Sample records for three-axis thrust-vectoring system

  1. Design of an ion thruster movable grid thrust vectoring system

    NASA Astrophysics Data System (ADS)

    Kural, Aleksander; Leveque, Nicolas; Welch, Chris; Wolanski, Piotr

    2004-08-01

    Several reasons justify the development of an ion propulsion system thrust vectoring system. Spacecraft launched to date have used ion thrusters mounted on gimbals to control the thrust vector within a range of about ±5°. Such devices have large mass and dimensions, hence the need exists for a more compact system, preferably mounted within the thruster itself. Since the 1970s several thrust vectoring systems have been developed, with the translatable accelerator grid electrode being considered the most promising. Laboratory models of this system have already been built and successfully tested, but there is still room for improvement in their mechanical design. This work aims to investigate possibilities of refining the design of such movable grid thrust vectoring systems. Two grid suspension designs and three types of actuators were evaluated. The actuators examined were a micro electromechanical system, a NanoMuscle shape memory alloy actuator and a piezoelectric driver. Criteria used for choosing the best system included mechanical simplicity (use of the fewest mechanical parts), accuracy, power consumption and behaviour in space conditions. Designs of systems using these actuators are proposed. In addition, a mission to Mercury using the system with piezoelectric drivers has been modelled and its performance presented.

  2. Space Transportation System solid rocket booster thrust vector control system

    NASA Technical Reports Server (NTRS)

    Verble, A. J., Jr.; Mccool, A. A.; Potter, J. H.

    1980-01-01

    The Solid Rocket Booster, Thrust Vector Control (TVC) system was designed in accordance with the following requirements: self-contained power supply, failsafe operation, 20 flight uses after exposure to seawater landings, optimized cost, and component interchangeability. Trade studies were performed which led to the selection of a recirculating hydraulic system powered by Auxiliary Power Units (APU) which drive the hydraulic actuators and gimbal the solid rocket motor nozzle. Other approaches for the system design were studied in arriving at the recirculating hydraulic system powered by an APU. These systems must withstand the imposed environment and be usable for a minimum of 20 Space Transportation System flights with a minimum of refurbishment. The TVC system completed the required qualification and verification tests and is certified for the intended application. Substantiation data include analytical and test data.

  3. Space transportation system solid rocket booster thrust vector control system

    NASA Technical Reports Server (NTRS)

    Verble, A. J., Jr.; Mccool, A. A.; Potter, J. H.

    1979-01-01

    The Solid Rocket Booster, Thrust Vector Control (TVC) system was designed in accordance with the following requirements: self-contained power supply, fail-safe operation, 20 flight uses after exposure to seawater landings, optimized cost, and component interchangeability. Trade studies were performed which led to the selection of a recirculating hydraulic system powered by Auxiliary Power Units (APU) which drive the hydraulic actuators and gimbal the solid rocket motor nozzle. Other approaches for the system design were studied in arriving at the recirculating hydraulic system powered by an APU. These systems must withstand the imposed environment and be usable for a minimum of 20 Space Transportation System flights with a minimum of refurbishment. The TVC system has completed the major portion of qualification and verification tests and is prepared to be cleared for the first Shuttle flight (STS-1). Substantiation data will include analytical and test data.

  4. Developmental Testing of Electric Thrust Vector Control Systems for Manned Launch Vehicle Applications

    NASA Technical Reports Server (NTRS)

    Bates, Lisa B.; Young, David T.

    2012-01-01

    This paper describes recent developmental testing to verify the integration of a developmental electromechanical actuator (EMA) with high rate lithium ion batteries and a cross platform extensible controller. Testing was performed at the Thrust Vector Control Research, Development and Qualification Laboratory at the NASA George C. Marshall Space Flight Center. Electric Thrust Vector Control (ETVC) systems like the EMA may significantly reduce recurring launch costs and complexity compared to heritage systems. Electric actuator mechanisms and control requirements across dissimilar platforms are also discussed with a focus on the similarities leveraged and differences overcome by the cross platform extensible common controller architecture.

  5. Robust synthesized control of electromechanical actuator for thrust vector system in spacecraft

    Microsoft Academic Search

    Hao Lu; Yunhua Li; Chenglin Zhu

    A kind of robust control of electromechanical actuator (EMA) system for thrust vector control in a spacecraft was investigated. In the flight of a spacecraft, the EMA system must overcome the influence of load disturbance and working point alteration to improve the robust control performances. Addressing this problem and considering the large inertia and low stiffness load of the EMA

  6. The development of H-II rocket solid rocket booster thrust vector control system

    Microsoft Academic Search

    Hirokazu Nagai; Yukio Fukushima; Hiroo Kazama; Tatsuro Asai; Shunichi Okaya; Yasushi Watanabe; Shoji Muramatsu

    1990-01-01

    The development of the thrust-vector-control (TVC) system for the two solid rocket boosters (SRBs) of the H-II rocket, which was started in 1984 and completed in 1989, is described. Special attention is given to the system's design, the trade-off studies, and the evaluation of the SRB-TVC system performance, as well as to problems that occurred in the course of the

  7. The development of H-II rocket solid rocket booster thrust vector control system

    NASA Astrophysics Data System (ADS)

    Nagai, Hirokazu; Fukushima, Yukio; Kazama, Hiroo; Asai, Tatsuro; Okaya, Shunichi; Watanabe, Yasushi; Muramatsu, Shoji

    The development of the thrust-vector-control (TVC) system for the two solid rocket boosters (SRBs) of the H-II rocket, which was started in 1984 and completed in 1989, is described. Special attention is given to the system's design, the trade-off studies, and the evaluation of the SRB-TVC system performance, as well as to problems that occurred in the course of the system's development and to the countermeasures that were taken. Schematic diagrams are presented for the H-II rocket, the SRB, and the SRB-TVC system configurations.

  8. Design of a mixer for the thrust-vectoring system on the high-alpha research vehicle

    NASA Technical Reports Server (NTRS)

    Pahle, Joseph W.; Bundick, W. Thomas; Yeager, Jessie C.; Beissner, Fred L., Jr.

    1996-01-01

    One of the advanced control concepts being investigated on the High-Alpha Research Vehicle (HARV) is multi-axis thrust vectoring using an experimental thrust-vectoring (TV) system consisting of three hydraulically actuated vanes per engine. A mixer is used to translate the pitch-, roll-, and yaw-TV commands into the appropriate TV-vane commands for distribution to the vane actuators. A computer-aided optimization process was developed to perform the inversion of the thrust-vectoring effectiveness data for use by the mixer in performing this command translation. Using this process a new mixer was designed for the HARV and evaluated in simulation and flight. An important element of the Mixer is the priority logic, which determines priority among the pitch-, roll-, and yaw-TV commands.

  9. A static investigation of the thrust vectoring system of the F/A-18 high-alpha research vehicle

    NASA Technical Reports Server (NTRS)

    Mason, Mary L.; Capone, Francis J.; Asbury, Scott C.

    1992-01-01

    A static (wind-off) test was conducted in the static test facility of the Langley 16-foot Transonic Tunnel to evaluate the vectoring capability and isolated nozzle performance of the proposed thrust vectoring system of the F/A-18 high alpha research vehicle (HARV). The thrust vectoring system consisted of three asymmetrically spaced vanes installed externally on a single test nozzle. Two nozzle configurations were tested: A maximum afterburner-power nozzle and a military-power nozzle. Vane size and vane actuation geometry were investigated, and an extensive matrix of vane deflection angles was tested. The nozzle pressure ratios ranged from two to six. The results indicate that the three vane system can successfully generate multiaxis (pitch and yaw) thrust vectoring. However, large resultant vector angles incurred large thrust losses. Resultant vector angles were always lower than the vane deflection angles. The maximum thrust vectoring angles achieved for the military-power nozzle were larger than the angles achieved for the maximum afterburner-power nozzle.

  10. Noise generated by a flight weight, air flow control valve in a vertical takeoff and landing aircraft thrust vectoring system

    NASA Astrophysics Data System (ADS)

    Huff, Ronald G.

    1989-02-01

    Tests were conducted in the NASA Lewis Research Center's Powered Lift Facility to experimentally evaluate the noise generated by a flight weight, 12 in. butterfly valve installed in a proposed vertical takeoff and landing thrust vectoring system. Fluctuating pressure measurements were made in the circular duct upstream and downstream of the valve. This data report presents the results of these tests. The maximum overall sound pressure level is generated in the duct downstream of the valve and reached a value of 180 dB at a valve pressure ratio of 2.8. At the higher valve pressure ratios the spectra downstream of the valve is broad banded with its maximum at 1000 Hz.

  11. Noise generated by a flight weight, air flow control valve in a vertical takeoff and landing aircraft thrust vectoring system

    NASA Technical Reports Server (NTRS)

    Huff, Ronald G.

    1989-01-01

    Tests were conducted in the NASA Lewis Research Center's Powered Lift Facility to experimentally evaluate the noise generated by a flight weight, 12 in. butterfly valve installed in a proposed vertical takeoff and landing thrust vectoring system. Fluctuating pressure measurements were made in the circular duct upstream and downstream of the valve. This data report presents the results of these tests. The maximum overall sound pressure level is generated in the duct downstream of the valve and reached a value of 180 dB at a valve pressure ratio of 2.8. At the higher valve pressure ratios the spectra downstream of the valve is broad banded with its maximum at 1000 Hz.

  12. Haptic controlled three-axis MEMS gripper system

    NASA Astrophysics Data System (ADS)

    Vijayasai, Ashwin P.; Sivakumar, Ganapathy; Mulsow, Matthew; Lacouture, Shelby; Holness, Alex; Dallas, Tim E.

    2010-10-01

    In this work, we describe the development and testing of a three degree of freedom meso/micromanipulation system for handling micro-objects, including biological cells and microbeads. Three-axis control is obtained using stepper motors coupled to micromanipulators. The test specimen is placed on a linear X-stage, which is coupled to one stepper motor. The remaining two stepper motors are coupled to the Y and Z axes of a micromanipulator. The stepper motor-micromanipulator arrangement in the Y and Z axes has a minimum step resolution of ˜0.4 ?m with a total travel of 12 mm and the stepper motor-X stage arrangement has a minimum resolution of ˜0.3 ?m with a total travel of 10 mm. Mechanical backlash error is ˜0.8 ?m for ˜750 ?m of travel. A MEMS microgripper from Femtotools™ acts as an end-effector in the shaft end of the micromanipulator. The gripping ranges of the grippers used are 0-100 ?m (for FT-G100) and 0-60 ?m (for FT-G60). As the gripping action is performed, the force sense circuit of FT-G100 measures the handling force. This force feedback is integrated to a commercially available three degree of freedom haptic device (Novint Falcon) allowing the user to receive tactile feedback during the microscale handling. Both mesoscale and microscale controls are important, as mesoscale control is required for the travel motion of the test object whereas microscale control is required for the gripping action. The haptic device is used to control the position of the microgripper, control the actuation of the microgripper, and provide force feedback. A LABVIEW program was developed to interlink communication and control among hardware used in the system. Micro-objects such as SF-9 cells and polystyrene beads (˜45 ?m) are handled and handling forces of ˜50 ?N were experienced.

  13. A review of thrust-vectoring schemes for fighter applications

    NASA Technical Reports Server (NTRS)

    Berrier, B. L.; Re, R. J.

    1978-01-01

    This paper presents a review of thrust vectoring schemes for advanced fighter applications. Results are presented from wind tunnel and system integration studies on thrust vectoring nozzle concepts. Vectoring data are presented from wind tunnel tests of axisymmetric C-D (convergent-divergent) and nonaxisymmetric wedge, C-D, single ramp and USB (upper-surface blowing) nozzle concepts. Results from recent airframe/nozzle integration studies on the impact of thrust vectoring on weight, cooling and performance characteristics are discussed. This review indicates that the aircraft designer has, at his disposal, a wide range of thrust vectoring schemes which offer potential for added or improved aircraft capability.

  14. Electromechanical actuation for thrust vector control applications

    Microsoft Academic Search

    Mary Ellen Roth

    1990-01-01

    At present, actuation systems for the Thrust Vector Control (TVC) for launch vehicles are hydraulic systems. The Advanced Launch System (ALS), a joint initiative between NASA and the Air Force, is a launch vehicle that is designed to be cost effective, highly reliable and operationally efficient with a goal of reducing the cost per pound to orbit. As part of

  15. Preliminary performance of a vertical-attitude takeoff and landing, supersonic cruise aircraft concept having thrust vectoring integrated into the flight control system

    NASA Technical Reports Server (NTRS)

    Robins, A. W.; Beissner, F. L., Jr.; Domack, C. S.; Swanson, E. E.

    1985-01-01

    A performance study was made of a vertical attitude takeoff and landing (VATOL), supersonic cruise aircraft concept having thrust vectoring integrated into the flight control system. Those characteristics considered were aerodynamics, weight, balance, and performance. Preliminary results indicate that high levels of supersonic aerodynamic performance can be achieved. Further, with the assumption of an advanced (1985 technology readiness) low bypass ratio turbofan engine and advanced structures, excellent mission performance capability is indicated.

