Note: This page contains sample records for the topic three-axis thrust-vectoring system from Science.gov.
While these samples are representative of the content of Science.gov,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of Science.gov
to obtain the most current and comprehensive results.
Last update: August 15, 2014.
1

Thrust-vector control of a three-axis stabilized upper-stage rocket with fuel slosh dynamics  

NASA Astrophysics Data System (ADS)

This paper studies the thrust vector control problem for an upper-stage rocket with fuel slosh dynamics. The dynamics of a three-axis stabilized spacecraft with a single partially-filled fuel tank are formulated and the sloshing propellant is modeled as a multi-mass–spring system, where the oscillation frequencies of the mass–spring elements represent the prominent sloshing modes. The equations of motion are expressed in terms of the three-dimensional spacecraft translational velocity vector, the attitude, the angular velocity, and the internal coordinates representing the slosh modes. A Lyapunov-based nonlinear feedback control law is proposed to control the translational velocity vector and the attitude of the spacecraft, while attenuating the sloshing modes characterizing the internal dynamics. A simulation example is included to illustrate the effectiveness of the control law.

Rubio Hervas, Jaime; Reyhanoglu, Mahmut

2014-05-01

2

Design of an ion thruster movable grid thrust vectoring system  

NASA Astrophysics Data System (ADS)

Several reasons justify the development of an ion propulsion system thrust vectoring system. Spacecraft launched to date have used ion thrusters mounted on gimbals to control the thrust vector within a range of about ±5°. Such devices have large mass and dimensions, hence the need exists for a more compact system, preferably mounted within the thruster itself. Since the 1970s several thrust vectoring systems have been developed, with the translatable accelerator grid electrode being considered the most promising. Laboratory models of this system have already been built and successfully tested, but there is still room for improvement in their mechanical design. This work aims to investigate possibilities of refining the design of such movable grid thrust vectoring systems. Two grid suspension designs and three types of actuators were evaluated. The actuators examined were a micro electromechanical system, a NanoMuscle shape memory alloy actuator and a piezoelectric driver. Criteria used for choosing the best system included mechanical simplicity (use of the fewest mechanical parts), accuracy, power consumption and behaviour in space conditions. Designs of systems using these actuators are proposed. In addition, a mission to Mercury using the system with piezoelectric drivers has been modelled and its performance presented.

Kural, Aleksander; Leveque, Nicolas; Welch, Chris; Wolanski, Piotr

2004-08-01

3

Space transportation system solid rocket booster thrust vector control system  

NASA Technical Reports Server (NTRS)

The Solid Rocket Booster, Thrust Vector Control (TVC) system was designed in accordance with the following requirements: self-contained power supply, fail-safe operation, 20 flight uses after exposure to seawater landings, optimized cost, and component interchangeability. Trade studies were performed which led to the selection of a recirculating hydraulic system powered by Auxiliary Power Units (APU) which drive the hydraulic actuators and gimbal the solid rocket motor nozzle. Other approaches for the system design were studied in arriving at the recirculating hydraulic system powered by an APU. These systems must withstand the imposed environment and be usable for a minimum of 20 Space Transportation System flights with a minimum of refurbishment. The TVC system has completed the major portion of qualification and verification tests and is prepared to be cleared for the first Shuttle flight (STS-1). Substantiation data will include analytical and test data.

Verble, A. J., Jr.; Mccool, A. A.; Potter, J. H.

1979-01-01

4

Three axis velocity probe system  

DOEpatents

A three-axis velocity probe system for determining three-axis positional velocities of small particles in fluidized bed systems and similar applications. This system has a sensor head containing four closely-spaced sensing electrodes of small wires that have flat ends to establish a two axis plane, e.g. a X-Y plane. Two of the sensing electrodes are positioned along one of the axes and the other two are along the second axis. These four sensing electrodes are surrounded by a guard electrode, and the outer surface is a ground electrode and support member for the sensing head. The electrodes are excited by, for example, sinusoidal voltage having a peak-to-peak voltage of up to 500 volts at a frequency of 2 MHz. Capacitive currents flowing between the four sensing electrodes and the ground electrode are influenced by the presence and position of a particle passing the sensing head. Any changes in these currents due to the particle are amplified and synchronously detected to produce positional signal values that are converted to digital form. Using these digital forms and two values of time permit generation of values of the three components of the particle vector and thus the total velocity vector.

Fasching, George E. (Morgantown, WV) [Morgantown, WV; Smith, Jr., Nelson S. (Morgantown, WV); Utt, Carroll E. (Morgantown, WV) [Morgantown, WV

1992-01-01

5

Three axis attitude control system  

NASA Technical Reports Server (NTRS)

A three-axis attitude control system for an orbiting body comprised of a motor driven flywheel supported by a torque producing active magnetic bearing is described. Free rotation of the flywheel is provided about its central axis and together with limited angular torsional deflections of the flywheel about two orthogonal axes which are perpendicular to the central axis. The motor comprises an electronically commutated DC motor, while the magnetic bearing comprises a radially servoed permanent magnet biased magnetic bearing capable of producing cross-axis torques on the flywheel. Three body attitude sensors for pitch, yaw and roll generate respective command signals along three mutually orthogonal axes (x, y, z) which are coupled to circuit means for energizing a set of control coils for producing torques about two of the axes (x and y) and speed control of the flywheel about the third (z) axis. An energy recovery system, which is operative during motor deceleration, is also included which permits the use of a high-speed motor to perform effectively as a reactive wheel suspended in the magnetic bearing.

Studer, Philip A. (inventor)

1988-01-01

6

Developmental Testing of Electric Thrust Vector Control Systems for Manned Launch Vehicle Applications  

NASA Technical Reports Server (NTRS)

This paper describes recent developmental testing to verify the integration of a developmental electromechanical actuator (EMA) with high rate lithium ion batteries and a cross platform extensible controller. Testing was performed at the Thrust Vector Control Research, Development and Qualification Laboratory at the NASA George C. Marshall Space Flight Center. Electric Thrust Vector Control (ETVC) systems like the EMA may significantly reduce recurring launch costs and complexity compared to heritage systems. Electric actuator mechanisms and control requirements across dissimilar platforms are also discussed with a focus on the similarities leveraged and differences overcome by the cross platform extensible common controller architecture.

Bates, Lisa B.; Young, David T.

2012-01-01

7

Fluidic Thrust Vector Control for the Stabilization of Man/Ejection Seat Systems.  

National Technical Information Service (NTIS)

A 2-axis, hydrofluidic thrust vector control (TVC) system was designed to improve the total trajectory of an ejection seat system during adverse conditions from 0 to 600 knots air speed. A nonlinear model of the seat was derived and linearized to determin...

R. B. Beale

1975-01-01

8

Omni-axis secondary injection thrust vector control system  

NASA Technical Reports Server (NTRS)

The concept, development, design study and preliminary analysis and layout of the required digital logic scheme to be used for injection valve control are presented. An application and optimization study of an Omni-Axis Secondary Injection Control System applicable to the proposed Space Shuttle Pressure Fed Engine is reported. Technical definition and analysis control procedures and test routines, as well as a supporting set of drawing sketches and reference manual, are enclosed.

Kirkley, D. J.

1973-01-01

9

Three-axis asymmetric radiation detector system  

SciTech Connect

A three-axis radiation detection system whose inner and outer electrodes are shaped and positioned so that the shortest path between any point on the inner electrode and the outer electrode is a different length whereby the rise time of a pulse derived from a detected radiation event can uniquely define the azimuthal and radial position of that event, and the outer electrode is divided into a plurality of segments in the longitudinal axial direction for locating the axial location of a radiation detection event occurring in the diode.

Martini, Mario Pierangelo (Oak Ridge, TN); Gedcke, Dale A. (Oak Ridge, TN); Raudorf, Thomas W. (Oak Ridge, TN); Sangsingkeow, Pat (Knoxville, TN)

2000-01-01

10

Investigation of advanced thrust vectoring exhaust systems for high speed propulsive lift  

NASA Technical Reports Server (NTRS)

The paper presents the results of a wind tunnel investigation conducted at the NASA-Langley research center to determine thrust vectoring/induced lift characteristics of advanced exhaust nozzle concepts installed on a supersonic tactical airplane model. Specific test objectives include: (1) basic aerodynamics of a wing body configuration, (2) investigation of induced lift effects, (3) evaluation of static and forward speed performance, and (4) the effectiveness of a canard surface to trim thrust vectoring/induced lift forces and moments.

Hutchison, R. A.; Petit, J. E.; Capone, F. J.; Whittaker, R. W.

1980-01-01

11

Noise generated by a flight weight, air flow control valve in a vertical takeoff and landing aircraft thrust vectoring system  

Microsoft Academic Search

Tests were conducted in the NASA Lewis Research Center's Powered Lift Facility to experimentally evaluate the noise generated by a flight weight, 12 in. butterfly valve installed in a proposed vertical takeoff and landing thrust vectoring system. Fluctuating pressure measurements were made in the circular duct upstream and downstream of the valve. This data report presents the results of these

Ronald G. Huff

1989-01-01

12

Results of solar electric thrust vector control system design, development and tests  

NASA Technical Reports Server (NTRS)

Efforts to develop and test a thrust vector control system TVCS for a solar-energy-powered ion engine array are described. The results of solar electric propulsion system technology (SEPST) III real-time tests of present versions of TVCS hardware in combination with computer-simulated attitude dynamics of a solar electric multi-mission spacecraft (SEMMS) Phase A-type spacecraft configuration are summarized. Work on an improved solar electric TVCS, based on the use of a state estimator, is described. SEPST III tests of TVCS hardware have generally proved successful and dynamic response of the system is close to predictions. It appears that, if TVCS electronic hardware can be effectively replaced by control computer software, a significant advantage in control capability and flexibility can be gained in future developmental testing, with practical implications for flight systems as well. Finally, it is concluded from computer simulations that TVCS stabilization using rate estimation promises a substantial performance improvement over the present design.

Fleischer, G. E.

1973-01-01

13

Noise generated by a flight weight, air flow control valve in a vertical takeoff and landing aircraft thrust vectoring system  

NASA Technical Reports Server (NTRS)

Tests were conducted in the NASA Lewis Research Center's Powered Lift Facility to experimentally evaluate the noise generated by a flight weight, 12 in. butterfly valve installed in a proposed vertical takeoff and landing thrust vectoring system. Fluctuating pressure measurements were made in the circular duct upstream and downstream of the valve. This data report presents the results of these tests. The maximum overall sound pressure level is generated in the duct downstream of the valve and reached a value of 180 dB at a valve pressure ratio of 2.8. At the higher valve pressure ratios the spectra downstream of the valve is broad banded with its maximum at 1000 Hz.

Huff, Ronald G.

1989-01-01

14

A review of thrust-vectoring schemes for fighter applications  

NASA Technical Reports Server (NTRS)

This paper presents a review of thrust vectoring schemes for advanced fighter applications. Results are presented from wind tunnel and system integration studies on thrust vectoring nozzle concepts. Vectoring data are presented from wind tunnel tests of axisymmetric C-D (convergent-divergent) and nonaxisymmetric wedge, C-D, single ramp and USB (upper-surface blowing) nozzle concepts. Results from recent airframe/nozzle integration studies on the impact of thrust vectoring on weight, cooling and performance characteristics are discussed. This review indicates that the aircraft designer has, at his disposal, a wide range of thrust vectoring schemes which offer potential for added or improved aircraft capability.

Berrier, B. L.; Re, R. J.

1978-01-01

15

Electromechanical actuation for thrust vector control applications  

Microsoft Academic Search

At present, actuation systems for the Thrust Vector Control (TVC) for launch vehicles are hydraulic systems. The Advanced Launch System (ALS), a joint initiative between NASA and the Air Force, is a launch vehicle that is designed to be cost effective, highly reliable and operationally efficient with a goal of reducing the cost per pound to orbit. As part of

Mary Ellen Roth

1990-01-01

16

Preliminary performance of a vertical-attitude takeoff and landing, supersonic cruise aircraft concept having thrust vectoring integrated into the flight control system  

NASA Technical Reports Server (NTRS)

A performance study was made of a vertical attitude takeoff and landing (VATOL), supersonic cruise aircraft concept having thrust vectoring integrated into the flight control system. Those characteristics considered were aerodynamics, weight, balance, and performance. Preliminary results indicate that high levels of supersonic aerodynamic performance can be achieved. Further, with the assumption of an advanced (1985 technology readiness) low bypass ratio turbofan engine and advanced structures, excellent mission performance capability is indicated.

Robins, A. W.; Beissner, F. L., Jr.; Domack, C. S.; Swanson, E. E.

1985-01-01

17

A Change of Inertia-Supporting the Thrust Vector Control of the Space Launch System  

NASA Technical Reports Server (NTRS)

The Space Launch System (SLS) is America's next launch vehicle. To utilize the vehicle more economically, heritage hardware from the Space Transportation System (STS) will be used when possible. The Solid Rocket Booster (SRB) actuators could possibly be used in the core stage of the SLS. The dynamic characteristics of the SRB actuator will need to be tested on an Inertia Load Stand (ILS) that has been converted to Space Shuttle Main Engine (SSME). The inertia on the pendulum of the ILS will need to be changed to match the SSME inertia. In this testing environment an SRB actuator can be tested with the equivalent resistence of an SSME.

Dziubanek, Adam J.

2012-01-01

18

Thrust vectoring for lateral-directional stability  

NASA Technical Reports Server (NTRS)

The advantages and disadvantages of using thrust vectoring for lateral-directional control and the effects of reducing the tail size of a single-engine aircraft were investigated. The aerodynamic characteristics of the F-16 aircraft were generated by using the Aerodynamic Preliminary Analysis System II panel code. The resulting lateral-directional linear perturbation analysis of a modified F-16 aircraft with various tail sizes and yaw vectoring was performed at several speeds and altitudes to determine the stability and control trends for the aircraft compared to these trends for a baseline aircraft. A study of the paddle-type turning vane thrust vectoring control system as used on the National Aeronautics and Space Administration F/A-18 High Alpha Research Vehicle is also presented.

Peron, Lee R.; Carpenter, Thomas

1992-01-01

19

Traceable Calibration of the 3 axis Thrust Vector in the mN range  

NASA Astrophysics Data System (ADS)

The possibility of measuring the three force components i.e. the main axial component and the two orthogonal radial components, generated by an electric propulsion system is important for two reasons. Firstly, to assess the impact of spacecraft/propulsion system integration issues, for example to verify the alignment of the thrust vector with the spacecraft centre-of-mass for spacecraft stability. Secondly, to operate the thruster properly during flight, for example to determine the thrust vector relative to the mechanical axis of the thruster. Furthermore, a three-axis measurement capability will be useful for the experimental performance verification of the next generation of vectored electric propulsion devices, especially regarding the many unresolved issues connected with indirect thrust measurement using electrostatic probes. The capability to monitor thrust vector drift in real time and with significant bandwidth is also important. Thus enabling vector drift during thruster warm-up, to be measured, and the response of vectored thrusters to change in vector demand can be assessed. In this paper we describe the design, construction and testing of an instrument proof of concept. The instrument was designed to accommodate a dummy thruster mass of 0.5 kg and operate in the 0 to 10 mN range. The directional resolution that has been demonstrated is better than 0.05 ° in both axes when operating at full thrust.

Hughes, B.; Oldfield, S.

2004-10-01

20

The Magsat three axis arc second precision attitude transfer system  

NASA Technical Reports Server (NTRS)

The Magsat Attitude Transfer System (ATS), which provides attitude alteration in pitch, yaw, and roll is described. A remote vector magnetometer extends from Magsat on a 20 ft boom, requiring vector orientation by reference to coordinate axes determined by a set of star mapping cameras. The ATS was designed to perform in a solar illuminated environment by using an optically narrow bandwidth with synchronous demodulation at 9300 A. The pitch/yaw optical design, the electrooptics, and signal and switching diagrams are provided. Simple mirrors with no moving parts are placed on the magnetometer to reflect a collimated beam from the ATS for attitude indication, which is accurate to one part in 96. Alignment was completed within 24 hr after launch.

Schenkel, F. W.; Heins, R. J.

1981-01-01

21

Thrust vector control using electric actuation  

SciTech Connect

Presently, gimbaling of launch vehicle engines for thrust vector control is generally accomplished using a hydraulic system. In the case of the space shuttle solid rocket boosters and main engines, these systems are powered by hydrazine auxiliary power units. Use of electromechanical actuators would provide significant advantages in cost and maintenance. However, present energy source technologies such as batteries are heavy to the point of causing significant weight penalties. Utilizing capacitor technology developed by the Auburn University Space Power Institute in collaboration with the Auburn CCDS, Marshall Space Flight Center (MSFC) and Auburn are developing EMA system components with emphasis on high discharge rate energy sources compatible with space shuttle type thrust vector control requirements. Testing has been done at MSFC as part of EMA system tests with loads up to 66000 newtons for pulse times of several seconds. Results show such an approach to be feasible providing a potential for reduced weight and operations costs for new launch vehicles. {copyright} 1995 {ital American} {ital Institute} {ital of} {ital Physics}

Bechtel, R.T.; Hall, D.K. [Marshall Space Flight Center, Marshall Space Flight Center, Alabama 35812 (United States)

1995-01-25

22

Hot gas thrust vector control motor  

NASA Astrophysics Data System (ADS)

A hot gas thrust vector control (HGTVC) motor developed in the framework of a Foreign Weapon Evaluation program is discussed. Two HGTVC versions were evaluated on the two nozzles of the program, normal injection with a blunt pintle and 10 deg upstream injection with a tapered pintle. The HGTVC system was tested on a modified ORBUS-1 motor which is based on two technologies, namely, a composite chamber polar boss (CPB) and a two-piece C-C nozzle which threads to the CPB and receives two HGVs embedded into its exit cone, 180 deg apart. It is concluded that the composite polar bosses and C-C nozzles performed successfully in both firings.

Berdoyes, Michel; Ellis, Russell A.

1992-07-01

23

Investigations of Thrust Vector Control for High-Alpha Pitchover.  

National Technical Information Service (NTIS)

Historically, thrust vector control (TVC) system investigations at the Naval Weapons Center have touched on a wide variety of technologies. Emphasis in this paper is on two technologies, the movable-nozzle and the jet-vane TVC, whose performance capabilit...

A. O. Danielson R. B. Dillinger

1989-01-01

24

A review of thrust-vectoring in support of a V/STOL non-moving mechanical propulsion system  

NASA Astrophysics Data System (ADS)

The advantages associated to Vertical Short-Take-Off and Landing (V/STOL) have been demonstrated since the early days of aviation, with the initial technolology being based on airships and later on helicopters and planes. Its operational advantages are enormous, being it in the field of military, humanitarian and rescue operations, or even in general aviation. Helicopters have limits in their maximum horizontal speed and classic V/STOL airplanes have problems associated with their large weight, due to the implementation of moving elements, when based on tilting rotors or turbojet vector mechanical oriented nozzles. A new alternative is proposed within the European Union Project ACHEON (Aerial Coanda High Efficiency Orienting-jet Nozzle). The project introduces a novel scheme to orient the jet that is free of moving elements. This is based on a Coanda effect nozzle supported in two fluid streams, also incorporating boundary layer plasma actuators to achieve larger deflection angles. Herein we introduce a state-of-the-art review of the concepts that have been proposed in the framework of jet orienting propulsion systems. This review allows to demonstrate the advantages of the new concept in comparison to competing technologies in use at present day, or of competing technologies under development worldwide.

Pįscoa, José C.; Dumas, Antonio; Trancossi, Michele; Stewart, Paul; Vucinic, Dean

2013-09-01

25

IMPS: A multianalyser detector system for the thermal three-axis spectrometer IN8  

NASA Astrophysics Data System (ADS)

The primary spectrometer of the ILL's thermal-beam three-axis spectrometer IN8 has recently been rebuilt to increase the instrument flexibility as well as the monochromatic flux at the sample position. Further improvement of the instrument is now envisaged and consists in the installation of a multianalyser detector system to multiplex the secondary spectrometer. This will enable one to obtain images of selected regions in ( Q,?) space. The design of such a multiplexed secondary spectrometer is based on analytical results reflecting the geometrical considerations and computer simulations performed using the neutron ray-tracing package McStas.

Jiménez-Ruiz, M.; Hiess, A.; Currat, R.; Kulda, J.; Bermejo, F. J.

2006-11-01

26

Electromechanical actuation for thrust vector control applications  

NASA Technical Reports Server (NTRS)

The advanced launch system (ALS), is a launch vehicle that is designed to be cost-effective, highly reliable, and operationally efficient with a goal of reducing the cost per pound to orbit. An electromechanical actuation (EMA) system is being developed as an attractive alternative to the hydraulic systems. The controller will integrate 20 kHz resonant link power management and distribution (PMAD) technology and pulse population modulation (PPM) techniques to implement field-oriented vector control (FOVC) of a new advanced induction motor. The driver and the FOVC will be microprocessor controlled. For increased system reliability, a built-in test (BITE) capability will be included. This involves introducing testability into the design of a system such that testing is calibrated and exercised during the design, manufacturing, maintenance, and prelaunch activities. An actuator will be integrated with the motor controller for performance testing of the EMA thrust vector control (TVC) system. The EMA system and work proposed for the future are discussed.

Roth, Mary Ellen

1990-01-01

27

Thrust Vector Control for Nuclear Thermal Rockets  

NASA Technical Reports Server (NTRS)

Future space missions may use Nuclear Thermal Rocket (NTR) stages for human and cargo missions to Mars and other destinations. The vehicles are likely to require engine thrust vector control (TVC) to maintain desired flight trajectories. This paper explores requirements and concepts for TVC systems for representative NTR missions. Requirements for TVC systems were derived using 6 degree-of-freedom models of NTR vehicles. Various flight scenarios were evaluated to determine vehicle attitude control needs and to determine the applicability of TVC. Outputs from the models yielded key characteristics including engine gimbal angles, gimbal rates and gimbal actuator power. Additional factors such as engine thrust variability and engine thrust alignment errors were examined for impacts to gimbal requirements. Various technologies are surveyed for TVC systems for the NTR applications. A key factor in technology selection is the unique radiation environment present in NTR stages. Other considerations including mission duration and thermal environments influence the selection of optimal TVC technologies. Candidate technologies are compared to see which technologies, or combinations of technologies best fit the requirements for selected NTR missions. Representative TVC systems are proposed and key properties such as mass and power requirements are defined. The outputs from this effort can be used to refine NTR system sizing models, providing higher fidelity definition for TVC systems for future studies.

Ensworth, Clinton B. F.

2013-01-01

28

A multimission three-axis stabilized spacecraft flight dynamics ground support system  

NASA Technical Reports Server (NTRS)

The Multimission Three-Axis Stabilized Spacecraft (MTASS) Flight Dynamics Support System (FDSS) has been developed in an effort to minimize the costs of ground support systems. Unlike single-purpose ground support systems, which attempt to reduce costs by reusing software specifically developed for previous missions, the multimission support system is an intermediate step in the progression to a fully generalized mission support system in which numerous missions may be served by one general system. The benefits of multimission attitude ground support systems extend not only to the software design and coding process, but to the entire system environment, from specification through testing, simulation, operations, and maintenance. This paper reports the application of an MTASS FDSS to multiple scientific satellite missions. The satellites are the Upper Atmosphere Research Satellite (UARS), the Extreme Ultraviolet Explorer (EUVE), and the Solar Anomalous Magnetospheric Particle Explorer (SAMPEX). Both UARS and EUVE use the multimission modular spacecraft (MMS) concept. SAMPEX is part of the Small Explorer (SMEX) series and uses a much simpler set of attitude sensors. This paper centers on algorithm and design concepts for a multimission system and discusses flight experience from UARS.

Langston, J.; Krack, K.; Reupke, W.

1993-01-01

29

Thrust Vectoring for Lateral-Directional Stability.  

National Technical Information Service (NTIS)

The advantages and disadvantages of using thrust vectoring for lateral-directional control and the effects of reducing the tail size of a single-engine aircraft were investigated. The aerodynamic characteristics of the F-16 aircraft were generated by usin...

L. R. Peron T. Carpenter

1992-01-01

30

CFD evaluation of an advanced thrust vector control concept  

NASA Technical Reports Server (NTRS)

A potential concept that can offer an alternate method for thrust vector control of the Space Shuttle Solid Rocket Booster is the use of a cylindrical probe that is inserted (on demand) through the wall of the rocket nozzle. This Probe Thrust Vector Control (PTVC) concept is an alternate to that of a gimbaled nozzle or a Liquid Injection Thrust Vector (LITVC) system. The viability of the PTVC concept can be assessed either experimentally and/or with the use of CFD. A purely experimental assessment can be time consuming and expensive, whereas a CFD assessment can be very time- and cost-effective. Two key requirements of the proposed concept are PTVC vectoring performance and the active cooling requirements for the probe to maintain its thermal and structural integrity. An active thermal cooling method is the injection of coolant around the pheriphery of the probe. How much coolant is required and how this coolant distributes itself in the flow field is of major concern. The objective of the work reported here is the use of CFD to answer these question and in the design of test hardware to substantiate the results of the CFD predictions.

Tiarn, Weihnurng; Cavalleri, Robert

1990-01-01

31

Ground test of the D shaped vented thrust vectoring nozzle  

NASA Technical Reports Server (NTRS)

Static ground tests of a large scale lift/cruise thrust vectoring nozzle were conducted to establish: (1) vectoring performance 'in' and 'out' of ground effect; (2) thrust spoilage capability; (3) compatibility of the nozzle with a turbotip fan; and (4) the nozzle structural temperature distribution. Vectoring performance of a short coupled, vented nozzle design on a large scale, (60%) basis was compared with small scale (4.5%) test nozzle results. The test nozzle was a "boilerplate" model of the MCAIR "D" vented nozzle configured for operation with the LF336/J85 turbotip lift fan system. Calibration of the LF336/J85 test fan with a simple convergent nozzle was performed with four different nozzle exit areas to establish reference thrust, nozzle pressure ratio, and nozzle corrected flow characteristics for comparison with the thrust vectoring nozzle data. Thrust vectoring tests with the 'D' vented nozzle were conducted over the range of vector angles between 0 and 117 deg for several different nozzle exit areas.

Esker, D. W.

1976-01-01

32

Multiaxis Thrust Vectoring Using Axisymmetric Nozzles and Postexit Vanes on an F/A-18 Configuration Vehicle.  

National Technical Information Service (NTIS)

A ground-based investigation was conducted on an operational system of multiaxis thrust vectoring using postexit vanes around an axisymmetric nozzle. This thrust vectoring system will be tested on the NASA F/A-18 High Alpha Research Vehicle (HARV) aircraf...

A. H. Bowers G. K. Noffz S. B. Grafton M. L. Mason L. R. Peron

1991-01-01

33

Electromechanical actuation for thrust vector control applications  

NASA Technical Reports Server (NTRS)

At present, actuation systems for the Thrust Vector Control (TVC) for launch vehicles are hydraulic systems. The Advanced Launch System (ALS), a joint initiative between NASA and the Air Force, is a launch vehicle that is designed to be cost effective, highly reliable and operationally efficient with a goal of reducing the cost per pound to orbit. As part of this initiative, an electromechanical actuation system is being developed as an attractive alternative to the hydraulic systems used today. NASA-Lewis is developing and demonstrating an Induction Motor Controller Actuation System with a 40 hp peak rating. The controller will integrate 20 kHz resonant link Power Management and Distribution (PMAD) technology and Pulse Population Modulation (PPM) techniques to implement Field Oriented Vector Control (FOVC) of a new advanced induction motor. Through PPM, multiphase variable frequency, variable voltage waveforms can be synthesized from the 20 kHz source. FOVC shows that varying both the voltage and frequency and their ratio (V/F), permits independent control of both torque and speed while operating at maximum efficiency at any point on the torque-speed curve. The driver and the FOVC will be microprocessor controlled. For increased system reliability, a Built-in Test (BITE) capability will be included. This involves introducing testability into the design of a system such that testing is calibrated and exercised during the design, manufacturing, maintenance and prelaunch activities. An actuator will be integrated with the motor controller for performance testing of the EMA TVC system. The design and fabrication of the motor controller is being done by General Dynamics Space Systems Division. The University of Wisconsin-Madison will assist in the design of the advanced induction motor and in the implementation of the FOVC theory. A 75 hp electronically controlled dynamometer will be used to test the motor controller in all four quadrants of operation using flight type control algorithms. Integrated testing of the controller and actuator will be conducted at a facility yet to be named. The EMA system described above is discussed in detail.

Roth, Mary Ellen

1990-01-01

34

Research on the Measurement of Thrust Vector for a Liquid-Propellant Rocket Motor Based on Piezoelectric Quartz  

Microsoft Academic Search

In spaceflight, the orbit\\/attitude control rocket which mainly works in pulse ignition has important effect on spacecraft control. It is necessary to study the performance of thrust vector generated by rocket in order to improve the control precision and extend working life of spacecraft. A piezoelectric measurement system for thrust vector measurement is investigated both theoretically and experimentally. The postulate

Jun Zhang; Baoyuan Sun; Zongjin Ren; Yue Liu

2009-01-01

35

Design of high power electromechanical actuator for thrust vector control  

NASA Technical Reports Server (NTRS)

NASA-Marshall has undertaken the development of electromechanical actuators (EMAs) for thrust vector control (TVC) augmentation system implementation. The TVC EMA presented has as its major components two three-phase brushless dc motors, a two-pass gear-reduction system, and a roller screw for rotary-to-linear motion conversion. System control is furnished by a solid-state electronic controller and power supply; a pair of resolvers deliver position feedback to the controller, such that precise positioning is achieved. Peformance comparisons have been conducted between the EMA and comparable-performance hydraulic systems applicable to TVCs.

Cowan, J. R.; Myers, W. N.

1991-01-01

36

Flexible joints for thrust vector control  

NASA Technical Reports Server (NTRS)

Flexible joints have been used to achieve thrust vector control over a wide range of sizes of nozzles and have been demonstrated successfully in bench tests and static firings, and are operational on two motors. From these many joints the problems of flexible joints have been defined as establishment of the movable nozzle envelope, definition of the actuation power requirements, definition of the mechanical properties of joint materials, adhesive bonding, test methods, and quality control. These data and problem solutions are contained in a large number of reports. Data relating to joint configuration, design requirements, materials selection, joint design, structural analysis, manufacture, and testing are summarized.

Woodberry, R. F. H.

1975-01-01

37

Experimental Study of an Axisymmetric Dual Throat Fluidic Thrust Vectoring Nozzle for Supersonic Aircraft Application  

NASA Technical Reports Server (NTRS)

An axisymmetric version of the Dual Throat Nozzle concept with a variable expansion ratio has been studied to determine the impacts on thrust vectoring and nozzle performance. The nozzle design, applicable to a supersonic aircraft, was guided using the unsteady Reynolds-averaged Navier-Stokes computational fluid dynamics code, PAB3D. The axisymmetric Dual Throat Nozzle concept was tested statically in the Jet Exit Test Facility at the NASA Langley Research Center. The nozzle geometric design variables included circumferential span of injection, cavity length, cavity convergence angle, and nozzle expansion ratio for conditions corresponding to take-off and landing, mid climb and cruise. Internal nozzle performance and thrust vectoring performance was determined for nozzle pressure ratios up to 10 with secondary injection rates up to 10 percent of the primary flow rate. The 60 degree span of injection generally performed better than the 90 degree span of injection using an equivalent injection area and number of holes, in agreement with computational results. For injection rates less than 7 percent, thrust vector angle for the 60 degree span of injection was 1.5 to 2 degrees higher than the 90 degree span of injection. Decreasing cavity length improved thrust ratio and discharge coefficient, but decreased thrust vector angle and thrust vectoring efficiency. Increasing cavity convergence angle from 20 to 30 degrees increased thrust vector angle by 1 degree over the range of injection rates tested, but adversely affected system thrust ratio and discharge coefficient. The dual throat nozzle concept generated the best thrust vectoring performance with an expansion ratio of 1.0 (a cavity in between two equal minimum areas). The variable expansion ratio geometry did not provide the expected improvements in discharge coefficient and system thrust ratio throughout the flight envelope of typical a supersonic aircraft. At mid-climb and cruise conditions, the variable geometry design compromised thrust vector angle achieved, but some thrust vector control would be available, potentially for aircraft trim. The fixed area, expansion ratio of 1.0, Dual Throat Nozzle provided the best overall compromise for thrust vectoring and nozzle internal performance over the range of NPR tested compared to the variable geometry Dual Throat Nozzle.

Flamm, Jeffrey D.; Deere, Karen A.; Mason, Mary L.; Berrier, Bobby L.; Johnson, Stuart K.

2007-01-01

38

Design and test of electromechanical actuators for thrust vector control  

NASA Technical Reports Server (NTRS)

New control mechanisms technologies are currently being explored to provide alternatives to hydraulic thrust vector control (TVC) actuation systems. For many years engineers have been encouraging the investigation of electromechanical actuators (EMA) to take the place of hydraulics for spacecraft control/gimballing systems. The rationale is to deliver a lighter, cleaner, safer, more easily maintained, as well as energy efficient space vehicle. In light of this continued concern to improve the TVC system, the Propulsion Laboratory at the NASA George C. Marshall Space Flight Center (MSFC) is involved in a program to develop electromechanical actuators for the purpose of testing and TVC system implementation. Through this effort, an electromechanical thrust vector control actuator has been designed and assembled. The design consists of the following major components: Two three-phase brushless dc motors, a two pass gear reduction system, and a roller screw, which converts rotational input into linear output. System control is provided by a solid-state electronic controller and power supply. A pair of resolvers and associated electronics deliver position feedback to the controller such that precise positioning is achieved. Testing and evaluation is currently in progress. Goals focus on performance comparisons between EMA's and similar hydraulic systems.

Cowan, J. R.; Weir, Rae Ann

1993-01-01

39

Design and evaluation of thrust vectored nozzles using a multicomponent thrust stand  

NASA Technical Reports Server (NTRS)

Future aircraft with the capability of short takeoff and landing, and improved maneuverability especially in the post-stall flight regime will incorporate exhaust nozzles which can be thrust vectored. In order to conduct thrust vector research in the Mechanical Engineering Department at Cal Poly, a program was planned with two objectives; design and construct a multicomponent thrust stand for the specific purpose of measuring nozzle thrust vectors; and to provide quality low moisture air to the thrust stand for cold flow nozzle tests. The design and fabrication of the six-component thrust stand was completed. Detailed evaluation tests of the thrust stand will continue upon the receipt of one signal conditioning option (-702) for the Fluke Data Acquisition System. Preliminary design of thrust nozzles with air supply plenums were completed. The air supply was analyzed with regard to head loss. Initial flow visualization tests were conducted using dual water jets.

Carpenter, Thomas W.; Blattner, Ernest W.; Stagner, Robert E.; Contreras, Juanita; Lencioni, Dennis; Mcintosh, Greg

1990-01-01

40

Thrust Vectoring of a Continuous Rotating Detonation Engine by Changing the Local Injection Pressure  

NASA Astrophysics Data System (ADS)

The thrust vectoring ability of a continuous rotating detonation engine is numerically investigated, which is realized via increasing local injection stagnation pressure of half of the simulation domain compared to the other half. Under the homogeneous injection condition, both the flow-field structure and the detonation wave propagation process are analyzed. Due to the same injection condition along the inlet boundary, the outlines of fresh gas zones at different moments are similar to each other. The main flow-field features under thrust vectoring cases are similar to that under the baseline condition. However, due to the heterogeneous injection system, both the height of the fresh gas zone and the pressure value of the fresh gas in the high injection pressure zone are larger than that in the low injection pressure zone. Thus the average pressure in half of the engine is larger than that in the other half and the thrust vectoring adjustment is realized.

Liu, Shi-Jie; Lin, Zhi-Yong; Sun, Ming-Bo; Liu, Wei-Dong

2011-09-01

41

High efficiency thrust vector control allocation  

NASA Astrophysics Data System (ADS)

The design of control mixing algorithms for launch vehicles with multiple vectoring engines yields competing objectives for which no straightforward solution approach exists. The designer seeks to optimally allocate the effector degrees of freedom such that maneuvering capability is maximized subject to constraints on available control authority. In the present application, such algorithms are generally restricted to linear transformations so as to minimize adverse control-structure interaction and maintain compatibility with industry-standard methods for control gain design and stability analysis. Based on the application of the theory of ellipsoids, a complete, scalable, and extensible framework is developed to effect rapid analysis of launch vehicle capability. Furthermore, a control allocation scheme is proposed that simultaneously balances attainment of the maximum maneuvering capability with rejection of internal loads and performance losses resulting from thrust vectoring in the null region of the admissible controls. This novel approach leverages an optimal parametrization of the weighted least squares generalized inverse and exploits the analytic properties of the constraint geometry so as to enable recovery of more than ninety percent of the theoretical capability while maintaining linearity over the majority of the attainable set.

Orr, Jeb S.

42

Three-axis active control system for gravity gradient stabilised microsatellite  

NASA Astrophysics Data System (ADS)

In this paper, the control system of the first Algerian microsatellite in orbit Alsat-1 is presented. Alsat-1 is a 3-axis stabilised microsatellite, using a pitch momentum wheel and yaw reaction wheel, with dual redundant 3-axis magnetorquers. A gravity gradient boom is employed to provide a high degree of platform stability. Two vector magnetometers and four dual sun sensors are carried in order to determine the attitude. This paper examines the low Earth orbit (LEO) control system requirements and design in the context of a real system, the Surrey Satellite Technology Limited (SSTL) advanced microsatellite platform and puts forward designs for the control system to match the advanced capability of the enhanced microsatellite platform. Numerical results show the effectiveness of the implementation. Comparison with in orbit results is presented to evaluate the performance of the control system during accurate Nadir pointing control.

Si Mohammed, A. M.; Benyettou, M.; Bentoutou, Y.; Boudjemai, A.; Hashida, Y.; Sweeting, M. N.

43

Aerodynamics of thrust vectoring by Navier-Stokes solutions  

NASA Technical Reports Server (NTRS)

Induced aerodynamics from thrust vectoring are investigated by a computational fluid dynamic method. A thin-layer Reynolds-averaged Navier-Stokes code with multiblock capability is used. Jet properties are specified on the nozzle exit plane to simulate the jet momentum. Results for a rectangular jet in a cross flow are compared with data to verify the code. Further verification of the calculation is made by comparing the numerical results with transonic data for a wing-body combination. Additional calculations were performed to elucidate the following thrust vectoring effects: the thrust vectoring effect on shock and expansion waves, induced effects on nearby surfaces, and the thrust vectoring effect on the leading edge vortex.

Tseng, Jing-Biau; Lan, C. Edward

1991-01-01

44

Thrust Vectoring on the NASA F-18 High Alpha Research Vehicle  

NASA Technical Reports Server (NTRS)

Investigations into a multiaxis thrust-vectoring system have been conducted on an F-18 configuration. These investigations include ground-based scale-model tests, ground-based full-scale testing, and flight testing. This thrust-vectoring system has been tested on the NASA F-18 High Alpha Research Vehicle (HARV). The system provides thrust vectoring in pitch and yaw axes. Ground-based subscale test data have been gathered as background to the flight phase of the program. Tests investigated aerodynamic interaction and vane control effectiveness. The ground-based full-scale data were gathered from static engine runs with image analysis to determine relative thrust-vectoring effectiveness. Flight tests have been conducted at the NASA Dryden Flight Research Center. Parameter identification input techniques have been developed. Individual vanes were not directly controlled because of a mixer-predictor function built into the flight control laws. Combined effects of the vanes have been measured in flight and compared to combined effects of the vanes as predicted by the cold-jet test data. Very good agreement has been found in the linearized effectiveness derivatives.

Bowers, Albion H.; Pahle, Joseph W.

1996-01-01

45

Gyroless yaw control system for a three axis stabilized, zero-momentum spacecraft  

NASA Technical Reports Server (NTRS)

A satellite attitude control system is usable in the absence of any inertial yaw attitude reference, such as a gyroscope, and in the absence of a pitch bias momentum. Both the roll-yaw rigid body dynamics and the roll-yaw orbit kinematics are modelled. Pitch and roll attitude control are conventional. The model receives inputs from a roll sensor, and roll and yaw torques from reaction wheel monitors. The model produces estimated yaw which controls the spacecraft yaw attitude.

Stetson, Jr., John B. (Inventor)

1993-01-01

46

Design of thrust vectoring exhaust nozzles for real-time applications using neural networks  

NASA Technical Reports Server (NTRS)

Thrust vectoring continues to be an important issue in military aircraft system designs. A recently developed concept of vectoring aircraft thrust makes use of flexible exhaust nozzles. Subtle modifications in the nozzle wall contours produce a non-uniform flow field containing a complex pattern of shock and expansion waves. The end result, due to the asymmetric velocity and pressure distributions, is vectored thrust. Specification of the nozzle contours required for a desired thrust vector angle (an inverse design problem) has been achieved with genetic algorithms. This approach is computationally intensive and prevents the nozzles from being designed in real-time, which is necessary for an operational aircraft system. An investigation was conducted into using genetic algorithms to train a neural network in an attempt to obtain, in real-time, two-dimensional nozzle contours. Results show that genetic algorithm trained neural networks provide a viable, real-time alternative for designing thrust vectoring nozzles contours. Thrust vector angles up to 20 deg were obtained within an average error of 0.0914 deg. The error surfaces encountered were highly degenerate and thus the robustness of genetic algorithms was well suited for minimizing global errors.

Prasanth, Ravi K.; Markin, Robert E.; Whitaker, Kevin W.

1991-01-01

47

A three-axis high-resolution capacitive tactile imager system based on floating comb electrodes  

NASA Astrophysics Data System (ADS)

We present the design, fabrication and testing of a high-resolution 169-sensing cell capacitive flexible tactile imager (FTI) for normal and shear stress measurement as an auxiliary sensor for robotic grippers and gait analysis. The FTI consists of a flexible high-density array of normal stress and two-dimensional shear stress sensors fabricated using microelectromechanical systems (MEMS) and flexible printed circuit board (FPCB) techniques. The drive/sense lines of the FTI are realized using FPCB whereas the floating electrodes (Au) are patterned on a compressible PDMS layer spin coated on the FPCB layer. The use of unconnected floating electrodes significantly improves the reliability of traditional quad-electrode contact sensing devices by eliminating the need for patterning electrical wiring on PDMS. When placed at the heel of a boot, this FTI senses the position and motion of the line of contact with the ground. Normal stress readouts are obtained from the net capacitance of the cell and the shear-sense direction is determined by the amount of asymmetric overlap of the floating combs with respect to the bottom electrodes. The FTI is characterized using a high-speed switched-capacitor circuit with a 12-bit resolution at full frame rates of 100 Hz (˜0.8 Mb s-1) capable of resolving a displacement as low as 60 µm. The FTI and the readout circuitry contribute to a noise/interference level of 5 mV and the sensitivity of normal and shear stress for the FTI is 0.38 MPa-1 and 79.5 GPa-1 respectively.

Surapaneni, R.; Guo, Q.; Xie, Y.; Young, D. J.; Mastrangelo, C. H.

2013-07-01

48

Thrust and mass flow characteristics of four 36 inch diameter tip turbine fan thrust vectoring systems in and out of ground effect  

NASA Technical Reports Server (NTRS)

The calibration tests carried out on the propulsion system components of a 70 percent scale, powered model of a NASA 3-fan V/STOL aircraft configuration are described. The three X3/6B/T58 turbotip fan units used in the large scale powered model were tested on an isolated basis over a range of ground heights from H/D of 1.02 to infinity. A higher pressure ratio LF336/J85 fan unit was tested over a range of ground heights from 1.55 to infinity. The results of the test program demonstrated that: (1) the thrust and mass flow performance of the X376B/T58 nose lift unit is essentially constant for H/D variations down to 1.55; at H/D 1.02 back pressurization of the fan exit occurs and is accompanied by an increase in thrust of five percent; (2) a change in nose fan exit hub shape from flat plate to hemispherical produces no significant difference in louvered lift nozzle performance for height variations from H/D = 1.02 to infinity; (3) operation of the nose lift nozzle at the higher fan pressure ratio generated by the LF336/J85 fan system causes no significant change in ground proximity performance down to an H/D of 1.55, the lowest height tested with this unit; and (4) the performance of the left and right X376B/T58 lift/cruise units in the vertical lift mode remains unchanged, within plus or minus two percent for the range of ground heights from H/D = 1.02 to infinity.

Esker, D. W.; Roddiger, H. A.

1979-01-01

49

Development of a low-cost attitude and heading reference system using a three-axis rotating platform.  

PubMed

A development procedure for a low-cost attitude and heading reference system (AHRS) with a self-developed three-axis rotating platform has been proposed. The AHRS consists of one 3-axis accelerometer, three single-axis gyroscopes, and one 3-axis digital compass. Both the accelerometer and gyroscope triads are based on micro electro-mechanical system (MEMS) technology, and the digital compass is based on anisotropic-magnetoresistive (AMR) technology. The calibrations for each sensor triad are readily accomplished by using the scalar calibration and the least squares methods. The platform is suitable for the calibration and validation of the low-cost AHRS and it is affordable for most laboratories. With the calibrated parameters and data fusion algorithm for the orientation estimation, the self-developed AHRS demonstrates the capabilities of compensating for the sensor errors and outputting the estimated orientation in real-time. The validation results show that the estimated orientations of the developed AHRS are within the acceptable region. This verifies the practicability of the proposed development procedure. PMID:22319258

Lai, Ying-Chih; Jan, Shau-Shiun; Hsiao, Fei-Bin

2010-01-01

50

An MRI-compatible three-axis focused ultrasound system for performing drug delivery studies in small animal models  

NASA Astrophysics Data System (ADS)

MRI-guided focused-ultrasound is a non-invasive technique that can enhance the delivery of therapeutic agents. The objective of this work was to develop a focused-ultrasound system for preclinical research in small animals that is capable of sonicating with high spatial precision within a closed-bore MRI. The system features a computer-controlled, non-magnetic, three-axis positioning system that uses piezoelectric actuators and linear optical encoders to position a focused-ultrasound transducer to targeted tissues under MRI guidance. The actuator and encoder signals are transmitted through low-pass-filtered connectors on a grounded RF-penetration panel to prevent artifacts during image acquisition. The transducer is attached to the positioning system by a rigid arm and is submerged within a closed water tank. The arm passes into the tank through flexible bellows to ensure that the system remains sealed. An RF coil acquires high-resolution images in the vicinity of the target tissue. An aperture on the water tank, centered about the RF coil, provides an access point for target sonication. Registration between ultrasound and MRI coordinates involves sonicating a temperature-sensitive phantom and measuring the centroid of the thermal focal zone in 3D with MR thermometry. Linear distances of 5 cm with a positioning resolution of 0.05 mm can be achieved for each axis. The system was operated successfully on MRI scanners from different vendors at both 1.5 and 3.0 T, and simultaneous motion and imaging was possible without any mutual interference or imaging artifacts. This system is used for high-throughput small-animal experiments to study the efficacy of ultrasound-enhanced drug delivery.

Waspe, Adam C.; Chau, Anthony; Kukic, Aleksandra; Chopra, Rajiv; Hynynen, Kullervo

2010-03-01

51

Analysis of Thrust Vectoring Capabilities for the Jupiter Icy Moons Orbiter  

NASA Technical Reports Server (NTRS)

A strategy to mitigate the impact of the trajectory design of the Jupiter Icy Moons Orbiter (JIMO) on the attitude control design is described in this paper. This paper shows how the thrust vectoring control torques, i.e. the torques required to steer the vehicle, depend on various parameters (thrust magnitude, thrust pod articulation angles, and thrust moment arms). Rather than using the entire reaction control system (RCS) system to steer the spacecraft, we investigate the potential utilization of only thrust vectoring of the main ion engines for the required attitude control to follow the representative trajectory. This study has identified some segments of the representative trajectory where the required control torque may exceed the designed ion engine capability, and how the proposed mitigation strategy succeeds in reducing the attitude control torques to within the existing capability.

Quadrelli, Marco B .; Gromov, Konstantin; Murray, Emmanuell

2005-01-01

52

Aeroservoelastic Modeling and Validation of a Thrust-Vectoring F/A-18 Aircraft  

NASA Technical Reports Server (NTRS)

An F/A-18 aircraft was modified to perform flight research at high angles of attack (AOA) using thrust vectoring and advanced control law concepts for agility and performance enhancement and to provide a testbed for the computational fluid dynamics community. Aeroservoelastic (ASE) characteristics had changed considerably from the baseline F/A-18 aircraft because of structural and flight control system amendments, so analyses and flight tests were performed to verify structural stability at high AOA. Detailed actuator models that consider the physical, electrical, and mechanical elements of actuation and its installation on the airframe were employed in the analysis to accurately model the coupled dynamics of the airframe, actuators, and control surfaces. This report describes the ASE modeling procedure, ground test validation, flight test clearance, and test data analysis for the reconfigured F/A-18 aircraft. Multivariable ASE stability margins are calculated from flight data and compared to analytical margins. Because this thrust-vectoring configuration uses exhaust vanes to vector the thrust, the modeling issues are nearly identical for modem multi-axis nozzle configurations. This report correlates analysis results with flight test data and makes observations concerning the application of the linear predictions to thrust-vectoring and high-AOA flight.

Brenner, Martin J.

1996-01-01

53

Multiaxis Thrust-Vectoring Characteristics of a Model Representative of the F-18 High-Alpha Research Vehicle at Angles of Attack From 0 deg to 70 deg  

NASA Technical Reports Server (NTRS)

An investigation was conducted in the Langley 16-Foot Transonic Tunnel to determine the multiaxis thrust-vectoring characteristics of the F-18 High-Alpha Research Vehicle (HARV). A wingtip supported, partially metric, 0.10-scale jet-effects model of an F-18 prototype aircraft was modified with hardware to simulate the thrust-vectoring control system of the HARV. Testing was conducted at free-stream Mach numbers ranging from 0.30 to 0.70, at angles of attack from O' to 70', and at nozzle pressure ratios from 1.0 to approximately 5.0. Results indicate that the thrust-vectoring control system of the HARV can successfully generate multiaxis thrust-vectoring forces and moments. During vectoring, resultant thrust vector angles were always less than the corresponding geometric vane deflection angle and were accompanied by large thrust losses. Significant external flow effects that were dependent on Mach number and angle of attack were noted during vectoring operation. Comparisons of the aerodynamic and propulsive control capabilities of the HARV configuration indicate that substantial gains in controllability are provided by the multiaxis thrust-vectoring control system.

Asbury, Scott C.; Capone, Francis J.

1995-01-01

54

Attitude control of a spinning rocket via thrust vectoring  

SciTech Connect

Two controllers are developed to provide attitude control of a spinning rocket that has a thrust vectoring capability. The first controller has a single-input/single-output design that ignores the gyroscopic coupling between the control channels. The second controller has a multi-input/multi-output structure that is specifically intended to account for the gyroscopic coupling effects. A performance comparison between the two approached is conducted for a range of roll rates. Each controller is tested for the ability to track step commands, and for the amount of coupling impurity. Both controllers are developed via a linear-quadratic-regulator synthesis procedure, which is motivated by the multi-input/multi-output nature of second controller. Time responses and a singular value analysis are used to evaluate controller performance. This paper describes the development and comparison of two controllers that are designed to provide attitude control of a spinning rocket that is equipped with thrust vector control. 12 refs., 13 figs., 2 tabs.

White, J.E.

