to the inverse temperature four-vector , which then becomes a primary quantity. We show that this frame is the most appropriate for the expansion of the stress-energy tensor from local thermodynamical equilibrium and that therein the local laws of thermodynamics take on their simplest form. We discuss the difference between the frame and Landau frame and present an instance where they differ.

  19. Euclidean formulation of relativistic quantum mechanics

    NASA Astrophysics Data System (ADS)

    Kopp, P.; Polyzou, W. N.

    2012-01-01

    In this paper, we discuss a formulation of relativistic quantum mechanics that uses model Euclidean Green functions or their generating functional as input. This formalism has a close relation to quantum field theory, but as a theory of linear operators on a Hilbert space, it has the advantages of quantum mechanics. One interesting feature of this approach is that matrix elements of operators in normalizable states on the physical Hilbert space can be calculated directly using the Euclidean Green functions without performing an analytic continuation. The formalism is summarized in this paper. We discuss the motivation, advantages, and difficulties in using this formalism. We discuss how to compute bound states, scattering cross sections, and finite Poincar transformations without using analytic continuation. A toy model is used to demonstrate how matrix elements of e-?H in normalizable states can be used to construct sharp-momentum transition-matrix elements.

  20. Differentiable-path integrals in quantum mechanics

    NASA Astrophysics Data System (ADS)

    Koch, Benjamin; Reyes, Ignacio

    2015-06-01

    A method is presented which restricts the space of paths entering the path integral of quantum mechanics to subspaces of Cα, by only allowing paths which possess at least α derivatives. The method introduces two external parameters, and induces the appearance of a particular time scale ɛD such that for time intervals longer than ɛD the model behaves as usual quantum mechanics. However, for time scales smaller than ɛD, modifications to standard formulation of quantum theory occur. This restriction renders convergent some quantities which are usually divergent in the time-continuum limit ɛ → 0. We illustrate the model by computing several meaningful physical quantities such as the mean square velocity , the canonical commutator, the Schrödinger equation and the energy levels of the harmonic oscillator. It is shown that an adequate choice of the parameters introduced makes the evolution unitary.

  1. Thermodynamics of trajectories and local fluctuation theorems for harmonic quantum networks

    NASA Astrophysics Data System (ADS)

    Pigeon, Simon; Fusco, Lorenzo; Xuereb, André; De Chiara, Gabriele; Paternostro, Mauro

    2016-01-01

    We present a general method to undertake a thorough analysis of the thermodynamics of the quantum jump trajectories followed by an arbitrary quantum harmonic network undergoing linear and bilinear dynamics. The approach is based on the phase-space representation of the state of a harmonic network. The large deviation function associated with this system encodes the full counting statistics of exchange and also allows one to deduce fluctuation theorems (FTs) obeyed by the dynamics. We illustrate the method showing the validity of a local FT about the exchange of excitations between a restricted part of the environment (i.e., a local bath) and a harmonic network coupled with different schemes.

  2. The geometric semantics of algebraic quantum mechanics.

    PubMed

    Cruz Morales, John Alexander; Zilber, Boris

    2015-08-01

    In this paper, we will present an ongoing project that aims to use model theory as a suitable mathematical setting for studying the formalism of quantum mechanics. We argue that this approach provides a geometric semantics for such a formalism by means of establishing a (non-commutative) duality between certain algebraic and geometric objects. PMID:26124252

  3. Quantum Mechanics Studies of Cellobiose Conformations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three regions of the Phi,Psi space of cellobiose were analyzed with quantum mechanics. A central region, in which most crystal structures are found, was covered by a 9 x 9 grid of 20° increments of Phi and Psi. Besides these 81 constrained minimizations, we studied two central sub-regions and two re...

  4. Comparison of Classical and Quantum Mechanical Uncertainties.

    ERIC Educational Resources Information Center

    Peslak, John, Jr.

    1979-01-01

    Comparisons are made for the particle-in-a-box, the harmonic oscillator, and the one-electron atom. A classical uncertainty principle is derived and compared with its quantum-mechanical counterpart. The results are discussed in terms of the statistical interpretation of the uncertainty principle. (Author/BB)

  5. Can quantum mechanics fool the cosmic censor?

    SciTech Connect

    Matsas, G. E. A.; Silva, A. R. R. da; Richartz, M.; Saa, A.; Vanzella, D. A. T.

    2009-05-15

    We revisit the mechanism for violating the weak cosmic-censorship conjecture (WCCC) by overspinning a nearly-extreme charged black hole. The mechanism consists of an incoming massless neutral scalar particle, with low energy and large angular momentum, tunneling into the hole. We investigate the effect of the large angular momentum of the incoming particle on the background geometry and address recent claims that such a backreaction would invalidate the mechanism. We show that the large angular momentum of the incident particle does not constitute an obvious impediment to the success of the overspinning quantum mechanism, although the induced backreaction turns out to be essential to restoring the validity of the WCCC in the classical regime. These results seem to endorse the view that the 'cosmic censor' may be oblivious to processes involving quantum effects.

  6. Thermodynamic limits to the efficiency of solar energy conversion by quantum devices

    NASA Technical Reports Server (NTRS)

    Buoncristiani, A. M.; Byvik, C. E.; Smith, B. T.

    1981-01-01

    The second law of thermodynamics imposes a strict limitation to the energy converted from direct solar radiation to useful work by a quantum device. This limitation requires that the amount of energy converted to useful work (energy in any form other than heat) can be no greater than the change in free energy of the radiation fields. Futhermore, in any real energy conversion device, not all of this available free energy in the radiation field can be converted to work because of basic limitations inherent in the device itself. A thermodynamic analysis of solar energy conversion by a completely general prototypical quantum device is presented. This device is completely described by two parameters, its operating temperature T sub R and the energy threshold of its absorption spectrum. An expression for the maximum thermodynamic efficiency of a quantum solar converter was derived in terms of these two parameters and the incident radiation spectrum. Efficiency curves for assumed solar spectral irradiance corresponding to air mass zero and air mass 1.5 are presented.

  7. Exchange symmetry, fluctuation-compressibility relation, and thermodynamic potentials of quantum liquids

    NASA Astrophysics Data System (ADS)

    Lim, Yu Rim; Park, Seong Jun; Song, Sanggeun; Yang, Gil-Suk; Yoon, Young-Gui; Kim, Ji-Hyun; Sung, Jaeyoung

    2014-06-01

    Liquid helium does not obey the Gibbs fluctuation-compressibility relation, which was noted more than six decades ago. However, still missing is a clear explanation of the reason for the deviation or the correct fluctuation-compressibility relation for the quantum liquid. Here we present the fluctuation-compressibility relation valid for any grand canonical system. Our result shows that the deviation from the Gibbs formula arises from a nonextensive part of thermodynamic potentials. The particle-exchange symmetry of many-body wave function of a strongly degenerate quantum gas is related to the thermodynamic extensivity of the system; a Bose gas does not always obey the Gibbs formula, while a Fermi gas does. Our fluctuation-compressibility relation works for classical systems as well as quantum systems. This work demonstrates that the application range of the Gibbs-Boltzmann statistical thermodynamics can be extended to encompass nonextensive open systems without introducing any postulate other than the principle of equal a priori probability.

  8. Time and the foundations of quantum mechanics

    NASA Astrophysics Data System (ADS)

    Pashby, Thomas

    Quantum mechanics has provided philosophers of science with many counterintuitive insights and interpretive puzzles, but little has been written about the role that time plays in the theory. One reason for this is the celebrated argument of Wolfgang Pauli against the inclusion of time as an observable of the theory, which has been seen as a demonstration that time may only enter the theory as a classical parameter. Against this orthodoxy I argue that there are good reasons to expect certain kinds of `time observables' to find a representation within quantum theory, including clock operators (which provide the means to measure the passage of time) and event time operators, which provide predictions for the time at which a particular event occurs, such as the appearance of a dot on a luminescent screen. I contend that these time operators deserve full status as observables of the theory, and on re ection provide a uniquely compelling reason to expand the set of observables allowed by the standard formalism of quantum mechanics. In addition, I provide a novel association of event time operators with conditional probabilities, and propose a temporally extended form of quantum theory to better accommodate the time of an event as an observable quantity. This leads to a proposal to interpret quantum theory within an event ontology, inspired by Bertrand Russell's Analysis of Matter. On this basis I mount a defense of Russell's relational theory of time against a recent attack.

  9. Quantum mechanical studies of carbon structures

    SciTech Connect

    Bartelt, Norman Charles; Ward, Donald; Zhou, Xiaowang; Foster, Michael E.; Schultz, Peter A.; Wang, Bryan M.; McCarty, Kevin F.

    2015-10-01

    Carbon nanostructures, such as nanotubes and graphene, are of considerable interest due to their unique mechanical and electrical properties. The materials exhibit extremely high strength and conductivity when defects created during synthesis are minimized. Atomistic modeling is one technique for high resolution studies of defect formation and mitigation. To enable simulations of the mechanical behavior and growth mechanisms of C nanostructures, a high-fidelity analytical bond-order potential for the C is needed. To generate inputs for developing such a potential, we performed quantum mechanical calculations of various C structures.

  10. Quantum Mechanics and the Interpretation Problem

    NASA Astrophysics Data System (ADS)

    Lonney, Lawrence William, Jr.

    1990-01-01

    Although many well articulated approaches to theory choice exist, no general approach to interpretation choice is available. This lacking is particularly troublesome for quantum mechanics because its mathematical formalism is associated with many well-developed interpretations. The lack of a method for choosing among the various interpretations of quantum mechanics has motivated the construction of this dissertation. The search for an appropriate method focuses on two areas: attempts to establish the superiority of one particular interpretation of quantum mechanics over another and general methods for choosing one theory over another. Regarding the former area, two attempts to choose the Statistical Ensemble interpretation of quantum mechanics over the Copenhagen interpretation are analyzed. One of these is authored by L. E. Ballentine and the other by J. L. Park. The conclusion of this analysis is that both attempts did not succeed and a general approach to interpretation choice could not be extracted from either. The desired approach was eventually found in one of the general methods for choosing among theories. The essential element of this approach to interpretation choice lies in the recognition that each interpretation contains the seed of a unique research program. If the program is cultivated, it can eventually be judged relative to others which have sprouted from the same theory. The criteria for such a judgment are contained in the Methodology of Scientific Research Programmes approach to theory choice. This method is applied to the Statistical Ensemble and Copenhagen interpretations of quantum mechanics. Even though it did not result in an immediate choice between the two, it did provide guidance for identifying what is needed to make such a choice.

  11. A Primer on Resonances in Quantum Mechanics

    SciTech Connect

    Rosas-Ortiz, Oscar; Fernandez-Garcia, Nicolas; Cruz y Cruz, Sara

    2008-11-13

    After a pedagogical introduction to the concept of resonance in classical and quantum mechanics, some interesting applications are discussed. The subject includes resonances occurring as one of the effects of radiative reaction, the resonances involved in the refraction of electromagnetic waves by a medium with a complex refractive index, and quantum decaying systems described in terms of resonant states of the energy (Gamow-Siegert functions). Some useful mathematical approaches like the Fourier transform, the complex scaling method and the Darboux transformation are also reviewed.

  12. Quantum mechanical coherence, resonance, and mind

    SciTech Connect

    Stapp, H.P.

    1995-03-26

    Norbert Wiener and J.B.S. Haldane suggested during the early thirties that the profound changes in our conception of matter entailed by quantum theory opens the way for our thoughts, and other experiential or mind-like qualities, to play a role in nature that is causally interactive and effective, rather than purely epiphenomenal, as required by classical mechanics. The mathematical basis of this suggestion is described here, and it is then shown how, by giving mind this efficacious role in natural process, the classical character of our perceptions of the quantum universe can be seen to be a consequence of evolutionary pressures for the survival of the species.

  13. The emergent Copenhagen interpretation of quantum mechanics

    NASA Astrophysics Data System (ADS)

    Hollowood, Timothy J.

    2014-05-01

    We introduce a new and conceptually simple interpretation of quantum mechanics based on reduced density matrices of sub-systems from which the standard Copenhagen interpretation emerges as an effective description of macroscopically large systems. This interpretation describes a world in which definite measurement results are obtained with probabilities that reproduce the Born rule. Wave function collapse is seen to be a useful but fundamentally unnecessary piece of prudent book keeping which is only valid for macro-systems. The new interpretation lies in a class of modal interpretations in that it applies to quantum systems that interact with a much larger environment. However, we show that it does not suffer from the problems that have plagued similar modal interpretations like macroscopic superpositions and rapid flipping between macroscopically distinct states. We describe how the interpretation fits neatly together with fully quantum formulations of statistical mechanics and that a measurement process can be viewed as a process of ergodicity breaking analogous to a phase transition. The key feature of the new interpretation is that joint probabilities for the ergodic subsets of states of disjoint macro-systems only arise as emergent quantities. Finally we give an account of the EPR-Bohm thought experiment and show that the interpretation implies the violation of the Bell inequality characteristic of quantum mechanics but in a way that is rather novel. The final conclusion is that the Copenhagen interpretation gives a completely satisfactory phenomenology of macro-systems interacting with micro-systems.

  14. Emergence of quantum mechanics from a sub-quantum statistical mechanics

    NASA Astrophysics Data System (ADS)

    Grössing, Gerhard

    2014-07-01

    A research program within the scope of theories on "Emergent Quantum Mechanics" is presented, which has gained some momentum in recent years. Via the modeling of a quantum system as a non-equilibrium steady-state maintained by a permanent throughput of energy from the zero-point vacuum, the quantum is considered as an emergent system. We implement a specific "bouncer-walker" model in the context of an assumed sub-quantum statistical physics, in analogy to the results of experiments by Couder and Fort on a classical wave-particle duality. We can thus give an explanation of various quantum mechanical features and results on the basis of a "21st century classical physics", such as the appearance of Planck's constant, the Schrödinger equation, etc. An essential result is given by the proof that averaged particle trajectories' behaviors correspond to a specific type of anomalous diffusion termed "ballistic" diffusion on a sub-quantum level. It is further demonstrated both analytically and with the aid of computer simulations that our model provides explanations for various quantum effects such as double-slit or n-slit interference. We show the averaged trajectories emerging from our model to be identical to Bohmian trajectories, albeit without the need to invoke complex wavefunctions or any other quantum mechanical tool. Finally, the model provides new insights into the origins of entanglement, and, in particular, into the phenomenon of a "systemic" non-locality.

  15. Emerging interpretations of quantum mechanics and recent progress in quantum measurement

    NASA Astrophysics Data System (ADS)

    Clarke, M. L.

    2014-01-01

    The focus of this paper is to provide a brief discussion on the quantum measurement process, by reviewing select examples highlighting recent progress towards its understanding. The areas explored include an outline of the measurement problem, the standard interpretation of quantum mechanics, quantum to classical transition, types of measurement (including weak and projective measurements) and newly emerging interpretations of quantum mechanics (decoherence theory, objective reality, quantum Darwinism and quantum Bayesianism).

  16. Noncommutative Chern-Simons quantum mechanics

    NASA Astrophysics Data System (ADS)

    Jing, Jian; Liu, Feng-Hua; Chen, Jian-Feng

    2008-12-01

    Chern-Simons quantum mechanics is generalized to the noncommutative plane in this paper. Compared with the commutative counterpart, we find that in addition to the mass of the charged particle, there is a dimensionless parameter which behaves interestingly when it takes zero value. We study this model from both classical and quantum aspects. We show that the classical theory has continuous limits when both the parameters tend to zero while the quantum aspect (energy spectra) does not have. We must regularize the spectra of the full theory properly when these parameters tend to zero in order to get the finite results. We resort to the Dirac theory and the Faddeev-Jackiw reduction, respectively, to show that the regularization we made is proper.

  17. ``the Human BRAIN & Fractal quantum mechanics''

    NASA Astrophysics Data System (ADS)

    Rosary-Oyong, Se, Glory

    In mtDNA ever retrieved from Iman Tuassoly, et.al:Multifractal analysis of chaos game representation images of mtDNA''.Enhances the price & valuetales of HE. Prof. Dr-Ing. B.J. HABIBIE's N-219, in J. Bacteriology, Nov 1973 sought:'' 219 exist as separate plasmidDNA species in E.coli & Salmonella panama'' related to ``the brain 2 distinct molecular forms of the (Na,K)-ATPase..'' & ``neuron maintains different concentration of ions(charged atoms'' thorough Rabi & Heisenber Hamiltonian. Further, after ``fractal space time are geometric analogue of relativistic quantum mechanics''[Ord], sought L.Marek Crnjac: ``Chaotic fractals at the root of relativistic quantum physics''& from famous Nottale: ``Scale relativity & fractal space-time:''Application to Quantum Physics , Cosmology & Chaotic systems'',1995. Acknowledgements to HE. Mr. H. TUK SETYOHADI, Jl. Sriwijaya Raya 3, South-Jakarta, INDONESIA.

  18. Periodic Toda lattice in quantum mechanics

    SciTech Connect

    Matsuyama, A. )

    1992-12-01

    The quantum mechanical periodic Toda lattice is studied by the direct diagonalization of the Hamiltonian. The eigenstates are classified according to the irreducible representations of the dihedral group D[sub N]. It is shown that Gutzwiller's quantization conditions are satisfied and they have a one-to-one correspondence to the irreducible representation of the D[sub N] group. The authors have also carried out the semiclassical quantization of the periodic Toda lattice by the EBK formulation. The eigenvalues of the semiclassical quantization have a one-to-one correspondence to the integer quantum numbers, and those quantum numbers also have a close relationship to the symmetry of the state. Numerical calculations have been done for N = 3, 4, 5, and 6 particle periodic Toda lattices. The distributions of the eigenvalues are systematic and distinguished by the symmetry of the state. As illustrative examples, amplitudes of the wave functions and density distributions are shown. 14 refs., 8 figs., 11 tabs.

  19. Np Incorporation into Uranyl Alteration Phases: A Quantum Mechanical Approach

    SciTech Connect

    Shuller, Lindsay; Ewing, Rodney C. |; Becker, Udo

    2007-07-01

    Neptunium is a major contributor to the long-term radioactivity in a geologic repository for spent nuclear fuel (SNF) due to its long half-life (2.1 million years). The mobility of Np may be decreased by its incorporation into the U{sup 6+} phases that form during the corrosion of SNF. The ionic radii of Np{sup 5+} (0.089 nm) and U{sup 6+} (0.087 nm) are similar, as is their chemistry. Experimental studies have shown that Np can be incorporated into uranyl phases up to concentrations on the order of 100 ppm. The low concentration of Np in the uranyl phases complicates experimental detection and presents a significant challenge for determining the incorporation mechanism. Therefore, we have used quantum mechanical calculations to investigate incorporation mechanisms and evaluate the energetics of Np substituting for U. CASTEP, a density functional theory based code that uses plane waves to model the behavior of the valence electrons and pseudo-potentials to model the behavior of the core and inner valence electrons, was used to calculate optimal H positions, relaxed geometry, and the energy of different uranyl phases. The incorporation energy for Np into uranyl alteration phases was calculated for studtite, [(UO{sub 2})O{sub 2}(H{sub 2}O){sub 2}](H{sub 2}O){sub 2}, and boltwoodite, HK(UO{sub 2})(SiO{sub 4}) 1.5(H{sub 2}O). Studtite is the rare case of a stable, naturally-occurring peroxide mineral, in this case a uranyl hydroxyl peroxide that forms in the presence of H{sub 2}O{sub 2} from the radiolysis of H{sub 2}O. For studtite, two incorporation mechanisms were evaluated: (1) charge-balanced substitution of Np{sup 5+} and H{sup +} for one U{sup 6+}, and (2) direct substitution of Np{sup 6+} for U{sup 6+}. For boltwoodite, the H atomic positions prior to Np incorporation were determined, as well as the Np incorporation mechanisms and the corresponding substitution energies. The preferential incorporation of Np into different structure types of U{sup 6+} minerals was also investigated. Quantum mechanical substitution energies have to be derived at Np concentrations higher than the ones found in experiments or expected in a repository in order to avoid the calculation of unit cells that are too large to be handled quantum mechanically. However, the quantum mechanical results are crucial for subsequent empirical force-field and Monte-Carlo simulations to determine the thermodynamically stable limit of Np incorporation into these uranyl phases. (authors)

  20. Quantum thermal machine acting on a many-body quantum system: Role of correlations in thermodynamic tasks

    NASA Astrophysics Data System (ADS)

    Doyeux, Pierre; Leggio, Bruno; Messina, Riccardo; Antezza, Mauro

    2016-02-01

    We study the functioning of a three-level thermal machine when acting on a many-qubit system, the entire system being placed in an electromagnetic field in a stationary out-of-thermal-equilibrium configuration. This realistic setup stands between the two so-far-explored cases of single-qubit and macroscopic object targets, providing information on the scaling with system size of purely quantum properties in thermodynamic contexts. We show that, thanks to the presence of robust correlations among the qubits induced by the field, thermodynamic tasks can be delivered by the machine both locally to each qubit and collectively to the many-qubit system: This allows a task to be delivered also on systems much bigger than the machine size.

  1. Quantum mechanics on phase space and teleportation

    NASA Astrophysics Data System (ADS)

    Messamah, Juba; Schroeck, Franklin E.; Hachemane, Mahmoud; Smida, Abdallah; Hamici, Amel H.

    2015-03-01

    The formalism of quantum mechanics on phase space is used to describe the standard protocol of quantum teleportation with continuous variables in order to partially investigate the interplay between this formalism and quantum information. Instead of the Wigner quasi-probability distributions used in the standard protocol, we use positive definite true probability densities which account for unsharp measurements through a proper wave function representing a non-ideal quantum measuring device. This is based on a result of Schroeck and may be taken on any relativistic or nonrelativistic phase space. The obtained formula is similar to a known formula in quantum optics, but contains the effect of the measuring device. It has been applied in three cases. In the first case, the two measuring devices, corresponding to the two entangled parts shared by Alice and Bob, are not entangled and described by two identical Gaussian wave functions with respect to the Heisenberg group. They lead to a probability density identical to the function which is analyzed and compared with the Wigner formalism. A new expression of the teleportation fidelity for a coherent state in terms of the quadrature variances is obtained. In the second case, these two measuring devices are entangled in a two-mode squeezed vacuum state. In the third case, two Gaussian states are combined in an entangled squeezed state. The overall observation is that the state of the measuring devices shared by Alice and Bob influences the fidelity of teleportation through their unsharpness and entanglement.

  2. Neutrino oscillations: Quantum mechanics vs. quantum field theory

    SciTech Connect

    Akhmedov, Evgeny Kh.; Kopp, Joachim; ,

    2010-01-01

    A consistent description of neutrino oscillations requires either the quantum-mechanical (QM) wave packet approach or a quantum field theoretic (QFT) treatment. We compare these two approaches to neutrino oscillations and discuss the correspondence between them. In particular, we derive expressions for the QM neutrino wave packets from QFT and relate the free parameters of the QM framework, in particular the effective momentum uncertainty of the neutrino state, to the more fundamental parameters of the QFT approach. We include in our discussion the possibilities that some of the neutrino's interaction partners are not detected, that the neutrino is produced in the decay of an unstable parent particle, and that the overlap of the wave packets of the particles involved in the neutrino production (or detection) process is not maximal. Finally, we demonstrate how the properly normalized oscillation probabilities can be obtained in the QFT framework without an ad hoc normalization procedure employed in the QM approach.

  3. Thermodynamics of trajectories of a quantum harmonic oscillator coupled to N baths

    NASA Astrophysics Data System (ADS)

    Pigeon, Simon; Fusco, Lorenzo; Xuereb, Andr; De Chiara, Gabriele; Paternostro, Mauro

    2015-07-01

    We undertake a thorough analysis of the thermodynamics of the trajectories followed by a quantum harmonic oscillator coupled to N dissipative baths by using an approach to large-deviation theory inspired by phase-space quantum optics. As an illustrative example, we study the archetypal case of a harmonic oscillator coupled to two thermal baths, allowing for a comparison with the analogous classical result. In the low-temperature limit, we find a significant quantum suppression in the rate of work exchanged between the system and each bath. We further show how the presented method is capable of giving analytical results even for the case of a driven harmonic oscillator. Based on that result, we analyze the laser cooling of the motion of a trapped ion or optomechanical system, illustrating how the emission statistics can be controllably altered by the driving force.

  4. Operational approach to fluctuations of thermodynamic variables in finite quantum systems

    SciTech Connect

    Jahnke, T.; Lanery, S.; Mahler, G.

    2011-01-15

    In this paper we present a quantum approach to the old problem of temperature fluctuations. We start by observing that according to quantum thermodynamics, fluctuations of intensive parameters like temperature cannot exist. Furthermore, such parameters are not observables, so their estimation has to be done indirectly. The respective temperature estimate based on quantum measurements of the energy is shown to fluctuate according to the well-known formula {Delta}T{sup 2}=(k{sub B}T{sup 2}/C), but only within a certain temperature range and if the system is not too small. We also calculate the fourth-order correction term, becoming important at higher temperatures. Finally we illustrate our results with a concrete model of n spins.

  5. Measurement and Fundamental Processes in Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Jaeger, Gregg

    2015-07-01

    In the standard mathematical formulation of quantum mechanics, measurement is an additional, exceptional fundamental process rather than an often complex, but ordinary process which happens also to serve a particular epistemic function: during a measurement of one of its properties which is not already determined by a preceding measurement, a measured system, even if closed, is taken to change its state discontinuously rather than continuously as is usual. Many, including Bell, have been concerned about the fundamental role thus given to measurement in the foundation of the theory. Others, including the early Bohr and Schwinger, have suggested that quantum mechanics naturally incorporates the unavoidable uncontrollable disturbance of physical state that accompanies any local measurement without the need for an exceptional fundamental process or a special measurement theory. Disturbance is unanalyzable for Bohr, but for Schwinger it is due to physical interactions' being borne by fundamental particles having discrete properties and behavior which is beyond physical control. Here, Schwinger's approach is distinguished from more well known treatments of measurement, with the conclusion that, unlike most, it does not suffer under Bell's critique of quantum measurement. Finally, Schwinger's critique of measurement theory is explicated as a call for a deeper investigation of measurement processes that requires the use of a theory of quantum fields.

  6. The preparation of states in quantum mechanics

    NASA Astrophysics Data System (ADS)

    Fröhlich, Jürg; Schubnel, Baptiste

    2016-04-01

    The important problem of how to prepare a quantum mechanical system, S, in a specific initial state of interest—e.g., for the purposes of some experiment—is addressed. Three distinct methods of state preparation are described. One of these methods has the attractive feature that it enables one to prepare S in a preassigned initial state with certainty, i.e., the probability of success in preparing S in a given state is unity. This method relies on coupling S to an open quantum-mechanical environment, E, in such a way that the dynamics of S∨E pulls the state of S towards an "attractor," which is the desired initial state of S. This method is analyzed in detail.

  7. Beyond relativity and quantum mechanics: space physics

    NASA Astrophysics Data System (ADS)

    Lindner, Henry H.

    2011-09-01

    Albert Einstein imposed an observer-based epistemology upon physics. Relativity and Quantum Mechanics limit physics to describing and modeling the observer's sensations and measurements. Their "underlying reality" consists only of ideas that serve to model the observer's experience. These positivistic models cannot be used to form physical theories of Cosmic phenomena. To do this, we must again remove the observer from the center of physics. When we relate motion to Cosmic space instead of to observers and we attempt to explain the causes of Cosmic phenomena, we are forced to admit that Cosmic space is a substance. We need a new physics of space. We can begin by replacing Relativity with a modified Lorentzian-Newtonian model of spatial flow, and Quantum Mechanics with a wave-based theory of light and electrons. Space physics will require the reinterpretation of all known phenomena, concepts, and mathematical models.

  8. Thermodynamic limits to the conversion of blackbody radiation by quantum systems. [with application to solar energy conversion devices

    NASA Technical Reports Server (NTRS)

    Buoncristiani, A. M.; Smith, B. T.; Byvik, C. E.

    1982-01-01

    Using general thermodynamic arguments, we analyze the conversion of the energy contained in the radiation from a blackbody to useful work by a quantum system. We show that the energy available for conversion is bounded above by the change in free energy in the incident and reradiated fields and that this free energy change depends upon the temperature of the receiving device. Universal efficiency curves giving the ultimate thermodynamic conversion efficiency of the quantum system are presented in terms of the blackbody temperature and the temperature and threshold energy of the quantum system. Application of these results is made to a variety of systems including biological photosynthetic, photovoltaic, and photoelectrochemical systems.

  9. Quantum Mechanics - Fundamentals and Applications to Technology

    NASA Astrophysics Data System (ADS)

    Singh, Jasprit

    1996-10-01

    Explore the relationship between quantum mechanics and information-age applications This volume takes an altogether unique approach to quantum mechanics. Providing an in-depth exposition of quantum mechanics fundamentals, it shows how these concepts are applied to most of today's information technologies, whether they are electronic devices or materials. No other text makes this critical, essential leap from theory to real-world applications. The book's lively discussion of the mathematics involved fits right in with contemporary multidisciplinary trends in education: Once the basic formulation has been derived in a given chapter, the connection to important technological problems is summarily described. The many helpful features include * Twenty-eight application-oriented sections that focus on lasers, transistors, magnetic memories, superconductors, nuclear magnetic resonance (NMR), and other important technology-driving materials and devices * One hundred solved examples, with an emphasis on numerical results and the connection between the physics and its applications * End-of-chapter problems that ground the student in both fundamental and applied concepts * Numerous figures and tables to clarify the various topics and provide a global view of the problems under discussion * Over two hundred illustrations to highlight problems and text A book for the information age, Quantum Mechanics: Fundamentals and Applications to Technology promises to become a standard in departments of electrical engineering, applied physics, and materials science, as well as physics. It is an excellent text for senior undergraduate and graduate students, and a helpful reference for practicing scientists, engineers, and chemists in the semiconductor and electronic industries.

  10. A Philosopher's Understanding of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Vermaas, Pieter E.

    2005-07-01

    1. Introduction; 2. Quantum mechanics; 3. Modal interpretations; Part I. Formalism: 4. The different versions; 5. The full property ascription; 6. Joint property ascriptions; 7. Discontinuities, instabilities and other bad behaviour; 8. Transition probabilities; 9. Dynamical autonomy and locality; Part II. Physics: 10. The measurement problem; 11. The Born rule; Part III. Philosophy: 12. Properties, states, measurement outcomes and effective states; 13. Holism versus reductionism; 14. Possibilities and impossibilities; 15. Conclusions.

  11. A Philosopher's Understanding of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Vermaas, Pieter E.

    2000-02-01

    1. Introduction; 2. Quantum mechanics; 3. Modal interpretations; Part I. Formalism: 4. The different versions; 5. The full property ascription; 6. Joint property ascriptions; 7. Discontinuities, instabilities and other bad behaviour; 8. Transition probabilities; 9. Dynamical autonomy and locality; Part II. Physics: 10. The measurement problem; 11. The Born rule; Part III. Philosophy: 12. Properties, states, measurement outcomes and effective states; 13. Holism versus reductionism; 14. Possibilities and impossibilities; 15. Conclusions.

  12. A Local Interpretation of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Lopez, Carlos

    2016-04-01

    A local interpretation of quantum mechanics is presented. Its main ingredients are: first, a label attached to one of the "virtual" paths in the path integral formalism, determining the output for measurement of position or momentum; second, a mathematical model for spin states, equivalent to the path integral formalism for point particles in space time, with the corresponding label. The mathematical machinery of orthodox quantum mechanics is maintained, in particular amplitudes of probability and Born's rule; therefore, Bell's type inequalities theorems do not apply. It is shown that statistical correlations for pairs of particles with entangled spins have a description completely equivalent to the two slit experiment, that is, interference (wave like behaviour) instead of non locality gives account of the process. The interpretation is grounded in the experimental evidence of a point like character of electrons, and in the hypothetical existence of a wave like, the de Broglie, companion system. A correspondence between the extended Hilbert spaces of hidden physical states and the orthodox quantum mechanical Hilbert space shows the mathematical equivalence of both theories. Paradoxical behaviour with respect to the action reaction principle is analysed, and an experimental set up, modified two slit experiment, proposed to look for the companion system.