  16. Thrust vector control using electric actuation

    Microsoft Academic Search

    Robert T. Bechtel; David K. Hall

    1995-01-01

    Presently, gimbaling of launch vehicle engines for thrust vector control is generally accomplished using a hydraulic system. In the case of the space shuttle solid rocket boosters and main engines, these systems are powered by hydrazine auxiliary power units. Use of electromechanical actuators would provide significant advantages in cost and maintenance. However, present energy source technologies such as batteries are

  17. Traceable Calibration of the 3 axis Thrust Vector in the mN range

    NASA Astrophysics Data System (ADS)

    Hughes, B.; Oldfield, S.

    2004-10-01

    The possibility of measuring the three force components i.e. the main axial component and the two orthogonal radial components, generated by an electric propulsion system is important for two reasons. Firstly, to assess the impact of spacecraft/propulsion system integration issues, for example to verify the alignment of the thrust vector with the spacecraft centre-of-mass for spacecraft stability. Secondly, to operate the thruster properly during flight, for example to determine the thrust vector relative to the mechanical axis of the thruster. Furthermore, a three-axis measurement capability will be useful for the experimental performance verification of the next generation of vectored electric propulsion devices, especially regarding the many unresolved issues connected with indirect thrust measurement using electrostatic probes. The capability to monitor thrust vector drift in real time and with significant bandwidth is also important. Thus enabling vector drift during thruster warm-up, to be measured, and the response of vectored thrusters to change in vector demand can be assessed. In this paper we describe the design, construction and testing of an instrument proof of concept. The instrument was designed to accommodate a dummy thruster mass of 0.5 kg and operate in the 0 to 10 mN range. The directional resolution that has been demonstrated is better than 0.05 ° in both axes when operating at full thrust.

  18. Electromechanical actuator for thrust vector control

    NASA Astrophysics Data System (ADS)

    Zubkow, Zygmunt

    Attention is given to the development and testing of electromechanical actuator (EMA) systems for use in first- and second-stage thrust vector control of rocket engines. An overview of the test program is also presented. Designs for both first- and second-stage actuators employ redundant dc brushless, three-phase rare-earth permanent magnet motors. The first-stage actuator is about 28 hp per motor and uses a roller screw. Second-stage thrust vector control is implemented with a much smaller actuator of about 1 hp per motor. This actuator uses a gear drive with a recycling ball screw mechanism. An operational EMA is presented. This 6.5-in. actuator is capable of a stall force of 1350 pounds per motor and a frequency response of about 5 HZ.

  19. The Magsat three axis arc second precision attitude transfer system

    NASA Technical Reports Server (NTRS)

    Schenkel, F. W.; Heins, R. J.

    1981-01-01

    The Magsat Attitude Transfer System (ATS), which provides attitude alteration in pitch, yaw, and roll is described. A remote vector magnetometer extends from Magsat on a 20 ft boom, requiring vector orientation by reference to coordinate axes determined by a set of star mapping cameras. The ATS was designed to perform in a solar illuminated environment by using an optically narrow bandwidth with synchronous demodulation at 9300 A. The pitch/yaw optical design, the electrooptics, and signal and switching diagrams are provided. Simple mirrors with no moving parts are placed on the magnetometer to reflect a collimated beam from the ATS for attitude indication, which is accurate to one part in 96. Alignment was completed within 24 hr after launch.

  20. Three axis Attitude Determination and Control System for a picosatellite: Design and implementation

    E-print Network

    Gravdahl, Jan Tommy

    Three axis Attitude Determination and Control System for a picosatellite: Design and implementation The design and implementation of the Attitude Determination and Control System (ADCS) for a Norwegian system. Miniaturization is a key approach in order to meet the tight mass budget. The Determination part

  1. System Identification and Automatic Mass Balancing of Ground-Based Three-Axis Spacecraft Simulator

    E-print Network

    System Identification and Automatic Mass Balancing of Ground-Based Three-Axis Spacecraft Simulator is considered. The method of estimating the inertial properties of a spacecraft as well as the location and the most observed behavior. A spherical air-bearing-based spacecraft testbed requires the center of mass

  2. THREE AXIS ATTITUDE DETERMINATION AND CONTROL SYSTEM FOR A PICO-SATELLITE

    E-print Network

    Gravdahl, Jan Tommy

    period. In ad- dition, the satellite should maintain communications and digipeater operations usingTHREE AXIS ATTITUDE DETERMINATION AND CONTROL SYSTEM FOR A PICO-SATELLITE: DESIGN) for a Norwegian pico-satellite is presented. The satellite, named nCube, is based on the CubeSat concept

  3. Design and test of electromechanical actuators for thrust vector control

    Microsoft Academic Search

    J. R. Cowan; Rae Ann Weir

    1993-01-01

    New control mechanisms technologies are currently being explored to provide alternatives to hydraulic thrust vector control (TVC) actuation systems. For many years engineers have been encouraging the investigation of electromechanical actuators (EMA) to take the place of hydraulics for spacecraft control\\/gimballing systems. The rationale is to deliver a lighter, cleaner, safer, more easily maintained, as well as energy efficient space

  4. Hot gas thrust vector control motor

    NASA Astrophysics Data System (ADS)

    Berdoyes, Michel; Ellis, Russell A.

    1992-07-01

    A hot gas thrust vector control (HGTVC) motor developed in the framework of a Foreign Weapon Evaluation program is discussed. Two HGTVC versions were evaluated on the two nozzles of the program, normal injection with a blunt pintle and 10 deg upstream injection with a tapered pintle. The HGTVC system was tested on a modified ORBUS-1 motor which is based on two technologies, namely, a composite chamber polar boss (CPB) and a two-piece C-C nozzle which threads to the CPB and receives two HGVs embedded into its exit cone, 180 deg apart. It is concluded that the composite polar bosses and C-C nozzles performed successfully in both firings.

  5. Solid rocket booster thrust vector control subsystem description

    NASA Technical Reports Server (NTRS)

    Redmon, J., Jr. (compiler)

    1983-01-01

    Major Solid Rocket Booster-Thrust Vector Control (SRB-TVC) subsystem components and subcomponents used in the Space Transportation System (STS) are identified. Simplified schematics, detailed schematics, figures, photographs, and data are included to acquaint the reader with the operation, performance, and physical layout as well as the materials and instrumentation used.

  6. Flow Visualization of Thrust-Vectoring Lightcraft Engines with ˜1?s Pulsed TEA CO2 Laser

    NASA Astrophysics Data System (ADS)

    Kenoyer, D. A.; Salvador, I. I.; Notaro, S. N.; Myrabo, L. N.

    2011-11-01

    The thrust-vectoring performance of four laser propulsion engine geometries were visualized using a twin Lumonics K922M pulsed TEA CO2 laser system, with a Cordin® high speed digital camera and Schlieren photography. Airbreathing mode engines were used to explore engine thrust-vectoring behavior, as a function of: a) laser beam lateral offset from the engine axis of symmetry; b) laser pulse duration (˜50 ns spike with selectable 1.5 or 2.5 ?s tail, depending upon laser gas mixture); and c) engine geometry (Lightcraft Type ?150, ?200, ?250, and parabolic bell). The resulting Schlieren images visually prove thrust vectoring if the exhaust plume is responsible for the beam-riding phenomenon. Parabolic bell engines demonstrate very little thrust vectoring ability, even at the large offsets nominal for beam-riding and thrust-vectoring in other geometries.

  7. Thrust-Vector Deflectors For Spacecraft

    NASA Technical Reports Server (NTRS)

    Soong, William C.

    1990-01-01

    Rotating shield steers thrust in desired direction. Report discusses use of thrust-vector deflectors (TVD's) to enhance controllability and reduce number of small rocket engines (thrustors) needed to control attitudes of artificial satellites. Developed in aircraft industry for use in jet engines. Principal advantages gained, lower cost and greater simplicity.

  8. Grasping strategy of two robot arms based on tactile and slippage sensation of optical three-axis tactile sensor system

    Microsoft Academic Search

    Hanafiah Yussof; Sukarnur Che Abdullah; Jiro Wada; Masahiro Ohka

    2011-01-01

    This paper presents a new grasping strategy of two robot arms based on active tactile and slippage sensation using a novel optical three-axis tactile sensor system. The tactile sensors are mounted on the tip of robotic hands of two robot arms. In the robot motion control, a recurrent mechanism was implemented in which the next behavior is induced by the

  9. Summary of Fluidic Thrust Vectoring Research Conducted at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Deere, Karen A.

    2003-01-01

    Interest in low-observable aircraft and in lowering an aircraft's exhaust system weight sparked decades of research for fixed geometry exhaust nozzles. The desire for such integrated exhaust nozzles was the catalyst for new fluidic control techniques; including throat area control, expansion control, and thrust-vector angle control. This paper summarizes a variety of fluidic thrust vectoring concepts that have been tested both experimentally and computationally at NASA Langley Research Center. The nozzle concepts are divided into three categories according to the method used for fluidic thrust vectoring: the shock vector control method, the throat shifting method, and the counterflow method. This paper explains the thrust vectoring mechanism for each fluidic method, provides examples of configurations tested for each method, and discusses the advantages and disadvantages of each method.

  10. System integrated product design, CNC programming and postprocessing for three-axis lathes

    Microsoft Academic Search

    Stanislaw Zietarski

    2001-01-01

    New three-axis CNC turning machines have been installed on shop floors of factories in the last few years. Although the machines are still particularly adapted to cylindrical work, they are also used for non-cylindrical machining. The third axis, C or Y, and separately driven, additional milling cutters have eliminated traditional limitations and opened new machining possibilities, i.e. turning and milling

  11. Electromechanical actuation for thrust vector control applications

    NASA Astrophysics Data System (ADS)

    Roth, Mary Ellen

    At present, actuation systems for the Thrust Vector Control (TVC) for launch vehicles are hydraulic systems. The Advanced Launch System (ALS), a joint initiative between NASA and the Air Force, is a launch vehicle that is designed to be cost effective, highly reliable and operationally efficient with a goal of reducing the cost per pound to orbit. As part of this initiative, an electromechanical actuation system is being developed as an attractive alternative to the hydraulic systems used today. NASA-Lewis is developing and demonstrating an Induction Motor Controller Actuation System with a 40 hp peak rating. The controller will integrate 20 kHz resonant link Power Management and Distribution (PMAD) technology and Pulse Population Modulation (PPM) techniques to implement Field Oriented Vector Control (FOVC) of a new advanced induction motor. Through PPM, multiphase variable frequency, variable voltage waveforms can be synthesized from the 20 kHz source. FOVC shows that varying both the voltage and frequency and their ratio (V/F), permits independent control of both torque and speed while operating at maximum efficiency at any point on the torque-speed curve. The driver and the FOVC will be microprocessor controlled. For increased system reliability, a Built-in Test (BITE) capability will be included. This involves introducing testability into the design of a system such that testing is calibrated and exercised during the design, manufacturing, maintenance and prelaunch activities. An actuator will be integrated with the motor controller for performance testing of the EMA TVC system. The design and fabrication of the motor controller is being done by General Dynamics Space Systems Division. The University of Wisconsin-Madison will assist in the design of the advanced induction motor and in the implementation of the FOVC theory. A 75 hp electronically controlled dynamometer will be used to test the motor controller in all four quadrants of operation using flight type control algorithms. Integrated testing of the controller and actuator will be conducted at a facility yet to be named. The EMA system described above is discussed in detail.

  12. Thrust Vectoring of a Continuous Rotating Detonation Engine by Changing the Local Injection Pressure

    NASA Astrophysics Data System (ADS)

    Liu, Shi-Jie; Lin, Zhi-Yong; Sun, Ming-Bo; Liu, Wei-Dong

    2011-09-01

    The thrust vectoring ability of a continuous rotating detonation engine is numerically investigated, which is realized via increasing local injection stagnation pressure of half of the simulation domain compared to the other half. Under the homogeneous injection condition, both the flow-field structure and the detonation wave propagation process are analyzed. Due to the same injection condition along the inlet boundary, the outlines of fresh gas zones at different moments are similar to each other. The main flow-field features under thrust vectoring cases are similar to that under the baseline condition. However, due to the heterogeneous injection system, both the height of the fresh gas zone and the pressure value of the fresh gas in the high injection pressure zone are larger than that in the low injection pressure zone. Thus the average pressure in half of the engine is larger than that in the other half and the thrust vectoring adjustment is realized.

  13. Design and evaluation of thrust vectored nozzles using a multicomponent thrust stand

    NASA Technical Reports Server (NTRS)

    Carpenter, Thomas W.; Blattner, Ernest W.; Stagner, Robert E.; Contreras, Juanita; Lencioni, Dennis; Mcintosh, Greg

    1990-01-01

    Future aircraft with the capability of short takeoff and landing, and improved maneuverability especially in the post-stall flight regime will incorporate exhaust nozzles which can be thrust vectored. In order to conduct thrust vector research in the Mechanical Engineering Department at Cal Poly, a program was planned with two objectives; design and construct a multicomponent thrust stand for the specific purpose of measuring nozzle thrust vectors; and to provide quality low moisture air to the thrust stand for cold flow nozzle tests. The design and fabrication of the six-component thrust stand was completed. Detailed evaluation tests of the thrust stand will continue upon the receipt of one signal conditioning option (-702) for the Fluke Data Acquisition System. Preliminary design of thrust nozzles with air supply plenums were completed. The air supply was analyzed with regard to head loss. Initial flow visualization tests were conducted using dual water jets.

