Science.gov

Sample records for thermoplastic puncture-healing polymers

  1. Recent Advances in Thermoplastic Puncture-Healing Polymers

    NASA Technical Reports Server (NTRS)

    Gordon, K. L.; Working, D. C.; Wise, K. E.; Bogert, P. B.; Britton, S. M.; Topping, C.C.; Smith, J. Y.; Siochi, E. J.

    2009-01-01

    Self-healing materials provide a route for enhanced damage tolerance in materials for aerospace applications. In particular, puncture-healing upon impact has the potential to mitigate significant damage caused by high velocity micrometeoroid impacts. This type of material also has the potential to improve damage tolerance in load bearing structures to enhance vehicle health and aircraft durability. The materials being studied are those capable of instantaneous puncture healing, providing a mechanism for mechanical property retention in lightweight structures. These systems have demonstrated healing capability following penetration of fast moving projectiles -- velocities that range from 9 mm bullets shot from a gun (approx.330 m/sec) to close to micrometeoroid debris velocities of 4800 m/sec. In this presentation, we report on a suite of polymeric materials possessing this characteristic. Figure 1 illustrates the puncture healing concept. Puncture healing in these materials is dependent upon how the combination of a polymer's viscoelastic properties responds to the energy input resulting from the puncture event. Projectile penetration increases the temperature in the vicinity of the impact. Self-healing behavior occurs following puncture, whereby energy must be transferred to the material during impact both elastically and inelastically, thus establishing two requirements for puncture healing to occur: a.) The need for the puncture event to produce a local melt state in the polymer material and b.) The molten material has to have sufficient melt elasticity to snap back and close the hole. 1,2 Previous ballistic testing studies revealed that Surlyn materials warmed up to a temperature approx.98 C during projectile puncture (3 C higher than it s melting temperature). 1,2 The temperature increase produces a localized flow state and the melt elasticity to snap back thus sealing the hole. Table 1 lists the commercially polymers studied here, together with their physical properties. The polymers were selected based on chemical structure, tensile strengths, tensile moduli, glass transition temperature, melting temperatures, and impact strength. The thermal properties of the polymers were characterized by Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA). Mechanical properties were assessed by a Sintech 2W instron according to ASTM D1708 or D638 at crosshead speeds of 5.08 cm/min. 7.6 cm x 7.6 cm panels of the different materials were prepared and ballistic testing was performed at various temperatures. The panels were shot with a .223 caliber semiautomatic rifle from a distance of 23 meters at various temperatures. Chronographs were used to measure initial and final bullet velocity. Temperatures at the site of impact were measured using a FLIR ThermaCAM S60 thermal camera. A Vision Research model Phantom 9 high speed video camera was used to capture high speed video footage of ballistics testing.

  2. Recent Advances in Thermoplastic Puncture-Healing Polymers

    NASA Technical Reports Server (NTRS)

    Bogert, Philip B.; Working, Dennis C.; Wise, Kristopher E.; Smith, Janice Y.; Topping, Crystal C.; Britton, Sean M.; Bagby, Paul R.; Siochi, Emilie J.

    2010-01-01

    The motivation for this work is to develop self-healing polymeric materials to enable damage tolerant systems, and to tailor puncture healing for use temperatures and applications. This will be a benefit in environments and conditions where access for manual repair is limited or impossible, or where damage may not be detected.

  3. Puncture-Healing Thermoplastic Resin Carbon-Fiber-Reinforced Composites

    NASA Technical Reports Server (NTRS)

    Gordon, Keith L. (Inventor); Siochi, Emilie J. (Inventor); Grimsley, Brian W. (Inventor); Cano, Roberto J. (Inventor); Czabaj, Michael W. (Inventor)

    2015-01-01

    A composite comprising a combination of a self-healing polymer matrix and a carbon fiber reinforcement is described. In one embodiment, the matrix is a polybutadiene graft copolymer matrix, such as polybutadiene graft copolymer comprising poly(butadiene)-graft-poly(methyl acrylate-co-acrylonitrile). A method of fabricating the composite is also described, comprising the steps of manufacturing a pre-impregnated unidirectional carbon fiber preform by wetting a plurality of carbon fibers with a solution, the solution comprising a self-healing polymer and a solvent, and curing the preform. A method of repairing a structure made from the composite of the invention is described. A novel prepreg material used to manufacture the composite of the invention is described.

  4. Bonding thermoplastic polymers

    DOEpatents

    Wallow, Thomas I. (Fremont, CA); Hunter, Marion C. (Livermore, CA); Krafcik, Karen Lee (Livermore, CA); Morales, Alfredo M. (Livermore, CA); Simmons, Blake A. (San Francisco, CA); Domeier, Linda A. (Danville, CA)

    2008-06-24

    We demonstrate a new method for joining patterned thermoplastic parts into layered structures. The method takes advantage of case-II permeant diffusion to generate dimensionally controlled, activated bonding layers at the surfaces being joined. It is capable of producing bonds characterized by cohesive failure while preserving the fidelity of patterned features in the bonding surfaces. This approach is uniquely suited to production of microfluidic multilayer structures, as it allows the bond-forming interface between plastic parts to be precisely manipulated at micrometer length scales. The bond enhancing procedure is easily integrated in standard process flows and requires no specialized equipment.

  5. Diamond turning of thermoplastic polymers

    SciTech Connect

    Smith, E.; Scattergood, R.O.

    1988-12-01

    Single point diamond turning studies were made using a series of thermoplastic polymers with different glass transition temperatures. Variations in surface morphology and surface roughness were observed as a function of cutting speed. Lower glass transition temperatures facilitate smoother surface cuts and better surface finish. This can be attributed to the frictional heating that occurs during machining. Because of the very low glass transition temperatures in polymeric compared to inorganic glasses, the precision machining response can be very speed sensitive.

  6. Tough, High-Performance, Thermoplastic Addition Polymers

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H.; Proctor, K. Mason; Gleason, John; Morgan, Cassandra; Partos, Richard

    1991-01-01

    Series of addition-type thermoplastics (ATT's) exhibit useful properties. Because of their addition curing and linear structure, ATT polymers have toughness, like thermoplastics, and easily processed, like thermosets. Work undertaken to develop chemical reaction forming stable aromatic rings in backbone of ATT polymer, combining high-temperature performance and thermo-oxidative stability with toughness and easy processibility, and minimizing or eliminating necessity for tradeoffs among properties often observed in conventional polymer syntheses.

  7. Method of forming a foamed thermoplastic polymer

    DOEpatents

    Duchane, David V.; Cash, David L.

    1986-01-01

    A method of forming a foamed thermoplastic polymer. A solid thermoplastic lymer is immersed in an immersant solution comprising a compatible carrier solvent and an infusant solution containing an incompatible liquid blowing agent for a time sufficient for the immersant solution to infuse into the polymer. The carrier solvent is then selectively extracted, preferably by a solvent exchange process in which the immersant solution is gradually diluted with and replaced by the infusant solution, so as to selectively leave behind the infusant solution permanently entrapped in the polymer. The polymer is then heated to volatilize the blowing agent and expand the polymer into a foamed state.

  8. Method of forming a foamed thermoplastic polymer

    DOEpatents

    Duchane, D.V.; Cash, D.L.

    1984-11-21

    A solid thermoplastic polymer is immersed in an immersant solution comprising a compatible carrier solvent and an infusant solution containing an incompatible liquid blowing agent for a time sufficient for the immersant solution to infuse into the polymer. The carrier solvent is then selectively extracted, preferably by a solvent exchange process in which the immersant solution is gradually diluted with and replaced by the infusant solution, so as to selectively leave behind the infustant solution permanently entrapped in the polymer. The polymer is then heated to volatilize the blowing agent and expand the polymer into a foamed state.

  9. Dynamically cured thermoplastic olefin polymers

    SciTech Connect

    Hazelton, D.R.; Puydak, R.C.; Booth, D.A.

    1986-08-19

    A thermoplastic composition is described comprising a polyolefin resin, a first rubber component selected from the group consisting of polyisobutylene, and ethylene propylene copolymer (EPM) and EPDM and a second rubber component selected from the group consisting of halogenated butyl rubber and polychoroprene, the second rubber component being cured utilizing a curative other than a peroxide, which is a vulcanizing agent for the second rubber but not for the first rubber, the second rubber being cured to a fully vulcanized state by dynamic vulcanization in the presence of the polyolefin resin and first rubber compound.

  10. Thermoplastic polymers for improved fire safety

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Parker, J. A.; Hilado, C. J.

    1976-01-01

    The thermochemical and flammability characteristics of some typical thermoplastic materials currently in use and others being considered for use in aircraft interiors are described. The properties studied included (1) thermomechanical properties such as glass transition and melt temperature, (2) changes in polymer enthalpy by differential scanning calorimetry, (3) thermogravimetric analysis in anaerobic and oxidative environments, (4) oxygen index, (5) smoke evolution, (6) relative toxicity of the volatile products of pyrolysis, and (7) selected physical properties. The generic polymers that were evaluated included: acrylonitrile butadiene styrene, bisphenol A polycarbonate, 9,9 bis (4-hydroxyphenyl) fluorene polycarbonatepoly (dimethyl siloxane) block polymer, phenolphthalein bisphenol A polycarbonate, phenolphthalein polycarbonate, polyether sulfone, polyphenylene oxide, polyphenylene sulfide, polyaryl sulfone, chlorinated polyvinyl chloride homopolymer, polyvinyl fluoride, and polyvinylidene fluoride. Processing parameters, including molding characteristics of some of the advanced polymers, are described. Test results and relative ranking of some of the flammability, smoke, and toxicity properties are presented.

  11. Improved adhesion for thermoplastic polymers using oxyfluorination

    NASA Astrophysics Data System (ADS)

    Achereiner, F.; Mnstedt, H.; Zeiler, T.

    2008-03-01

    Industrial applications of thermoplastic polymers are often limited by their poor adhesion properties. In this work the effect of surface oxyfluorination on the adhesion properties was investigated for polyethylene (PE), polyoxymethylene (POM), polybutylene terephthalate (PBT) and polyamide 6 (PA6). The adhesive joint strength was quantified using lap-shear tests. These results were correlated with the changes in the chemical composition of the surface, determined by X-ray photoelectron spectroscopy (XPS), in the surface free energy, measured by the contact angle method, and in the topography, using white-light confocal microscopy. The adhesive strength is strongly improved for all four polymers, but the degree of this increase depends on the polymer type. The surface free energy shows a similar trend for all four polymers. A high surface free energy exceeding 50 mN/m was observed after oxy-fluorination, whereby the polar component was strongly predominant. Surface topography measurements show no significant increase of the surface roughness. So the effect of oxyfluorination results primarily in increased wettability and polarity, due to changes of the chemical composition of the surface. XPS measurements confirm the integration of fluorine and oxygen groups in the polymer chain, which correlates with the increased polarity.

  12. Microscale patterning of thermoplastic polymer surfaces by selective solvent swelling.

    PubMed

    Rahmanian, Omid; Chen, Chien-Fu; DeVoe, Don L

    2012-09-01

    A new method for the fabrication of microscale features in thermoplastic substrates is presented. Unlike traditional thermoplastic microfabrication techniques, in which bulk polymer is displaced from the substrate by machining or embossing, a unique process termed orogenic microfabrication has been developed in which selected regions of a thermoplastic surface are raised from the substrate by an irreversible solvent swelling mechanism. The orogenic technique allows thermoplastic surfaces to be patterned using a variety of masking methods, resulting in three-dimensional features that would be difficult to achieve through traditional microfabrication methods. Using cyclic olefin copolymer as a model thermoplastic material, several variations of this process are described to realize growth heights ranging from several nanometers to tens of micrometers, with patterning techniques include direct photoresist masking, patterned UV/ozone surface passivation, elastomeric stamping, and noncontact spotting. Orogenic microfabrication is also demonstrated by direct inkjet printing as a facile photolithography-free masking method for rapid desktop thermoplastic microfabrication. PMID:22900539

  13. Microscale Patterning of Thermoplastic Polymer Surfaces by Selective Solvent Swelling

    PubMed Central

    Rahmanian, Omid; Chen, Chien-Fu; DeVoe, Don L.

    2012-01-01

    A new method for the fabrication of microscale features in thermoplastic substrates is presented. Unlike traditional thermoplastic microfabrication techniques, in which bulk polymer is displaced from the substrate by machining or embossing, a unique process termed orogenic microfabrication has been developed in which selected regions of a thermoplastic surface are raised from the substrate by an irreversible solvent swelling mechanism. The orogenic technique allows thermoplastic surfaces to be patterned using a variety of masking methods, resulting in three-dimensional features that would be difficult to achieve through traditional microfabrication methods. Using cyclic olefin copolymer as a model thermoplastic material, several variations of this process are described to realize growth heights ranging from several nanometers to tens of microns, with patterning techniques include direct photoresist masking, patterned UV/ozone surface passivation, elastomeric stamping, and noncontact spotting. Orogenic microfabrication is also demonstrated by direct inkjet printing as a facile photolithography-free masking method for rapid desktop thermoplastic microfabrication. PMID:22900539

  14. Drilling fluids based on powered sulfonated thermoplastic polymers

    SciTech Connect

    Turner, S.R.; Lundberg, R.D.; Peiffer, D.G.; Walker, T.O.

    1984-01-10

    The present invention relates to powdered sulfonated thermoplastic polymers which function as viscosification agents when added to oil-based drilling muds which are the fluids used to maintain pressure, cool drill bits and lift cuttings from the holes in the drilling operation for oil and gas wells. The powdered sulfonated thermoplastic polymer has about 5 to about 100 meq. of sulfonate groups per 100 grams of the sulfonated thermoplastic polymer, wherein the sulfonated groups are neutralized with a metallic cation or an amine or ammonium counterion. The powdered sulfonated thermoplastic polymers have a particle size range of 0.25 ..mu..m to 2.5 ..mu..m and are prepared by spray drying an emulsion of the sulfonated thermoplastic polymer which has been prepared by a free radical copolymerization process. A polar cosolvent can optionally be added to the mixture of oil drilling mud and sulfonated polymer, wherein the polar cosolvent increases the solubility of the sulfonated polymer in the oil drilling mud by decreasing the strong ionic interactions between the sulfonate groups of the sulfonated polymer.

  15. Novel polymer blends with thermoplastic starch

    NASA Astrophysics Data System (ADS)

    Taghizadeh, Ata

    A new class of polymers known as "bioplastics" has emerged and is expanding rapidly. This class consists of polymers that are either bio-based or biodegradable, or both. Among these, polysaccharides, namely starch, are of great interest for several reasons. By gelatinizing starch via plasticizers, it can be processed in the same way as thermoplastic polymers with conventional processing equipment. Hence, these bio-based and biodegradable plastics, with their low source and refinery costs, as well as relatively easy processability, have made them ideal candidates for incorporation into various current plastic products. Four different plasticizers have been chosen here for gelatinization of thermoplastic starch (TPS): glycerol, sorbitol, diglycerol and polyglycerol, with the latter two being used for the first time in such a process. Two methodological categories are used. The first involves a calorimetric method (Differential Scanning Calorimetry) as well as optical microscopy; these are "static" methods where no shear is applied A wide range of starch/water/plasticizer compositions were prepared to explore the gelatinization regime for each plasticizer. The onset and conclusion gelatinization temperatures for sorbitol and glycerol were found to be in the same vicinity, while diglycerol and polyglycerol showed significantly higher transition temperatures. The higher molecular weight and viscosity of polyglycerol allow this transition to occur at an even higher temperature than with diglycerol. This is due to the increase in molecular weight and viscosity of the two new plasticizers, as well as their significant decrease in water solubility. It is demonstrated that the water/plasticizer ratio has a pronounced effect on gelatinization temperatures. When plasticizer content was held constant and water content was increased, it was found that the gelatinization temperature decreased for all the plasticizers. Meanwhile, when the water content was held constant and the plasticizer content was increased, the gelatinization temperature increased for glycerol, sorbitol and diglycerol, but it moved in the opposite direction in the case of polyglycerol. The gelatinization temperature variation for glycerol, sorbitol and diglycerol caused by changing water and plasticizer content indicates that water is the primary agent causing granular swell and plasticization in the gelatinization process. Due to the high molecular weight and viscosity, as well as the low hydroxyl group density (~ one --OH per two carbon) and borderline solubility of polyglycerol in water, it is believed that water-aided penetration of the plasticizer among the crystalline structure of starch molecules is significantly decelerated. So it is proposed that in the case of low-water solubility of the plasticizers, gelatinization temperature is determined more by the total amount of the plasticizer and water, rather than the water/plasticizer ratio. Increasing the miscibility of polyglycerol in water by increasing the temperature of the initial slurry, results in a return of the system to the typical thermal dependence of gelatinization with plasticizer/water ratio. Secondly, the gelatinization of starch under "dynamic conditions" was studied. In this case, a constant shear is applied to the slurry, along with a temperature ramp to induce gelatinization. This is, in fact, a rheological technique that heats up the slurry, while a mechanical shear is applied throughout. The reason for using this method is that in the plastic industry, thermoplastic starch is produced via processes involving shear such as extrusion, but, to date, there has not yet been a thorough study on the effect of pure shear on the gelatinization process. Glycerol, diglycerol and sorbitol were subjected to different dynamic gelatinization treatments in a couette flow system, and the results were compared with static gelatinization. Applying shear showed virtually no effect on the onset gelatinization temperature. However, the conclusion temperature was remarkably reduced with the presence of shear. So it can be stated that the conclusion temperature is more kinetically driven (i.e. by applying high shear), so that complete gelatinization can be achieved in a shorter time-frame. (Abstract shortened by UMI.)

  16. Drilling fluids based on a mixture of a sulfonated thermoplastic polymer and a sulfonated elastomeric polymer

    SciTech Connect

    Turner, S.R.; Lundberg, R.D.; Peiffer, D.G.; Thaler, W.A.; Walker, T.O.

    1984-01-10

    The present invention relates to mixtures of sulfonated thermoplastic polymers and sulfonated elastomeric polymers which function as viscosification agents when added to oil-based drilling muds which are the fluids used to maintain pressure, cool drill bits, and lift cuttings from the holes in the drilling operation for oil and gas wells. The sulfonated thermoplastic and elastomeric polymers both have about 5 to about 200 meq. of sulfonate groups per 100 grams of the sulfonated thermoplastic or elastomeric polymers, wherein the sulfonated groups are neutralized with a metallic cation or an amine or ammonium counterion. A polar cosolvent can optionally be added to the mixture of oil drilling mud and sulfonated thermoplastic and elastomeric polymers, wherein the polar cosolvent increases the solubility of the sulfonated thermoplastic and elastomeric polymer in the oil drilling mud by decreasing the strong ionic interactions between the sulfonate groups of the sulfonated polymers.

  17. Thermodynamics of deformation for thermoplastic polymers

    SciTech Connect

    Adams, G.W.

    1987-01-01

    The post-yielding behavior of some common thermoplastics was examined in uniaxial tension to determine if these materials were ideally plastic from a thermodynamic viewpoint. Various polyethylenes, poly(methyl methacrylate) and polycarbonate, polyarylate and polysulfone based on bisphenol A were studied. Thermodynamic measurements were made during deformation using a novel isothermal deformation calorimeter capable of measuring the work and heat of deformation. Thermodynamically ideal plasticity was not observed for any of the polymers examined. The polyethylenes stored approximately 30% of the input work as a latent internal energy change while this value was 40-50% for the amorphous glasses. Differential-scanning-calorimetry results for the deformed polyethylenes indicated that the heats of transition were less for the drawn samples than for the isotropic samples. This result was primarily due to the stored deformation energy and was not necessarily indicative of a change in crystallinity. Additional experiments were performed to determine the mechanism of deformation energy storage and to ascertain the implications of this stored energy in engineering applications.

  18. Photoinitiated grafting of porous polymer monoliths and thermoplastic polymers for microfluidic devices

    DOEpatents

    Frechet, Jean M. J.; Svec, Frantisek; Rohr, Thomas

    2008-10-07

    A microfluidic device preferably made of a thermoplastic polymer that includes a channel or a multiplicity of channels whose surfaces are modified by photografting. The device further includes a porous polymer monolith prepared via UV initiated polymerization within the channel, and functionalization of the pore surface of the monolith using photografting. Processes for making such surface modifications of thermoplastic polymers and porous polymer monoliths are set forth.

  19. High temperature drilling fluids based on sulfonated thermoplastic polymers

    SciTech Connect

    Walker, T.O.; Peiffer, D.G.; Lundberg, R.D.

    1986-04-01

    An oil-based drilling mud is described which consists of: (a) a hydrocarbon oil; (b) about 1 to about 10 parts by weight of water per 100 parts by weight of the hydrocarbon oil; (c) about 20 to about 50 lb/bbl of at least one emulsifier; (d) weighting material necessary to achieve the desired density; and (e) about 0.25 to about 4.0 lb/bbl of a water insoluble and oil insoluble neutralized sulfonated thermoplastic polymer having a molecular weight as measured by GPC of about 5,000 to about 500,000, the water insoluble and oil insoluble neutralized sulfonated thermoplastic polymer having about 5 to about 100 meq. of sulfonate groups per 100 grams of the neutralized sulfonated thermoplastic polymer. The water insoluble and oil insoluble sulfonated thermoplastic is derived from a polymer selected from the group consisting of polystyrene, poly-t-butyl-styrene, polychlorostyrene, poly-alpha methyl styrene, polyvinyl toluene and co- or terpolymers of styrene and acrylonitrile, methyl methacrylate and butadiene.

  20. Puncture-Healing Properties of Carbon Nanotube-Filled Ionomers

    NASA Technical Reports Server (NTRS)

    Ward, Thomas C.

    2003-01-01

    Ionomers are polymers that contain ionic groups in relatively low concentrations along the polymer backbone. These ionic groups, in the presence of oppositely charged ions, form aggregates that lead to novel physical properties of the polymer. React-A-Seal(trademark) and Surlyn(trademark) are poly(ethylene-co-methacrylic acid) (EMAA) ionomer-based materials and Nucrel(trademark) is the EMAA acid copolymer neutralized to produce Surlyn(trademark). React-A-Seal(trademark), Surlyn(trademark), and Nucrel(trademark) recover into their original shapes following a high impact puncture at velocities ranging from 300 to 1200 ft/s ('self-healing'). This self-healing process may be of great benefit in space applications where structures are exposed to matter impacts. A thermal IR camera indicated a temperature increase to 98 C for Nucrel(trademark) 925, Surlyn(trademark) 8940, React-A-Seal(trademark), and Surlyn(trademark) 8920 after initial penetration. To understand and generalize the observed phenomena, questions concerning the mechanism of the puncture resealing must be answered. One suggestion is that the elastic character of the melt created by the puncture drives the self-healing. This inference is based on the observed temperature rise of approx. 3 C above the melting temperature of the samples (approx. 95 C) during the impact. With the expectation of gaining additional insight into the self-healing phenomenon, a thermodynamic and viscoelastic investigation was conducted using primarily DSC and DMA. Surlyn(trademark) and React-A-Seal(trademark) showed the characteristic order-disorder transition at approx. 52 C that has been reported in literature. Master curves were constructed from the creep isotherms for the four EMAA samples. An aging study was performed to investigate the irreproducibility and "tailing effect" observed in the creep data. The aging study indicated that, with increased aging time and temperature, changes in the polyethylene matrix lead to complexities in morphology resulting in changes in the magnitude and shape of the creep curves.

  1. Process for preparing tapes from thermoplastic polymers and carbon fibers

    NASA Technical Reports Server (NTRS)

    Chung, Tai-Shung (Inventor); Furst, Howard (Inventor); Gurion, Zev (Inventor); McMahon, Paul E. (Inventor); Orwoll, Richard D. (Inventor); Palangio, Daniel (Inventor)

    1986-01-01

    The instant invention involves a process for use in preparing tapes or rovings, which are formed from a thermoplastic material used to impregnate longitudinally extended bundles of carbon fibers. The process involves the steps of (a) gas spreading a tow of carbon fibers; (b) feeding the spread tow into a crosshead die; (c) impregnating the tow in the die with a thermoplastic polymer; (d) withdrawing the impregnated tow from the die; and (e) gas cooling the impregnated tow with a jet of air. The crosshead die useful in the instant invention includes a horizontally extended, carbon fiber bundle inlet channel, means for providing melted polymer under pressure to the die, means for dividing the polymeric material flowing into the die into an upper flow channel and a lower flow channel disposed above and below the moving carbon fiber bundle, means for applying the thermoplastic material from both the upper and lower channels to the fiber bundle, and means for withdrawing the resulting tape from the die.

  2. Drilling fluids based on a mixture of sulfonated thermoplastic polymer and an amine-treated clay

    SciTech Connect

    Walker, T.O.; Lundberg, R.D.; Pfeiffer, D.G.; Thaler, W.A.; Turner, R.

    1984-01-10

    The present invention relates to mixtures of sulfonated thermoplastic polymers and amine-treated clays which function as viscosification agents when added to oil-based drilling muds which are the fluids used to maintain pressure, cool drill bits and lift cuttings from the holes in the drilling operation for oil and gas wells. The sulfonated thermoplastic polymers have about 5 to about 100 meq. of sulfonate groups per 100 grams of the sulfonated thermoplastic polymer, wherein the sulfonated groups are neutralized with a metallic cation or an amine or ammonium counterion. A polar cosolvent can optionally be added to the mixture of oil drilling mud and sulfonated thermoplastic polymer, wherein the polar cosolvent increases the solubility of the sulfonated thermoplastic polymer in the oil drilling mud by decreasing the strong ionic interactions between the sulfonate groups of the sulfonated polymer.

  3. Mechanical properties of a new thermoplastic polymer orthodontic archwire.

    PubMed

    Varela, Juan Carlos; Velo, Marcos; Espinar, Eduardo; Llamas, Jose Maria; Rperez, Elisa; Manero, Jose Maria; Javier Gil, F

    2014-09-01

    A new thermoplastic polymer for orthodontic applications was obtained and extruded into wires with round and rectangular cross sections. We evaluated the potential of new aesthetic archwire: tensile, three point bending, friction and stress relaxation behaviour, and formability characteristics were assessed. Stresses delivered were generally slightly lower than typical beta-titanium and nickel-titanium archwires. The polymer wire has good instantaneous mechanical properties; tensile stress decayed about 2% over 2h depending on the initial stress relaxation for up to 120h. High formability allowed shape bending similar to that associated with stainless steel wires. The friction coefficients were lower than the metallic conventional archwires improving the slipping with the brackets. This new polymer could be a good candidate for aesthetic orthodontic archwires. PMID:25063084

  4. Tough, high performance, addition-type thermoplastic polymers

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H. (Inventor)

    1992-01-01

    A tough, high performance polyimide is provided by reacting a triple bond conjugated with an aromatic ring in a bisethynyl compound with the active double bond in a compound containing a double bond activated toward the formation of a Diels-Adler type adduct, especially a bismaleimide, a biscitraconimide, or a benzoquinone, or mixtures thereof. Addition curing of this product produces a high linear polymeric structure and heat treating the highly linear polymeric structure produces a thermally stable aromatic addition-type thermoplastic polyimide, which finds utility in the preparation of molding compounds, adhesive compositions, and polymer matrix composites.

  5. Drilling fluids based on sulfonated thermoplastic polymers having improved low temperature rheological properties

    SciTech Connect

    Turner, S. R.; Lundberg, R. D.; Peiffer, D. G.; Walker, T. O.

    1985-06-25

    The present invention relates to latices of sulfonated thermoplastic polymers which function as viscosification agents when added to oil-based drilling muds which are the fluids used to maintain pressure, cool drill bits and lift cuttings from the holes in the drilling operation for oil and gas wells. The sulfonated thermoplastic polymer of the latex has about 5 to about 100 Meq. of sulfonate groups per 100 grams of the sulfonated thermoplastic polymer, wherein the sulfonated groups are neutralized with a metallic cation or an amine or ammonium counterion. A polar cosolvent can optionally be added to the mixture of oil drilling mud and sulfonated polymer, wherein the polar cosolvent increases the solubility of the sulfonated polymer in the oil drilling mud by decreasing the strong ionic interactions between the sulfonate groups of the sulfonated polymer.

  6. Biodegradable polymer blends based on corn starch and thermoplastic chitosan processed by extrusion.

    PubMed

    Mendes, J F; Paschoalin, R T; Carmona, V B; Sena Neto, Alfredo R; Marques, A C P; Marconcini, J M; Mattoso, L H C; Medeiros, E S; Oliveira, J E

    2016-02-10

    Blends of thermoplastic cornstarch (TPS) and chitosan (TPC) were obtained by melt extrusion. The effect of TPC incorporation in TPS matrix and polymer interaction on morphology and thermal and mechanical properties were investigated. Possible interactions between the starch molecules and thermoplastic chitosan were assessed by XRD and FTIR techniques. Scanning Electron Microscopy (SEM) analyses showed a homogeneous fracture surface without the presence of starch granules or chitosan aggregates. Although the incorporation of thermoplastic chitosan caused a decrease in both tensile strength and stiffness, films with better extensibility and thermal stability were produced. PMID:26686150

  7. Analysis of thermoplastic polyimide + polymer liquid crystal blends

    NASA Astrophysics Data System (ADS)

    Gopalanarayanan, Bhaskar

    Thermoplastic polyimides (TPIs) exhibit high glass transition temperatures (Tsbgs), which make them useful in high performance applications. Amorphous and semicrystalline TPIs show sub-Tsbg relaxations, which can aid in improving strength characteristics through energy absorption. The alpha relaxation of both types of TPIs indicates a cooperative nature. The semicrystalline TPI shows thermo-irreversible cold crystallization phenomenon. The polymer liquid crystal (PLC) used in the blends is thermotropic and with longitudinal molecular structure. The small heat capacity change (Delta Csb{p}) associated with the glass transition indicates the PLC to be rigid rod in nature. The PLC shows a small endotherm associated with the melting. The addition of PLC to the semicrystalline TPI does not significantly affect the Tsbg or the melting point (Tsbm). The cold crystallization temperature (Tsbc) increases with the addition of the PLC, indicating channeling phenomenon. The addition of PLC also causes a negative deviation of the Delta Csb{p}, which is another evidence for channeling. The TPI, PLC and their blends show high thermal stability. The semicrystalline TPI absorbs moisture; this effect decreases with the addition of the PLC. The absorbed moisture does not show any effect on the degradation. The addition of PLC beyond 30 wt.% does not result in an improvement of properties. The amorphous TPI + PLC blends also show the negative deviation of Delta Csb{p} from linearity with composition. The addition of PLC causes a decrease in the thermal conductivity in the transverse direction to the PLC orientation. The thermomechanical analysis indicates isotropic expansivity for the amorphous TPI and a small anisotropy for the semicrystalline TPI. The PLC shows large anisotropy in expansivity. Even 5 wt.% concentration of PLC in the blend induces considerable anisotropy in the expansivity. Thus, blends show controllable expansivity through PLC concentration. Amorphous TPI + PLC blends also show excellent film formability. The amorphous TPI blends show good potential for applications requiring high thermal stability, controlled expansivity and good film formability.

  8. Relative toxicity of the pyrolysis products from some thermoplastic and thermoset polymers

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Gilwee, W. J., Jr.; Hilado, C. J.

    1978-01-01

    Relative toxicity data on the pyrolysis products of a variety of thermoplastic and thermoset polymers are presented. The data are presented in terms of time to incapacitation and time to death with a fixed sample weight of 1.0 g, and in terms of the apparent lethal concentration required to produce 50 percent mortality within a fixed exposure period of 30 min.

  9. Review of potential processing techniques for the encapsulation of wastes in thermoplastic polymers

    SciTech Connect

    Patel, B.R.; Lageraaen, P.R.; Kalb, P.D.

    1995-08-01

    Thermoplastic encapsulation has been extensively studied at Brookhaven National Laboratory`s (BNL) Environmental and Waste Technology Center (EWTC) as a waste encapsulation technology applicable to a wide range of waste types including radioactive, hazardous and mixed wastes. Encapsulation involves processing thermoplastic and waste materials into a waste form product by heating and mixing both materials into a homogeneous molten mixture. Cooling of the melt results in a solid monolithic waste form in which contaminants have been completely surrounded by a polymer matrix. Heating and mixing requirements for successful waste encapsulation can be met using proven technologies available in various types of commercial equipment. Processing techniques for thermoplastic materials, such as low density polyethylene (LDPE), are well established within the plastics industry. The majority of commercial polymer processing is accomplished using extruders, mixers or a combination of these technologies. Extruders and mixers are available in a broad range of designs and are used during the manufacture of consumer and commercial products as well as for compounding applications. Compounding which refers to mixing additives such as stabilizers and/or colorants with polymers, is analogous to thermoplastic encapsulation. Several processing technologies were investigated for their potential application in encapsulating residual sorbent waste in selected thermoplastic polymers, including single-screw extruders, twin-screw extruders, continuous mixers, batch mixers as well as other less conventional devices. Each was evaluated based on operational ease, quality control, waste handling capabilities as well as degree of waste pretreatment required. Based on literature review, this report provides a description of polymer processing technologies, a discussion of the merits and limitations of each and an evaluation of their applicability to the encapsulation of sorbent wastes.

  10. Friction and wear performance of some thermoplastic polymers and polymer composites against unsaturated polyester

    NASA Astrophysics Data System (ADS)

    Unal, H.; Mimaroglu, A.; Arda, T.

    2006-09-01

    Wear experiments have been carried out with a range of unfilled and filled engineering thermoplastic polymers sliding against a 15% glass fibre reinforced unsaturated polyester polymer under 20, 40 and 60 N loads and 0.5 m/s sliding speed. Pin materials used in this experimental investigation are polyamide 66 (PA 66), poly-ether-ether-ketone (PEEK) and aliphatic polyketone (APK), glass fibre reinforced polyamide 46 (PA 46 + 30% GFR), glass fibre reinforced polytetrafluoroethylene (PTFE + 17% GFR), glass fibre reinforced poly-ether-ether-ketone (PEEK + 20% GFR), glass fibre reinforced poly-phylene-sulfide (PPS + 30% GFR), polytetrafluoroethylene filled polyamide 66 (PA 66 + 10% PTFE) and bronze filled pofytetrafluoroethylene (PTFE + 25% bronze) engineering polymers. The disc material is a 15% glass fibre reinforced unsaturated polyester thermoset polymer produced by Bulk Moulding Compound (BMC). Sliding wear tests were carried out on a pin-on-disc apparatus under 0.5 m/s sliding speed and load values of 20, 40 and 60 N. The results showed that the highest specific wear rate is for PPS + 30% GFR with a value of 1 10 -11 m 2/N and the lowest wear rate is for PTFE + 17% GFR with a value of 9.41 10 -15 m 2/N. For the materials and test conditions of this investigation, apart from polyamide 66 and PA 46 + 30% GFR polymers, the coefficient of friction and specific wear rates are not significantly affected by the change in load value. For polyamide 66 and PA 46 + 30% GFR polymers the coefficient of friction and specific wear rates vary linearly with the variation in load values.

  11. Noncontact Microembossing Technology for Fabricating Thermoplastic Optical Polymer Microlens Array Sheets

    PubMed Central

    Chang, Xuefeng; Ge, Xiaohong; Li, Hui

    2014-01-01

    Thermoplastic optical polymers have replaced traditional optical glass for many applications, due to their superior optical performance, mechanical characteristics, low cost, and efficient production process. This paper investigates noncontact microembossing technology used for producing microlens arrays made out of PMMA (polymethyl methacrylate), PS (polyStyrene), and PC (polycarbonate) from a quartz mold, with microhole arrays. An array of planoconvex microlenses are formed because of surface tension caused by applying pressure to the edge of a hole at a certain glass transition temperature. We studied the principle of noncontact microembossing techniques using finite element analysis, in addition to the thermal and mechanical properties of the three polymers. Then, the independently developed hot-embossing equipment was used to fabricate microlens arrays on PMMA, PS, and PC sheets. This is a promising technique for fabricating diverse thermoplastic optical polymer microlens array sheets, with a simple technological process and low production costs. PMID:25162063

  12. Thermodynamics of water sorption in high performance glassy thermoplastic polymers

    PubMed Central

    Scherillo, Giuseppe; Petretta, Mauro; Galizia, Michele; La Manna, Pietro; Musto, Pellegrino; Mensitieri, Giuseppe

    2014-01-01

    Sorption thermodynamics of water in two glassy polymers, polyetherimide (PEI) and polyetheretherketone (PEEK), is investigated by coupling gravimetry and on line FTIR spectroscopy in order to gather information on the total amount of sorbed water as well as on the different species of water molecules absorbed within the polymers, addressing the issue of cross- and self-interactions occurring in the polymer/water systems. Water sorption isotherms have been determined at temperatures ranging from 30 to 70°C while FTIR spectroscopy has been performed only at 30°C. The experimental analysis provided information on the groups present on the polymer backbones involved in hydrogen bonding interactions with absorbed water molecules. Moreover, it also supplied qualitative indications about the different “populations” of water molecules present within the PEEK and a quantitative assessment of these “populations” in the case of PEI. The results of the experimental analysis have been interpreted using an equation of state theory based on a compressible lattice fluid model for the Gibbs energy of the polymer-water mixture, developed by extending to the case of out of equilibrium glassy polymers a previous model intended for equilibrium rubbery polymers. The model accounts for the non-equilibrium nature of glassy polymers as well as for mean field and for hydrogen bonding interactions, providing a satisfactory quantitative interpretation of the experimental data. PMID:24860802

  13. Thermodynamics of Water Sorption in High Performance Glassy Thermoplastic Polymers

    NASA Astrophysics Data System (ADS)

    Mensitieri, Giuseppe; Scherillo, Giuseppe; Petretta, Mauro; Galizia, Michele; La Manna, Pietro; Musto, Pellegrino

    2014-05-01

    Sorption thermodynamics of water in two glassy polymers, polyetherimide (PEI) and polyetheretherketone (PEEK), is investigated by coupling gravimetry and on line FTIR spectroscopy in order to gather information on the total amount of sorbed water as well as on the different species of water molecules absorbed within the polymers, addressing the issue of cross- and self-interactions occurring in the polymer/water systems. Water sorption isotherms have been determined at temperatures ranging fro 30 to 70C while FTIR spectroscopy has been performed only at 30C. The experimental analysis provided information on the groups present on the polymer backbones involved in hydrogen bonding interactions with absorbed water molecules. Moreover, it also supplied qualitative indications about the differentpopulations of water molecules present within the PEEK and a quantitative assessment of these populations in the case of PEI.The results of the experimental analysis have been interpreted using an equation of state theory based on a compressible lattice fluid model for the Gibbs energy of the polymer-water mixture, developed by extending to the case of out of equilibrium glassy polymers a previous model intended for equilibrium rubbery polymers. The model accounts for the non equilibrium nature of glassy poymers as well as for mean field and for hydrogen bonding interactions, providing a satisfactory quantitative interpretation of the experimental data.

  14. Turning Renewable Resources into Recyclable Polymer: Development of Lignin-Based Thermoplastic

    SciTech Connect

    Saito, Tomonori; Brown, Rebecca H; Hunt, Marcus A; Pickel, Deanna L; Pickel, Joseph M; Messman, Jamie M; Baker, Frederick S; Keller, Martin; Naskar, Amit K

    2012-01-01

    Productive uses of lignin, the third most abundant natural polymer, have been sought for decades. One especially attractive possibility is that of developing value-added products including thermoplastics based on lignin. This possibility warrants special attention due to growth of the modern biofuel industries. However, the polydisperse molecular weight and hyper-branched structure of lignin has hindered the creation of high-performance biopolymers. Here, we report the preparation and characterization of novel lignin-based, partially carbon-neutral thermoplastics. We first altered the molecular weight of lignin, either by fractionation with methanol, or by formaldehyde crosslinking. A crosslinking of lignin increases the molecular weight, exhibiting Mn = 31000 g/mol, whereas that of native lignin is 1840 g/mol. Tuning the molecular weight of lignin enabled successful preparation of novel lignin-derived thermoplastics, when coupled with telechelic polybutadiene soft-segments at proper feed ratios. Characteristic to thermoplastic rubbers, free-standing films of the resulting copolymers exhibit two-phase morphology and associated relaxations in the dynamic mechanical loss spectrum. To our knowledge this article is the first report to demonstrate phase immiscibility, melt-processibility, and biphasic morphology of soft and hard segments in a lignin-based copolymer for all feed ratios of two macromolecular components. The use of higher molecular weight lignin enhanced the resulting shear modulus due to efficient network formation of telechelic polybutadiene bridges. The storage modulus in the rubbery plateau region increased with increasing lignin content. The successful synthesis of novel lignin-based thermoplastics will open a new pathway to biomass utilization and will help conserve petrochemicals.

  15. Ex Situ Integration of Multifunctional Porous Polymer Monoliths into Thermoplastic Microfluidic Chips

    PubMed Central

    Kendall, Eric L.; Wienhold, Erik; Rahmanian, Omid D.; DeVoe, Don L.

    2014-01-01

    A unique method for incorporating functional porous polymer monolith elements into thermoplastic microfluidic chips is described. Monolith elements are formed in a microfabricated mold, rather than within the microchannels, and chemically functionalized off chip before insertion into solvent-softened thermoplastic microchannels during chip assembly. Because monoliths may be trimmed prior to final placement, control of their size, shape, and uniformity is greatly improved over in-situ photopolymerization methods. A characteristic trapezoidal profile facilitates rapid insertion and enables complete mechanical anchoring of the monolith periphery, eliminating the need for chemical attachment to the microchannel walls. Off-chip processing allows the parallel preparation of monoliths of differing compositions and surface chemistries in large batches. Multifunctional flow-through arrays of multiple monolith elements are demonstrated using this approach through the creation of a fluorescent immunosensor with integrated controls, and a microfluidic bubble separator comprising a combination of integrated hydrophobic and hydrophilic monolith elements. PMID:25018587

  16. RHEOLOGICAL PROPERTIES & MOLECULAR WEIGHT DISTRIBUTIONS OF FOUR PERFLUORINATED THERMOPLASTIC POLYMERS

    SciTech Connect

    Hoffman, D M; Shields, A L

    2009-02-24

    Dynamic viscosity measurements and molecular weight estimates have been made on four commercial, amorphous fluoropolymers with glass transitions (Tg) above 100 C: Teflon AF 1600, Hyflon AD 60, Cytop A and Cytop M. These polymers are of interest as binders for the insensitive high explosive 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) because of their high density and Tg above ambient, but within a suitable processing range of TATB. As part of this effort, the rheological properties and molecular weight distributions of these polymers were evaluated.

  17. Photocleavable junctions in complex polymer architectures and photoetchable thermoplastics

    NASA Astrophysics Data System (ADS)

    Sterner, Elizabeth Surles

    Polymer materials have become important tools in nanomanufacturing due to their facile processing and ready attainment of the necessary feature sizes. The development of cleavable junctions has led to advances in the production of polymer nanotemplates. Photocleavage strategies have come to the forefront of the field because photons, as a cleavage stimulus, do not have the mass-transport limitations of chemical methods, and provide for targeted two- and three-dimensional feature control. This dissertation presents a method for producing photocleavable materials by one-pot copper-catalyzed azide-alkyne "click" chemistry (CuAAC), activator regenerated by electron transfer atom transfer radical polymerization (ARGET ATRP) and activated ester substitution methods that have each block labeled with a fluorescent dye, enabling exploration of the polymer physics of these systems by correlation fluorescence spectroscopy. It also introduces a novel photocleavable linker, the o-nitrobenzyl-1,2,3-triazole, its behavior on photocleavage, and a facile method for the production of the o-nitrobenzyl azides necessary for their synthesis. The synthesis and properties of a bulk photodegradable polytriazole are reported, as are proof of concept experiments demonstrating its potential as a directly photoetchable material. Lastly, this dissertation contains a perspective on possible avenues of new research on the topics presented.

  18. Selecting and designing with the right thermoplastic polymer for your microfluidic chip: a close look into cyclo-olefin polymer

    NASA Astrophysics Data System (ADS)

    Nevitt, Mark

    2013-03-01

    Engineers who are developing microfluidic devices and bioMEMs for life science applications have many aspects to consider when selecting the proper base materials for constructing a device. While glass and polydimethylsiloxane (PDMS) are the staple materials for proof-of-concept and prototype chip fabrication, they are not a feasible solution for commercial production due to their slow, labor-intensive production rate. Alternatively, a molded or extruded thermoplastic solution can deliver the precision, consistency, and high volume capability required for commercial scale production. Traditional thermoplastics, such as polymethylmethacrylate (PMMA), polycarbonate (PC), and polystyrene (PS), are well known by development engineers in the bioscience community; however, cyclo-olefin polymer (COP), a relative newcomer in the world of plastics, is gaining increasing attention for use in microfluidic devices due to its unique balance of key properties compared to conventional thermoplastics. In this paper, we provide a comprehensive look at the properties which make COP an excellent candidate for providing the flow cell support and reagent storage functions in microfluidic assays. We also explore the processing attributes and capabilities of COP resin and film which are crucial for manufacturing high-performance microfluidic devices.

  19. Modeling morphology evolution during injection molding of thermoplastic polymers

    NASA Astrophysics Data System (ADS)

    Pantani, R.; De Santis, F.; Speranza, V.; Titomanlio, G.

    2015-05-01

    The effect of temperature, pressure and flow on relaxation time (or spectrum), crystallization time, nucleation density and rate, spherulite growth rate, the interrelation among these quantities and the distributions of deformation rate and cooling time during the process all together determine the morphology distribution in the final object. A simple model linking all these quantities was developed to describe morphology evolution during polymer processing. The effect of flow on nucleation density and growth rate of an isotactic polypropylene (iPP) is described on the basis of a molecular stretch parameter and the stretch evolution is described by a simple nonlinear Maxwell model, whose relaxation time, in its turn, is determined by the molecular stretch and, obviously, temperature pressure and crystallinity [1]. The model is applied to the description of morphology evolution during the injection molding process of a very accurately characterized iPP as far as rheology, quiescent crystallization and effect of flow on nucleation and spherulitic growth rates. Main characteristics of final morphology are reproduced by the simulations.

  20. Universal hydrophilic coating of thermoplastic polymers currently used in microfluidics.

    PubMed

    Zilio, Caterina; Sola, Laura; Damin, Francesco; Faggioni, Lucia; Chiari, Marcella

    2014-02-01

    A number of materials used to fabricate disposable microfluidic devices are hydrophobic in nature with water contact angles on their surface ranging from 80° to over 100°. This characteristic makes them unsuitable for a number of microfluidic applications. Both the wettability and analyte adsorption parameters are highly dependent on the surface hydrophobicity. In this article, we propose a general method to coat the surface of five materials: polydimethylsiloxane (PDMS), cyclic olefin copolymer (COC), polyethylene terephthalate (PET), polycarbonate (PC), and polytetrafluoroethylene (PTFE). This fast and robust process, which is easily implementable in any laboratory including microfabrication clean room facilities, was devised by combining gas-phase and wet chemical modification processes. Two different coatings that improve the surface hydrophilicity were prepared via the "dip and rinse" approach by immersing the plasma oxidized materials into an aqueous solution of two different poly(dimethylacrylamide) copolymers incorporating a silane moiety and functionalized with either N-acryloyloxysuccinimide (NAS) (poly(DMA-NAS-MAPS) or glycidyl methacrylate (GMA) (poly(DMA-GMA-MAPS). The coating formation was confirmed by contact angle (CA) analysis comparing the variation of CAs of uncoated and coated surfaces subjected to different aging treatments. The antifouling character of the polymer was demonstrated by fluorescence and interferometric detection of proteins adsorbed on the surafce. This method is of great interest in microfluidics due to its broad applicability to a number of materials with varying chemical compositions. PMID:24037663

  1. IR laser radiation induced changes in the IR absorption spectra of thermoplastic and thermosetting polymers

    NASA Astrophysics Data System (ADS)

    Bormashenko, Edward; Pogreb, Roman; Sheshnev, Avigdor; Shulzinger, Eugene; Bormashenko, Yelena; Katzir, Abraham

    2001-07-01

    This paper demonstrates that powerful laser radiation causes changes in the absorbance spectra of epoxy resin, polyethylene and polysulfone. Thin polymer films were located between IR AgBrCl optical fibres and exposed to the radiation of a CO2 laser. The output of the laser source was varied in the range 0-8.5 W. The absorbance spectra were recorded using a Fourier transform infrared (FTIR) spectrophotometer. It was revealed that characteristic polymer absorbance peaks decay under exposure to the powerful IR light. The apparent dependence of peak magnitude on IR radiation power has been established. We showed that the phenomenon of the absorbance peak disappearances associated with the polymers - thermoplastic (including an engineering polymer such as polysulfone) and thermosetting - is of a threshold nature. The mathematical theory of the observed effect was derived. We propose that the effect under discussion is caused by the oxygen-free thermal action of IR radiation on the chemical structure of the polymer materials. The revealed effect could be effectively used to lower the losses in adhesive contacts of IR optical elements. The novelty of the proposed method lies in the fact that thermal treatment is localized strictly within the adhesive layer; optical elements to be contacted (fibres, lenses, etc) which are highly IR transparent do not experience the IR radiation, but the polymer adhesive is subjected to a temperature rise.

  2. The influence of recycled material on the crystallization kinetics of semi-crystalline thermoplastic polymers

    SciTech Connect

    Janoschek, J.; Kaisersbergen, E.; Knappe, S.; Opfermann, J.

    1993-12-31

    The injection moulding of semi-crystalline thermoplastic polymers requires an exact knowledge of the thermodynamic data and of the crystallization kinetics. The behavior of the polymer melt during rapid cooling in the mould determines, to a great extent, the quality and usability of a final product. Technical raw materials are often equipped with nucleating agents in order to obtained crystallization within the desired temperature range at the required rate. The use of recycled material (regranulate) shows an analogous effect such as the addition of nucleating agents, i.e. crystallization begins at a higher temperature and a higher crystallization rate is detected compared to materials without added regranulate. Heat flux DSC was used to study the crystallization of polyamides, polyolefins and polyoxymethylene during cooling at various cooling rates. Although the temperature gradient and pressures which occur in the processing machine cannot be realized in DSC tests, the DSC results reproduce the direction of influence of the regranulate additive very clearly.

  3. Initiation of shape-memory effect by inductive heating of magnetic nanoparticles in thermoplastic polymers

    PubMed Central

    Mohr, R.; Kratz, K.; Weigel, T.; Lucka-Gabor, M.; Moneke, M.; Lendlein, A.

    2006-01-01

    In shape-memory polymers, changes in shape are mostly induced by heating, and exceeding a specific switching temperature, Tswitch. If polymers cannot be warmed up by heat transfer using a hot liquid or gaseous medium, noncontact triggering will be required. In this article, the magnetically induced shape-memory effect of composites from magnetic nanoparticles and thermoplastic shape-memory polymers is introduced. A polyetherurethane (TFX) and a biodegradable multiblock copolymer (PDC) with poly(p-dioxanone) as hard segment and poly(?-caprolactone) as soft segment were investigated as matrix component. Nanoparticles consisting of an iron(III)oxide core in a silica matrix could be processed into both polymers. A homogeneous particle distribution in TFX could be shown. Compounds have suitable elastic and thermal properties for the shape-memory functionalization. Temporary shapes of TFX compounds were obtained by elongating at increased temperature and subsequent cooling under constant stress. Cold-drawing of PDC compounds at 25C resulted in temporary fixation of the mechanical deformation by 5060%. The shape-memory effect of both composite systems could be induced by inductive heating in an alternating magnetic field (f = 258 kHz; H = 30 kAm?1). The maximum temperatures achievable by inductive heating in a specific magnetic field depend on sample geometry and nanoparticle content. Shape recovery rates of composites resulting from magnetic triggering are comparable to those obtained by increasing the environmental temperature. PMID:16537442

  4. Initiation of shape-memory effect by inductive heating of magnetic nanoparticles in thermoplastic polymers

    NASA Astrophysics Data System (ADS)

    Mohr, R.; Kratz, K.; Weigel, T.; Lucka-Gabor, M.; Moneke, M.; Lendlein, A.

    2006-03-01

    In shape-memory polymers, changes in shape are mostly induced by heating, and exceeding a specific switching temperature, Tswitch. If polymers cannot be warmed up by heat transfer using a hot liquid or gaseous medium, noncontact triggering will be required. In this article, the magnetically induced shape-memory effect of composites from magnetic nanoparticles and thermoplastic shape-memory polymers is introduced. A polyetherurethane (TFX) and a biodegradable multiblock copolymer (PDC) with poly(p-dioxanone) as hard segment and poly(-caprolactone) as soft segment were investigated as matrix component. Nanoparticles consisting of an iron(III)oxide core in a silica matrix could be processed into both polymers. A homogeneous particle distribution in TFX could be shown. Compounds have suitable elastic and thermal properties for the shape-memory functionalization. Temporary shapes of TFX compounds were obtained by elongating at increased temperature and subsequent cooling under constant stress. Cold-drawing of PDC compounds at 25C resulted in temporary fixation of the mechanical deformation by 50-60%. The shape-memory effect of both composite systems could be induced by inductive heating in an alternating magnetic field (f = 258 kHz; H = 30 kAm-1). The maximum temperatures achievable by inductive heating in a specific magnetic field depend on sample geometry and nanoparticle content. Shape recovery rates of composites resulting from magnetic triggering are comparable to those obtained by increasing the environmental temperature. nanocomposite | shape-memory polymer | stimuli-sensitive polymer


  5. Study of double-side ultrasonic embossing for fabrication of microstructures on thermoplastic polymer substrates.

    PubMed

    Luo, Yi; Yan, Xu; Qi, Na; Wang, Xiaodong; Wang, Liangjiang

    2013-01-01

    Double-side replication of polymer substrates is beneficial to the design and the fabrication of 3-demensional devices. The ultrasonic embossing method is a promising, high efficiency and low cost replication method for thermoplastic substrates. It is convenient to apply silicon molds in ultrasonic embossing, because microstructures can be easily fabricated on silicon wafers with etching techniques. To reduce the risk of damaging to silicon molds and to improve the replication uniformity on both sides of the polymer substrates, thermal assisted ultrasonic embossing method was proposed and tested. The processing parameters for the replication of polymethyl methacrylate (PMMA), including ultrasonic amplitude, ultrasonic force, ultrasonic time, and thermal assisted temperature were studied using orthogonal array experiments. The influences of the substrate thickness, pattern style and density were also investigated. The experiment results show that the principal parameters for the upper and lower surface replication are ultrasonic amplitude and thermal assisted temperature, respectively. As to the replication uniformity on both sides, the ultrasonic force has the maximal influence. Using the optimized parameters, the replication rate reached 97.5% on both sides of the PMMA substrate, and the cycle time was less than 50 s. PMID:23630605

  6. Remotely actuated polymer nanocomposites--stress-recovery of carbon-nanotube-filled thermoplastic elastomers.

    PubMed

    Koerner, Hilmar; Price, Gary; Pearce, Nathan A; Alexander, Max; Vaia, Richard A

    2004-02-01

    Stimuli-responsive (active) materials undergo large-scale shape or property changes in response to an external stimulus such as stress, temperature, light or pH. Technological uses range from durable, shape-recovery eye-glass frames, to temperature-sensitive switches, to the generation of stress to induce mechanical motion. Here, we demonstrate that the uniform dispersion of 1-5 vol.% of carbon nanotubes in a thermoplastic elastomer yields nanocomposites that can store and subsequently release, through remote means, up to 50% more recovery stress than the pristine resin. The anisotropic nanotubes increase the rubbery modulus by a factor of 2 to 5 (for 1-5 vol.%) and improve shape fixity by enhancing strain-induced crystallization. Non-radiative decay of infrared photons absorbed by the nanotubes raises the internal temperature, melting strain-induced polymer crystallites (which act as physical crosslinks that secure the deformed shape) and remotely trigger the release of the stored strain energy. Comparable effects occur for electrically induced actuation associated with Joule heating of the matrix when a current is passed through the conductive percolative network of the nanotubes within the resin. This unique combination of properties, directly arising from the nanocomposite morphology, demonstrates new opportunities for the design and fabrication of stimuli-responsive polymers, which are otherwise not available in one material system. PMID:14743213

  7. Study of Double-Side Ultrasonic Embossing for Fabrication of Microstructures on Thermoplastic Polymer Substrates

    PubMed Central

    Luo, Yi; Yan, Xu; Qi, Na; Wang, Xiaodong; Wang, Liangjiang

    2013-01-01

    Double-side replication of polymer substrates is beneficial to the design and the fabrication of 3-demensional devices. The ultrasonic embossing method is a promising, high efficiency and low cost replication method for thermoplastic substrates. It is convenient to apply silicon molds in ultrasonic embossing, because microstructures can be easily fabricated on silicon wafers with etching techniques. To reduce the risk of damaging to silicon molds and to improve the replication uniformity on both sides of the polymer substrates, thermal assisted ultrasonic embossing method was proposed and tested. The processing parameters for the replication of polymethyl methacrylate (PMMA), including ultrasonic amplitude, ultrasonic force, ultrasonic time, and thermal assisted temperature were studied using orthogonal array experiments. The influences of the substrate thickness, pattern style and density were also investigated. The experiment results show that the principal parameters for the upper and lower surface replication are ultrasonic amplitude and thermal assisted temperature, respectively. As to the replication uniformity on both sides, the ultrasonic force has the maximal influence. Using the optimized parameters, the replication rate reached 97.5% on both sides of the PMMA substrate, and the cycle time was less than 50 s. PMID:23630605

  8. Development of micro-debond methods for thermoplastics including applications to liquid crystalline polymers

    SciTech Connect

    Sauer, B.B.; DiPaolo, N.V.

    1995-12-01

    Micro-bead and related single fiber debond techniques were used to study adhesion of liquid crystalline copolyesters (LCPs) and other thermoplastic polymers to glass fibers. For polymers with poor flow, symmetric beads on fibers were difficult to prepare so an alternative but comparable sample preparation method was developed. Glass fibers of widely varying diameters were used in order to extend the dynamic range of the debond techniques in terms of debonding area, leading to an order of magnitude improvement in precision over that demonstrated previously with single fiber debond techniques. It was found that chemical bonding of the LCPs was quite favorable as was indicated by fracture surface analysis. The apparent poor interphase strength in fiber reinforced LCP composites is due to orientation of the LCP chains at the fiber surface leading to cohesive failure of the LCP near the interface. Reactive silane coupling agents lead to no improvement in interface strength as compared to bare glass as expected based on the failure mechanism.

  9. Hemocompatibility of Inorganic Physical Vapor Deposition (PVD) Coatings on Thermoplastic Polyurethane Polymers.

    PubMed

    Lackner, Juergen M; Waldhauser, Wolfgang; Hartmann, Paul; Bruckert, Franz; Weidenhaupt, Marianne; Major, Roman; Sanak, Marek; Wiesinger, Martin; Heim, Daniel

    2012-01-01

    Biocompatibility improvements for blood contacting materials are of increasing interest for implanted devices and interventional tools. The current study focuses on inorganic (titanium, titanium nitride, titanium oxide) as well as diamond-like carbon (DLC) coating materials on polymer surfaces (thermoplastic polyurethane), deposited by magnetron sputtering und pulsed laser deposition at room temperature. DLC was used pure (a-C:H) as well as doped with silicon, titanium, and nitrogen + titanium (a-C:H:Si, a-C:H:Ti, a-C:H:N:Ti). In-vitro testing of the hemocompatibility requires mandatory dynamic test conditions to simulate in-vivo conditions, e.g., realized by a cone-and-plate analyzer. In such tests, titanium- and nitrogen-doped DLC and titanium nitride were found to be optimally anti-thrombotic and better than state-of-the-art polyurethane polymers. This is mainly due to the low tendency to platelet microparticle formation, a high content of remaining platelets in the whole blood after testing and low concentration of platelet activation and aggregation markers. Comparing this result to shear-flow induced cell motility tests with e.g., Dictostelium discoideum cell model organism reveals similar tendencies for the investigated materials. PMID:24955532

  10. Hemocompatibility of Inorganic Physical Vapor Deposition (PVD) Coatings on Thermoplastic Polyurethane Polymers

    PubMed Central

    Lackner, Juergen M.; Waldhauser, Wolfgang; Hartmann, Paul; Bruckert, Franz; Weidenhaupt, Marianne; Major, Roman; Sanak, Marek; Wiesinger, Martin; Heim, Daniel

    2012-01-01

    Biocompatibility improvements for blood contacting materials are of increasing interest for implanted devices and interventional tools. The current study focuses on inorganic (titanium, titanium nitride, titanium oxide) as well as diamond-like carbon (DLC) coating materials on polymer surfaces (thermoplastic polyurethane), deposited by magnetron sputtering und pulsed laser deposition at room temperature. DLC was used pure (a-C:H) as well as doped with silicon, titanium, and nitrogen + titanium (a-C:H:Si, a-C:H:Ti, a-C:H:N:Ti). In-vitro testing of the hemocompatibility requires mandatory dynamic test conditions to simulate in-vivo conditions, e.g., realized by a cone-and-plate analyzer. In such tests, titanium- and nitrogen-doped DLC and titanium nitride were found to be optimally anti-thrombotic and better than state-of-the-art polyurethane polymers. This is mainly due to the low tendency to platelet microparticle formation, a high content of remaining platelets in the whole blood after testing and low concentration of platelet activation and aggregation markers. Comparing this result to shear-flow induced cell motility tests with e.g., Dictostelium discoideum cell model organism reveals similar tendencies for the investigated materials. PMID:24955532

  11. Membrane consisting of polyquaternary amine ion exchange polymer network interpenetrating the chains of thermoplastic matrix polymer

    NASA Technical Reports Server (NTRS)

    Rembaum, A.; Wallace, C. J. (Inventor)

    1978-01-01

    An ion exchange membrane was formed from a solution containing dissolved matrix polymer and a set of monomers which are capable of reacting to form a polyquaternary ion exchange material; for example vinyl pyride and a dihalo hydrocarbon. After casting solution and evaporation of the volatile component's, a relatively strong ion exchange membrane was obtained which is capable of removing anions, such as nitrate or chromate from water. The ion exchange polymer forms an interpenetrating network with the chains of the matrix polymer.

  12. High Power Laser Cutting of Fiber Reinforced Thermoplastic Polymers with cw- and Pulsed Lasers

    NASA Astrophysics Data System (ADS)

    Schneider, F.; Wolf, N.; Petring, D.

    Glass fiber and carbon fiber reinforced polymers with thermoplastic matrix enable high volume production with short cycle times. Cutting and trimming operations in these production chains require the use of high average laser power for an efficient cutting speed, but employment of high laser power runs the risk to induce a wide heat affected zone (HAZ). This paper deals with investigations with cw and ns-pulsed CO2-laser radiation in the kilowatt range in single-pass and multiple-pass processes. Using multi-pass processing at high processing speeds of 100 m/min and above a reduced heat affected zone in the range of 100 μm to 200 μm could be achieved by the ns-pulsed radiation. With cw radiation at the same average power of 1 kW however, the HAZ was 300-400 μm. Also employing ns-pulses in the kW-range average power leads to heat accumulation in the material. Small HAZ were obtained with sufficient break times between subsequent passes.

  13. Rapid fabrication of thermoplastic polymer refractive microlens array using contactless hot embossing technology.

    PubMed

    Xie, Dan; Chang, Xuefeng; Shu, Xiayun; Wang, Yingchun; Ding, Huanqi; Liu, Yangxu

    2015-02-23

    A thermoplastic polymer refractive microlens array has been rapidly fabricated by contactless hot embossing technology through the stainless steel template with micro through-holes array, which has a diameter of 150 µm and a pitch of 185 µm. By optimizing the technical parameters including heating and demoulding temperature, loading pressure, loading and pressure holding time, a series of high quality microlenses arrays of different sags could be obtained. In addition, the sag and the radius of curvature of the microlens are controllable. The geometrical and optical properties of the microlenses are measured and the influence of temperature and pressure duration on the optical properties of the microlenses are analysed. The results show good surface features and optical performances. Unlike previous contactless hot embossing, a low cost and durable stainless steel template was utilized instead of silicon or nickel mold to avoid valuable equipments and complicated fabrication procedure. Besides, the whole contactless hot embossing process was absence of vacuum equipment. We think that the technology could be an attractive high flexibility method for enhancing efficiency and reducing cost. PMID:25836549

  14. Lignin-derived thermoplastic co-polymers and methods of preparation

    SciTech Connect

    Naskar, Amit K.; Saito, Tomonori; Pickel, Joseph M.; Baker, Frederick S.; Eberle, Claude Clifford; Norris, Robert E.; Mielenz, Jonathan Richard

    2014-06-10

    The present invention relates to a crosslinked lignin comprising a lignin structure having methylene or ethylene linking groups therein crosslinking between phenyl ring carbon atoms, wherein said crosslinked lignin is crosslinked to an extent that it has a number-average molecular weight of at least 10,000 g/mol, is melt-processible, and has either a glass transition temperature of at least 100.degree. C., or is substantially soluble in a polar organic solvent or aqueous alkaline solution. Thermoplastic copolymers containing the crosslinked lignin are also described. Methods for producing the crosslinked lignin and thermoplastic copolymers are also described.

  15. Thermoplastic coating of carbon fibers

    NASA Technical Reports Server (NTRS)

    Edie, D. D.; Lickfield, G. C.; Drews, M. J.; Ellison, M. S.; Gantt, B. W.

    1989-01-01

    A process is being developed which evenly coats individual carbon fibers with thermoplastic polymers. In this novel, continuous coating process, the fiber tow bundle is first spread cover a series of convex rollers and then evenly coated with a fine powder of thermoplastic matrix polymer. Next, the fiber is heated internally by passing direct current through the powder coated fiber. The direct current is controlled to allow the carbon fiber temperature to slightly exceed the flow temperature of the matrix polymer. Analysis of the thermoplastic coated carbon fiber tows produced using this continuous process indicates that 30 to 70 vol pct fiber prepregs can be obtained.

  16. Multi-shape memory polymers achieved by the spatio-assembly of 3D printable thermoplastic building blocks.

    PubMed

    Li, Hongze; Gao, Xiang; Luo, Yingwu

    2016-04-01

    Multi-shape memory polymers were prepared by the macroscale spatio-assembly of building blocks in this work. The building blocks were methyl acrylate-co-styrene (MA-co-St) copolymers, which have the St-block-(St-random-MA)-block-St tri-block chain sequence. This design ensures that their transition temperatures can be adjusted over a wide range by varying the composition of the middle block. The two St blocks at the chain ends can generate a crosslink network in the final device to achieve strong bonding force between building blocks and the shape memory capacity. Due to their thermoplastic properties, 3D printing was employed for the spatio-assembly to build devices. This method is capable of introducing many transition phases into one device and preparing complicated shapes via 3D printing. The device can perform a complex action via a series of shape changes. Besides, this method can avoid the difficult programing of a series of temporary shapes. The control of intermediate temporary shapes was realized via programing the shapes and locations of building blocks in the final device. PMID:26924759

  17. Melt-electrospinning of thermoplastic polymers: An experimental and theoretical analysis

    NASA Astrophysics Data System (ADS)

    Lyons, Jason Michael

    Over the past decade, there have been significant advancements in the area of electrospinning. A variety of polymers are being electrospun to form fibers on the nanoscale believed to have mechanical properties superior to those commercially available. Past research has focused on forming these fibers from a polymer solution but ever increasing demands for a cheaper, more environmentally friendly and safer alternative increases the demand to understand the feasibility of electrospinning from a polymer melt where very little research has been performed. The effects of various melt-electrospinning parameters, including electric field strength, flow rate, and processing temperature on the morphology and fiber diameter of polypropylene of different tacticities and molecular weights and poly(ethylene terephthalate) were experimentally studied. It was shown that molecular weight was the predominant factor in determining the obtainable fiber diameter of the collected fibers. Observations prove that the tacticity also significantly influences the fiber diameter. Atactic polymers having molecular chains incapable of a high degree of orientation tend to produce larger diameter fibers than isotactic polymers capable of a high degree of orientation, despite the effect of molecular weights. In addition, a model based on experimental and polymeric parameters and observations has been developed in an attempt to predict the diameter of the fibers that are being produced through the melt-electrospinning process. The model has been tested over all electric field strengths used in experimentation and has proven accurate for atactic polypropylene at small electric field strengths. By understanding the effects of each processing parameter on a specific response such as fiber diameter and being able to theoretically predict the fiber diameter being produced, the efficiency of the electrospinning process has been enhanced and it makes it a much more attractive alternative from many commercial applications were nonwoven materials are currently used.

  18. Microinjection molding of thermoplastic polymers: morphological comparison with conventional injection molding

    NASA Astrophysics Data System (ADS)

    Giboz, Julien; Copponnex, Thierry; Ml, Patrice

    2009-02-01

    The skin-core crystalline morphology of injection-molded semi-crystalline polymers is well documented in the scientific literature. The thermomechanical environment provokes temperature and shear gradients throughout the entire thickness of the part during molding, thus influencing the polymer crystallization. Crystalline morphologies of a high-density polyethylene (HDPE) micromolded part (?part) and a classical part (macropart) are compared with optical, thermal and x-ray diffraction analyses. Results show that the crystalline morphologies with regard to thickness vary between the two parts. While a 'skin-core' morphology is present for the macropart, the ?part exhibits a specific 'core-free' morphology, i.e. no spherulite is present at the center of the thickness. This result seems to be generated under the specific conditions used in microinjection molding that lead to the formation of smaller and more oriented crystalline entities.