1990-12-19

55

Linear Test Bed. Volume 2: Test Bed No. 2. [linear aerospike test bed for thrust vector control  

NASA Technical Reports Server (NTRS)

Test bed No. 2 consists of 10 combustors welded in banks of 5 to 2 symmetrical tubular nozzle assemblies, an upper stationary thrust frame, a lower thrust frame which can be hinged, a power package, a triaxial combustion wave ignition system, a pneumatic control system, pneumatically actuated propellant valves, a purge and drain system, and an electrical control system. The power package consists of the Mark 29-F fuel turbopump, the Mark 29-0 oxidizer turbopump, a gas generator assembly, and propellant ducting. The system, designated as a linear aerospike system, was designed to demonstrate the feasibility of the concept and to explore technology related to thrust vector control, thrust vector optimization, improved sequencing and control, and advanced ignition systems. The propellants are liquid oxygen/liquid hydrogen. The system was designed to operate at 1200-psia chamber pressure at an engine mixture ratio of 5.5. With 10 combustors, the sea level thrust is 95,000 pounds.

1974-01-01

56

Preliminary Investigation on Battery Sizing Investigation for Thrust Vector Control on Ares I and Ares V Launch Vehicles  

NASA Technical Reports Server (NTRS)

An investigation into the merits of battery powered Electro Hydrostatic Actuation (EHA) for Thrust Vector Control (TVC) of the Ares I and Ares V launch vehicles is described. A top level trade study was conducted to ascertain the technical merits of lithium-ion (Li-ion) and thermal battery performance to determine the preferred choice of an energy storage system chemistry that provides high power discharge capability for a relatively short duration.

Miller, Thomas B.

2011-01-01

57

Design and evaluation of single and dual flow thrust vector nozzles with post exit vanes  

NASA Technical Reports Server (NTRS)

This Thrust Vectored Research project required that a 1/24 scale model of the F/A-18 High Alpha Research Vehicle, (HARV), propulsion system be constructed on the university campus. This propulsion system was designed for cold flow testing on a multicomponent test rig. Forces and moments were measured to study nozzle performance parameters. The flow visualization technique of color Schlieren photography was performed to investigate the flow phenomena at the nozzle exit. The flow interactions that were identified consisted of vane nozzleing between the outer and lower vanes and vane tip interference. The thrust vectoring system consisted of three asymmetrically spaced vanes installed circumferentially on a maximum afterburner nozzle. The performance of the nozzle was investigated with the outer and lower vanes equally deflected, (-10 deg is less than delta(sub v) is less than 25 deg), and with the upper vane fully retracted, (delta(sub v) equals -10 deg). The nozzle pressure ratio ranged from 4 to 6. The results indicated that a vane nozzleing effect developed at nozzle pressure ratios of 4 and 6 when the outer and lower vanes were deflected far enough into the flow field such that the increase in vane area accelerated the flow past the vanes causing distorted shock waves. This accelerated flow was a result of a pressure differential existing between the inside surface of the vane and the ambient pressure. The stagnation pressure that developed along the inside surface of the vane accelerated the flow past the vanes causing it to equalize with ambient pressure, thus providing distorted shock waves. A tip interference was present at the trailing edge of the upper vane as a result of low nozzle pressure, NPR 4, with high vane deflection, delta(sub v) equals 25 degrees, and also with a high nozzle pressure, NPR 6, and low vane deflections, delta(sub v) equals 15 degrees.

Carpenter, Thomas W.; Vaccarezza, Stephen E.; Dobbins, Sean

1992-01-01

58

Computational Study of Fluidic Thrust Vectoring using Separation Control in a Nozzle  

NASA Technical Reports Server (NTRS)

A computational investigation of a two- dimensional nozzle was completed to assess the use of fluidic injection to manipulate flow separation and cause thrust vectoring of the primary jet thrust. The nozzle was designed with a recessed cavity to enhance the throat shifting method of fluidic thrust vectoring. The structured-grid, computational fluid dynamics code PAB3D was used to guide the design and analyze over 60 configurations. Nozzle design variables included cavity convergence angle, cavity length, fluidic injection angle, upstream minimum height, aft deck angle, and aft deck shape. All simulations were computed with a static freestream Mach number of 0.05. a nozzle pressure ratio of 3.858, and a fluidic injection flow rate equal to 6 percent of the primary flow rate. Results indicate that the recessed cavity enhances the throat shifting method of fluidic thrust vectoring and allows for greater thrust-vector angles without compromising thrust efficiency.

Deere, Karen; Berrier, Bobby L.; Flamm, Jeffrey D.; Johnson, Stuart K.

2003-01-01

59

Static performance investigation of a skewed-throat multiaxis thrust-vectoring nozzle concept  

NASA Technical Reports Server (NTRS)

The static performance of a jet exhaust nozzle which achieves multiaxis thrust vectoring by physically skewing the geometric throat has been characterized in the static test facility of the 16-Foot Transonic Tunnel at NASA Langley Research Center. The nozzle has an asymmetric internal geometry defined by four surfaces: a convergent-divergent upper surface with its ridge perpendicular to the nozzle centerline, a convergent-divergent lower surface with its ridge skewed relative to the nozzle centerline, an outwardly deflected sidewall, and a straight sidewall. The primary goal of the concept is to provide efficient yaw thrust vectoring by forcing the sonic plane (nozzle throat) to form at a yaw angle defined by the skewed ridge of the lower surface contour. A secondary goal is to provide multiaxis thrust vectoring by combining the skewed-throat yaw-vectoring concept with upper and lower pitch flap deflections. The geometric parameters varied in this investigation included lower surface ridge skew angle, nozzle expansion ratio (divergence angle), aspect ratio, pitch flap deflection angle, and sidewall deflection angle. Nozzle pressure ratio was varied from 2 to a high of 11.5 for some configurations. The results of the investigation indicate that efficient, substantial multiaxis thrust vectoring was achieved by the skewed-throat nozzle concept. However, certain control surface deflections destabilized the internal flow field, which resulted in substantial shifts in the position and orientation of the sonic plane and had an adverse effect on thrust-vectoring and weight flow characteristics. By increasing the expansion ratio, the location of the sonic plane was stabilized. The asymmetric design resulted in interdependent pitch and yaw thrust vectoring as well as nonzero thrust-vector angles with undeflected control surfaces. By skewing the ridges of both the upper and lower surface contours, the interdependency between pitch and yaw thrust vectoring may be eliminated and the location of the sonic plane may be further stabilized.

Wing, David J.

1994-01-01

60

Switching-based fault-tolerant control for an F-16 aircraft with thrust vectoring  

Microsoft Academic Search

Thrust vectoring technique enables aircraft to perform various maneuvers not available to conventional-engined planes. This paper presents an application of switching control concepts to fault-tolerant control design for an F-16 aircraft model augmented with thrust vectoring. Two controllers are synthesized using a switching logic, and they are switched on a fault parameter. During normal flight conditions, the F-16 aircraft relies

Bei Lu; Fen Wu

2009-01-01

61

Flight-Determined Subsonic Longitudinal Stability and Control Derivatives of the F-18 High Angle of Attack Research Vehicle (HARV) with Thrust Vectoring  

NASA Technical Reports Server (NTRS)

The subsonic longitudinal stability and control derivatives of the F-18 High Angle of Attack Research Vehicle (HARV) are extracted from dynamic flight data using a maximum likelihood parameter identification technique. The technique uses the linearized aircraft equations of motion in their continuous/discrete form and accounts for state and measurement noise as well as thrust-vectoring effects. State noise is used to model the uncommanded forcing function caused by unsteady aerodynamics over the aircraft, particularly at high angles of attack. Thrust vectoring was implemented using electrohydraulically-actuated nozzle postexit vanes and a specialized research flight control system. During maneuvers, a control system feature provided independent aerodynamic control surface inputs and independent thrust-vectoring vane inputs, thereby eliminating correlations between the aircraft states and controls. Substantial variations in control excitation and dynamic response were exhibited for maneuvers conducted at different angles of attack. Opposing vane interactions caused most thrust-vectoring inputs to experience some exhaust plume interference and thus reduced effectiveness. The estimated stability and control derivatives are plotted, and a discussion relates them to predicted values and maneuver quality.

Iliff, Kenneth W.; Wang, Kon-Sheng Charles

1997-01-01

62

Computational Study of an Axisymmetric Dual Throat Fluidic Thrust Vectoring Nozzle for a Supersonic Aircraft Application  

NASA Technical Reports Server (NTRS)

A computational investigation of an axisymmetric Dual Throat Nozzle concept has been conducted. This fluidic thrust-vectoring nozzle was designed with a recessed cavity to enhance the throat shifting technique for improved thrust vectoring. The structured-grid, unsteady Reynolds- Averaged Navier-Stokes flow solver PAB3D was used to guide the nozzle design and analyze performance. Nozzle design variables included extent of circumferential injection, cavity divergence angle, cavity length, and cavity convergence angle. Internal nozzle performance (wind-off conditions) and thrust vector angles were computed for several configurations over a range of nozzle pressure ratios from 1.89 to 10, with the fluidic injection flow rate equal to zero and up to 4 percent of the primary flow rate. The effect of a variable expansion ratio on nozzle performance over a range of freestream Mach numbers up to 2 was investigated. Results indicated that a 60 circumferential injection was a good compromise between large thrust vector angles and efficient internal nozzle performance. A cavity divergence angle greater than 10 was detrimental to thrust vector angle. Shortening the cavity length improved internal nozzle performance with a small penalty to thrust vector angle. Contrary to expectations, a variable expansion ratio did not improve thrust efficiency at the flight conditions investigated.

Deere, Karen A.; Flamm, Jeffrey D.; Berrier, Bobby L.; Johnson, Stuart K.

2007-01-01

63

A Computational Study of a New Dual Throat Fluidic Thrust Vectoring Nozzle Concept  

NASA Technical Reports Server (NTRS)

A computational investigation of a two-dimensional nozzle was completed to assess the use of fluidic injection to manipulate flow separation and cause thrust vectoring of the primary jet thrust. The nozzle was designed with a recessed cavity to enhance the throat shifting method of fluidic thrust vectoring. Several design cycles with the structured-grid, computational fluid dynamics code PAB3D and with experiments in the NASA Langley Research Center Jet Exit Test Facility have been completed to guide the nozzle design and analyze performance. This paper presents computational results on potential design improvements for best experimental configuration tested to date. Nozzle design variables included cavity divergence angle, cavity convergence angle and upstream throat height. Pulsed fluidic injection was also investigated for its ability to decrease mass flow requirements. Internal nozzle performance (wind-off conditions) and thrust vector angles were computed for several configurations over a range of nozzle pressure ratios from 2 to 7, with the fluidic injection flow rate equal to 3 percent of the primary flow rate. Computational results indicate that increasing cavity divergence angle beyond 10 is detrimental to thrust vectoring efficiency, while increasing cavity convergence angle from 20 to 30 improves thrust vectoring efficiency at nozzle pressure ratios greater than 2, albeit at the expense of discharge coefficient. Pulsed injection was no more efficient than steady injection for the Dual Throat Nozzle concept.

Deere, Karen A.; Berrier, Bobby L.; Flamm, Jeffrey D.; Johnson, Stuart K.

2005-01-01

64

Static performance of a cruciform nozzle with multiaxis thrust-vectoring and reverse-thrust capabilities  

NASA Technical Reports Server (NTRS)

A multiaxis thrust vectoring nozzle designed to have equal flow turning capability in pitch and yaw was conceived and experimentally tested for internal, static performance. The cruciform-shaped convergent-divergent nozzle turned the flow for thrust vectoring by deflecting the divergent surfaces of the nozzle, called flaps. Methods for eliminating physical interference between pitch and yaw flaps at the larger multiaxis deflection angles was studied. These methods included restricting the pitch flaps from the path of the yaw flaps and shifting the flow path at the throat off the nozzle centerline to permit larger pitch-flap deflections without interfering with the operation of the yaw flaps. Two flap widths were tested at both dry and afterburning settings. Vertical and reverse thrust configurations at dry power were also tested. Comparison with two dimensional convergent-divergent nozzles showed lower but still competitive thrust performance and thrust vectoring capability.

Wing, David J.; Asbury, Scott C.

1992-01-01

65

Static Investigation of a Multiaxis Thrust-Vectoring Nozzle With Variable Internal Contouring Ability  

NASA Technical Reports Server (NTRS)

The thrust efficiency and vectoring performance of a convergent-divergent nozzle were investigated at static conditions in the model preparation area of the Langley 16-Foot Transonic Tunnel. The diamond-shaped nozzle was capable of varying the internal contour of each quadrant individually by using cam mechanisms and retractable drawers to produce pitch and yaw thrust vectoring. Pitch thrust vectoring was achieved by either retracting the lower drawers to incline the throat or varying the internal flow-path contours to incline the throat. Yaw thrust vectoring was achieved by reducing flow area left of the nozzle centerline and increasing flow area right of the nozzle centerline; a skewed throat deflected the flow in the lateral direction.

Wing, David J.; Mills, Charles T. L.; Mason, Mary L.

1997-01-01

66

An Experimental/Modeling Study of Jet Attachment during Counterflow Thrust Vectoring  

NASA Technical Reports Server (NTRS)

Recent studies have shown the applicability of vectoring rectangular jets using asymmetrically applied counterflow in the presence of a short collar. This novel concept has applications in the aerospace industry where counterflow can be used to vector the thrust of a jet's exhaust, shortening take-off and landing distances and enhancing in-flight maneuverability of the aircraft. Counterflow thrust vectoring, 'CFTV' is desirable due to its fast time response, low thrust loss, and absence of moving parts. However, implementation of a CFTV system is only possible if bistable jet attachment can be prevented. This can be achieved by properly designing the geometry of the collar. An analytical model is developed herein to predict the conditions under which a two-dimensional jet will attach to an offset curved wall. Results from this model are then compared with experiment; for various jet exit Mach numbers, collar offset distances, and radii of curvature. Their excellent correlation permits use of the model as a tool for designing a CFTV system.

Strykowski, Paul J.

1997-01-01

67

Simple Dynamic Engine Model for Use in a Real-Time Aircraft Simulation with Thrust Vectoring.  

National Technical Information Service (NTIS)

A simple dynamic engine model was developed at the NASA Ames Research Center, Dryden Flight Research Facility, for use in thrust vectoring control law development and real-time aircraft simulation. The simple dynamic engine model of the F404-GE-400 engine...

S. A. Johnson

1990-01-01

68

Design Specification for a Thrust-Vectoring, Actuated-Nose-Strake Flight Control Law for the High-Alpha Research Vehicle  

NASA Technical Reports Server (NTRS)

Specifications for a flight control law are delineated in sufficient detail to support coding the control law in flight software. This control law was designed for implementation and flight test on the High-Alpha Research Vehicle (HARV), which is an F/A-18 aircraft modified to include an experimental multi-axis thrust-vectoring system and actuated nose strakes for enhanced rolling (ANSER). The control law, known as the HARV ANSER Control Law, was designed to utilize a blend of conventional aerodynamic control effectors, thrust vectoring, and actuated nose strakes to provide increased agility and good handling qualities throughout the HARV flight envelope, including angles of attack up to 70 degrees.

Bacon, Barton J.; Carzoo, Susan W.; Davidson, John B.; Hoffler, Keith D.; Lallman, Frederick J.; Messina, Michael D.; Murphy, Patrick C.; Ostroff, Aaron J.; Proffitt, Melissa S.; Yeager, Jessie C.; Foster, John V.; Bundick, W. Thomas; Connelly, Patrick J.; Kelly, John W.; Pahle, Joseph W.; Thomas, Michael; Wichman, Keith D.; Wilson, R. Joseph

1996-01-01

69

Design Enhancements of the Two-Dimensional, Dual Throat Fluidic Thrust Vectoring Nozzle Concept  

NASA Technical Reports Server (NTRS)

A Dual Throat Nozzle fluidic thrust vectoring technique that achieves higher thrust-vectoring efficiencies than other fluidic techniques, without sacrificing thrust efficiency has been developed at NASA Langley Research Center. The nozzle concept was designed with the aid of the structured-grid, Reynolds-averaged Navier-Stokes computational fluidic dynamics code PAB3D. This new concept combines the thrust efficiency of sonic-plane skewing with increased thrust-vectoring efficiencies obtained by maximizing pressure differentials in a separated cavity located downstream of the nozzle throat. By injecting secondary flow asymmetrically at the upstream minimum area, a new aerodynamic minimum area is formed downstream of the geometric minimum and the sonic line is skewed, thus vectoring the exhaust flow. The nozzle was tested in the NASA Langley Research Center Jet Exit Test Facility. Internal nozzle performance characteristics were defined for nozzle pressure ratios up to 10, with a range of secondary injection flow rates up to 10 percent of the primary flow rate. Most of the data included in this paper shows the effect of secondary injection rate at a nozzle pressure ratio of 4. The effects of modifying cavity divergence angle, convergence angle and cavity shape on internal nozzle performance were investigated, as were effects of injection geometry, hole or slot. In agreement with computationally predicted data, experimental data verified that decreasing cavity divergence angle had a negative impact and increasing cavity convergence angle had a positive impact on thrust vector angle and thrust efficiency. A curved cavity apex provided improved thrust ratios at some injection rates. However, overall nozzle performance suffered with no secondary injection. Injection holes were more efficient than the injection slot over the range of injection rates, but the slot generated larger thrust vector angles for injection rates less than 4 percent of the primary flow rate.

Flamm, Jeffrey D.; Deere, Karen A.; Mason, Mary L.; Berrier, Bobby L.; Johnson, Stuart K.

2006-01-01

70

A Method for Integrating Thrust-Vectoring and Actuated Forebody Strakes with Conventional Aerodynamic Controls on a High-Performance Fighter Airplane  

NASA Technical Reports Server (NTRS)

A method, called pseudo controls, of integrating several airplane controls to achieve cooperative operation is presented. The method eliminates conflicting control motions, minimizes the number of feedback control gains, and reduces the complication of feedback gain schedules. The method is applied to the lateral/directional controls of a modified high-performance airplane. The airplane has a conventional set of aerodynamic controls, an experimental set of thrust-vectoring controls, and an experimental set of actuated forebody strakes. The experimental controls give the airplane additional control power for enhanced stability and maneuvering capabilities while flying over an expanded envelope, especially at high angles of attack. The flight controls are scheduled to generate independent body-axis control moments. These control moments are coordinated to produce stability-axis angular accelerations. Inertial coupling moments are compensated. Thrust-vectoring controls are engaged according to their effectiveness relative to that of the aerodynamic controls. Vane-relief logic removes steady and slowly varying commands from the thrust-vectoring controls to alleviate heating of the thrust turning devices. The actuated forebody strakes are engaged at high angles of attack. This report presents the forward-loop elements of a flight control system that positions the flight controls according to the desired stability-axis accelerations. This report does not include the generation of the required angular acceleration commands by means of pilot controls or the feedback of sensed airplane motions.

Lallman, Frederick J.; Davidson, John B.; Murphy, Patrick C.

1998-01-01

71

Fluidic scale model multi-plane thrust vector control test results  

NASA Technical Reports Server (NTRS)

An experimental investigation has been conducted at the NASA Langley 16-Foot Transonic Tunnel Static Test Facility to determine the concept feasibility of using fluidics to achieve multiplane thrust vector control in a 2D convergent-divergent (2D-CD) fixed aperture nozzle. Pitch thrust vector control is achieved by injection of flow through a slot in the divergent flap into the primary nozzle flow stream. Yaw vector control results from secondary air delivered tangentially to vertical Coanda flaps. These flaps are offset laterally and aligned parallel to the primary nozzle side walls. All tests were conducted at static (no external flow) conditions. Flow visualization was conducted using a paint flow technique and Focus Schlieren. Significant levels of pitch deflection angles (19 deg) were achieved at low pressure ratios and practical levels (14 deg) resulted at typical intermediate power settings. The ability of the Coanda surface blowing concept to produce yaw deflection was limited to NPR not greater than 4.

Chiarelli, Charles; Johnsen, Raymond K.; Shieh, Chih F.; Wing, David J.

1993-01-01

72

Development and test of electromechanical actuators for thrust vector control  

NASA Astrophysics Data System (ADS)

A road map of milestones toward the goal of a full scale Redesigned Solid Rocket Motor/Flight Support Motor (RSRM/FSM) hot fire test is discussed. These milestones include: component feasibility, full power system demonstration, SSME hot fire tests, and RSRM hot fire tests. The participation of the Marshall Space Flight Center is emphasized.

Weir, Rae A.; Cowan, John R.

1993-06-01

73

Development and test of electromechanical actuators for thrust vector control  

NASA Technical Reports Server (NTRS)

A road map of milestones toward the goal of a full scale Redesigned Solid Rocket Motor/Flight Support Motor (RSRM/FSM) hot fire test is discussed. These milestones include: component feasibility, full power system demonstration, SSME hot fire tests, and RSRM hot fire tests. The participation of the Marshall Space Flight Center is emphasized.

Weir, Rae A.; Cowan, John R.

1993-01-01

74

Effect of thrust vectoring and wing maneuver devices on transonic aeropropulsive characteristics of a supersonic fighter  

NASA Technical Reports Server (NTRS)

The aeropropulsive characteristics of an advanced fighter designed for supersonic cruise were determined in the Langley 16-Foot Transonic Tunnel. The objectives of this investigation were to evaluate the interactive effects of thrust vectoring and wing maneuver devices on lift and drag and to determine trim characteristics. The wing maneuver devices consisted of a drooped leading edge and a trailing-edge flap. Thrust vectoring was accomplished with two dimensional (nonaxisymmetric) convergent-divergent nozzles located below the wing in two single-engine podded nacelles. A canard was utilized for trim. Thrust vector angles of 0 deg, 15 deg, and 30 deg were tested in combination with a drooped wing leading edge and with wing trailing-edge flap deflections up to 30 deg. This investigation was conducted at Mach numbers from 0.60 to 1.20, at angles of attack from 0 deg to 20 deg, and at nozzle pressure ratios from about 1 (jet off) to 10. Reynolds number based on mean aerodynamic chord varied from 9.24 x 10 to the 6th to 10.56 x 10 to the 6th.

Capone, F. J.; Reubush, D. E.

1983-01-01

75

Static performance of nonaxisymmetric nozzles with yaw thrust-vectoring vanes  

NASA Technical Reports Server (NTRS)

A static test was conducted in the static test facility of the Langley 16 ft Transonic Tunnel to evaluate the effects of post exit vane vectoring on nonaxisymmetric nozzles. Three baseline nozzles were tested: an unvectored two dimensional convergent nozzle, an unvectored two dimensional convergent-divergent nozzle, and a pitch vectored two dimensional convergent-divergent nozzle. Each nozzle geometry was tested with 3 exit aspect ratios (exit width divided by exit height) of 1.5, 2.5 and 4.0. Two post exit yaw vanes were externally mounted on the nozzle sidewalls at the nozzle exit to generate yaw thrust vectoring. Vane deflection angle (0, -20 and -30 deg), vane planform and vane curvature were varied during the test. Results indicate that the post exit vane concept produced resultant yaw vector angles which were always smaller than the geometric yaw vector angle. Losses in resultant thrust ratio increased with the magnitude of resultant yaw vector angle. The widest post exit vane produced the largest degree of flow turning, but vane curvature had little effect on thrust vectoring. Pitch vectoring was independent of yaw vectoring, indicating that multiaxis thrust vectoring is feasible for the nozzle concepts tested.

Mason, Mary L.; Berrier, Bobby L.

1988-01-01

76

Vista/F-16 Multi-Axis Thrust Vectoring (MATV) control law design and evaluation  

NASA Technical Reports Server (NTRS)

For the Multi-Axis Thrust Vectoring (MATV) program, a new control law was developed using multi-axis thrust vectoring to augment the aircraft's aerodynamic control power to provide maneuverability above the normal F-16 angle of attack limit. The control law architecture was developed using Lockheed Fort Worth's offline and piloted simulation capabilities. The final flight control laws were used in flight test to demonstrate tactical benefits gained by using thrust vectoring in air-to-air combat. Differences between the simulator aerodynamics data base and the actual aircraft aerodynamics led to significantly different lateral-directional flying qualities during the flight test program than those identified during piloted simulation. A 'dial-a-gain' flight test control law update was performed in the middle of the flight test program. This approach allowed for inflight optimization of the aircraft's flying qualities. While this approach is not preferred over updating the simulator aerodynamic data base and then updating the control laws, the final selected gain set did provide adequate lateral-directional flying qualities over the MATV flight envelope. The resulting handling qualities and the departure resistance of the aircraft allowed the 422nd_squadron pilots to focus entirely on evaluating the aircraft's tactical utility.

Zwerneman, W. D.; Eller, B. G.

1994-01-01

77

Translation Optics for 30 cm Ion Engine Thrust Vector Control  

NASA Technical Reports Server (NTRS)

Data were obtained from a 30 cm xenon ion thruster in which the accelerator grid was translated in the radial plane. The thruster was operated at three different throttle power levels, and the accelerator grid was incrementally translated in the X, Y, and azimuthal directions. Plume data was obtained downstream from the thruster using a Faraday probe mounted to a positioning system. Successive probe sweeps revealed variations in the plume direction. Thruster perveance, electron backstreaming limit, accelerator current, and plume deflection angle were taken at each power level, and for each accelerator grid position. Results showed that the thruster plume could easily be deflected up to six degrees without a prohibitive increase in accelerator impingement current. Results were similar in both X and Y direction.

Haag, Thomas

2002-01-01

78

Electromechanical three-axis development for remote handling in the Hot Experimental Facility  

SciTech Connect

A three-axis closed-loop position control system has been designed and installed on an overhead bridge, carriage, tube hoist for automotive positioning of manipulation at a remotely maintained work site. The system provides accurate (within 3 min) and repeatable three-axis positioning of the manipulator. The position control system has been interfaced to a supervisory minicomputer system that provides teach-playback capability of manipulator positioning and color graphic display of the three-axis system position.

Garin, J.; Bolfing, B.J.; Satterlee, P.E.; Babcock, S.M.

1981-01-01

79

Dryden/Edwards 1994 Thrust-Vectoring Aircraft Fleet - F-18 HARV, X-31, F-16 MATV  

NASA Technical Reports Server (NTRS)

The three thrust-vectoring aircraft at Edwards, California, each capable of flying at extreme angles of attack, cruise over the California desert in formation during flight in March 1994. They are, from left, NASA's F-18 High Alpha Research Vehicle (HARV), flown by the NASA Dryden Flight Research Center; the X-31, flown by the X-31 International Test Organization (ITO) at Dryden; and the Air Force F-16 Multi-Axis Thrust Vectoring (MATV) aircraft. All three aircraft were flown in different programs and were developed independently. The NASA F-18 HARV was a testbed to produce aerodynamic data at high angles of attack to validate computer codes and wind tunnel research. The X-31 was used to study thrust vectoring to enhance close-in air combat maneuvering, while the F-16 MATV was a demonstration of how thrust vectoring could be applied to operational aircraft.

1994-01-01

80

Static Investigation of a Two-Dimensional Convergent-Divergent Exhaust Nozzle with Multiaxis Thrust-Vectoring Capability.  

National Technical Information Service (NTIS)

An investigation was conducted in the Static Test Facility of the NASA Langley 16-Foot Transonic Tunnel to determine the internal performance of two-dimensional convergent-divergent nozzles designed to have simultaneous pitch and yaw thrust vectoring capa...

J. G. Taylor

1990-01-01

81

Static investigation of two fluidic thrust-vectoring concepts on a two-dimensional convergent-divergent nozzle  

NASA Technical Reports Server (NTRS)

A static investigation was conducted in the static test facility of the Langley 16-Foot Transonic Tunnel of two thrust-vectoring concepts which utilize fluidic mechanisms for deflecting the jet of a two-dimensional convergent-divergent nozzle. One concept involved using the Coanda effect to turn a sheet of injected secondary air along a curved sidewall flap and, through entrainment, draw the primary jet in the same direction to produce yaw thrust vectoring. The other concept involved deflecting the primary jet to produce pitch thrust vectoring by injecting secondary air through a transverse slot in the divergent flap, creating an oblique shock in the divergent channel. Utilizing the Coanda effect to produce yaw thrust vectoring was largely unsuccessful. Small vector angles were produced at low primary nozzle pressure ratios, probably because the momentum of the primary jet was low. Significant pitch thrust vector angles were produced by injecting secondary flow through a slot in the divergent flap. Thrust vector angle decreased with increasing nozzle pressure ratio but moderate levels were maintained at the highest nozzle pressure ratio tested. Thrust performance generally increased at low nozzle pressure ratios and decreased near the design pressure ratio with the addition of secondary flow.

Wing, David J.

1994-01-01

82

GRADIO three-axis electrostatic accelerometers  

NASA Technical Reports Server (NTRS)

Dedicated accelerometers for satellite gravity gradiometry (GRADIO project) are described. The design profits from experience acquired with the CACTUS accelerometer payload of the satellite CASTOR-D5B and studies of highly accurate accelerometers for inertial navigation. The principle of operation, based on a three-axis electrostatic suspension of a cubic proof mass, is well suited for the measurements of accelerations less than 0.0001 m/sec/sec. A resolution better than 10 to the minus 11th power m/sec/sec/sq root Hz is expected.

Bernard, A.

1987-01-01

83

Static internal performance of a two-dimensional convergent-divergent nozzle with thrust vectoring  

NASA Technical Reports Server (NTRS)

A parametric investigation of the static internal performance of multifunction two-dimensional convergent-divergent nozzles has been made in the static test facility of the Langley 16-Foot Transonic Tunnel. All nozzles had a constant throat area and aspect ratio. The effects of upper and lower flap angles, divergent flap length, throat approach angle, sidewall containment, and throat geometry were determined. All nozzles were tested at a thrust vector angle that varied from 5.60 tp 23.00 deg. The nozzle pressure ratio was varied up to 10 for all configurations.

Bare, E. Ann; Reubush, David E.

1987-01-01

84

A low-g three-axis accelerometer IC  

Microsoft Academic Search

This paper presents a three-axis, low-g accelerometer IC with analog and digital outputs for applications in consumer and mobile markets. This accelerometer is consisted of a sensing element chip and a digital IC, and is packed in a 3 mm ?? 5 mm ?? 0.9 mm LGA package. The sensing element integrates three spring-proof mass systems with self test electrodes

Y. W. Hsu; S. T. Lin; C. S. Lin; L. P. Liao; J. Y. Chen; S. J. Lin; C. L. Hsiao

2009-01-01

85

Static internal performance of a two-dimensional convergent nozzle with thrust-vectoring capability up to 60 deg  

NASA Technical Reports Server (NTRS)

An investigation was conducted at wind-off conditions in the static-test facility of the Langley 16-Foot Transonic Tunnel to determine the internal performance characteristics of a two-dimensional convergent nozzle with a thrust-vectoring capability up to 60 deg. Vectoring was accomplished by a downward rotation of a hinged upper convergent flap and a corresponding rotation of a center-pivoted lower convergent flap. The effects of geometric thrust-vector angle and upper-rotating-flap geometry on internal nozzle performance characteristics were investigated. Nozzle pressure ratio was varied from 1.0 (jet off) to approximately 5.0.

Leavitt, L. D.

1985-01-01

86

Static internal performance of single-expansion-ramp nozzles with thrust-vectoring capability up to 60 deg  

NASA Technical Reports Server (NTRS)

An investigation has been conducted at static conditions (wind off) in the static-test facility of the Langley 16-Foot Transonic Tunnel. The effects of geometric thrust-vector angle, sidewall containment, ramp curvature, lower-flap lip angle, and ramp length on the internal performance of nonaxisymmetric single-expansion-ramp nozzles were investigated. Geometric thrust-vector angle was varied from -20 deg. to 60 deg., and nozzle pressure ratio was varied from 1.0 (jet off) to approximately 10.0.

Berrier, B. L.; Leavitt, L. D.

1984-01-01

87

PAB3D Simulations of a Nozzle with Fluidic Injection for Yaw Thrust-Vector Control  

NASA Technical Reports Server (NTRS)

An experimental and computational study was conducted on an exhaust nozzle with fluidic injection for yaw thrust-vector control. The nozzle concept was tested experimentally in the NASA Langley Jet Exit Test Facility (JETF) at nozzle pressure ratios up to 4 and secondary fluidic injection flow rates up to 15 percent of the primary flow rate. Although many injection-port geometries and two nozzle planforms (symmetric and asymmetric) were tested experimentally, this paper focuses on the computational results of the more successful asymmetric planform with a slot injection port. This nozzle concept was simulated with the Navier-Stokes flow solver, PAB3D, invoking the Shih, Zhu, and Lumley algebraic Reynolds stress turbulence model (ASM) at nozzle pressure ratios (NPRs) of 2,3, and 4 with secondary to primary injection flow rates (w(sub s)/w(sub p)) of 0, 2, 7 and 10 percent.

Deere, Karen A.

1998-01-01

88

Selected Performance Measurements of the F-15 Active Axisymmetric Thrust-Vectoring Nozzle  

NASA Technical Reports Server (NTRS)

Flight tests recently completed at the NASA Dryden Flight Research Center evaluated performance of a hydromechanically vectored axisymmetric nozzle onboard the F-15 ACTIVE. A flight-test technique whereby strain gages installed onto engine mounts provided for the direct measurement of thrust and vector forces has proven to be extremely valuable. Flow turning and thrust efficiency, as well as nozzle static pressure distributions were measured and analyzed. This report presents results from testing at an altitude of 30,000 ft and a speed of Mach 0.9. Flow turning and thrust efficiency were found to be significantly different than predicted, and moreover, varied substantially with power setting and pitch vector angle. Results of an in-flight comparison of the direct thrust measurement technique and an engine simulation fell within the expected uncertainty bands. Overall nozzle performance at this flight condition demonstrated the F100-PW-229 thrust-vectoring nozzles to be highly capable and efficient.

Orme, John S.; Sims, Robert L.

1998-01-01

89

Selected Performance Measurements of the F-15 ACTIVE Axisymmetric Thrust-Vectoring Nozzle  

NASA Technical Reports Server (NTRS)

Flight tests recently completed at the NASA Dryden Flight Research Center evaluated performance of a hydromechanically vectored axisymmetric nozzle onboard the F-15 ACTIVE. A flight-test technique whereby strain gages installed onto engine mounts provided for the direct measurement of thrust and vector forces has proven to be extremely valuable. Flow turning and thrust efficiency, as well as nozzle static pressure distributions were measured and analyzed. This report presents results from testing at an altitude of 30,000 ft and a speed of Mach 0.9. Flow turning and thrust efficiency were found to be significantly different than predicted, and moreover, varied substantially with power setting and pitch vector angle. Results of an in-flight comparison of the direct thrust measurement technique and an engine simulation fell within the expected uncertainty bands. Overall nozzle performance at this flight condition demonstrated the F100-PW-229 thrust-vectoring nozzles to be highly capable and efficient.

Orme, John S.; Sims, Robert L.

1999-01-01

90

Design and development of the quad redundant servoactuator for the space shuttle solid rocket booster thrust vector control  

NASA Technical Reports Server (NTRS)

The design and theory of operation of the servoactuator used for thrust vector control of the space shuttle solid rocket booster is described accompanied by highlights from the development and qualification test programs. Specific details are presented concerning major anomalies that occurred during the test programs and the corrective courses of action pursued.

Lominick, J. M.

1980-01-01

91

Three-Axis Acceleration Sensor Using Polyurea Films  

NASA Astrophysics Data System (ADS)

Focusing on the possibilities of polyurea as an acceleration sensor with characteristics such as flexibility, durability against large deformation, good linearity, and capability of deposition in dryprocess and insolubility in organic solvent, we first fabricated a cantilever acceleration sensor and a three-axis acceleration sensor. The output voltage in the large-strain region is measured using a polyurea cantilever sensor attached to a beryllium copper substrate. The results show that output voltages have good linearity for large strains up to 1%. This value is much larger than the breakdown limit of lead zirconate titanate. Second, we fabricated a polyurea three-axis acceleration sensor. The sensor consists of an insulation layer of polyurea on the cross beam substrate of phosphor bronze, a bottom aluminum electrode, a polyurea active layer, and four top aluminum electrodes. The experimental results for harmonic acceleration show that the sensor works as expected. The cross-axis sensitivity of the polyurea sensor was less than 8%, which is close to that of conventional microelectromechanical system sensors.

Tabaru, Masaya; Nakazawa, Marie; Nakamura, Kentaro; Ueha, Sadayuki

2008-05-01

92

Independent Orbiter Assessment (IOA): Assessment of the ascent thrust vector control actuator subsystem FMEA/CIL  

NASA Technical Reports Server (NTRS)

The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Ascent Thrust Vector Control Actuator (ATVD) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the NASA FMEA/CIL baseline with proposed Post 51-L updates included. A resolution of each discrepancy from the comparison is provided through additional analysis as required. This report documents the results of that comparison for the Orbiter ATVC hardware. The IOA product for the ATVC actuator analysis consisted of 25 failure mode worksheets that resulted in 16 potential critical items being identified. Comparison was made to the NASA baseline which consisted of 21 FMEAs and 13 CIL items. This comparison produced agreement on all CIL items. Based on the Pre 51-L baseline, all non-CIL FMEAs were also in agreement.

Wilson, R. E.

1988-01-01

93

Parametric study of a simultaneous pitch/yaw thrust vectoring single expansion ramp nozzle  

NASA Technical Reports Server (NTRS)

In the course of the last eleven years, the concept of thrust vectoring has emerged as a promising method of enhancing aircraft control capabilities in post-stall flight incursions during combat. In order to study the application of simultaneous pitch and yaw vectoring to single expansion ramp nozzles, a static test was conducted in the NASA-Langley 16 foot transonic tunnel. This investigation was based on internal performance data provided by force, mass flow and internal pressure measurements at nozzle pressure ratios up to 8. The internal performance characteristics of the nozzle were studied for several combinations of six different parameters: yaw vectoring angle, pitch vectoring angle, upper ramp cutout, sidewall hinge location, hinge inclination angle and sidewall containment. Results indicated a 2-to- 3-percent decrease in resultant thrust ratio with vectoring in either pitch or yaw. Losses were mostly associated with the turning of supersonic flow. Resultant thrust ratios were also decreased by sideways expansion of the jet. The effects of cutback corners in the upper ramp and lower flap on performance were small. Maximum resultant yaw vector angles, about half of the flap angle, were achieved for the configuration with the most forward hinge location.

Schirmer, Alberto W.; Capone, Francis J.

1989-01-01

94

Computational Issues Associated with Temporally Deforming Geometries Such as Thrust Vectoring Nozzles  

NASA Technical Reports Server (NTRS)

During the past decade, computational simulation of fluid flow around complex configurations has progressed significantly and many notable successes have been reported, however, unsteady time-dependent solutions are not easily obtainable. The present effort involves unsteady time dependent simulation of temporally deforming geometries. Grid generation for a complex configuration can be a time consuming process and temporally varying geometries necessitate the regeneration of such grids for every time step. Traditional grid generation techniques have been tried and demonstrated to be inadequate to such simulations. Non-Uniform Rational B-splines (NURBS) based techniques provide a compact and accurate representation of the geometry. This definition can be coupled with a distribution mesh for a user defined spacing. The present method greatly reduces cpu requirements for time dependent remeshing, facilitating the simulation of more complex unsteady problems. A thrust vectoring nozzle has been chosen to demonstrate the capability as it is of current interest in the aerospace industry for better maneuverability of fighter aircraft in close combat and in post stall regimes. This current effort is the first step towards multidisciplinary design optimization which involves coupling the aerodynamic heat transfer and structural analysis techniques. Applications include simulation of temporally deforming bodies and aeroelastic problems.

Boyalakuntla, Kishore; Soni, Bharat K.; Thornburg, Hugh J.; Yu, Robert

1996-01-01

95

Fiber-optic three axis magnetometer prototype development  

NASA Astrophysics Data System (ADS)

The goal of this research program was to develop a high sensitivity, fiber optic, interferometric, three-axis magnetometer for interplanetary spacecraft applications. Dynamics Technology, Inc. (DTI) has successfully integrated a low noise, high bandwidth interferometer with high sensitivity metallic glass transducers. Also, DTI has developed sophisticated signal processing electronics and complete data acquisition, filtering, and display software. The sensor was packaged in a compact, low power and weight unit which facilitates deployment. The magnetic field sensor had subgamma sensitivity and a dynamic range of 10(exp 5) gamma in a 10 Hz bandwidth. Furthermore, the vector instrument exhibited the lowest noise level when only one axis was in operation. A system noise level of 1 gamma rms was observed in a 1 Hz bandwidth. However, with the other two channels operating, the noise level increased by about one order of magnitude. Higher system noise was attributed to cross-channel interference among the dither fields.

Wang, Thomas D.; McComb, David G.; Kingston, Bradley R.; Dube, C. Michael; Poehls, Kenneth A.; Wanser, Keith

1989-10-01

96

Fiber-optic three axis magnetometer prototype development  

NASA Technical Reports Server (NTRS)

The goal of this research program was to develop a high sensitivity, fiber optic, interferometric, three-axis magnetometer for interplanetary spacecraft applications. Dynamics Technology, Inc. (DTI) has successfully integrated a low noise, high bandwidth interferometer with high sensitivity metallic glass transducers. Also, DTI has developed sophisticated signal processing electronics and complete data acquisition, filtering, and display software. The sensor was packaged in a compact, low power and weight unit which facilitates deployment. The magnetic field sensor had subgamma sensitivity and a dynamic range of 10(exp 5) gamma in a 10 Hz bandwidth. Furthermore, the vector instrument exhibited the lowest noise level when only one axis was in operation. A system noise level of 1 gamma rms was observed in a 1 Hz bandwidth. However, with the other two channels operating, the noise level increased by about one order of magnitude. Higher system noise was attributed to cross-channel interference among the dither fields.

Wang, Thomas D.; Mccomb, David G.; Kingston, Bradley R.; Dube, C. Michael; Poehls, Kenneth A.; Wanser, Keith

1989-01-01

97

Object Exploration Algorithm Based on Three-Axis Tactile Data  

Microsoft Academic Search

In order to progress robust object recognition of robots, we present an algorithm for object exploration based on three-axis tactile data that is necessary and sufficient for evaluation of contact phenomena. Object surface contour is gathered by controlling finger position to keep a constant the normal force measured by optical three-axis tactile sensors as two fingertips slide along the object

Sukarnur Che Abdullah; Jiro Wada; Masahiro Ohka; Hanafiah Yussof

2010-01-01

98

Improved Controller for a Three-Axis Piezoelectric Stage  

NASA Technical Reports Server (NTRS)

An improved closed-loop controller has been built for a three-axis piezoelectric positioning stage. The stage can be any of a number of commercially available or custom-made units that are used for precise three-axis positioning of optics in astronomical instruments and could be used for precise positioning in diverse fields of endeavor that include adaptive optics, fabrication of semiconductors, and nanotechnology.

Rao, Shanti; Palmer, Dean

2009-01-01

99

Experimental and Computational Investigation of Multiple Injection Ports in a Convergent-Divergent Nozzle for Fluidic Thrust Vectoring  

NASA Technical Reports Server (NTRS)

A computational and experimental study was conducted to investigate the effects of multiple injection ports in a two-dimensional, convergent-divergent nozzle, for fluidic thrust vectoring. The concept of multiple injection ports was conceived to enhance the thrust vectoring capability of a convergent-divergent nozzle over that of a single injection port without increasing the secondary mass flow rate requirements. The experimental study was conducted at static conditions in the Jet Exit Test Facility of the 16-Foot Transonic Tunnel Complex at NASA Langley Research Center. Internal nozzle performance was obtained at nozzle pressure ratios up to 10 with secondary nozzle pressure ratios up to 1 for five configurations. The computational study was conducted using the Reynolds Averaged Navier-Stokes computational fluid dynamics code PAB3D with two-equation turbulence closure and linear Reynolds stress modeling. Internal nozzle performance was predicted for nozzle pressure ratios up to 10 with a secondary nozzle pressure ratio of 0.7 for two configurations. Results from the experimental study indicate a benefit to multiple injection ports in a convergent-divergent nozzle. In general, increasing the number of injection ports from one to two increased the pitch thrust vectoring capability without any thrust performance penalties at nozzle pressure ratios less than 4 with high secondary pressure ratios. Results from the computational study are in excellent agreement with experimental results and validates PAB3D as a tool for predicting internal nozzle performance of a two dimensional, convergent-divergent nozzle with multiple injection ports.

Waithe, Kenrick A.; Deere, Karen A.

2003-01-01

100

Electromechanical Three-Axis Development for Remote Handling in the Hot Experimental Facility.  

National Technical Information Service (NTIS)

A three-axis closed-loop position control system has been designed and installed on an overhead bridge, carriage, tube hoist for automotive positioning of manipulation at a remotely maintained work site. The system provides accurate (within 3 min) and rep...

J. Garin B. J. Bolfing P. E. Satterlee S. M. Babcock

1981-01-01

101

An experimental investigation of thrust vectoring two-dimensional convergent-divergent nozzles installed in a twin-engine fighter model at high angles of attack  

NASA Technical Reports Server (NTRS)

An investigation was conducted in the Langley 16-Foot Transonic Tunnel to determine thrust vectoring capability of subscale 2-D convergent-divergent exhaust nozzles installed on a twin engine general research fighter model. Pitch thrust vectoring was accomplished by downward rotation of nozzle upper and lower flaps. The effects of nozzle sidewall cutback were studied for both unvectored and pitch vectored nozzles. A single cutback sidewall was employed for yaw thrust vectoring. This investigation was conducted at Mach numbers ranging from 0 to 1.20 and at angles of attack from -2 to 35 deg. High pressure air was used to simulate jet exhaust and provide values of nozzle pressure ratio up to 9.

Capone, Francis J.; Mason, Mary L.; Leavitt, Laurence D.

1990-01-01

102

Implicit time-marching solution of the Navier-Stokes equations for thrust reversing and thrust vectoring nozzle flows  

NASA Technical Reports Server (NTRS)

An implicit finite volume method is investigated for the solution of the compressible Navier-Stokes equations for flows within thrust reversing and thrust vectoring nozzles. Thrust reversing nozzles typically have sharp corners, and the rapid expansion and large turning angles near these corners are shown to cause unacceptable time step restrictions when conventional approximate factorization methods are used. In this investigation these limitations are overcome by using second-order upwind differencing and line Gauss-Siedel relaxation. This method is implemented with a zonal mesh so that flows through complex nozzle geometries may be efficiently calculated. Results are presented for five nozzle configurations including two with time varying geometries. Three cases are compared with available experimental data and the results are generally acceptable.

Imlay, S. T.

1986-01-01

103

A charging model for three-axis stabilized spacecraft  

NASA Technical Reports Server (NTRS)

A charging model was developed for geosynchronous, three-axis stabilized spacecraft when under the influence of a geomagnetic substorm. The differential charging potentials between the thermally coated or blanketed outer surfaces and metallic structure of a spacecraft were determined when the spacecraft was immersed in a dense plasma cloud of energetic particles. The spacecraft-to-environment interaction was determined by representing the charged particle environment by equivalent current source forcing functions and by representing the spacecraft by its electrically equivalent circuit with respect to the plasma charging phenomenon. The charging model included a sun/earth/spacecraft orbit model that simulated the sum illumination conditions of the spacecraft outer surfaces throughout the orbital flight on a diurnal as well as a seasonal basis. Transient and steady-state numerical results for a three-axis stabilized spacecraft are presented.

Massaro, M. J.; Green, T.; Ling, D.

1977-01-01

104

Three-axis attitude determination via Kalman filtering of magnetometer data  

NASA Technical Reports Server (NTRS)

A three-axis Magnetometer/Kalman Filter attitude determination system for a spacecraft in low-altitude Earth orbit is developed, analyzed, and simulation tested. The motivation for developing this system is to achieve light weight and low cost for an attitude determination system. The extended Kalman filter estimates the attitude, attitude rates, and constant disturbance torques. Accuracy near that of the International Geomagnetic Reference Field model is achieved. Covariance computation and simulation testing demonstrate the filter's accuracy. One test case, a gravity-gradient stabilized spacecraft with a pitch momentum wheel and a magnetically-anchored damper, is a real satellite on which this attitude determination system will be used. The application to a nadir pointing satellite and the estimation of disturbance torques represent the significant extensions contributed by this paper. Beyond its usefulness purely for attitude determination, this system could be used as part of a low-cost three-axis attitude stabilization system.

Martel, Francois; Pal, Parimal K.; Psiaki, Mark L.

1988-01-01

105

A monolithic three-axis silicon capacitive accelerometer with micro-g resolution  

Microsoft Academic Search

A monolithic three-axis silicon capacitive accelerometer utilizing a combined surface and bulk micromachining technology is demonstrated with micro-g resolution. The accelerometer consists of three individual single-axis accelerometers. All three devices have full-wafer thick silicon proof-mass, large area polysilicon sense\\/drive electrodes, and small sensing gap (<1.5 ?m) formed by a sacrificial oxide layer. The fabricated accelerometer system is 7×9 mm2 in

Junseok Chae; H. Kulah; K. Najafi

2003-01-01

106

A Nonlinear Magnetic Controller for Three-Axis Stability of Nanosatellites  

Microsoft Academic Search

The problem of magnetic control for three-axis stability of a spacecraft is examined. Two controllers, a proportional-derivative controller and a constant coefficient linear quadratic regulator, are applied to the system of equations describing the motion of the spacecraft. The stability of each is checked for different spacecraft configurations through simulations, and the results for gravity-gradient stable and non gravity-gradient stable

Kristin L. Makovec

107

A static investigation of a simultaneous pitch and yaw thrust vectoring 2-D C-D nozzle  

NASA Technical Reports Server (NTRS)

An investigation has been conducted in the static test facility of the Langley 16-Foot Transonic Tunnel to determine the internal performance and flow-turning capability of a two-dimensional convergent-divergent nozzle. Thrust vectoring in the pitch plane was provided by rotation of the divergent flaps. The exhaust stream was turned in the yaw direction by deflection of yaw flaps hinged at the end of the nozzle sidewalls. The yaw flap hinge location was varied along the divergent region of the nozzle at four locations including the exit plane and the throat plane. The three hinge locations upstream of the nozzle exit plane required the downstream corners of both upper and lower divergent flaps to be cut off to eliminate interference when the yaw flaps were deflected. Three different lengths of yaw flaps were tested at several angles of deflection. The nozzle simulated a dry power setting with an expansion ratio typical of subsonic cruise and was tested at nozzle pressure ratios from 2.0 to 7.0.

Taylor, John G.

1988-01-01

108

Description of the three axis low-g accelerometer package  

NASA Technical Reports Server (NTRS)

The three axis low-g accelerometer package designed for use on the Space Processing Application Rocket (SPAR) Program is described. The package consists of the following major sections: (1) three Kearfott model 2412 accelerometers mounted in an orthogonal triad configuration on a temperature controlled, thermally isolated cube, (2) the accelerometer servoelectronics (printed circuit cards PC-6 through PC-12), and (3) the signal conditioner (printed circuit cards PC-15 and PC-16). The measurement range is 0 + or - 0.031 g with a quantization of 1.1 x 10 to the 7th power g. The package was flown successfully on six SPAR launches with the Black Brant booster. These flights provide approximately 300 s of free fall or zero-g environment.

Amalavage, A. J.; Fikes, E. H.; Berry, E. H.