  14. Development and qualification of a STAR 48 rocket motor with thrust vector control

    NASA Astrophysics Data System (ADS)

    Hamke, R.; Rade, J.; Weldin, R.

    1992-07-01

    A thrust vector control (TVC) nozzle for use on the STAR 48 rocket motor (STAR 48V) has been developed for use on the COMET program aboard the Conestoga launch vehicle. The first stages of qualification testing have been completed. The first STAR 48V has been successfully static-tested. The flexseal TVC nozzle design is based upon the qualified and flight-proven fixed nozzle design used on spin-stabilized spacecraft. The flexseal design and fabrication approach benefit from flight-proven and man-rated Thiokol Corporation flexseal designs. The thrust vector control system provides vectoring capability to 4 deg for use on nonspinning spacecraft. Electromechanical actuators coupled with a closed-loop controller provide thrust vector positioning and spacecraft attitude control.

  15. Pneumatic motor powered Thrust Vector Control (TVC) for liquid propelled launch vehicles

    Microsoft Academic Search

    Mark C. Malone; P. S. Evans

    1992-01-01

    Recent studies performed for the Titan 4 launch vehicle indicate significant potential advantages in replacing the current stage 1 and 2 recirculating hydraulic TVC (thrust vector control) system with a PMA (pneumatic mechanical actuation) system. Some of the advantages of a PMA system over the recirculating hydraulic system include reduced part count and weight, reduced maintenance and life-cycle cost, and

  16. Analysis and computation of static and dynamic characteristics of a three-axis test table's mechanical assembly in inertial system

    NASA Astrophysics Data System (ADS)

    Wang, Xin-Rong; Gao, Sun-Ying; Liang, Ying-Chun

    The static and dynamic characteristics of a three-axis table for conducting tests are analyzed for the case of an inertial system. A finite-element model is developed to study four operating conditions to derive the natural frequencies and vibration characteristics of the gimbals. Specific attention is given to: (1) the influence of the stiffness of the clamping apparatus and the test package upon pointing errors; (2) the pointing errors of the three axes' point of intersection under four operating states; and (3) the effects of deformations of the gimbals and the moments of inertia of the gimbal system. The results numerically show the effects of enhancing the stiffness of the mechanical assembly for the four operating states. The results are of interest to the design of precision testing equipment for high-accuracy navigation and guidance.

  17. Thrust Vectoring Flow Control Using Plasma Actuators

    NASA Astrophysics Data System (ADS)

    Jacob, Jamey; Bolitho, Michael

    2007-11-01

    Thrust vectoring flow control is demonstrated using plasma synthetic jet actuators (PSJA). The PSJA is a geometric variant of a plasma actuator, consisting of a symmetric electrode array that results in a circular region of dielectric barrier discharge plasma. Quiescent flow PIV measurements of the PSJA reveal that the flowfield on actuation resembles that of a zero-mass flux or synthetic jet that is useful for flow control, particularly separation reduction. Like synthetic jets, unsteady pulsed actuator operation results in formation of multiple vortex rings. The output jet momentum is found to be affected by the power input, actuator dimension and pulsing frequency. While increasing the input power increases the maximum jet velocity, an optimum range of pulsing frequencies and actuator dimensions are observed to exist in order to maximize jet momentum. By asymmetrically varying the plasma input parameters, such as frequency, amplitude and duty cycle, it is possible to control the jet angle. Vectoring using high frequency pusling akin to synthetic jets is more effective than vectoring by modifying steady control inputs and differences in control effectiveness are due primarily to the time scales associated with the vortex formation.

  18. Thrust Vectoring on the NASA F-18 High Alpha Research Vehicle

    NASA Technical Reports Server (NTRS)

    Bowers, Albion H.; Pahle, Joseph W.

    1996-01-01

    Investigations into a multiaxis thrust-vectoring system have been conducted on an F-18 configuration. These investigations include ground-based scale-model tests, ground-based full-scale testing, and flight testing. This thrust-vectoring system has been tested on the NASA F-18 High Alpha Research Vehicle (HARV). The system provides thrust vectoring in pitch and yaw axes. Ground-based subscale test data have been gathered as background to the flight phase of the program. Tests investigated aerodynamic interaction and vane control effectiveness. The ground-based full-scale data were gathered from static engine runs with image analysis to determine relative thrust-vectoring effectiveness. Flight tests have been conducted at the NASA Dryden Flight Research Center. Parameter identification input techniques have been developed. Individual vanes were not directly controlled because of a mixer-predictor function built into the flight control laws. Combined effects of the vanes have been measured in flight and compared to combined effects of the vanes as predicted by the cold-jet test data. Very good agreement has been found in the linearized effectiveness derivatives.

  19. A three-axis high-resolution capacitive tactile imager system based on floating comb electrodes

    NASA Astrophysics Data System (ADS)

    Surapaneni, R.; Guo, Q.; Xie, Y.; Young, D. J.; Mastrangelo, C. H.

    2013-07-01

    We present the design, fabrication and testing of a high-resolution 169-sensing cell capacitive flexible tactile imager (FTI) for normal and shear stress measurement as an auxiliary sensor for robotic grippers and gait analysis. The FTI consists of a flexible high-density array of normal stress and two-dimensional shear stress sensors fabricated using microelectromechanical systems (MEMS) and flexible printed circuit board (FPCB) techniques. The drive/sense lines of the FTI are realized using FPCB whereas the floating electrodes (Au) are patterned on a compressible PDMS layer spin coated on the FPCB layer. The use of unconnected floating electrodes significantly improves the reliability of traditional quad-electrode contact sensing devices by eliminating the need for patterning electrical wiring on PDMS. When placed at the heel of a boot, this FTI senses the position and motion of the line of contact with the ground. Normal stress readouts are obtained from the net capacitance of the cell and the shear-sense direction is determined by the amount of asymmetric overlap of the floating combs with respect to the bottom electrodes. The FTI is characterized using a high-speed switched-capacitor circuit with a 12-bit resolution at full frame rates of 100 Hz (˜0.8 Mb s-1) capable of resolving a displacement as low as 60 µm. The FTI and the readout circuitry contribute to a noise/interference level of 5 mV and the sensitivity of normal and shear stress for the FTI is 0.38 MPa-1 and 79.5 GPa-1 respectively.

  20. Aerodynamics of thrust vectoring by Navier-Stokes solutions

    NASA Technical Reports Server (NTRS)

    Tseng, Jing-Biau; Lan, C. Edward

    1991-01-01

    Induced aerodynamics from thrust vectoring are investigated by a computational fluid dynamic method. A thin-layer Reynolds-averaged Navier-Stokes code with multiblock capability is used. Jet properties are specified on the nozzle exit plane to simulate the jet momentum. Results for a rectangular jet in a cross flow are compared with data to verify the code. Further verification of the calculation is made by comparing the numerical results with transonic data for a wing-body combination. Additional calculations were performed to elucidate the following thrust vectoring effects: the thrust vectoring effect on shock and expansion waves, induced effects on nearby surfaces, and the thrust vectoring effect on the leading edge vortex.

  1. Reduced-length scarfed-nozzles for thrust vector adjustment

    Microsoft Academic Search

    Jay S. Lilley

    1993-01-01

    The results of an investigation into the utilization of scarfed, truncated perfect-nozzles for thrust vector adjustment in tactical strap-on boosters is presented. The use of truncated perfect-nozzle expansion contours was evaluated as a means of achieving significant nozzle length reductions over conical nozzle designs without degrading axial thrust or thrust vector adjustment capability. Previously developed perfect-nozzle and scarfed-nozzle performance analysis

  2. Controlling three-axis attitude rates on a pointing system using nonlinear observer and two-axis measurements

    NASA Astrophysics Data System (ADS)

    Algrain, Marcelo C.

    1997-04-01

    A new observer design method that allows for estimating the angular rates along a vehicle's three principal axes is described. The observer uses measurements from a single two- axis angular rate sensor (gyro) and determines the rates for the third axis using a nonlinear observer. Unlike conventional approaches where the equations governing vehicle motion (Euler's equations) are linearized and then an observer is constructed based on the linear model, this method does not require linearization of the system. Instead, a pseudo-linear representation is used. The pseudo- linear model is obtained by systematically decomposing a nonlinear system into linear and nonlinear terms. The nonlinear components are then redefined as an auxiliary set of state variables and/or inputs. This leads to an augmented linear system representation that is mathematically equivalent to the original nonlinear system. This method enables standard linear observer design techniques to be applied and develops observers that are capable of estimating the third-axis angular rates using measurements corresponding to the other two axes. The effectiveness of this approach is illustrated with an example. The case studied is the complete attitude rate determination and control of a spinning spacecraft. Computer simulation results show that the new approach provides excellent three- axis attitude control, yet requires angular rate sensors for only two axes.

  3. Application of stiffness control algorithm for dexterous robot grasping using optical three-axis tactile sensor system

    Microsoft Academic Search

    Hanafiah Yussof; Masahiro Ohka

    2009-01-01

    This paper presents analysis and experiments to define object stiffness control algorithm using a prototype optical three-axis tactile sensor for improvement of dexterous grasping tasks in robotic fingers. We proposed a low force control scheme and conducted a series of calibration experiments with soft and hard objects. We analyzed normal and shearing forces data detected in the experiments. To correlate

  4. Design and test of a high power electromechanical actuator for thrust vector control

    NASA Astrophysics Data System (ADS)

    Cowan, J. R.; Myers, W. N.

    1992-07-01

    NASA-Marshall is involved in the development of electromechanical actuators (EMA) for thrust-vector control (TVC) system testing and implementation in spacecraft control/gimballing systems, with a view to the replacement of hydraulic hardware. TVC system control is furnished by solid state controllers and power supplies; a pair of resolvers supply position feedback to the controller for precise positioning. Performance comparisons between EMA and hydraulic TVC systems are performed.

  5. Sliding-mode control system for the three-axis attitude control of rigid-body spacecraft with unknown dynamics parameters

    Microsoft Academic Search

    S. J. DODDS; A. B. WALKER

    1991-01-01

    Sliding-mode control is shown to be an advantageous new approach to the three-axis attitude control of rigid-body spacecraft in which accurate pre-launch estimation of the dynamics parameters is unnecessary. The control-system accuracy is shown to depend almost entirely on the attitude-measurement system, control-actuator misalignments and scale-factor errors being permitted. If the control actuators are operated in hot redundance, actuator failures

  6. Aeroservoelastic Modeling and Validation of a Thrust-Vectoring F/A-18 Aircraft

    NASA Technical Reports Server (NTRS)

    Brenner, Martin J.

    1996-01-01

    An F/A-18 aircraft was modified to perform flight research at high angles of attack (AOA) using thrust vectoring and advanced control law concepts for agility and performance enhancement and to provide a testbed for the computational fluid dynamics community. Aeroservoelastic (ASE) characteristics had changed considerably from the baseline F/A-18 aircraft because of structural and flight control system amendments, so analyses and flight tests were performed to verify structural stability at high AOA. Detailed actuator models that consider the physical, electrical, and mechanical elements of actuation and its installation on the airframe were employed in the analysis to accurately model the coupled dynamics of the airframe, actuators, and control surfaces. This report describes the ASE modeling procedure, ground test validation, flight test clearance, and test data analysis for the reconfigured F/A-18 aircraft. Multivariable ASE stability margins are calculated from flight data and compared to analytical margins. Because this thrust-vectoring configuration uses exhaust vanes to vector the thrust, the modeling issues are nearly identical for modem multi-axis nozzle configurations. This report correlates analysis results with flight test data and makes observations concerning the application of the linear predictions to thrust-vectoring and high-AOA flight.

  7. Multiaxis Thrust-Vectoring Characteristics of a Model Representative of the F-18 High-Alpha Research Vehicle at Angles of Attack From 0 deg to 70 deg

    NASA Technical Reports Server (NTRS)

    Asbury, Scott C.; Capone, Francis J.

    1995-01-01

    An investigation was conducted in the Langley 16-Foot Transonic Tunnel to determine the multiaxis thrust-vectoring characteristics of the F-18 High-Alpha Research Vehicle (HARV). A wingtip supported, partially metric, 0.10-scale jet-effects model of an F-18 prototype aircraft was modified with hardware to simulate the thrust-vectoring control system of the HARV. Testing was conducted at free-stream Mach numbers ranging from 0.30 to 0.70, at angles of attack from O' to 70', and at nozzle pressure ratios from 1.0 to approximately 5.0. Results indicate that the thrust-vectoring control system of the HARV can successfully generate multiaxis thrust-vectoring forces and moments. During vectoring, resultant thrust vector angles were always less than the corresponding geometric vane deflection angle and were accompanied by large thrust losses. Significant external flow effects that were dependent on Mach number and angle of attack were noted during vectoring operation. Comparisons of the aerodynamic and propulsive control capabilities of the HARV configuration indicate that substantial gains in controllability are provided by the multiaxis thrust-vectoring control system.

  8. Characteristics of a confined jet thrust vector control nozzle

    NASA Astrophysics Data System (ADS)

    Porzio, A. J.