  13. Hunting for Snarks in Quantum Mechanics

    SciTech Connect

    Hestenes, David

    2009-12-08

    A long-standing debate over the interpretation of quantum mechanics has centered on the meaning of Schroedinger's wave function {psi} for an electron. Broadly speaking, there are two major opposing schools. On the one side, the Copenhagen school(led by Bohr, Heisenberg and Pauli) holds that {psi} provides a complete description of a single electron state; hence the probability interpretation of {psi}{psi}* expresses an irreducible uncertainty in electron behavior that is intrinsic in nature. On the other side, the realist school(led by Einstein, de Broglie, Bohm and Jaynes) holds that {psi} represents a statistical ensemble of possible electron states; hence it is an incomplete description of a single electron state. I contend that the debaters have overlooked crucial facts about the electron revealed by Dirac theory. In particular, analysis of electron zitterbewegung(first noticed by Schroedinger) opens a window to particle substructure in quantum mechanics that explains the physical significance of the complex phase factor in {psi}. This led to a testable model for particle substructure with surprising support by recent experimental evidence. If the explanation is upheld by further research, it will resolve the debate in favor of the realist school. I give details. The perils of research on the foundations of quantum mechanics have been foreseen by Lewis Carroll in The Hunting of the Snark{exclamation_point}.

  14. Quantum corrections to the stress-energy tensor in thermodynamic equilibrium with acceleration

    NASA Astrophysics Data System (ADS)

    Becattini, F.; Grossi, E.

    2015-08-01

    We show that the stress-energy tensor has additional terms with respect to the ideal form in states of global thermodynamic equilibrium in flat spacetime with nonvanishing acceleration and vorticity. These corrections are of quantum origin and their leading terms are second order in the gradients of the thermodynamic fields. Their relevant coefficients can be expressed in terms of correlators of the stress-energy tensor operator and the generators of the Lorentz group. With respect to previous assessments, we find that there are more second-order coefficients and that all thermodynamic functions including energy density receive acceleration and vorticity dependent corrections. Notably, also the relation between ρ and p , that is, the equation of state, is affected by acceleration and vorticity. We have calculated the corrections for a free real scalar field—both massive and massless—and we have found that they increase, particularly for a massive field, at very high acceleration and vorticity and very low temperature. Finally, these nonideal terms depend on the explicit form of the stress-energy operator, implying that different stress-energy tensors of the scalar field—canonical or improved—are thermodynamically inequivalent.

  15. DNA cytosine methylation: Structural and thermodynamic characterization of the epigenetic marking mechanism

    PubMed Central

    Yang, Jin; Lior-Hoffmann, Lee; Wang, Shenglong; Zhang, Yingkai; Broyde, Suse

    2013-01-01

    DNA cytosine methyltransferases regulate the expression of the genome through the precise epigenetic marking of certain cytosines with a methyl group, and aberrant methylation is a hallmark of human diseases including cancer. Targeting these enzymes for drug design is currently a high priority. We have utilized ab initio quantum mechanical/molecular mechanical (QM/MM) molecular dynamics (MD) simulations to extensively investigate the reaction mechanism of the representative DNA methyltransferase HhaI (M.HhaI) from prokaryotes, whose overall mechanism is shared with the mammalian enzymes. We obtain for the first time full free energy profiles for the complete reaction, together with reaction dynamics in atomistic detail. Our results show an energetically preferred mechanism in which nucleophilic attack of cytosine C5 on the S-adenosyl-L-methionine (AdoMet) methyl group is concerted with formation of the Michael adduct between a conserved Cys in the active site with cytosine C6. Spontaneous and reversible proton transfer between a conserved Glu in the active site and cytosine N3 at the transition state was observed in our simulations, revealing the chemical participation of this Glu residue in the catalytic mechanism. Subsequently, the β-elimination of the C5 proton utilizes as base an OH− derived from a conserved crystal water that is part of a proton wire water channel, and this syn β-elimination reaction is the rate-limiting step. Design of novel cytosine methylation inhibitors would be advanced by our structural and thermodynamic characterization of the reaction mechanism. PMID:23528166

  16. Quantum mechanical models for the Fermi shuttle

    NASA Astrophysics Data System (ADS)

    Sternberg, James; Ovchinnikov, S. Yu.; Macek, J. H.

    2009-05-01

    Although the Fermi shuttle was originally proposed as an explanation for highly energetic cosmic rays, it is also a mechanism for the production of high energy electrons in atomic collisions [1]. The Fermi shuttle is usually thought of as a classical effect and most models of this process rely on classical or semi-classical approximations. In this work we explore several quantum mechanical models for ion-atom collisions and examine the evidence for the Fermi shuttle in these models. [4pt] [1] B. Sulik, Cs. Koncz, K. Tok'esi, A. Orb'an, and D. Ber'enyi, Phys Rev. Lett. 88 073201 (2002)

  17. Theory of network contractor dynamics for exploring thermodynamic properties of two-dimensional quantum lattice models

    NASA Astrophysics Data System (ADS)

    Ran, Shi-Ju; Xi, Bin; Liu, Tao; Su, Gang

    2013-08-01

    Based on the tensor network state representation, we develop a nonlinear dynamic theory, coined network contractor dynamics (NCD), to explore the thermodynamic properties of two-dimensional quantum lattice models. By invoking the rank-1 decomposition in the multilinear algebra, the NCD scheme makes the contraction of the tensor network of the partition function be realized through a contraction of a local tensor cluster with vectors on its boundary. An imaginary-time-sweep algorithm for implementation of the NCD method is proposed for practical numerical simulations. We benchmark the NCD scheme on the square Ising model, which shows great accuracy. Also, the results on the spin-1/2 Heisenberg antiferromagnet on a honeycomb lattice are disclosed to be in good agreement with the quantum Monte Carlo calculations. The quasientanglement entropy S, Lyapunov exponent ILya, and loop character Iloop are introduced within the dynamic scheme, which are found to display nonlocality near the critical point, and can be applied to determine the thermodynamic phase transitions of both classical and quantum systems.

  18. Quantum mechanics with coordinate dependent noncommutativity

    SciTech Connect

    Kupriyanov, V. G.

    2013-11-15

    Noncommutative quantum mechanics can be considered as a first step in the construction of quantum field theory on noncommutative spaces of generic form, when the commutator between coordinates is a function of these coordinates. In this paper we discuss the mathematical framework of such a theory. The noncommutativity is treated as an external antisymmetric field satisfying the Jacobi identity. First, we propose a symplectic realization of a given Poisson manifold and construct the Darboux coordinates on the obtained symplectic manifold. Then we define the star product on a Poisson manifold and obtain the expression for the trace functional. The above ingredients are used to formulate a nonrelativistic quantum mechanics on noncommutative spaces of general form. All considered constructions are obtained as a formal series in the parameter of noncommutativity. In particular, the complete algebra of commutation relations between coordinates and conjugated momenta is a deformation of the standard Heisenberg algebra. As examples we consider a free particle and an isotropic harmonic oscillator on the rotational invariant noncommutative space.

  19. Shaping the composition profiles in heteroepitaxial quantum dots: Interplay of thermodynamic and kinetic effects

    SciTech Connect

    Georgiou, C.; Leontiou, T.; Kelires, P. C.

    2014-07-15

    Atomistic Monte Carlo simulations, coupling thermodynamic and kinetic effects, resolve a longstanding controversy regarding the origin of composition profiles in heteroepitaxial SiGe quantum dots. It is shown that profiles with cores rich in the unstrained (Si) component derive from near-equilibrium processes and intraisland diffusion. Profiles with cores rich in the strained (Ge) component are of nonequilibrium nature, i.e., they are strain driven but kinetically limited. They are shaped by the distribution of kinetic barriers of atomic diffusion in the islands. The diffusion pathways are clearly revealed for the first time. Geometrical kinetics play a minor role.

  20. Thermodynamic limits for solar energy conversion by a quantum-thermal hybrid system

    NASA Technical Reports Server (NTRS)

    Byvik, C. E.; Buoncristiani, A. M.; Smith, B. T.

    1981-01-01

    The limits are presented fo air mass 1.5 conditions. A maximum conversion efficiency of 74 percent is thermodynamically achievable for the quantum device operating at 3500 K and the heat engine in contact with a reservoir at 0 K. The efficiency drops to 56 percent for a cold reservoir at approximately room temperature conditions. Hybrid system efficiencies exceed 50 percent over receiver temperatures ranging from 1400 K to 4000 K, suggesting little benefit is gained in operating the system above 1400 K. The results are applied to a system consisting of a photovoltaic solar cell in series with a heat engine.

  1. Thermodynamic properties of noninteracting quantum gases with spin-orbit coupling

    SciTech Connect

    He Li; Yu Zengqiang

    2011-08-15

    In this brief report we study thermodynamic properties of noninteracting quantum gases with isotropic spin-orbit coupling. At high temperature, coefficients of virial expansion depend on both temperature T and spin-orbit coupling strength {kappa}. For strong coupling, virial expansion is applicable to the temperature region below the conventional degenerate temperature T{sub F}. At low temperature, specific heat is proportional to {radical}(T) in Bose gases and T in Fermi gases. Temperature dependence of the chemical potential of fermions shows a different behavior when the Fermi surface is above and below the Dirac point.

  2. Thermodynamic instability of ZnSe/ZnS core/shell quantum dots

    NASA Astrophysics Data System (ADS)

    Pandey, Sumeet C.; Wang, Jun; Mountziaris, T. J.; Maroudas, Dimitrios

    2012-06-01

    We investigate the stability of ZnSe/ZnS core/shell quantum dots (QDs) based on density-functional-theory (DFT) calculations combined with photoluminescence (PL) and x-ray photoelectron (XPS) spectroscopy of as-synthesized and annealed QDs. The results demonstrate that core/shell interfaces in ZnSe/ZnS QDs are thermodynamically unstable. Under low-temperature annealing, the intermixing of S and Se atoms leads to alloying of the pure ZnSe core and ZnS shells. Upon high-temperature annealing, the degradation of the PL properties of the QDs also is observed.

  3. Indirect Acquisition of Information in Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Ballesteros, M.; Fraas, M.; Frhlich, J.; Schubnel, B.

    2016-01-01

    Long sequences of successive direct (projective) measurements or observations of just a few "uninteresting" physical quantities pertaining to a quantum system, such as clicks of some detectors, may reveal indirect, but precise and unambiguous information on the values of some very "interesting" observables of the system. In this paper, the mathematics underlying this claim is developed; i.e., we attempt to contribute to a mathematical theory of indirect and, in particular, non-demolition observations and measurements in quantum mechanics. Our attempt leads us to make some novel uses of classical notions and results of probability theory, such as the "algebra of functions measurable at infinity", the Central Limit Theorem, results concerning relative entropy and its role in the theory of large deviations, etc.

  4. Adaptive Perturbation Theory I: Quantum Mechanics

    SciTech Connect

    Weinstein, Marvin; /SLAC

    2005-10-19

    Adaptive perturbation is a new method for perturbatively computing the eigenvalues and eigenstates of quantum mechanical Hamiltonians that heretofore were not believed to be treatable by such methods. The novel feature of adaptive perturbation theory is that it decomposes a given Hamiltonian, H, into an unperturbed part and a perturbation in a way which extracts the leading non-perturbative behavior of the problem exactly. This paper introduces the method in the context of the pure anharmonic oscillator and then goes on to apply it to the case of tunneling between both symmetric and asymmetric minima. It concludes with an introduction to the extension of these methods to the discussion of a quantum field theory. A more complete discussion of this issue will be given in the second paper in this series, and it will show how to use the method of adaptive perturbation theory to non-perturbatively extract the structure of mass, wavefunction and coupling constant renormalization.

  5. Quantum Mechanics of a Rotating Billiard

    NASA Astrophysics Data System (ADS)

    Jha, Nandan; Jain, Sudhir R.

    Integrability of a square billiard is spontaneously broken as it rotates about one of its corners. The system becomes quasi-integrable where the invariant tori are broken with respect to a certain parameter, λ = 2E/ω 2 where E is the energy of the particle inside the billiard and ω is the angular frequency of rotation of billiard. We study the system classically and quantum mechanically in view of obtaining a correspondence in the two descriptions. Classical phase space in Poincaré surface of section shows transition from regular to chaotic motion as the parameter λ is decreased. In the Quantum counterpart, the spectral statistics shows a transition from Poisson to Wigner distribution as the system turns chaotic with decrease in λ . The wavefunction statistics however show breakdown of time-reversal symmetry as λ decreases.

  6. Indirect Acquisition of Information in Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Ballesteros, M.; Fraas, M.; Fröhlich, J.; Schubnel, B.

    2016-02-01

    Long sequences of successive direct (projective) measurements or observations of just a few "uninteresting" physical quantities pertaining to a quantum system, such as clicks of some detectors, may reveal indirect, but precise and unambiguous information on the values of some very "interesting" observables of the system. In this paper, the mathematics underlying this claim is developed; i.e., we attempt to contribute to a mathematical theory of indirect and, in particular, non-demolition observations and measurements in quantum mechanics. Our attempt leads us to make some novel uses of classical notions and results of probability theory, such as the "algebra of functions measurable at infinity", the Central Limit Theorem, results concerning relative entropy and its role in the theory of large deviations, etc.

  7. Unstable trajectories and the quantum mechanical uncertainty

    SciTech Connect

    Moser, Hans R.

    2008-08-15

    There is still an ongoing discussion about various seemingly contradictory aspects of classical particle motion and its quantum mechanical counterpart. One of the best accepted viewpoints that intend to bridge the gap is the so-called Copenhagen Interpretation. A major issue there is to regard wave functions as probability amplitudes (usually for the position of a particle). However, the literature also reports on approaches that claim a trajectory for any quantum mechanical particle, Bohmian mechanics probably being the most prominent one among these ideas. We introduce a way to calculate trajectories as well, but our crucial ingredient is their well controlled local (thus also momentaneous) degree of instability. By construction, at every moment their unpredictability, i.e., their local separation rates of neighboring trajectories, is governed by the local value of the given modulus square of a wave function. We present extensive numerical simulations of the H and He atom, and for some velocity-related quantities, namely angular momentum and total energy, we inspect their agreement with the values appearing in wave mechanics. Further, we interpret the archetypal double slit interference experiment in the spirit of our findings. We also discuss many-particle problems far beyond He, which guides us to a variety of possible applications.

  8. Reciprocal relativity of noninertial frames: quantum mechanics

    NASA Astrophysics Data System (ADS)

    Low, Stephen G.

    2007-04-01

    Noninertial transformations on time-position-momentum-energy space {t, q, p, e} with invariant Born-Green metric ds^{2}=-d t^{2}+\\frac{1}{c^{2}}\\,d q^{2}+\\frac{1}{b^{2}} \\big(d p^{2}-\\frac{1}{c^{2}}\\,d e^{2}\\big) and the symplectic metric -de ∧ dt + dp ∧ dq are studied. This {\\cal U}1,3) group of transformations contains the Lorentz group as the inertial special case and, in the limit of small forces and velocities, reduces to the expected Hamilton transformations leaving invariant the symplectic metric and the nonrelativistic line element ds2 = -dt2. The {\\cal U}( 1,3) transformations bound relative velocities by c and relative forces by b. Spacetime is no longer an invariant subspace but is relative to noninertial observer frames. In the limit of b → ∞, spacetime is invariant. Born was lead to the metric by a concept of reciprocity between position and momentum degrees of freedom and for this reason we call this reciprocal relativity. For large b, such effects will almost certainly only manifest in a quantum regime. Wigner showed that special relativistic quantum mechanics follows from the projective representations of the inhomogeneous Lorentz group. Projective representations of a Lie group are equivalent to the unitary representations of its central extension. The same method of projective representations for the inhomogeneous {\\cal U}( 1,3) group is used to define the quantum theory in the noninertial case. The central extension of the inhomogeneous {\\cal U}( 1,3) group is the cover of the quaplectic group {\\cal Q}( 1,3) ={\\cal U}( 1,3) \\otimes _{s}{\\cal H}(4) . {\\cal H}( 4) is the Weyl-Heisenberg group. The {\\cal H}( 4) group, and the associated Heisenberg commutation relations central to quantum mechanics, results directly from requiring projective representations. A set of second-order wave equations result from the representations of the Casimir operators.

  9. Thermodynamic properties of the one-dimensional extended quantum compass model in the presence of a transverse field

    NASA Astrophysics Data System (ADS)

    Jafari, R.

    2012-05-01

    The presence of a quantum critical point can significantly affect the thermodynamic properties of a material at finite temperatures. This is reflected, e.g., in the entropy landscape S(T, c) in the vicinity of a quantum critical point, yielding particularly strong variations for varying the tuning parameter c such as magnetic field. In this work we have studied the thermodynamic properties of the quantum compass model in the presence of a transverse field. The specific heat, entropy and cooling rate under an adiabatic demagnetization process have been calculated. During an adiabatic (de)magnetization process temperature drops in the vicinity of a field-induced zero-temperature quantum phase transitions. However close to field-induced quantum phase transitions we observe a large magnetocaloric effect.

  10. Thermodynamic properties of highly frustrated quantum spin ladders: Influence of many-particle bound states

    NASA Astrophysics Data System (ADS)

    Honecker, A.; Wessel, S.; Kerkdyk, R.; Pruschke, T.; Mila, F.; Normand, B.

    2016-02-01

    Quantum antiferromagnets have proven to be some of the cleanest realizations available for theoretical, numerical, and experimental studies of quantum fluctuation effects. At finite temperatures, however, the additional effects of thermal fluctuations in the restricted phase space of a low-dimensional system have received much less attention, particularly the situation in frustrated quantum magnets, where the excitations may be complex collective (bound or even fractionalized) modes. We investigate this problem by studying the thermodynamic properties of the frustrated two-leg S =1/2 spin ladder, with particular emphasis on the fully frustrated case. We present numerical results for the magnetic specific heat and susceptibility, obtained from exact diagonalization and quantum Monte Carlo studies, which we show can be rendered free of the sign problem even in a strongly frustrated system and which allow us to reach unprecedented sizes of L =200 ladder rungs. We find that frustration effects cause an unconventional evolution of the thermodynamic response across the full parameter regime of the model. However, close to the first-order transition they cause a highly anomalous reduction in temperature scales with no concomitant changes in the gap; the specific heat shows a very narrow peak at very low energies and the susceptibility rises abruptly at extremely low temperatures. Unusually, the two quantities have different gaps over an extended region of the parameter space. We demonstrate that these results reflect the presence of large numbers of multiparticle bound-state excitations, whose energies fall below the one-triplon gap in the transition region.

  11. Estimation of the thermodynamic properties of functional groups and biomolecules using quantum chemical/statistical thermodynamic calculations

    NASA Astrophysics Data System (ADS)

    Chai, Weisin

    The scarcity and sustainability of energy sources have always been a concern while seeking for alternative fuels. Biofuels have drawn the attention of various researchers due to their abundancy and renewability. Understanding the physical and chemical properties of these molecules is essential to determining their potential as alternative fuels or fuel additives. In this work, the properties of these molecules are predicted through methods developed from quantum mechanics and statistical mechanics theories. The heats of formations are calculated with the Gaussian program and combined with the Benson group contribution method to predict the Benson parameters of unknown functional groups in a molecule. The methods developed are used to expand the Benson database and improve the practicability of the group contribution method. The heats of formations are also used to predict and correlate heat capacities across a range of temperatures and energy densities in this study.

  12. Bell's theorem: Local realism versus quantum mechanics

    NASA Astrophysics Data System (ADS)

    Ferrero, M.; Marshall, T. W.; Santos, E.

    1990-07-01

    Realism and locality are defined emphasizing the fundamental character of both principles. From this, the well-known expression proposed by Bell for calculating correlations is derived. Starting from this expression, the theorem of incompatibility is proved between local realism and quantum mechanics. An analysis is made of the experiments performed by Aspect and others, and it is concluded that, because photomultipliers and polarizing filters are not perfectly efficient, it is necessary to make subsidiary assumptions about how they operate in order to rule out local realism. It is argued that the subsidiary assumptions are not logically necessary and, consequently, local realism has not yet been refuted empirically.

  13. Hidden geometric character of relativistic quantum mechanics

    NASA Astrophysics Data System (ADS)

    Almeida, José B.

    2007-01-01

    Geometry can be an unsuspected source of equations with physical relevance, as everybody is aware since Einstein formulated the general theory of relativity. However, efforts to extend a similar type of reasoning to other areas of physics, namely, electrodynamics, quantum mechanics, and particle physics, usually had very limited success; particularly in quantum mechanics the standard formalism is such that any possible relation to geometry is impossible to detect; other authors have previously trod the geometric path to quantum mechanics, some of that work being referred to in the text. In this presentation we will follow an alternate route to show that quantum mechanics has indeed a strong geometric character. The paper makes use of geometric algebra, also known as Clifford algebra, in five-dimensional space-time. The choice of this space is given the character of first principle, justified solely by the consequences that can be derived from such choice and their consistency with experimental results. Given a metric space of any dimension, one can define monogenic functions, the natural extension of analytic functions to higher dimensions; such functions have null vector derivative and have previously been shown by other authors to play a decisive role in lower dimensional spaces. All monogenic functions have null Laplacian by consequence; in a hyperbolic space this fact leads inevitably to a wave equation with planelike solutions. This is also true for five-dimensional space-time and we will explore those solutions, establishing a parallel with the solutions of the free particle Dirac equation. For this purpose we will invoke the isomorphism between the complex algebra of 4×4 matrices, also known as Dirac's matrices. There is one problem with this isomorphism, because the solutions to Dirac's equation are usually known as spinors (column matrices) that do not belong to the 4×4 matrix algebra and as such are excluded from the isomorphism. We will show that a solution in terms of Dirac spinors is equivalent to a plane wave solution. Just as one finds in the standard formulation, monogenic functions can be naturally split into positive/negative energy together with left/right ones. This split is provided by geometric projectors and we will show that there is a second set of projectors providing an alternate fourfold split. The possible implications of this alternate split are not yet fully understood and are presently the subject of profound research.

  14. QUANTUM MECHANICS: Enhanced: Schrodinger's Cat Is Out of the Hat.

    PubMed

    Tesche, C

    2000-10-27

    In 1935, Erwin Schrdinger suggested his famous gedanken experiment of the cat that is simultaneously "dead" and "alive" inside its box until the box is opened. But as Tesche explains in her Perspective, such a macroscopic manifestation of quantum mechanics has remained elusive until recently. The experiments by van der Wal et al. are an important step toward demonstrating that quantum mechanics can describe macroscopic phenomena. The approach may be exploited in quantum computing and quantum cryptography. PMID:17780511

  15. Relativistic mechanical-thermodynamical formalism—description of inelastic collisions

    NASA Astrophysics Data System (ADS)

    Güémez, J.; Fiolhais, M.; Fernández, L. A.

    2016-01-01

    We present a relativistic formalism inspired by the Minkowski four-vectors that also includes conservation laws such as the first law of thermodynamics. It remains close to the relativistic four-vector formalism developed for a single particle, but is also related to the classical treatment of problems that require both Newton's second law and the energy conservation law. We apply the developed formalism to inelastic collisions to better show how it works.

  16. Integrating Computational Chemistry into a Course in Classical Thermodynamics

    ERIC Educational Resources Information Center

    Martini, Sheridan R.; Hartzell, Cynthia J.

    2015-01-01

    Computational chemistry is commonly addressed in the quantum mechanics course of undergraduate physical chemistry curricula. Since quantum mechanics traditionally follows the thermodynamics course, there is a lack of curricula relating computational chemistry to thermodynamics. A method integrating molecular modeling software into a semester long

  17. Integrating Computational Chemistry into a Course in Classical Thermodynamics

    ERIC Educational Resources Information Center

    Martini, Sheridan R.; Hartzell, Cynthia J.

    2015-01-01

    Computational chemistry is commonly addressed in the quantum mechanics course of undergraduate physical chemistry curricula. Since quantum mechanics traditionally follows the thermodynamics course, there is a lack of curricula relating computational chemistry to thermodynamics. A method integrating molecular modeling software into a semester long…

  18. Quantum thermodynamic Carnot and Otto-like cycles for a two-level system

    NASA Astrophysics Data System (ADS)

    Beretta, Gian Paolo

    2012-07-01

    Within the recent revival of interest in quantum heat engines between two thermal reservoirs whereby the working substance is a two-level system, it has been suggested that the celebrated Carnot heat-to-work conversion efficiency 1 - (Tlow/Thigh) cannot be reached. Contrary to this suggestion, we show that reaching the Carnot bound not only is not impossible and does not require an infinite number of heat baths and infinitesimal processes, but it is also within reach of the current experimental techniques. It is sufficient to cycle smoothly (slowly) over at least three (in general four) values of the tunable energy level gap Δ of the system, by varying Δ not only along the isoentropics, but also along the isotherms. This is possible by means of the recently suggested maser-laser tandem technique. We base our proof on the general thermodynamic equilibrium properties of a two-level system together with a careful distinction between the Gibbs relation dE = T dS + (E/Δ) dΔ and the energy balance equation { { d}}E=\\delta Q^\\leftarrow - \\delta W^\\rightarrow . We derive bounds to the net-work to high-temperature-heat ratio (energy efficiency) for a Carnot cycle and for the “inscribed” Otto-like cycle. By representing these cycles on useful thermodynamic diagrams, we infer and confirm important aspects of the second law of thermodynamics.

  19. Complete Sets of Solutions in Quantum Mechanics and their Connection with Gravity

    NASA Astrophysics Data System (ADS)

    Sierra, Rafael

    In typical non-relativistic quantum mechanical theory, solutions which are not normalizable are thrown away on the basis of being non-physical. The author does not contend that these solutions exist or are physically reasonable, but, these solutions do introduce interesting physics that can serve to connect the force of gravity with the laws of thermodynamics in a shockingly intimate way. The author will discuss the necessary extensions to the formalism of Schrodinger in order to better deal with and make sense of these solutions. In particular, some time will be devoted to the notion of entropy in systems involving these solutions. For particles sufficiently spaced-out, the second law of thermodynamics will yield dynamics that resemble classical expectations for gravity. Ultimately, gravity will be presented as a force necessary for the preservation of the second law of thermodynamics. Gravity and statistical mechanics will become connected at the quantum domain, provided the quantum domain is enlarged to include wave functions that are generally considered unreasonable.

  20. Differentiability of correlations in realistic quantum mechanics

    NASA Astrophysics Data System (ADS)

    Cabrera, Alejandro; de Faria, Edson; Pujals, Enrique; Tresser, Charles

    2015-09-01

    We prove a version of Bell's theorem in which the locality assumption is weakened. We start by assuming theoretical quantum mechanics and weak forms of relativistic causality and of realism (essentially the fact that observable values are well defined independently of whether or not they are measured). Under these hypotheses, we show that only one of the correlation functions that can be formulated in the framework of the usual Bell theorem is unknown. We prove that this unknown function must be differentiable at certain angular configuration points that include the origin. We also prove that, if this correlation is assumed to be twice differentiable at the origin, then we arrive at a version of Bell's theorem. On the one hand, we are showing that any realistic theory of quantum mechanics which incorporates the kinematic aspects of relativity must lead to this type of rough correlation function that is once but not twice differentiable. On the other hand, this study brings us a single degree of differentiability away from a relativistic von Neumann no hidden variables theorem.

  1. A bilocal picture of quantum mechanics

    NASA Astrophysics Data System (ADS)

    Withers, L. P., Jr.; Narducci, F. A.

    2015-04-01

    A new, bilocal picture of quantum mechanics is developed. We show that Born’s rule supports a virtual probability for a particle to arrive, as a wave, at any two locations (but no more). We discuss two ways to implement twin detectors suitable for detecting bilocal arrivals. The bilocal picture sheds light on currents in quantum mechanics. We find there are two types of bilocal current density, whose polar form and related mean velocities are given. In the bilocal context, the definitions of both current types simplify. In the unilocal case, the two types become the usual current and a fluctuation current. Their respective mean velocity fields are the usual de Broglie-Madelung-Bohm velocity and the imaginary (osmotic) velocity. We obtain a new, probabilistic Schrödinger equation for the bilocal probability by itself, solve the example of a free particle, develop the dyadic stationary states, and find that the von Neumann equation for time-varying density of states follows directly from the new equation. We also show how to include the electromagnetic potentials in this probabilistic Schrödinger equation.

  2. Differentiability of correlations in realistic quantum mechanics

    SciTech Connect

    Cabrera, Alejandro; Faria, Edson de; Pujals, Enrique; Tresser, Charles

    2015-09-15

    We prove a version of Bell’s theorem in which the locality assumption is weakened. We start by assuming theoretical quantum mechanics and weak forms of relativistic causality and of realism (essentially the fact that observable values are well defined independently of whether or not they are measured). Under these hypotheses, we show that only one of the correlation functions that can be formulated in the framework of the usual Bell theorem is unknown. We prove that this unknown function must be differentiable at certain angular configuration points that include the origin. We also prove that, if this correlation is assumed to be twice differentiable at the origin, then we arrive at a version of Bell’s theorem. On the one hand, we are showing that any realistic theory of quantum mechanics which incorporates the kinematic aspects of relativity must lead to this type of rough correlation function that is once but not twice differentiable. On the other hand, this study brings us a single degree of differentiability away from a relativistic von Neumann no hidden variables theorem.

  3. Molecular model with quantum mechanical bonding information.

    PubMed

    Bohórquez, Hugo J; Boyd, Russell J; Matta, Chérif F

    2011-11-17

    The molecular structure can be defined quantum mechanically thanks to the theory of atoms in molecules. Here, we report a new molecular model that reflects quantum mechanical properties of the chemical bonds. This graphical representation of molecules is based on the topology of the electron density at the critical points. The eigenvalues of the Hessian are used for depicting the critical points three-dimensionally. The bond path linking two atoms has a thickness that is proportional to the electron density at the bond critical point. The nuclei are represented according to the experimentally determined atomic radii. The resulting molecular structures are similar to the traditional ball and stick ones, with the difference that in this model each object included in the plot provides topological information about the atoms and bonding interactions. As a result, the character and intensity of any given interatomic interaction can be identified by visual inspection, including the noncovalent ones. Because similar bonding interactions have similar plots, this tool permits the visualization of chemical bond transferability, revealing the presence of functional groups in large molecules. PMID:21894893

  4. A quantum protective mechanism in photosynthesis

    PubMed Central

    Marais, Adriana; Sinayskiy, Ilya; Petruccione, Francesco; van Grondelle, Rienk

    2015-01-01

    Since the emergence of oxygenic photosynthesis, living systems have developed protective mechanisms against reactive oxygen species. During charge separation in photosynthetic reaction centres, triplet states can react with molecular oxygen generating destructive singlet oxygen. The triplet product yield in bacteria is observed to be reduced by weak magnetic fields. Reaction centres from plants' photosystem II share many features with bacterial reaction centres, including a high-spin iron whose function has remained obscure. To explain observations that the magnetic field effect is reduced by the iron, we propose that its fast-relaxing spin plays a protective role in photosynthesis by generating an effective magnetic field. We consider a simple model of the system, derive an analytical expression for the effective magnetic field and analyse the resulting triplet yield reduction. The protective mechanism is robust for realistic parameter ranges, constituting a clear example of a quantum effect playing a macroscopic role vital for life. PMID:25732807

  5. A quantum protective mechanism in photosynthesis

    NASA Astrophysics Data System (ADS)

    Marais, Adriana; Sinayskiy, Ilya; Petruccione, Francesco; van Grondelle, Rienk

    2015-03-01

    Since the emergence of oxygenic photosynthesis, living systems have developed protective mechanisms against reactive oxygen species. During charge separation in photosynthetic reaction centres, triplet states can react with molecular oxygen generating destructive singlet oxygen. The triplet product yield in bacteria is observed to be reduced by weak magnetic fields. Reaction centres from plants' photosystem II share many features with bacterial reaction centres, including a high-spin iron whose function has remained obscure. To explain observations that the magnetic field effect is reduced by the iron, we propose that its fast-relaxing spin plays a protective role in photosynthesis by generating an effective magnetic field. We consider a simple model of the system, derive an analytical expression for the effective magnetic field and analyse the resulting triplet yield reduction. The protective mechanism is robust for realistic parameter ranges, constituting a clear example of a quantum effect playing a macroscopic role vital for life.