  19. A Process for Semi-Solid Moulding of High Viscosity Thermoplastic Polymers

    NASA Astrophysics Data System (ADS)

    Frick, Achim; Rochman, Arif; Martin, Peter

    2011-05-01

    A new moulding process for manufacturing micro parts made from high viscosity polymers has been developed as a result of a feasibility study. The process basically involves compression moulding of a polymeric preform by heating it up to its semi-solid state, i.e. between its glass transition temperature and melting temperature. The apparatus is made up of three main parts: a forming device, a single cavity micro mould and an induction heating system. The processing technique was successfully tested in the manufacturing of 10 mm round discs with a flange and inner bore using high viscosity polymers such as polyphenylene sulfide (PPS), polyetheretherketone (PEEK), ultra-high molecular weight polyethylene (UHMW PE) and polytetrafluoroethylene (PTFE). In a further miniaturization study, U-shaped micro seals with an outer diameter up to 2.5 mm were also successfully manufactured from non-injection mouldable PTFE. Thus, the new process is a realistic alternative technique to the existing micro moulding processes with respect to its capability to process a huge variety of polymers, even ultra high viscosity materials and the possibility to create micro parts with non-uniform wall thickness distributions.

  20. Derivation of heating rate dependent exposure strategies for the selective laser melting of thermoplastic polymers

    NASA Astrophysics Data System (ADS)

    Drummer, Dietmar; Drexler, Maximilian; Wudy, Katrin

    2015-05-01

    The selective laser melting of polymer powder is for rapid prototyping applications an established technology, although a lack in basic process knowledge appears. Considering demands of series production the selective laser melting technique is faced with varies challenges concerning processable material systems, process strategies and part properties. Consequently basic research is necessary to shift from rapid prototyping to rapid manufacturing of small lot sized series. Based on basic research the high potential of selective laser melting for the production of complex parts without any tools can be opened up. For the derivation of part quality increasing process strategies knowledge about interactions between sub-processes of selective laser melting and resulting part properties is necessary. The selective laser melting consists of three major sub-processes: Geometry exposure, tempering and powder feeding. According to the interaction of sub-processes resulting temperature fields during the selective laser melting process determine the part properties by changing micro structural pore number and distribution. Beneath absolute temperatures also the time-dependency of the thermal fields influences the porosity of molten parts. Present process strategies tend to decrease building time by increasing scanning speed and laser power. Although the absolute energy input into the material is constant for increasing scanning speed and laser power in the same ratio, time dependent material effects are neglected. The heating rate is a combined parameter derived from absolute temperature and time. Within the paper the authors analyze the basic interactions between different heating rates and part properties (e.g. porosity, mechanical strengths). Therefore with different heating rates produced specimens are analyzed with imaging technologies as well as mechanical tests. Based on the done basic investigations new heating rate dependent process strategies can be established considering time dependent material behavior.

  1. An overview of long fiber reinforced thermoplastics

    SciTech Connect

    Bockstedt, R.J.; Skarlupka, R.J.

    1995-12-01

    Long fiber reinforced thermoplastics (LFRTP) are a class of injection molding materials that extend the physical property envelope of thermoplastics polymers. These materials are manufactured by pulling continuous fiber tows through a thermoplastic polymer melt in a specialized processing die. The strands are subsequently cooled and chopped into pellets of equal length. LFRTP materials are available in virtually every common thermoplastic resin with glass, aramid, stainless steel, or carbon fiber reinforcement at levels up to 60% by weight. Unlike short fiber reinforced thermoplastics manufactured by conventional screw compounding processes, LFRTP exhibit simultaneous improvements in both flexural modulus and impact resistance. Improvements in load transfer, creep resistance at elevated temperatures, and dimensional stability can also be attributed to the long fiber network formed in the molded part. This unique combination of properties makes LFRTP the material of choice for replacement of metal structural assemblies in many automotive, industrial, consumer and recreational applications.

  2. Toughening mechanisms of thermoplastic particulate polycarbonate composites

    NASA Astrophysics Data System (ADS)

    Kim, Hyung-ick; Zhao, Wenjie; Suhr, Jonghwan

    2012-04-01

    Toughness of a polymer is a key material property for energy absorbing capability for various engineering applications. Significant effort has been made to improve toughness of a polymer and hence increase the energy absorbing capability; typically rigid-particles in thermoplastics or rubbery modifiers in a brittle polymer matrix. The focus of this study is to investigate toughening mechanisms of a thermoplastic polymer composite. Micron-size thermoplastic particle reinforced polycarbonate (PC) composite materials was fabricated via a solution mixing method. The mechanical properties of the polymer composites were characterized in tensile testing while the acoustic emission was monitored to assess the material failure modes during the tensile test. Substantial improvement in tensile toughness was observed for the polymer composites and the toughening mechanisms responsible for the improvement were identified and quantified for each contribution to the observation.

  3. A high throughput, controllable and environmentally benign fabrication process of thermoplastic nanofibers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Continuous and uniform yarns of thermoplastic nanofibers were prepared via direct melt extrusion of immiscible blends of thermoplastic polymers with CAB and subsequent extraction removal of CAB. Ratios of thermoplastic/sacrificial polymers, melt viscosity, and interfacial tensions affect the formati...

  4. Drying Thermoplastics

    NASA Technical Reports Server (NTRS)

    1976-01-01

    In searching for an improved method of removing water from polyester type resins without damaging the materials, Conair Inc. turned to the NASA Center at the University of Pittsburgh for assistance. Taking an organized, thorough look at existing technology before beginning research has helped many companies save significant time and money. They searched the NASA and other computerized files for microwave drying of thermoplastics. About 300 relevant citations were retrieved - eight of which were identified as directly applicable to the problem. Company estimates it saved a minimum of a full year in compiling research results assembled by the information center.

  5. Investigations of the surface activation of thermoplastic polymers by atmospheric pressure plasma treatment with a stationary plasma jet

    NASA Astrophysics Data System (ADS)

    Moritzer, Elmar; Nordmeyer, Timo; Leister, Christian; Schmidt, Martin Andreas; Grishin, Artur; Knospe, Alexander

    2016-03-01

    The production of high-quality thermoplastic parts often requires an additional process step after the injection molding stage. This may be a coating, bonding process or a 2K-injection moulding process. A commonly used process to improve the bond strength is atmospheric pressure plasma treatment. A variety of applications are realized with the aid of CNC systems. Although they ensure excellent reproducibility, they make it difficult to implement inline applications. This paper therefore examines the possibility of surface treatment using a stationary plasma jet. However, before it is possible to integrate this technology into a production process, preliminary trials need to be carried out to establish which factors influence the process. Experimental tests were performed using a special test set-up, enabling geometric, plasma-specific parameters to be identified. These results can help with the practical integration of this technology into existing production processes.

  6. Surface characterization in composite and titanium bonding: Carbon fiber surface treatments for improved adhesion to thermoplastic polymers

    NASA Technical Reports Server (NTRS)

    Devilbiss, T. A.; Wightman, J. P.

    1987-01-01

    The effect of anodization in NaOH, H2SO4, and amine salts on the surface chemistry of carbon fibers was examined by X-ray photoelectron spectroscopy (XPS). The surfaces of carbon fibers after anodization in NaOH and H2SO4 were examined by scanning transmission electron microscopy (STEM), angular dependent XPS, UV absorption spectroscopy of the anodization bath, secondary ion mass spectrometry, and polar/dispersive surface energy analysis. Hercules AS-4, Dexter Hysol XAS, and Union Carbide T-300 fibers were examined by STEM, angular dependent XPS, and breaking strength measurement before and after commercial surface treatment. Oxygen and nitrogen were added to the fiber surfaces by anodization in amine salts. Analysis of the plasmon peak in the carbon 1s signal indicated that H2SO4 anodization affected the morphological structure of the carbon fiber surface. The work of adhesion of carbon fibers to thermoplastic resins was calculated using the geometric mean relationship. A correlation was observed between the dispersive component of the work of adhesion and the interfacial adhesion.

  7. Aerogel/polymer composite materials

    NASA Technical Reports Server (NTRS)

    Williams, Martha K. (Inventor); Smith, Trent M. (Inventor); Fesmire, James E. (Inventor); Roberson, Luke B. (Inventor); Clayton, LaNetra M. (Inventor)

    2010-01-01

    The invention provides new composite materials containing aerogels blended with thermoplastic polymer materials at a weight ratio of aerogel to thermoplastic polymer of less than 20:100. The composite materials have improved thermal insulation ability. The composite materials also have better flexibility and less brittleness at low temperatures than the parent thermoplastic polymer materials.

  8. Fabrication and characterization of a foamed polylactic acid (PLA)/ thermoplastic polyurethane (TPU) shape memory polymer (SMP) blend for biomedical and clinical applications

    NASA Astrophysics Data System (ADS)

    Song, Janice J.; Srivastava, Ijya; Kowalski, Jennifer; Naguib, Hani E.

    2014-03-01

    Shape memory polymers (SMP) are a class of stimuli-responsive materials that are able to respond to external stimulus such as heat by altering their shape. Bio-compatible SMPs have a number of advantages over static materials and are being studied extensively for biomedical and clinical applications (such as tissue stents and scaffolds). A previous study has demonstrated that the bio-compatible polymer blend of polylactic acid (PLA)/ thermoplastic polyurethane (TPU) (50/50 and 70/30) exhibit good shape memory properties. In this study, the mechanical and thermo-mechanical (shape memory) properties of TPU/PLA SMP blends were characterized; the compositions studied were 80/20, 65/35, and 50/50 TPU/PLA. In addition, porous TPU/PLA SMP blends were fabricated with a gas-foaming technique; and the morphology of the porous structure of these SMPs foams were characterized with scanning electron microscopy (SEM). The TPU/PLA bio-compatible SMP blend was fabricated with melt-blending and compression molding. The glass transition temperature (Tg) of the SMP blends was determined with a differential scanning calorimeter (DSC). The mechanical properties studied were the stress-strain behavior, tensile strength, and elastic modulus; and the thermomechanical (or shape memory) properties studied were the shape fixity rate (Rf), shape recovery rate (Rr), response time, and the effect of recovery temperature on Rr. The porous 80/20 PLA/TPU SMP blend was found to have the highest tensile strength, toughness and percentage extension, as well as the lowest density and uniform pore structure in the micron and submicron scale. The porous 80/20 TPU/PLA SMP blend may be further developed for specific biomedical and clinical applications where a combination of tensile strength, toughness, and low density are required.

  9. Electrostatic prepregging of thermoplastic matrices

    NASA Technical Reports Server (NTRS)

    Muzzy, John D.; Varughese, Babu; Thammongkol, Vivan; Tincher, Wayne

    1989-01-01

    Thermoplastic towpregs of PEEK/AS-4, PEEK/S-2 glass and LaRC-TPI/AS-4, produced by electrostatic deposition of charged and fluidized polymer powders on spread continuous fiber tows, are described. Processing parameters for combining PEEK 150 powder with unsized 3k AS-4 carbon fiber are presented. The experimental results for PEEK 150/AS-4 reveal that electrostatic fluidized bed coating may be an economically attractive process for producing towpreg.

  10. Thermoplastic-carbon fiber hybrid yarn

    NASA Technical Reports Server (NTRS)

    Ketterer, M. E.

    1984-01-01

    Efforts were directed to develop processing methods to make carbon fiber/thermoplastic fiber preforms that are easy to handle and drapeable, and to consolidate them into low void content laminates. The objectives were attained with the development of the hybrid yarn concept; whereby, thermoplastic fiber can be intimately intermixed with carbon fiber into a hybrid yarn. This was demonstrated with the intermixing of Celion 3000 with a Celanese liquid crystal polymer fiber, polybutylene terepthalate fiber, or polyetheretherketone fiber. The intermixing of the thermoplastic matrix fiber and the reinforcing carbon fiber gives a preform that can be easily fabricated into laminates with low void content. Mechanical properties of the laminates were not optimized; however, initial results indicated properties typical of a thermoplastic/carbon fiber composites prepared by more conventional methods.

  11. Thermophysical, dielectric, and electro-optic properties of nematic liquid crystal droplets confined to a thermoplastic polymer matrix.

    PubMed

    Boussoualem, Mourad; Roussel, Frédérick; Ismaili, Mimoun

    2004-03-01

    The thermophysical, dielectric and electro-optic properties of polymer-dispersed liquid crystal (PDLC) films made of monodisperse polystyrene (PS) and 4-n-pentyl-4(')-cyanobiphenyl (5CB) are investigated by polarized optical microscopy, differential scanning calorimetry, ac impedance analysis, and forward transmittance measurement technique. The PS-5CB system exhibits an upper critical solution temperature (UCST) shape phase diagram with a wide isotropic+isotropic (I+I) miscibility gap between the isotropic and nematic+isotropic (N+I) regions. An absorption domain in the dielectric spectrum of PDLC films was clearly observed at low frequency, and unambiguously assigned to the confined liquid crystalline phase in both nematic and isotropic states. The correlation between the dielectric and electro-optical results for PS-5CB (30:70) samples has shown that in the vicinity of the low frequency absorption domain ( approximately 200 Hz at T=25 degrees C), a drastic decrease in the optical transmittance of the film occurs. This phenomenon can be related to an interfacial polarization process resulting from a charge accumulation at the droplet-polymer interface (Maxwell-Wagner-Sillars effect). PMID:15089305

  12. Nanocellular thermoplastic foam and process for making the same

    SciTech Connect

    Zhu, Lingbo; Costeux, Stephane; Patankar, Kshitish A.; Moore, Jonathan D.

    2015-09-29

    Prepare a thermoplastic polymer foam having a porosity of 70% or more and at least one of: (i) an average cell size of 200 nanometers or less; and (ii) a nucleation density of at least 1.times.1015 effective nucleation sites per cubic centimeter of foamable polymer composition not including blowing agent using a foamable polymer composition containing a thermoplastic polymer selected from styrenic polymer and (meth)acrylic polymers, a blowing agent comprising at least 20 mole-percent carbon dioxide based on moles of blowing agent and an additive having a Total Hansen Solubility Parameter that differs from that of carbon dioxide by less than 2 and that is present at a concentration of 0.01 to 1.5 weight parts per hundred weight parts thermoplastic polymer.

  13. Thermoplastic coating of carbon fibers

    NASA Technical Reports Server (NTRS)

    Edie, D. D.; Lickfield, G. C.; Allen, L. E.; Mccollum, J. R.

    1989-01-01

    A continuous powder coating system was developed for coating carbon fiber with LaRC-TPI (Langley Research Center-Thermoplastic Polyimide), a high-temperature thermoplastic polymide invented by NASA-Langley. The coating line developed used a pneumatic fiber spreader to separate the individual fibers. The polymer was applied within a recirculating powder coating chamber then melted using a combination of direct electrical resistance and convective heating to make it adhere to the fiber tow. The tension and speed of the line were controlled with a dancer arm and an electrically driven fiber wind-up and wind-off. The effects of heating during the coating process on the flexibility of the prepreg produced were investigated. The uniformity with which the fiber tow could be coated with polymer also was examined. Composite specimens were fabricated from the prepreg and tested to determine optimum process conditions. The study showed that a very uniform and flexible prepeg with up to 50 percent by volume polymer could be produced with this powder coating system. The coating line minimized powder loss and produced prepeg in lengths of up to 300 m. The fiber spreading was found to have a major effect on the coating uniformity and flexibility. Though test results showed low composite tensile strengths, analysis of fracture surfaces under scanning electron microscope indicated that fiber/matrix adhesion was adequate.

  14. Thermoplastic composites for ballistic application

    NASA Astrophysics Data System (ADS)

    Song, John Whachong

    2003-08-01

    Systematic studies of thermoplastic composites on ballistic impact failure and kinetic energy absorption mechanisms were examined on both semicrystalline and amorphous polymer matrix composites. By taking advantages of the nature of thermoplastic polymers, the main objective of this research was to develop armor grade composites with thermoplastic resin matrices through a understanding of the microscopic as well as macroscopic characteristics of the composites. In both semicrystalline neat resin and composites, the crystal formation and the degree of crystallinity of the polymer matrix were greatly influenced by processing conditions, especially, the cooling rate. As the cooling rate is decreased, more perfect crystal formation and amorphous rearrangements were evident vs cooling at higher rates. The relative degree of crystallinity of semicrystalline matrix composites was calculated using dynamic mechanical analysis (DMA). These values were in good agreement with neat resin values obtained via differantial scanning calorimeter (DSC). Unfortunately, the morphological perfection of the semicrystalline matrix exhibits negligible advantage on ballistic impact resistance. Failure of the composites under ballistic impact was localized and the kinetic energy absorption was low. Amorphous polymers were also greatly influenced by processing conditions. Furthermore, amorphous polymers exhibit large processing windows in terms of processing temperature, which allows the various processing manipulations for ballistic composite fabrication. As increasing processing temperature, glass transition temperature of the polymer and stiffness of the composite increased due to the morphological perfection and level of wetting, respectively. Ballistic impact resistance was found to be inversely proportional to the stiffness of the composites. Fiber wetting characteristics and polymer morphology changes during the cooling process are considered to be major contributors of this behavior. For these reasons, samples processed at lower temperatures always gave higher energy absorption under ballistic impact. Fabric configuration was also an important parameter influencing the ballistic performance. Relatively stiff composites, KKM2/PSU 6-2 ripstop, showed better performance with smaller fragments over the other two composites. However, KM2/SP 6-2 ripstop composites, which are less stiff than KKM2/PSU 6-2 ripstop composites, exhibited better performance with larger size fragments. Fiber breakage is the major source of kinetic energy absorption upon ballistic impact. Fiber straining is the most preferred failure mechanism of the composites for maximum kinetic energy absorption upon ballistic penetration.

  15. Thermoplastic coated carbon fibers for textile preforms

    NASA Technical Reports Server (NTRS)

    Allen, L. E.; Edie, D. D.; Lickfield, G. C.; Mccollum, J. R.

    1988-01-01

    A continuous process for producing prepreg from carbon fiber and thermoplastic matrix is described. After the tow has been spread using a pneumatic device, the process utilizes a fluidized bed to apply thermoplastic powder to the bundle. Finally, direct electrical heating of the coated fiber tow melts the polymer on the individual fibers, creating a uniform and extremely flexible prepreg. The efficiency of the process was evaluated during initial trials in which a thermoplastic polyimide, LaRC-TPI, was applied to T-300, 3K (3000 filament) carbon fiber tow. The physical properties of unidirectional composite specimens fabricated from this prepreg were measured, and the matrix uniformity and void content of the samples was determined. The results of these evaluations are detailed and discussed.

  16. Recent Developments on Thermoplastic Elastomers by Dynamic Vulcanization

    NASA Astrophysics Data System (ADS)

    Babu, R. Rajesh; Naskar, Kinsuk

    A comprehensive overview is given of the recent developments of thermoplastic vulcanizates (TPVs) with special reference to the technological advancements. TPVs combine the high volume molding capability of thermoplastics with the elastomeric properties of thermoset rubber. Therefore, they lend themselves to a broad range of applications in various fields. TPVs represent the second largest group of soft thermoplastic elastomers, after styrenic-based block copolymers. TPVs have undergone evolutionary changes in terms of the selection of polymers, design of crosslinking, compounding techniques, and methods of production, and have achieved better elastic recovery, easy processability and low hardness etc.

  17. An investigation of physical properties of thermoplastic polyimides

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.; Stoakley, Diane M.

    1987-01-01

    Thermoplastic polyimides are a class of promising high temperature polymers for aerospace applications. NASA-developed LARC-TPI is a prominent member of this family of polymers. Its physical characteristics have been measured as a function of its curing schedule. The results and their possible interpretations are discussed.

  18. The relative fire resistance of select thermoplastic materials. [for aircraft interiors

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Parker, J. A.

    1978-01-01

    The relative thermal stability, flammability, and related thermochemical properties of some thermoplastic materials currently used in aircraft interiors as well as of some candidate thermoplastics were investigated. Currently used materials that were evaluated include acrylonitrile butadiene styrene, bisphenol A polycarbonate, polyphenylene oxide, and polyvinyl fluoride. Candidate thermoplastic materials evaluated include: 9,9-bis(4-hydroxyphenyl)fluorene polycarbonate-poly(dimethylsiloxane) block polymer, chlorinated polyvinylchloride homopolymer, phenolphthalein polycarbonate, polyethersulfone, polyphenylene sulfide, polyarylsulfone, and polyvinylidene fluoride.

  19. Fiber reinforced thermoplastic resin matrix composites

    NASA Technical Reports Server (NTRS)

    Jones, Robert J. (Inventor); Chang, Glenn E. C. (Inventor)

    1989-01-01

    Polyimide polymer composites having a combination of enhanced thermal and mechanical properties even when subjected to service temperatures as high as 700.degree. F. are described. They comprise (a) from 10 to 50 parts by weight of a thermoplastic polyimide resin prepared from 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane and (b) from 90 to 50 parts by weight of continuous reinforcing fibers, the total of (a) and (b) being 100 parts by weight. Composites based on polyimide resin formed from 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane and pyromellitic dianhydride and continuous carbon fibers retained at least about 50% of their room temperature shear strength after exposure to 700.degree. F. for a period of 16 hours in flowing air. Preferably, the thermoplastic polyimide resin is formed in situ in the composite material by thermal imidization of a corresponding amide-acid polymer prepared from 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane. It is also preferred to initially size the continuous reinforcing fibers with up to about one percent by weight of an amide-acid polymer prepared from 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane. In this way imidization at a suitable elevated temperature results in the in-situ formation of a substantially homogeneous thermoplastic matrix of the polyimide resin tightly and intimately bonded to the continuous fibers. The resultant composites tend to have optimum thermo-mechanical properties.

  20. Pen microfluidics: rapid desktop manufacturing of sealed thermoplastic microchannels

    PubMed Central

    Rahmanian, Omid

    2013-01-01

    A unique technique for the rapid fabrication of thermoplastic microfluidic chips is described. The method enables the realization of fully-sealed microchannels in around one hour while requiring only minimal infrastructure by taking advantage of a solvent swelling mechanism that allows raised features to be patterned on the surface of homogeneous thermoplastic materials. Patterning is achieved without photolithography by simply drawing the desired microchannel pattern onto the polymer surface using a suitable ink as a masking layer, either manually or under robotic control, followed by timed exposure to solvent vapor to yield a desired depth for the masked channel features. The channels are then permanently sealed through solvent bonding of the microchannel chip to a mating thermoplastic substrate. The process is demonstrated using cyclic olefin copolymer as a thermoplastic material, with fully operational microfluidic devices fabricated following a true desktop manufacturing model suitable for rapid prototyping. PMID:23344819

  1. Welds in thermoplastic composite materials

    NASA Astrophysics Data System (ADS)

    Taylor, N. S.

    Welding methods are reviewed that can be effectively used for joining of thermoplastic composites and continuous-fiber thermoplastics. Attention is given to the use of ultrasonic, vibration, hot-plate, resistance, and induction welding techniques. The welding techniques are shown to provide complementary weld qualities for the range of thermoplastic materials that are of interest to industrial and technological applications.

  2. Pultrusion process development of a graphite reinforced polyetherimide thermoplastic composite

    NASA Technical Reports Server (NTRS)

    Wilson, Maywood L.; Buckley, John D.; Dickerson, George E.; Johnson, Gary S.; Taylor, Edward C.; Covington, Edward W.

    1989-01-01

    High performance thermoplastic polymers do not contain reactants and solvents able to react with a pultrusion die to yield polymerization; consolidation is therefore performed with a rigid or a boardy prepreg, and consolidation must occur with polymers whose viscosities are of the order of 1 million centipoises or more. Die temperatures are typically above 400 C, by comparison with the 150-200 C encountered in thermosets. A methodical approach is presented here for the development of a pultrusion process suitable for polyetherimide and other engineering thermoplastics, employing SEM, DSC, TGA, and ultrasonic C-scanning.

  3. Characterization of hybridized conductive fiber reinforced thermoplastics

    SciTech Connect

    Reilly, J.J.; Thoman, S.J.; Lin, W.W.

    1987-02-01

    Injection moldable thermoplastics filled with various hybrid conductive reinforcements have been investigated for their physical/mechanical properties. The thermoplastics studied include polyphenylene sulfide (PPS), polyether-etherketone (PEEK), and liquid crystal polymers (LCP's). The reinforcements included various combinations and concentrations of graphite (Gr) fibers, stainless steel (SS) fibers, nickel flakes (NiFlk) and nickel plated graphite (NiGr) fibers. Tensile, flexural and drop weight impact tests were performed. Fracture morphology of tensile specimens was investigated using scanning electron microscopy (SEM). The distribution of fibers and flakes was observed using photomicroscopy. Electromagnetic interference (EMI) shielding effectiveness was determined in the range of 15 MHz to 1 GHz. Water absorption, density and electrical resistivity properties were also determined. Differential scanning calorimetry (DSC) was used to determine thermal properties. 6 references.

  4. Materials selection and manufacturing of thermoplastic elastomer microfluidics

    NASA Astrophysics Data System (ADS)

    Sameoto, D.; Wasay, A.

    2015-03-01

    In this paper we outline some of the manufacturing advantages and challenges of working with thermoplastic elastomers as an alternative to traditional polydimethysiloxane (PDMS) for flexible and reversibly bonded microfluidic systems. Unlike PDMS, thermoplastic elastomers can be processed with many industrial polymer manufacturing technologies such as extrusion, injection molding, hot embossing and others, potentially permitting much more scalable production and cheaper costs per part. Unlike a more rigid thermoplastic, these thermoplastic elastomers are typically much easier to bond, either reversibly or permanently due to their inherent compliance and subsequent low pressures necessary to seal channels and reservoirs. Unlike PDMS however, where one material (Sylgard 184) dominates the literature, there have not been many in depth investigations into thermoplastic elastomers and their relative performance and applicability to microfabrication. We show a comparison between several categories of thermoplastic elastomer to demonstrate what issues may be encountered and to demonstrate that even for labs with minimal equipment, academic prototyping with these materials is not necessarily any more challenging than PDMS.

  5. Morphological, mechanical properties and biodegradability of biocomposite thermoplastic starch and polycaprolactone reinforced with sisal fibers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The incorporation of fibers as reinforcements in polymer composites has increased due to their renewability, low cost and biodegradability. In this study, sisal fibers were added to a polymer matrix of thermoplastic starch and polycaprolactone, both biodegradable polymers. Sisal fibers (5% and 10%) ...

  6. A 69 cent look at thermoplastic softening

    NASA Technical Reports Server (NTRS)

    Vanasupa, Linda S.

    1993-01-01

    The objectives are to demonstrate the change in mechanical properties of a thermoplastic polymer when the polymer is heated above the glass transition temperature. The instructor or student can perform this demonstration. In preparation for the demonstration, fill the flask or beaker 3/4 full with water and bring the water to a boil. First observe the initial stiffness of the toothbrush by slightly flexing it. Note that it is fairly stiff and retains its initial shape when the forces are removed. If you were to apply enough force, the toothbrush would break in a somewhat brittle fashion. Now place the toothbrush in the boiling water for 2 minutes. After the 2 minutes are up, remove the toothbrush from the boiling water with the washcloth. At this time, you will be able to bend the toothbrush easily. When it cools it will retain this bent shape. You've just demonstrated heating the polymer above the glass transition temperature, demonstrating thermoplastic softening. Instructor notes are provided.

  7. Absorption depth profile of water on thermoplastic starch films

    SciTech Connect

    Bonno, B.; Laporte, J.L.; Paris, D.; D'Leon, R.T.

    2000-01-01

    It is well known that petroleum derived polymers are primary environmental contaminants. The study of new packing biodegradable materials has been the object of numerous papers in past years. Some of these new materials are the thermoplastic films derived from wheat starch. In the present paper, the authors study some of properties of wheat starch thermoplastic films, with various amounts of absorbed water, using photoacoustic spectroscopy techniques. The absorption depth profile of water in the starch substrate is determined for samples having a variable water level.

  8. Adsorption depth profile of water on thermoplastic starch films

    SciTech Connect

    Bonno, B.; Laporte, J.L.; Paris, D.; D'Leon, R.T.

    2000-01-01

    It is well known that petroleum derived polymers are primary environmental contaminants. The study of new packing biodegradable materials has been the object of numerous papers in past years. Some of these new materials are the thermoplastic films derived from wheat starch. In the present paper, the authors study some of properties of wheat starch thermoplastic films, with various amounts of absorbed water, using photoacoustic spectroscopy techniques. The absorption depth profile of water in the starch substrate is determined for samples having a variable water level.

  9. Thermal formation of PBDD/F from tetrabromobisphenol A--a comparison of polymer linked TBBP A with its additive incorporation in thermoplastics.

    PubMed

    Wichmann, H; Dettmer, F T; Bahadir, M

    2002-04-01

    For a long period, polybrominated flame retardants are under discussion because of the formation of polybrominated dibenzo-p-dioxins (PBDD)/dibenzofurans (PBDF) (PBDD/F) in case of thermal stress. Concerning polymer linked tetrabromobisphenol A (TBBP A), formation of PBDD/F was commonly presumed to be sterically hindered because of the covalent fixation into the polymer backbone. Combustion experiments with additively incorporated TBBP A compared with its polymer linkage revealed, that this assumption is incorrect and has to be revised. Under same conditions, similar PBDD/F concentrations in the range of 17.5-19.6 mg PBBD/F per kg TBBP A applied were analyzed. PBDD/F homologue distribution patterns were almost identical predominated by low brominated PBDF. These findings for PBDD/F formation have to be considered in future discussions regarding thermal stress caused by combustion or recycling processes, including other flame retardants bound in polymer matrix, e.g. polybrominated polystyrene (PS), or those with molecular structures showing less analogy to PBDD/F, like hexabromocyclododecane. The second aspect introduced, is the influence of different plastics on the formation rates of PBDD/F. In this context, combustion experiments were performed in an atmosphere consisting of synthetic air and HBr. PBDD/F concentrations were 8.47 mg/kg polyethylene, 1.67 mg/kg PS, 3.92 mg/kg phenolic resin and 18.1 mg/kg epoxy resin. Distribution patterns of PBDD/F homologues could partly be correlated with the occurrence of the precursors polybrominated benzenes and phenols. PMID:11999610

  10. 40 CFR Table 6 to Subpart Jjj of... - Known Organic HAP Emitted From the Production of Thermoplastic Products

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Known Organic HAP Emitted From the...: Group IV Polymers and Resins Pt. 63, Subpt. JJJ, Table 6 Table 6 to Subpart JJJ of Part 63—Known Organic HAP Emitted From the Production of Thermoplastic Products Thermoplastic product/Subcategory...

  11. 40 CFR Table 6 to Subpart Jjj of... - Known Organic HAP Emitted From the Production of Thermoplastic Products

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 11 2011-07-01 2011-07-01 false Known Organic HAP Emitted From the...: Group IV Polymers and Resins Pt. 63, Subpt. JJJ, Table 6 Table 6 to Subpart JJJ of Part 63—Known Organic HAP Emitted From the Production of Thermoplastic Products Thermoplastic product/Subcategory...

  12. 40 CFR Table 6 to Subpart Jjj of... - Known Organic HAP Emitted From the Production of Thermoplastic Products

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 12 2012-07-01 2011-07-01 true Known Organic HAP Emitted From the...: Group IV Polymers and Resins Pt. 63, Subpt. JJJ, Table 6 Table 6 to Subpart JJJ of Part 63—Known Organic HAP Emitted From the Production of Thermoplastic Products Thermoplastic product/Subcategory...

  13. Analyzing Nonisothermal Crystallization of Thermoplastics

    NASA Technical Reports Server (NTRS)

    Cebe, Peggy

    1987-01-01

    Method developed for analysis of nonisothermal cold crystallization in thermoplastics. Does not require prior knowledge of isothermal kinetic parameters. Based upon observation: During nonisothermal crystallization at constant rate, relative crystallinity develops with time dependence sigmoidal at low degrees of conversion. Application for method is study of cold crystallization in advanced thermoplastics.

  14. Use of Melt Flow Rate Test in Reliability Study of Thermoplastic Encapsulation Materials in Photovoltaic Modules

    SciTech Connect

    Moseley, J.; Miller, D.; Shah, Q.-U.-A. S. J.; Sakurai, K.; Kempe, M.; Tamizhmani, G.; Kurtz, S.

    2011-10-01

    Use of thermoplastic materials as encapsulants in photovoltaic (PV) modules presents a potential concern in terms of high temperature creep, which should be evaluated before thermoplastics are qualified for use in the field. Historically, the issue of creep has been avoided by using thermosetting polymers as encapsulants, such as crosslinked ethylene-co-vinyl acetate (EVA). Because they lack crosslinked networks, however, thermoplastics may be subject to phase transitions and visco-elastic flow at the temperatures and mechanical stresses encountered by modules in the field, creating the potential for a number of reliability and safety issues. Thermoplastic materials investigated in this study include PV-grade uncured-EVA (without curing agents and therefore not crosslinked); polyvinyl butyral (PVB); thermoplastic polyurethane (TPU); and three polyolefins (PO), which have been proposed for use as PV encapsulation. Two approaches were used to evaluate the performance of these materials as encapsulants: module-level testing and a material-level testing.

  15. Laser beam welding of thermoplastics

    NASA Astrophysics Data System (ADS)

    Russek, Ulrich A.; Palmen, A.; Staub, H.; Poehler, J.; Wenzlau, C.; Otto, G.; Poggel, M.; Koeppe, A.; Kind, H.

    2003-07-01

    Current product development showing an ever shrinking physical volume is asking for new, reliable joining technologies. Laser beam technologies conceal innovative solutions to overcome limitations of conventional joining technologies. Laser beam welding of thermoplastics offers several process technical advantages. The joining energy is fed contact-less into the joining area, avoiding mechanical stress and thermal load to the joining partners. The energy is supplied spatially (seam width on the order of 100 ?m) and timely (interaction time on the order of ms) very well defined. Different process strategies are possible leading to flexibility, product adapted irradiation, short process times and high quality weld seams as well as to high integration abilities and automation potentials. During the joining process no vibration, no thermal stress, no particle release takes place. Therefore, destruction of mechanically and electronically highly sensitive components, such as microelectronics, is avoided. The work place pollution is neglectable compared to other joining technologies, such as gluing (fume) or ultrasonic welding (noise, pieces of fluff). Not only micro-components can be welded in a reproducible way but also macro-components while obtaining a hermetic sealing with good optical appearance. In this publication firstly, an overview concerning process technical basis, aspects and challenges is given. Next, results concerning laser penetration welding of polymers using high power diode lasers are presented, while comparing contour and simultaneous welding by experimental results and the on-line process monitoring.

  16. THERMOPLASTIC WAVES IN MAGNETARS

    SciTech Connect

    Beloborodov, Andrei M.; Levin, Yuri E-mail: yuri.levin@monash.edu.au

    2014-10-20

    Magnetar activity is generated by shear motions of the neutron star surface, which relieve internal magnetic stresses. An analogy with earthquakes and faults is problematic, as the crust is permeated by strong magnetic fields which greatly constrain crustal displacements. We describe a new deformation mechanism that is specific to strongly magnetized neutron stars. The magnetically stressed crust begins to move because of a thermoplastic instability, which launches a wave that shears the crust and burns its magnetic energy. The propagating wave front resembles the deflagration front in combustion physics. We describe the conditions for the instability, the front structure, and velocity, and discuss implications for observed magnetar activity.

  17. Graphite fiber reinforced thermoplastic resins

    NASA Technical Reports Server (NTRS)

    Novak, R. C.

    1975-01-01

    Mechanical properties of neat resin samples and graphite fiber reinforced samples of thermoplastic resins were characterized with particular emphasis directed to the effects of environmental exposure (humidity, temperature and ultraviolet radiation). Tensile, flexural, interlaminar shear, creep and impact strengths were measured for polysulfone, polyarylsulfone and a state-of-the-art epoxy resin samples. In general, the thermoplastic resins exhibited environmental degradation resistance equal to or superior to the reference epoxy resin. Demonstration of the utility and quality of a graphite/thermoplastic resin system was accomplished by successfully thermoforming a simulated compressor blade and a fan exit guide vane.

  18. The crystallization of tough thermoplastic resins in the presence of carbon fibers

    NASA Technical Reports Server (NTRS)

    Theil, M. H.

    1986-01-01

    The crystallization kinetics of the thermoplastic resins poly(phenylene sulfide) (PPS) and poly(aryl-ether-ether-ketone) (PEEK) in the presence and in the abscence of carbon fibers was studied. How carbon fiber surfaces in composites affect the crystallization of tough thermoplastic polymers that may serve as matrix resins were determined. The crystallization kinetics of such substances can provide useful information about the crystallization mechanisms and, thus, indicate if the presence of carbon fibers cause any changes in such mechanisms.

  19. The effect of electron irradiation on the structure and the optical properties of silver particulate films deposited on modified thermoplastic polymer substrates

    NASA Astrophysics Data System (ADS)

    Kakkrannaya, A. Rakesha; Rao, K. Mohan; Tolpadi, Amita; Sanjeev, Ganesh; Pattabi, Manjunatha

    2016-03-01

    The silver (Ag) particulate films are prepared by the vacuum evaporation onto polystyrene (PS) substrates modified with 3-mercaptopropyltrimethoxysilane (MPTMS), pre-irradiated with the 8-MeV electron beam, held at a temperature 453 K. The effect of organosilane and electron irradiation dose on the Ag particulate structure is studied through optical spectroscopy, field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) with selected area electron diffraction (SAED) pattern, atomic-force microscopy (AFM), and X-ray diffraction (XRD). The flat spectrum observed for the lower irradiation doses may be due to the formation of the clusters of different sizes and shapes. The band shift toward the higher wavelength is attributed to the increased aggregation leading to the formation of the larger-sized nanoclusters. A long tail extending to the higher wavelength region is also observed due to aggregation process. The FESEM studies indicate the formation of the silver nanoclusters. The decrease in the particle size with the increase in irradiation dose as seen through TEM studies is interpreted on the basis of polymer-metal particle interaction caused by the free radicals formed due to the electron irradiation of the MPTMS-modified PS substrates. The SAED pattern shows the crystalline nature of the silver particles formed on the pure PS and the MPTMS-modified PS substrates irradiated with the electron beam. The AFM studies show an increase in the average surface roughness of the silver films with the electron irradiation dose and the MPTMS concentration. XRD indicated the polycrystalline nature of silver film on the pre-irradiated PS substrates and formation of nanocrystallites of silver with preferred orientation on the MPTMS-modified PS substrates pre-irradiated with electron beam.

  20. Injection molding of thermoplastic elastomers for microstructured substrates

    NASA Astrophysics Data System (ADS)

    Birkar, Smita

    Amorphous and semi-crystalline thermoplastic polymers have been widely investigated for injection molding of parts with microstructured surfaces. Microstructured surfaces injection molded from thermoplastic elastomers have emerging applications as superhydrobic surfaces and patterned adhesives, but there is a limited understanding of the factors affecting replication with these materials. This research was a continued investigation of block copolymer thermoplastic elastomers as well as the first in-depth examination of thermoplastic vulcanizates for injection molding microfeatures. The first focus of this research was the interactions between tooling aspect ratio and feature orientation (negative and positive tooling) and thermoplastic elastomer hard segment content on microfeature replication. Electroformed nickel tooling having positive and negative features with different geometries and aspect ratios of 0.02:1 to 2:1 were molded from three copolyester thermoplastic elastomers with similar chemistry and different hardness values. The tooling and part features were characterized for feature depth and height as well as feature definition using scanning electron microscopy and optical profilometry. Results were correlated with elastomer properties. In the second parts of this research, the effects of microfeature spacing on the replication of thermoplastic elastomer features was investigated using micropillars with two diameters (10 and 20 mum) and three spacing ratios (0.5:1, 1:1, and 2:1). The tooling and part features were characterized for feature depth and height as well as feature definition using scanning electron microscopy and optical profilometry. Feature spacing significantly affected the replication of micropillars using a thermoplastic elastomer. This replication was competition between cooling and pressurization of the melt. Wider spacing between smaller features allowed cooling in the tooling lands to dominate the feature filling. Higher pressures did not always produce better feature replication, suggesting that cooling effects in the tooling "holes" restricted filling. High pressures also produced surface porosity in the molded pillars. Although thermoplastic vulcanizates, thermoplastic elastomers with excellent processability and flexibility, are a widely used for over molding and automotive applications, the third section of this research was the first in-depth investigation of injection molding thermoplastic vulcanizates to create microstructured surfaces. In this study, nickel cobalt tooling was used to mold commercially-available thermoplastic vulcanizates with polypropylene/ethylene propylene diene monomer (PP/EPDM) backbones into 20-mum-diameter and 100-mum-wide features. These results were compared to those for a polypropylene homopolymer. The primary molding parameters, including melt and mold temperatures were evaluated for their effects on microfeature replication. Additionally, a two-level, three-factorial design of experiments was conducted to further evaluate the effects of key parameters (cooling time, hold pressure, and polymeric material) on the feature definition and depth ratios of the molded microfeatures. These results were compared to the properties of the thermoplastic vulcanizates.

  1. Graphite/Thermoplastic-Pultrusion Die

    NASA Technical Reports Server (NTRS)

    Wilson, Maywood L.; Frye, Mark W.; Johnson, Gary S.; Stanfield, Clarence E.

    1990-01-01

    Attachment to extruder produces thermoplastic-impregnated graphite tape. Consists of profile die, fiber/resin collimator, and crosshead die body. Die designed to be attached to commercially available extrusion machine capable of extruding high-performance thermoplastics. Simple attachment to commercial extruder enables developers of composites to begin experimenting with large numbers of proprietary resins, fibers, and hybrid composite structures. With device, almost any possible fiber/resin combination fabricated.

  2. Laminated thermoplastic composite material from recycled high density polyethylene

    NASA Technical Reports Server (NTRS)

    Liu, Ping; Waskom, Tommy L.

    1994-01-01

    The design of a materials-science, educational experiment is presented. The student should understand the fundamentals of polymer processing and mechanical property testing of materials. The ability to use American Society for Testing and Materials (ASTM) standards is also necessary for designing material test specimens and testing procedures. The objectives of the experiment are (1) to understand the concept of laminated composite materials, processing, testing, and quality assurance of thermoplastic composites and (2) to observe an application example of recycled plastics.

  3. Opportunities with thermoplastics.

    PubMed

    Vaahs, Tilo

    2003-04-01

    Whether as substitutes for glass and metal, or completely novel injection moulded applications, engineering polymers offer a range of opportunities for developing cost-effective, safe and smart medical devices. PMID:12789700

  4. Thermoplastic tape compaction device

    DOEpatents

    Campbell, V.W.

    1994-12-27

    A device is disclosed for bonding a thermoplastic tape to a substrate to form a fully consolidated composite. This device has an endless chain associated with a frame so as to rotate in a plane that is perpendicular to a long dimension of the tape, the chain having pivotally connected chain links with each of the links carrying a flexible foot member that extends outwardly from the chain. A selected number of the foot members contact the tape, after the heating thereof, to cause the heated tape to bond to the substrate. The foot members are each a thin band of metal oriented transversely to the chain, with a flexibility and width and length to contact the tape so as to cause the tape to conform to the substrate to achieve consolidation of the tape and the substrate. A biased leaf-type spring within the frame bears against an inner surface of the chain to provide the compliant pressure necessary to bond the tape to the substrate. The chain is supported by sprockets on shafts rotatably supported in the frame and, in one embodiment, one of the shafts has a drive unit to produce rotation such that the foot members in contact with the tape move at the same speed as the tape. Cooling jets are positioned along the frame to cool the resultant consolidated composite. 5 figures.

  5. Thermoplastic tape compaction device

    DOEpatents

    Campbell, Vincent W. (Oak Ridge, TN)

    1994-01-01

    A device for bonding a thermoplastic tape to a substrate to form a fully consolidated composite. This device has an endless chain associated with a frame so as to rotate in a plane that is perpendicular to a long dimension of the tape, the chain having pivotally connected chain links with each of the links carrying a flexible foot member that extends outwardly from the chain. A selected number of the foot members contact the tape, after the heating thereof, to cause the heated tape to bond to the substrate. The foot members are each a thin band of metal oriented transversely to the chain, with a flexibility and width and length to contact the tape so as to cause the tape to conform to the substrate to achieve consolidation of the tape and the substrate. A biased leaf-type spring within the frame bears against an inner surface of the chain to provide the compliant pressure necessary to bond the tape to the substrate. The chain is supported by sprockets on shafts rotatably supported in the frame and, in one embodiment, one of the shafts has a drive unit to produce rotation such that the foot members in contact with the tape move at the same speed as the tape. Cooling jets are positioned along the frame to cool the resultant consolidated composite.

  6. Thermoplastic Ribbon-Ply Bonding Model

    NASA Technical Reports Server (NTRS)

    Hinkley, Jeffrey A.; Marchello, Joseph M.; Messier, Bernadette C.

    1996-01-01

    The aim of the present work was to identify key variables in rapid weldbonding of thermoplastic tow (ribbon) and their relationship to matrix polymer properties and to ribbon microstructure. Theoretical models for viscosity, establishment of ply-ply contact, instantaneous (Velcro) bonding, molecular interdiffusion (healing), void growth suppression, and gap filling were reviewed and synthesized. Consideration of the theoretical bonding mechanisms and length scales and of the experimental weld/peel data allow the prediction of such quantities as the time and pressure required to achieve good contact between a ribbon and a flat substrate, the time dependence of bond strength, pressures needed to prevent void growth from dissolved moisture and conditions for filling gaps and smoothing overlaps.

  7. Thermoplastic polyimide NEW-TPI (trademark)

    NASA Technical Reports Server (NTRS)

    Hou, Tan-Hung; Reddy, Rakasi M.

    1990-01-01

    Thermal and rheological properties of a commercial thermoplastic polyimide, NEW-TPI (trademark), were characterized. The as-received material possesses initially a transient crystallite form with a bimodal distribution in peak melting temperatures. After the melting of the initial crystallite structure, the sample can be recrystallized by various thermal treatments. A bimodal or single modal melting peak distribution is formed for annealing temperatures below or above 360 C, respectively. The recrystallized crystallinities are all transient in nature. The polymers are unable to be recrystallized after being subjected to elevated temperature annealing above 450 C. The recrystallization mechanism was postulated, and a simple kinetics model was found to describe the behavior rather satisfactory under the conditions of prolonged thermal annealing. Rheological measurements made in the linear viscoelastic range support the evidence observed in the thermal analysis. Furthermore, the measurements sustain the manufacturer's recommended processing window of 400 to 420 C for this material.

  8. A review of recent developments in joining high-performance thermoplastic composites

    NASA Astrophysics Data System (ADS)

    Cole, K. C.

    1991-06-01

    There is currently a great deal of interest in the use of thermoplastic polymers as matrices in fiber reinforced composites for high performance applications, such as those encountered in the aerospace industry. These materials include polyether ether ketone (PEEK), polyphenylene sulphide (PPS), polyetherimide (PEI), polyamideimide (PAI), polyamides, polyimides, and polysulphones. A literature review is provided on the different ways of joining high performance thermoplastic composites by adhesive and fusion bonding. The discussion on adhesive bonding includes examination of the performance of specific adhesive/thermoplastic combinations and of techniques for the preparation of composite surfaces: abrasion, etching, flame, and plasma treatments. Thermoplastic composite welding techniques discussed in depth include the following: heated press welding, resistance welding, induction welding, and ultrasonic welding. Works which examine or compare applications for these bonding techniques are also reviewed.

  9. Thermal residual stresses in amorphous thermoplastic polymers

    NASA Astrophysics Data System (ADS)

    Grassia, Luigi; D'Amore, Alberto

    2010-06-01

    An attempt to calculate the internal stresses in a cylindrically shaped polycarbonate (LEXAN-GE) component, subjected to an arbitrary cooling rate, will be described. The differential volume relaxation arising as a result of the different thermal history suffered by each body point was considered as the primary source of stresses build up [1-3]. A numerical routine was developed accounting for the simultaneous stress and structural relaxation processes and implemented within an Ansys environment. The volume relaxation kinetics was modeled by coupling the KAHR (Kovacs, Aklonis, Hutchinson, Ramos) phenomenological theory [4] with the linear viscoelastic theory [5-7]. The numerical algorithm translates the specific volume theoretical predictions at each body point as applied non-mechanical loads acting on the component. The viscoelastic functions were obtained from two simple experimental data, namely the linear viscoelastic response in shear and the PVT (pressure volume temperature) behavior. The dimensionless bulk compliance was extracted from PVT data since it coincides with the memory function appearing in the KAHR phenomenological theory [7]. It is showed that the residual stress scales linearly with the logarithm of the Biot's number.

  10. Advanced thermoplastic resins, phase 1

    NASA Technical Reports Server (NTRS)

    Hendricks, C. L.; Hill, S. G.; Falcone, A.; Gerken, N. T.

    1991-01-01

    Eight thermoplastic polyimide resin systems were evaluated as composite matrix materials. Two resins were selected for more extensive mechanical testing and both were versions of LaRC-TPI (Langley Research Center - Thermoplastic Polyimide). One resin was made with LaRC-TPI and contained 2 weight percent of a di(amic acid) dopant as a melt flow aid. The second system was a 1:1 slurry of semicrystalline LaRC-TPI powder in a polyimidesulfone resin diglyme solution. The LaRC-TPI powder melts during processing and increases the melt flow of the resin. Testing included dynamic mechanical analysis, tension and compression testing, and compression-after-impact testing. The test results demonstrated that the LaRC-TPI resins have very good properties compared to other thermoplastics, and that they are promising matrix materials for advanced composite structures.

  11. Graphite fiber reinforced thermoplastic resins

    NASA Technical Reports Server (NTRS)

    Navak, R. C.

    1977-01-01

    The results of a program designed to optimize the fabrication procedures for graphite thermoplastic composites are described. The properties of the composites as a function of temperature were measured and graphite thermoplastic fan exit guide vanes were fabricated and tested. Three thermoplastics were included in the investigation: polysulfone, polyethersulfone, and polyarylsulfone. Type HMS graphite was used as the reinforcement. Bending fatigue tests of HMS graphite/polyethersulfone demonstrated a gradual shear failure mode which resulted in a loss of stiffness in the specimens. Preliminary curves were generated to show the loss in stiffness as a function of stress and number of cycles. Fan exit guide vanes of HMS graphite polyethersulfone were satisfactorily fabricated in the final phase of the program. These were found to have stiffness and better fatigue behavior than graphite epoxy vanes which were formerly bill of material.

  12. Polymers Are Everywhere.

    ERIC Educational Resources Information Center

    Seymour, Raymond B.

    1988-01-01

    Describes the history of the human understanding of polymers from alchemy to modern times. Discusses renaissance chemistry, polymers in the nineteenth century, synthetic elastomers, thermoplastic elastomers, fibers, coatings, adhesives, derivatives of natural rubber, thermosets, step-reaction, and chain polymerization. (CW)

  13. Process for Preparing a Tough, Soluble, Aromatic, Thermoplastic Copolyimide

    NASA Technical Reports Server (NTRS)

    Bryant, Robert G. (Inventor)

    1997-01-01

    A process for preparing a tough, soluble, aromatic, thermoplastic copolyimide is provided. The process comprises the steps of (a) providing 4.4'-oxydiphthalic anhydride to 3,4,3',4'-biphenyltetracarboxylic dianhydride at a mole ratio ranging from about 25 mole percent to 75 mole percent to 75 mole percent to about 25 mole percent; (b) adding 3,4'-oxydianiline to form a mixture; (c) adding a polar aprotic or polar protic solvent to the mixture to form a solution having a percentage of solids capable of maintaining polymer solubility; (d) stirring the solution to allow it to react; (e) adding an azeotropic solvent to the solution and heating to remove water; (f) cooling the solution of step (e) to room temperature and recovering the tough, soluble, aromatic, thermoplastic copolyimide.

  14. Reinforcing of thermoplastic polycarbonate and polysulfone with carbon fibers: Production and characteristics of UD-compound objects

    NASA Technical Reports Server (NTRS)

    Fitzer, E.; Jaeger, H.

    1988-01-01

    The production and characteristics of the carbon fiber reinforced thermoplastics polycarbonate and polysulfone are described. The production of prepregs from defined polymer solutions is emphasized along with methods of optimizing the production of compounds. The characteristics of unidirectionally reinforced thermoplastics, such as shear strength, bending strength, and impact resistance are compared with regard to fracture behavior, the influence of intermediate layers, and the behavior under cryogenic conditions and under slightly elevated temperatures. The problem of adhesion between high strength carbon fibers and thermoplastics is examined, taking into account the effect of moisture on the shear strength and the impact resistance.

  15. Characterization of a thermoplastic polyimidesulfone

    NASA Technical Reports Server (NTRS)

    Dezern, J. F.; Young, P. R.

    1985-01-01

    The detailed characterization of an experimental thermoplastic polyimidesulfone adhesive based on 3,3 prime-diaminodiphenylsulfone and 3,3 prime,4,4 prime-benzophenone tetracarboxylic dianhydride was studied. Model compounds were also examined. Thermal cyclization of the amide-acid to the imide was studied by a variety of techniques including DSC, TGA, MS, in situ diffuse reflectance-FTIR, and flow mearsurement. Characterizations were continued during the processing of adhesive tapes and the fabrication, bonding, and testing of lap shear specimens. Results provide fundamental insights into the role of cure chemistry, and the effects of residual solvent and volatile produces on processing and performance. These insights and the resulting chemical models should lead to more efficient processing cycles for these and other related thermoplastic adhesive systems.

  16. Tough, Soluble, Aromatic, Thermoplastic Copolyimides

    NASA Technical Reports Server (NTRS)

    Bryant, Robert G. (Inventor)

    1998-01-01

    Tough, soluble, aromatic, thermoplastic copolyimides were prepared by reacting 4,4'-oxydiphthalic anhydride, 3,4,3',4'-biphenyltetracarboxylic dianhydride and 3,4'-oxydianiline. These copolyimides were found to be soluble in common amide solvents such as N,N'-dimethyl acetamide, N-methylpyrrolidinone, and dimethylformamide allowing them to be applied as the fully imidized copolymer and to be used to prepare a wide range of articles.

  17. Portable Device Slices Thermoplastic Prepregs

    NASA Technical Reports Server (NTRS)

    Taylor, Beverly A.; Boston, Morton W.; Wilson, Maywood L.

    1993-01-01

    Prepreg slitter designed to slit various widths rapidly by use of slicing bar holding several blades, each capable of slicing strip of preset width in single pass. Produces material evenly sliced and does not contain jagged edges. Used for various applications in such batch processes involving composite materials as press molding and autoclaving, and in such continuous processes as pultrusion. Useful to all manufacturers of thermoplastic composites, and in slicing B-staged thermoset composites.

  18. Nanoscale pattern fidelity and transfer of hierarchically patterned thermoplastics films

    NASA Astrophysics Data System (ADS)

    Chen, Ying; Kulkarni, Manish; Marshall, Allan; Douglas, Jack; Karim, Alamgir; the university of akron Team

    2015-03-01

    We demonstrate a versatile and inexpensive method for controlling the surface relief structure of both flexible elastomeric and glassy polymer films over large areas through a two-step imprinting process. First, nanoscale patterns were formed by nanoimprinting polymer films with a pattern on a DVD disk, obtained originally by nanoimprinting from a lithographically etched master pattern on a silicon wafer; micron-scale patterns were then superimposed on the nanoimprinted films by exposing them to ultraviolet radiation in oxygen (UVO) through a TEM grid mask having variable micron-scale patterning. This simple two-stage imprinting method allows for facile fabrication of hierarchically structured elastomer and thermoplastic polymer films. Besides, the thermodynamic properties of dewetting phenomenon of polystyrene film under the confinement of hierarchically patterned PDMS is studied.

  19. Thermoplastic adhesives based on 4,4'-isophthaloyldiphthalic anhydride (IDPA)

    NASA Technical Reports Server (NTRS)

    Progar, Donald J.; Stclair, Terry L.; Pratt, J. Richard

    1988-01-01

    Thermoplastic polyimides were prepared and evaluated as adhesives. These materials are based on 4,4'-isophthaloyldiphathalic anhydride (IDAP) and either metaphenylene diamine (MPD) or 3,3'-diaminobenzophenone (DBAP). Both polymers exhibit excellent adhesive properties; however, the IDPA-MPD is the more attractive system because of a combination of high mechanical and physical properties as well as being made from commercially attractive monomers. The IDPA-MPD is an isomeric form of the commercially available adhesive and matrix resin, LARC-TPI and both systems have the same glass transition temperature and exhibit similar adhesive properties.

  20. Final Report: Interphase Analysis and Control in Fiber Reinforced Thermoplastic Composites

    SciTech Connect

    Jon J. Kellar; William M. Cross; Lidvin Kjerengtroen

    2009-03-14

    This research program builds upon a multi-disciplinary effort in interphase analysis and control in thermoplastic matrix polymer matrix composites (PMC). The research investigates model systems deemed of interest by members of the Automotive Composites Consortium (ACC) as well as samples at the forefront of PMC process development (DRIFT and P4 technologies). Finally, the research investigates, based upon the fundamental understanding of the interphases created during the fabrication of thermoplastic PMCs, the role the interphase play in key bulk properties of interest to the automotive industry.

  1. Determination of adhesion between thermoplastic and liquid silicone rubbers in hard-soft-combinations via mechanical peeling test

    NASA Astrophysics Data System (ADS)

    Khr, C.; Sprrer, A.; Altstdt, V.

    2014-05-01

    The production of hard-soft-combinations via multi injection molding gained more and more importance in the last years. This is attributed to different factors. One principle reason is that the use of two-component injection molding technique has many advantages such as cancelling subsequent and complex steps and shortening the process chain. Furthermore this technique allows the combination of the properties of the single components like the high stiffness of the hard component and the elastic properties of the soft component. Because of the incompatibility of some polymers the adhesion on the interface has to be determined. Thereby adhesion is not only influenced by the applied polymers, but also by the injection molding parameters and the characteristics of the mold. Besides already known combinations of thermoplastics with thermoplastic elastomers (TPE), there consists the possibility to apply liquid silicone rubber (LSR) as soft component. A thermoplastic/LSR combination gains in importance due to the specific advantages of LSR to TPE. The faintly adhesion between LSR and thermoplastics is currently one of the key challenges when dealing with those combinations. So it is coercively necessary to improve adhesion between the two components by adding an adhesion promoter. To determine the promoters influence, it is necessary to develop a suitable testing method to investigate e.g. the peel resistance. The current German standard "VDI Richtlinie 2019', which is actually only employed for thermoplastic/TPE combinations, can serve as a model to determine the adhesion of thermoplastic/LSR combinations.

  2. Development of a characterization approach for the sintering behavior of new thermoplastics for selective laser sintering

    NASA Astrophysics Data System (ADS)

    Drummer, Dietmar; Rietzel, Dominik; Khnlein, Florian

    Currently the standard thermoplastic powders for selective laser sintering are based on polyamide12. This leads to restrictions for many applications e.g. in the industrial or medical field. Thus, research on further polymers with enhanced chemical or higher thermal stability plays a major role for applying additive manufacturing to serial production of individual components. Currently, great efforts are made to process new technical thermoplastics like polypropylene or polyetherketones by selective laser sintering. In this paper, the suitability and processing behavior by means of melting and (isothermal) crystallization are studied, and a method for the qualification of new materials is presented. Based on this method processing parameters for new thermoplastics can systematically be found.

  3. Multi-scale thermal stability of a hard thermoplastic protein-based material

    NASA Astrophysics Data System (ADS)

    Latza, Victoria; Guerette, Paul A.; Ding, Dawei; Amini, Shahrouz; Kumar, Akshita; Schmidt, Ingo; Keating, Steven; Oxman, Neri; Weaver, James C.; Fratzl, Peter; Miserez, Ali; Masic, Admir

    2015-09-01

    Although thermoplastic materials are mostly derived from petro-chemicals, it would be highly desirable, from a sustainability perspective, to produce them instead from renewable biopolymers. Unfortunately, biopolymers exhibiting thermoplastic behaviour and which preserve their mechanical properties post processing are essentially non-existent. The robust sucker ring teeth (SRT) from squid and cuttlefish are one notable exception of thermoplastic biopolymers. Here we describe thermoplastic processing of squid SRT via hot extrusion of fibres, demonstrating the potential suitability of these materials for large-scale thermal forming. Using high-resolution in situ X-ray diffraction and vibrational spectroscopy, we elucidate the molecular and nanoscale features responsible for this behaviour and show that SRT consist of semi-crystalline polymers, whereby heat-resistant, nanocrystalline β-sheets embedded within an amorphous matrix are organized into a hexagonally packed nanofibrillar lattice. This study provides key insights for the molecular design of biomimetic protein- and peptide-based thermoplastic structural biopolymers with potential biomedical and 3D printing applications.

  4. Multi-scale thermal stability of a hard thermoplastic protein-based material

    PubMed Central

    Latza, Victoria; Guerette, Paul A.; Ding, Dawei; Amini, Shahrouz; Kumar, Akshita; Schmidt, Ingo; Keating, Steven; Oxman, Neri; Weaver, James C.; Fratzl, Peter; Miserez, Ali; Masic, Admir

    2015-01-01

    Although thermoplastic materials are mostly derived from petro-chemicals, it would be highly desirable, from a sustainability perspective, to produce them instead from renewable biopolymers. Unfortunately, biopolymers exhibiting thermoplastic behaviour and which preserve their mechanical properties post processing are essentially non-existent. The robust sucker ring teeth (SRT) from squid and cuttlefish are one notable exception of thermoplastic biopolymers. Here we describe thermoplastic processing of squid SRT via hot extrusion of fibres, demonstrating the potential suitability of these materials for large-scale thermal forming. Using high-resolution in situ X-ray diffraction and vibrational spectroscopy, we elucidate the molecular and nanoscale features responsible for this behaviour and show that SRT consist of semi-crystalline polymers, whereby heat-resistant, nanocrystalline β-sheets embedded within an amorphous matrix are organized into a hexagonally packed nanofibrillar lattice. This study provides key insights for the molecular design of biomimetic protein- and peptide-based thermoplastic structural biopolymers with potential biomedical and 3D printing applications. PMID:26387704

  5. Study on the Functionality of Nano-Precipitated Calcium Carbonate as Filler in Thermoplastics

    NASA Astrophysics Data System (ADS)

    Basilia, Blessie A.; Panganiban, Marian Elaine G.; Collado, Archilles Allen V. C.; Pesigan, Michael Oliver D.; de Yro, Persia Ada

    This research aims to investigate the functionality of nano-precipitated calcium carbonate (NPCC) as filler in thermoplastic resins based on property enhancement. Three types of thermoplastics were used: polyethylene (PE), polypropylene (PP) and polyvinyl chloride (PVC). The resins were evaluated by determining the effect of different NPCC loading on the chemical structure, thermal and mechanical properties of thermoplastics. Results showed that there was an interfacial bonding with the NPCC surface and the thermoplastics. Change in absorption peak and area were predominant in the PVC filled composite. There was a decreased in crystallinity of the PE and PP with the addition of filler. Tremendous increase on the tensile and impact strength was exhibited by the NPCC filled PVC composites while PE and PP composites maintained a slight increase in their mechanical properties. Nano-sized filler was proven to improve the mechanical properties of thermoplastics compared with micron-sized filler because nano-sized filler has larger interfacial area between the filler and the polymer matrix.

  6. Multi-scale thermal stability of a hard thermoplastic protein-based material.

    PubMed

    Latza, Victoria; Guerette, Paul A; Ding, Dawei; Amini, Shahrouz; Kumar, Akshita; Schmidt, Ingo; Keating, Steven; Oxman, Neri; Weaver, James C; Fratzl, Peter; Miserez, Ali; Masic, Admir

    2015-01-01

    Although thermoplastic materials are mostly derived from petro-chemicals, it would be highly desirable, from a sustainability perspective, to produce them instead from renewable biopolymers. Unfortunately, biopolymers exhibiting thermoplastic behaviour and which preserve their mechanical properties post processing are essentially non-existent. The robust sucker ring teeth (SRT) from squid and cuttlefish are one notable exception of thermoplastic biopolymers. Here we describe thermoplastic processing of squid SRT via hot extrusion of fibres, demonstrating the potential suitability of these materials for large-scale thermal forming. Using high-resolution in situ X-ray diffraction and vibrational spectroscopy, we elucidate the molecular and nanoscale features responsible for this behaviour and show that SRT consist of semi-crystalline polymers, whereby heat-resistant, nanocrystalline ?-sheets embedded within an amorphous matrix are organized into a hexagonally packed nanofibrillar lattice. This study provides key insights for the molecular design of biomimetic protein- and peptide-based thermoplastic structural biopolymers with potential biomedical and 3D printing applications. PMID:26387704

  7. Thermoplastic polymides and composites therefrom

    NASA Technical Reports Server (NTRS)

    Harris, Frank W. (Inventor)

    1994-01-01

    A new class polyimide and polyimide precursors based on diaryl oxyalkylene diamines, such as 1,3-bis[4-aminophenoxy]-2,2-dimethyl propane, a process for their preparation and their use as the continuous phase for the manufacture of composites and composite laminates reinforced by reinforcing agents such as carbon fibers, Kevlar.TM., and other similar high strength reinforcing agents. The polyimides and molecular composites obtained from the diamines according to the invention show thermoplastic properties, excellent flex fatigue and fracture resistance, and excellent thermal and oxidative stability.

  8. Thermoplastic resins for automotive applications

    SciTech Connect

    Cronin, K.

    1997-05-01

    Today`s high-performance thermoplastics could potentially shave up to 16 kg (35 lb) from the drivetrains, fuel systems, and chassis of future cars by replacing metal. In applications already commercial, weight savings average 20 to 25%, and it is not uncommon for installed cost of components to be 20 to 25% lower than machined castings, forgings, and stampings. Moreover, plastics have inherent processing and economic advantages in volume production, and will have for the foreseeable future. This article focuses on engineering resins that can satisfy challenging automotive design requirements, discusses selection criteria, and provides examples of metal-replacement applications.

  9. Thermoplastic coating of carbon fibers

    NASA Technical Reports Server (NTRS)

    Edie, D. D.; Lickfield, G. C.; Drews, M. J.; Ellison, M. S.; Allen, L. E.; Mccollum, J. R.; Thomas, H. L.

    1988-01-01

    Now that quantities of prepreg were made on the thermoplastic coating line, they are being formed into both textile preform structures and directly into composite samples. The textile preforms include both woven and knitted structures which will be thermoformed into a finished part. In order to determine if the matrix resin is properly adhering to the fibers or if voids are being formed in the coating process, the tensile strength and modulus of these samples will be tested. The matrix uniformity of matrix distribution in these samples is also being determined using an image analyzer.

  10. Polymers.

    ERIC Educational Resources Information Center

    Tucker, David C.

    1986-01-01

    Presents an open-ended experiment which has students exploring polymer chemistry and reverse osmosis. This activity involves construction of a polymer membrane, use of it in a simple osmosis experiment, and application of its principles in solving a science-technology-society problem. (ML)

  11. Improved Thermoplastic/Iron-Particle Transformer Cores

    NASA Technical Reports Server (NTRS)

    Wincheski, Russell A.; Bryant, Robert G.; Namkung, Min

    2004-01-01

    A method of fabricating improved transformer cores from composites of thermoplastic matrices and iron-particles has been invented. Relative to commercially available laminated-iron-alloy transformer cores, the cores fabricated by this method weigh less and are less expensive. Relative to prior polymer-matrix/ iron-particle composite-material transformer cores, the cores fabricated by this method can be made mechanically stronger and more magnetically permeable. In addition, whereas some prior cores have exhibited significant eddy-current losses, the cores fabricated by this method exhibit very small eddy-current losses. The cores made by this method can be expected to be attractive for use in diverse applications, including high-signal-to-noise transformers, stepping motors, and high-frequency ignition coils. The present method is a product of an experimental study of the relationships among fabrication conditions, final densities of iron particles, and mechanical and electromagnetic properties of fabricated cores. Among the fabrication conditions investigated were molding pressures (83, 104, and 131 MPa), and molding temperatures (250, 300, and 350 C). Each block of core material was made by uniaxial-compression molding, at the applicable pressure/temperature combination, of a mixture of 2 weight percent of LaRC (or equivalent high-temperature soluble thermoplastic adhesive) with 98 weight percent of approximately spherical iron particles having diameters in the micron range. Each molded block was cut into square cross-section rods that were used as core specimens in mechanical and electromagnetic tests. Some of the core specimens were annealed at 900 C and cooled slowly before testing. For comparison, a low-carbon-steel core was also tested. The results of the tests showed that density, hardness, and rupture strength generally increased with molding pressure and temperature, though the correlation was rather weak. The weakness of the correlation was attributed to the pores in the specimens. The maximum relative permeabilities of cores made without annealing ranged from 30 to 110, while those of cores made with annealing ranged from 900 to 1,400. However, the greater permeabilities of the annealed specimens were not associated with noticeably greater densities. The major practical result of the investigation was the discovery of an optimum distribution of iron-particle sizes: It was found that eddy-current losses in the molded cores were minimized by using 100 mesh (corresponding to particles with diameters less than or equal to 100 m) iron particles. The effect of optimization of particle sizes on eddy-current losses is depicted in the figure.

  12. Improved construction materials for polar regions using microcellular thermoplastic foams

    NASA Technical Reports Server (NTRS)

    Cunningham, Daniel J.

    1994-01-01

    Microcellular polymer foams (MCF) are thermoplastic foams with very small cell diameters, less than 10 microns, and very large cell densities, 10(exp 9) to 10(exp 15) cells per cubic centimeter of unfoamed material. The concept of foaming polymers with microcellular voids was conceived to reduce the amount of material used for mass-produced items without compromising the mechanical properties. The reasoning behind this concept was that if voids smaller than the critical flaw size pre-existing in polymers were introduced into the matrix, they would not affect the overall strength of the product. MCF polycarbonate (PC), polystyrene (PS), and polyvinyl chloride (PVC) were examined to determine the effects of the microstructure towards the mechanical properties of the materials at room and arctic temperatures. Batch process parameters were discovered for these materials and foamed samples of three densities were produced for each material. To quantify the toughness and strength of these polymers, the tensile yield strength, tensile toughness, and impact resistance were measured at room and arctic temperatures. The feasibility of MCF polymers has been demonstrated by the consistent and repeatable MCF microstructures formed, but the improvements in the mechanical properties were not conclusive. Therefore the usefulness of the MCF polymers to replace other materials in arctic environments is questionable.