    1984-12-01

    A study of confined jet thrust vector control (CJTVC) is presented. By isolating an area of flow separation within the body of a nozzle, CJTVC has the advantage over other thrust vector controls using secondary injection (SI) in that it can operate independent of altitude. This makes it ideal for applications in small missiles and spacecraft attitude control. In this study, axial thrust, side force, and pressure distribution across the nozzle were measured. The parameters were SI pressure, primary short supply pressure, and SI port area. Results indicate that there is a lower limit to the supply pressure ratio (SI pressure to primary pressure) and SI mass flow below which, the nozzle will not produce side force. Also, above a primary pressure of 200 psig, the undeflected jet exhibits instabilities. Without SI, a 4 Hz oscillation occurs in the nozzle and switching jet attachment occurs near the throat.

  9. Experimental investigation of thrust-vector deviation in a plasma thruster

    NASA Astrophysics Data System (ADS)

    Bugrova, A. I.; Bugrov, G. E.; Bishaev, A. M.; Desyatskov, A. V.; Kozintseva, M. V.; Lipatov, A. S.; Kharchevnikov, V. K.; Smirnov, P. G.

    2014-02-01

    We have studied deviation of the thrust vector of a plasma thruster with the aid of a magnetic system arranged behind the thruster edge. The magnetic field generated by the system acted upon the directional motion of ions in the jet. The experiments were performed on a laboratory model of the ?-100 stationary plasma thruster (SPT) with an output channel diameter of 100 mm and overall dimensions L = 70 mm and D = 200 mm. The results of measurements showed that, in the range of parameters studied, the angle of rotation of the output plasma jet exhibited a nearly linear dependence on the current in coils of the deviating magnetic system.

  10. Three-axis cryogenic Hall sensor

    Microsoft Academic Search

    J. Kvitkovic; M. Majoros

    1996-01-01

    Magnetic field measurements are very important for magnetic and superconducting material research. Hall sensors have many advantages for these measurements. They can also be used for magnetic field profile measurements, which provide information about material homogeneity. We have developed a three-axis Hall system which consists of three perpendicular InSb Hall sensors for operation at room as well as cryogenic temperatures.

  11. Linear Test Bed. Volume 2: Test Bed No. 2. [linear aerospike test bed for thrust vector control

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Test bed No. 2 consists of 10 combustors welded in banks of 5 to 2 symmetrical tubular nozzle assemblies, an upper stationary thrust frame, a lower thrust frame which can be hinged, a power package, a triaxial combustion wave ignition system, a pneumatic control system, pneumatically actuated propellant valves, a purge and drain system, and an electrical control system. The power package consists of the Mark 29-F fuel turbopump, the Mark 29-0 oxidizer turbopump, a gas generator assembly, and propellant ducting. The system, designated as a linear aerospike system, was designed to demonstrate the feasibility of the concept and to explore technology related to thrust vector control, thrust vector optimization, improved sequencing and control, and advanced ignition systems. The propellants are liquid oxygen/liquid hydrogen. The system was designed to operate at 1200-psia chamber pressure at an engine mixture ratio of 5.5. With 10 combustors, the sea level thrust is 95,000 pounds.

  12. Attitude control of a spinning rocket via thrust vectoring

    SciTech Connect

    White, J.E.

    1990-12-19

    Two controllers are developed to provide attitude control of a spinning rocket that has a thrust vectoring capability. The first controller has a single-input/single-output design that ignores the gyroscopic coupling between the control channels. The second controller has a multi-input/multi-output structure that is specifically intended to account for the gyroscopic coupling effects. A performance comparison between the two approached is conducted for a range of roll rates. Each controller is tested for the ability to track step commands, and for the amount of coupling impurity. Both controllers are developed via a linear-quadratic-regulator synthesis procedure, which is motivated by the multi-input/multi-output nature of second controller. Time responses and a singular value analysis are used to evaluate controller performance. This paper describes the development and comparison of two controllers that are designed to provide attitude control of a spinning rocket that is equipped with thrust vector control. 12 refs., 13 figs., 2 tabs.

  13. Computational Investigation of the Aerodynamic Effects on Fluidic Thrust Vectoring

    NASA Technical Reports Server (NTRS)

    Deere, K. A.

    2000-01-01

    A computational investigation of the aerodynamic effects on fluidic thrust vectoring has been conducted. Three-dimensional simulations of a two-dimensional, convergent-divergent (2DCD) nozzle with fluidic injection for pitch vector control were run with the computational fluid dynamics code PAB using turbulence closure and linear Reynolds stress modeling. Simulations were computed with static freestream conditions (M=0.05) and at Mach numbers from M=0.3 to 1.2, with scheduled nozzle pressure ratios (from 3.6 to 7.2) and secondary to primary total pressure ratios of p(sub t,s)/p(sub t,p)=0.6 and 1.0. Results indicate that the freestream flow decreases vectoring performance and thrust efficiency compared with static (wind-off) conditions. The aerodynamic penalty to thrust vector angle ranged from 1.5 degrees at a nozzle pressure ratio of 6 with M=0.9 freestream conditions to 2.9 degrees at a nozzle pressure ratio of 5.2 with M=0.7 freestream conditions, compared to the same nozzle pressure ratios with static freestream conditions. The aerodynamic penalty to thrust ratio decreased from 4 percent to 0.8 percent as nozzle pressure ratio increased from 3.6 to 7.2. As expected, the freestream flow had little influence on discharge coefficient.

  14. Design of a three-axis micro-scale metrology system for the characterization of cylindrical flexures

    E-print Network

    Perez, Ron M

    2012-01-01

    The objective of this thesis was to develop a laser metrology system in order to measure the movement in two of the rotation axes of a cylindrical flexure. The building and characterization of this system was achieved in ...

  15. Preliminary Investigation on Battery Sizing Investigation for Thrust Vector Control on Ares I and Ares V Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Miller, Thomas B.

    2011-01-01

    An investigation into the merits of battery powered Electro Hydrostatic Actuation (EHA) for Thrust Vector Control (TVC) of the Ares I and Ares V launch vehicles is described. A top level trade study was conducted to ascertain the technical merits of lithium-ion (Li-ion) and thermal battery performance to determine the preferred choice of an energy storage system chemistry that provides high power discharge capability for a relatively short duration.

  16. Solid rocket booster thrust vector control subsystem test report (d-1)

    Microsoft Academic Search

    Pagan

    1978-01-01

    The results of the sequence of tests performed on the space shuttle solid rocket booster thrust vector control subsystem are presented. The operational characteristics of the thrust vector control subsystem components, as determined from the tests, are discussed. Special analyses of fuel consumption, basic steady state characteristics, GN2 spin, and actuator displacement were reviewed which will aid in understanding the

  17. Design and Testing of Three-Axis Satellite Attitude Determination and Stabilization Systems That Are Based on Magnetic Sensing and Actuation

    NASA Astrophysics Data System (ADS)

    Psiaki, Mark L.; Guelman, Moshe

    2002-11-01

    Three-axis satellite attitude determination and active stabilization systems have been designed and tested using both flight experiments and simulation studies. These are being developed for use on low-Earth-orbiting name- satellites. Such satellites can be used as elements of constellations that implement synthetic aperture radar or that serve as nudes in a communications network. The research has addressed the problems of under-sensing and under-actuation that are present in magnetic-based systems. Magnetometer outputs are insensitive to rotation about the local Earth magnetic field, and magnetic torque coils cannot produce torque slump the field direction. A new attitude representation and a special globally-convergent extended Kalman filter have been used to solve the 3-axis attitude estimation problem. The efficacy of this system has been demonstrated using data from the missions, the Hubble Space Telescope and the Far-Ultraviolet Spectroscopic Explorer. Semi-active global 3-axis stabilization has been demonstrated using a simplified magnetometer output feedback control law in combination with weak passive stabilization of the axes. The passive stabilization can come from a very small momentum wheel or from a new aerodynamic system. The momentum-wheel-based concept has been successfully tested on the TechSat Gurwin II spacecraft.

  18. Design and evaluation of single and dual flow thrust vector nozzles with post exit vanes

    NASA Astrophysics Data System (ADS)

    Carpenter, Thomas W.; Vaccarezza, Stephen E.; Dobbins, Sean

    1992-12-01

    This Thrust Vectored Research project required that a 1/24 scale model of the F/A-18 High Alpha Research Vehicle, (HARV), propulsion system be constructed on the university campus. This propulsion system was designed for cold flow testing on a multicomponent test rig. Forces and moments were measured to study nozzle performance parameters. The flow visualization technique of color Schlieren photography was performed to investigate the flow phenomena at the nozzle exit. The flow interactions that were identified consisted of vane nozzleing between the outer and lower vanes and vane tip interference. The thrust vectoring system consisted of three asymmetrically spaced vanes installed circumferentially on a maximum afterburner nozzle. The performance of the nozzle was investigated with the outer and lower vanes equally deflected, (-10 deg is less than delta(sub v) is less than 25 deg), and with the upper vane fully retracted, (delta(sub v) equals -10 deg). The nozzle pressure ratio ranged from 4 to 6. The results indicated that a vane nozzleing effect developed at nozzle pressure ratios of 4 and 6 when the outer and lower vanes were deflected far enough into the flow field such that the increase in vane area accelerated the flow past the vanes causing distorted shock waves. This accelerated flow was a result of a pressure differential existing between the inside surface of the vane and the ambient pressure. The stagnation pressure that developed along the inside surface of the vane accelerated the flow past the vanes causing it to equalize with ambient pressure, thus providing distorted shock waves. A tip interference was present at the trailing edge of the upper vane as a result of low nozzle pressure, NPR 4, with high vane deflection, delta(sub v) equals 25 degrees, and also with a high nozzle pressure, NPR 6, and low vane deflections, delta(sub v) equals 15 degrees.

  19. Static performance of an axisymmetric nozzle with post-exit vanes for multiaxis thrust vectoring

    NASA Technical Reports Server (NTRS)

    Berrier, Bobby L.; Mason, Mary L.

    1988-01-01

    An investigation was conducted in the static test facility of the Langley 16-Foot Transonic Tunnel to determine the flow-turning capability and the nozzle internal performance of an axisymmetric convergent-divergent nozzle with post-exit vanes installed for multiaxis thrust vectoring. The effects of vane curvature, vane location relative to the nozzle exit, number of vanes, and vane deflection angle were determined. A comparison of the post-exit-vane thrust-vectoring concept with other thrust-vectoring concepts is provided. All tests were conducted with no external flow, and nozzle pressure ratio was varied from 1.6 to 6.0.

  20. Computational Study of Fluidic Thrust Vectoring using Separation Control in a Nozzle

    NASA Technical Reports Server (NTRS)

    Deere, Karen; Berrier, Bobby L.; Flamm, Jeffrey D.; Johnson, Stuart K.

    2003-01-01

    A computational investigation of a two- dimensional nozzle was completed to assess the use of fluidic injection to manipulate flow separation and cause thrust vectoring of the primary jet thrust. The nozzle was designed with a recessed cavity to enhance the throat shifting method of fluidic thrust vectoring. The structured-grid, computational fluid dynamics code PAB3D was used to guide the design and analyze over 60 configurations. Nozzle design variables included cavity convergence angle, cavity length, fluidic injection angle, upstream minimum height, aft deck angle, and aft deck shape. All simulations were computed with a static freestream Mach number of 0.05. a nozzle pressure ratio of 3.858, and a fluidic injection flow rate equal to 6 percent of the primary flow rate. Results indicate that the recessed cavity enhances the throat shifting method of fluidic thrust vectoring and allows for greater thrust-vector angles without compromising thrust efficiency.

  1. Static performance investigation of a skewed-throat multiaxis thrust-vectoring nozzle concept

    NASA Technical Reports Server (NTRS)

    Wing, David J.

    1994-01-01

    The static performance of a jet exhaust nozzle which achieves multiaxis thrust vectoring by physically skewing the geometric throat has been characterized in the static test facility of the 16-Foot Transonic Tunnel at NASA Langley Research Center. The nozzle has an asymmetric internal geometry defined by four surfaces: a convergent-divergent upper surface with its ridge perpendicular to the nozzle centerline, a convergent-divergent lower surface with its ridge skewed relative to the nozzle centerline, an outwardly deflected sidewall, and a straight sidewall. The primary goal of the concept is to provide efficient yaw thrust vectoring by forcing the sonic plane (nozzle throat) to form at a yaw angle defined by the skewed ridge of the lower surface contour. A secondary goal is to provide multiaxis thrust vectoring by combining the skewed-throat yaw-vectoring concept with upper and lower pitch flap deflections. The geometric parameters varied in this investigation included lower surface ridge skew angle, nozzle expansion ratio (divergence angle), aspect ratio, pitch flap deflection angle, and sidewall deflection angle. Nozzle pressure ratio was varied from 2 to a high of 11.5 for some configurations. The results of the investigation indicate that efficient, substantial multiaxis thrust vectoring was achieved by the skewed-throat nozzle concept. However, certain control surface deflections destabilized the internal flow field, which resulted in substantial shifts in the position and orientation of the sonic plane and had an adverse effect on thrust-vectoring and weight flow characteristics. By increasing the expansion ratio, the location of the sonic plane was stabilized. The asymmetric design resulted in interdependent pitch and yaw thrust vectoring as well as nonzero thrust-vector angles with undeflected control surfaces. By skewing the ridges of both the upper and lower surface contours, the interdependency between pitch and yaw thrust vectoring may be eliminated and the location of the sonic plane may be further stabilized.