  6. Assessing the Nonequilibrium Thermodynamics in a Quenched Quantum Many-Body System via Single Projective Measurements

    NASA Astrophysics Data System (ADS)

    Fusco, L.; Pigeon, S.; Apollaro, T. J. G.; Xuereb, A.; Mazzola, L.; Campisi, M.; Ferraro, A.; Paternostro, M.; De Chiara, G.

    2014-07-01

    We analyze the nature of the statistics of the work done on or by a quantum many-body system brought out of equilibrium. We show that, for the sudden quench and for an initial state that commutes with the initial Hamiltonian, it is possible to retrieve the whole nonequilibrium thermodynamics via single projective measurements of observables. We highlight, in a physically clear way, the qualitative implications for the statistics of work coming from considering processes described by operators that either commute or do not commute with the unperturbed Hamiltonian of a given system. We consider a quantum many-body system and derive an expression that allows us to give a physical interpretation, for a thermal initial state, to all of the cumulants of the work in the case of quenched operators commuting with the unperturbed Hamiltonian. In the commuting case, the observables that we need to measure have an intuitive physical meaning. Conversely, in the noncommuting case, we show that, although it is possible to operate fully within the single-measurement framework irrespectively of the size of the quench, some difficulties are faced in providing a clear-cut physical interpretation to the cumulants. This circumstance makes the study of the physics of the system nontrivial and highlights the nonintuitive phenomenology of the emergence of thermodynamics from the fully quantum microscopic description. We illustrate our ideas with the example of the Ising model in a transverse field showing the interesting behavior of the high-order statistical moments of the work distribution for a generic thermal state and linking them to the critical nature of the model itself.

  7. Quantum Hypothesis Testing and Non-Equilibrium Statistical Mechanics

    NASA Astrophysics Data System (ADS)

    Jakšić, V.; Ogata, Y.; Pillet, C.-A.; Seiringer, R.

    2012-07-01

    We extend the mathematical theory of quantum hypothesis testing to the general W*-algebraic setting and explore its relation with recent developments in non-equilibrium quantum statistical mechanics. In particular, we relate the large deviation principle for the full counting statistics of entropy flow to quantum hypothesis testing of the arrow of time.

  8. Student Understanding of Time Dependence in Quantum Mechanics

    ERIC Educational Resources Information Center

    Emigh, Paul J.; Passante, Gina; Shaffer, Peter S.

    2015-01-01

    The time evolution of quantum states is arguably one of the more difficult ideas in quantum mechanics. In this article, we report on results from an investigation of student understanding of this topic after lecture instruction. We demonstrate specific problems that students have in applying time dependence to quantum systems and in recognizing…

  9. Quantum four-stroke heat engine: thermodynamic observables in a model with intrinsic friction.

    PubMed

    Feldmann, Tova; Kosloff, Ronnie

    2003-07-01

    The fundamentals of a quantum heat engine are derived from first principles. The study is based on the equation of motion of a minimum set of operators, which is then used to define the state of the system. The relation between the quantum framework and the thermodynamical observables is examined. A four-stroke heat engine model with a coupled two-level system as a working fluid is used to explore the fundamental relations. In the model used, the internal Hamiltonian does not commute with the external control field, which defines the two adiabatic branches. Heat is transferred to the working fluid by coupling to hot and cold reservoirs under constant field values. Explicit quantum equations of motion for the relevant observables are derived on all branches. The dynamics on the heat transfer constant field branches is solved in closed form. On the adiabats, a general numerical solution is used and compared with a particular analytic solution. These solutions are combined to construct the cycle of operation. The engine is then analyzed in terms of the frequency-entropy and entropy-temperature graphs. The irreversible nature of the engine is the result of finite heat transfer rates and frictionlike behavior due to noncommutability of the internal and external Hamiltonians. PMID:12935194

  10. Conversion of heat to light using Townes' maser-laser engine: Quantum optics and thermodynamic analysis

    SciTech Connect

    Ooi, C. H. Raymond

    2011-04-15

    It is shown that thermal energy from a heat source can be converted to useful work in the form of maser-laser light by using a combination of a Stern-Gerlach device and stimulated emissions of excited particles in a maser-laser cavity. We analyze the populations of atoms or quantum dots exiting the cavity, the photon statistics, and the internal entropy as a function of atomic transit time, using the quantum theory of masers and lasers. The power of the laser light is estimated to be sufficiently high for device applications. The thermodynamics of the heat converter is analyzed as a heat engine operating between two reservoirs of different temperature but is generalized to include the change of internal quantum states. The von Neumann entropies for the internal degree are obtained. The sum of the internal and external entropies increases after each cycle and the second law is not violated, even if the photon entropy due to finite photon number distribution is not included. An expression for efficiency relating to the Carnot efficiency is obtained. We resolve the subtle paradox on the reduction of the internal entropy with regards to the path separation after the Stern-Gerlach device.

  11. Efficiency at maximum power of a quantum Otto cycle within finite-time or irreversible thermodynamics.

    PubMed

    Wu, Feilong; He, Jizhou; Ma, Yongli; Wang, Jianhui

    2014-12-01

    We consider the efficiency at maximum power of a quantum Otto engine, which uses a spin or a harmonic system as its working substance and works between two heat reservoirs at constant temperatures T(h) and T(c) (quantum statistics, the efficiencies at maximum power based on these two different kinds of quantum systems are bounded from the upper side by the same expression η(mp)≤η(+)≡η(C)(2)/[η(C)-(1-η(C))ln(1-η(C))] with η(C)=1-T(c)/T(h) as the Carnot efficiency. This expression η(mp) possesses the same universality of the CA efficiency η(CA)=1-√(1-η(C)) at small relative temperature difference. Within the context of irreversible thermodynamics, we calculate the Onsager coefficients and show that the value of η(CA) is indeed the upper bound of EMP for an Otto engine working in the linear-response regime. PMID:25615071

  12. Efficiency at maximum power of a quantum Otto cycle within finite-time or irreversible thermodynamics

    NASA Astrophysics Data System (ADS)

    Wu, Feilong; He, Jizhou; Ma, Yongli; Wang, Jianhui

    2014-12-01

    We consider the efficiency at maximum power of a quantum Otto engine, which uses a spin or a harmonic system as its working substance and works between two heat reservoirs at constant temperatures Th and Tc (quantum statistics, the efficiencies at maximum power based on these two different kinds of quantum systems are bounded from the upper side by the same expression ηmp≤η+≡ηC2/[ηC-(1 -ηC) ln(1 -ηC) ] with ηC=1 -Tc/Th as the Carnot efficiency. This expression ηmp possesses the same universality of the CA efficiency ηCA=1 -√{1 -ηC } at small relative temperature difference. Within the context of irreversible thermodynamics, we calculate the Onsager coefficients and show that the value of ηCA is indeed the upper bound of EMP for an Otto engine working in the linear-response regime.

  13. {\\cal PT} and {\\cal CPT} quantum mechanics embedded in symplectic quantum mechanics

    NASA Astrophysics Data System (ADS)

    Ralston, John P.

    2007-08-01

    A real-valued symplectic group underlies the dynamics of quantum-mechanical systems. Exploring the embedding of unitary groups clarifies the relation of non-Hermitian {\\cal PT} - and {\\cal CPT} -symmetric quantum theories of recent interest. Symmetries of the full dynamical framework are quite rich and reveal new viewpoints on many topics in quantum theory. Transformations mixing 'upper' and 'lower' components of certain symplectic multiplets are indistinguishable from coupling antimatter degrees of freedom. Quantities long identified with physical observables are valid canonical coordinates of the theory, without needing support from measurement doctrine. Dirac's canonical quantization is derived from consistency, and would be redundant as a new postulate. A second-order dynamical framework exists in which observables are just the same as the underlying degrees of freedom.

  14. Dynamical phase transitions in quantum mechanics

    NASA Astrophysics Data System (ADS)

    Rotter, Ingrid

    2012-02-01

    The nucleus is described as an open many-body quantum system with a non-Hermitian Hamilton operator the eigenvalues of which are complex, in general. The eigenvalues may cross in the complex plane (exceptional points), the phases of the eigenfunctions are not rigid in approaching the crossing points and the widths bifurcate. By varying only one parameter, the eigenvalue trajectories usually avoid crossing and width bifurcation occurs at the critical value of avoided crossing. An analog spectroscopic redistribution takes place for discrete states below the particle decay threshold. By this means, a dynamical phase transition occurs in the many-level system starting at a critical value of the level density. Hence the properties of the low-lying nuclear states (described well by the shell model) and those of highly excited nuclear states (described by random ensembles) differ fundamentally from one another. The statement of Niels Bohr on the collective features of compound nucleus states at high level density is therefore not in contradiction to the shell-model description of nuclear (and atomic) states at low level density. Dynamical phase transitions are observed experimentally in different quantum mechanical systems by varying one or two parameters.

  15. Causal localizations in relativistic quantum mechanics

    SciTech Connect

    Castrigiano, Domenico P. L. Leiseifer, Andreas D.

    2015-07-15

    Causal localizations describe the position of quantum systems moving not faster than light. They are constructed for the systems with finite spinor dimension. At the center of interest are the massive relativistic systems. For every positive mass, there is the sequence of Dirac tensor-localizations, which provides a complete set of inequivalent irreducible causal localizations. They obey the principle of special relativity and are fully Poincaré covariant. The boosters are determined by the causal position operator and the other Poincaré generators. The localization with minimal spinor dimension is the Dirac localization. Thus, the Dirac equation is derived here as a mere consequence of the principle of causality. Moreover, the higher tensor-localizations, not known so far, follow from Dirac’s localization by a simple construction. The probability of localization for positive energy states results to be described by causal positive operator valued (PO-) localizations, which are the traces of the causal localizations on the subspaces of positive energy. These causal Poincaré covariant PO-localizations for every irreducible massive relativistic system were, all the more, not known before. They are shown to be separated. Hence, the positive energy systems can be localized within every open region by a suitable preparation as accurately as desired. Finally, the attempt is made to provide an interpretation of the PO-localization operators within the frame of conventional quantum mechanics attributing an important role to the negative energy states.

  16. The dynamic foundation of quantum mechanics

    NASA Astrophysics Data System (ADS)

    Lee, V. J.

    2006-05-01

    Quantum mechanics has been reinvented via mathematical incarnation of Newton's 2^nd law in word for particle motion with an almost nowhere differentiable path. At almost every radius vectorx, the particle has a velocity u in time forward and u in reversal. We formulate thatu=un+ub. The assumed stochastic radiation in vacuum causes thatδxiδxj=δij2Dδt≡δij( / m . - m )δt. That[ ( / t . - t )+un.∇-iub.∇-i( / 2m . - 2m )∇^2 ]( pn-ipb )=Kn-iKo emerges as the 2^nd law; where Knis an even function of time and Koodd. Employing this law, we derive the Schr"odinger equation with the paradigm,( -i∇-qA )ψ=( pn-ipb )ψ, in pediatrician terms. Those ∇^2ρ( xj )=0 specifyxj's, wherepb'sare exactly defined. For the caseA≡0, there are two pure cases: (a) pbonly; (b) pnonly. Miscategorization ofpbaspnin quantum theory status quo is revealed in (a). Energy is numerically computed atxj's, which explain atomic stability. Thatpn.d=nh is the law of transmission of pn through crystal planes, is derived in (b). Summary also on web: http://mysite.verizon.net/vjtlee/

  17. On Localisation in Relativistic Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Ruijgrok, Th. W.

    In nonrelativistic quantum mechanics causality is violated in an obvious way. The hope that this acausality would disappear in relativistic theories, in which the speed of propagation is finite, has turned out to be an idle hope. A localised state spreads over all space under a time translation or a boost.In this paper it is suggested that this strange behaviour is actually a semantic problem. The eigenstates of the Newton-Wigner position operator will be considered as single particle states, which are localised with an accuracy equal to their Compton wavelength. Correspondingly the nonlocality of a two-particle potential will not extend beyond the Compton wavelength of the particles and can therefore still be called local.These ideas will be elaborated in the framework of a previously formulated relativistic quantum theory. With this theory it will be shown that the sharp edge of a hard sphere interaction between two particles can still be determined with any accuracy by measuring the cross section in a high energy experiment.

  18. Extending quantum mechanics entails extending special relativity

    NASA Astrophysics Data System (ADS)

    Aravinda, S.; Srikanth, R.

    2016-05-01

    The complementarity between signaling and randomness in any communicated resource that can simulate singlet statistics is generalized by relaxing the assumption of free will in the choice of measurement settings. We show how to construct an ontological extension for quantum mechanics (QMs) through the oblivious embedding of a sound simulation protocol in a Newtonian spacetime. Minkowski or other intermediate spacetimes are ruled out as the locus of the embedding by virtue of hidden influence inequalities. The complementarity transferred from a simulation to the extension unifies a number of results about quantum non-locality, and implies that special relativity has a different significance for the ontological model and for the operational theory it reproduces. Only the latter, being experimentally accessible, is required to be Lorentz covariant. There may be certain Lorentz non-covariant elements at the ontological level, but they will be inaccessible at the operational level in a valid extension. Certain arguments against the extendability of QM, due to Conway and Kochen (2009) and Colbeck and Renner (2012), are attributed to their assumption that the spacetime at the ontological level has Minkowski causal structure.

  19. Tampering detection system using quantum-mechanical systems

    DOEpatents

    Humble, Travis S.; Bennink, Ryan S.; Grice, Warren P.

    2011-12-13

    The use of quantum-mechanically entangled photons for monitoring the integrity of a physical border or a communication link is described. The no-cloning principle of quantum information science is used as protection against an intruder's ability to spoof a sensor receiver using a `classical` intercept-resend attack. Correlated measurement outcomes from polarization-entangled photons are used to protect against quantum intercept-resend attacks, i.e., attacks using quantum teleportation.

  20. Quantum mechanics without an equation of motion

    SciTech Connect

    Alhaidari, A. D.

    2011-06-15

    We propose a formulation of quantum mechanics for a finite level system whose potential function is not realizable and/or analytic solution of the wave equation is not feasible. The system's wavefunction is written as an infinite sum in a complete set of square integrable functions. Interaction in the theory is introduced in function space by a real finite tridiagonal symmetric matrix. The expansion coefficients of the wavefunction satisfy a three-term recursion relation incorporating the parameters of the interaction. Information about the structure and dynamics of the system is contained in the scattering matrix, which is defined in the usual way. The bound state energy spectrum (system's structure) is finite. Apart from the 2M- 1 dimensionless parameters of the interaction matrix, whose rank is M, the theory has one additional scale parameter. In the development, we utilize the kinematic tools of the J-matrix method.

  1. Coulomb branch localization in quiver quantum mechanics

    NASA Astrophysics Data System (ADS)

    Ohta, Kazutoshi; Sasai, Yuya

    2016-02-01

    We show how to exactly calculate the refined indices of {N}=4U(1)× U(N) supersymmetric quiver quantum mechanics in the Coulomb branch by using the localization technique. The Coulomb branch localization is discussed from the viewpoint of both non-linear and gauged linear sigma models. A classification of fixed points in the Coulomb branch differs from one in the Higgs branch, but the derived indices completely agree with the results which were obtained by the localization in the Higgs branch. In the Coulomb branch localization, the refined indices can be written as a summation over different sets of the Coulomb branch fixed points. We also discuss a space-time picture of the fixed points in the Coulomb branch.

  2. Quantum mechanics of a generalised rigid body

    NASA Astrophysics Data System (ADS)

    Gripaios, Ben; Sutherland, Dave

    2016-05-01

    We consider the quantum version of Arnold’s generalisation of a rigid body in classical mechanics. Thus, we quantise the motion on an arbitrary Lie group manifold of a particle whose classical trajectories correspond to the geodesics of any one-sided-invariant metric. We show how the derivation of the spectrum of energy eigenstates can be simplified by making use of automorphisms of the Lie algebra and (for groups of type I) by methods of harmonic analysis. We show how the method can be extended to cosets, generalising the linear rigid rotor. As examples, we consider all connected and simply connected Lie groups up to dimension 3. This includes the universal cover of the archetypical rigid body, along with a number of new exactly solvable models. We also discuss a possible application to the topical problem of quantising a perfect fluid.

  3. Quantum mechanical calculations to chemical accuracy

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.

    1991-01-01

    The accuracy of current molecular-structure calculations is illustrated with examples of quantum mechanical solutions for chemical problems. Two approaches are considered: (1) the coupled-cluster singles and doubles (CCSD) with a perturbational estimate of the contribution of connected triple excitations, or CCDS(T); and (2) the multireference configuration-interaction (MRCI) approach to the correlation problem. The MRCI approach gains greater applicability by means of size-extensive modifications such as the averaged-coupled pair functional approach. The examples of solutions to chemical problems include those for C-H bond energies, the vibrational frequencies of O3, identifying the ground state of Al2 and Si2, and the Lewis-Rayleigh afterglow and the Hermann IR system of N2. Accurate molecular-wave functions can be derived from a combination of basis-set saturation studies and full configuration-interaction calculations.

  4. New methods for quantum mechanical reaction dynamics

    SciTech Connect

    Thompson, W.H. |

    1996-12-01

    Quantum mechanical methods are developed to describe the dynamics of bimolecular chemical reactions. We focus on developing approaches for directly calculating the desired quantity of interest. Methods for the calculation of single matrix elements of the scattering matrix (S-matrix) and initial state-selected reaction probabilities are presented. This is accomplished by the use of absorbing boundary conditions (ABC) to obtain a localized (L{sup 2}) representation of the outgoing wave scattering Green`s function. This approach enables the efficient calculation of only a single column of the S-matrix with a proportionate savings in effort over the calculation of the entire S-matrix. Applying this method to the calculation of the initial (or final) state-selected reaction probability, a more averaged quantity, requires even less effort than the state-to-state S-matrix elements. It is shown how the same representation of the Green`s function can be effectively applied to the calculation of negative ion photodetachment intensities. Photodetachment spectroscopy of the anion ABC{sup -} can be a very useful method for obtaining detailed information about the neutral ABC potential energy surface, particularly if the ABC{sup -} geometry is similar to the transition state of the neutral ABC. Total and arrangement-selected photodetachment spectra are calculated for the H{sub 3}O{sup -} system, providing information about the potential energy surface for the OH + H{sub 2} reaction when compared with experimental results. Finally, we present methods for the direct calculation of the thermal rate constant from the flux-position and flux-flux correlation functions. The spirit of transition state theory is invoked by concentrating on the short time dynamics in the area around the transition state that determine reactivity. These methods are made efficient by evaluating the required quantum mechanical trace in the basis of eigenstates of the Boltzmannized flux operator.

  5. Quantum Feynman Ratchet

    NASA Astrophysics Data System (ADS)

    Goyal, Ketan; Kawai, Ryoichi

    As nanotechnology advances, understanding of the thermodynamic properties of small systems becomes increasingly important. Such systems are found throughout physics, biology, and chemistry manifesting striking properties that are a direct result of their small dimensions where fluctuations become predominant. The standard theory of thermodynamics for macroscopic systems is powerless for such ever fluctuating systems. Furthermore, as small systems are inherently quantum mechanical, influence of quantum effects such as discreteness and quantum entanglement on their thermodynamic properties is of great interest. In particular, the quantum fluctuations due to quantum uncertainty principles may play a significant role. In this talk, we investigate thermodynamic properties of an autonomous quantum heat engine, resembling a quantum version of the Feynman Ratchet, in non-equilibrium condition based on the theory of open quantum systems. The heat engine consists of multiple subsystems individually contacted to different thermal environments.

  6. Thermodynamics of liquid metal

    SciTech Connect

    Kushnirenko, A.N.

    1988-01-01

    The thermodynamics of a liquid metal based on quantum-mechanical models of the crystal, electronic, and nuclear structures of the metal are derived in this paper. The models are based on such formulations as the Bohr radius, the Boltzmann constant, the Planck Law, the Fermi surface, and the Pauli principle.

  7. Thermodynamics of ideal quantum gas with fractional statistics in D dimensions.

    PubMed

    Potter, Geoffrey G; Müller, Gerhard; Karbach, Michael

    2007-06-01

    We present exact and explicit results for the thermodynamic properties (isochores, isotherms, isobars, response functions, velocity of sound) of a quantum gas in dimensions D > or = 1 and with fractional exclusion statistics 0 < or = g < or =1 connecting bosons (g=0) and fermions (g=1) . In D=1 the results are equivalent to those of the Calogero-Sutherland model. Emphasis is given to the crossover between bosonlike and fermionlike features, caused by aspects of the statistical interaction that mimic long-range attraction and short-range repulsion. A phase transition along the isobar occurs at a nonzero temperature in all dimensions. The T dependence of the velocity of sound is in simple relation to isochores and isobars. The effects of soft container walls are accounted for rigorously for the case of a pure power-law potential. PMID:17677233

  8. Quantum Hall effect: The resistivity of a 2D electron gas—a thermodynamic approach

    NASA Astrophysics Data System (ADS)

    Cheremisin, M. V.

    2005-09-01

    Based on a thermodynamic approach, we have calculated the resistivity of a 2D electron gas, assumed dissipationless in a strong quantum limit. Standard measurements, with extra current leads, define the resistivity caused by a combination of Peltier and Seebeck effects. The current causes heating (cooling) at the first (second) sample contacts, due to the Peltier effect. The contact temperatures are different. The measured voltage is equal to the Peltier effect-induced thermoemf which is linear in current. As a result, the resistivity is non-zero as I→0. The resistivity is a universal function of magnetic field and temperature, expressed in fundamental units h/e2. The universal features of magnetotransport data observed in the experiment confirm our predictions.

  9. Non-equilibrium Dynamics in the Quantum Brownian Oscillator and the Second Law of Thermodynamics

    NASA Astrophysics Data System (ADS)

    Kim, Ilki

    2012-01-01

    We initially prepare a quantum linear oscillator weakly coupled to a bath in equilibrium at an arbitrary temperature. We disturb this system by varying a Hamiltonian parameter of the coupled oscillator, namely, either its spring constant or mass according to an arbitrary but pre-determined protocol in order to perform external work on it. We then derive a closed expression for the reduced density operator of the coupled oscillator along this non-equilibrium process as well as the exact expression pertaining to the corresponding quasi-static process. This immediately allows us to analytically discuss the second law of thermodynamics for non-equilibrium processes. Then we derive a Clausius inequality and obtain its validity supporting the second law, as a consistent generalization of the Clausius equality valid for the quasi-static counterpart, introduced in (Kim and Mahler in Phys. Rev. E 81:011101, 2010, [1]).

  10. Thermodynamic study of non-linear electrodynamics in loop quantum cosmology

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Tanwi; Debnath, Ujjal

    2014-04-01

    In this work, we have discussed the Maxwell's electrodynamics in non-linear forms in FRW universe. The energy density and pressure for non-linear electrodynamics have been written in the electro-magnetic universe. The Einstein's field equations for flat FRW model in loop quantum cosmology have been considered if the universe is filled with the matter and electro-magnetic field. We separately assumed the magnetic universe and electric universe. The interaction between matter and magnetic field have been considered in one section and for some particular form of interaction term, we have found the solutions of magnetic field and the energy density of matter. We have also considered the interaction between the matter and electric field and another form of interaction term has been chosen to solve the field equations. The validity of generalized second law of thermodynamics has been investigated on apparent and event horizons using Gibb's law and the first law of thermodynamics for magnetic and electric universe separately.

  11. Manifest and concealed correlations in quantum mechanics

    NASA Astrophysics Data System (ADS)

    de la Torre, A. C.; Iguain, J. L.

    1998-11-01

    The quantum covariance function is used to study correlations in quantum systems. Besides the obvious correlations due to the conservation of some quantity, the appearance of concealed quantum correlations like non-locality or non-separability is studied. The choice of an appropriate basis allows a complete analysis relating correlations with conservation laws and factorizability.

  12. Thermodynamics is more powerful than the role to it reserved by Boltzmann-Gibbs statistical mechanics

    NASA Astrophysics Data System (ADS)

    Tsallis, C.; Cirto, L. J. L.

    2014-10-01

    We briefly review the connection between statistical mechanics and thermodynamics. We show that, in order to satisfy thermo-dynamics and its Legendre transformation mathematical frame, the celebrated Boltzmann-Gibbs (BG) statistical mechanics is sufficient but not necessary. Indeed, the N →∞ limit of statistical mechanics is expected to be consistent with thermodynamics. For systems whose elements are generically independent or quasi-independent in the sense of the theory of probabilities, it is well known that the BG theory (based on the additive BG entropy) does satisfy this expectation. However, in complete analogy, other thermostatistical theories (e.g., q-statistics), based on nonadditive entropic functionals, also satisfy the very same expectation. We illustrate this standpoint with systems whose elements are strongly correlated in a specific manner, such that they escape the BG realm.

  13. Reverse Causation and the Transactional Interpretation of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Cramer, John G.

    2006-10-01

    In the first part of the paper we present the transactional interpretation of quantum mechanics, a method of viewing the formalism of quantum mechanics that provides a way of visualizing quantum events and experiments. In the second part, we present an EPR gedankenexperiment that appears to lead to observer-level reverse causation. A transactional analysis of the experiment is presented. It easily accounts for the reported observations but does not reveal any barriers to its modification for reverse causation.

  14. Lectures on Black Hole Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Wilczek, Frank

    The lectures that follow were originally given in 1992, and written up only slightly later. Since then there have been dramatic developments in the quantum theory of black holes, especially in the context of string theory. None of these are reflected here. The concept of quantum hair, which is discussed at length in the lectures, is certainly of permanent interest, and I continue to believe that in some generalized form it will prove central to the whole question of how information is stored in black holes. The discussion of scattering and emission modes from various classes of black holes could be substantially simplified using modern techniques, and from currently popular perspectives the choice of examples might look eccentric. On the other hand fashions have changed rapidly in the field, and the big questions as stated and addressed here, especially as formulated for "real" black holes (nonextremal, in four-dimensional, asymptotically flat space-time, with supersymmetry broken), remain pertinent even as the tools to address them may evolve. The four lectures I gave at the school were based on two lengthy papers that have now been published, "Black Holes as Elementary Particles," Nuclear Physics B380, 447 (1992) and "Quantum Hair on Black Holes," Nuclear Physics B378, 175 (1992). The unifying theme of this work is to help make plausible the possibility that black holes, although they are certainly unusual and extreme states of matter, may be susceptible to a description using concepts that are not fundamentally different from those we use in describing other sorts of quantum-mechanical matter. In the first two lectures I discussed dilaton black holes. The fact that apparently innocuous changes in the "matter" action can drastically change the properties of a black hole is already very significant: it indicates that the physical properties of small black holes cannot be discussed reliably in the abstract, but must be considered with due regard to the rest of physics. (The macroscopic properties of large black holes, in particular those of astrophysical interest, are presumably well described by the familiar Einstein-Maxwell action which governs the massless fields. Heavy fields will at most provide Yukawa tails to the field surrounding the hole.) I will show how perturbations may be set up and analyzed completely, and why doing this is crucial for understanding the semiclassical physics of the hole including the Hawking radiation quantitatively. It will emerge that there is a class of dilaton black holes which behave as rather straightforward elementary particles. In the other two lectures I discussed the issue of hair on black holes, in particular the existence of hair associated with discrete gauge charges and its physical consequences. This hair is particularly interesting to analyze because it is invisible classically and to all order in ℏ. Its existence shows that black holes can have some "internal" quantum numbers in addition to their traditional classification by mass, charge, and angular momentum. The text that follows, follows the original papers closely.

  15. Are quantum-mechanical-like models possible, or necessary, outside quantum physics?

    NASA Astrophysics Data System (ADS)

    Plotnitsky, Arkady

    2014-12-01

    This article examines some experimental conditions that invite and possibly require recourse to quantum-mechanical-like mathematical models (QMLMs), models based on the key mathematical features of quantum mechanics, in scientific fields outside physics, such as biology, cognitive psychology, or economics. In particular, I consider whether the following two correlative features of quantum phenomena that were decisive for establishing the mathematical formalism of quantum mechanics play similarly important roles in QMLMs elsewhere. The first is the individuality and discreteness of quantum phenomena, and the second is the irreducibly probabilistic nature of our predictions concerning them, coupled to the particular character of the probabilities involved, as different from the character of probabilities found in classical physics. I also argue that these features could be interpreted in terms of a particular form of epistemology that suspends and even precludes a causal and, in the first place, realist description of quantum objects and processes. This epistemology limits the descriptive capacity of quantum theory to the description, classical in nature, of the observed quantum phenomena manifested in measuring instruments. Quantum mechanics itself only provides descriptions, probabilistic in nature, concerning numerical data pertaining to such phenomena, without offering a physical description of quantum objects and processes. While QMLMs share their use of the quantum-mechanical or analogous mathematical formalism, they may differ by the roles, if any, the two features in question play in them and by different ways of interpreting the phenomena they considered and this formalism itself. This article will address those differences as well.

  16. New Potentials for Old: The Darboux Transformation in Quantum Mechanics

    ERIC Educational Resources Information Center

    Williams, Brian Wesley; Celius, Tevye C.

    2008-01-01

    The Darboux transformation in quantum mechanics is reviewed at a basic level. Examples of how this transformation leads to exactly solvable potentials related to the "particle in a box" and the harmonic oscillator are shown in detail. The connection between the Darboux transformation and some modern operator based approaches to quantum mechanics

  17. In Defense of a Heuristic Interpretation of Quantum Mechanics

    ERIC Educational Resources Information Center

    Healy, Eamonn F.

    2010-01-01

    Although the presentation of quantum mechanics found in traditional textbooks is intellectually well founded, it suffers from a number of deficiencies. Specifically introducing quantum mechanics as a solution to the arcane dilemma, the ultraviolet catastrophe, does little to impress a nonscientific audience of the tremendous paradigmatic shift

  18. Quantum Mechanics from Periodic Dynamics: the bosonic case

    SciTech Connect

    Dolce, Donatello

    2010-05-04

    Enforcing the periodicity hypothesis of the 'old' formulation of Quantum Mechanics we show the possibility for a new scenario where Special Relativity and Quantum Mechanics are unified in a deterministic field theory. A novel interpretation of the AdS/CFT conjecture is discussed.

  19. Developing and Evaluating Animations for Teaching Quantum Mechanics Concepts

    ERIC Educational Resources Information Center

    Kohnle, Antje; Douglass, Margaret; Edwards, Tom J.; Gillies, Alastair D.; Hooley, Christopher A.; Sinclair, Bruce D.