  13. Fly ash reinforced thermoplastic vulcanizates obtained from waste tire powder.

    PubMed

    Sridhar, V; Xiu, Zhang Zhen; Xu, Deng; Lee, Sung Hyo; Kim, Jin Kuk; Kang, Dong Jin; Bang, Dae-Suk

    2009-03-01

    Novel thermoplastic composites made from two major industrial and consumer wastes, fly ash and waste tire powder, have been developed. The effect of increasing fly ash loadings on performance characteristics such as tensile strength, thermal, dynamic mechanical and magnetic properties has been investigated. The morphology of the blends shows that fly ash particles have more affinity and adhesion towards the rubbery phase when compared to the plastic phase. The fracture surface of the composites shows extensive debonding of fly ash particles. Thermal analysis of the composites shows a progressive increase in activation energy with increase in fly ash loadings. Additionally, morphological studies of the ash residue after 90% thermal degradation shows extensive changes occurring in both the polymer and filler phases. The processing ability of the thermoplastics has been carried out in a Monsanto processability testing machine as a function of shear rate and temperature. Shear thinning behavior, typical of particulate polymer systems, has been observed irrespective of the testing temperatures. Magnetic properties and percolation behavior of the composites have also been evaluated. PMID:18838261

  14. Thermoplastic film prevents proppant flowback

    SciTech Connect

    Nguyen, P.D.; Weaver, J.D.; Parker, M.A.; King, D.G.

    1996-02-05

    Thermoplastic film added to proppants is effective and economical for preventing proppant flowback after an hydraulic fracturing treatment. Most other methods, such as resin-coated proppant and fiber, for controlling proppant flowback have drawbacks that added to treatment costs by requiring long downtime, costly additives, or frequent equipment replacement. Thermoplastic film does not react chemically with fracturing fluids. After the proppant is placed in the fracture, the film strips intertwine with the proppant grains or at higher temperatures, the strips become adhesive and shrink forming consolidated clusters that hold open the newly created fractures and prevent proppant from flowing back. The low cost of the film means that the strips can be used throughout the fracturing job or in selected stages. The strips are compatible with fracturing fluid chemistry, including breakers and crosslinkers, and can be used in wells with a wide range of bottom hole temperatures. The end result is a well that can be brought back on-line in a short time with little proppant flowback. This paper reviews the cost benefits and performance of these proppants.

  15. Multiple-length-scale deformation analysis in a thermoplastic polyurethane

    PubMed Central

    Sui, Tan; Baimpas, Nikolaos; Dolbnya, Igor P.; Prisacariu, Cristina; Korsunsky, Alexander M.

    2015-01-01

    Thermoplastic polyurethane elastomers enjoy an exceptionally wide range of applications due to their remarkable versatility. These block co-polymers are used here as an example of a structurally inhomogeneous composite containing nano-scale gradients, whose internal strain differs depending on the length scale of consideration. Here we present a combined experimental and modelling approach to the hierarchical characterization of block co-polymer deformation. Synchrotron-based small- and wide-angle X-ray scattering and radiography are used for strain evaluation across the scales. Transmission electron microscopy image-based finite element modelling and fast Fourier transform analysis are used to develop a multi-phase numerical model that achieves agreement with the combined experimental data using a minimal number of adjustable structural parameters. The results highlight the importance of fuzzy interfaces, that is, regions of nanometre-scale structure and property gradients, in determining the mechanical properties of hierarchical composites across the scales. PMID:25758945

  16. Joining of thermoplastic substrates by microwaves

    DOEpatents

    Paulauskas, Felix L. (Oak Ridge, TN); Meek, Thomas T. (Knoxville, TN)

    1997-01-01

    A method for joining two or more items having surfaces of thermoplastic material includes the steps of depositing an electrically-conductive material upon the thermoplastic surface of at least one of the items, and then placing the other of the two items adjacent the one item so that the deposited material is in intimate contact with the surfaces of both the one and the other items. The deposited material and the thermoplastic surfaces contacted thereby are then exposed to microwave radiation so that the thermoplastic surfaces in contact with the deposited material melt, and then pressure is applied to the two items so that the melted thermoplastic surfaces fuse to one another. Upon discontinuance of the exposure to the microwave energy, and after permitting the thermoplastic surfaces to cool from the melted condition, the two items are joined together by the fused thermoplastic surfaces. The deposited material has a thickness which is preferably no greater than a skin depth, .delta..sub.s, which is related to the frequency of the microwave radiation and characteristics of the deposited material in accordance with an equation.

  17. Rapid, controllable and environmentally benign fabrication of thermoplastic nanofibers and applications

    NASA Astrophysics Data System (ADS)

    Wang, Dong

    In situ fibrillar and lamellar hybrid morphology was found in various immiscible polymer blends prepared by melt ram extrusion of cellulose acetate butyrate (CAB)/Thermoplastics at a weight ratio of 80 to 20. The formation process was analyzed and proposed. The presence of the elongational flow field determines the formation of the fibrils, and the improvement of the mixing efficiency can significantly reduce the dimensions of formed fibrils into the submicro- or nano-scale. With above results, continuous and uniform yarns of thermoplastic nanofibers were prepared via direct melt twin-screw extrusion, providing better mixing efficiency of immiscible blends of thermoplastic polymers with cellulose acetate butyrate (CAB), and subsequent extraction removal of CAB matrix. The thermoplastics which can be made into nanofibers include polyesters, polyolefins, thermoplastic polyurethane and functional copolymers, such as PE-co-GMA (Poly(Ethylene-co-Glycidyl Methacrylate)), PVA-co-PE (Poly(Vinyl Alcohol-co-Ethylene)). Ratios of thermoplastics to sacrificial CAB matrix, melt viscosity, and interfacial tensions affect formation of the nanofibers. Moreover, the crystal structures of isotactic polypropylene (iPP) nanofiber prepared were characterized with DSC and WAXD. To further demonstrate the size and shape controllability of the thermoplastic nanomaterials, polyethylene materials were selected and prepared into micro- or submicrospheres or nanofibers with different diameters and shapes by varying the composition ratio and modifying the interface properties via melt blending or extrusion of cellulose acetate butyrate (CAB)/LDPE melt blends and subsequent removal of the CAB. The surface structures of the LDPE micro- or submicrospheres and nanofibers were analyzed using SEM, FTIR-ATR spectroscopy, DSC and torque rheometer. The biotechnological applications of the thermoplastic nanofibers are also exploited. Poly(ethylene-co-glycidyl methacrylate) (PE-co-GMA) nanofibers with abundant active epoxy groups on surfaces were fabricated through above technique. The prepared PE-co-GMA nanofibers were aminated by reacting the epoxy groups with 1,3-diaminopropane. The resulting aminated PE-co-GMA nanofibers were subsequently biotinylated and then successfully applied to immobilize streptavidin-horseradish peroxidase (HRP) conjugate via specific, strong and rapid binding of biotin and streptavidin. The high activity, efficiency, sensitivity as well as good reusability of the streptavidin-HRP immobilized PE-co-GMA nanofibers demonstrated that PE-co-GMA nanofibers could be a promising candidate as solid support materials for potential biosensor applications.

  18. Graphene-polymer composites

    NASA Astrophysics Data System (ADS)

    Carotenuto, G.; Romeo, V.; Cannavaro, I.; Roncato, D.; Martorana, B.; Gosso, M.

    2012-09-01

    Graphene is a novel nanostructured material that can be conveniently used as filler for thermoplastic polymers or thermosetting resins, and the resulting nanocomposite material has unique mechanical and chemical/physical properties. Industrial production of graphene/polymer materials requires the availability of a chemical route to produce massive amount of graphene. Natural graphite flakes can be the best starting material for a bulk-production of graphene to be used in the polymeric nanocomposite preparation.

  19. Tough soluble aromatic thermoplastic copolyimides

    NASA Technical Reports Server (NTRS)

    Bryant, Robert G. (Inventor)

    2000-01-01

    Tough, soluble, aromatic, thermoplastic copolyimides were prepared by reacting 4,4'-oxydiphthalic anhydride, 3,4,3',4'-biphenyltetracarboxylic dianhydride and 3,4'-oxydianiline. Alternatively, these copolyimides may be prepared by reacting 4,4'-oxydiphthalic anhydride with 3,4,3',4'-biphenyltetracarboxylic dianhydride and 3,4'-oxydiisocyanate. Also, the copolyimide may be prepared by reacting the corresponding tetra acid and ester precursors of 4,4'-oxydiphthalic anhydride and 3,4,3',4'-biphenyltetracarboxylic dianhydride with 3,4'-oxydianiline. These copolyimides were found to be soluble in common amide solvents such as N,N'-dimethyl acetamide, N-methylpyrrolidinone, and dimethylformamide allowing them to be applied as the fully imidized copolymer and to be used to prepare a wide range of articles.

  20. Thermoplastic matrix composite processing model

    NASA Technical Reports Server (NTRS)

    Dara, P. H.; Loos, A. C.

    1985-01-01

    The effects the processing parameters pressure, temperature, and time have on the quality of continuous graphite fiber reinforced thermoplastic matrix composites were quantitatively accessed by defining the extent to which intimate contact and bond formation has occurred at successive ply interfaces. Two models are presented predicting the extents to which the ply interfaces have achieved intimate contact and cohesive strength. The models are based on experimental observation of compression molded laminates and neat resin conditions, respectively. Identified as the mechanism explaining the phenomenon by which the plies bond to themselves is the theory of autohesion (or self diffusion). Theoretical predictions from the Reptation Theory between autohesive strength and contact time are used to explain the effects of the processing parameters on the observed experimental strengths. The application of a time-temperature relationship for autohesive strength predictions is evaluated. A viscoelastic compression molding model of a tow was developed to explain the phenomenon by which the prepreg ply interfaces develop intimate contact.

  1. Thermoplastic rubberlike material produced at low cost

    NASA Technical Reports Server (NTRS)

    Hendel, F. J.

    1966-01-01

    Thermoplastic rubberlike material is prepared by blending a copolymer of ethylene and vinyl acetate with asphalt and a petroleum distillate. This low cost material is easily molded or extruded and is compatible with a variety of fillers.

  2. Interlaminar fracture toughness of thermoplastic composites

    NASA Technical Reports Server (NTRS)

    Hinkley, J. A.; Johnston, N. J.; Obrien, T. K.

    1988-01-01

    Edge delamination tension and double cantilever beam tests were used to characterize the interlaminar fracture toughness of continuous graphite-fiber composites made from experimental thermoplastic polyimides and a model thermoplastic. Residual thermal stresses, known to be significant in materials processed at high temperatures, were included in the edge delamination calculations. In the model thermoplastic system (polycarbonate matrix), surface properties of the graphite fiber were shown to be significant. Critical strain energy release rates for two different fibers having similar nominal tensile properties differed by 30 to 60 percent. The reason for the difference is not clear. Interlaminar toughness values for the thermoplastic polyimide composites (LARC-TPI and polyimidesulfone) were 3 to 4 in-lb/sq in. Scanning electron micrographs of the EDT fracture surfaces suggest poor fiber/matrix bonding. Residual thermal stresses account for up to 32 percent of the strain energy release in composites made from these high-temperature resins.

  3. Optical sensing system for thermoplastic composites manufacturing

    SciTech Connect

    Howe, R.D.; Kychakoff, G.

    1986-01-01

    An optical sensing system for a new method of manufacturing thermoplastic composite material is presented. The manufacturing process and its sensing requirements are discussed. The system architecture and several sensors which have been developed are described. 4 refs., 3 figs.

  4. Interlaminar fracture toughness of thermoplastic composites

    NASA Technical Reports Server (NTRS)

    Hinkley, Jeffrey A.; Johnston, Norman J.; O'Brien, T. Kevin

    1989-01-01

    Edge delamination tension and double cantilever beam tests were used to characterize the interlaminar fracture toughness of continuous graphite-fiber composites made from experimental thermoplastic polyimides and a model thermoplastic. Residual thermal stresses, known to be significant in materials processed at high temperatures, were included in the edge delamination calculations. In the model thermoplastic system (polycarbonate matrix), surface properties of the graphite fiber were shown to be significant. Cricital strain energy release rates for two different fibers having similar nominal tensile properties differed by 30 to 60 percent. The reason for the difference is not clear. Interlaminar toughness values for the thermoplastic polyimide composites (LARC-TPI and polyimidesulfone) were 3 to 4 in-lb/sq in. Scanning electron micrographs of the EDT fracture surfaces suggest poor fiber/matrix bonding. Residual thermal stresses account for up to 32 percent of the strain energy release in composites made from these high-temperature resins.

  5. Thermoplastic vulcanizates: new materials of choice.

    PubMed

    Severyns, K

    2000-03-01

    Increasingly, thermoplastic vulcanizates of ethylene propylene diene monomer rubber-polypropylene are being specified for medical applications. This article describes their properties and advantages over thermoset rubbers and other conventional medical elastomeric materials. PMID:10915490

  6. Process for preparing thermoplastic aromatic polyimides

    NASA Technical Reports Server (NTRS)

    Bell, V. L. (inventor)

    1978-01-01

    A method of preparing insoluble thermoplastic aromatic polyimides is described, having uniquely low softening temperatures by reacting, in a suitable solvent, an aromatic dianhydride, and a meta-substituted aromatic diamine.

  7. High Process Yield Rates of Thermoplastic Nanofluidic Devices using a Hybrid Thermal Assembly Technique

    PubMed Central

    Uba, Franklin I.; Hu, Bo; Weerakoon-Ratnayake, Kumuditha; Oliver-Calixte, Nyote; Soper, Steven A.

    2014-01-01

    Over the past decade, thermoplastics have been used as alternative substrates to glass and Si for microfluidic devices because of the diverse and robust fabrication protocols available for thermoplastics that can generate high production rates of the desired structures at low cost and with high replication fidelity, the extensive array of physiochemical properties they possess, and the simple surface activation strategies that can be employed to tune their surface chemistry appropriate for the intended application. While the advantages of polymer microfluidics are currently being realized, the evolution of thermoplastic-based nanofluidic devices is fraught with challenges. One challenge is assembly of the device, which consists of sealing a cover plate to the patterned fluidic substrate. Typically, channel collapse or substrate dissolution occurs during assembly making the device inoperable resulting in low process yield rates. In this work, we report a low temperature hybrid assembly approach for the generation of functional thermoplastic nanofluidic devices with high process yield rates (>90%) with a short total assembly time (16 min). The approach involves thermally sealing a high Tg (glass transition temperature) substrate containing the nanofluidic structures to a cover plate possessing a lower Tg. Nanofluidic devices with critical feature sizes ranging between 25 – 250 nm were fabricated in a thermoplastic substrate (Tg = 104°C) and sealed with a cover plate (Tg = 75°C) at a temperature significantly below the Tg of the substrate. Results obtained from sealing tests revealed that the integrity of the nanochannels remained intact after assembly and devices were useful for fluorescence imaging at high signal-to-noise ratios. The functionality of the assembled devices was demonstrated by studying the stretching and translocation dynamics of dsDNA in the enclosed thermoplastic nanofluidic channels. PMID:25511610

  8. Modelling laser light propagation in thermoplastics using Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Parkinson, Alexander

    Laser welding has great potential as a fast, non-contact joining method for thermoplastic parts. In the laser transmission welding of thermoplastics, light passes through a semi-transparent part to reach the weld interface. There, it is absorbed as heat, which causes melting and subsequent welding. The distribution and quantity of light reaching the interface are important for predicting the quality of a weld, but are experimentally difficult to estimate. A model for simulating the path of this laser light through these light-scattering plastic parts has been developed. The technique uses a Monte-Carlo approach to generate photon paths through the material, accounting for absorption, scattering and reflection between boundaries in the transparent polymer. It was assumed that any light escaping the bottom surface contributed to welding. The photon paths are then scaled according to the input beam profile in order to simulate non-Gaussian beam profiles. A method for determining the 3 independent optical parameters to accurately predict transmission and beam power distribution at the interface was established using experimental data for polycarbonate at 4 different glass fibre concentrations and polyamide-6 reinforced with 20% long glass fibres. Exit beam profiles and transmissions predicted by the simulation were found to be in generally good agreement (R2>0.90) with experimental measurements. The simulations allowed the prediction of transmission and power distributions at other thicknesses as well as information on reflection, energy absorption and power distributions at other thicknesses for these materials.

  9. Thermoplastic starch processing and characteristics-a review.

    PubMed

    Zhang, Yachuan; Rempel, Curtis; Liu, Qiang

    2014-01-01

    Canola Council of Canada, Winnipeg, Manitoba, Canada The rising costs of nonrenewable feedstocks and environmental concerns with their industrial usage have encouraged the study and development of renewable products, including thermoplastic starch (TPS). Starch is an abundant, plant-based biodegradable material with interesting physicochemical characteristics that can be exploited, and this has received attention for development of TPS products. Starch exhibits usable thermoplastic properties when plasticizers, elevated temperatures, and shear are present. The choice of plasticizer has an effect on TPS, even when these have similar plasticization principles. Most TPS have glass transition temperature, Tg, in the range of approximately -75 to 10C. Glassy transition of TPS is detected by differential scanning calorimeter (DSC) and thermodynamic analyzer (DMA), although DMA has been found to be more sensitive and effective. TPS has low tensile properties, typically below 6 MPa in tensile strength (TS). The addition of synthetic polymers, nanoclay, and fiber can improve TS and water-resistance ability. The moisture sorption behavior of TPS is described in GAB and BET models, from which monolayer moisture content and specific area are derived. Current studies on surface tension, gas permeability, crystallinity, and so on of the TPS are also reviewed. PMID:24564592

  10. Emerging polyheterocyclic films, coatings and resins - Thermoplastic polyquinolines

    NASA Technical Reports Server (NTRS)

    Hendricks, Neil H.; Marrocco, Matthew L.; Garver, Lee C.; St. Clair, Anne K.; Proctor, Mason; Soane, David S.; Monk, David J.

    1991-01-01

    The processing and performance characteristics of a soluble, thermoplastic polyquinoline suggest its utility in a variety of high performance applications. The polymer is characterized by excellent thermal and oxidative stability, very low moisture absorption, good mechanical properties, very low dielectric constant, and an unusually low thermal expansion coefficient. This polymer, designated PQ-100 (TM), can be cast into strong, transparent, free standing films from common solvents. Coatings of variable thickness can be spin-coated on to silicon and other surfaces. After processing into films, PQ-100 (TM) can be rendered insoluble in a wide range of solvents using a proprietary process. The low CTE contributes to very low residual stress when the polymer is spin-coated onto silicon wafers. PQ-100 (TM) is currently under evaluation for use as an interlayer dielectric substrate in high-density interconnect applications, including multichip modules. Many of the characteristics of the polymer also suggest its utility as a high-performance film and as a matrix resin for specialty composite applications.

  11. Thermoplastic polyurethane (TPU)/polyolefin (PO) blends

    NASA Astrophysics Data System (ADS)

    Lu, Qiwei

    Thermoplastic polyurethane (TPU) is a very important material with high versatility and superior physical properties. Melt blending TPU with metallocene polyolefin (PO) can lower TPU cost and improve polyolefin properties like abrasion resistance, adhesion, and paintability. Since TPU and non-polar PO blends are completely immiscible, efficient compatibilizers become the key issue and remain challenging. My main thesis work is to develop and study compatibilized TPU/PO blends. Although reactive compatibilization is considered the most efficient method, fast interfacial reactions between highly reactive functional groups are necessary to generate compatibilizers within usually short processing time. It is known that the urethane linkage (carbamate -NHCOO-) in TPU can reversibly dissociate to generate highly reactive isocyanates at melt temperatures. To find out the best reactive compatibilization, three approaches were employed on different molecular scales: (1) model urethane compound (dibutyl & dioctyl 4,4'-methylenebis(phenyl carbamate)) and small functional molecule (primary amine, secondary amine, hydroxyl, acid, anhydride, and epoxide) reactions at 200C monitored by nuclear magnetic resonance and Fourier-transform infrared to examine the basic chemistry; (2) short, model TPU's with different chemical structures blended with functional polymers including poly(ethylene glycol) and polybutadiene to explore the effect of interface in immiscible mixtures; (3) melt blending of a commercial TPU with polypropylene (PP), further involving more complicated morphology, using different types of functional PP's (note: amine functional PP's were prepared by melt amination) as compatibilizers followed by rheological, morphological, thermal, and mechanical characterizations. Besides the core thesis project on TPU blends, other related work that has been accomplished includes: (1) adhesion between TPU and PP; (2) rheological properties of TPU; (3) block copolymer formation by reactive coupling. In the first work, the unique interfacial reactions were applied to promote TPU-PP adhesion that was quantified by asymmetric double cantilever beam test. In the second study, the abnormally high flow activation energy of TPU was explained by simultaneously investigating the effect of temperature and thermal degradation on the melt viscosity. In the third project, block copolymers were prepared by rapid reactive coupling of amine and isocyanate functional polymers and the reaction kinetics were also studied.

  12. Computational modelling of a thermoforming process for thermoplastic starch

    NASA Astrophysics Data System (ADS)

    Szegda, D.; Song, J.; Warby, M. K.; Whiteman, J. R.

    2007-05-01

    Plastic packaging waste currently forms a significant part of municipal solid waste and as such is causing increasing environmental concerns. Such packaging is largely non-biodegradable and is particularly difficult to recycle or to reuse due to its complex composition. Apart from limited recycling of some easily identifiable packaging wastes, such as bottles, most packaging waste ends up in landfill sites. In recent years, in an attempt to address this problem in the case of plastic packaging, the development of packaging materials from renewable plant resources has received increasing attention and a wide range of bioplastic materials based on starch are now available. Environmentally these bioplastic materials also reduce reliance on oil resources and have the advantage that they are biodegradable and can be composted upon disposal to reduce the environmental impact. Many food packaging containers are produced by thermoforming processes in which thin sheets are inflated under pressure into moulds to produce the required thin wall structures. Hitherto these thin sheets have almost exclusively been made of oil-based polymers and it is for these that computational models of thermoforming processes have been developed. Recently, in the context of bioplastics, commercial thermoplastic starch sheet materials have been developed. The behaviour of such materials is influenced both by temperature and, because of the inherent hydrophilic characteristics of the materials, by moisture content. Both of these aspects affect the behaviour of bioplastic sheets during the thermoforming process. This paper describes experimental work and work on the computational modelling of thermoforming processes for thermoplastic starch sheets in an attempt to address the combined effects of temperature and moisture content. After a discussion of the background of packaging and biomaterials, a mathematical model for the deformation of a membrane into a mould is presented, together with its finite element discretisation. This model depends on material parameters of the thermoplastic and details of tests undertaken to determine these and the results produced are given. Finally the computational model is applied for a thin sheet of commercially available thermoplastic starch material which is thermoformed into a specific mould. Numerical results of thickness and shape for this problem are given.

  13. Thermoplastic Elastomers via polyolefin/Layered Silicate Nanocomposites

    NASA Astrophysics Data System (ADS)

    Kalluru, Sri; Cochran, Eric

    2013-03-01

    Here we report the synthesis of fully exfoliated polyolefin nanocomposites via Surface-Initiated Ring Opening Metathesis Polymerization (SI-ROMP). Montmorillonite (MMT) clay platelets were rendered hydrophobic through ion exchange with alkyl-ammonium surfactants terminated with norbornene. We were then able to form block copolymer brushes of (substituted) norbornenes and cyclopentene via SI-ROMP. Subsequent hydrogenation yielded highly crystalline polyethylene and rubbery saturated polynorbornenes, thus giving a thermoplastic elastomer. Nanocomposites were prepared with different nanofiller percentages and were characterized for morphological (XRD, TEM), thermal (TGA, DSC), and mechanical (DMA, Rheology) properties. Complete exfoliation of nanocomposites was confirmed by XRD and TEM. A fraction of the polymer brushes were subsequently removed from their substrate by reverse ion exchange and characterized in parallel with their corresponding nanocomposite analogs. In this way we were able to directly assess the role of the filler particle in the thermal properties, melt rheology, morphology, and tensile properties.

  14. Microcellular Foams Based on High Performance Thermoplastic Nanocomposites

    SciTech Connect

    Sorrentino, Luigi; Iannace, Salvatore; Gargiulo, Marcella; Pezzullo, Giuseppe

    2010-06-02

    Foams from engineering thermoplastics nanocomposites based on Polyethersulphone and Polyethylene-2,6-naphthalate were prepared by using two different nanofillers (Silica nanoparticles and Graphite nanosheets). The effects of the nanofiller type and content on the foaming process was investigated and related to the density and cellular morphology of foams. The nanocomposite foams based on PES matrix exhibited improved nucleated cells both with SiO{sub 2} and Graphite nanosheets, but the density increased at all temperatures. On the contrary, nanocomposite foams based on PEN matrix showed different behaviors with the filler type. In this case, in fact, silica nanoparticles allowed lower densities when compared to the unfilled polymer foams, without influencing cells density. The Graphite nanosheets extended towards higher temperatures the foaming window of PEN nanocomposites, allowing densities as low as 0.15 at 260 deg. C.

  15. Production and properties of micro-cellulose reinforced thermoplastic starch

    NASA Astrophysics Data System (ADS)

    Kmetty, Á.; Karger-Kocsis, J.; Czigány, T.

    2015-02-01

    Thermoplastic starch (TPS)/micro-fibrillated cellulose (MFC) composites were prepared from maize starch with different amount of distilled water, glycerol and cellulose reinforcement. The components were homogenized by kneader and twin roll technique. The produced TPS and TPS-based polymer composites were qualified by static and dynamic mechanical tests and their morphology was analysed by microscopic techniques. The results showed that the amount of water and the order of the production steps control the properties of both the TPS and its MFC reinforced version. With increasing content of MFC the stiffness and strength of the TPS matrix increased, as expected. Microscopic inspection revealed that the TPS has a homogenous structure and the MFC is well dispersed therein when suitable preparation conditions were selected.

  16. A Study on New Composite Thermoplastic Propellant

    NASA Astrophysics Data System (ADS)

    Kahara, Takehiro; Nakayama, Masanobu; Hasegawa, Hiroshi; Katoh, Kazushige; Miyazaki, Shigehumi; Maruizumi, Haruki; Hori, Keiichi; Morita, Yasuhiro; Akiba, Ryojiro

    Efforts have been paid to realize a new composite propellant using thermoplastics as a fuel binder and lithium as a metallic fuel. Thermoplastics binder makes it possible the storage of solid propellant in small blocks and to provide propellants blocks into rocket motor case at a quantity needed just before use, which enables the production facility of solid propellant at a minimum level, thus, production cost significantly lower. Lithium has been a candidate for a metallic fuel for the ammonium perchlorate based composite propellants owing to its capability to reduce the hydrogen chloride in the exhaust gas, however, never been used because lithium is not stable at room conditions and complex reaction products between oxygen, nitrogen, and water are formed at the surface of particles and even in the core. However, lithium particles whose surface shell structure is well controlled are rather stable and can be stored in thermoplastics for a long period. Evaluation of several organic thermoplastics whose melting temperatures are easily tractable was made from the standpoint of combustion characteristics, and it is shown that thermoplastics propellants can cover wide range of burning rate spectrum. Formation of well-defined surface shell of lithium particles and its kinetics are also discussed.

  17. Development of Lignin-Based Polyurethane Thermoplastics

    SciTech Connect

    Saito, Tomonori; Perkins, Joshua H; Jackson, Daniel C; Trammell, Neil E; Hunt, Marcus A; Naskar, Amit K

    2013-01-01

    In our continued effort to develop value-added thermoplastics from lignin, here we report utilizing a tailored feedstock to synthesize mechanically robust thermoplastic polyurethanes at very high lignin contents (75 65 wt %). The molecular weight and glass transition temperature (Tg) of lignin were altered through cross-linking with formaldehyde. The cross-linked lignin was coupled with diisocyanate-based telechelic polybutadiene as a network-forming soft segment. The appearance of two Tg s, around 35 and 154 C, for the polyurethanes indicates the existence of two-phase morphology, a characteristic of thermoplastic copolymers. A calculated Flory-Huggins interaction parameter of 7.71 also suggests phase immiscibility in the synthesized lignin polyurethanes. An increase in lignin loading increased the modulus, and an increase in crosslink-density increased the modulus in the rubbery plateau region of the thermoplastic. This path for synthesis of novel lignin-based polyurethane thermoplastics provides a design tool for high performance lignin-based biopolymers.

  18. Semi-interpenetrating polymer network's of polyimides: Fracture toughness

    NASA Technical Reports Server (NTRS)

    Hansen, Marion Glenn

    1988-01-01

    The objective was to improve the fracture toughness of the PMR-15 thermosetting polyimide by co-disolving LaRC-TPI, a thermoplastic polyimide. The co-solvation of a thermoplastic into a thermoset produces an interpenetration of the thermoplastic polymer into the thermoset polyimide network. A second research program was planned around the concept that to improve the fracture toughness of a thermoset polyimide polymer, the molecular weight between crosslink points would be an important macromolecular topological parameter in producing a fracture toughened semi-IPN polyimide.

  19. Carbon nanotubes in blends of polycaprolactone/thermoplastic starch.

    PubMed

    Taghizadeh, Ata; Favis, Basil D

    2013-10-15

    Despite the importance of polymer-polymer multiphase systems, very little work has been carried out on the preferred localization of solid inclusions in such multiphase systems. In this work, carbon nanotubes (CNT) are dispersed with polycaprolactone (PCL) and thermoplastic starch (TPS) at several CNT contents via a combined solution/twin-screw extrusion melt mixing method. A PCL/CNT masterbatch was first prepared and then blended with 20 wt% TPS. Transmission and scanning electron microscopy images reveal a CNT localization principally in the TPS phase and partly at the PCL/TPS interface, with no further change by annealing. This indicates a strong driving force for the CNTs toward TPS. Young's model predicts that the nanotubes should be located at the interface. X-ray photoelectron spectroscopy (XPS) of extracted CNTs quantitatively confirms an encapsulation by TPS and reveals a covalent bonding of CNTs with thermoplastic starch. It appears likely that the nanotubes migrate to the interface, react with TPS and then are subsequently drawn into the low viscosity TPS phase. In a low shear rate/low shear stress internal mixer the nanotubes are found both in the PCL phase and at the PCL/TPS interface and have not completed the transit to the TPS phase. This latter result indicates the importance of choosing appropriate processing conditions in order to minimize kinetic effects. The addition of CNTs to PCL results in an increase in the crystallization temperature and a decrease in the percent crystallinity confirming the heterogeneous nucleating effect of the nanotubes. Finally, DMA analysis reveals a dramatic decrease in the starch rich phase transition temperature (~26 °C), for the system with nanotubes located in the TPS phase. PMID:23987335

  20. Plastic wastes as modifiers of the thermoplasticity of coal

    SciTech Connect

    M.A. Diez; C. Barriocanal; R. Alvarez

    2005-12-01

    Plastic waste recycling represents a major challenge in environmental protection with different routes now available for dealing with mechanical, chemical, and energy recycling. New concepts in plastic waste recycling have emerged so that now such wastes can be used to replace fossil fuels, either as an energy source or as a secondary raw material. Our objective is to explore the modification of the thermoplastic properties of coal in order to assess the possibility of adding plastic waste to coal for the production of metallurgical coke. Two bituminous coals of different rank and thermoplastic properties were used as a base component of blends with plastic wastes such as high-density polyethylene (HDPE), low-density polyethylene (LDPE), polypropylene (PP), polystyrene (PS), poly(ethylene terephthalate) (PET), and acrilonitrile-butadiene-styrene copolymer (ABS). In all cases, the addition of plastic waste led to a reduction in Gieseler maximum fluidity, the extent of the reduction depending on the fluidity of the base coal, and the amount, the molecular structure, and the thermal behavior of the polymer. As a consequence, the amount of volatile matter released by the plastic waste before, during, and after the maximum fluidity of the coal and the hydrogen-donor and hydrogen-acceptor capacities of the polymer were concluded to be key factors in influencing the extent of the reduction in fluidity and the development of anisotropic carbons. The incorporation of the plastic to the carbon matrix was clearly established in semicokes produced from blends of a high-fluid coal and the plastic tested by SEM examination. 42 refs., 10 figs., 7 tabs.

  1. Post polymerization cure shape memory polymers

    DOEpatents

    Wilson, Thomas S; Hearon, Michael Keith; Bearinger, Jane P

    2014-11-11

    This invention relates to chemical polymer compositions, methods of synthesis, and fabrication methods for devices regarding polymers capable of displaying shape memory behavior (SMPs) and which can first be polymerized to a linear or branched polymeric structure, having thermoplastic properties, subsequently processed into a device through processes typical of polymer melts, solutions, and dispersions and then crossed linked to a shape memory thermoset polymer retaining the processed shape.

  2. Laser transmission welding of long glass fiber reinforced thermoplastics

    NASA Astrophysics Data System (ADS)

    van der Straeten, Kira; Engelmann, Christoph; Olowinsky, Alexander; Gillner, Arnold

    2015-03-01

    Joining fiber reinforced polymers is an important topic for lightweight construction. Since classical laser transmission welding techniques for polymers have been studied and established in industry for many years joint-strengths within the range of the base material can be achieved. Until now these processes are only used for unfilled and short glass fiber-reinforced thermoplastics using laser absorbing and laser transparent matrices. This knowledge is now transferred to joining long glass fiber reinforced PA6 with high fiber contents without any adhesive additives. As the polymer matrix and glass fibers increase the scattering of the laser beam inside the material, their optical properties, changing with material thickness and fiber content, influence the welding process and require high power lasers. In this article the influence of these material properties (fiber content, material thickness) and the welding parameters like joining speed, laser power and clamping pressure are researched and discussed in detail. The process is also investigated regarding its limitations. Additionally the gap bridging ability of the process is shown in relation to material properties and joining speed.

  3. Environmentally degradable, high-performance thermoplastics from phenolic phytomonomers

    NASA Astrophysics Data System (ADS)

    Kaneko, Tatsuo; Thi, Tran Hang; Shi, Dong Jian; Akashi, Mitsuru

    2006-12-01

    Aliphatic polyesters, such as poly(lactic acid), which degrade by hydrolysis, from naturally occurring molecules form the main components of biodegradable plastics. However, these polyesters have become substitutes for only a small percentage of the currently used plastic materials because of their poor thermal and mechanical properties. Polymers that degrade into natural molecules and have a performance closer to that of engineering plastics would be highly desirable. Although the use of a high-strength filler such as a bacterial cellulose or modified lignin greatly increases the plastic properties, it is the matrix polymer that determines the intrinsic properties of the composite. The introduction of an aromatic component into the thermoplastic polymer backbone is an efficient method to intrinsically improve the material performance. Here, we report the preparation of environmentally degradable, liquid crystalline, wholly aromatic polyesters. The polyesters were derived from polymerizable plant-derived chemicals-in other words, `phytomonomers' that are widely present as lignin biosynthetic precursors. The mechanical performance of these materials surpasses that of current biodegradable plastics, with a mechanical strength, ?, of 63MPa, a Young's modulus, E, of 16GPa, and a maximum softening temperature of 169?C. On light irradiation, their mechanical properties improved further and the rate of hydrolysis accelerated.

  4. Design and manufacturing concepts for thermoplastic structures

    NASA Technical Reports Server (NTRS)

    Renieri, Michael P.; Burpo, Steven J.; Roundy, Lance M.

    1991-01-01

    Results to date on the application of two manufacturing techniques, fiber placement and single diaphragm/coconsolidation, to produce cost-effective, thermoplastic composite (TPC), primary fuselage structure are presented. Applications relative to fuselage upper cover structure indicate potential cost savings relative to conventional approaches. Progress is also presented on efforts concerned with other design details which take advantage of thermoplastic composites such as fastener less stiffener/frame attachments. In addition, results are presented on the development and verification testing of a composite lug analysis program which incorporates through-the-thickness effects.

  5. Process for crosslinking and extending conjugated diene-containing polymers

    NASA Technical Reports Server (NTRS)

    Bell, Vernon L. (Inventor); Havens, Stephen J. (Inventor)

    1977-01-01

    A process using a Diels-Alder reaction which increases the molecular weight and/or crosslinks polymers by reacting the polymers with bisunsaturated dienophiles is developed. The polymer comprises at least 75% by weight based on the reaction product, has a molecular weight of at least 5000 and a plurality of conjugated 1,3-diene systems incorporated into the molecular structure. A dienophile reaction with the conjugated 1,3-diene of the polymer is at least 1% by weight based on the reaction product. Examples of the polymer include polyesters, polyamides, polyethers, polysulfones and copolymers. The bisunsaturated dienophiles may include bis-maleimides, bis maleic and bis tumaric esters and amides. This method for expanding the molecular weight chains of the polymers, preferable thermoplastics, is advantageous for processing or fabricating thermoplastics. A low molecular weight thermoplastic is converted to a high molecular weight plastic having improved strength and toughness for use in the completed end use article.

  6. Reactive recycling of multiphase polymer systems through electron beam

    NASA Astrophysics Data System (ADS)

    Czvikovszky, Tibor

    1995-11-01

    Recycling of polymer structural materials leads to two main obstacles: degradation of macromolecular chains and incompatibility of different polymer components. Both obstacles can be avoided by applying a reactive additive which acts as a functional compatibilizer. Electron-beam processing has been successfully applied to produce multiphase polymer composites using recycled polyester fibers, wood fibers, glass fibers and minerals as reinforcements in thermoplastic matrix.

  7. Determination of the strain rate dependent thermal softening behavior of thermoplastic materials for crash simulations

    NASA Astrophysics Data System (ADS)

    Hopmann, Christian; Klein, Jan; Schöngart, Maximilian

    2016-03-01

    Thermoplastic materials are increasingly used as a light weight replacement for metal, especially in automotive applications. Typical examples are frontends and bumpers. The loads on these structures are very often impulsive, for example in a crash situation. A high rate of loading causes a high strain rate in the material which has a major impact on the mechanical behavior of thermoplastic materials. The stiffness as well as the rigidity of polymers increases to higher strain rates. The increase of the mechanical properties is superimposed at higher rates of loading by another effect which works reducing on stiffness and rigidity, the increase of temperature caused by plastic deformation. The mechanical behavior of thermoplastic materials is influenced by temperature opposing to strain rate. The stiffness and rigidity are decreased to higher values of temperature. The effect of thermal softening on thermoplastic materials is investigated at IKV. For this purpose high-speed tensile tests are performed on a blend, consisting of Polybutylenterephthalate (PBT) and Polycarbonate (PC). In preliminary investigations the effects of strain rate on the thermomechanical behavior of thermoplastic materials was studied by different authors. Tensile impact as well as split Hopkinson pressure bar (SHPB) tests were conducted in combination with high-speed temperature measurement, though, the authors struggled especially with temperature measurement. This paper presents an approach which uses high-speed strain measurement to transpire the link between strain, strain rate and thermal softening as well as the interdependency between strain hardening and thermal softening. The results show a superimposition of strain hardening and thermal softening, which is consistent to preliminary investigations. The advantage of the presented research is that the results can be used to calibrate damage and material models to perform mechanical simulations using Finite Element Analysis.

  8. Multi angle laser light scattering evaluation of field exposed thermoplastic photovoltaic encapsulant materials

    DOE PAGESBeta

    Kempe, Michael D.; Miller, David C.; Wohlgemuth, John H.; Kurtz, Sarah R.; Moseley, John M.; Nobles, Dylan L.; Stika, Katherine M.; Brun, Yefim; Samuels, Sam L.; Shah, Qurat Annie; et al

    2016-01-08

    As creep of polymeric materials is potentially a safety concern for photovoltaic modules, the potential for module creep has become a significant topic of discussion in the development of IEC 61730 and IEC 61215. To investigate the possibility of creep, modules were constructed, using several thermoplastic encapsulant materials, into thin-film mock modules and deployed in Mesa, Arizona. The materials examined included poly(ethylene)-co-vinyl acetate (EVA, including formulations both cross-linked and with no curing agent), polyethylene/polyoctene copolymer (PO), poly(dimethylsiloxane) (PDMS), polyvinyl butyral (PVB), and thermoplastic polyurethane (TPU). The absence of creep in this experiment is attributable to several factors of which themore » most notable one was the unexpected cross-linking of an EVA formulation without a cross-linking agent. It was also found that some materials experienced both chain scission and cross-linking reactions, sometimes with a significant dependence on location within a module. The TPU and EVA samples were found to degrade with cross-linking reactions dominating over chain scission. In contrast, the PO materials degraded with chain scission dominating over cross-linking reactions. Furthermore, we found no significant indications that viscous creep is likely to occur in fielded modules capable of passing the qualification tests, we note that one should consider how a polymer degrades, chain scission or cross-linking, in assessing the suitability of a thermoplastic polymer in terrestrial photovoltaic applications.« less

  9. Biopolymer-based thermoplastic mixture for producing solid biodegradable shaped bodies and its photo degradation stability

    NASA Astrophysics Data System (ADS)

    Sulong, Nurulsaidatulsyida; Rus, Anika Zafiah M.

    2013-12-01

    In recent years, biopolymers with controllable lifetimes have become increasingly important for many applications in the areas of agriculture, biomedical implants and drug release, forestry, wild life conservation and waste management. Natural oils are considered to be the most important class of renewable sources. They can be obtained from naturally occurring plants, such as sunflower, cotton, linseed and palm oil. In Malaysia, palm oil is an inexpensive and commodity material. Biopolymer produced from palm oil (Bio-VOP) is a naturally occurring biodegradable polymer and readily available from agriculture. For packaging use however, Bio-VOP is not thermoplastic and its granular form is unsuitable for most uses in the plastics industry, mainly due to processing difficulties during extrusion or injection moulding. Thus, research workers have developed several methods to blend Bio-VOP appropriately for industrial uses. In particular, injections moulding processes, graft copolymerisation, and preparation of blends with thermoplastic polymers have been studied to produce solid biodegradable shaped bodies. HDPE was chosen as commercial thermoplastic materials and was added with 10% Bio-VOP for the preparation of solid biodegradable shaped bodies named as HD-VOP. The UV light exposure of HD-VOP at 12 minutes upon gives the highest strength of this material that is 17.6 MPa. The morphological structure of HD-VOP shows dwi structure surface fracture which is brittle and ductile properties.

  10. In-Plane Shear Characterisation of Uni-Directionally Reinforced Thermoplastic Melts

    NASA Astrophysics Data System (ADS)

    Haanappel, S. P.; ten Thije, R.; Sachs, U.; Rietman, A. D.; Akkerman, R.

    2011-05-01

    Intra-ply shear is an important mechanism in hot stamp forming processes of UD fibre reinforced thermoplastic laminates. Various methods have been developed to characterise this shear mechanism, but measured properties may differ for several orders of magnitude. Therefore, an alternative method to characterise the longitudinal shearing viscosity is presented. Straight fibre reinforced thermoplastic bars with a rectangular cross section are subjected to torsional loadings. The specimens' response can be used to characterise the shear properties of the fibre reinforced polymer melt. Different geometries and clamping conditions were modelled to show the sensitivity of the measured viscosity. Based on this, experiments were performed with thick bars with a PEI-AS4 and PEEK-AS4 composition. Frequency sweeps were applied at different temperatures. All measurements showed a clear shear thinning behaviour, which can conveniently be described with a power law model.

  11. Thermoplastic pultrusion development and characterization of residual in pultruded composites with modeling and experiments

    NASA Astrophysics Data System (ADS)

    Jamiyanaa, Khongor

    Pultrusion processing is a technique to make highly aligned fiber reinforced polymer composites. Thermoset pultrusion is a mature process and well established, while thermoplastic pultrusion in still in its infancy. Thermoplastic pultrusion has not been well established because thermoplastic resins are difficult to process due to their high viscosity. However, thermoplastic resins offer distinct advantages that make thermoplastic pultrusion worth exploring. The present work centers on developing a method to design and validate a die for a thermoplastic pultrusion system. Analytical models and various software tools were used to design a pultrusion die. Experimental measurements have been made to validate the models. One-dimensional transient heat transfer analysis was used to calculate the time required for pre-impregnated E-Glass/Polypropylene tapes to melt and consolidate into profiled shapes. Creo Element/Pro 1.0 was used to design the die, while ANSYS Work Bench 14.0 was used to conduct heat transfer analysis to understand the temperature profile of the pultrusion apparatus. Additionally Star-CCM+ was used to create a three-dimensional fluid flow model to capture the molten polymer flow inside the pultrusion die. The fluid model was used to understand the temperature of the flow and the force required to pull the material at any given temperature and line speed. A complete pultrusion apparatus including the die, heating unit, cooling unit, and the frame has been designed and manufactured as guided by the models, and pultruded profiles have been successfully produced. The results show that the analytical model and the fluid model show excellent correlation. The predicted and measured pulling forces are in agreement and show that the pull force increases as the pull speed increases. Furthermore, process induced residual stress and its influence on dimensional instability, such as bending or bowing, on pultruded composites was analyzed. The study indicated that unbalanced layup can produce asymmetrical residual stress through the thickness and causes the part to bow. Furthermore, the residual stress through the thickness was mapped with excellent accuracy. A design of experiments around the processing parameters indicated that increase in pull speed or decrease in die temperature increased the residual stress within the part.

  12. Polymer bonding process for nanolithography

    NASA Astrophysics Data System (ADS)

    Borzenko, T.; Tormen, M.; Schmidt, G.; Molenkamp, L. W.; Janssen, H.

    2001-10-01

    We have developed a lithography process which originates from imprint lithography and offers advantages over it. Unlike imprint lithography, not only the sample but also the mold is covered with a thermoplastic polymer. The mold and sample are brought into contact, pressed together and heated above the glass transition temperature of the thermoplast, causing the two polymer layers to become bonded (glued) together. A special treatment of the mold and sample surface causes the polymer film to stick only to the substrate after cooling. The bonding occurs at pressures and temperatures lower than those usually applied in imprint technology, and eliminates problems in conventional imprint technology that are related to lateral transport of the polymer.

  13. Assessment of relative flammability and thermochemical properties of some thermoplastic materials

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Parker, J. A.

    1978-01-01

    The thermochemical and flammability characteristics of some typical thermoplastic materials currently in use and others being considered for use in aircraft interiors are described. The properties studied included (1) thermal mechanical properties such as glass transition and melt temperature, (2) changes in polymer enthalpy by differential scanning calorimetry, (3) thermogravimetric analysis in an anaerobic and oxidative environment, (4) oxygen index, (5) smoke evolution, (6) relative toxicity of the volatile products of pyrolysis, and (7) selected physical properties. The generic polymers which were evaluated included: acrylonitrile-butadiene-styrene, bisphenol A polycarbonate, bisphenol fluorenone carbonatedimethylsiloxane block polymer, phenolphthalein-bisphenol A polycarbonate, phenolphthalein polycarbonate, polyether sulfone, polyphenylene oxide, polyphenylene sulfide, polyaryl sulfone, chlorinated polyvinyl chloride homopolymer, polyvinyl fluoride, and polyvinylidene fluoride. Processing parameters including molding characteristics of some of the advanced polymers are described. Test results and relative rankings of some of the flammability, smoke and toxicity properties are presented.

  14. Characterization of flammability properties of some thermoplastic and thermoset resins. [for aircraft interiors

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Parker, J. A.

    1978-01-01

    The thermochemical and flammability properties of some thermally stable polymers considered for use in aircraft interiors are described. The properties studied include: (1) thermomechanical properties such as glass transition and melt temperature; (2) dynamic thermogravimetric analysis in anaerobic environment; (3) flammability properties such as oxygen index, flame spread, and smoke evolution; and (4) selected physical properties. The thermoplastic polymers evaluated included polyphenylene sulfide, polyaryl sulfone, 9,9-bis(4-hydroxyphenyl)-fluorene polycarbonate-poly(dimethylsiloxane) and polyether sulfone. The thermoset polymers evaluated included epoxy, bismaleimide, a modified phenolic and polyaromatic melamine resin. These resins were primarily used in the fabrication of glass reinforced prepregs for the construction of experimental panels. Test results and relative rankings of some of the flammability parameters are presented and the relationship of the molecular structure, char yield, and flammability properties of these polymers are discussed.

  15. Ultrasonic Welding of Graphite/Thermoplastic Composite

    NASA Technical Reports Server (NTRS)

    Hardy, S. S.; Page, D. B.

    1982-01-01

    Ultrasonic welding of graphite/thermoplastic composite materials eliminates need for fasteners (which require drilling or punching, add weight, and degrade stiffness) and can be totally automated in beam fabrication and assembly jigs. Feasibility of technique has been demonstrated in laboratory tests which show that neither angular orientation nor vacuum affect weld quality.

  16. Biodegradation Of thermoplastic polyurethanes from vegetable oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thermoplastic urethanes based on polyricinoleic acid soft segments and MDI/BD hard segments with varied soft segment concentration were prepared. Soft segment concentration was varied fro, 40 to 70 wt %. Biodegradation was studied by respirometry. Segmented polyurethanes with soft segments based ...

  17. Imprint Molding of a Microfluidic Optical Cell on Thermoplastics with Reduced Surface Roughness for the Detection of Copper Ions.

    PubMed

    Wu, Jing; Lee, Nae Yoon

    2016-01-01

    Here, we introduce a simple and facile technique for fabricating microfluidic optical cells by utilizing a micropatterned polymer mold, followed by imprinting on thermoplastic substrates. This process has reduced the surface roughness of the microchannel, making it suitable for microscale optical measurements. The micropatterned polymer mold was fabricated by first micromilling on a poly(methylmethacrylate) (PMMA) substrate, and then transferring the micropattern onto an ultraviolet (UV)-curable optical adhesive. After an anti-adhesion treatment of the polymer mold fabricated using the UV-curable optical adhesive, the polymer mold was used repeatedly for imprinting onto various thermoplastics, such as PMMA, polycarbonate (PC), and poly(ethyleneterephthalate) (PET). The roughness values for the PMMA, PC, and PET microchannels were approximately 11.3, 20.3, and 14.2 nm, respectively, as compared to those obtained by micromilling alone, which were 15.9, 76.8, and 207.5 nm, respectively. Using the imprint-molded thermoplastic optical cell, rhodamine B and copper ions were successfully quantified. The reduced roughness of the microchannel surface resulted in improved sensitivity and reduced noise, paving the way for integration of the detection module so as to realize totally integrated microdevices. PMID:26753711

  18. Vegetable Oil Derived Solvent, and Catalyst Free Click Chemistry Thermoplastic Polytriazoles

    PubMed Central

    Floros, Michael C.; Leo, Alcides Lopes; Narine, Suresh S.

    2014-01-01

    Azide-alkyne Huisgen click chemistry provides new synthetic routes for making thermoplastic polytriazole polymerswithout solvent or catalyst. This method was used to polymerize three diester dialkyne monomers with a lipid derived 18 carbon diazide to produce a series of polymers (labelled C18C18, C18C9, and C18C4 based on monomer chain lengths) free of residual solvent and catalyst. Three diester dialkyne monomers were synthesized with ester chain lengths of 4, 9, and 18 carbons from renewable sources. Significant differences in thermal and mechanical properties were observed between C18C9 and the two other polymers. C18C9 presented a lower melting temperature, higher elongation at break, and reduced Young's modulus compared to C18C4 and C18C18. This was due to the odd-even effect induced by the number of carbon atoms in the monomers which resulted in orientation of the ester linkages of C18C9 in the same direction, thereby reducing hydrogen bonding. The thermoplastic polytriazoles presented are novel polymers derived from vegetable oil with favourable mechanical and thermal properties suitable for a large range of applications where no residual solvent or catalyst can be tolerated. Their added potential biocompatibility and biodegradability make them ideal for applications in the medical and pharmaceutical industries. PMID:25032224

  19. Thermoplastic processing of proteins for film formation--a review.

    PubMed

    Hernandez-Izquierdo, V M; Krochta, J M

    2008-03-01

    Increasing interest in high-quality food products with increased shelf life and reduced environmental impact has encouraged the study and development of edible and/or biodegradable polymer films and coatings. Edible films provide the opportunity to effectively control mass transfer among different components in a food or between the food and its surrounding environment. The diversity of proteins that results from an almost limitless number of side-chain amino-acid sequential arrangements allows for a wide range of interactions and chemical reactions to take place as proteins denature and cross-link during heat processing. Proteins such as wheat gluten, corn zein, soy protein, myofibrillar proteins, and whey proteins have been successfully formed into films using thermoplastic processes such as compression molding and extrusion. Thermoplastic processing can result in a highly efficient manufacturing method with commercial potential for large-scale production of edible films due to the low moisture levels, high temperatures, and short times used. Addition of water, glycerol, sorbitol, sucrose, and other plasticizers allows the proteins to undergo the glass transition and facilitates deformation and processability without thermal degradation. Target film variables, important in predicting biopackage performance under various conditions, include mechanical, thermal, barrier, and microstructural properties. Comparisons of film properties should be made with care since results depend on parameters such as film-forming materials, film formulation, fabrication method, operating conditions, testing equipment, and testing conditions. Film applications include their use as wraps, pouches, bags, casings, and sachets to protect foods, reduce waste, and improve package recyclability. PMID:18298745

  20. Thermoplastic shape-memory polyurethanes based on natural oils

    NASA Astrophysics Data System (ADS)

    Saralegi, Ainara; Foster, E. Johan; Weder, Christoph; Eceiza, Arantxa; Corcuera, Maria Angeles

    2014-02-01

    A new family of segmented thermoplastic polyurethanes with thermally activated shape-memory properties was synthesized and characterized. Polyols derived from castor oil with different molecular weights but similar chemical structures and a corn-sugar-based chain extender (propanediol) were used as starting materials in order to maximize the content of carbon from renewable resources in the new materials. The composition was systematically varied to establish a structure-property map and identify compositions with desirable shape-memory properties. The thermal characterization of the new polyurethanes revealed a microphase separated structure, where both the soft (by convention the high molecular weight diol) and the hard phases were highly crystalline. Cyclic thermo-mechanical tensile tests showed that these polymers are excellent candidates for use as thermally activated shape-memory polymers, in which the crystalline soft segments promote high shape fixity values (close to 100%) and the hard segment crystallites ensure high shape recovery values (80-100%, depending on the hard segment content). The high proportion of components from renewable resources used in the polyurethane formulation leads to the synthesis of bio-based polyurethanes with shape-memory properties.

  1. Tunable optical response of bowtie nanoantenna arrays on thermoplastic substrates

    NASA Astrophysics Data System (ADS)

    Sharac, N.; Sharma, H.; Veysi, M.; Sanderson, R. N.; Khine, M.; Capolino, F.; Ragan, R.

    2016-03-01

    Thermally responsive polymers present an interesting avenue for tuning the optical properties of nanomaterials on their surfaces by varying their periodicity and shape using facile processing methods. Gold bowtie nanoantenna arrays are fabricated using nanosphere lithography on prestressed polyolefin (PO), a thermoplastic polymer, and optical properties are investigated via a combination of spectroscopy and electromagnetic simulations to correlate shape evolution with optical response. Geometric features of bowtie nanoantennas evolve by annealing at temperatures between 105 °C and 135 °C by releasing the degree of prestress in PO. Due to the higher modulus of Au versus PO, compressive stress occurs on Au bowtie regions on PO, which leads to surface buckling at the two highest annealing temperatures; regions with a 5 nm gap between bowtie nanoantennas are observed and the average reduction is 75%. Reflectance spectroscopy and full-wave electromagnetic simulations both demonstrate the ability to tune the plasmon resonance wavelength with a window of approximately 90 nm in the range of annealing temperatures investigated. Surface-enhanced Raman scattering measurements demonstrate that maximum enhancement is observed as the excitation wavelength approaches the plasmon resonance of Au bowtie nanoantennas. Both the size and morphology tunability offered by PO allows for customizing optical response.

  2. 3-D stamp forming of thermoplastic matrix composites

    NASA Astrophysics Data System (ADS)

    Hou, M.; Friedrich, K.

    1994-03-01

    In this investigation a mould with hemispherical cavity and 80 kN hydraulic press, allowing variable stamping speeds, are employed for experimentally studying of the 3-D stamp forming process of continuous fiber reinforced thermoplastic laminates. In particular, glass fiber (GF) reinforced polyetherimide (PEI) woven fabric made of sheath surrounded, polymer powder impregnated fiber bundles manufactured by Enichem, Italy, is used. Pre-consolidated laminates are heated by contact heating in an external heater up to about 120C above the glass transition temperature ( T g) of the polymer matrix; they are then stamp formed in a cold matched metal tool. Typical cycle times (including preheating time of the preconsolidated laminates) are in the range of 3 min. Useful processing conditions, such as stamping temperature, stamping velocity and hold-down pressure required for stamp forming of this composite are determined. In addition the effect of die geometries (deformation radian) and original laminate dimensions are studied. The results describe the correlations between processing parameters and fiber buckling. Finally the thickness distribution in stamped parts are investigated in relation to different directions of fiber orientation.

  3. Processing Conjugated-Diene-Containing Polymers

    NASA Technical Reports Server (NTRS)

    Bell, Vernon L.; Havens, Stephen J.

    1987-01-01

    Diels-Alder reaction used to cross-linked thermoplastics. Process uses Diels-Alder reaction to cross-link and/or extend conjugated-diene-containing polymers by reacting them with bis-unsaturated dienophiles results in improved polymer properties. Quantities of diene groups required for cross-linking varies from very low to very high concentrations. Process also used to extend, or build up molecular weights of, low-molecular-weight linear polymers with terminal conjugated dienic groups.

  4. Production of continuous fiber thermoplastic composites by in-situ pultrusion

    NASA Astrophysics Data System (ADS)

    Epple, S.; Bonten, C.

    2014-05-01

    The constructive design in the automotive industry, but also in many other industrial sectors has changed steadily over the past decades. It became much more complex due to e.g. increased use of hybrid materials. Combined with the desire to minimize the weight of vehicles and thus the CO2 emissions, the use of low density materials and especially fiber-reinforced plastics is increasing. E.g. Continuous fiber thermoplastic composites are used to reinforce injection molded parts. Low viscosity monomers like caprolactam, which is used to produce polyamide 6 by anionic polymerization are able to easily impregnate and penetrate the textile reinforcement. After wetting the fibers, the ring-opening polymerization starts and the matrix is becoming a polymer. At IKT, a method based on the RIM process (reaction injection molding) was developed to produce continuous fiber thermoplastic composites with high contents of continuous glass fibers. The anionic polymerization of polyamide 6 was now combined with the pultrusion process. Continuous glass fibers are pulled through a mold and wetted with caprolactam (including activator and catalyst). After the material polymerized in the mould, the finished continuous fiber thermoplastic composites can be pulled out and is finally sawn off.

  5. Novel compostable materials based upon thermoplastic polyurethanes and native starch and the production of films thereof

    SciTech Connect

    Seidenstuecker, T.; Fritz, H.G.

    1996-12-31

    Certain types of thermoplastic poly(urethanes) (TPU) are biodegradable. The biodegradability depends upon the structure of the polymer chains. Effective chain scission can only be catalysed by enzymes, which occur abundantly in compost environments, if functional groups are present in the backbone that are highly prone to hydrolysis. Especially certain thermoplastic polyesters were found to be biodegradable. In terms of TPUs the proneness to hydrolysis can be achieved be synthesizing thermoplastic poly(ester-urethanes) that contain as many aster-bonds as possible alongside the backbone. We have investigated the degradability of different types of TPUs in various environments. The incorporation of native starch not only increases the rate of degradation but alters the material properties. This alternation of properties depends upon the filler content and type of starch incorporated. For instance, the higher the starch content is the stiffer the compound becomes. Here it was possible to incorporate up to 70 wt. % of starch. Also, using these components it could be confirmed that special types of starch with small medium particle diameters (< 10 {mu}m) have higher tensile properties and are stiffer compared to native starch with particle diameters above 10 {mu}m. The production of films with various compounds is possible and important film properties as well as applications will be introduced.

  6. Development of thermoplastic components for structural validation

    NASA Technical Reports Server (NTRS)

    Avery, John G.; Cassatt, Gary G.

    1990-01-01

    Recent activity directed toward advancing the development and validation of graphite reinforced thermoplastic primary and secondary structures is described. The efforts discussed include the design, manufacture and test of a highly-loaded multi-spar wing-box component, and the development of a flight-worthy article that is form, fit and functionally replaceable with the nose landing gear door of the V-22 Osprey.

  7. Effect of glass fiber and crystallinity on light transmission during laser transmission welding of thermoplastics

    NASA Astrophysics Data System (ADS)

    Xu, Xin Feng; Bates, Philip J.; Zak, Gene

    2015-06-01

    In order to predict and optimize the contour laser transmission welding (LTW) process, it is important to understand how the laser energy behaves during transmission through the transparent part. In this study, transmission measurements were made on unreinforced and glass-fiber-reinforced amorphous and semi-crystalline thermoplastics at different thicknesses. Using the ratio of transmitted power to laser power, apparent absorption coefficients and apparent reflections were calculated. The results indicate that there is a linear relationship between the glass fiber volume fraction and the apparent absorption coefficient of reinforced polymers; similar effects were also observed for crystallinity. A simple model was developed to estimate apparent absorption coefficient of reinforced polymers as a function of composition. The apparent reflection increased with crystallinity due to increased back scattering. However, for glass-fiber-reinforced polymers, the apparent reflection displayed a more complex behavior.

  8. Precision synthesis of bio-based acrylic thermoplastic elastomer by RAFT polymerization of itaconic acid derivatives.

    PubMed

    Satoh, Kotaro; Lee, Dong-Hyung; Nagai, Kanji; Kamigaito, Masami

    2014-01-01

    Bio-based polymer materials from renewable resources have recently become a growing research focus. Herein, a novel thermoplastic elastomer is developed via controlled/living radical polymerization of plant-derived itaconic acid derivatives, which are some of the most abundant renewable acrylic monomers obtained via the fermentation of starch. The reversible addition-fragmentation chain-transfer (RAFT) polymerizations of itaconic acid imides, such as N-phenylitaconimide and N-(p-tolyl)itaconimide, and itaconic acid esters, such as di-n-butyl itaconate and bis(2-ethylhexyl) itaconate, are examined using a series of RAFT agents to afford well-defined polymers. The number-average molecular weights of these polymers increase with the monomer conversion while retaining relatively narrow molecular weight distributions. Based on the successful controlled/living polymerization, sequential block copolymerization is subsequently investigated using mono- and di-functional RAFT agents to produce block copolymers with soft poly(itaconate) and hard poly(itaconimide) segments. The properties of the obtained triblock copolymer are evaluated as bio-based acrylic thermoplastic elastomers. PMID:24243816

  9. Thermoforming of Continuous Fibre Reinforced Thermoplastic Composites

    SciTech Connect

    McCool, Rauri; Murphy, Adrian; Wilson, Ryan; Jiang Zhenyu; Price, Mark

    2011-05-04

    The introduction of new materials, particularly for aerospace products, is not a simple, quick or cheap task. New materials require extensive and expensive qualification and must meet challenging strength, stiffness, durability, manufacturing, inspection and maintenance requirements. Growth in industry acceptance for fibre reinforced thermoplastic composite systems requires the determination of whole life attributes including both part processing and processed part performance data. For thermoplastic composite materials the interactions between the processing parameters, in-service structural performance and end of life recyclability are potentially interrelated. Given the large number and range of parameters and the complexity of the potential relationships, understanding for whole life design must be developed in a systematic building block approach. To assess and demonstrate such an approach this article documents initial coupon level thermoforming trials for a commercially available fibre reinforced thermoplastic laminate, identifying the key interactions between processing and whole life performance characteristics. To examine the role of the thermoforming process parameters on the whole life performance characteristics of the formed part requires a series of manufacturing trials combined with a series of characterisation tests on the manufacturing trial output. Using a full factorial test programme and considering all possible process parameters over a range of potential magnitudes would result in a very large number of manufacturing trials and accompanying characterisation tests. Such an approach would clearly be expensive and require significant time to complete, therefore failing to address the key requirement for a future design methodology capable of rapidly generating design knowledge for new materials and processes. In this work the role of mould tool temperature and blank forming temperature on the thermoforming of a commercially available thermoplastic based composite laminate is investigated followed by post processed part characterization. Key findings include an optimized composite processing window, and the influence of raw material blank forming temperature and mould tool temperature on part crystallinity and flexural strength. This process study forms one element of a major project structure which has been designed to address the gap between design, analysis and manufacturing, using at its core, a digital framework for the creation and management of performance parameters related to the lifecycle performance of thermoplastic composite structures.

  10. Imprinting of confining sites for cell cultures on thermoplastic substrates

    NASA Technical Reports Server (NTRS)

    Cone, C. D.; Fleenor, E. N.

    1969-01-01

    Prevention of test cell migration beyond the field of observation involves confining cells or cultures in microlagoons made in either a layer of grease or a thermoplastic substrate. Thermoplastic films or dishes are easily imprinted with specifically designed patterns of microlagoons.

  11. A modeling approach to thermoplastic pultrusion. I - Formulation of models

    NASA Astrophysics Data System (ADS)

    Astrom, B. T.; Pipes, R. B.

    1993-06-01

    Models to predict temperature and pressure distributions within a thermoplastic composed as it travels through a pultrusion line and a model to predict the pulling resistance of a die are presented and discussed. A set of mathematical models of the thermoplastic pultrusion process comprising temperature, pressure, and pulling force models are discussed and extensively verified with experimental data.

  12. Biosynthesis of novel thermoplastic polythioesters by engineered Escherichia coli

    NASA Astrophysics Data System (ADS)

    Ltke-Eversloh, Tina; Fischer, Andreas; Remminghorst, Uwe; Kawada, Jumpei; Marchessault, Robert H.; Bgershausen, Ansgar; Kalwei, Martin; Eckert, Hellmut; Reichelt, Rudolf; Liu, Shuang-Jiang; Steinbchel, Alexander

    2002-12-01

    The development of non-petrochemical sources for the plastics industry continues to progress as large multinationals focus on renewable resources to replace fossil carbon. Many bacteria are known to accumulate polyoxoesters as water-insoluble granules in the cytoplasm. The thermoplastic and/or elastomeric behaviour of these biodegradable polymers holds promise for the development of various technological applications. Here, we report the synthesis and characterization of microbial polythioesters (PTEs), a novel class of biopolymers of general technological relevance. Biosynthesis of PTE homopolymers was achieved using a recombinant strain of Escherichia coli that expressed a non-natural pathway consisting of a butyrate kinase, a phosphotransbutyrylase, and a PHA synthase. Different homopolymers were produced, consisting of either 3-mercaptopropionate, 3-mercaptobutyrate, or 3-mercaptovalerate repeating units, if the respective mercaptoalkanoic acids were provided as precursor substrates to the fermentative process. The PTEs contributed up to 30% (w/w) of the cellular dry weight and were identified as hydrophobic inclusions in the cytoplasm. The chemical and stereochemical homogeneity of the purified PTEs were identified by different methods, and the estimated physical properties were compared to the oxypolyester equivalents, revealing low crystalline order and, for the poly(3-mercaptopropionate) improved thermal stability. The ability to produce PTEs through a biosynthetic route opens up new avenues in the field of biomaterials.

  13. Thermoplastic encapsulation of waste surrogates by high-shear mixing

    SciTech Connect

    Lageraaen, P.R.; Kalb, P.D.; Patel, B.R.

    1995-12-01

    Brookhaven National Laboratory (BNL) has developed a robust, extrusion-based polyethylene encapsulation process applicable to a wide range of solid and aqueous low-level radioactive, hazardous and mixed wastes. However, due to the broad range of physical and chemical properties of waste materials, pretreatment of these wastes is often required to make them amenable to processing with polyethylene. As part of the scope of work identified in FY95 {open_quotes}Removal and Encapsulation of Heavy Metals from Ground Water,{close_quotes} EPA SERDP No. 387, that specifies a review of potential thermoplastic processing techniques, and in order to investigate possible pretreatment alternatives, BNL conducted a vendor test of the Draiswerke Gelimat (thermokinetic) mixer on April 25, 1995 at their test facility in Mahwah, NJ. The Gelimat is a batch operated, high-shear, high-intensity fluxing mixer that is often used for mixing various materials and specifically in the plastics industry for compounding additives such as stabilizers and/or colorants with polymers.

  14. Thermoplastic polymeric adhesive for structural bonding applications for orthopaedic devices

    SciTech Connect

    Devanathan, D.; King, R.; Swarts, D.; Lin, S.; Ramani, K.; Tagle, J.

    1994-12-31

    The orthopaedics industry has witnessed tremendous growth in recent years primarily due to the introduction of high performance, porous coated implants. These devices have eliminated the need for the use of bone cement for in vivo implant fixation, replacing it with the ingrowth of bone into the porous surfaces. The metallurgical bonding processes used for attaching the porous to the implant body introduce some undesirable effect i.e., the reduction of the fatigue strength of the implant due to the ``notches`` created and also due to the high temperature exposure during the sintering operations. This paper describes the development of a thermoplastic polymeric adhesive based structural bonding technique. The high performance polymeric adhesive is fully characterized with respect to its intended application. The design of the porous layer is optimized to achieve a reliable bond to the implant. A thermal heating/cooling process was developed to control the final polymer morphology. Static and fatigue tests were conducted to fully characterize the adhesive bond strength. A ring shear test method was developed to determine the shear strength of the bond interface. Besides the characterization of the adhesive bond, the joints will be analyzed using finite element models. The correlation between the analytical models and the

  15. Tough poly(arylene ether) thermoplastics as modifiers for bismaleimides

    NASA Technical Reports Server (NTRS)

    Stenzenberger, H. D.; Roemer, W.; Hergenrother, P. M.; Jensen, B. J.