1978-01-01

109

Novel Calibration Algorithm for a Three-Axis Strapdown Magnetometer  

PubMed Central

A complete error calibration model with 12 independent parameters is established by analyzing the three-axis magnetometer error mechanism. The said model conforms to an ellipsoid restriction, the parameters of the ellipsoid equation are estimated, and the ellipsoid coefficient matrix is derived. However, the calibration matrix cannot be determined completely, as there are fewer ellipsoid parameters than calibration model parameters. Mathematically, the calibration matrix derived from the ellipsoid coefficient matrix by a different matrix decomposition method is not unique, and there exists an unknown rotation matrix R between them. This paper puts forward a constant intersection angle method (angles between the geomagnetic field and gravitational field are fixed) to estimate R. The Tikhonov method is adopted to solve the problem that rounding errors or other errors may seriously affect the calculation results of R when the condition number of the matrix is very large. The geomagnetic field vector and heading error are further corrected by R. The constant intersection angle method is convenient and practical, as it is free from any additional calibration procedure or coordinate transformation. In addition, the simulation experiment indicates that the heading error declines from ±1° calibrated by classical ellipsoid fitting to ±0.2° calibrated by a constant intersection angle method, and the signal-to-noise ratio is 50 dB. The actual experiment exhibits that the heading error is further corrected from ±0.8° calibrated by the classical ellipsoid fitting to ±0.3° calibrated by a constant intersection angle method.

Liu, Yan Xia; Li, Xi Sheng; Zhang, Xiao Juan; Feng, Yi Bo

2014-01-01

110

Real-Time Attitude Independent Three Axis Magnetometer Calibration  

NASA Technical Reports Server (NTRS)

In this paper new real-time approaches for three-axis magnetometer sensor calibration are derived. These approaches rely on a conversion of the magnetometer-body and geomagnetic-reference vectors into an attitude independent observation by using scalar checking. The goal of the full calibration problem involves the determination of the magnetometer bias vector, scale factors and non-orthogonality corrections. Although the actual solution to this full calibration problem involves the minimization of a quartic loss function, the problem can be converted into a quadratic loss function by a centering approximation. This leads to a simple batch linear least squares solution. In this paper we develop alternative real-time algorithms based on both the extended Kalman filter and Unscented filter. With these real-time algorithms, a full magnetometer calibration can now be performed on-orbit during typical spacecraft mission-mode operations. Simulation results indicate that both algorithms provide accurate integer resolution in real time, but the Unscented filter is more robust to large initial condition errors than the extended Kalman filter. The algorithms are also tested using actual data from the Transition Region and Coronal Explorer (TRACE).

Crassidis, John L.; Lai, Kok-Lam; Harman, Richard R.

2003-01-01

111

Three-axis rapid steering of optically propelled micro/nanoparticles.  

PubMed

This paper presents the design and implementation of a three-axis steering system, wherein a micro/nanoparticle is optically trapped and propelled to serve as a measurement probe. The actuators in the system consist of a deformable mirror enabling axial steering and a two-axis acousto-optic deflector for lateral steering. The actuation range is designed and calibrated to be over 20 microm along the two lateral axes and over 10 microm along the axial direction. The actuation bandwidth of the two lateral axes is over 50 kHz and the associated resolution is 0.016 nm (1sigma). The axial resolution is 0.16 nm, while the bandwidth is enhanced to over 3 kHz by model cancellation method. The performance of the three-axis steering system is illustrated by three sets of experiments. First, active Brownian motion control of the trapped probe is utilized to enhance trapping stability. Second, a large range three-dimensional (3D) steering of a 1.87 microm probe, contouring a complex 3D trajectory in a 6 x 6 x 4 microm3 volume, is demonstrated. Third, a closed-loop steering is implemented to achieve improved precision. PMID:19566196

Huang, Yanan; Wan, Jingfang; Cheng, Ming-Chieh; Zhang, Zhipeng; Jhiang, Sissy M; Menq, Chia-Hsiang

2009-06-01

112

Research on three-axis six-DOF shaking table based on rapid prototyping of DSP algorithms using SIMULINK  

Microsoft Academic Search

Three axes hydraulic shaking system as the means to recreate vibration environment can accurately reproduce reference power spectrum density and time history response. The vibration control is a key technique to meet the requirement. This paper introduces the principle of the three-axis six-DOF shaking table at first and then designs hardware system using TMS320C2812 to acquire the analog and digital

Shen Gang; Cong Dacheng; He Jingfeng; Han Jun-wei

2008-01-01

113

Performance of twin two-dimensional wedge nozzles including thrust vectoring and reversing effects at speeds up to Mach 2.20  

NASA Technical Reports Server (NTRS)

Transonic tunnel and supersonic pressure tunnel tests were reformed to determine the performance characteristics of twin nonaxisymmetric or two-dimensional nozzles with fixed shrouds and variable-geometry wedges. The effects of thrust vectoring, reversing, and installation of various tails were also studied. The investigation was conducted statically and at flight speeds up to a Mach number of 2.20. The total pressure ratio of the simulated jet exhaust was varied up to approximately 26 depending on Mach number. The Reynolds number per meter varied up to 13.20 x 1 million. An analytical study was made to determine the effect on calculated wave drag by varying the mathematical model used to simulate nozzle jet-exhaust plume.

Capone, F. J.; Maiden, D. L.

1977-01-01

114

Assembly and packaging of a three-axis micro accelerometer used for detection of heart infarction  

Microsoft Academic Search

In coronary artery bypass grafting there is a risk of graft occlusion which may result in myocardial infarction. A three-axis\\u000a acceleration sensor may give additional information about heart function during surgery and the first postoperative days.\\u000a This paper describes the assembly and packaging of a three-axis micro acceleration sensor for use in clinical trials. The\\u000a sensor was connected to a

Kristin Imenes; Knut Aasmundtveit; Ellen Marie Husa; Jan Olav Hųgetveit; Steinar Halvorsen; Ole Jakob Elle; Peyman Mirtaheri; Erik Fosse; Lars Hoff

2007-01-01

115

Three-dimensional plasma measurements from three-axis stabilized spacecraft  

SciTech Connect

Future planetary missions require that comprehensive three-dimensional measurements of electrons and mass-resolved ions be made from three-axis stabilized spacecraft. In order to make these measurements without requiring expensive and resource intensive platforms to scan space mechanically, we are developing various systems that are designed to scan space electrostatically. These systems also make it possible to circumvent the significant shadowing that would be present even with a scan platform, caused by necessary spacecraft appendages such as communications antennas and a power source (RTG or solar cell panels). The systems, which are axially symmetric, select particles arriving from 360/degree/ in azimuth along conical surfaces whose polar (or elevation) angles, referenced to the instrument symmetry axes, are determined by applying suitable deflection voltages to shapes deflectors. Particles thus selected in polar angle pass into spherically or toroidally-shaped electrostatic analyzers. After analysis, the 360/degree/ outputs of the analyzers are divided into discrete angular swaths to provide azimuthal angle resolution. In the case of electrons, the analyzed particles can be detected directly; in the case of ions, the particles in each swath can be counted directly, or further analyzed with time-of-flight or magnetic analyzers to obtain the velocity distributions of the separated major ion constituents. We present computer simulations of particle paths through the various analyzers of this type and show results from laboratory calibrations of prototypes.

Bame, S.J.; Martin, R.H.; McComas, D.J.; Burch, J.L.; Marshall, J.A.; Young, D.T.

1988-01-01

116

Three-Axis Attitude Estimation With a High-Bandwidth Angular Rate Sensor  

NASA Technical Reports Server (NTRS)

A continuing challenge for modern instrument pointing control systems is to meet the increasingly stringent pointing performance requirements imposed by emerging advanced scientific, defense, and civilian payloads. Instruments such as adaptive optics telescopes, space interferometers, and optical communications make unprecedented demands on precision pointing capabilities. A cost-effective method was developed for increasing the pointing performance for this class of NASA applications. The solution was to develop an attitude estimator that fuses star tracker and gyro measurements with a high-bandwidth angular rotation sensor (ARS). An ARS is a rate sensor whose bandwidth extends well beyond that of the gyro, typically up to 1,000 Hz or higher. The most promising ARS sensor technology is based on a magnetohydrodynamic concept, and has recently become available commercially. The key idea is that the sensor fusion of the star tracker, gyro, and ARS provides a high-bandwidth attitude estimate suitable for supporting pointing control with a fast-steering mirror or other type of tip/tilt correction for increased performance. The ARS is relatively inexpensive and can be bolted directly next to the gyro and star tracker on the spacecraft bus. The high-bandwidth attitude estimator fuses an ARS sensor with a standard three-axis suite comprised of a gyro and star tracker. The estimation architecture is based on a dual-complementary filter (DCF) structure. The DCF takes a frequency- weighted combination of the sensors such that each sensor is most heavily weighted in a frequency region where it has the lowest noise. An important property of the DCF is that it avoids the need to model disturbance torques in the filter mechanization. This is important because the disturbance torques are generally not known in applications. This property represents an advantage over the prior art because it overcomes a weakness of the Kalman filter that arises when fusing more than one rate measurement. An additional advantage over prior art is that, computationally, the DCF requires significantly fewer real-time calculations than a Kalman filter formulation. There are essentially two reasons for this: the DCF state is not augmented with angular rate, and measurement updates occur at the slower gyro rate instead of the faster ARS sampling rate. Finally, the DCF has a simple and compelling architecture. The DCF is exactly equivalent to flying two identical attitude observers, one at low rate and one at high rate. These attitude observers are exactly of the form currently flown on typical three-axis spacecraft.

Bayard, David S.; Green, Joseph J.

2013-01-01

117

Static thrust-vectoring performance of nonaxisymmetric convergent-divergent nozzles with post-exit yaw vanes. M.S. Thesis - George Washington Univ., Aug. 1988  

NASA Technical Reports Server (NTRS)

A static (wind-off) test was conducted in the Static Test Facility of the 16-ft transonic tunnel to determine the performance and turning effectiveness of post-exit yaw vanes installed on two-dimensional convergent-divergent nozzles. One nozzle design that was previously tested was used as a baseline, simulating dry power and afterburning power nozzles at both 0 and 20 degree pitch vectoring conditions. Vanes were installed on these four nozzle configurations to study the effects of vane deflection angle, longitudinal and lateral location, size, and camber. All vanes were hinged at the nozzle sidewall exit, and in addition, some were also hinged at the vane quarter chord (double-hinged). The vane concepts tested generally produced yaw thrust vectoring angles much less than the geometric vane angles, for (up to 8 percent) resultant thrust losses. When the nozzles were pitch vectored, yawing effectiveness decreased as the vanes were moved downstream. Thrust penalties and yawing effectiveness both decreased rapidly as the vanes were moved outboard (laterally). Vane length and height changes increased yawing effectiveness and thrust ratio losses, while using vane camber, and double-hinged vanes increased resultant yaw angles by 50 to 100 percent.

Foley, Robert J.; Pendergraft, Odis C., Jr.

1991-01-01

118

Double Gimballed Momentum Wheel for Precision Three-Axis Attitude Control.  

National Technical Information Service (NTIS)

For precision three-axis attitude control of space vehicles, a Doubled Gimballed Momentum Wheel (DGMW) as attitude actuator is a favorable approach. A high reliability DGMW of modular design with two momentum wheels and two direct drive ultra high resolut...

W. Auer

1984-01-01

119

A Three-Axis Acoustic Current Meter for Small Scale Turbulence.  

National Technical Information Service (NTIS)

Design on the current meter described in this paper began early in 1975 in an attempt to develop an instrument having characteristics suitable for horizontal profiling of small scale turbulence in the ocean. The result of this program was a three-axis ins...

K. D. Lawson N. L. Brown D. H. Johnson R. A. Mattey

1975-01-01

120

Gait analyzer based on a cell phone with a single three-axis accelerometer  

Microsoft Academic Search

We propose a fuss-free gait analyzer based on a single three- axis accelerometer mounted on a cell phone for health care and presence services. It is not necessary for users not to wear sensors on any part of their bodies; all they need to do is to carry the cell phone. Our algorithm has two main functions; one is to

Toshiki Iso; Kenichi Yamazaki

2006-01-01

121

A novel three-axis AIM vibration sensor for high accuracy condition monitoring  

Microsoft Academic Search

We present a novel micromachining approach for on chip three-axis capacitive high aspect ratio acceleration sensors made from standard silicon wafers. The patented AIM (air gap insulated microstructures) technology with their excellent device properties regarding temperature behavior, capacitive sensitivity and reliability was modified for enabling out-of-plane differential measurements. Therefore electrodes with different heights have been patterned by using one additional

Markus Nowack; Danny Reuter; Andreas Bertz; Matthias Kuechler; Torsten Aurich; Claus Dittrich; T. Gessner

2010-01-01

122

Design of Tiltrotor Flight Control System Using Optical Control  

Microsoft Academic Search

Tiltrotor can flight both airplane mode and helicopter mode by changing the propulsion thrust vector via angle of nacelle. Therefore tiltrotor has performance of vertical and short take-off and land (V\\/STOL), multi-purpose aircraft with excellent high-speed cruise. However, it is very difficult to design the flight control system for transforming the flight mode because both thrust vector and aerodynamic force

Fan Yonghua; Yang Jun

2007-01-01

123

Spatiotemporal evaluation of human colon motility using three-axis fluxgates and magnetic markers.  

PubMed

An alternative method to study the mechanical activity of the human colon in fasting and postprandial states is presented. The method is based on measurements of the magnetic fields produced by a magnetic marker, a small cylindrical NdBFe magnet, when it was ingested by the subjects. A portable magnetic probe, consisting of two digital three-axis fluxgate magnetometers, arranged in a first-order electronic gradiometer, was implemented for this research. Measurements were taken in 16 healthy male subjects. Contractile activity frequency measurements were taken along the colon length, including the ascending, transverse and descending sections, as well as the rectal sigmoidal section. Values for the contractile activity frequency of 2-5 cycles min(-1) were measured. The set-up is simple, low-cost and suitable for use in an unshielded environment. PMID:16594296

Córdova-Fraga, T; Carneiro, A A O; de Araujo, D B; Oliveira, R B; Sosa, M; Baffa, O

2005-11-01

124

Quantitative evaluation of perspective and stereoscopic displays in three-axis manual tracking tasks  

NASA Technical Reports Server (NTRS)

Optimal presentation of three-dimensional information on a two-dimensional display screen requires careful design of the projection to the display surface. Monoscopic perspective projection alone is usually not sufficient to represent three-dimensional spatial information. It can, however, be improved by the adjustment of perspective parameters and by geometric visual enhancements such as reference lines and a background grid. Stereoscopic display is another method of providing three-dimensional information to the human operator. Two experiments are performed with three-axis manual tracking tasks. The first experiment investigates the effects of perspective parameters on tracking performance. The second experiment investigates the effects of visual enhancements for both monoscopic and stereoscopic displays. Results indicate that, although stereoscopic displays do generally permit superior tracking performance, monoscopic displays can allow equivalent performance when they are defined with optimal perspective parameters and provided with adequate visual enhancements.

Ellis, Stephen R.; Tyler, Mitchelle E.; Hannaford, Blake; Stark, Lawrence W.; Kim, Won S.

1987-01-01

125

Intracalibration of particle detectors on a three-axis stabilized geostationary platform  

NASA Astrophysics Data System (ADS)

We describe an algorithm for intracalibration of measurements from plasma or energetic particle detectors on a three-axis stabilized platform. Modeling and forecasting of Earth's radiation belt environment requires data from particle instruments, and these data depend on measurements which have an inherent calibration uncertainty. Pre-launch calibration is typically performed, but on-orbit changes in the instrument often necessitate adjustment of calibration parameters to mitigate the effect of these changes on the measurements. On-orbit calibration practices for particle detectors aboard spin-stabilized spacecraft are well established. Three-axis stabilized platforms, however, pose unique challenges even when comparisons are being performed between multiple telescopes measuring the same energy ranges aboard the same satellite. This algorithm identifies time intervals when different telescopes are measuring particles with the same pitch angles. These measurements are used to compute scale factors which can be multiplied by the pre-launch geometric factor to correct any changes. The approach is first tested using measurements from GOES-13 MAGED particle detectors over a 5-month time period in 2010. We find statistically significant variations which are generally on the order of 5% or less. These results do not appear to be dependent on Poisson statistics nor upon whether a dead time correction was performed. When applied to data from a 5-month interval in 2011, one telescope shows a 10% shift from the 2010 scale factors. This technique has potential for operational use to help maintain relative calibration between multiple telescopes aboard a single satellite. It should also be extensible to inter-calibration between multiple satellites.

Rowland, W.; Weigel, R. S.

2012-11-01

126

Intra-calibration of Particle Detectors on a Three-Axis Stabilized Geostationary Platform  

NASA Astrophysics Data System (ADS)

Modeling and forecasting of Earth's radiation belt environment require data from particle instruments. The calibration of these instruments can therefore have a substantial effect on the quality of the forecasts or models that are created using their data. A well established set of calibration techniques exist for spin-stabilized satellites, where a given telescope generally samples a wide portion of the particle distribution function over a period of time. Three-axis platforms offer a new set of challenges, in part because different telescopes often sample distinct portions of the particle distribution for an extended period, which complicates the necessary comparisons. We describe a technique which can be used to improve the on-orbit relative calibration of multi-telescope particle detectors on three-axis stabilized platforms by finding measurements in which different telescopes are sampling particles with the same pitch angles. These measurements are used to perform comparisons between telescopes, permitting determination of scale factors which can be used to correct for changes in the geometric factors that were obtained for the instruments during ground calibration. We show results obtained from applying this technique to a 5 month period in 2010. We compare these results to those obtained from applying the algorithm to the same 5 month period in 2011. Our results indicate that the telescopes are fairly consistent within a given time interval, with variations which are generally on the order of 5% or less, however a 10% shift was detected in one of the telescopes between 2010 and 2011. This technique should permit improved calibration of applicable instruments, permitting improvements in models and forecasts based upon these instruments' data.; Percent difference versus count rate for Telescopes 2 and 3 of the GOES-13 MAGED, 30-50keV energy bin, taken from May 6, 2010 to September 27, 2010. In this plot, black begins at 1 instance, blue at 34 instances, and red at 1146 instances. Comparison of Scale Factor results from 2010 versus those from 2011t; These data show that the scale factor result obtained for Telescope 8 in 2011 was substantially lower than in 2010. This could indicate that this telescope's response has increased relative to the other telescopes in that time interval. Telescope 6 experienced a less substantial change, which may be correlated with a decreased response relative to the other telescopes in that interval.

Rowland, W. F.; Weigel, R. S.

2012-12-01

127

An accurate calibration method for accelerometer nonlinear scale factor on a low-cost three-axis turntable  

NASA Astrophysics Data System (ADS)

Strapdown inertial navigation system (SINS) requirements are very demanding on gyroscopes and accelerometers as well as on calibration. To improve the accuracy of SINS, high-accuracy calibration is needed. Adding the accelerometer nonlinear scale factor into the model and reducing estimation errors is essential for improving calibration methods. In this paper, the inertial navigation error model is simplified, including only velocity and tilt errors. Based on the simplified error model, the relationship between the navigation errors (the rates of change of velocity errors) and the inertial measurement unit (IMU) calibration parameters is presented. A tracking model is designed to estimate the rates of change of velocity errors. With a special calibration procedure consisting of six rotation sequences, the accelerometer nonlinear scale factor errors can be computed by the estimates of the rates of change of velocity errors. Simulation and laboratory test results show that the accelerometer nonlinear scale factor can be calibrated with satisfactory accuracy on a low-cost three-axis turntable in several minutes. The comparison with the traditional calibration method highlights the superior performance of the proposed calibration method without precise orientation control. In addition, the proposed calibration method saves a lot of time in comparison with the multi-position calibration method.

Pan, Jianye; Zhang, Chunxi; Cai, Qingzhong

2014-02-01

128

A three-axis micromachined accelerometer with a CMOS position-sense interface and digital offset-trim electronics  

Microsoft Academic Search

This paper describes a three-axis accelerometer implemented in a surface-micromachining technology with integrated CMOS. The accelerometer measures changes in a capacitive half-bridge to detect deflections of a proof mass, which result from acceleration input. The half-bridge is connected to a fully differential position-sense interface, the output of which is used for one-bit force feedback. By enclosing the proof mass in

Mark Lemkin; Bernhard E. Boser

1999-01-01

129

Three Axis Control of the Hubble Space Telescope Using Two Reaction Wheels and Magnetic Torquer Bars for Science Observations  

NASA Technical Reports Server (NTRS)

The Hubble Space Telescope (HST) is renowned for its superb pointing accuracy of less than 10 milli-arcseconds absolute pointing error. To accomplish this, the HST relies on its complement of four reaction wheel assemblies (RWAs) for attitude control and four magnetic torquer bars (MTBs) for momentum management. As with most satellites with reaction wheel control, the fourth RWA provides for fault tolerance to maintain three-axis pointing capability should a failure occur and a wheel is lost from operations. If an additional failure is encountered, the ability to maintain three-axis pointing is jeopardized. In order to prepare for this potential situation, HST Pointing Control Subsystem (PCS) Team developed a Two Reaction Wheel Science (TRS) control mode. This mode utilizes two RWAs and four magnetic torquer bars to achieve three-axis stabilization and pointing accuracy necessary for a continued science observing program. This paper presents the design of the TRS mode and operational considerations necessary to protect the spacecraft while allowing for a substantial science program.

Hur-Diaz, Sun; Wirzburger, John; Smith, Dan

2008-01-01

130

Flight-Determined, Subsonic, Lateral-Directional Stability and Control Derivatives of the Thrust-Vectoring F-18 High Angle of Attack Research Vehicle (HARV), and Comparisons to the Basic F-18 and Predicted Derivatives  

NASA Technical Reports Server (NTRS)

The subsonic, lateral-directional, stability and control derivatives of the thrust-vectoring F-1 8 High Angle of Attack Research Vehicle (HARV) are extracted from flight data using a maximum likelihood parameter identification technique. State noise is accounted for in the identification formulation and is used to model the uncommanded forcing functions caused by unsteady aerodynamics. Preprogrammed maneuvers provided independent control surface inputs, eliminating problems of identifiability related to correlations between the aircraft controls and states. The HARV derivatives are plotted as functions of angles of attack between 10deg and 70deg and compared to flight estimates from the basic F-18 aircraft and to predictions from ground and wind tunnel tests. Unlike maneuvers of the basic F-18 aircraft, the HARV maneuvers were very precise and repeatable, resulting in tightly clustered estimates with small uncertainty levels. Significant differences were found between flight and prediction; however, some of these differences may be attributed to differences in the range of sideslip or input amplitude over which a given derivative was evaluated, and to differences between the HARV external configuration and that of the basic F-18 aircraft, upon which most of the prediction was based. Some HARV derivative fairings have been adjusted using basic F-18 derivatives (with low uncertainties) to help account for differences in variable ranges and the lack of HARV maneuvers at certain angles of attack.

Iliff, Kenneth W.; Wang, Kon-Sheng Charles

1999-01-01

131

Development of a three-axis active vibration isolator using zero-power control  

Microsoft Academic Search

This paper presents the development of an active 3-degree-of-freedom (DoF) vibration isolation system using zero-power magnetic suspension. The developed system is capable to suppress direct disturbances and isolate ground vibrations of the 3-DoF motions, associated with vertical translational and rotational modes. Two categories of control strategy for the actuators are proposed, i.e., local control and mode control. The latter method

M. Takasaki; Y. Ishino; T. Mizuno

2006-01-01

132

Method for three-axis attitude determination by image-processed star constellation matching  

NASA Astrophysics Data System (ADS)

An unmanned system for automatically 3-axis attitude determination by star constellation matching is a very useful tool for applications primary in the field of satellite technology, where stars are visible all the time. A special designed CCD-camera-system, which is sensitive enough to detect stars, points to the direction to be determinated and captures stars within the camera field of view. By comparing these imaged star pattern with celestial coordinates out of a database-like star catalogue, a star pattern can be matched and the attitude can be calculated by using simple vector algebra. In partnership with other attitude determination systems, the accuracy and reliability for an attitude control system is increasing. Including camera hardware and image processing software, we realized a transputer-based onboard computer system for our own satellite missions. For terrestrial and groundbased pointing applications or post-mission attitude determination a powerful PC-based system is available with additional visualization features of certain steps during the image processing via a user-friendly desktop.

Renken, Hartmut; Rath, Hans J.

1997-06-01

133

Three Axis Aircraft Autopilot Control Using Genetic Algorithms : An Experimental Study  

Microsoft Academic Search

The behavior of an aircraft can be described with a set of non-linear differential equations by assuming six degrees of freedom (3 for linear motions and 3 for angular motions) about x, y & z axis. All the aircrafts have a PID controller for autopilot control system for pitch, yaw and roll. The PID [6, 12] controllers are associated with

A. Manocha; A. Sharma

2009-01-01

134

Three-axis attitude and direction reference instrument has only one moving part  

NASA Technical Reports Server (NTRS)

Lunar vehicle instrument combines the functions of attitude reference, direction reference, and display in a unit having only one moving part. The device, using bubble levels and a calibrated dial, is used as a sextant prior to takeoff, and as a backup navigation system during flight.

Bossler, F. B.

1966-01-01

135

Three-axis tactile display using PDMS pneumatic actuator for robot-assisted surgery  

Microsoft Academic Search

This paper proposes and demonstrates the 3-axis tactile display actuator using PDMS pneumatic balloons for a robot assisted surgery system. Inflated balloons on the upper surface generate normal forces to a fingertip. In addition, the lateral actuation by side balloons in 2-axis generate shear force to an operator. This operation is suitable for mounting on the operator’s fingers for normal

Eunhyup Doh; Hyungkew Lee; Kwang-Seok Yun

2011-01-01

136

Research flight-control system development for the F-18 high alpha research vehicle  

NASA Technical Reports Server (NTRS)

The F-18 high alpha research vehicle was recently modified by adding a thrust vectoring control system. A key element in the modification was the development of a research flight control system integrated with the basic F-18 flight control system. Discussed here are design requirements, system development, and research utility of the resulting configuration as an embedded system for flight research in the high angle of attack regime. Particular emphasis is given to control system modifications and control law features required for high angle of attack flight. Simulation results are used to illustrate some of the thrust vectoring control system capabilities and predicted maneuvering improvements.

Pahle, Joseph W.; Powers, Bruce; Regenie, Victoria; Chacon, Vince; Degroote, Steve; Murnyak, Steven

1991-01-01

137

Attitude control study for a large flexible spacecraft using a Solar Electric Propulsion System (SEPS)  

NASA Technical Reports Server (NTRS)

The attitude control performance of the solar electric propulsion system (SEPS) was evaluated. A thrust vector control system for powered flight control was examined along with a gas jet reaction control system, and a reaction wheel system, both of which have been proposed for nonpowered flight control. Comprehensive computer simulations of each control system were made and evaluated using a 30 mode spacecraft model. Results obtained indicate that thrust vector control and reaction wheel systems offer acceptable smooth proportional control. The gas jet control system is shown to be risky for a flexible structure such as SEPS, and is therefore, not recommended as a primary control method.

Tolivar, A. F.; Key, R. W.

1980-01-01

138

Attitude determination with three-axis accelerometer for emergency atmospheric entry  

NASA Technical Reports Server (NTRS)

Two algorithms are disclosed that, with the use of a 3-axis accelerometer, will be able to determine the angles of attack, sideslip and roll of a capsule-type spacecraft prior to entry (at very high altitudes, where the atmospheric density is still very low) and during entry. The invention relates to emergency situations in which no reliable attitude and attitude rate are available. Provided that the spacecraft would not attempt a guided entry without reliable attitude information, the objective of the entry system in such case would be to attempt a safe ballistic entry. A ballistic entry requires three controlled phases to be executed in sequence: First, cancel initial rates in case the spacecraft is tumbling; second, maneuver the capsule to a heat-shield-forward attitude, preferably to the trim attitude, to counteract the heat rate and heat load build up; and third, impart a ballistic bank or roll rate to null the average lift vector in order to prevent prolonged lift down situations. Being able to know the attitude, hence the attitude rate, will allow the control system (nominal or backup, automatic or manual) to cancel any initial angular rates. Also, since a heat-shield forward attitude and the trim attitude can be specified in terms of the angles of attack and sideslip, being able to determine the current attitude in terms of these angles will allow the control system to maneuver the vehicle to the desired attitude. Finally, being able to determine the roll angle will allow for the control of the roll ballistic rate during entry.

Garcia-Llama, Eduardo (Inventor)

2012-01-01

139

Three axis pulsed plasma thruster with angled cathode and anode strip lines  

NASA Technical Reports Server (NTRS)

A spacecraft attitude and altitude control system utilizes sets of three pulsed plasma thrusters connected to a single controller. The single controller controls the operation of each thruster in the set. The control of a set of three thrusters in the set makes it possible to provide a component of thrust along any one of three desired axes. This configuration reduces the total weight of a spacecraft since only one controller and its associated electronics is required for each set of thrusters rather than a controller for each thruster. The thrusters are positioned about the spacecraft such that the effect of the thrusters is balanced.

Cassady, R. Joseph (Inventor); Myers, Roger M. (Inventor); Osborne, Robert D. (Inventor)

2001-01-01

140

Operations with the new FUSE observatory: three-axis control with one reaction wheel  

NASA Astrophysics Data System (ADS)

Since its launch in 1999, the Far Ultraviolet Spectroscopic Explorer (FUSE) has had a profound impact on many areas of astrophysics. Although the prime scientific instrument continues to perform well, numerous hardware failures on the attitude control system, particularly those of gyroscopes and reaction wheels, have made science operations a challenge. As each new obstacle has appeared, it has been overcome, although sometimes with changes in sky coverage capability or modifications to pointing performance. The CalFUSE data pipeline has also undergone major changes to correct for a variety of instrumental effects, and to prepare for the final archiving of the data. We describe the current state of the FUSE satellite and the challenges of operating it with only one reaction wheel and discuss the current performance of the mission and the quality of the science data.

Sahnow, David J.; Kruk, Jeffrey W.; Ake, Thomas B.; Andersson, B.-G.; Berman, Alice; Blair, William P.; Boyer, Robert; Caplinger, James; Calvani, Humberto; Civeit, Thomas; Dixon, W. V. D.; England, Martin N.; Kaiser, Mary Elizabeth; Kochte, Mark; Moos, H. Warren; Roberts, Bryce A.

2006-07-01

141

OPMILL - MICRO COMPUTER PROGRAMMING ENVIRONMENT FOR CNC MILLING MACHINES THREE AXIS EQUATION PLOTTING CAPABILITIES  

NASA Technical Reports Server (NTRS)

OPMILL is a computer operating system for a Kearney and Trecker milling machine that provides a fast and easy way to program machine part manufacture with an IBM compatible PC. The program gives the machinist an "equation plotter" feature which plots any set of equations that define axis moves (up to three axes simultaneously) and converts those equations to a machine milling program that will move a cutter along a defined path. Other supported functions include: drill with peck, bolt circle, tap, mill arc, quarter circle, circle, circle 2 pass, frame, frame 2 pass, rotary frame, pocket, loop and repeat, and copy blocks. The system includes a tool manager that can handle up to 25 tools and automatically adjusts tool length for each tool. It will display all tool information and stop the milling machine at the appropriate time. Information for the program is entered via a series of menus and compiled to the Kearney and Trecker format. The program can then be loaded into the milling machine, the tool path graphically displayed, and tool change information or the program in Kearney and Trecker format viewed. The program has a complete file handling utility that allows the user to load the program into memory from the hard disk, save the program to the disk with comments, view directories, merge a program on the disk with one in memory, save a portion of a program in memory, and change directories. OPMILL was developed on an IBM PS/2 running DOS 3.3 with 1 MB of RAM. OPMILL was written for an IBM PC or compatible 8088 or 80286 machine connected via an RS-232 port to a Kearney and Trecker Data Mill 700/C Control milling machine. It requires a "D:" drive (fixed-disk or virtual), a browse or text display utility, and an EGA or better display. Users wishing to modify and recompile the source code will also need Turbo BASIC, Turbo C, and Crescent Software's QuickPak for Turbo BASIC. IBM PC and IBM PS/2 are registered trademarks of International Business Machines. Turbo BASIC and Turbo C are trademarks of Borland International.

Ray, R. B.

1994-01-01

142

Three-Axis Distributed Fiber Optic Strain Measurement in 3D Woven Composite Structures  

NASA Technical Reports Server (NTRS)

Recent advancements in composite materials technologies have broken further from traditional designs and require advanced instrumentation and analysis capabilities. Success or failure is highly dependent on design analysis and manufacturing processes. By monitoring smart structures throughout manufacturing and service life, residual and operational stresses can be assessed and structural integrity maintained. Composite smart structures can be manufactured by integrating fiber optic sensors into existing composite materials processes such as ply layup, filament winding and three-dimensional weaving. In this work optical fiber was integrated into 3D woven composite parts at a commercial woven products manufacturing facility. The fiber was then used to monitor the structures during a VARTM manufacturing process, and subsequent static and dynamic testing. Low cost telecommunications-grade optical fiber acts as the sensor using a high resolution commercial Optical Frequency Domain Reflectometer (OFDR) system providing distributed strain measurement at spatial resolutions as low as 2mm. Strain measurements using the optical fiber sensors are correlated to resistive strain gage measurements during static structural loading. Keywords: fiber optic, distributed strain sensing, Rayleigh scatter, optical frequency domain reflectometry

Castellucci, Matt; Klute, Sandra; Lally, Evan M.; Froggatt, Mark E.; Lowry, David

2013-01-01

143

Design and implementation of a sliding-mode controller and a high-gain observer for output tracking of a three-axis pickup  

Microsoft Academic Search

A novel decoupling actuation scheme applied to a new three-axis four-wire optical pickup is synthesized in this study based on theories of sliding-mode control and high-gain observer. The three-axis pickup owns the capability to move the lens holder in three directions of focusing, tracking and tilting. This capability is required particularly for higher data-density optical disks to annihilate the non-zero

Paul C.-P. Chao; Chien-Yu Shen

2007-01-01

144

A three-axis micromachined accelerometer with a CMOS position-sense interface and digital offset-trim electronics  

SciTech Connect

This paper describes a three-axis accelerometer implemented in a surface-micromachining technology with integrated CMOS. The accelerometer measures changes in a capacitive half-bridge to detect deflections of a proof mass, which result from acceleration input. The half-bridge is connected to a fully differential position-sense interface, the output of which is used for one-bit force feedback. By enclosing the proof mass in a one-bit feedback loop, simultaneous force balancing and analog-to-digital conversion are achieved. On-chip digital offset-trim electronics enable compensation of random offset in the electronic interface. Analytical performance calculations are shown to accurately model device behavior. The fabricated single-chip accelerometer measures 4 {times} 4 mm{sup 2}, draws 27 mA from a 5-V supply, and has a dynamic range of 84, 81, and 70 dB along the x-, y-, and z-axes, respectively.

Lemkin, M.; Boser, B.E. [Univ. of California, Berkeley, CA (United States)] [Univ. of California, Berkeley, CA (United States)

1999-04-01

145

Three-Axis Seismometer.  

National Technical Information Service (NTIS)

Wide coverage and accurate detection of nuclear detonations are critical to prevent proliferation. Such applications require extremely high sensitivities on the order of approximately 0.5 ng/sqrt(Hz) on all three axes of acceleration, as well as robustnes...

J. Zhao L. Domash L. Yin M. Erdtmann

2008-01-01

146

Development of a flexible three-axis tactile sensor based on screen-printed carbon nanotube-polymer composite  

NASA Astrophysics Data System (ADS)

A flexible, three-axis carbon nanotube (CNT)–polymer composite-based tactile sensor is presented. The proposed sensor consists of a flexible substrate, four sensing cells, and a bump structure. A CNT–polydimethylsiloxane (PDMS) composite is produced by a solvent evaporation method, and thus, the CNTs are well-dispersed within the PDMS matrix. The composite is directly patterned onto a flexible substrate using a screen printing technique to fabricate a sensor with four sensing cells. When a force is applied on the bump, the magnitude and direction of force could be detected by comparing the changes in electrical resistance of each sensing cell caused by the piezoresistive effect of the composite. The experimentally verified sensing characteristics of the fabricated sensor exhibit a linear relationship between the resistance change and the applied force, and the measured sensitivities of the sensor for the normal and shear forces are 6.67 and 86.7%/N for forces up to 2.0 and 0.5?N, respectively. Experiments to verify the load-sensing repeatability show a maximum 2.00% deviation of the resistance change within the tested force range.

Pyo, Soonjae; Lee, Jae-Ik; Kim, Min-Ook; Chung, Taeyoung; Oh, Yongkeun; Lim, Soo-Chul; Park, Joonah; Kim, Jongbaeg

2014-07-01

147

Development of CMOS-MEMS in-plane magnetic coils for application as a three-axis resonant magnetic sensor  

NASA Astrophysics Data System (ADS)

This study designs and implements a single unit three-axis magnetic sensor using the standard TSMC 0.35 µm 2P4M CMOS process. The magnetic sensor consists of springs, a proof-mass with embedded magnetic coils, and sensing electrodes. Two sets of in-plane magnetic coils respectively arranged in two orthogonal axes are realized using the stacking of metal and tungsten layers in the CMOS process. The number of turns for the proposed in-plane magnetic-coil is not restricted by the space and thin film layers of the CMOS process. The magnetic coils could respectively generate Lorentz and electromagnetic forces by out-of-plane and in-plane magnetic fields to excite the spring-mass structure. Capacitance sensing electrodes could detect the dynamic response of the spring-mass structure to determine the magnetic fields. Measurements indicate the typical sensitivities of the sensor are 0.21 µV µT-1 (x-axis), 0.20 µV µT-1 (y-axis), and 0.90 µV µT-1 (z-axis) at 1 atm. Moreover, the resolutions of the sensor are respectively 384 nT rtHz-1 for the x-axis, 403 nT rtHz-1 for the y-axis, and 62 nT rtHz-1 for the z-axis at 1 atm. The presented magnetic sensor could monolithically integrate with other CMOS-MEMS devices for various applications.

Chang, Chun-I.; Tsai, Ming-Han; Sun, Chih-Ming; Fang, Weileun

2014-03-01

148

Integrated propulsion-based flight control system design for a civil transport aircraft  

Microsoft Academic Search

We describe results of a study carried out at the University of Leicester in collaboration with Volvo Aero Corporation, on the design of integrated flight and propulsion control systems for a large civil transport aircraft. The use of the aircraft engines (via differential thrust and\\/or thrust vectoring) for the purposes of emergency flight control is examined in detail. An industry

M. Harefors; D. G. Bates

2002-01-01

149

Apollo guidance, navigation and control: Guidance system operations plan for manned CM earth orbital and lunar missions using Program COLOSSUS 3. Section 3: Digital autopilots (revision 14)  

NASA Technical Reports Server (NTRS)

Digital autopilots for the manned command module earth orbital and lunar missions using program COLOSSUS 3 are discussed. Subjects presented are: (1) reaction control system digital autopilot, (2) thrust vector control autopilot, (3) entry autopilot and mission control programs, (4) takeover of Saturn steering, and (5) coasting flight attitude maneuver routine.

1972-01-01

150

Drifts of a three-axis stabilizer under vibration of the frames and platform with unbalanced dynamically tuned gyroscopes  

NASA Astrophysics Data System (ADS)

It is shown that the unbalance of a dynamically tuned gyro, leading to gyro self-excitation through vibration of the platform in a gimball suspension, causes drifts of the stabilizer. The magnitude of the drift depends on the gyro balancing precision, the location of gyros on the platform, and the relationship between the moments of inertia of the suspension elements, the precision of the adjustment, and the ultimate rigidity of the platform. Ways to reduce the drifts of the system are examined.

Zbrutskii, A. V.; Sarapulov, S. A.

1985-10-01

151

A study of angular motion of the Chibis-M microsatellite with three-axis flywheel control  

NASA Astrophysics Data System (ADS)

We study the controlled angular motion of the Chibis-M microsatellite. Executive elements are three pairs of flywheels, whose axes are mutually perpendicular. The task of the control system is realization of a required program motion and support of its asymptotic stability. In this paper, we synthesize a control algorithm and study the evolution of the angular momentum of flywheels on long time intervals. The attitude accuracy is estimated for the case when disturbances act upon the spacecraft.

Ovchinnikov, M. Yu.; Tkachev, S. S.; Karpenko, S. O.

2012-11-01

152

Design and fabrication of three-axis accelerometer sensor microsystem for wide temperature range applications using semi-custom process  

NASA Astrophysics Data System (ADS)

This paper describes an integrated CMOS-MEMS inertial sensor microsystem, consisting of a 3-axis accelerometer sensor device and its complementary readout circuit, which is designed to operate over a wide temperature range from - 55°C to 175°C. The accelerometer device is based on capacitive transduction and is fabricated using PolyMUMPS, which is a commercial process available from MEMSCAP. The fabricated accelerometer device is then post-processed by depositing a layer of amorphous silicon carbide to form a composite sensor structure to improve its performance over an extended wide temperature range. We designed and fabricated a CMOS readout circuit in IBM 0.13?m process that interfaces with the accelerometer device to serve as a capacitance to voltage converter. The accelerometer device is designed to operate over a measurement range of +/-20g. The described sensor system allows low power, low cost and mass-producible implementation well suited for a variety of applications with harsh or wide temperature operating conditions.

Merdassi, A.; Wang, Y.; Xereas, G.; Chodavarapu, V. P.

2014-03-01

153

Taking low-temperature measurements of remanence beyond the state-of-the-art: new three-axis data from Umkondo Province sills  

NASA Astrophysics Data System (ADS)

Low-temperature cycling of paleomagnetic specimens across the Verwey transition is a common technique used to preferentially remove remanence associated with multi-domain magnetite grains. This low-temperature demagnetization (LTD) step is gaining increasing use in both paleodirectional and paleointensity protocols making it imperative to understand the mechanism, efficiency and possible limitations of LTD. A recently developed cryogenic probe used in conjunction with a superconducting rock magnetometer at the Institute for Rock Magnetism allows for three-axis measurements to be made during cycling to and from low-temperatures in a low-field environment. In this study, we targeted a suite of well-characterized samples from the Umkondo Large Igneous Province of Botswana that displayed large (~50%) demagnetization of the natural remanence after cooling to 77 K including some samples that underwent large directional changes. Three-axis data were continuously collected during low-temperature cycling experiments on both natural remanence and lab-induced anhysteretic remanent magnetization (pARM). Experiments were designed with orthogonal pARMs to observe the behavior and efficiency of demagnetization of remanence carried by low coercivity (multi-domain grains). These experiments revealed high efficiency of demagnetization (>95%) of a pARM imparted to low coercivity grains (AF fields of 0 to 5 mT) with a return to the direction of a pARM imparted to higher coercivity grains (AF fields of 5 to 200 mT). The data also demonstrate that low-temperature demagnetization of such a pARM upon cooling is dominated by changes prior to the Verwey transition or the isotropic point. These results suggests that it is changes in magnetocrystalline anisotropy (K1) at temperatures above the isotropic point that are responsible for the majority of low-temperature demagnetization of multidomain magnetite grains. The low-temperature probe is available for community use at the Institute for Rock Magnetism and we encourage fellowship applications to use it for experiments that continue to take low-temperature measurements of remanence beyond the state-of-the-art.

Swanson-Hysell, N.; Solheid, P.; Feinberg, J. M.

2013-12-01

154

Design and Integration of an Actuated Nose Strake Control System  

NASA Technical Reports Server (NTRS)

Aircraft flight characteristics at high angles of attack can be improved by controlling vortices shed from the nose. These characteristics have been investigated with the integration of the actuated nose strakes for enhanced rolling (ANSER) control system into the NASA F-18 High Alpha Research Vehicle. Several hardware and software systems were developed to enable performance of the research goals. A strake interface box was developed to perform actuator control and failure detection outside the flight control computer. A three-mode ANSER control law was developed and installed in the Research Flight Control System. The thrust-vectoring mode does not command the strakes. The strakes and thrust-vectoring mode uses a combination of thrust vectoring and strakes for lateral- directional control, and strake mode uses strakes only for lateral-directional control. The system was integrated and tested in the Dryden Flight Research Center (DFRC) simulation for testing before installation in the aircraft. Performance of the ANSER system was monitored in real time during the 89-flight ANSER flight test program in the DFRC Mission Control Center. One discrepancy resulted in a set of research data not being obtained. The experiment was otherwise considered a success with the majority of the research objectives being met.

Flick, Bradley C.; Thomson, Michael P.; Regenie, Victoria A.; Wichman, Keith D.; Pahle, Joseph W.; Earls, Michael R.

1996-01-01

155

Multibody system applications and simulations at the Jet Propulsion Laboratory  

Microsoft Academic Search

The historical development of the Jet Propulsion Laboratory (JPL) of generic computer programs for solving the H-M-H equations of motion of point-connected sets of rigid bodies in a topological tree is traced, as well as the application of these programs and the multibody modelling approach to the design of spacecraft control systems. These include thrust vector control and science instrument

G. E. Fleischer

1978-01-01

156

Control of Ducted Fan Flying Object Using Thrust Vectoring  

NASA Astrophysics Data System (ADS)

Recently, R/C helicopter is used in fields of aerial photography and aerial investigation. But helicopter rotor blades are not covered, and the thrust is generated by high rotational speed. Thus R/C helicopter has a high risk of damage. In this study, we developed a new flying object using ducted fans instead of rotor blades. At first, PD control was employed for pitch and roll attitude control, but it caused steady state error. Moreover, PI-D control was used instead of PD control, and it reduced the steady state error. We succeeded to achieve stable hovering by 3-axes (roll, pitch and yaw axis) attitude control.

Miwa, Masafumi; Shigematsu, Yuki; Yamashita, Takashi

157

Strategic avionics technology definition studies. Subtask 3-1A3: Electrical Actuation (ELA) Systems Test Facility  

NASA Technical Reports Server (NTRS)

Future aerospace vehicles will require use of the Electrical Actuator systems for flight control elements. This report presents a proposed ELA Test Facility for dynamic evaluation of high power linear Electrical Actuators with primary emphasis on Thrust Vector Control actuators. Details of the mechanical design, power and control systems, and data acquisition capability of the test facility are presented. A test procedure for evaluating the performance of the ELA Test Facility is also included.

Rogers, J. P.; Cureton, K. L.; Olsen, J. R.

1994-01-01

158

Design of Tiltrotor Flight Control System Using Fuzzy Sliding Mode Control  

Microsoft Academic Search

Tiltrotor can flight both airplane mode and helicopter mode by changing the propulsion thrust vector via angle of nacelle. Therefore tiltrotor has performance of vertical and short take-off and land (V\\/STOL), multi-purpose aircraft with excellent high-speed cruise. However, it is very difficult to design the flight control system because of the effect of model parameter variation and external disturbances. First

Xue Ping Zhu; Yong Hua Fan; Jun Yang

2010-01-01

159

Multibody system applications and simulations at the Jet Propulsion Laboratory. [emphasizing attitude and science platform articulation control  

NASA Technical Reports Server (NTRS)

The historical development of the Jet Propulsion Laboratory (JPL) of generic computer programs for solving the H-M-H equations of motion of point-connected sets of rigid bodies in a topological tree is traced, as well as the application of these programs and the multibody modelling approach to the design of spacecraft control systems. These include thrust vector control and science instrument articulation on such vehicles as Mariner 9, Mariner 10, Viking Orbiter, and Voyager.

Fleischer, G. E.

1978-01-01

160

Implementation of a zero-field spin-echo option at the three-axis spectrometer IN3 (ILL, Grenoble) and first application for measurements of phonon line widths in superfluid 4He  

NASA Astrophysics Data System (ADS)

We report on a new zero-field spin-echo spectrometer (ZETA), installed at the thermal three-axis spectrometer IN3 at ILL, Grenoble. In this technique the two long precession solenoids from neutron spin echo are replaced by two pairs of magnetic resonance coils in a zero-field region. This allows easy adaptation of tilted field geometries, necessary for measurements of phonon line widths with ?eV energy resolution. First test measurements of the roton line width and energy shift as well as line width of the low- Q phonon and in the “region beyond the roton” in superfluid 4He are described. The results are in agreement with the literature and show the good operation of ZETA. The implementation of ZETA at the high-flux three-axis spectrometer IN20, foreseen in the near future, will increase the count rate by typically one order of magnitude.

Klimko, S.; Stadler, C.; Böni, P.; Currat, R.; Demmel, F.; Fåk, B.; Gähler, R.; Mezei, F.; Toperverg, B.

2003-07-01

161

SERT 2 gimbal system  

NASA Technical Reports Server (NTRS)

The gimbal system is described that was designed to mount the thruster and to reposition the thrust vector of a mercury ion bombardment thruster through the center of gravity of the SERT 2 assembly. The SERT 2 assembly was launched 3 February 1970. The gimbal ring, gimbal mounts, bearings, actuators, and environmental testing are described. Due to the accurate alinements provided, it was not necessary to use the gimbal for the intended function. However, the gimbals were operated successfully numerous times in space after 8 months of storage.

Zavesky, R. J.; Hurst, E. B.

1971-01-01

162

Titan 3E/Centaur D-1T Systems Summary  

NASA Technical Reports Server (NTRS)

A systems and operational summary of the Titan 3E/Centaur D-1T program is presented which describes vehicle assembly facilities, launch facilities, and management responsibilities, and also provides detailed information on the following separate systems: (1) mechanical systems, including structural components, insulation, propulsion units, reaction control, thrust vector control, hydraulic systems, and pneumatic equipment; (2) astrionics systems, such as instrumentation and telemetry, navigation and guidance, C-Band tracking system, and range safety command system; (3) digital computer unit software; (4) flight control systems; (5) electrical/electronic systems; and (6) ground support equipment, including checkout equipment.

1973-01-01

163

The Control System for the X-33 Linear Aerospike Engine  

NASA Technical Reports Server (NTRS)

The linear aerospike engine is being developed for single-stage -to-orbit (SSTO) applications. The primary advantages of a linear aerospike engine over a conventional bell nozzle engine include altitude compensation, which provides enhanced performance, and lower vehicle weight resulting from the integration of the engine into the vehicle structure. A feature of this integration is the ability to provide thrust vector control (TVC) by differential throttling of the engine combustion elements, rather than the more conventional approach of gimballing the entire engine. An analysis of the X-33 flight trajectories has shown that it is necessary to provide +/- 15% roll, pitch and yaw TVC authority with an optional capability of +/- 30% pitch at select times during the mission. The TVC performance requirements for X-33 engine became a major driver in the design of the engine control system. The thrust level of the X-33 engine as well as the amount of TVC are managed by a control system which consists of electronic, instrumentation, propellant valves, electro-mechanical actuators, spark igniters, and harnesses. The engine control system is responsible for the thrust control, mixture ratio control, thrust vector control, engine health monitoring, and communication to the vehicle during all operational modes of the engine (checkout, pre-start, start, main-stage, shutdown and post shutdown). The methodology for thrust vector control, the health monitoring approach which includes failure detection, isolation, and response, and the basic control system design are the topic of this paper. As an additional point of interest a brief description of the X-33 engine system will be included in this paper.

Jackson, Jerry E.; Espenschied, Erich; Klop, Jeffrey

1998-01-01

164

Three-axis superconducting gravity gradiometer  

SciTech Connect

This patent describes a gradiometer having a sensitive axis for detecting a gravity gradient along the sensitive axis, comprising: a pair of accelerometers having respective sensitive axes; each accelerometer including a proof mass having a pair of hollowed out annular portions; each proof mass having at least one sensing coil arranged adjacent a bottom-side surface of the respective proof mass in one of the hollowed out portions and a levitation coil arranged adjacent a second bottom-side surface of the respective proof mass in the other hollowed out portion, at least one sensing coil and the levitation coil thus being located on the same side of the respective proof mass in relation to the direction of an external force exerted on the gradiometer thereby to compensate for temperature induced changes in magnetic field penetration into the respective proof mass; at least one first superconducting circuit in which the sensing coils of the accelerometers are interconnected and in which a first persistent current flows, the first circuit having an output indicative of a gravity gradient along the sensitive axis of the gradiometer.