    2010-01-01

    In this paper, we describe animations and animated visualizations for introductory and intermediate-level quantum mechanics instruction developed at the University of St Andrews. The animations aim to help students build mental representations of quantum mechanics concepts. They focus on known areas of student difficulty and misconceptions by…

  20. Design and Validation of the Quantum Mechanics Conceptual Survey

    ERIC Educational Resources Information Center

    McKagan, S. B.; Perkins, K. K.; Wieman, C. E.

    2010-01-01

    The Quantum Mechanics Conceptual Survey (QMCS) is a 12-question survey of students' conceptual understanding of quantum mechanics. It is intended to be used to measure the relative effectiveness of different instructional methods in modern physics courses. In this paper, we describe the design and validation of the survey, a process that included…

  1. In Defense of a Heuristic Interpretation of Quantum Mechanics

    ERIC Educational Resources Information Center

    Healy, Eamonn F.

    2010-01-01

    Although the presentation of quantum mechanics found in traditional textbooks is intellectually well founded, it suffers from a number of deficiencies. Specifically introducing quantum mechanics as a solution to the arcane dilemma, the ultraviolet catastrophe, does little to impress a nonscientific audience of the tremendous paradigmatic shift…

  2. Developing and Evaluating Animations for Teaching Quantum Mechanics Concepts

    ERIC Educational Resources Information Center

    Kohnle, Antje; Douglass, Margaret; Edwards, Tom J.; Gillies, Alastair D.; Hooley, Christopher A.; Sinclair, Bruce D.

    2010-01-01

    In this paper, we describe animations and animated visualizations for introductory and intermediate-level quantum mechanics instruction developed at the University of St Andrews. The animations aim to help students build mental representations of quantum mechanics concepts. They focus on known areas of student difficulty and misconceptions by

  3. Categorization of Quantum Mechanics Problems by Professors and Students

    ERIC Educational Resources Information Center

    Lin, Shih-Yin; Singh, Chandralekha

    2010-01-01

    We discuss the categorization of 20 quantum mechanics problems by physics professors and undergraduate students from two honours-level quantum mechanics courses. Professors and students were asked to categorize the problems based upon similarity of solution. We also had individual discussions with professors who categorized the problems. Faculty

  4. Students' Conceptual Difficulties in Quantum Mechanics: Potential Well Problems

    ERIC Educational Resources Information Center

    Ozcan, Ozgur; Didis, Nilufer; Tasar, Mehmet Fatih

    2009-01-01

    In this study, students' conceptual difficulties about some basic concepts in quantum mechanics like one-dimensional potential well problems and probability density of tunneling particles were identified. For this aim, a multiple choice instrument named Quantum Mechanics Conceptual Test has been developed by one of the researchers of this study

  5. Design and Validation of the Quantum Mechanics Conceptual Survey

    ERIC Educational Resources Information Center

    McKagan, S. B.; Perkins, K. K.; Wieman, C. E.

    2010-01-01

    The Quantum Mechanics Conceptual Survey (QMCS) is a 12-question survey of students' conceptual understanding of quantum mechanics. It is intended to be used to measure the relative effectiveness of different instructional methods in modern physics courses. In this paper, we describe the design and validation of the survey, a process that included

  6. Quantum mechanical features of optically pumped CW FIR lasers

    NASA Technical Reports Server (NTRS)

    Seligson, D.; Leite, J. R. R.; Sanchez, A.; Feld, M. S.; Ducloy, M.

    1977-01-01

    Quantum mechanical predictions for the gain of an optically pumped CW FIR laser are presented for cases in which one or both of the pump and FIR transitions are pressure or Doppler broadened. The results are compared to those based on the rate equation model. Some of the quantum mechanical predictions are verified in CH3OH.

  7. Students' Conceptual Difficulties in Quantum Mechanics: Potential Well Problems

    ERIC Educational Resources Information Center

    Ozcan, Ozgur; Didis, Nilufer; Tasar, Mehmet Fatih

    2009-01-01

    In this study, students' conceptual difficulties about some basic concepts in quantum mechanics like one-dimensional potential well problems and probability density of tunneling particles were identified. For this aim, a multiple choice instrument named Quantum Mechanics Conceptual Test has been developed by one of the researchers of this study…

  8. Categorization of Quantum Mechanics Problems by Professors and Students

    ERIC Educational Resources Information Center

    Lin, Shih-Yin; Singh, Chandralekha

    2010-01-01

    We discuss the categorization of 20 quantum mechanics problems by physics professors and undergraduate students from two honours-level quantum mechanics courses. Professors and students were asked to categorize the problems based upon similarity of solution. We also had individual discussions with professors who categorized the problems. Faculty…

  9. Chirality, quantum mechanics, and biological determinism

    NASA Astrophysics Data System (ADS)

    Davies, P. C. W.

    2006-08-01

    The holy grail of astrobiology is the discovery of a second sample of life that has emerged de novo, independently of life on Earth (as opposed to extraterrestrial life that shares a common origin with terrestrial life via a panspermia process). It would then be possible to separate aspects of biology that are lawlike and expected from those that are accidental and contingent, and thus to address the question of whether the laws of nature are intrinsically bio-friendly. The popular assumption that life is an almost inevitable product of physics and chemistry, and therefore widespread in the universe, is known as biological determinism. It remains an open question whether biological determinism is correct, as there is little direct evidence in its favour from fundamental physics. Homochirality is a deep property of known life, and provides an important test case for the competing ideas of contingency versus lawfulness - or chance versus necessity. Conceivably, a chiral signature is imprinted on life by fundamental physics via parity-violating mixing of the weak and electromagnetic interactions. If so, homochirality would be universal and lawlike. On the other hand, it may be the result of chance: a random molecular accident during the pre-biotic phase. If the latter explanation is correct, one could expect that a second sample of life may have opposite chiral signature even if it resembled known life in its basic biochemistry. There is thus a curious obverse relationship between chirality and biogenesis in relation to biological determinism. If the chiral signature of life is the product of chance, we may hope to discover "mirror life" (i.e. organisms with opposite chiral signature) as evidence of a second genesis, and the latter would establish that life's emergence from non-life is quasi-deterministic. On the other hand, if the chiral signature is determined by fundamental physics, then it may be much harder to establish an independent origin for extraterrestrial life with biochemical make-up resembling that of known life. Whilst the experimental search for a second sample of life - possibly by detecting a chiral "anomaly" - continues, some theoretical investigations may be pursued to narrow down the options. Chiral determinism would be an intrinsically quantum process. There are hints that quantum mechanics plays a key role in biology, but the claim remains contentious. Here I review some of the evidence for quantum aspects of biology. I also summarize some proposals for testing biological determinism by seeking evidence for a multiple genesis events on Earth, and for identifying extant "alien microbes" - micro-organisms descended from an independent origin from familiar life.

  10. Mechanics and thermodynamics of propulsion (2nd revised and enlarged edition)

    NASA Astrophysics Data System (ADS)

    Hill, Philip G.; Peterson, Carl R.

    The present volume proceeds under the principle that a few fundamental physical principles can with suitable application furnish students of mechanical and aeronautical engineering with an understanding of all aspects of aircraft and spacecraft propulsion. This methodology can further yield usefully quantitative assessments of performance, and indicate prospects for further improvement. Attention is given to the jet propulsion principle, the mechanics and thermodynamics of fluid flow, the thermodynamics of aircraft gas turbine engines, axial compressors and turbines, centrifugal compressors, chemical propellant rocket engine operation and performance, turbomachinery for liquid propellant rockets, and electrical rocket propulsion.

  11. Cloning in nonlinear Hamiltonian quantum and hybrid mechanics

    NASA Astrophysics Data System (ADS)

    Arsenović, D.; Burić, N.; Popović, D. B.; Radonjić, M.; Prvanović, S.

    2014-10-01

    The possibility of state cloning is analyzed in two types of generalizations of quantum mechanics with nonlinear evolution. It is first shown that nonlinear Hamiltonian quantum mechanics does not admit cloning without the cloning machine. It is then demonstrated that the addition of the cloning machine, treated as a quantum or as a classical system, makes cloning possible by nonlinear Hamiltonian evolution. However, a special type of quantum-classical theory, known as the mean-field Hamiltonian hybrid mechanics, does not admit cloning by natural evolution. The latter represents an example of a theory where it appears to be possible to communicate between two quantum systems at superluminal speed, but at the same time it is impossible to clone quantum pure states.

  12. Spin Glass a Bridge Between Quantum Computation and Statistical Mechanics

    NASA Astrophysics Data System (ADS)

    Ohzeki, Masayuki

    2013-09-01

    In this chapter, we show two fascinating topics lying between quantum information processing and statistical mechanics. First, we introduce an elaborated technique, the surface code, to prepare the particular quantum state with robustness against decoherence. Interestingly, the theoretical limitation of the surface code, accuracy threshold, to restore the quantum state has a close connection with the problem on the phase transition in a special model known as spin glasses, which is one of the most active researches in statistical mechanics. The phase transition in spin glasses is an intractable problem, since we must strive many-body system with complicated interactions with change of their signs depending on the distance between spins. Fortunately, recent progress in spin-glass theory enables us to predict the precise location of the critical point, at which the phase transition occurs. It means that statistical mechanics is available for revealing one of the most interesting parts in quantum information processing. We show how to import the special tool in statistical mechanics into the problem on the accuracy threshold in quantum computation. Second, we show another interesting technique to employ quantum nature, quantum annealing. The purpose of quantum annealing is to search for the most favored solution of a multivariable function, namely optimization problem. The most typical instance is the traveling salesman problem to find the minimum tour while visiting all the cities. In quantum annealing, we introduce quantum fluctuation to drive a particular system with the artificial Hamiltonian, in which the ground state represents the optimal solution of the specific problem we desire to solve. Induction of the quantum fluctuation gives rise to the quantum tunneling effect, which allows nontrivial hopping from state to state. We then sketch a strategy to control the quantum fluctuation efficiently reaching the ground state. Such a generic framework is called quantum annealing. The most typical instance is quantum adiabatic computation based on the adiabatic theorem. The quantum adiabatic computation as discussed in the other chapter, unfortunately, has a crucial bottleneck for a part of the optimization problems. We here introduce several recent trials to overcome such a weakpoint by use of developments in statistical mechanics. Through both of the topics, we would shed light on the birth of the interdisciplinary field between quantum mechanics and statistical mechanics.

  13. Probability and Locality: Determinism Versus Indeterminism in Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Dickson, William Michael

    1995-01-01

    Quantum mechanics is often taken to be necessarily probabilistic. However, this view of quantum mechanics appears to be more the result of historical accident than of careful analysis. Moreover, quantum mechanics in its usual form faces serious problems. Although the mathematical core of quantum mechanics--quantum probability theory- -does not face conceptual difficulties, the application of quantum probability to the physical world leads to problems. In particular, quantum mechanics seems incapable of describing our everyday macroscopic experience. Therefore, several authors have proposed new interpretations --including (but not limited to) modal interpretations, spontaneous localization interpretations, the consistent histories approach, and the Bohm theory--each of which deals with quantum-mechanical probabilities differently. Each of these interpretations promises to describe our macroscopic experience and, arguably, each succeeds. Is there any way to compare them? Perhaps, if we turn to another troubling aspect of quantum mechanics, non-locality. Non -locality is troubling because prima facie it threatens the compatibility of quantum mechanics with special relativity. This prima facie threat is mitigated by the no-signalling theorems in quantum mechanics, but nonetheless one may find a 'conflict of spirit' between nonlocality in quantum mechanics and special relativity. Do any of these interpretations resolve this conflict of spirit?. There is a strong relation between how an interpretation deals with quantum-mechanical probabilities and how it deals with non-locality. The main argument here is that only a completely deterministic interpretation can be completely local. That is, locality together with the empirical predictions of quantum mechanics (specifically, its strict correlations) entails determinism. But even with this entailment in hand, comparison of the various interpretations requires a look at each, to see how non-locality arises, or in the case of deterministic interpretations, whether it arises. The result of this investigation is that, at the least, deterministic interpretations are no worse off with respect to special relativity than indeterministic interpretations. This conclusion runs against a common view that deterministic interpretations, specifically the Bohm theory, have more difficulty with special relativity than other interpretations.

  14. Thermodynamics and nonlinear mechanics of materials with photoresponsive microstructure

    NASA Astrophysics Data System (ADS)

    Oates, William S.; Bin, Jonghoon

    2014-03-01

    The ability to directly convert visible light radiation into useful mechanical work provides many opportunities in the field of smart materials and adaptive structures ranging from biomedical applications to control of heliostat mirrors for solar harvesting. The complexities associated with coupling time-dependent Maxwell's equations with linear momentum and mechanics is discussed by introducing a set of electronic order parameters that govern the coupling between electromagnetic radiation and mechanics of a deformable solid. Numerical examples are given illustrating how this methodology is applied to a special class of liquid crystal polymer networks containing azobenzene. The dynamics associated with light absorption and its effect on deformation of the polymer are solved in three dimensions using finite difference methods and compared to experimental results. Particular emphasis is placed on the effect of polarized light on microstructure evolution and stresses that occur during photoisomerization of the optically active microstructure.

  15. Calendar effects in quantum mechanics in view of interactive holography

    NASA Astrophysics Data System (ADS)

    Berkovich, Simon

    2013-04-01

    Quantum mechanics in terms of interactive holography appears as `normal' science [1]. With the holography quantum behavior is determined by the interplay of material formations and their conjugate images. To begin with, this effortlessly elucidates the nonlocality in quantum entanglements. Then, it has been shown that Schr"odinger's dynamics for a single particle arises from Bi-Fragmental random walks of the particle itself and its holographic image. For many particles this picture blurs with fragments merging as bosons or fermions. In biomolecules, swapping of particles and their holographic placeholders leads to self-replication of the living matter. Because of broad interpretations of quantum formalism direct experiments attributing it to holography may not be very compelling. The holographic mechanism better reveals as an absolute frame of reference. A number of physical and biological events exhibit annual variations when Earth orbital position changes with respect to the universal holographic mechanism. The well established calendar variations of heart attacks can be regarded as a positive outcome of a generalization of the Michelson experiment, where holography is interferometry and ailing hearts are detectors of pathologically replicated proteins. Also, there have been already observed calendar changes in radioactive decay rates. The same could be expected for various fine quantum experiences, like, e.g., Josephson tunneling. In other words, Quantum Mechanics (February) Quantum Mechanics (August). [1] S. Berkovich, ``A comprehensive explanation of quantum mechanics,'' www.cs.gwu.edu/research/technical-report/170 .

  16. Highlighting the Mechanism of the Quantum Speedup by Time-Symmetric and Relational Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Castagnoli, Giuseppe

    2016-03-01

    Bob hides a ball in one of four drawers. Alice is to locate it. Classically she has to open up to three drawers, quantally just one. The fundamental reason for this quantum speedup is not known. The usual representation of the quantum algorithm is limited to the process of solving the problem. We extend it to the process of setting the problem. The number of the drawer with the ball becomes a unitary transformation of the random outcome of the preparation measurement. This extended, time-symmetric, representation brings in relational quantum mechanics. It is with respect to Bob and any external observer and cannot be with respect to Alice. It would tell her the number of the drawer with the ball before she opens any drawer. To Alice, the projection of the quantum state due to the preparation measurement should be retarded at the end of her search; in the input state of the search, the drawer number is determined to Bob and undetermined to Alice. We show that, mathematically, one can ascribe any part of the selection of the random outcome of the preparation measurement to the final Alice's measurement. Ascribing half of it explains the speedup of the present algorithm. This leaves the input state to Bob unaltered and projects that to Alice on a state of lower entropy where she knows half of the number of the drawer with the ball in advance. The quantum algorithm turns out to be a sum over histories in each of which Alice knows in advance that the ball is in a pair of drawers and locates it by opening one of the two. In the sample of quantum algorithms examined, the part of the random outcome of the initial measurement selected by the final measurement is one half or slightly above it. Conversely, given an oracle problem, the assumption it is one half always corresponds to an existing quantum algorithm and gives the order of magnitude of the number of oracle queries required by the optimal one.

  17. Review of student difficulties in upper-level quantum mechanics

    NASA Astrophysics Data System (ADS)

    Singh, Chandralekha; Marshman, Emily

    2015-12-01

    [This paper is part of the Focused Collection on Upper Division Physics Courses.] Learning advanced physics, in general, is challenging not only due to the increased mathematical sophistication but also because one must continue to build on all of the prior knowledge acquired at the introductory and intermediate levels. In addition, learning quantum mechanics can be especially challenging because the paradigms of classical mechanics and quantum mechanics are very different. Here, we review research on student reasoning difficulties in learning upper-level quantum mechanics and research on students' problem-solving and metacognitive skills in these courses. Some of these studies were multiuniversity investigations. The investigations suggest that there is large diversity in student performance in upper-level quantum mechanics regardless of the university, textbook, or instructor, and many students in these courses have not acquired a functional understanding of the fundamental concepts. The nature of reasoning difficulties in learning quantum mechanics is analogous to reasoning difficulties found via research in introductory physics courses. The reasoning difficulties were often due to overgeneralizations of concepts learned in one context to another context where they are not directly applicable. Reasoning difficulties in distinguishing between closely related concepts and in making sense of the formalism of quantum mechanics were common. We conclude with a brief summary of the research-based approaches that take advantage of research on student difficulties in order to improve teaching and learning of quantum mechanics.

  18. Quantum mechanics/molecular mechanics dual Hamiltonian free energy perturbation

    NASA Astrophysics Data System (ADS)

    Polyak, Iakov; Benighaus, Tobias; Boulanger, Eliot; Thiel, Walter

    2013-08-01

    The dual Hamiltonian free energy perturbation (DH-FEP) method is designed for accurate and efficient evaluation of the free energy profile of chemical reactions in quantum mechanical/molecular mechanical (QM/MM) calculations. In contrast to existing QM/MM FEP variants, the QM region is not kept frozen during sampling, but all degrees of freedom except for the reaction coordinate are sampled. In the DH-FEP scheme, the sampling is done by semiempirical QM/MM molecular dynamics (MD), while the perturbation energy differences are evaluated from high-level QM/MM single-point calculations at regular intervals, skipping a pre-defined number of MD sampling steps. After validating our method using an analytic model potential with an exactly known solution, we report a QM/MM DH-FEP study of the enzymatic reaction catalyzed by chorismate mutase. We suggest guidelines for QM/MM DH-FEP calculations and default values for the required computational parameters. In the case of chorismate mutase, we apply the DH-FEP approach in combination with a single one-dimensional reaction coordinate and with a two-dimensional collective coordinate (two individual distances), with superior results for the latter choice.

  19. High-efficiency quantum state transfer and quantum memory using a mechanical oscillator

    NASA Astrophysics Data System (ADS)

    Sete, Eyob A.; Eleuch, H.

    2015-03-01

    We analyze an optomechanical system that can be used to efficiently transfer a quantum state between an optical cavity and a distant mechanical oscillator coupled to a second optical cavity. We show that for a moderate mechanical Q factor it is possible to achieve a transfer efficiency of 99.4 % by using adjustable cavity damping rates and destructive interference. We also show that the quantum mechanical oscillator can be used as a quantum memory device with an efficiency of 96 % employing a pulsed optomechanical coupling. Although the mechanical dissipation slightly decreases the efficiency, its effect can be significantly reduced by designing a high-Q mechanical oscillator.

  20. A dissipative quantum mechanical beam-splitter

    NASA Astrophysics Data System (ADS)

    Ramakrishna, S. Anantha; Bandyopadhyay, Abir; Rai, Jagdish

    1998-01-01

    A dissipative beam-splitter (BS) has been analyzed by modeling the losses in the BS due to the excitation of optical phonons. The losses are obtained in terms of the BS medium properties. The model simplies the picture by treating the loss mechanism as a perturbation on the photon modes in a linear, non-lossy medium in the limit of small losses, instead of using the full field quantization in lossy, dispersive media. The model uses second order perturbation in the Markoff approximation and yields the Beer's law for absorption in the first approximation, thus providing a microscopic description of the absorption coecient. It is shown that the fluctuations in the modes get increased because of the losses. We show the existence of quantum interferences due to phase correlations between the input beams and it is shown that these correlations can result in loss quenching. Hence in spite of having such a dissipative medium, it is possible to design a lossless 50-50 BS at normal incidence which may have potential applications in laser optics and dielectric-coated mirrors.

  1. Quantum Mechanical Studies of DNA and LNA

    PubMed Central

    Shim, Irene; Lindow, Morten; Ørum, Henrik

    2014-01-01

    Quantum mechanical (QM) methodology has been employed to study the structure activity relations of DNA and locked nucleic acid (LNA). The QM calculations provide the basis for construction of molecular structure and electrostatic surface potentials from molecular orbitals. The topologies of the electrostatic potentials were compared among model oligonucleotides, and it was observed that small structural modifications induce global changes in the molecular structure and surface potentials. Since ligand structure and electrostatic potential complementarity with a receptor is a determinant for the bonding pattern between molecules, minor chemical modifications may have profound changes in the interaction profiles of oligonucleotides, possibly leading to changes in pharmacological properties. The QM modeling data can be used to understand earlier observations of antisense oligonucleotide properties, that is, the observation that small structural changes in oligonucleotide composition may lead to dramatic shifts in phenotypes. These observations should be taken into account in future oligonucleotide drug discovery, and by focusing more on non RNA target interactions it should be possible to utilize the exhibited property diversity of oligonucleotides to produce improved antisense drugs. PMID:24491259

  2. Quantum mechanical studies of DNA and LNA.

    PubMed

    Koch, Troels; Shim, Irene; Lindow, Morten; Ørum, Henrik; Bohr, Henrik G

    2014-04-01

    Quantum mechanical (QM) methodology has been employed to study the structure activity relations of DNA and locked nucleic acid (LNA). The QM calculations provide the basis for construction of molecular structure and electrostatic surface potentials from molecular orbitals. The topologies of the electrostatic potentials were compared among model oligonucleotides, and it was observed that small structural modifications induce global changes in the molecular structure and surface potentials. Since ligand structure and electrostatic potential complementarity with a receptor is a determinant for the bonding pattern between molecules, minor chemical modifications may have profound changes in the interaction profiles of oligonucleotides, possibly leading to changes in pharmacological properties. The QM modeling data can be used to understand earlier observations of antisense oligonucleotide properties, that is, the observation that small structural changes in oligonucleotide composition may lead to dramatic shifts in phenotypes. These observations should be taken into account in future oligonucleotide drug discovery, and by focusing more on non RNA target interactions it should be possible to utilize the exhibited property diversity of oligonucleotides to produce improved antisense drugs. PMID:24491259

  3. Linking Quantum Mechanics to Freshman Physics

    NASA Astrophysics Data System (ADS)

    Vandegrift, Guy

    1998-10-01

    First-year quantum mechanics can be linked to introductory physics. One example is the Mossbauer effect, which is explained using a simple solution to Schrodinger's equation involving the Dirac delta function. Generalization to N coupled harmonic oscillators shows that the equality of the forces exerted by winner and loser in the game of "tug-of-war" is only an approximation because Newton's third law of motion is not valid (unless phonon momentum is considered). Another example is a treatment of the Gaussian wavepacket which involves less algebra than found in standard textbooks, yet shows that the peak moves according to the familiar equation of motion x = vt + (1/2)at^2 when the applied force is uniform. Finally, a rendition of "Turkey in the Straw" on the viola illustrates Heisenberg's uncertainty principle, which can be written in the less mysterious form, f=(N+-.1)/T , where N cycles are counted in T seconds. Students experience this uncertainty as they try to measure the frequency of a stretched slinky.

  4. Quantum mechanical model for Maya Blue

    NASA Astrophysics Data System (ADS)

    Fuentes, Mara E.; Pea, Brisa; Contreras, Csar; Montero, Ana L.; Chianelli, Russell; Alvarado, Manuel; Olivas, Ramn; Rodrguez, Luz M.; Camacho, Hctor; Montero-Cabrera, Luis A.

    This work is about Maya Blue (MB), a pigment developed by Mesoamerican civilizations between the 5th and 16th centuries from an aluminosilicate mineral (palygorskite) and an organic dye (indigo). Two different supramolecular quantum-mechanical models afford explanations for the unusual stability of MB based on the oxidation of the indigo molecule during the heating process and its interaction with palygorskite. A model considering indigo derivatives attached to several aluminates shows the principal features of the experimental visible spectrum of MB within the TD-DFT methodology. Another model of an indigo oxidized species confined within an inorganic supramolecular cavity system, that involves about 170 atoms, was calculated after a large configuration interaction of single excited determinants within the NDOL approximation (Montero-Cabrera et al., J Chem Phys, 2007, 127, 145102). It allows a correct reproduction and interpretation of the corresponding spectrum. This second methodology provides the most satisfactory results, being able to manage very big molecular systems at a QM level. Structural explanation for the unusual stability of MB is also provided.

  5. Water properties from first principles: simulations by a general-purpose quantum mechanical polarizable force field.

    PubMed

    Donchev, A G; Galkin, N G; Illarionov, A A; Khoruzhii, O V; Olevanov, M A; Ozrin, V D; Subbotin, M V; Tarasov, V I

    2006-06-01

    We have recently introduced a quantum mechanical polarizable force field (QMPFF) fitted solely to high-level quantum mechanical data for simulations of biomolecular systems. Here, we present an improved form of the force field, QMPFF2, and apply it to simulations of liquid water. The results of the simulations show excellent agreement with a variety of experimental thermodynamic and structural data, as good or better than that provided by specialized water potentials. In particular, QMPFF2 is the only ab initio force field to accurately reproduce the anomalous temperature dependence of water density to our knowledge. The ability of the same force field to successfully simulate the properties of both organic molecules and water suggests it will be useful for simulations of proteins and protein-ligand interactions in the aqueous environment. PMID:16723394

  6. Water properties from first principles: Simulations by a general-purpose quantum mechanical polarizable force field

    PubMed Central

    Donchev, A. G.; Galkin, N. G.; Illarionov, A. A.; Khoruzhii, O. V.; Olevanov, M. A.; Ozrin, V. D.; Subbotin, M. V.; Tarasov, V. I.

    2006-01-01

    We have recently introduced a quantum mechanical polarizable force field (QMPFF) fitted solely to high-level quantum mechanical data for simulations of biomolecular systems. Here, we present an improved form of the force field, QMPFF2, and apply it to simulations of liquid water. The results of the simulations show excellent agreement with a variety of experimental thermodynamic and structural data, as good or better than that provided by specialized water potentials. In particular, QMPFF2 is the only ab initio force field to accurately reproduce the anomalous temperature dependence of water density to our knowledge. The ability of the same force field to successfully simulate the properties of both organic molecules and water suggests it will be useful for simulations of proteins and protein–ligand interactions in the aqueous environment. PMID:16723394

  7. Ab initio atomistic thermodynamics study on the oxidation mechanism of binary and ternary alloy surfaces

    SciTech Connect

    Liu, Shi-Yu; Liu, Shiyang; Li, De-Jun; Wang, Sanwu; Guo, Jing; Shen, Yaogen

    2015-02-14

    Utilizing a combination of ab initio density-functional theory and thermodynamics formalism, we have established the microscopic mechanisms for oxidation of the binary and ternary alloy surfaces and provided a clear explanation for the experimental results of the oxidation. We construct three-dimensional surface phase diagrams (SPDs) for oxygen adsorption on three different Nb-X(110) (X = Ti, Al or Si) binary alloy surfaces. On the basis of the obtained SPDs, we conclude a general microscopic mechanism for the thermodynamic oxidation, that is, under O-rich conditions, a uniform single-phase SPD (type I) and a nonuniform double-phase SPD (type II) correspond to the sustained complete selective oxidation and the non-sustained partial selective oxidation by adding the X element, respectively. Furthermore, by revealing the framework of thermodynamics for the oxidation mechanism of ternary alloys through the comparison of the surface energies of two separated binary alloys, we provide an understanding for the selective oxidation behavior of the Nb ternary alloy surfaces. Using these general microscopic mechanisms, one could predict the oxidation behavior of any binary and multi-component alloy surfaces based on thermodynamics considerations.

  8. Resource Letter TTSM-1: Teaching Thermodynamics and Statistical Mechanics in Introductory Physics, Chemistry, and Biology

    NASA Astrophysics Data System (ADS)

    Dreyfus, Benjamin W.; Geller, Benjamin D.; Meltzer, David E.; Sawtelle, Vashti

    2015-01-01

    This Resource Letter draws on discipline-based education research from physics, chemistry, and biology to collect literature on the teaching of thermodynamics and statistical mechanics in the three disciplines. While the overlap among the disciplinary literatures is limited at present, we hope this Resource Letter will spark more interdisciplinary interaction.

  9. Ab initio atomistic thermodynamics study on the oxidation mechanism of binary and ternary alloy surfaces

    NASA Astrophysics Data System (ADS)

    Liu, Shi-Yu; Liu, Shiyang; Li, De-Jun; Wang, Sanwu; Guo, Jing; Shen, Yaogen

    2015-02-01

    Utilizing a combination of ab initio density-functional theory and thermodynamics formalism, we have established the microscopic mechanisms for oxidation of the binary and ternary alloy surfaces and provided a clear explanation for the experimental results of the oxidation. We construct three-dimensional surface phase diagrams (SPDs) for oxygen adsorption on three different Nb-X(110) (X = Ti, Al or Si) binary alloy surfaces. On the basis of the obtained SPDs, we conclude a general microscopic mechanism for the thermodynamic oxidation, that is, under O-rich conditions, a uniform single-phase SPD (type I) and a nonuniform double-phase SPD (type II) correspond to the sustained complete selective oxidation and the non-sustained partial selective oxidation by adding the X element, respectively. Furthermore, by revealing the framework of thermodynamics for the oxidation mechanism of ternary alloys through the comparison of the surface energies of two separated binary alloys, we provide an understanding for the selective oxidation behavior of the Nb ternary alloy surfaces. Using these general microscopic mechanisms, one could predict the oxidation behavior of any binary and multi-component alloy surfaces based on thermodynamics considerations.

  10. "Mysticism" in Quantum Mechanics: The Forgotten Controversy

    ERIC Educational Resources Information Center

    Marin, Juan Miguel

    2009-01-01

    This paper argues that a European controversy over a "mystical" hypothesis, one assigning the mind a role to play at the material level of reality, shaped much of the debate over the interpretation of the quantum equations. It traces back the controversy to the past two decades, beginning in the late 1920s--birth of quantum theory--and concluding…

  11. "Mysticism" in Quantum Mechanics: The Forgotten Controversy

    ERIC Educational Resources Information Center

    Marin, Juan Miguel

    2009-01-01

    This paper argues that a European controversy over a "mystical" hypothesis, one assigning the mind a role to play at the material level of reality, shaped much of the debate over the interpretation of the quantum equations. It traces back the controversy to the past two decades, beginning in the late 1920s--birth of quantum theory--and concluding

  12. The physical principles of quantum mechanics. A critical review

    NASA Astrophysics Data System (ADS)

    Strocchi, F.

    2012-01-01

    The standard presentation of the principles of quantum mechanics is critically reviewed both from the experimental/operational point and with respect to the request of mathematical consistency and logical economy. A simpler and more physically motivated formulation is discussed. The existence of non commuting observables, which characterizes quantum mechanics with respect to classical mechanics, is related to operationally testable complementarity relations, rather than to uncertainty relations. The drawbacks of Dirac argument for canonical quantization are avoided by a more geometrical approach.