    1989-01-01

    Several aspects of research on thermoplastics as toughness modifiers are discussed, including the contribution of the backbone chemistry and the concentration of the poly(arylene ether) thermoplastic to fracture toughness, influence of the molecular weight of the poly(arylene ether) thermoplastic on neat resin fracture toughness, and the morphology of the thermoplastic modified networks. The results show that fracture toughness of brittle bismaleimide resins can be improved significantly with poly(arylene ether) thermoplastic levels of 20 percent by weight, and that high molecular weight poly(arylene ether) based on bisphenol A provides the highest degree of toughening. Preliminary composite evaluation shows that improvements in neat resin toughness translate into carbon fabric composite.

  16. Multiblock thermoplastic polyurethanes for biomedical and shape memory applications

    NASA Astrophysics Data System (ADS)

    Gu, Xinzhu

    Polyurethanes are a class of polymers that are capable of tailoring the overall polymer structure and thus final properties by many factors. The great potential in tailoring polymer structures imparts PUs unique mechanical properties and good cytocompatibility, which make them good candidates for many biomedical devices. In this dissertation, three families of multiblock thermoplastic polyurethanes are synthesized and characterized for biomedical and shape memory applications. In the first case described in Chapters 2, 3 and 4, a novel family of multiblock thermoplastic polyurethanes consisting of poly(ɛ-caprolactone) (PCL) and poly(ethylene glycol) (PEG) are presented. These materials were discovered to be very durable, with strain-to-break higher than 1200%. Heat-triggered reversible plasticity shape memory (RPSM) was observed, where the highly deformed samples completely recovered their as-cast shape within one minute when heating above the transition temperature. Instead of conventional "hard" blocks, entanglements, which result from high molecular weight, served as the physical crosslinks in this system, engendering shape recovery and preventing flow. Moreover, water-triggered shape memory effect of PCL-PEG TPUs is explored, wherein water permeated into the initially oriented PEG domains, causing rapid shape recovery toward the equilibrium shape upon contact with liquid water. The recovery behavior is found to be dependent on PEG weight percentage in the copolymers. By changing the material from bulk film to electrospun fibrous mat, recovery speed was greatly accelerated. The rate of water recovery was manipulated through structural variables, including thickness of bulk film and diameter of e-spun webs. A new, yet simple shape memory cycle, "wet-fixing" is also reported, where both the fixing and recovery ratios can be greatly improved. A detailed microstructural study on one particular composition is presented, revealing the evolution of microphase morphology during the shape memory cycle. Then, in Chapter 5, the role of Polyhedral oligosilsesquioxane (POSS) in suppressing enzymatic degradation of PCL-PEG TPUs is investigated. In vitro enzymatic hydrolytic biodegradation revealed that POSS incorporation significantly suppressed degradation of PCL-PEG TPUs. All TPUs were surface-eroded by enzymatic attack in which the chemical composition and the bulk mechanical properties exhibited little changes. A surface passivation mechanism is proposed to explain the protection of POSS-containing TPUs from enzymatic degradation. Finally, Chapter 6 presents another POSS-based TPUs system with PLA-based polyol as the glassy soft block. Manipulation of the final thermal and mechanical properties is discussed in terms of different polyols and POSS used. The free recovery and the constrained recovery responses of the polymer films were demonstrated as a function of the prior "fixing" deformation temperature. In addition, this family of materials was capable of memorizing their T g., where optimal recovery breadth and recovery stress were achieved when pre-deformation occurred right at Tg.

  17. Development of thermoplastic coated multifunctional transmission elements

    NASA Astrophysics Data System (ADS)

    Golaz, B.; Michaud, V.; de Oliveira, R.; Mnson, J.-A. E.

    2012-04-01

    We report on key challenges of the development of steel cords reinforced thermoplastic elastomer composites with smart functionalities: adhesion tailoring for a durable mechanical load transfer through steel cords or other transmission elements by the use of surface treatments and primers, and integrated distributed temperature and strain sensing by the use of embedded fiber optic sensors. Traditional surface treatments including silane coupling agent were outperformed in processing time, adhesion and durability by a fast-curing coupling method using a UV-curable primer; and the integrated distributed temperature and strain sensing capability was demonstrated. The practical applications of the resulting multifunctional transmission element are then discussed in light of these results.

  18. Diffusion of reacting thermosets into thermoplastics

    NASA Astrophysics Data System (ADS)

    Rajagopalan, Gopalakrishnan

    Interphase formation through diffusion at thermoset-thermoplastic interfaces was studied experimentally and theoretically. Mechanisms considered that affected diffusivity were swelling of the thermoplastic from small molecules, reaction of the thermoset, and crystallization of the thermoplastic. By isolating the competing mechanisms of reaction and crystallization on diffusion, the effects of these mechanisms on monomer diffusivity and concentration were studied experimentally using the Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR) technique. The diffusion of model epoxy-amine monomers (100:28 parts epoxy to amine by weight) into amorphous polysulfone (PSU) was studied showing that the amine swells the PSU and increases the observed epoxy diffusivity by a factor of 2. Reaction was shown to govern the interphase size by limiting diffusion from crosslinking and increasing molecular weights. Scanning Electron Microscopy (SEM) studies on the interphase revealed a sequential interpenetrating network (IPN) formation, confirming that reaction occurs in the thermoplastic. The diffusion of model epoxy monomers into semi-crystalline poly ether ether ketone (PEEK) helped isolate the crystallization effects on diffusion. With PEEK, X-ray studies on PEEK film samples after epoxy diffusion revealed that crystallinity is induced in initially amorphous PEEK above its Tg. Further, ATR-FTIR studies revealed that epoxy diffusion into PEEK is hindered at larger temperatures from crystallization. Theoretically, the governing equations for transport into amorphous PSU and semi-crystalline PEEK cases were formulated. A numerical and an analytical model were developed for the amorphous PSU and PEEK system, respectively. Using the Fujita free volume theory, mechanism-dependent diffusivity expressions were determined for the PSU and PEEK cases. By using these expressions in the model solutions, the analytical model was used to interpret the ATR-FTIR diffusion data for epoxy diffusion in PEEK, and the crystallinity and temperature dependence of the epoxy diffusivity was obtained. The numerical model predictions for the amorphous PSU system were validated with the ATR-FTIR data and experimental data on the interphase size in this material system. The understanding of the individual influence of reaction and crystallization on diffusion was extended to the study of interphase formation in a real epoxy-PEEK system, where reaction and crystallization occur. Trends in the fracture toughness values with temperature were similar to those for the interphase size, and these values increased linearly with the interphase size.

  19. Thermochemical characterization of some thermoplastic materials. [flammability and toxicity properties for aircraft interiors

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Parker, J. A.; Hilado, C. J.

    1977-01-01

    The thermochemical and flammability characteristics of some typical thermoplastic materials currently in use or being considered for use in aircraft interiors are described. The properties studied included thermomechanical properties such as glass-transition and melt temperature, changes in polymer enthalpy, thermogravimetric analysis in anerobic and oxidative environments, oxygen index, smoke evolution, relative toxicity of the volatile products of pyrolysis, and selected physical properties. The generic polymers evaluated included acrylonitrile butadiene styrene, bisphenol A polycarbonate, 9,9 bis (4-hydroxyphenyl) fluorene polycarbonate-poly (dimethylsiloxane) block polymer, phenolphthalein-bisphenol A polycarbonate, phenolphthalein polycarbonate, polyether sulfone, polyphenylene oxide, polyphenylene sulfide, polyaryl sulfone, chlorinated polyvinyl chloride homopolymer, polyvinyl fluoride, and polyvinylidene fluoride. Processing parameters, including molding characteristics of some of the advanced polymers, are described. Test results and relative rankings of some of the flammability, smoke, and toxicity properties are presented. Under these test conditions, some of the advanced polymers evaluated were significantly less flammable and toxic than or equivalent to polymers in current use.

  20. Thermal decomposition of nano-enabled thermoplastics: Possible environmental health and safety implications.

    PubMed

    Sotiriou, Georgios A; Singh, Dilpreet; Zhang, Fang; Chalbot, Marie-Cecile G; Spielman-Sun, Eleanor; Hoering, Lutz; Kavouras, Ilias G; Lowry, Gregory V; Wohlleben, Wendel; Demokritou, Philip

    2016-03-15

    Nano-enabled products (NEPs) are currently part of our life prompting for detailed investigation of potential nano-release across their life-cycle. Particularly interesting is their end-of-life thermal decomposition scenario. Here, we examine the thermal decomposition of widely used NEPs, namely thermoplastic nanocomposites, and assess the properties of the byproducts (released aerosol and residual ash) and possible environmental health and safety implications. We focus on establishing a fundamental understanding on the effect of thermal decomposition parameters, such as polymer matrix, nanofiller properties, decomposition temperature, on the properties of byproducts using a recently-developed lab-based experimental integrated platform. Our results indicate that thermoplastic polymer matrix strongly influences size and morphology of released aerosol, while there was minimal but detectable nano-release, especially when inorganic nanofillers were used. The chemical composition of the released aerosol was found not to be strongly influenced by the presence of nanofiller at least for the low, industry-relevant loadings assessed here. Furthermore, the morphology and composition of residual ash was found to be strongly influenced by the presence of nanofiller. The findings presented here on thermal decomposition/incineration of NEPs raise important questions and concerns regarding the potential fate and transport of released engineered nanomaterials in environmental media and potential environmental health and safety implications. PMID:26642449

  1. Processing parameters for thermoplastic filament winding

    NASA Astrophysics Data System (ADS)

    Colton, J.; Leach, D.

    The consolidation pressure and winding speed for thermoplastic filament winding were studied. Thermoplastic composite parts were manufactured from tape prepreg (APC-2); powder-coated, semiconsolidated towpreg; and commingled fiber towpeg. The material used was carbon fiber (AS-4) (60 vol pct) in a PEEK matrix. The parts made were open-ended cylinders of the three materials, 177.8 mmID, 228.6 mm long, 17 plies thick with a 0 deg lay-up angle; and rings, 50 plies of APC-2 thick, 6.35 mm wide (one strip wide), 177.8 mm ID, and a lay-up of 0 deg. Their quality was determined by surface finish and void percentage. The tubes made from APC-2 appeared to have the best quality of the three prepregs. For the rings, the speed of lay down had a significant effect on both the final width of the parts and on the percentage of voids. The pressure of the roller had a significant effect on the final widths at a 99 percent confidence level, but only a significant effect on the percentage of voids at a 95 percent confidence level.

  2. Acetylation of rice straw for thermoplastic applications.

    PubMed

    Zhang, Guangzhi; Huang, Kai; Jiang, Xue; Huang, Dan; Yang, Yiqi

    2013-07-01

    An inexpensive and biodegradable thermoplastic was developed through acetylation of rice straw (RS) with acetic anhydride. Acetylation conditions were optimized. The structure and properties of acetylated RS were characterized by fourier transform infrared (FTIR), solid-state (13)C NMR spectroscopy, X-ray diffractometer (XRD), scanning electron microscope (SEM), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The results showed that acetylation of RS has successfully taken place, and comparing with raw RS, the degree of crystallinity decreased and the decomposition rate was slow. The acetylated RS has got thermoplasticity when weight ratio of RS and acetic anhydride was 1:3, using sulphuric acid (9% to RS) as catalyst in glacial acetic acid 35C for 12h, and the dosage of solvent was 9 times RS, in which weight percent gain (WPG) of the modified RS powder was 35.5% and its percent acetyl content was 36.1%. The acetylated RS could be formed into transparent thin films with different amount of plasticizer diethyl phthalate (DEP) using tape casting technology. PMID:23688473

  3. Soft Semicrystalline Thermoplastic Elastomers by Arrested Crystallization

    NASA Astrophysics Data System (ADS)

    Burns, Adam; Register, Richard

    2014-03-01

    Thermoplastic elastomers (TPEs) marry the solid-state behavior of vulcanized rubbers with the melt processability of thermoplastics. Archetypal soft TPEs consist of triblock copolymers comprising a rubbery mid-block flanked by two identical glassy end-blocks. Incorporating crystalline blocks into TPEs can confer solvent resistance as well as reduce the processing costs by giving access to single-phase melts. However, simply substituting crystalline for glassy end-blocks dramatically degrades the solid-state mechanical properties, particularly at large strains. We seek to integrate the benefits of crystallinity into TPEs, while maintaining the desired mechanical properties, using the block architecture: crystalline-glassy-rubbery-glassy-crystalline. Methods have been developed to synthesize highly symmetric, narrow-distribution block copolymers with this architecture using anionic polymerization of butadiene, styrene, and isoprene followed by hydrogenation. Judicious choices of block molecular weights indeed yield homogeneous melts above the melting point of the crystalline component. Upon cooling, crystallization--rather than interblock repulsion--establishes the solid-state microstructure which physically crosslinks the rubbery mid-block, ultimately conferring elasticity. Subsequent vitrification of the adjacent glassy blocks arrests the growth of the crystallites, and protects them from yielding under applied load. As a result, our materials show low initial moduli, strain hardening, and high extensibility, typical of commercial TPEs.

  4. Supportability evaluation of thermoplastic and thermoset composites

    NASA Technical Reports Server (NTRS)

    Chanani, G. R.; Boldi, D.; Cramer, S. G.; Heimerdinger, M. W.

    1990-01-01

    Nearly 300 advanced composite components manufactured by Northrop Corporation are flying on U.S. Air Force and U.S. Navy supersonic aircraft as part of a three-year Air Force/Navy/Northrop supportability evaluation. Both thermoplastic and high-temperature thermoset composites were evaluated for their in-service performance on 48 USAF and Navy F-5E fighter and USAFT-38 trainer aircraft in the first large-scale, long-term maintenance evaluation of these advanced materials. Northrop manufactured four types of doors for the project-avionics bay access, oil fill, inlet duct inspection, and a main landing gear door. The doors are made of PEEK (polyetheretherketone) thermoplastic, which is tougher and potentially less expensive to manufacture than conventional composites; and 5250-3 BMI (bismaleimide) thermoset, which is manufactured like a conventional epoxy composite but can withstand higher service temperatures. Results obtained so far indicate that both the BMI and PEEK are durable with PEEK being somewhat better than BMI.

  5. Characterization of poly(butylene succinate)/glycerol co-plasticized thermoplastic gelatin prepared by melt blending

    NASA Astrophysics Data System (ADS)

    Oliviero, Maria; Sorrentino, Andrea; Iannace, Salvatore

    2015-12-01

    Biodegradable thermoplastic poly(butylene succinate)/gelatin (PBS/TPG) blends with various blending ratios were prepared by melt mixing technique. The main goal of these blends is to improve the water sensitivity of thermoplastic gelatin by blending it with a hydrophobic biodegradable polymer obtained also from renewable resources. The incorporation of PBS yielded a decrease in absorbed moisture. Under the relative humidity 50 and 100%, the absorbed moisture obtained values were 19 and 229% for pure TPG, 12.3 and 127% for TPG/PBS(80/20), and 1.7 and 37% for TPG/PBS(20/80), respectively. The water resistance increased only for the samples containing a high value of PBS (>40%wt). Furthermore, mechanical properties and morphological analyses revealed that PBS/TPG blends were immiscible.

  6. Blends of polyamide imides and liquid crystalline polymers

    SciTech Connect

    Isayev, A.I.; Varma, T.R.

    1995-12-01

    Poly(amide imides) (PAI) are high performance polymers which are capable of replacing metals. Though they are thermoplastics, they need highly specialized machinery for processing in order to achieve maximum property development. The difficulty in processing is mainly due to its high viscosity and melt reactivity. Attempts have been made to process the PAI precursor materials using conventional thermoplastic processing methods by blending it with a liquid crystal polymer (LCP) which is in itself a high performance polymer with easy processibility and self-reinforcing capabilities. The LCP is also capable of reducing the melt viscosity when blended with other thermoplastics. The PAI precursors were melt blended with the LCP using two methods: a corotating twin screw extruder, and a single screw extruder attached to a static mixer. The blends were injection molded and characterized both before, and after, heat treatment. Studies were done to determine the thermal, flow and mechanical properties of the blends and the pure components.

  7. Microgravity Effects on Combustion of Polymers

    NASA Technical Reports Server (NTRS)

    Hirsch, David; Williams, Jim; Beeson, Harold

    2007-01-01

    A viewgraph presentation describing various microgravity effects on the combustion of polymers is shown. The topics include: 1) Major combustion processes and controlling mechanisms in normal and microgravity environments; 2) Review of some buoyancy effects on combustion: melting of thermoplastics; flame strength, geometry and temperature; smoldering combustion; 3) Video comparing polymeric rods burning in normal and microgravity environments; and 4) Relation to spacecraft fire safety of current knowledge of polymers microgravity combustion.

  8. Processing and characterization of long fiber thermoplastics

    NASA Astrophysics Data System (ADS)

    Thattai Parthasarathy, Krishnan Balaji

    Thermoplastic composites have found increasing use in transportation, military, and aerospace applications. Specifically, long fiber thermoplastics (LFT) have become well established as medium performance, high volume, and low cost materials due to high level of productivity in processing. The mechanical properties of LFT components are defined by the fiber/matrix system and also, to a large extent, by the process-induced flow orientation and fiber lengths. The orientations and fiber length are influenced significantly by the flow characteristics, processing method, and parameters. This work focuses on the rheological characterization of LFT processed via the extrusion-compression molding technique. The squeeze flow technique has been adopted to characterize the flow behavior under isothermal conditions. A transversely isotropic power-law model has been incorporated to capture the combined effect of shear and extensional flow behavior. The effects of temperature, fiber length, and fiber weight fraction of the flow characteristics were analyzed. This work was followed by process simulation of the extrusion-compression molding technique on a mass transit component. Process simulation was conducted to evaluate the flow of fiber-filled viscous charge during the molding process. Studies on optimum charge size and placement in the tool, press force, shrinkage, and warpage were also conducted. The predictions of molten charge, fiber orientation, and final mechanical properties were experimentally verified using various techniques. Finally, an alternate approach to design and produce ribbed LFT components is presented. LFT components with ribs can pose processing complexity since the flow of the material is restricted due to the high viscosity of the charge, particularly in narrow channels (rib location). An innovative method of incorporating ribbed features in molded parts is to use pre-consolidated continuous fiber reinforced thermoplastic (CFRT) sections that are co-molded with a skin of LFT. This work focuses on processing and performance evaluation in terms of the static and dynamic properties of LFTs co-molded with pre-consolidated CFRTs, LFTs with ribs, and LFTs without ribs of equal flexural rigidity. Results showed that the LFTs co-molded with CFRTs have higher static and dynamic properties with a progressive failure, as opposed to a brittle failure with lower static and dynamic properties exhibited by both the LFT with and without ribs.

  9. Thermal stabilities of drops of burning thermoplastics under the UL 94 vertical test conditions.

    PubMed

    Wang, Yong; Zhang, Jun

    2013-02-15

    The properties of polymer melts will strongly affect the fire hazard of the pool induced by polymer melt flow. In this study the thermal stabilities of eight thermoplastic polymers as well as their melting drops generated under the UL 94 vertical burning test conditions were investigated by thermogravimetric experiments. It was found that the kinetic compensation effect existed for the decomposition reactions of the polymers and their drops. For polymethylmethacrylate (PMMA), high impact polystyrene (HIPS), poly(acrylonitrile-butadiene-styrene) (ABS), polyamide 6 (PA6), polypropylene (PP) and low density polyethylene (LDPE), the onset decomposition temperature and the two decomposition kinetic parameters (the pre-exponential factor and the activation energy) of the drop were less than those of the polymer. However, the onset decomposition temperature and the two kinetic parameters of PC's drop were greater than those of polycarbonate (PC). Interestingly, for polyethylenevinylacetate (EVA18) the drop hardly contained the vinyl acetate chain segments. Similarly, for the PMMA/LDPE blends and the PMMA/PP blends, when the volume fraction of PMMA was less than 50% the drop hardly contained PMMA, implying that the blend would not drip until PMMA burned away and its surface temperature approached the decomposition temperature of the continuous phase composed of LDPE or PP. PMID:23298738

  10. Thermoplastic starch films reinforced with talc nanoparticles.

    PubMed

    Castillo, Luciana; López, Olivia; López, Cintia; Zaritzky, Noemí; García, M Alejandra; Barbosa, Silvia; Villar, Marcelo

    2013-06-20

    Nanocomposite films of thermoplastic corn starch (TPS) with talc particles were obtained by thermo-compression in order to study the effect of filler on structure, optical, and thermal properties. Talc increased the films rigid phase, thus their cross-sections resulted more irregular. Talc preferential orientation within matrix and good compatibility between particles and TPS was observed by SEM. Slight crystalline structure changes in TPS matrix were measured by XRD and DSC, due to talc nucleating effect. Randomly dispersed talc nanoagglomerates and individual platelets were assessed by TEM. Laminar morphology and nano-sized particles allowed that nanocomposite films were optically transparent. TPS-talc films resulted heterogeneous materials, presenting domains rich in glycerol and others rich in starch. Talc incorporation higher than 3%, w/w increased softening resistance of the nanocomposites as stated by DMA. Relaxation temperatures of glycerol-rich phase shifted to higher values since talc reduces the mobility of starch chains. PMID:23648028

  11. Monitoring impact damaging of thermoplastic composites

    NASA Astrophysics Data System (ADS)

    Boccardi, S.; Carlomagno, G. M.; Meola, C.; Russo, P.; Simeoli, G.

    2015-11-01

    Thermoplastic composites are becoming ever more attractive also to the aeronautical sector. The main advantage lies in the possibility to modify the interface strength of polypropylene based laminates by adjusting the composition of the matrix. Understanding these aspects is of great importance to establish a possible link between the material toughness and the matrix ingredients. The aim of the present work is to ascertain the ability of an infrared imaging device to visualize any change, in the material behaviour to low energy impact, induced by changes in the matrix composition. Attention is given to image processing algorithms; in particular, an original procedure to measure the extension of the impact-affected area is proposed.

  12. Molecular weight characterization of advanced thermoplastic resins

    NASA Technical Reports Server (NTRS)

    Young, Philip R.; Davis, Judith R.; Chang, Alice C.

    1989-01-01

    Analytical techniques including low angle laser light scattering photometry (LALLS), differential viscometry (DV), gel permeation chromatography (GPC), GPC-LALLS and GPC-DV, were used to characterize the molecular weight and molecular weight distribution of several advanced thermoplastics. A discussion is presented of various molecular-weight-related parameters obtained by these techniques on an experimental polyimide and poly(arylene ether ketone) and a commercially available polysulfone. Where possible, these parameters are correlated with processability and selected mechanical properties. The molecular weight was found to vary during the thermal conversion of poly(amic acid) to polyimide. However, no change in composition of the polysulfone was noted in response to various processing procedures.

  13. ACT/ICAPS: Thermoplastic composite activities

    NASA Technical Reports Server (NTRS)

    Renieri, M. P.; Burpo, S. J.; Roundy, L. M.; Todd, S. M.

    1992-01-01

    McDonnell Aircraft Company (MCAIR) is teamed with Douglas Aircraft Company (DAC) under NASA's Advanced Composite Technology (ACT) initiative in a program entitled Innovative Composite Aircraft Primary Structures (ICAPS). Efforts at MCAIR have focused on the use of thermoplastic composite materials in the development of structural details associated with an advanced fighter fuselage section with applicability to transport design. Based on innovative design/manufacturing concepts for the fuselage section primary structure, elements were designed, fabricated, and structurally tested. These elements focused on key issues such as thick composite lugs and low cost forming of fastenerless, stiffener/moldline concepts. Manufacturing techniques included autoclave consideration, single diaphragm co-consolidation (SDCC), and roll-forming.

  14. Conducting polymer ultracapacitor

    DOEpatents

    Shi, Steven Z.; Davey, John R.; Gottesfeld, Shimshon; Ren, Xiaoming

    2002-01-01

    A sealed ultracapacitor assembly is formed with first and second electrodes of first and second conducting polymers electrodeposited on porous carbon paper substrates, where the first and second electrodes each define first and second exterior surfaces and first and second opposing surfaces. First and second current collector plates are bonded to the first and second exterior surfaces, respectively. A porous membrane separates the first and second opposing surfaces, with a liquid electrolyte impregnating the insulating membrane. A gasket formed of a thermoplastic material surrounds the first and second electrodes and seals between the first and second current collector plates for containing the liquid electrolyte.

  15. Heating of thermoplastic-based unidirectional composite prepregs

    SciTech Connect

    Wang, X.; Weber, M.E.; Charrier, J.M. )

    1989-04-01

    Thermoplastic-based prepregs offer a potential for faster manufacture of composite products than with thermoset-based prepregs. The winding or controlled placement of thermoplastic-based prepreg tapes requires the rapid heating of the moving tape, just prior to its contact with the substrate on the mandrel. In the case of complex shapes, geometrical constraints and significant variations in tape speeds in the course of manufacture, make it particularly desirable to be able to model the heating process. A mathematical model and its experimental verification for convection/conduction heat transfer to and through either a homogeneous thermoplastic material, or thermoplastic-based unidirectional composites featuring glass, aramid and carbon fibers, is discussed. 12 refs.

  16. Induction Consolidation/Molding of Thermoplastic Composites Using Smart Susceptors

    SciTech Connect

    2009-02-01

    This factsheet describes a research project whose objective is to explore and define the technical and economic viability of induction consolidation for thermoplastic composites and to fabricate a wide spectrum of components in an energy-efficient manner.

  17. Thermoplastic Single-Ply Roof Relieves Water Damage and Inconvenience.

    ERIC Educational Resources Information Center

    Williams, Jennifer Lynn

    2002-01-01

    Assesses use of thermoplastic single-ply roofs by North Carolina's Mars Hill College to prevent leaks, reduce maintenance costs, and enhance the value of their older historic buildings. Administrators comment on the roof's installation efficiency and cleanliness. (GR)

  18. Forming of fiber reinforced thermoplastic sheets

    SciTech Connect

    Bhattacharyya, D.; Burt, C.R.; Martin, T.A.

    1993-12-31

    The development of fiber reinforced thermoplastic (FRTP) sheets has added a new dimension to the manufacturing industry. The ability of the thermoplastic matrix to soften and melt with the application of heat allows secondary processing of these composites. The material can be formed into components using conventional sheet metal forming processes with necessary modification. Ideally this opens the way for low cycle-time, non-labor intensive manufacturing processes. However, before there can be any wide scale application of the fiber reinforced sheet material, a better understanding is required regarding the formability of these reinforced sheets and the parameters influencing their forming characteristics. In sheet metal industry the term formability is described as the ease of forming and can be judged by various factors which may vary with the needs of a particular manufacturer. It is not always easy to prejudge formability as in many instances the actual sheet forming mechanism is quite complex. However, often a reasonable understanding of the process characteristics can be obtained through some relatively simple laboratory experiments. The present paper describes the results of a series of such tests namely hemispherical dome forming, cup drawing and vee bending using mainly polypropylene/glass fiber composite sheets with various fiber architecture, forming temperature and speed. Grid strain analysis has been applied to measure the magnitudes and directions of the principal strains and how they are influenced by fiber orientation. A kinematic approach has been shown to theoretically predict the deformation pattern with reasonable accuracy. Some salient features such as fiber buckling, sheet wrinkling, springback have been discussed in the context of forming process variables.

  19. Some properties of thermoplastic mixtures for forming ceramics by extrusion

    SciTech Connect

    Mosin, Yu.M.; Leonov, V.G.

    1995-11-01

    The change in the rheological properties of mixtures for plastic forming based on cordierite and aluminum nitride as a function of the composition of the thermoplastic binder and the temperature is considered. A supposition on the influence of the ratio between the crystalline and the amorphous components of the thermoplastic dispersion medium on the properties of the mixture is made. Some recommendations on forming of ceramic pieces are given.

  20. Characterization of composites fabricated from discontinuous random carbon fiber thermoplastic matrix sheets produced by a paper making process

    NASA Astrophysics Data System (ADS)

    Ducote, Martin Paul, Jr.

    In this thesis, a papermaking process was used to create two randomly oriented, high performance composite material systems. The primary objective of this was to discover the flexural properties of both composite systems and compare those to reported results from other studies. In addition, the process was evaluated for producing quality, randomly oriented composite panels. Thermoplastic polymers have the toughness and necessary strength to be alternatives to thermosets, but with the promise of lower cycle times and increased recyclability. The wet-lay papermaking process used in this study produces a quality, randomly oriented thermoplastic composite at low cycle times and simple production. The materials chosen represent high performance thermoplastics and carbon fibers. Short chopped carbon fiber filled Nylon 6,6 and PEEK composites were created at varying fiber volume fractions. Ten nylon based panels and five PEEK based panels were subjected to 4-point flexural testing. In several of the nylon-based panels, flexural testing was done in multiple direction to verify the in-plane isotropy of the final composite. The flexural strength performance of both systems showed promise when compared to equivalent products currently available. The flexural modulus results were less than expected and further research should be done into possibly causes. Overall, this research gives good insight into two high performance engineering composites and should aid in continued work.

  1. Semicrystalline thermoplastic elastomeric polyolefins: Advances through catalyst development and macromolecular design

    PubMed Central

    Hotta, Atsushi; Cochran, Eric; Ruokolainen, Janne; Khanna, Vikram; Fredrickson, Glenn H.; Kramer, Edward J.; Shin, Yong-Woo; Shimizu, Fumihiko; Cherian, Anna E.; Hustad, Phillip D.; Rose, Jeffrey M.; Coates, Geoffrey W.

    2006-01-01

    We report the design, synthesis, morphology, phase behavior, and mechanical properties of semicrystalline, polyolefin-based block copolymers. By using living, stereoselective insertion polymerization catalysts, syndiotactic polypropylene-block-poly(ethylene-co-propylene)-block-syndiotactic polypropylene and isotactic polypropylene-block-regioirregular polypropylene-block-isotactic polypropylene triblock copolymers were synthesized. The volume fraction and composition of the blocks, as well as the overall size of the macromolecules, were controlled by sequential synthesis of each block of the polymers. These triblock copolymers, with semicrystalline end-blocks and mid-segments with low glass-transition temperatures, show significant potential as thermoplastic elastomers. They have low Young's moduli, large strains at break, and better than 90% elastic recovery at strains of 100% or less. An isotactic polypropylene-block-regioirregular polypropylene-block-isotactic polypropylene-block-regioirregular polypropylene-block-isotactic polypropylene pentablock copolymer was synthesized that also shows exceptional elastomeric properties. Notably, microphase separation is not necessary in the semicrystalline isotactic polypropylenes to achieve good mechanical performance, unlike commercial styrenic thermoplastic elastomers. PMID:17032769

  2. Effect of thermal history on the rheology of thermoplastic polyurethanes

    NASA Astrophysics Data System (ADS)

    Yoon, Pil Joong

    The effect of thermal history on the rheological behavior of ester- and, ether-based commercial thermoplastic polyurethanes (TPUs) was investigated. It was found from 1H and 13C nuclear magnetic resonance (NMR) spectroscopy that the ester-based TPU consisted of 4,4'-diphenylmethane diisocyanate (MDI) and butane diol (BDO) as hard segments and poly(butylene adipate) as soft segments, and the ether-based TPU consisted of MDT-BDO as hard segments and poly(oxytetramethylene) as soft segments. During isothermal annealing, the dynamic storage and loss moduli (G' and G'' ) of specimens, which had been prepared by injection molding at different temperatures, were monitored at a fixed angular frequency. It was found that thermal history of specimens had a profound influence on the variations of G' and G' ' with time observed during isothermal annealing. Isochronal dynamic temperature sweep experiments indicated that the TPUs exhibit hysteresis effect during heating and cooling, very similar to that observed in microphase-separated block polymers and thermotropic liquid-crystalline polymers reported in the literature. It was found that time-temperature superposition failed to produce reduced (or master) plots for the TPUs employed. This conclusion was reinforced by the temperature dependence of log G ' versus log G'' plots over the entire range of temperatures (110--190°C) investigated, suggesting that the morphological state of the TPU specimens varied with temperature. Little evidence was found from differential scanning calorimetry that thermal transitions took place in the TPU specimens during isothermal annealing, while values of G' and G' ' were found to vary with time. Measurements were taken of N-H stretching absorption bands in the Fourier transform infrared (FTIR) spectra during isothermal annealing at 170°C for specimens prepared by injection molding at different temperatures. The analysis of FTIR spectra indicated that variations of hydrogen bonding with time during isothermal annealing resemble very much variations of G' with time during isothermal annealing. Little evidence was found from 1H and 13C NMR spectroscopy that exchange reactions took place in the TPU specimens during isothermal annealing at elevated temperatures. It is concluded from the present study that microphase separation transition or order-disorder transition in TPU cannot be determined from oscillatory shear rheometry.

  3. Polymer alloys with balanced heat storage capacity and engineering attributes and applications thereof

    DOEpatents

    Soroushian, Parviz

    2002-01-01

    A thermoplastic polymer of relatively low melt temperature is blended with at least one of thermosets, elastomers, and thermoplastics of relatively high melt temperature in order to produce a polymer blend which absorbs relatively high quantities of latent heat without melting or major loss of physical and mechanical characteristics as temperature is raised above the melting temperature of the low-melt-temperature thermoplastic. The polymer blend can be modified by the addition of at least one of fillers, fibers, fire retardants, compatibilisers, colorants, and processing aids. The polymer blend may be used in applications where advantage can be taken of the absorption of excess heat by a component which remains solid and retains major fractions of its physical and mechanical characteristics while absorbing relatively high quantities of latent heat.

  4. Improvement of bonding properties of laser transmission welded, dissimilar thermoplastics by plasma surface treatment

    SciTech Connect

    Hopmann, Ch.; Weber, M.; Schöngart, M.; Sooriyapiragasam, S.; Behm, H.; Dahlmann, R.

    2015-05-22

    Compared to different welding methods such as ultrasonic welding, laser transmission welding is a relatively new technology to join thermoplastic parts. The most significant advantages over other methods are the contactless energy input which can be controlled very precisely and the low mechanical loads on the welded parts. Therefore, laser transmission welding is used in various areas of application, for example in medical technology or for assembling headlights in the automotive sector. However, there are several challenges in welding dissimilar thermoplastics. This may be due to different melting points on the one hand and different polarities on the other hand. So far these problems are faced with the intermediate layer technique. In this process a layer bonding together the two components is placed between the components. This means that an additional step in the production is needed to apply the extra layer. To avoid this additional step, different ways of joining dissimilar thermoplastics are investigated. In this regard, the improvement in the weldability of the dissimilar thermoplastics polyamide 6 (PA 6) and polypropylene (PP) by means of plasma surface modification and contour welding is examined. To evaluate the influence of the plasma surface modification process on the subsequent welding process of the two dissimilar materials, the treatment time as well as the storage time between treatment and welding are varied. The treatment time in pulsed micro wave excited oxygen plasmas with an electron density of about 1x10{sup 17} m{sup −3} is varied from 0.5 s to 120 s and the time between treatment and welding is varied from a few minutes up to a week. As reference, parts being made of the same polymer (PP and PA 6) are welded and tested. For the evaluation of the results of the welding experiments, short-time tensile tests are used to determine the bond strength. Without plasma treatment the described combination of PA 6/PP cannot be welded with sufficient bond strength to withstand handling of the samples. In contrast, the tear-out force of previously plasma treated samples can be determined to up to 1400 N. The achieved bond strengths are higher than of untreated PP/PP welded parts (about 1000 N)

  5. Improvement of bonding properties of laser transmission welded, dissimilar thermoplastics by plasma surface treatment

    NASA Astrophysics Data System (ADS)

    Hopmann, Ch.; Weber, M.; Schöngart, M.; Sooriyapiragasam, S.; Behm, H.; Dahlmann, R.

    2015-05-01

    Compared to different welding methods such as ultrasonic welding, laser transmission welding is a relatively new technology to join thermoplastic parts. The most significant advantages over other methods are the contactless energy input which can be controlled very precisely and the low mechanical loads on the welded parts. Therefore, laser transmission welding is used in various areas of application, for example in medical technology or for assembling headlights in the automotive sector. However, there are several challenges in welding dissimilar thermoplastics. This may be due to different melting points on the one hand and different polarities on the other hand. So far these problems are faced with the intermediate layer technique. In this process a layer bonding together the two components is placed between the components. This means that an additional step in the production is needed to apply the extra layer. To avoid this additional step, different ways of joining dissimilar thermoplastics are investigated. In this regard, the improvement in the weldability of the dissimilar thermoplastics polyamide 6 (PA 6) and polypropylene (PP) by means of plasma surface modification and contour welding is examined. To evaluate the influence of the plasma surface modification process on the subsequent welding process of the two dissimilar materials, the treatment time as well as the storage time between treatment and welding are varied. The treatment time in pulsed micro wave excited oxygen plasmas with an electron density of about 1x1017 m-3 is varied from 0.5 s to 120 s and the time between treatment and welding is varied from a few minutes up to a week. As reference, parts being made of the same polymer (PP and PA 6) are welded and tested. For the evaluation of the results of the welding experiments, short-time tensile tests are used to determine the bond strength. Without plasma treatment the described combination of PA 6/PP cannot be welded with sufficient bond strength to withstand handling of the samples. In contrast, the tear-out force of previously plasma treated samples can be determined to up to 1400 N. The achieved bond strengths are higher than of untreated PP/PP welded parts (about 1000 N).

  6. Process-property studies of weld line strength and thin structure flow in high performance injection molded thermoplastics

    NASA Astrophysics Data System (ADS)

    Griffing, J. S.; Seferis, J. C.; Kenny, J. M.; Nicolais, L.

    The effects of operator controllable injection molding process parameters on weld line strength and thin structure flow of neat and short fiber reinforced injection molded polyetherimide and PEEK thermoplastics have been investigated using statistical experimental methods. Buckingham's Theorem was used to create empirical models which are consistent with the physics governing injection molding, relating processing to properties. In addition, a fundamental analysis of polymer flow in thin channels has been used to define dimensionless numbers relating processing parameters to material properties. This approach gives insight into the effects of scaling on part properties in injection molding.

  7. Development of thermoplastic composite aircraft structures

    NASA Technical Reports Server (NTRS)

    Renieri, Michael P.; Burpo, Steven J.; Roundy, Lance M.; Todd, Stephanie A.; Kim, H. J.

    1992-01-01

    Efforts focused on the use of thermoplastic composite materials in the development of structural details associated with an advanced fighter fuselage section with applicability to transport design. In support of these designs, mechanics developments were conducted in two areas. First, a dissipative strain energy approach to material characterization and failure prediction, developed at the Naval Research Laboratory, was evaluated as a design/analysis tool. Second, a finite element formulation for thick composites was developed and incorporated into a lug analysis method which incorporates pin bending effects. Manufacturing concepts were developed for an upper fuel cell cover. A detailed trade study produced two promising concepts: fiber placement and single-step diaphragm forming. Based on the innovative design/manufacturing concepts for the fuselage section primary structure, elements were designed, fabricated, and structurally tested. These elements focused on key issues such as thick composite lugs and low cost forming of fastenerless, stiffener/moldine concepts. Manufacturing techniques included autoclave consolidation, single diaphragm consolidation (SDCC) and roll-forming.

  8. Accelerated Strength Testing of Thermoplastic Composites

    NASA Technical Reports Server (NTRS)

    Reeder, J. R.; Allen, D. H.; Bradley, W. L.

    1998-01-01

    Constant ramp strength tests on unidirectional thermoplastic composite specimens oriented in the 90 deg. direction were conducted at constant temperatures ranging from 149 C to 232 C. Ramp rates spanning 5 orders of magnitude were tested so that failures occurred in the range from 0.5 sec. to 24 hrs. (0.5 to 100,000 MPa/sec). Below 204 C, time-temperature superposition held allowing strength at longer times to be estimated from strength tests at shorter times but higher temperatures. The data indicated that a 50% drop in strength might be expected for this material when the test time is increased by 9 orders of magnitude. The shift factors derived from compliance data applied well to the strength results. To explain the link between compliance and strength, a viscoelastic fracture model was investigated. The model, which used compliance as input, was found to fit the strength data only if the critical fracture energy was allowed to vary with temperature reduced stress rate. This variation in the critical parameter severely limits its use in developing a robust time-dependent strength model. The significance of this research is therefore seen as providing both the indication that a more versatile acceleration method for strength can be developed and the evidence that such a method is needed.

  9. Relaxation in bolted thermoplastic composite joints

    NASA Astrophysics Data System (ADS)

    Horn, Walter J.; Schmitt, Ron R.

    1993-04-01

    The long term effects of the relaxation of fastener clamp-up force on the strength of mechanically fastened joints were investigated through a test program of single-shear joints. Static tests of two graphite/thermoplastic composite materials, IM6/KIII and IM8/APC (HTA), established joint bearing strength as a function of clamp-up force for both protruding head and countersunk fasteners. Test results indicated that joint bearing strength of both materials increased by as much as twenty-eight percent over the range of clamp-up force. Short-term fastener clamp-up force relaxation was monitored with special bolt force sensor washers. The results of these tests indicated that the fastener clamp-up force decreased an average of six percent from the initial value during the short-term room temperature tests and was projected to be as high as sixteen percent after 100,000 hours of service. The relaxation rate at the elevated temperature of 250F was projected to be as high as thirty-seven percent for HTA and sixty percent for KIII after 100,000 hours of service. It was concluded that the short-term relaxation of the clamp-up force did not significantly lower the bearing strength of either material, but an extended exposure to 250F could affect the bearing strength.

  10. Highly conductive thermoplastic composites for rapid production of fuel cell bipolar plates

    DOEpatents

    Huang, Jianhua [Blacksburg, VA; Baird, Donald G [Blacksburg, VA; McGrath, James E [Blacksburg, VA

    2008-04-29

    A low cost method of fabricating bipolar plates for use in fuel cells utilizes a wet lay process for combining graphite particles, thermoplastic fibers, and reinforcing fibers to produce a plurality of formable sheets. The formable sheets are then molded into a bipolar plates with features impressed therein via the molding process. The bipolar plates formed by the process have conductivity in excess of 150 S/cm and have sufficient mechanical strength to be used in fuel cells. The bipolar plates can be formed as a skin/core laminate where a second polymer material is used on the skin surface which provides for enhanced conductivity, chemical resistance, and resistance to gas permeation.

  11. A chitosan coated monolith for nucleic acid capture in a thermoplastic microfluidic chip

    PubMed Central

    Kendall, Eric L.; Wienhold, Erik; DeVoe, Don L.

    2014-01-01

    A technique for microfluidic, pH modulated DNA capture and purification using chitosan functionalized glycidyl methacrylate monoliths is presented. Highly porous polymer monoliths are formed and subsequently functionalized off-chip in a batch process before insertion into thermoplastic microchannels prior to solvent bonding, simplifying the overall fabrication process by eliminating the need for on-chip surface modifications. The monolith anchoring method allows for the use of large cross-section monoliths enabling high flowrates and high DNA capture capacity with a minimum of added design complexity. Using monolith capture elements requiring less than 1?mm2 of chip surface area, loading levels above 100?ng are demonstrated, with DNA capture and elution efficiency of 54.2%??14.2% achieved. PMID:25379094

  12. Shear Strength of Single Lap Joint Aluminium-Thermoplastic Natural Rubber (Al-TPNR) Laminated Composite

    NASA Astrophysics Data System (ADS)

    Muzakkar, M. Z.; Ahmad, S.; Yarmo, M. A.; Jalar, A.; Bijarimi, M.

    2013-04-01

    In this work, we studied the effect of surface treatment on the aluminium surface and a coupling agent to improve adhesion between aluminium with organic polymer. Thermoplastic natural rubber (TPNR) matrix was prepared by melt blending of natural rubber (NR), liquid natural rubber (LNR) compatibilizer, linear low density polyethylene (LLDPE) and polyethylene grafted maleic anhydride (PE-g-MAH). The PEgMAH concentration used was varied from 0% - 25%. In addition, the aluminium surface was pre-treated with 3-glycidoxy propyl trimethoxy silane (3-GPS) to enhance the mechanical properties of laminated composite. It was found that the shear strength of single lap joint Al-TPNR laminated composite showing an increasing trend as a function of PE-g-MAH contents for the 3-GPS surface treated aluminium. Moreover, the scanning electron microscope (SEM) revealed that the strength improvement was associated with the chemical state of the compound involved.

  13. Transparent thermoplastics: Replication of diffractive optical elements using micro-injection molding

    NASA Astrophysics Data System (ADS)

    Kalima, V.; Pietarinen, J.; Siitonen, S.; Immonen, J.; Suvanto, M.; Kuittinen, M.; Mnkknen, K.; Pakkanen, T. T.

    2007-10-01

    Small plastic components with sub-micron and micron gratings for diffractive optics were prepared by micro-injection molding. The aim of the work was to improve the filling of binary diffractive gratings with high aspect ratio by varying the molding parameters. Tests were made under conventional processing conditions with four transparent thermoplastics: polycarbonate (PC), cyclo-olefin polymer (COP), styrene-acrylonitrile copolymer (SAN), and hexafluoropropylene-tetrafluoroethylene-ethylene terpolymer (HFP-TFE-Et). Melt and mold temperatures were kept as recommended by the manufacturer. Other molding parameters (injection speed, shot size, vacuum, holding pressure, and injection plunger diameter) were varied, and their effect on the profile of the gratings was measured by atomic force microscopy. The filling of the gratings (500 nm and 1000 nm) was clearly affected by injection speed, shot size, and injection piston diameter, but the most significant factor was the type of material. Replication fidelity was highest with PC and lowest with SAN.

  14. Electrical Properties of a Thermoplastic Polyurethane Filled with Titanium Dioxide Nanoparticles

    SciTech Connect

    Polyzos, Georgios; Tuncer, Enis; Koerner, Hilmar; Kidder, Michelle; Vaia, Richard; Sauers, Isidor; James, David Randy; Ellis, Alvin R

    2010-01-01

    In this study we report a nanodielectric system composed of pre-synthesized nanoparticles embedded in an elastomer. Nanoparticles of titanium dioxide were synthesized in an aqueous solution of titanium chloride and polyethylene glycol. The nanoparticles were blended in a twin screw extruder with a thermoplastic, polyurethane (Morthane PS455-203), to form nanodielectrics at three different weight fractions of titanium dioxide. Impedance spectroscopy was employed to study polymer dynamics and the influence of nanoparticles on relaxation. The segmental relaxation associated with the glass transition of the polyurethane matrix, and the local relaxations associated with short range motions of polar groups were investigated at wide ranges of frequency (20 Hz-1 MHz) and temperature (300-20 K). The dielectric breakdown strength of the nanodielectrics was also measured to characterize their insulating properties and their potential for use in high voltage applications.

  15. Microstructural Characterization of Polymers with Positrons

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.

    1997-01-01

    Positrons provide a versatile probe for monitoring microstructural features of molecular solids. In this paper, we report on positron lifetime measurements in two different types of polymers. The first group comprises polyacrylates processed on earth and in space. The second group includes fully-compatible and totally-incompatible Semi-Interpenetrating polymer networks of thermosetting and thermoplastic polyimides. On the basis of lifetime measurements, it is concluded that free volumes are a direct reflection of physical/electromagnetic properties of the host polymers.

  16. Simple room temperature bonding of thermoplastics and poly(dimethylsiloxane).

    PubMed

    Sunkara, Vijaya; Park, Dong-Kyu; Hwang, Hyundoo; Chantiwas, Rattikan; Soper, Steven A; Cho, Yoon-Kyoung

    2011-03-01

    We describe a simple and versatile method for bonding thermoplastics to elastomeric polydimethylsiloxane (PDMS) at room temperature. The bonding of various thermoplastics including polycarbonate (PC), cyclic olefin copolymer (COC), polymethylmethacrylate (PMMA), and polystyrene (PS), to PDMS has been demonstrated at room temperature. An irreversible bonding was formed instantaneously when the thermoplastics, activated by oxygen plasma followed by aminopropyltriethoxysilane modification, were brought into contact with the plasma treated PDMS. The surface modified thermoplastics were characterized by water contact angle measurements and X-ray photoelectron spectroscopy. The tensile strength of the bonded hybrid devices fabricated with PC, COC, PMMA, and PS was found to be 430, 432, 385, and 388 kPa, respectively. The assembled devices showed high burst resistance at a maximum channel pressure achievable by an in-house built syringe pump, 528 kPa. Furthermore, they displayed very high hydrolytic stability; no significant change was observed even after the storage in water at 37 C over a period of three weeks. In addition, this thermoplastic-to-PDMS bonding technique has been successfully employed to fabricate a relatively large sized device. For example, a lab-on-a-disc with a diameter of 12 cm showed no leakage when it spins for centrifugal fluidic pumping at a very high rotating speed of 6000 rpm. PMID:21152492

  17. Materials for Heated Head Automated Thermoplastic Tape Placement

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J.; Kinney, Megan C.; Cano, Roberto J.; Grimsley, Brian W.

    2012-01-01

    NASA Langley Research Center (LaRC) is currently pursuing multiple paths to develop out of autoclave (OOA) polymeric composite materials and processes. Polymeric composite materials development includes the synthesis of new and/or modified thermosetting and thermoplastic matrix resins designed for specific OOA processes. OOA processes currently under investigation include vacuum bag only (VBO) prepreg/composite fabrication, resin transfer molding (RTM), vacuum assisted resin transfer molding (VARTM) and heated head automated thermoplastic tape placement (HHATP). This paper will discuss the NASA Langley HHATP facility and capabilities and recent work on characterizing thermoplastic tape quality and requirements for quality part production. Samples of three distinct versions of APC-2 (AS4/PEEK) thermoplastic dry tape were obtained from two materials vendors, TENCATE, Inc. and CYTEC Engineered Materials** (standard grade and an experimental batch). Random specimens were taken from each of these samples and subjected to photo-microscopy and surface profilometry. The CYTEC standard grade of APC-2 tape had the most voids and splits and the highest surface roughness and/or waviness. Since the APC-2 tape is composed of a thermoplastic matrix, it offers the flexibility of reprocessing to improve quality, and thereby improve final quality of HHATP laminates. Discussions will also include potential research areas and future work that is required to advance the state of the art in the HHATP process for composite fabrication.

  18. Development and testing of thermoplastic structural components for modular prostheses.

    PubMed

    Coombes, A G; MacCoughlan, J

    1988-04-01

    The wider use of thermoplastic structural components in modular artificial limbs would enable their general properties of low density, corrosion resistance and mouldability and more specific properties of certain thermoplastics such as shock absorption, fatigue and wear resistance to be used to the advantage of patients and manufacturers. They provide an alternative to metal and carbon fibre reinforced resin systems. Emphasis has been placed on the development of rotationally moulded Nylon 11 shank sections, using Philadelphia recommended load levels as the design criteria for structural integrity. Laboratory testing underlined the importance of fatigue testing of thermoplastic components since structural deterioration due to creep--a time dependent mechanical property of thermoplastics--can be ascertained in fatigue testing but would not be evident on the shorter timescale of the static test. Experimental below-knee prostheses incorporating suitably designed plastic shanks and alignment devices can withstand high static loads and exhibit long fatigue lifetimes in excess of 2 million cycles. The shank design offered an opportunity for testing under service conditions the validity of the Philadelphia Static Load level (2.5 kN) since shank failure loads are around this figure. Patient trials of experimental prostheses based on various combinations of plastic shanks and alignment devices and conducted over 33 months indicate that the Static Load Level along with fatigue testing is a satisfactory test criterion for general service use of thermoplastic prosthetic components. PMID:3399367

  19. Preparation of polypropylene thermoplastic container via thermoforming process

    NASA Astrophysics Data System (ADS)

    Ruqiyah Nik Hassan, Nik; Amira Mohd Ghazali, Farah; Aziz Jaafar, Abdul; Mazni Ismail, Noor

    2016-02-01

    In this study, plastic containers made of polypropylene (PP) sheets were fabricated via vacuum thermoforming. Thermoforming is a process used in fabricating plastic parts by changing flat thermoplastic sheet to three dimensional shapes. In preparing these thermoplastic containers, the design and fabrication of mould were first done by using Catia V5 software and CNC milling machine, respectively. The thermoforming process was then performed at various temperatures ranging from 160°C until 200°C on the PP sheet to form the container. From the experiment, it can be suggested that the outcomes of final thermoplastic containers are significantly depends on temperature control during thermoforming process and also the vent holes design of the mould.

  20. Process for preparing solvent resistant, thermoplastic aromatic poly(imidesulfone)

    NASA Technical Reports Server (NTRS)

    St.clair, T. L.; Yamaki, D. A. (inventors)

    1984-01-01

    A process for preparing a thermoplastic poly(midesulfone) is disclosed. This resulting material has thermoplastic properties which are generally associated with polysulfones but not polyimides, and solvent resistant which is generally associated with polyimides but not polysulfones. This system is processable in the 250 to 350 C range for molding, adhesive and laminating applications. This unique thermoplastic poly(imidesulfone) is obtained by incorporating an aromatic sulfone moiety into the backbone of an aromatic linear polyimide by dissolving a quantity of a 3,3',4,4'-benzophenonetetracarboxylic dianhydride (BTDA) in a solution of 3,3'-diaminodiphenylsulfone and bis(2-methoxyethyl)ether, precipitating the reactant product in water, filtering and drying the recovered poly(amide-acid sulfone) and converting it to the poly(imidesulfone) by heating.

  1. Comprehensive Welding of Thermoplastics by a Diode Laser

    NASA Astrophysics Data System (ADS)

    Sato, Kimitoshi; Saito, Takushi; Kurosaki, Yasuo

    This paper deals with a development of comprehensive" laser welding of thermoplastics with versatility in color and shape of products. Overlap welding of thermoplastics is one of the features of application of diode lasers. Most of thermoplastics are transparent to diode lasers; therefore it is need to weld plastic article with colorant. The influence of absorptance and transmittance of overlapping colored plastics were studied. Various colored plastics with infrared-transparent pigments were tested as the welding material. The appropriate absorptance and transmittance of overlapping colored plastic were examined. The feasibility of the technique of welding of transparent plastics using infrared-absorbing layer was also investigated. The temperature distribution within the plastics was calculated by numerical simulation in order to estimate the validity of the proposing experimental systems. It was confirmed by the experiments that the 35?m film, which shows only 10% in absorptance is enough to weld a pair of transparent articles as infrared-absorbing layer.

  2. Surface-Initiated ARGET ATRP and Characterization of Thermoplastic Elastomer Montomorillonite Composites

    NASA Astrophysics Data System (ADS)

    Easley, Jeffrey; Beck, Amanda; Ellison, Christopher

    2010-03-01

    Polymer nanocomposites, with enhanced properties as compared to their bulk polymer counterparts, are becoming more prominent in advanced material applications. Here we report the synthesis of poly(n-butyl acrylate-b-styrene) (PBA-b-PS) from the surface of functionalized montmorillonite clay via activators regenerated by electron transfer (ARGET) atom transfer radical polymerization (ATRP). The ARGET mechanism allows for a substantial reduction in the amount of transition metal catalyst required. It also exhibits potential for eventual scale-up and the industrial adoption of ATRP as a versatile method for producing polymers with well-defined compositions and functionalities. The composite materials resemble traditional thermoplastic elastomer triblock copolymers, with the clay platelets dividing the central, rubbery PBA block. We used SAXS, NMR, and TEM to characterize the composition and structure of the composites. The resulting material properties were measured by tensile testing, dynamic mechanical analysis, and TGA. We anticipate the composites to have exceptional barrier properties due to the high degree of clay dispersion, which may lead to applications as recyclable packaging materials.

  3. LARC-TPI: A multi-purpose thermoplastic polyimide

    NASA Technical Reports Server (NTRS)

    St.clair, A. K.; St.clair, T. L.

    1982-01-01

    A linear thermoplastic polyimide, LARC-TPI, was characterized and developed for a variety of high temperature applications. In its fully imidized form, this material can be used as an adhesive for bonding metals such as titanium, aluminum, copper, brass, and stainless steel. LARC-TPI was evaluated as a thermoplastic for bonding large pieces of polyimide film to produce flexible, 100 void-free laminates for flexible circuit applications. The development of LARC-TPI as a potential molding powder, composite matrix resin, high temperature film and fiber is also discussed.

  4. Analysis of diaphragm forming of powder impregnated thermoplastic composites

    NASA Astrophysics Data System (ADS)

    Cutolo, D.; Canonico, P.; Marchetti, M.; Porcari, A. M.

    A new technology for making thermoplastic prepreg uses a fiber impregnated thermoplastic (FIT) process. Fabric woven from FIT tow prepreg shows a great deal of drapability. A study has been conducted on diaphragm forming technology, using FIT woven fabric made of glass fibers and polyimide. A double curvature mold was used to form hemispherical parts by applying differential pressures across double polyimide diaphragms. Effects of forming rate, lay-up, and cross-section thickness have been investigated. Deformation of diaphragms has been also investigated.

  5. Continuation of tailored composite structures of ordered staple thermoplastic material

    NASA Technical Reports Server (NTRS)

    Santare, Michael H.; Pipes, R. Byron

    1992-01-01

    The search for the cost effective composite structure has motivated the investigation of several approaches to develop composite structure from innovative material forms. Among the promising approaches is the conversion of a planar sheet to components of complex curvature through sheet forming or stretch forming. In both cases, the potential for material stretch in the fiber direction appears to offer a clear advantage in formability over continuous fiber systems. A framework was established which allows the simulation of the anisotropic mechanisms of deformation of long discontinuous fiber laminates wherein the matrix phase is a viscous fluid. Predictions for the effective viscosities of a hyper-anisotropic medium consisting of collimated, discontinuous fibers suspended in viscous matrix were extended to capture the characteristics of typical polymers including non-Newtonian behavior and temperature dependence. In addition, the influence of fiber misorientation was also modeled by compliance averaging to determine ensemble properties for a given orientation distribution. A design tool is presented for predicting the effect of material heterogeneity on the performance of curved composite beams such as those used in aircraft fuselage structures. Material heterogeneity can be induced during manufacturing processes such as sheet forming and stretch forming of thermoplastic composites. This heterogeneity can be introduced in the form of fiber realignment and spreading during the manufacturing process causing radial and tangential gradients in material properties. Two analysis procedures are used to solve the beam problems. The first method uses separate two-dimensional elasticity solutions for the stresses in the flange and web sections of the beam. The separate solutions are coupled by requiring that forces and displacements match section boundaries. The second method uses an approximate Rayleigh-Ritz technique to find the solutions for more complex beams. Analyses are performed for curved beams of various cross-sections loaded in pure bending and with a uniform distributed load. Preliminary results show that the geometry of the beam dictates the effect of heterogeneity on performance. The role of heterogeneity is larger in beams with a small average radius-to-depth ration, R/t, where R is the average radius of the beam and t is the difference between the inside and outside radii. Results of the anlysis are in the form of stresses and displacements and are compared to both mechanics of materials and numerical solutions obtained using finite element analysis.

  6. Investigations into the mechanical and physical behavior of thermoplastic elastomers

    NASA Astrophysics Data System (ADS)

    Wright, Kathryn Janelle

    This thesis describes investigations into the physical and mechanical characteristics of two commercial thermoplastic elastomer (TPE) systems. Both systems studied exhibit elastomeric behavior similar to more traditional crosslinked elastomers; however, in these TPEs non-conventional polymer architectures and morphologies are used to produce their elastomeric behavior. The two TPEs of interest are ethylene-propylene random copolymers and dynamically vulcanized blends of ethylene-propylene-diene monomer (EPDM) and isotactic polypropylene (iPP). Very few studies have examined the mechanical behavior of these materials in terms of their composition and morphology. As such, the primary goal of this research is to both qualitatively and quantitatively understand the influence of composition and morphology on mechanical behavior. In additional very little information is available that compares their performance with that of crosslinked elastomers. As a result, the secondary goal is to qualitatively compare the mechanical responses of these TPEs with that of their more traditional counterparts. The ethylene-propylene copolymers studied have very high comonomer contents and exhibit slow crystallization kinetics. Their morphology consists of nanoscale crystallites embedded in an amorphous rubbery matrix. These crystallites act as physical crosslinks that allow for elasticity. Slow crystallization causes subsequent changes in mechanical behavior that take place over days and even weeks. Physical responses (e.g., density, crystallization kinetics, and crystal structure) of five copolymer compositions are investigated. Mechanical responses (e.g., stiffness, ductility, yielding, and reversibility) are also examined. Finally, the influence of morphology on deformation is studied using in situ analytical techniques. The EPDM/iPP blends are dynamically vulcanized which produces a complex morphology consisting of chemically crosslinked EPDM domains embedded within a semicrystalline iPP matrix. Six compositions are investigated as a function of three parameters: major volume fraction, iPP molecular weight, and EPDM cure state. The influence of these parameters on morphology and resulting mechanical behavior is examined. This work culminates in the development of a morphological model to describe the steady-state reversibility of these EPDM/iPP blends. The model is then evaluated in terms of composition and cure state.

  7. Optical and thermomechanical investigations on thermoplastic nanocomposites with surface-modified silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Becker, Carsten; Mueller, Peter; Schmidt, Helmut K.

    1998-07-01

    Dynamic mechanical thermal analysis (DMTA) and UV/VIS spectroscopy were applied to investigate the thermomechanical and optical properties of thermoplastic nanocomposites. The thermoplastic matrix material used was a copolymer derived from methylmethacrylate (MMA) and 2-hydroxyethylmethacrylate (HEMA). To improve the mechanical properties, especially in the high temperature region above the glass transition temperature (Tg) of the matrix, the copolymer was filled with spherical 10 nm silica particles (filler content 2, 5, and 10 vol% respectively). The particles were introduced in the polymer matrix after appropriate surface coating to control the filler dispersion in the matrix and the filler/matrix adhesion. The coating was performed using acetoxypropyltrimethoxysilane (APTS) to achieve higher filler/matrix compatibility compared to unmodified silica particles dispersed in the polymer matrix. Methacryloxypropyltrimethoxysilane (MPTS) was used to improve filler/matrix adhesion by covalent bonding between the filler surface and polymer matrix. The appearance of the poly(MMA-co- HEMA) nanocomposites (denoted:PMH nanocomposites) changes from translucent for the systems containing uncoated silica to more transparent for the compositions containing silane coated silica. This is indicated by a decrease in scattering/absorbance losses from 1.48 dB/cm to 1.06 dB/cm at (lambda) equals 650 nm. Investigations of the morphology of the same nanocomposites using transmission electron microscopy (TEM) showed that by coating the particles with silane an almost perfect dispersion of the fillers in the matrix can be realized. The more homogeneous dispersion of the silane coated particles in the polymer matrix compared to the uncoated silica is responsible for the increase in transparency of the systems. However, the composition dependence of the refractive index is in accordance with the expected behavior and shows a decrease with increasing amounts of silica (0% silica: ne equals 1.5085, 10% silica ne equals 1.4965) whereas, the Abbe number remains almost constant at ve equals 58 for all compositions. In addition, the fortyfold increase in the value for the storage modulus E' at T equals 170 degrees Celsius [derived from dynamic mechanical thermal analysis (DMTA)] for the system with 9.5 vol.% MPTS coated particles compared to the unfilled matrix indicates an increased thermomechanical stability of the nanocomposites.

  8. Synthesis and characterization of novel thermoplastic elastomers employing polyhedral oligomeric silsesquioxane physical crosslinks

    NASA Astrophysics Data System (ADS)

    Seurer, Bradley

    Polyhedral oligomeric silsesquioxanes (POSS) are molecularly precise isotropic particles with average diameters of 1-2 nm. A typical T 8 POSS nanoparticle has an inorganic Si8O12 core surrounded by eight aliphatic or aromatic groups attached to the silicon vertices of the polyhedron promoting solubility in conventional solvents. Previously, efficient synthetic methods have been developed whereby one of the aliphatic groups on the periphery is substituted by a functional group capable of undergoing either homo- or copolymerization. In the current investigations, preparative methods for the chemical incorporation of POSS macromonomers in a series elastomers have been developed. Analysis of the copolymers using WAXD reveals that pendant POSS groups off the polymer backbones aggregate, and can crystallize as nanocrystals. From both line-broadening of the diffraction maxima, and also the oriented diffraction in a drawn material, the individual POSS sub-units are crystallizing as anisotropically shaped crystallites. The formation of POSS particle aggregation is strongly dependent on the nature of the polymeric matrix and the POSS peripheral group. X-ray studies show aggregation of POSS in ethylene-propylene elastomers occurred only with a phenyl periphery, whereas POSS particles with isobutyl and ethyl peripheries disperse within the polymer matrix. By altering the polymer matrix to one containing chain repulsive fluorine units, aggregation is observed with both the phenyl and isobutyl peripheries. Altering the polymer chain to poly(dimethylcyclooctadiene), POSS aggregates with isobutyl, ethyl, cyclopentyl, and phenyl peripheries. The formation of POSS nanocrystals increases the mechanical properties of these novel thermoplastic elastomers, including an increase in the tensile storage modulus and formation of a rubbery plateau region. Tensile tests of these elastomers show an increase in elastic modulus with increasing POSS loading. The elongation at break was as high as 720%. Cyclic tensile test show some hysteresis of the elastomers. However, the curves show Mullins effect behavior, commonly seen in elastomers. Elastomers with POSS dispersion, however, show poor mechanical properties. These results demonstrate the novel material property gains by the incorporation and aggregation of POSS in thermoplastic elastomers, as well as the influence of the POSS periphery.

  9. Cure kinetics, morphologies, and mechanical properties of thermoplastic/MWCNT modified multifunctional glassy epoxies prepared via continuous reaction methods

    NASA Astrophysics Data System (ADS)

    Cheng, Xiaole

    The primary goal of this dissertation is to develop a novel continuous reactor method to prepare partially cured epoxy prepolymers for aerospace prepreg applications with the aim of replacing traditional batch reactors. Compared to batch reactors, the continuous reactor is capable of solubilizing and dispersing a broad range of additives including thermoplastic tougheners, stabilizers, nanoparticles and curatives and advancing epoxy molecular weights and viscosities while reducing energy consumption. In order to prove this concept, polyethersulfone (PES) modified 4, 4'-diaminodiphenylsulfone (44DDS)/tetraglycidyl-4, 4'-diaminodiphenylmethane (TGDDM) epoxy prepolymers were firstly prepared using both continuous reactor and batch reactor methods. Kinetic studies confirmed the chain extension reaction in the continuous reactor is similar to the batch reactor, and the molecular weights and viscosities of prepolymers were readily controlled through reaction kinetics. Atomic force microscopy (AFM) confirmed similar cured network morphologies for formulations prepared from batch and continuous reactors. Additionally tensile strength, tensile modulus and fracture toughness analyses concluded mechanical properties of cured epoxy matrices produced from both reactors were equivalent. Effects of multifunctional epoxy compositions on thermoplastics phase-separated morphologies were systematically studied using a combination of AFM with nanomechanical mapping, spectroscopic and calorimetric techniques to provide new insights to tailor cured reaction induced phase separation (CRIPS) in multifunctional epoxy blend networks. Furthermore, how resultant crosslinked glassy polymer network and phase-separated morphologies correlated with mechanical properties are discussed in detail. Multiwall carbon nanotube (MWCNT)/TGDDM epoxy prepolymers were further prepared by combining the successful strategies for advancing epoxy chemistries and dispersing nanotubes using the continuous reactor. Optical microscopy (OM) and scanning electron microscopy (SEM) were used to characterize the MWCNT dispersion states and stabilization in epoxy prepolymer matrix after continuous process and during curing cycles. Additionally, electrical conductivities and mechanical properties of final cured MWCNT/TGDDM composites were measured and discussed in view of their corresponding MWCNT dispersion states. Ternary blends of MWCNT reinforced thermoplastic/epoxy prepolymers were prepared by the continuous reactor. Influence of MWCNT on the CRIPS mechanism and the cured morphologies were systematically investigated using SEM and rheological analysis. Incorporation of MWCNT in thermoplastic/epoxy matrices can lead to a morphological transformation from phase inverted, to co-continuous, and to droplet dispersed morphology. In additional, dynamic mechanical analysis revealed the heterogeneity of MWCNT dispersion in thermoplastic/thermosets systems.

  10. A new synthetic route to a family of non-classical addition-type thermoplastics. I - Concept and demonstration

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H.

    1988-01-01

    A synthesis scheme was developed for a host of nonclassical addition-type thermoplastics (ATT) that can be cured by an addition reaction, leading to a linear polymer structure. The synthesis involves the reaction of an acetylene-terminated prepolymer with either a bismaleimide (BMI) or a biscitraconimide. A new polymer, designated LaRC-RP80, synthesized using this scheme, was found to exhibit several significantly improved properties over the commercial BMI, Kerimid 601, including an eight-fold increase in toughness while maintaining a high Tg, a higher (by 167 C) heat stability, and a 50-percent increase in moisture resistance. In addition, LaRC-RP80 has good hot/wet lap shear strength and processes easily at 288 C without voids in the finished product.

  11. On-line consolidation of thermoplastic composites

    NASA Astrophysics Data System (ADS)

    Shih, Po-Jen

    An on-line consolidation system, which includes a computer-controlled filament winding machine and a consolidation head assembly, has been designed and constructed to fabricate composite parts from thermoplastic towpregs. A statistical approach was used to determine the significant processing parameters and their effect on the mechanical and physical properties of composite cylinders fabricated by on-line consolidation. A central composite experimental design was used to select the processing conditions for manufacturing the composite cylinders. The thickness, density, void content, degree of crystallinity and interlaminar shear strength (ILSS) were measured for each composite cylinder. Micrographs showed that complete intimate contact and uniform fiber-matrix distribution were achieved. The degree of crystallinity of the cylinders was found to be in the range of 25-30%. Under optimum processing conditions, an ILSS of 58 MPa and a void content of <1% were achieved for APC-2 (PEEK/Carbon fiber) composite cylinders. An in-situ measurement system which uses a slip ring assembly and a computer data acquisition system was developed to obtain temperature data during winding. Composite cylinders were manufactured with eight K-type thermocouples installed in various locations inside the cylinder. The temperature distribution inside the composite cylinder during winding was measured for different processing conditions. ABAQUS finite element models of the different processes that occur during on-line consolidation were constructed. The first model was used to determine the convective heat transfer coefficient for the hot-air heat source. A convective heat transfer coefficient of 260 w/msp{2}K was obtained by matching the calculated temperature history to the in-situ measurement data. To predict temperature distribution during winding an ABAQUS winding simulation model was developed. The winding speed was modeled by incrementally moving the convective boundary conditions around the outer surface of the composite cylinder. A towpreg heating model was constructed to predict the temperature distribution on the cross section of the incoming towpreg. For the process-induced thermal stresses analysis, a thermoelastic finite element model was constructed. Using the temperature history obtained from thermal analysis as the initial conditions, the thermal stresses during winding and cooling were investigated.