Paik, H.J.

1989-06-27

165

Gradio Three-Axis Electrostatic Accelerometers.  

National Technical Information Service (NTIS)

Dedicated accelerometers for satellite gravity gradiometry (GRADIO project) are described. The design profits from experience acquired with the CACTUS accelerometer payload of the satellite CASTOR-D5B, and studies of highly accurate accelerometers for ine...

A. Bernard

1987-01-01

166

Three Axis Crystal Spectrometer for Neutrons  

Microsoft Academic Search

The spectrometer has been in operation since 1963 at the reactor R2 in Studsvik, mainly for measurements on phonons in metals, with emphasis on precision. Shielding is considered first, with mention of conclusions drawn from experimentation with the shielding around the beam from the reactor and with that around the detector. The mechanical design aims to achieve easy exchange or

R. Stedman; G. Nilsson

1968-01-01

167

Three-Axis Fiber Optic Vector Magnetometer.  

National Technical Information Service (NTIS)

This patent application discloses an optical fiber for magnetostrictive responsive detection of magnetic fields. The strength of the protective magnetic field is determined by standard interferometry techniques by comparing the phase or mode properties of...

K. P. Koo G. H. Sigel F. Bucholtz

1991-01-01

168

A north-south stationkeeping ion thruster system for ATS-F.  

NASA Technical Reports Server (NTRS)

An ion thruster system is being developed for the ATS-F satellite to demonstrate the application of ion thruster technology to the synchronous satellite north-south stationkeeping mission. The cesium bombardment ion thruster develops one millipound thrust at 2600 seconds specific impulse and provides thrust vectoring by accelerator electrode displacement. The propellant system is sized for two years operation at 25 percent duty cycle. Power conditioning circuitry is based on transistor inverters switching at 10 kHz. Thirteen command channels allow flexibility in operation; 12 telemetry channels provide information on system performance. Input power is less than 150 watts.

Worlock, R.; James, E.; Ramsey, W.; Trump, G.; Gant, G.; Jan, L.; Bartlett, R.

1972-01-01

169

Development of a unified guidance system for geocentric transfer. [for solar electric propulsion spacecraft  

NASA Technical Reports Server (NTRS)

A method is presented for open loop guidance of a solar electric propulsion spacecraft to geosynchronous orbit. The method consists of determining the thrust vector profiles on the ground with an optimization computer program, and performing updates based on the difference between the actual trajectory and that predicted with a precision simulation computer program. The motivation for performing the guidance analysis during the mission planning phase is discussed, and a spacecraft design option that employs attitude orientation constraints is presented. The improvements required in both the optimization program and simulation program are set forth, together with the efforts to integrate the programs into the ground support software for the guidance system.

Cake, J. E.; Regetz, J. D., Jr.

1975-01-01

170

Development of a unified guidance system for geocentric transfer. [solar electric propulsion spacecraft  

NASA Technical Reports Server (NTRS)

A method is presented for open loop guidance of a solar electric propulsion spacecraft to geosynchronsus orbit. The method consists of determining the thrust vector profiles on the ground with an optimization computer program, and performing updates based on the difference between the actual trajectory and that predicted with a precision simulation computer program. The motivation for performing the guidance analysis during the mission planning phase is discussed, and a spacecraft design option that employs attitude orientation constraints is presented. The improvements required in both the optimization program and simulation program are set forth, together with the efforts to integrate the programs into the ground support software for the guidance system.

Cake, J. E.; Regetz, J. D., Jr.

1975-01-01

171

X-31 high angle of attack control system performance  

NASA Technical Reports Server (NTRS)

The design goals for the X-31 flight control system were: (1) level 1 handling qualities during post-stall maneuvering (30 to 70 degrees angle-of-attack); (2) thrust vectoring to enhance performance across the flight envelope; and (3) adequate pitch-down authority at high angle-of-attack. Additional performance goals are discussed. A description of the flight control system is presented, highlighting flight control system features in the pitch and roll axes and X-31 thrust vectoring characteristics. The high angle-of-attack envelope clearance approach will be described, including a brief explanation of analysis techniques and tools. Also, problems encountered during envelope expansion will be discussed. This presentation emphasizes control system solutions to problems encountered in envelope expansion. An essentially 'care free' envelope was cleared for the close-in-combat demonstrator phase. High angle-of-attack flying qualities maneuvers are currently being flown and evaluated. These results are compared with pilot opinions expressed during the close-in-combat program and with results obtained from the F-18 HARV for identical maneuvers. The status and preliminary results of these tests are discussed.

Huber, Peter; Seamount, Patricia

1994-01-01

172

Static internal performance of single expansion-ramp nozzles with thrust vectoring and reversing  

NASA Technical Reports Server (NTRS)

The effects of geometric design parameters on the internal performance of nonaxisymmetric single expansion-ramp nozzles were investigated at nozzle pressure ratios up to approximately 10. Forward-flight (cruise), vectored-thrust, and reversed-thrust nozzle operating modes were investigated.

Re, R. J.; Berrier, B. L.

1982-01-01

173

Advanced solid rocket motor nozzle thrust vector control flexseal development status  

NASA Astrophysics Data System (ADS)

The advanced solid rocket motor (ASRM) flexseal development status is reviewed focusing on design goals and requirements, design configuration, analysis activities, and verification tests. It is concluded that the ASRM flexseal incorporates flight-proven materials in an innovative design configuration. Variable thickness shims and efficient packaging of the flexseal make it possible to achieve a significant weight reduction. A flexseal insulator design derived from strategic solid rocket motor experience will provide the necessary bearing thermal protection while minimizing vectoring torque variability.

Prins, William S.; Meyer, Scott A.; Cox, Paul D.

1992-07-01

174

Advanced launch system (ALS) - Electrical actuation and power systems improve operability and cost picture  

NASA Technical Reports Server (NTRS)

To obtain the Advanced Launch System (ALS) primary goals of reduced costs and improved operability, there must be significant reductions in the launch operations and servicing requirements relative to current vehicle designs and practices. One of the primary methods for achieving these goals is by using vehicle electrrical power system and controls for all aviation and avionics requirements. A brief status review of the ALS and its associated Advanced Development Program is presented to demonstrate maturation of those technologies that will help meet the overall operability and cost goals. The electric power and actuation systems are highlighted as a sdpecific technology ready not only to meet the stringent ALS goals (cryogenic field valves and thrust vector controls with peak power demands to 75 hp), but also those of other launch vehicles, military ans civilian aircraft, lunar/Martian vehicles, and a multitude of comercial applications.

Sundberg, Gale R.

1990-01-01

175

Advanced Launch System (ALS): Electrical actuation and power systems improve operability and cost picture  

NASA Astrophysics Data System (ADS)

To obtain the Advanced Launch System (ALS) primary goals of reduced costs and improved operability, there must be significant reductions in the launch operations and servicing requirements relative to current vehicle designs and practices. One of the primary methods for achieving these goals is by using vehicle electrical power system and controls for all actuation and avionics requirements. A brief status review of the ALS and its associated Advanced Development Program is presented to demonstrate maturation of those technologies that will help meet the overall operability and cost goals. The electric power and actuation systems are highlighted as a specific technology ready not only to meet the stringent ALS goals (cryogenic field valves and thrust vector controls with peak power demands to 75 hp), but also those of other launch vehicles, military and civilian aircraft, lunar/Martian vehicles, and a multitude of commercial applications.

Sundberg, Gale R.

176

Flight-determined benefits of integrated flight-propulsion control systems  

NASA Technical Reports Server (NTRS)

Over the last two decades, NASA has conducted several experiments in integrated flight-propulsion control. Benefits have included improved maneuverability; increased thrust, range, and survivability; reduced fuel consumption; and reduced maintenance. This paper presents the basic concepts for control integration, examples of implementation, and benefits. The F-111E experiment integrated the engine and inlet control systems. The YF-12C incorporated an integral control system involving the inlet, autopilot, autothrottle, airdata, navigation, and stability augmentation systems. The F-15 research involved integration of the engine, flight, and inlet control systems. Further extension of the integration included real-time, onboard optimization of engine, inlet, and flight control variables; a self-repairing flight control system; and an engines-only control concept for emergency control. The F-18A aircraft incorporated thrust vectoring integrated with the flight control system to provide enhanced maneuvering at high angles of attack. The flight research programs and the resulting benefits of each program are described.

Stewart, James F.; Burcham, Frank W., Jr.; Gatlin, Donald H.

1992-01-01

177

Durability tests of a five centimeter diameter ion thruster system  

NASA Technical Reports Server (NTRS)

A modified Hughes SIT-5 system is being tested for durability at the Lewis Research Center. As of October 1, 1972, the thruster subsystem has logged over 8000 hours of operation. The initial 2023 hours were run with a translating screen thrust vector grid. The thruster is currently operating with an electrostatic type vector grid. Profiles and maps taken at widely separated intervals show that performance and operating characteristics have remained essentially constant. Overall efficiency is about 32 percent and power to thrust ratio is 170 watts per millipound at a specific impulse of 2500 seconds. Telescopic examination of the vector grid shows some sputtering erosion due to charge exchange and direct impingement ions.

Nakanishi, S.

1972-01-01

178

A 2?W Three-Axis MEMS-based Accelerometer  

Microsoft Academic Search

This paper describes a prototype acceleration sensor that enables chronic motion sensing in battery powered applications. The design facilitates inertial measurement with minimal area, power penalty, and routing concerns by converting three axes of acceleration into three independent analog output channels in a single package. The sensor includes on-chip memory to store trim codes during production, and built-in electrostatic self-test

Timothy Denison; Kelly Consoer; Wesley Santa; M. Hutt; K. Mieser

2007-01-01

179

Performance characteristics of a three-axis superconducting rock magnetometer  

NASA Technical Reports Server (NTRS)

A series of measurements are carried out with the purpose of quantitatively determining the characteristics of a commercial 6.8 cm access superconducting rock magnetometer located in the magnetic properties laboratory at the Goddard Space Flight Center. The measurements show that although a considerable improvement in measurement speed and signal to noise ratios can be obtained using such an instrument, a number of precautions are necessary to obtain accuracies comparable with more conventional magnetometers. These include careful calibration of the sensor outputs, optimum positioning of the sample within the detection region and quantitatively establishing the degree of cross-coupling between the detector coils. In order to examine the uniformity of response for each detector, the responses are mapped as a function of position, using a small dipole.

Lienert, B. R.

1977-01-01

180

Annular Colloid Thruster for Three-Axis Stabilized Military Satellites.  

National Technical Information Service (NTIS)

The report describes a program to increase the performance capability of high thrust density colloid thrusters. Single emitter sources have been developed which produce greater than 25 micro lbs thrust at 75 percent efficiency and 1300 seconds specific im...

M. N. Huberman

1973-01-01

181

Electron Paramagnetic Resonance -- Nuclear Magnetic Resonance Three Axis Vector Magnetometer  

NASA Astrophysics Data System (ADS)

The Northrop Grumman Corporation is leveraging the technology developed for the Nuclear Magnetic Resonance Gyroscope (NMRG) to build a combined Electron Paramagnetic Resonance -- Nuclear Magnetic Resonance (EPR-NMR) magnetometer. The EPR-NMR approach provides a high bandwidth and high sensitivity simultaneous measurement of all three vector components of the magnetic field averaged over the small volume of the sensor's one vapor cell. This poster will describe the history, operational principles, and design basics of the EPR-NMR magnetometer including an overview of the NSD designs developed and demonstrated to date. General performance results will also be presented.

Bulatowicz, Michael; Clark, Philip; Griffith, Robert; Larsen, Michael; Mirijanian, James

2012-06-01

182

Ultra miniature novel three-axis micro accelerometer  

Microsoft Academic Search

This paper presents for the first time the design, fabrication and characterization of an ultra miniaturized novel 3-axis accelerometer with nanoscale piezoresistive sensing elements and read out circuits. It was developed using MEMS\\/NEMS machining and fabrication techniques. This sensor consists of a new sub-millimeter structure with seismic mass and combined cross-beam and surrounding beams. It can detect three components of

R. Amarasinghe; D. V. Dao; V. T. Dau; S. Sugiyama

2009-01-01

183

Numerical and classical analysis of V/STOL aircraft using selected propulsion systems  

NASA Technical Reports Server (NTRS)

The development needed for the evolution of selected V/STOL research vehicles into optimized antisubmarine warfare (ASW) aircraft configurations, using numerical procedures and traditional analytical methods, has been examined. Three propulsion systems, which represent state-of-the-art development aimed at solving the thrust-vectoring and attitude-control problems of V/STOL aircraft, are analyzed. The use of NASA computer programs for aircraft synthesis (ACSYNT), and for optimizing configurations (COMMIN), coupled with contractor-supplied propulsion system data provides for accurate performance prediction of the selected ASW configurations. Particular emphasis on the transition phase between the research vehicle and the optimized configuration demonstrates the strengths and weaknesses of using generic research aircraft instead of building prototypes to demonstrate new technology

Wilson, S. B., III; Kidwell, G. H., Jr.; Christiansen, R. S.

1981-01-01

184

Phase-Locked Servo System.  

National Technical Information Service (NTIS)

A phase-locked servo system is described for use in rotating a slip ring assembly at the exact velocity as one axis of a three-axis air bearing table. The system includes two servo loops. The first servo loop includes a rate gyroscope carried on an air be...

C. Burdin

1973-01-01

185

Pointing and control for planetary spacecraft - The first twenty years  

NASA Technical Reports Server (NTRS)

The evolution of guidance and control systems for United States planetary and unmanned lunar spacecraft over the last 20 years is traced. The characteristics of the guidance and control systems used on spacecraft from the Range lunar impactor to the planned Galileo Jupiter orbiter and entry probe are surveyed, with attention given to the uses of three-axis stabilized, spin-stabilized and dual-spin designs. System performance trends that have evolved to meet the increasing science and mission requirements of the spacecraft are considered in the areas of attitude references, control consumables, dynamics and system modeling, thrust vector control, optical navigation, manuever turns, maneuver velocity control, instrument pointing, and antenna pointing. Hardware trends in optical sensors, inertial sensors, processing electronics, electromechanical devices, and system testing and reliability are also reviewed. The achievements represented by these advances are emphasized, and it is predicted that future developments will be in the areas of increased control system autonomy and performance requirements.

Pace, G. D.

1980-01-01

186

Development of a Unified Guidance System for Geocentric Transfer.  

National Technical Information Service (NTIS)

A method is presented for open loop guidance of a solar electric propulsion spacecraft to geosynchronsus orbit. The method consists of determining the thrust vector profiles on the ground with an optimization computer program, and performing updates based...

J. E. Cake J. D. Regetz

1975-01-01

187

System aspects of spacecraft charging  

NASA Technical Reports Server (NTRS)

Satellites come in a variety of sizes and configurations including spinning satellites and three-axis stabilized satellites. All of these characteristics have a significant effect on spacecraft charging considerations. There are, however, certain fundamentals which can be considered which indicate the nature and extent of the problem. The global positioning system satellite serves to illustrate certain characteristics.

Bower, S. P.

1977-01-01

188

Evaluation of dual flow thrust vectored nozzles with exhaust stream impingement. MS Thesis Final Technical Report, Oct. 1990 - Jul. 1991  

NASA Technical Reports Server (NTRS)

The main objective of this project was to predict the expansion wave/oblique shock wave structure in an under-expanded jet expanding from a convergent nozzle. The shock structure was predicted by combining the calculated curvature of the free pressure boundary with principles and governing equations relating to oblique shock wave and expansion wave interaction. The procedure was then continued until the shock pattern repeated itself. A mathematical model was then formulated and written in FORTRAN to calculate the oblique shock/expansion wave structure within the jet. In order to study shock waves in expanding jets, Schlieren photography, a form of flow visualization, was employed. Thirty-six Schlieren photographs of jets from both a straight and 15 degree nozzle were taken. An iterative procedure was developed to calculate the shock structure within the jet and predict the non-dimensional values of Prandtl primary wavelength (w/rn), distance to Mach Disc (Ld) and Mach Disc radius (rd). These values were then compared to measurements taken from Schlieren photographs and experimental results. The results agreed closely to measurements from Schlieren photographs and previously obtained data. This method provides excellent results for pressure ratios below that at which a Mach Disc first forms. Calculated values of non-dimensional distance to the Mach Disc (Ld) agreed closely to values measured from Schlieren photographs and published data. The calculated values of non-dimensional Mach Disc radius (rd), however, deviated from published data by as much as 25 percent at certain pressure ratios.

Carpenter, Thomas W.

1991-01-01

189

Flywheel energy storage for electromechanical actuation systems  

NASA Astrophysics Data System (ADS)

The authors describe a flywheel energy storage system designed specifically to provide load-leveling for a thrust vector control (TVC) system using electromechanical actuators (EMAs). One of the major advantages of an EMA system over a hydraulic system is the significant reduction in total energy consumed during the launch profile. Realization of this energy reduction will, however, require localized energy storage capable of delivering the peak power required by the EMAs. A combined flywheel-motor/generator unit which interfaces directly to the 20-kHz power bus represents an ideal candidate for this load leveling. The overall objective is the definition of a flywheel energy storage system for this application. The authors discuss progress on four technical objectives: (1) definition of the specifications for the flywheel-motor/generator system, including system-level trade-off analysis; (2) design of the flywheel rotor; (3) design of the motor/generator; and (4) determination of the configuration for the power management system.

Hockney, Richard L.; Goldie, James H.; Kirtley, James L.

190

Flywheel energy storage for electromechanical actuation systems  

NASA Technical Reports Server (NTRS)

The authors describe a flywheel energy storage system designed specifically to provide load-leveling for a thrust vector control (TVC) system using electromechanical actuators (EMAs). One of the major advantages of an EMA system over a hydraulic system is the significant reduction in total energy consumed during the launch profile. Realization of this energy reduction will, however, require localized energy storage capable of delivering the peak power required by the EMAs. A combined flywheel-motor/generator unit which interfaces directly to the 20-kHz power bus represents an ideal candidate for this load leveling. The overall objective is the definition of a flywheel energy storage system for this application. The authors discuss progress on four technical objectives: (1) definition of the specifications for the flywheel-motor/generator system, including system-level trade-off analysis; (2) design of the flywheel rotor; (3) design of the motor/generator; and (4) determination of the configuration for the power management system.

Hockney, Richard L.; Goldie, James H.; Kirtley, James L.

1991-01-01

191

Dynamic interactions between hypersonic vehicle aerodynamics and propulsion system performance  

NASA Technical Reports Server (NTRS)

Described here is the development of a flexible simulation model for scramjet hypersonic propulsion systems. The primary goal is determination of sensitivity of the thrust vector and other system parameters to angle of attack changes of the vehicle. Such information is crucial in design and analysis of control system performance for hypersonic vehicles. The code is also intended to be a key element in carrying out dynamic interaction studies involving the influence of vehicle vibrations on propulsion system/control system coupling and flight stability. Simple models are employed to represent the various processes comprising the propulsion system. A method of characteristics (MOC) approach is used to solve the forebody and external nozzle flow fields. This results in a very fast computational algorithm capable of carrying out the vast number of simulation computations needed in guidance, stability, and control studies. The three-dimensional fore- and aft body (nozzle) geometry is characterized by the centerline profiles as represented by a series of coordinate points and body cross-section curvature. The engine module geometry is represented by an adjustable vertical grid to accommodate variations of the field parameters throughout the inlet and combustor. The scramjet inlet is modeled as a two-dimensional supersonic flow containing adjustable sidewall wedges and multiple fuel injection struts. The inlet geometry including the sidewall wedge angles, the number of injection struts, their sweepback relative to the vehicle reference line, and strut cross-section are user selectable. Combustion is currently represented by a Rayleigh line calculation including corrections for variable gas properties; improved models are being developed for this important element of the propulsion flow field. The program generates (1) variation of thrust magnitude and direction with angle of attack, (2) pitching moment and line of action of the thrust vector, (3) pressure and temperature distributions throughout the system, and (4) performance parameters such as thrust coefficient, specific impulse, mass flow rates, and equivalence ratio. Preliminary results are in good agreement with available performance data for systems resembling the NASP vehicle configuration.

Flandro, G. A.; Roach, R. L.; Buschek, H.

1992-01-01

192

Design and development issues for a control actuation system for the AdKEM  

Microsoft Academic Search

The paper addresses three issues critical to the design and development of the control actuation system (CAS) for the Advanced Kinetic Energy Missile (AdKEM), a hypersonic, kinetic energy weapon system. First of all, the small missile diameter requires that a high performance, three-axis control system be packaged within a limited amount of space. The second critical issue is the need

Stephen C. Cayson

1992-01-01

193

Managing vulnerabilities of information systems to security incidents  

Microsoft Academic Search

Information security-conscious managers of organizations have the responsibility to advise their senior management of the level of risks faced by the information systems. This requires managers to conduct vulnerability assessment as the first step of a risk analysis approach. However, a lack of real world data classification of security threats and develops a three-axis view of the threat space. It

Fariborz Farahmand; Shamkant B. Navathe; Philip H. Enslow Jr.; Gunter P. Sharp

2003-01-01

194

The 3-axis Dynamic Motion Simulator (DMS) system  

NASA Technical Reports Server (NTRS)

A three-axis dynamic motion simulator (DMS) consisting of a test table with three degrees of freedom and an electronics control system was designed, constructed, delivered, and tested. Documentation, as required in the Data Requirements List (DRL), was also provided.

1975-01-01

195

General equilibrium characteristics of a dual-lift helicopter system  

NASA Technical Reports Server (NTRS)

The equilibrium characteristics of a dual-lift helicopter system are examined. The system consists of the cargo attached by cables to the endpoints of a spreader bar which is suspended by cables below two helicopters. Results are given for the orientation angles of the suspension system and its internal forces, and for the helicopter thrust vector requirements under general circumstances, including nonidentical helicopters, any accelerating or static equilibrium reference flight condition, any system heading relative to the flight direction, and any distribution of the load to the two helicopters. Optimum tether angles which minimize the sum of the required thrust magnitudes are also determined. The analysis does not consider the attitude degrees of freedom of the load and helicopters in detail, but assumes that these bodies are stable, and that their aerodynamic forces in equilibrium flight can be determined independently as functions of the reference trajectory. The ranges of these forces for sample helicopters and loads are examined and their effects on the equilibrium characteristics are given parametrically in the results.

Cicolani, L. S.; Kanning, G.

1986-01-01

196

Critical engine system design characteristics for SSTO vehicles  

NASA Astrophysics Data System (ADS)

Engine system design characteristics are summarized for typical vertical take-off and landing (VTOL) and vertical take-off and horizontal landing (VTHL) Strategic Defense Initiative Organization (SDIO) single stage to orbit (SSTO) vehicles utilizing plug nozzle configurations. Power cycle selection trades involved the unique modular platelet engine (MPE) with the use of (1) LO2 and LH2 at fixed and variable mixture ratios, (2) LO2 and propane or RP-1, and (3) dual fuels (LO2 with LH2 and C3H8). The number of thrust cells and modules were optimized. Dual chamber bell and a cluster of conventional bell nozzle configurations were examined for comparison with the plug configuration. Thrust modulation (throttling) was selected for thrust vector control. Installed thrust ratings were established to provide an additional 20 percent overthrust capability for engine out operation. Turbopumps were designed to operate at subcritical speeds to facilitate a wide range of throttling and long life. A unique dual spool arrangement with hydrostatic bearings was selected for the LH2 turbopump. Controls and health monitoring with expert systems for diagnostics are critical subsystems to ensure minimum maintenance and supportability for a less than seven day turnaround. The use of an idle mode start, in conjunction with automated health condition monitoring, allows the rocket propulsion system to operate reliably in the manner of present day aircraft propulsion.

Fanciullo, Thomas J.; Judd, D. C.; Obrien, C. J.

1992-02-01

197

Transition of a technology base for advanced aircraft gas turbine control systems  

SciTech Connect

Technology assessments during the 1980s projected the development of advanced military fighter aircraft that would require propulsion systems that could accommodate multimission capability with super maneuverability. These propulsion systems would be required to provide significantly improved thrust to weight, reduced thrust specific fuel consumption, and up and away thrust vectoring capabilities. Digital electronic control systems with significantly expanded capabilities would be required to handle these multifunction control actuation systems, to integrate them with flight control systems, and to provide fail-operational capability. This paper will discuss the challenges that were presented to propulsion system control designers, the innovation of technology to address these challenges, and the transition of that technology to production readiness. Technology advancements will be discussed in the area of digital electronic control capability and packaging, advanced fuel management systems, high pressure fuel hydraulic actuation systems for multifunction nozzles, integrated flight propulsion controls, and higher-order language software development tools. Each of these areas provided unique opportunities where technology development programs and flight prototyping carried concepts to reality.

McGlone, M.E. [Pratt and Whitney, West Palm Beach, FL (United States)

1998-07-01

198

A superconducting quantum interference device magnetometer system for quantitative analysis and imaging of hidden corrosion activity in aircraft aluminum structures  

Microsoft Academic Search

We have designed and built a magnetic imaging system for quantitative analysis of the rate of ongoing hidden corrosion of aircraft aluminum alloys in planar structures such as intact aircraft lap joints. The system utilizes a superconducting quantum interference device (SQUID) magnetometer that measures the magnetic field associated with corrosion currents. It consists of a three-axis (vector) SQUID differential magnetometer,

A. Abedi; J. J. Fellenstein; A. J. Lucas; J. P. Wikswo

1999-01-01

199

Stealth treatment of turntable in ultra-wideband Radio Frequency Simulation System  

Microsoft Academic Search

Stealth treatment of turntable in Radio Frequency Simulation System (RFSS) with large relative bandwidth is studied in this paper. First, the shape design of three-axis turntable is optimized. Then, the surface-induced current distribution of turntable under horizontal polarization is computed and strong scattering regions are analyzed. Finally, stealth treatments as choosing absorbing materials and suitable coating methods are tested. Based

Hua Li; Jianjiang Zhou; Hanwu Zhao; Gencai Zhu

2010-01-01

200

Accuracy Studies of a Magnetometer-Only Attitude-and-Rate-Determination System.  

National Technical Information Service (NTIS)

A personal computer based system was recently prototyped that uses measurements from a three axis magnetometer (TAM) to estimate the attitude and rates of a spacecraft using no a priori knowledge of the spacecraft's state. Past studies using in-flight dat...

M. Challa C. Wheeler

1996-01-01

201

X-31 helmet-mounted visual and audio display (HMVAD) system  

NASA Astrophysics Data System (ADS)

Agile aircraft (X-29, X-31, F-18 High Alpha Research Vehicle and F-16 Multi-Axis Thrust Vector) test pilots, while flying at high angles of attack, experience difficulty predicting their flight path trajectory. To compensate for the loss of this critical element of situational awareness, the X-31 International Test Organization (ITO) installed and evaluated a helmet mounted display (HMD) system into an X-31 aircraft and simulator. Also investigated for incorporation within the HMD system and flight evaluation was another candidate technology for improving situational awareness -three dimensional audio. This was the first flight test evaluating the coupling of visual and audio cueing for aircrew aiding. The focus of the endeavor, which implemented two visual and audio formats, was to examine the extent visual and audio orientation cueing enhanced situational awareness and improved pilot performance during tactical flying. This paper provides an overview of the X-31 HMVAD system, describes the visual and audio symbology, presents a summary of the pilots' subjective evaluation of the system following its use in simulation and flight test, and outlines the future plans for the X-31 HMVAD system.

Boehmer, Steven C.

1994-06-01

202

Attitude Determination Error Analysis System (ADEAS) mathematical specifications document  

NASA Technical Reports Server (NTRS)

The mathematical specifications of Release 4.0 of the Attitude Determination Error Analysis System (ADEAS), which provides a general-purpose linear error analysis capability for various spacecraft attitude geometries and determination processes, are presented. The analytical basis of the system is presented. The analytical basis of the system is presented, and detailed equations are provided for both three-axis-stabilized and spin-stabilized attitude sensor models.

Nicholson, Mark; Markley, F.; Seidewitz, E.

1988-01-01

203

Aristoteles magnetometer system  

NASA Technical Reports Server (NTRS)

A magnetometer system capable of meeting the stringent requirements of the Aristoteles mission is described. The system will comprise a three axis or Vector Flux gas Magnetometer (VFM) and a highly accurate resonance magnetometer, the Scalar Helium Magnetometer (SHM). Basic operational features of these instruments are described and their performance is related to the scientific objectives of the mission appropriate to the geomagnetic field measurements. The major requirements imposed on the spacecraft are summarized. Photographs and diagrams of both instruments are presented along with graphs of the sensitivity of the SHM to magnetic field orientation.

Smith, Edward J.; Marquedant, Roy J.; Langel, Robert; Acuna, Mario

1991-01-01

204

Navy and the HARV: High angle of attack tactical utility issues  

NASA Technical Reports Server (NTRS)

This presentation will highlight results from the latest Navy evaluation of the HARV (March 1994) and focus primarily on the impressions from a piloting standpoint of the tactical utility of thrust vectoring. Issue to be addressed will be mission suitability of high AOA flight, visual and motion feedback cues associated with operating at high AOA, and the adaptability of a pilot to effectively use the increased control power provided by the thrust vectoring system.

Sternberg, Charles A.; Traven, Ricardo; Lackey, James B.

1994-01-01

205

A system for spacecraft attitude control and energy storage  

NASA Technical Reports Server (NTRS)

A conceptual design for a double-gimbal reaction-wheel energy-wheel device which has three-axis attitude control and electrical energy storage capability is given. A mathematical model for the three-axis gyroscope (TAG) was developed, and a system of multiple units is proposed for attitude control and energy storage for a class of spacecraft. Control laws were derived to provide the required attitude-control torques and energy transfer while minimizing functions of TAG gimbal angles, gimbal rates, reaction-wheel speeds, and energy-wheel speed differences. A control law is also presented for a magnetic torquer desaturation system. A computer simulation of a three-TAG system for an orbiting telescope was used to evaluate the concept. The results of the study indicate that all control and power requirements can be satisfied by using the TAG concept.

Shaughnessy, J. D.

1974-01-01

206

The control system for the X-33 linear aerospike engine  

Microsoft Academic Search

The linear aerospike engine is being developed for single-stage-to-orbit (SSTO) applications. The primary advantages of a linear aerospike engine over a conventional bell nozzle engine include altitude compensation, which provides enhanced performance, and lower vehicle weight resulting from the integration of the engine into the vehicle structure. A feature of this integration is the ability to provide thrust vector control

J. E. Jackson; E. Espenschied; J. Klop

1998-01-01

207

Data generator for a satellite-borne three-axis accelerometer  

Microsoft Academic Search

Atmospheric drag has a significant effect on low altitude trajectories. To measure this force, an accelerometer will be tested which senses this nonconservative acceleration. The information obtained will then be used to improve the orbit and obtain a more accurate gravity field model. When the raw data is first received, all known systematic effects will be removed. These include gravity

C. G. Branch

1980-01-01

208

Three-axis accelerometer package for slimhole and microhole seismic monitoring and surveys  

SciTech Connect

The development of microdrilling technology, nominally defined as drilling technology for 1-in.-diameter boreholes, shows potential for reducing the cost of drilling monitoring wells. A major question that arises in drilling microholes is if downhole logging and monitoring in general--and downhole seismic surveying in particular--can be conducted in such small holes since the inner working diameter of such a seismic tool could be as small as 0.31 in. A downhole three-component accelerometer package that fits within a 031-in. inner diameter tube has been designed, built, and tested. The package consists of three orthogonally mounted Entran EGA-125-5g piezoresistive silicon micromachined accelerometers with temperature compensation circuitry, downhole amplification, and line drivers mounted in a thin-walled aluminum tube. Accelerometers are commercially available in much smaller package sizes than conventional geophones, but the noise floor is significantly higher than that for the geophones. Cross-well tests using small explosives showed good signal-to-noise ratio in the recorded waveform at various receiver depths with a 1,50-ft source-receiver well separation. For some active downhole surveys, the accelerometer unit would clearly be adequate. It can be reasonably assumed, however, that for less energetic sources and for greater well separations, the high accelerometer noise floor is not acceptable. By expanding the inner working diameter of a microhole seismic tool to 0.5 in., other commercial accelerometers can be used with substantially lower noise floors.

Hunter, S.L.; Harben, P.E.

1997-01-07

209

Design of MEMS based three-axis motion stage by incorporating a nested structure  

NASA Astrophysics Data System (ADS)

A new design of three degrees-of-freedom (DOF) translational motion stage (XYZ stage) is presented in this paper. This XYZ stage is based on MEMS and designed by combining three existing one-DOF motion stages through a nested structure. By utilizing the previously developed stages, this approach can reduce the effort for the design and analysis steps and ensure reasonable reliability. For successful implementation, electrical connection to the engaged stages, electrical isolation among them, and additional floating frames are introduced for the chosen one-DOF motion stages. With these features, the presented XYZ stage is successfully fabricated and demonstrates the range of motion of 53.98, 49.15, and 22.91?µm along X, Y, and Z axes, respectively. The coupled motion errors among the engaged stages can be reduced to be less than 1?µm with the proposed compensation method.

Kim, Y.-S.; Dagalakis, N. G.; Gupta, S. K.

2014-07-01

210

Neural network based three axis satellite attitude control using only magnetic torquers  

Microsoft Academic Search

Magnetic actuation utilizes the mechanic torque that is the result of interaction of the current in a coil with an external magnetic field. A main obstacle is, however, that torques can only be produced perpendicular to the magnetic field. In addition, there is uncertainty in the Earth magnetic field models due to the complicated dynamic nature of the field. Also,

N. Sivaprakash; J. Shanmugam

2005-01-01

211

The vTAS suite: A simulator for classical and multiplexed three-axis neutron spectrometers  

NASA Astrophysics Data System (ADS)

The vTAS suite provides graphical assistance to prepare and perform inelastic neutron scattering experiments on a TAS instrument, including latest multiplexed instrumental configurations, such as FlatCone, IMPS and UFO. The interactive display allows for flexible translation between instrument positions in real space and neutron scattering conditions represented in reciprocal space. It is a platform independent public domain software tool, available for download from the website of the Institut Laue Langevin (ILL).

Boehm, M.; Filhol, A.; Raoul, Y.; Kulda, J.; Schmidt, W.; Schmalzl, K.; Farhi, E.

2013-01-01

212

A three-axis flight simulator. [for testing and evaluating inertial measuring units, and flight platforms  

NASA Technical Reports Server (NTRS)

A simulator is described, which was designed for testing and evaluating inertial measuring units, and flight platforms. Mechanical and electrical specifications for the outer, middle, and inner axis are presented. Test results are included.

Mason, M. G.

1975-01-01

213

Three-axis digital holographic microscopy for high speed volumetric imaging.  

PubMed

Digital Holographic Microscopy allows to numerically retrieve three dimensional information encoded in a single 2D snapshot of the coherent superposition of a reference and a scattered beam. Since no mechanical scans are involved, holographic techniques have a superior performance in terms of achievable frame rates. Unfortunately, numerical reconstructions of scattered field by back-propagation leads to a poor axial resolution. Here we show that overlapping the three numerical reconstructions obtained by tilted red, green and blue beams results in a great improvement over the axial resolution and sectioning capabilities of holographic microscopy. A strong reduction in the coherent background noise is also observed when combining the volumetric reconstructions of the light fields at the three different wavelengths. We discuss the performance of our technique with two test objects: an array of four glass beads that are stacked along the optical axis and a freely diffusing rod shaped E.coli bacterium. PMID:24921564

Saglimbeni, F; Bianchi, S; Lepore, A; Di Leonardo, R

2014-06-01

214

Space Launch System Implementation of Adaptive Augmenting Control  

NASA Technical Reports Server (NTRS)

Given the complex structural dynamics, challenging ascent performance requirements, and rigorous flight certification constraints owing to its manned capability, the NASA Space Launch System (SLS) launch vehicle requires a proven thrust vector control algorithm design with highly optimized parameters to robustly demonstrate stable and high performance flight. On its development path to preliminary design review (PDR), the stability of the SLS flight control system has been challenged by significant vehicle flexibility, aerodynamics, and sloshing propellant dynamics. While the design has been able to meet all robust stability criteria, it has done so with little excess margin. Through significant development work, an adaptive augmenting control (AAC) algorithm previously presented by Orr and VanZwieten, has been shown to extend the envelope of failures and flight anomalies for which the SLS control system can accommodate while maintaining a direct link to flight control stability criteria (e.g. gain & phase margin). In this paper, the work performed to mature the AAC algorithm as a baseline component of the SLS flight control system is presented. The progress to date has brought the algorithm design to the PDR level of maturity. The algorithm has been extended to augment the SLS digital 3-axis autopilot, including existing load-relief elements, and necessary steps for integration with the production flight software prototype have been implemented. Several updates to the adaptive algorithm to increase its performance, decrease its sensitivity to expected external commands, and safeguard against limitations in the digital implementation are discussed with illustrating results. Monte Carlo simulations and selected stressing case results are shown to demonstrate the algorithm's ability to increase the robustness of the integrated SLS flight control system.

VanZwieten, Tannen S.; Wall, John H.; Orr, Jeb S.

2014-01-01

215

Small-angle stability analysis of a linear control system for a high power communication satellite  

NASA Technical Reports Server (NTRS)

A small angle stability analysis is presented for one particular configuration of a high power communication satellite having a linear control system. Both the central body and the solar array are treated as rigid bodies. The control system studied consists of three-axis control of the central body and one-axis control of the solar array rotation relative to the central body. The results yield preliminary indications of the relation of stability to satellite inertias and control gains.

Omalley, T. A.

1972-01-01

216

Design of power electronics for TVC and EMA systems  

NASA Technical Reports Server (NTRS)

The Component Development Division of the Propulsion Laboratory at Marshall Space Flight Center (MSFC) is currently developing a class of electromechanical actuators (EMA's) for use in space transportation applications such as thrust vector control (TVC) and propellant control valves (PCV). These high power servomechanisms will require rugged, reliable, and compact power electronic modules capable of modulating several hundred amperes of current at up to 270 volts. MSFC has selected the brushless dc motor for implementation in EMA's. A previous project performed by Auburn University examined the use of the resonant dc link (RDCL) inverter, pulse density modulation (PDM), and mos-controlled thyristors (MCT's) for speed control of a brushless dc motor. The speed of the brushless dc motor is proportional to the applied stator voltage. In a PDM system, the control system determines the number of resonant voltage pulses which must be applied to the stator to achieve a desired speed. The addition of a waveshaping circuit to the front end of a standard three-phase inverter yields a RDCL inverter; the resonant voltage pulses are produced through the action of this wave shaping circuit and the inverter. This project has focused on the implementation of a system which permits zero-voltage switching with the bus voltage clamped at the input voltage level. In the same manner as the RDCL inverter, the inverter selected for this implementation is a combination of waveshaping circuit and a standard three-phase inverter. In addition, this inverter allows a pulse-width modulated (PWM)-like control scheme instead of a PDM scheme. The operation of waveshaping circuit will be described through analysis and waveforms. Design relationships will also be presented.

Nelms, R. Mark; Bell, J. Brett; Shepherd, Michael T.

1994-01-01

217

Handbook for the extremely low frequency (ELF) data acquisition and analysis system  

NASA Astrophysics Data System (ADS)

This handbook describes the digital data acquisition system built to record data in the 1 Hz to 600 Hz bandwidth from the portable underwater extremely low frequency (ELF) electromagnetic sensor unit. The sensors supported by the acquisition system are three-axis alternating magnetic field detection coils, three-axis alternating electric field sensors (electrodes) and three-axis seismic sensors; plus ancillary sensors such as pressure-depth, inclination and compass heading. The data acquisition system consists of the wet-end electronics package incorporating the controller board, 16 bit analog to digital converter, low noise preamplifiers etc. and the dry-end electronics unit incorporating the power supply and computer. The data acquisition software for remote control of the total system and the analysis software which is linked to the data acquisition system is also presented. The analysis software which is purposely designed as an integral part of the acquisition system provides frequency domain spectral information (via the fast Fourier transform algorithm) from the raw time series data and may be used both for quick look analysis during the data acquisition phase and for full analysis of data in slow time.

Vrbancich, J.; Valentine-Flint, S.; Wong, R.

1994-10-01

218

A PC-based magnetometer-only attitude and rate determination system for gyroless spacecraft  

NASA Technical Reports Server (NTRS)

This paper describes a prototype PC-based system that uses measurements from a three-axis magnetometer (TAM) to estimate the state (three-axis attitude and rates) of a spacecraft given no a priori information other than the mass properties. The system uses two algorithms that estimate the spacecraft's state - a deterministic magnetic-field only algorithm and a Kalman filter for gyroless spacecraft. The algorithms are combined by invoking the deterministic algorithm to generate the spacecraft state at epoch using a small batch of data and then using this deterministic epoch solution as the initial condition for the Kalman filter during the production run. System input comprises processed data that includes TAM and reference magnetic field data. Additional information, such as control system data and measurements from line-of-sight sensors, can be input to the system if available. Test results are presented using in-flight data from two three-axis stabilized spacecraft: Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX) (gyroless, Sun-pointing) and Earth Radiation Budget Satellite (ERBS) (gyro-based, Earth-pointing). The results show that, using as little as 700 s of data, the system is capable of accuracies of 1.5 deg in attitude and 0.01 deg/s in rates; i.e., within SAMPEX mission requirements.

Challa, M.; Natanson, G.; Deutschmann, J.; Galal, K.

1995-01-01

219

X-31 Landing with Drag Chute Deploy  

NASA Technical Reports Server (NTRS)

One of two X-31 Enhanced Fighter Maneuverability Demonstrator aircraft, flown by an international test organization at NASA's Dryden Flight Research Center, Edwards, California, deploys its drag chute upon landing after a research flight. The aircraft obtained data that may apply to the design and development of highly-maneuverable flights of the future. The X-31 had a three-axis thrust-vectoring system, coupled with advanced flight controls, to allow it to maneuver tightly at very high angles of attack. The X-31 Enhanced Fighter Maneuverability (EFM) demonstrator flew at the Ames- Dryden Flight Research Facility, Edwards, California (redesignated the Dryden Flight Research Center in 1994) from February 1992 until 1995 and before that at the Air Force's Plant 42 in Palmdale, California. The goal of the project was to provide design information for the next generation of highly maneuverable fighter aircraft. This program demonstrated the value of using thrust vectoring (directing engine exhaust flow) coupled with an advanced flight control system to provide controlled flight to very high angles of attack. The result was a significant advantage over most conventional fighters in close-in combat situations. The X-31 flight program focused on agile flight within the post-stall regime, producing technical data to give aircraft designers a better understanding of aerodynamics, effectiveness of flight controls and thrust vectoring, and airflow phenomena at high angles of attack. Stall is a condition of an airplane or an airfoil in which lift decreases and drag increases due to the separation of airflow. Thrust vectoring compensates for the loss of control through normal aerodynamic surfaces that occurs during a stall. Post-stall refers to flying beyond the normal stall angle of attack, which in the X-31 was at a 30-degree angle of attack. During Dryden flight testing, the X-31 aircraft established several milestones. On November 6, 1992, the X-31 achieved controlled flight at a 70-degree angle of attack. On April 29, 1993, the second X-31 successfully executed a rapid minimum-radius, 180-degree turn using a post-stall maneuver, flying well beyond the aerodynamic limits of any conventional aircraft. This revolutionary maneuver has been called the 'Herbst Maneuver' after Wolfgang Herbst, a German proponent of using post-stall flight in air-to-air combat. It is also called a 'J Turn' when flown to an arbitrary heading change. The aircraft was flown in tactical maneuvers against an F/A-18 and other tactical aircraft as part of the test flight program. During November and December 1993, the X-31 reached a supersonic speed of Mach 1.28. In 1994, the X-31 program installed software to demonstrate quasi-tailless operation. The X-31 flight test program was conducted by an international test organization (ITO) managed by the Advanced Research Projects Office (ARPA), known as the Defense Advanced Research Projects Office (DARPA) before March 1993. The ITO included the U.S. Navy and U.S. Air Force, Rockwell Aerospace, the Federal Republic of Germany, Daimler-Benz (formerly Messerschmitt-Bolkow-Blohm and Deutsche Aerospace), and NASA. Gary Trippensee was the ITO director and NASA Project Manager. Pilots came from participating organizations. The X-31 was 43.33 feet long with a wingspan of 23.83 feet. It was powered by a single General Electric P404-GE-400 turbofan engine that produced 16,000 pounds of thrust in afterburner.

1995-01-01

220

X-31 in Banked Flight over Edwards AFB  

NASA Technical Reports Server (NTRS)

One of two X-31 Enhanced Fighter Maneuverability Demonstrator aircraft, flown by an international test organization at NASA's Dryden Flight Research Center, Edwards, California, turns tightly over the desert floor on a research flight. The aircraft obtained data that may apply to the design and development of highly-maneuverable aircraft of the future. The X-31 had a three-axis thrust-vectoring system, coupled with advanced flight controls, to allow it to maneuver tightly at very high angles of attack. The X-31 Enhanced Fighter Maneuverability (EFM) demonstrator flew at the Ames- Dryden Flight Research Facility, Edwards, California (redesignated the Dryden Flight Research Center in 1994) from February 1992 until 1995 and before that at the Air Force's Plant 42 in Palmdale, California. The goal of the project was to provide design information for the next generation of highly maneuverable fighter aircraft. This program demonstrated the value of using thrust vectoring (directing engine exhaust flow) coupled with an advanced flight control system to provide controlled flight to very high angles of attack. The result was a significant advantage over most conventional fighters in close-in combat situations. The X-31 flight program focused on agile flight within the post-stall regime, producing technical data to give aircraft designers a better understanding of aerodynamics, effectiveness of flight controls and thrust vectoring, and airflow phenomena at high angles of attack. Stall is a condition of an airplane or an airfoil in which lift decreases and drag increases due to the separation of airflow. Thrust vectoring compensates for the loss of control through normal aerodynamic surfaces that occurs during a stall. Post-stall refers to flying beyond the normal stall angle of attack, which in the X-31 was at a 30-degree angle of attack. During Dryden flight testing, the X-31 aircraft established several milestones. On November 6, 1992, the X-31 achieved controlled flight at a 70-degree angle of attack. On April 29, 1993, the second X-31 successfully executed a rapid minimum-radius, 180-degree turn using a post-stall maneuver, flying well beyond the aerodynamic limits of any conventional aircraft. This revolutionary maneuver has been called the 'Herbst Maneuver' after Wolfgang Herbst, a German proponent of using post-stall flight in air-to-air combat. It is also called a 'J Turn' when flown to an arbitrary heading change. The aircraft was flown in tactical maneuvers against an F/A-18 and other tactical aircraft as part of the test flight program. During November and December 1993, the X-31 reached a supersonic speed of Mach 1.28. In 1994, the X-31 program installed software to demonstrate quasi-tailless operation. The X-31 flight test program was conducted by an international test organization (ITO) managed by the Advanced Research Projects Office (ARPA), known as the Defense Advanced Research Projects Office (DARPA) before March 1993. The ITO included the U.S. Navy and U.S. Air Force, Rockwell Aerospace, the Federal Republic of Germany, Daimler-Benz (formerly Messerschmitt-Bolkow-Blohm and Deutsche Aerospace), and NASA. Gary Trippensee was the ITO director and NASA Project Manager. Pilots came from participating organizations. The X-31 was 43.33 feet long with a wingspan of 23.83 feet. It was powered by a single General Electric P404-GE-400 turbofan engine that produced 16,000 pounds of thrust in afterburner.

1994-01-01

221

X-31 in Flight with F-18 Chase  

NASA Technical Reports Server (NTRS)

A head-on view of the X-31 Enhanced Fighter Maneuverability Demonstrator aircraft (right), accompanied by a NASA F-18 chase aircraft during a research flight over the desert floor. The X-31 had a three-axis thrust-vectoring system, coupled with advanced flight controls, to allow it to maneuver tightly at very high angles of attack. The X-31 Enhanced Fighter Maneuverability (EFM) demonstrator flew at the Ames- Dryden Flight Research Facility, Edwards, California (redesignated the Dryden Flight Research Center in 1994) from February 1992 until 1995 and before that at the Air Force's Plant 42 in Palmdale, California. The goal of the project was to provide design information for the next generation of highly maneuverable fighter aircraft. This program demonstrated the value of using thrust vectoring (directing engine exhaust flow) coupled with an advanced flight control system to provide controlled flight to very high angles of attack. The result was a significant advantage over most conventional fighters in close-in combat situations. The X-31 flight program focused on agile flight within the post-stall regime, producing technical data to give aircraft designers a better understanding of aerodynamics, effectiveness of flight controls and thrust vectoring, and airflow phenomena at high angles of attack. Stall is a condition of an airplane or an airfoil in which lift decreases and drag increases due to the separation of airflow. Thrust vectoring compensates for the loss of control through normal aerodynamic surfaces that occurs during a stall. Post-stall refers to flying beyond the normal stall angle of attack, which in the X-31 was at a 30-degree angle of attack. During Dryden flight testing, the X-31 aircraft established several milestones. On November 6, 1992, the X-31 achieved controlled flight at a 70-degree angle of attack. On April 29, 1993, the second X-31 successfully executed a rapid minimum-radius, 180-degree turn using a post-stall maneuver, flying well beyond the aerodynamic limits of any conventional aircraft. This revolutionary maneuver has been called the 'Herbst Maneuver' after Wolfgang Herbst, a German proponent of using post-stall flight in air-to-air combat. It is also called a 'J Turn' when flown to an arbitrary heading change. The aircraft was flown in tactical maneuvers against an F/A-18 and other tactical aircraft as part of the test flight program. During November and December 1993, the X-31 reached a supersonic speed of Mach 1.28. In 1994, the X-31 program installed software to demonstrate quasi-tailless operation. The X-31 flight test program was conducted by an international test organization (ITO) managed by the Advanced Research Projects Office (ARPA), known as the Defense Advanced Research Projects Office (DARPA) before March 1993. The ITO included the U.S. Navy and U.S. Air Force, Rockwell Aerospace, the Federal Republic of Germany, Daimler-Benz (formerly Messerschmitt-Bolkow-Blohm and Deutsche Aerospace), and NASA. Gary Trippensee was the ITO director and NASA Project Manager. Pilots came from participating organizations. The X-31 was 43.33 feet long with a wingspan of 23.83 feet. It was powered by a single General Electric P404-GE-400 turbofan engine that produced 16,000 pounds of thrust in afterburner.