  13. Calculations of Solvation Free Energy through Energy Reweighting from Molecular Mechanics to Quantum Mechanics.

    PubMed

    Jia, Xiangyu; Wang, Meiting; Shao, Yihan; König, Gerhard; Brooks, Bernard R; Zhang, John Z H; Mei, Ye

    2016-02-01

    In this work, the solvation free energies of 20 organic molecules from the 4th Statistical Assessment of the Modeling of Proteins and Ligands (SAMPL4) have been calculated. The sampling of phase space is carried out at a molecular mechanical level, and the associated free energy changes are estimated using the Bennett Acceptance Ratio (BAR). Then the quantum mechanical (QM) corrections are computed through the indirect Non-Boltzmann Bennett's acceptance ratio (NBB) or the thermodynamics perturbation (TP) method. We show that BAR+TP gives a minimum analytic variance for the calculated solvation free energy at the Gaussian limit and performs slightly better than NBB in practice. Furthermore, the expense of the QM calculations in TP is only half of that in NBB. We also show that defining the biasing potential as the difference of the solute-solvent interaction energy, instead of the total energy, can converge the calculated solvation free energies much faster but possibly to different values. Based on the experimental solvation free energies which have been published before, it is discovered in this study that BLYP yields better results than MP2 and some other later functionals such as B3LYP, M06-2X, and ωB97X-D. PMID:26731197

  14. Development and validation of an achievement test in introductory quantum mechanics: The Quantum Mechanics Visualization Instrument (QMVI)

    NASA Astrophysics Data System (ADS)

    Cataloglu, Erdat

    The purpose of this study was to construct a valid and reliable multiple-choice achievement test to assess students' understanding of core concepts of introductory quantum mechanics. Development of the Quantum Mechanics Visualization Instrument (QMVI) occurred across four successive semesters in 1999--2001. During this time 213 undergraduate and graduate students attending the Pennsylvania State University (PSU) at University Park and Arizona State University (ASU) participated in this development and validation study. Participating students were enrolled in four distinct groups of courses: Modern Physics, Undergraduate Quantum Mechanics, Graduate Quantum Mechanics, and Chemistry Quantum Mechanics. Expert panels of professors of physics experienced in teaching quantum mechanics courses and graduate students in physics and science education established the core content and assisted in the validating of successive versions of the 24-question QMVI. Instrument development was guided by procedures outlined in the Standards for Educational and Psychological Testing (AERA-APA-NCME, 1999). Data gathered in this study provided information used in the development of successive versions of the QMVI. Data gathered in the final phase of administration of the QMVI also provided evidence that the intended score interpretation of the QMVI achievement test is valid and reliable. A moderate positive correlation coefficient of 0.49 was observed between the students' QMVI scores and their confidence levels. Analyses of variance indicated that students' scores in Graduate Quantum Mechanics and Undergraduate Quantum Mechanics courses were significantly higher than the mean scores of students in Modern Physics and Chemistry Quantum Mechanics courses (p < 0.05). That finding is consistent with the additional understanding and experience that should be anticipated in graduate students and junior-senior level students over sophomore physics majors and majors in another field. The moderate positive correlation coefficient of 0.42 observed between students' QMVI scores and their final course grades was also consistent with expectations in a valid instrument. In addition, the Cronbach-alpha reliability coefficient of the QMVI was found to be 0.82. Limited findings were drawn on students' understanding of introductory quantum mechanics concepts. Data suggested that the construct of quantum mechanics understanding is most likely multidimensional and the Main Topic defined as "Quantum Mechanics Postulates" may be an especially important factor for students in acquiring a successful understanding of quantum mechanics.

  15. The actual content of quantum theoretical kinematics and mechanics

    NASA Technical Reports Server (NTRS)

    Heisenberg, W.

    1983-01-01

    First, exact definitions are supplied for the terms: position, velocity, energy, etc. (of the electron, for instance), such that they are valid also in quantum mechanics. Canonically conjugated variables are determined simultaneously only with a characteristic uncertainty. This uncertainty is the intrinsic reason for the occurrence of statistical relations in quantum mechanics. Mathematical formulation is made possible by the Dirac-Jordan theory. Beginning from the basic principles thus obtained, macroscopic processes are understood from the viewpoint of quantum mechanics. Several imaginary experiments are discussed to elucidate the theory.

  16. Inequalities that test locality in quantum mechanics

    SciTech Connect

    Dieks, Dennis

    2002-12-01

    Quantum theory violates Bell's inequality, but not to the maximum extent that is logically possible. We derive inequalities (generalizations of Cirel'son's inequality) that quantify the upper bound of the violation, both for the standard formalism and the formalism of generalized observables (POVMs). These inequalities are quantum analogues of Bell inequalities, and they can be used to test the quantum version of locality. We discuss the nature of this kind of locality. We also go into the relation of our results to an argument by Popescu and Rohrlich [Found Phys. 24, 379 (1994)] that there is no general connection between the existence of Cirel'son's bound and locality.

  17. Quantum Mechanics and the Origin of Life

    NASA Astrophysics Data System (ADS)

    Davies, Paul

    2004-06-01

    The race to build a quantum computer has led to a radical re-evaluation of the concept of information. In this paper I conjecture that life, defined as an information processing and replicating system, may be exploiting the considerable efficiency advantages offered by quantum computation, and that quantum information processing may dramatically shorten the odds for life originating from a random chemical soup. The plausibility of this conjecture rests, however, on life somehow circumventing the decoherence effects of the environment. I offer some speculations on ways in which this might happen.

  18. New Potentials for Old: The Darboux Transformation in Quantum Mechanics

    ERIC Educational Resources Information Center

    Williams, Brian Wesley; Celius, Tevye C.

    2008-01-01

    The Darboux transformation in quantum mechanics is reviewed at a basic level. Examples of how this transformation leads to exactly solvable potentials related to the "particle in a box" and the harmonic oscillator are shown in detail. The connection between the Darboux transformation and some modern operator based approaches to quantum mechanics…

  19. Quantum Mechanics Concept Assessment: Development and Validation Study

    ERIC Educational Resources Information Center

    Sadaghiani, Homeyra R.; Pollock, Steven J.

    2015-01-01

    As part of an ongoing investigation of students' learning in first semester upper-division quantum mechanics, we needed a high-quality conceptual assessment instrument for comparing outcomes of different curricular approaches. The process of developing such a tool started with converting a preliminary version of a 14-item open-ended quantum

  20. The Clouds of Physics and Einstein's Last Query: Can Quantum Mechanics be Derived from General Relativity?

    NASA Astrophysics Data System (ADS)

    Winterberg, Friedwardt

    2009-05-01

    Towards the end of the 19^th century, Kelvin pronounced as the ``clouds of physics'', 1) the failure of the Michelson-Morley experiment to detect an ether wind, and 2) the violation of the classical mechanical equipartition theorem in statistical thermodynamics. And he believed that the removal of these clouds would bring physics to an end. But as we know, the removal of these clouds led to the two great breakthroughs of modern physics: 1) The theory of relativity, and 2) to quantum mechanics. Towards the end of the 20^th century more clouds of physics became apparent. They are 1) the riddle of quantum gravity, 2) the superluminal quantum correlations, 3) the small cosmological constant. Furthermore, there is the riddle of dark energy making up 70% of the physical universe, the non-baryonic cold dark matter making up 26% and the very small initial entropy of the universe. An attempt is made to explain the importance of these clouds for the future of physics and conjectures for a possible solution are presented. They have to do with Einstein's last query: ``Can quantum mechanics be derived general relativity'', and with the question is there an ether?

  1. Kinetics, mechanism and thermodynamics of bisulfite-aldehyde adduct formation

    SciTech Connect

    Olson, T.M.; Boyce, S.D.; Hoffmann, M.R.

    1986-04-01

    The kinetics and mechanism of bisulfite addition to benzaldehyde were studied at low pH in order to assess the importance of this reaction in stabilizing S(IV) in fog-, cloud-, and rainwater. Previously, the authors established that appreciable concentrations of the formaldehyde-bisulfite adduct (HMSA) are often present in fogwater. Measured HMSA concentrations in fogwater often do not fully account for observed excess S(IV) concentrations, however, so that other S(IV)-aldehyde adducts may be present. Reaction rates were determined by monitoring the disappearance of benzaldehyde by U.V. spectrophotometry under pseudo-first order conditions, (S(IV))/sub T/ >>(phi-CHO)/sub T/, in the pH range 0 - 4.4 at 25/sup 0/C. The equilibrium constant was determined by dissolving the sodium salt of the addition compound in a solution adjusted to pH 3.9, and measuring the absorbance of the equilibrated solution at 250 nm. A literature value of the extinction coefficient for benzaldehyde was used to calculate the concentration of free benzaldehyde. All solutions were prepared under an N/sub 2/ atmosphere using deoxygenated, deionized water and ionic strength was maintained at 1.0 M with sodium chloride.

  2. Mechanism and Thermodynamics of Reductive Cleavage of Carbon-Halogen Bonds in the Polybrominated Aliphatic Electrophiles.

    PubMed

    Rosokha, Sergiy V; Lukacs, Emoke; Ritzert, Jeremy T; Wasilewski, Adam

    2016-03-17

    Quantum-mechanical computations revealed that, despite the presence of electron-withdrawing and/or π-acceptor substituents, the lowest unoccupied molecular orbitals (LUMO) of the polybromosubstituted aliphatic molecules R-Br (R-Br = C3Br2F6, CBr3NO2, CBr3CN, CBr3CONH2, CBr3CO2H, CHBr3, CFBr3, CBr4, CBr3COCBr3) are delocalized mostly over their bromine-containing fragments. The singly occupied molecular orbitals in the corresponding vertically excited anion radicals (R-Br(•-))* are characterized by essentially the same shapes and show nodes in the middle of the C-Br bonds. An injection of an electron into the antibonding LUMO results in the barrierless dissociation of the anion-radical species and the concerted reductive cleavages of C-Br bonds leading to the formation of the loosely bonded {R(•)···Br(-)} associates. The interaction energies between the fragments of these ion-radical pairs vary from ∼10 to 20 kcal mol(-1) in the gas phase and from 1 to 3 kcal mol(-1) in acetonitrile. In accord with the concerted mechanism of reductive cleavage, all R-Br molecules showed completely irreversible reduction waves in the voltammograms in the whole range of the scan rates employed (from 0.05 to 5 V s(-1)). Also, the transfer coefficients α, established from the width of these waves and dependence of reduction peak potentials Ep on the scan rates, were significantly lower than 0.5. The standard reduction potentials of the R-Br electrophiles, E(o)R-Br/R·+X(-), and the corresponding R(•) radicals, E(o)R(•)/R(-), were calculated in acetonitrile using the appropriate thermodynamic cycles. In agreement with these calculations, which indicated that the R(•) radicals resulting from the reductive cleavage of the R-Br molecules are stronger oxidants than their parents, the reduction peaks' currents in cyclic voltammograms were consistent with the two-electron transfer processes. PMID:26816138

  3. Quantum tic-tac-toe: A teaching metaphor for superposition in quantum mechanics

    NASA Astrophysics Data System (ADS)

    Goff, Allan

    2006-11-01

    Quantum tic-tac-toe was developed as a metaphor for the counterintuitive nature of superposition exhibited by quantum systems. It offers a way of introducing quantum physics without advanced mathematics, provides a conceptual foundation for understanding the meaning of quantum mechanics, and is fun to play. A single superposition rule is added to the child's game of classical tic-tac-toe. Each move consists of a pair of marks subscripted by the number of the move ("spooky" marks) that must be placed in different squares. When a measurement occurs, one spooky mark becomes real and the other disappears. Quantum tic-tac-toe illustrates a number of quantum principles including states, superposition, collapse, nonlocality, entanglement, the correspondence principle, interference, and decoherence. The game can be played on paper or on a white board. A Web-based version provides a refereed playing board to facilitate the mechanics of play, making it ideal for classrooms with a computer projector.

  4. Bohmian mechanics with complex action: A new trajectory-based formulation of quantum mechanics

    NASA Astrophysics Data System (ADS)

    Goldfarb, Yair; Degani, Ilan; Tannor, David J.

    2006-12-01

    In recent years there has been a resurgence of interest in Bohmian mechanics as a numerical tool because of its local dynamics, which suggest the possibility of significant computational advantages for the simulation of large quantum systems. However, closer inspection of the Bohmian formulation reveals that the nonlocality of quantum mechanics has not disappeared—it has simply been swept under the rug into the quantum force. In this paper we present a new formulation of Bohmian mechanics in which the quantum action, S, is taken to be complex. This leads to a single equation for complex S, and ultimately complex x and p but there is a reward for this complexification—a significantly higher degree of localization. The quantum force in the new approach vanishes for Gaussian wave packet dynamics, and its effect on barrier tunneling processes is orders of magnitude lower than that of the classical force. In fact, the current method is shown to be a rigorous extension of generalized Gaussian wave packet dynamics to give exact quantum mechanics. We demonstrate tunneling probabilities that are in virtually perfect agreement with the exact quantum mechanics down to 10-7 calculated from strictly localized quantum trajectories that do not communicate with their neighbors. The new formulation may have significant implications for fundamental quantum mechanics, ranging from the interpretation of non-locality to measures of quantum complexity.

  5. The gravitational constant as a quantum mechanical expression

    NASA Astrophysics Data System (ADS)

    Roza, Engel

    A quantitatively verifiable expression for the gravitational constant is derived in terms of quantum mechanical quantities. This derivation appears to be possible by selecting a suitable physical process in which the transformation of the equation of motion into a quantum mechanical wave equation can be obtained by Einstein's geodesic approach. The selected process is the pi-meson, modeled as the one-body equivalent of a two-body quantum mechanical oscillator in which the vibrating mass is modeled as the result of the two energy fluxes from the quark and the antiquark. The quantum mechanical formula for the gravitational constant appears to show a quantitatively verifiable relationship with the Higgs boson as conceived in the Standard Model.

  6. Probabilistic Approach to Teaching the Principles of Quantum Mechanics

    ERIC Educational Resources Information Center

    Santos, Emilio

    1976-01-01

    Approaches the representation of quantum mechanics through Hilbert space postulates. Demonstrates that if the representation is to be accurate, an evolution operator of the form of a Hamiltonian must be used. (CP)

  7. A Simplified Quantum Mechanical Model of Diatomic Molecules

    ERIC Educational Resources Information Center

    Nielsen, Lars Drud

    1978-01-01

    Introduces a simple one-dimensional model of a diatomic molecule that can explain all the essential features of a real two particle quantum mechanical system and gives quantitative results in fair agreement with those of a hydrogen molecule. (GA)

  8. Particles, Waves, and the Interpretation of Quantum Mechanics

    ERIC Educational Resources Information Center

    Christoudouleas, N. D.

    1975-01-01

    Presents an explanation, without mathematical equations, of the basic principles of quantum mechanics. Includes wave-particle duality, the probability character of the wavefunction, and the uncertainty relations. (MLH)

  9. A low temperature expansion for matrix quantum mechanics

    NASA Astrophysics Data System (ADS)

    Lin, Ying-Hsuan; Shao, Shu-Heng; Wang, Yifan; Yin, Xi

    2015-05-01

    We analyze solutions to loop-truncated Schwinger-Dyson equations in massless and Wess-Zumino matrix quantum mechanics at finite temperature, where conventional perturbation theory breaks down due to IR divergences. We find a rather intricate low temperature expansion that involves fractional power scaling in the temperature, based on a consistent "soft collinear" approximation. We conjecture that at least in the matrix quantum mechanics, such scaling behavior holds to all perturbative orders in the 1 /N expansion. We discuss some preliminary results in analyzing the gauged supersymmetric quantum mechanics using Schwinger-Dyson equations, and comment on the connection to metastable microstates of black holes in the holographic dual of BFSS matrix quantum mechanics.

  10. Quantum mechanical theory of dynamic nuclear polarization in solid dielectrics

    PubMed Central

    Hu, Kan-Nian; Debelouchina, Galia T.; Smith, Albert A.; Griffin, Robert G.

    2011-01-01

    Microwave driven dynamic nuclear polarization (DNP) is a process in which the large polarization present in an electron spin reservoir is transferred to nuclei, thereby enhancing NMR signal intensities. In solid dielectrics there are three mechanisms that mediate this transfer—the solid effect (SE), the cross effect (CE), and thermal mixing (TM). Historically these mechanisms have been discussed theoretically using thermodynamic parameters and average spin interactions. However, the SE and the CE can also be modeled quantum mechanically with a system consisting of a small number of spins and the results provide a foundation for the calculations involving TM. In the case of the SE, a single electron–nuclear spin pair is sufficient to explain the polarization mechanism, while the CE requires participation of two electrons and a nuclear spin, and can be used to understand the improved DNP enhancements observed using biradical polarizing agents. Calculations establish the relations among the electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) frequencies and the microwave irradiation frequency that must be satisfied for polarization transfer via the SE or the CE. In particular, if δ, Δ < ω0I, where δ and Δ are the homogeneous linewidth and inhomogeneous breadth of the EPR spectrum, respectively, we verify that the SE occurs when ωM = ω0S ± ω0I, where ωM, ω0S and ω0I are, respectively, the microwave, and the EPR and NMR frequencies. Alternatively, when Δ > ω0I > δ, the CE dominates the polarization transfer. This two-electron process is optimized when ω0S1−ω0S2=ω0I and ωM∼ω0S1 orω0S2, where ω0S1 and ω0S2 are the EPR Larmor frequencies of the two electrons. Using these matching conditions, we calculate the evolution of the density operator from electron Zeeman order to nuclear Zeeman order for both the SE and the CE. The results provide insights into the influence of the microwave irradiation field, the external magnetic field, and the electron−electron and electron−nuclear interactions on DNP enhancements. PMID:21456705

  11. Hidden-Variable Theory versus Copenhagen Quantum Mechanics

    SciTech Connect

    Lokajicek, Milos V.

    2008-05-29

    The Copenhagen quantum mechanics has been newly analyzed and critical comments introduced already in literature have been gathered. It has been concluded that the hidden-variable theory should be preferred to the Copenhagen alternative, as well as to the standard model of classical physics. On the basis of given arguments it has been also concluded that the Copenhagen quantum mechanics should be declared as falsified.

  12. Quantum mechanics and the social sciences: After hermeneutics

    NASA Astrophysics Data System (ADS)

    Heelan, Patrick A.

    1995-04-01

    Quantum mechanics is interpreted, in the spirit of Niels Bohr and Werner Heisenberg, as about physical objects in so far as these are revealed by and within the local, social, and historical process of measurement. An analysis of the hermeneutical aspect of quantum mechanical measurement reveals close analogues with the hermeneutical social/historical sciences. The hermeneutical analysis of science requires the move from the epistemological attitude to an ontological one.

  13. Interpreting Quantum Mechanics according to a Pragmatist Approach

    NASA Astrophysics Data System (ADS)

    Bächtold, Manuel

    2008-09-01

    The aim of this paper is to show that quantum mechanics can be interpreted according to a pragmatist approach. The latter consists, first, in giving a pragmatic definition to each term used in microphysics, second, in making explicit the functions any theory must fulfil so as to ensure the success of the research activity in microphysics, and third, in showing that quantum mechanics is the only theory which fulfils exactly these functions.

  14. Quantum mechanics emerging from stochastic dynamics of virtual particles

    NASA Astrophysics Data System (ADS)

    Tsekov, Roumen

    2016-03-01

    It is shown how quantum mechanics emerges from the stochastic dynamics of force carriers. It is demonstrated that the Moyal equation corresponds to dynamic correlations between the real particle momentum and the virtual particle position, which are not present in classical mechanics. This new concept throws light on the physical meaning of quantum theory, showing that the Planck constant square is a second-second position-momentum cross-cumulant.

  15. Michelson-Morley Experiment Within the Quantum Mechanics Framework

    NASA Astrophysics Data System (ADS)

    Khokhlov, D. L.

    2008-03-01

    It is revisited the Michelson-Morley experiment within the quantum mechanics framework. One can define the wave function of photon in the whole space at a given moment of time. The phase difference between the source and receiver is a distance between the source and receiver at the time of reception hence it does not depend on the velocity of the frame. Then one can explain the null result of the Michelson-Morley experiment within the quantum mechanics framework.

  16. Contexts, Systems and Modalities: A New Ontology for Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Auffèves, Alexia; Grangier, Philippe

    2016-02-01

    In this article we present a possible way to make usual quantum mechanics fully compatible with physical realism, defined as the statement that the goal of physics is to study entities of the natural world, existing independently from any particular observer's perception, and obeying universal and intelligible rules. Rather than elaborating on the quantum formalism itself, we propose a new quantum ontology, where physical properties are attributed jointly to the system, and to the context in which it is embedded. In combination with a quantization principle, this non-classical definition of physical reality sheds new light on counter-intuitive features of quantum mechanics such as the origin of probabilities, non-locality, and the quantum-classical boundary.

  17. Probability in the Many-Worlds Interpretation of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Vaidman, Lev

    It is argued that, although in the Many-Worlds Interpretation of quantum mechanics there is no "probability" for an outcome of a quantum experiment in the usual sense, we can understand why we have an illusion of probability. The explanation involves: (a) A "sleeping pill" gedanken experiment which makes correspondence between an illegitimate question: "What is the probability of an outcome of a quantum measurement?" with a legitimate question: "What is the probability that `I' am in the world corresponding to that outcome?"; (b) A gedanken experiment which splits the world into several worlds which are identical according to some symmetry condition; and (c) Relativistic causality, which together with (b) explain the Born rule of standard quantum mechanics. The Quantum Sleeping Beauty controversy and "caring measure" replacing probability measure are discussed.

  18. On the hypothesis that quantum mechanism manifests classical mechanics: Numerical approach to the correspondence in search of quantum chaos

    SciTech Connect

    Lee, Sang-Bong

    1993-09-01

    Quantum manifestation of classical chaos has been one of the extensively studied subjects for more than a decade. Yet clear understanding of its nature still remains to be an open question partly due to the lack of a canonical definition of quantum chaos. The classical definition seems to be unsuitable in quantum mechanics partly because of the Heisenberg quantum uncertainty. In this regard, quantum chaos is somewhat misleading and needs to be clarified at the very fundamental level of physics. Since it is well known that quantum mechanics is more fundamental than classical mechanics, the quantum description of classically chaotic nature should be attainable in the limit of large quantum numbers. The focus of my research, therefore, lies on the correspondence principle for classically chaotic systems. The chaotic damped driven pendulum is mainly studied numerically using the split operator method that solves the time-dependent Schroedinger equation. For classically dissipative chaotic systems in which (multi)fractal strange attractors often emerge, several quantum dissipative mechanisms are also considered. For instance, Hoover`s and Kubo-Fox-Keizer`s approaches are studied with some computational analyses. But the notion of complex energy with non-Hermiticity is extensively applied. Moreover, the Wigner and Husimi distribution functions are examined with an equivalent classical distribution in phase-space, and dynamical properties of the wave packet in configuration and momentum spaces are also explored. The results indicate that quantum dynamics embraces classical dynamics although the classicalquantum correspondence fails to be observed in the classically chaotic regime. Even in the semi-classical limits, classically chaotic phenomena would eventually be suppressed by the quantum uncertainty.

  19. Sensible Quantum Mechanics:. are Probabilities Only in the Mind?

    NASA Astrophysics Data System (ADS)

    Page, Don N.

    Quantum mechanics may be formulated as Sensible Quantum Mechanics (SQM) so that it contains nothing probabilistic except conscious perceptions. Sets of these perceptions can be deterministically realized with measures given by expectation values of positive-operator-valued awareness operators. Ratios of the measures for these sets of perceptions can be interpreted as frequency-type probabilities for many actually existing sets. These probabilities generally cannot be given by the ordinary quantum probabilities for a single set of alternatives. Probabilism, or ascribing probabilities to unconscious aspects of the world, may be seen to be an aesthemamorphic myth.

  20. Electron exchange-correlation in quantum mechanics

    SciTech Connect

    Ritchie, B

    2009-01-30

    It is shown that Fermi-Dirac statistics is guaranteed by the Dirac current, from which spin-dependent quantum velocity fields and spin-dependent quantum trajectories can be inferred. Pauli's exclusion principle is demonstrated using the spin-dependent quantum trajectories. The Dirac current, unlike the Schroedinger current, is nonzero for stationary bound states due to the permanent magnetic moment of the electron. It is of order c{sup 0} in agreement with observation that Fermi-Dirac statistics is independent of electronic velocity. In summary the physical basis for exchange-correlation is found in Dirac's equation, although Schroedinger's equation may be used to evaluate the Dirac current in the nonrelativistic regime of electronic velocity.

  1. Whitehead's Philosophy and Quantum Mechanics (QM)

    NASA Astrophysics Data System (ADS)

    Malin, Shimon

    This paper is a tribute to Abner Shimony and a continuation of my discussions with him. In the first part some ofWhitehead's concepts, and, in particular, actual entities and atemporal processes, are introduced. These are shown to correspond to the objectivized aspects of the collapse of quantum states. Next we reconcile the entanglement of quantum states with the speed of light barrier for the transmission of information by modifying Whitehead's system: We suggest that events that take place far apart can be aspects if the same actual entity. We show that this takes care of Lovejoy's objection to Whitehead's system.

  2. 'Mysticism' in quantum mechanics: the forgotten controversy

    NASA Astrophysics Data System (ADS)

    Marin, Juan Miguel

    2009-07-01

    This paper argues that a European controversy over a 'mystical' hypothesis, one assigning the mind a role to play at the material level of reality, shaped much of the debate over the interpretation of the quantum equations. It traces back the controversy to the past two decades, beginning in the late 1920s—birth of quantum theory—and concluding with Erwin Schrödinger's lectures published as 'Mind and Matter'. Becoming aware of the issues at stake can help us understand the historical, philosophical and cultural background from which today's physics emerged.

  3. Optimal state discrimination and unstructured search in nonlinear quantum mechanics

    NASA Astrophysics Data System (ADS)

    Childs, Andrew M.; Young, Joshua

    2016-02-01

    Nonlinear variants of quantum mechanics can solve tasks that are impossible in standard quantum theory, such as perfectly distinguishing nonorthogonal states. Here we derive the optimal protocol for distinguishing two states of a qubit using the Gross-Pitaevskii equation, a model of nonlinear quantum mechanics that arises as an effective description of Bose-Einstein condensates. Using this protocol, we present an algorithm for unstructured search in the Gross-Pitaevskii model, obtaining an exponential improvement over a previous algorithm of Meyer and Wong. This result establishes a limitation on the effectiveness of the Gross-Pitaevskii approximation. More generally, we demonstrate similar behavior under a family of related nonlinearities, giving evidence that the ability to quickly discriminate nonorthogonal states and thereby solve unstructured search is a generic feature of nonlinear quantum mechanics.

  4. Statistical Structures Underlying Quantum Mechanics and Social Science

    NASA Astrophysics Data System (ADS)

    Wright, Ron

    2007-08-01

    Common observations of the unpredictability of human behavior and the influence of one question on the answer to another suggest social science experiments are probabilistic and may be mutually incompatible with one another, characteristics attributed to quantum mechanics (as distinguished from classical mechanics). This paper examines this superficial similarity in depth using the Foulis-Randall Operational Statistics language. In contradistinction to physics, social science deals with complex, open systems for which the set of possible experiments is unknowable and outcome interference is a graded phenomenon resulting from the ways the human brain processes information. It is concluded that social science is, in some ways, less classical than quantum mechanics, but that generalized quantum structures may provide appropriate descriptions of social science experiments. Specific challenges to extending quantum structures to social science are identified.

  5. Virtual Learning Environment for Interactive Engagement with Advanced Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Pedersen, Mads Kock; Skyum, Birk; Heck, Robert; Müller, Romain; Bason, Mark; Lieberoth, Andreas; Sherson, Jacob F.

    2016-06-01

    A virtual learning environment can engage university students in the learning process in ways that the traditional lectures and lab formats cannot. We present our virtual learning environment StudentResearcher, which incorporates simulations, multiple-choice quizzes, video lectures, and gamification into a learning path for quantum mechanics at the advanced university level. StudentResearcher is built upon the experiences gathered from workshops with the citizen science game Quantum Moves at the high-school and university level, where the games were used extensively to illustrate the basic concepts of quantum mechanics. The first test of this new virtual learning environment was a 2014 course in advanced quantum mechanics at Aarhus University with 47 enrolled students. We found increased learning for the students who were more active on the platform independent of their previous performances.

  6. Use of Nonequilibrium Work Methods to Compute Free Energy Differences Between Molecular Mechanical and Quantum Mechanical Representations of Molecular Systems.

    PubMed

    Hudson, Phillip S; Woodcock, H Lee; Boresch, Stefan

    2015-12-01

    Carrying out free energy simulations (FES) using quantum mechanical (QM) Hamiltonians remains an attractive, albeit elusive goal. Renewed efforts in this area have focused on using "indirect" thermodynamic cycles to connect "low level" simulation results to "high level" free energies. The main obstacle to computing converged free energy results between molecular mechanical (MM) and QM (ΔA(MM→QM)), as recently demonstrated by us and others, is differences in the so-called "stiff" degrees of freedom (e.g., bond stretching) between the respective energy surfaces. Herein, we demonstrate that this problem can be efficiently circumvented using nonequilibrium work (NEW) techniques, i.e., Jarzynski's and Crooks' equations. Initial applications of computing ΔA(NEW)(MM→QM), for blocked amino acids alanine and serine as well as to generate butane's potentials of mean force via the indirect QM/MM FES method, showed marked improvement over traditional FES approaches. PMID:26539729

  7. Multiple-event probability in general-relativistic quantum mechanics

    SciTech Connect

    Hellmann, Frank; Mondragon, Mauricio; Perez, Alejandro; Rovelli, Carlo

    2007-04-15

    We discuss the definition of quantum probability in the context of 'timeless' general-relativistic quantum mechanics. In particular, we study the probability of sequences of events, or multievent probability. In conventional quantum mechanics this can be obtained by means of the 'wave function collapse' algorithm. We first point out certain difficulties of some natural definitions of multievent probability, including the conditional probability widely considered in the literature. We then observe that multievent probability can be reduced to single-event probability, by taking into account the quantum nature of the measuring apparatus. In fact, by exploiting the von-Neumann freedom of moving the quantum/classical boundary, one can always trade a sequence of noncommuting quantum measurements at different times, with an ensemble of simultaneous commuting measurements on the joint system+apparatus system. This observation permits a formulation of quantum theory based only on single-event probability, where the results of the wave function collapse algorithm can nevertheless be recovered. The discussion also bears on the nature of the quantum collapse.

  8. Classical and Quantum-Mechanical State Reconstruction

    ERIC Educational Resources Information Center

    Khanna, F. C.; Mello, P. A.; Revzen, M.

    2012-01-01

    The aim of this paper is to present the subject of state reconstruction in classical and in quantum physics, a subject that deals with the experimentally acquired information that allows the determination of the physical state of a system. Our first purpose is to explain a method for retrieving a classical state in phase space, similar to that…

  9. Classical and Quantum-Mechanical State Reconstruction

    ERIC Educational Resources Information Center

    Khanna, F. C.; Mello, P. A.; Revzen, M.