  12. Processing and characterization of unidirectional thermoplastic nanocomposites

    NASA Astrophysics Data System (ADS)

    Narasimhan, Kameshwaran

    The manufacture of continuous fibre-reinforced thermoplastic nanocomposites is discussed for the case of E-Glass reinforced polypropylene (PP) matrix and for E-Glass reinforced Polyamide-6 (Nylon-6), with and without dispersed nanoclay (montmorillonite) platelets. The E-Glass/PP nanocomposite was manufactured using pultrusion, whereas the E-Glass/Nylon-6 nanocomposite was manufactured using compression molding. Mechanical characterization of nanocomposites were performed and compared with traditional microcomposites. Compressive as well as shear strength of nanocomposites was improved by improving the yield strength of the surrounding matrix through the dispersion of nanoclay. Significant improvements were achieved in compressive strength and shear strength with relatively low nanoclay loadings. Initially, polypropylene with and without nanoclay were melt intercalated using a single-screw extruder and the pultruded nanocomposite was fabricated using extruded pre-impregnated (pre-preg) tapes. Compression tests were performed as mandated by ASTM guidelines. SEM and TEM characterization revealed presence of nanoclay in an intercalated and partially exfoliated morphology. Mechanical tests confirmed significant improvements in compressive strength (˜122% at 10% nanoclay loading) and shear strength (˜60% at 3% nanoclay loading) in modified pultruded E-Glass/PP nanocomposites in comparison with baseline properties. Uniaxial tensile tests showed a small increase in tensile strength (˜3.4%) with 3% nanoclay loading. Subsequently, E-Glass/Nylon-6 nanocomposite panels were manufactured by compression molding. Compression tests were performed according to IITRI guidelines, whereas short beam shear and uni-axial tensile tests were performed according to ASTM standards. Mechanical tests confirmed strength enhancement with nanoclay addition, with a significant improvement in compressive strength (50% at 4% nanoclay loading) and shear strength (˜36% at 4% nanoclay loading) when compared with the baseline E-Glass/Nylon-6. Uni-axial tensile tests resulted in a small increase in tensile strength (˜3.2%) with 4% nanoclay loading. Also, hygrothermal aging (50°C and 100% RH) of baseline and nanoclay modified (4%) E-Glass/Nylon-6 was studied. It was observed that the moisture diffusion process followed Fickian diffusion. E-Glass/Nylon-6 modified with 4% nanoclay loading showed improved barrier performance with a significant reduction (˜30%) in moisture uptake compared to baseline E-Glass/Nylon-6 composites. Significant improvement in mechanical properties was also observed in hygrothermally aged nanocomposite specimens when compared with the aged baseline composite.

  13. Advanced thermoplastic materials for district heating piping systems

    SciTech Connect

    Raske, D.T.; Karvelas, D.E.

    1988-04-01

    The work described in this report represents research conducted in the first year of a three-year program to assess, characterize, and design thermoplastic piping for use in elevated-temperature district heating (DH) systems. The present report describes the results of a program to assess the potential usefulness of advanced thermoplastics as piping materials for use in DH systems. This includes the review of design rules for thermoplastic materials used as pipes, a survey of candidate materials and available mechanical properties data, and mechanical properties testing to obtain baseline data on a candidate thermoplastic material extruded as pipe. The candidate material studied in this phase of the research was a polyetherimide resin, Ultem 1000, which has a UL continuous service temperature rating of 338/degree/F (170/degree/C). The results of experiments to determine the mechanical properties between 68 and 350/degree/F (20 and 177/degree/C) were used to establish preliminary design values for this material. Because these prototypic pipes were extruded under less than optimal conditions, the mechanical properties obtained are inferior to those expected from typical production pipes. Nevertheless, the present material in the form of 2-in. SDR 11 pipe (2.375-in. O. D. by 0.216-in. wall) would have a saturated water design pressure rating of /approximately/34 psig at 280/degree/F. 16 refs., 6 figs., 8 tabs.

  14. Development and evaluation of thermoplastic street maintenance material

    NASA Technical Reports Server (NTRS)

    Siemens, W. D.

    1973-01-01

    An all-weather permanent street patching material was investigated for flexible and rigid pavements. The economic, operational, and material requirements are discussed along with the results of field tests with various mixtures of EVA resins and asphalt. Cost analyses for thermoplastic patching methods are included.

  15. Method for preparing spherical thermoplastic particles of uniform size

    DOEpatents

    Day, J.R.

    1975-11-17

    Spherical particles of thermoplastic material of virtually uniform roundness and diameter are prepared by cutting monofilaments of a selected diameter into rod-like segments of a selected uniform length which are then heated in a viscous liquid to effect the formation of the spherical particles.

  16. Thermoplastic transfer molding of fiber-reinforced composites

    NASA Astrophysics Data System (ADS)

    Choi, Jun-Hyuk

    Among the manufacturing methods for composite materials, resin transfer molding (RTM) process is considered to be one of most cost-effective and competitive methods for producing high performance composites with complex shapes. This process can be described simply as the fluxing of resin through the inlet of a mold and subsequent impregnation of the pre-placed preform inside the mold. The fiber wetting and process times are greatly affected by the resin viscosity. In addition, high fiber volume fraction and variable porosity of the preform makes fiber impregnation even more difficult. Improper fiber impregnation causes degradation of material properties and has been a major concern for RTM. Moreover, the production time becomes very long for large sized parts. RTM has been exclusively applied to the manufacture of thermoset-matrix composites, and not for the manufacture of thermoplastic-matrix composites because of the relatively high viscosity of thermoplastic resins. To achieve a fast process time and improved wetting quality, several process mechanisms inspired by RTM are proposed in the first section of this dissertation. These processes were studied with the interest of applying them to the manufacture of thermoplastic-matrix composites, thus utilizing the methods and advantages of RTM. In these processes, resin is fluxed directly onto the stacked preform and driven through fibers by mechanically enforced consolidation. This mechanical consolidation is achieved by segmenting and articulating the mold. The individual and successive motion of the segmented mold propagates the resin through the preform. Mold fill-up was simulated for this novel process and compared with the equivalent RTM process. In the second section, percolation of thermoplastic melts between two neighboring fibers was modeled with non-Newtonian parameters to understand the effects of thermoplastic rheology on overall infiltration. In contrast to Darcy's model based on a Newtonian fluid, the viscosity dependent on the shear-rate and the threshold-yield in thermoplastic melts was predicted. A relevant experiment was performed on glass preforms to investigate thermoplastic infiltration through the heterogeneous pore structure of such technologically important structural materials.

  17. Electron Beam Crosslinked Polyurethane Shape Memory Polymers with Tunable Mechanical Properties

    PubMed Central

    Hearon, Keith; Nash, Landon D.; Volk, Brent L.; Ware, Taylor; Lewicki, James P.; Voit, Walter E.; Wilson, Thomas S.

    2014-01-01

    Novel electron beam crosslinked polyurethane shape memory polymers with advanced processing capabilities and tunable thermomechanical properties have been synthesized and characterized. We demonstrate the ability to manipulate crosslink density in order to finely tune rubbery modulus, strain capacity, ultimate tensile strength, recovery stress, and glass transition temperature. This objective is accomplished for the first time in a low-molecular-weight polymer system through the precise engineering of thermoplastic resin precursors suitable for mass thermoplastic processing. Neurovascular stent prototypes were fabricated by dip-coating and laser machining to demonstrate processability. PMID:25411531

  18. Electron Beam Crosslinked Polyurethane Shape Memory Polymers with Tunable Mechanical Properties.

    PubMed

    Hearon, Keith; Nash, Landon D; Volk, Brent L; Ware, Taylor; Lewicki, James P; Voit, Walter E; Wilson, Thomas S; Maitland, Duncan J

    2013-06-01

    Novel electron beam crosslinked polyurethane shape memory polymers with advanced processing capabilities and tunable thermomechanical properties have been synthesized and characterized. We demonstrate the ability to manipulate crosslink density in order to finely tune rubbery modulus, strain capacity, ultimate tensile strength, recovery stress, and glass transition temperature. This objective is accomplished for the first time in a low-molecular-weight polymer system through the precise engineering of thermoplastic resin precursors suitable for mass thermoplastic processing. Neurovascular stent prototypes were fabricated by dip-coating and laser machining to demonstrate processability. PMID:25411531

  19. Nonlinear rheology and strain recovery of short chain branched polyolefin elastomers and thermoplastic olefin blends

    NASA Astrophysics Data System (ADS)

    Patham, Bhaskar

    Polyolefin elastomers are random copolymers having a polyethylene backbone with the higher olefinic comonomer incorporated as short-chain branches. These random copolymers are widely used as polymer modifiers for thermoplastic materials such as polypropylenes, resulting in thermoplastic olefin (TPO) blends. This thesis addresses the nonlinear rheological behavior of the elastomers and then of the TPO blends. The effects of varying short chain branch density (SCB) on the melt rheology of three ethylene-octene random copolymers have been investigated. In particular, the strain-hardening behavior in extensional flow and strain recovery following nonlinear shear creep has been evaluated. The zero-shear viscosity followed trends in the backbone molecular weight closely. While the three copolymers were indistinguishable in linear viscoelastic creep and recovery, recovery following nonlinear shear creep decreased progressively with increasing SCB density. This reveals that the extent of rapid chain equilibration that occurs over Rouse time scales at higher strains was progressively lower with increasing SCB density. Strain hardening in uniaxial extensional flow was observed for all three copolymers. At strain rates below the primitive chain equilibration rates, strain hardening increases progressively with increasing SCB density. At higher rates, upon onset of primitive chain stretch, the strain hardening behavior for the three melts merges. Two thermoplastic olefin (TPO) blends were characterized in the context of injection molding; the surface morphology of injection molded tensile bars with these materials showed surface defects or flow marks to different extents. The flow marks were traced to different degrees of strain recovery in the dispersed phases of the two blends. This recovery occurred over injection molding timescales of the order of a few seconds. Strain recovery after shear creep was higher in the blend that displayed more severe flow marks in injection molding; the corresponding elastomer by itself also showed a greater extent of creep recovery. The quick strain recovery in the elastomer must be associated with elastic stresses rather than interfacial tension. A new experimental apparatus was assembled to study strain recovery after elongation of a model elastomer suspended in a less viscoelastic medium at room temperature. Small drops of well-characterized elastomers suspended in a matrix fluid of lower viscosity and elasticity, are stretched rapidly without wall effects in this setup; the stretch ratio of the drops is then recorded over time. Preliminary results confirm significant recovery over a few seconds. Exploration of the full range of parameters with this setup is left for future work.

  20. Modification of wood fiber with thermoplastics by reactive steam-explosion processing

    NASA Astrophysics Data System (ADS)

    Renneckar, Scott H.

    For the first time, a novel processing method of co-refining wood and polyolefin (PO) by steam-explosion was scientifically explored for wood-thermoplastic composites without a coupling agent. Traditional studies have addressed the improvement of adhesion between components of wood thermoplastic composites through the use of coupling agents such as maleated PO. The objective of this study was to increase adhesion between wood and PO through reactive processing conditions of steam-explosion. PO characteristics, such as type (polyethylene or polypropylene), form (pellet, fiber, or powder) and melt viscosity were studied along with oxygen gas content of the steam-explosion reactor vessel. Modification of co-processed wood fiber was characterized in four studies: microscopy analysis of dispersion of PO with wood fiber, sorption properties of co-processed material, chemical analysis of fractionated components, and morphological investigation of co-processed material. Two additional studies are listed in the appendices that relate to adsorption of amphiphilic polymers to the cellulose fiber surface, which is one hypothesis of fiber surface modification by co-steam-explosion. Microscopy studies revealed that PO melt viscosity was found to influence the degree of dispersion and uniformity of the steam-exploded material. The hygroscopic nature of the co-processed fiber declined as shown by sorption isotherm data. Furthermore, a water vapor kinetics study found that all co-refined material had increased initial diffusion coefficients compared to the control fiber. Chemical changes in fractionated components were PO-type dependent. Lignin extracted from co-processed wood and polyethylene showed PO enrichment determined from an increase of methylene stretching in the Fourier Transform infrared subtraction spectra, while lignin from co-processed wood and polypropylene did not. Additionally, extracted PO showed indirect signs of oxidation as reflected by fluorescence studies. Solid state nuclear magnetic resonance spectroscopy revealed a number of differences in the co-processed materials such as increased cellulose crystallinity, new covalent linkages and an alternative distribution of components on the nanoscale reflected in the T1rho relaxation parameter. Steam-explosion was shown to modify wood fiber through the addition of "non-reactive" polyolefins without the need for coupling agents. In light of these findings, co-refining by steam-explosion should be viewed as a new reactive processing method for wood thermoplastic composites.

  1. Study on the fabricating process monitoring of thermoplastic based materials packaged OFBG and their sensing properties

    NASA Astrophysics Data System (ADS)

    Wang, Chuan; Zhou, Zhi; Zhang, Zhichun; Ou, Jinping

    2007-04-01

    As common materials or engineering materials, thermoplastic resin based materials can be used not only directly fabricating products but also FRTP(fiber reinforced thermoplastic polymer) materials for other uses. As one kind of FRTP material, GFRPP(glass fiber reinforced polypropylene) has lots of merits, such as: light weight, high strength, high tenacity, high elongation percentage, good durability, reshaping character and no environmental pollution characters. And they also can be conveniently formed hoop rebar in civil engineering. While a new kind of GFRPP-OFBG smart rod which combined GFRPP and OFBG together can be used as not only structure materials but also sensing materials. Meanwhile, PP packaged OFBG strain sensor can be expected for its low modulus, good sensitivity and good durability. Furthermore, it can be used for large strain measuring. In this paper, we have successfully fabricated a new kind of GFRPP-OFBG(Glass Fiber Reinforced Polypropylene-Optic Fiber Bragg Grating) rod by our own thermoplastic pultrusion production line and a new kind of PP packaged OFBG strain sensor by extruding techniques. And we monitored the inner strain and temperature changes with tow OFBG simultaneously of the fabricating process. The results show that: OFBG can truly reflect the strain and temperature changes in both the GFRPP rod and the PP packaged OFBG, these are very useful to modify our processing parameters. And we also find that because of the shrinkage of PP, this new kind of PP packaged OFBG have -13000?? storage, and the strain sensing performance is still very well, so which can be used for large strain measuring. Besides these, GFRPP-OFBG smart rod has good sensing performance in strain sensing just like that of FRSP-OFBG rod, the strain sensitivity coefficient is about1.19pm/??. Besides these, the surface of GFRPP-OFBG rods can be handled just as steel bars and also can be bended and reshaped. These are all very useful and very important for the use of FRP materials in civil engineering structures.

  2. Blending Novatein¯ thermoplastic protein with PLA for carbon dioxide assisted batch foaming

    NASA Astrophysics Data System (ADS)

    Walallavita, Anuradha; Verbeek, Casparus J. R.; Lay, Mark

    2016-03-01

    The convenience of polymeric foams has led to their widespread utilisation in everyday life. However, disposal of synthetic petroleum-derived foams has had a detrimental effect on the environment which needs to be addressed. This study uses a clean and sustainable approach to investigate the foaming capability of a blend of two biodegradable polymers, polylactic acid (PLA) and Novatein® Thermoplastic Protein (NTP). PLA, derived from corn starch, can successfully be foamed using a batch technique developed by the Biopolymer Network Ltd. NTP is a patented formulation of bloodmeal and chemical additives which can be extruded and injection moulded similar to other thermoplastics. However, foaming NTP is a new area of study and its interaction with blowing agents in the batch process is entirely unknown. Subcritical and supercritical carbon dioxide have been examined individually in two uniquely designed pressure vessels to foam various compositions of NTP-PLA blends. Foamed material were characterised in terms of expansion ratio, cell size, and cellular morphology in order to study how the composition of NTP-PLA affects foaming with carbon dioxide. It was found that blends with 5 wt. % NTP foamed using subcritical CO2 expanded up to 11 times due to heterogeneous nucleation. Morphology analysis using scanning electron microscopy showed that foams blown with supercritical CO2 had a finer cell structure with consistent cell size, whereas, foams blown with subcritical CO2 ranged in cell size and showed cell wall rupture. Ultimately, this research would contribute to the production of a biodegradable foam material to be used in packaging applications, thereby adding to the application potential of NTP.

  3. Ultraviolet light as an adhesive bonding surface pretreatment for polymers and polymer composites

    SciTech Connect

    Dontula, N.; Weitzsacker, C.L.; Drzal, L.T.

    1997-12-31

    Adhesive bonding of polymer and polymer composites is being utilized more frequently as a structural joining method in the manufacturing environment in automotive industry. This paper will discuss the results of a study on the use of high intensity, short wavelength ultraviolet light as a surface preparation method for adhesive bonding. It has been found that an optimum combination of wavelength and distance produces beneficial changes in the surface energy, surface chemistry and topography of polymer and polymer composite surfaces which results in substantial improvements in adhesive joint strength. This study will report on wettability and adhesion characteristics of polymer and polymer composites substrates including thermoplastic olefins, polycarbonate and polypropylene. These findings show that the UV process is fast, non-polluting and produces a beneficial surface for bonding which can persist for several days in the ambient environment.

  4. The crystallization of tough thermoplastic resins in the presence of carbon fibers

    NASA Technical Reports Server (NTRS)

    Theil, Michael H.

    1988-01-01

    The presence of carbon fibers increased the crystallization rates of both PEEK and PPS thermoplastic polymers. The effect was most pronounced at higher crystallization temperatures. Isothermal crystallization rates were analyzed by applying classical phenomenological nucleation theory. Unusually high values of the so-called Avrami exponent were found for neat PEEK. Isothermal crystallization of PEEK and PPS polymers produced crystalline samples having a wide variety of melting temperatures. The melting as observed by differential scanning calorimetry occurred as dual endotherms which were called primary (higher temperature) and secondary melting peaks. Each primary peak accounted for most of the crystallinity present. The secondary peaks represented the melting of crystallites formed later than those attributable to the primary endotherms. The presence of carbon fibers increased the thermal stability of both PEEK and PPS crystallites as manifested by higher temperatures for the primary melting peaks. This may be attributable to increased crystallite size, greater crystallite perfection, and/or favorable modification of the crystallite interface. Over the range studied, crystallization temperature strongly influenced the positions of the secondary peaks but not the primary peaks.

  5. Semi-interpenetrating polymer network for tougher and more microcracking resistant high temperature polymers

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H. (Inventor)

    1992-01-01

    This invention is a semi-interpenetrating polymer network which includes a high performance thermosetting polyimide having a nadic end group acting as a crosslinking site and a high performance linear thermoplastic polyimide. An improved high temperature matrix resin is provided which is capable of performing at 316 C in air for several hundreds of hours. This resin has significantly improved toughness and microcracking resistance, excellent processability and mechanical performance, and cost effectiveness.

  6. Interfacial strength development in thermoplastic resins and fiber-reinforced thermoplastic composites

    NASA Technical Reports Server (NTRS)

    Howes, Jeremy C.; Loos, Alfred C.

    1987-01-01

    An experimental program to develop test methods to be used to characterize interfacial (autohesive) strength development in polysulfone thermoplastic resin and graphite-polysulfone prepreg during processing is reported. Two test methods were used to examine interfacial strength development in neat resin samples. These included an interfacial tension test and a compact tension (CT) fracture toughness test. The interfacial tensile test proved to be very difficult to perform with a considerable amount of data scatter. Thus, the interfacial test was discarded in favor of the fracture toughness test. Interfacial strength development was observed by measuring the refracture toughness of precracked compact tension specimens that were rehealed at a given temperature and contact time. The measured refracture toughness was correlated with temperature and contact time. Interfacial strength development in graphite-polysulfone unidirectional composites was measured using a double cantilever beam (DCB) interlaminar fracture toughness test. The critical strain energy release rate of refractured composite specimens was measured as a function of healing temperature and contact time.

  7. A Structural Approach to Establishing a Platform Chemistry for the Tunable, Bulk Electron Beam Cross-Linking of Shape Memory Polymer Systems.

    PubMed

    Hearon, Keith; Besset, Celine J; Lonnecker, Alexander T; Ware, Taylor; Voit, Walter E; Wilson, Thomas S; Wooley, Karen L; Maitland, Duncan J

    2013-11-26

    The synthetic design and thermomechanical characterization of shape memory polymers (SMPs) built from a new polyurethane chemistry that enables facile, bulk and tunable cross-linking of low-molecular weight thermoplastics by electron beam irradiation is reported in this study. SMPs exhibit stimuli-induced geometry changes and are being proposed for applications in numerous fields. We have previously reported a polyurethane SMP system that exhibits the complex processing capabilities of thermoplastic polymers and the mechanical robustness and tunability of thermomechanical properties that are often characteristic of thermoset materials. These previously reported polyurethanes suffer practically because the thermoplastic molecular weights needed to achieve target cross-link densities severely limit high-throughput thermoplastic processing and because thermally unstable radiation-sensitizing additives must be used to achieve high enough cross-link densities to enable desired tunable shape memory behavior. In this study, we demonstrate the ability to manipulate cross-link density in low-molecular weight aliphatic thermoplastic polyurethane SMPs (M w as low as ~1.5 kDa) without radiation-sensitizing additives by incorporating specific structural motifs into the thermoplastic polymer side chains that we hypothesized would significantly enhance susceptibility to e-beam cross-linking. A custom diol monomer was first synthesized and then implemented in the synthesis of neat thermoplastic polyurethane SMPs that were irradiated at doses ranging from 1 to 500 kGy. Dynamic mechanical analysis (DMA) demonstrated rubbery moduli to be tailorable between 0.1 and 55 MPa, and both DMA and sol/gel analysis results provided fundamental insight into our hypothesized mechanism of electron beam cross-linking, which enables controllable bulk cross-linking to be achieved in highly processable, low-molecular weight thermoplastic shape memory polymers without sensitizing additives. PMID:25411511

  8. A Structural Approach to Establishing a Platform Chemistry for the Tunable, Bulk Electron Beam Cross-Linking of Shape Memory Polymer Systems

    PubMed Central

    Hearon, Keith; Besset, Celine J.; Lonnecker, Alexander T.; Ware, Taylor; Voit, Walter E.; Wilson, Thomas S.; Wooley, Karen L.; Maitland, Duncan J.

    2014-01-01

    The synthetic design and thermomechanical characterization of shape memory polymers (SMPs) built from a new polyurethane chemistry that enables facile, bulk and tunable cross-linking of low-molecular weight thermoplastics by electron beam irradiation is reported in this study. SMPs exhibit stimuli-induced geometry changes and are being proposed for applications in numerous fields. We have previously reported a polyurethane SMP system that exhibits the complex processing capabilities of thermoplastic polymers and the mechanical robustness and tunability of thermomechanical properties that are often characteristic of thermoset materials. These previously reported polyurethanes suffer practically because the thermoplastic molecular weights needed to achieve target cross-link densities severely limit high-throughput thermoplastic processing and because thermally unstable radiation-sensitizing additives must be used to achieve high enough cross-link densities to enable desired tunable shape memory behavior. In this study, we demonstrate the ability to manipulate cross-link density in low-molecular weight aliphatic thermoplastic polyurethane SMPs (Mw as low as ~1.5 kDa) without radiation-sensitizing additives by incorporating specific structural motifs into the thermoplastic polymer side chains that we hypothesized would significantly enhance susceptibility to e-beam cross-linking. A custom diol monomer was first synthesized and then implemented in the synthesis of neat thermoplastic polyurethane SMPs that were irradiated at doses ranging from 1 to 500 kGy. Dynamic mechanical analysis (DMA) demonstrated rubbery moduli to be tailorable between 0.1 and 55 MPa, and both DMA and sol/gel analysis results provided fundamental insight into our hypothesized mechanism of electron beam cross-linking, which enables controllable bulk cross-linking to be achieved in highly processable, low-molecular weight thermoplastic shape memory polymers without sensitizing additives. PMID:25411511

  9. Microwave facilities for welding thermoplastic composites and preliminary results.

    PubMed

    Ku, H S; Siores, E; Ball, J A

    1999-01-01

    The wide range of applications of microwave technology in manufacturing industries has been well documented (NRC, 1994; Thuery, 1992). In this paper, a new way of joining fibre reinforced thermoplastic composites with or without primers is presented. The microwave facility used is also discussed. The effect of power input and cycle time on the heat affected zone (HAZ) is detailed together with the underlying principles of test piece material interactions with the electromagnetic field. The process of autogenous joining of 33% by weight of random glass fibre reinforced Nylon 66, polystyrene (PS) and low density polyethylene (LDPE) as well as 23.3% by weight of carbon fibre reinforced PS thermoplastic composites is discussed together with developments using filler materials, or primers in the heterogenous joining mode. The weldability dependence on the dielectric loss tangent of these materials at elevated temperatures is also described. PMID:10687151

  10. Toroid Joining Gun. [thermoplastic welding system using induction heating

    NASA Technical Reports Server (NTRS)

    Buckley, J. D.; Fox, R. L.; Swaim, R J.

    1985-01-01

    The Toroid Joining Gun is a low cost, self-contained, portable low powered (100-400 watts) thermoplastic welding system developed at Langley Research Center for joining plastic and composite parts using an induction heating technique. The device developed for use in the fabrication of large space sructures (LSST Program) can be used in any atmosphere or in a vacuum. Components can be joined in situ, whether on earth or on a space platform. The expanded application of this welding gun is in the joining of thermoplastic composites, thermosetting composites, metals, and combinations of these materials. Its low-power requirements, light weight, rapid response, low cost, portability, and effective joining make it a candidate for solving many varied and unique bonding tasks.

  11. Method for shaping sheet thermoplastic and the like

    NASA Technical Reports Server (NTRS)

    Akilian, Mireille K. (Inventor); Schattenburg, Mark L. (Inventor)

    2011-01-01

    Processes and apparati for shaping sheet glass or thermoplastic materials use force from a layer of a flowing fluid, such as air, between the sheet and a mandrel at close to the softening temperature of the thermoplastic. The shape is preserved by cooling. The shape of the air bearing mandrel and the pressure distribution of the fluid contribute to the final shape. A process can be conducted on one or two surfaces such that the force from the air layer is on one or two surfaces of the sheet. The gap size between the sheet and mandrel determines the pressure profile in the gap, which also determines the final sheet shape. In general, smaller gaps lead to larger viscous forces. The pressure profile depends on the shape of the mandrel, the size of the fluid gap and the sheet and the fluid supply pressure.

  12. Pultrusion with thermoplastics for the fabrication of structures in space

    NASA Technical Reports Server (NTRS)

    Wilson, Maywood L.; Macconochie, Ian O.; Johnson, Gary S.

    1988-01-01

    The use of the pultrusion method to produce structures in space is proposed. This technique is based on transporting materials in coils or bundles and fabricating the structures in space. Two methods for thermoplastic impregnation of advanced composite are described. The properties of three pultruded thermoplastic matrix materials, polyphenylene sulfide, polyetherimide (PEI), and polyetheretherketone (PEEK) are discussed and evaluated. It is observed that the pultrusions containing PEI and PEEK reveal post-fabrication potential of lightweight, high strength advanced composites and this method of fabrication produces strength values comparable to those of conventional techniques. Earth-based and space-based planetary shelter models are developed and compared. It is noted that cargo storage volume is dependent on a combination of profiles, packaging, and manufacturing methods.

  13. Joining of aluminum and long fiber thermoplastic (LFT) composites

    NASA Astrophysics Data System (ADS)

    Kulkarni, Rahul R.

    Metal/polymer joints are used in variety of areas: aerospace, automotive, prosthetic devices, electronic packaging, etc. The present study involves a tailcone, which is currently made of aluminum and a new design will involve a joint between aluminum and long fiber thermoplastic (LFT) composite. The new tailcones were processed by insert molding, also called as extrusion-compression molding. Finite element (FE) models were used to obtain a temperature profile during cooling of tailcone from processing and to estimate thermal stresses generated. Experimental verification of the temperature profile was obtained by IR thermography. It was observed that the LFT part of the tailcone cooled faster than aluminum. During the cooling of the tailcone, the aluminum insert acted as a heat sink because of the large difference between the thermal conductivities of aluminum and the LFT composite. Thermal stresses computed were 2.5 MPa and 12 MPa in the case of beaded and threaded insert tailcones, respectively. Static pullout tests were done to obtain an insight into the failure mechanisms of the joint between aluminum and LFT composite. Both the tailcone configurations, with beaded and threaded inserts, showed about the same average peak load, 96 kN. Radiographic and metallographic studies showed that the damage at the interface between aluminum and LFT composite occurred in the form of microcracks, followed by complete separation normal to the stress axis. The tailcones housed in projectiles were test fired and it was found that the HBTs disintegrated immediately after they came out of the barrel. A new design was proposed to overcome the drawbacks of the HBTs, called filled-back tailcone (FBT). Static pullout tests on FBTs showed no failure of the tailcones, which was in accord with the test firing where tailcone did not fail. The study of aluminum/LFT composite interfaces was extended into the realm of laminated composites. Laminated composites were made in the form of alternate layers between LFT composite and metal (called as LMLs) such as aluminum by compression molding. Interlaminar shear strength of the laminates was determined by short beam three-point bend tests. It was found that the strength depends on the surface quality of the aluminum. ILSS in the case of mean roughness (Ra) 3.3 mum was 34.5 MPa, whereas 24 MPa in the case of mean roughness of 0.4 mum. Tensile test results showed that average Young's modulus and tensile strength of the laminate were 44.8 GPa and 244 MPa, respectively. Rule-of-mixtures predictions matched closely with the experimental results. Low velocity impact (LVI) tests showed that the specific perforation energy of the LMLs was significantly higher (7.1 J/kg m-2) than that of LFT composite (1.2 J/kg m-2). This new type of hybrid composite, LML, is quite promising for a variety of applications in automotive as well as aerospace industries.

  14. Elastic/viscoplastic behavior of fiber-reinforced thermoplastic composites

    NASA Technical Reports Server (NTRS)

    Wang, C.; Sun, C. T.; Gates, T. S.

    1990-01-01

    An elastic/viscoplastic constitutive model was used to characterize the nonlinear and rate dependent behavior of a continuous fiber-reinforced thermoplastic composite. This model was incorporated into a finite element program for the analysis of laminated plates and shells. Details on the finite element formulation with the proposed constitutive model were presented. The numerical results were compared with experimental data for uniaxial tension and three-point bending tests of (+ or - 45 deg)3s APC-2 laminates.

  15. Thermoset-thermoplastic aromatic polyamide containing N-propargyl groups

    NASA Technical Reports Server (NTRS)

    St.clair, T. L.; Wolfe, J. F.; Greenwood, T. D. (Inventor)

    1984-01-01

    The compounds of the class of aromatic polyamides useful as matrix resins in the manufacture of composites or laminate fabrication were developed. The process for preparing this thermoplastic-thermoset polyamide system involves incorporating a latent crosslinking moiety along the backbone of the polyamide to improve the temperature range of fabrication thereof wherein the resin softens at a relatively low temperature (approx. 154 C) and subsequently sets-up or undergoes crosslinking when subjected to higher temperature (approx. 280 C).

  16. Distribution of Oil in a PP/EPDM Thermoplastic Elastomer

    NASA Astrophysics Data System (ADS)

    Kikuchi, Yutaka; Okada, Tetsuo; Inoue, Takashi

    Distribution of oil in a commercial PP(polypropylene)/EPDM(ethylene-propyrene-diene rubber) thermoplastic elastomer was analyzed by light scattering. It was shown that the oil preferentially stays in EPDM particles at low temperatures and it migrates to PP matrix at high temperatures. That is, the oil is expected to play a dual role; softener at ambient temperature and plasticizer at processing temperature. The temperature dependence of oil distribution was nicely interpreted by a thermodynamic discussion.

  17. Microstructure-property relationships in discontinuous fiber reinforced thermoplastic composites

    SciTech Connect

    Vyakarnam, M.N.; Drzal, L.T.

    1996-12-31

    A novel Aligned Discontinuous Fiber (ADF) composite process has been developed to optimize performance and processability of discontinuous fiber thermoplastic composites. The principle feature of this process is the alignment of the fibers using electric fields in air. The successful control of the orientation state of the fibers using the ADF process led to the fabrication of micro-structure controlled discontinuous fiber composites and the subsequent investigation into the microstructure-property relationships of these materials.

  18. Ultrasonic assisted consolidation of commingled thermoplastic/glass fibers rovings

    NASA Astrophysics Data System (ADS)

    Lionetto, Francesca; Dell'Anna, Riccardo; Montagna, Francesco; Maffezzoli, Alfonso

    2015-04-01

    Thermoplastic matrix composites are finding new applications in different industrial area thanks to their intrinsic advantages related to environmental compatibility and processability. The approach presented in this work consists in the development of a technology for the simultaneous deposition and consolidation of commingled thermoplastic rovings through to the application of high energy ultrasound. An experimental equipment, integrating both fiber impregnation and ply consolidation in a single process, has been designed and tested. It is made of an ultrasonic welder, whose titanium sonotrode is integrated on a filament winding machine. During winding, the commingled roving is at the same time in contact with the mandrel and the horn. The intermolecular friction generated by ultrasound is able to melt the thermoplastic matrix and impregnate the reinforcement fibers. The heat transfer phenomena occurring during the in situ consolidation were simulated solving by finite element (FE) analysis an energy balance accounting for the heat generated by ultrasonic waves and the melting characteristics of the matrix. To this aim, a calorimetric characterization of the thermoplastic matrix has been carried out to obtain the input parameters for the model. The FE analysis has enabled to predict the temperature distribution in the composite during heating and cooling The simulation results have been validated by the measurement of the temperature evolution during ultrasonic consolidation. The reliability of the developed consolidation equipment was proved by producing hoop wound cylinder prototypes using commingled continuous E-glass rovings and Polypropylene (PP) filaments. The consolidated composite cylinders are characterized by high mechanical properties, with values comparable with the theoretical ones predicted by the micromechanical analysis.

  19. Simulation of shrinkage and warpage of semi-crystalline thermoplastics

    NASA Astrophysics Data System (ADS)

    Hopmann, Ch.; Borchmann, N.; Spekowius, M.; Weber, M.; Schöngart, M.

    2015-05-01

    Today, the simulation of the injection molding process is state of the art. Besides the simulation of the manufacturing process, commercial simulation tools allow a prediction of the structural properties of the final part. Especially the complex shrinkage and warpage behavior is of interest as it significantly influences the part quality. Although modern simulation tools provide qualitatively correct results for several materials and processing conditions, significant deviations from the real component's behavior can occur for semi-crystalline thermoplastics. One underlying reason is the description on the macro scale used in these simulation tools. However, in semi-crystalline materials significant effects take place on the micro scale, e.g. crystalline superstructures that cannot be neglected. As part of a research project at IKV, investigations are carried out to improve the simulation accuracy of shrinkage and warpage. To point out differences in the accuracy of commercially available simulation tools, a reference part is computed for the materials polypropylene and polyoxymethylene. The results are validated by injection molding experiments. The shrinkage and warpage behavior is characterized by optical measuring technology. In future, models for the description of the pvT behavior of semi-crystalline thermoplastics will be implemented into the software package SphäroSim which was developed at IKV. With this software, crystallization kinetics for semi-crystalline thermoplastics can be calculated on the micro scale. With the newly implemented pvT models the calculation of shrinkage and warpage for semi-crystalline thermoplastics will be enabled on the micro scale.

  20. Structural response of bead-stiffened thermoplastic shear webs

    NASA Technical Reports Server (NTRS)

    Rouse, Marshall

    1991-01-01

    The results of an experimental and analytical study of the structural response and failure characteristics of selected bead-stiffened thermoplastic shear-webs are presented. Results are given for specimens with one stiffeneer, with two stiffeners, and different stiffener geometries. Selected analytical results that were obtained with the Computational Structural Mechanics (CSM) Testbed computer code are presented. Analytical results that describe normal and transverse shear stress are also presented.

  1. Modified Single-Wall Carbon Nanotubes for Reinforce Thermoplastic Polyimide

    NASA Technical Reports Server (NTRS)

    Lebron-COlon, Marisabel; Meador, Michael A.

    2006-01-01

    A significant improvement in the mechanical properties of the thermoplastic polyimide film was obtained by the addition of noncovalently functionalized single-wall carbon nanotubes (SWNTs). Polyimide films were reinforced using pristine SWNTs and functionalized SWNTs (F-SWNTs). The tensile strengths of the polyimide films containing F-SWNTs were found to be approximately 1.4 times higher than those prepared from pristine SWNTs.

  2. Investigations of micromechanical and failure mechanisms of toughened thermoplastics by electron microscopy

    SciTech Connect

    Michler, G.H.; Starke, J.U.

    1996-12-31

    The competitive influence of particle diameter and interparticle distance on the toughening mechanism was studied in various thermoplastics. The morphology, deformation, and fracture properties were also investigated.

  3. Material, process, and product design of thermoplastic composite materials

    NASA Astrophysics Data System (ADS)

    Dai, Heming

    Thermoplastic composites made of polypropylene (PP) and E-glass fibers were investigated experimentally as well as theoretically for two new classes of product designs. The first application was for reinforcement of wood. Commingled PP/glass yarn was consolidated and bonded on wood panel using a tie layer. The processing parameters, including temperature, pressure, heating time, cooling time, bonding strength, and bending strength were tested experimentally and evaluated analytically. The thermoplastic adhesive interface was investigated with environmental scanning electron microscopy. The wood/composite structural design was optimized and evaluated using a Graphic Method. In the second application, we evaluated use of thermoplastic composites for explosion containment in an arrester. PP/glass yarn was fabricated in a sleeve form and wrapped around the arrester. After consolidation, the flexible composite sleeve forms a solid composite shell. The composite shell acts as a protection layer in a surge test to contain the fragments of the arrester. The manufacturing process for forming the composite shell was designed. Woven, knitted, and braided textile composite shells made of commingled PP/glass yarn were tested and evaluated. Mechanical performance of the woven, knitted, and braided composite shells was examined analytically. The theoretical predictions were used to verify the experimental results.

  4. In-Mold Coating (IMC) Process for Thermoplastic Parts

    NASA Astrophysics Data System (ADS)

    Chen, Xu; Bhagavatula, Narayan; Castro, Jose M.

    2004-06-01

    In mold coating (IMC) is an environmentally friendly alternative to painting for injection molded plastic parts. IMC is carried out by injecting a liquid low viscosity thermoset material onto the surface of the thermoplastic substrate while it is still in the mold. The coating then solidifies and adheres to the substrate. IMC process is being integrated with conventional thermoplastic injection molding to improve the part surface quality and to protect it from outdoor exposure. A power law viscosity model is employed to describe the rheological behavior of the coating material. The continuous deformation of the thermoplastic substrate caused by the coating injection is analyzed by means of the PVT relationship of the substrate. The corresponding model is solved using the Control Volume based Finite Element Method (CV/FEM) to predict the fill pattern and pressure distribution during the coating flow. The predicted results are compared to experimentally obtained fill patterns. The need to include the "edge effect" and the probable reasons for deviation of pressures from experimental observations are also discussed.

  5. Evaluation of the effect of reprocessing on the structure and properties of low density polyethylene/thermoplastic starch blends.

    PubMed

    Peres, Anderson M; Pires, Ruthe R; Oréfice, Rodrigo L

    2016-01-20

    The great quantity of synthetic plastic discarded inappropriately in the environment is forcing the search for materials that can be reprocessable and biodegradable. Blends between synthetic polymers and natural and biodegradable polymers can be good candidates of such novel materials because they can combine processability with biodegradation and the use of renewable raw materials. However, traditional polymers usually present high levels of recyclability and use the well-established recycling infrastructure that can eventually be affected by the introduction of systems containing natural polymers. Thus, this work aims to evaluate the effect of reprocessing (simulated here by multiple extrusions) on the structure and properties of a low density polyethylene/thermoplastic starch (LDPE/TPS) blend compared to LDPE. The results indicated that multiple extrusion steps led to a reduction in the average size of the starch-rich phases of LDPE/TPS blends and minor changes in the mechanical and rheological properties of the materials. Such results suggest that the LDPE/TPS blend presents similar reprocessability to the LDPE for the experimental conditions used. PMID:26572348

  6. Processing and Damage Tolerance of Continuous Carbon Fiber Composites Containing Puncture Self-Healing Thermoplastic Matrix

    NASA Technical Reports Server (NTRS)

    Grimsley, Brian W.; Gordon, Keith L.; Czabaj, Michael W.; Cano, Roberto J.; Siochi, Emilie J.

    2012-01-01

    Research at NASA Langley Research Center (NASA LaRC) has identified several commercially available thermoplastic polymers that self-heal after ballistic impact and through-penetration. One of these resins, polybutadiene graft copolymer (PB(sub g)), was processed with unsized IM7 carbon fibers to fabricate reinforced composite material for further evaluation. Temperature dependent characteristics, such as the degradation point, glass transition (T(sub g)), and viscosity of the PBg polymer were characterized by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and dynamic parallel plate rheology. The PBg resin was processed into approximately equal to 22.0 cm wide unidirectional prepreg tape in the NASA LaRC Advanced Composites Processing Research Laboratory. Data from polymer thermal characterization guided the determination of a processing cycle used to fabricate quasi-isotropic 32-ply laminate panels in various dimensions up to 30.5cm x 30.5cm in a vacuum press. The consolidation quality of these panels was analyzed by optical microscopy and acid digestion. The process cycle was further optimized based on these results and quasi-isotropic, [45/0/-45/90]4S, 15.24cm x 15.24cm laminate panels were fabricated for mechanical property characterization. The compression strength after impact (CAI) of the IM7/pBG composites was measured both before and after an elevated temperature and pressure healing cycle. The results of the processing development effort of this composite material as well as the results of the mechanical property characterization are presented in this paper.

  7. Tribology of polymer composites

    SciTech Connect

    Friedrich, K.

    1993-12-31

    Polymer composites are more and more used as structural components which are very often subjected to friction and wear loadings under use. This overview describes the following cases: (1) short fiber/thermoplastic matrix composites and their friction and wear properties as a function of both microstructural composition and external testing conditions. Special attention is focused on the effects of different polymer matrices, fiber reinforcements, and additional internal lubricants on the coefficient of friction and the specific wear rate of these materials when sliding against hard steel counterparts. Further effects on these tribological properties due to changes in testing temperature, sliding speed and contact pressure are outlined; (2) results of sliding wear experiments with continuous glass, carbon or aramid fiber/polymer matrix composites against steel counterparts. They were used to develop a hypothetical model composite with optimum wear resistance. This was achieved for hybrids with carbon fibers parallel and aramid fibers normal to the sliding direction of the counterpart; and (3) the friction and wear performance of thin layer composites strengthened with steel backeners to sustain very high pressure loadings during sliding wear.

  8. Microstructural Characterization of Polymers by Positron Lifetime Spectroscopy

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.

    1996-01-01

    Positrons provide a versatile probe for monitoring microstructural features of molecular solids. In this paper, we report on positron lifetime measurements in two different types of polymers. The first group comprises polyacrylates processed on earth and in space. The second group includes fully-compatible and totally-incompatible Semi-Interpenetrating polymer networks of thermosetting and thermoplastic polyimides. On the basis of lifetime measurements, it is concluded that free volumes are a direct reflection of physical/electromagnetic properties of the host polymers.

  9. LaRC TPI 1500 series polymers

    NASA Technical Reports Server (NTRS)

    Hou, Tan-Hung; Bai, Jia-Mo

    1990-01-01

    The crystallization behavior and the melt flow properties of two batches of 1500 series LaRC-TPI polymers from Mitsui Toatsu Chemicals (MTC) were investigated. The characterization methods include Differential Scanning Calorimetry, the x ray diffractography and the melt rheology. The as-received materials possess initial crystalline melting peak temperatures of 295 and 305 C, respectively. These materials are less readily recrystallizable at elevated temperatures when compared to other semicrystalline thermoplastics. For the samples annealed at temperatures below 330 C, a semicrystalline polymer can be obtained. On the other hand, a purely amorphous structure is realized in the samples annealed at temperatures above 330 C. Isothermal crystallization kinetics were studied by means of the simple Avrami equation. The viscoelastic properties at elevated temperatures below and above glass transition temperature of the polymers were measured. Information with regard to the molecule sizes and distributions in these polymers were also extracted from melt rheology.

  10. Laser-generated Macroscopic and Microscopic Surface Structures for the Joining of Aluminum and Thermoplastics using Friction Press Joining

    NASA Astrophysics Data System (ADS)

    Fuchs, Alexander N.; Wirth, Franz X.; Rinck, Philipp; Zaeh, Michael F.

    Structural lightweight construction is increasingly utilized in the aerospace and automotive industry. Hybrid structures have great potential, especially with regard to load-specific component layouts. Usually, a surface pre-treatment is applied prior to joining dissimilar materials to improve bonding mechanisms such as form closure. In previous studies pulsed wave (pw) lasers were used for structuring metals. This paper presents the results of aluminum pre-treatment via a continuous wave (cw) single-mode fiber laser: macroscopic and microscopic structures were generated on the aluminum surface; the samples were joined with glass fiber reinforced polyamide using Friction Press Joining (FPJ), a method for joining metals and thermoplastic polymers in lap joint configuration. Using these new methods for surface structuring, shear strength was increased by 40% compared to previous studies with pw lasers.

  11. Polymer composites prepared from heat-treated starch and styrene-butadiene latex

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thermoplastic starch/latex polymer composites were prepared using styrene–butadiene (SB) latex and heat-treated cornstarch. The composites were prepared in a compression mold at 130 °C, with starch content 20%. An amylose-free cornstarch, waxy maize, was used for this research and the heat treatment...

  12. Recycling of ligno-cellulosic and polyethylene wastes from agricultural operations in thermoplastic composites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the US, wood plastic composites (WPC) represent one of the successful markets for natural fiber-filled thermoplastic composites. The WPC typically use virgin or recycled thermoplastic as the substrate and wood fiber as the filler. A major application of the WPC is in non-structural building appli...

  13. Thermoplastic composites: Recycling. (Latest citations from the Rubber and Plastics Research Association database). Published Search

    SciTech Connect

    1996-11-01

    The bibliography contains citations concerning the recycling of thermoplastic composites. Multilayer thermoplastics, high density polyethylenes, polypropylenes, polycarbonates, and polyamides reinforced with fibers are considered. Granulators, recovery plants, and gasification of plastic waste are among the recycling techniques discussed.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  14. Thermoplastic composites: Recycling. (Latest citations from the Rubber and Plastics Research Association database). NewSearch

    SciTech Connect

    Not Available

    1994-11-01

    The bibliography contains citations concerning the recycling of thermoplastic composites. Multilayer thermoplastics, high density polyethylenes, polypropylenes, polycarbonates, and polyamides reinforced with fibers are considered. Granulators, recovery plants, and gasification of plastic waste are among the recycling techniques discussed. (Contains a minimum of 218 citations and includes a subject term index and title list.)

  15. Thermoplastic composites: Recycling. (Latest citations from the Rubber and Plastics Research Association database). Published Search

    SciTech Connect

    Not Available

    1994-03-01

    The bibliography contains citations concerning the recycling of thermoplastic composites. Multilayer thermoplastics, high density polyethylenes, polypropylenes, polycarbonates, and polyamides reinforced with fibers are considered. Granulators, recovery plants, and gasification of plastic waste are among the recycling techniques discussed. (Contains a minimum of 182 citations and includes a subject term index and title list.)

  16. Thermoplastic composites: Recycling. (Latest citations from the Rubber and Plastics Research Association database). Published Search

    SciTech Connect

    1995-12-01

    The bibliography contains citations concerning the recycling of thermoplastic composites. Multilayer thermoplastics, high density polyethylenes, polypropylenes, polycarbonates, and polyamides reinforced with fibers are considered. Granulators, recovery plants, and gasification of plastic waste are among the recycling techniques discussed.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  17. Thermal Degradation, Mechanical Properties and Morphology of Wheat Straw Flour Filled Recycled Thermoplastic Composites

    PubMed Central

    Mengeloglu, Fatih; Karakus, Kadir

    2008-01-01

    Thermal behaviors of wheat straw flour (WF) filled thermoplastic composites were measured applying the thermogravimetric analysis and differential scanning calorimetry. Morphology and mechanical properties were also studied using scanning electron microscope and universal testing machine, respectively. Presence of WF in thermoplastic matrix reduced the degradation temperature of the composites. One for WF and one for thermoplastics, two main decomposition peaks were observed. Morphological study showed that addition of coupling agent improved the compatibility between WFs and thermoplastic. WFs were embedded into the thermoplastic matrix indicating improved adhesion. However, the bonding was not perfect because some debonding can also be seen on the interface of WFs and thermoplastic matrix. In the case of mechanical properties of WF filled recycled thermoplastic, HDPE and PP based composites provided similar tensile and flexural properties. The addition of coupling agents improved the properties of thermoplastic composites. MAPE coupling agents performed better in HDPE while MAPP coupling agents were superior in PP based composites. The composites produced with the combination of 50-percent mixture of recycled HDPE and PP performed similar with the use of both coupling agents. All produced composites provided flexural properties required by the ASTM standard for polyolefin-based plastic lumber decking boards.

  18. Melt processed electrically conductive binary and ternary immiscible polymer/polyaniline blends

    SciTech Connect

    Zilberman, M.; Siegmann, A.; Narkis, M.

    1998-07-01

    In the present study, conductive binary and ternary blends of PANI with thermoplastic polymers were prepared by melt processing. The binary blends' investigation focused on the morphology and on the resulting electrical conductivity. Generally, the level of interaction between the doped PANI and the matrix polymer determines the blend morphology, and thus, its electrical conductivity. The morphology of a conductive network is described by a primary structure of small dispersed polyaniline particles, interconnected by secondary short range fine fibrillar structure. In blends containing a semicrystalline matrix the doped PANI network locates within the amorphous regions, leading to a reduction of the percolation concentration. The ternary blends' investigation focused on a system containing two co-continuous immiscible thermoplastic polymers and PANI. The PANI is preferably located in one of the matrix polymers. This concentration effects enables high electrical conductivities at low PANI contents.

  19. Electrospinning of unidirectionally and orthogonally aligned thermoplastic polyurethane nanofibers: fiber orientation and cell migration.

    PubMed

    Mi, Hao-Yang; Salick, Max R; Jing, Xin; Crone, Wendy C; Peng, Xiang-Fang; Turng, Lih-Sheng

    2015-02-01

    Unidirectionally and orthogonally aligned thermoplastic polyurethane (TPU) nanofibers were electrospun using a custom-built electrospinning device. The unidirectionally aligned fibers were collected using two parallel copper plates, and the orthogonally aligned fibers were collected using two orthogonal sets of parallel copper plates with alternate negative connections. Carbon nanotubes (CNT) and polyacrylic acid (PAA) were added to modify the polymer solution. It was found that both CNT and PAA were capable of increasing solution conductivity. The TPU/PAA fiber showed the highest degree of fiber orientation with more than 90% of the fibers having an orientation angle between -10 and 10 for unidirectionally aligned fibers, and for orthogonally aligned fibers, the orientation angle of 50% fibers located between -10 and 10 and 48% fibers located between 80 and 100. Viability assessment of 3T3 fibroblasts cultured on TPU/PAA fibers suggested that the material was cytocompatible. The cells' orientation and migration direction closely matched the fibers' orientation. The cell migration velocity and distance were both enhanced with the guidance of fibers compared with cells cultured on random fibers and common tissue culture plastic. Controlling cell migration velocity and directionality may provide ways to influence differentiation and gene expression and systems that would allow further exploration of wound repair and metastatic cell behavior. PMID:24771704

  20. SEM evaluation of thermoplastic endodontic materials alterations after disinfection: a new experimental model.

    PubMed

    Grecca, Fabiana Soares; Porto, Marcos; Fontanella, Vania Regina Camargo; Scarparo, Roberta Kochenborger

    2011-01-01

    This study assessed a new experimental model to analyze the effects of sodium hypochlorite solution 2.5% for 10 min and chlorhexidine 2% for 15 s on cones surface alterations. Twenty five gutta-percha and 25 thermoplastic synthetic polymer-based cones had their last 1 mm from the tapered end examined by scanning electron microscopy (SEM) before and after being exposed to the disinfectant solutions. To allow the surfaces to be compared, the samples were not metalized, a voltage of 1 kV was used and the images were captured within standardized angles. The samples were immersed on the test solutions. The comparison of the alterations of the cones was performed using the software program Adobe Photoshop CS. A measurement was taken of the standard deviations of the pixel intensity in this area, higher standard deviations represent more irregular areas. Differences in standard deviation before and after disinfection for each cone were compared between groups by means of analysis of variance supplemented by the Tukey test. Gutta-percha cones showed higher standard deviations than Resilon cones (P < 0.001). In the gutta-percha cones, sodium hypochlorite generated more irregular areas than chlorhexidine and the control group (P < 0.001). The present study has demonstrated the feasibility of using a modified SEM method. This opens opportunities to the use of new and precise tools for evaluating a sample in different moments. PMID:21181716

  1. Effect of carboxylic acids as compatibilizer agent on mechanical properties of thermoplastic starch and polypropylene blends.

    PubMed

    Martins, Andra Bercini; Santana, Ruth Marlene Campomanes

    2016-01-01

    In this work, polypropylene/thermoplastic starch (PP/TPS) blends were prepared as an alternative material to use in disposable packaging, reducing the negative polymeric environmental impact. Unfortunately, this material displays morphological characteristics typical of immiscible polymer blends and a compatibilizer agent is needed. Three different carboxyl acids: myristic (C14), palmitic (C16) and stearic acids (C18) were used as natural compatibilizer agent (NCA). The effects of NCA on the mechanical, physical, thermal and morphological properties of PP/TPS blends were investigated and compared against PP/TPS with and without PP-grafted maleic anhydride (PPgMA). When compared to PP/TPS, blends with C18, PPgMA and C14 presented an improvement of 25, 22 and 17% in tensile strength at break and of 180, 194 and 259% in elongation at break, respectively. The highest increase, 54%, in the impact strength was achieved with C14 incorporation. Improvements could be seen, through scanning electron microscopy (SEM) images, in the compatibility between the immiscible components by acids incorporation. These results showed that carboxylic acids, specifically C14, could be used as compatibilizer agent and could substitute PPgMA. PMID:26453854

  2. Study on ternary low density polyethylene/linear low density polyethylene/thermoplastic starch blend films.

    PubMed

    Sabetzadeh, Maryam; Bagheri, Rouhollah; Masoomi, Mahmood

    2015-03-30

    In this work, low-density polyethylene/linear low-density polyethylene/thermoplastic starch (LDPE/LLDPE/TPS) films are prepared with the aim of obtaining environmentally friendly materials containing high TPS content with required packaging properties. Blending of LDPE/LLDPE (70/30 wt/wt) with 5-20 wt% of TPS and 3 wt% of PE-grafted maleic anhydride (PE-g-MA) is performed in a twin-screw extruder, followed by the blowing process. Differential scanning calorimetric results indicate starch has more pronounced effect on crystallization of LLDPE than LDPE. Scanning electron micrograph shows a fairly good dispersion of TPS in PE matrices. Fourier transfer infrared spectra confirm compatibility between polymers using PE-g-MA as the compatibilizer. Storage modulus, loss modulus and complex viscosity increase with incorporation of starch. Tensile strength and elongation-at-break decrease from 18 to 10.5 MPa and 340 to 200%, respectively when TPS increases from 5 to 20%. However, the required mechanical properties for packaging applications are attained when 15 wt% starch is added, as specified in ASTM D4635. Finally 12% increase in water uptake is achieved with inclusion of 15 wt% starch. PMID:25563952

  3. Development of LaRC (TM): IA thermoplastic polyimide coated aerospace wiring

    NASA Technical Reports Server (NTRS)

    Keating, Jack

    1995-01-01

    NASA Langley has invented LaRC(exp TM) IA and IAX which are thermoplastic polyimides with good melting, thermal and chemical resistance properties. It was the objective of this contract to prepare and extrude LaRC (exp TM) polyimide onto aircraft wire and evaluate the polymers performance in this critical application. Based on rheology and chemical resistance studies at Imitec, LaRC (exp TM) IAX melts readily in an extruder, facilitating the manufacture of thin wall coatings. The polyimide does not corode the extruder, develop gel particles nor advance in viscosity. The insulated wire was tested according to MiL-W-22759E test specifications. The resulting wire coated with LaRC (exp TM) IAX displayed exceptional properties: surface resistance, non blocking, non burning, hot fluid resistance, impulse dielectric, insulation resistance, low temperature flexibility, thermal aging, wire weight, dimensions, negligible high temperature shrinkage and stripability. The light weight and other properties merit its application in satellites, missiles and aircraft applications. The extruded IAX results in a polyimide aircraft insulation without seams, outstanding moisture resistance, continuous lengths and abrasion resistance.

  4. Corn protein-based thermoplastic resins: effect of some polar and amphiphilic plasticizers.

    PubMed

    Di Gioia, L; Guilbert, S

    1999-03-01

    Homogeneous blends of corn gluten meal (CGM) and "polar" plasticizers (water, glycerol) or "amphiphilic" plasticizers [octanoic and palmitic acids, dibutyl tartrate and phthalate, and diacetyl tartaric acid ester of mono-diglycerides (DATEM)] were obtained by a hot-mixing procedure. The glass transition temperature (T(g)) of the blends was measured by modulated differential scanning calorimetry and dynamic mechanical thermal analysis, as a function of plasticizer type and content (0-30%, dwb). The plasticizing efficiency (i.e., decrease of T(g)) at equal molar content was found to be proportional to the molecular weight and inversely proportional to the percent of hydrophilic groups of the plasticizer. The migration rate of the plasticizers in the polymer was related to their physicochemical characteristics. It was assumed that polar substances interacted with readily accessible polar amino acids, whereas amphiphilic ones interacted with nonpolar zones, which are buried and accessible with difficulty. The temperature at which a thermoplastic resin of plasticized CGM could be formed was closely connected to the T(g) of the blend. PMID:10552446

  5. Processing and properties of multiscale cellular thermoplastic fiber reinforced composite (CellFRC)

    NASA Astrophysics Data System (ADS)

    Sorrentino, L.; Cafiero, L.; D'Auria, M.; Iannace, S.

    2015-12-01

    High performance fiber reinforced polymer composites are made by embedding high strength/modulus fibers in a polymeric matrix. They are a class of materials that owe its success to the impressive specific mechanical properties with respect to metals. In many weight-sensitive applications, where high mechanical properties and low mass are required, properties per unit of mass are more important than absolute properties and further weight reduction is desirable. A route to reach this goal could be the controlled induction of porosity into the polymeric matrix, while still ensuring load transfer to the reinforcing fibers and fiber protection from the environment. Cellular lightweight fiber reinforced composites (CellFRC) were prepared embedding gas bubbles of controlled size within a high performance thermoplastic matrix reinforced with continuous fibers. Pores were induced after the composite was first saturated with CO2 and then foamed by using an in situ foaming/shaping technology based on compression moulding with adjustable mould cavities. The presence of micro- or submicro-sized cells in the new CellFRC reduced the apparent density of the structure and led to significant improvements of its impact properties. Both structural and functional performances were further improved through the use of a platelet-like nanofiller (Expanded Graphite) dispersed into the matrix.

  6. Impact Behavior of Composite Fan Blade Leading Edge Subcomponent with Thermoplastic Polyurethane Interleave

    NASA Technical Reports Server (NTRS)

    Miller, Sandi G.; Roberts, Gary D.; Kohlman, Lee W.; Heimann, Paula J.; Pereira, J. Michael; Ruggeri, Charles R.; Martin, Richard E.; McCorkle, Linda S.

    2015-01-01

    Impact damage tolerance and damage resistance is a critical metric for application of polymer matrix composites where failure caused by impact damage could compromise structural performance and safety. As a result, several materials and/or design approaches to improve impact damage tolerance have been investigated over the past several decades. Many composite toughening methodologies impart a trade-off between increased fracture toughness and compromised in-plane strength and modulus. In large part, mechanical tests to evaluate composite damage tolerance include static methods such as Mode I, Mode II, and mixed mode failures. However, ballistic impact damage resistance does not always correlate with static properties. The intent of this paper is to evaluate the influence of a thermoplastic polyurethane veil interleave on the static and dynamic performance of composite test articles. Static coupon tests included tension, compression, double cantilever beam, and end notch flexure. Measurement of the resistance to ballistic impact damage were made to evaluate the composites response to high speed impact. The interlayer material showed a decrease of in-plane performance with only a moderate improvement to Mode I and Mode II fracture toughness. However, significant benefit to impact damage tolerance was observed through ballistic tests.

  7. Electrospinning of unidirectionally and orthogonally aligned thermoplastic polyurethane nanofibers: Fiber orientation and cell migration

    PubMed Central

    Mi, Hao-Yang; Salick, Max R.; Jing, Xin; Crone, Wendy C.; Peng, Xiang-Fang; Turng, Lih-Sheng

    2015-01-01

    Unidirectionally and orthogonally aligned thermoplastic polyurethane (TPU) nanofibers were electrospun using a custom-built electrospinning device. The unidirectionally aligned fibers were collected using two parallel copper plates, and the orthogonally aligned fibers were collected using two orthogonal sets of parallel copper plates with alternate negative connections. Carbon nanotubes (CNT) and polyacrylic acid (PAA) were added to modify the polymer solution. It was found that both CNT and PAA were capable of increasing solution conductivity. The TPU/PAA fiber showed the highest degree of fiber orientation with more than 90% of the fibers having an orientation angle between ?10 and 10 for unidirectionally aligned fibers, and for orthogonally aligned fibers, the orientation angle of 50% fibers located between ?10 and 10 and 48% fibers located between 80 and 100. Viability assessment of 3T3 fibroblasts cultured on TPU/PAA fibers suggested that the material was cytocompatible. The cells orientation and migration direction closely matched the fibers orientation. The cell migration velocity and distance were both enhanced with the guidance of fibers compared with cells cultured on random fibers and common tissue culture plastic. Controlling cell migration velocity and directionality may provide ways to influence differentiation and gene expression and systems that would allow further exploration of wound repair and metastatic cell behavior. PMID:24771704

  8. Effects of Compression and Filler Particle Coating on the Electrical Conductivity of Thermoplastic Elastomer Composites

    NASA Astrophysics Data System (ADS)

    Albers, Willem M.; Karttunen, Mikko; Wikstrm, Lisa; Vilkman, Taisto

    2013-10-01

    Elastomeric polymers can be filled with metallic micro- or nanoparticles to obtain electrical conductivity, in which the conductivity is largely determined by the intrinsic conductivity of and contact resistance between the particles. Electrons will flow through the material effectively when the percolation threshold for near-neighbor contacts is exceeded and sufficiently close contacts between the filler particles are realized for electron tunneling to occur. Silver-coated glass microparticles of two types (fibers and spheres) were used as fillers in a thermoplastic elastomer composite based on styrene-ethylene-butylene-styrene copolymer, and the direct-current (DC) resistance and radiofrequency impedance were significantly reduced by coating the filler particles with octadecylmercaptan. Not only was the resistance reduced but also the atypical positive piezoresistivity effect observed in these elastomers was strongly reduced, such that resistivity values below 0.01 ? cm were obtained for compression ratios up to 20%. In the DC measurements, an additional decrease of resistivity was obtained by inclusion of ?-extended aromatic compounds, such as diphenylhexatriene. Some qualitative theories are presented to illuminate the possible mechanisms of action of these surface coatings on the piezoresistivity.

  9. Sensitivity Studies for In-Situ Automated Tape Placement of Thermoplastic Composites

    NASA Technical Reports Server (NTRS)

    Costen, Robert C.; Marchello, Joseph M.

    2004-01-01

    This modeling effort seeks to improve the interlaminate bond strength of thermoplastic carbon composites produced by the in-situ automated tape placement (ATP) process. An existing high productivity model is extended to lower values of the Peclet number that correspond to the present operating conditions of the Langley ATP robot. (The Peclet number is the dimensionless ratio of inertial to diffusive heat transfer.) In sensitivity studies, all of the process and material parameters are individually varied. The model yields the corresponding variations in the effective bonding time (EBT) referred to the glass transition temperature. According to reptation theory, the interlaminate bond strength after wetting occurs is proportional to the one-fourth power of EBT. The model also computes the corresponding variations in the thermal input power (TIP) and the mass and volumetric process rates. Process studies show that a 10 percent increase in the consolidation length results in a 20 percent increase in EBT and a 5 percent increase in TIP. A surprising result is that a 10 K decrease in the tooling temperature results in a 25 percent increase in EBT and an 8 percent increase in TIP. Material studies show that a 10 K decrease in glass transition temperature results in an 8 percent increase in EBT and a 8 percent decrease in TIP. A 20 K increase in polymer degradation temperature results in a 23 percent increase in EBT with no change in TIP.

  10. Tunable Shape Memory Performances via Multilayer Assembly of Thermoplastic Polyurethane and Polycaprolactone.

    PubMed

    Zheng, Yu; Dong, Renqiong; Shen, Jiabin; Guo, Shaoyun

    2016-01-20

    Shape memory materials containing alternating layers of thermoplastic polyurethane (TPU) and polycaprolactone (PCL) were fabricated through layer-multiplying extrusion. As a type of special co-continuous morphology, the multilayer structure had stable and well-defined continuous layer spaces and could be controlled by changing the number of layers. Compared with conventional polymer blends, the multilayer-assembled system with the same compositions had higher shape-fixing and -recovery ratios that could be further improved by increasing the number of layers. By analyzing from a viscoelastic model, the deformation energy preserved in elastic TPU layers would be balanced by adjacent PCL layers through interfacial shearing effect so that each component in the multilayer structure was capable of endowing the maximum contribution to both of the shape-fixing and -recovery stages. Besides, the influence of the hardness of TPU layers and the morphology of PCL layers were respectively concerned as well. Results revealed that choosing low-hardness TPU or replacing neat PCL layers by TPU/PCL blend with co-continuous morphology were beneficial to achieving outstanding shape memory performances. PMID:26713358

  11. Fabrication of robust and thermally stable superhydrophobic nanocomposite coatings based on thermoplastic polyurethane and silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Seyfi, Javad; Jafari, Seyed Hassan; Khonakdar, Hossein Ali; Sadeghi, Gity Mir Mohamad; Zohuri, Gholamhossein; Hejazi, Iman; Simon, Frank

    2015-08-01

    In this paper, superhydrophobic nanocomposite coatings based on thermoplastic polyurethane (TPU) and modified nanosilica were fabricated using a simple solution-based method. The main challenge was to impart superhydrophobicity to an intrinsically hydrophilic polymer substrate. The prepared nanocomposite coatings were characterized by means of scanning electron microscopy, confocal microscopy and X-ray photoelectron spectroscopy. Based on the obtained results, it was proved that in order to achieve superhydrophobicity, no TPU macromolecule should be present on the coating's top layer, thus a complete coverage of coating's top layer by nanosilica particles was necessary for achieving ultra water repellent coatings. Mechanical and thermal resistance of the coatings, which are the main challenges in commercializing superhydrophobic surfaces, were also studied by drop impact and thermal annealing tests, respectively. It was proved that using TPU as a sublayer results in improving mechanical resistance of the coatings as compared with the pure silica nanocoating. Moreover, the samples showed an excellent resistance against elevated temperatures (150 °C) and remained superhydrophobic; however, further increment of the annealing temperatures to 200 °C caused the TPU macromolecules to migrate onto the top layer of the coatings significantly reducing the water repellency, which was visually proved by SEM.

  12. Novel sustainable polymers derived from renewable rosin and fatty acids

    NASA Astrophysics Data System (ADS)

    Wilbon, Perry

    In the work of this dissertation, polymers derived from renewable bio-based resources prepared by various polymerization techniques were investigated. The properties of these polymeric materials were characterized and discussed. Rosin was first converted into acrylate or methacrylate monomers for atom transfer radical polymerization (ATRP). Second, rosin was combined with vegetable oil to produce completely renewable novel polyesters by acyclic diene metathesis (ADMET) polymerization. Third, degradable block copolymers were synthesized composed of polycaprolactone and rosin grafted polycaprolactone with the aid of ring-opening polymerization (ROP). Finally, degradable polyesters were produced using vegetable oil derivatives as starting materials. These new rosin and fatty acid based renewable polymer materials will have potential applications as sustainable thermoplastics, thermoplastic elastomers, etc.