1994-01-01

222

X-31 in Flight over Edwards AFB  

NASA Technical Reports Server (NTRS)

One of two X-31 Enhanced Fighter Maneuverability Demonstrator aircraft, flown by an international test organization at NASA's Dryden Flight Research Center, Edwards, California, turns tightly over the desert floor on a research flight. The aircraft obtained data that may apply to the design and development of highly-maneuverable aircraft of the future. The X-31 had a three-axis thrust-vectoring system, coupled with advanced flight controls, to allow it to maneuver tightly at very high angles of attack. The X-31 Enhanced Fighter Maneuverability (EFM) demonstrator flew at the Ames- Dryden Flight Research Facility, Edwards, California (redesignated the Dryden Flight Research Center in 1994) from February 1992 until 1995 and before that at the Air Force's Plant 42 in Palmdale, California. The goal of the project was to provide design information for the next generation of highly maneuverable fighter aircraft. This program demonstrated the value of using thrust vectoring (directing engine exhaust flow) coupled with an advanced flight control system to provide controlled flight to very high angles of attack. The result was a significant advantage over most conventional fighters in close-in combat situations. The X-31 flight program focused on agile flight within the post-stall regime, producing technical data to give aircraft designers a better understanding of aerodynamics, effectiveness of flight controls and thrust vectoring, and airflow phenomena at high angles of attack. Stall is a condition of an airplane or an airfoil in which lift decreases and drag increases due to the separation of airflow. Thrust vectoring compensates for the loss of control through normal aerodynamic surfaces that occurs during a stall. Post-stall refers to flying beyond the normal stall angle of attack, which in the X-31 was at a 30-degree angle of attack. During Dryden flight testing, the X-31 aircraft established several milestones. On November 6, 1992, the X-31 achieved controlled flight at a 70-degree angle of attack. On April 29, 1993, the second X-31 successfully executed a rapid minimum-radius, 180-degree turn using a post-stall maneuver, flying well beyond the aerodynamic limits of any conventional aircraft. This revolutionary maneuver has been called the 'Herbst Maneuver' after Wolfgang Herbst, a German proponent of using post-stall flight in air-to-air combat. It is also called a 'J Turn' when flown to an arbitrary heading change. The aircraft was flown in tactical maneuvers against an F/A-18 and other tactical aircraft as part of the test flight program. During November and December 1993, the X-31 reached a supersonic speed of Mach 1.28. In 1994, the X-31 program installed software to demonstrate quasi-tailless operation. The X-31 flight test program was conducted by an international test organization (ITO) managed by the Advanced Research Projects Office (ARPA), known as the Defense Advanced Research Projects Office (DARPA) before March 1993. The ITO included the U.S. Navy and U.S. Air Force, Rockwell Aerospace, the Federal Republic of Germany, Daimler-Benz (formerly Messerschmitt-Bolkow-Blohm and Deutsche Aerospace), and NASA. Gary Trippensee was the ITO director and NASA Project Manager. Pilots came from participating organizations. The X-31 was 43.33 feet long with a wingspan of 23.83 feet. It was powered by a single General Electric P404-GE-400 turbofan engine that produced 16,000 pounds of thrust in afterburner.

1994-01-01

223

X-31 Kiel Probe Side View  

NASA Technical Reports Server (NTRS)

A photograph of the noseboom on the X-31 shows the Kiel air data probe angled at 10 degrees to better align the tip with the airflow at very high angles of attack. The devices were mounted on the nose of the X-31s to measure air pressure. Icing in the unheated Kiel probe on the first X-31 (Bu. No. 164584), caused that aircraft to crash on January 19, 1995. The aircraft obtained data that may apply to the design and development of highly-maneuverable aircraft of the future. Each had a three-axis thrust-vectoring system, coupled with advanced flight controls, to allow it to maneuver tightly at very high angles of attack. The X-31 Enhanced Fighter Maneuverability (EFM) demonstrator flew at the Ames- Dryden Flight Research Facility, Edwards, California (redesignated the Dryden Flight Research Center in 1994) from February 1992 until 1995 and before that at the Air Force's Plant 42 in Palmdale, California. The goal of the project was to provide design information for the next generation of highly maneuverable fighter aircraft. This program demonstrated the value of using thrust vectoring (directing engine exhaust flow) coupled with an advanced flight control system to provide controlled flight to very high angles of attack. The result was a significant advantage over most conventional fighters in close-in combat situations. The X-31 flight program focused on agile flight within the post-stall regime, producing technical data to give aircraft designers a better understanding of aerodynamics, effectiveness of flight controls and thrust vectoring, and airflow phenomena at high angles of attack. Stall is a condition of an airplane or an airfoil in which lift decreases and drag increases due to the separation of airflow. Thrust vectoring compensates for the loss of control through normal aerodynamic surfaces that occurs during a stall. Post-stall refers to flying beyond the normal stall angle of attack, which in the X-31 was at a 30-degree angle of attack. During Dryden flight testing, the X-31 aircraft established several milestones. On November 6, 1992, the X-31 achieved controlled flight at a 70-degree angle of attack. On April 29, 1993, the second X-31 successfully executed a rapid minimum-radius, 180-degree turn using a post-stall maneuver, flying well beyond the aerodynamic limits of any conventional aircraft. This revolutionary maneuver has been called the 'Herbst Maneuver' after Wolfgang Herbst, a German proponent of using post-stall flight in air-to-air combat. It is also called a 'J Turn' when flown to an arbitrary heading change. The aircraft was flown in tactical maneuvers against an F/A-18 and other tactical aircraft as part of the test flight program. During November and December 1993, the X-31 reached a supersonic speed of Mach 1.28. In 1994, the X-31 program installed software to demonstrate quasi-tailless operation. The X-31 flight test program was conducted by an international test organization (ITO) managed by the Advanced Research Projects Office (ARPA), known as the Defense Advanced Research Projects Office (DARPA) before March 1993. The ITO included the U.S. Navy and U.S. Air Force, Rockwell Aerospace, the Federal Republic of Germany, Daimler-Benz (formerly Messerschmitt-Bolkow-Blohm and Deutsche Aerospace), and NASA. Gary Trippensee was the ITO director and NASA Project Manager. Pilots came from participating organizations. The X-31 was 43.33 feet long with a wingspan of 23.83 feet. It was powered by a single General Electric P404-GE-400 turbofan engine that produced 16,000 pounds of thrust in afterburner.

1993-01-01

224

X-31 Kiel Probe Close-up Showing Inside  

NASA Technical Reports Server (NTRS)

A close-up photograph of the Kiel air data probe on the noseboom on the X-31 aircraft shows the orifices used to collect air pressure measurements. Icing in the unheated Kiel probe on the first X-31 (Bu. No. 164584) caused that aircraft to crash. The aircraft obtained data that may apply to the design and development of highly-maneuverable aircraft of the future. Each has a three-axis thrust-vectoring system, coupled with advanced flight controls, to allow it to maneuver tightly at very high angles of attack. The X-31 Enhanced Fighter Maneuverability (EFM) demonstrator flew at the Ames- Dryden Flight Research Facility, Edwards, California (redesignated the Dryden Flight Research Center in 1994) from February 1992 until 1995 and before that at the Air Force's Plant 42 in Palmdale, California. The goal of the project was to provide design information for the next generation of highly maneuverable fighter aircraft. This program demonstrated the value of using thrust vectoring (directing engine exhaust flow) coupled with an advanced flight control system to provide controlled flight to very high angles of attack. The result was a significant advantage over most conventional fighters in close-in combat situations. The X-31 flight program focused on agile flight within the post-stall regime, producing technical data to give aircraft designers a better understanding of aerodynamics, effectiveness of flight controls and thrust vectoring, and airflow phenomena at high angles of attack. Stall is a condition of an airplane or an airfoil in which lift decreases and drag increases due to the separation of airflow. Thrust vectoring compensates for the loss of control through normal aerodynamic surfaces that occurs during a stall. Post-stall refers to flying beyond the normal stall angle of attack, which in the X-31 was at a 30-degree angle of attack. During Dryden flight testing, the X-31 aircraft established several milestones. On November 6, 1992, the X-31 achieved controlled flight at a 70-degree angle of attack. On April 29, 1993, the second X-31 successfully executed a rapid minimum-radius, 180-degree turn using a post-stall maneuver, flying well beyond the aerodynamic limits of any conventional aircraft. This revolutionary maneuver has been called the 'Herbst Maneuver' after Wolfgang Herbst, a German proponent of using post-stall flight in air-to-air combat. It is also called a 'J Turn' when flown to an arbitrary heading change. The aircraft was flown in tactical maneuvers against an F/A-18 and other tactical aircraft as part of the test flight program. During November and December 1993, the X-31 reached a supersonic speed of Mach 1.28. In 1994, the X-31 program installed software to demonstrate quasi-tailless operation. The X-31 flight test program was conducted by an international test organization (ITO) managed by the Advanced Research Projects Office (ARPA), known as the Defense Advanced Research Projects Office (DARPA) before March 1993. The ITO included the U.S. Navy and U.S. Air Force, Rockwell Aerospace, the Federal Republic of Germany, Daimler-Benz (formerly Messerschmitt-Bolkow-Blohm and Deutsche Aerospace), and NASA. Gary Trippensee was the ITO director and NASA Project Manager. Pilots came from participating organizations. The X-31 was 43.33 feet long with a wingspan of 23.83 feet. It was powered by a single General Electric P404-GE-400 turbofan engine that produced 16,000 pounds of thrust in afterburner.

1993-01-01

225

X-31 in Flight with F-18 Chase  

NASA Technical Reports Server (NTRS)

One of two X-31 Enhanced Fighter Maneuverability Demonstrator aircraft (top), flown by an international test organization at NASA's Dryden Flight Research Center, Edwards, California, is seen here accompanied by a NASA F-18 chase aircraft during a research flight over the desert floor. The X-31 had a three-axis thrust-vectoring system, coupled with advanced flight controls, to allow it to maneuver tightly at very high angles of attack. The X-31 Enhanced Fighter Maneuverability (EFM) demonstrator flew at the Ames- Dryden Flight Research Facility, Edwards, California (redesignated the Dryden Flight Research Center in 1994) from February 1992 until 1995 and before that at the Air Force's Plant 42 in Palmdale, California. The goal of the project was to provide design information for the next generation of highly maneuverable fighter aircraft. This program demonstrated the value of using thrust vectoring (directing engine exhaust flow) coupled with an advanced flight control system to provide controlled flight to very high angles of attack. The result was a significant advantage over most conventional fighters in close-in combat situations. The X-31 flight program focused on agile flight within the post-stall regime, producing technical data to give aircraft designers a better understanding of aerodynamics, effectiveness of flight controls and thrust vectoring, and airflow phenomena at high angles of attack. Stall is a condition of an airplane or an airfoil in which lift decreases and drag increases due to the separation of airflow. Thrust vectoring compensates for the loss of control through normal aerodynamic surfaces that occurs during a stall. Post-stall refers to flying beyond the normal stall angle of attack, which in the X-31 was at a 30-degree angle of attack. During Dryden flight testing, the X-31 aircraft established several milestones. On November 6, 1992, the X-31 achieved controlled flight at a 70-degree angle of attack. On April 29, 1993, the second X-31 successfully executed a rapid minimum-radius, 180-degree turn using a post-stall maneuver, flying well beyond the aerodynamic limits of any conventional aircraft. This revolutionary maneuver has been called the 'Herbst Maneuver' after Wolfgang Herbst, a German proponent of using post-stall flight in air-to-air combat. It is also called a 'J Turn' when flown to an arbitrary heading change. The aircraft was flown in tactical maneuvers against an F/A-18 and other tactical aircraft as part of the test flight program. During November and December 1993, the X-31 reached a supersonic speed of Mach 1.28. In 1994, the X-31 program installed software to demonstrate quasi-tailless operation. The X-31 flight test program was conducted by an international test organization (ITO) managed by the Advanced Research Projects Office (ARPA), known as the Defense Advanced Research Projects Office (DARPA) before March 1993. The ITO included the U.S. Navy and U.S. Air Force, Rockwell Aerospace, the Federal Republic of Germany, Daimler-Benz (formerly Messerschmitt-Bolkow-Blohm and Deutsche Aerospace), and NASA. Gary Trippensee was the ITO director and NASA Project Manager. Pilots came from participating organizations. The X-31 was 43.33 feet long with a wingspan of 23.83 feet. It was powered by a single General Electric P404-GE-400 turbofan engine that produced 16,000 pounds of thrust in afterburner.

1994-01-01

226

Enhancement of the inertial navigation system for the Morpheus autonomous underwater vehicles  

Microsoft Academic Search

This paper presents the design and development of an enhanced inertial navigation system that is to be integrated into the Morpheus autonomous underwater vehicle at Florida Atlantic University. The inertial measurement unit is based on the off-the-shelf Honeywell HG1700-AG25 3-axis ring-laser gyros and three-axis accelerometers and is aided with ground speed measurements obtained using an RDI Doppler-velocity-log sonar. An extended

Gabriel Grenon; P. Edgar An; Samuel M. Smith; Anthony J. Healey

2001-01-01

227

A measuring system for well logging attitude and a method of sensor calibration.  

PubMed

This paper proposes an approach for measuring the azimuth angle and tilt angle of underground drilling tools with a MEMS three-axis accelerometer and a three-axis fluxgate sensor. A mathematical model of well logging attitude angle is deduced based on combining space coordinate transformations and algebraic equations. In addition, a system implementation plan of the inclinometer is given in this paper, which features low cost, small volume and integration. Aiming at the sensor and assembly errors, this paper analyses the sources of errors, and establishes two mathematical models of errors and calculates related parameters to achieve sensor calibration. The results show that this scheme can obtain a stable and high precision azimuth angle and tilt angle of drilling tools, with the deviation of the former less than ±1.4° and the deviation of the latter less than ±0.1°. PMID:24859028

Ren, Yong; Wang, Yangdong; Wang, Mijian; Wu, Sheng; Wei, Biao

2014-01-01

228

A Measuring System for Well Logging Attitude and a Method of Sensor Calibration  

PubMed Central

This paper proposes an approach for measuring the azimuth angle and tilt angle of underground drilling tools with a MEMS three-axis accelerometer and a three-axis fluxgate sensor. A mathematical model of well logging attitude angle is deduced based on combining space coordinate transformations and algebraic equations. In addition, a system implementation plan of the inclinometer is given in this paper, which features low cost, small volume and integration. Aiming at the sensor and assembly errors, this paper analyses the sources of errors, and establishes two mathematical models of errors and calculates related parameters to achieve sensor calibration. The results show that this scheme can obtain a stable and high precision azimuth angle and tilt angle of drilling tools, with the deviation of the former less than ±1.4° and the deviation of the latter less than ±0.1°.

Ren, Yong; Wang, Yangdong; Wang, Mijian; Wu, Sheng; Wei, Biao

2014-01-01

229

A new sheet metal forming system based on incremental punching, part 2: machine building and experiment results  

Microsoft Academic Search

The paper is the second of the two papers on a new sheet metal forming system of incremental punching. In the first paper,\\u000a the mechanics model is introduced, and the computer simulations are carried out. This paper consists of two parts: the design\\u000a and building of an incremental punching machine and experiment results. The machine is a three-axis computer numerical

Yuanxin Luo; Kai He; Ruxu Du

2010-01-01

230

Galactical ultra wide angle Schmidt system  

NASA Astrophysics Data System (ADS)

The Galactical Ultrawideangle Schmidt System (GAUSS) camera is described. The camera is designed for operation in a wavelengh range extending far into vacuum ultraviolet. A three axis stabilized platform with a control range of plus or minus five degrees integrated into the camera design is described. The stages involved in developing the camera are outlined. The unit is designed to be carried on the D2 Spacelab mission accommodated on the D2 Utility Support Structure (USS). Difficulties in meeting contradicting requirements of high precision and wide temperature ranges for a variety of mechanisms with quite different performances are discussed.

Miski, T.; Weber, K.-H.

1990-03-01

231

Characterization of in-flight performance of ion propulsion systems  

NASA Technical Reports Server (NTRS)

In-flight measurements of ion propulsion performance, ground test calibrations, and diagnostic performance measurements were reviewed. It was found that accelerometers provided the most accurate in-flight thrust measurements compared with four other methods that were surveyed. An experiment has also demonstrated that pre-flight alignment of the thrust vector was sufficiently accurate so that gimbal adjustments and use of attitude control thrusters were not required to counter disturbance torques caused by thrust vector misalignment. The effects of facility background pressure, facility enhanced charge-exchange reactions, and contamination on ground-based performance measurements are also discussed. Vacuum facility pressures for inert-gas ion thruster life tests and flight qualification tests will have to be less than 2 mPa to ensure accurate performance measurements.

Sovey, James S.; Rawlin, Vincent K.

1993-01-01

232

The development of a Software and Hardware-in-the-Loop Test System for ITU-PSAT II nano satellite ADCS  

Microsoft Academic Search

In this work, we present the operational concept of ITU-PSAT II, the reconfigurable fault-tolerant ADCS architecture and the associated Software and Hardware-in- the-Loop Test System for three-axis active control. ADCS of ITU PSAT II consists of three distinct hardware layers integrating sensors, actuators, and ADCS computer over the CAN bus. A multi mode control algorithm which acts over different operation

N. Kemal Ure; Yigit Bekir Kaya; Gokhan Inalhan

2011-01-01

233

An electromechanical actuation system for an expendable launch vehicle  

NASA Astrophysics Data System (ADS)

A major effort at the NASA Lewis Research Center in recent years has been to develop electro-mechanical actuators (EMA's) to replace the hydraulic systems used for thrust vector control (TVC) on launch vehicles. This is an attempt ot overcome the inherent inefficiencies and costs associated with the existing hydraulic structures. General Dynamics Space Systems Division, under contract to NASA Lewis, is developing 18.6 kW (25 hp), 29.8 kW (40 hp), and 52.2 kW (70 hp) peak EMA systems to meet the power demands for TVC on a family of vehicles developed for the National Launch System. These systems utilize a pulse population modulated converter and field-oriented control scheme to obtain independent control of both the voltage and frequency. These techniques allow an induction motor to be operated at its maximum torque at all times. At NASA Lewis, we are building on this technology to develop our own in-house system capable of meeting the peak power requirements for an expendable launch vehicle (ELV) such as the Atlas. Our EMA will be capable of delivering 22.4 kW (30 hp) peak power with a nominal of 6.0 kW (8 hp). This system differs from the previous ones in two areas: (1) the use of advanced control methods, and (2) the incorporation of built-in-test. The advanced controls are essential for minimizing the controller size, while the built-in-test is necessary to enhance the system reliability and vehicle health monitoring. The ultimate goal of this program is to demonstrate an EMA which will be capable of self-test and easy integration into other projects. This paper will describe the effort underway at NASA Lewis to develop an EMA for an Atlas class ELV. An explanation will be given for each major technology block, and the status of each major technology block and the status of the overall program will be reported.

Burrows, Linda M.; Roth, Mary Ellen

1992-08-01

234

An electromechanical actuation system for an expendable launch vehicle  

NASA Technical Reports Server (NTRS)

A major effort at the NASA Lewis Research Center in recent years has been to develop electro-mechanical actuators (EMA's) to replace the hydraulic systems used for thrust vector control (TVC) on launch vehicles. This is an attempt ot overcome the inherent inefficiencies and costs associated with the existing hydraulic structures. General Dynamics Space Systems Division, under contract to NASA Lewis, is developing 18.6 kW (25 hp), 29.8 kW (40 hp), and 52.2 kW (70 hp) peak EMA systems to meet the power demands for TVC on a family of vehicles developed for the National Launch System. These systems utilize a pulse population modulated converter and field-oriented control scheme to obtain independent control of both the voltage and frequency. These techniques allow an induction motor to be operated at its maximum torque at all times. At NASA Lewis, we are building on this technology to develop our own in-house system capable of meeting the peak power requirements for an expendable launch vehicle (ELV) such as the Atlas. Our EMA will be capable of delivering 22.4 kW (30 hp) peak power with a nominal of 6.0 kW (8 hp). This system differs from the previous ones in two areas: (1) the use of advanced control methods, and (2) the incorporation of built-in-test. The advanced controls are essential for minimizing the controller size, while the built-in-test is necessary to enhance the system reliability and vehicle health monitoring. The ultimate goal of this program is to demonstrate an EMA which will be capable of self-test and easy integration into other projects. This paper will describe the effort underway at NASA Lewis to develop an EMA for an Atlas class ELV. An explanation will be given for each major technology block, and the status of each major technology block and the status of the overall program will be reported.

Burrows, Linda M.; Roth, Mary Ellen

1992-01-01

235

SCI Hazard Report Methodology  

NASA Technical Reports Server (NTRS)

This slide presentation reviews the methodology in creating a Source Control Item (SCI) Hazard Report (HR). The SCI HR provides a system safety risk assessment for the following Ares I Upper Stage Production Contract (USPC) components (1) Pyro Separation Systems (2) Main Propulsion System (3) Reaction and Roll Control Systems (4) Thrust Vector Control System and (5) Ullage Settling Motor System components.

Mitchell, Michael S.

2010-01-01

236

A simulation of the instrument pointing system for the Astro-1 mission  

NASA Technical Reports Server (NTRS)

NASA has recently completed a shuttle-borne stellar ultraviolet astronomy mission known as Astro-1. A three axis instrument pointing system (IPS) was employed to accurately point the science instruments. In order to analyze the pointing control system and verify pointing performance, a simulation of the IPS was developed using the multibody dynamics software TREETOPS. The TREETOPS IPS simulation is capable of accurately modeling the multibody IPS system undergoing large angle, nonlinear motion. The simulation is documented and example cases are presented demonstrating disturbance rejection, fine pointing operations, and multiple target pointing and slewing of the IPS.

Whorton, M.; West, M.; Rakoczy, J.

1991-01-01

237

Flight experience with a fail-operational digital fly-by-wire control system  

NASA Technical Reports Server (NTRS)

The NASA Dryden Flight Research Center is flight testing a triply redundant digital fly-by-wire (DFBW) control system installed in an F-8 aircraft. The full-time, full-authority system performs three-axis flight control computations, including stability and command augmentation, autopilot functions, failure detection and isolation, and self-test functions. Advanced control law experiments include an active flap mode for ride smoothing and maneuver drag reduction. This paper discusses research being conducted on computer synchronization, fault detection, fault isolation, and recovery from transient faults. The F-8 DFBW system has demonstrated immunity from nuisance fault declarations while quickly identifying truly faulty components.

Brown, S. R.; Szalai, K. J.

1977-01-01

238

Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transpot project-demonstration act system definition  

NASA Technical Reports Server (NTRS)

The 1985 ACT airplane is the Final Active Controls Technology (ACT) Airplane with the addition of three-axis fly by wire. Thus it retains all the efficiency features of the full ACT system plus the weight and cost savings accruing from deletion of the mechanical control system. The control system implements the full IAAC spectrum of active controls except flutter-mode control, judged essentially nonbeneficial, and incorporates new control surfaces called flaperons to make the most of wing-load alleviation. This redundant electronic system is conservatively designed to preserve the extreme reliability required of crucial short-period pitch augmentation, which provides more than half of the fuel savings.

Hanks, G. W.; Shomber, H. A.; Crumb, C. B.; Flora, C. C.; Macdonald, K. A. B.; Smith, R. D.; Sassi, A. P.; Dorwart, R. J.

1982-01-01

239

Fingerprinting of Non-resolved Three-axis Stabilized Space Objects Using a Two-Facet Analytical Model  

NASA Astrophysics Data System (ADS)

This approach to resident space object (RSO) fingerprinting is motivated by the established framework of biometric fingerprinting which comprises a basic differentiator, followed by three levels of matching. Level 0 (L0) features would be the size and type of the fingerprint. Level 1 (L1) features are the macro characteristics of the fingerprint. Level 2 (L2) features are locations where a single ridge in the fingerprint splits into two branches or where two branches converge into one. Level 3 (L3) features describe the periodic pattern in the fingerprint. Match at each level provides progressively higher confidence. Correspondingly, the RSO fingerprinting can be considered to comprise matching at a base level, followed by three levels of features. L0 consist of sentinel features such as the gross brightness, and contrast, shape and position of principal specular glints. L1 features comprise the geometric shape of the signature brightness and its color indices. This is analytically represented using a polynomial in the cosine of the subsolar angle, which captures the effect of the seasons. The Level 2 captures the intrinsic character of the sloping regions or bifurcations in the signature brightness and color. It is used to separate the contribution of the solar panel and body. Level 3 consists of the temporal evolution of the fractional abundance of the solar panel and the body. This allows inference on the mechanical stability and basic information about the attitude of the RSO. A collection of L0 to L3 features for an RSO is thus defines its fingerprint.

Chaudhary, A.; Payne, T.; Gregory, S.; Dao, P.

2011-09-01

240

Testing the three axis magnetometer and gradiometer MOURA and data comparison on San Pablo de los Montes Observatory.  

NASA Astrophysics Data System (ADS)

A magnetometer and gradiometer named MOURA has been developed with the objective to measure the magnetic field on Mars in the frame of Mars MetNet Precursor Mission (MMPM) [1]. MOURA is a compact, miniaturized, intelligent and low cost instrument, based on two sets of triaxial magnetometers separated one centimeter from each other to do gradiometry studies. It has a resolution of 2.2 nT, and a field range of + 65?T, which can be extended to +130 ?T when sensors are saturated. [2] These sensor heads are Anisotropic MagnetoResistances (AMR) Commercial-Off-The-Shelf (COTS) by Honeywell, specifically HMC1043, which has been selected due to their relative low consumption, weight and size, factors very important for the mission with very limited mass and power budget (shared 150 g for three full payloads). Also, this technology has been previously successfully employed on board Unmanned Aerial Vehicles (UAV) to perform geomagnetic surveys in extreme conditions areas [3], and in several space missions for different applications. [4] After the development of the MOURA Engineering Qualification Model (EQM) in November 2011, an exhaustive set of tests have been performed to validate and fully characterize the instrument. Compensation equations have been derived for the temperature corrections in the operation range (between -135 °C and 30 °C) in controlled environments. These compensation equations have been applied to field data, which have shown to follow the daily Earth's magnetic field variations as registered by San Pablo Geomagnetic Observatory (IAGA code: SPT) (available at www.ign.es and www.intermagnet.org) with deviations lower than 40 nT. These deviations were attributed to several error factors as the different locations between MOURA and SPT and other possible different geomagnetic conditions. Due to the above, a measurement campaign on SPT installations are been done. The main objective is to compare MOURA measurements on a relevant environment, with data obtained by SPT magnetometers. This is considered the last step prior to Mars in situ measurements. SPT employs for geomagnetic observations a fluxgate magnetometer FGE-Danish Meteorological Institute and a fluxgate vector magnetometer Geomag M390, both equipped with Overhauser effect magnetometers GSM90. The conditions into the rooms that contain these instruments are controlled. The equipments are situated on several pillars fixed strategically at Earth surface avoiding vibrations and other Earth movement that could affect measurement due to changes on the sensor position, the region is magnetically clean and the temperature variation is very low. Magnetic measurements are performed by MOURA for several days located on one of these pillars. These measurements are compared with SPT reference instrumentation with the aim to obtain a direct and very accurate evaluation of MOURA facing reference instrumentation. http://metnet.fmi.fi/index.php Development of miniaturized instrumentation for Planetary Exploration and its application to the Mars MetNet Precursor Mission. H. Guerrero et al. EGU General Assembly 2010, held 2-7 May, 2010 in Vienna, Austria, p.13330 Funaki, M.; Hirasawa, N.; and the Ant-Plane Group. Outline of a small unmanned aerial vehicle (Ant-Plane) designed for Antartic research. Polar Science 2008, 2, 129-142. M. Diaz-Michelena Sensors 2009, 9(4), 2271-2288

Belen Fernandez, Ana; Sanz, Ruy; Covisa, Pablo; Tordesillas, Jose Manuel; Diaz-Michelena, Marina

2013-04-01

241

Drifts of a three-axis stabilizer under vibration of the frames and platform with unbalanced dynamically tuned gyroscopes  

Microsoft Academic Search

It is shown that the unbalance of a dynamically tuned gyro, leading to gyro self-excitation through vibration of the platform in a gimball suspension, causes drifts of the stabilizer. The magnitude of the drift depends on the gyro balancing precision, the location of gyros on the platform, and the relationship between the moments of inertia of the suspension elements, the

A. V. Zbrutskii; S. A. Sarapulov

1985-01-01

242

Reusable Reentry Satellite (RRS) system design study. Phase B, appendix E: Attitude control system study  

NASA Astrophysics Data System (ADS)

A study which consisted of a series of design analyses for an Attitude Control System (ACS) to be incorporated into the Re-usable Re-entry Satellite (RRS) was performed. The main thrust of the study was associated with defining the control laws and estimating the mass and power requirements of the ACS needed to meet the specified performance goals. The analyses concentrated on the different on-orbit control modes which start immediately after the separation of the RRS from the launch vehicle. The three distinct on-orbit modes considered for these analyses are as follows: (1) Mode 1 - A Gravity Gradient (GG) three-axis stabilized spacecraft with active magnetic control; (2) Mode 2 - A GG stabilized mode with a controlled yaw rotation rate ('rotisserie') using three-axis magnetic control and also incorporating a 10 N-m-s momentum wheel along the (Z) yaw axis; and (3) Mode 3 - A spin stabilized mode of operation with the spin about the pitch (Y) axis, incorporating a 20 N-m-s momentum wheel along the pitch (Y) axis and attitude control via thrusters. To investigate the capabilities of the different controllers in these various operational modes, a series of computer simulations and trade-off analyses have been made to evaluate the achievable performance levels, and the necessary mass and power requirements.

1991-02-01

243

Reusable Reentry Satellite (RRS) system design study. Phase B, appendix E: Attitude control system study  

NASA Technical Reports Server (NTRS)

A study which consisted of a series of design analyses for an Attitude Control System (ACS) to be incorporated into the Re-usable Re-entry Satellite (RRS) was performed. The main thrust of the study was associated with defining the control laws and estimating the mass and power requirements of the ACS needed to meet the specified performance goals. The analyses concentrated on the different on-orbit control modes which start immediately after the separation of the RRS from the launch vehicle. The three distinct on-orbit modes considered for these analyses are as follows: (1) Mode 1 - A Gravity Gradient (GG) three-axis stabilized spacecraft with active magnetic control; (2) Mode 2 - A GG stabilized mode with a controlled yaw rotation rate ('rotisserie') using three-axis magnetic control and also incorporating a 10 N-m-s momentum wheel along the (Z) yaw axis; and (3) Mode 3 - A spin stabilized mode of operation with the spin about the pitch (Y) axis, incorporating a 20 N-m-s momentum wheel along the pitch (Y) axis and attitude control via thrusters. To investigate the capabilities of the different controllers in these various operational modes, a series of computer simulations and trade-off analyses have been made to evaluate the achievable performance levels, and the necessary mass and power requirements.

1991-01-01

244

Near real-time stereo vision system  

NASA Astrophysics Data System (ADS)

The apparatus for a near real-time stereo vision system for use with a robotic vehicle is described. The system is comprised of two cameras mounted on three-axis rotation platforms, image-processing boards, a CPU, and specialized stereo vision algorithms. Bandpass-filtered image pyramids are computed, stereo matching is performed by least-squares correlation, and confidence ranges are estimated by means of Bayes' theorem. In particular, Laplacian image pyramids are built and disparity maps are produced from the 60 x 64 level of the pyramids at rates of up to 2 seconds per image pair. The first autonomous cross-country robotic traverses (of up to 100 meters) have been achieved using the stereo vision system of the present invention with all computing done onboard the vehicle. The overall approach disclosed herein provides a unifying paradigm for practical domain-independent stereo ranging.

Matthies, Larry H.; Anderson, Charles H.

1991-12-01

245

Near real-time stereo vision system  

NASA Technical Reports Server (NTRS)

The apparatus for a near real-time stereo vision system for use with a robotic vehicle is described. The system is comprised of two cameras mounted on three-axis rotation platforms, image-processing boards, a CPU, and specialized stereo vision algorithms. Bandpass-filtered image pyramids are computed, stereo matching is performed by least-squares correlation, and confidence ranges are estimated by means of Bayes' theorem. In particular, Laplacian image pyramids are built and disparity maps are produced from the 60 x 64 level of the pyramids at rates of up to 2 seconds per image pair. The first autonomous cross-country robotic traverses (of up to 100 meters) have been achieved using the stereo vision system of the present invention with all computing done onboard the vehicle. The overall approach disclosed herein provides a unifying paradigm for practical domain-independent stereo ranging.

Anderson, Charles H. (inventor); Matthies, Larry H. (inventor)

1993-01-01

246

Two propellants are better than one - A study of the mission and operation aspects of spacecraft bi-propellant systems  

NASA Astrophysics Data System (ADS)

Spacecraft bipropellant systems are analyzed through the examples of Olympus and Eurostar projects. A higher specific impulse of bipropellant systems yields a lower mass of fuel required for the same maneuver. Spacecraft stability and control aspects related to the transfer orbit and apogee maneuver phases of the mission are considered, with respect to three-axis stabilization. Apogee engine firing strategies are discussed; in the case of Olympus, a 12-kg mass advantage of the multiburn strategy over the single-burn is noted. The results of an investigation carried out for the Eurostar spacecraft show that the reoptimization computer times make it feasible to maximize the beginning of life mass.

Pocha, J.

247

Feasibility study of LITVC for shuttle SRB  

NASA Technical Reports Server (NTRS)

A liquid injection thrust vector control (LITVC) system for the shuttle solid rocket booster (SRB) was analyzed. The LITVC was compared with the SRB baseline flexible seal. A table of LITVC advantages and disadvantages is presented. It is concluded that the LITVC performs well at low to moderate duty cycles, but not for high duty cycle requirements.

Martin, C. L.; Powers, L. B.

1981-01-01

248

PROPULSION SIMULATIONS WITH THE UNSTRUCTURED-GRID CFD TOOL TetrUSS  

Microsoft Academic Search

A computational investigation has been completed to assess the capability of the NASA Tetrahedral Unstructured Software System (TetrUSS) for simulation of exhaust nozzle flows. Three configurations were chosen for this study: (1) a fluidic jet effects model, (2) an isolated nacelle with a supersonic cruise nozzle, and (3) a fluidic pitch- thrust-vectoring nozzle. These configurations were chosen because existing data

Karen A. Deere; Mohagna J. Pandya

249

Flight simulation for flight control computer S/N 0104-1 (ASTP)  

NASA Technical Reports Server (NTRS)

Flight control computer (FCC) 0104-I has been designated the prime unit for the SA-210 launch vehicle. The results of the final flight simulation for FCC S/N 0104-I are documented. These results verify satisfactory implementation of the design release and proper interfacing of the FCC with flight-type control sensor elements and simulated thrust vector control system.

1975-01-01

250

Tracking and data relay satellite system configuration and tradeoff study. Volume 1: Study summary  

NASA Technical Reports Server (NTRS)

A study was conducted to determine the configuration and tradeoffs of a tracking and data relay satellite. The study emphasized the design of a three axis stabilized satellite and a telecommunications system optimized for support of low and medium data rate user spacecraft. Telecommunications support to low and high, or low medium, and high data rate users, considering launches with the Delta 2914, the Atlas/Centaur, and the space shuttle was also considered. The following subjects are presented: (1) launch and deployment profile, (2) spacecraft mechanical and structural design, (3) attitude stabilization and control subsystem, and (4) reliability analysis.

Hill, T. E.

1973-01-01

251

A computer-aided telescope pointing system utilizing a video star tracker  

NASA Technical Reports Server (NTRS)

The Video Inertial Pointing (VIP) System developed to satisfy the acquisition and pointing requirements of astronomical telescopes is described. A unique feature of the system is the use of a single sensor to provide information for the generation of three axis pointing error signals and for a cathode ray tube (CRT) display of the star field. The pointing error signals are used to update the telescope's gyro stabilization and the CRT display is used by an operator to facilitate target acquisition and to aid in manual positioning of the telescope optical axis. A model of the system using a low light level vidicon built and flown on a balloon-borne infrared telescope is briefly described from a state of the art charge coupled device (CCD) sensor. The advanced system hardware is described and an analysis of the multi-star tracking and three axis error signal generation, along with an analysis and design of the gyro update filter, are presented. Results of a hybrid simulation are described in which the advanced VIP system hardware is driven by a digital simulation of the star field/CCD sensor and an analog simulation of the telescope and gyro stabilization dynamics.

Murphy, J. P.; Lorell, K. R.; Swift, C. D.

1975-01-01

252

Head-aimed vision system improves tele-operated mobility  

NASA Astrophysics Data System (ADS)

A head-aimed vision system greatly improves the situational awareness and decision speed for tele-operations of mobile robots. With head-aimed vision, the tele-operator wears a head-mounted display and a small three axis head-position measuring device. Wherever the operator looks, the remote sensing system "looks". When the system is properly designed, the operator's occipital lobes are "fooled" into believing that the operator is actually on the remote robot. The result is at least a doubling of: situational awareness, threat identification speed, and target tracking ability. Proper system design must take into account: precisely matching fields of view; optical gain; and latency below 100 milliseconds. When properly designed, a head-aimed system does not cause nausea, even with prolonged use.

Massey, Kent

2004-12-01

253

A New Approach to Attitude Stability and Control for Low Airspeed Vehicles  

NASA Technical Reports Server (NTRS)

This paper describes an approach for controlling the attitude of statically unstable thrust-levitated vehicles in hover or slow translation. The large thrust vector that characterizes such vehicles can be modulated to provide control forces and moments to the airframe, but such modulation is accompanied by significant unsteady flow effects. These effects are difficult to model, and can compromise the practical value of thrust vectoring in closed-loop attitude stability, even if the thrust vectoring machinery has sufficient bandwidth for stabilization. The stabilization approach described in this paper is based on using internal angular momentum transfer devices for stability, augmented by thrust vectoring for trim and other "outer loop" control functions. The three main components of this approach are: (1) a z-body axis angular momentum bias enhances static attitude stability, reducing the amount of control activity needed for stabilization, (2) optionally, gimbaled reaction wheels provide high-bandwidth control torques for additional stabilization, or agility, and (3) the resulting strongly coupled system dynamics are controlled by a multivariable controller. A flight test vehicle is described, and nonlinear simulation results are provided that demonstrate the efficiency of the approach.

Lim, K. B.; Shin, Y-Y.; Moerder, D. D.; Cooper, E. G.

2004-01-01

254

Vector magnetometry and lightwave defect imaging sensor technologies for internal pipe inspection systems: Phase 1 and 2 feasibility study, conceptual design, and prototype development  

NASA Astrophysics Data System (ADS)

The Gas Research Institute (GRI) has been sponsoring the development of a vehicle and sensors for an integrated nondestructive internal inspection system for natural gas distribution pipes. Arthur D. Little has developed two sensor technologies; Vector Magnetometry (VM) and Lightwave Defect Imaging (LDI) for the system.The Vector Magnetometry sensor utilizes multiple arrays of miniature detection coils (fluxgate magnetometer elements): a three-axis array measures both the amplitude and phase of the magnetic leakage field that occurs in the vicinity of pipe wall defects. This technology is applicable to both cast iron and steel pipe.

Carroll, Steven; Fowler, Thomas; Peters, Edward; Power, Wendy; Reed, Michael

1994-01-01

255

Construction of a patient observation system using KINECTTM  

NASA Astrophysics Data System (ADS)

Improvement in the positional accuracy of irradiation is expected by capturing patient motion (intra-fractional error) during irradiation. The present study reports the construction of a patient observation system using Microsoft® KINECTTM. By tracking movement, we made it possible to add a depth component to the acquired position coordinates and to display three-axis (X, Y, and Z) movement. Moreover, the developed system can be displayed in a graph which is constructed from the coordinate position at each time interval. Using the developed system, an observer can easily visualize patient movement. When the body phantom was moved a known distance in the X, Y, and Z directions, good coincidence was shown with each axis. We built a patient observation system which captures a patient's motion using KINECTTM.

Miyaura, Kazunori; Kumazaki, Yu; Fukushima, Chika; Kato, Shingo; Saitoh, Hidetoshi

2014-03-01

256

Communications satellite systems operations with the space station, volume 2  

NASA Technical Reports Server (NTRS)

A financial model was developed which described quantitatively the economics of the space segment of communication satellite systems. The model describes the economics of the space system throughout the lifetime of the satellite. The expected state-of-the-art status of communications satellite systems and operations beginning service in 1995 were assessed and described. New or enhanced space-based activities and associated satellite system designs that have the potential to achieve future communications satellite operations in geostationary orbit with improved economic performance were postulated and defined. Three scenarios using combinations of space-based activities were analyzed: a spin stabilized satellite, a three axis satellite, and assembly at the Space Station and GEO servicing. Functional and technical requirements placed on the Space Station by the scenarios were detailed. Requirements on the satellite were also listed.

Price, K.; Dixon, J.; Weyandt, C.

1987-01-01

257

Image change detection using a SWIR active imaging system  

NASA Astrophysics Data System (ADS)

We are currently developing a system consisting of a GPS receiver, a three-axis magnetic compass as well as a digital video camera in order to visualize changes occuring along a regularily used itinerary. This is done by comparing actual images with images from the same scene, which have been acquired during a previous measurement. The luminosity of images from two different passages however can be quite different (due to different meteorological conditions). Whereas the global luminosity can be adjusted using non-linear luminosity correction, the treatment of shadows is more di cult. Since meteorological conditions cannot be controlled, we are investigating the possibility of using a Laser Gated Viewing system in the SWIR domain to illuminate the scene. Using appropriate filters for the camera, we are completely independent of natural illumination and in addition, the system can also be used at night.

Schneider, Armin L.; Monnin, David; Laurenzis, Martin; Christnacher, Frank

2013-10-01

258

Design and flight experience with a digital fly-by-wire control system in an F-8 airplane  

NASA Technical Reports Server (NTRS)

A digital fly-by-wire flight control system was designed, built, and for the first time flown in an airplane. The system, which uses components from the Apollo guidance system, is installed in an F-8 airplane as the primary control system. A lunar module guidance computer is the central element in the three-axis, single-channel, multimode, digital control system. A triplex electrical analog system which provides unaugmented control of the airplane is the only backup to the digital system. Flight results showed highly successful system operation, although the trim update rate was inadequate for precise trim changes, causing minor concern. The use of a digital system to implement conventional control laws proved to be practical for flight. Logic functions coded as an integral part of the control laws were found to be advantageous. Although software verification required extensive effort, confidence in the software was achieved.

Deets, D. A.; Szalai, K. J.

1974-01-01

259

Vector magnetometry and lightwave defect imaging sensor technologies for internal pipe inspection systems. Phase 1 and 2 feasibility study, conceptual design, and prototype development. Final report, March 1991-July 1993  

SciTech Connect

The Gas Research Institute (GRI) has been sponsoring the development of a vehicle and sensors for an integrated nondestructive internal inspection system for natural gas distribution pipes. Arthur D. Little has developed two sensor technologies, Vector Magnetometry (VM) and Lightwave Defect Imaging (LDI) for the system. The Vector Magnetometry sensor utilizes multiple arrays of miniature detection coils (fluxgate magnetometer elements); a three-axis array measures both the amplitude and phase of the magnetic leakage field that occurs in the vicinity of pipe wall defects. This technology is applicable to both cast iron and steel pipe.

Carroll, S.; Fowler, T.; Peters, E.; Power, W.; Reed, M.

1994-01-05

260

Computer program for prediction of fuel consumption statistical data for an upper stage three-axes stabilized on-off control system  

NASA Technical Reports Server (NTRS)

A FORTRAN coded computer program and method to predict the reaction control fuel consumption statistics for a three axis stabilized rocket vehicle upper stage is described. A Monte Carlo approach is used which is more efficient by using closed form estimates of impulses. The effects of rocket motor thrust misalignment, static unbalance, aerodynamic disturbances, and deviations in trajectory, mass properties and control system characteristics are included. This routine can be applied to many types of on-off reaction controlled vehicles. The pseudorandom number generation and statistical analyses subroutines including the output histograms can be used for other Monte Carlo analyses problems.

1982-01-01

261

Wellborne inertial navigation system  

SciTech Connect

A phototype wireline tool which includes a downhole inertial platform and a surface computer to spatially map a well is described. The hardware consists of a single-gimbaled inertial platform with accelerometers and gyros to obtain three-axis motion information. The gyroscope and accelerometer outputs are transmitted to a computer at the surface which calculates probe attitude relative to north, east, and vertical. Double integration of the accelerometer data provides the position information. A conventional 7-conductor wireline is used for the system data transmission. System accuracy is enhanced by advances made in the computer software which processes the data received from the tool. The software uses statistical sampling estimation to obtain optimal estimates of the system errors. Measurement errors are determined by periodically stopping the tool during the logging procedure and observing the indicated velocity measurements. This procedure, known as Kalman filtering, results in increased accuracy of the data. Present mapping systems have an X-Y-Z location accuracy of +- 100 to +- 200 feet for a typical well depth of 10,000 feet. Test results show that the new system is accurate to about +- 1 foot per 1000 feet of well depth. Unlike conventional systems, the inertial navigator does not require any sort of projection of the cable length (which may not be accurately known). Also this system provides continuous data throughout the wellbore and logging speeds on the order of 10 ft/sec appear possible. The hardware and software associated with this mapping system are described and the recent field test results are reported.

Kelsey, J.R.

1983-01-01

262

A computer-aided telescope pointing system utilizing a video star tracker  

NASA Technical Reports Server (NTRS)

The Video Inertial Pointing (VIP) System is being developed to satisfy the acquisition and pointing requirements of astronomical telescopes. VIP employs a single video sensor to generate three-axis pointing error signals and to provide inputs for a cathode ray tube (CRT) display of the star field. The pointing error signals update the telescope's gyro stabilization system. The CRT display facilitates target acquisition and positioning of the telescope by a remote operator. The present paper describes the analysis, simulation, and hardware development of a prototype, advanced VIP system. An early model of the system utilizing a silicon-intensified target vidicon camera has flown on a balloon-borne telescope and is briefly described. The advanced system, which can employ either a vidicon camera or a charge-coupled device video sensor, has been tested using an analog/digital hybrid simulation. The advanced VIP hardware is described, and the simulation results presented.

Lorell, K. R.; Murphy, J. P.; Swift, C. D.

1976-01-01

263

Controlling Attitude of a Solar-Sail Spacecraft Using Vanes  

NASA Technical Reports Server (NTRS)

A paper discusses a concept for controlling the attitude and thrust vector of a three-axis stabilized Solar Sail spacecraft using only four single degree-of-freedom articulated spar-tip vanes. The vanes, at the corners of the sail, would be turned to commanded angles about the diagonals of the square sail. Commands would be generated by an adaptive controller that would track a given trajectory while rejecting effects of such disturbance torques as those attributable to offsets between the center of pressure on the sail and the center of mass. The controller would include a standard proportional + derivative part, a feedforward part, and a dynamic component that would act like a generalized integrator. The controller would globally track reference signals, and in the presence of such control-actuator constraints as saturation and delay, the controller would utilize strategies to cancel or reduce their effects. The control scheme would be embodied in a robust, nonlinear algorithm that would allocate torques among the vanes, always finding a stable solution arbitrarily close to the global optimum solution of the control effort allocation problem. The solution would include an acceptably small angle, slow limit-cycle oscillation of the vanes, while providing overall thrust vector pointing stability and performance.

Mettler, Edward; Acikmese, Ahmet; Ploen, Scott

2006-01-01

264

Meteosat Third Generation: System and Ground Segment Key Design Features  

NASA Astrophysics Data System (ADS)

Meteosat Third Generation (MTG) is the next generation of Meteosat satellites, the primary source of geostationary observations over Europe and Africa. Current Meteosat satellites are spin-stabilized while MTG will consist of three-axis stabilized satellites. Three in-orbit operational satellites, which might need to be collocated within the same longitude slot, are needed to provide the complete set of missions and services to end users. The MTG requirements are very demanding: high resolution imaging and sounding capabilities with challenging INR (Image Navigation and Registration), huge downlink data rates, stringent timeliness for delivery of data and products to end- users, and very high mission availability. This brings unprecedented challenges for the design of the MTG System and Ground Segment whose main challenges and features are addressed in this paper.

Mullet, B.; Keppenne, C.

2010-08-01

265

An orientable solar panel system for nanospacecraft  

NASA Astrophysics Data System (ADS)

An orientable deployed solar array system for 1-5 kg weight nanospacecraft is described, enhancing the achievable performance of these typically power-limited systems. The system is based on a deployable solar panel system, previously developed with cooperation between Laboratorio di Sistemi Aerospaziali of University of Roma “la Sapienza” and the company IMT (Ingegneria Marketing Tecnologia). The system proposed is a modular one, and suitable in principle for the 1U, 2U and 3U standard Cubesat bus, even if the need for three axis attitude stabilization makes it typically preferred for 3U Cubesats. The size of each solar panel is the size of a lateral Cubesat surface. A single degree of freedom maneuvering capability is given to the deployed solar array, in order to follow the apparent motion of the sun as close as possible, given the mission requirements on the spacecraft attitude. Considerable effort has been devoted to design the system compatible with the Cubesat standard, being mounted outside on the external spacecraft structure, without requiring modifications on the standard prescriptions. The small available volume is the major constraint, which forces to use miniaturized electric motor technology. The system design trade-off is discussed, leading to the selection of an architecture based on two independently steerable solar array wings.

Santoni, Fabio; Piergentili, Fabrizio; Candini, Gian Paolo; Perelli, Massimo; Negri, Andrea; Marino, Michele

2014-08-01

266

Multi-Channel Magnetocardiogardiography System Based on Low-Tc SQUIDs in an Unshielded Environment  

NASA Astrophysics Data System (ADS)

Magnetocardiography (MCG) using superconducting quantum interference devices (SQUIDs) is a new medical diagnostic tool measuring biomagnetic signals that are generated by the electrical activity of the human heart. This technique is completely passive, contactless, and it has an advantage in the early diagnosis of heart diseases. We developed the first unshielded four-channel MCG system based on low-Tc DC SQUIDs in China. Instead of using a costly magnetically shielded room, the environmental noise suppression was realized by using second-order gradiometers and three-axis reference magnetometer. The measured magnetic field resolution of the system is better than 1 pT, and multi-cycle human heart signals can be recorded directly. Also, with the infrared positioning system, 48 points data collection can be realized by moving the non-magnetic bed nine times.

Kong, Xiangyan; Zhang, Shulin; Wang, Yongliang; Zeng, Jia; Xie, Xiaoming

267

Instrumentation and control system for an F-15 stall/spin  

NASA Technical Reports Server (NTRS)

An instrumentation and control system is described that was used for radio-controlled F-15 airplane model stall/spin research at the NASA-Langley Research Center. This stall/spin research technique, using scale model aircraft, provides information on the post-stall and spin-entry characteristics of full-scale aircraft. The instrumentation described provides measurements of flight parameters such as angle of attack and sideslip, airspeed, control-surface position, and three-axis rotation rates; these data are recorded on an onboard magnetic tape recorder. The proportional radio control system, which utilizes analog potentiometric signals generated from ground-based pilot inputs, and the ground-based system used in the flight operation are also described.

Pitts, F. L.; Holmes, D. C. E.; Zaepfel, K. P.

1974-01-01

268

Design features of a sea-based multipurpose V/STOL, STOVL, and STOL aircraft in a support role for the U.S. Navy  

NASA Technical Reports Server (NTRS)

Design features and certain performance data are outlined for three different basic airframes. The heart of the design is a powered lift system known formally as the Advanced Blown Lift Enhancement system. A summary of the results of both powered-model wind tunnel tests of the airplane and of static tests of the vectoring-nozzle system is given to indicate the rather high degree of thrust vectoring efficiency and powered lift enhancement attained.

Bradfield, G. W.

1981-01-01

269

High Speed, High Temperature, Fault Tolerant Operation of a Combination Magnetic-Hydrostatic Bearing Rotor Support System for Turbomachinery  

NASA Technical Reports Server (NTRS)

Closed loop operation of a single, high temperature magnetic radial bearing to 30,000 RPM (2.25 million DN) and 540 C (1000 F) is discussed. Also, high temperature, fault tolerant operation for the three axis system is examined. A novel, hydrostatic backup bearing system was employed to attain high speed, high temperature, lubrication free support of the entire rotor system. The hydrostatic bearings were made of a high lubricity material and acted as journal-type backup bearings. New, high temperature displacement sensors were successfully employed to monitor shaft position throughout the entire temperature range and are described in this paper. Control of the system was accomplished through a stand alone, high speed computer controller and it was used to run both the fault-tolerant PID and active vibration control algorithms.