    2012-01-01

    The aim of this paper is to present the subject of state reconstruction in classical and in quantum physics, a subject that deals with the experimentally acquired information that allows the determination of the physical state of a system. Our first purpose is to explain a method for retrieving a classical state in phase space, similar to that

  10. Quantum mechanics and reality: An interpretation of Everett's theory

    NASA Astrophysics Data System (ADS)

    Lehner, Christoph Albert

    The central part of Everett's formulation of quantum mechanics is a quantum mechanical model of memory and of observation as the recording of information in a memory. To use this model as an answer to the measurement problem, Everett has to assume that a conscious observer can be in a superposition of such memory states and be unaware of it. This assumption has puzzled generations of readers. The fundamental aim of this dissertation is to find a set of simpler assumptions which are sufficient to show that Everett's model is empirically adequate. I argue that Everett's model needs three assumptions to account for the process of observation: an assumption of decoherence of observers as quantum mechanical systems; an assumption of supervenience of mental states (qualities) over quantum mechanical properties; and an assumption about the interpretation of quantum mechanical states in general: quantum mechanical states describe ensembles of states of affairs coexisting in the same system. I argue that the only plausible understanding of such ensembles is as ensembles of possibilities, and that all standard no-collapse interpretations agree in this reading of quantum mechanical states. Their differences can be understood as different theories about what marks the real state within this ensemble, and Everett's theory as the claim that no additional 'mark of reality' is necessary. Using the three assumptions, I argue that introspection cannot determine the objective quantum mechanical state of an observer. Rather, the introspective qualities of a quantum mechanical state can be represented by a (classical) statistical ensemble of subjective states. An analysis of these subjective states and their dynamics leads to the conclusion that they suffice to give empirically correct predictions. The argument for the empirical adequacy of the subjective state entails that knowledge of the objective quantum mechanical state is impossible in principle. Empirical reality for a conscious observer is not described by the objective state, but by a Everettian relative state conditional on the subjective state, and no theoretical 'mark of reality' is necessary for this concept of reality. I compare the resulting concept of reality to Kant's distinction between empirical and transcendental reality.

  11. Evading Quantum Mechanics: Engineering a Classical Subsystem within a Quantum Environment

    NASA Astrophysics Data System (ADS)

    Tsang, Mankei; Caves, Carlton M.

    2012-07-01

    Quantum mechanics is potentially advantageous for certain information-processing tasks, but its probabilistic nature and requirement of measurement backaction often limit the precision of conventional classical information-processing devices, such as sensors and atomic clocks. Here we show that, by engineering the dynamics of coupled quantum systems, it is possible to construct a subsystem that evades the measurement backaction of quantum mechanics, at all times of interest, and obeys any classical dynamics, linear or nonlinear, that we choose. We call such a system a quantum-mechanics-free subsystem (QMFS). All of the observables of a QMFS are quantum-nondemolition (QND) observables; moreover, they are dynamical QND observables, thus demolishing the widely held belief that QND observables are constants of motion. QMFSs point to a new strategy for designing classical information-processing devices in regimes where quantum noise is detrimental, unifying previous approaches that employ QND observables, backaction evasion, and quantum noise cancellation. Potential applications include gravitational-wave detection, optomechanical-force sensing, atomic magnetometry, and classical computing. Demonstrations of dynamical QMFSs include the generation of broadband squeezed light for use in interferometric gravitational-wave detection, experiments using entangled atomic-spin ensembles, and implementations of the quantum Toffoli gate.

  12. Quantum Mechanics and the Role of Time:. are Quantum Systems Markovian?

    NASA Astrophysics Data System (ADS)

    Durt, Thomas

    2013-06-01

    The predictions of the Quantum Theory have been verified so far with astonishingly high accuracy. Despite of its impressive successes, the theory still presents mysterious features such as the border line between the classical and quantum world, or the deep nature of quantum nonlocality. These open questions motivated in the past several proposals of alternative and/or generalized approaches. We shall discuss in the present paper alternative theories that can be infered from a reconsideration of the status of time in quantum mechanics. Roughly speaking, quantum mechanics is usually formulated as a memory free (Markovian) theory at a fundamental level, but alternative, nonMarkovian, formulations are possible, and some of them can be tested in the laboratory. In our paper we shall give a survey of these alternative proposals, describe related experiments that were realized in the past and also formulate new experimental proposals.

  13. The Statistical Interpretation of Classical Thermodynamic Heating and Expansion Processes

    ERIC Educational Resources Information Center

    Cartier, Stephen F.

    2011-01-01

    A statistical model has been developed and applied to interpret thermodynamic processes typically presented from the macroscopic, classical perspective. Through this model, students learn and apply the concepts of statistical mechanics, quantum mechanics, and classical thermodynamics in the analysis of the (i) constant volume heating, (ii)…

  14. The Statistical Interpretation of Classical Thermodynamic Heating and Expansion Processes

    ERIC Educational Resources Information Center

    Cartier, Stephen F.

    2011-01-01

    A statistical model has been developed and applied to interpret thermodynamic processes typically presented from the macroscopic, classical perspective. Through this model, students learn and apply the concepts of statistical mechanics, quantum mechanics, and classical thermodynamics in the analysis of the (i) constant volume heating, (ii)

  15. Classical and quantum Reissner-Nordström black hole thermodynamics and first order phase transition

    NASA Astrophysics Data System (ADS)

    Ghaffarnejad, Hossein

    2016-01-01

    First we consider classical Reissner-Nordström black hole (CRNBH) metric which is obtained by solving Einstein-Maxwell metric equation for a point electric charge e inside of a spherical static body with mass M. It has 2 interior and exterior horizons. Using Bekenstein-Hawking entropy theorem we calculate interior and exterior entropy, temperature, Gibbs free energy and heat capacity at constant electric charge. We calculate first derivative of the Gibbs free energy with respect to temperature which become a singular function having a singularity at critical point Mc=2|e|/√{3} with corresponding temperature Tc=1/24π√{3|e|}. Hence we claim first order phase transition is happened there. Temperature same as Gibbs free energy takes absolutely positive (negative) values on the exterior (interior) horizon. The Gibbs free energy takes two different positive values synchronously for 0< T< Tc but not for negative values which means the system is made from two subsystem. For negative temperatures entropy reaches to zero value at Tto-∞ and so takes Bose-Einstein condensation single state. Entropy increases monotonically in case 0< T< Tc. Regarding results of the work presented at Wang and Huang (Phys. Rev. D 63:124014, 2001) we calculate again the mentioned thermodynamical variables for remnant stable final state of evaporating quantum Reissner-Nordström black hole (QRNBH) and obtained results same as one in case of the CRNBH. Finally, we solve mass loss equation of QRNBH against advance Eddington-Finkelstein time coordinate and derive luminosity function. We obtain switching off of QRNBH evaporation before than the mass completely vanishes. It reaches to a could Lukewarm type of RN black hole which its final remnant mass is m_{final}=|e| in geometrical units. Its temperature and luminosity vanish but not in Schwarzschild case of evaporation. Our calculations can be take some acceptable statements about information loss paradox (ILP).

  16. From single-shot towards general work extraction in a quantum thermodynamic framework

    NASA Astrophysics Data System (ADS)

    Gemmer, Jochen; Anders, Janet

    2015-08-01

    This paper considers work extraction from a quantum system to a work storage system (or weight) following Horodecki and Oppenheim (2013 Nat. Commun. 4 2059). An alternative approach is here developed that relies on the comparison of subspace dimensions without a need to introduce thermo-majorization used previously. Optimal single shot work for processes where a weight transfers from (a) a single energy level to another single energy level is then re-derived. In addition we discuss the final state of the system after work extraction and show that the system typically ends in its thermal state, while there are cases where the system is only close to it. The work of formation in the single level transfer setting is also re-derived. The approach presented now allows the extension of the single shot work concept to work extraction (b) involving multiple final levels of the weight. A key conclusion here is that the single shot work for case (a) is appropriate only when a resonance of a particular energy is required. When wishing to identify ‘work extraction’ with finding the weight in a specific available energy or any higher energy a broadening of the single shot work concept is required. As a final contribution we consider transformations of the system that (c) result in general weight state transfers. Introducing a transfer-quantity allows us to formulate minimum requirements for transformations to be at all possible in a thermodynamic framework. We show that choosing the free energy difference of the weight as the transfer-quantity one recovers various single shot results including single level transitions (a), multiple final level transitions (b), and recent results on restricted sets of multi-level to multi-level weight transfers.

  17. Comment on 'Nonlocality, Counterfactuals and Quantum Mechanics'

    SciTech Connect

    Stapp, H.P.

    1999-04-14

    A recent proof [H. P. Stapp, Am. J. Phys. 65, 300 (1997)], formulated in the symbolic language of modal logic, claims to show that contemporary quantum theory, viewed as a set of rules that allow us to calculate statistical predictions among certain kinds of observations, cannot be imbedded in any rational framework that conforms to the principles that (1) the experimenters' choices of which experiments they will perform can be considered to be free choices, (2) outcomes of measurements are unique, and (3) the free choices just mentioned have no backward-in-time effects of any kind. This claim is similar to Bell's theorem, but much stronger, because no reality assumption alien to quantum philosophy is used. The paper being commented on [W. Unruh, Phys. Rev. A 59, 126 (1999)] argues that some such reality assumption has been ''smuggled'' in. That argument is examined here and shown, I believe, to be defective.

  18. Comment on ``Nonlocality, counterfactuals, and quantum mechanics''

    NASA Astrophysics Data System (ADS)

    Stapp, Henry P.

    1999-09-01

    A recent proof [H. P. Stapp, Am. J. Phys. 65, 300 (1997)], formulated in the symbolic language of modal logic, claims to show that contemporary quantum theory, viewed as a set of rules that allow us to calculate statistical predictions among certain kinds of observations, cannot be imbedded in any rational framework that conforms to the principles that (1) the experimenters' choices of which experiments they will perform can be considered to be free choices, (2) outcomes of measurements are unique, and (3) the free choices just mentioned have no backward-in-time effects of any kind. This claim is similar to Bell's theorem, but much stronger, because no reality assumption alien to quantum philosophy is used. The paper being commented on [W. Unruh, Phys. Rev. A 59, 126 (1999)] argues that some such reality assumption has been ``smuggled'' in. That argument is examined here and shown, I believe, to be defective.

  19. Randomness in quantum mechanics - nature's ultimate cryptogram?

    NASA Astrophysics Data System (ADS)

    Erber, T.; Putterman, S.

    1985-11-01

    The possibility that a single atom irradiated by coherent light will be equivalent to an infinite computer with regard to its ability to generate random numbers is addressed. A search for unexpected patterns of order by crypt analysis of the telegraph signal generated by the on/off time of the atom's fluorescence is described. The results will provide new experimental tests of the fundamental principles of quantum theory.

  20. Quantum mechanics from an equivalence principle

    SciTech Connect

    Faraggi, A.E.; Matone, M.

    1997-05-15

    The authors show that requiring diffeomorphic equivalence for one-dimensional stationary states implies that the reduced action S{sub 0} satisfies the quantum Hamilton-Jacobi equation with the Planck constant playing the role of a covariantizing parameter. The construction shows the existence of a fundamental initial condition which is strictly related to the Moebius symmetry of the Legendre transform and to its involutive character. The universal nature of the initial condition implies the Schroedinger equation in any dimension.

  1. Assessing Expertise in Quantum Mechanics using Categorization Task

    NASA Astrophysics Data System (ADS)

    Lin, Shih-Yin; Singh, Chandralekha

    2009-11-01

    We discuss the categorization of 20 quantum mechanics problems by 6 physics professors and 22 undergraduate students from two honors-level quantum mechanics courses. Professors and students were asked to categorize the problems based upon similarity of solution. We also had individual discussions with professors who categorized the problems. Faculty members' categorizations were overall rated better than those of students by three faculty members who evaluated all of the categorizations. But the categories created by faculty members were more diverse compared to the uniformity of the categories they created when asked to categorize introductory mechanics problems.

  2. Student understanding of time dependence in quantum mechanics

    NASA Astrophysics Data System (ADS)

    Emigh, Paul J.; Passante, Gina; Shaffer, Peter S.

    2015-12-01

    [This paper is part of the Focused Collection on Upper Division Physics Courses.] The time evolution of quantum states is arguably one of the more difficult ideas in quantum mechanics. In this article, we report on results from an investigation of student understanding of this topic after lecture instruction. We demonstrate specific problems that students have in applying time dependence to quantum systems and in recognizing the key role of the energy eigenbasis in determining the time dependence of wave functions. Through analysis of student responses to a set of four interrelated tasks, we categorize some of the difficulties that underlie common errors. The conceptual and reasoning difficulties that have been identified are illustrated through student responses to four sets of questions administered at different points in a junior-level course on quantum mechanics. Evidence is also given that the problems persist throughout undergraduate instruction and into the graduate level.

  3. A modified Lax-Phillips scattering theory for quantum mechanics

    SciTech Connect

    Strauss, Y.

    2015-07-15

    The Lax-Phillips scattering theory is an appealing abstract framework for the analysis of scattering resonances. Quantum mechanical adaptations of the theory have been proposed. However, since these quantum adaptations essentially retain the original structure of the theory, assuming the existence of incoming and outgoing subspaces for the evolution and requiring the spectrum of the generator of evolution to be unbounded from below, their range of applications is rather limited. In this paper, it is shown that if we replace the assumption regarding the existence of incoming and outgoing subspaces by the assumption of the existence of Lyapunov operators for the quantum evolution (the existence of which has been proved for certain classes of quantum mechanical scattering problems), then it is possible to construct a structure analogous to the Lax-Phillips structure for scattering problems for which the spectrum of the generator of evolution is bounded from below.

  4. Six-dimensional space-time from quaternionic quantum mechanics

    NASA Astrophysics Data System (ADS)

    Brody, Dorje C.; Graefe, Eva-Maria

    2011-12-01

    Quaternionic quantum Hamiltonians describing nonrelativistic spin particles require the ambient physical space to have five dimensions. The quantum dynamics of a spin-(1)/(2) particle system characterized by a generic Hamiltonian is worked out in detail. It is shown that there exists, within the structure of quaternionic quantum mechanics, a canonical reduction to three spatial dimensions upon which standard quantum theory is retrieved. In this dimensional reduction, three of the five dynamical variables are shown to oscillate around a cylinder, thus behaving in a quasi-one-dimensional manner at large distances. An analogous mechanism is shown to exist in the case of octavic Hamiltonians, where the ambient physical space has nine dimensions. Possible experimental tests in search for the signature of extra dimensions at low energies are briefly discussed.

  5. Models on the boundary between classical and quantum mechanics.

    PubMed

    Hooft, Gerard 't

    2015-08-01

    Arguments that quantum mechanics cannot be explained in terms of any classical theory using only classical logic seem to be based on sound mathematical considerations: there cannot be physical laws that require 'conspiracy'. It may therefore be surprising that there are several explicit quantum systems where these considerations apparently do not apply. In this report, several such counterexamples are shown. These are quantum models that do have a classical origin. The most curious of these models is superstring theory. So now the question is asked: how can such a model feature 'conspiracy', and how bad is that? Is there conspiracy in the vacuum fluctuations? Arguments concerning Bell's theorem are further sharpened. PMID:26124246

  6. Diffraction theory in therms of quantum mechanics and relativity

    NASA Astrophysics Data System (ADS)

    Arsenault, Henri H.; Garcia-Martinez, Pascuala

    2001-12-01

    Diffraction properties of light can be derived from Quantum Mechanics and Relativity. Using the fact that position and momentum are conjugate variables, we show that the momentum distribution of light coincides with the well-known angular spectrum distribution. The momentum distribution links quantum theory and relativity to classical diffraction theory. We also show that the Huygens Principle and the momentum distribution are conjugate expressions at the diffraction aperture. These considerations lead to the geometrical theory of diffraction.

  7. Entropy Production and Equilibration in Yang-Mills Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Tsai, Hung-Ming

    Entropy production in relativistic heavy-ion collisions is an important physical quantity for studying the equilibration and thermalization of hot matters of quantum chromodynamics (QCD). To formulate a nontrivial definition of entropy for an isolated quantum system, a certain kind of coarse graining may be applied so that the entropy for this isolated quantum system depends on time explicitly. The Husimi distribution, which is a coarse grained distribution in the phase space, is a suitable candidate for this approach. We proposed a general and systematic method of solving the equation of motion of the Husimi distribution for an isolated quantum system. The Husimi distribution is positive (semi-)definite all over the phase space. In this method, we assume the Husimi distribution is composed of a large number of Gaussian test functions. The equation of motion of the Husimi distribution, formulated as a partial differential equation, can be transformed into a system of ordinary differential equations for the centers and the widths of these Gaussian test functions. We numerically solve the system of ordinary differential equations for the centers and the widths of these test functions to obtain the Husimi distribution as a function of time. To ensure the numerical solutions of the trajectories of the test particles preserve physical conservation laws, we obtain a constant of motion for the quantum system. We constructed a coarse grained Hamiltonian whose expectation value is exactly conserved. The conservation of the coarse grained energy confirms the validity of this method. Moreover, we calculated the time evolution of the coarse grained entropy for a model system (Yang-Mills quantum mechanics). Yang-Mills quantum mechanics is a quantum system whose classical correspondence possesses chaotic behaviors. The numerical results revealed that the coarse grained entropy for Yang-Mills quantum mechanics saturates to a value that coincides with the microcanonical entropy corresponding to the energy of the system. Our results confirmed the validity of the framework of first-principle evaluation of the coarse grained entropy growth rate. We show that, in the energy regime under study, the relaxation time for the entropy production in Yang-Mills quantum mechanics is approximately the same as the characteristic time of the system, indicating fast equilibration of the system. Fast equilibration of Yang-Mills quantum mechanics is consistent to current understanding of fast equilibration of hot QCD matter in relativistic heavy-ion collisions.

  8. Investigations of fundamental phenomena in quantum mechanics with neutrons

    NASA Astrophysics Data System (ADS)

    Hasegawa, Yuji

    2014-04-01

    Neutron interferometer and polarimeter are used for the experimental investigations of quantum mechanical phenomena. Interferometry exhibits clear evidence of quantum-contextuality and polarimetry demonstrates conflicts of a contextual model of quantum mechanics la Leggett. In these experiments, entanglements are achieved between degrees of freedom in a single-particle: spin, path and energy degrees of freedom are manipulated coherently and entangled. Both experiments manifest the fact that quantum contextuality is valid for phenomena with matter waves with high precision. In addition, another experiment is described which deals with error-disturbance uncertainty relation: we have experimentally tested error-disturbance uncertainty relations, one is derived by Heisenberg and the other by Ozawa. Experimental results confirm the fact that the Heisenberg's uncertainty relation is often violated and that the new relation by Ozawa is always larger than the limit. At last, as an example of a counterfactual phenomenon of quantum mechanics, observation of so-called quantum Cheshire Cat is carried out by using neutron interferometer. Experimental results suggest that pre- and post-selected neutrons travel through one of the arms of the interferometer while their magnetic moment is located in the other arm.

  9. Superradiant Quantum Heat Engine

    NASA Astrophysics Data System (ADS)

    Hardal, Ali Ü. C.; Müstecaplıoğlu, Özgür E.

    2015-08-01

    Quantum physics revolutionized classical disciplines of mechanics, statistical physics, and electrodynamics. One branch of scientific knowledge however seems untouched: thermodynamics. Major motivation behind thermodynamics is to develop efficient heat engines. Technology has a trend to miniaturize engines, reaching to quantum regimes. Development of quantum heat engines (QHEs) requires emerging field of quantum thermodynamics. Studies of QHEs debate whether quantum coherence can be used as a resource. We explore an alternative where it can function as an effective catalyst. We propose a QHE which consists of a photon gas inside an optical cavity as the working fluid and quantum coherent atomic clusters as the fuel. Utilizing the superradiance, where a cluster can radiate quadratically faster than a single atom, we show that the work output becomes proportional to the square of the number of the atoms. In addition to practical value of cranking up QHE, our result is a fundamental difference of a quantum fuel from its classical counterpart.

  10. Superradiant Quantum Heat Engine

    PubMed Central

    Hardal, Ali Ü. C.; Müstecaplıoğlu, Özgür E.

    2015-01-01

    Quantum physics revolutionized classical disciplines of mechanics, statistical physics, and electrodynamics. One branch of scientific knowledge however seems untouched: thermodynamics. Major motivation behind thermodynamics is to develop efficient heat engines. Technology has a trend to miniaturize engines, reaching to quantum regimes. Development of quantum heat engines (QHEs) requires emerging field of quantum thermodynamics. Studies of QHEs debate whether quantum coherence can be used as a resource. We explore an alternative where it can function as an effective catalyst. We propose a QHE which consists of a photon gas inside an optical cavity as the working fluid and quantum coherent atomic clusters as the fuel. Utilizing the superradiance, where a cluster can radiate quadratically faster than a single atom, we show that the work output becomes proportional to the square of the number of the atoms. In addition to practical value of cranking up QHE, our result is a fundamental difference of a quantum fuel from its classical counterpart. PMID:26260797

  11. Superradiant Quantum Heat Engine.

    PubMed

    Hardal, Ali Ü C; Müstecaplıoğlu, Özgür E

    2015-01-01

    Quantum physics revolutionized classical disciplines of mechanics, statistical physics, and electrodynamics. One branch of scientific knowledge however seems untouched: thermodynamics. Major motivation behind thermodynamics is to develop efficient heat engines. Technology has a trend to miniaturize engines, reaching to quantum regimes. Development of quantum heat engines (QHEs) requires emerging field of quantum thermodynamics. Studies of QHEs debate whether quantum coherence can be used as a resource. We explore an alternative where it can function as an effective catalyst. We propose a QHE which consists of a photon gas inside an optical cavity as the working fluid and quantum coherent atomic clusters as the fuel. Utilizing the superradiance, where a cluster can radiate quadratically faster than a single atom, we show that the work output becomes proportional to the square of the number of the atoms. In addition to practical value of cranking up QHE, our result is a fundamental difference of a quantum fuel from its classical counterpart. PMID:26260797

  12. Thermodynamic and mechanical properties of TiC from ab initio calculation

    SciTech Connect

    Dang, D. Y.; Fan, J. L.; Gong, H. R.

    2014-07-21

    The temperature-dependent thermodynamic and mechanical properties of TiC are systematically investigated by means of a combination of density-functional theory, quasi-harmonic approximation, and thermal electronic excitation. It is found that the quasi-harmonic Debye model should be pertinent to reflect thermodynamic properties of TiC, and the elastic properties of TiC decease almost linearly with the increase of temperature. Calculations also reveal that TiC possesses a pronounced directional pseudogap across the Fermi level, mainly due to the strong hybridization of Ti 3d and C 2p states. Moreover, the strong covalent bonding of TiC would be enhanced (reduced) with the decrease (increase) of temperature, while the change of volume (temperature) should have negligible effect on density of states at the Fermi level. The calculated results agree well with experimental observations in the literature.

  13. Reconstruction of Gaussian quantum mechanics from Liouville mechanics with an epistemic restriction

    NASA Astrophysics Data System (ADS)

    Bartlett, Stephen D.; Rudolph, Terry; Spekkens, Robert W.

    2012-07-01

    How would the world appear to us if its ontology was that of classical mechanics but every agent faced a restriction on how much they could come to know about the classical state? We show that in most respects it would appear to us as quantum. The statistical theory of classical mechanics, which specifies how probability distributions over phase space evolve under Hamiltonian evolution and under measurements, is typically called Liouville mechanics, so the theory we explore here is Liouville mechanics with an epistemic restriction. The particular epistemic restriction we posit as our foundational postulate specifies two constraints. The first constraint is a classical analog of Heisenberg's uncertainty principle; the second-order moments of position and momentum defined by the phase-space distribution that characterizes an agent's knowledge are required to satisfy the same constraints as are satisfied by the moments of position and momentum observables for a quantum state. The second constraint is that the distribution should have maximal entropy for the given moments. Starting from this postulate, we derive the allowed preparations, measurements, and transformations and demonstrate that they are isomorphic to those allowed in Gaussian quantum mechanics and generate the same experimental statistics. We argue that this reconstruction of Gaussian quantum mechanics constitutes additional evidence in favor of a research program wherein quantum states are interpreted as states of incomplete knowledge and that the phenomena that do not arise in Gaussian quantum mechanics provide the best clues for how one might reconstruct the full quantum theory.

  14. Method to efficiently simulate the thermodynamic properties of the Fermi-Hubbard model on a quantum computer

    NASA Astrophysics Data System (ADS)

    Dallaire-Demers, Pierre-Luc; Wilhelm, Frank K.

    2016-03-01

    Many phenomena of strongly correlated materials are encapsulated in the Fermi-Hubbard model whose thermodynamic properties can be computed from its grand-canonical potential. In general, there is no closed-form expression of the grand-canonical potential for lattices of more than one spatial dimension, but solutions can be numerically approximated using cluster methods. To model long-range effects such as order parameters, a powerful method to compute the cluster's Green's function consists of finding its self-energy through a variational principle. This allows the possibility of studying various phase transitions at finite temperature in the Fermi-Hubbard model. However, a classical cluster solver quickly hits an exponential wall in the memory (or computation time) required to store the computation variables. Here it is shown theoretically that the cluster solver can be mapped to a subroutine on a quantum computer whose quantum memory usage scales linearly with the number of orbitals in the simulated cluster and the number of measurements scales quadratically. A quantum computer with a few tens of qubits could therefore simulate the thermodynamic properties of complex fermionic lattices inaccessible to classical supercomputers.

  15. A method to efficiently simulate the thermodynamic properties of the Fermi-Hubbard model on a quantum computer

    NASA Astrophysics Data System (ADS)

    Dallaire-Demers, Pierre-Luc; Wilhelm-Mauch, Frank

    Many phenomena of strongly correlated materials are encapsulated in the Fermi-Hubbard model whose thermodynamic properties can be computed from its grand canonical potential. In general, there is no closed form expression of the grand canonical potential for lattices of more than one spatial dimension, but solutions can be approximated with cluster perturbation theory. To model long-range effects such as order parameters, a powerful method to compute the cluster's Green's function consists in finding its self-energy through a variational principle. This opens the possibility of studying various phase transitions at finite temperature in the Fermi-Hubbard model. However, a classical cluster solver quickly hits an exponential wall in the memory (or computation time) required to store the computation variables. Here it is shown theoretically that that the cluster solver can be mapped to a subroutine on a quantum computer whose quantum memory scales as the number of orbitals in the simulated cluster. A quantum computer with a few tens of qubits could therefore simulate the thermodynamic properties of complex fermionic lattices inaccessible to classical supercomputers.

  16. Quantum mechanics, gravity and modified quantization relations.

    PubMed

    Calmet, Xavier

    2015-08-01

    In this paper, we investigate a possible energy scale dependence of the quantization rules and, in particular, from a phenomenological point of view, an energy scale dependence of an effective [Formula: see text] (reduced Planck's constant). We set a bound on the deviation of the value of [Formula: see text] at the muon scale from its usual value using measurements of the anomalous magnetic moment of the muon. Assuming that inflation has taken place, we can conclude that nature is described by a quantum theory at least up to an energy scale of about 10(16) GeV. PMID:26124253

  17. Measuring the quantum mechanical wave function

    NASA Astrophysics Data System (ADS)

    Raymer, M. G.

    1997-05-01

    In the past few years experimenters have learned how to determine the complete quantum state of an ensemble of particles or fields which have been prepared according to some unknown procedure. Through these experiments they have answered a question posed by W. Pauli in the 1930s. The methods used involve measuring statistical distributions of a well chosen set of physical observables and using a tomographic inversion algorithm to reconstruct the Wigner function and its corresponding wave function or density matrix. Recontructions have been successfully carried out in atomic, molecular, and optical physics. The development of these procedures helps to firm up the interpretation of the Schrodinger wave function.

  18. The Many Problems with Quantum Mechanics from the Earliest Days on and How the Theory of Quantum Mechanics on Phase Space Addresses Them

    NASA Astrophysics Data System (ADS)

    Schroeck, Franklin E.

    2015-12-01

    We review the problems with quantum mechanics by translating or interpreting leading specialists in the field. Then we obtain a theory called quantum mechanics on phase space which is immune to these problems. Finally, we see how these problems are addressed by quantum mechanics on phase space.

  19. Quantum mechanisms of density wave transport

    PubMed Central

    Miller, John H.; Wijesinghe, Asanga I.

    2012-01-01

    We report on new developments in the quantum picture of correlated electron transport in charge and spin density waves. The model treats the condensate as a quantum fluid in which charge soliton domain wall pairs nucleate above a Coulomb blockade threshold field. We employ a time-correlated soliton tunneling model, analogous to the theory of time-correlated single electron tunneling, to interpret the voltage oscillations and nonlinear current-voltage characteristics above threshold. An inverse scaling relationship between threshold field and dielectric response, originally proposed by Grüner, emerges naturally from the model. Flat dielectric and other ac responses below threshold in NbSe3 and TaS3, as well as small density wave phase displacements, indicate that the measured threshold is often much smaller than the classical depinning field. In some materials, the existence of two distinct threshold fields suggests that both soliton nucleation and classical depinning may occur. In our model, the ratio of electrostatic charging to pinning energy helps determine whether soliton nucleation or classical depinning dominates. PMID:22711979

  20. Are nonlinear discrete cellular automata compatible with quantum mechanics?

    NASA Astrophysics Data System (ADS)

    Elze, Hans-Thomas

    2015-07-01

    We consider discrete and integer-valued cellular automata (CA). A particular class of which comprises “Hamiltonian CA” with equations of motion that bear similarities to Hamilton's equations, while they present discrete updating rules. The dynamics is linear, quite similar to unitary evolution described by the Schrödinger equation. This has been essential in our construction of an invertible map between such CA and continuous quantum mechanical models, which incorporate a fundamental discreteness scale. Based on Shannon's sampling theory, it leads, for example, to a one-to-one relation between quantum mechanical and CA conservation laws. The important issue of linearity of the theory is examined here by incorporating higher-order nonlinearities into the underlying action. These produce inconsistent nonlocal (in time) effects when trying to describe continuously such nonlinear CA. Therefore, in the present framework, only linear CA and local quantum mechanical dynamics are compatible.

  1. Quantum-mechanical transport equation for atomic systems.

    NASA Technical Reports Server (NTRS)

    Berman, P. R.

    1972-01-01

    A quantum-mechanical transport equation (QMTE) is derived which should be applicable to a wide range of problems involving the interaction of radiation with atoms or molecules which are also subject to collisions with perturber atoms. The equation follows the time evolution of the macroscopic atomic density matrix elements of atoms located at classical position R and moving with classical velocity v. It is quantum mechanical in the sense that all collision kernels or rates which appear have been obtained from a quantum-mechanical theory and, as such, properly take into account the energy-level variations and velocity changes of the active (emitting or absorbing) atom produced in collisions with perturber atoms. The present formulation is better suited to problems involving high-intensity external fields, such as those encountered in laser physics.

  2. A deformation quantization theory for noncommutative quantum mechanics

    SciTech Connect

    Costa Dias, Nuno; Prata, Joao Nuno; Gosson, Maurice de; Luef, Franz

    2010-07-15

    We show that the deformation quantization of noncommutative quantum mechanics previously considered by Dias and Prata ['Weyl-Wigner formulation of noncommutative quantum mechanics', J. Math. Phys. 49, 072101 (2008)] and Bastos, Dias, and Prata ['Wigner measures in non-commutative quantum mechanics', e-print arXiv:math-ph/0907.4438v1; Commun. Math. Phys. (to appear)] can be expressed as a Weyl calculus on a double phase space. We study the properties of the star-product thus defined and prove a spectral theorem for the star-genvalue equation using an extension of the methods recently initiated by de Gosson and Luef ['A new approach to the *-genvalue equation', Lett. Math. Phys. 85, 173-183 (2008)].

  3. The symplectic egg in classical and quantum mechanics

    NASA Astrophysics Data System (ADS)

    de Gosson, Maurice A.

    2013-05-01

    Symplectic geometry is the language of Classical Mechanics in its Hamiltonian formulation, and it also plays a crucial role in Quantum Mechanics. Symplectic geometry seemed to be well understood until 1985, when the mathematician Gromov discovered a surprising and unexpected property of canonical transformations: the non-squeezing theorem. Gromov's result, nicknamed the "principle of the symplectic camel," seems at first sight to be an abstruse piece of pure mathematics. It turns out that it has fundamental—and unsuspected—consequences in the interpretations of both Classical and Quantum Mechanics, because it is essentially a classical form of the uncertainty principle. We invite the reader to a journey taking us from Gromov's non-squeezing theorem and its dynamical interpretation to the quantum uncertainty principle, opening the way to new insights.