  13. All-thermoplastic nanoplasmonic microfluidic device for transmission SPR biosensing.

    PubMed

    Malic, Lidija; Morton, Keith; Clime, Liviu; Veres, Teodor

    2013-03-01

    Early and accurate disease diagnosis still remains a major challenge in clinical settings. Biomarkers could potentially provide useful tools for the detection and monitoring of disease progression, treatment safety and efficacy. Recent years have witnessed prodigious advancement in biosensor development with research directed towards rapid, real-time, label-free and sensitive biomarker detection. Among emerging techniques, nanoplasmonic biosensors pose tremendous potential to accelerate clinical diagnosis with real-time multiplexed analysis, rapid and miniaturized assays, low sample consumption and high sensitivity. In order to translate these technologies from the proof-of-principle concept level to point of care clinical diagnosis, integrated, portable devices having small footprint cartridges that house low-cost disposable consumables are sought. Towards this goal, we developed an all-polymeric nanoplasmonic microfluidic (NMF) transmission surface plasmon resonance (SPR) biosensor. The device was fabricated in thermoplastics using a simple, single step and cost-effective hot embossing technique amenable to mass production. The novel 3D hierarchical mold fabrication process enabled monolithic integration of blazed nanogratings within the detection chambers of a multichannel microfluidic system. Consequently, a single hard thermoplastic bottom substrate comprising plasmonic and fluidic features allowed integration of active fluidic elements, such as pneumatic valves, in the top soft thermoplastic cover, increasing device functionality. A simple and compact transmission-based optical setup was employed with multiplexed end-point or dual-channel kinetic detection capability which did not require stringent angular accuracy. The sensitivity, specificity and reproducibility of the transmission SPR biosensor was demonstrated through label-free immunodetection of soluble cell-surface glycoprotein sCD44 at clinically relevant picomolar to nanomolar concentrations. PMID:23287840

  14. Use of Vacuum Bagging for Fabricating Thermoplastic Microfluidic Devices

    PubMed Central

    Cassano, Christopher L.; Simon, Andrew J.; Liu, Wei; Fredrickson, Carl; Fan, Z. Hugh

    2014-01-01

    In this work we present a novel thermal bonding method for thermoplastic microfluidic devices. This simple method employs a modified vacuum bagging technique, a concept borrowed from the aerospace industry, to produce conventional thick substrate microfluidic devices, as well as multi-layer film devices. The bonds produced using this method are superior to those obtained using conventional thermal bonding methods, including thermal lamination, and are capable of sustaining burst pressures in excess of 550 kPa. To illustrate the utility of this method, thick substrate devices were produced, as well as a six-layer film device that incorporated several complex features. PMID:25329244

  15. Nonlinear mechanical behavior of thermoplastic matrix materials for advanced composites

    NASA Technical Reports Server (NTRS)

    Arenz, R. J.; Landel, R. F.

    1989-01-01

    Two recent theories of nonlinear mechanical response are quantitatively compared and related to experimental data. Computer techniques are formulated to handle the numerical integration and iterative procedures needed to solve the associated sets of coupled nonlinear differential equations. Problems encountered during these formulations are discussed and some open questions described. Bearing in mind these cautions, the consequences of changing parameters that appear in the formulations on the resulting engineering properties are discussed. Hence, engineering approaches to the analysis of thermoplastic matrix material can be suggested.

  16. Induction Consolidation of Thermoplastic Composites Using Smart Susceptors

    SciTech Connect

    Matsen, Marc R

    2012-06-14

    This project has focused on the area of energy efficient consolidation and molding of fiber reinforced thermoplastic composite components as an energy efficient alternative to the conventional processing methods such as autoclave processing. The expanding application of composite materials in wind energy, automotive, and aerospace provides an attractive energy efficiency target for process development. The intent is to have this efficient processing along with the recyclable thermoplastic materials ready for large scale application before these high production volume levels are reached. Therefore, the process can be implemented in a timely manner to realize the maximum economic, energy, and environmental efficiencies. Under this project an increased understanding of the use of induction heating with smart susceptors applied to consolidation of thermoplastic has been achieved. This was done by the establishment of processing equipment and tooling and the subsequent demonstration of this fabrication technology by consolidating/molding of entry level components for each of the participating industrial segments, wind energy, aerospace, and automotive. This understanding adds to the nation's capability to affordably manufacture high quality lightweight high performance components from advanced recyclable composite materials in a lean and energy efficient manner. The use of induction heating with smart susceptors is a precisely controlled low energy method for the consolidation and molding of thermoplastic composites. The smart susceptor provides intrinsic thermal control based on the interaction with the magnetic field from the induction coil thereby producing highly repeatable processing. The low energy usage is enabled by the fact that only the smart susceptor surface of the tool is heated, not the entire tool. Therefore much less mass is heated resulting in significantly less required energy to consolidate/mold the desired composite components. This energy efficiency results in potential energy savings of {approx}75% as compared to autoclave processing in aerospace, {approx}63% as compared to compression molding in automotive, and {approx}42% energy savings as compared to convectively heated tools in wind energy. The ability to make parts in a rapid and controlled manner provides significant economic advantages for each of the industrial segments. These attributes were demonstrated during the processing of the demonstration components on this project.

  17. ZnO Nanorod Thermoplastic Polyurethane Nanocomposites: Morphology and Shape Memory Performance

    SciTech Connect

    Koerner, H.; Kelley, J; George, J; Drummy, L; Mirau, P; Bell, N; Hsu, J; Vaia, R

    2009-01-01

    The impact of dispersed alkylthiol-modified ZnO nanorods, as a function of rod aspect ratio and concentration, on the shape memory character of a thermoplastic polyurethane with low hard-segment density (LHS-TPU) is examined relative to the enhanced performance occurring for carbon nanofiber (CNF) dispersion. Solution blending resulted in uniform dispersion within the LHS-TPU of the ZnO nanorods at low volume (weight) fractions (<2.9% v/v (17.75% w/w)). Tensile modulus enhancements were modest though, comparable to values observed for spherical nanofillers. Shape memory characteristics, which in this LHS-TPU result when strain-induced crystallites retard the entropic recovery of the deformed chains, were unchanged for these low volume fraction ZnO nanocomposites. Higher ZnO loadings (12% v/v (50% w/w)) exhibited clustering of ZnO nanorods into a mesh-like structure. Here, tensile modulus and shape recovery characteristics were improved, although not as great as seen for comparable CNF addition. Wide angle X-ray diffraction and NMR revealed that the addition of ZnO nanorods did not impact the inherent strain induced crystallization of the LHS-TPU, which is in contrast to the impact of CNFs and emphasizes the impact of interactions at the polymer-nanoparticle interface. Overall, these findings reinforce the hypothesis that the shape memory properties of polymer nanocomposites are governed by the extent to which nanoparticle addition, via nanoparticle aspect ratio, hierarchical morphology, and interfacial interactions, impacts the molecular mechanism responsible for trapping elastic strain.

  18. Polylactide?Poly(6-methyl-[espilson]-caprolactone)?Polylactide Thermoplastic Elastomers

    SciTech Connect

    Martello, Mark T.; Hillmyer, Marc A.

    2012-11-14

    Amorphous ABA type block aliphatic polyesters can be useful as degradable and biorenewable thermoplastic elastomers. These materials can be prepared by sequential ring-opening transesterification polymerization (ROTEP) reactions and can exhibit a range of physical properties and morphologies. In this work a set of amorphous polylactide-poly(6-methyl-{epsilon}-caprolactone)-polylactide aliphatic polyester ABA triblock copolymers were prepared by consecutive controlled ring-opening polymerizations. Ring-opening polymerization of neat 6-methyl-{epsilon}-caprolactone in the presence of 1,4-benzenedimethanol and tin(II) octoate afforded {alpha},{omega}-hydroxyl-terminated poly(6-methyl-{epsilon}-caprolactone). High conversions of 6-methyl-{epsilon}-caprolactone (>96%) afforded polymers with molar masses ranging from 12 to 98 kg mol{sup -1}, depending on monomer-to-initiator ratios, polymers with narrow, monomodal molecular weight distributions. An array of polylactide-poly(6-methyl-{epsilon}-caprolactone)-polylactide triblock copolymers with controlled molecular weights and narrow molecular weight distributions were synthesized using the telechelic poly(6-methyl-{epsilon}-caprolactone) samples as macroinitiators for the ring-opening polymerization of D,L-lactide. The morphological, thermal, and mechanical behaviors of these materials were explored. Several triblocks adopted well-ordered microphase-separated morphologies, and both hexagonally packed cylindrical and lamellar structures were observed. The Flory-Huggins interaction parameter was determined, x(T) = 61.2 T{sup -1} - 0.1, based on the order-to-disorder transition temperatures of two symmetric triblocks using the calculated mean field theory result. The elastomeric mechanical behavior of two high molecular weight triblocks was characterized by tensile and elastic recovery experiments.

  19. Development of Expanded Thermoplastic Polyurethane Bead Foams and Their Sintering Mechanism

    NASA Astrophysics Data System (ADS)

    Hossieny, Nemat

    Polymer bead foaming technology represents a breakthrough in the production of low density plastic foamed components that have a complex geometrical structure and has helped to expand the market for plastic foams by broadening their applications. In this research, the unique microstructure of thermoplastic polyurethane (TPU) consisting of phase-separated hard segment (HS) domains dispersed in the soft segment (SS) matrix has been utilized to develop expanded TPU (E-TPU) bead foam with microcellular morphologies and also to create inter-bead sintering into three dimensional products using steam-chest molding machine. The phase-separation and crystallization behavior of the HS chains in the TPU microstructure was systematically studied in the presence of dissolved gases and also by changing the microstructure of TPU by melt-processing and addition of nano-/micro-sized additives. It was observed that the presence of gas improved the phase separation (i.e. crystallization) of HSs and increased the overall crystallinity of the TPU. It was also shown that by utilizing the HS crystalline domains, the overall foaming behavior of TPU (i.e. cell nucleation and expansion ratio) can be significantly improved. Moreover, the HS crystalline domains can be effective for both sintering of the beads as well strengthening the individual beads to improve the property of the moulded part. It was also observed that unlike other polymer bead foaming technologies, the E-TPU bead foaming sintering does not require formation of double melting-peak. The original broad melting peak existing in the TPU microstructure due to the wide size distribution of HS crystallites can be effectively utilized for the purpose of sintering as well as maintenance of the overall dimensional stability of the moulded part.

  20. Polymer films

    DOEpatents

    Granick, Steve; Sukhishvili, Svetlana A.

    2008-12-30

    A film contains a first polymer having a plurality of hydrogen bond donating moieties, and a second polymer having a plurality of hydrogen bond accepting moieties. The second polymer is hydrogen bonded to the first polymer.

  1. Polymer films

    DOEpatents

    Granick, Steve; Sukhishvili, Svetlana A.

    2004-05-25

    A film contains a first polymer having a plurality of hydrogen bond donating moieties, and a second polymer having a plurality of hydrogen bond accepting moieties. The second polymer is hydrogen bonded to the first polymer.

  2. Graphene/Polymer Nanocomposites

    NASA Astrophysics Data System (ADS)

    Macosko, Chris

    2010-03-01

    Graphite has attracted large attention as a reinforcement for polymers due to its ability to modify electrical conductivity, mechanical and gas barrier properties of host polymers and its potentially lower cost than carbon nanotubes. If graphite can be exfoliated into atomically thin graphene sheets, it is possible to achieve the highest property enhancements at the lowest loading. However, small spacing and strong van der Waals forces between graphene layers make exfoliation of graphite via conventional composite manufacturing strategies challenging. Recently, two different approaches to obtain exfoliated graphite prior to blending were reported: thermal treatment (Schniepp et al., JACS 2006) and chemical modification (Stankovich et al., J Mat Chem 2006). Both start from graphite oxide. We will describe and evaluate these exfoliation approaches and the methods used to produce graphene reinforced thermoplastics, particularly polyester, polycarbonate and polyurethane nanocomposites. Three different dispersion methods - melt blending, solution mixing and in-situ polymerization -- are compared. Characterization of dispersion quality is illustrated with TEM, rheology and in electrical conductivity, tensile modulus and gas barrier property improvement.

  3. Polyphenylquinoxalines containing pendant phenylethynyl and ethynyl groups. [for thermoplastic resins

    NASA Technical Reports Server (NTRS)

    Hergenrother, P. M. (Inventor)

    1983-01-01

    Poly(phenylquinoxaline) prepolymers containing pendant phenylethynyl and ethynyl groups are disclosed along with the process for forming these polymers. Monomers and the process for producing same that are employed to prepare the polymers are also disclosed.

  4. Extrusion foaming of protein-based thermoplastic and polyethylene blends

    NASA Astrophysics Data System (ADS)

    Gavin, Chanelle; Lay, Mark C.; Verbeek, Casparus J. R.

    2016-03-01

    Currently the extrusion foamability of Novatein® Thermoplastic Protein (NTP) is being investigated at the University of Waikato in collaboration with the Biopolymer Network Ltd (NZ). NTP has been developed from bloodmeal (>86 wt% protein), a co-product of the meat industry, by adding denaturants and plasticisers (tri-ethylene glycol and water) allowing it to be extruded and injection moulded. NTP alone does not readily foam when sodium bicarbonate is used as a chemical blowing agent as its extensional viscosity is too high. The thermoplastic properties of NTP were modified by blending it with different weight fractions of linear low density polyethylene (LLDPE) and polyethylene grafted maleic anhydride (PE-g-MAH) compatibiliser. Extrusion foaming was conducted in two ways, firstly using the existing water content in the material as the blowing agent and secondly by adding sodium bicarbonate. When processed in a twin screw extruder (L/D 25 and 10 mm die) the material readily expanded due to the internal moisture content alone, with a conditioned expansion ratio of up to ± 0.13. Cell structure was non-uniform exhibiting a broad range cell sizes at various stages of formation with some coalescence. The cell size reduced through the addition of sodium bicarbonate, overall more cells were observed and the structure was more uniform, however ruptured cells were also visible on the extrudate skin. Increasing die temperature and introducing water cooling reduced cell size, but the increased die temperature resulted in surface degradation.

  5. Injection Molding of Flat Glass Fiber Reinforced Thermoplastics

    NASA Astrophysics Data System (ADS)

    Tanaka, Kazuto; Katayama, Tsutao; Tanaka, Tatsuya; Anguri, Akihiro

    During an injection molding of composite materials, fiber attrition occurs and the average fiber length is reduced. In order to control the breakage of fibers and degradation of mechanical properties during processing, Flat glass Fiber (FF), that has oval cross-section shape, has been developed to use for glass fiber reinforced thermoplastic (GFRTP). Using FF as reinforcement of GFRTP has advantages as following: (1) Fluidity of FF is better than conventional Normal glass Fiber (NF) with 'circular' cross-section; (2) Fiber breakage during the injection molding process using FF is smaller than that using NF. In this study, the mechanical properties of FF and NF were compared for reinforcement of long fiber thermoplastics pellets (LFT pellets). We have also investigated the effect of screw design on fiber damage and the mechanical properties. The mechanical properties of specimens molded by FF reinforcement LFT (FF-LFT) pellets were superior to these of NF reinforcement LFT (NF-LFT) pellets. The former could give composites with higher fluidity and longer residual fiber length. Moreover, FF was able to strengthen injection-molded samples with higher fiber content than NF. Low shear type screw was effective to prevent the fiber attrition during plasticization process, hence leads to better mechanical properties of GFRTP

  6. Magnetostrictive pressure device for thermoplastic fiber placement process

    NASA Astrophysics Data System (ADS)

    Ahrens, Markus; Mallick, Vishal

    1999-07-01

    Fiber reinforced composites offer excellent specific stiffness and strength and are therefore interesting for rotating machinery applications. The main disadvantage of high performance composites is the manufacturing process which is labor intensive and thus slow and expensive. The Thermoplastic Fiber Placement process overcomes these difficulties due to its high degree of automation. During the process, an impregnated tape is heated up and then consolidated in-situ under pressure. The process which is used at ABB consists of a six axis robot, a heat source and a pressure device for consolidation. Today mechanical roller element are used to apply the forces normal to the surface to the composite part. These forces are necessary for proper consolidation. The roller action prevents damage due to shearing of the tape during lay down. To improve the processing sped, and to expand the use of the Thermoplastic Fiber Placement process for more complex structures, two severe drawbacks of the solid roller approach need to be overcome; the small pressure contact area which limits the speed of the process and the poor conformability which prevents the process from being applied to highly 3D surfaces. Smart materials such as piezoelectrics, electrostrictives and magnetostrictives can produce high forces at high operating frequencies and enable a large, conformable actuated surface to be realized. A pressure device made with a magnetostrictive actuator has been tested. The main design goal is to apply the consolidation pressure correctly, without introducing shear forces on the tape, in order to produce parts with optimal mechanical properties.

  7. Field Testing of Thermoplastic Encapsulants in High-Temperature Installations

    SciTech Connect

    Kempe, Michael D.; Miller, David C.; Wohlgemuth, John H.; Kurtz, Sarah R.; Moseley, John M.; Shah, Qurat A.; Tamizhmani, Govindasamy; Sakurai, Keiichiro; Inoue, Masanao; Doi, Takuya; Masuda, Atsushi; Samuels, Sam L.; Vanderpan, Crystal E.

    2015-11-01

    Recently there has been increased interest in using thermoplastic encapsulant materials in photovoltaic modules, but concerns have been raised about whether these would be mechanically stable at high temperatures in the field. This has become a significant topic of discussion in the development of IEC 61730 and IEC 61215. We constructed eight pairs of crystalline-silicon modules and eight pairs of glass/encapsulation/glass thin-film mock modules using different encapsulant materials, of which only two were formulated to chemically crosslink. One module set was exposed outdoors with thermal insulation on the back side in Mesa, Arizona, in the summer (hot-dry), and an identical module set was exposed in environmental chambers. High-precision creep measurements (±20 μm) and electrical performance measurements indicate that despite many of these polymeric materials operating in the melt or rubbery state during outdoor deployment, no significant creep was seen because of their high viscosity, lower operating temperature at the edges, and/or the formation of chemical crosslinks in many of the encapsulants with age despite the absence of a crosslinking agent. Only an ethylene-vinyl acetate (EVA) encapsulant formulated without a peroxide crosslinking agent crept significantly. When the crystalline-silicon modules, the physical restraint of the backsheet reduced creep further and was not detectable even for the EVA without peroxide. Because of the propensity of some polymeric materials to crosslink as they age, typical thermoplastic encapsulants would be unlikely to result in creep in the vast majority of installations.

  8. CREEP MODELING FOR INJECTION-MOLDED LONG-FIBER THERMOPLASTICS

    SciTech Connect

    Nguyen, Ba Nghiep; Kunc, Vlastimil; Bapanapalli, Satish K.

    2008-06-30

    This paper proposes a model to predict the creep response of injection-molded long-fiber thermoplastics (LFTs). The model accounts for elastic fibers embedded in a thermoplastic resin that exhibits the nonlinear viscoelastic behavior described by the Schaperys model. It also accounts for fiber length and orientation distributions in the composite formed by the injection-molding process. Fiber length and orientation distributions were measured and used in the analysis that applies the Eshelbys equivalent inclusion method, the Mori-Tanaka assumption (termed as the Eshelby-Mori-Tanaka approach) and the fiber orientation averaging technique to compute the overall strain increment resulting from an overall constant applied stress during a given time increment. The creep model for LFTs has been implemented in the ABAQUS finite element code via user-subroutines and has been validated against the experimental creep data obtained for long-glass-fiber/polypropylene specimens. The effects of fiber orientation and length distributions on the composite creep response are determined and discussed.

  9. Polymer research at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    St.clair, T. L.; Johnston, N. J.

    1982-01-01

    Polymer synthesis programs involve the development of Novel thermoplastics, pseudothermoplastics, and thermosets. These systems are prepared to elucidate structure-property relationships involving thermal capabilities, toughness, processability and environmental stability. Easily processable polyimides, solvent-resistant polysulfones and polyphenylquinoxalines, and tougher high and intermediate temperature polymers were developed. Characterization efforts included high pressure liquid chromatography methodology, the development of toughness tests for fiber reinforced composites, a study of electrical properties of metal ion filled polyimides, and a study of the mutagenicity of aromatic diamines. Also the mechanism of cure/degradation of experimental polymers was studied by rheology, mechanical behavior, separation techniques and spectroscopy. The degradative crosslinking of alkyl-containing polyimides, the separation and identification of crosslinked phenylquinoxalines, the rheological behavior of hot-melt polyimides, and the elucidation of the cure of norbornene endcapped imides were also studied.

  10. Dielectric Characterization of PCL-Based Thermoplastic Materials for Microwave Diagnostic and Therapeutic Applications

    PubMed Central

    Aguilar, Suzette M.; Shea, Jacob D.; Al-Joumayly, Mudar A.; Van Veen, Barry D.; Behdad, Nader; Hagness, Susan C.

    2011-01-01

    We propose the use of a polycaprolactone (PCL)-based thermoplastic mesh as a tissue-immobilization interface for microwave imaging and microwave hyperthermia treatment. An investigation of the dielectric properties of two PCL-based thermoplastic materials in the frequency range of 0.5 3.5 GHz is presented. The frequency-dependent dielectric constant and effective conductivity of the PCL-based thermoplastics are characterized using measurements of microstrip transmission lines fabricated on substrates comprised of the thermoplastic meshes. We also examine the impact of the presence of a PCL-based thermoplastic mesh on microwave breast imaging. We use a numerical test bed comprised of a previously reported three-dimensional anatomically realistic breast phantom and a multi-frequency microwave inverse scattering algorithm. We demonstrate that the PCL-based thermoplastic material and the assumed biocompatible medium of vegetable oil are sufficiently well matched such that the PCL layer may be neglected by the imaging solution without sacrificing imaging quality. Our results suggest that PCL-based thermoplastics are promising materials as tissue immobilization structures for microwave diagnostic and therapeutic applications. PMID:21622068

  11. Manufacturing of a REBCO racetrack coil using thermoplastic resin aiming at Maglev application

    NASA Astrophysics Data System (ADS)

    Mizuno, Katsutoshi; Ogata, Masafumi; Hasegawa, Hitoshi

    2015-11-01

    The REBCO coated conductor is a promising technology for the Maglev application in terms of its high critical temperature. The operating temperature of the on-board magnets can be around 40-50 K with the coated conductor. The REBCO coils are cooled by cryocoolers directly, and hence the thermal design of the REBCO coils significantly changes from that of LTS coils. We have developed a novel REBCO coil structure using thermoplastic resin. The coil is not impregnated and the thermoplastic resin is used to bond the coil winding and the heat transfer members, e.g. copper and aluminum plates. The viscosity of the thermoplastic resin is high enough for the thermoplastic resin not to permeate between the turns in the coil. Therefore, the thermal stress does not occur and the risk of degradation is removed. This paper contains the following three topics. First, the thermal resistance of the thermoplastic resin was measured at cryogenic temperature. Then, a small round REBCO coil was experimentally produced. It has been confirmed that the thermoplastic resin does not cause the degradation and, the adhesion between the coil winding and copper plates withstands the thermal stress. Finally, we successfully produced a full-scale racetrack REBCO coil applying the coil structure with the thermoplastic resin.

  12. Stamping patterns of insulated gold nanowires with self-organized ultrathin polymer films.

    PubMed

    Helt, James M; Drain, Charles Michael; Bazzan, Giorgio

    2006-07-26

    A thermal contact transfer technique is presented for the fabrication of nanoscaled to microscaled patterns of polymer-insulated metal structures on ceramic surfaces using metal-coated, thermoplastic stamps. The thermally activated formation of polymer-metal-polymer (PMP) heterostructures occurs spontaneously when a metal-coated thermoplastic stamp is compressed against a ceramic substrate and subsequently heated. The presented technique exploits the dynamics of ultrathin polymer films localized at interfaces and interfacial forces to prompt local reorganization of polymer stamp materials during processing. Intercalation of polymer stamp materials into the metal-substrate interface yields a cohesive polymer layer that binds the metal layer to the substrate. Disproportionate adhesion between the bulk polymer and the polymer layer at the stamp-metal interface leaves a capping layer upon separation of the stamp from the substrate. Here we demonstrate this technique with single use, bilevel polymer stamps which afford transfer of two distinct general products. The transfer of insulated submicrometer wide wires from the raised stamp features affords patterns of trilayered PMP structures with uniform wire dimensions. Concomitant transfer from the recessed stamp features allows fabrication of multilayered PMP architectures with sub-100 nm spacing from microstructured polymer stamps. Thus, patterns with two different insulated nanowire widths are readily fabricated in a single stamping process. A variety of ceramic substrates, thermoplastic materials, and metals can be used; e.g., inexpensive gold-coated CD or DVD media can be used as stamps, where the combination of materials dictates the relative interfacial forces and the processing parameters. PMID:16848472

  13. High-Temperature Shape Memory Polymers

    NASA Technical Reports Server (NTRS)

    Yoonessi, Mitra; Weiss, Robert A.

    2012-01-01

    physical conformation changes when exposed to an external stimulus, such as a change in temperature. Such materials have a permanent shape, but can be reshaped above a critical temperature and fixed into a temporary shape when cooled under stress to below the critical temperature. When reheated above the critical temperature (Tc, also sometimes called the triggering or switching temperature), the materials revert to the permanent shape. The current innovation involves a chemically treated (sulfonated, carboxylated, phosphonated, or other polar function group), high-temperature, semicrystalline thermoplastic poly(ether ether ketone) (Tg .140 C, Tm = 340 C) mix containing organometallic complexes (Zn++, Li+, or other metal, ammonium, or phosphonium salts), or high-temperature ionic liquids (e.g. hexafluorosilicate salt with 1-propyl-3- methyl imidazolium, Tm = 210 C) to form a network where dipolar or ionic interactions between the polymer and the low-molecular-weight or inorganic compound forms a complex that provides a physical crosslink. Hereafter, these compounds will be referred to as "additives". The polymer is semicrystalline, and the high-melt-point crystals provide a temporary crosslink that acts as a permanent crosslink just so long as the melting temperature is not exceeded. In this example case, the melting point is .340 C, and the shape memory critical temperature is between 150 and 250 C. PEEK is an engineering thermoplastic with a high Young fs modulus, nominally 3.6 GPa. An important aspect of the invention is the control of the PEEK functionalization (in this example, the sulfonation degree), and the thermal properties (i.e. melting point) of the additive, which determines the switching temperature. Because the compound is thermoplastic, it can be formed into the "permanent" shape by conventional plastics processing operations. In addition, the compound may be covalently cross - linked after forming the permanent shape by S-PEEK by applying ionizing radiation ( radiation, neutrons), or by chemical crosslinking to form a covalent permanent network. With respect to other shape memory polymers, this invention is novel in that it describes the use of a thermoplastic composition that can be thermally molded or solution-cast into complex "permanent" shapes, and then reheated or redissolved and recast from solution to prepare another shape. It is also unique in that the shape memory behavior is provided by a non-polymer additive.

  14. Sub-second thermoplastic forming of bulk metallic glasses by ultrasonic beating

    PubMed Central

    Ma, Jiang; Liang, Xiong; Wu, Xiaoyu; Liu, Zhiyuan; Gong, Feng

    2015-01-01

    The work proposed a novel thermoplastic forming approach–the ultrasonic beating forming (UBF) method for bulk metallic glasses (BMGs) in present work. The rapid forming approach can finish the thermoplastic forming of BMGs in less than one second, avoiding the time-dependent crystallization and oxidation to the most extent. Besides, the UBF is also proved to be competent in the fabrication of structures with the length scale ranging from macro scale to nano scale. Our results propose a novel route for the thermoplastic forming of BMGs and have promising applications in the rapid fabrication of macro to nano scale products and devices. PMID:26644149

  15. Sub-second thermoplastic forming of bulk metallic glasses by ultrasonic beating

    NASA Astrophysics Data System (ADS)

    Ma, Jiang; Liang, Xiong; Wu, Xiaoyu; Liu, Zhiyuan; Gong, Feng

    2015-12-01

    The work proposed a novel thermoplastic forming approachthe ultrasonic beating forming (UBF) method for bulk metallic glasses (BMGs) in present work. The rapid forming approach can finish the thermoplastic forming of BMGs in less than one second, avoiding the time-dependent crystallization and oxidation to the most extent. Besides, the UBF is also proved to be competent in the fabrication of structures with the length scale ranging from macro scale to nano scale. Our results propose a novel route for the thermoplastic forming of BMGs and have promising applications in the rapid fabrication of macro to nano scale products and devices.

  16. High performance thermoplastics: A review of neat resin and composite properties

    NASA Technical Reports Server (NTRS)

    Johnston, Norman J.; Hergenrother, Paul M.

    1987-01-01

    A review was made of the principal thermoplastics used to fabricate high performance composites. Neat resin tensile and fracture toughness properties, glass transition temperatures (Tg), crystalline melt temperatures (Tm) and approximate processing conditions are presented. Mechanical properties of carbon fiber composites made from many of these thermoplastics are given, including flexural, longitudinal tensile, transverse tensile and in-plane shear properties as well as short beam shear and compressive strengths and interlaminar fracture toughness. Attractive features and problems involved in the use of thermo-plastics as matrices for high performance composites are discussed.

  17. Analytical and experimental evaluation of techniques for the fabrication of thermoplastic hologram storage devices

    NASA Technical Reports Server (NTRS)

    Rogers, J. W.

    1975-01-01

    The results of an experimental investigation on recording information on thermoplastic are given. A description was given of a typical fabrication configuration, the recording sequence, and the samples which were examined. There are basically three configurations which can be used for the recording of information on thermoplastic. The most popular technique uses corona which furnishes free charge. The necessary energy for deformation is derived from a charge layer atop the thermoplastic. The other two techniques simply use a dc potential in place of the corona for deformation energy.

  18. Patterning methods for polymers in cell and tissue engineering.

    PubMed

    Kim, Hong Nam; Kang, Do-Hyun; Kim, Min Sung; Jiao, Alex; Kim, Deok-Ho; Suh, Kahp-Yang

    2012-06-01

    Polymers provide a versatile platform for mimicking various aspects of physiological extracellular matrix properties such as chemical composition, rigidity, and topography for use in cell and tissue engineering applications. In this review, we provide a brief overview of patterning methods of various polymers with a particular focus on biocompatibility and processability. The materials highlighted here are widely used polymers including thermally curable polydimethyl siloxane, ultraviolet-curable polyurethane acrylate and polyethylene glycol, thermo-sensitive poly(N-isopropylacrylamide) and thermoplastic and conductive polymers. We also discuss how micro- and nanofabricated polymeric substrates of tunable elastic modulus can be used to engineer cell and tissue structure and function. Such synergistic effect of topography and rigidity of polymers may be able to contribute to constructing more physiologically relevant microenvironment. PMID:22258887

  19. Review on ultrasonic fabrication of polymer micro devices.

    PubMed

    Sackmann, J; Burlage, K; Gerhardy, C; Memering, B; Liao, S; Schomburg, W K

    2015-02-01

    Fabrication of micro devices from thermoplastic polymers by ultrasonic processing has become a promising new technology in recent years. Microstructures are generated on polymer surfaces with cycle times of a few seconds and are tightly sealed in even shorter times. Investment costs and energy consumption are comparatively low and processes are very flexible enabling economic fabrication even for small-scale production. For large-scale production role-to-role fabrication has been shown reducing costs even more. A variety of micro devices have been introduced up to now mostly for microfluidic applications. Besides this, electronic circuit boards are fabricated by ultrasonic processing. PMID:25213312

  20. LDRD final report on intelligent polymers for nanodevice performance control

    SciTech Connect

    JAMISON,GREGORY M.; LOY,DOUGLAS A.; WHEELER,DAVID R.; SAUNDERS,RANDALL S.L; SHELNUTT,JOHN A.; CARR,MARTIN J.; SHALTOUT,RAAFAT M.

    2000-01-01

    A variety of organic and hybrid organic-inorganic polymer systems were prepared and evaluated for their bulk response to optical, thermal and chemical environmental changes. These included modeling studies of polyene-bridged metal porphyrin systems, metal-mediated oligomerization of phosphaalkynes as heteroatomic analogues to polyacetylene monomers, investigations of chemically amplified degradation of acid- and base-sensitive polymers and thermally responsive thermoplastic thermosets based on Diels-Alder cycloaddition chemistry. The latter class of materials was utilized to initiate work to develop a new technique for rapidly building a library of systems with varying depolymerization temperatures.

  1. High-Performance, Semi-Interpenetrating Polymer Network

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H.; Lowther, Sharon E.; Smith, Janice Y.; Cannon, Michelle S.; Whitehead, Fred M.; Ely, Robert M.

    1992-01-01

    High-performance polymer made by new synthesis in which one or more easy-to-process, but brittle, thermosetting polyimides combined with one or more tough, but difficult-to-process, linear thermoplastics to yield semi-interpenetrating polymer network (semi-IPN) having combination of easy processability and high tolerance to damage. Two commercially available resins combined to form tough, semi-IPN called "LaRC-RP49." Displays improvements in toughness and resistance to microcracking. LaRC-RP49 has potential as high-temperature matrix resin, adhesive, and molding resin. Useful in aerospace, automotive, and electronic industries.

  2. Interpenetrating polymer network approach to tougher and more microcracking resistant high temperature polymers. I - LaRC-RP40

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H.; Morgan, Cassandra D.

    1988-01-01

    Interpenetrating polymer networks in the form of the LaRC-RP40 resin, prepared by the in situ polymerization of a thermosetting imide prepolymer and thermoplastic monomer reactants, are presently used to obtain toughness and microcracking resistance in a high-temperature polymer. Attention is presently given to the processing, physical, and mechanical properties, as well as the thermooxidative stability, of both the neat resin and the resin as a graphite fiber-reinforced matrix. Microcracking after thermal cycling was also tested. LaRC-RP40 exhibits significant resin fracture toughness improvements over the PMR-15 high-temperature matrix resin.

  3. Analysis of a space-exposed thermoplastic resin

    NASA Technical Reports Server (NTRS)

    Young, Philip R.; Slemp, Wayne S.; Siochi, Emilie J.; Davis, Judith R. J.

    1992-01-01

    The chemical characterization of a thermoplastic resin exposed to the low Earth orbit (LEO) environment for 10 months and for 5.8 years is reported. The resin, processed as a thick film and as a matrix for a graphite fiber reinforced composite, few exposed in the RAM direction on the NASA Long Duration Exposure Facility (LDEF). Differences attributable to environmental exposure were detected in infrared spectra and in various molecular weight parameters of film after 10 months in LEO. Those effects were not as apparent in composites after 5.8 years in LEO. Increased exposure to atomic oxygen toward the end of the LDEF mission probably scrubbed these effects from specimens exposed for 5.8 years. The intent of this study is to increase our fundamental understanding of space environmental effects on polymeric materials and to develop a benchmark for enhancing our methodology for and understanding of the ground-based simulation of space environmental effects.

  4. Induction bonding procedures for graphite reinforced thermoplastic assemblies

    NASA Astrophysics Data System (ADS)

    Mahon, J.; Rutkowski, C.; Oelcher, W.

    Three T650-42/PAS-2 graphite-reinforced thermoplastic (Gr/TP) demonstration components representative of an F-111A horizontal stabilizer leading edge were successfully fabricated and destructively tested. Two of these components were assembled by induction bonding using 3M AF-191 film adhesive and vacuum bag pressure. The third component was joined using the current industry baseline process, autoclave co-consolidation. The three rib components were machined to provide two rib test elements which were tested in four-point beam bending at ambient temperature. Prior to testing, one of the induction-bonded elements was deliberately damaged and then repaired. Structural test results for the Gr/TP components were compared to corresponding data developed for graphite/bismaleimide (Gr/BMI) leading edge test elements fabricated for an earlier Air Force funded program. This comparison and preliminary cost analysis indicated the potential cost effectivity and structural efficiency of induction-bonded Fr/TP hardware.

  5. An automated technique for manufacturing thermoplastic stringers in continuous length

    NASA Astrophysics Data System (ADS)

    Pantelakis, Sp.; Baxevani, E.; Spelz, U.

    In the present work an automated Continuous Compression Moulding Technique for the manufacture of stringers in continuous length is presented. The method combines pultrusion and hot-pressing. The technique is utilized for the production of L-shape stringers which are widely applied in aerospace constructions. The investigation was carried out on carbon reinforced PEEK (C/PEEK), as well as, for comparison, on the thermoplastic composites carbon reinforced polyethersulfon (C/PES), glass and carbon reinforced polyphenylene-sulfide (G/PPS, C/PPS) and Kevlar reinforced Polyamide 6 (K/PA 6). For the materials investigated the optimized process parameters for manufacturing the L-shape stringers were derived experimentally. To achieve this goal, the quality of the produced parts was controlled by using non-destructive testing techniques. Parts providing satisfactory quality were also tested destructively to measure their mechanical properties. The investigation results have shown the suitability of the technique to produce continuous length stringers.

  6. Tape Placement Head for Applying Thermoplastic Tape to an Object

    NASA Technical Reports Server (NTRS)

    Cope, Ralph D. (Inventor); Funck, Steve B. (Inventor); Gruber, Mark B. (Inventor); Lamontia, Mark A. (Inventor); Johnson, Anthony D. (Inventor)

    2008-01-01

    A tape placement head for applying thermoplastic tape to an object includes a heated feeder which guides the tape/tow to a heated zone. The heated zone has a line compactor having a single row of at least one movable heated member. An area compactor is located in the heated zone downstream from the line compactor. The area compactor includes a plurality of rows of movable feet which are extendable toward the tape/tow different distances with respect to each other to conform to the shape of the object. A shim is located between the heated compactors and the tape/tow. A chilled compactor is in a chilled zone downstream from the heated zone. The chilled zone includes a line chilled compactor and an area chilled compactor. A chilled shim is mounted between the chilled compactor and the tape/tow.

  7. Modeling Fatigue Damage in Long-Fiber Thermoplastics

    SciTech Connect

    Nguyen, Ba Nghiep; Kunc, Vlastimil; Bapanapalli, Satish K.

    2009-10-30

    This paper applies a fatigue damage model recently developed for injection-molded long-fiber thermoplastics (LFTs) to predict the modulus reduction and fatigue lifetime of glass/polyamide 6,6 (PA6,6) specimens. The fatigue model uses a multiscale mechanistic approach to describe fatigue damage accumulation in these materials subjected to cyclic loading. Micromechanical modeling using a modified Eshelby-Mori-Tanaka approach combined with averaging techniques for fiber length and orientation distributions is performed to establish the stiffness reduction relation for the composite as a function of the microcrack volume fraction. Next, continuum damage mechanics and a thermodynamic formulation are used to derive the constitutive relations and the damage evolution law. The fatigue damage model has been implemented in the ABAQUS finite element code and has been applied to analyze fatigue of the studied glass/PA6,6 specimens. The predictions agree well with the experimental results.

  8. THERMAL DEGRADATION EFFECTS ON CONSOLIDATION AND BONDING IN THE THERMOPLASTIC FIBER-PLACEMENT PROCESS

    EPA Science Inventory

    Effects of elevated temperature exposure during thermoplastic fiber placement on bonding and consolidation are investigated experimentally for AS 4/ polyetherketoneketone (PEKK) composite. Coupons of 24 layers are consolidated on the University of Delaware Center for Composite Ma...

  9. Thermosetting epoxy resin/thermoplastic system with combined shape memory and self-healing properties

    NASA Astrophysics Data System (ADS)

    Yao, Yongtao; Wang, Jingjie; Lu, Haibao; Xu, Ben; Fu, Yongqing; Liu, Yanju; Leng, Jinsong

    2016-01-01

    A novel and facile strategy was proposed to construct a thermosetting/thermoplastic system with both shape memory and self-healing properties based on commercial epoxy resin and poly(ɛ-caprolactone)-PCL. Thermoplastic material is capable of re-structuring and changing the stiffness/modulus when the temperature is above melting temperature. PCL microfiber was used as a plasticizer in epoxy resin–based blends, and served as a ‘hard segment’ to fix a temporary shape of the composites during shape memory cycles. In this study, the electrospun PCL membrane with a porous network structure enabled a homogenous PCL fibrous distribution and optimized interaction between fiber and epoxy resin. The self-healing capability is achieved by phase transition during curing of the composites. The mechanism of the shape memory effect of the thermosetting (rubber)/thermoplastic composite is attributed to the structural design of the thermoplastic network inside the thermosetting resin/rubber matrix.

  10. Adjustable forming of thermoplastic composites for orthopaedic applications.

    PubMed

    Hou, M; Friedrich, K

    1998-02-01

    The present study was focused on the development of a special thermoforming technique for manufacturing of continuous fibre reinforced thermoplastic composite parts with complex surface contours. In particular, a stamp forming process was modified to investigate the potential manufacturing advantages of thermoplastic composites in orthopaedic applications. An apparatus was designed which allowed the thermoforming procedure to be fully automatic, i.e. a cold pre-consolidated laminate panel, as the feed material, was heated up in an infrared heating zone and then transferred into a cold mould system, where it was stamp formed. Both halves of the mould were made of many tiny round metal sticks in a metal frame. This needle-bed mould allowed one to copy any contour by pushing it slightly on spring fixed sticks. The desired position of these sticks could then be adjusted by forcing the side plates of the metal frame together. To prevent any press mark of stick-tops on the composite, i.e. to achieve smooth surfaces of the themoformed composite parts, flexible rubber pads were needed to cover the mould surfaces. Experimental results showed that the surface profile of CF/PP and GF/PP composites formed by the needle-bed mould reproduced fairly well the contour of a saddle shaped, complex model sample. Unique properties of this needle-bed mould are that it can be repeatedly used, and that it can copy any complex surface contours, for example a bone surface, by simply adjusting the stick positions according to the special surface requirements. PMID:15348912

  11. Field Testing of Thermoplastic Encapsulants in High-Temperature Installations

    DOE PAGESBeta

    Kempe, Michael D.; Miller, David C.; Wohlgemuth, John H.; Kurtz, Sarah R.; Moseley, John M.; Shah, Qurat A.; Tamizhmani, Govindasamy; Sakurai, Keiichiro; Inoue, Masanao; Doi, Takuya; et al

    2015-11-01

    Recently there has been increased interest in using thermoplastic encapsulant materials in photovoltaic modules, but concerns have been raised about whether these would be mechanically stable at high temperatures in the field. This has become a significant topic of discussion in the development of IEC 61730 and IEC 61215. We constructed eight pairs of crystalline-silicon modules and eight pairs of glass/encapsulation/glass thin-film mock modules using different encapsulant materials, of which only two were formulated to chemically crosslink. One module set was exposed outdoors with thermal insulation on the back side in Mesa, Arizona, in the summer (hot-dry), and an identicalmore » module set was exposed in environmental chambers. High-precision creep measurements (±20 μm) and electrical performance measurements indicate that despite many of these polymeric materials operating in the melt or rubbery state during outdoor deployment, no significant creep was seen because of their high viscosity, lower operating temperature at the edges, and/or the formation of chemical crosslinks in many of the encapsulants with age despite the absence of a crosslinking agent. Only an ethylene-vinyl acetate (EVA) encapsulant formulated without a peroxide crosslinking agent crept significantly. When the crystalline-silicon modules, the physical restraint of the backsheet reduced creep further and was not detectable even for the EVA without peroxide. Because of the propensity of some polymeric materials to crosslink as they age, typical thermoplastic encapsulants would be unlikely to result in creep in the vast majority of installations.« less

  12. Thermoplastic matrix composites for aeronautical applications - The amorphous/semi-crystalline blends option

    NASA Astrophysics Data System (ADS)

    Iannone, Michele; Esposito, Floriana; Cammarano, Aniello

    2014-05-01

    Blends obtained by mixing high temperature applications thermoplastics have been investigated. Namely the blends considered in this work are made by semi-crystalline thermoplastics PEEK with amorphous PEI. The final goal is to analyse the mechanical, chemical-physical and environmental resistance characteristics of these blends to evaluate their suitability as matrices of carbon reinforced composites for aeronautical structural applications. The first collected results are very promising.

  13. Color stability, water sorption and cytotoxicity of thermoplastic acrylic resin for non metal clasp denture

    PubMed Central

    Jang, Dae-Eun; Lee, Ji-Young; Jang, Hyun-Seon; Lee, Jang-Jae

    2015-01-01

    PURPOSE The aim of this study was to compare the color stability, water sorption and cytotoxicity of thermoplastic acrylic resin for the non-metal clasp dentures to those of thermoplastic polyamide and conventional heat-polymerized denture base resins. MATERIALS AND METHODS Three types of denture base resin, which are conventional heat-polymerized acrylic resin (Paladent 20), thermoplastic polyamide resin (Bio Tone), thermoplastic acrylic resin (Acrytone) were used as materials for this study. One hundred five specimens were fabricated. For the color stability test, specimens were immersed in the coffee and green tee for 1 and 8 weeks. Color change was measured by spectrometer. Water sorption was tested after 1 and 8 weeks immersion in the water. For the test of cytotoxicity, cell viability assay was measured and cell attachment was analyzed by FE-SEM. RESULTS All types of denture base resin showed color changes after 1 and 8 weeks immersion. However, there was no significant difference between denture base resins. All specimens showed significant color changes in the coffee than green tee. In water sorption test, thermoplastic acrylic resin showed lower values than conventional heat-polymerized acrylic resin and thermoplastic polyamide resin. Three types of denture base showed low cytotoxicity in cell viability assay. Thermoplastic acrylic resin showed the similar cell attachment but more stable attachment than conventional heat-polymerized acrylic resin. CONCLUSION Thermoplastic acrylic resin for the non-metal clasp denture showed acceptable color stability, water sorption and cytotoxicity. To verify the long stability in the mouth, additional in vitro studies are needed. PMID:26330974

  14. FIBER LENGTH DISTRIBUTION MEASUREMENT FOR LONG GLASS AND CARBON FIBER REINFORCED INJECTION MOLDED THERMOPLASTICS

    SciTech Connect

    Kunc, Vlastimil; Frame, Barbara J; Nguyen, Ba N.; TuckerIII, Charles L.; Velez-Garcia, Gregorio

    2007-01-01

    Procedures for fiber length distribution (FLD) measurement of long fiber reinforced injection molded thermoplastics were refined for glass and carbon fibers. Techniques for sample selection, fiber separation, digitization and length measurement for both fiber types are described in detail. Quantitative FLD results are provided for glass and carbon reinforced polypropylene samples molded with a nominal original fiber length of 12.7 mm (1/2 in.) using equipment optimized for molding short fiber reinforced thermoplastics.

  15. Flow properties of a series of experimental thermoplastic polymides

    NASA Technical Reports Server (NTRS)

    Burks, H. D.; Nelson, J. B.; Price, H. L.

    1981-01-01

    The softening temperature to degradation temperature range of the polymers was about 440 to 650 K. All of the polymers retained small amounts of solvent as indicated by an increase in T(sub g) as the polymers were dried. The flow properties showed that all three polymers had very high apparent viscosities and would require high pressures and/or high temperatures and/or long times to obtain adequate flow in prepregging and molding. Although none was intended for such application, two of the polymers were combined with carbon fibers by solution prepregging. The prepregs were molded into laminates at temperatures and times, the selection of which was guided by the results from the flow measurements. These laminates had room temperature short beam shear strength similar to that of carbon fiber laminates with a thermosetting polyimide matrix. However, the strength had considerable scatter, and given the difficult processing, these polymides probably would not be suitable for continuous fiber composites.

  16. Modelling of the glass fiber length and the glass fiber length distribution in the compounding of short glass fiber-reinforced thermoplastics

    NASA Astrophysics Data System (ADS)

    Kloke, P.; Herken, T.; Schppner, V.; Rudloff, J.; Kretschmer, K.; Heidemeyer, P.; Bastian, M.; Walther, Dridger, A.

    2014-05-01

    The use of short glass fiber-reinforced thermoplastics for the production of highly stressed parts in the plastics processing industry has experienced an enormous boom in the last few years. The reasons for this are primarily the improvements to the stiffness and strength properties brought about by fiber reinforcement. These positive characteristics of glass fiber-reinforced polymers are governed predominantly by the mean glass fiber length and the glass fiber length distribution. It is not enough to describe the properties of a plastics component solely as a function of the mean glass fiber length [1]. For this reason, a mathematical-physical model has been developed for describing the glass fiber length distribution in compounding. With this model, it is possible on the one hand to optimize processes for the production of short glass fiber-reinforced thermoplastics, and, on the other, to obtain information on the final distribution, on the basis of which much more detailed statements can be made about the subsequent properties of the molded part. Based on experimental tests, it was shown that this model is able to accurately describe the change in glass fiber length distribution in compounding.

  17. Shape memory polymers with high and low temperature resistant properties.

    PubMed

    Xiao, Xinli; Kong, Deyan; Qiu, Xueying; Zhang, Wenbo; Liu, Yanju; Zhang, Shen; Zhang, Fenghua; Hu, Yang; Leng, Jinsong

    2015-01-01

    High temperature shape memory polymers that can withstand the harsh temperatures for durable applications are synthesized, and the aromatic polyimide chains with flexible linkages within the backbone act as reversible phase. High molecular weight (Mn) is demanded to form physical crosslinks as fixed phase of thermoplastic shape memory polyimide, and the relationship between Mn and glass transition temperature (Tg) is explored. Thermoset shape memory polyimide shows higher Tg and storage modulus, better shape fixity than thermoplastic counterpart due to the low-density covalent crosslinking, and the influence of crosslinking on physical properties are studied. The mechanism of high temperature shape memory effects based on chain flexibility, molecular weight and crosslink density is proposed. Exposure to thermal cycling from +150 °C to -150 °C for 200 h produces negligible effect on the properties of the shape memory polyimide, and the possible mechanism of high and low temperature resistant property is discussed. PMID:26382318

  18. Shape memory polymers with high and low temperature resistant properties

    PubMed Central

    Xiao, Xinli; Kong, Deyan; Qiu, Xueying; Zhang, Wenbo; Liu, Yanju; Zhang, Shen; Zhang, Fenghua; Hu, Yang; Leng, Jinsong

    2015-01-01

    High temperature shape memory polymers that can withstand the harsh temperatures for durable applications are synthesized, and the aromatic polyimide chains with flexible linkages within the backbone act as reversible phase. High molecular weight (Mn) is demanded to form physical crosslinks as fixed phase of thermoplastic shape memory polyimide, and the relationship between Mn and glass transition temperature (Tg) is explored. Thermoset shape memory polyimide shows higher Tg and storage modulus, better shape fixity than thermoplastic counterpart due to the low-density covalent crosslinking, and the influence of crosslinking on physical properties are studied. The mechanism of high temperature shape memory effects based on chain flexibility, molecular weight and crosslink density is proposed. Exposure to thermal cycling from +150 °C to −150 °C for 200 h produces negligible effect on the properties of the shape memory polyimide, and the possible mechanism of high and low temperature resistant property is discussed. PMID:26382318

  19. Antimicrobial polymers with metal nanoparticles.

    PubMed

    Palza, Humberto

    2015-01-01

    Metals, such as copper and silver, can be extremely toxic to bacteria at exceptionally low concentrations. Because of this biocidal activity, metals have been widely used as antimicrobial agents in a multitude of applications related with agriculture, healthcare, and the industry in general. Unlike other antimicrobial agents, metals are stable under conditions currently found in the industry allowing their use as additives. Today these metal based additives are found as: particles, ions absorbed/exchanged in different carriers, salts, hybrid structures, etc. One recent route to further extend the antimicrobial applications of these metals is by their incorporation as nanoparticles into polymer matrices. These polymer/metal nanocomposites can be prepared by several routes such as in situ synthesis of the nanoparticle within a hydrogel or direct addition of the metal nanofiller into a thermoplastic matrix. The objective of the present review is to show examples of polymer/metal composites designed to have antimicrobial activities, with a special focus on copper and silver metal nanoparticles and their mechanisms. PMID:25607734

  20. Antimicrobial Polymers with Metal Nanoparticles

    PubMed Central

    Palza, Humberto

    2015-01-01

    Metals, such as copper and silver, can be extremely toxic to bacteria at exceptionally low concentrations. Because of this biocidal activity, metals have been widely used as antimicrobial agents in a multitude of applications related with agriculture, healthcare, and the industry in general. Unlike other antimicrobial agents, metals are stable under conditions currently found in the industry allowing their use as additives. Today these metal based additives are found as: particles, ions absorbed/exchanged in different carriers, salts, hybrid structures, etc. One recent route to further extend the antimicrobial applications of these metals is by their incorporation as nanoparticles into polymer matrices. These polymer/metal nanocomposites can be prepared by several routes such as in situ synthesis of the nanoparticle within a hydrogel or direct addition of the metal nanofiller into a thermoplastic matrix. The objective of the present review is to show examples of polymer/metal composites designed to have antimicrobial activities, with a special focus on copper and silver metal nanoparticles and their mechanisms. PMID:25607734

  1. The influence of different screw concepts while processing fibre reinforced thermoplastics with the concept of inline-compounding on an injection moulding machine

    NASA Astrophysics Data System (ADS)

    Moritzer, E.; Müller, E.; Kleeschulte, R.

    2014-05-01

    Today, the global market poses major challenges for industrial product development. Complexity, the wide range of variants, flexibility and individuality are just some of the features that products have to fulfil. Product series additionally have shorter and shorter lifetimes. Because of their high capacity for adaptation, polymers are increasingly able to substitute traditional materials such as wood, glass and metals in various fields of application [1]. But polymers can only substitute other materials if they are optimally suited to the applications in question. Hence, product-specific material development is becoming increasingly important [2]. The problem is that the traditional development process for new polymer formulations is much too complex, too slow and therefore too expensive. Product-specific material development is thus out of the question for most processors. Integrating the compounding step in the injection moulding process would lead to a more efficient and faster development process for a new polymer formulation, providing an opportunity to create new product-specific materials. This process is called inline-compounding on an injection moulding machine. In order to develop this innovative formulation concept, with the focus on fibre reinforced thermoplastics, different screw-concepts are compared with regard to the resultant performance characteristics in the part, such as mechanical properties and fibre length distribution.

  2. Ceramic coatings on polymers by high energy beam for tribology application

    SciTech Connect

    Ayrault, S.; Chabert, B.; Soulier, J.P.; Treheux, D.; Vannes, A.B.; Chevallier, P.

    1995-10-01

    Aluminum oxide powder has been deposited on a thermoplastic polymer (PET) using atmospheric plasma and laser (CO{sub 2}, {lambda} = 10.6 {micro}m). The results have shown that there exists a mechanical anchorage of ceramic on the surface of the polymer whatever the technique used with different ceramic structures. To characterize the ceramic coating, two techniques have been used by tribological solicitation with little displacement (fretting) and by erosion. In this case, ceramic influence on the surface has been noted like protective substance in addition to the polymer structure interaction.

  3. Study of thermal stability and degradation of fire resistant candidate polymers for aircraft interiors

    NASA Technical Reports Server (NTRS)

    Hsu, M. T. S.

    1976-01-01

    The thermochemistry of bismaleimide resins and phenolphthalein polycarbonate was studied. Both materials are fire-resistant polymers and may be suitable for aircraft interiors. The chemical composition of the polymers has been determined by nuclear magnetic resonance and infrared spectroscopy and by elemental analysis. Thermal properties of these polymers have been characterized by thermogravimetric analyses. Qualitative evaluation of the volatile products formed in pyrolysis under oxidative and non-oxidative conditions has been made using infrared spectrometry. The residues after pyrolysis were analyzed by elemental analysis. The thermal stability of composite panel and thermoplastic materials for aircraft interiors was studied by thermogravimetric analyses.

  4. SUPER HARD SURFACED POLYMERS

    SciTech Connect

    Mansur, Louis K; Bhattacharya, R; Blau, Peter Julian; Clemons, Art; Eberle, Cliff; Evans, H B; Janke, Christopher James; Jolly, Brian C; Lee, E H; Leonard, Keith J; Trejo, Rosa M; Rivard, John D

    2010-01-01

    High energy ion beam surface treatments were applied to a selected group of polymers. Of the six materials in the present study, four were thermoplastics (polycarbonate, polyethylene, polyethylene terephthalate, and polystyrene) and two were thermosets (epoxy and polyimide). The particular epoxy evaluated in this work is one of the resins used in formulating fiber reinforced composites for military helicopter blades. Measures of mechanical properties of the near surface regions were obtained by nanoindentation hardness and pin on disk wear. Attempts were also made to measure erosion resistance by particle impact. All materials were hardness tested. Pristine materials were very soft, having values in the range of approximately 0.1 to 0.5 GPa. Ion beam treatment increased hardness by up to 50 times compared to untreated materials. For reference, all materials were hardened to values higher than those typical of stainless steels. Wear tests were carried out on three of the materials, PET, PI and epoxy. On the ion beam treated epoxy no wear could be detected, whereas the untreated material showed significant wear.

  5. Photochemical Functionalization of Polymer Surfaces for Microfabricated Devices

    PubMed Central

    Mecomber, Justin S.; Murthy, Rajesh S.; Rajam, Sridhar; Singh, Pradeep N. D.; Gudmundsdottir, Anna D.; Limbach, Patrick A.

    2012-01-01

    Herein we report the topochemical modification of polymer surfaces with perfluorinated aromatic azides. The aryl azides, which have quaternary amine or aldehyde functional groups, were linked to the surface of the polymer by UV irradiation. The polymer substrates used in this study were cyclic olefin copolymer (COC) and poly(methylmethacrylate) (PMMA). These substrates were characterized before and after modification, using reflection-absorption infrared spectroscopy (RAIRS), sessile water contact angle measurements, and X-ray photoelectron spectroscopy (XPS). Analysis of the surface confirmed the presence of an aromatic groups with aldehyde or quaternary amine functionality. Enzyme immobilization and patterning onto polymer surfaces were studied using confocal microscopy. Enzymatic digests were carried out on modified probes manufactured from thermoplastic substrates and the resulting peptide analysis was completed using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). PMID:18294015

  6. Comparison of piezoresistive monofilament polymer sensors.

    PubMed

    Melnykowycz, Mark; Koll, Birgit; Scharf, Dagobert; Clemens, Frank

    2014-01-01

    The development of flexible polymer monofilament fiber strain sensors have many applications in both wearable computing (clothing, gloves, etc.) and robotics design (large deformation control). For example, a high-stretch monofilament sensor could be integrated into robotic arm design, easily stretching over joints or along curved surfaces. As a monofilament, the sensor can be woven into or integrated with textiles for position or physiological monitoring, computer interface control, etc. Commercially available conductive polymer monofilament sensors were tested alongside monofilaments produced from carbon black (CB) mixed with a thermo-plastic elastomer (TPE) and extruded in different diameters. It was found that signal strength, drift, and precision characteristics were better with a 0.3 mm diameter CB/TPE monofilament than thick (~2 mm diameter) based on the same material or commercial monofilaments based on natural rubber or silicone elastomer (SE) matrices. PMID:24419161

  7. Large-Strain Transparent Magnetoactive Polymer Nanocomposites

    NASA Technical Reports Server (NTRS)

    Meador, Michael A.

    2012-01-01

    A document discusses polymer nano - composite superparamagnetic actuators that were prepared by the addition of organically modified superparamagnetic nanoparticles to the polymer matrix. The nanocomposite films exhibited large deformations under a magnetostatic field with a low loading level of 0.1 wt% in a thermoplastic polyurethane elastomer (TPU) matrix. The maximum actuation deformation of the nanocomposite films increased exponentially with increasing nanoparticle concentration. The cyclic deformation actuation of a high-loading magnetic nanocomposite film was examined in a low magnetic field, and it exhibited excellent reproducibility and controllability. Low-loading TPU nanocomposite films (0.1-2 wt%) were transparent to semitransparent in the visible wavelength range, owing to good dispersion of the magnetic nanoparticles. Magnetoactuation phenomena were also demonstrated in a high-modulus, high-temperature polyimide resin with less mechanical deformation.

  8. Comparison of Piezoresistive Monofilament Polymer Sensors

    PubMed Central

    Melnykowycz, Mark; Koll, Birgit; Scharf, Dagobert; Clemens, Frank

    2014-01-01

    The development of flexible polymer monofilament fiber strain sensors have many applications in both wearable computing (clothing, gloves, etc.) and robotics design (large deformation control). For example, a high-stretch monofilament sensor could be integrated into robotic arm design, easily stretching over joints or along curved surfaces. As a monofilament, the sensor can be woven into or integrated with textiles for position or physiological monitoring, computer interface control, etc. Commercially available conductive polymer monofilament sensors were tested alongside monofilaments produced from carbon black (CB) mixed with a thermo-plastic elastomer (TPE) and extruded in different diameters. It was found that signal strength, drift, and precision characteristics were better with a 0.3 mm diameter CB/TPE monofilament than thick (∼2 mm diameter) based on the same material or commercial monofilaments based on natural rubber or silicone elastomer (SE) matrices. PMID:24419161

  9. Combustion of a Polymer (PMMA) Sphere in Microgravity

    NASA Technical Reports Server (NTRS)

    Yang, Jiann C.; Hamins, Anthony; Donnelly, Michelle K.

    1999-01-01

    A series of low gravity, aircraft-based, experiments was conducted to investigate the combustion of supported thermoplastic polymer spheres under varying ambient conditions. The three types of thermoplastic investigated were polymethylmethacrylate (PMMA), polypropylene (PP). and polystyrene (PS). Spheres with diameters ranging from 2 mm to 6.35 mm were tested. The total initial pressure varied from 0.05 MPa to 0. 15 MPa whereas the ambient oxygen concentration varied from 19 % to 30 % (by volume). The ignition system consisted of a pair of retractable energized coils. Two CCD cameras recorded the burning histories of the spheres. The video sequences revealed a number of dynamic events including bubbling and sputtering, as well as soot shell formation and break-up during combustion of the spheres at reduced gravity. The ejection of combusting material from the burning spheres represents a fire hazard that must be considered at reduced gravity. The ejection process was found to be sensitive to polymer type. All average burning rates were measured to increase with initial sphere diameter and oxygen concentration, whereas the initial pressure had little effect. The three thermoplastic types exhibited different burning characteristics. For the same initial conditions, the burning rate of PP was slower than PMMA, whereas the burning rate of PS was comparable to PMMA. The transient diameter of the burning thermoplastic exhibited two distinct periods: an initial period (enduring approximately half of the total burn duration) when the diameter remained approximately constant, and a final period when the square of the diameter linearly decreased with time. A simple homogeneous two-phase model was developed to understand the changing diameter of the burning sphere. Its value is based on a competition between diameter reduction due to mass loss from burning and sputtering, and diameter expansion due to the processes of swelling (density decrease with heating) and bubble growth. The model relies on empirical parameters for input, such as the burning rate and the duration of the initial and final burning periods.

  10. Microgravity Polymers

    NASA Technical Reports Server (NTRS)

    1986-01-01

    A one-day, interactive workshop considering the effects of gravity on polymer materials science was held in Cleveland, Ohio, on May 9, 1985. Selected programmatic and technical issues were reviewed to introduce the field to workshop participants. Parallel discussions were conducted in three disciplinary working groups: polymer chemistry, polymer physics, and polymer engineering. This proceedings presents summaries of the workshop discussions and conclusions.

  11. Direct electrodeposition of metals and conducting polymers on nonwoven thermoplastics on a continuous basis

    SciTech Connect

    Kathirgamanathan, P.; Boland, B. . Dept. of Chemistry)

    1993-10-01

    Direct electrodeposition of nickel and poly(pyrrole) onto carbon impregnated nonwoven polyesters produces conductive tapes suitable for electromagnetic shielding. The use of a partly immersed cylindrical horizontal revolving electrode (PICHRE) permits the production of these tapes on a continuous basis. Conductivity vs. strain characteristics, shielding efficiency, surface transfer impedance, and mechanical properties are described.

  12. Thermoplastic polymer nanocomposites with montmorillonite-Lab vs industrial scale fabrication

    NASA Astrophysics Data System (ADS)

    Giacomelli, M.; Pielichowski, K.; Leszczy?ska, A.

    2012-09-01

    Fabrication of polypropylene or polyamide-6/montmorillonite nanocomposites in a laboratory- and industrial-scale by melt processing has been described. Depending on the fabrication scale, different technological problems were observed that need to be taken into account during production of PP and PA-6-based nanocomposites with MMT which constitute a promising class of modern materials for engineering and packaging applications. Fabrication of PP and PA-6 nanocomposites with montmorillonite both on laboratory and industrial scale needs to be optimized in terms of processing conditions that include pre-mixing parameters, feeding rate, temperature of the barrel zone and extrusion die, screw speed and head pressure. Proper cleaning procedures need to be applied and the selection of the 'main' fraction enables to get nanostructured materials with enhanced properties.

  13. Thermoset-thermoplastic aromatic polyamide containing N-propargyl groups

    NASA Technical Reports Server (NTRS)

    St.clair, T. L.; Wolfe, J. F.; Greenwood, T. D. (Inventor)

    1983-01-01

    A composition and method are disclosed for increasing the use temperature of polyamides based on the incorporation of a latent crosslinking agent into the polymer backbone, wherein high temperature performance is achieved without sacrificing solubility or processability.

  14. Consolidation of graphite thermoplastic textile preforms for primary aircraft structure

    NASA Technical Reports Server (NTRS)

    Suarez, J.; Mahon, J.

    1991-01-01

    The use of innovative cost effective material forms and processes is being considered for fabrication of future primary aircraft structures. Processes that have been identified as meeting these goals are textile preforms that use resin transfer molding (RTM) and consolidation forming. The Novel Composites for Wing and Fuselage Applications (NCWFA) program has as its objective the integration of innovative design concepts with cost effective fabrication processes to develop damage-tolerant structures that can perform at a design ultimate strain level of 6000 micro-inch/inch. In this on-going effort, design trade studies were conducted to arrive at advanced wing designs that integrate new material forms with innovative structural concepts and cost effective fabrication methods. The focus has been on minimizing part count (mechanical fasteners, clips, number of stiffeners, etc.), by using cost effective textile reinforcement concepts that provide improved damage tolerance and out-of-plane load capability, low-cost resin transfer molding processing, and thermoplastic forming concepts. The fabrication of representative Y spars by consolidation methods will be described. The Y spars were fabricated using AS4 (6K)/PEEK 150g commingled angle interlock 0/90-degree woven preforms with +45-degree commingled plies stitched using high strength Toray carbon thread and processed by autoclave consolidation.

  15. Elastic-plastic behavior of thermoplastic composites under cyclic loadings

    SciTech Connect

    Rui Yuting.

    1991-01-01

    The experimental results reveal that AS4/PEEK thermoplastic composites exhibit cyclic softening and loading range effect under symmetric cycles of strain or stress, and show ratcheting effects under unsymmetric cycles of stress and mean stress relaxation under unsymmetric cycles of strain. The cyclic softening, loading-range effect, ratcheting and mean stress relaxation are anisotropic. Based on the essential features of the material behavior, an elastic-plastic constitutive model is proposed to describe the material response under cyclic loadings. Cyclic softening is achieved by the evolution of a generalized plastic modulus. The ratcheting effect is modeled in the frame of time-independent cyclic plasticity by the change of the generalized plastic modulus. Good agreement between the model simulations and the experimental data is obtained. The proposed model is applied to form the constitutive relations of laminates with and without thermal stress by using classical lamination theory. A numerical iteration scheme is presented for the nonlinear finite-element analysis of structural laminates.

  16. Neural network approach to robotic thermoplastic tow placement process control

    NASA Astrophysics Data System (ADS)

    Heider, Dirk; Don, Roderic C.; Gillespie, John W., Jr.

    1996-12-01

    Thermoplastic tow placement is an merging manufacturing technology that gives more flexibility in the design of parts and in cost reduction through on-line consolidation, compared with traditional labor- and time-intensive autoclave processing. This research is focused on developing an on-line control technique that is fast and reliable and can be used to maximize the process throughput. Recently developed process models are integrated into a neural- network-based optimization package, which is capable of locating optimum setpoints in minimal time. A control algorithm with feedback from an IR thermal camera has been developed and is used to achieve the desired process temperature. A feedforward neural network with a cascadien architecture is used to simulate the process. Simulation computations are now possible in less than a second, compared to around 20 minutes for the original FORTRAN simulation. This allows running of the process models on- line for control purposes. An optimization algorithm that suits the rough topology of the network has been written and tested. The algorithm is based on weighting the quality outputs of the neural network and finding the highest process speed for a given minimum quality. The output of the optimization is used as an input to the robot controller and to a temperature controller for the process.