  2. Pneumatic motor powered Thrust Vector Control (TVC) for liquid propelled launch vehicles

    NASA Astrophysics Data System (ADS)

    Malone, Mark C.; Evans, P. S.

    1992-02-01

    Recent studies performed for the Titan 4 launch vehicle indicate significant potential advantages in replacing the current stage 1 and 2 recirculating hydraulic TVC (thrust vector control) system with a PMA (pneumatic mechanical actuation) system. Some of the advantages of a PMA system over the recirculating hydraulic system include reduced part count and weight, reduced maintenance and life-cycle cost, and improved mission reliability. PMA technology, used in aircraft applications since the 1960s, is well suited in launch vehicle TVC applications where an existing pneumatic pressure source is available. A typical pneumatic motor TVC consists of a pneumatic power source, a dual rotor pneumatic motor, a gear box, a ball screw actuator, and the associated closed-loop servo-control elements. One key issue with implementing this mechanical approach is designing a TVC system to withstand large load transient disturbances during liquid engine starting. Hydraulic actuator transient loads have exceeded 60,000 lb(sub f) for a 30,000 lb(sub f) stall design actuator during ground starts of the Titan 3B, Stage 1 engine. A PMA TVC system must also withstand these start transients without imparting excessive reaction loads to the engine nozzle and thrust structure. Work completed to date with Martin Marietta to examine pneumatic motor powered TVC options and technology benefits is presented. The load transient issue is discussed along with potential solutions and the associated trades. General background on PMA technology and experience base is also presented.

  3. A Computational Study of a New Dual Throat Fluidic Thrust Vectoring Nozzle Concept

    NASA Technical Reports Server (NTRS)

    Deere, Karen A.; Berrier, Bobby L.; Flamm, Jeffrey D.; Johnson, Stuart K.

    2005-01-01

    A computational investigation of a two-dimensional nozzle was completed to assess the use of fluidic injection to manipulate flow separation and cause thrust vectoring of the primary jet thrust. The nozzle was designed with a recessed cavity to enhance the throat shifting method of fluidic thrust vectoring. Several design cycles with the structured-grid, computational fluid dynamics code PAB3D and with experiments in the NASA Langley Research Center Jet Exit Test Facility have been completed to guide the nozzle design and analyze performance. This paper presents computational results on potential design improvements for best experimental configuration tested to date. Nozzle design variables included cavity divergence angle, cavity convergence angle and upstream throat height. Pulsed fluidic injection was also investigated for its ability to decrease mass flow requirements. Internal nozzle performance (wind-off conditions) and thrust vector angles were computed for several configurations over a range of nozzle pressure ratios from 2 to 7, with the fluidic injection flow rate equal to 3 percent of the primary flow rate. Computational results indicate that increasing cavity divergence angle beyond 10 is detrimental to thrust vectoring efficiency, while increasing cavity convergence angle from 20 to 30 improves thrust vectoring efficiency at nozzle pressure ratios greater than 2, albeit at the expense of discharge coefficient. Pulsed injection was no more efficient than steady injection for the Dual Throat Nozzle concept.

  4. Static performance of a cruciform nozzle with multiaxis thrust-vectoring and reverse-thrust capabilities

    NASA Technical Reports Server (NTRS)

    Wing, David J.; Asbury, Scott C.

    1992-01-01

    A multiaxis thrust vectoring nozzle designed to have equal flow turning capability in pitch and yaw was conceived and experimentally tested for internal, static performance. The cruciform-shaped convergent-divergent nozzle turned the flow for thrust vectoring by deflecting the divergent surfaces of the nozzle, called flaps. Methods for eliminating physical interference between pitch and yaw flaps at the larger multiaxis deflection angles was studied. These methods included restricting the pitch flaps from the path of the yaw flaps and shifting the flow path at the throat off the nozzle centerline to permit larger pitch-flap deflections without interfering with the operation of the yaw flaps. Two flap widths were tested at both dry and afterburning settings. Vertical and reverse thrust configurations at dry power were also tested. Comparison with two dimensional convergent-divergent nozzles showed lower but still competitive thrust performance and thrust vectoring capability.

  5. Internal performance of two nozzles utilizing gimbal concepts for thrust vectoring

    NASA Technical Reports Server (NTRS)

    Berrier, Bobby L.; Taylor, John G.

    1990-01-01

    The internal performance of an axisymmetric convergent-divergent nozzle and a nonaxisymmetric convergent-divergent nozzle, both of which utilized a gimbal type mechanism for thrust vectoring was evaluated in the Static Test Facility of the Langley 16-Foot Transonic Tunnel. The nonaxisymmetric nozzle used the gimbal concept for yaw thrust vectoring only; pitch thrust vectoring was accomplished by simultaneous deflection of the upper and lower divergent flaps. The model geometric parameters investigated were pitch vector angle for the axisymmetric nozzle and pitch vector angle, yaw vector angle, nozzle throat aspect ratio, and nozzle expansion ratio for the nonaxisymmetric nozzle. All tests were conducted with no external flow, and nozzle pressure ratio was varied from 2.0 to approximately 12.0.

  6. Static Investigation of a Multiaxis Thrust-Vectoring Nozzle With Variable Internal Contouring Ability

    NASA Technical Reports Server (NTRS)

    Wing, David J.; Mills, Charles T. L.; Mason, Mary L.

    1997-01-01

    The thrust efficiency and vectoring performance of a convergent-divergent nozzle were investigated at static conditions in the model preparation area of the Langley 16-Foot Transonic Tunnel. The diamond-shaped nozzle was capable of varying the internal contour of each quadrant individually by using cam mechanisms and retractable drawers to produce pitch and yaw thrust vectoring. Pitch thrust vectoring was achieved by either retracting the lower drawers to incline the throat or varying the internal flow-path contours to incline the throat. Yaw thrust vectoring was achieved by reducing flow area left of the nozzle centerline and increasing flow area right of the nozzle centerline; a skewed throat deflected the flow in the lateral direction.

  7. Electromechanical three-axis development for remote handling in the Hot Experimental Facility

    SciTech Connect

    Garin, J.; Bolfing, B.J.; Satterlee, P.E.; Babcock, S.M.

    1981-01-01

    A three-axis closed-loop position control system has been designed and installed on an overhead bridge, carriage, tube hoist for automotive positioning of manipulation at a remotely maintained work site. The system provides accurate (within 3 min) and repeatable three-axis positioning of the manipulator. The position control system has been interfaced to a supervisory minicomputer system that provides teach-playback capability of manipulator positioning and color graphic display of the three-axis system position.

  8. Design Specification for a Thrust-Vectoring, Actuated-Nose-Strake Flight Control Law for the High-Alpha Research Vehicle

    NASA Technical Reports Server (NTRS)

    Bacon, Barton J.; Carzoo, Susan W.; Davidson, John B.; Hoffler, Keith D.; Lallman, Frederick J.; Messina, Michael D.; Murphy, Patrick C.; Ostroff, Aaron J.; Proffitt, Melissa S.; Yeager, Jessie C.; Foster, John V.; Bundick, W. Thomas; Connelly, Patrick J.; Kelly, John W.; Pahle, Joseph W.; Thomas, Michael; Wichman, Keith D.; Wilson, R. Joseph

    1996-01-01

    Specifications for a flight control law are delineated in sufficient detail to support coding the control law in flight software. This control law was designed for implementation and flight test on the High-Alpha Research Vehicle (HARV), which is an F/A-18 aircraft modified to include an experimental multi-axis thrust-vectoring system and actuated nose strakes for enhanced rolling (ANSER). The control law, known as the HARV ANSER Control Law, was designed to utilize a blend of conventional aerodynamic control effectors, thrust vectoring, and actuated nose strakes to provide increased agility and good handling qualities throughout the HARV flight envelope, including angles of attack up to 70 degrees.

  9. Solid rocket booster thrust vector control subsystem verification test (V-2) report

    NASA Technical Reports Server (NTRS)

    Pagan, B.

    1979-01-01

    The results of the verification testing sequence V-2 performed on the space shuttle solid rocket booster thrust vector control subsystem are presented. A detailed history of the hot firings plus additional discussion of the auxiliary power unit and the hydraulic component performance is presented. The test objectives, data, and conclusions are included.

  10. Robust vibration suppression of an adaptive circular composite plate for satellite thrust vector control

    Microsoft Academic Search

    Su Yan; Kougen Ma; Mehrdad N. Ghasemi-Nejhad

    2008-01-01

    In this paper, a novel application of adaptive composite structures, a University of Hawaii at Manoa (UHM) smart composite platform, is developed for the Thrust Vector Control (TVC) of satellites. The device top plate of the UHM platform is an adaptive circular composite plate (ACCP) that utilizes integrated sensors\\/actuators and controllers to suppress low frequency vibrations during the thruster firing

  11. Thrust Vectoring of a Continuous Rotating Detonation Engine by Changing the Local Injection Pressure

    Microsoft Academic Search

    Shi-Jie Liu; Zhi-Yong Lin; Ming-Bo Sun; Wei-Dong Liu

    2011-01-01

    The thrust vectoring ability of a continuous rotating detonation engine is numerically investigated, which is realized via increasing local injection stagnation pressure of half of the simulation domain compared to the other half. Under the homogeneous injection condition, both the flow-field structure and the detonation wave propagation process are analyzed. Due to the same injection condition along the inlet boundary,

  12. Further consideration of an electromechanical thrust vector control actuator experiencing large magnitude collinear transient forces

    Microsoft Academic Search

    Virginia T. Byrd; Joey K. Parker

    1997-01-01

    Thrust vector control (TVC) for the Space Shuttle Main Engines (SSMEs) is accomplished by hydraulic servo actuators. Marshall Space Flight Center (MSFC) is developing electromechanical actuator technology to be physically and functionally interchangeable with the existing hydraulic actuator. One of the major concerns for this design task is the large transient loads experienced by the TVC during start-up and shut-down.

  13. Design Enhancements of the Two-Dimensional, Dual Throat Fluidic Thrust Vectoring Nozzle Concept

    NASA Technical Reports Server (NTRS)

    Flamm, Jeffrey D.; Deere, Karen A.; Mason, Mary L.; Berrier, Bobby L.; Johnson, Stuart K.

    2006-01-01

    A Dual Throat Nozzle fluidic thrust vectoring technique that achieves higher thrust-vectoring efficiencies than other fluidic techniques, without sacrificing thrust efficiency has been developed at NASA Langley Research Center. The nozzle concept was designed with the aid of the structured-grid, Reynolds-averaged Navier-Stokes computational fluidic dynamics code PAB3D. This new concept combines the thrust efficiency of sonic-plane skewing with increased thrust-vectoring efficiencies obtained by maximizing pressure differentials in a separated cavity located downstream of the nozzle throat. By injecting secondary flow asymmetrically at the upstream minimum area, a new aerodynamic minimum area is formed downstream of the geometric minimum and the sonic line is skewed, thus vectoring the exhaust flow. The nozzle was tested in the NASA Langley Research Center Jet Exit Test Facility. Internal nozzle performance characteristics were defined for nozzle pressure ratios up to 10, with a range of secondary injection flow rates up to 10 percent of the primary flow rate. Most of the data included in this paper shows the effect of secondary injection rate at a nozzle pressure ratio of 4. The effects of modifying cavity divergence angle, convergence angle and cavity shape on internal nozzle performance were investigated, as were effects of injection geometry, hole or slot. In agreement with computationally predicted data, experimental data verified that decreasing cavity divergence angle had a negative impact and increasing cavity convergence angle had a positive impact on thrust vector angle and thrust efficiency. A curved cavity apex provided improved thrust ratios at some injection rates. However, overall nozzle performance suffered with no secondary injection. Injection holes were more efficient than the injection slot over the range of injection rates, but the slot generated larger thrust vector angles for injection rates less than 4 percent of the primary flow rate.

  14. A Method for Integrating Thrust-Vectoring and Actuated Forebody Strakes with Conventional Aerodynamic Controls on a High-Performance Fighter Airplane

    NASA Technical Reports Server (NTRS)

    Lallman, Frederick J.; Davidson, John B.; Murphy, Patrick C.

    1998-01-01

    A method, called pseudo controls, of integrating several airplane controls to achieve cooperative operation is presented. The method eliminates conflicting control motions, minimizes the number of feedback control gains, and reduces the complication of feedback gain schedules. The method is applied to the lateral/directional controls of a modified high-performance airplane. The airplane has a conventional set of aerodynamic controls, an experimental set of thrust-vectoring controls, and an experimental set of actuated forebody strakes. The experimental controls give the airplane additional control power for enhanced stability and maneuvering capabilities while flying over an expanded envelope, especially at high angles of attack. The flight controls are scheduled to generate independent body-axis control moments. These control moments are coordinated to produce stability-axis angular accelerations. Inertial coupling moments are compensated. Thrust-vectoring controls are engaged according to their effectiveness relative to that of the aerodynamic controls. Vane-relief logic removes steady and slowly varying commands from the thrust-vectoring controls to alleviate heating of the thrust turning devices. The actuated forebody strakes are engaged at high angles of attack. This report presents the forward-loop elements of a flight control system that positions the flight controls according to the desired stability-axis accelerations. This report does not include the generation of the required angular acceleration commands by means of pilot controls or the feedback of sensed airplane motions.