Jansen, Mark; Montague, Gerald; Provenza, Andrew; Palazzolo, Alan

2004-01-01

270

Development of a reaction wheel attitude control system for sounding rocket experiments and small Shuttle-based free flyers  

NASA Technical Reports Server (NTRS)

A three-axis reaction wheel control system is currently under development. Initial emphasis is on a magnetic field reference, although the system is easily adaptable to other positional references, e.g., the gyroscopic. The system is housed in a skin section 17.25 inches in diameter and approximately 10 inches long. Current weight estimate is 75 pounds. An orthogonal triad of dc motors forms the basis of the system. Power is provided by silver-zinc cells and controlled by an 8-bit microprocessor. The control law is presented and the dynamical equations derived. Simulation results show that a payload with a roll MOI of 4.1 sl/sq ft and a transverse MOI of 20.3 sl/sq ft can typically be reoriented 90 degrees in 20-35 seconds, depending upon the initial body rates.

Ward, P. R.

1986-01-01

271

A wellbore inertial navigation system  

SciTech Connect

A prototype wireline tool which includes a downhole inertial platform and a surface computer to spatially map a well is described. The hardware consists of a single-gimballed inertial platform with accelerometers and gyros to obtain three-axis motion information. The gyroscope and accelerometer outputs are transmitted to a computer at the surface which calculates probe attitude relative to north, east, and vertical. Double integration of the accelerometer data provides the position information. A conventional 7-conductor wireline is used for the system data transmission. System accuracy is enhanced by advances made in the computer software which processes the data received from the tool. The software uses statistical sampling estimation to obtain optimal estimates of the system errors. Measurement errors are determined by periodically stopping the tool during the logging procedure and observing the indicated velocity measurements. This procedure, known as Kalman filtering, results in increased accuracy of the data. Present mapping systems have an X-Y-Z location accuracy of 100 to 200 feet for a typical well depth of 10,000 feet. Test results show that the new system is accurate to about 1 foot per 1000 feet of well depth. Unlike conventional systems, the inertial navigator does not require any sort of projection of the cable length (which may not be accurately known). Also, this system provides continuous data throughout the wellbore and logging speeds on the order of 10 ft/sec appear possible. The hardware and software associated with this mapping system are described and the recent field test results are reported.

Kelsey, J.R.

1983-02-01

272

International Symposium on Air Breathing Engines, 8th, Cincinnati, OH, June 14-19, 1987, Proceedings  

Microsoft Academic Search

The present conference on air-breathing aircraft engine technology considers topics in inlet design, radial-flow turbomachinery, fuel injection and combustion systems, axial flow compressor design and performance, ramjet configurations, turbine flow phenomena, engine control and service life, fluid flow-related problems, engine diagnostic methods, propfan design, combustor performance and pollutant chemistry, combustion dynamics, and engine system analysis. Attention is given to thrust-vectoring

Billig

1987-01-01

273

The control of satellites with microgravity constraints: The COMET Control System  

NASA Astrophysics Data System (ADS)

The COMET attitude determination and control system, using inverse dynamics and a novel torque distribution/momentum management technique, has shown great flexibility, performance, and robustness. Three-axis control with two wheels is an inherent consequence of inverse dynamics control which allows for reduction in spacecraft weight and cost, or alternatively, provides a simple means of failure-redundancy for three-wheel spacecraft. The control system, without modification, has continued to perform well in spite of large changes in spacecraft mass properties and mission orbit altitude that have occurred during development. This flexibility has obviated imposition of early stringent ADACS design constraints and has greatly reduced commonly incurred ADACS modification costs and delay associated with program maturation.

Grossman, Walter; Freesland, Douglas

1994-05-01

274

A comparison of position and rate control for telemanipulations with consideration of manipulator system dynamics  

NASA Technical Reports Server (NTRS)

Position and rate control are the two common manual control modes in teleoperations. Human operator performance using the two modes is evaluated and compared. Simulated three-axis pick-and-place operations are used as the primary task for evaluation. First, ideal position and rate control are compared by considering several factors, such as joystick gain, joystick type, display mode, task, and manipulator work space size. Then the effects of the manipulator system dynamics are investigated by varying the natural frequency and speed limit. Experimental results show that ideal position control is superior to ideal rate control, regardless of joystick type or display mode, when the manipulation work space is small or comparable to the human operator's control space. Results also show that when the manipulator system is slow, the superiority of position control disappears. Position control is recommended for small-work-space telemanipulation tasks, while rate control is recommended for slow wide-work-space telemanipulation tasks.

Kim, Won S.; Tendick, Frank; Stark, Lawrence W.; Ellis, Stephen R.

1987-01-01

275

The control of satellites with microgravity constraints: The COMET Control System  

NASA Technical Reports Server (NTRS)

The COMET attitude determination and control system, using inverse dynamics and a novel torque distribution/momentum management technique, has shown great flexibility, performance, and robustness. Three-axis control with two wheels is an inherent consequence of inverse dynamics control which allows for reduction in spacecraft weight and cost, or alternatively, provides a simple means of failure-redundancy for three-wheel spacecraft. The control system, without modification, has continued to perform well in spite of large changes in spacecraft mass properties and mission orbit altitude that have occurred during development. This flexibility has obviated imposition of early stringent ADACS design constraints and has greatly reduced commonly incurred ADACS modification costs and delay associated with program maturation.

Grossman, Walter; Freesland, Douglas

1994-01-01

276

The F-18 high alpha research vehicle: A high-angle-of-attack testbed aircraft  

NASA Technical Reports Server (NTRS)

The F-18 High Alpha Research Vehicle is the first thrust-vectoring testbed aircraft used to study the aerodynamics and maneuvering available in the poststall flight regime and to provide the data for validating ground prediction techniques. The aircraft includes a flexible research flight control system and full research instrumentation. The capability to control the vehicle at angles of attack up to 70 degrees is also included. This aircraft was modified by adding a pitch and yaw thrust-vectoring system. No significant problems occurred during the envelope expansion phase of the program. This aircraft has demonstrated excellent control in the wing rock region and increased rolling performance at high angles of attack. Initial pilot reports indicate that the increased capability is desirable although some difficulty in judging the size and timing of control inputs was observed. The aircraft, preflight ground testing and envelope expansion flight tests are described.

Regenie, Victoria; Gatlin, Donald; Kempel, Robert; Matheny, Neil

1992-01-01

277

Analytic investigation of the AEM-A/HCMM attitude control system performance. [Application Explorer Missions/Heat Capacity Mapping Mission  

NASA Technical Reports Server (NTRS)

The Heat Capacity Mapping Mission (HCMM), scheduled for launch in 1978, will be three-axis stabilized relative to the earth in a 600-kilometer altitude, polar orbit. The autonomous attitude control system consists of three torquing coils and a momentum wheel driven in response to error signals computed from data received from an infrared horizon sensor and a magnetometer. This paper presents a simple model of the attitude dynamics and derives the equations that determine the stability of the system during both attitude acquisition (acquisition-mode) and mission operations (mission-mode). Modifications to the proposed mission-mode control laws which speed the system's response to transient attitude errors and reduce the steady-state attitude errors are suggested. Numerical simulations are performed to validate the results obtained with the simple model.

Lerner, G. M.; Huang, W.; Shuster, M. D.

1977-01-01

278

An analysis of cross-coupling of a multicomponent jet engine test stand using finite element modeling techniques  

NASA Technical Reports Server (NTRS)

A two axis thrust measuring system was analyzed by using a finite a element computer program to determine the sensitivities of the thrust vectoring nozzle system to misalignment of the load cells and applied loads, and the stiffness of the structural members. Three models were evaluated: (1) the basic measuring element and its internal calibration load cells; (2) the basic measuring element and its external load calibration equipment; and (3) the basic measuring element, external calibration load frame and the altitude facility support structure. Alignment of calibration loads was the greatest source of error for multiaxis thrust measuring systems. Uniform increases or decreases in stiffness of the members, which might be caused by the selection of the materials, have little effect on the accuracy of the measurements. It is found that the POLO-FINITE program is a viable tool for designing and analyzing multiaxis thrust measurement systems. The response of the test stand to step inputs that might be encountered with thrust vectoring tests was determined. The dynamic analysis show a potential problem for measuring the dynamic response characteristics of thrust vectoring systems because of the inherently light damping of the test stand.

Schweikhard, W. G.; Singnoi, W. N.

1985-01-01

279

Explicit Finite Element Techniques Used to Characterize Splashdown of the Space Shuttle Solid Rocket Booster Aft Skirt  

NASA Technical Reports Server (NTRS)

NASA Glenn Research Center s Structural Mechanics Branch has years of expertise in using explicit finite element methods to predict the outcome of ballistic impact events. Shuttle engineers from the NASA Marshall Space Flight Center and NASA Kennedy Space Flight Center required assistance in assessing the structural loads that a newly proposed thrust vector control system for the space shuttle solid rocket booster (SRB) aft skirt would expect to see during its recovery splashdown.

Melis, Matthew E.

2003-01-01

280

Beam-Riding Behavior of Lightcraft Engines with ? 1 ?s Pulsed TEA CO2 Laser  

Microsoft Academic Search

The beam-riding and angular impulse performance of four laser propulsion engine geometries were measured using a twin Lumonics K922M pulsed TEA CO2 laser system, with an Angular Impulse Measurement Device (AIMD). Airbreathing and solid ablative rocket (SAR) mode impulse data was collected to explore engine thrust-vectoring behavior, as a function of: a) laser beam lateral offset from the engine axis

D. A. Kenoyer; I. I. Salvador; L. N. Myrabo

2011-01-01

281

Hovering Dual-Spin Vehicle Groundwork for Bias Momentum Sizing Validation Experiment  

NASA Technical Reports Server (NTRS)

Angular bias momentum offers significant stability augmentation for hovering flight vehicles. The reliance of the vehicle on thrust vectoring for agility and disturbance rejection is greatly reduced with significant levels of stored angular momentum in the system. A methodical procedure for bias momentum sizing has been developed in previous studies. This current study provides groundwork for experimental validation of that method using an experimental vehicle called the Dual-Spin Test Device, a thrust-levitated platform. Using measured data the vehicle's thrust vectoring units are modeled and a gust environment is designed and characterized. Control design is discussed. Preliminary experimental results of the vehicle constrained to three rotational degrees of freedom are compared to simulation for a case containing no bias momentum to validate the simulation. A simulation of a bias momentum dominant case is presented.

Rothhaar, Paul M.; Moerder, Daniel D.; Lim, Kyong B.

2008-01-01

282

Low-speed wind-tunnel test of a STOL supersonic-cruise fighter concept  

NASA Technical Reports Server (NTRS)

A wind-tunnel investigation was conducted to examine the low-speed static stability and control characteristics of a 0.10 scale model of a STOL supersonic cruise fighter concept. The concept, referred to as a twin boom fighter, was designed as a STOL aircraft capable of efficient long range supersonic cruise. The configuration name is derived from the long twin booms extending aft of the engine to the twin vertical tails which support a high center horizontal tail. The propulsion system features a two dimensional thrust vectoring exhaust nozzle which is located so that the nozzle hinge line is near the aircraft center of gravity. This arrangement is intended to allow large thrust vector angles to be used to obtain significant values of powered lift, while minimizing pitching moment trim changes. Low speed stability and control information was obtained over an angle of attack range including the stall. A study of jet induced power effects was included.

Coe, Paul L., Jr.; Riley, Donald R.

1988-01-01

283

Structure health assessment and warning system (SHAWS)  

NASA Astrophysics Data System (ADS)

We are developing a Structure Health Assessment and Warning System (SHAWS) based on building displacement measurements and wireless communication. SHAWS will measure and predict the stability/instability of a building, determine whether it is safe for emergency responders to enter during an emergency, and provide individual warnings on the condition of the structure. SHAWS incorporates remote sensing nodes (RSNs) installed on the exterior frame of a building. Each RSN includes a temperature sensor, a three-axis accelerometer making static-acceleration measurements, and a ZigBee wireless system (IEEE 802.15.4). The RSNs will be deployed remotely using an air cannon delivery system, with each RSN having an innovative adhesive structure for fast (<10 min) and strong installation under emergency conditions. Once the building has moved past a threshold (~0.25 in./building story), a warning will be issued to emergency responders. In addition to the RSNs, SHAWS will include a base station located on an emergency responder's primary vehicle, a PDA for mobile data display to guide responders, and individual warning modules that can be worn by each responder. The individual warning modules will include visual and audio indicators with a ZigBee receiver to provide the proper degree of warning to each responder.

Bock, Daniel M.; Kim, Keehoon; Mapar, Jalal

2008-04-01

284

TALON and CRADLE: Systems for the rescue of tumbling spacecraft and astronauts  

NASA Technical Reports Server (NTRS)

Advanced pressure suit and tool designs are beginning to allow extravehicular astronauts to repair space vehicles and so increase mission life and system reliability. A common spacecraft failure that is a severe challenge to the rescue mission planner is loss of attitude control resulting in tumbling motion. If an extravehicular astronaut flying the Manned Maneuvering Unit (MMU) 'falls' into a tumble, the result could be loss of life. TALON (Tumble Arresting Large Oscillation Nullifier) is a device capable of capturing a target in an uncontrolled three-axis tumble. CRADLE (Concentric Rotating Astronaut Detumble Lifesaving Equipment) is a similar device sized to rescue a suited astronaut. The two rescue vehicles work on the same basic principle. They are structural shells with articulated limbs which can surround a tumbling target and thus align both the chaser and target centers of mass (CM).

Idle, Dunning, V

1991-01-01

285

Performance comparison of earth and space storable bipropellant systems in interplanetary missions  

NASA Technical Reports Server (NTRS)

The paper evaluates and compares the performance of earth-storable and space-storable liquid bipropellant propulsion systems in high-energy planetary mission applications, including specifically Saturn and Mercury orbiters, as well as asteroid and comet rendezvous missions. The discussion covers a brief review of the status of space-storable propulsion technology, along with an illustrative propulsion module design for a three-axis stabilized outer planet and cometary mission spacecraft of the Mariner class. The results take revised Shuttle/Upper Stage performance projections into account. It is shown that in some of the missions the performance improvement achievable in the ballistic transfer mode with space-storable spacecraft propulsion can provide a possible alternative to the use of solar-electric propulsion.

Meissinger, H. F.

1978-01-01

286

Comparison of X-31 flight, wind-tunnel, and water-tunnel yawing moment asymmetries at high angles of attack  

NASA Technical Reports Server (NTRS)

The X-31 aircraft are being used in the enhanced fighter maneuverability (EFM) research program, which is jointly funded by the (U.S.) Advanced Research Projects Agency (ARPA) and Germany's Federal Ministry of Defense (FMOD). The flight test portion of the program, which involves two aircraft, is being conducted by an International Test Organization (ITO) comprising the National Aeronautics and Space Administration (NASA), the U.S. Navy, the U.S. Air Force, Rockwell International, and Deutsche Aerospace (DASA). The goals of the flight program are to demonstrate EFM technologies, investigate close-in-combat exchange ratios, develop design requirements, build a database for application to future fighter aircraft, and develop and validate low-cost prototype concepts. For longitudinal control the X-31 uses canards, symmetrical movement of the trailing-edge flaps, and pitch deflection of the thrust vectoring system. The trim, inertial coupling, and engine gyroscopic coupling compensation tasks are performed primarily by the trailing-edge flaps. For lateral-directional control the aircraft uses differential deflection of the trailing-edge flaps for roll coordination and a conventional rudder combined with the thrust vectoring system to provide yaw control. The rudder is only effective up to about 40 deg angle of attack (alpha), after which the thrust vectoring becomes the primary yaw control effector. Both the leading-edge flaps and the inlet lip are scheduled with the angle of attack to provide best performance.

Cobleigh, Brent R.; Croom, Mark A.; Tamrat, B. F.

1994-01-01

287

X-31A Tactical Utility Flight Testing  

NASA Technical Reports Server (NTRS)

The two X-31A were jointly built by Daimler-Benz Aerospace AG and Rockwell International. These German-American experimental aircraft were designed to explore the new realm of flight far beyond stall by employing advanced technologies like thrust vectoring and sophisticated flight control systems. The X-31A aircraft is equipped with a thrust vectoring system consisting of three aft mounted paddles to deflect the thrust vector in both pitch and yaw axes, thus providing the X-31A in this 'Enhanced Fighter Maneuverability program with an agility and maneuverability never seen before. The tactical utility of the X-31A using post stall technologies has been revealed in an extensive flight test campaign against various current state-of-the-art fighter aircraft in a close-in combat arena. The test philosophy included both simulation and flight test. The tremendous tactical advantage of the X-31A during the tactical utility evaluation flight test phase was accompanied by a deepened insight into post stall tactics its typical maneuvers, impacts on pilot-aircraft interfaces and requirements for future weapons to both engineers and the military community. Some selected aspects of the tactical utility of the X-31A using post stall technologies unveiled by the International Test Organization are presented here.

Friehmelt, Holger; Guetter, Richard; Kim, Quirin

1997-01-01

288

Static, noise, and transition tests of a combined-surface-blowing V/STOL lift/propulsion system  

NASA Technical Reports Server (NTRS)

Efficient thrust vectoring and high levels of circulatory lift were obtained in tests of a half model V/STOL airplane by using a type of externally blown jet flap in which the jet exhaust from wing-mounted cruise fans is directed over both upper and lower surfaces of a flapped wing. Approximately 90% thrust recovery with 87 deg of thrust vectoring was achieved under static conditions using 89 deg of trailing edge flap deflection. The approximately 10% loss appears to be associated primarily with pressure losses due to the flap brackets or slot entries. The jet induced lift was shown to be 55% of the theoretical value for a fullspan jet-flapped wing, even though only 27.5% of the wingspan was immersed in the jet. Steady rate of descent capability in excess of 1,000 feet per minute is predicted. The possibility of significant aerodynamic-noise cancelling when blowing over both surfaces at high velocities is indicated.

Schoen, A. H.; Kolesar, C. E.; Schaeffer, E. G.

1977-01-01

289

Thrust shock vector control of an axisymmetric conical supersonic nozzle via secondary transverse gas injection  

NASA Astrophysics Data System (ADS)

Transverse secondary gas injection into the supersonic flow of an axisymmetric convergent-divergent nozzle is investigated to describe the effects of the fluidic thrust vectoring within the framework of a small satellite launcher. Cold-flow dry-air experiments are performed in a supersonic wind tunnel using two identical supersonic conical nozzles with the different transverse injection port positions. The complex three-dimensional flow field generated by the supersonic cross-flows in these test nozzles was examined. Valuable experimental data were confronted and compared with the results obtained from the numerical simulations. Different nozzle models are numerically simulated under experimental conditions and then further investigated to determine which parameters significantly affect thrust vectoring. Effects which characterize the nozzle and thrust vectoring performances are established. The results indicate that with moderate secondary to primary mass flow rate ratios, ranging around 5 %, it is possible to achieve pertinent vector side forces. It is also revealed that injector positioning and geometry have a strong effect on the shock vector control system and nozzle performances.

Zmijanovic, V.; Lago, V.; Sellam, M.; Chpoun, A.

2014-01-01

290

Feedback control laws for highly maneuverable aircraft  

NASA Technical Reports Server (NTRS)

During this year, we concentrated our efforts on the design of controllers for lateral/directional control using mu synthesis. This proved to be a more difficult task than we anticipated and we are still working on the designs. In the lateral-directional control problem, the inputs are pilot lateral stick and pedal commands and the outputs are roll rate about the velocity vector and side slip angle. The control effectors are ailerons, rudder deflection, and directional thrust vectoring vane deflection which produces a yawing moment about the body axis. Our math model does not contain any provision for thrust vectoring of rolling moment. This has resulted in limitations of performance at high angles of attack. During 1994-95, the following tasks for the lateral-directional controllers were accomplished: (1) Designed both inner and outer loop dynamic inversion controllers. These controllers are implemented using accelerometer outputs rather than an a priori model of the vehicle aerodynamics; (2) Used classical techniques to design controllers for the system linearized by dynamics inversion. These controllers acted to control roll rate and Dutch roll response; (3) Implemented the inner loop dynamic inversion and classical controllers on the six DOF simulation; (4) Developed a lateral-directional control allocation scheme based on minimizing required control effort among the ailerons, rudder, and directional thrust vectoring; and (5) Developed mu outer loop controllers combined with classical inner loop controllers.

Garrard, William L.; Balas, Gary J.

1995-01-01

291

Hybrid fault diagnosis of nonlinear systems using neural parameter estimators.  

PubMed

This paper presents a novel integrated hybrid approach for fault diagnosis (FD) of nonlinear systems taking advantage of both the system's mathematical model and the adaptive nonlinear approximation capability of computational intelligence techniques. Unlike most FD techniques, the proposed solution simultaneously accomplishes fault detection, isolation, and identification (FDII) within a unified diagnostic module. At the core of this solution is a bank of adaptive neural parameter estimators (NPEs) associated with a set of single-parameter fault models. The NPEs continuously estimate unknown fault parameters (FPs) that are indicators of faults in the system. Two NPE structures, series-parallel and parallel, are developed with their exclusive set of desirable attributes. The parallel scheme is extremely robust to measurement noise and possesses a simpler, yet more solid, fault isolation logic. In contrast, the series-parallel scheme displays short FD delays and is robust to closed-loop system transients due to changes in control commands. Finally, a fault tolerant observer (FTO) is designed to extend the capability of the two NPEs that originally assumes full state measurements for systems that have only partial state measurements. The proposed FTO is a neural state estimator that can estimate unmeasured states even in the presence of faults. The estimated and the measured states then comprise the inputs to the two proposed FDII schemes. Simulation results for FDII of reaction wheels of a three-axis stabilized satellite in the presence of disturbances and noise demonstrate the effectiveness of the proposed FDII solutions under partial state measurements. PMID:24239987

Sobhani-Tehrani, E; Talebi, H A; Khorasani, K

2014-02-01

292

Design and flight experience with a digital fly-by-wire control system using Apollo guidance system hardware on an F-8 aircraft.  

NASA Technical Reports Server (NTRS)

This paper discusses the design and initial flight tests of the first digital fly-by-wire system to be flown in an aircraft. The system, which used components from the Apollo guidance system, was installed in an F-8 aircraft. A lunar module guidance computer is the central element in the three-axis, single-channel, multimode, digital, primary control system. An electrohydraulic triplex system providing unaugmented control of the F-8 aircraft is the only backup to the digital system. Emphasis is placed on the digital system in its role as a control augmentor, a logic processor, and a failure detector. A sampled-data design synthesis example is included to demonstrate the role of various analytical and simulation methods. The use of a digital system to implement conventional control laws was shown to be practical for flight. Logic functions coded as an integral part of the control laws were found to be advantageous. Verification of software required an extensive effort, but confidence in the software was achieved. Initial flight results showed highly successful system operation, although quantization of pilot's stick and trim were areas of minor concern from the piloting standpoint.

Deets, D. A.; Szalai, K. J.

1972-01-01

293

TRMM On Orbit Attitude Control System Performance  

NASA Technical Reports Server (NTRS)

This paper presents an overview of the Tropical Rainfall Measuring Mission (TRMM) Attitude Control System (ACS) along with detailed in-flight performance results for each operational mode. The TRMM spacecraft is an Earth-pointed, zero momentum bias satellite launched on November 27, 1997 from Tanegashima Space Center, Japan. TRMM is a joint mission between NASA and the National Space Development Agency (NASDA) of Japan designed to monitor and study tropical rainfall and the associated release of energy. Launched to provide a validation for poorly known rainfall data sets generated by global climate models, TRMM has demonstrated its utility by reducing uncertainties in global rainfall measurements by a factor of two. The ACS is comprised of Attitude Control Electronics (ACE), an Earth Sensor Assembly (ESA), Digital Sun Sensors (DSS), Inertial Reference Units (IRU), Three Axis Magnetometers (TAM), Coarse Sun Sensors (CSS), Magnetic Torquer Bars (MTB), Reaction Wheel Assemblies (RWA), Engine Valve Drivers (EVD) and thrusters. While in Mission Mode, the ESA provides roll and pitch axis attitude error measurements and the DSS provide yaw updates twice per orbit. In addition, the TAM in combination with the IRU and DSS can be used to provide pointing in a contingency attitude determination mode which does not rely on the ESA. Although the ACS performance to date has been highly successful, lessons were learned during checkout and initial on-orbit operation. This paper describes the design, on-orbit checkout, performance and lessons learned for the TRMM ACS.

Robertson, Brent; Placanica, Sam; Morgenstern, Wendy

1999-01-01

294

Space Launch System Ascent Flight Control Design  

NASA Technical Reports Server (NTRS)

A robust and flexible autopilot architecture for NASA's Space Launch System (SLS) family of launch vehicles is presented. As the SLS configurations represent a potentially significant increase in complexity and performance capability of the integrated flight vehicle, it was recognized early in the program that a new, generalized autopilot design should be formulated to fulfill the needs of this new space launch architecture. The present design concept is intended to leverage existing NASA and industry launch vehicle design experience and maintain the extensibility and modularity necessary to accommodate multiple vehicle configurations while relying on proven and flight-tested control design principles for large boost vehicles. The SLS flight control architecture combines a digital three-axis autopilot with traditional bending filters to support robust active or passive stabilization of the vehicle's bending and sloshing dynamics using optimally blended measurements from multiple rate gyros on the vehicle structure. The algorithm also relies on a pseudo-optimal control allocation scheme to maximize the performance capability of multiple vectored engines while accommodating throttling and engine failure contingencies in real time with negligible impact to stability characteristics. The architecture supports active in-flight load relief through the use of a nonlinear observer driven by acceleration measurements, and envelope expansion and robustness enhancement is obtained through the use of a multiplicative forward gain modulation law based upon a simple model reference adaptive control scheme.

VanZwieten, Tannen S.; Orr, Jeb S.; Wall, John H.; Hall, Charles E.

2014-01-01

295

Testing a satellite automatic nutation control system. [on synchronous meteorological satellite  

NASA Technical Reports Server (NTRS)

Testing of a particular nutation control system for the synchronous meteorological satellite (SMS) is described. The test method and principles are applicable to nutation angle control for other satellites with similar requirements. During its ascent to synchronous orbit, a spacecraft like the SMS spins about its minimum-moment-of-inertia axis. An uncontrolled spacecraft in this state is unstable because torques due to fuel motion increase the nutation angle. However, the SMS is equipped with an automatic nutation control (ANC) system which will keep the nutation angle close to zero. Because correct operation of this system is critical to mission success, it was tested on an air-bearing table. The ANC system was mounted on the three-axis air-bearing table which was scaled to the SMS and equipped with appropriate sensors and thrusters. The table was spun up in an altitude chamber and nutation induced so that table motion simulated spacecraft motion. The ANC system was used to reduce the nutation angle. This dynamic test of the ANC system met all its objectives and provided confidence that the ANC system will control the SMS nutation angle.

Hrasiar, J. A.

1974-01-01

296

Waterhammer Modeling for the Ares I Upper Stage Reaction Control System Cold Flow Development Test Article  

NASA Technical Reports Server (NTRS)

The Upper Stage Reaction Control System provides three-axis attitude control for the Ares I launch vehicle during active Upper Stage flight. The system design must accommodate rapid thruster firing to maintain the proper launch trajectory and thus allow for the possibility to pulse multiple thrusters simultaneously. Rapid thruster valve closure creates an increase in static pressure, known as waterhammer, which propagates throughout the propellant system at pressures exceeding nominal design values. A series of development tests conducted in the fall of 2009 at Marshall Space Flight Center were performed using a water-flow test article to better understand fluid performance characteristics of the Upper Stage Reaction Control System. A subset of the tests examined waterhammer along with the subsequent pressure and frequency response in the flight-representative system and provided data to anchor numerical models. This thesis presents a comparison of waterhammer test results with numerical model and analytical results. An overview of the flight system, test article, modeling and analysis are also provided.

Williams, Jonathan H.

2010-01-01

297

Magnetic Position and Orientation Tracking System  

Microsoft Academic Search

Three-axis generation and sensing of quasi-static magneticdipole fields provide information sufficient to determine both the position and orientation of the sensor relative to the source. Linear rotation transformations based upon the previous measurements are applied to both the source excitation and sensor output vectors, yielding quantities that are linearly propotional to small changes in the position and orientation. Changes are

Frederick Raab; Ernest Blood; Terry Steiner; Herbert Jones

1979-01-01

298

Development of Microelectromechanical Systems (MEMS) forceps for intraocular surgery  

PubMed Central

Aim: To develop silicon microforceps for intraocular surgery using Microelectromechanical Systems (MEMS) technology, the application of microchip fabrication techniques for the production of controllable three dimensional devices on the micrometre scale. Methods: Prototype MEMS forceps were designed and manufactured for intraocular surgery. Scanning electron microscopy was used to evaluate device tip construction. Designs using both thermal expansion actuators and conventional mechanical activation were tested in human cadaver eyes and in vivo rabbit eyes to assess functionality in standard vitreoretinal surgery. Results: MEMS forceps were constructed with various tip designs ranging from 100 ?m to 2 mm in length. Scanning electron microscopy confirmed accurate construction of micro features such as forceps teeth as small as tens of micrometres. In surgical testing, the silicon forceps tips were effective in surgical manoeuvres, including grasping retinal membranes and excising tissue. The mechanical actuator design on a 20 gauge handle was more operational in the intraocular environment than the thermal expansion actuator design. While handheld operation was possible, the precision of the forceps was best exploited when mounted on a three axis micromanipulator. Conclusion: MEMS microforceps are feasible for conventional vitreoretinal surgery, and offer advances in terms of small scale, operating precision, and construction tolerance.

Bhisitkul, R B; Keller, C G

2005-01-01

299

A vector fetal magnetocardiogram system with high sensitivity  

NASA Astrophysics Data System (ADS)

The vector fetal magnetocardiogram (V-FMCG) system that measures the three orthogonal components of the magnetic field from a fetal heart has been developed to clearly observe fetal cardiac activity during pregnancy by using the superconducting quantum interference device. To detect a clear V-FMCG signal, the bottom of the cryostat was made of thin glass-fiber-reinforced plastic and the total length between the pickup coil to the outer surface is 12 mm. Because the cryostat bottom was made thinner, the area of the cryostat's top and bottom could be made smaller, thus a low evaporation loss (<1.2 l per day) and a long refilling interval (>10 days) were obtained. The gantry was able to tilt the cryostat and the bed could move in three axis directions, which made it possible to easily locate the vector pickup coil at an optimum position to obtain the maximum magnetic field from a fetal heart. We obtained V-FMCGs from 21 normal fetuses with gestation periods of 27-38 weeks. Using these vector signals, the dipoles were estimated and the relationship between the strength of the dipole moments and the number of gestation weeks could be obtained. Thus, V-FMCG seems to represent a new noninvasive tool for clearly detecting the electrophysiological activity of a fetal heart.

Kandori, Akihiko; Miyashita, Tsuyoshi; Tsukada, Keiji; Horigome, Hitoshi; Asaka, Mitsuhiro; Shigemitsu, Sadahiko; Takahashi, Miho; Terada, Yasushi; Mitsui, Toshio; Chiba, Yoshihide

1999-12-01

300

Redundancy management of electrohydraulic servoactuators by mathematical model referencing  

NASA Technical Reports Server (NTRS)

A description of a mathematical model reference system is presented which provides redundancy management for an electrohydraulic servoactuator. The mathematical model includes a compensation network that calculates reference parameter perturbations induced by external disturbance forces. This is accomplished by using the measured pressure differential data taken from the physical system. This technique was experimentally verified by tests performed using the H-1 engine thrust vector control system for Saturn IB. The results of these tests are included in this report. It was concluded that this technique improves the tracking accuracy of the model reference system to the extent that redundancy management of electrohydraulic servosystems may be performed using this method.

Campbell, R. A.

1971-01-01

301

Real-time in-flight engine performance and health monitoring techniques for flight research application  

NASA Technical Reports Server (NTRS)

Procedures for real time evaluation of the inflight health and performance of gas turbine engines and related systems were developed to enhance flight test safety and productivity. These techniques include the monitoring of the engine, the engine control system, thrust vectoring control system health, and the detection of engine stalls. Real time performance techniques were developed for the determination and display of inflight thrust and for aeroperformance drag polars. These new methods were successfully shown on various research aircraft at NASA-Dryden. The capability of NASA's Western Aeronautical Test Range and the advanced data acquisition systems were key factors for implementation and real time display of these methods.

Ray, Ronald J.; Hicks, John W.; Wichman, Keith D.

1991-01-01

302

F-18 HARV in flight  

NASA Technical Reports Server (NTRS)

The modified F-18 flown by NASA's Dryden Flight Research Center, Edwards, California, for high angle of attack research cruises over the nearby desert. A thrust vectoring system, linked to the aircraft's flight control system, was installed on each of the engine exhaust nozzles. The system moves a set of three paddles on each engine to redirect thrust for directional control and increased maneuverability at angles of attack at up to 70 degrees. Data from the F-18 high angle of attack program produced information to validate computer codes and wind tunnel results and led to design methods providing better performance in future aircraft.

1991-01-01

303

IRECIN Nano-satellite communication system and ground segment  

NASA Astrophysics Data System (ADS)

On board resources necessary to perform the mission tasks are very limited in nano-satellites. This paper proposes a real-time multi-processing system for the communication system between ground segment and IRECIN nano-satellite. The first microprocessor is devoted to interface to the rice-transceiver subsystem decoding packet information and the second one is in charge to communicate with the other subsystems through I 2C bus. It uses UHF band and less than 1 W in RF. All electronic components are SMD technology in order to reduce weight and size. The realized electronic boards are completely developed, realized and tested at the Vitrociset S.P.A. under control of Research and Develop Group. This multi-processor system even allows managing the tasks of the microprocessor eventually damaged, the microprocessor still working takes the functionalities of the first one using simpler algorithms. This choice assures an increasing nano-satellite life time. Moreover, the depicted method allows to free the on-board main microprocessor from the control functions of the communication data, increasing its communication capabilities with the other subsystems. The proposed system is implemented on the IRECIN, a modular nano-satellite weighing less than 1.5 kg, constituted by 16 external sides with surface-mounted solar cells and three internal Al plates, kept together by four steel bars. Lithium-ion batteries are added for eclipse operations. Attitude is determined by two three-axis magnetometers and the solar panel data. Control is provided by an active magnetic control system. The spacecraft will be spin-stabilized with the spin-axis normal to the orbit.

Ferrante, M.; Povia, M.; Di Ciolo, L.; Ortenzi, A.; Petrozzi, M.

2005-01-01

304

Multi-star processing and gyro filtering for the video inertial pointing system  

NASA Technical Reports Server (NTRS)

The video inertial pointing (VIP) system is being developed to satisfy the acquisition and pointing requirements of astronomical telescopes. The VIP system uses a single video sensor to provide star position information that can be used to generate three-axis pointing error signals (multi-star processing) and for input to a cathode ray tube (CRT) display of the star field. The pointing error signals are used to update the telescope's gyro stabilization system (gyro filtering). The CRT display facilitates target acquisition and positioning of the telescope by a remote operator. Linearized small angle equations are used for the multistar processing and a consideration of error performance and singularities lead to star pair location restrictions and equation selection criteria. A discrete steady-state Kalman filter which uses the integration of the gyros is developed and analyzed. The filter includes unit time delays representing asynchronous operations of the VIP microprocessor and video sensor. A digital simulation of a typical gyro stabilized gimbal is developed and used to validate the approach to the gyro filtering.

Murphy, J. P.

1976-01-01

305

An MRI-compatible system for focused ultrasound experiments in small animal models  

PubMed Central

The development of novel MRI-guided therapeutic ultrasound methods including potentiated drug delivery and targeted thermal ablation requires extensive testing in small animals such as rats and mice due to the widespread use of these species as models of disease. An MRI-compatible, computer-controlled three-axis positioning system was constructed to deliver focused ultrasound exposures precisely to a target anatomy in small animals for high-throughput preclinical drug delivery studies. Each axis was constructed from custom-made nonmagnetic linear ball stages driven by piezoelectric actuators and optical encoders. A range of motion of 5×5×2.5 cm3 was achieved, and initial bench top characterization demonstrated the ability to deliver ultrasound to the brain with a spatial accuracy of 0.3 mm. Operation of the positioning system within the bore of a clinical 3 T MR imager was feasible, and simultaneous motion and MR imaging did not result in any mutual interference. The system was evaluated in its ability to deliver precise sonications within the mouse brain, linear scanned exposures in a rat brain for blood barrier disruption, and circular scans for controlled heating under MR temperature feedback. Initial results suggest that this is a robust and precise apparatus for use in the investigation of novel ultrasound-based therapeutic strategies in small animal preclinical models.

Chopra, Rajiv; Curiel, Laura; Staruch, Robert; Morrison, Laetitia; Hynynen, Kullervo

2009-01-01

306

A smartphone-based driver safety monitoring system using data fusion.  

PubMed

This paper proposes a method for monitoring driver safety levels using a data fusion approach based on several discrete data types: eye features, bio-signal variation, in-vehicle temperature, and vehicle speed. The driver safety monitoring system was developed in practice in the form of an application for an Android-based smartphone device, where measuring safety-related data requires no extra monetary expenditure or equipment. Moreover, the system provides high resolution and flexibility. The safety monitoring process involves the fusion of attributes gathered from different sensors, including video, electrocardiography, photoplethysmography, temperature, and a three-axis accelerometer, that are assigned as input variables to an inference analysis framework. A Fuzzy Bayesian framework is designed to indicate the driver's capability level and is updated continuously in real-time. The sensory data are transmitted via Bluetooth communication to the smartphone device. A fake incoming call warning service alerts the driver if his or her safety level is suspiciously compromised. Realistic testing of the system demonstrates the practical benefits of multiple features and their fusion in providing a more authentic and effective driver safety monitoring. PMID:23247416

Lee, Boon-Giin; Chung, Wan-Young

2012-01-01

307

SSME/side loads analysis for flight configuration, revision A. [structural analysis of space shuttle main engine under side load excitation  

NASA Technical Reports Server (NTRS)

This document describes the dynamic loads analysis accomplished for the Space Shuttle Main Engine (SSME) considering the side load excitation associated with transient flow separation on the engine bell during ground ignition. The results contained herein pertain only to the flight configuration. A Monte Carlo procedure was employed to select the input variables describing the side load excitation and the loads were statistically combined. This revision includes an active thrust vector control system representation and updated orbiter thrust structure stiffness characteristics. No future revisions are planned but may be necessary as system definition and input parameters change.

Holland, W.

1974-01-01

308

Dynamical Modeling and Control Simulation of a Large Flexible Launch Vehicle  

NASA Technical Reports Server (NTRS)

This paper presents dynamical models of a large flexible launch vehicle. A complete set of coupled dynamical models of propulsion, aerodynamics, guidance and control, structural dynamics, fuel sloshing, and thrust vector control dynamics are described. Such dynamical models are used to validate NASA s SAVANT Simulink-based program which is being used for the preliminary flight control systems analysis and design of NASA s Ares-1 Crew Launch Vehicle. SAVANT simulation results for validating the performance and stability of an ascent phase autopilot system of Ares-1 are also presented.

Du, Wei; Wie, Bong; Whorton, Mark

2008-01-01

309

Design of the infrared fast steering mirror chopping control system for the Keck II Telescope  

NASA Astrophysics Data System (ADS)

The Keck 2 ten meter telescope will utilize an advanced chopping secondary mirror in order to enhance observations in the infrared. The Infrared Fast Steering Mirror (IFSM) can execute a square-wave chop at frequencies as high as 25 Hz with an accuracy of +/- 0.1 arcsec. Chopping can be synchronized by focal plane instruments, and the system can simultaneously perform high-performance chopping as well as beam-steering (for atmospheric correction), providing the Keck telescope with greatly enhanced capability. Details of design, testing, and performance of the Keck 2 IFSM are presented in this paper. The mirror is controlled by three voice coil actuators. Reaction forces generated by the actuators are absorbed by a reaction mass suspended from the main IFSM structure. Motor driven springs are used to minimize power dissipation in the actuators. The IFSM all- digital control system uses a unique adaptive algorithm that forces the mirror to precisely follow the commanded chop waveform. Tests use various computerized instruments: a three-axis laser interferometer for calibration and stability, a 6-axis dynamometer to evaluate reaction forces transmitted to the telescope. In addition to specifics of the design, performance, and testing, a video illustrating details of the IFSM hardware and showing it in operation will be presented.

Aubrun, Jean-Noel; Lorell, Kenneth R.; Feher, Gregory J.; Perez, Ernesto O.; Reshatoff, Paul J.; Zacharie, Donald F.

1998-08-01

310

Mass comparisons of electric propulsion systems for NSSK of geosynchronous spacecraft  

NASA Technical Reports Server (NTRS)

A model was developed and exercised to allow wet mass comparisons of three axis stabilized communication satellites delivered to geosynchronous transfer orbit. The mass benefits of using advanced chemical propulsion for apogee injection and north-south stationkeeping (NSSK) functions or electric propulsion (hydrazine arcjets and xenon ion thrusters) for NSSK functions are documented. A large derated ion thrusters is proposed which minimizes thruster lifetime concerns and qualification test times when compared to those of smaller ion thrusters planned for NSSK applications. The mass benefits, which depend on the spacecraft mass and mission duration, increase dramatically with arcjet specific impulse in the 500 to 600 s range, but are nearly constant for the derated ion thruster operated in the 2300 to 3000 s range. For a given mission, the mass benefits with an ion system are typically double those of the arcjet system; however, the total thrusting time with arcjets is less than 1/3 that with ion thrusters for the same thruster power. The mass benefits may permit increases in revenue producing payload or reduce launch costs by allowing a move to a smaller launch vehicle.

Rawlin, Vincent K.; Majcher, Gregory A.

1991-01-01

311

The Implementation of Satellite Attitude Control System Software Using Object Oriented Design  

NASA Technical Reports Server (NTRS)

NASA established the Small Explorer (SNMX) program in 1988 to provide frequent opportunities for highly focused and relatively inexpensive space science missions. The SMEX program has produced five satellites, three of which have been successfully launched. The remaining two spacecraft are scheduled for launch within the coming year. NASA has recently developed a prototype for the next generation Small Explorer spacecraft (SMEX-Lite). This paper describes the object-oriented design (OOD) of the SMEX-Lite Attitude Control System (ACS) software. The SMEX-Lite ACS is three-axis controlled and is capable of performing sub-arc-minute pointing. This paper first describes high level requirements governing the SMEX-Lite ACS software architecture. Next, the context in which the software resides is explained. The paper describes the principles of encapsulation, inheritance, and polymorphism with respect to the implementation of an ACS software system. This paper will also discuss the design of several ACS software components. Specifically, object-oriented designs are presented for sensor data processing, attitude determination, attitude control, and failure detection. Finally, this paper will address the establishment of the ACS Foundation Class (AFC) Library. The AFC is a large software repository, requiring a minimal amount of code modifications to produce ACS software for future projects.

Reid, W. Mark; Hansell, William; Phillips, Tom; Anderson, Mark O.; Drury, Derek

1998-01-01

312

Earth Observing System (EOS) Aqua Launch and Early Mission Attitude Support Experiences  

NASA Technical Reports Server (NTRS)

The Earth Observing System (EOS) Aqua satellite was successfully launched on May 4,2002. Aqua is the second in the series of EOS satellites. EOS is part of NASA s Earth Science Enterprise Program, whose goals are to advance the scientific understanding of the Earth system. Aqua is a three-axis stabilized, Earth-pointing spacecraft in a nearly circular, sun-synchronous orbit at an altitude of 705 km. The Goddard Space Flight Center (GSFC) Flight Dynamics attitude team supported all phases of the launch and early mission. This paper presents the main results and lessons learned during this period, including: real-time attitude mode transition support, sensor calibration, onboard computer attitude validation, response to spacecraft emergencies, postlaunch attitude analyses, and anomaly resolution. In particular, Flight Dynamics support proved to be invaluable for successful Earth acquisition, fine-point mode transition, and recognition and correction of several anomalies, including support for the resolution of problems observed with the MODIS instrument.

Tracewell, D.; Glickman, J.; Hashmall, J.; Natanson, G.; Sedlak, J.

2003-01-01

313

X-31 at High Agle of Attack  

NASA Technical Reports Server (NTRS)

The X-31 aircraft, on a research mission from NASA's Dryden Flight Research Center, Edwards, California, is flying nearly perpendicular to the flight path while performing the Herbst maneuver. Effectively using the entire airframe as a speed brake and using the aircraft's unique thrust vectoring system to maintain control, the pilot rapidly rolls the aircraft to reverse the direction of flight, completing the maneuver with acceleration back to high speed in the opposite direction. This type of turning capability could reduce the turning time of a fighter aircraft by 30 percent.

1994-01-01

314

Piloting considerations for terminal area operations of civil tiltwing and tiltrotor aircraft  

NASA Technical Reports Server (NTRS)

The existing body of research to investigate airworthiness, performance, handling, and operational requirements for STOL and V/STOL aircraft was reviewed for its applicability to the tiltrotor and tiltwing design concepts. The objective of this study was to help determine the needs for developing civil certification criteria for these aircraft concepts. Piloting tasks that were considered included configuration and thrust vector management, glidepath control, deceleration to hover, and engine failure procedures. Flight control and cockpit display systems that have been found necessary to exploit the low-speed operating characteristics of these aircraft are described, and beneficial future developments are proposed.

Hindson, William S.; Hardy, Gordon H.; Tucker, George E.; Decker, William A.

1993-01-01

315

A Miniature Mars Ascent Vehicle  

NASA Technical Reports Server (NTRS)

Launch of payloads from the surface of the Mars is a central element in any Sample Return program, and represents one of the most important objectives of NASA planetary science and Human Exploration and Development of Space (HEDS) programs. Analysis of these samples in the sophisticated laboratories of Earth will give vastly more scientific as well as HEDS-relevant engineering and space-medicine knowledge of those bodies than can be performed from any feasible near-term miniaturized instruments. What is proposed here is a launch system with no moving parts of any kind: no gyroscope, no accelerometers, no control surfaces, and no thrust vector control.

Wilcox, Brian H.

2000-01-01

316

A multiple thruster array for 30-cm thrusters  

NASA Technical Reports Server (NTRS)

The 3.0-m diameter chamber of the 7.6-m diameter by 21.4-m long vacuum tank at NASA LeRC was modified to permit testing of an array of up to six 30-cm thrusters with a variety of laboratory and thermal vacuum bread-board power systems. A primary objective of the Multiple Thruster Array (MTA) program is to assess the impact of multiple thruster operation on individual thruster and power processor requirements. The areas of thruster startup, steady-state operation, throttling, high voltage recycle, thrust vectoring, and shutdown are of special concern. The results of initial tests are reported.

Rawlin, V. K.; Mantenieks, M. A.

1975-01-01

317

An Overview of the NASA F-18 High Alpha Research Vehicle  

NASA Technical Reports Server (NTRS)

This paper gives an overview of the NASA F-18 High Alpha Research Vehicle. The three flight phases of the program are introduced, along with the specific goals and data examples taken during each phase. The aircraft configuration and systems needed to perform the disciplinary and inter-disciplinary research are discussed. The specific disciplines involved with the flight research are introduced, including aerodynamics, controls, propulsion, systems, and structures. Decisions that were made early in the planning of the aircraft project and the results of those decisions are briefly discussed. Each of the three flight phases corresponds to a particular aircraft configuration, and the research dictated the configuration to be flown. The first phase gathered data with the baseline F-18 configuration. The second phase was the thrust-vectoring phase. The third phase used a modified forebody with deployable nose strakes. Aircraft systems supporting these flights included extensive instrumentation systems, integrated research flight controls using flight control hardware and corresponding software, analog interface boxes to control forebody strakes, a thrust-vectoring system using external post-exit vanes around axisymmetric nozzles, a forebody vortex control system with strakes, and backup systems using battery-powered emergency systems and a spin recovery parachute.

Bowers, Albion H.; Pahle, Joseph W.; Wilson, R. Joseph; Flick, Bradley C.; Rood, Richard L.

1996-01-01

318

Errors in measurement of three-dimensional motions of the stapes using a laser Doppler vibrometer system.  

PubMed

Previous studies have suggested complex modes of physiological stapes motions based upon various measurements. The goal of this study was to analyze the detailed errors in measurement of the complex stapes motions using laser Doppler vibrometer (LDV) systems, which are highly sensitive to the stimulation intensity and the exact angulations of the stapes. Stapes motions were measured with acoustic stimuli as well as mechanical stimuli using a custom-made three-axis piezoelectric actuator, and errors in the motion components were analyzed. The ratio of error in each motion component was reduced by increasing the magnitude of the stimuli, but the improvement was limited when the motion component was small relative to other components. This problem was solved with an improved reflectivity on the measurement surface. Errors in estimating the position of the stapes also caused errors on the coordinates of the measurement points and the laser beam direction relative to the stapes footplate, thus producing errors in the 3-D motion components. This effect was small when the position error of the stapes footplate did not exceed 5 degrees. PMID:20801206

Sim, Jae Hoon; Lauxmann, Michael; Chatzimichalis, Michail; Röösli, Christof; Eiber, Albrecht; Huber, Alexander M

2010-12-01

319

Accuracy Studies of a Magnetometer-Only Attitude-and-Rate-Determination System  

NASA Technical Reports Server (NTRS)

A personal computer based system was recently prototyped that uses measurements from a three axis magnetometer (TAM) to estimate the attitude and rates of a spacecraft using no a priori knowledge of the spacecraft's state. Past studies using in-flight data from the Solar, Anomalous, and Magnetospheric Particles Explorer focused on the robustness of the system and demonstrated that attitude and rate estimates could be obtained accurately to 1.5 degrees (deg) and 0.01 deg per second (deg/sec), respectively, despite limitations in the data and in the accuracies of te truth models. This paper studies the accuracy of the Kalman filter in the system using several orbits of in-flight Earth Radiation Budget Satellite (ERBS) data and attitude and rate truth models obtained from high precision sensors to demonstrate the practical capabilities. This paper shows the following: Using telemetered TAM data, attitude accuracies of 0.2 to 0.4 deg and rate accuracies of 0.002 to 0.005 deg/sec (within ERBS attitude control requirements of 1 deg and 0.0005 deg/sec) can be obtained with minimal tuning of the filter; Replacing the TAM data in the telemetry with simulated TAM data yields corresponding accuracies of 0.1 to 0.2 deg and 0.002 to 0.005 deg/sec, thus demonstrating that the filter's accuracy can be significantly enhanced by further calibrating the TAM. Factors affecting the fillter's accuracy and techniques for tuning the system's Kalman filter are also presented.

Challa, M. (Editor); Wheeler, C. (Editor)

1996-01-01

320

System Design of Propulsion Systems for Moon or Planetary Descent Vehicles  

NASA Astrophysics Data System (ADS)

Future planetary exploration missions will require the landing of larger payloads more softly and precisely than recently performed. The paper considers several future missions, the landing requirements produce different thrust level needed for the landing vehicle but are similar in many other repects. To fulfil the mission needs of these planetary lander studies, preferably with a common chemical propulsion subsystem concept for all these studies to use as much commonalities as possible, a trade- off has been performed comparing the most promising concepts. These are the concept of a throttable turbo pump engine, of main and assist engines and the clustered/plug nozzle concept. There the propulsion concept of a clustered/plug nozzle is proposed. A discussion is given which shows the advantages of this concept. One of its major advantages is the scalability to different mission, spacecraft mass und thrust requirements. Once the clustered/plug nozzle concept is developed it can easily be adapted to different thrust needs. Therefore just the thruster forming the primary nozzle of the plug nozzle has to be exchanged; the conceptual layout of the propulsion subsystem remains unchanged. The wide variety of the Astrium in-house monopropellant and bi-propellant thruster portfolio supports this scalability. Additional benefits of this concept like stepwise thrust variation or the possibility to incorporate thrust vector steering make this concept even more attractive. The develop- ment risk and the costs of the proposed clustered/plug nozzle concept are expected to be significantly lower than that of a dedicated single main engine.