  17. Fabrication of Closed Hollow Bulb Obturator Using Thermoplastic Resin Material

    PubMed Central

    Shrestha, Bidhan; Hughes, E. Richard; Kumar Singh, Raj; Suwal, Pramita; Parajuli, Prakash Kumar; Shrestha, Pragya; Sharma, Arati; Adhikari, Galav

    2015-01-01

    Purpose. Closed hollow bulb obturators are used for the rehabilitation of postmaxillectomy patients. However, the time consuming process, complexity of fabrication, water leakage, and discoloration are notable disadvantages of this technique. This paper describes a clinical report of fabricating closed hollow bulb obturator using a single flask and one time processing method for an acquired maxillary defect. Hard thermoplastic resin sheet has been used for the fabrication of hollow bulb part of the obturator. Method. After fabrication of master cast conventionally, bulb and lid part of the defect were formed separately and joined by autopolymerizing acrylic resin to form one sized smaller hollow body. During packing procedure, the defect area was loaded with heat polymerizing acrylic resin and then previously fabricated smaller hollow body was adapted over it. The whole area was then loaded with heat cure acrylic. Further processes were carried out conventionally. Conclusion. This technique uses single flask which reduces laboratory time and makes the procedure simple. The thickness of hollow bulb can be controlled and light weight closed hollow bulb prosthesis can be fabricated. It also minimizes the disadvantages of closed hollow bulb obturator such as water leakage, bacterial infection, and discoloration. PMID:26491575

  18. Rapid and inexpensive blood typing on thermoplastic chips.

    PubMed

    Chen, Jun-You; Huang, Yi-Ting; Chou, Hsin-Hao; Wang, Cheng-Po; Chen, Chien-Fu

    2015-12-21

    A portable and cost-effective colorimetric diagnostic device was fabricated for rapid ABO and Rh blood typing. Using microfluidic construction on a thermoplastic chip, blood antibodies were preloaded into a reaction channel and exposed to blood samples to initiate a haemagglutination reaction. Downstream high-aspect ratio filters, composed of 2 μm high microslits, block agglutinated red blood cells (RBCs) to turn the reaction channel red, indicating the presence of the corresponding blood antigen. Users manually actuate the blood sample using a simple screw pump that drives the solution through serpentine reaction channels and chaotic micromixers for maximum interaction of the preloaded antibodies with the blood sample antigens. Mismatched RBCs and antibodies elute from the channel into an outlet reservoir based on the rheological properties of RBCs with no colorimetric change. As a result, unambiguous blood typing tests can be distinguished by the naked eye in as little as 1 min. Blood disorders, such as thalassemia, can also be distinguished using the device. The required blood volume for the test is just 1 μL, which can be obtained by the less invasive finger pricking method. The low reagent consumption, manual driving force, low-cost of parts, high yield, and robust fabrication process make this device sensitive, accurate, and simple enough to use without specialized training in resource constrained settings. PMID:26530285

  19. Thermoplastic microchannel fabrication using carbon dioxide laser ablation.

    PubMed

    Wang, Shau-Chun; Lee, Chia-Yu; Chen, Hsiao-Ping

    2006-04-14

    We report the procedures of machining microchannels on Vivak co-polyester thermoplastic substrates using a simple industrial CO(2) laser marker. To avoid overheating the substrates, we develop low-power marking techniques in nearly anaerobic environment. These procedures are able to machine microchannels at various aspect ratios. Either straight or serpent channel can be easily marked. Like the wire-embossed channel walls, the ablated channel surfaces become charged after alkaline hydrolysis treatment. Stable electroosmotic flow in the charged conduit is observed to be of the same order of magnitude as that in fused silica capillary. Typical dynamic coating protocols to alter the conduit surface properties are transferable to the ablated channels. The effects of buffer acidity on electroosmotic mobility in both bare and coated channels are similar to those in fused silica capillaries. Using video microscopy we also demonstrate that this device is useful in distinguishing the electrophoretic mobility of bare and latex particles from that of functionalized ones. PMID:16288768

  20. Chemical imaging of thermoplastic olefin (TPO) surface architecture

    SciTech Connect

    Morris, H.R.; Turner, J.F. II; Munro, B.; Ryntz, R.A.; Treado, P.J.

    1999-04-13

    In the automotive industry, ethylene-propylene rubber (EPR) is mixed with polypropylene (PP) to form a thermoplastic olefin (TPO) for use as car bumpers and fascia. An adhesion promoting primer, chlorinated polyolefin (CPO), is spray coated onto the TPO surface to increase adhesion of the base and clear coat paints to the low surface free energy TPO substrate. The surface morphology of rubber domains within the CPO-coated TPO substrate contributes strongly to the material characteristics, including impact resistance and adhesion properties. However, elastomer-phase analysis is challenging using traditional microanalysis imaging techniques. The authors employ fluorescence and Raman chemical imaging to characterize the TPO architecture in order to better understand the surface properties of coated TPO. Fluorescence imaging makes use of Nile red (NR), a fluorescent solvatochromic dye, solvated in the primer, which is effective in differentiating rubber from polypropylene on the basis of large variations in the fluorescence quantum efficiency. Confocal fluorescence chemical imaging performed on T PO coated with NR-doped CPO shows a thin (2--3 {micro}m) layer of elastomer that has migrated to the TPO surface. Raman chemical imaging is in direct agreement with the fluorescence experiments by measuring the intrinsic vibrational signatures of CPO, EPR, and PP without the need for dyes or stains. Raman contrast is enhanced using cosine correlation analysis, a novel multivariate processing technique that provides chemical contrast on the basis of differences in spectral shape.

  1. The development of an alternative thermoplastic powder prepregging technique

    NASA Technical Reports Server (NTRS)

    Ogden, A. L.; Hyer, M. W.; Wilkes, G. L.; Loos, A. C.

    1992-01-01

    An alternative powder prepregging technique is discussed that is based on the deposition of powder onto carbon fibers that have been moistened using an ultrasonic humidifier. The dry fiber tow is initially spread to allow a greater amount of the fiber surface to be exposed to the powder, thus ensuring a significant amount of intimate contact between the fiber and the matrix. Moisture in the form of ultrafine water droplets is then deposited onto the spread fiber tow. The moisture promotes adhesion to the fiber until the powder can be tacked to the fibers by melting. Powdered resin is then sieved onto the fibers and then tacked onto the fibers by quick heating in a convective oven. This study focuses on the production of prepregs and laminates made with LaRC-TPI (thermoplastic polyimide) using this process. Although the process appears to be successful, early evaluation was hampered by poor interfacial adhesion. The adhesion problem, however, seems to be the result of a material system incompatibility, rather than being influenced by the process.

  2. Development of thermoplastic starch blown film by incorporating plasticized chitosan.

    PubMed

    Dang, Khanh Minh; Yoksan, Rangrong

    2015-01-22

    The objective of the present work was to improve blown film extrusion processability and properties of thermoplastic starch (TPS) film by incorporating plasticized chitosan, with a content of 0.37-1.45%. The effects of chitosan on extrusion processability and melt flow ability of TPS, as well as that on appearance, optical properties, thermal properties, viscoelastic properties and tensile properties of the films were investigated. The possible interactions between chitosan and starch molecules were evaluated by FTIR and XRD techniques. Chitosan and starch molecules could interact via hydrogen bonds, as confirmed from the blue shift of OH bands and the reduction of V-type crystal formation. Although the incorporation of chitosan caused decreased extensibility and melt flow ability, as well as increased yellowness and opacity, the films possessed better extrusion processability, increased tensile strength, rigidity, thermal stability and UV absorption, as well as reduced water absorption and surface stickiness. The obtained TPS/chitosan-based films offer real potential application in the food industry, e.g. as edible films. PMID:25439934

  3. Microstructure and thermomechanical properties relationship of segmented thermoplastic polyurethane (TPU)

    SciTech Connect

    Frick, Achim Borm, Michael Kaoud, Nouran Kolodziej, Jan Neudeck, Jens

    2014-05-15

    Thermoplastic polyurethanes (TPU) are important polymeric materials for seals. In competition with Acrylonitrile butadiene rubbers (NBR), TPU exhibits higher strength and a considerable better abrasion resistance. The advantage of NBR over TPU is a smaller compression set but however TPU excels in its much shorter processing cycle times. Generally a TPU is a block copolymer composed of hard and soft segments, which plays an important role in determining the material properties. TPU can be processed either to ready moulded parts or can be incorporated by multi component moulding, in both cases it shows decent mechanical properties. In the present work, the relationship between melt-process induced TPU morphology and resultant thermo mechanical properties were examined and determined by means of quasi-static tensile test, creep experiment, tension test and dynamical mechanical analysis (DMA). Scanning electron beam microscope (SEM) and differential scanning calorimeter (DSC) were used to study the morphology of the samples. A significant mathematical description of the stress-strain behaviour of TPU was found using a 3 term approach. Moreover it became evident that processing conditions such as processing temperature have crucial influence on morphology as well as short and long-term performance. To be more precise, samples processed at higher temperatures showed a lack of large hard segment agglomerates, a smaller strength for strains up to 250% and higher creep compliance.

  4. Fabrication of Closed Hollow Bulb Obturator Using Thermoplastic Resin Material.

    PubMed

    Shrestha, Bidhan; Hughes, E Richard; Kumar Singh, Raj; Suwal, Pramita; Parajuli, Prakash Kumar; Shrestha, Pragya; Sharma, Arati; Adhikari, Galav

    2015-01-01

    Purpose. Closed hollow bulb obturators are used for the rehabilitation of postmaxillectomy patients. However, the time consuming process, complexity of fabrication, water leakage, and discoloration are notable disadvantages of this technique. This paper describes a clinical report of fabricating closed hollow bulb obturator using a single flask and one time processing method for an acquired maxillary defect. Hard thermoplastic resin sheet has been used for the fabrication of hollow bulb part of the obturator. Method. After fabrication of master cast conventionally, bulb and lid part of the defect were formed separately and joined by autopolymerizing acrylic resin to form one sized smaller hollow body. During packing procedure, the defect area was loaded with heat polymerizing acrylic resin and then previously fabricated smaller hollow body was adapted over it. The whole area was then loaded with heat cure acrylic. Further processes were carried out conventionally. Conclusion. This technique uses single flask which reduces laboratory time and makes the procedure simple. The thickness of hollow bulb can be controlled and light weight closed hollow bulb prosthesis can be fabricated. It also minimizes the disadvantages of closed hollow bulb obturator such as water leakage, bacterial infection, and discoloration. PMID:26491575

  5. Transparent large-strain thermoplastic polyurethane magnetoactive nanocomposites.

    PubMed

    Yoonessi, Mitra; Peck, John A; Bail, Justin L; Rogers, Richard B; Lerch, Bradley A; Meador, Michael A

    2011-07-01

    Organically modified superparamagnetic MnFe(2)O(4)/thermoplastic polyurethane elastomer (TPU) nanocomposites (0.1-8 wt %) were prepared by solvent mixing followed by solution casting. Linear aliphatic alkyl chain modification of spherical MnFe(2)O(4) provided compatibility with the TPU containing a butanediol extended polyester polyol-MDI. All MnFe(2)O(4)/TPU nanocomposite films were superparamagnetic and their saturation magnetization, σ(s), increased with increasing MnFe(2)O(4) content. All nanocomposite films exhibited large deformations (>10 mm) under a magneto-static field. This is the first report of large actuation of magnetic nanoparticle nanocomposites at low-loading levels of 0.1 wt % (0.025 vol %). The maximum actuation deformation of the MnFe(2)O(4)/TPU nanocomposite films increased exponentially with increasing nanoparticle concentration. An empirical correlation between the maximum displacement, saturation magnetization, and magnetic nanoparticle loading is proposed. The cyclic deformation actuation of a 6 wt % surface modified MnFe(2)O(4)/TPU, in a low magnetic field 151 < B(y) < 303 Oe, exhibited excellent reproducibility and controllability. MnFe(2)O(4)/TPU nanocomposite films (0.1-2 wt %) were transparent and semitransparent over the wavelengths from 350 to 700 nm. PMID:21710967

  6. Thermoplastic Starch Films with Vegetable Oils of Brazilian Cerrado

    NASA Astrophysics Data System (ADS)

    Schlemmer, D.; Sales, M. J. A.

    2008-08-01

    Biodegradable polymers are one of the most promising ways to replace non-degradable polymers. TPS films were prepared by casting from cassava starch and three different vegetable oils of Brazilian Cerrado as plasticizer: buriti, macaba and pequi. In this preliminary work it was investigated materials thermal characteristics by TG and TMA. Thermal properties of oils depends on their chemical structures. Starch and vegetable oils are natural resources that can be used how alternative to producing materials that cause minor environmental impact.

  7. Investigation the degradation and devulcanization reaction of thermoplastic vulcanizate using peroxide compound

    NASA Astrophysics Data System (ADS)

    Temram, Chokkanit; Wattanakul, Karnthidaporn

    2012-09-01

    Investigation the Degradation and Devulcanization Reaction of Thermoplastic Vulcanizate using Peroxide Compound was carried out by means of benzoyl peroxide as a devulcanizing agent. The temperature for the recycling condition was gradually increased from 80°C to 190°C because of the half-life of benzoyl peroxide. Furthermore, the effects of time and concentration of devulcanizing agent on the recycling process were investigated. The extent of devulcanization of thermoplastic vulcanizate was studied by estimation of percent devulcanization, gel fraction of rubber after swelling and crosslink density. According to the results, we found that the crosslink density of devulcanized thermoplastic vulcanizate was 29.37% less than virgin thermoplastic vulcanizate by adding benzoyl peroxide for 1 phr. This result is correspondence to the decreasing in gel fraction of devulcanized thermoplastic vulcanizate. Moreover, the addition of 5 phr and 10 phr to TPVs result to the significant decrement in crosslink density about 64%. The effect of temperature for devulcanization was also investigated to obtain the optimum conditions. The result shows that the percentage of devulcanization was slightly increased as the increasing in the starting temperature from 80°C to 105°C.

  8. Design and testing of novel piezoceramic modules for adaptive thermoplastic composite structures

    NASA Astrophysics Data System (ADS)

    Hufenbach, W.; Gude, M.; Heber, T.

    2009-04-01

    For the series production of adaptive fibre-reinforced thermoplastic structures, the development of process-adapted piezoceramic modules is gaining central importance. Therefore, thermoplastic-compatible piezoceramic modules (TPMs) are being developed which are suitable for a matrix-homogeneous adhesive-free integration of the modules in fibre-reinforced thermoplastic structures during a sequential hot-pressing process. Extensive numerical and experimental studies are available on the systematic development of the TPMs, whose thermoplastic carrier film, made, respectively, of polyetheretherketone (PEEK) or polyamide (PA), is already adapted to the matrix material of a thermoplastic composite structure and thus can be joined in a welding process without additional adhesives. The studies carried out indicate the influence of geometrical and technological parameters on the efficiency of consolidated and polarized TPMs and can thus be used to adapt the design specifications and process parameters of the TPMs. Besides these studies, a numerically based residual stress analysis shows the potential for a defined inducing of residual stresses in the TPM components.

  9. Structure-processing-property relationships for polymer interphases in fiber reinforced composite materials

    SciTech Connect

    Drzal, L.T.

    1995-12-31

    When polymer matrix composite materials are fabricated, polymers are processed to surround each reinforcing element while they are fluid and then they solidify in intimate contact with the reinforcement surface. For thermoset matrices, chemisorption of constituents, segregation of components. and processing constraints all can influence the resulting structure of the polymer in its solidified state. For thermoplastic matrices, segregation by molecular weight, morphological changes resulting from crystallization or additive segregation can also control the final matrix structure. In addition the surface of the fibers is coated with chemical agents that can also interact with the polymer. Examples will be given to illustrate the effect of the structure of this polymer interphase on adhesion. It will be shown that in some cases if the resulting polymer structure is known, adhesion and composite properties can be predicted.

  10. Thermoplastic vulcanizate nanocomposites based on polypropylene/ethylene propylene diene terpolymer (PP/EPDM) prepared by reactive extrusion

    NASA Astrophysics Data System (ADS)

    Mirzadeh, Amin

    For this work, different grades of polypropylene-g-maleic anhydride polymers were chosen to elucidate the effect of compatibilizer on the nanoclay dispersion level in thermoplastic phase. X-ray diffraction (XRD) patterns along with transmission electron microscopy (TEM) and scanning electron microscope (SEM) micrographs confirmed that prepared PP nanocomposites ranged from intercalated structure to a coexistence of intercalated tactoids and exfoliated layers namely “partially exfoliated” nanocomposite. Among various factors affecting the compatibilizer performance, it is shown that only the relaxation behaviour of compatibilizer correlates directly with the nanocomposites characterization results; higher relaxation times of the compatibilizer are associated with better dispersion of nanoclay. To study the co-continuity development of the nonreactive blends, EPDM and the mentioned PP nanocomposites at various compositions were melt blended using an internal mixer. Based on continuity measurements of TPEs and TPE nanocomposites for both thermoplastic and rubber phase, it is shown that the presence of nanoclay decreases the co-continuity composition range and alters its symmetrical feature. However, this effect is more pronounced in the intercalated nanocomposites than in partially exfoliated nanocomposites. It seems that better nanoclay dispersion limits the reduction of the thermoplastic phase continuity in a manner that the continuity index of the thermoplastic phase for partially exfoliated TPE nanocomposite prepared at high EPDM content (i.e. at 70 wt%) is greater than that of corresponding TPE without nanoclay. According to these results, it is possible to shift to higher EPDM content using partially exfoliated system before formation of matrix-dispersed particle structure which limits thermoplastic vulcanizate production. This should be mentioned that gamma irradiation was carried out in order to fix the EPDM morphology to estimate the continuity of PP using the solvent extraction and gravimetry technique. Additionally, the effect of continuity on rheological behaviour of TPE nanocomposites was investigated. The ultimate goal in this field is to maximize the rubber like behaviour by controlling the blend morphology and the level of crosslinking. Therefore, this study also covers the effects of nanoclay presence and its dispersion level on the crosslinking reaction of thermoplastic vulcanizate nanocomposites prepared by reactive extrusion. Here, the rubber phase was dynamically vulcanized using dimethylol phenolic resin or octylphenol-formaldehyde resin along with stannous chloride dihydrate as the catalyst. In the present study, the dynamic vulcanization of the prepared TPVs and corresponding nanocomposites are characterized using different criteria, such as gel content, viscosity and normalized storage modulus in the time sweep tests, nuclear magnetic resonance (NMR) signal line width, bound curative content and residual diene concentration. The combination of the above parameters appears to be sufficient to provide a clear description of the systems. The last part of the present study is devoted to find how the dispersion level of nanoclay and consequently the extent of crosslinking change the rubber like behaviour and the morphology of the prepared TPVs. Therefore, recently developed method named temperature scanning stress relaxation (TSSR) was used to estimate the rubber indices of TPVs and TPV nanocomposites. The mentioned method also successfully provided information about the extent of crosslinking reaction. It is shown that the rubber like behaviour of the blends containing 50wt% and 60wt% of EPDM in which morphological studies suggest the presence of the rubber droplets in vicinity of irregular shape rubber particles with a low level of interconnectivity, correlates with the rubber droplet size. Therefore, the nanoclay presence affects the rubber index values mainly through its effect on the size of the rubber droplets that controls the number of retraction points in the proposed buckling mechanism during the TSSR test. It should be mentioned that by increasing the EPDM content, the number of the droplet like domains decreases and more irregular shape rubber particles is formed. On the other hand, the direct relation between rubber index values and the crosslink density is observed only for those series of TPVs showing the fully developed extensive network between irregular shape rubber domains (blends containing 70wt% of EPDM). Hence, the nanoclay dispersion level influences the rubber like behaviour through its effect on the crosslink density. (Abstract shortened by UMI.).

  11. Self-Healing Polymers and Composites

    NASA Astrophysics Data System (ADS)

    Blaiszik, B. J.; Kramer, S. L. B.; Olugebefola, S. C.; Moore, J. S.; Sottos, N. R.; White, S. R.

    2010-08-01

    Self-healing polymers and fiber-reinforced polymer composites possess the ability to heal in response to damage wherever and whenever it occurs in the material. This phenomenal material behavior is inspired by biological systems in which self-healing is commonplace. To date, self-healing has been demonstrated by three conceptual approaches: capsule-based healing systems, vascular healing systems, and intrinsic healing polymers. Self-healing can be autonomicautomatic without human interventionor may require some external energy or pressure. All classes of polymers, from thermosets to thermoplastics to elastomers, have potential for self-healing. The majority of research to date has focused on the recovery of mechanical integrity following quasi-static fracture. This article also reviews self-healing during fatigue and in response to impact damage, puncture, and corrosion. The concepts embodied by current self-healing polymers offer a new route toward safer, longer-lasting, fault-tolerant products and components across a broad cross section of industries including coatings, electronics, transportation, and energy.

  12. 40 CFR Table 6 to Subpart Jjj of... - Known Organic HAP Emitted From the Production of Thermoplastic Products

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 12 2013-07-01 2013-07-01 false Known Organic HAP Emitted From the... 63—Known Organic HAP Emitted From the Production of Thermoplastic Products Thermoplastic product/Subcategory Organic HAP/chemical name(CAS No.) Acet-aldehyde (75-07-0) Acrylo-nitrile (107-13-1) 1,3...

  13. Shape Memory Composites Based on Electrospun Poly(vinyl alcohol) Fibers and a Thermoplastic Polyether Block Amide Elastomer.

    PubMed

    Shirole, Anuja; Sapkota, Janak; Foster, E Johan; Weder, Christoph

    2016-03-16

    The present study aimed at developing new thermally responsive shape-memory composites, that were fabricated by compacting mats of electrospun poly(vinyl alcohol) (PVA) fibers and sheets of a thermoplastic polyether block amide elastomer (PEBA). This design was based on the expectation that the combination of the rubber elasticity of the PEBA matrix and the mechanical switching exploitable through the reversible glass transition temperature (Tg) of the PVA filler could be combined to create materials that display shape memory characteristics as an emergent effect. Dynamic mechanical analyses (DMA) show that, upon introduction of 10-20% w/w PVA fibers, the room-temperature storage modulus (E') increased by a factor of 4-5 in comparison to the neat PEBA, and they reveal a stepwise reduction of E' around the Tg of PVA (85 °C). This transition could indeed be utilized to fix a temporary shape and recover the permanent shape. At low strain, the fixity was 66 ± 14% and the recovery was 98 ± 2%. Overall, the data validate a simple and practical strategy for the fabrication of shape memory composites that involves a melt compaction process and employs two commercially available polymers. PMID:26900879

  14. Synthesis of bio-based thermoplastic polyurethane elastomers containing isosorbide and polycarbonate diol and their biocompatible properties.

    PubMed

    Oh, So-Yeon; Kang, Min-Sil; Knowles, Jonathan C; Gong, Myoung-Seon

    2015-09-01

    A new family of highly elastic polyurethanes (PUs) partially based on renewable isosorbide were prepared by reacting hexamethylene diisocyanate with a various ratios of isosorbide and polycarbonate diol 2000 (PCD) via a one-step bulk condensation polymerization without catalyst. The influence of the isorsorbide/PCD ratio on the properties of the PU was evaluated. The successful synthesis of the PUs was confirmed by Fourier transform-infrared spectroscopy and (1)H nuclear magnetic resonance. The resulting PUs showed high number-average molecular weights ranging from 56,320 to 126,000 g mol(-1) and tunable Tg values from -34 to -38℃. The thermal properties were determined by differential scanning calorimetry and thermogravimetric analysis. The PU films were flexible with breaking strains from 955% to 1795% at from 13.5 to 54.2 MPa tensile stress. All the PUs had 0.9-2.8% weight lost over 4 weeks and continual slow weight loss of 1.1-3.6% was observed within 8 weeks. Although the cells showed a slight lower rate of proliferation than that of the tissue culture polystyrene as a control, the PU films were considered to be cytocompatible and nontoxic. These thermoplastic PUs were soft, flexible and biocompatible polymers, which open up a range of opportunities for soft tissue augmentation and regeneration. PMID:26055962

  15. In situ development of self-reinforced cellulose nanocrystals based thermoplastic elastomers by atom transfer radical polymerization.

    PubMed

    Yu, Juan; Wang, Chunpeng; Wang, Jifu; Chu, Fuxiang

    2016-05-01

    Recently, the utilization of cellulose nanocrystals (CNCs) as a reinforcing material has received a great attention due to its high elastic modulus. In this article, a novel strategy for the synthesis of self-reinforced CNCs based thermoplastic elastomers (CTPEs) is presented. CNCs were first surface functionalized with an initiator for surface-initiated atom transfer radical polymerization (SI-ATRP). Subsequently, SI-ATRP of methyl methacrylate (MMA) and butyl acrylate (BA) was carried out in the presence of sacrificial initiator to form CTPEs in situ. The CTPEs together with the simple blends of CNCs and linear poly(MMA-co-BA) copolymer (P(MMA-co-BA)) were characterized for comparative study. The results indicated that P(MMA-co-BA) was successfully grafted onto the surface of CNCs and the compatibility between CNCs and the polymer matrix in CTPEs was greatly enhanced. Specially, the CTPEs containing 2.15wt% CNCs increased Tg by 19.2°C and tensile strength by 100% as compared to the linear P(MMA-co-BA). PMID:26877006

  16. Characterization of thermoplastic polyurethane/polylactic acid (TPU/PLA) tissue engineering scaffolds fabricated by microcellular injection molding

    PubMed Central

    Mi, Hao-Yang; Salick, Max R.; Jing, Xin; Jacques, Brianna R.; Crone, Wendy C.; Peng, Xiang-Fang; Turng, Lih-Sheng

    2015-01-01

    Polylactic acid (PLA) and thermoplastic polyurethane (TPU) are two kinds of biocompatible and biodegradable polymers that can be used in biomedical applications. PLA has rigid mechanical properties while TPU possesses flexible mechanical properties. Blended TPU/PLA tissue engineering scaffolds at different ratios for tunable properties were fabricated via twin screw extrusion and microcellular injection molding techniques for the first time. Multiple test methods were used to characterize these materials. Fourier transform infrared spectroscopy (FTIR) confirmed the existence of the two components in the blends; differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) confirmed the immiscibility between the TPU and PLA. Scanning electron microscopy (SEM) images verified that, at the composition ratios studied, PLA was dispersed as spheres or islands inside the TPU matrix and that this phase morphology further influenced the scaffolds microstructure and surface roughness. The blends exhibited a large range of mechanical properties that covered several human tissue requirements. 3T3 fibroblast cell culture showed that the scaffolds supported cell proliferation and migration properly. Most importantly, this study demonstrated the feasibility of mass producing biocompatible PLA/TPU scaffolds with tunable microstructures, surface roughnesses, and mechanical properties that have the potential to be used as artificial scaffolds in multiple tissue engineering applications. PMID:24094186

  17. Preparation of cotton linter nanowhiskers by high-pressure homogenization process and its application in thermoplastic starch

    NASA Astrophysics Data System (ADS)

    Savadekar, N. R.; Karande, V. S.; Vigneshwaran, N.; Kadam, P. G.; Mhaske, S. T.

    2015-03-01

    The present work deals with the preparation of cotton linter nanowhiskers (CLNW) by acid hydrolysis and subsequent processing in a high-pressure homogenizer. Prepared CLNW were then used as a reinforcing material in thermoplastic starch (TPS), with an aim to improve its performance properties. Concentration of CLNW was varied as 0, 1, 2, 3, 4 and 5 wt% in TPS. TPS/CLNW nanocomposite films were prepared by solution-casting process. The nanocomposite films were characterized by tensile, differential scanning calorimetry, scanning electron microscopy (SEM), water vapor permeability (WVP), oxygen permeability (OP), X-ray diffraction and light transmittance properties. 3 wt% CLNW-loaded TPS nanocomposite films demonstrated 88 % improvement in the tensile strength as compared to the pristine TPS polymer film; whereas, WVP and OP decreased by 90 and 92 %, respectively, which is highly appreciable compared to the quantity of CLNW added. DSC thermograms of nanocomposite films did not show any significant effect on melting temperature as compared to the pristine TPS. Light transmittance ( T r) value of TPS decreased with increased content of CLNW. Better interaction between CLNW and TPS, caused due to the hydrophilic nature of both the materials, and uniform distribution of CLNW in TPS were the prime reason for the improvement in properties observed at 3 wt% loading of CLNW in TPS. However, CLNW was seen to have formed agglomerates at higher concentration as determined from SEM analysis. These nanocomposite films can have potential use in food and pharmaceutical packaging applications.

  18. One-pot synthesis of thermoplastic mixed paramylon esters using trifluoroacetic anhydride.

    PubMed

    Shibakami, Motonari; Tsubouchi, Gen; Sohma, Mitsugu; Hayashi, Masahiro

    2015-03-30

    Mixed paramylon esters prepared from paramylon (a storage polysaccharide of Euglena), acetic acid, and a long-chain fatty acid by one-pot synthesis using trifluoroacetic anhydride as a promoter and solvent were shown to have thermoplasticity. Size exclusion chromatography indicated that the mixed paramylon esters had a weight average molecular weight of approximately 4.9-6.7×10(5). Thermal analysis showed that these esters were stable in terms of the glass transition temperature (>90°C) and 5% weight loss temperature (>320°C). The degree of substitution of the long alkyl chain group, a dominant factor determining thermoplasticity, was controlled by tuning the feed molar ratio of acetic acid and long-chain fatty acid to paramylon. These results implied that the one-pot synthesis is useful for preparing structurally-well defined thermoplastic mixed paramylon esters with high molecular weight. PMID:25563938

  19. Solvent resistant thermoplastic aromatic poly(imidesulfone) and process for preparing same

    NASA Technical Reports Server (NTRS)

    St.clair, T. L.; Yamaki, D. A. (inventors)

    1983-01-01

    A process for preparing a thermoplastic poly(imidesulfone) is disclosed. This resulting material has thermoplastic properties which are generally associated with polysulfones but not polyimides, and solvent resistance which is generally associated with polyimides but not polysulfones. This system is processable in the 250 to 350 C range for molding, adhesive and laminating applications. This unique thermoplastic poly(imidesulfone) is obtained by incorporating an aromatic sulfone moiety into the backbone of an aromatic linear polyimide by dissolving a quantity of a 3,3',4,4'-benzophenonetetracarboxylic dianhydride (BTDA) in a solution of 3,3'-diaminodiphenylsulfone and bis(2-methoxyethyl)ether, precipitating the reactant product in water, filtering and drying the recovered poly(amide-acid sulfone) and converting it to the poly(imidesulfone) by heating.

  20. Characterization of glass-filled engineering thermoplastic composites

    SciTech Connect

    Whitaker, R.B.; Nease, A.B.; Yelton, R.O.

    1983-01-01

    Characterization of three engineering thermoplastic (TP) materials has been carried out to assess suitability for Mound applications: Poly(etheretherketone) (PEEK), Poly(etherimide) (PEI), and Poly(ethersulfone) (PES). Analyses included: thermogravimetric (TG), thermomechanical (TMA), direct probe/mass spectroscopy (DIP/MS), Fourier transform infrared spectroscopy (FT-IR), and other chemical analyses. Both neat and glass-filled PEEK and PES were studied; only unfilled PEI was examined. Thermogravimetric analysis of the three TP's in N/sub 2/ showed that all were greater than or equal to 525/sup 0/C in decomposition onset temperature, with PEEK > PEI > PES. Both glass-filled PEEK and PEI showed <1% weight loss in the melt after two hours (N/sub 2/). TMA analyses were used to determine expansion coefficients below T/sub g/ for all three TP's. The glass-filled PEEK exhibited a low temperature (approx. 60 to 70/sup 0/C) transition below T/sub g/ (approx. 150/sup 0/C) on the first TMA runs. This disappeared on subsequent TMA runs and did not reappear on aging/RT. DIP/MS analyses showed both water and phenyl sulfone to be present in PES and PEEK. Water only was observed in PEI. The presence of phenylsulfone in PEEK was confirmed by FT-IR, and sulfur was found to be present in amounts up to 0.23% in 30% glass-filled molding compounds. Residual polymerization solvent is a probable source. Fluoride (from a monomer in the PEEK polymerization) was also detected.

  1. Interfacial studies in fiber-reinforced thermoplastic-matrix composites

    SciTech Connect

    Brady, R.L.

    1989-01-01

    The major theme of this dissertation is structure/property relationships in fiber-reinforced thermoplastic-matrix composites. Effort has been focused on the interface: interfacial crystallization and fiber/matrix adhesion. Included are investigations on interfacial nucleation and morphology, measurement of fiber/matrix adhesion, effects of interfacial adsorption and crystallization on fiber/matrix adhesion, and composites reinforced with thermotropic liquid crystal copolyester fibers. Crystallization of a copolyester and polybutylene terephthalate with glass, carbon, or aramid fibers has been studied with regard to interfacial morphology. Techniques employed included hot-stage optical microscopy and differential scanning calorimetry. Nucleation by the fibers was found to be a general phenomenon. Morphology could be varied by changing the cooling rate. In order to better monitor fiber /matrix adhesion, a buckled plate test has been developed. The test measures transverse toughness as the parameter characterizing interfacial adhesion in unidirectional, continuous-fiber composites. The test is simple to perform yet has advantages over other interfacial evaluation techniques. The buckled plate test was found to be a sensitive measure of fiber/matrix adhesion. The buckled plate test has been used along with the transverse tensile test to examine how interfacial adsorption and crystallization affect fiber/matrix adhesion in polycarbonate/carbon fiber composites. Adsorption was found to be of primary importance in developing adhesion, while crystallization is a secondary effect. The toughness data have been fit successfully for annealing time and temperature dependence. The dependence of adsorption and transverse toughness on matrix molecular weight was found to be large, with higher molecular weights adsorbing more effectively.

  2. Long-term in vitro hydrolytic stability of thermoplastic polyurethanes.

    PubMed

    Mishra, Abhinay; Seethamraju, Kasyap; Delaney, Joseph; Willoughby, Patrick; Faust, Rudolf

    2015-12-01

    Long-term in vitro stability of thermoplastic polyurethanes (TPUs) was studied for up to 52 weeks in phosphate buffer solution at 37, 55, and 80C. Water uptake, molecular weights, and tensile properties were measured at regular intervals of 4, 8, 16, 32, and 52 weeks. The rate of molecular weight reduction increased with increasing temperature, and after 52 weeks at 80C, all commercial polycarbonate (Bionate-55D, Quadrathane-80A, and Chronoflex-80A), poly(dimethylsiloxane) (ElastEon-2A) and polyether (Elasthane-55D) TPUs showed significant (43-51%) molecular weight (Mn ) reduction. The polyisobutylene (PIB)-based TPU exhibited a significantly lower decrease in Mn (26%) after 52 weeks at 80C. For Bionate-55D and ElastEon-2A, at 80C in dry nitrogen atmosphere substantial thermal degradation was observed, while for the other TPUs the effect of thermal degradation is small. The temperature dependent reduction of molecular weight was interpreted by simple second order kinetics. From the approximately linear Arrhenius plots the activation energies were calculated, which were highest for PIB-PU-020 and lowest for ElastEon-2A. For Elasthane-55D the in vitro molecular weight reduction was compared with that of explanted leads. The molecular weight reduction in vivo was much smaller than that predicted from in vitro data, which may suggest that the in vitro model does not adequately describe the hydrolysis in vivo. In the absence of validation for the other TPUs that in vitro methods closely reproduce in vivo degradation, it is unknown how these results correlate with in vivo performance. 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 103A: 3798-3806, 2015. PMID:26097127

  3. Biodegradable, thermoplastic polyurethane grafts for small diameter vascular replacements.

    PubMed

    Bergmeister, Helga; Seyidova, Nargiz; Schreiber, Catharina; Strobl, Magdalena; Grasl, Christian; Walter, Ingrid; Messner, Barbara; Baudis, Stefan; Fröhlich, Sophie; Marchetti-Deschmann, Martina; Griesser, Markus; di Franco, Matt; Krssak, Martin; Liska, Robert; Schima, Heinrich

    2015-01-01

    Biodegradable vascular grafts with sufficient in vivo performance would be more advantageous than permanent non-degradable prostheses. These constructs would be continuously replaced by host tissue, leading to an endogenous functional implant which would adapt to the need of the patient and exhibit only limited risk of microbiological graft contamination. Adequate biomechanical strength and a wall structure which promotes rapid host remodeling are prerequisites for biodegradable approaches. Current approaches often reveal limited tensile strength and therefore require thicker or reinforced graft walls. In this study we investigated the in vitro and in vivo biocompatibility of thin host-vessel-matched grafts (n=34) formed from hard-block biodegradable thermoplastic polyurethane (TPU). Expanded polytetrafluoroethylene (ePTFE) conduits (n=34) served as control grafts. Grafts were analyzed by various techniques after retrieval at different time points (1 week; 1, 6, 12 months). TPU grafts showed significantly increased endothelial cell proliferation in vitro (P<0.001). Population by host cells increased significantly in the TPU conduits within 1 month of implantation (P=0.01). After long-term implantation, TPU implants showed 100% patency (ePTFE: 93%) with no signs of aneurysmal dilatation. Substantial remodeling of the degradable grafts was observed but varied between subjects. Intimal hyperplasia was limited to ePTFE conduits (29%). Thin-walled TPU grafts offer a new and desirable form of biodegradable vascular implant. Degradable grafts showed equivalent long-term performance characteristics compared to the clinically used, non-degradable material with improvements in intimal hyperplasia and ingrowth of host cells. PMID:25218664

  4. Chemical Modification and Structure-property Relationships of Acrylic and Ionomeric Thermoplastic Elastomer Gels

    NASA Astrophysics Data System (ADS)

    Vargantwar, Pruthesh Hariharrao

    Block copolymers (BCs) have remained at the forefront of materials research due to their versatility in applications ranging from hot-melt/pressure-sensitive adhesives and impact modifiers to compatibilizing agents and vibration-dampening/nanotemplating media. Of particular interest are macromolecules composed of two or more chemically dissimilar blocks covalently linked together to form triblock or pentablock copolymers. If the blocks are sufficiently incompatible and the copolymer behaves as a thermoplastic elastomer, the molecules can spontaneously self-assemble to form nanostructured materials that exhibit shape memory due to the formation of a supramolecular network. The BCs of these types are termed as conventional. When BCs contain blocks having ionic moieties such as sulfonic acid groups, they are termed as block ionomers. Designing new systems based on either conventional or ionic BCs, characterizing their structure-property relationships and later using them as electroacive polymers form the essential objectives of this work. Electroactive polymers (EAPs) exhibit electromechanical actuation when stimulated by an external electric field. In the first part of this work, it is shown that BCs resolve some of the outstanding problems presently encountered in the design of two different classes of EAP actuators: dielectric elastomers (DEs) and ionic polymer metal composites (IPMCs). All-acrylic triblock copolymer gels used as DEs actuate with high efficacy without any requirement of mechanical prestrain and, thus, eliminate the need for bulky and heavy hardware essential with prestrained dielectric actuators, as well as material problems associated with stress relaxation. The dependence of actuation behavior on gel morphology as evaluated from mechanical and microstructure studies is observed. In the case of IPMCs, ionic BCs employed in this study greatly facilitate processing compared to other contenders such as NafionRTM, which is commonly used in this class of EAPs. The unique copolymer investigated here (i) retains its mechanical integrity when highly solvated by polar solvents, (ii) demonstrates a high degree of actuation when tested in a cantilever configuration, and (iii) avoids the shortcomings of back-relaxation/overshoot within the testing conditions when used in combination with an appropriate solvent. In the second part of this work, two chemical strategies to design midblock sulfonated block ionomers are explored. In one case, selective sulfonation of the midblocks in triblock copolymers is achieved via a dioxane:sulfur trioxide chemistry, while in the other acetyl sulfate is used for the same purpose. Excellent control on the degree of sulfonation (DOS) is achieved. The block ionomers swell in different solvents while retaining their mechanical integrity. They show disorder-order, order-order, and order-reduced order morphological transitions as DOS varies. These transitions in morphologies are reflected in their thermal behavior as well. The microstructures show periodicity, which is, again, a function of DOS. The transitions are explained in terms of the molar volume expansion and volume densification of the blocks on sulfonation. The ionic levels, morphology and periodicity in microstructure are important for applications such as actuators, sensors and fuel cell membranes. The ability to tune these aspects in the ionomers designed in this work make them potential candidates for these applications.

  5. Microstructural Characterization of Semi-Interpenetrating Polymer Networks by Positron Lifetime Spectroscopy

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.; Pater, Ruth H.; Eftekhari, Abe

    1996-01-01

    Thermoset and thermoplastic polyimides have complementary physical and mechanical properties. Whereas thermoset polyimides are brittle and generally easier to process, thermoplastic polyimides are tough but harder to process. A combination of these two types of polyimides may help produce polymers more suitable for aerospace applications. Semi-Interpenetrating Polymer Networks (S-IPN) of thermoset LaRC(TM)-RP46 and thermoplastic LaRC(TM)-IA polyimides were prepared in weight percent ratios ranging from 100:0 to 0:100. Positron lifetime measurements were made in these samples to correlate their free volume features with physical and mechanical properties. As expected, positronium atoms are not formed in these samples. The second lifetime component has been used to infer the positron trap dimensions. The 'free volume' goes through a minimum at a ratio of about 50:50, and this suggests that S-IPN samples are not merely solid solutions of the two polymers. These data and related structural properties of the S-IPN samples are discussed.

  6. Characterization of elastic-viscoplastic properties of an AS4/PEEK thermoplastic composite

    NASA Technical Reports Server (NTRS)

    Yoon, K. J.; Sun, C. T.

    1991-01-01

    The elastic-viscoplastic properties of an AS4/PEEK (APC-2) thermoplastic composite were characterized at 24 C (75 F) and 121 C (250 F) by using a one-parameter viscoplasticity model. To determine the strain-rate effects, uniaxial tension tests were performed on unidirectional off-axis coupon specimens with different monotonic strain rates. A modified Bodner and Partom's model was also used to describe the viscoplasticity of the thermoplastic composite. The experimental results showed that viscoplastic behavior can be characterized quite well using the one-parameter overstress viscoplasticity model.

  7. Sensitivity analysis for the process integrated online polarization of piezoceramic modules in thermoplastic composites

    NASA Astrophysics Data System (ADS)

    Hufenbach, W.; Gude, M.; Modler, N.; Heber, T.; Tyczynski, T.

    2010-10-01

    The use of active composite structures in high-volume applications requires novel robust manufacturing processes as well as specially adapted functional modules. The paper presents actual research results with regard to the process-immanent polarization of novel thermoplastic-compatible piezoceramic modules (TPM) during the consolidation process of active fibre-reinforced thermoplastic composite structures. In particular the influence of varying manufacture process parameters of a hot-press process on the polarization behaviour is investigated. The main principal objective is the purposeful utilization of process parameters for polarization support.

  8. Tailoring the degradation kinetics of poly(ester-carbonate urethane)urea thermoplastic elastomers for tissue engineering scaffolds

    PubMed Central

    Hong, Yi; Guan, Jianjun; Fujimoto, Kazuro L.; Hashizume, Ryotaro; Pelinescu, Anca L.; Wagner, William R.

    2010-01-01

    Biodegradable elastomeric scaffolds are of increasing interest for applications in soft tissue repair and regeneration, particularly in mechanically active settings. The rate at which such a scaffold should degrade for optimal outcomes, however, is not generally known and the ability to select from similar scaffolds that vary in degradation behavior to allow such optimization is limited. Our objective was to synthesize a family of biodegradable polyurethane elastomers where partial substitution of polyester segments with polycarbonate segments in the polymer backbone would lead to slower degradation behavior. Specifically, we synthesized poly(ester carbonate)urethane ureas (PECUUs) using a blended soft segment of poly(caprolactone) (PCL) and poly(1,6-hexamethylene carbonate) (PHC), a 1,4-diisocyanatobutane hard segment and chain extension with putrescine. Soft segment PCL/PHC molar ratios of 100/0, 75/25, 50/50, 25/75, and 0/100 were investigated. Polymer tensile strengths varied from 14-34 MPa with breaking strains of 660-875%, initial moduli of 8-24 MPa and 100% recovery after 10% strain. Increased PHC content was associated with softer, more distensible films. Scaffolds produced by salt leaching supported smooth muscle cell adhesion and growth in vitro. PECUU in aqueous buffer in vitro and subcutaneous implants in rats of PECUU scaffolds showed degradation slower than comparable poly(ester urethane)urea and faster than poly(carbonate urethane)urea. These slower degrading thermoplastic polyurethanes provide opportunities to investigate the role of relative degradation rates for mechanically supportive scaffolds in a variety of soft tissue repair and reconstructive procedures. PMID:20188411

  9. Through-transmission ultrasonics for on-line sensing and control of thermoplastic fusion bonding processes

    NASA Astrophysics Data System (ADS)

    Tackitt, Kirk David

    The focus of this work is to develop Through-Transmission Ultrasonics (TTU) as a process monitoring technique for non-intrusive, on-line control of thermoplastic fusion bonding. A model is developed to predict the TTU amplitude of a fusion bond by joining the theory of ultrasonic wave propagation through multilayered structures with a model for the evolution of intimate contact at the material interfaces. A new approach, the Averaged Transmission Model (ATM), is developed for treating the effects of imperfect contact at the bond interface. This approach is based upon statistical averaging of the transmission coefficients for the various sound paths between source and receiver. The extension of the model for an arbitrary number of rough interfaces is derived. The temperature dependence of sound velocity and ultrasonic attenuation of the materials are important properties. Experimental techniques based on both pulse-echo and laser ultrasonics in through-transmission mode were developed to characterize these properties at temperatures approaching 330°C. Validation of the ATM was accomplished by comparison of model predictions for PEEK polymer and PEEK/AS4 composites to data from resistance welding experiments. These studies were conducted in three phases. Phase one explored the TTU response to temperature at a fixed degree of intimate contact. Model results correlated well to experimental measurements. In phase two, interface structure was controlled to determine the effect of variable contact on the TTU amplitude at a fixed temperature. Model predictions were compared to TTU measurements for both single and dual interface cases with favorable results. In the phase three, model predictions were compared to results of a post-process TTU inspection of isothermally processed resistance welds. Model results were in agreement with experimental over a wide range of processing times. Hertzian contact theory was used to modify the initial degree of contact resulting from consolidation pressure. Strength development in the third-phase welds was determined to be intimate contact controlled, establishing a direct relationship between TTU amplitudes and strength. A near-linear relationship was found, demonstrating the potential for on-line, non-intrusive monitoring of weld strength.

  10. The reclaiming of butyl rubber and in-situ compatibilization of thermoplastic elastomer by power ultrasound

    NASA Astrophysics Data System (ADS)

    Feng, Wenlai

    This is a study of the continuous ultrasound aided extrusion process for the in-situ compatibilization of isotactic polypropylene (iPP)/ethylene-propylene diene rubber (EPDM) thermoplastic elastomer (TPE) using a newly developed ultrasonic treatment reactor. The rheological, mechanical properties and morphology of the TPE with and without ultrasonic treatment were studied. In-situ compatibilization in the ultrasonically treated blends was observed as evident by their more stable morphology after annealing, improved mechanical properties and IR spectra. The obtained results indicated that ultrasonic treatment induced the thermo-mechanical degradations and led to the possibility of enhanced molecular transport and chemical reactions at the interfaces. Processing conditions were established for enhanced in situ compatibilization of the PP/EPDM TPE. The ultrasonic treatments of butyl rubber gum and ultrasonic devulcanization of butyl rubber, tire-curing bladder during extrusion using a grooved barrel ultrasonic reactor were carried out. The ultrasonic treatment of gum caused degradation of the polymer main chain leading to lower molecular weight, broader molecular weight distribution, less unsaturation and changes in physical properties. The devulcanization of butyl rubber was successfully accomplished only at severe conditions of ultrasonic treatment. The mechanical properties of vulcanizates prepared from devulcanized butyl rubber are comparable to that of the virgin vulcanizate. The molecular characterization of sol fraction of devulcanized butyl rubber showed the devulcanization and degradation of butyl rubber occurred simultaneously. 1H NMR transverse relaxation was also used to study butyl rubber gum before and after ultrasonic treatment, and ultrasonically devulcanized unfilled butyl rubber. The T2 relaxation decays were successfully described using a two-component model. The recyclability of tire-curing bladder was also investigated. Gel fraction, crosslink density, cure behavior, dynamic properties and mechanical properties were measured. Good mechanical properties of revulcanized rubber were achieved by blending devulcanized rubber with the carbon black filled virgin butyl rubber. The structural characteristics of devulcanized butyl rubber were simulated using the Dobson-Gordon theory of rubber network statistics. A fairly good agreement between experimental data and theoretical prediction on normalized gel fraction vs. normalized crosslink density was achieved. The simulation of devulcanized butyl rubber indicated that the rate of crosslink rupture is much higher than that of the main chain.

  11. Piezoelectric Polymers

    NASA Technical Reports Server (NTRS)

    Harrison, J. S.; Ounaies, Z.; Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    The purpose of this review is to detail the current theoretical understanding of the origin of piezoelectric and ferroelectric phenomena in polymers; to present the state-of-the-art in piezoelectric polymers and emerging material systems that exhibit promising properties; and to discuss key characterization methods, fundamental modeling approaches, and applications of piezoelectric polymers. Piezoelectric polymers have been known to exist for more than forty years, but in recent years they have gained notoriety as a valuable class of smart materials.

  12. SULFUR POLYMER ENCAPSULATION.

    SciTech Connect

    KALB, P.

    2001-08-22

    Sulfur polymer cement (SPC) is a thermoplastic polymer consisting of 95 wt% elemental sulfur and 5 wt% organic modifiers to enhance long-term durability. SPC was originally developed by the U.S. Bureau of Mines as an alternative to hydraulic cement for construction applications. Previous attempts to use elemental sulfur as a construction material in the chemical industry failed due to premature degradation. These failures were caused by the internal stresses that result from changes in crystalline structure upon cooling of the material. By reacting elemental sulfur with organic polymers, the Bureau of Mines developed a product that successfully suppresses the solid phase transition and significantly improves the stability of the product. SPC, originally named modified sulfur cement, is produced from readily available, inexpensive waste sulfur derived from desulfurization of both flue gases and petroleum. The commercial production of SPC is licensed in the United States by Martin Resources (Odessa, Texas) and is marketed under the trade name Chement 2000. It is sold in granular form and is relatively inexpensive ({approx}$0.10 to 0.12/lb). Application of SPC for the treatment of radioactive, hazardous, and mixed wastes was initially developed and patented by Brookhaven National Laboratory (BNL) in the mid-1980s (Kalb and Colombo, 1985; Colombo et al., 1997). The process was subsequently investigated by the Commission of the European Communities (Van Dalen and Rijpkema, 1989), Idaho National Engineering Laboratory (Darnell, 1991), and Oak Ridge National Laboratory (Mattus and Mattus, 1994). SPC has been used primarily in microencapsulation applications but can also be used for macroencapsulation of waste. SPC microencapsulation has been demonstrated to be an effective treatment for a wide variety of wastes, including incinerator hearth and fly ash; aqueous concentrates such as sulfates, borates, and chlorides; blowdown solutions; soils; and sludges. It is not recommended for treatment of wastes containing high concentrations of nitrates because of potentially dangerous reactions between sulfur, nitrate, and trace quantities of organics. Recently, the process has been adapted for the treatment of liquid elemental mercury and mercury contaminated soil and debris.

  13. Making insoluble polymer networks malleable via olefin metathesis.

    PubMed

    Lu, Yi-Xuan; Tournilhac, Franois; Leibler, Ludwik; Guan, Zhibin

    2012-05-23

    Covalently cross-linked polymers have many technological applications for their excellent properties, but they suffer from the lack of processability and adaptive properties. We report a simple, efficient method of generating adaptive cross-linked polymers via olefin metathesis. By introducing a very low level of the Grubbs' second-generation Ru metathesis catalyst, a chemically cross-linked polybutadiene network becomes malleable at room temperature while retaining its insolubility. The stress relaxation capability increases with increasing level of catalyst loading. In sharp contrast, catalyst-free control samples with identical network topology and cross-linking density do not show any adaptive properties. This chemistry should offer a possibility to combine the dimensional stability and solvent resistance of cross-linked polymers and the processability/adaptibility of thermoplastics. PMID:22568481

  14. On the simulation of strain induced anisotropy for polymers

    NASA Astrophysics Data System (ADS)

    Dammann, C.; Mahnken, R.

    2014-05-01

    The alignment of polymer chains is a well known microstructural evolution effect due to straining of polymers. This has a drastic influence on the macroscopic properties of the initially isotropic material, such as a pronounced strength in the loading direction of stretched films. For modeling the effect of strain induced anisotropy a macroscopic constitutive model is adopted in this paper. As a key idea, weighting functions are introduced to represent a strain-softening/hardening-effect to account for induced anisotropy. These weighting functions represent the ratio between the total strain rate (representing the actual loading direction) and a structural tensor (representing the stretched polymer chains). In this way, material parameters are used as a sum of weighted direction related quantities. In the finite element examples we simulate the cold-forming of amorphous thermoplastic films below the glass transition temperature subjected to different re-loading directions.

  15. Space environmental effects on polymer composites: Research needs and opportunities

    NASA Technical Reports Server (NTRS)

    Jang, Bor Z.; Bianchi, J.; Liu, Y. M.; Chang, C. P.

    1993-01-01

    The long-term performance of polymer-based composites in the space environment is discussed. Both thermoset and thermoplastic matrix composites are included in this discussion. Previous efforts on the space environmental effects on composites are briefly reviewed. Focus of this review is placed on the effects of hygrothermal stresses, atomic oxygen, ultraviolet (UV), and space debris/micrometeoroid impacts along with the potential synergism. Potential approaches to estimating the residual strength of polymer composites after exposure to atomic oxygen erosion or space debris/micrometeoroid impact are evaluated. New ground-based data are then utilized to illustrate the effects of atomic oxygen and thermal cycling on the failure behavior of polymer composites. Finally, research needs, challenges, and opportunities in the field of space environmental effects on composite materials are highlighted.

  16. Functionalization of polymers using an atmospheric plasma jet in a fluidized bed reactor and the impact on SLM-processes

    SciTech Connect

    Sachs, M. Schmitt, A. Schmidt, J. Peukert, W. Wirth, K-E

    2014-05-15

    In order to improve thermoplastics (e.g. Polyamide, Polypropylene and Polyethylene) for Selective Laser Beam Melting (SLM) processes a new approach to functionalize temperature sensitive polymer powders in a large scale is investigated. This is achieved by combining an atmospheric pressure plasma jet and a fluidized bed reactor. Using pressurized air as the plasma gas, radicals like OH* are created. The functionalization leads to an increase of the hydrophilicity of the treated polymer powder without changing the bulk properties. Using the polymers in a SLM process to build single layers of melted material leads to an improvement of the melted layers.

  17. Functionalization of polymers using an atmospheric plasma jet in a fluidized bed reactor and the impact on SLM-processes

    NASA Astrophysics Data System (ADS)

    Sachs, M.; Schmitt, A.; Schmidt, J.; Peukert, W.; Wirth, K.-E.

    2014-05-01

    In order to improve thermoplastics (e.g. Polyamide, Polypropylene and Polyethylene) for Selective Laser Beam Melting (SLM) processes a new approach to functionalize temperature sensitive polymer powders in a large scale is investigated. This is achieved by combining an atmospheric pressure plasma jet and a fluidized bed reactor. Using pressurized air as the plasma gas, radicals like OH* are created. The functionalization leads to an increase of the hydrophilicity of the treated polymer powder without changing the bulk properties. Using the polymers in a SLM process to build single layers of melted material leads to an improvement of the melted layers.

  18. Optimal Substitution of Cotton Burr and Linters in Thermoplastic Composites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study was conducted to evaluate various substitutions of cotton burr and linters fractions of cotton gin waste (CGW) as a natural fiber source in ligno-cellulosic polymer composites (LCPC.) Samples were fabricated with approximately 50% natural fiber, 40% of high-density polyethylene (HDPE) powder...

  19. Conjugated polymers: Watching polymers dance

    NASA Astrophysics Data System (ADS)

    Rothberg, Lewis

    2011-06-01

    Single-molecule spectroscopy allows fluctuations of conjugated polymer conformation to be monitored during solvent vapour annealing. Dramatic changes in fluorescence behaviour are observed and interpreted in terms of transformations between extended and collapsed polymer geometries.

  20. Flexible fabrication and applications of polymer nanochannels and nanoslits

    PubMed Central

    Chantiwas, Rattikan; Kim, Byoung Choul; Sunkara, Vijaya; Hwang, Hyundoo

    2016-01-01

    Fluidic devices that employ nanoscale structures (<100 nm in one or two dimensions, slits or channels, respectively) are generating great interest due to the unique properties afforded by this size domain compared to their micro-scale counterparts. Examples of interesting nanoscale phenomena include the ability to preconcentrate ionic species at extremely high levels due to ion selective migration, unique molecular separation modalities, confined environments to allow biopolymer stretching and elongation and solid-phase bioreactions that are not constrained by mass transport artifacts. Indeed, many examples in the literature have demonstrated these unique opportunities, although predominately using glass, fused silica or silicon as the substrate material. Polymer microfluidics has established itself as an alternative to glass, fused silica, or silicon-based fluidic devices. The primary advantages arising from the use of polymers are the diverse fabrication protocols that can be used to produce the desired structures, the extensive array of physiochemical properties associated with different polymeric materials, and the simple and robust modification strategies that can be employed to alter the substrate's surface chemistry. However, while the strengths of polymer microfluidics is currently being realized, the evolution of polymer-based nanofluidics has only recently been reported. In this critical review, the opportunities afforded by polymer-based nanofluidics will be discussed using both elastomeric and thermoplastic materials. In particular, various fabrication modalities will be discussed along with the nanometre size domains that they can achieve for both elastomer and thermoplastic materials. Different polymer substrates that can be used for nanofluidics will be presented along with comparisons to inorganic nanodevices and the consequences of material differences on the fabrication and operation of nanofluidic devices (257 references). PMID:21442106

  1. Simplified tube models for entangled supramolecular polymers

    NASA Astrophysics Data System (ADS)

    Boudara, Victor; Read, Daniel

    2015-03-01

    This presentation describes current efforts investigating non-linear rheology of entangled, supramolecular polymeric materials. We describe two recently developed models: 1) We have developed a simplified model for the rheology of entangled telechelic star polymers. This is based on a pre-averaged orientation tensor, a stretch equation, and stretch-dependant probability of detachment of the sticker. In both linear and non-linear regimes, we produce maps of the whole parameter space, indicating the parameter values for which qualitative changes in response to flow are predicted. Results in the linear rheology regime are consistent with previous more detailed models and are in qualitative agreement with experimental data. 2) Using the same modelling framework, we investigate entangled linear polymers with stickers along the backbone. We use a set of coupled equations to describe the stretch between each stickers, and use equations similar to our star model for attachment/detachment of the sticky groups. This model is applicable to industrial polymers such as entangled thermoplastic elasomers, or functionalised model linear polymers. The work leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA Grant Agreement No. 607937 (SUPOLEN).

  2. Hierarchical Structures in Ion-Containing Polymers

    NASA Astrophysics Data System (ADS)

    Winey, Karen I.

    2010-03-01

    Ion-containing polymers are currently used as tough thermoplastics primarily. To extend their applications to the electrolytes in batteries, electroactive polymers for actuation, and permselective membranes in fuel cells, the hierarchical structures of the complex polymers must be characterized and controlled. Over the last decade we have develop scanning transmission electron microscopy, X-ray scattering methods, and image simulations to quantify the nanoscale morphologies in these materials. This seminar will present our recent work, wherein we collaborate with various groups who are synthesizing new ion-containing polymers and correlating the morphologies to transport properties. The first example is a series of Li, Na, and Cs-neutralized sulfonated polyester ionomers with well-defined poly(ethylene glycol) spacer lengths. The state of ionic aggregation depends on the cation type, spacer length, and temperature. The second example is binary mixtures of a poly(styrene-b-methyl methacrylate) diblock copolymer and an ionic liquid, where the ordered morphologies profoundly impact the ionic conductivity. The third example is linear polyethylenes with precisely spaced acid groups and a layered hierarchical structure.

  3. Development of thermoplastic composite tubes for large deformation

    NASA Astrophysics Data System (ADS)

    Derisi, Bijan

    Composites have proved their great potentials for many aerospace applications, where the high performance can justify the high cost. However, the brittleness of the composites has been a main drawback for many applications that require large deformation, high failure strain and extensive energy absorption before final fracture. The objective of this research is to present a solution to the brittleness of the composites in tubular form and to introduce a composite tube that shows the same strength, stiffness and failure strain as its high grade Aluminum 7075-T6 counterpart tube. One application of this research can be in the development of composite landing gear for helicopters. Up to date, almost all helicopter landing gears are made of high strength aluminum, and despite their major issues in maintenance and fabrication, aluminum landing gears have remained the only choice for the helicopter manufacturing industry. Substitution of aluminum landing gear for helicopters with a thermoplastic composite landing gear is really a challenge, but if this can be done, it would be for the first time in the world! Through this research, the mechanical behavior of flat plate Carbon AS4/PEKK is characterized, and the potential mechanisms for large deformation of composite laminates are sought. The outcomes are used to design a composite tube that shows the same strength, stiffness and deformability as its high grade aluminum counterpart. The accuracy of the design is verified through progressive failure by ANSYS analysis and experimental work. Strain Controlled Design is introduced as a new design technique to substitute for the traditional stiffness-controlled techniques whenever large deformation from composite laminates is expected. The analytical techniques for stress analysis of composite tubes are reviewed, and the cumbersomeness of the method is highlighted. Finally, a simplified technique is presented to analyze composite tubes as a sandwich panel model. The results of the analysis are compared with the ANSYS and experimental results. Agreement between three methods is demonstrated. Moreover, guidelines for the design of composite tubes that exhibit large deformation before failure are presented.

  4. Preparing composite materials from matrices of processable aromatic polyimide thermoplastic blends

    NASA Technical Reports Server (NTRS)

    Johnston, Norman J. (inventor); St.clair, Terry L. (inventor); Baucom, Robert M. (inventor); Gleason, John R. (inventor)

    1991-01-01

    Composite materials with matrices of tough, thermoplastic aromatic polyimides are obtained by blending semi-crystalline polyimide powders with polyamic acid solutions to form slurries, which are used in turn to prepare prepregs, the consolidation of which into finished composites is characterized by excellent melt flow during processing.

  5. A micrographic study of bending failure in five thermoplastic-carbon fibre composite laminates

    NASA Technical Reports Server (NTRS)

    Yurgartis, S. W.; Sternstein, S. S.

    1988-01-01

    The local deformation and failure sequences of five thermoplastic matrix composites were microscopically observed while bending the samples in a small fixture attached to a microscope stage. The thermoplastics are polycarbonate, polysulfane, polyphenylsulfide, polyethersulfane, and polyetheretherketone. Comparison was made to an epoxy matrix composite, 5208/T-300. Laminates tested are (0/90) sub 2S, with outer ply fibers parallel to the beam axis. Four point bending was used at a typical span-to-thickness ratio of 39:1. It was found that all of the thermoplastic composites failed by abrupt longitudinal compression buckling of the outer ply. Very little precursory damage was observed. Micrographs reveal typical fiber kinking associated with longitudinal compression failure. Curved fracture surfaces on the fibers suggest they failed in bending rather than direct compression. Delamination was suppressed in the thermoplastic composites, and the delamination that did occur was found to be the result of compression buckling, rather than vice-versa. Microbuckling also caused other subsequent damage such as ply splitting, transverse ply shear failure, fiber tensile failure, and transverse ply cracking.

  6. Recycling of ligno-cellulosic and polythylene wastes from agricultural operations in thermoplastic composites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the US, wood plastic composites (WPC) represent one of the successful markets for natural fiber-filled thermoplastic composites. In the past several years, the availability of good quality wood fiber has been diminishing and prices of wood and plastic have been increasing. Therefore, the vast qua...

  7. SOLVENTLESS MANUFACTURE OF ARTILLERY PROPELLANT USING THERMOPLASTIC ELASTOMER BINDER, PP-867

    EPA Science Inventory

    Multi-base gun propellant for artillery ammunition creates 0.3 lb of solvent emissions per lb of propellant, and at expected production rates of 3 million lb/yr, this represents the largest source of VOC emissions due to gun propellant production. New thermoplastic elastomer (TP...

  8. Evaluation of a Thermoplastic Immobilization System for Breast and Chest Wall Radiation Therapy

    SciTech Connect

    Strydhorst, Jared H.; Caudrelier, Jean-Michel; Clark, Brenda G.; Montgomery, Lynn A.; Fox, Greg; MacPherson, Miller S.

    2011-04-01

    We report on the impact of a thermoplastic immobilization system on intra- and interfraction motion for patients undergoing breast or chest wall radiation therapy. Patients for this study were treated using helical tomotherapy. All patients were immobilized using a thermoplastic shell extending from the shoulders to the ribcage. Intrafraction motion was assessed by measuring maximum displacement of the skin, heart, and chest wall on a pretreatment 4D computed tomography, while inter-fraction motion was inferred from patient shift data arising from daily image guidance procedures on tomotherapy. Using thermoplastic immobilization, the average maximum motion of the external contour was 1.3 {+-} 1.6 mm, whereas the chest wall was found to be 1.6 {+-} 1.9 mm. The day-to-day setup variation was found to be large, with random errors of 4.0, 12.0, and 4.5 mm in the left-right, superior-inferior, and anterior-posterior directions, respectively, and the standard deviations of the systematic errors were found to be 2.7, 9.8, and 4.1 mm. These errors would be expected to dominate any respiratory motion but can be mitigated by daily online image guidance. Using thermoplastic immobilization can effectively reduce respiratory motion of the chest wall and external contour, but these gains can only be realized if daily image guidance is used.

  9. PROCESSING AND CHARACTERIZATION OF WELDED BONDS BETWEEN THERMOSET AND THERMOPLASTIC COMPOSITES

    EPA Science Inventory

    To assemble complex structures with short cycle times, the feasibility of welding thermoplastic (TP) to thermoset (TS) composites is demonstrated using a phenomenological approach. The effect of the thermal degradation of the TS composite (AS4/3501-6) on its shear strength is ass...

  10. Recycling of ligno-cellulosic and polyethylene wastes from agricultural operations in thermoplastic composites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the US, wood plastic composites (WPC) represent one of the successful markets for natural fiber-filled thermoplastic composites. In the past several years, the availability of good quality wood fiber has been diminishing and prices of wood and plastic have been increasing. Therefore, the vast qua...

  11. Vacuum forming of thermoplastic sheet results in low-cost investment casting patterns

    NASA Technical Reports Server (NTRS)

    Clarke, A. E., Jr.

    1964-01-01

    Vacuum forming of a sheet of thermoplastic material around a mandrel conforming to the shape of the finished object provides a pattern for an investment mold. The thickness of the metal part is determined by the thickness of the plastic pattern.

  12. Synthesis of APA6 thermoplastic matrices for the manufacture of greencomposites

    NASA Astrophysics Data System (ADS)

    Alfonso, A.; Andrés, J.; García-Manrique, J. A.

    2012-04-01

    The present research work assesses the manufacture of long fiber thermoplastic matrix composite materials (GreenComposites). Thermoplastic matrices are too viscous to be injected into the conventional LCM (Liquid Comopsite Molding) molds, and then epoxy, polyester o vinylester resins are used. Nevertheless, the groundbreaking anionic polymerization of ɛ-caprolactam allows such a synthesis of a thermoplastic APA6 matrix inside the mold. This matrix is sintered from the starting monomers, and presents high mechanical performance and recyclability. In order to do the reactive injection in a LCM mold, it is necessary to control the polymerization mechanism of such a thermoplastic matrix. Likewise, it puts special emphasis on detecting and solving all problems which arose during synthesis. For instance, moisture values were assessed for all starting reactants, since humidity keeps polymerization from occurring. It is thought that once the synthesis and the resulting material characterization are well controlled, the manufacture of GreenComposites through monomers injection and in situ polymerization, as well as addition of state-of-the-art fabrics such as basalt, can proceed successfully.

  13. Thermoplastic rubber comprising ethylene-vinyl acetate copolymer, asphalt and fluxing oil

    NASA Technical Reports Server (NTRS)

    Hendel, F. J. (Inventor)

    1970-01-01

    A thermoplastic rubber is made from a mixture of between about 10 percent and about 50 percent of asphalt, between about 5 percent and about 30 percent fluxing oil, and between about 35 percent and about 70 percent of a copolymer of polyethylene and vinyl acetate.

  14. Properties of thermoplastic starch and TPS/polycaprolactone blend reinforced with sisal whiskers using extrusion processing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sisal whiskers (SW) were prepared by acid hydrolysis for subsequent evaluation as reinforcing material for biodegradable matrices of thermoplastic starch (TPS) and TPS/polycaprolactone (TPS/PCL) blends. The acid hydrolyzed SW had dimensions of 5±2 nm in diameter and 210±60 nm in length and 78% cryst...

  15. Properties of thermoplastic composites with cotton and guayule biomass residues as fiber fillers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was conducted to evaluate the suitability of using residual plant fibers from agricultural waste streams as reinforcement in thermoplastic composites. Three groups of plant fibers evaluated included cotton burrs, sticks, and linters from cotton gin waste (CGW), guayule whole plant, and gu...

  16. High-precision flexible fabrication of tissue engineering scaffolds using distinct polymers

    SciTech Connect

    Wei, Chuang; Cai, Lei; Sonawane, Bhushan; Wang, Shanfeng; Dong, Jingyan

    2012-01-01

    Three-dimensional porous structures using biodegradable materials with excellent biocompatibility are critically important for tissue engineering applications. We present a multi-nozzle-based versatile deposition approach to flexibly construct porous tissue engineering scaffolds using distinct polymeric biomaterials such as thermoplastic and photo-crosslinkable polymers. We first describe the development of the deposition system and fabrication of scaffolds from two types of biodegradable polymers using this system. The thermoplastic sample is semi-crystalline poly({var_epsilon}-caprolactone) (PCL) that can be processed at a temperature higher than its melting point and solidifies at room temperature. The photo-crosslinkable one is polypropylene fumarate (PPF) that has to be dissolved in a reactive solvent as a resin for being cured into solid structures. Besides the direct fabrication of thermoplastic PCL scaffolds, we specifically develop a layer molding approach for the fabrication of crosslinkable polymers, which traditionally can only be fabricated by stereolithography. In this approach, a thermoplastic supporting material (paraffin wax) is first deposited to make a mold for each specific layer, and then PPF is deposited on demand to fill the mold and cured by the UV light. The supporting material can be removed to produce a porous scaffold of crosslinked PPF. Both PCL and crosslinked PPF scaffolds fabricated using the developed system have been characterized in terms of compressive mechanical properties, morphology, pore size and porosity. Mouse MC3T3-E1 pre-osteoblastic cell studies on the fabricated scaffolds have been performed to demonstrate their capability of supporting cell proliferation and ingrowth, aiming for bone tissue engineering applications.