  15. Three-axis adjustable loading structure

    NASA Technical Reports Server (NTRS)

    Lynch, E. J.; Gray, D. T. (inventors)

    1973-01-01

    A three axis adjustable loading structure for testing the movable surfaces of aircraft by applying pressure, is described. The device has three electric drives where the wall angle, horizontal position, and vertical position of the test device can be rapidly and accurately positioned.

  16. Thrust vectoring for single-stage-to-orbit, horizontal takeoff, horizontal landing, space vehicles

    NASA Astrophysics Data System (ADS)

    Cunningham, M. J.; Freeman, D. C., Jr.; Wilhite, A. W.; Powell, R. W.

    1986-06-01

    The preliminary design of a horizontal takeoff, horizontal landing, single-stage-to-orbit, rocket-powered space vehicle was performed. The purpose was to examine technology requirements for future small payload launch vehicles. The distinguishing aspect of the design was the utilization of thrust vectoring to provide half of the lift at takeoff. The inclusion of a canard was necessary to provide additional lift at takeoff and to balance the moments produced with thrust vectoring. A weights estimation, an aerodynamic assessment, a trajectory analysis, and a gear weight analysis were performed. The takeoff weight of the resulting vehicle was approximately 1.26 million pounds, based on advanced technology structures and subsystems. The vehicle was designed to deliver a 5000-pound payload to a polar orbit.

  17. Optimal Pitch Thrust-Vector Angle and Benefits for all Flight Regimes

    NASA Technical Reports Server (NTRS)

    Gilyard, Glenn B.; Bolonkin, Alexander

    2000-01-01

    The NASA Dryden Flight Research Center is exploring the optimum thrust-vector angle on aircraft. Simple aerodynamic performance models for various phases of aircraft flight are developed and optimization equations and algorithms are presented in this report. Results of optimal angles of thrust vectors and associated benefits for various flight regimes of aircraft (takeoff, climb, cruise, descent, final approach, and landing) are given. Results for a typical wide-body transport aircraft are also given. The benefits accruable for this class of aircraft are small, but the technique can be applied to other conventionally configured aircraft. The lower L/D aerodynamic characteristics of fighters generally would produce larger benefits than those produced for transport aircraft.

  18. Development and qualification of a STAR 48 rocket motor with thrust vector control

    Microsoft Academic Search

    R. Hamke; J. Rade; R. Weldin

    1992-01-01

    A thrust vector control (TVC) nozzle for use on the STAR 48 rocket motor (STAR 48V) has been developed for use on the COMET program aboard the Conestoga launch vehicle. The first stages of qualification testing have been completed. The first STAR 48V has been successfully static-tested. The flexseal TVC nozzle design is based upon the qualified and flight-proven fixed

  19. Static investigation of two STOL nozzle concepts with pitch thrust-vectoring capability

    NASA Technical Reports Server (NTRS)

    Mason, M. L.; Burley, J. R., II

    1986-01-01

    A static investigation of the internal performance of two short take-off and landing (STOL) nozzle concepts with pitch thrust-vectoring capability has been conducted. An axisymmetric nozzle concept and a nonaxisymmetric nozzle concept were tested at dry and afterburning power settings. The axisymmetric concept consisted of a circular approach duct with a convergent-divergent nozzle. Pitch thrust vectoring was accomplished by vectoring the approach duct without changing the nozzle geometry. The nonaxisymmetric concept consisted of a two dimensional convergent-divergent nozzle. Pitch thrust vectoring was implemented by blocking the nozzle exit and deflecting a door in the lower nozzle flap. The test nozzle pressure ratio was varied up to 10.0, depending on model geometry. Results indicate that both pitch vectoring concepts produced resultant pitch vector angles which were nearly equal to the geometric pitch deflection angles. The axisymmetric nozzle concept had only small thrust losses at the largest pitch deflection angle of 70 deg., but the two-dimensional convergent-divergent nozzle concept had large performance losses at both of the two pitch deflection angles tested, 60 deg. and 70 deg.

  20. Development and test of electromechanical actuators for thrust vector control

    Microsoft Academic Search

    Rae A. Weir; John R. Cowan

    1993-01-01

    A road map of milestones toward the goal of a full scale Redesigned Solid Rocket Motor\\/Flight Support Motor (RSRM\\/FSM) hot fire test is discussed. These milestones include: component feasibility, full power system demonstration, SSME hot fire tests, and RSRM hot fire tests. The participation of the Marshall Space Flight Center is emphasized.

  1. Dryden/Edwards 1994 Thrust-Vectoring Aircraft Fleet - F-18 HARV, X-31, F-16 MATV

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The three thrust-vectoring aircraft at Edwards, California, each capable of flying at extreme angles of attack, cruise over the California desert in formation during flight in March 1994. They are, from left, NASA's F-18 High Alpha Research Vehicle (HARV), flown by the NASA Dryden Flight Research Center; the X-31, flown by the X-31 International Test Organization (ITO) at Dryden; and the Air Force F-16 Multi-Axis Thrust Vectoring (MATV) aircraft. All three aircraft were flown in different programs and were developed independently. The NASA F-18 HARV was a testbed to produce aerodynamic data at high angles of attack to validate computer codes and wind tunnel research. The X-31 was used to study thrust vectoring to enhance close-in air combat maneuvering, while the F-16 MATV was a demonstration of how thrust vectoring could be applied to operational aircraft.

  2. Attitude Determination for NPS Three-Axis Spacecraft Simulator

    Microsoft Academic Search

    Jong-Woo Kim; Roberto Cristi; Brij N. Agrawal

    2004-01-01

    This paper presents the attitude determination method for the Bifocal Relay Mirror Spacecraft Simulator. The simulator simulates three-axis motion of a spacecraft and has an optical system emulating a bifocal space telescope. The simulator consists of three control moment gyroscopes, rate gyros, two-axis analog sun sensor, and two inclinometers. The five-foot diameter platform is supported on a spherical air bearing

  3. Estimating off-nominal performance of a solid rocket motor for thrust vector control guidance

    NASA Astrophysics Data System (ADS)

    Schmidt, Garfield C.

    1992-08-01

    There are two main parameters relating the off-nominal performance of a solid rocket motor to its nominal performance. One parameter is associated with specific impulse and the other with burn rate. The way in which these parameters can be used to predict off-nominal acceleration from the nominal is reviewed, and a filter for estimating these parameters using accelerometer output and stored tables of nominal performance is derived. A closed-form solution is then derived for the thrust angle required of a thrust-vector-controlled rocket in order to intercept a constant velocity target.

  4. Evaluation of dual flow thrust vector nozzles with exhaust stream impingement

    NASA Astrophysics Data System (ADS)

    Carpenter, Thomas W.; Dobbins, Sean; Vaccarezza, Steven

    To supplement previous work performed by NASA, a cold-jet facility was established at the California Polytechnic State University, San Luis Obispo campus. The purpose of this facility is to continue the studies of cold flow multiaxis thrust vectoring conducted at the NASA Langley Research Center. A single nozzle test apparatus was completed and is presently operational. Included are the results of the single flow test envelope that was requested by NASA personnel. Details about the test apparatus are included in the Cal Poly Semi-Annual Progress report.

  5. Static internal performance of a two-dimensional convergent-divergent nozzle with thrust vectoring

    NASA Technical Reports Server (NTRS)

    Bare, E. Ann; Reubush, David E.

    1987-01-01

    A parametric investigation of the static internal performance of multifunction two-dimensional convergent-divergent nozzles has been made in the static test facility of the Langley 16-Foot Transonic Tunnel. All nozzles had a constant throat area and aspect ratio. The effects of upper and lower flap angles, divergent flap length, throat approach angle, sidewall containment, and throat geometry were determined. All nozzles were tested at a thrust vector angle that varied from 5.60 tp 23.00 deg. The nozzle pressure ratio was varied up to 10 for all configurations.

  6. Static investigation of a two-dimensional convergent-divergent exhaust nozzle with multiaxis thrust-vectoring capability

    NASA Technical Reports Server (NTRS)

    Taylor, John G.

    1990-01-01

    An investigation was conducted in the Static Test Facility of the NASA Langley 16-Foot Transonic Tunnel to determine the internal performance of two-dimensional convergent-divergent nozzles designed to have simultaneous pitch and yaw thrust vectoring capability. This concept utilized divergent flap rotation of thrust vectoring in the pitch plane and deflection of flat yaw flaps hinged at the end of the sidewalls for yaw thrust vectoring. The hinge location of the yaw flaps was varied at four positions from the nozzle exit plane to the throat plane. The yaw flaps were designed to contain the flow laterally independent of power setting. In order to eliminate any physical interference between the yaw flap deflected into the exhaust stream and the divergent flaps, the downstream corners of both upper and lower divergent flaps were cut off to allow for up to 30 deg of yaw flap deflection. The impact of varying the nozzle pitch vector angle, throat area, yaw flap hinge location, yaw flap length, and yaw flap deflection angle on nozzle internal performance characteristics, was studied. High-pressure air was used to simulate jet exhaust at nozzle pressure ratios up to 7.0. Static results indicate that configurations with the yaw flap hinge located upstream of the exit plane provide relatively high levels of thrust vectoring efficiency without causing large losses in resultant thrust ratio. Therefore, these configurations represent a viable concept for providing simultaneous pitch and yaw thrust vectoring.

  7. Two-dimensional confined jet thrust vector control: Operating mechanisms and performance

    NASA Astrophysics Data System (ADS)

    Caton, Jeffrey L.

    1989-03-01

    An experimental investigation of two-dimensional confined jet thrust vector control nozzles was performed. Thrust vector control was accomplished by using secondary flow injection in the diverging section of the nozzle. Schlieren photographs and video tapes were used to study flow separation and internal shock structures. Nozzle performance parameters were determined for nozzle flow with and without secondary flows. These parameters included nozzles forces, vector angles, thrust efficiencies, and flow switching response times. Vector angles as great as 18 degrees with thrust efficiencies of 0.79 were measured. Several confined jet nozzles with variations in secondary flow port design were tested and results were compared to each other. Converging-diverging nozzles of similar design to the confined jet nozzles were also tested and results were compared to the confined jet nozzle results. Existing prediction models for nozzle side to axial force ratio were evaluated. A model for nozzle total forces based on shock losses that predicted values very close to actual results was developed.

  8. Preliminary Characterization of the Altair Lunar Lander Slosh Dynamics and Some Implications for the Thrust Vector Control Design

    NASA Technical Reports Server (NTRS)

    Lee, Allan Y.; Strahan, Alan; Tanimoto, Rebekah; Casillas, Arturo

    2010-01-01

    This paper describes a conceptual design of the Thrust Vector Control (TVC) system and preliminary modeling of propellant slosh, for the Altair Lunar Lander. Altair is a vehicle element of the NASA Constellation Program aimed at returning humans to the moon. Guidance, Navigation, and Control (GN&C) is the measurement and control of spacecraft position, velocity, and attitude in support of mission objectives. One key GN&C function is the commanding of effectors that control attitude and impart delta V on the vehicle, utilizing both reaction control system (RCS) thrusters and throttling and TVC gimbaling of the vehicle main engine. Both the Altair descent and ascent modules carry fuel tanks. During thrusting maneuvers, the sloshing of liquid fuels in partially filled tanks can interact with the controlled system in such a way as to cause the overall system to be unstable. These fuel tanks must be properly placed, relative to the spacecraft's c.m., to avoid any unstable interactions. Following this will be a discussion of propellant slosh modeling work performed for the present vehicle configuration, including slosh frequency and participatory fluid mass predictions. Knowing the range of slosh mode frequencies over mission phases, the TVC bandwidth must be carefully selected so as not to excite the slosh modes at those frequencies. The likely need to increase the damping factor of slosh modes via baffles will also be discussed. To conclude, a discussion of operations procedures aimed at minimizing TVC-slosh interactions will be given.

  9. Static internal performance of a two-dimensional convergent nozzle with thrust-vectoring capability up to 60 deg

    NASA Technical Reports Server (NTRS)

    Leavitt, L. D.

    1985-01-01

    An investigation was conducted at wind-off conditions in the static-test facility of the Langley 16-Foot Transonic Tunnel to determine the internal performance characteristics of a two-dimensional convergent nozzle with a thrust-vectoring capability up to 60 deg. Vectoring was accomplished by a downward rotation of a hinged upper convergent flap and a corresponding rotation of a center-pivoted lower convergent flap. The effects of geometric thrust-vector angle and upper-rotating-flap geometry on internal nozzle performance characteristics were investigated. Nozzle pressure ratio was varied from 1.0 (jet off) to approximately 5.0.

  10. Static internal performance of single-expansion-ramp nozzles with thrust-vectoring capability up to 60 deg

    NASA Technical Reports Server (NTRS)

    Berrier, B. L.; Leavitt, L. D.

    1984-01-01

    An investigation has been conducted at static conditions (wind off) in the static-test facility of the Langley 16-Foot Transonic Tunnel. The effects of geometric thrust-vector angle, sidewall containment, ramp curvature, lower-flap lip angle, and ramp length on the internal performance of nonaxisymmetric single-expansion-ramp nozzles were investigated. Geometric thrust-vector angle was varied from -20 deg. to 60 deg., and nozzle pressure ratio was varied from 1.0 (jet off) to approximately 10.0.