Peukert, M.; Riehle, M.

321

Cloud Absorption Radiometer Autonomous Navigation System - CANS  

NASA Technical Reports Server (NTRS)

CAR (cloud absorption radiometer) acquires spatial reference data from host aircraft navigation systems. This poses various problems during CAR data reduction, including navigation data format, accuracy of position data, accuracy of airframe inertial data, and navigation data rate. Incorporating its own navigation system, which included GPS (Global Positioning System), roll axis inertia and rates, and three axis acceleration, CANS expedites data reduction and increases the accuracy of the CAR end data product. CANS provides a self-contained navigation system for the CAR, using inertial reference and GPS positional information. The intent of the software application was to correct the sensor with respect to aircraft roll in real time based upon inputs from a precision navigation sensor. In addition, the navigation information (including GPS position), attitude data, and sensor position details are all streamed to a remote system for recording and later analysis. CANS comprises a commercially available inertial navigation system with integral GPS capability (Attitude Heading Reference System AHRS) integrated into the CAR support structure and data system. The unit is attached to the bottom of the tripod support structure. The related GPS antenna is located on the P-3 radome immediately above the CAR. The AHRS unit provides a RS-232 data stream containing global position and inertial attitude and velocity data to the CAR, which is recorded concurrently with the CAR data. This independence from aircraft navigation input provides for position and inertial state data that accounts for very small changes in aircraft attitude and position, sensed at the CAR location as opposed to aircraft state sensors typically installed close to the aircraft center of gravity. More accurate positional data enables quicker CAR data reduction with better resolution. The CANS software operates in two modes: initialization/calibration and operational. In the initialization/calibration mode, the software aligns the precision navigation sensors and initializes the communications interfaces with the sensor and the remote computing system. It also monitors the navigation data state for quality and ensures that the system maintains the required fidelity for attitude and positional information. In the operational mode, the software runs at 12.5 Hz and gathers the required navigation/attitude data, computes the required sensor correction values, and then commands the sensor to the required roll correction. In this manner, the sensor will stay very near to vertical at all times, greatly improving the resulting collected data and imagery. CANS greatly improves quality of resulting imagery and data collected. In addition, the software component of the system outputs a concisely formatted, high-speed data stream that can be used for further science data processing. This precision, time-stamped data also can benefit other instruments on the same aircraft platform by providing extra information from the mission flight.

Kahle, Duncan; Gatebe, Charles; McCune, Bill; Hellwig, Dustan

2013-01-01

322

Real-time visual sensing system achieving high-speed 3D particle tracking with nanometer resolution.  

PubMed

This paper presents a real-time visual sensing system, which is created to achieve high-speed three-dimensional (3D) motion tracking of microscopic spherical particles in aqueous solutions with nanometer resolution. The system comprises a complementary metal-oxide-semiconductor (CMOS) camera, a field programmable gate array (FPGA), and real-time image processing programs. The CMOS camera has high photosensitivity and superior SNR. It acquires images of 128×120 pixels at a frame rate of up to 10,000 frames per second (fps) under the white light illumination from a standard 100 W halogen lamp. The real-time image stream is downloaded from the camera directly to the FPGA, wherein a 3D particle-tracking algorithm is implemented to calculate the 3D positions of the target particle in real time. Two important objectives, i.e., real-time estimation of the 3D position matches the maximum frame rate of the camera and the timing of the output data stream of the system is precisely controlled, are achieved. Two sets of experiments were conducted to demonstrate the performance of the system. First, the visual sensing system was used to track the motion of a 2 ?m polystyrene bead, whose motion was controlled by a three-axis piezo motion stage. The ability to track long-range motion with nanometer resolution in all three axes is demonstrated. Second, it was used to measure the Brownian motion of the 2 ?m polystyrene bead, which was stabilized in aqueous solution by a laser trapping system. PMID:24216655

Cheng, Peng; Jhiang, Sissy M; Menq, Chia-Hsiang

2013-11-01

323

Bias Momentum Sizing for Hovering Dual-Spin Platforms  

NASA Technical Reports Server (NTRS)

An atmospheric flight vehicle in hover is typically controlled by varying its thrust vector. Achieving both levitation and attitude control with the propulsion system places considerable demands on it for agility and precision, particularly if the vehicle is statically unstable, or nearly so. These demands can be relaxed by introducing an appropriately sized angular momentum bias aligned with the vehicle's yaw axis, thus providing an additional margin of attitude stability about the roll and pitch axes. This paper describes a methodical approach for trading off angular momentum bias level needed with desired levels of vehicle response due to the design disturbance environment given a vehicle's physical parameters. It also describes several simplifications that provide a more physical and intuitive understanding of dual-spin dynamics for hovering atmospheric vehicles. This approach also mitigates the need for control torques and inadvertent actuator saturation difficulties in trying to stabilize a vehicle via control torques produced by unsteady aerodynamics, thrust vectoring, and unsteady throttling. Simulation results, based on a subscale laboratory test flying platform, demonstrate significant improvements in the attitude control robustness of the vehicle with respect to both wind disturbances and off-center of gravity payload changes during flight.

Lim, Kyong B.; Shin, Jong-Yeob; Moerder, Daniel D.

2006-01-01

324

Estimating Thruster Impulses From IMU and Doppler Data  

NASA Technical Reports Server (NTRS)

A computer program implements a thrust impulse measurement (TIM) filter, which processes data on changes in velocity and attitude of a spacecraft to estimate the small impulsive forces and torques exerted by the thrusters of the spacecraft reaction control system (RCS). The velocity-change data are obtained from line-of-sight-velocity data from Doppler measurements made from the Earth. The attitude-change data are the telemetered from an inertial measurement unit (IMU) aboard the spacecraft. The TIM filter estimates the threeaxis thrust vector for each RCS thruster, thereby enabling reduction of cumulative navigation error attributable to inaccurate prediction of thrust vectors. The filter has been augmented with a simple mathematical model to compensate for large temperature fluctuations in the spacecraft thruster catalyst bed in order to estimate thrust more accurately at deadbanding cold-firing levels. Also, rigorous consider-covariance estimation is applied in the TIM to account for the expected uncertainty in the moment of inertia and the location of the center of gravity of the spacecraft. The TIM filter was built with, and depends upon, a sigma-point consider-filter algorithm implemented in a Python-language computer program.

Lisano, Michael E.; Kruizinga, Gerhard L.

2009-01-01

325

Magnetic and electric field testing of the Amtrak Northeast Corridor and New Jersey transit/North Jersey coast line rail systems. Volume 2. Appendices. Final report, May 1993-March 1993  

SciTech Connect

The safety of magnetically levitated (maglev) and high speed rail (HSR) trains proposed for application in the United States is the responsibility of the Federal Railroad Administration (FRA). The characterization of electric and magnetic fields (EMF) produced by both steady (dc) and alternating currents (ac) at power frequency (50 Hz in Europe and 60 Hz in the U.S.) and above, in the Extreme Low Frequency (ELF) range (3-3000 Hz), is of interest with respect to any potential health effects these fields may have on the public and on transportation workers. An EMF survey of National Rail Passengers Corporation trains operating on the Northeast Corridor (NEC) was performed, as part of a comprehensive comparative safety assessment of the German Transrapid (TR-07) maglev system and of existing (NEC and transit trains) and advanced rail systems (the French TGV). The report is Volume 2 of two volumes. A portable magnetic field monitoring system (augmented to include an electric fields probe) was used to sample, record and store three-axis static and ac magnetic fields waveforms simultaneously, at multiple locations. A real time Digital Audio Tape (DAT) recorder able to capture EMF transients, and two personal power-frequency magnetic field monitors were used to collect complementary data.

Dietrich, F.M.; Robertson, D.C.; Steiner, G.A.

1993-04-01

326

Magnetic and electric field testing of the Amtrak Northeast Corridor and New Jersey Transit/North Jersey coast line rail systems. Volume 1. Analysis. Final report, May 1992-March 1992  

SciTech Connect

The safety of magnetically levitated (maglev) and high speed rail (HSR) trains proposed for application in the United States is the responsibility of the Federal Railroad Administration (FRA). The characterization of electric and magnetic fields (EMF) produced by both steady (dc) and alternating currents (ac) at power frequency (50 Hz in Europe and 60 Hz in the U.S.) and above, in the Extreme Low Frequency (ELF) range (3-3000 Hz), is of interest with respect to any potential health effects these fields may have on the public and on transportation workers. An EMF survey of National Rail Passengers Corporation trains operating on the Northeast Corridor (NEC) was performed, as part of a comprehensive comparative safety assessment of the German Transrapid (TR-07) maglev system, and of existing (NEC and transit trains) and advanced rail systems (the French TGV). The report is Volume 1 of two volumes. A portable magnetic field monitoring system (augmented to include an electric fields probe) was used to sample, record and store three-axis static and ac magnetic fields waveforms simultaneously, at multiple locations. A real time Digital Audio Tape (DAT) recorder able to capture EMF transients, and two personal power-frequency magnetic field monitors were used to collect complementary data.

Dietrich, F.M.; Feero, W.E.; Papas, P.N.; Steiner, G.A.

1993-04-01

327

Acoustic containerless experiment system: A non-contact surface tension measurement  

NASA Technical Reports Server (NTRS)

The Acoustic Containerless Experiment System (ACES) was flown on STS 41-B in February 1984 and was scheduled to be reflown in 1986. The primary experiment that was to be conducted with the ACES module was the containerless melting and processing of a fluoride glass sample. A second experiment that was to be conducted was the verification of a non-contact surface tension measurement technique using the molten glass sample. The ACES module consisted of a three-axis acoustic positioning module that was inside an electric furnace capable of heating the system above the melting temperature of the sample. The acoustic module is able to hold the sample with acoustic forces in the center of the chamber and, in addition, has the capability of applying a modulating force on the sample along one axis of the chamber so that the molten sample or liquid drop could be driven into one of its normal oscillation modes. The acoustic module could also be adjusted so that it could place a torque on the molten drop and cause the drop to rotate. In the ACES, a modulating frequency was applied to the drop and swept through a range of frequencies that would include the n = 2 mode. A maximum amplitude of the drop oscillation would indicate when resonance was reached and from that data the surface tension could be calculated. For large viscosity samples, a second technique for measuring surface tension was developed. The results of the ACES experiment and some of the problems encountered during the actual flight of the experiment will be discussed.

Elleman, D. D.; Wang, T. G.; Barmatz, M.

1988-01-01

328

Clustered engine study  

NASA Technical Reports Server (NTRS)

Several topics are presented in viewgraph form which together encompass the preliminary assessment of nuclear thermal rocket engine clustering. The study objectives, schedule, flow, and groundrules are covered. This is followed by the NASA groundrules mission and our interpretation of the associated operational scenario. The NASA reference vehicle is illustrated, then the four propulsion system options are examined. Each propulsion system's preliminary design, fluid systems, operating characteristics, thrust structure, dimensions, and mass properties are detailed as well as the associated key propulsion system/vehicle interfaces. A brief series of systems analysis is also covered including: thrust vector control requirements, engine out possibilities, propulsion system failure modes, surviving system requirements, and technology requirements. An assessment of vehicle/propulsion system impacts due to the lessons learned are presented.

Shepard, Kyle; Sager, Paul; Kusunoki, Sid; Porter, John; Campion, AL; Mouritzan, Gunnar; Glunt, George; Vegter, George; Koontz, Rob

1993-01-01

329

Waterhammer Testing and Modeling of the Ares I Upper Stage Reaction Control System  

NASA Technical Reports Server (NTRS)

NASA's Ares I rocket is the agency's first step in completing the goals of the Constellation Program, which plans to deliver a new generation of space explorers into low earth orbit for future missions to the International Space Station, the moon, and other destinations within the solar system. Ares I is a two-stage rocket topped by the Orion crew capsule and its service module. The launch vehicle's First Stage is a single, five-segment reusable solid rocket booster (RSRB), derived from the Space Shuttle Program's four segment RSRB. The vehicle's Upper Stage, being designed at Marshall Space Flight Center (MSFC), is propelled by a single J-2X Main Engine fueled with liquid oxygen and liquid hydrogen. During active Upper Stage flight of the Ares I launch vehicle, the Upper Stage Reaction Control System (US ReCS) will perform attitude control operations for the vehicle. The US ReCS will provide three-axis attitude control capability (roll, pitch, and yaw) for the Upper Stage while the J-2X is not firing and roll control capability while the engine is firing. Because of the requirements imposed upon the system, the design must accommodate rapid pulsing of multiple thrusters simultaneously to maintain attitude control. In support of these design activities and in preparation for Critical Design Review, analytical models of the US ReCS propellant feed system have been developed using the Thermal Hydraulic Library of MSC.EASY5 v.2008, herein referred to as EASY5. EASY5 is a commercially available fluid system modeling package with significant history of modeling space propulsion systems. In Fall 2009, a series of development tests were conducted at MSFC on a cold-flow test article for the US ReCS, herein referred to as System Development Test Article (SDTA). A subset of those tests performed were aimed at examining the effects of waterhammer on a flight-representative system and to ensure that those effects could be quantified with analytical models and incorporated into the design of the flight system. This paper presents an overview of the test article and the test approach, along with a discussion of the analytical modeling methodology. In addition, the results of that subset of development tests, along with analytical model pre-test predictions and post-test model correlations, will also be discussed in detail.

Williams, J. Hunter; Holt, Kimberly A.

2010-01-01

330

Design Challenges of Power Systems for Instrumented Spacecraft with Very Low Perigees in the Earth's Ionosphere  

NASA Technical Reports Server (NTRS)

Designing a solar array to power a spacecraft bus supporting a set of instruments making in situ plasma and neutral atmosphere measurements in the ionosphere at altitudes of 120km or lower poses several challenges. The driving scientific requirements are the field-of-view constraints of the instruments resulting in a three-axis stabilized spacecraft, the need for an electromagnetically unperturbed environment accomplished by designing an electrostatically conducting solar array surface to avoid large potentials, making the spacecraft body as small and as symmetric as possible, and body-mounting the solar array. Furthermore, the life and thermal constraints, in the midst of the effects of the dense atmosphere at low altitude, drive the cross-sectional area of the spacecraft to be small particularly normal to the ram direction. Widely varying sun angles and eclipse durations add further complications, as does the growing desire for multiple spacecraft to resolve spatial and temporal variations packaged into a single launch vehicle. Novel approaches to insure adequate orbit-averaged power levels of approximately 250W include an oval-shaped cross section to increase the solar array collecting area during noon-midnight orbits and the use of a flywheel energy storage system. The flywheel could also be used to help maintain the spacecraft's attitude, particularly during excursions to the lowest perigee altitudes. This paper discusses the approaches used in conceptual power designs for both the proposed Dipper and the Global Electrodynamics Connections (GEC) Mission currently being studied at the NASA/Goddard Space Flight Center.

Moran, Vickie Eakin; Manzer, Dominic D.; Pfaff, Robert E.; Grebowsky, Joseph M.; Gervin, Jan C.

1999-01-01

331

International Symposium on Air Breathing Engines, 8th, Cincinnati, OH, June 14-19, 1987, Proceedings  

SciTech Connect

The present conference on air-breathing aircraft engine technology considers topics in inlet design, radial-flow turbomachinery, fuel injection and combustion systems, axial flow compressor design and performance, ramjet configurations, turbine flow phenomena, engine control and service life, fluid flow-related problems, engine diagnostic methods, propfan design, combustor performance and pollutant chemistry, combustion dynamics, and engine system analysis. Attention is given to thrust-vectoring systems, supersonic missile air intakes, three-dimensional centrifugal compressors, airblast atomizers, secondary flows in axial flow compressors, axial compressor blade tip clearance flows, hydrogen scramjets with sidewall injection, the performance of a variable-geometry turbine, advanced tip clearance control systems, rotary jet mixing, fan blade aeroelastic behavior, flow dynamics in combustion processes, and the technology of low cost turbomachinery.

Billig, F.S.

1987-01-01

332

Electrical Actuation Technology Bridging  

NASA Technical Reports Server (NTRS)

This document contains the proceedings of the NASA Electrical Actuation Technology Bridging (ELA-TB) Workshop held in Huntsville, Alabama, September 29-October 1, 1992. The workshop was sponsored by the NASA Office of Space Systems Development and Marshall Space Flight Center (MSFC). The workshop addressed key technologies bridging the entire field of electrical actuation including systems methodology, control electronics, power source systems, reliability, maintainability, and vehicle health management with special emphasis on thrust vector control (TVC) applications on NASA launch vehicles. Speakers were drawn primarily from industry with participation from universities and government. In addition, prototype hardware demonstrations were held at the MSFC Propulsion Laboratory each afternoon. Splinter sessions held on the final day afforded the opportunity to discuss key issues and to provide overall recommendations. Presentations are included in this document.

Hammond, Monica (compiler); Sharkey, John (compiler)

1993-01-01

333

Development of the command data system and ground software for the SEDSAT-1 microsatellite  

NASA Technical Reports Server (NTRS)

SEDSAT-1 is designed to be a low cost scientific satellite which is to be used to perform a minimum of five tasks which include: (1) the acquisition of a number of important parameters associated with the tethering processes from the payloads perspective (such as accelerations incurred and imaging data of the tether during deployment), (2) to act as a remote sensing platform for making measurements of the Earth's Atmosphere (allowing research to be performed in such areas as vertical lightning observation, visible light spectrography, and cloud cover studies, (3) to act as a general purpose amateur radio communication satellite relaying information back to earth, (4) to demonstrate the feasibility of the deployment in low earth orbit of advanced technology such as the Gallium Arsenide Solar Cells, Nickel Metal Hydride batteries, and multi-chip module technology and, (5) to support student's active participation in applying the disciplines of engineering and science to space-based hardware platforms. The project includes the Three-axis Accelerometer System, TAS, Experiment which is designed to report the accelerations that the satellite undergoes during the tethering operations and during the second phase of the mission when the free floating satellite comes in contact with orbit debris. The SEASIS (SEDS Earth, Atmosphere, and Space Imaging System) is another SEDSAT experiment designed to provide images of the tether during its deployment and the earth during the second phase of the mission. To control these experiments and virtually all other satellite operations the Command Data System, CDS is employed. This system utilizes a moderate complexity micro-controller controlled by tasks operating under a real-time operating system to dynamically monitor and control the satellite. The scope of this researchers efforts has been in the general area of coordinating and assisting the student researchers with the development of the CDS and ground station interfaces. This included the low level CDS hardware design and the formulization of a general software plan and schedule for both the CDS and ground station portions of the project.

Wells, B. Earl

1996-01-01

334

Technical Progress on the Ares I-X Flight Test  

NASA Technical Reports Server (NTRS)

Ares I-X will be NASA's first test flight for a new human-rated launch vehicle since 1981, and the team is well on its way toward completing the vehicle's design and hardware fabrication for an April 2009 launch. This uncrewed suborbital development test flight gives NASA its first opportunities to: gather critical data about the flight dynamics of the integrated launch vehicle; understand how to control its roll during flight; better characterize the stage separation environments during future flight; and demonstrate the first stage recovery system. The Ares I-X Flight Test Vehicle (FTV) incorporates a mix of flight and mockup hardware. It is powered by a four-segment solid rocket booster, and will be modified to include a fifth, spacer segment; the upper stage, Orion crew exploration vehicle, and launch abort system are simulator hardware to make the FTV aerodynamically similar to the same size, shape, and weight of Ares I. The Ares IX first stage includes an existing Shuttle solid rocket motor and thrust vector control system controlled by an Ascent Thrust Vector Controller (ATVC) designed and built by Honeywell International. The avionics system will be tested in a dedicated System Integration Laboratory located at Lockheed Martin Space Systems (LMSS) in Denver, Colorado. The Upper Stage Simulator (USS) is made up of cylindrical segments that will be stacked and integrated at Kennedy Space Center (KSC) for launch. Glenn Research Center is already building these segments, along with their internal access structures. The active Roll Control System (RoCS) includes two thruster units harvested from Peacekeeper missiles. Duty cycle testing for RoCS was conducted, and fuel tanking and detanking tests will occur at KSC in early 2008. This important flight will provide valuable experience for the ground operations team in integrating, stacking, and launching Ares I. Data from Ares I-X will ensure the safety and reliability of America's newest launch vehicle.

Davis, S.R.; Robinson, K.F.; Flynn, K.C.

2008-01-01

335

Body Systems  

NSDL National Science Digital Library

What are the parts and functions of the different systems in the body? Circulatory System Watch the Circulatory System and the Heart video. Complete one of the Circulatory System quizzes. Excretory System Label the parts of the excretory system. Respiratory System Quiz Complete respiratory system quiz to review parts. Skeletal System Label each part of the skeletal system. Vocabulary Review Change the settings to only include body system terms and play Hangman to review new vocabulary. ...

2011-11-02

336

Development of strap-on-booster, SB-735, for the M-3SII launch vehicle  

NASA Astrophysics Data System (ADS)

A project to increase the payload capability of the Mu launch series was begun in 1978. The result is the M-3SII, an all-solid-propellant vehicle enhanced by a strap-on booster (SOB) system. This includes the 0.735-m-diameter solid rocket SB-735 motor with a movable nozzle, a pair of which is to be attached to the vehicle. They furnish not only impulse but also roll control capability in the initial phase of launching in conjunction with the core motor equipped with a liquid injection thrust vector control. The requirements for the SB-735 motor and movable nozzle system are summarized, and their overall configuration and performance characteristics are presented. The design details of the principal SB-735 components are reviewed.

Hinada, M.; Kohno, M.; Murakami, T.; Asai, T.; Yamane, K.

1982-09-01

337

Advanced electric motor technology: Flux mapping  

NASA Technical Reports Server (NTRS)

This report contains the assumptions, mathematical models, design methodology, and design points involved with the design of an electromechanical actuator (EMA) suitable for directing the thrust vector of a large MSFC/NASA launch vehicle. Specifically the design of such an actuator for use on the upcoming liquid fueled National Launch System (NLS) is considered culminating in a point design of both the servo system and the electric motor needed. A major thrust of the work is in selecting spur gear and roller screw reduction ratios to achieve simultaneously wide bandwidth, maximum power transfer, and disturbance rejection while meeting specified horsepower requirements at a given stroking speed as well as a specified maximum stall force. An innovative feedback signal is utilized in meeting these diverse objectives.

Doane, George B., III; Campbell, Warren; Brantley, Larry W.; Dean, Garvin

1992-01-01

338

Relative control effectiveness technique with application to airplane control coordination  

NASA Technical Reports Server (NTRS)

A method to select optimal combinations of the control variables of a linear system is reported. The combinations are chosen so that the control channels have their principal influences on selected fundamental modes of the system. A series of algebraic maximization problems is used to maximize the effects of the control channels on selected modes while simultaneously minimizing the effects on the remaining modes. The method is applied to the lateral and directional control of a linearized airplane model having ailerons, a rudder, and differential tail surfaces. Integration of these control eliminates oscillations present in the roll rate for a step lateral-control input and improves the sideslip response with reduced rolling motions for a step directional-control input. Inclusion of thrust-vectoring engine nozzles improves the roll rate capability of the airplane.

Lallman, F. J.

1985-01-01

339

HermesB: a continuous neural recording system for freely behaving primates.  

PubMed

Chronically implanted electrode arrays have enabled a broad range of advances in basic electrophysiology and neural prosthetics. Those successes motivate new experiments, particularly, the development of prototype implantable prosthetic processors for continuous use in freely behaving subjects, both monkeys and humans. However, traditional experimental techniques require the subject to be restrained, limiting both the types and duration of experiments. In this paper, we present a dual-channel, battery-powered neural recording system with an integrated three-axis accelerometer for use with chronically implanted electrode arrays in freely behaving primates. The recording system called HermesB, is self-contained, autonomous, programmable, and capable of recording broadband neural (sampled at 30 kS/s) and acceleration data to a removable compact flash card for up to 48 h. We have collected long-duration data sets with HermesB from an adult macaque monkey which provide insight into time scales and free behaviors inaccessible under traditional experiments. Variations in action potential shape and root-mean square (RMS) noise are observed across a range of time scales. The peak-to-peak voltage of action potentials varied by up to 30% over a 24-h period including step changes in waveform amplitude (up to 25%) coincident with high acceleration movements of the head. These initial results suggest that spike-sorting algorithms can no longer assume stable neural signals and will need to transition to adaptive signal processing methodologies to maximize performance. During physically active periods (defined by head-mounted accelerometer), significantly reduced 5-25-Hz local field potential (LFP) power and increased firing rate variability were observed. Using a threshold fit to LFP power, 93% of 403 5-min recording blocks were correctly classified as active or inactive, potentially providing an efficient tool for identifying different behavioral contexts in prosthetic applications. These results demonstrate the utility of the HermesB system and motivate using this type of system to advance neural prosthetics and electrophysiological experiments. PMID:18018699

Santhanam, Gopal; Linderman, Michael D; Gilja, Vikash; Afshar, Afsheen; Ryu, Stephen I; Meng, Teresa H; Shenoy, Krishna V

2007-11-01

340

Solar system positioning system  

NASA Technical Reports Server (NTRS)

Power-rich spacecraft envisioned in Prometheus initiative open up possibilities for long-range high-rate communication. A constellation of spacecraft on orbits several A.U. from the Sun, equipped with laser transponders and precise clocks can be configured to measure their mutual distances to within few cm. High on-board power can create substantial non-inertial contribution to the spacecraft trajectory. We propose to alleviate this contribution by employing secondary ranging to a passive daughter spacecraft. Such constellation can form the basis of it navigation system capable of providing position information anywhere in the soIar system with similar accuracy. Apart from obvious Solar System exploration implications, this system can provide robust reference for GPS and its successors.

Penanen, Konstantin I.; Chui, Talso

2006-01-01

341

Effects of internal yaw-vectoring devices on the static performance of a pitch-vectoring nonaxisymmetric convergent-divergent nozzle  

NASA Technical Reports Server (NTRS)

An investigation was conducted in the static test facility of the Langley 16-Foot Transonic Tunnel to evaluate the internal performance of a nonaxisymmetric convergent divergent nozzle designed to have simultaneous pitch and yaw thrust vectoring capability. This concept utilized divergent flap deflection for thrust vectoring in the pitch plane and flow-turning deflectors installed within the divergent flaps for yaw thrust vectoring. Modifications consisting of reducing the sidewall length and deflecting the sidewall outboard were investigated as means to increase yaw-vectoring performance. This investigation studied the effects of multiaxis (pitch and yaw) thrust vectoring on nozzle internal performance characteristics. All tests were conducted with no external flow, and nozzle pressure ratio was varied from 2.0 to approximately 13.0. The results indicate that this nozzle concept can successfully generate multiaxis thrust vectoring. Deflection of the divergent flaps produced resultant pitch vector angles that, although dependent on nozzle pressure ratio, were nearly equal to the geometric pitch vector angle. Losses in resultant thrust due to pitch vectoring were small or negligible. The yaw deflectors produced resultant yaw vector angles up to 21 degrees that were controllable by varying yaw deflector rotation. However, yaw deflector rotation resulted in significant losses in thrust ratios and, in some cases, nozzle discharge coefficient. Either of the sidewall modifications generally reduced these losses and increased maximum resultant yaw vector angle. During multiaxis (simultaneous pitch and yaw) thrust vectoring, little or no cross coupling between the thrust vectoring processes was observed.

Asbury, Scott C.

1993-01-01

342

The development of space solid rocket motors in China  

NASA Astrophysics Data System (ADS)

China has undertaken to research and develop composite solid propellant rocket motors since 1958. At the request of the development of space technology, composite solid propellant rocket motor has developed from small to large, step by step. For the past thirty eight years, much progress has made, many technical obstacles, such as motor design, case materials and their processing technology, propellant formulations and manufacture, nozzles and thrust vector control, safe ignition, environment tests, nondestructive inspection and quality assurance, static firing test and measurement etc. have been solved. A serial of solid rocket motors have been offered for China's satellites launch. The systems of research, design, test and manufacture of solid rocket motors have been formed.

Jianding, Huang; Dingyou, Ye

343

Bias Momentum Sizing for Hovering Dual-Spin Platforms  

NASA Technical Reports Server (NTRS)

An atmospheric flight vehicle in hover is typically controlled by varying its thrust vector. Achieving both levitation and control with the propulsion system places considerable demands on it for agility and precision, particularly if the vehicle is statically unstable, or nearly so. These demands can be relaxed by introducing an appropriately sized angular momentum bias about the vehicle's yaw axis, thus providing an additional margin of attitude stability about the roll and pitch axes. This paper describes an approach for specifying the appropriate size of such angular momentum bias, based on the vehicle s physical parameters and its disturbance environment. It also describes several simplifications that provide a more physical and intuitive understanding of the dynamics. This will enhance the possibility of practically applying this technology to a flying vehicle.

Lim, K. B.; Shin, J-Y.; Moerder, D. D.

2005-01-01

344

Finite Element Simulation of a Space Shuttle Solid Rocket Booster Aft Skirt Splashdown Using an Arbitrary Lagrangian-Eulerian Approach  

NASA Technical Reports Server (NTRS)

Explicit finite element techniques employing an Arbitrary Lagrangian-Eulerian (ALE) methodology, within the transient dynamic code LS-DYNA, are used to predict splashdown loads on a proposed replacement/upgrade of the hydrazine tanks on the thrust vector control system housed within the aft skirt of a Space Shuttle Solid Rocket Booster. Two preliminary studies are performed prior to the full aft skirt analysis: An analysis of the proposed tank impacting water without supporting aft skirt structure, and an analysis of space capsule water drop tests conducted at NASA's Langley Research Center. Results from the preliminary studies provide confidence that useful predictions can be made by applying the ALE methodology to a detailed analysis of a 26-degree section of the skirt with proposed tank attached. Results for all three studies are presented and compared to limited experimental data. The challenges of using the LS-DYNA ALE capability for this type of analysis are discussed.

Melis, Matthew E.

2003-01-01

345

Solar Sail Control Actuator Concepts  

NASA Technical Reports Server (NTRS)

The thrust produced by a solar sail is a direct function of its attitude. Thus, solar sail thrust vector control is a key technology that must be developed for sailcraft to become a viable form of deep-space transportation. The solar sail community has been studying various sail Attitude Control System (ACS) actuator designs for near Earth orbit as well as deep space missions. These actuators include vanes, spreader bars, two-axis gimbals, floating/locking gimbals with wheels, and translating masses. This paper documents the various concepts and performs an assessment at the highest level. This paper will only compare the various ACS actuator concepts as they stand at the publication time. This is not an endorsement of any particular concept. As concepts mature, the assessments will change.

Mangus, David; Heaton, Andy

2004-01-01

346

A Boiling-Potassium Fluoride Reactor for an Artificial-Gravity NEP Vehicle  

NASA Technical Reports Server (NTRS)

Several years ago a rotating manned spacecraft employing nuclear-electric propulsion was examined for Mars exploration. The reactor and its power conversion system essentially served as the counter-mass to an inflatable manned module. A solid-core boiling potassium reactor based on the MPRE concept of the 1960s was baselined in that study. This paper proposes the use of a liquid-fluoride reactor, employing direct boiling of potassium in the core, as a means to overcome some of the residual issues with the MPRE reactor concept. Several other improvements to the rotating Mars vehicle are proposed as well, such as Canfield joints to enable the electric engines to track the inertial thrust vector during rotation, and innovative "cold-ion" engine technologies to improve engine performance.

Sorensen, Kirk; Juhasz, Albert

2007-01-01

347

The cesium bombardment engine north-south stationkeeping experiment on ATS-6  

NASA Technical Reports Server (NTRS)

Two one millipound-thrust cesium bombardment ion thrusters have been developed and integrated on the ATS-F spacecraft for the purpose of demonstrating compatible north-south stationkeeping of a synchronous communication satellite. Preliminary operation of the two thrusters on ATS-6 was completely successful on the first run of each. In addition to verifying operation, the principal accomplishments were the demonstration of a total absence of interference with the communications systems, verification of the predicted spacecraft operating potential, demonstration of compatibility with the star tracker, and demonstration of spacecraft attitude by thrust vectoring. Subsequent attempts to operate the thrusters have not been successful. Analysis indicates that the problem is associated with operation of the propellant reservoirs in zero-g.

Worlock, R. M.; James, E. L.; Hunter, R. E.; Bartlett, R. O.

1975-01-01

348

Pulsed Plasma Thruster Plume Study: Symmetry and Impact on Spacecraft Surfaces  

NASA Technical Reports Server (NTRS)

Twenty-four witness plates were positioned on perpendicular arrays near a breadboard Pulsed Plasma Thruster (PPT) to collect plume constituents for analysis. Over one million shots were fired during the experiment at 43 J using fluorocarbon polymer propellant. The asymmetry of the film deposition on the witness plates was investigated with mass and thickness measurements and correlated with off-axis thrust vector measurements. The composition of the films was determined. The transmittance and reflectance of the films were measured and the absorption coefficients were calculated in the wavelength range from 350 to 1200 mn. These data were applied to calculate the loss in signal intensity through the films, which will impact the visibility of spaceborne interferometer systems positioned by these thrusters.

Arrington, Lynn A.; Marrese, Colleen M.; Blandino, John J.

2000-01-01

349

Development of the Multiple Use Plug Hybrid for Nanosats (MUPHyN) miniature thruster  

NASA Astrophysics Data System (ADS)

The Multiple Use Plug Hybrid for Nanosats (MUPHyN) prototype thruster incorporates solutions to several major challenges that have traditionally limited the deployment of chemical propulsion systems on small spacecraft. The MUPHyN thruster offers several features that are uniquely suited for small satellite applications. These features include 1) a non-explosive ignition system, 2) non-mechanical thrust vectoring using secondary fluid injection on an aerospike nozzle cooled with the oxidizer flow, 3) a non-toxic, chemically-stable combination of liquid and inert solid propellants, 4) a compact form factor enabled by the direct digital manufacture of the inert solid fuel grain. Hybrid rocket motors provide significant safety and reliability advantages over both solid composite and liquid propulsion systems; however, hybrid motors have found only limited use on operational vehicles due to 1) difficulty in modeling the fuel flow rate 2) poor volumetric efficiency and/or form factor 3) significantly lower fuel flow rates than solid rocket motors 4) difficulty in obtaining high combustion efficiencies. The features of the MUPHyN thruster are designed to offset and/or overcome these shortcomings. The MUPHyN motor design represents a convergence of technologies, including hybrid rocket regression rate modeling, aerospike secondary injection thrust vectoring, multiphase injector modeling, non-pyrotechnic ignition, and nitrous oxide regenerative cooling that address the traditional challenges that limit the use of hybrid rocket motors and aerospike nozzles. This synthesis of technologies is unique to the MUPHyN thruster design and no comparable work has been published in the open literature.

Eilers, Shannon

350

X-31 Demonstrating High Angle of Attack - Herbst Maneuver  

NASA Technical Reports Server (NTRS)

The X-31 aircraft on a research mission from NASA's Dryden Flight Research Facility, Edwards, California, is flying nearly perpendicular to the flight path while performing the Herbst maneuver. Effectively using the entire airframe as a speed brake and using the aircraft's unique thrust vectoring system to maintain control, the pilot rapidly rolls the aircraft to reverse the direction of flight, completing the maneuver with acceleration back to high speed in the opposite direction. This type of turning capability could reduce the turning time of a fighter aircraft by 30 percent. The Herbst maneuver was first conducted in an X-31 on April 29, 1993, in the No. 2 aircraft by German test pilot Karl-Heinz Lang. The X-31 Enhanced Fighter Maneuverability (EFM) demonstrator flew at the Ames- Dryden Flight Research Facility, Edwards, California (redesignated the Dryden Flight Research Center in 1994) from February 1992 until 1995 and before that at the Air Force's Plant 42 in Palmdale, California. The goal of the project was to provide design information for the next generation of highly maneuverable fighter aircraft. This program demonstrated the value of using thrust vectoring (directing engine exhaust flow) coupled with an advanced flight control system to provide controlled flight to very high angles of attack. The result was a significant advantage over most conventional fighters in close-in combat situations. The X-31 flight program focused on agile flight within the post-stall regime, producing technical data to give aircraft designers a better understanding of aerodynamics, effectiveness of flight controls and thrust vectoring, and airflow phenomena at high angles of attack. Stall is a condition of an airplane or an airfoil in which lift decreases and drag increases due to the separation of airflow. Thrust vectoring compensates for the loss of control through normal aerodynamic surfaces that occurs during a stall. Post-stall refers to flying beyond the normal stall angle of attack, which in the X-31 was at a 30-degree angle of attack. During Dryden flight testing, the X-31 aircraft established several milestones. On November 6, 1992, the X-31 achieved controlled flight at a 70-degree angle of attack. On April 29, 1993, the second X-31 successfully executed a rapid minimum-radius, 180-degree turn using a post-stall maneuver, flying well beyond the aerodynamic limits of any conventional aircraft. This revolutionary maneuver has been called the 'Herbst Maneuver' after Wolfgang Herbst, a German proponent of using post-stall flight in air-to-air combat. It is also called a 'J Turn' when flown to an arbitrary heading change. The aircraft was flown in tactical maneuvers against an F/A-18 and other tactical aircraft as part of the test flight program. During November and December 1993, the X-31 reached a supersonic speed of Mach 1.28. In 1994, the X-31 program installed software to demonstrate quasi-tailless operation. The X-31 flight test program was conducted by an international test organization (ITO) managed by the Advanced Research Projects Office (ARPA), known as the Defense Advanced Research Projects Office (DARPA) before March 1993. The ITO included the U.S. Navy and U.S. Air Force, Rockwell Aerospace, the Federal Republic of Germany, Daimler-Benz (formerly Messerschmitt-Bolkow-Blohm and Deutsche Aerospace), and NASA. Gary Trippensee was the ITO director and NASA Project Manager. Pilots came from participating organizations. The X-31 was 43.33 feet long with a wingspan of 23.83 feet. It was powered by a single General Electric P404-GE-400 turbofan engine that produced 16,000 pounds of thrust in afterburner.

1994-01-01

351

X-31 at High Angle of Attack  

NASA Technical Reports Server (NTRS)

The X-31 aircraft on a research mission from NASA's Dryden Flight Research Center, Edwards, California, is flying nearly perpendicular to the flight path while performing the Herbst maneuver. Effectively using the entire airframe as a speed brake and using the aircrafts unique thrust vectoring system to maintain control, the pilot rapidly rolls the aircraft to reverse the direction of flight, completing the maneuver with acceleration back to high speed in the opposite direction. This type of turning capability could reduce the turning time of a fighter aircraft by 30 percent. The Herbst maneuver was first conducted in an X-31 on April 29, 1993, in the No. 2 X-31 aircraft by German test pilot Karl-Heinz Lang. The X-31 Enhanced Fighter Maneuverability (EFM) demonstrator flew at the Ames- Dryden Flight Research Facility, Edwards, California (redesignated the Dryden Flight Research Center in 1994) from February 1992 until 1995 and before that at the Air Force's Plant 42 in Palmdale, California. The goal of the project was to provide design information for the next generation of highly maneuverable fighter aircraft. This program demonstrated the value of using thrust vectoring (directing engine exhaust flow) coupled with an advanced flight control system to provide controlled flight to very high angles of attack. The result was a significant advantage over most conventional fighters in close-in combat situations. The X-31 flight program focused on agile flight within the post-stall regime, producing technical data to give aircraft designers a better understanding of aerodynamics, effectiveness of flight controls and thrust vectoring, and airflow phenomena at high angles of attack. Stall is a condition of an airplane or an airfoil in which lift decreases and drag increases due to the separation of airflow. Thrust vectoring compensates for the loss of control through normal aerodynamic surfaces that occurs during a stall. Post-stall refers to flying beyond the normal stall angle of attack, which in the X-31 was at a 30-degree angle of attack. During Dryden flight testing, the X-31 aircraft established several milestones. On November 6, 1992, the X-31 achieved controlled flight at a 70-degree angle of attack. On April 29, 1993, the second X-31 successfully executed a rapid minimum-radius, 180-degree turn using a post-stall maneuver, flying well beyond the aerodynamic limits of any conventional aircraft. This revolutionary maneuver has been called the 'Herbst Maneuver' after Wolfgang Herbst, a German proponent of using post-stall flight in air-to-air combat. It is also called a 'J Turn' when flown to an arbitrary heading change. The aircraft was flown in tactical maneuvers against an F/A-18 and other tactical aircraft as part of the test flight program. During November and December 1993, the X-31 reached a supersonic speed of Mach 1.28. In 1994, the X-31 program installed software to demonstrate quasi-tailless operation. The X-31 flight test program was conducted by an international test organization (ITO) managed by the Advanced Research Projects Office (ARPA), known as the Defense Advanced Research Projects Office (DARPA) before March 1993. The ITO included the U.S. Navy and U.S. Air Force, Rockwell Aerospace, the Federal Republic of Germany, Daimler-Benz (formerly Messerschmitt-Bolkow-Blohm and Deutsche Aerospace), and NASA. Gary Trippensee was the ITO director and NASA Project Manager. Pilots came from participating organizations. The X-31 was 43.33 feet long with a wingspan of 23.83 feet. It was powered by a single General Electric P404-GE-400 turbofan engine that produced 16,000 pounds of thrust in afterburner.

1994-01-01

352

X-31 Being Loaded into C-5 Cargo Plane  

NASA Technical Reports Server (NTRS)

The X-31 Enhanced Fighter Maneuverability Technology Demonstrator Aircraft, based at the NASA Dryden Flight Research Center, Edwards, California, begins rolling aboard an Air Force Reserve C-5 transport which ferried it on May 22, 1995 to Europe where it was flown in the Paris Air Show in June 1995. To fit in the C-5 the right wing of the X-31 had to be removed. At the air show, the X-31 demonstrated the value of using thrust vectoring (directing engine exhaust flow) coupled with advanced flight control systems to provide controlled flight at very high angles of attack. The X-31 Enhanced Fighter Maneuverability (EFM) demonstrator flew at the Ames- Dryden Flight Research Facility, Edwards, California (redesignated the Dryden Flight Research Center in 1994) from February 1992 until 1995 and before that at the Air Force's Plant 42 in Palmdale, California. The goal of the project was to provide design information for the next generation of highly maneuverable fighter aircraft. This program demonstrated the value of using thrust vectoring (directing engine exhaust flow) coupled with an advanced flight control system to provide controlled flight to very high angles of attack. The result was a significant advantage over most conventional fighters in close-in combat situations. The X-31 flight program focused on agile flight within the post-stall regime, producing technical data to give aircraft designers a better understanding of aerodynamics, effectiveness of flight controls and thrust vectoring, and airflow phenomena at high angles of attack. Stall is a condition of an airplane or an airfoil in which lift decreases and drag increases due to the separation of airflow. Thrust vectoring compensates for the loss of control through normal aerodynamic surfaces that occurs during a stall. Post-stall refers to flying beyond the normal stall angle of attack, which in the X-31 was at a 30-degree angle of attack. During Dryden flight testing, the X-31 aircraft established several milestones. On November 6, 1992, the X-31 achieved controlled flight at a 70-degree angle of attack. On April 29, 1993, the second X-31 successfully executed a rapid minimum-radius, 180-degree turn using a post-stall maneuver, flying well beyond the aerodynamic limits of any conventional aircraft. This revolutionary maneuver has been called the 'Herbst Maneuver' after Wolfgang Herbst, a German proponent of using post-stall flight in air-to-air combat. It is also called a 'J Turn' when flown to an arbitrary heading change. The aircraft was flown in tactical maneuvers against an F/A-18 and other tactical aircraft as part of the test flight program. During November and December 1993, the X-31 reached a supersonic speed of Mach 1.28. In 1994, the X-31 program installed software to demonstrate quasi-tailless operation. The X-31 flight test program was conducted by an international test organization (ITO) managed by the Advanced Research Projects Office (ARPA), known as the Defense Advanced Research Projects Office (DARPA) before March 1993. The ITO included the U.S. Navy and U.S. Air Force, Rockwell Aerospace, the Federal Republic of Germany, Daimler-Benz (formerly Messerschmitt-Bolkow-Blohm and Deutsche Aerospace), and NASA. Gary Trippensee was the ITO director and NASA Project Manager. Pilots came from participating organizations. The X-31 was 43.33 feet long with a wingspan of 23.83 feet. It was powered by a single General Electric P404-GE-400 turbofan engine that produced 16,000 pounds of thrust in afterburner.

1995-01-01

353

X-31 at High Angle of Attack  

NASA Technical Reports Server (NTRS)

The X-31 aircraft, on a research mission from NASA's Dryden Flight Research Center, Edwards, California, is flying nearly perpendicular to the flight path while performing the Herbst maneuver. Effectively using the entire airframe as a speed brake and using the aircraft's unique thrust vectoring system to maintain control, the pilot rapidly rolls the aircraft to reverse the direction of flight, completing the maneuver with acceleration back to high speed in the opposite direction. This type of turning capability could reduce the turning time of a fighter aircraft by 30 percent. The Herbst maneuver was first conducted in an X-31 on April 29, 1993, in the No. 2 X-31 aircraft by German test pilot Karl-Heinz Lang. The X-31 Enhanced Fighter Maneuverability (EFM) demonstrator flew at the Ames- Dryden Flight Research Facility, Edwards, California (redesignated the Dryden Flight Research Center in 1994) from February 1992 until 1995 and before that at the Air Force's Plant 42 in Palmdale, California. The goal of the project was to provide design information for the next generation of highly maneuverable fighter aircraft. This program demonstrated the value of using thrust vectoring (directing engine exhaust flow) coupled with an advanced flight control system to provide controlled flight to very high angles of attack. The result was a significant advantage over most conventional fighters in close-in combat situations. The X-31 flight program focused on agile flight within the post-stall regime, producing technical data to give aircraft designers a better understanding of aerodynamics, effectiveness of flight controls and thrust vectoring, and airflow phenomena at high angles of attack. Stall is a condition of an airplane or an airfoil in which lift decreases and drag increases due to the separation of airflow. Thrust vectoring compensates for the loss of control through normal aerodynamic surfaces that occurs during a stall. Post-stall refers to flying beyond the normal stall angle of attack, which in the X-31 was at a 30-degree angle of attack. During Dryden flight testing, the X-31 aircraft established several milestones. On November 6, 1992, the X-31 achieved controlled flight at a 70-degree angle of attack. On April 29, 1993, the second X-31 successfully executed a rapid minimum-radius, 180-degree turn using a post-stall maneuver, flying well beyond the aerodynamic limits of any conventional aircraft. This revolutionary maneuver has been called the 'Herbst Maneuver' after Wolfgang Herbst, a German proponent of using post-stall flight in air-to-air combat. It is also called a 'J Turn' when flown to an arbitrary heading change. The aircraft was flown in tactical maneuvers against an F/A-18 and other tactical aircraft as part of the test flight program. During November and December 1993, the X-31 reached a supersonic speed of Mach 1.28. In 1994, the X-31 program installed software to demonstrate quasi-tailless operation. The X-31 flight test program was conducted by an international test organization (ITO) managed by the Advanced Research Projects Office (ARPA), known as the Defense Advanced Research Projects Office (DARPA) before March 1993. The ITO included the U.S. Navy and U.S. Air Force, Rockwell Aerospace, the Federal Republic of Germany, Daimler-Benz (formerly Messerschmitt-Bolkow-Blohm and Deutsche Aerospace), and NASA. Gary Trippensee was the ITO director and NASA Project Manager. Pilots came from participating organizations. The X-31 was 43.33 feet long with a wingspan of 23.83 feet. It was powered by a single General Electric P404-GE-400 turbofan engine that produced 16,000 pounds of thrust in afterburner.

1994-01-01

354

X-31 at High Angle of Attack  

NASA Technical Reports Server (NTRS)

The X-31 aircraft, on a research mission from NASA's Dryden Flight Research Center, Edwards, California, is flying nearly perpendicular to the flight path while performing the Herbst maneuver. Effectively using the entire airframe as a speed brake and using the aircrafts unique thrust vectoring system to maintain control, the pilot rapidly rolls the aircraft to reverse the direction of flight, completing the maneuver with acceleration back to high speed in the opposite direction. This type of turning capability could reduce the turning time of a fighter aircraft by 30 percent. The Herbst maneuver was first conducted in an X-31 on April 29, 1993, in the No. 2 X-31 aircraft by German test pilot Karl-Heinz Lang. The X-31 Enhanced Fighter Maneuverability (EFM) demonstrator flew at the Ames- Dryden Flight Research Facility, Edwards, California (redesignated the Dryden Flight Research Center in 1994) from February 1992 until 1995 and before that at the Air Force's Plant 42 in Palmdale, California. The goal of the project was to provide design information for the next generation of highly maneuverable fighter aircraft. This program demonstrated the value of using thrust vectoring (directing engine exhaust flow) coupled with an advanced flight control system to provide controlled flight to very high angles of attack. The result was a significant advantage over most conventional fighters in close-in combat situations. The X-31 flight program focused on agile flight within the post-stall regime, producing technical data to give aircraft designers a better understanding of aerodynamics, effectiveness of flight controls and thrust vectoring, and airflow phenomena at high angles of attack. Stall is a condition of an airplane or an airfoil in which lift decreases and drag increases due to the separation of airflow. Thrust vectoring compensates for the loss of control through normal aerodynamic surfaces that occurs during a stall. Post-stall refers to flying beyond the normal stall angle of attack, which in the X-31 was at a 30-degree angle of attack. During Dryden flight testing, the X-31 aircraft established several milestones. On November 6, 1992, the X-31 achieved controlled flight at a 70-degree angle of attack. On April 29, 1993, the second X-31 successfully executed a rapid minimum-radius, 180-degree turn using a post-stall maneuver, flying well beyond the aerodynamic limits of any conventional aircraft. This revolutionary maneuver has been called the 'Herbst Maneuver' after Wolfgang Herbst, a German proponent of using post-stall flight in air-to-air combat. It is also called a 'J Turn' when flown to an arbitrary heading change. The aircraft was flown in tactical maneuvers against an F/A-18 and other tactical aircraft as part of the test flight program. During November and December 1993, the X-31 reached a supersonic speed of Mach 1.28. In 1994, the X-31 program installed software to demonstrate quasi-tailless operation. The X-31 flight test program was conducted by an international test organization (ITO) managed by the Advanced Research Projects Office (ARPA), known as the Defense Advanced Research Projects Office (DARPA) before March 1993. The ITO included the U.S. Navy and U.S. Air Force, Rockwell Aerospace, the Federal Republic of Germany, Daimler-Benz (formerly Messerschmitt-Bolkow-Blohm and Deutsche Aerospace), and NASA. Gary Trippensee was the ITO director and NASA Project Manager. Pilots came from participating organizations. The X-31 was 43.33 feet long with a wingspan of 23.83 feet. It was powered by a single General Electric P404-GE-400 turbofan engine that produced 16,000 pounds of thrust in afterburner.