  4. Classical and quantum mechanical motion in magnetic fields

    NASA Astrophysics Data System (ADS)

    Franklin, J.; Cole Newton, K.

    2016-04-01

    We study the motion of a particle in a particular magnetic field configuration both classically and quantum mechanically. For flux-free radially symmetric magnetic fields defined on circular regions, we establish that particle escape speeds depend, classically, on a gauge-fixed magnetic vector potential, and we demonstrate some trajectories associated with this special type of magnetic field. Then we show that some of the geometric features of the classical trajectory (perpendicular exit from the field region, trapped and escape behavior) are reproduced quantum mechanically, using a numerical method that extends the norm-preserving Crank-Nicolson method to problems involving magnetic fields. While there are similarities between the classical trajectory and the position expectation value of the quantum-mechanical solution, there are also differences, and we demonstrate some of these.

  5. Mechanical Resonators for Quantum Optomechanics Experiments at Room Temperature

    NASA Astrophysics Data System (ADS)

    Norte, R. A.; Moura, J. P.; Gröblacher, S.

    2016-04-01

    All quantum optomechanics experiments to date operate at cryogenic temperatures, imposing severe technical challenges and fundamental constraints. Here, we present a novel design of on-chip mechanical resonators which exhibit fundamental modes with frequencies f and mechanical quality factors Qm sufficient to enter the optomechanical quantum regime at room temperature. We overcome previous limitations by designing ultrathin, high-stress silicon nitride (Si3 N4 ) membranes, with tensile stress in the resonators' clamps close to the ultimate yield strength of the material. By patterning a photonic crystal on the SiN membranes, we observe reflectivities greater than 99%. These on-chip resonators have remarkably low mechanical dissipation, with Qm˜108, while at the same time exhibiting large reflectivities. This makes them a unique platform for experiments towards the observation of massive quantum behavior at room temperature.

  6. Quantum-mechanical description of Faraday rotation in a single quantum dot

    NASA Astrophysics Data System (ADS)

    Ma, Yanjun; Levy, Jeremy

    2008-03-01

    Faraday rotation is one way to realize quantum non-demolition (QND) measurement of electron spin in a quantum dot. In the literature, it has been semiclassically modeled based on quantized electron spin states and classical electromagnetic fields. We have developed a fully quantum- mechanical model to describe Faraday rotation in single quantum dots, using an extension of the Jaynes-Cumming model which includes quantum Stokes operators. The intrinsic noise of Faraday rotation that results from the interaction between photon and electron is quantified under this model. Some effects, such as hyperfine interactions and transitions between off-resonant states such as light hole and conduction band electron states, and have not been included in our calculation. It is believed that these effects will affect the dynamics of spin and based on the current model, our calculation could be extended to examine the behavior of Faraday rotation with these effects included. This work was supported by NSF-DMR-0602846.

  7. Assessing and improving student understanding of quantum mechanics

    NASA Astrophysics Data System (ADS)

    Singh, Chandralekha

    2006-02-01

    We developed a survey to probe student understanding of quantum mechanics concepts at the beginning of graduate instruction. The survey was administered to 202 graduate students in physics enrolled in first-year quantum mechanics courses from seven different universities at the beginning of the first semester. We also conducted one-on-one interviews with fifteen graduate students or advanced undergraduate students who had just finished a course in which all the content on the survey was covered. We find that students share universal difficulties about fundamental quantum mechanics concepts. The difficulties are often due to over-generalization of concepts learned in one context to other contexts where they are not directly applicable and difficulty in making sense of the abstract quantitative formalism of quantum mechanics. Instructional strategies that focus on improving student understanding of these concepts should take into account these difficulties. The results from this study can sensitize instructors of first-year graduate quantum physics to the conceptual difficulties students are likely to face.

  8. PREFACE: Progress in supersymmetric quantum mechanics

    NASA Astrophysics Data System (ADS)

    Aref'eva, I.; Fernández, D. J.; Hussin, V.; Negro, J.; Nieto, L. M.; Samsonov, B. F.

    2004-10-01

    The theory of integrable systems is grounded in the very beginning of theoretical physics: Kepler's system is an integrable system. This field of dynamical systems, where one looks for exact solutions of the equations of motion, has attracted most of the great figures in mathematical physics: Euler, Lagrange, Jacobi, etc. Liouville was the first to formulate the precise mathematical conditions ensuring solvability `by quadrature' of the dynamical equations, and his theorem still lies at the heart of the recent developments. The modern era started about thirty years ago with the systematic formulation of soliton solutions to nonlinear wave equations. Since then, impressive developments arose both for the classical and the quantum theory. Subtle mathematical techniques were devised for the resolution of these theories, relying on algebra (group theory), analysis and algebraic geometry (Riemann theory of surfaces). We therefore clearly see that the theory of integrable systems lies ab initio at a crossing of physics and mathematics, and that the developments of these last thirty years have strengthened this dual character, which makes it into an archetypal domain of mathematical physics. As regards the classical theory, beyond the direct connections to the various domains of classical soliton physics (hydrodynamics, condensed matter physics, laser optics, particle physics, plasma, biology or information coding), one has witnessed in these recent years more unexpected (and for some of them not yet well understood) connections to a priori farther fields of theoretical physics: string theory (through matrix models), topological field theories (two dimensional Yang--Mills, three dimensional Chern--Simons--Witten), or supersymmetric field theories (for instance the correspondence discovered by Seiberg and Witten between classical integrable models and quantum potentials). Quantum integrable theories provide examples of exactly (non perturbatively) solvable physical models. They thus allow one to obtain descriptions of non trivial phenomena such as second order phase transition in condensed systems (spin lattices) and exact solution of relativistic quantum field theories (Sine--Gordon...). On the other hand, they supply an excellent example of fruitful interface between physics and mathematics: the theory of quantum groups (and the germane theory of special functions) is a perfect illustration of this rôle and perspectives of such new developments appear very promising. The purpose of the first RAQIS meeting was to bring together researchers from the various fields of mathematics and physics connected to the theory of quantum integrable systems. This conference was held in the framework of the European TMR network EUCLID `Integrable models and applications: from strings to condensed matter', contract number HPRN-CT-2002-00325. The RAQIS03 meeting took place at the Laboratoire d'Annecy-le-vieux de Physique Théorique (LAPTH, France) from 25 March to 28 March, 2003. The organising committee consisted of Daniel Arnaudon, Jean Avan, Luc Frappat, Éric Ragoucy and Paul Sorba. Financial support was provided by Université de Savoie and CNRS-DRI (Centre National de la Recherche Scientifique, Direction des Relations Internationales). In particular various scientific contacts with several Japanese participants were initiated thanks to the CNRS PICS contract number 911. This special issue of Journal of Physics A: Mathematical and General is dedicated to the subject of the RAQIS03 meeting in Annecy-le-vieux. Most of the contributors to this issue took part in the meeting, but this volume does not aim to be a proceedings in the usual sense of the word: contributions do not necessarily coincide with the reports presented at the meeting, nor are the contributors restricted exclusively to those people that were present. The intention of the special issue is to benefit from the occasion offered by the RAQIS03 meeting to highlight the important new areas in quantum integrability, by collecting together in one single volume a selection of articles reflecting the scope of the meeting. All contributions to this special issue are original research papers, but by collecting together we feel that we offer a better context for the work and an insight into the new directions where this research is leading. specialists and also to newcomers in this domain. Finally, we would like to warmly thank all the participants and speakers as well as all the authors and contributors to this issue.

  9. Thermodynamic and fracture mechanical processes in the context of frost wedging in ice shelves

    NASA Astrophysics Data System (ADS)

    Plate, Carolin; Müller, Ralf; Humbert, Angelika; Gross, Dietmar

    2015-04-01

    Ice shelves, the link between ice shields or glaciers and the ocean are sensitive elements of the polar environment. The ongoing break up and disintegration of huge ice shelf parts or entire ice shelf demands for an explication of the underlying processes. The first analyses of crack growth and break up events in ice shelves date back to more than half a century. Nevertheless, the mechanisms that trigger and influence the collapse of whole ice shelf parts are not yet fully understood. Popular presumptions link ice shelf disintegration to surface meltwater and hydro fracturing, explaining break up events in warm polar seasons. Fracture events during colder seasons are possibly triggered by more complex mechanisms. A well-documented break up event at the Wilkins Ice Shelf bridge inspires the possibility of frost wedging as disintegration cause. The present study shows a two-dimensional thermo-dynamical model simulating the growth of an ice lid in a water-filled crevasse for measured surface temperatures. The influence of the crevasse geometry and the ice shelf temperature are shown. The resulting lid thickness is then used for the linear elastic fracture mechanical analysis. The maximum crack depth is estimated by comparing the computed stress intensity factors to critical values KIc obtained from literature. The thermodynamic as well as the fracture mechanical simulation are performed using the commercial finite element code COMSOL. The computation of KI follows in post processing routines in MATLAB exploiting the benefits of the concept of configurational forces.

  10. The Misapplication of Probability Theory in Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Racicot, Ronald

    2014-03-01

    This article is a revision of two papers submitted to the APS in the past two and a half years. In these papers, arguments and proofs are summarized for the following: (1) The wrong conclusion by EPR that Quantum Mechanics is incomplete, perhaps requiring the addition of ``hidden variables'' for completion. Theorems that assume such ``hidden variables,'' such as Bell's theorem, are also wrong. (2) Quantum entanglement is not a realizable physical phenomenon and is based entirely on assuming a probability superposition model for quantum spin. Such a model directly violates conservation of angular momentum. (3) Simultaneous multiple-paths followed by a quantum particle traveling through space also cannot possibly exist. Besides violating Noether's theorem, the multiple-paths theory is based solely on probability calculations. Probability calculations by themselves cannot possibly represent simultaneous physically real events. None of the reviews of the submitted papers actually refuted the arguments and evidence that was presented. These analyses should therefore be carefully evaluated since the conclusions reached have such important impact in quantum mechanics and quantum information theory.

  11. Statistical Mechanics of Classical and Quantum Computational Complexity

    NASA Astrophysics Data System (ADS)

    Laumann, C. R.; Moessner, R.; Scardicchio, A.; Sondhi, S. L.

    The quest for quantum computers is motivated by their potential for solving problems that defy existing, classical, computers. The theory of computational complexity, one of the crown jewels of computer science, provides a rigorous framework for classifying the hardness of problems according to the computational resources, most notably time, needed to solve them. Its extension to quantum computers allows the relative power of quantum computers to be analyzed. This framework identifies families of problems which are likely hard for classical computers ("NP-complete") and those which are likely hard for quantum computers ("QMA-complete") by indirect methods. That is, they identify problems of comparable worst-case difficulty without directly determining the individual hardness of any given instance. Statistical mechanical methods can be used to complement this classification by directly extracting information about particular families of instances—typically those that involve optimization—by studying random ensembles of them. These pose unusual and interesting (quantum) statistical mechanical questions and the results shed light on the difficulty of problems for large classes of algorithms as well as providing a window on the contrast between typical and worst case complexity. In these lecture notes we present an introduction to this set of ideas with older work on classical satisfiability and recent work on quantum satisfiability as primary examples. We also touch on the connection of computational hardness with the physical notion of glassiness.

  12. Quantum-mechanical treatment of an electron undergoing synchrotron radiation.

    NASA Technical Reports Server (NTRS)

    White, D.

    1972-01-01

    The problem of an electron moving perpendicular to an intense magnetic field is approached from the framework of quantum mechanics. A numerical solution to the related rate equations describing the probabilities of occupation of the electron's energy states is put forth along with the expected errors involved. The quantum-mechanical approach is found to predict a significant amount of energy broadening with time for an initially monoenergetic electron beam entering a region of an intense magnetic field as long as the product of initial energy and magnetic field is of order 50 MG BeV or larger.

  13. Spacetime alternatives in the quantum mechanics of a relativistic particle

    SciTech Connect

    Whelan, J.T. Isaac Newton Institute for Mathematical Sciences, 20 Clarkson Road, Cambridge, CB3 0EH )

    1994-11-15

    Hartle's generalized quantum mechanics formalism is used to examine spacetime coarse grainings, i.e., sets of alternatives defined with respect to a region extended in time as well as space, in the quantum mechanics of a free relativistic particle. For a simple coarse graining and suitable initial conditions, tractable formulas are found for branch wave functions. Despite the nonlocality of the positive-definite version of the Klein-Gordon inner product, which means that nonoverlapping branches are not sufficient to imply decoherence, some initial conditions are found to give decoherence and allow the consistent assignment of probabilities.

  14. Quantum phase transition in a one-dimensional Holstein-Hubbard model at half-filling in the thermodynamic limit: A quantum entanglement approach

    NASA Astrophysics Data System (ADS)

    Sankar, I. V.; Chatterjee, Ashok

    2016-05-01

    The quantum phase transition from a spin-density wave phase to a charge-density wave phase is studied within the framework of the one-dimensional Holstein-Hubbard model. The phonons are first eliminated by using a variational phonon state and the effective electronic Hamiltonian is then exactly solved using the Bethe ansatz technique to get the ground state energy. The entanglement entropy is finally calculated to show the possibility of existence of an intervening metallic phase at the cross-over region of the spin-density and charge-density wave phases in the thermodynamic limit at half-filling.

  15. Hilbert space for quantum mechanics on superspace

    NASA Astrophysics Data System (ADS)

    Coulembier, K.; De Bie, H.

    2011-06-01

    In superspace a realization of {sl}_2 is generated by the super Laplace operator and the generalized norm squared. In this paper, an inner product on superspace for which this representation is skew-symmetric is considered. This inner product was already defined for spaces of weighted polynomials (see [K. Coulembier, H. De Bie, and F. Sommen, Orthogonality of Hermite polynomials in superspace and Mehler type formulae, Proc. London Math. Soc. (accepted) arXiv:1002.1118]). In this article, it is proven that this inner product can be extended to the super Schwartz space, but not to the space of square integrable functions. Subsequently, the correct Hilbert space corresponding to this inner product is defined and studied. A complete basis of eigenfunctions for general orthosymplectically invariant quantum problems is constructed for this Hilbert space. Then the integrability of the {sl}_2-representation is proven. Finally, the Heisenberg uncertainty principle for the super Fourier transform is constructed.

  16. Hilbert space for quantum mechanics on superspace

    SciTech Connect

    Coulembier, K.; De Bie, H.

    2011-06-15

    In superspace a realization of sl{sub 2} is generated by the super Laplace operator and the generalized norm squared. In this paper, an inner product on superspace for which this representation is skew-symmetric is considered. This inner product was already defined for spaces of weighted polynomials (see [K. Coulembier, H. De Bie, and F. Sommen, Orthogonality of Hermite polynomials in superspace and Mehler type formulae, Proc. London Math. Soc. (accepted) arXiv:1002.1118]). In this article, it is proven that this inner product can be extended to the super Schwartz space, but not to the space of square integrable functions. Subsequently, the correct Hilbert space corresponding to this inner product is defined and studied. A complete basis of eigenfunctions for general orthosymplectically invariant quantum problems is constructed for this Hilbert space. Then the integrability of the sl{sub 2}-representation is proven. Finally, the Heisenberg uncertainty principle for the super Fourier transform is constructed.

  17. Reality, Causality, and Probability, from Quantum Mechanics to Quantum Field Theory

    NASA Astrophysics Data System (ADS)

    Plotnitsky, Arkady

    2015-10-01

    These three lectures consider the questions of reality, causality, and probability in quantum theory, from quantum mechanics to quantum field theory. They do so in part by exploring the ideas of the key founding figures of the theory, such N. Bohr, W. Heisenberg, E. Schrödinger, or P. A. M. Dirac. However, while my discussion of these figures aims to be faithful to their thinking and writings, and while these lectures are motivated by my belief in the helpfulness of their thinking for understanding and advancing quantum theory, this project is not driven by loyalty to their ideas. In part for that reason, these lectures also present different and even conflicting ways of thinking in quantum theory, such as that of Bohr or Heisenberg vs. that of Schrödinger. The lectures, most especially the third one, also consider new physical, mathematical, and philosophical complexities brought in by quantum field theory vis-à-vis quantum mechanics. I close by briefly addressing some of the implications of the argument presented here for the current state of fundamental physics.

  18. Quantum Squeezing of Motion in a Mechanical Resonator

    NASA Astrophysics Data System (ADS)

    Wollman, Emma E.

    Quantum mechanics places limits on the minimum energy of a harmonic oscillator via the ever-present "zero-point" fluctuations of the quantum ground state. Through squeezing, however, it is possible to decrease the noise of a single motional quadrature below the zero-point level as long as noise is added to the orthogonal quadrature. While squeezing below the quantum noise level was achieved decades ago with light, quantum squeezing of the motion of a mechanical resonator is a more difficult prospect due to the large thermal occupations of megahertz-frequency mechanical devices even at typical dilution refrigerator temperatures of ~ 10 mK. Kronwald, Marquardt, and Clerk (2013) propose a method of squeezing a single quadrature of mechanical motion below the level of its zero-point fluctuations, even when the mechanics starts out with a large thermal occupation. The scheme operates under the framework of cavity optomechanics, where an optical or microwave cavity is coupled to the mechanics in order to control and read out the mechanical state. In the proposal, two pump tones are applied to the cavity, each detuned from the cavity resonance by the mechanical frequency. The pump tones establish and couple the mechanics to a squeezed reservoir, producing arbitrarily-large, steady-state squeezing of the mechanical motion. In this dissertation, I describe two experiments related to the implementation of this proposal in an electromechanical system. I also expand on the theory presented in Kronwald et. al. to include the effects of squeezing in the presence of classical microwave noise, and without assumptions of perfect alignment of the pump frequencies. In the first experiment, we produce a squeezed thermal state using the method of Kronwald et. al. We perform back-action evading measurements of the mechanical squeezed state in order to probe the noise in both quadratures of the mechanics. Using this method, we detect single-quadrature fluctuations at the level of 1.09 +/- 0.06 times the quantum zero-point motion. In the second experiment, we measure the spectral noise of the microwave cavity in the presence of the squeezing tones and fit a full model to the spectrum in order to deduce a quadrature variance of 0.80 +/- 0.03 times the zero-point level. These measurements provide the first evidence of quantum squeezing of motion in a mechanical resonator.

  19. Quantum Theory Without Waves: A Way of Eliminating Quantum Mechanical Paradoxes?

    NASA Astrophysics Data System (ADS)

    Cini, Marcello

    1. In his book The Philosophy of Quantum Mechanics Max Jammer writes: "The double nature of the macroscopic apparatus (on the one hand a classical Object and on the other hand obeying quantum mechanical laws) remained a somewhat questionable or at least obscure feature in Bohr's conception of quantum mechanical measurements." [l] It is fair to say that this ambiguity is still with us, after more than seventy years. Two related questions are still discussed within the small community of physicists who want to understand better the nature and the meaning of our fundamental theory of matter. On the one hand, one may ask: (a) How is it possible that classical objects with definite and context independent values of their dynamical variables exist, given that the laws of Quantum Mechanics forbid this possibility? On the other hand one may reverse the question and ask: (b) How is it possible that macroscopic objects, which, according to our everyday experience usually behave classically, may Show, under suitable circumstances, the bizarre behaviour predicted by Quantum Mechanics?

  20. EDITORIAL: Focus on Mechanical Systems at the Quantum Limit FOCUS ON MECHANICAL SYSTEMS AT THE QUANTUM LIMIT

    NASA Astrophysics Data System (ADS)

    Aspelmeyer, Markus; Schwab, Keith

    2008-09-01

    The last five years have witnessed an amazing development in the field of nano- and micromechanics. What was widely considered fantasy ten years ago is about to become an experimental reality: the quantum regime of mechanical systems is within reach of current experiments. Two factors (among many) have contributed significantly to this situation. As part of the widespread effort into nanoscience and nanofabrication, it is now possible to produce high-quality nanomechanical and micromechanical resonators, spanning length scales of millimetres to nanometres, and frequencies from kilohertz to gigahertz. Researchers coupled these mechanical elements to high-sensitivity actuation and readout systems such as single-electron transistors, quantum dots, atomic point contacts, SQUID loops, high-finesse optical or microwave-cavities etc. Some of these ultra-sensitive readout schemes are in principle capable of detection at the quantum limit and a large part of the experimental effort is at present devoted to achieving this. On the other hand, the fact that the groups working in the field come from various different physics backgrounds—the authors of this editorial are a representative sample—has been a constant source of inspiration for helpful theoretical and experimental tools that have been adapted from other fields to the mechanical realm. To name just one example: ideas from quantum optics have led to the recent demonstration (both in theory and experiment) that coupling a mechanical resonator to a high-finesse optical cavity can be fully analogous to the well-known sideband-resolved laser cooling of ions and hence is capable in principle of cooling a mechanical mode into its quantum ground state. There is no doubt that such interdisciplinarity has been a crucial element for the development of the field. It is interesting to note that a very similar sociological phenomenon occurred earlier in the quantum information community, an area which is deeply enriched by the diverse backgrounds and approaches of the researchers. As diverse as the approaches are the manifold of goals and perspectives for operating mechanical systems close to or within the quantum regime. Already now, nanomechanical sensors achieve single-molecule mass detection and magnetic resonance force detection from single-electron spins although they are operated far from quantum. Quantum-limited mechanical devices promise a new technology with hitherto unachieved performance for high-resolution sensing. This is also of high relevance for macroscopic mechanical resonators used in gravitational wave detectors. Furthermore, the increasing capability to couple mechanical modes to individual quantum systems raises the interesting question of whether mechanics can serve as a quantum bus in hybrid implementations of quantum information processing. Finally, the possibility of generating quantum superposition states that involve displacements of a massive macroscopic object (such as the center of mass of a mechanical beam) provides a completely new parameter regime for testing quantum theory over the amazing range from nanomechanical objects of several picograms up to gram-scale mirrors used in gravitational wave interferometers. We are looking forward to these fascinating developments! This Focus Issue is intended to highlight the present status of the field and to provide both introduction and motivation for students and researchers who want to get familiar with this exciting area or even want to join it. It also complements the conference activities of our community during the last year, where a series of dedicated invited sessions at several international conferences (APS March Meeting 2008, CLEO/QELS 2008, OSA Frontiers in Optics 2008, PQE 2008/2009 etc) culminated in the first Gordon Conference on 'Mechanical Systems at the Quantum Limit'. Given the fast development of the field it was not surprising to see that during the collection of the following contributions new progress was reported almost on a monthly basis and new groups entered the field. We intend to keep submission to this Focus Issue open for some time and invite everyone to share their latest results with us. And finally, a note to our fellow colleagues: keep up the good work! We would like to call the next Focus Issue 'Mechanical Systems IN the Quantum Regime'. Focus on Mechanical Systems at the Quantum Limit Contents Classical to quantum transition of a driven nonlinear nanomechanical resonator Itamar Katz, Ron Lifshitz, Alex Retzker and Raphael Straub Experimental optomechanics with silicon micromirrors Olivier Arcizet, Chiara Molinelli, Tristan Briant, Pierre-François Cohadon, Antoine Heidmann, Jean-Marie Mackowski, Christophe Michel, Laurent Pinard, Olivier Français and Lionel Rousseau Nonlinear quantum metrology using coupled nanomechanical resonators M J Woolley, G J Milburn and Carlton M Caves All mechanical mixing by means of orthogonally coupled cantilevers A Knoll, O Züger and U Duerig Parametric coupling between macroscopic quantum resonators L Tian, M S Allman and R W Simmonds Quantum noise in a nanomechanical Duffing resonator E Babourina-Brooks, A Doherty and G J Milburn Creating and verifying a quantum superposition in a micro-optomechanical system Dustin Kleckner, Igor Pikovski, Evan Jeffrey, Luuk Ament, Eric Eliel, Jeroen van den Brink and Dirk Bouwmeester Ground-state cooling of a nanomechanical resonator via a Cooper-pair box qubit Konstanze Jaehne, Klemens Hammerer and Margareta Wallquist Dissipation in circuit quantum electrodynamics: lasing and cooling of a low-frequency oscillator Julian Hauss, Arkady Fedorov, Stephan André, Valentina Brosco, Carsten Hutter, Robin Kothari, Sunil Yeshwanth, Alexander Shnirman and Gerd Schön Route to ponderomotive entanglement of light via optically trapped mirrors Christopher Wipf, Thomas Corbitt, Yanbei Chen and Nergis Mavalvala Nanomechanical-resonator-assisted induced transparency in a Cooper-pair box system Xiao-Zhong Yuan, Hsi-Sheng Goan, Chien-Hung Lin, Ka-Di Zhu and Yi-Wen Jiang High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators A Schliesser, G Anetsberger, R Rivière, O Arcizet and T J Kippenberg Optomechanical to mechanical entanglement transformation Giovanni Vacanti, Mauro Paternostro, G Massimo Palma and Vlatko Vedral The optomechanical instability in the quantum regime Max Ludwig, Björn Kubala and Florian Marquardt Quantum limits of photothermal and radiation pressure cooling of a movable mirror M Pinard and A Dantan Mechanical feedback in the high-frequency limit R El Boubsi, O Usmani and Ya M Blanter Back-action evasion and squeezing of a mechanical resonator using a cavity detector A A Clerk, F Marquardt and K Jacobs Simultaneous cooling and entanglement of mechanical modes of a micromirror in an optical cavity Claudiu Genes, David Vitali and Paolo Tombesi Dispersive optomechanics: a membrane inside a cavity A M Jayich, J C Sankey, B M Zwickl, C Yang, J D Thompson, S M Girvin, A A Clerk, F Marquardt and J G E Harris Cavity-assisted backaction cooling of mechanical resonators I Wilson-Rae, N Nooshi, J Dobrindt, T J Kippenberg and W Zwerger Cavity cooling of a nanomechanical resonator by light scattering I Favero and K Karrai Probing the quantum coherence of a nanomechanical resonator using a superconducting qubit: II. Implementation M P Blencowe and A D Armour Probing the quantum coherence of a nanomechanical resonator using a superconducting qubit: I. Echo scheme A D Armour and M P Blencowe Nanoelectromechanics of suspended carbon nanotubes A K Hüttel, M Poot, B Witkamp and H S J van der Zant Prospects for cooling nanomechanical motion by coupling to a superconducting microwave resonator J D Teufel, C A Regal and K W Lehnert

  1. Quantum mechanics concept assessment: Development and validation study

    NASA Astrophysics Data System (ADS)

    Sadaghiani, Homeyra R.; Pollock, Steven J.

    2015-06-01

    As part of an ongoing investigation of students' learning in first semester upper-division quantum mechanics, we needed a high-quality conceptual assessment instrument for comparing outcomes of different curricular approaches. The process of developing such a tool started with converting a preliminary version of a 14-item open-ended quantum mechanics assessment tool (QMAT) to a multiple-choice (MC) format. Further question refinement, development of effective distractors, adding new questions, and robust statistical analysis has led to a 31-item quantum mechanics concept assessment (QMCA) test. The QMCA is used as post-test only to assess students' knowledge about five main topics of quantum measurement: the time-independent Schrödinger equation, wave functions and boundary conditions, time evolution, and probability density. During two years of testing and refinement, the QMCA has been given in alpha (N =61 ) and beta versions (N =263 ) to students in upper division quantum mechanics courses at 11 different institutions with an average post-test score of 54%. By allowing for comparisons of student learning across different populations and institutions, the QMCA provides instructors and researchers a more standard measure of effectiveness of different curricula or teaching strategies on student conceptual understanding of quantum mechanics. In this paper, we discuss the construction of effective distractors and the use of student interviews and expert feedback to revise and validate both questions and distractors. We include the results of common statistical tests of reliability and validity, which suggest the instrument is presently in a stable, usable, and promising form.

  2. Ruling out multi-order interference in quantum mechanics.

    PubMed

    Sinha, Urbasi; Couteau, Christophe; Jennewein, Thomas; Laflamme, Raymond; Weihs, Gregor

    2010-07-23

    Quantum mechanics and gravitation are two pillars of modern physics. Despite their success in describing the physical world around us, they seem to be incompatible theories. There are suggestions that one of these theories must be generalized to achieve unification. For example, Born's rule--one of the axioms of quantum mechanics--could be violated. Born's rule predicts that quantum interference, as shown by a double-slit diffraction experiment, occurs from pairs of paths. A generalized version of quantum mechanics might allow multipath (i.e., higher-order) interference, thus leading to a deviation from the theory. We performed a three-slit experiment with photons and bounded the magnitude of three-path interference to less than 10(-2) of the expected two-path interference, thus ruling out third- and higher-order interference and providing a bound on the accuracy of Born's rule. Our experiment is consistent with the postulate both in semiclassical and quantum regimes. PMID:20651147

  3. Quantum mechanical force field for water with explicit electronic polarization

    PubMed Central

    Han, Jaebeom; Mazack, Michael J. M.; Zhang, Peng; Truhlar, Donald G.; Gao, Jiali

    2013-01-01

    A quantum mechanical force field (QMFF) for water is described. Unlike traditional approaches that use quantum mechanical results and experimental data to parameterize empirical potential energy functions, the present QMFF uses a quantum mechanical framework to represent intramolecular and intermolecular interactions in an entire condensed-phase system. In particular, the internal energy terms used in molecular mechanics are replaced by a quantum mechanical formalism that naturally includes electronic polarization due to intermolecular interactions and its effects on the force constants of the intramolecular force field. As a quantum mechanical force field, both intermolecular interactions and the Hamiltonian describing the individual molecular fragments can be parameterized to strive for accuracy and computational efficiency. In this work, we introduce a polarizable molecular orbital model Hamiltonian for water and for oxygen- and hydrogen-containing compounds, whereas the electrostatic potential responsible for intermolecular interactions in the liquid and in solution is modeled by a three-point charge representation that realistically reproduces the total molecular dipole moment and the local hybridization contributions. The present QMFF for water, which is called the XP3P (explicit polarization with three-point-charge potential) model, is suitable for modeling both gas-phase clusters and liquid water. The paper demonstrates the performance of the XP3P model for water and proton clusters and the properties of the pure liquid from about 900 106 self-consistent-field calculations on a periodic system consisting of 267 water molecules. The unusual dipole derivative behavior of water, which is incorrectly modeled in molecular mechanics, is naturally reproduced as a result of an electronic structural treatment of chemical bonding by XP3P. We anticipate that the XP3P model will be useful for studying proton transport in solution and solid phases as well as across biological ion channels through membranes. PMID:23927266

  4. Quantum mechanical force field for water with explicit electronic polarization

    NASA Astrophysics Data System (ADS)

    Han, Jaebeom; Mazack, Michael J. M.; Zhang, Peng; Truhlar, Donald G.; Gao, Jiali

    2013-08-01

    A quantum mechanical force field (QMFF) for water is described. Unlike traditional approaches that use quantum mechanical results and experimental data to parameterize empirical potential energy functions, the present QMFF uses a quantum mechanical framework to represent intramolecular and intermolecular interactions in an entire condensed-phase system. In particular, the internal energy terms used in molecular mechanics are replaced by a quantum mechanical formalism that naturally includes electronic polarization due to intermolecular interactions and its effects on the force constants of the intramolecular force field. As a quantum mechanical force field, both intermolecular interactions and the Hamiltonian describing the individual molecular fragments can be parameterized to strive for accuracy and computational efficiency. In this work, we introduce a polarizable molecular orbital model Hamiltonian for water and for oxygen- and hydrogen-containing compounds, whereas the electrostatic potential responsible for intermolecular interactions in the liquid and in solution is modeled by a three-point charge representation that realistically reproduces the total molecular dipole moment and the local hybridization contributions. The present QMFF for water, which is called the XP3P (explicit polarization with three-point-charge potential) model, is suitable for modeling both gas-phase clusters and liquid water. The paper demonstrates the performance of the XP3P model for water and proton clusters and the properties of the pure liquid from about 900 × 106 self-consistent-field calculations on a periodic system consisting of 267 water molecules. The unusual dipole derivative behavior of water, which is incorrectly modeled in molecular mechanics, is naturally reproduced as a result of an electronic structural treatment of chemical bonding by XP3P. We anticipate that the XP3P model will be useful for studying proton transport in solution and solid phases as well as across biological ion channels through membranes.