  11. Static internal performance of a single expansion ramp nozzle with multiaxis thrust vectoring capability

    NASA Technical Reports Server (NTRS)

    Capone, Francis J.; Schirmer, Alberto W.

    1993-01-01

    An investigation was conducted at static conditions in order to determine the internal performance characteristics of a multiaxis thrust vectoring single expansion ramp nozzle. Yaw vectoring was achieved by deflecting yaw flaps in the nozzle sidewall into the nozzle exhaust flow. In order to eliminate any physical interference between the variable angle yaw flap deflected into the exhaust flow and the nozzle upper ramp and lower flap which were deflected for pitch vectoring, the downstream corners of both the nozzle ramp and lower flap were cut off to allow for up to 30 deg of yaw vectoring. The effects of nozzle upper ramp and lower flap cutout, yaw flap hinge line location and hinge inclination angle, sidewall containment, geometric pitch vector angle, and geometric yaw vector angle were studied. This investigation was conducted in the static-test facility of the Langley 16-Foot Transonic Tunnel at nozzle pressure ratios up to 8.0.

  12. Design and development of the quad redundant servoactuator for the space shuttle solid rocket booster thrust vector control

    NASA Technical Reports Server (NTRS)

    Lominick, J. M.

    1980-01-01

    The design and theory of operation of the servoactuator used for thrust vector control of the space shuttle solid rocket booster is described accompanied by highlights from the development and qualification test programs. Specific details are presented concerning major anomalies that occurred during the test programs and the corrective courses of action pursued.

  13. Fiber-optic three axis magnetometer prototype development

    NASA Technical Reports Server (NTRS)

    Wang, Thomas D.; Mccomb, David G.; Kingston, Bradley R.; Dube, C. Michael; Poehls, Kenneth A.; Wanser, Keith

    1989-01-01

    The goal of this research program was to develop a high sensitivity, fiber optic, interferometric, three-axis magnetometer for interplanetary spacecraft applications. Dynamics Technology, Inc. (DTI) has successfully integrated a low noise, high bandwidth interferometer with high sensitivity metallic glass transducers. Also, DTI has developed sophisticated signal processing electronics and complete data acquisition, filtering, and display software. The sensor was packaged in a compact, low power and weight unit which facilitates deployment. The magnetic field sensor had subgamma sensitivity and a dynamic range of 10(exp 5) gamma in a 10 Hz bandwidth. Furthermore, the vector instrument exhibited the lowest noise level when only one axis was in operation. A system noise level of 1 gamma rms was observed in a 1 Hz bandwidth. However, with the other two channels operating, the noise level increased by about one order of magnitude. Higher system noise was attributed to cross-channel interference among the dither fields.

  14. Improved Controller for a Three-Axis Piezoelectric Stage

    NASA Technical Reports Server (NTRS)

    Rao, Shanti; Palmer, Dean

    2009-01-01

    An improved closed-loop controller has been built for a three-axis piezoelectric positioning stage. The stage can be any of a number of commercially available or custom-made units that are used for precise three-axis positioning of optics in astronomical instruments and could be used for precise positioning in diverse fields of endeavor that include adaptive optics, fabrication of semiconductors, and nanotechnology.

  15. A simple dynamic engine model for use in a real-time aircraft simulation with thrust vectoring

    NASA Technical Reports Server (NTRS)

    Johnson, Steven A.

    1990-01-01

    A simple dynamic engine model was developed at the NASA Ames Research Center, Dryden Flight Research Facility, for use in thrust vectoring control law development and real-time aircraft simulation. The simple dynamic engine model of the F404-GE-400 engine (General Electric, Lynn, Massachusetts) operates within the aircraft simulator. It was developed using tabular data generated from a complete nonlinear dynamic engine model supplied by the manufacturer. Engine dynamics were simulated using a throttle rate limiter and low-pass filter. Included is a description of a method to account for axial thrust loss resulting from thrust vectoring. In addition, the development of the simple dynamic engine model and its incorporation into the F-18 high alpha research vehicle (HARV) thrust vectoring simulation. The simple dynamic engine model was evaluated at Mach 0.2, 35,000 ft altitude and at Mach 0.7, 35,000 ft altitude. The simple dynamic engine model is within 3 percent of the steady state response, and within 25 percent of the transient response of the complete nonlinear dynamic engine model.

  16. Handling capabilities of two robot hands equipped with optical three-axis tactile sensor

    Microsoft Academic Search

    Hanafiah Yussof; Nobuyuki Morisawa; Jiro Wada; Masahiro Ohka

    2009-01-01

    This paper present object handling capabilities of two robotic hands equipped with optical three-axis tactile sensor. We present optimization of grasp control in tactile sensor and robot hand control system to precisely control robot hand based on tactile sensing information. To enhance performance of the robot hand, stiffness distinction parameters were applied in the control system. These parameters are used

  17. Thermomechanical Actuator-Based Three-Axis Optical Scanner for High-Speed Two-Photon Endomicroscope Imaging

    E-print Network

    Chen, Shih-Chi

    This paper presents the design and characterization of a three-axis thermomechanical actuator-based endoscopic scanner for obtaining ex vivo two-photon images. The scanner consisted of two sub-systems: 1) an optical system ...

  18. Automatic Mass Balancing of Air-Bearing-Based Three-Axis Rotational Spacecraft Simulator

    E-print Network

    Automatic Mass Balancing of Air-Bearing-Based Three-Axis Rotational Spacecraft Simulator Jae Jun Kim and Brij N. Agrawal Naval Postgraduate School, Monterey, California 93943 DOI: 10.2514/1.34437 Air-bearing of gravity should be minimized. For a spherical air-bearing system with 3 rotational degrees of freedom

  19. CMOS three axis Hall sensor and joystick application

    Microsoft Academic Search

    Christian Schott; Robert Racz; Samuel Huber

    2004-01-01

    We present for the first time a three-axis CMOS Hall sensor based on integrated magnetic concentrator technology (IMC). The sensor measures the two in-plane magnetic field components Bx and By and the vertical component Bz and generates three output voltages proportional to them. The sensing core consists of four Hall elements arranged at 90° under the edge of a ferromagnetic

  20. Three-axis attitude determination via Kalman filtering of magnetometer data

    NASA Technical Reports Server (NTRS)

    Martel, Francois; Pal, Parimal K.; Psiaki, Mark L.

    1988-01-01

    A three-axis Magnetometer/Kalman Filter attitude determination system for a spacecraft in low-altitude Earth orbit is developed, analyzed, and simulation tested. The motivation for developing this system is to achieve light weight and low cost for an attitude determination system. The extended Kalman filter estimates the attitude, attitude rates, and constant disturbance torques. Accuracy near that of the International Geomagnetic Reference Field model is achieved. Covariance computation and simulation testing demonstrate the filter's accuracy. One test case, a gravity-gradient stabilized spacecraft with a pitch momentum wheel and a magnetically-anchored damper, is a real satellite on which this attitude determination system will be used. The application to a nadir pointing satellite and the estimation of disturbance torques represent the significant extensions contributed by this paper. Beyond its usefulness purely for attitude determination, this system could be used as part of a low-cost three-axis attitude stabilization system.

  1. Stable Three-Axis Nuclear Spin Gyroscope in Diamond

    E-print Network

    Ashok Ajoy; Paola Cappellaro

    2012-05-07

    We propose a sensitive and stable three-axis gyroscope in diamond. We achieve high sensitivity by exploiting the long coherence time of the N14 nuclear spin associated with the Nitrogen-Vacancy center in diamond, and the efficient polarization and measurement of its electronic spin. While the gyroscope is based on a simple Ramsey interferometry scheme, we use coherent control of the quantum sensor to improve its coherence time as well as its robustness against long-time drifts, thus achieving a very robust device with a resolution of 0.5mdeg/s/(Hz mm^3)^(1/2). In addition, we exploit the four axes of delocalization of the Nitrogen-Vacancy center to measure not only the rate of rotation, but also its direction, thus obtaining a compact three-axis gyroscope.

  2. Implicit time-marching solution of the Navier-Stokes equations for thrust reversing and thrust vectoring nozzle flows

    NASA Astrophysics Data System (ADS)

    Imlay, S. T.

    1986-11-01

    An implicit finite volume method is investigated for the solution of the compressible Navier-Stokes equations for flows within thrust reversing and thrust vectoring nozzles. Thrust reversing nozzles typically have sharp corners, and the rapid expansion and large turning angles near these corners are shown to cause unacceptable time step restrictions when conventional approximate factorization methods are used. In this investigation these limitations are overcome by using second-order upwind differencing and line Gauss-Siedel relaxation. This method is implemented with a zonal mesh so that flows through complex nozzle geometries may be efficiently calculated. Results are presented for five nozzle configurations including two with time varying geometries. Three cases are compared with available experimental data and the results are generally acceptable.

  3. Thrust vectoring effects of a transverse gas injection into a supersonic cross flow of an axisymmetric convergent-divergent nozzle

    NASA Astrophysics Data System (ADS)

    Zmijanovic, V.; Lago, V.; Leger, L.; Depussay, E.; Sellam, M.; Chpoun, A.

    2013-03-01

    The transverse gas injection into the main supersonic flow of an axisymmetric convergent-divergent (C-D) propulsive nozzle is investigated for the fluidic thrust vectoring (FTV) possibilities as the segment part of the CNES "Perseus" project. Truncated ideal contour and conical C-D nozzles with different position and angle of the secondary circular injection port are selected as test models in the current numerical and experimental study. Analytical approach revealed parameters which affect the FTV efficiency, these criterions are further numerically explored and results data of the conical nozzle test cases are compared and coupled with the ones from experiments. It is found that upstream inclined injection has positive effect on vectoring capabilities and that with moderate secondary to primary mass-flow ratios, ranging around 5%, pertinent vector side force is possible to be achieved.

  4. Automated three-axis gonioreflectometer for computer graphics applications

    NASA Astrophysics Data System (ADS)

    Li, Hongsong; Foo, Sing-Choong; Torrance, Kenneth E.; Westin, Stephen H.

    2006-04-01

    We describe an automated three-axis gonioreflectometer, which can help increase the physical realism of computer graphics renderings by providing light scattering data for the surfaces in a scene. The gonioreflectometer performs rapid measurements of the bidirectional reflectance distribution function (BRDF) for flat, isotropic, sample surfaces over the complete visible spectrum and over most of the incident and reflection hemispheres. The instrument employs a broadband light source and a detector with a diffraction grating and linear diode array. Validation is achieved by comparisons against reference surfaces and other instruments. The accuracy and spectral and angular ranges of the BRDFs are appropriate for computer graphics imagery, while reciprocity and energy conservation are preserved. Measured BRDFs on rough aluminum, metallic silver paint, and a glossy yellow paint are reported, and an example rendered automotive image is included.

  5. Automated three-axis gonioreflectometer for computer graphics applications

    NASA Astrophysics Data System (ADS)

    Li, Hongsong; Foo, Sing C.; Torrance, Kenneth E.; Westin, Stephen H.

    2005-08-01

    We describe an automated three-axis BRDF measurement instrument that can help increase the physical realism of computer graphics images by providing light scattering data for the surfaces within a synthetic scene that is to be rendered. To our knowledge, the instrument is unique in combining wide angular coverage (beyond 85° from the surface normal), dense sampling of the visible wavelength spectrum (1024 samples), and rapid operation (less than ten hours for complete measurement of an isotropic sample). The gonioreflectometer employs a broadband light source and a detector with a diffraction grating and linear diode array. Validation was achieved by comparisons against reference surfaces and other instruments. The accuracy and spectral and angular ranges of the BRDFs are appropriate for computer graphics imagery, while reciprocity and energy conservation are preserved. Measured BRDFs on rough aluminum, metallic silver automotive paint, and a glossy yellow paint are reported, and an example rendered automotive image is included.