1994-01-01

355

X-31 Loaded in C-5 Cargo Bay  

NASA Technical Reports Server (NTRS)

The X-31 Enhanced Fighter Maneuverability Technology Demonstrator Aircraft, based at the NASA Dryden Flight Research Center, Edwards Air Force Base, California, is secured inside the fuselage of an Air Force Reserve C-5 transport. The C-5 was used to ferry the X-31 from Europe back to Edwards, after being flown in the Paris Air Show in June 1995. The X-31's right wing, removed so the aircraft could fit inside the C-5, is in the shipping container in the foreground. At the air show, the X-31 demonstrated the value of using thrust vectoring (directing engine exhaust flow) coupled with advanced flight control systems to provide controlled flight at very high angles of attack. The X-31 Enhanced Fighter Maneuverability (EFM) demonstrator flew at the Ames- Dryden Flight Research Facility, Edwards, California (redesignated the Dryden Flight Research Center in 1994) from February 1992 until 1995 and before that at the Air Force's Plant 42 in Palmdale, California. The goal of the project was to provide design information for the next generation of highly maneuverable fighter aircraft. This program demonstrated the value of using thrust vectoring (directing engine exhaust flow) coupled with an advanced flight control system to provide controlled flight to very high angles of attack. The result was a significant advantage over most conventional fighters in close-in combat situations. The X-31 flight program focused on agile flight within the post-stall regime, producing technical data to give aircraft designers a better understanding of aerodynamics, effectiveness of flight controls and thrust vectoring, and airflow phenomena at high angles of attack. Stall is a condition of an airplane or an airfoil in which lift decreases and drag increases due to the separation of airflow. Thrust vectoring compensates for the loss of control through normal aerodynamic surfaces that occurs during a stall. Post-stall refers to flying beyond the normal stall angle of attack, which in the X-31 was at a 30-degree angle of attack. During Dryden flight testing, the X-31 aircraft established several milestones. On November 6, 1992, the X-31 achieved controlled flight at a 70-degree angle of attack. On April 29, 1993, the second X-31 successfully executed a rapid minimum-radius, 180-degree turn using a post-stall maneuver, flying well beyond the aerodynamic limits of any conventional aircraft. This revolutionary maneuver has been called the 'Herbst Maneuver' after Wolfgang Herbst, a German proponent of using post-stall flight in air-to-air combat. It is also called a 'J Turn' when flown to an arbitrary heading change. The aircraft was flown in tactical maneuvers against an F/A-18 and other tactical aircraft as part of the test flight program. During November and December 1993, the X-31 reached a supersonic speed of Mach 1.28. In 1994, the X-31 program installed software to demonstrate quasi-tailless operation. The X-31 flight test program was conducted by an international test organization (ITO) managed by the Advanced Research Projects Office (ARPA), known as the Defense Advanced Research Projects Office (DARPA) before March 1993. The ITO included the U.S. Navy and U.S. Air Force, Rockwell Aerospace, the Federal Republic of Germany, Daimler-Benz (formerly Messerschmitt-Bolkow-Blohm and Deutsche Aerospace), and NASA. Gary Trippensee was the ITO director and NASA Project Manager. Pilots came from participating organizations. The X-31 was 43.33 feet long with a wingspan of 23.83 feet. It was powered by a single General Electric P404-GE-400 turbofan engine that produced 16,000 pounds of thrust in afterburner.

1995-01-01

356

X-31 Unloading Returning from Paris Air Show  

NASA Technical Reports Server (NTRS)

After being flown in the Paris Air Show in June 1995, the X-31 Enhanced Fighter Maneuverability Technology Demonstrator Aircraft, based at the NASA Dryden Flight Research Center, Edwards Air Force Base, California, is off-loaded from an Air Force Reserve C-5 transport after the ferry flight back to Edwards. At the air show, the X-31 demonstrated the value of using thrust vectoring (directing engine exhaust flow) coupled with advanced flight control systems to provide controlled flight at very high angles of attack. The X-31 Enhanced Fighter Maneuverability (EFM) demonstrator flew at the Ames- Dryden Flight Research Facility, Edwards, California (redesignated the Dryden Flight Research Center in 1994) from February 1992 until 1995 and before that at the Air Force's Plant 42 in Palmdale, California. The goal of the project was to provide design information for the next generation of highly maneuverable fighter aircraft. This program demonstrated the value of using thrust vectoring (directing engine exhaust flow) coupled with an advanced flight control system to provide controlled flight to very high angles of attack. The result was a significant advantage over most conventional fighters in close-in combat situations. The X-31 flight program focused on agile flight within the post-stall regime, producing technical data to give aircraft designers a better understanding of aerodynamics, effectiveness of flight controls and thrust vectoring, and airflow phenomena at high angles of attack. Stall is a condition of an airplane or an airfoil in which lift decreases and drag increases due to the separation of airflow. Thrust vectoring compensates for the loss of control through normal aerodynamic surfaces that occurs during a stall. Post-stall refers to flying beyond the normal stall angle of attack, which in the X-31 was at a 30-degree angle of attack. During Dryden flight testing, the X-31 aircraft established several milestones. On November 6, 1992, the X-31 achieved controlled flight at a 70-degree angle of attack. On April 29, 1993, the second X-31 successfully executed a rapid minimum-radius, 180-degree turn using a post-stall maneuver, flying well beyond the aerodynamic limits of any conventional aircraft. This revolutionary maneuver has been called the 'Herbst Maneuver' after Wolfgang Herbst, a German proponent of using post-stall flight in air-to-air combat. It is also called a 'J Turn' when flown to an arbitrary heading change. The aircraft was flown in tactical maneuvers against an F/A-18 and other tactical aircraft as part of the test flight program. During November and December 1993, the X-31 reached a supersonic speed of Mach 1.28. In 1994, the X-31 program installed software to demonstrate quasi-tailless operation. The X-31 flight test program was conducted by an international test organization (ITO) managed by the Advanced Research Projects Office (ARPA), known as the Defense Advanced Research Projects Office (DARPA) before March 1993. The ITO included the U.S. Navy and U.S. Air Force, Rockwell Aerospace, the Federal Republic of Germany, Daimler-Benz (formerly Messerschmitt-Bolkow-Blohm and Deutsche Aerospace), and NASA. Gary Trippensee was the ITO director and NASA Project Manager. Pilots came from participating organizations. The X-31 was 43.33 feet long with a wingspan of 23.83 feet. It was powered by a single General Electric P404-GE-400 turbofan engine that produced 16,000 pounds of thrust in afterburner.

1995-01-01

357

The Implementation of Satellite Control System Software Using Object Oriented Design  

NASA Technical Reports Server (NTRS)

NASA established the Small Explorer (SMEX) program in 1988 to provide frequent opportunities for highly focused and relatively inexpensive space science missions that can be launched into low earth orbit by small expendable vehicles. The development schedule for each SMEX spacecraft was three years from start to launch. The SMEX program has produced five satellites; Solar Anomalous and Magnetospheric Particle Explorer (SAMPEX), Fast Auroral Snapshot Explorer (FAST), Submillimeter Wave Astronomy Satellite (SWAS), Transition Region and Coronal Explorer (TRACE) and Wide-Field Infrared Explorer (WIRE). SAMPEX and FAST are on-orbit, TRACE is scheduled to be launched in April of 1998, WIRE is scheduled to be launched in September of 1998, and SWAS is scheduled to be launched in January of 1999. In each of these missions, the Attitude Control System (ACS) software was written using a modular procedural design. Current program goals require complete spacecraft development within 18 months. This requirement has increased pressure to write reusable flight software. Object-Oriented Design (OOD) offers the constructs for developing an application that only needs modification for mission unique requirements. This paper describes the OOD that was used to develop the SMEX-Lite ACS software. The SMEX-Lite ACS is three-axis controlled, momentum stabilized, and is capable of performing sub-arc-minute pointing. The paper first describes the high level requirements which governed the architecture of the SMEX-Lite ACS software. Next, the context in which the software resides is explained. The paper describes the benefits of encapsulation, inheritance and polymorphism with respect to the implementation of an ACS software system. This paper will discuss the design of several software components that comprise the ACS software. Specifically, Object-Oriented designs are presented for sensor data processing, attitude control, attitude determination and failure detection. The paper addresses the benefits of the OOD versus a conventional procedural design. The final discussion in this paper will address the establishment of the ACS Foundation Class (AFC) Library. The AFC is a large software repository, requiring a minimal amount of code modifications to produce ACS software for future projects, saving production time and costs.

Anderson, Mark O.; Reid, Mark; Drury, Derek; Hansell, William; Phillips, Tom

1998-01-01

358

X-31 in flight - Post Stall Maneuver  

NASA Technical Reports Server (NTRS)

Two X-31 Enhanced Fighter Maneuverability (EFM) demonstrators were flown at the Rockwell International facility, Palmdale, California, and the NASA Dryden Flight Research Center, Edwards, California, to obtain data that may apply to the design of highly-maneuverable next-generation fighters. The program had its first flight on October 11, 1990, in Palmdale; it ended in June 1995. The X-31 program demonstrated the value of thrust vectoring (directing engine exhaust flow) coupled with advanced flight control systems, to provide controlled flight during close-in air combat at very high angles of attack. The result of this increased maneuverability is an aircraft with a significant advantage over conventional fighters. 'Angle-of-attack' (alpha) is an engineering term to describe the angle of an aircraft body and wings relative to its actual flight path. During maneuvers, pilots often fly at extreme angles of attack -- with the nose pitched up while the aircraft continues in its original direction. This can lead to loss of control and result in the loss of the aircraft, pilot or both. Three thrust vectoring paddles made of graphite epoxy mounted on the exhaust nozzle of the X-31 aircraft directed the exhaust flow to provide control in pitch (up and down) and yaw (right and left) to improve control. The paddles can sustain heat of up to 1,500 degrees centigrade for extended periods of time. In addition the X-31 aircraft were configured with movable forward canards and fixed aft strakes. The canards were small wing-like structures set on the wing line between the nose and the leading edge of the wing. The strakes were set on the same line between the trailing edge of the wing and the engine exhaust. Both supplied additional control in tight maneuvering situations. The X-31 research program produced technical data at high angles of attack. This information is giving engineers and aircraft designers a better understanding of aerodynamics, effectiveness of flight controls and thrust vectoring, and airflow phenomena at high angles of attack. This understanding is expected to lead to design methods that can provide better maneuverability in future high performance aircraft and make them safer to fly. An international test organization of about 110 people, managed by the Advanced Research Projects Agency (ARPA), conducted the flight operations at NASA Dryden. The ARPA had requested flight research for the X-31 aircraft be moved there in February 1992. In addition to ARPA and NASA, the international test organization (ITO) included the U.S. Navy, the U.S. Air Force, Rockwell International, the Federal Republic of Germany, and Daimler-Benz Aerospace (formerly Messerschmitt-Bolkow-Blohm and Deutsche Aerospace). NASA was responsible for flight research operations, aircraft maintenance, and research engineering once the program moved to Dryden. The No. 1 X-31 aircraft was lost in an accident January 19, 1995. The pilot, Karl Heinz-Lang, of the Federal Republic of Germany, ejected safely before the aircraft crashed in an unpopulated desert area just north of Edwards. The X-31 program logged an X-plane record of 580 flights during the program, including 555 research missions and 21 in Europe for the 1995 Paris Air Show. A total of 14 pilots representing all agencies of the ITO flew the aircraft. This movie clip runs 1 minute, 6 seconds in length and shows the X-31 rotating at takeoff and climbing into a stall maneuver. The aircraft then slides backwards thrust vectoring the tail over the top, turning the stall into a loop in which the aircraft then reverses its heading and resumes level flight.

1995-01-01

359

X-31 Quasi-Tailless (Artist Concept)  

NASA Technical Reports Server (NTRS)

This is a computer enhanced artist's concept of a semi-tailless X-31 Enhanced Fighter Maneuverability Aircraft in flight. In 1994, software was installed in the X-31 to demonstrate the feasibility of stabilizing a tailless aircraft at supersonic speed, using thrust vectoring. This software allowed destabilization through the control laws of the aircraft in incremental steps to the goal of simulation 100 percent tail-off. Quasi-tailless tests began in 1994. The first phase started with supersonic evaluations at Mach 1.2. Later subsonic evaluations were performed. During the flights the aircraft was destabilized with the rudder to stability levels that would be encountered if the aircraft had a reduced size vertical tail. The X-31 Enhanced Fighter Maneuverability (EFM) demonstrator flew at the Ames- Dryden Flight Research Facility, Edwards, California (redesignated the Dryden Flight Research Center in 1994) from February 1992 until 1995 and before that at the Air Force's Plant 42 in Palmdale, California. The goal of the project was to provide design information for the next generation of highly maneuverable fighter aircraft. This program demonstrated the value of using thrust vectoring (directing engine exhaust flow) coupled with an advanced flight control system to provide controlled flight to very high angles of attack. The result was a significant advantage over most conventional fighters in close-in combat situations. The X-31 flight program focused on agile flight within the post-stall regime, producing technical data to give aircraft designers a better understanding of aerodynamics, effectiveness of flight controls and thrust vectoring, and airflow phenomena at high angles of attack. Stall is a condition of an airplane or an airfoil in which lift decreases and drag increases due to the separation of airflow. Thrust vectoring compensates for the loss of control through normal aerodynamic surfaces that occurs during a stall. Post-stall refers to flying beyond the normal stall angle of attack, which in the X-31 was at a 30-degree angle of attack. During Dryden flight testing, the X-31 aircraft established several milestones. On November 6, 1992, the X-31 achieved controlled flight at a 70-degree angle of attack. On April 29, 1993, the second X-31 successfully executed a rapid minimum-radius, 180-degree turn using a post-stall maneuver, flying well beyond the aerodynamic limits of any conventional aircraft. This revolutionary maneuver has been called the 'Herbst Maneuver' after Wolfgang Herbst, a German proponent of using post-stall flight in air-to-air combat. It is also called a 'J Turn' when flown to an arbitrary heading change. The aircraft was flown in tactical maneuvers against an F/A-18 and other tactical aircraft as part of the test flight program. During November and December 1993, the X-31 reached a supersonic speed of Mach 1.28. In 1994, the X-31 program installed software to demonstrate quasi-tailless operation. The X-31 flight test program was conducted by an international test organization (ITO) managed by the Advanced Research Projects Office (ARPA), known as the Defense Advanced Research Projects Office (DARPA) before March 1993. The ITO included the U.S. Navy and U.S. Air Force, Rockwell Aerospace, the Federal Republic of Germany, Daimler-Benz (formerly Messerschmitt-Bolkow-Blohm and Deutsche Aerospace), and NASA. Gary Trippensee was the ITO director and NASA Project Manager. Pilots came from participating organizations. The X-31 was 43.33 feet long with a wingspan of 23.83 feet. It was powered by a single General Electric P404-GE-400 turbofan engine that produced 16,000 pounds of thrust in afterburner.

1994-01-01

360

X-31 in flight - Herbst Turn  

NASA Technical Reports Server (NTRS)

Two X-31 Enhanced Fighter Maneuverability (EFM) demonstrators were flown at the Rockwell International facility, Palmdale, California, and the NASA Dryden Flight Research Center, Edwards, California, to obtain data that may apply to the design of highly-maneuverable next-generation fighters. The program had its first flight on October 11, 1990, in Palmdale; it ended in June 1995. The X-31 program demonstrated the value of thrust vectoring (directing engine exhaust flow) coupled with advanced flight control systems, to provide controlled flight during close-in air combat at very high angles of attack. The result of this increased maneuverability is an airplane with a significant advantage over conventional fighters. 'Angle-of-attack' (alpha) is an engineering term to describe the angle of an aircraft body and wings relative to its actual flight path. During maneuvers, pilots often fly at extreme angles of attack -- with the nose pitched up while the aircraft continues in its original direction. This can lead to loss of control and result in the loss of the aircraft, pilot or both. Three thrust-vectoring paddles made of graphite epoxy mounted on the exhaust nozzle of the X-31 aircraft directed the exhaust flow to provide control in pitch (up and down) and yaw (right and left) to improve control. The paddles can sustain heat of up to 1,500 degrees centigrade for extended periods of time. In addition the X-31 aircraft were configured with movable forward canards and fixed aft strakes. The canards were small wing-like structures set on the wing line between the nose and the leading edge of the wing. The strakes were set on the same line between the trailing edge of the wing and the engine exhaust. Both supplied additional control in tight maneuvering situations. The X-31 research program produced technical data at high angles of attack. This information is giving engineers and aircraft designers a better understanding of aerodynamics, effectiveness of flight controls and thrust vectoring, and airflow phenomena at high angles of attack. This understanding is expected to lead to design methods that provide better maneuverability in future high performance aircraft and make them safer to fly. An international test organization of about 110 people, managed by the Advanced Research Projects Agency (ARPA), conducted the flight operations at NASA Dryden. The ARPA had requested flight research for the X-31 aircraft be moved there in February 1992. In addition to ARPA and NASA, the international test organization (ITO) included the U.S. Navy, the U.S. Air Force, Rockwell International, the Federal Republic of Germany, and Daimler-Benz Aerospace (formerly Messerschmitt-Bolkow-Blohm and Deutsche Aerospace). NASA was responsible for flight research operations, aircraft maintenance, and research engineering once the program moved to Dryden. The No. 1 X-31 aircraft was lost in an accident January 19, 1995. The pilot, Karl Heinz-Lang, of the Federal Republic of Germany, ejected safely before the aircraft crashed in an unpopulated desert area just north of Edwards. The X-31 program logged an X-plane record of 580 flights during the program, including 555 research missions and 21 in Europe for the 1995 Paris Air Show. A total of 14 pilots representing all agencies of the ITO flew the aircraft. This 32-second clip shows the aircraft at the top of a stall and then thrust vectoring itself around to attain a new heading, thereby allowing the aircraft to gain the advantage over a putative opponent in air-to-air combat. This maneuver is also known as a 'J turn.'

1995-01-01

361

X-31 in flight - Double Reversal  

NASA Technical Reports Server (NTRS)

Two X-31 Enhanced Fighter Maneuverability (EFM) demonstrators were flown at the Rockwell International facility, Palmdale, California, and the NASA Dryden Flight Research Center, Edwards, California, to obtain data that may apply to the design of highly-maneuverable next-generation fighters. The program had its first flight on October 11, 1990, in Palmdale; it ended in June 1995. The X-31 program demonstrated the value of thrust vectoring (directing engine exhaust flow) coupled with advanced flight control systems, to provide controlled flight during close-in air combat at very high angles of attack. The result of this increased maneuverability is an airplane with a significant advantage over conventional fighters. 'Angle-of-attack' (alpha) is an engineering term to describe the angle of an aircraft body and wings relative to its actual flight path. During maneuvers, pilots often fly at extreme angles of attack -- with the nose pitched up while he aircraft continues in its original direction. This can lead to loss of control and result in the loss of the aircraft, pilot or both. Three thrust-vectoring paddles made of graphite epoxy mounted on the exhaust nozzle of the X-31 aircraft directed the exhaust flow to provide control in pitch (up and down) and yaw (right and left) to improve control. The paddles can sustain heat of up to 1,500 degrees centigrade for extended periods of time. In addition the X-31 aircraft were configured with movable forward canards and fixed aft strakes. The canards were small wing-like structures set on the wing line between the nose and the leading edge of the wing. The strakes were set on the same line between the trailing edge of the wing and the engine exhaust. Both supplied additional control in tight maneuvering situations. The X-31 research program produced technical data at high angles of attack. This information is giving engineers and aircraft designers a better understanding of aerodynamics, effectiveness of flight controls and thrust vectoring, and airflow phenomena at high angles of attack. This understanding is expected to lead to design methods that provide better maneuverability in future high performance aircraft and make them safer to fly. An international test organization of about 110 people, managed by the Advanced Research Projects Agency (ARPA), conducted the flight operations at NASA Dryden. The ARPA had requested flight research for the X-31 aircraft be moved there in February 1992. In addition to ARPA and NASA, the international test organization (ITO) included the U.S. Navy, the U.S. Air Force, Rockwell International, the Federal Republic of Germany, and Daimler-Benz Aerospace (formerly Messerschmitt-Bolkow-Blohm and Deutsche Aerospace). NASA was responsible for flight research operations, aircraft maintenance, and research engineering once the program moved to Dryden. The No. 1 X-31 aircraft was lost in an accident Jan. 19, 1995. The pilot, Karl Heinz-Lang, of the Federal Republic of Germany, ejected safely before the aircraft crashed in an unpopulated desert area just north of Edwards. The X-31 program logged an X-plane record of 580 flights during the program, including 555 research missions and 21 in Europe for the 1995 Paris Air Show. A total of 14 pilots representing all agencies of the ITO flew the aircraft. This 39-second clip begins as the X-31 performs a short loop at the top of a stall maneuver, then quickly reverses its course first left, then right by means of thrust vectoring -- thereby gaining a tactical advantage over a putative opponent in air-to-air combat.

1995-01-01

362

X-31 in flight - Post Stall Maneuver  

NASA Technical Reports Server (NTRS)

Two X-31 Enhanced Fighter Maneuverability (EFM) demonstrators were flown at Rockwell International's Palmdale, Calif., facility and the NASA Dryden Flight Research Center, Edwards, Calif., to obtain data that may apply to the design of highly-maneuverable next-generation fighters. The program had its first flight on Oct. 11, 1990, in Palmdale; it ended in June 1995. The X-31 program demonstrated the value of thrust vectoring (directing engine exhaust flow) coupled with advanced flight control systems, to provide controlled flight during close-in air combat at very high angles of attack. The result of this increased maneuverability is a significant advantage over conventional fighters. 'Angle-of-attack' (alpha) is an engineering term to describe the angle of an aircraft's body and wings relative to its actual flight path. During maneuvers, pilots often fly at extreme angles of attack -- with the nose pitched up while the aircraft continues in its original direction. This can lead to loss of control and result in the loss of the aircraft, pilot or both. Three thrust vectoring paddles made of graphite epoxy mounted on the X-31's exhaust nozzle directed the exhaust flow to provide control in pitch (up and down) and yaw (right and left) to improve control. The paddles can sustain heat of up to 1,500 degrees centigrade for extended periods of time. In addition the X-31s were configured with movable forward canards and fixed aft strakes. The canards were small wing-like structures set on the wing line between the nose and the leading edge of the wing. The strakes were set on the same line between the trailing edge of the wing and the engine exhaust. Both supplyied additional control in tight maneuvering situations. The X-31 research program produced technical data at high angles of attack. This information is giving engineers and aircraft designers a better understanding of aerodynamics, effectiveness of flight controls and thrust vectoring, and airflow phenomena at high angles of attack. This is expected to lead to design methods providing better maneuverability in future high performance aircraft and make them safer to fly. An international test organization of about 110 people, managed by the Advanced Research Projects Agency (ARPA), conducted the flight operations at Dryden, to which flight research was moved in February 1992 at the request of the Advanced Research Projects Agency (ARPA). In addition to ARPA and NASA, the International Test Organization (ITO) included the U.S. Navy, the U.S. Air Force, Rockwell International, the Federal Republic of Germany, and Daimler-Benz Aerospace (formerly Messerschmitt-Bolkow-Blohm and Deutsche Aerospace). NASA was responsible for flight research operations, aircraft maintenance, and research engineering once the program moved to Dryden. The No. 1 X-31 aircraft was lost in an accident Jan. 19, 1995. The pilot, Karl Heinz-Lang, of the Federal Republic of Germany, ejected safely before the aircraft crashed in an unpopulated desert area just north of Edwards. The X-31 program logged an X-plane record of 580 flights during the program, including 555 research missions and 21 in Europe for the 1995 Paris Air Show. A total of 14 pilots representing all agencies of the ITO flew the aircraft. This 34-second movie clip shows the aircraft as it slides backwards, thrust vectoring the tail over the top, turning the stall into a loop in which the aircraft then reverses it's heading and resumes level flight.

1995-01-01

363

X-31 Quasi-Tailless (Artist Concept)  

NASA Technical Reports Server (NTRS)

This is a computer enhanced artist's concept of a semi-tailless X-31 Enhanced Fighter Maneuverability Aircraft in flight. In 1994, software was installed in the X-31 to demonstrate the feasibility of stabilizing a tailless aircraft at supersonic speed, using thrust vectoring. This software allowed destabilization through the control laws of the aircraft in incremental steps to the goal of simulation 100 percent tail-off. Quasi-tailless tests began in 1994. The first phase started with supersonic evaluations at Mach 1.2. Later subsonic evaluations were performed. During the flights the aircraft was destabilized with the rudder to stability levels that would be encountered if the aircraft had a reduced-size vertical tail. The X-31 Enhanced Fighter Maneuverability (EFM) demonstrator flew at the Ames- Dryden Flight Research Facility, Edwards, California (redesignated the Dryden Flight Research Center in 1994) from February 1992 until 1995 and before that at the Air Force's Plant 42 in Palmdale, California. The goal of the project was to provide design information for the next generation of highly maneuverable fighter aircraft. This program demonstrated the value of using thrust vectoring (directing engine exhaust flow) coupled with an advanced flight control system to provide controlled flight to very high angles of attack. The result was a significant advantage over most conventional fighters in close-in combat situations. The X-31 flight program focused on agile flight within the post-stall regime, producing technical data to give aircraft designers a better understanding of aerodynamics, effectiveness of flight controls and thrust vectoring, and airflow phenomena at high angles of attack. Stall is a condition of an airplane or an airfoil in which lift decreases and drag increases due to the separation of airflow. Thrust vectoring compensates for the loss of control through normal aerodynamic surfaces that occurs during a stall. Post-stall refers to flying beyond the normal stall angle of attack, which in the X-31 was at a 30-degree angle of attack. During Dryden flight testing, the X-31 aircraft established several milestones. On November 6, 1992, the X-31 achieved controlled flight at a 70-degree angle of attack. On April 29, 1993, the second X-31 successfully executed a rapid minimum-radius, 180-degree turn using a post-stall maneuver, flying well beyond the aerodynamic limits of any conventional aircraft. This revolutionary maneuver has been called the 'Herbst Maneuver' after Wolfgang Herbst, a German proponent of using post-stall flight in air-to-air combat. It is also called a 'J Turn' when flown to an arbitrary heading change. The aircraft was flown in tactical maneuvers against an F/A-18 and other tactical aircraft as part of the test flight program. During November and December 1993, the X-31 reached a supersonic speed of Mach 1.28. In 1994, the X-31 program installed software to demonstrate quasi-tailless operation. The X-31 flight test program was conducted by an international test organization (ITO) managed by the Advanced Research Projects Office (ARPA), known as the Defense Advanced Research Projects Office (DARPA) before March 1993. The ITO included the U.S. Navy and U.S. Air Force, Rockwell Aerospace, the Federal Republic of Germany, Daimler-Benz (formerly Messerschmitt-Bolkow-Blohm and Deutsche Aerospace), and NASA. Gary Trippensee was the ITO director and NASA Project Manager. Pilots came from participating organizations. The X-31 was 43.33 feet long with a wingspan of 23.83 feet. It was powered by a single General Electric P404-GE-400 turbofan engine that produced 16,000 pounds of thrust in afterburner.

1993-01-01

364

Aerospace Systems  

NSDL National Science Digital Library

This pdf contains a syllabus for a course on aerospace systems as part of the Aerospace Technology Program. This course covers an introduction to expendable and reusable Space Launch Vehicle (SLV) systems including hydraulic, pneumatic, electrical, propulsion, mechanical, HVAC (heating, ventilation and air conditioning), and ECLSS (Environmental Control and Life Support Systems). How systems interact with computer and data acquisition systems is also covered.

2011-08-11

365

Aesthetics Systems.  

National Technical Information Service (NTIS)

The formal structure of aesthetics systems is defined. Aesthetics systems provide for the essential tasks of interpretation and evaluation is aesthetic analysis. Kolmogorov's formulation of information theory is applicable. An aesthetics system for a clas...

J. Gips G. Stiny

1973-01-01

366

Mechanical Systems  

NASA Technical Reports Server (NTRS)

The presentation provides an overview of requirement and interpretation letters, mechanical systems safety interpretation letter, design and verification provisions, and mechanical systems verification plan.

Davis, Robert E.

2002-01-01

367

Operating Systems  

NSDL National Science Digital Library

CSC 342. Operating Systems (3) Prerequisite: CSC 332. Study of supervisory programs. System services and file systems; CPU scheduling; memory management; virtual memory; disk scheduling. Deadlock characterization, prevention, and avoidance; concurrent processes; semaphores; critical sections; synchronization. Distributed systems and communication protocols.

Ferner, Clayton

2003-04-21

368

X-31 post-stall envelope expansion and tactical utility testing  

NASA Technical Reports Server (NTRS)

Technical and nontechnical lessons learned from the X-31 aircraft program are described in this viewgraph presentation. The tactical utility of high angle of attack flight and thrust vector control is discussed.

Canter, Dave

1994-01-01

369

Investigation of Performance Improvements Including Application of Inlet Guide Vanes to a Cross-flow Fan.  

National Technical Information Service (NTIS)

The inherent characteristics of a cross-flow fan allowing for easy thrust vectoring as well as potential airfoil boundary layer control make it an attractive propulsive means for a theoretical vertical takeoff and landing aircraft. However, to compete wit...

S. F. Cordero

2009-01-01

370

Handling Qualities Influences on Civil Tiltrotor Terminal Operating Procedure Development.  

National Technical Information Service (NTIS)

The potential for tiltrotor aircraft as civil transports has been well recognized. Realization of that potential requires development of operating procedures tailored to take advantage of the tiltrotor's capabilities, including thrust vectoring independen...

W. A. Decker R. C. Simmons G. E. Tucker

1994-01-01

371

Flight Control Role in RLV Configuration Development.  

National Technical Information Service (NTIS)

A new optimization technique was used to aide in the selection of aerodynamic surfaces and Thrust Vectoring Control (TVC) based on maximizing control margin during ascent and entry portions of the trajectory. In order to meet the mass fraction requirement...

H. Youssef H. Lee R. Chowdhry C. Cotting

2000-01-01

372

Solar System  

NSDL National Science Digital Library

At the end of this project, you will be able to explain the components of the Solar System and know the order of the planets starting from the Sun. Objective Question: What is the Solar System? First, listen and read about the Solar System 1. How many planets make up our Solar System? 2. What is at the center of the Solar System? Next,listen and read about the Planets. 1. Can you name all of the planets? Finally, listen and watch The Solar System Movie. 1. Can you list the ...

Ms.west

2009-07-07

373

Robot Systems.  

National Technical Information Service (NTIS)

This article reviews currently available industrial robots and research on robot systems. A hierarchical control structure concept, which is the basis for NBS research efforts in computer control systems, is used to provide a framework for this review. Co...

J. S. Albus J. M. Evans

1976-01-01

374

Skeptical Systems.  

National Technical Information Service (NTIS)

This report describes the technical components developed for hostile intent recognition, and documents specific experiments to evaluate a demonstration skeptical system in a cyber security domain. Current systems execute any command issued by an authentic...

C. W. Geib

2004-01-01

375

System considerations  

NASA Technical Reports Server (NTRS)

Closing remarks and a general summary of the Alternative Energy Systems Seminar are presented. It was concluded from the seminar that the DOE programs described were focused on trying to make a commercial market develop for the various systems. The question addressed is how this is going to happen. To address this question, social, economical, political and technical aspects are considered with major emphasis placed on systems engineering to provide low cost efficient systems.

Alper, M. E.

1978-01-01

376

Tracking systems  

Microsoft Academic Search

The tutorial is an overview of tracking and data fusion for surveillance systems with applications both to defense and civilian systems. It is divided into four parts: Part 1 - Filtering: Covers the topics related to state estimation for stochastic dynamic systems: optimal Bayesian estimator, Kalman filter, nonlinear filters (extended and unscented Kalman filter, Gaussian sum filter, particle filter); filters

B. Ristic; M. L. Hernandez

2008-01-01

377

Solar System  

NSDL National Science Digital Library

An introduction to to the solar system. How to distinguish between the different planets. Activities to play while getting to know the solar system. Cosmic Cookies Solar System Scavenger Hunt Edible Earth Strawkets and Control Strawkets and Thrust Strawkets and Weight ...

Wright, Ms.

2009-10-09

378

Systems 2020.  

National Technical Information Service (NTIS)

Systems 2020 is the research effort to answer a major portion of the challenge embodied in the DoD's science and technology priority for Engineered Resilient Systems (ERS). As a follow-on to the SERC's work in defining technical approaches for Systems 202...

B. Boehm S. Rifkin

2012-01-01

379

Systems Engineering  

Microsoft Academic Search

Each year at the National Council of Systems Engineering (NCOSE) symposium lots of dedicated people spend a lot of energy assessing, measuring and educating people about an incomplete body of knowledge (systems engineering). The incompleteness is due to the lack of a definition of what that body of knowledge is supposed to cover. Now every systems engineer knows that it

Joe Kasser

1969-01-01

380

Magnetospheric Multiscale (MMS) Mission Attitude Ground System Design  

NASA Technical Reports Server (NTRS)

This paper describes the attitude ground system (AGS) design to be used for support of the Magnetospheric MultiScale (MMS) mission. The AGS exists as one component of the mission operations control center. It has responsibility for validating the onboard attitude and accelerometer bias estimates, calibrating the attitude sensors and the spacecraft inertia tensor, and generating a definitive attitude history for use by the science teams. NASA's Goddard Space Flight Center (GSFC) in Greenbelt, Maryland is responsible for developing the MMS spacecraft, for the overall management of the MMS mission, and for mission operations. MMS is scheduled for launch in 2014 for a planned two-year mission. The MMS mission consists of four identical spacecraft flying in a tetrahedral formation in an eccentric Earth orbit. The relatively tight formation, ranging from 10 to 400 km, will provide coordinated observations giving insight into small-scale magnetic field reconnection processes. By varying the size of the tetrahedron and the orbital semi-major axis and eccentricity, and making use of the changing solar phase, this geometry allows for the study of both bow shock and magnetotail plasma physics, including acceleration, reconnection, and turbulence. The mission divides into two phases for science; these phases will have orbit dimensions of 1.2 x 12 Earth radii in the first phase and 1.2x25 Earth radii in the second in order to study the dayside magnetopause and the nightside magnetotail, respectively. The orbital periods are roughly one day and three days for the two mission phases. Each of the four MMS spacecraft will be spin stabilized at 3 revolutions per minute (rpm), with the spin axis oriented near the ecliptic north pole but tipped approximately 2.5 deg towards the Sun line. The main body of each spacecraft will be an eight-sided platform with diameter of 3.4 m and height of 1.2 m. Several booms are attached to this central core: two axial booms of 14.9 m length, two radial magnetometer booms of 5 m length, and four radial wire booms of 60 m length. Attitude and orbit control will use a set of axial and radial thrusters. A four-head star tracker and a slit-type digital Sun sensor (DSS) provide input for attitude determination. In addition, an accelerometer will be used for closed-loop orbit maneuver control. The primary AGS product will be a daily definitive attitude history. Due to power limitations, the star tracker and accelerometer data will not be available at all times. However, tracker data from at least 10 percent of each orbit and continuous DSS data will be provided. An extended Kalman filter (EKF) will be used to estimate the three-axis attitude (i.e., spin axis orientation and spin phase) and rotation rate for all times when the tracker data is valid. For other times, the attitude is generated by assuming a constant angular momentum vector in the inertial frame. The DSS sun pulse will provide a timing signal to maintain an accurate spin phase. There will be times when the Sun is occulted and DSS data is not available. If this occurs at the start or end of a definitive attitude product, then the spin phase will be extrapolated using the mean rate determined by the EKF.

Sedlak, Joseph E.; Superfin, Emil; Raymond, Juan C.

2010-01-01

381

System Effectiveness  

SciTech Connect

An effective risk assessment system is needed to address the threat posed by an active or passive insider who, acting alone or in collusion, could attempt diversion or theft of nuclear material. It is critical that a nuclear facility conduct a thorough self-assessment of the material protection, control, and accountability (MPC&A) system to evaluate system effectiveness. Self-assessment involves vulnerability analysis and performance testing of the MPC&A system. The process should lead to confirmation that mitigating features of the system effectively minimize the threat, or it could lead to the conclusion that system improvements or upgrades are necessary to achieve acceptable protection against the threat. Analysis of the MPC&A system is necessary to understand the limits and vulnerabilities of the system to internal threats. Self-assessment helps the facility be prepared to respond to internal threats and reduce the risk of theft or diversion of nuclear material. MSET is a self-assessment or inspection tool utilizing probabilistic risk assessment (PRA) methodology to calculate the system effectiveness of a nuclear facility's MPC&A system. MSET analyzes the effectiveness of an MPC&A system based on defined performance metrics for MPC&A functions based on U.S. and international best practices and regulations. A facility's MC&A system can be evaluated at a point in time and reevaluated after upgrades are implemented or after other system changes occur. The total system or specific subareas within the system can be evaluated. Areas of potential performance improvement or system upgrade can be assessed to determine where the most beneficial and cost-effective improvements should be made. Analyses of risk importance factors show that sustainability is essential for optimal performance. The analyses reveal where performance degradation has the greatest detrimental impact on total system risk and where performance improvements have the greatest reduction in system risk. The risk importance factors show the amount of risk reduction achievable with potential upgrades and the amount of risk reduction actually achieved after upgrades are completed. Applying the risk assessment tool gives support to budget prioritization by showing where budget support levels must be sustained for MC&A functions most important to risk. Results of the risk assessment are also useful in supporting funding justifications for system improvements that significantly reduce system risk.

Powell, Danny H [ORNL] [ORNL; Elwood Jr, Robert H [ORNL] [ORNL

2011-01-01

382

Cryogenic Systems  

NASA Astrophysics Data System (ADS)

In this lecture we discuss the principle of method of cooling to a very low temperature, i.e. cryogenic. The "gas molecular model" will be introduced to explain the mechanism cooling by the expansion engine and the Joule-Thomson expansion valve. These two expansion processes are normally used in helium refrigeration systems to cool the process gas to cryogenic temperature. The reverse Carnot cycle will be discussed in detail as an ideal refrigeration cycle. First the fundamental process of liquefaction and refrigeration cycles will be discussed, and then the practical helium refrigeration system. The process flow of the system and the key components; -compressor, expander, and heat exchanger- will be discussed. As an example of an actual refrigeration system, we will use the cryogenic system for the KEKB superconducting RF cavity. We will also discuss the liquid helium distribution system, which is very important, especially for the cryogenic systems used in accelerator applications. 1 Principles of Cooling and Fundamental Cooling Cycle 2 Expansion engine, Joule-Thomson expansion, kinetic molecular theory, and enthalpy 3 Liquefaction Systems 4 Refrigeration Systems 5 Practical helium liquefier/refrigeration system 6 Cryogenic System for TRISTAN Superconducting RF Cavity

Hosoyama, Kenji

2002-02-01

383

Systems Thinking 2: Thermodynamic Systems  

NSDL National Science Digital Library

This video explains thermodynamic systems, open and closed systems, and the four key properties of a system. This video is part of the Sustainability Learning Suites, made possible in part by a grant from the National Science Foundation. See 'Learn more about this resource' for Learning Objectives, Assessment, and Activities.

Vanasupa, Linda

384

Geothermal systems  

NASA Technical Reports Server (NTRS)

Several tasks of JPL related to geothermal energy are discussed. The major task is the procurement and test and evaluation of a helical screw drive (wellhead unit). A general review of geothermal energy systems is given. The presentation focuses attention on geothermal reservoirs in California, with graphs and charts to support the discussion. Included are discussions on cost analysis, systems maintenance, and a comparison of geothermal and conventional heating and cooling systems.

Mohl, C.

1978-01-01

385

Operating Systems  

NSDL National Science Digital Library

Rashid Bin Muhammad at Kent State University presents his page of lectures notes and other instructional materials on operating systems. The site is divided into a number of topics about operating systems: history, structure, process, threads, Solaris-2, CPU / process scheduling, schedule algorithm, interprocess communication, deadlock, important UNIX commands, and references. The site is then followed by links to outside resources to help supplement the material presented here. This is a great resource for computer science instructors teaching students about operating systems.

Bin Muhammad, Rashid

2009-06-24

386

Operating Systems  

NSDL National Science Digital Library

Stanford's Computer Science department presents this course on operating systems taught by David MaziĆĀØres in Winter of 2009. The course covers concurrency, synchronization, scheduling, linking, virtual memory, memory allocations, file systems, networking, protection, security, and virtual machines. On the site, visitors will find the course syllabus, lecture notes, reference materials, and old exams from past iterations of the course. There are also four programming projects on the following topics: threads, user programs, virtual memory, and file systems. It's an excellent resource for educators in computer science and technician training courses to help supplement operating systems education.

MazićāØres, David

2009-01-01

387

Carbon Systems  

SciTech Connect

The electronic states of a 'quantum dot-graphene monolayer-SiO{sub 2} + n{sup +}-Si substrate' system in an external magnetic field are studied. An analytical expression for charge transfer in this system is obtained. The electronic states of a 'quantum dot-graphene bilayer-SiO{sub 2} + n{sup +}-Si substrate' system are considered. The systems under study are interesting from the viewpoint of controlling the optical properties of a quantum dot by means of an applied electric field.

Alisultanov, Z. Z., E-mail: zaur0102@gmail.com [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation)

2013-06-15

388

[Melanocortin system].  

PubMed

Melanocortin system consists of native melanocortin peptides (ACTH, MSH and their fragments), melanocortin receptors (MC1R-MC5R) and their endogenous antagonists. Melanocortins have a wide spectrum of physiological activity. These peptides improve memory and attention, facilitate neuromuscular regeneration, exert neuroprotective action, affect the development of nervous system, modulate sexual behavior, have anti-inflammatory and antipyretic effects, interact with opioid system, affect the pain sensitivity and cardiovascular system, decrease food intake and body weight, influence on exocrine secretions. PMID:19326848

Levitskaia, N G; Kamenski?, A A

2009-01-01

389

SCALPEL system  

NASA Astrophysics Data System (ADS)

We have proposed an approach to projection electron beam lithography, termed the SCALPEL system, which we believe offers solutions to previous problems associated with projection electron beam lithography.

Berger, Steven D.; Biddick, Chris; Blakey, Myrtle; Bolan, Kevin J.; Bowler, Stephen W.; Brady, Kevin; Camarda, Ron; Connelly, Wayne; Farrow, Reginald C.; Felker, Joseph A.; Fetter, Linus A.; Harriott, Lloyd R.; Huggins, Harold A.; Kraus, Joe; Liddle, J. A.; Mkrtchyan, Masis M.; Novembre, Anthony E.; Peabody, Milton; Russell, Tom; Simpson, Wayne M.; Tarascon, Regine G.; Wade, H. H.; Waskiewicz, Warren K.; Watson, Pat

1994-12-01

390

High Energy Astronomy Observatory star tracker search program  

NASA Technical Reports Server (NTRS)

The development of a control system to accommodate the scientific payload of the High Energy Astronomy Observatory (HEAO) is discussed. One of the critical elements of the system is the star tracker subsystem, which defines an accurate three-axis attitude reference. A digital computer program has been developed to evaluate the ability of a particular star tracker configuration to meet the requirements for attitude reference at various vehicle orientations. Used in conjuction with an adequate star catalog, the computer program provides information on availability of stars for each tracker and on the ability of the system to maintain three-axis attitude reference throughout a representative sequence of vehicle orientations.

Weiler, W. J.

1972-01-01

391

Anticipatory systems as linguistic systems  

NASA Astrophysics Data System (ADS)

The idea of system is well established although not well defined. What makes up a system depends on the observer. Thinking in terms of systems is only a convenient way to conceptualize organizations, natural or artificial, that show coherent properties. Among all properties, which can be ascribed to systems, one property seems to be more outstanding than others, namely that of being anticipatory. In nature, anticipatory properties are found only in living organizations. In this way it can be said to separate non-living systems from living because there is no indication that any natural phenomenon occurring in systems where there is no indication of life is anticipatory. The characteristic of living systems is that they are exposed to the evolution contrary to causal systems that do not undergo changes due to the influence of the environment. Causal systems are related to the past in such a way that subsequent situations can be calculated from knowledge of past situations. In causal systems the past is the cause of the present and there is no reference to the future as a determining agent, contrary to anticipatory systems where expectations are the cause of the present action. Since anticipatory properties are characteristic of living systems, this property, as all other properties in living systems, is a result of the evolution and can be found in plants as well as in animals. Thus, it is not only tied to consciousness but is found at a more basic level, i.e., in the interplay between genotype and phenotype. Anticipation is part of the genetic language in such a way that appropriate actions, for events in the anticipatory systems environment, are inscribed in the genes. Anticipatory behavior, as a result of the interpretation of the genetic language, has been selected by the evolution. In this paper anticipatory systems are regarded as linguistic systems and I argue that as such anticipation cannot be fragmented but must be holistically studied. This has the implication that anticipatory behavior can only partially be described in a computer language and, furthermore, it shows that only a restricted class of anticipatory systems can be transferred to computers. .

Ekdahl, Bertil

2000-05-01

392

Anesthesia systems.  

PubMed

Anesthesia systems are used to induce general anesthesia during surgery. In addition, the systems track anesthetic agent and gas concentrations, as well as the patient's condition, using physiologic and multigas monitors. For this Update Evaluation, we present our findings for four newly evaluated models from two manufacturers and summarize our findings for the two previously evaluated models that are still on the market. (Our earlier Evaluations were published in the May-June 1996 and January 1998 issues of Health Devices.) As in the previous Evaluations, our ratings are based largely on the degree of system integration, the suitability of the systems for various types of procedures, and cost. When equipped with the appropriate monitors, all the systems can deliver anesthesia effectively and can meet the minimum monitoring requirements of general surgery. While no system met all our criteria, any limitations of the systems can easily be overcome by the purchaser. We rate two models Preferred. One provides performance and features similar to the other evaluated systems at a significantly lower cost. The second offers exceptional flexibility in meeting monitoring requirements. Three models are rated Acceptable, and the remaining model is rated Acceptable (with Conditions). It is Acceptable only if it is equipped to supply air as an inspired gas. PMID:11989067

2002-04-01

393

Digestive System  

NSDL National Science Digital Library

The digestive system is investigated in this learning activity to help participants learn how food is broken down and prepared for absorption, and list the components of the digestive system as well as their functions. Organs investigated include the mouth, esophagus, stomach, small intestine, large intestine, rectum, and anus.

Bidlack, Jim

394

Turbocompound system  

Microsoft Academic Search

A turbocompound system is described for improving the performance of an internal combustion engine without substantially increasing an end viewed profile of the engine to which it is mounted in use. The system consists of: (a) an exhaust driven turbocharger means having an exhaust manifold means extending in an axial direction for collecting exhaust gases from engine cylinders and delivering

Fox

1986-01-01

395

ECONOMIC SYSTEMS  

NSDL National Science Digital Library

The information you will explore is: List and categorize the four main types of Economic Systems in our world today. Create graphic Illustrations of thoughts and concepts. Express how economic system structures effect the lives of the people living in that system. Write to express an opinion or point of view. Experience a simulation of the marketplace. Research a country of your choice and find important factors about their economic system. Each country structures their economic system after one of the four main types or a combination of these. The assignments on this page will help you to gain a better understanding of the characteristics of the four main types of economic systems. Process: 1. Click on the following link Marketing Calendar Open the Global Economy power point. Use the Chapter 4 listening guide with the power point. chap4 listening guide 2. List the four main economic systems and find the main characterisitics of each. Compare strengths and weaknesses of each. Economic Systems Characteristics 3.Create a ...

Mrs.owen

2006-10-10

396

Power system  

DOEpatents

A power system includes a prime mover, a transmission, and a fluid coupler having a selectively engageable lockup clutch. The fluid coupler may be drivingly connected between the prime mover and the transmission. Additionally, the power system may include a motor/generator drivingly connected to at least one of the prime mover and the transmission. The power-system may also include power-system controls configured to execute a control method. The control method may include selecting one of a plurality of modes of operation of the power system. Additionally, the control method may include controlling the operating state of the lockup clutch dependent upon the mode of operation selected. The control method may also include controlling the operating state of the motor/generator dependent upon the mode of operation selected.

Hickam, Christopher Dale (Glasford, IL)

2008-03-18

397

ActimedARM - Design of a wearable system to monitor daily actimetry.  

PubMed

We developed a low power kinematic sensor, ActimedARM, incorporating three-axis accelerometer and magnetometer, a microcontroller ARM3, a ZigBee wireless communication and ?SD memory storage. With embedded algorithms it can detect in real time the postures of the subject. A preliminary assessment conducted on 12 subjects reached a 97% correct classification rate. The device exhibits 32 days of autonomy on a 3600 mAh capacity battery, which makes it convenient for field experiments in true daily life. PMID:24110071

Noury, Norbert; Perriot, Bruno; Collet, Julien; Grenier, Etienne; Cerny, Martin; Massot, Bertrand; McAdams, Eric

2013-01-01

398

Systems and Components Fuel Delivery System, Water Delivery System, ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

Systems and Components - Fuel Delivery System, Water Delivery System, Derrick Crane System, and Crane System Details - Marshall Space Flight Center, F-1 Engine Static Test Stand, On Route 565 between Huntsville and Decatur , Huntsville, Madison County, AL

399

Respiratory system  

NASA Technical Reports Server (NTRS)

The general anatomy and function of the human respiratory system is summarized. Breathing movements, control of breathing, lung volumes and capacities, mechanical relations, and factors relevant to respiratory support and equipment design are discussed.

Bartlett, R. G., Jr.

1973-01-01

400

Earth Systems  

NSDL National Science Digital Library

This self-contained module on Earth systems includes a range of fun activities that students can perform in the classroom and at home with family members. They impart important concepts such as observation, identification, measurement, and differentiation.

Science, Houghton M.

401

Hypernuclear systems  

SciTech Connect

The weak and strong interaction components of the hyperon-nucleon interaction in nuclei are discussed via the ..lambda..N system. Also, strangeness S = -2 dibaryon searches are discussed via the ..gamma..N interaction. (AIP)

Barnes, P.D.

1984-11-15

402

Fueling systems  

SciTech Connect

This report deals with concepts of the Tiber II tokamak reactor fueling systems. Contained in this report are the fuel injection requirement data, startup fueling requirements, intermediate range fueling requirements, power range fueling requirements and research and development considerations. (LSR)

Gorker, G.E.

1987-01-01

403

Root systems  

NSDL National Science Digital Library

One purpose that roots serve is that of anchoring the plant in the ground. Roots also take up water and nutrients for the plant. Plants all have different root system types to fit their individual needs and locations.

N/A N/A (U.S. Government;)

2004-10-30

404

Authoring Systems.  

National Technical Information Service (NTIS)

The monograph provides background information about authoring technology and assesses its current status. Part 1 provides basic information about authoring systems and compares them to other authoring approaches. Part 2 examines assumptions made about the...

C. Locatis E. Ullmer V. Carr R. Banvard R. Lo

1992-01-01

405

Navigation systems  

NASA Astrophysics Data System (ADS)

The elements of the measurement and communications network comprising the global deep space navigation system (DSN) for NASA missions are described. Among the measurement systems discussed are: VLBI, two-way Doppler and range measurements, and optical measurements carried out on board the spacecraft. Processing of navigation measurement is carried out using two modules: an N-body numerical integration of the trajectory (and state transition partial derivatives) based on pre-guessed initial conditions; and partial derivatives of simulated observables corresponding to each actual observation. Calculations of velocity correction parameters is performed by precise modelling of all physical phenomena influencing the observational measurements, including: planetary motions; tracking station locations, gravity field structure, and transmission media effects. Some of the contributions to earth-relative orbit estimate errors for the Doppler/range system on bo