  5. Quantum mechanical force field for water with explicit electronic polarization

    SciTech Connect

    Han, Jaebeom; Mazack, Michael J. M.; Zhang, Peng; Truhlar, Donald G.; Gao, Jiali

    2013-08-07

    A quantum mechanical force field (QMFF) for water is described. Unlike traditional approaches that use quantum mechanical results and experimental data to parameterize empirical potential energy functions, the present QMFF uses a quantum mechanical framework to represent intramolecular and intermolecular interactions in an entire condensed-phase system. In particular, the internal energy terms used in molecular mechanics are replaced by a quantum mechanical formalism that naturally includes electronic polarization due to intermolecular interactions and its effects on the force constants of the intramolecular force field. As a quantum mechanical force field, both intermolecular interactions and the Hamiltonian describing the individual molecular fragments can be parameterized to strive for accuracy and computational efficiency. In this work, we introduce a polarizable molecular orbital model Hamiltonian for water and for oxygen- and hydrogen-containing compounds, whereas the electrostatic potential responsible for intermolecular interactions in the liquid and in solution is modeled by a three-point charge representation that realistically reproduces the total molecular dipole moment and the local hybridization contributions. The present QMFF for water, which is called the XP3P (explicit polarization with three-point-charge potential) model, is suitable for modeling both gas-phase clusters and liquid water. The paper demonstrates the performance of the XP3P model for water and proton clusters and the properties of the pure liquid from about 900 × 10{sup 6} self-consistent-field calculations on a periodic system consisting of 267 water molecules. The unusual dipole derivative behavior of water, which is incorrectly modeled in molecular mechanics, is naturally reproduced as a result of an electronic structural treatment of chemical bonding by XP3P. We anticipate that the XP3P model will be useful for studying proton transport in solution and solid phases as well as across biological ion channels through membranes.

  6. Geometric control of quantum mechanical and nonlinear classical systems

    NASA Astrophysics Data System (ADS)

    Nelson, Richard Joseph

    1999-10-01

    Geometric control refers to the judicious use of the non- commuting nature of inputs and natural dynamics as the basis for control. The last few decades in control system theory have seen the application of differential geometry in proving several important properties of systems, including controllability and observability. Until recently, however, the results of this mathematical geometry have rarely been used as the basis for designing and implementing an actual controller. This thesis demonstrates the application of a judicious selection of inputs, so that if the system is proven to be controllable using geometric methods, one can design input sequences using the same geometry. A demonstration of this method is shown in simulating the attitude control of a satellite: a highly non-linear, non- holonomic control problem. Although not a practical method for large re-orientations of a typical satellite, the approach can be applied to other nonlinear systems. The method is also applied to the closed-loop performance of a quantum mechanical system to demonstrate the feasibility of coherent quantum feedback-something impossible using a conventional controller. Finally, the method is applied in the open-loop control of a quantum mechanical system: in this case, the creation of Greenberger-Horne-Zeilinger correlations among the nuclei of an ensemble of alanine molecules in a nuclear magnetic resonance spectrometer. In each case, the data demonstrate the usefulness of a geometric approach to control. In addition to demonstrations of geometric control in practice, the quantum mechanical experiments also demonstrate for the first time peculiar quantum correlations, including GHZ correlations, that have no classical analog. The quantum experiments further establish nuclear magnetic resonance as a viable and accessible testbed of quantum predictions and processes. (Copies available exclusively from MIT Libraries, Rm. 14- 0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)

  7. Curl flux, coherence, and population landscape of molecular systems: Nonequilibrium quantum steady state, energy (charge) transport, and thermodynamics

    SciTech Connect

    Zhang, Z. D.; Wang, J.

    2014-06-28

    We established a theoretical framework in terms of the curl flux, population landscape, and coherence for non-equilibrium quantum systems at steady state, through exploring the energy and charge transport in molecular processes. The curl quantum flux plays the key role in determining transport properties and the system reaches equilibrium when flux vanishes. The novel curl quantum flux reflects the degree of non-equilibriumness and the time-irreversibility. We found an analytical expression for the quantum flux and its relationship to the environmental pumping (non-equilibriumness quantified by the voltage away from the equilibrium) and the quantum tunneling. Furthermore, we investigated another quantum signature, the coherence, quantitatively measured by the non-zero off diagonal element of the density matrix. Populations of states give the probabilities of individual states and therefore quantify the population landscape. Both curl flux and coherence depend on steady state population landscape. Besides the environment-assistance which can give dramatic enhancement of coherence and quantum flux with high voltage at a fixed tunneling strength, the quantum flux is promoted by the coherence in the regime of small tunneling while reduced by the coherence in the regime of large tunneling, due to the non-monotonic relationship between the coherence and tunneling. This is in contrast to the previously found linear relationship. For the systems coupled to bosonic (photonic and phononic) reservoirs the flux is significantly promoted at large voltage while for fermionic (electronic) reservoirs the flux reaches a saturation after a significant enhancement at large voltage due to the Pauli exclusion principle. In view of the system as a quantum heat engine, we studied the non-equilibrium thermodynamics and established the analytical connections of curl quantum flux to the transport quantities such as energy (charge) transfer efficiency, chemical reaction efficiency, energy dissipation, heat and electric currents observed in the experiments. We observed a perfect transfer efficiency in chemical reactions at high voltage (chemical potential difference). Our theoretical predicted behavior of the electric current with respect to the voltage is in good agreements with the recent experiments on electron transfer in single molecules.

  8. Curl flux, coherence, and population landscape of molecular systems: nonequilibrium quantum steady state, energy (charge) transport, and thermodynamics.

    PubMed

    Zhang, Zhedong; Wang, Jin; Zhang, Z D; Wang, J

    2014-06-28

    We established a theoretical framework in terms of the curl flux, population landscape, and coherence for non-equilibrium quantum systems at steady state, through exploring the energy and charge transport in molecular processes. The curl quantum flux plays the key role in determining transport properties and the system reaches equilibrium when flux vanishes. The novel curl quantum flux reflects the degree of non-equilibriumness and the time-irreversibility. We found an analytical expression for the quantum flux and its relationship to the environmental pumping (non-equilibriumness quantified by the voltage away from the equilibrium) and the quantum tunneling. Furthermore, we investigated another quantum signature, the coherence, quantitatively measured by the non-zero off diagonal element of the density matrix. Populations of states give the probabilities of individual states and therefore quantify the population landscape. Both curl flux and coherence depend on steady state population landscape. Besides the environment-assistance which can give dramatic enhancement of coherence and quantum flux with high voltage at a fixed tunneling strength, the quantum flux is promoted by the coherence in the regime of small tunneling while reduced by the coherence in the regime of large tunneling, due to the non-monotonic relationship between the coherence and tunneling. This is in contrast to the previously found linear relationship. For the systems coupled to bosonic (photonic and phononic) reservoirs the flux is significantly promoted at large voltage while for fermionic (electronic) reservoirs the flux reaches a saturation after a significant enhancement at large voltage due to the Pauli exclusion principle. In view of the system as a quantum heat engine, we studied the non-equilibrium thermodynamics and established the analytical connections of curl quantum flux to the transport quantities such as energy (charge) transfer efficiency, chemical reaction efficiency, energy dissipation, heat and electric currents observed in the experiments. We observed a perfect transfer efficiency in chemical reactions at high voltage (chemical potential difference). Our theoretical predicted behavior of the electric current with respect to the voltage is in good agreements with the recent experiments on electron transfer in single molecules. PMID:24985680

  9. Quantum-mechanical engines working with an ideal gas with a finite number of particles confined in a power-law trap

    NASA Astrophysics Data System (ADS)

    Wang, Jianhui; Ma, Yongli; He, Jizhou

    2015-07-01

    Based on quantum thermodynamic processes, we make a quantum-mechanical (QM) extension of the typical heat engine cycles, such as the Carnot, Brayton, Otto, Diesel cycles, etc., with no introduction of the concept of temperature. When these QM engine cycles are implemented by an ideal gas confined in an arbitrary power-law trap, a relation between the quantum adiabatic exponent and trap exponent is found. The differences and similarities between the efficiency of a given QM engine cycle and its classical counterpart are revealed and discussed.

  10. Is Quantum Mechanics Incompatible with Newton's First Law?

    NASA Astrophysics Data System (ADS)

    Rabinowitz, Mario

    2008-04-01

    Quantum mechanics (QM) clearly violates Newton’s First Law of Motion (NFLM) in the quantum domain for one of the simplest problems, yielding an effect in a force-free region much like the Aharonov-Bohm effect. In addition, there is an incompatibility between the predictions of QM in the classical limit, and that of classical mechanics (CM) with respect to NFLM. A general argument is made that such a disparity may be found commonly for a wide variety of quantum predictions in the classical limit. Alternatives to the Schrödinger equation are considered that might avoid this problem. The meaning of the classical limit is examined. Critical views regarding QM by Schrödinger, Bohm, Bell, Clauser, and others are presented to provide a more complete perspective.

  11. On the Lattice Structure of Probability Spaces in Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Holik, Federico; Massri, César; Plastino, A.; Zuberman, Leandro

    2013-06-01

    Let {C} be the set of all possible quantum states. We study the convex subsets of {C} with attention focused on the lattice theoretical structure of these convex subsets and, as a result, find a framework capable of unifying several aspects of quantum mechanics, including entanglement and Jaynes' Max-Ent principle. We also encounter links with entanglement witnesses, which leads to a new separability criteria expressed in lattice language. We also provide an extension of a separability criteria based on convex polytopes to the infinite dimensional case and show that it reveals interesting facets concerning the geometrical structure of the convex subsets. It is seen that the above mentioned framework is also capable of generalization to any statistical theory via the so-called convex operational models' approach. In particular, we show how to extend the geometrical structure underlying entanglement to any statistical model, an extension which may be useful for studying correlations in different generalizations of quantum mechanics.

  12. Quantum Mechanics, Pattern Recognition, and the Mammalian Brain

    NASA Astrophysics Data System (ADS)

    Chapline, George

    2008-10-01

    Although the usual way of representing Markov processes is time asymmetric, there is a way of describing Markov processes, due to Schrodinger, which is time symmetric. This observation provides a link between quantum mechanics and the layered Bayesian networks that are often used in automated pattern recognition systems. In particular, there is a striking formal similarity between quantum mechanics and a particular type of Bayesian network, the Helmholtz machine, which provides a plausible model for how the mammalian brain recognizes important environmental situations. One interesting aspect of this relationship is that the "wake-sleep" algorithm for training a Helmholtz machine is very similar to the problem of finding the potential for the multi-channel Schrodinger equation. As a practical application of this insight it may be possible to use inverse scattering techniques to study the relationship between human brain wave patterns, pattern recognition, and learning. We also comment on whether there is a relationship between quantum measurements and consciousness.

  13. Quantum mechanics paradoxes at the phi-factory

    NASA Astrophysics Data System (ADS)

    Ghirardi, G. C.; Grassi, R.; Weber, T.

    1991-04-01

    We discuss the possibility of performing experiments allowing one to test quantum mechanics versus any local realistic model within the context of the physics at the phi-factory. After having sketched the main features of the physical process under consideration and having focused the locality requirements for it, we derive Bell's inequality for the two-meson system. Comparison with quantum predictions shows that the inequality is not violated for any choice of the parameters characterizing the measurement process. Contrary to the case of spin variables, there is then no way to exclude, by experiments at the phi-factory, the possibility of a local realistic description of the process. A recent suggestion about a test of quantum predictions versus the assumption of a spontaneous factorization mechanism, as well as the claimed validity of an inequality which is different from Bell's one, are also discussed. The general conclusion is that the phi-factory facility does not seem to open new ways of testing quantum mechanics versus alternative general schemes of the type which are usually regarded as worth considering the debate about locality and quantum mechanics. The concluding section is devoted to making clear our position with respect to the problems discussed. It is pointed out that, in our opinion, the existing experimental evidence makes already clear that one has to accept the 'mysterious' features of microscopic systems. The really crucial problem is that of investigating whether one can restore a coherent worldview which generally conforms with our experience at the macroscopic level, by keeping all highly successful predictions of quantum theory at the microscopic one.

  14. Quantum models of classical systems

    NASA Astrophysics Data System (ADS)

    Hj?ek, P.

    2015-07-01

    Quantum statistical methods that are commonly used for the derivation of classical thermodynamic properties are extended to classical mechanical properties. The usual assumption that every real motion of a classical mechanical system is represented by a sharp trajectory is not testable and is replaced by a class of fuzzy models, the so-called maximum entropy (ME) packets. The fuzzier are the compared classical and quantum ME packets, the better seems to be the match between their dynamical trajectories. Classical and quantum models of a stiff rod will be constructed to illustrate the resulting unified quantum theory of thermodynamic and mechanical properties.

  15. Quantum-mechanical theory of optomechanical Brillouin cooling

    SciTech Connect

    Tomes, Matthew; Bahl, Gaurav; Carmon, Tal; Marquardt, Florian

    2011-12-15

    We analyze how to exploit Brillouin scattering of light from sound for the purpose of cooling optomechanical devices and present a quantum-mechanical theory for Brillouin cooling. Our analysis shows that significant cooling ratios can be obtained with standard experimental parameters. A further improvement of cooling efficiency is possible by increasing the dissipation of the optical anti-Stokes resonance.

  16. The Hidden-Variables Controversy in Quantum Mechanics.

    ERIC Educational Resources Information Center

    Pinch, Trevor J.

    1979-01-01

    Describes the controversy over the hidden variable in quantum mechanics, especially over Bohm's theory, and the criticism and rejection it received as a result of the erroneous application of Von Neumann's impossibility proof, rather than Bohn's theory itself. Concludes that science, especially physics, is not permeated by social factors. (GA)

  17. Spin Kinetic Models of Plasmas - Semiclassical and Quantum Mechanical Theory

    SciTech Connect

    Brodin, Gert; Marklund, Mattias; Zamanian, Jens

    2009-11-10

    In this work a recently published semiclassical spin kinetic model, generalizing those of previous authors are discussed. Some previously described properties are reviewed, and a new example illustrating the theory is presented. The generalization to a fully quantum mechanical description is discussed, and the main features of such a theory is outlined. Finally, the main conclusions are presented.

  18. Spontaneous symmetry breakdown in non-relativistic quantum mechanics

    NASA Astrophysics Data System (ADS)

    Muoz-Vega, R.; Garca-Quiroz, A.; Lpez-Chvez, Ernesto; Salinas-Hernndez, Encarnacin

    2012-10-01

    The advantages and disadvantages of some pedagogical non-relativistic quantum-mechanical models, used to illustrate spontaneous symmetry breakdown, are discussed. A spinor on the line subject to a magnetostatic interaction is presented as a toy model of the spontaneous breakdown of an internal symmetry.

  19. Quantum mechanics in finite-dimensional Hilbert space

    NASA Astrophysics Data System (ADS)

    de la Torre, A. C.; Goyeneche, D.

    2003-01-01

    The quantum mechanical formalism for the position and momentum of a particle on a one-dimensional lattice is developed. Some mathematical features characteristic of finite-dimensional Hilbert spaces are compared with the infinite-dimensional case. The construction of an unbiased basis for state determination is discussed.

  20. Monte-carlo calculations for some problems of quantum mechanics

    SciTech Connect

    Novoselov, A. A. Pavlovsky, O. V.; Ulybyshev, M. V.

    2012-09-15

    The Monte-Carlo technique for the calculations of functional integral in two one-dimensional quantum-mechanical problems had been applied. The energies of the bound states in some potential wells were obtained using this method. Also some peculiarities in the calculation of the kinetic energy in the ground state had been studied.

  1. Quantum Mechanics and Conceptual Change in High School Chemistry Textbooks.

    ERIC Educational Resources Information Center

    Shiland, Thomas W.

    1997-01-01

    Examines the presentation of quantum mechanics in eight secondary chemistry texts for elements associated with a conceptual change model: (1) dissatisfaction; (2) intelligibility; (3) plausibility; and (4) fruitfulness. Reports that these elements were not present in sufficient quantities to promote conceptual change. Presents recommendations for…

  2. Hidden algebra method (quasi-exact-solvability in quantum mechanics)

    SciTech Connect

    Turbiner, Alexander

    1996-02-20

    A general introduction to quasi-exactly-solvable problems of quantum mechanics is presented. Main attention is given to multidimensional quasi-exactly-solvable and exactly-solvable Schroedinger operators. Exact-solvability of the Calogero and Sutherland N-body problems ass ociated with an existence of the hidden algebra slN is discussed extensively.

  3. Exactly Solvable Quantum Mechanical Potentials: An Alternative Approach.

    ERIC Educational Resources Information Center

    Pronchik, Jeremy N.; Williams, Brian W.

    2003-01-01

    Describes an alternative approach to finding exactly solvable, one-dimensional quantum mechanical potentials. Differs from the usual approach in that instead of starting with a particular potential and seeking solutions to the related Schrodinger equations, it begins with known solutions to second-order ordinary differential equations and seeks to…

  4. Spin and Uncertainty in the Interpretation of Quantum Mechanics.

    ERIC Educational Resources Information Center

    Hestenes, David

    1979-01-01

    Points out that quantum mechanics interpretations, using Heisenberg's Uncertainty Relations for the position and momentum of an electron, have their drawbacks. The interpretations are limited to the Schrodinger theory and fail to take into account either spin or relativity. Shows why spin cannot be ignored. (Author/GA)

  5. The History of Teaching Quantum Mechanics in Greece

    ERIC Educational Resources Information Center

    Tampakis, Constantin; Skordoulis, Constantin

    2007-01-01

    In this work, our goal is to examine the attitude of the Greek scientific community towards Quantum Mechanics and establish the history of teaching of this theory in Greece. We have examined Physics textbooks written by professors of the University of Athens, as well as records of public speeches, university yearbooks from 1923 to 1970, articles…

  6. Overcoming Misconceptions in Quantum Mechanics with the Time Evolution Operator

    ERIC Educational Resources Information Center

    Quijas, P. C. Garcia; Aguilar, L. M. Arevalo

    2007-01-01

    Recently, there have been many efforts to use the research techniques developed in the field of physics education research to improve the teaching and learning of quantum mechanics. In particular, part of this research is focusing on misconceptions held by students. For instance, a set of misconceptions is associated with the concept of stationary…

  7. Review of Student Difficulties in Upper-Level Quantum Mechanics

    ERIC Educational Resources Information Center

    Singh, Chandralekha; Marshman, Emily

    2015-01-01

    Learning advanced physics, in general, is challenging not only due to the increased mathematical sophistication but also because one must continue to build on all of the prior knowledge acquired at the introductory and intermediate levels. In addition, learning quantum mechanics can be especially challenging because the paradigms of classical…

  8. Quantum Mechanics Concept Assessment: Development and Validation Study

    ERIC Educational Resources Information Center

    Sadaghiani, Homeyra R.; Pollock, Steven J.

    2015-01-01

    As part of an ongoing investigation of students' learning in first semester upper-division quantum mechanics, we needed a high-quality conceptual assessment instrument for comparing outcomes of different curricular approaches. The process of developing such a tool started with converting a preliminary version of a 14-item open-ended quantum…

  9. Completeness of the Coulomb Wave Functions in Quantum Mechanics

    ERIC Educational Resources Information Center

    Mukunda, N.

    1978-01-01

    Gives an explicit and elementary proof that the radial energy eigenfunctions for the hydrogen atom in quantum mechanics, bound and scattering states included, form a complete set. The proof uses some properties of the confluent hypergeometric functions and the Cauchy residue theorem from analytic function theory. (Author/GA)

  10. Elementary Quantum Mechanics in a High-Energy Process

    ERIC Educational Resources Information Center

    Denville, A.; And Others

    1978-01-01

    Compares two approaches to strong absorption in elementary quantum mechanics; the black sphere and a model based on the continuum theory of nuclear reactions. Examines the application to proton-antiproton interactions at low momenta and concludes that the second model is the appropriate and simplest to use. (Author/GA)

  11. Overcoming Misconceptions in Quantum Mechanics with the Time Evolution Operator

    ERIC Educational Resources Information Center

    Quijas, P. C. Garcia; Aguilar, L. M. Arevalo

    2007-01-01

    Recently, there have been many efforts to use the research techniques developed in the field of physics education research to improve the teaching and learning of quantum mechanics. In particular, part of this research is focusing on misconceptions held by students. For instance, a set of misconceptions is associated with the concept of stationary

  12. A multiscale quantum mechanics/electromagnetics method for device simulations.

    PubMed

    Yam, ChiYung; Meng, Lingyi; Zhang, Yu; Chen, GuanHua

    2015-04-01

    Multiscale modeling has become a popular tool for research applying to different areas including materials science, microelectronics, biology, chemistry, etc. In this tutorial review, we describe a newly developed multiscale computational method, incorporating quantum mechanics into electronic device modeling with the electromagnetic environment included through classical electrodynamics. In the quantum mechanics/electromagnetics (QM/EM) method, the regions of the system where active electron scattering processes take place are treated quantum mechanically, while the surroundings are described by Maxwell's equations and a semiclassical drift-diffusion model. The QM model and the EM model are solved, respectively, in different regions of the system in a self-consistent manner. Potential distributions and current densities at the interface between QM and EM regions are employed as the boundary conditions for the quantum mechanical and electromagnetic simulations, respectively. The method is illustrated in the simulation of several realistic systems. In the case of junctionless field-effect transistors, transfer characteristics are obtained and a good agreement between experiments and simulations is achieved. Optical properties of a tandem photovoltaic cell are studied and the simulations demonstrate that multiple QM regions are coupled through the classical EM model. Finally, the study of a carbon nanotube-based molecular device shows the accuracy and efficiency of the QM/EM method. PMID:25611987

  13. The History of Teaching Quantum Mechanics in Greece

    ERIC Educational Resources Information Center

    Tampakis, Constantin; Skordoulis, Constantin

    2007-01-01

    In this work, our goal is to examine the attitude of the Greek scientific community towards Quantum Mechanics and establish the history of teaching of this theory in Greece. We have examined Physics textbooks written by professors of the University of Athens, as well as records of public speeches, university yearbooks from 1923 to 1970, articles

  14. Quasi-Hermitian quantum mechanics in phase space

    SciTech Connect

    Curtright, Thomas; Veitia, Andrzej

    2007-10-15

    We investigate quasi-Hermitian quantum mechanics in phase space using standard deformation quantization methods: Groenewold star products and Wigner transforms. We focus on imaginary Liouville theory as a representative example where exact results are easily obtained. We emphasize spatially periodic solutions, compute various distribution functions and phase-space metrics, and explore the relationships between them.

  15. Topological origin of quantum mechanical vacuum transitions and tunneling

    NASA Astrophysics Data System (ADS)

    Bernardini, Alex E.; Chinaglia, Mariana

    2015-07-01

    The quantum transition between shifted zero-mode wave functions is shown to be induced by the systematic deformation of topological and non-topological defects that support the one-dimensional double-well (DW) potential tunneling dynamics. The topological profile of the zero-mode ground state, ψ0, and the first excited state, ψ1, of DW potentials are obtained through the analytical technique of topological defect deformation. Deformed defects create two inequivalent topological scenarios connected by a symmetry breaking that support the quantum conversion of a zero-mode stable vacuum into an unstable tachyonic quantum state. Our theoretical findings reveal the topological origin of two-level models where a nonstationary quantum state of unitary evolution, ψ0 +exp(-iEt)ψ1, that exhibits a stable tunneling dynamics, is converted into a quantum superposition involving a self-vanishing tachyonic mode, exp(-Et)ψ0 + ψ1, that parametrizes a tunneling coherent destruction. The non-classical nature of the symmetry breaking dynamics is recreated in terms of the single particle quantum mechanics of one-dimensional DW potentials.

  16. Physics on the boundary between classical and quantum mechanics

    NASA Astrophysics Data System (ADS)

    't Hooft, Gerard

    2014-04-01

    Nature's laws in the domain where relativistic effects, gravitational effects and quantum effects are all comparatively strong are far from understood. This domain is called the Planck scale. Conceivably, a theory can be constructed where the quantum nature of phenomena at such scales can be attributed to something fundamentally simpler. However, arguments that quantum mechanics cannot be explained in terms of any classical theory using only classical logic seem to be based on sound mathematical considerations: there can't be physical laws that require "conspiracy". It may therefore be surprising that there are several explicit quantum systems where these considerations apparently do not apply. In the lecture we will show several such counterexamples. These are quantum models that do have a classical origin. The most curious of these models is superstring theory. This theory is often portrayed as to underly the quantum field theory of the subatomic particles, including the "Standard Model". So now the question is asked: how can this model feature "conspiracy", and how bad is that? Is there conspiracy in the vacuum fluctuations?

  17. Does an Emphasis on the Concept of Quantum States Enhance Students' Understanding of Quantum Mechanics?

    NASA Astrophysics Data System (ADS)

    Greca, Ileana Maria; Freire, Olival

    Teaching physics implies making choices. In the case of teaching quantum physics, besides an educational choice - the didactic strategy - another choice must be made, an epistemological one, concerning the interpretation of quantum theory itself. These two choices are closely connected. We have chosen a didactic strategy that privileges the phenomenological-conceptual approach, with emphasis upon quantum features of the systems, instead of searching for classical analogies. This choice has led us to present quantum theory associated with an orthodox, yet realistic, interpretation of the concept of quantum state, considered as the key concept of quantum theory, representing the physical reality of a system, independent of measurement processes. The results of the mplementation of this strategy, with three groups of engineering students, showed that more than a half of them attained a reasonable understanding of the basics of quantum mechanics (QM) for this level. In addition, a high degree of satisfaction was attained with the classes as 80% of the students of the experimental groups claimed to have liked it and to be interested in learning more about QM.

  18. Structural, mechanical and thermodynamic properties of N-dope BBi compound under pressure

    NASA Astrophysics Data System (ADS)

    Yalcin, Battal G.

    2016-04-01

    The structural, mechanical and thermodynamic properties of N-dope BBi compound have been reported in the current study. The structural and mechanical results of the studied binary compounds (BN and BBi) and their ternary alloys BBi1- x N x structures are presented by means of density functional theory. The exchange and correlation effects are taken into account by using the generalized gradient approximation functional of Wu and Cohen which is an improved form of the most popular Perdew-Burke-Ernzerhof. The quasi-harmonic Debye model is used for the thermodynamic properties of studied materials. The basic physical properties of considered structures such as the equilibrium lattice parameter (a 0), bulk modulus (B 0), its pressure derivative (B'), elastic constants (C 11, C 12 and C 44), Kleinman's internal-strain parameter (ƺ), shear modulus anisotropy (A), the average shear modulus (G), Young's modulus (Y) and Poisson's ratio (v), B 0/ G ratio, microhardness parameter (H), Cauchy pressure (C″), and 1st and 2nd Lame constants (λ, μ), debye temperature (θ D), wave velocities (ν l, ν t and ν m), melting temperature (T m) and minimum thermal conductivity (κ min) have been calculated at zero pressure. In order to obtain more information, thermodynamic properties, such as internal energy (U), Helmoltz free energy (F), entropy (S), Debye temperature (θ D), thermal expansion (α), constant volume and pressure heat capacities (C V and C P ), are analyzed under the whole range from 0 to 20 GPa and temperature range from 0 to 1500 K. The obtained results of the studied binary compounds are in coincidence with experimental works.

  19. Testing Quantum Mechanics and Bell's Inequality with Astronomical Observations

    NASA Astrophysics Data System (ADS)

    Friedman, Andrew S.; Kaiser, David I.; Gallicchio, Jason; Team 1: University of Vienna, Institute for Quantum Optics and Quantum Information; Team 2: UC San Diego Cosmology Group; Team 3: NASA/JPL/Caltech

    2016-06-01

    We report on an in progress "Cosmic Bell" experiment that will leverage cosmology to test quantum mechanics and Bell's inequality using astronomical observations. Different iterations of our experiment will send polarization-entangled photons through the open air to detectors ~1-100 kilometers apart, whose settings would be rapidly chosen using real-time telescopic observations of Milky Way stars, and eventually distant, causally disconnected, cosmological sources - such as pairs of quasars or patches of the cosmic microwave background - all while the entangled pair is still in flight. This would, for the first time, attempt to fully close the so-called "setting independence" or "free will" loophole in experimental tests of Bell's inequality, whereby an alternative theory could mimic the quantum predictions if the experimental settings choices shared even a small correlation with unknown, local, causal influences a mere few milliseconds prior to the experiment. A full Cosmic Bell test would push any such influence all the way back to the hot big bang, since the end of any period of inflation, 13.8 billion years ago, an improvement of 20 orders of magnitude compared to the best previous experiments. Redshift z > 3.65 quasars observed at optical wavelengths are the optimal candidate source pairs using present technology. Our experiment is partially funded by the NSF INSPIRE program, in collaboration with MIT, UC San Diego, Harvey Mudd College, NASA/JPL/Caltech, and the University of Vienna. Such an experiment has implications for our understanding of nature at the deepest level. By testing quantum mechanics in a regime never before explored, we would at the very least extend our confidence in quantum theory, while at the same time severely constraining large classes of alternative theories. If the experiment were to uncover discrepancies from the quantum predictions, there could be crucial implications for early-universe cosmology, the security of quantum encryption, and even new theoretical physics, including quantum gravity.

  20. Quantum dot heterojunction solar cells: The mechanism of device operation and impacts of quantum dot oxidation

    NASA Astrophysics Data System (ADS)

    Ihly, Rachelle

    This thesis explores the understanding of the chemistry and physics of colloidal quantum dots for practical solar energy photoconversion. Solar cell devices that make use of PbS quantum dots generally rely on constant and unchanged optical properties such that band gap energies remain tuned within the device. The design and development of unique experiments to ascertain mechanisms of optical band gap shifts occurring in PbS quantum dot thin-films exposed to air are discussed. The systematic study of the absorption properties of PbS quantum dot films exposed to air, heat, and UV illumination as a function of quantum dot size has been described. A method to improve the air-stability of films with atomic layer deposition of alumina is demonstrated. Encapsulation of quantum dot films using a protective layer of alumina results in quantum dot solids that maintain tuned absorption for 1000 hours. This thesis focuses on the use of atomic force microscopy and electrical variants thereof to study the physical and electrical characteristics of quantum dot arrays. These types of studies have broad implications in understanding charge transport mechanisms and solar cell device operation, with a particular emphasis on quantum dot transistors and solar cells. Imaging the channel potential of a PbSe quantum dot thin-film in a transistor showed a uniform distribution of charge coinciding with the transistor current voltage characteristics. In a second study, solar cell device operation of ZnO/PbS heterojunction solar cells was investigated by scanning active cross-sections with Kelvin probe microscopy as a function of applied bias, illumination and device architecture. This technique directly provides operating potential and electric field profiles to characterize drift and diffusion currents occurring in the device. SKPM established a field-free region occurring in the quantum dot layer, indicative of diffusion-limited transport. These results provide the path to optimization of future architectures that may employ drift-based transport in the quantum dot layer for enhanced charge extraction and power conversion efficiency.