  17. High-precision flexible fabrication of tissue engineering scaffolds using distinct polymers.

    PubMed

    Wei, Chuang; Cai, Lei; Sonawane, Bhushan; Wang, Shanfeng; Dong, Jingyan

    2012-05-25

    Three-dimensional porous structures using biodegradable materials with excellent biocompatibility are critically important for tissue engineering applications. We present a multi-nozzle-based versatile deposition approach to flexibly construct porous tissue engineering scaffolds using distinct polymeric biomaterials such as thermoplastic and photo-crosslinkable polymers. We first describe the development of the deposition system and fabrication of scaffolds from two types of biodegradable polymers using this system. The thermoplastic sample is semi-crystalline poly(?-caprolactone) (PCL) that can be processed at a temperature higher than its melting point and solidifies at room temperature. The photo-crosslinkable one is polypropylene fumarate (PPF) that has to be dissolved in a reactive solvent as a resin for being cured into solid structures. Besides the direct fabrication of thermoplastic PCL scaffolds, we specifically develop a layer molding approach for the fabrication of crosslinkable polymers, which traditionally can only be fabricated by stereolithography. In this approach, a thermoplastic supporting material (paraffin wax) is first deposited to make a mold for each specific layer, and then PPF is deposited on demand to fill the mold and cured by the UV light. The supporting material can be removed to produce a porous scaffold of crosslinked PPF. Both PCL and crosslinked PPF scaffolds fabricated using the developed system have been characterized in terms of compressive mechanical properties, morphology, pore size and porosity. Mouse MC3T3-E1 pre-osteoblastic cell studies on the fabricated scaffolds have been performed to demonstrate their capability of supporting cell proliferation and ingrowth, aiming for bone tissue engineering applications. PMID:22635324

  18. On the recovery and recrystallization of two thermoplastics

    NASA Astrophysics Data System (ADS)

    Brown, Eric; Rau, Christoph; Townsend, David; Bourne, Neil; Withers, Phil

    2015-06-01

    The well-known Taylor test, that follows the impact of a flat-ended cylindrical rod onto a rigid stationary anvil, is conducted over a range of impact speeds for two polymers, PTFE and PEEK. In previous work experiments and a model were developed to capture the deformation behavior of the rod after impact. A distinctive feature of these works was that a region in which there was both spatial and temporal variation of both longitudinal and radial deformation showed evidence of order in an otherwise amorphous matrix within the material. This region is imaged in a range of impacted targets at the I13 Imaging and Coherence beamline at the Diamond synchrotron. Resolution beyond the limitations given by the detector and X-ray optics were achieved using methods working in reciprocal space. Further techniques were fielded to resolve crystalline regions within the recovered polymer cylinders.

  19. Transparent Large Strain Thermoplastic Polyurethane Magneto-Active Nanocomposites

    NASA Technical Reports Server (NTRS)

    Yoonessi, Mitra; Carpen, Ileana; Peck, John; Sola, Francisco; Bail, Justin; Lerch, Bradley; Meador, Michael

    2010-01-01

    Smart adaptive materials are an important class of materials which can be used in space deployable structures, morphing wings, and structural air vehicle components where remote actuation can improve fuel efficiency. Adaptive materials can undergo deformation when exposed to external stimuli such as electric fields, thermal gradients, radiation (IR, UV, etc.), chemical and electrochemical actuation, and magnetic field. Large strain, controlled and repetitive actuation are important characteristics of smart adaptive materials. Polymer nanocomposites can be tailored as shape memory polymers and actuators. Magnetic actuation of polymer nanocomposites using a range of iron, iron cobalt, and iron manganese nanoparticles is presented. The iron-based nanoparticles were synthesized using the soft template (1) and Sun's (2) methods. The nanoparticles shape and size were examined using TEM. The crystalline structure and domain size were evaluated using WAXS. Surface modifications of the nanoparticles were performed to improve dispersion, and were characterized with IR and TGA. TPU nanocomposites exhibited actuation for approximately 2wt% nanoparticle loading in an applied magnetic field. Large deformation and fast recovery were observed. These nanocomposites represent a promising potential for new generation of smart materials.

  20. Selective separation of virgin and post-consumer polymers (PET and PVC) by flotation method

    SciTech Connect

    Burat, Firat; Gueney, Ali; Olgac Kangal, M.

    2009-06-15

    More and more polymer wastes are generated by industry and householders today. Recycling is an important process to reduce the amount of waste resulting from human activities. Currently, recycling technologies use relatively homogeneous polymers because hand-sorting waste is costly. Many promising technologies are being investigated for separating mixed thermoplastics, but they are still uneconomical and unreliable. At present, most waste polymers cause serious environmental problems. Burning polymers for recycling is not practiced since poisonous gases are released during the burning process. Particularly, polyvinyl chloride (PVC) materials among waste polymers generate hazardous HCl gas, dioxins containing Cl, etc., which lead to air pollution and shorten the life of the incinerator. In addition, they make other polymers difficult to recycle. Both polyethylene terephthalate (PET) and PVC have densities of 1.30-1.35 g/cm{sup 3} and cannot be separated using conventional gravity separation techniques. For this reason, polymer recycling needs new techniques. Among these techniques, froth flotation, which is also used in mineral processing, can be useful because of its low cost and simplicity. The main objective of this research is to recycle PET and PVC selectively from post-consumer polymer wastes and virgin polymers by using froth flotation. According to the results, all PVC particles were floated with 98.8% efficiency in virgin polymer separation while PET particles were obtained with 99.7% purity and 57.0% efficiency in post-consumer polymer separation.

  1. Selective separation of virgin and post-consumer polymers (PET and PVC) by flotation method.

    PubMed

    Burat, Firat; Güney, Ali; Olgaç Kangal, M

    2009-06-01

    More and more polymer wastes are generated by industry and householders today. Recycling is an important process to reduce the amount of waste resulting from human activities. Currently, recycling technologies use relatively homogeneous polymers because hand-sorting waste is costly. Many promising technologies are being investigated for separating mixed thermoplastics, but they are still uneconomical and unreliable. At present, most waste polymers cause serious environmental problems. Burning polymers for recycling is not practiced since poisonous gases are released during the burning process. Particularly, polyvinyl chloride (PVC) materials among waste polymers generate hazardous HCl gas, dioxins containing Cl, etc., which lead to air pollution and shorten the life of the incinerator. In addition, they make other polymers difficult to recycle. Both polyethylene terephthalate (PET) and PVC have densities of 1.30-1.35g /cm(3) and cannot be separated using conventional gravity separation techniques. For this reason, polymer recycling needs new techniques. Among these techniques, froth flotation, which is also used in mineral processing, can be useful because of its low cost and simplicity. The main objective of this research is to recycle PET and PVC selectively from post-consumer polymer wastes and virgin polymers by using froth flotation. According to the results, all PVC particles were floated with 98.8% efficiency in virgin polymer separation while PET particles were obtained with 99.7% purity and 57.0% efficiency in post-consumer polymer separation. PMID:19155169

  2. Polymer adsorption

    NASA Astrophysics Data System (ADS)

    Joanny, Jean-Francois

    2008-03-01

    The aim of this talk is to review Pierre-Gilles deGennes' work on polymer adsorption and the impact that it has now in our understanding of this problem. We will first present the self-consistent mean-field theory and its applications to adsorption and depletion. De Gennes most important contribution is probably the derivation of the self-similar power law density profile for adsorbed polymer layers that we will present next, emphasizing the differences between the tail sections and the loop sections of the adsorbed polymers. We will then discuss the kinetics of polymer adsorption and the penetration of a new polymer chain in an adsobed layer that DeGennes described very elegantly in analogy with a quantum tunneling problem. Finally, we will discuss the role of polymer adsorption for colloid stabilization.

  3. Polymer Electrolytes

    NASA Astrophysics Data System (ADS)

    Hallinan, Daniel T.; Balsara, Nitash P.

    2013-07-01

    This review article covers applications in which polymer electrolytes are used: lithium batteries, fuel cells, and water desalination. The ideas of electrochemical potential, salt activity, and ion transport are presented in the context of these applications. Potential is defined, and we show how a cell potential measurement can be used to ascertain salt activity. The transport parameters needed to fully specify a binary electrolyte (salt + solvent) are presented. We define five fundamentally different types of homogeneous electrolytes: type I (classical liquid electrolytes), type II (gel electrolytes), type III (dry polymer electrolytes), type IV (dry single-ion-conducting polymer electrolytes), and type V (solvated single-ion-conducting polymer electrolytes). Typical values of transport parameters are provided for all types of electrolytes. Comparison among the values provides insight into the transport mechanisms occurring in polymer electrolytes. It is desirable to decouple the mechanical properties of polymer electrolyte membranes from the ionic conductivity. One way to accomplish this is through the development of microphase-separated polymers, wherein one of the microphases conducts ions while the other enhances the mechanical rigidity of the heterogeneous polymer electrolyte. We cover all three types of conducting polymer electrolyte phases (types III, IV, and V). We present a simple framework that relates the transport parameters of heterogeneous electrolytes to homogeneous analogs. We conclude by discussing electrochemical stability of electrolytes and the effects of water contamination because of their relevance to applications such as lithium ion batteries.

  4. Polymer Chemistry

    NASA Technical Reports Server (NTRS)

    Williams, Martha; Roberson, Luke; Caraccio, Anne

    2010-01-01

    This viewgraph presentation describes new technologies in polymer and material chemistry that benefits NASA programs and missions. The topics include: 1) What are Polymers?; 2) History of Polymer Chemistry; 3) Composites/Materials Development at KSC; 4) Why Wiring; 5) Next Generation Wiring Materials; 6) Wire System Materials and Integration; 7) Self-Healing Wire Repair; 8) Smart Wiring Summary; 9) Fire and Polymers; 10) Aerogel Technology; 11) Aerogel Composites; 12) Aerogels for Oil Remediation; 13) KSC's Solution; 14) Chemochromic Hydrogen Sensors; 15) STS-130 and 131 Operations; 16) HyperPigment; 17) Antimicrobial Materials; 18) Conductive Inks Formulations for Multiple Applications; and 19) Testing and Processing Equipment.

  5. Ferroelectric polymers

    SciTech Connect

    Lovinger, A.J.

    1983-06-10

    Piezoelectricity and pyroelectricity, traditionally encountered in certain single crystals and ceramics, have now also been documented in a number of polymers. Recently, one such polymer - poly(vinylidene fluoride) - and some of its copolymers have been shown to be ferroelectric as well. The extraordinary molecular and supermolecular structural requirements for ferroelectric behavior in polymers are discussed in detail, with particular emphasis on poly(vinylidene fluoride). Piezoelectric, pyroelectric, and ferroelectric properties are also briefly reviewed, as are some promising applications of such polymers. 8 figures, 1 table.

  6. Functionalized Materials From Elastomers to High Performance Thermoplastics

    SciTech Connect

    Laura Ann Salazar

    2003-05-31

    Synthesis and incorporation of functionalized materials continues to generate significant research interest in academia and in industry. If chosen correctly, a functional group when incorporated into a polymer can deliver enhanced properties, such as adhesion, water solubility, thermal stability, etc. The utility of these new materials has been demonstrated in drug-delivery systems, coatings, membranes and compatibilizers. Two approaches exist to functionalize a material. The desired moiety can be added to the monomer either before or after polymerization. The polymers used range from low glass transition temperature elastomers to high glass transition temperature, high performance materials. One industrial example of the first approach is the synthesis of Teflon(reg. sign). Poly(tetrafluoroethylene) (PTFE or Teflon(reg. sign)) is synthesized from tetrafluoroethylene, a functionalized monomer. The resulting material has significant property differences from the parent, poly(ethylene). Due to the fluorine in the polymer, PTFE has excellent solvent and heat resistance, a low surface energy and a low coefficient of friction. This allows the material to be used in high temperature applications where the surface needs to be nonabrasive and nonstick. This material has a wide spread use in the cooking industry because it allows for ease of cooking and cleaning as a nonstick coating on cookware. One of the best examples of the second approach, functionalization after polymerization, is the vulcanization process used to make tires. Natural rubber (from the Hevea brasiliensis) has a very low glass transition temperature, is very tacky and would not be useful to make tires without synthetic alteration. Goodyear's invention was the vulcanization of polyisoprene by crosslinking the material with sulfur to create a rubber that was tough enough to withstand the elements of weather and road conditions. Due to the development of polymerization techniques to make cis-polyisoprene, natural rubber is no longer needed for the manufacturing of tires, but vulcanization is still utilized.

  7. Polymers & People

    ERIC Educational Resources Information Center

    Lentz, Linda; Robinson, Thomas; Martin, Elizabeth; Miller, Mary; Ashburn, Norma

    2004-01-01

    Each Tuesday during the fall of 2002, teams of high school students from three South Carolina counties conducted a four-hour polymer institute for their peers. In less than two months, over 300 students visited the Charleston County Public Library in Charleston, South Carolina, to explore DNA, nylon, rubber, gluep, and other polymers. Teams of

  8. Polymers & People

    ERIC Educational Resources Information Center

    Lentz, Linda; Robinson, Thomas; Martin, Elizabeth; Miller, Mary; Ashburn, Norma

    2004-01-01

    Each Tuesday during the fall of 2002, teams of high school students from three South Carolina counties conducted a four-hour polymer institute for their peers. In less than two months, over 300 students visited the Charleston County Public Library in Charleston, South Carolina, to explore DNA, nylon, rubber, gluep, and other polymers. Teams of…

  9. Polymers All Around You!

    ERIC Educational Resources Information Center

    Gertz, Susan

    Background information on natural polymers, synthetic polymers, and the properties of polymers is presented as an introduction to this curriculum guide. Details are provided on the use of polymer products in consumer goods, polymer recycling, polymer densities, the making of a polymer such as GLUEP, polyvinyl alcohol, dissolving plastics, polymers

  10. Numerical prediction of fiber orientation in injection-molded short-fiber/thermoplastic composite parts with experimental validation

    SciTech Connect

    Thi, Thanh Binh Nguyen; Morioka, Mizuki; Yokoyama, Atsushi; Hamanaka, Senji; Yamashita, Katsuhisa; Nonomura, Chisato

    2015-05-22

    Numerical prediction of the fiber orientation in the short-glass fiber (GF) reinforced polyamide 6 (PA6) composites with the fiber weight concentration of 30%, 50%, and 70% manufactured by the injection molding process is presented. And the fiber orientation was also directly observed and measured through X-ray computed tomography. During the injection molding process of the short-fiber/thermoplastic composite, the fiber orientation is produced by the flow states and the fiber-fiber interaction. Folgar and Tucker equation is the well known for modeling the fiber orientation in a concentrated suspension. They included into Jeffrey’s equation a diffusive type of term by introducing a phenomenological coefficient to account for the fiber-fiber interaction. Our developed model for the fiber-fiber interaction was proposed by modifying the rotary diffusion term of the Folgar-Tucker equation. This model was presented in a conference paper of the 29{sup th} International Conference of the Polymer Processing Society published by AIP conference proceeding. For modeling fiber interaction, the fiber dynamic simulation was introduced in order to obtain a global fiber interaction coefficient, which is sum function of the fiber concentration, aspect ratio, and angular velocity. The fiber orientation is predicted by using the proposed fiber interaction model incorporated into a computer aided engineering simulation package C-Mold. An experimental program has been carried out in which the fiber orientation distribution has been measured in 100 x 100 x 2 mm injection-molded plate and 100 x 80 x 2 mm injection-molded weld by analyzed with a high resolution 3D X-ray computed tomography system XVA-160α, and calculated by X-ray computed tomography imaging. The numerical prediction shows a good agreement with experimental validation. And the complex fiber orientation in the injection-molded weld was investigated.

  11. Numerical prediction of fiber orientation in injection-molded short-fiber/thermoplastic composite parts with experimental validation

    NASA Astrophysics Data System (ADS)

    Thi, Thanh Binh Nguyen; Morioka, Mizuki; Yokoyama, Atsushi; Hamanaka, Senji; Yamashita, Katsuhisa; Nonomura, Chisato

    2015-05-01

    Numerical prediction of the fiber orientation in the short-glass fiber (GF) reinforced polyamide 6 (PA6) composites with the fiber weight concentration of 30%, 50%, and 70% manufactured by the injection molding process is presented. And the fiber orientation was also directly observed and measured through X-ray computed tomography. During the injection molding process of the short-fiber/thermoplastic composite, the fiber orientation is produced by the flow states and the fiber-fiber interaction. Folgar and Tucker equation is the well known for modeling the fiber orientation in a concentrated suspension. They included into Jeffrey's equation a diffusive type of term by introducing a phenomenological coefficient to account for the fiber-fiber interaction. Our developed model for the fiber-fiber interaction was proposed by modifying the rotary diffusion term of the Folgar-Tucker equation. This model was presented in a conference paper of the 29th International Conference of the Polymer Processing Society published by AIP conference proceeding. For modeling fiber interaction, the fiber dynamic simulation was introduced in order to obtain a global fiber interaction coefficient, which is sum function of the fiber concentration, aspect ratio, and angular velocity. The fiber orientation is predicted by using the proposed fiber interaction model incorporated into a computer aided engineering simulation package C-Mold. An experimental program has been carried out in which the fiber orientation distribution has been measured in 100 x 100 x 2 mm injection-molded plate and 100 x 80 x 2 mm injection-molded weld by analyzed with a high resolution 3D X-ray computed tomography system XVA-160α, and calculated by X-ray computed tomography imaging. The numerical prediction shows a good agreement with experimental validation. And the complex fiber orientation in the injection-molded weld was investigated.

  12. Extrusion foaming of thermoplastic cellulose acetate from renewable resources using a two-component physical blowing agent system

    NASA Astrophysics Data System (ADS)

    Hopmann, Ch.; Windeck, C.; Hendriks, S.; Zepnik, S.; Wodke, T.

    2014-05-01

    Thermoplastic cellulose acetate (CA) is a bio-based polymer with optical, mechanical and thermal properties comparable to those of polystyrene (PS). The substitution of the predominant petrol-based PS in applications like foamed food trays can lead to a more sustainable economic practice. However, CA is also suitable for more durable applications as the biodegradability rate can be controlled by adjusting the degree of substitutions. The extrusion foaming of CA still has to overcome certain challenges. CA is highly hydrophilic and can suffer from hydrolytic degradation if not dried properly. Therefore, the influence of residual moisture on the melt viscosity is rather high. Beyond, the surface quality of foam CA sheets is below those of PS due to the particular foaming behaviour. This paper presents results of a recent study on extrusion foamed CA, using a two-component physical blowing agent system compromising HFO 1234ze as blowing agent and organic solvents as co-propellant. Samples with different co-propellants are processed on a laboratory single screw extruder at IKV. Morphology and surface topography are investigated with respect to the blowing agent composition and the die pressure. In addition, relationships between foam density, foam morphology and the propellants are analysed. The choice of the co-propellant has a significant influence on melt-strength, foaming behaviour and the possible blow-up ratio of the sheet. Furthermore, a positive influence of the co-propellant on the surface quality can be observed. In addition, the focus is laid on the effect of external contact cooling of the foamed sheets after the die exit.

  13. Improving processing and toughness of a high performance composite matrix through an interpenetrating polymer network. VI

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H.

    1990-01-01

    A simultaneous semi-interpenetrating polymer network (semi-IPN) concept is presented which combines easy-to-process, but brittle, thermosetting polyimides with tough, but difficult to process, linear thermoplastic polyimides. The combination results in a semi-IPN with the easy processability of a thermoset and good toughness of a thermoplastic. Four simultaneous semi-IPN systems were developed from commercially available NR-150B2 combined with each of the four Thermid materials (LR-600, AL-600, MC-600, and FA-700). It is concluded that there is a significant improvement in resin fracture toughness of Thermid-polyimide-based semi-IPN systems and some improvement in composite microcracking resistance compared to Thermid LR-600. Excellent composite mechanical properties have been achieved. These new semi-IPN materials have the potential to be used as composite matrices, adhesives, and molding materials.

  14. Post-Polymerization Crosslinked Polyurethane Shape-Memory Polymers

    PubMed Central

    Hearon, K.; Gall, K.; Ware, T.; Maitland, D. J.; Bearinger, J. P.; Wilson, T. S.

    2011-01-01

    Novel urethane shape-memory polymers (SMPs) of significant industrial relevance have been synthesized and characterized. Chemically crosslinked SMPs have traditionally been made in a one-step polymerization of monomers and crosslinking agents. However, these new post-polymerization crosslinked SMPs can be processed into complex shapes by thermoplastic manufacturing methods and later crosslinked by heat exposure or by electron beam irradiation. Several series of linear, olefinic urethane polymers were made from 2-butene-1,4-diol, other saturated diols, and various aliphatic diisocyanates. These thermoplastics were melt-processed into desired geometries and thermally crosslinked at 200C or radiation crosslinked at 50 kGy. The SMPs were characterized by solvent swelling and extraction, differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), tensile testing, and qualitative shape-recovery analysis. Swelling and DMA results provided concrete evidence of chemical crosslinking, and further characterization revealed that the urethanes had outstanding mechanical properties. Key properties include tailorable transitions between 25 and 80C, tailorable rubbery moduli between 0.2 and 4.2 MPa, recoverable strains approaching 100%, failure strains of over 500% at Tg, and qualitative shape-recovery times of less than 12 seconds at body temperature (37C). Because of its outstanding thermo-mechanical properties, one polyurethane was selected for implementation in the design of a complex medical device. These post-polymerization crosslinked urethane SMPs are an industrially relevant class of highly processable shape-memory materials. PMID:21572577

  15. Polymer powder prepregging: Scoping study

    NASA Technical Reports Server (NTRS)

    Throne, James L.

    1988-01-01

    Early on, it was found that NEAT LARC-TPI thermoplastic polyimide powder behaved elastoplastically at pressures to 20 ksi and temperatures to 260 degrees celcius (below MP). At high resin assay, resin powder could be continuously cold-flowed around individual carbon fibers in a metal rolling mill. At low resin assay (2:1, C:TPI), fiber breakage was prohibitive. Thus, although processing of TPI below MP would be quite unique, it appears that the polymer must be melted and flowed to produce low resin assay prepreg. Fiber tow was spread to 75 mm using a venturi slot tunnel. This allowed intimate powder/fiber interaction. Two techniques were examined for getting room temperature powder onto the room temperature fiber surface. Electrostatic powder coating allows the charged powder to cling tenaciously to the fiber, even while heated with a hot air gun to above its melt temperature. A variant of the wet slurry coating process was also explored. The carbon fibers are first wetted with water. Then dry powder is sprinkled onto the wet tow and doctor-rolled between the fibers. The wet structure is then taken onto a heated roll, with hot air guns drying and sinter-melting the powder onto the fiber surfaces. In both cases SEM shows individual fibers coated with powder particles that have melted in place and flowed along the fiber surface via surface tension.

  16. A study on thermal properties of biodegradable polymers using photothermal methods

    NASA Astrophysics Data System (ADS)

    Siqueira, A. P. L.; Poley, L. H.; Sanchez, R.; da Silva, M. G.; Vargas, H.

    2005-06-01

    In this work is reported the use of photothermal techniques applied to the thermal characterization of biodegradable polymers of Polyhydroxyalkanoates (PHAs) family. This is a family of polymer produced by bacteria using renewable resources. It exhibits thermoplastic properties and therefore it can be an alternative product for engineering plastics, being also applied as packages for food industry and fruits. Thermal diffusivities were determined using the open photoacoustic cell (OPC) configuration. Specific heat capacity measurements were performed monitoring temperature of the samples under white light illumination against time. Typical values obtained for the thermal properties are in good agreement with those found in the literature for other polymers. Due to the incorporation of hydroxyvalerate in the monomer structure, the thermal diffusivity and thermal conductivity increase reaching a saturation value, otherwise the specific thermal capacity decreases as the concentration of the hydroxyvalerate (HV) increases. These results can be explained by polymers internal structure and are allowing new applications of these materials.

  17. Ambient Temperature Hybrid Polymer Electrolyte Based on Pvk + Pvdf-Hfp for Lithium Batteries

    NASA Astrophysics Data System (ADS)

    Michael, M. S.; Prabaharan, S. R. S.

    2002-12-01

    Proposed herein is a new ambient temperature Li+ conducting PVDF-HFP-co-polymer based hybrid polymer electrolyte with polyvinyl carbozole (PVK) as additive. The addition of the latter provides high ambient temperature electrolytic conductivity (?i) 0.7 10-3S/cm with an ionic transference number of 0.6, besides providing the thermoplastic flexibility to the whole matrix. The membrane is found to exhibit a wide electrochemical potential window, >4.5V against Li/Li+. When prepared properly, the membrane is dry and free standing, yet totally suitable for lithium polymer rechargeable batteries. This paper presents the preparation, microstructure and electrochemical characteristics of this new hybrid polymeric membrane. Finally, the dry polymeric electrolyte membrane has been employed in a lithium polymer cell against LT-LiCo0.8Ni0.2O2 as positive electrode and its interfacial behavior and electrochemical cycling results are presented.

  18. Simulation of Light Propagation within Glass Fiber Filled Thermoplastics for Laser Transmission Welding

    NASA Astrophysics Data System (ADS)

    Hohmann, Martin; Devrient, Martin; Klmpfl, Florian; Roth, Stephan; Schmidt, Michael

    Laser transmission welding is a well-known joining technology for thermoplastics. Because of the needs of lightweight, cost effective and green production nowadays injection molded parts usually have to be welded. These parts are made out of semi-crystalline thermoplastics which are filled to a high amount with glass fibers. This leads to higher absorption and more scattering within the upper joining partner and hasa negative influence onto the welding process. Here a ray tracing model capable of considering every single glass fiber is introduced. Hence spatially not equally distributed glass fibers can be taken into account. Therefore the model is able to calculate in detail the welding laser intensity distribution after transmission through the upper joining partner. Data gained by numerical simulation is compared to data obtained by laser radiation scattering experiments. Thus observed deviation is quantified and discussed.

  19. Thermal Joining of Thermoplastic Metal Hybrids by Means Of Mono- and Polychromatic Radiation

    NASA Astrophysics Data System (ADS)

    Amend, P.; Pfindel, S.; Schmidt, M.

    In recent years, joining of plastics and metals for lightweight constructions has become more and more important for industrial applications. This paper presents a novel approach for thermal joining of thermoplastic metal hybrids by means of a combination of mono- and polychromatic radiation. During this work, hybrid joints of aluminum (EN AW-5182) and technical thermoplastics (PC, PA6, PA66-GF30) are studied. Thereby experiments for transmission and heat-conduction joining are performed. Besides, the influences of laser structuring of the metal surface on the joint connections are investigated. Additionally, climate tests according to BMW PR 308.2 from -30 C to 90 C and from -40 C to 120 C are performed to analyze the long-term durability of the hybrid joint connections.

  20. Rheology of Hyperbranched Poly(triglyceride)-Based Thermoplastic Elastomers via RAFT polymerization

    NASA Astrophysics Data System (ADS)

    Yan, Mengguo; Cochran, Eric

    2014-03-01

    In this contribution we discuss how melt- and solid-state properties are influenced by the degree of branching and molecular weight in a family of hyperbranched thermoplastics derived from soybean oil. Acrylated epoxidized triglycerides from soybean oils have been polymerized to hyperbranched thermoplastic elastomers using reversible addition-fragmentation chain transfer (RAFT) polymerization. With the proper choice of chain transfer agent, both homopolymer and block copolymer can be synthesized. By changing the number of acrylic groups per triglycerides, the chain architectures can range from nearly linear to highly branched. We show how the fundamental viscoelastic properties (e.g. entanglement molecular weight, plateau modulus, etc.) are influenced by chain architecture and molecular weight.

  1. Interlaminar fracture toughness of composites. II - Refinement of the edge delamination test and application to thermoplastics

    NASA Technical Reports Server (NTRS)

    Johnston, N. J.; Obrien, T. K.; Morris, D. H.; Simonds, R. A.

    1983-01-01

    The mixed mode interlaminar fracture toughness, G(c), is obtained for the two thermoplastic matrices UDEL P1700 polysulfone and ULTEM polyetherimide by means of edge delamination tensile (EDT) tests on unnotched, eleven-ply graphite fiber reinforced composite specimens. A novel method is used to obtain the stiffness parameter employed in the closed form equation for the calculation of G(c), decreasing the number of stiffness measurements required and simplifying the calculations. The G(Ic) values from double cantilever beam (DCB) measurements on composites of the two thermoplastics were similar to each other, but slightly higher than the G(c) data obtained by EDT. Interfacial resin/fiber failures predominated in both the EDT and DCB tests.

  2. Active bilayer films of thermoplastic starch and polycaprolactone obtained by compression molding.

    PubMed

    Ortega-Toro, Rodrigo; Morey, Iris; Talens, Pau; Chiralt, Amparo

    2015-08-20

    Bilayer films consisting of one layer of PCL with either one of thermoplastic starch (S) or one of thermoplastic starch with 5% PCL (S95) were obtained by compression molding. Before compression, aqueous solutions of ascorbic acid or potassium sorbate were sprayed onto the S or S95 layers in order to plasticize them and favor layer adhesion. S95 films formed bilayers with PCL with very good adhesion and good mechanical performance, especially when potassium sorbate was added at the interface. All bilayers enhanced their barrier properties to water vapour (up to 96% compared to net starch films) and oxygen (up to 99% compared to PCL pure). Bilayers consisting of PCL and starch containing 5% PCL, with potassium sorbate at the interface, showed the best mechanical and barrier properties and interfacial adhesion while having active properties, associated with the antimicrobial action of potassium sorbate. PMID:25965485

  3. Thermoplastic microfluidic devices and their applications in protein and DNA analysis

    PubMed Central

    Liu, Ke; Fan, Z. Hugh

    2013-01-01

    Microfluidics is a platform technology that has been used for genomics, proteomics, chemical synthesis, environment monitoring, cellular studies, and other applications. The fabrication materials of microfluidic devices have traditionally included silicon and glass, but plastics have gained increasing attention in the past few years. We focus this review on thermoplastic microfluidic devices and their applications in protein and DNA analysis. We outline the device design and fabrication methods, followed by discussion on the strategies of surface treatment. We then concentrate on several significant advancements in applying thermoplastic microfluidic devices to protein separation, immunoassays, and DNA analysis. Comparison among numerous efforts, as well as the discussion on the challenges and innovation associated with detection, is presented. PMID:21274478

  4. Dependence of Mechanical and Thermal Properties of Thermoplastic Composites on Electron Beam Irradiation

    NASA Astrophysics Data System (ADS)

    Kim, Sok Won; Park, K.; Lee, S. H.; Kang, J. S.; Kang, K. H.

    2007-06-01

    Since the restrictions for environmental protection being strengthened, thermoplastics reinforced with natural fibers (NFs), such as jute, kenaf, flax, etc. have appeared as alternatives to chemical plastics for automobile interior materials. In this study, the thermal conductivity, tensile strength, and deformation of several kinds of thermoplastic composites composed of 50% polypropylene (PP) and 50% natural fiber (NF) irradiated by an electron beam (energy: 0.5 MeV, dose: 0 20 kGy) were measured. The length and thickness of PP and NF are 80 10 mm and 40 120 ?m, respectively. The results show that the thermal conductivity and the tensile strength changed and became minimum, when the dose of the electron beam was 10 kGy. However, the effect of the dose on the deformation was not clear.

  5. Functionalized Graphenes and Thermoplastic Nanocomposites Based upon Expanded Graphite Oxide.

    PubMed

    Steurer, Peter; Wissert, Rainer; Thomann, Ralf; Mlhaupt, Rolf

    2009-02-18

    Exfoliation of expanded GO represents an attractive route to functionalized graphenes as versatile 2D carbon nanomaterials and components of a wide variety of polymer nanocomposites. Thermally reduced graphite oxides (TrGO) with specific surface areas of 600 to 950 m(2) ??g(-1) were obtained by oxidation of graphite followed by thermal expansion at 600?C. Thermal post treatment at 700?C and 1?000?C increased carbon content (81 to 97 wt.-%) and lowered resistivity (1?600 to 50 ???cm). During melt extrusion with PC, iPP, SAN and PA6, exfoliation afforded uniformly dispersed graphenes with aspect ratio?>?200. In comparison to conventional 0D and 1D carbon nanoparticles, TrGO afforded nanocomposites with improved stiffness and lower percolation threshold. Recent progress and new strategies in development of functionalized graphenes and graphene-based nanocomposites are highlighted. PMID:21706607

  6. Residual stresses in injection molded shape memory polymer parts

    NASA Astrophysics Data System (ADS)

    Katmer, Sukran; Esen, Huseyin; Karatas, Cetin

    2016-03-01

    Shape memory polymers (SMPs) are materials which have shape memory effect (SME). SME is a property which has the ability to change shape when induced by a stimulator such as temperature, moisture, pH, electric current, magnetic field, light, etc. A process, known as programming, is applied to SMP parts in order to alter them from their permanent shape to their temporary shape. In this study we investigated effects of injection molding and programming processes on residual stresses in molded thermoplastic polyurethane shape memory polymer, experimentally. The residual stresses were measured by layer removal method. The study shows that injection molding and programming process conditions have significantly influence on residual stresses in molded shape memory polyurethane parts.

  7. Tough, processable semi-interpenetrating polymer networks from monomer reactants

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H. (inventor)

    1994-01-01

    A high temperature semi-interpenetrating polymer network (semi-IPN) was developed which had significantly improved processability, damage tolerance, and mechanical performance, when compared to the commercial Thermid materials. This simultaneous semi-IPN was prepared by mixing the monomer precursors of Thermid AL-600 (a thermoset) and NR-150B2 (a thermoplastic) and allowing the monomers to react randomly upon heating. This reaction occurs at a rate which decreases the flow and broadens the processing window. Upon heating at a higher temperature, there is an increase in flow. Because of the improved flow properties, broadened processing window and enhanced toughness, high strength polymer matrix composites, adhesives and molded articles can now be prepared from the acetylene end-capped polyimides which were previously inherently brittle and difficult to process.

  8. Single-Walled Carbon Nanotube / Semicrystalline Polymer Composite Fibers

    NASA Astrophysics Data System (ADS)

    Haggenmueller, Reto; Fischer, John E.; Winey, Karen I.

    2002-03-01

    Single-walled carbon nanotubes (SWNTs) have demonstrated far superior mechanical, thermal and electrical properties relative to carbon fibers. Similar properties are expected for polymer/SWNT nanocomposites. We have produced SWNT-thermoplastic composites with extraordinary alignment of the nanotubes via melt processing followed by fiber melt spinning. The improved mechanical properties depend on the alignment of the nanotubes, which is controlled by the draw ratio of the composite fibers. Alignment of the nanotubes seems to reduce the electrical conductivity, because the percolation threshold of the one-dimensional conductors is reduced for straight, aligned nanotubes. Semicrystalline polyethylene and various nylons are used as the matrix and the mechanical, electrical properties are measured. The effect of the nanotubes on the crystallinity and the melting point are determined. A key factor of the composite performance is the dispersion of the nanotubes in the polymer matrix, the characterization of which is explored.

  9. Synthesis and characterization of aryl phosphine oxide containing thermoplastic polyimides and thermosetting polyimides with controlled reactivity

    NASA Astrophysics Data System (ADS)

    Zhuang, Hong

    1998-11-01

    Phosphorus containing monomers, bis(3-aminophenyl)methyl phosphine oxide (m-DAMPO) and bis(3-aminophenyl)phenyl phosphine oxide (m-DAPPO), were synthesized and incorporated into a thermoplastic poly(arylene ether imide) based upon 2,2sp'-bis (4-(3,4-dicarboxyphenoxy)phenyl) propane dianhydride and 1,3-phenylene diamine, in order to study their influence on flame resistance and other properties. DAMPO or DAPPO were quantitatively incorporated in concentrations of 25, 50, 75 and 100 mole percent, using the "one pot" ester-acid method. The number average molecular weights of the prepared materials were controlled to 20,000g/mol by off-setting the stoichiometry and endcapping with phthalic anhydride. This strategy enabled one to distinguish the effects of the phosphine oxide incorporation from the influence of molecular weight. The resulting copolymers demonstrated a significant increase in char yield as a function of the phosphine oxide content, thus suggesting improved fire resistance. Glass transition temperatures similar to the control were determined by DSC analysis. Analysis of the mechanical behavior of the DAMPO system at room temperature showed that tensile strength and elongation at failure values were comparable to the control system, while the DAPPO containing copolymers were surprisingly brittle. The influence of the reactive endgroup on the synthesis, cure behavior and network properties of thermosetting polyetherimides was investigated. Reactive phenylacetylene, acetylene and maleimide terminated poly(ether imide) oligomers were prepared and characterized. Optimal reaction conditions were established to produce fully endcapped oligomers with imidized structures and controlled molecular weight. The phenylacetylene endcapped system was synthesized by a conventional ester-acid method. The acetylene endcapped system was prepared via modified ester-acid method and the maleimide endcapped system was fabricated utilizing an amic-acid route. It was determined that phenylethynyl endcapped polymers could be thermally cured at high temperatures (350{-}380sp°C) providing good processibility. The networks exhibited thermal stability, chemical resistance and good adhesion strength, ideal as "primary" bonding adhesives. Acetylene and maleimide endcapped systems were prepared for application as "secondary" bonding materials, meaning that they are cured at a lower temperature than that of the Tg of the primary structure. Lap shear test results indicated good adhesion to titanium when cured at 250sp° C{-}280sp° C. The cured materials showed high glass transition temperatures and good thermal and thermo-oxidative stability as determined by DSC, TGA and DMA. Good chemical resistance was demonstrated via solvent extraction measurements. The influence of molecular weight between crosslinks (/line{M}sb{c}) on thermal and mechanical behavior was also investigated. Lower molecular weight oligomers exhibited lower Tg and cure temperatures, whereas the cured networks resulting from lower molecular weight oligomers afforded higher Tg and higher gel fractions, but reduced toughness.

  10. Advanced thermoplastic composites: An attractive new material for usage in highly loaded vehicle components

    SciTech Connect

    Mehn, R.; Seidl, F.; Peis, R.; Heinzmann, D.; Frei, P.

    1995-10-01

    Beside the lightweight potential and further well known advantages of advanced composite materials, continuous fiber reinforced thermoplastics employed in vehicle structural parts especially offer short manufacturing cycle times and an additional economically viable manufacturing process. Presenting a frame structure concept for two highly loaded vehicle parts, a safety seat and a side door, numerous features concerning the choice of suitable composite materials, design aspects, investigations to develop a thermoforming technique, mature for a series production of vehicle parts, are discussed.

  11. Use of thermoplastic pipe in recirculating water systems in petroleum refineries and petrochemical plants

    SciTech Connect

    Karelin, Ya.A.; Yaromskii, V.N.

    1987-07-01

    The authors discuss the use of thermoplastic pipe for combating corrosion in water supply systems. The pipe used was fabricated from low-pressure and high-pressure polyethylene (HPPE and LPPE) and unplasticized polyvinyl chloride PVC-100. The resistance of the plastic pipe to the action of recirculating water was evaluated on the basis of changes in their physicomechanical properties. The results of mechanical tests on the specimens are shown.

  12. In-situ electrical analysis in view of monitoring the processing of thermoplastics

    NASA Astrophysics Data System (ADS)

    Gonnet, J. M.; Guillet, J.; Ainser, A.; Boiteux, G.; Fulchiron, R.; Seytre, Gerard

    1999-12-01

    In the last recent years, electrical techniques like microdielectrometry have presented an attracting and increasing interest for continuous monitoring, in a nondestructive way, of the advancement of the reaction of thermoset resins under cure. We think that the use of electrical analysis for in situ monitoring of chemical reactions can be extended to get information on thermoplastic and the physical phenomena such sa crystallization or study of residence time distribution in processing machines such as extruders.

  13. Rheology/Morphology Relationship of Immiscible EPDM/PP Based Thermoplastic Elastomer Blends

    NASA Astrophysics Data System (ADS)

    Shahbikian, S.; Carreau, P. J.; Heuzey, M. C.; Ellul, M. D.; Nadella, H. P.; Cheng, J.; Shirodkar, P.

    2008-07-01

    The rheological and morphological properties of non-plasticized/plasticized EPDM/PP based thermoplastic elastomers (TPEs) have been investigated. The addition of a plasticizer reduced the rheological properties of both components and their blends and increased their deformability. Complex morphological features (e.g., specific interfacial area and its orientation) of these blends have been analyzed after multiple start-up experiments using atomic force microscopy.

  14. Hybrid joining technology - A new method for joining thermoplastic-metal-mixed components

    NASA Astrophysics Data System (ADS)

    Friedrich, S.; Georgi, W.; Gehde, M.; Mayer, P.

    2014-05-01

    This article deals with the clinching and hot-melt adhesive bonding of thermoplastic-metal mixed joints. Specimens made of the PA6-GF15 plastic and the DC04 steel were joined not only with the single methods but also in the combination of methods. Their mechanical properties were investigated afterwards by means of peel and tensile shear tests. It is demonstrated that a suitable combination of both joining methods can achieve an increase in strength compared to the single methods.

  15. Ultrasonic Attenuation Results of Thermoplastic Resin Composites Undergoing Thermal and Fatigue Loading

    NASA Technical Reports Server (NTRS)

    Madaras, Eric I.

    1998-01-01

    As part of an effort to obtain the required information about new composites for aviation use, materials and NDE researchers at NASA are jointly performing mechanical and NDE measurements on new composite materials. The materials testing laboratory at NASA is equipped with environmental chambers mounted on load frames that can expose composite materials to thermal and loading cycles representative of flight protocols. Applying both temperature and load simultaneously will help to highlight temperature and load interactions during the aging of these composite materials. This report highlights our initial ultrasonic attenuation results from thermoplastic composite samples that have undergone over 4000 flight cycles to date. Ultrasonic attenuation measurements are a standard method used to assess the effects of material degradation. Recently, researchers have shown that they could obtain adequate contrast in the evaluation of thermal degradation in thermoplastic composites by using frequencies of ultrasound on the order of 24 MHz. In this study, we address the relationship of attenuation measured at lower frequencies in thermoplastic composites undergoing both thermal and mechanical loading. We also compare these thermoplastic results with some data from thermoset composites undergoing similar protocols. The composite s attenuation is reported as the slope of attenuation with respect to frequency, defined as b = Da(f)/Df. The slope of attenuation is an attractive parameter since it is quantitative, yet does not require interface corrections like conventional quantitative attenuation measurements. This latter feature is a consequence of the assumption that interface correction terms are frequency independent. Uncertainty in those correction terms can compromise the value of conventional quantitative attenuation data. Furthermore, the slope of the attenuation more directly utilizes the bandwidth information and in addition, the bandwidth can be adjusted in the post processing stage to compensate for the loss of dynamic range of the signal as the composites age.

  16. Surface Charge, Electroosmotic Flow and DNA Extension in Chemically Modified Thermoplastic Nanoslits and Nanochannels

    PubMed Central

    Uba, Franklin I.; Pullagurla, Swathi R.; Sirasunthorn, Nichanun; Wu, Jiahao; Park, Sunggook; Chantiwas, Rattikan; Cho, Yoonkyoung; Shin, Heungjoo; Soper, Steven A.

    2014-01-01

    Thermoplastics have become attractive alternatives to glass/quartz for microfluidics, but the realization of thermoplastic nanofluidic devices has been slow in spite of the rather simple fabrication techniques that can be used to produce these devices. This slow transition has in part been attributed to insufficient understanding of surface charge effects on the transport properties of single molecules through thermoplastic nanochannels. We report the surface modification of thermoplastic nanochannels and an assessment of the associated surface charge density, zeta potential and electroosmotic flow (EOF). Mixed-scale fluidic networks were fabricated in poly(methylmethacrylate), PMMA. Oxygen plasma was used to generate surface-confined carboxylic acids with devices assembled using low temperature fusion bonding. Amination of the carboxylated surfaces using ethylenediamine (EDA) was accomplished via EDC coupling. XPS and ATR-FTIR revealed the presence of carboxyl and amine groups on the appropriately prepared surfaces. A modified conductance equation for nanochannels was developed to determine their surface conductance and was found to be in good agreement with our experimental results. The measured surface charge density and zeta potential of these devices were lower than glass nanofluidic devices and dependent on the surface modification adopted, as well as the size of the channel. This property, coupled to an apparent increase in fluid viscosity due to nanoconfinement, contributed to the suppression of the EOF in PMMA nanofluidic devices by an order of magnitude compared to the micro-scale devices. Carboxylated PMMA nanochannels were efficient for the transport and elongation of ?-DNA while these same DNA molecules were unable to translocate through aminated nanochannels. PMID:25369728

  17. Surface charge, electroosmotic flow and DNA extension in chemically modified thermoplastic nanoslits and nanochannels.

    PubMed

    Uba, Franklin I; Pullagurla, Swathi R; Sirasunthorn, Nichanun; Wu, Jiahao; Park, Sunggook; Chantiwas, Rattikan; Cho, Yoon-Kyoung; Shin, Heungjoo; Soper, Steven A

    2015-01-01

    Thermoplastics have become attractive alternatives to glass/quartz for microfluidics, but the realization of thermoplastic nanofluidic devices has been slow in spite of the rather simple fabrication techniques that can be used to produce these devices. This slow transition has in part been attributed to insufficient understanding of surface charge effects on the transport properties of single molecules through thermoplastic nanochannels. We report the surface modification of thermoplastic nanochannels and an assessment of the associated surface charge density, zeta potential and electroosmotic flow (EOF). Mixed-scale fluidic networks were fabricated in poly(methylmethacrylate), PMMA. Oxygen plasma was used to generate surface-confined carboxylic acids with devices assembled using low temperature fusion bonding. Amination of the carboxylated surfaces using ethylenediamine (EDA) was accomplished via EDC coupling. XPS and ATR-FTIR revealed the presence of carboxyl and amine groups on the appropriately prepared surfaces. A modified conductance equation for nanochannels was developed to determine their surface conductance and was found to be in good agreement with our experimental results. The measured surface charge density and zeta potential of these devices were lower than glass nanofluidic devices and dependent on the surface modification adopted, as well as the size of the channel. This property, coupled to an apparent increase in fluid viscosity due to nanoconfinement, contributed to the suppression of the EOF in PMMA nanofluidic devices by an order of magnitude compared to the micro-scale devices. Carboxylated PMMA nanochannels were efficient for the transport and elongation of ?-DNA while these same DNA molecules were unable to translocate through aminated nanochannels. PMID:25369728

  18. Use of a thermoplastic material for identification of human remains is limited.

    PubMed

    2004-01-01

    There has been a recent effort to promote the use of a thermoplastic bite impression material for the identification of children. The American Board of Forensic Odontology (ABFO) is a certification board for forensic dentists in the United States and Canada. It is the position of the ABFO that this technique is of limited value when used for the dental identification of children. PMID:15672511

  19. Polymer nanolithography

    NASA Astrophysics Data System (ADS)

    Vance, Jennifer M.

    Nanolithography involves making patterns of materials with at least one dimension less than 100 nanometers. Surprisingly, writable CDs can provide polymer nanostructures for pennies a piece. Building on work previously done in the Drain lab, with an inherited home-built oven press, this research will explore the relationships between polymer chemical reactivity, polymer printing, and material surface energies. In addition, a relatively inexpensive entry point into high school and undergraduate education in nanolithography is presented. The ability to pattern cheaply at the nanoscale and microscale is necessary and attractive for many technologies towards biosensors, organic light emitting diodes, identification tags, layered devices, and transistors.

  20. Long-Fiber Thermoplastic Injection Molded Composites: from Process Modeling to Property Prediction

    SciTech Connect

    Nguyen, Ba Nghiep; Holbery, Jim D.; Johnson, Kenneth I.; Smith, Mark T.

    2005-09-01

    Recently, long-fiber filled thermoplastics have become a great interest to the automotive industry since these materials offer much better property performance (e.g. elastic moduli, strength, durability…) than their short-fiber analogues, and they can be processed through injection molding with some specific tool design. However, in order that long-fiber thermoplastic injection molded composites can be used efficiently for automotive applications, there is a tremendous need to develop process and constitutive models as well as computational tools to predict the microstructure of the as-formed composite, and its resulting properties and macroscopic responses from processing to the final product. The microstructure and properties of such a composite are governed by i) flow-induced fiber orientation, ii) fiber breakage during injection molding, and iii) processing conditions (e,g. pressure, mold and melt temperatures, mold geometries, injection speed, etc.). This paper highlights our efforts to address these challenging issues. The work is an integrated part of a research program supported by the US Department of Energy, which includes • The development of process models for long-fiber filled thermoplastics, • The construction of an interface between process modeling and property prediction as well as the development of new constitutive models to perform linear and nonlinear structural analyses, • Experimental characterization of model parameters and verification of the model predictions.

  1. Multiple-objective optimization in precision laser cutting of different thermoplastics

    NASA Astrophysics Data System (ADS)

    Tamrin, K. F.; Nukman, Y.; Choudhury, I. A.; Shirley, S.

    2015-04-01

    Thermoplastics are increasingly being used in biomedical, automotive and electronics industries due to their excellent physical and chemical properties. Due to the localized and non-contact process, use of lasers for cutting could result in precise cut with small heat-affected zone (HAZ). Precision laser cutting involving various materials is important in high-volume manufacturing processes to minimize operational cost, error reduction and improve product quality. This study uses grey relational analysis to determine a single optimized set of cutting parameters for three different thermoplastics. The set of the optimized processing parameters is determined based on the highest relational grade and was found at low laser power (200 W), high cutting speed (0.4 m/min) and low compressed air pressure (2.5 bar). The result matches with the objective set in the present study. Analysis of variance (ANOVA) is then carried out to ascertain the relative influence of process parameters on the cutting characteristics. It was found that the laser power has dominant effect on HAZ for all thermoplastics.

  2. A micrographic study of bending failure in five thermoplastic/carbon fiber composite laminates

    NASA Technical Reports Server (NTRS)

    Yurgartis, S. W.; Sternstein, S. S.

    1987-01-01

    The local deformation and failure sequences of five thermoplastic matrix composites were microscopically observed while bending the samples in a small fixture attached to a microscope stage. The themoplastics are polycarbonate, polysulfone, polyphenylsulfide, polyethersulfone, and polyetheretherketone. Comparison was made to an epoxy matrix composite, 5208/T-300. Laminates tested are (0/90) sub 2S, with outer ply fibers parallel to the beam axis. Four point bending was used at a typical span-to-thickness ratio of 39:1. It was found that all of the thermoplastic composites failed by abrupt longitudinal compression buckling of the outer ply. Very little precursory damage was observed. Micrographs reveal typical fiber kinking associated with longitudinal compression failure. Curved fracture surfaces on the fibers suggest they failed in bending rather than direct compression. Delamination was suppressed in the thermoplastic composites, and the delamination that did occur was found to be the result of compression buckling, rather than visa-versa. Microbuckling also caused other subsequent damage such as ply splitting, transverse ply shear failure, fiber tensile failure, and transverse ply cracking.

  3. Effect of silica nanoparticles on reinforcement of poly(phenylene ether) based thermoplastic elastomer.

    PubMed

    Gupta, Samik; Maiti, Parnasree; Krishnamoorthy, Kumar; Krishnamurthy, Raja; Menon, Ashok; Bhowmick, Anil K

    2008-04-01

    Reinforcement of a novel poly(phenylene ether) (PPE) based thermoplastic elastomer (TPE), i.e., styrene-ethylene-butylene-styrene (SEBS)/ethylene vinyl acetate (EVA) and PPE-polystyrene (PS), was studied to develop a reinforced thermoplastic elastomer or thermoplastic vulcanizate (TPV). An effort was made to reinforce selectively the elastomeric dispersed phase of EVA by silica nanoparticles and silica sol-gel precursors, like alkoxy orthosilanes, using twin-screw extrusion and injection molding processes. Improvement of tensile strength and percent elongation at break was observed both with silica nanoparticles and tetraethoxy orthosilane (TEOS). Addition of TEOS transformed the dispersed EVA lamellar morphology into semispherical domains as a consequence of possible crosslinking. Soxhlet extraction was done on the silica and TEOS reinforced materials. The insoluble residues collected from both the silica and TEOS reinforced samples were analyzed in detail using both morphological and spectroscopic studies. This extensive study also provided an in-depth conceptual understanding of the PPE based TPE behavior upon reinforcement with silica nanoparticles and silica sol-gel precursors and the effect of reinforcement on recycling behavior. PMID:18572622

  4. Fabrication and characterization of thermoplastic elastomer dry adhesives with high strength and low contamination.

    PubMed

    Bin Khaled, Walid; Sameoto, Dan

    2014-05-14

    Polydimethylsiloxane (PDMS) and polyurethane elastomers have commonly been used to manufacture mushroom shaped gecko-inspired dry adhesives with high normal adhesion strength. However, the thermosetting nature of these two materials severely limits the commercial viability of their manufacturing due to long curing times and high material costs. In this work, we introduce poly(styrene-ethylene/butylene-styrene) (SEBS) thermoplastic elastomers as an alternative for the manufacture of mushroom shaped dry adhesives with both directional and nondirectional performance. These materials are attractive for their potential to be less contaminating via oligomer transfer than thermoset elastomers, as well as being more suited to mass manufacturing. Low material transfer properties are attractive for adhesives that could potentially be used in cleanroom environments for microscale assembly and handling in which device contamination is a serious concern. We characterized a thermoplastic elastomer in terms of oligomer transfer using X-ray photoelectron spectroscopy and found that the SEBS transfers negligible amounts of its own oligomers, during contact with a gold-coated silicon surface, which may be representative of the metallic bond pads found in micro-electro-mechanical systems devices. We also demonstrate the fabrication of mushroom shaped isotropic and anisotropic adhesive fibers with two different SEBS elastomer grades using thermocompression molding and characterize the adhesives in terms of their shear-enhanced normal adhesion strength. The overall adhesion of one of the thermoplastic elastomer adhesives was found to be stronger or comparable to their polyurethane counterparts with identical dimensions. PMID:24712514

  5. Preparation and properties of blends composed of lignosulfonated layered double hydroxide/plasticized starch and thermoplastics.

    PubMed

    Privas, Edwige; Leroux, Fabrice; Navard, Patrick

    2013-07-01

    Layered double hydroxide prepared with lignosulfonate (LDH/LS) can be easily dispersed down to the nanometric scale in thermoplastic starch, at concentration of 1 up to 4 wt% of LDH/LS. They can thus be used as a bio-based reinforcing agent of thermoplastic starch. Incorporation of LDH/LS in starch must be done using LDH/LS slurry instead of powder on order to avoid secondary particles aggregation, the water of the paste being used as the starch plasticizer. This reinforced starch was used for preparing a starch-polyolefine composite. LDH/LS-starch nanocomposites were mixed in a random terpolymer of ethylene, butyl acrylate (6%) and maleic anhydride (3%) at concentrations of 20 wt% and 40 wt%. With a 20% loading of (1 wt% LDH/LS in thermoplastic starch), the ternary copolymer is partially bio-based while keeping nearly its original processability and mechanical properties and improving oxygen barrier properties. The use of layered double hydroxides is also removing most odours linked to the lignin phase. PMID:23688458

  6. Cross-linked polymers: Chemistry, properties, and applications; Proceedings of the Symposium, Denver, CO, Apr. 5-10, 1987

    SciTech Connect

    Dickie, R.A.; Labana, S.S.; Bauer, R.S.

    1988-01-01

    This symposium presents papers on the molecular architecture, degradation properties, and mechanical properties of cross-linked polymers, together with examples of high-performance polymer networks. Consideration is given to the effects of intramolecular reaction on network formation and properties, the effects of branching and cross-linking on polymer properties of star-branched Nylon 6, the effect of ionizing radiation on an epoxy structural adhesive, the performance characteristics of the fluorescence optrode cure sensor, the deformation kinetics of cross-linked polymers, and the fatigue behavior of acrylic interpenetrating polymer networks. Other papers are on thermal stress development in thick epoxy coatings, semiinterpenetrating networks based on triazine thermoset and N-alkylamide thermoplastics, liquid crystalline oligoester diols as thermoset coating binders, and the characterization of bisbenzocyclobutene high-temperature resin and bisbenzocyclobutene blended with a compatible bismaleimide resin.

  7. Smart polymers for implantable electronics

    NASA Astrophysics Data System (ADS)

    Ware, Taylor H.

    Neural interfaces have been heavily investigated due to their unique ability to tap into the communication system of the body. Substrates compatible with microelectronics processing are planar and 5-7 orders of magnitude stiffer than the tissue with which they interact. This work enables fabrication of devices by photolithography that are stiff enough to penetrate soft tissue, change in stiffness to more closely match the modulus of tissue after implantation and adopt shapes to conform to tissue. Several classes of physiologically-responsive, amorphous polymer networks with the onset of the glass transition above 37 °C are synthesized and thermomechanically characterized. These glassy networks exhibit an isothermal reduction in modulus due to plasticization in the presence of aqueous fluids. Modulus after plasticization can be tuned by the dry glass transition temperature, degree of plasticization and crosslink density. Acrylic shape memory polymer based intracortical probes, which can change in modulus from above 1 GPa to less than 1 MPa, are fabricated through a transfer process that shields the substrate from processing and enhances adhesion to the microelectronics. Substrates capable of withstanding the conditions of photolithography are fabricated "thiol-ene" and "thiol-epoxy" substrates. These materials provide processing windows that rival engineering thermoplastics, swell less than 6% in water, and exhibit a controllable reduction in modulus from above 1 GPa to between 5 and 150 MPa. Substrates, planar for processing, that subsequently recover 3D shapes are synthesized by the formation of post-gelation crosslinks either covalent or supramolecular in nature. Acrylics with varied supramolecular, based on ureidopyrimidone moieties, and covalent crosslink density demonstrate triple-shape memory behavior. Post-gelation covalent crosslinks are established to permanently fix 3D shapes in thiol-ene networks. Devices fabricated include intracortical and nerve cuff electrodes. Neuronal viability and device performance suggest these materials may be suitable for the design of chronically-viable neural interfaces.

  8. Semiconducting polymers

    NASA Astrophysics Data System (ADS)

    Hermann, A. M.

    A review is presented of the electrical properties of those polymers whose conductivities occupy the middle ground between polymeric insulators and polymeric superconductors. Attention is confined to polymers in which conduction occurs through electronic, rather than ionic, transport. Four classes of semiconductors are discussed: (1) highly-conjugated polymers, including those formed by pyrolysis; (2) polymeric charge-transfer complexes and radical-ion salts; (3) organometallic polymeric semiconductors; and (4) composite polymer systems containing carbon or other highly conducting media. The possible applications discussed include cathodes in solid-state metal/halogen primary batteries, cathodes in lithium/poly-p-phenylene or polyacetylene secondary batteries, conductive coatings and epoxies, and chemical sensing agents. Other applications are Peltier cooling devices, pressure transducers, photovoltaic devices, infrared radiation detectors, and switches and resistors.

  9. Organometallic Polymers.

    ERIC Educational Resources Information Center

    Carraher, Charles E., Jr.

    1981-01-01

    Reactions utilized to incorporate a metal-containing moiety into a polymer chain (addition, condensation, and coordination) are considered, emphasizing that these reactions also apply to smaller molecules. (JN)

  10. Polymers All Around You!

    ERIC Educational Resources Information Center

    Gertz, Susan

    Background information on natural polymers, synthetic polymers, and the properties of polymers is presented as an introduction to this curriculum guide. Details are provided on the use of polymer products in consumer goods, polymer recycling, polymer densities, the making of a polymer such as GLUEP, polyvinyl alcohol, dissolving plastics, polymers…

  11. Toughening mechanisms in interfacially modified HDPE/thermoplastic starch blends.

    PubMed

    Taguet, Aurélie; Bureau, Martin N; Huneault, Michel A; Favis, Basil D

    2014-12-19

    The mechanical behavior of polymer blends containing 80 wt% of HDPE and 20 wt% of TPS and compatibilized with HDPE-g-MA grafted copolymer was investigated. Unmodified HDPE/TPS blends exhibit high fracture resistance, however, the interfacial modification of those blends by addition of HDPE-g-MA leads to a dramatic drop in fracture resistance. The compatibilization of HDPE/TPS blends increases the surface area of TPS particles by decreasing their size. It was postulated that the addition of HDPE-g-MA induces a reaction between maleic anhydride and hydroxyl groups of the glycerol leading to a decrease of the glycerol content in the TPS phase. This phenomenon increases the stiffness of the modified TPS particles and stiffer TPS particles leading to an important reduction in toughness and plastic deformation, as measured by the EWF method. It is shown that the main toughening mechanism in HDPE/TPS blends is shear-yielding. This article demonstrates that stiff, low diameter TPS particles reduce shear band formation and consequently decrease the resistance to crack propagation. PMID:25263885

  12. High performance addition-type thermoplastics (ATTs) - Evidence for the formation of a Diels-Alder adduct in the reaction of an acetylene-terminated material and a bismaleimide

    NASA Technical Reports Server (NTRS)

    Pater, R. H.; Soucek, M. D.; Chang, A. C.; Partos, R. D.

    1991-01-01

    Recently, the concept and demonstration of a new versatile synthetic reaction for making a large number of high-performance addition-type thermoplastics (ATTs) were reported. The synthesis shows promise for providing polymers having an attractive combination of easy processability, good toughness, respectable high temperature mechanical performance, and excellent thermo-oxidative stability. The new chemistry involves the reaction of an acetylene-terminated material with a bismaleimide or benzoquinone. In order to clarify the reaction mechanism, model compound studies were undertaken in solutions as well as in the solid state. The reaction products were purified by flash chromatography and characterized by conventional analytical techniques including NMR, FT-IR, UV-visible, mass spectroscopy, and high pressure liquid chromatography. The results are presented of the model compound studies which strongly support the formation of a Diels-Alder adduct in the reaction of an acetylene-terminated compound and a bismaleimide or benzoquinone.

  13. Ultrasonic Welding of Thermoplastic Composite Coupons for Mechanical Characterization of Welded Joints through Single Lap Shear Testing.

    PubMed

    Villegas, Irene F; Palardy, Genevieve

    2016-01-01

    This paper presents a novel straightforward method for ultrasonic welding of thermoplastic-composite coupons in optimum processing conditions. The ultrasonic welding process described in this paper is based on three main pillars. Firstly, flat energy directors are used for preferential heat generation at the joining interface during the welding process. A flat energy director is a neat thermoplastic resin film that is placed between the parts to be joined prior to the welding process and heats up preferentially owing to its lower compressive stiffness relative to the composite substrates. Consequently, flat energy directors provide a simple solution that does not require molding of resin protrusions on the surfaces of the composite substrates, as opposed to ultrasonic welding of unreinforced plastics. Secondly, the process data provided by the ultrasonic welder is used to rapidly define the optimum welding parameters for any thermoplastic composite material combination. Thirdly, displacement control is used in the welding process to ensure consistent quality of the welded joints. According to this method, thermoplastic-composite flat coupons are individually welded in a single lap configuration. Mechanical testing of the welded coupons allows determining the apparent lap shear strength of the joints, which is one of the properties most commonly used to quantify the strength of thermoplastic composite welded joints. PMID:26890931

  14. Antimicrobial Polymer

    DOEpatents

    McDonald, William F.; Wright, Stacy C.; Taylor, Andrew C.

    2004-09-28

    A polymeric composition having antimicrobial properties and a process for rendering the surface of a substrate antimicrobial are disclosed. The polymeric composition comprises a crosslinked chemical combination of (i) a polymer having amino group-containing side chains along a backbone forming the polymer, (ii) an antimicrobial agent selected from metals, metal alloys, metal salts, metal complexes and mixtures thereof, and (iii) a crosslinking agent containing functional groups capable of reacting with the amino groups. In one example embodiment, the polymer is a polyamide formed from a maleic anhydride or maleic acid ester monomer and alkylamines thereby producing a polyamide having amino substituted alkyl chains on one side of the polyamide backbone; the crosslinking agent is a phosphine having the general formula (A).sub.3 P wherein A is hydroxyalkyl; and the metallic antimicrobial agent is selected from chelated silver ions, silver metal, chelated copper ions, copper metal, chelated zinc ions, zinc metal and mixtures thereof.

  15. Antimocrobial Polymer

    DOEpatents

    McDonald, William F.; Huang, Zhi-Heng; Wright, Stacy C.

    2005-09-06

    A polymeric composition having antimicrobial properties and a process for rendering the surface of a substrate antimicrobial are disclosed. The composition comprises a crosslinked chemical combination of (i) a polymer having amino group-containing side chains along a backbone forming the polymer, (ii) an antimicrobial agent selected from quaternary ammonium compounds, gentian violet compounds, substituted or unsubstituted phenols, biguanide compounds, iodine compounds, and mixtures thereof, and (iii) a crosslinking agent containing functional groups capable of reacting with the amino groups. In one embodiment, the polymer is a polyamide formed from a maleic anhydride or maleic acid ester monomer and alkylamines thereby producing a polyamide having amino substituted alkyl chains on one side of the polyamide backbone; the crosslinking agent is a phosphine having the general formula (A)3P wherein A is hydroxyalkyl; and the antimicrobial agent is chlorhexidine, dimethylchlorophenol, cetyl pyridinium chloride, gentian violet, triclosan, thymol, iodine, and mixtures thereof.

  16. Turbidity study of polymer-polymer interaction

    NASA Astrophysics Data System (ADS)

    Schwartz, Jacob; Lu, Xihua; Hu, Zhibing

    2000-10-01

    The interaction between hydroxypropyl cellulose (HPC)polymer chains and poly(acrylic acid) (PAA) polymer chains has been studied using turbidity techniques. The lower critical solution temperature of the polymer mixture has been measured as a function of polymer concentration and polymer molecular weight. The phase behavior of the polymer mixture has been discussed in terms of hydrogen bonding between HPC and PAA. Studies in this area may lead to technological advances in controlled drug delivery and bioadhesives.

  17. Shape Memory Performance of Thermoplastic Amphiphilic Triblock Copolymer poly(D,L-lactic acid-co-ethylene glycol-co-D,L-lactic acid) (PELA)/Hydroxyapatite Composites

    PubMed Central

    Kutikov, Artem B.; Reyer, Kevin A.

    2015-01-01

    Biodegradable polymer/hydroxyapatite (HA) composites are desired for skeletal tissue engineering. When engineered with thermal-responsive shape memory properties, they may be delivered in a minimally invasive temporary shape and subsequently triggered to conform to a tissue defect. Here we report the shape memory properties of thermoplastic amphiphilic poly(D,L-lactic acid-co-ethylene glycol-co-D,L-lactic acid) (PELA, 120 kDa) and HA-PELA composites. These materials can be cold-deformed and stably fixed into temporary shapes at room temperature and undergo rapid shape recovery (< 3 s) at 50 C. Stable fixation (>99% fixing ratio) of large deformations is achieved at ?20 C. While the shape recovery from tensile deformations slows with higher HA contents, all composites (up to 20 wt% HA) achieve high shape recovery (>90%) upon 10-min equilibration at 50 C. The permanent shapes of HA-PELA can be reprogramed at 50 C, and macroporous shape memory scaffolds can be fabricated by rapid prototyping. PMID:26457046

  18. Phenylene ring dynamics in phenoxy and the effect of intramolecular linkages on the dynamics of some engineering thermoplastics below the glass transition temperature

    SciTech Connect

    Arrese-Igor, Silvia; Arbe, Arantxa; Alegria, Angel; Frick, Bernhard

    2007-05-15

    We have investigated the dynamics of phenylene rings in the engineering thermoplastic bisphenol-A poly(hydroxyether)--phenoxy--below its glass transition temperature by means of neutron scattering techniques. A relatively wide dynamic range has been covered thanks to the combination of two different types of neutron spectrometers, time of flight and backscattering. Partially deuterated samples have been used in order to isolate the phenylene ring dynamics. The resulting neutron scattering signal of phenoxy has been described by a model that considers {pi} flips and oscillation motions for phenylene rings. The associated time scales are broadly distributed with mean activation energies equal to 0.41 and 0.21 eV, respectively. Finally, a comparative study with the literature shows that the dielectric and mechanical {gamma} relaxation in phenoxy exhibit good correlation with the characteristic times of the aliphatic chain published elsewhere and with the characteristic times observed for the motion of phenylene rings by neutron scattering. These findings are discussed in a more general framework that considers, in addition, previous results on other polymers, which also contain the bisphenol-A unit.

  19. Nuclear Instruments and Methods in Physics Research. Section B; Microstructural Characterization of Semi-Interpenetrating Polymer Networks by Positron Lifetime Spectroscopy

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.; Pater, Ruth H.; Eftekhari, Abe

    1998-01-01

    Thermoset and thermoplastic polyimides have complementary physical/mechanical properties. Whereas thermoset polyimides are brittle and generally easier to process, thermoplastic polyimides are tough but harder to process. It is expected that a combination of these two types of polyimides may help produce polymers more suitable for aerospace applications. Semi-Interpenetrating Polymer Networks (S-IPNs) of thermoset LaRC(Trademark)-RP46 and thermoplastic LARC(Trademark)-IA polyimides were prepared in weight percent ratios ranging from 100:0 to 0: 100. Positron lifetime measurements were made in these samples to correlate their free volume features with physical/mechanical properties. As expected, positronium atoms are not formed in these samples. The second life time component has been used to infer the positron trap dimensions. The "free volume" goes through a minimum at about 50:50 ratio, suggesting that S-IPN samples are not merely solid solutions of the two polymers. These data and related structural properties of the S-IPN samples have been discussed in this paper.

  20. Solid particle erosion of polymers and composites

    NASA Astrophysics Data System (ADS)

    Friedrich, K.; Almajid, A. A.

    2014-05-01

    After a general introduction to the subject of solid particle erosion of polymers and composites, the presentation focusses more specifically on the behavior of unidirectional carbon fiber (CF) reinforced polyetheretherketone (PEEK) composites under such loadings, using different impact conditions and erodents. The data were analyzed on the basis of a newly defined specific erosive wear rate, allowing a better comparison of erosion data achieved under various testing conditions. Characteristic wear mechanisms of the CF/PEEK composites consisted of fiber fracture, matrix cutting and plastic matrix deformation, the relative contribution of which depended on the impingement angles and the CF orientation. The highest wear rates were measured for impingement angles between 45 and 60. Using abrasion resistant neat polymer films (in this case PEEK or thermoplastic polyurethane (TPU) ones) on the surface of a harder substrate (e.g. a CF/PEEK composite plate) resulted in much lower specific erosive wear rates. The use of such polymeric films can be considered as a possible method to protect composite surfaces from damage caused by minor impacts and erosion. In fact, they are nowadays already successfully applied as protections for wind energy rotor blades.