  6. Development of Optical Three-Axis Tactile Sensor and its Application to Robotic Hand for Dexterous Manipulation Tasks

    Microsoft Academic Search

    Hanafiah Yussof; Sukarnur Che Abdullah; Masahiro Ohka

    2010-01-01

    This paper presents the development of a novel tactile sensor device called optical three-axis tactile sensor and its application to robotic hands. The proposed tactile sensor is based on optical waveguide transduction method combines with image processing technique. The hardware structure, sensing principles and force detection method are presented in conjunction with application to the robot hand control system. Since

  7. Design and fabrication of a three-axis multilayer gradient coil for magnetic resonance microscopy of mice

    Microsoft Academic Search

    Blaine Chronik; Andrew Alejski; Brian K Rutt

    2000-01-01

    There is great interest in the non-destructive capabilities of magnetic resonance microscopy for studying murine models of both disease and normal function; however, these studies place extreme demands on the MR hardware, most notably the gradient field system. We designed, using constrained current minimum inductance methods, and fabricated a complete, unshielded three-axis gradient coil set that utilizes interleaved, multilayer axes

  8. Multiaxis control power from thrust vectoring for a supersonic fighter aircraft model at Mach 0.20 to 2.47

    NASA Technical Reports Server (NTRS)

    Capone, Francis J.; Bare, E. Ann

    1987-01-01

    The aeropropulsive characteristics of an advanced twin-engine fighter aircraft designed for supersonic cruise have been studied in the Langley 16-Foot Tansonic Tunnel and the Lewis 10- by 10-Foot Supersonic Tunnel. The objective was to determine multiaxis control-power characteristics from thrust vectoring. A two-dimensional convergent-divergent nozzle was designed to provide yaw vector angles of 0, -10, and -20 deg combined with geometric pitch vector angles of 0 and 15 deg. Yaw thrust vectoring was provided by yaw flaps located in the nozzle sidewalls. Roll control was obtained from differential pitch vectoring. This investigation was conducted at Mach numbers from 0.20 to 2.47. Angle of attack was varied from 0 to about 19 deg, and nozzle pressure ratio was varied from about 1 (jet off) to 28, depending on Mach number. Increments in force or moment coefficient that result from pitch or yaw thrust vectoring remain essentially constant over the entire angle-of-attack range of all Mach numbers tested. There was no effect of pitch vectoring on the lateral aerodynamic forces and moments and only very small effects of yaw vectoring on the longitudinal aerodynamic forces and moments. This result indicates little cross-coupling of control forces and moments for combined pitch-yaw vectoring.

  9. Three-axis rapid steering of optically propelled micro/nanoparticles.

    PubMed

    Huang, Yanan; Wan, Jingfang; Cheng, Ming-Chieh; Zhang, Zhipeng; Jhiang, Sissy M; Menq, Chia-Hsiang

    2009-06-01

    This paper presents the design and implementation of a three-axis steering system, wherein a micro/nanoparticle is optically trapped and propelled to serve as a measurement probe. The actuators in the system consist of a deformable mirror enabling axial steering and a two-axis acousto-optic deflector for lateral steering. The actuation range is designed and calibrated to be over 20 microm along the two lateral axes and over 10 microm along the axial direction. The actuation bandwidth of the two lateral axes is over 50 kHz and the associated resolution is 0.016 nm (1sigma). The axial resolution is 0.16 nm, while the bandwidth is enhanced to over 3 kHz by model cancellation method. The performance of the three-axis steering system is illustrated by three sets of experiments. First, active Brownian motion control of the trapped probe is utilized to enhance trapping stability. Second, a large range three-dimensional (3D) steering of a 1.87 microm probe, contouring a complex 3D trajectory in a 6 x 6 x 4 microm3 volume, is demonstrated. Third, a closed-loop steering is implemented to achieve improved precision. PMID:19566196

  10. Three-axis force actuator for a magnetic bearing

    NASA Technical Reports Server (NTRS)

    Gondhalekar, Vijay (Inventor)

    1998-01-01

    This invention features a three-axis force actuator that axially, radially and rotatably supports a bearing member for frictionless rotation about an axis of rotation generally coincident with a Z-axis. Also featured is a magnetic bearing having such an actuator. The actuator includes an inner member, a magnetic member and a pole assembly having a ring member and four pole extending therefrom. The poles are equi-angular spaced from each other and radially spaced about the Z-axis. The inner member extends along the Z-axis and is a highly magnetic permeable material. The magnetic member is formed about the inner member outer surface, extends along the Z-axis and is configured so one magnetic pole polarity is located at its outer surface and the other polarity pole is located at its inner surface. Preferably, the magnetic member is a radially magnetized permanent magnet. The inner surface of the ring member is magnetically coupled to the magnetic member and a face of each pole is coupled to the bearing member. The magnetic member, the pole assembly, the inner member and the bearing member cooperate to generate a magnetic field that radially and rotatably supports a rotating member secured to the bearing member. The actuator further includes a plurality of electromagnetic coils. Preferably, a coil is formed about each pole and at least 2 coils are formed about the inner member. When energized, the electromagnetic coils generate a modulated magnetic field that stabilizes the rotating member in the desired operational position.

  11. Robust Linear-Parameter Varying Autopilot Design for a Tail\\/Thrust Vector Controlled Missile

    Microsoft Academic Search

    Berno J. E. Misgeld; Marco Darcis; Thomas Kuhn

    \\u000a A robust autopilot design methodology using linear parameter varying transformations is presented and applied to a high-agile\\u000a surface launched air defence missile, which is currently developed by Diehl-BGT-Defence. The lateral dynamics of the tail\\/thrust\\u000a vector controlled missile are modelled as a second-order quasi-linear parameter varying (LPV) system. The incidence angle\\u000a is used as exogenous variable, which is assumed to be

  12. Sliding mode maneuvering control and active vibration damping of three-axis stabilized flexible spacecraft with actuator dynamics

    Microsoft Academic Search

    Qinglei Hu

    2008-01-01

    This paper presents a dual-stage control system design method for the three-axis-rotational maneuver control and vibration\\u000a stabilization of a spacecraft with flexible appendages embedded with piezoceramics as sensor and actuator. In this design\\u000a approach, the attitude control system and vibration suppression were designed separately using a lower order model. Based\\u000a on the sliding mode control (SMC) theory, a discontinuous attitude

  13. Effects of upper-surface blowing and thrust vectoring on low-speed aerodynamic characteristics of a large-scale supersonic transport model

    NASA Technical Reports Server (NTRS)

    Coe, P. L., Jr.; Mclemore, H. C.; Shivers, J. P.

    1975-01-01

    Tests were conducted in the Langley full-scale tunnel to determine the low-speed aerodynamic characteristics of a large-scale arrow-wing supersonic transport configured with engines mounted above the wing for upper surface blowing, and conventional lower surface engines with provisions for thrust vectoring. A limited number of tests were conducted for the upper surface engine configuration in the high lift condition for beta = 10 in order to evaluate lateral directional characteristics, and with the right engine inoperative to evaluate the engine out condition.

  14. Microfabrication of Three-Axis Tactile Feedback Actuator for Robot-Assisted Surgery

    NASA Astrophysics Data System (ADS)

    Doh, Eunhyup; Yoo, Jihyung; Lee, Hyungkew; Park, Joonah; Yun, Kwang-Seok

    2013-01-01

    In this paper, we propose and demonstrate a three-axis tactile feedback actuator using pneumatic balloons for human perception applications such as robot-assisted surgery systems. A tactile actuator is composed of a center structure having four balloons, sidewalls with one lateral balloon on each sidewall, and a bottom structure supporting the center structure. We fabricated the proposed device using flexible poly(dimethylsiloxane) and hard polyurethane with final dimensions of 18 ×18 ×18 mm3. The four balloons on the center structure produce normal tactile display during pneumatic-pressure-assisted inflation. The lateral movement of the center structure driven by sidewall balloons generates a shear tactile display on fingertips. The center deflections of the circular and rectangular balloons were calculated and measured experimentally.

  15. GEOMETRIC CRITERIA FOR GOUGE--FREE THREE--AXIS MILLING OF SCULPTURED SURFACES

    E-print Network

    Pottmann, Helmut

    GEOMETRIC CRITERIA FOR GOUGE--FREE THREE--AXIS MILLING OF SCULPTURED SURFACES Helmut Pottmann 1 on the mathematical foundation of 3­axis machining of sculptured surfaces has recently been pointed out by Choi, Kim

  16. Stable three-axis nuclear-spin gyroscope in diamond

    E-print Network

    Ajoy, Ashok

    Gyroscopes find wide applications in everyday life from navigation and inertial sensing to rotation sensors in hand-held devices and automobiles. Current devices, based on either atomic or solid-state systems, impose a ...

  17. THREE-AXIS AIR-BEARING BASED PLATFORM FOR SMALL SATELLITE ATTITUDE DETERMINATION AND CONTROL SIMULATION

    Microsoft Academic Search

    J. Prado; G. Bisiacchi; L. Reyes; E. Vicente; F. Contreras; M. Mesinas

    A frictionless environment simulation platform, utilized for accomplishing three-axis attitude control tests in small satellites, is introduced. It is employed to develop, improve, and carry out objective tests of sensors, actuators, and algorithms in the experimental framework. Different sensors (i.e. sun, earth, magnetometer, and an inertial measurement unit) are utilized to assess three-axis deviations. A set of three inertial wheels

  18. Three-axis active magnetic attitude control asymptotical study

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, M. Yu.; Roldugin, D. S.; Penkov, V. I.

    2015-05-01

    Active magnetic attitude control system providing given inertial attitude is considered. Control algorithm is constructed on the basis of a planar motion model. It decreases attitude discrepancy. Alternative approach is based on the PD-controller design. System behavior is analyzed for specific motion cases and sometimes for specific inertia tensor (axisymmetrical satellite) using averaging technique. Overall satellite angular motion is covered. Necessary attitude is found to be accessible for some control parameters. Stability is proven and optimal algorithm parameters are obtained. Floquet-based analysis is performed to verify and broaden analytical results.

  19. Effects of upper-surface blowing and thrust vectoring on low speed aerodynamic characteristics of a large-scale supersonic transport model

    NASA Technical Reports Server (NTRS)

    Coe, P. L., Jr.; Mclemore, H. C.; Shivers, J. P.

    1976-01-01

    Tests were conducted in a full scale tunnel to determine the low speed aerodynamic characteristics of a large scale arrow wing supersonic transport configured with engines mounted above the wing for upper surface blowing and conventional lower surface engines having provisions for thrust vectoring. Tests were conducted over an angle of attack range of -10 deg to 34 deg and for Reynolds numbers (based on the mean aerodynamic chord) of 5.17 x 1 million and 3.89 x 1 million. A limited number of tests were also conducted for the upper surface engine configuration in the high lift condition at an angle of sideslip of 10 deg in order to evaluate lateral directional characteristics and with the right engine inoperative in order to evaluate the engine out condition.

  20. Attitude determination for three-axis stabilized geostationary meteorological satellite image navigation

    NASA Astrophysics Data System (ADS)

    Wu, Yaguang; Wang, Zhigang

    2005-11-01

    To achieve the high accuracy of attitude determination for three-axis stabilized geostationary meteorological satellite image navigation, a new approach combined gyro with star trackers is proposed, and a real-time algorithm for attitude estimation is designed. This algorithm begins with a prediction for angular rate model errors induced by gyro drifting error, and ends with the extended Kalman filtering (EKF) for attitude estimation of three-axis. A Matlab-based time domain simulation model is developed to evaluate the attitude determination performance. Simulation results demonstrate that the proposed algorithm has characteristics of high accuracy, rapid convergence and strong robustness.

  1. A soft three-axis tactile sensor based on electromagnetic induction

    Microsoft Academic Search

    Satoru Takenawa

    2009-01-01

    A novel tactile sensor based on electromagnetic induction that can detect slippage in addition to three-axis force is proposed. The structure of this sensor is simple, and the sensor, which is essentially a displacement gauge, consists of a two-dimensional array of inductors and an elastic body containing a permanent magnet. Formulas to transform the output voltage of the proposed sensor

  2. A low power CMOS interface circuit for three-axis integrated accelerometers

    Microsoft Academic Search

    Monica Schipani; Paolo Bruschi; Giovanni Carlo Tripoli; Tommaso Ungaretti

    2007-01-01

    A CMOS interface for three-axis capacitive accelerometers is presented. The circuit implements an innovative readout approach which allows to obtain a power consumption much lower than traditional schemes, thanks also to the reduced circuit complexity. A total power consumption of 175 muW at the nominal supply voltage 2.5 V is obtained for the entire interface.

  3. Gait analyzer based on a cell phone with a single three-axis accelerometer

    Microsoft Academic Search

    Toshiki Iso; Kenichi Yamazaki

    2006-01-01

    We propose a fuss-free gait analyzer based on a single three- axis accelerometer mounted on a cell phone for health care and presence services. It is not necessary for users not to wear sensors on any part of their bodies; all they need to do is to carry the cell phone. Our algorithm has two main functions; one is to

  4. Optimal Discrete-Time Design of Three-Axis Magnetic Attitude Control Laws

    Microsoft Academic Search

    Tiziano Pulecchi; Marco Lovera; Andras Varga

    2010-01-01

    The problem of designing discrete-time attitude controllers for three-axis stabilization of magnetically actuated spacecraft is considered. Several methods are discussed and an approach to the tuning of various classes of projection-based controllers is proposed relying on periodic optimal output feedback control techniques. The main advantages of the proposed methods are discussed and illustrated in a simulation study.

  5. Attitude determination for three-axis stabilized geostationary meteorological satellite image navigation

    Microsoft Academic Search

    Yaguang Wu; Zhigang Wang

    2005-01-01

    To achieve the high accuracy of attitude determination for three-axis stabilized geostationary meteorological satellite image navigation, a new approach combined gyro with star trackers is proposed, and a real-time algorithm for attitude estimation is designed. This algorithm begins with a prediction for angular rate model errors induced by gyro drifting error, and ends with the extended Kalman filtering (EKF) for

  6. Sensing Precision of an Optical Three-axis Tactile Sensor for a Robotic Finger

    Microsoft Academic Search

    Masahiro Ohka; Hiroaki Kobayashi; Jumpei Takata; Y. Mitsuya

    2006-01-01

    We are developing an optical three-axis tactile sensor capable of acquiring normal and shearing force, with the aim of mounting it on a robotic finger. The tactile sensor is based on the principle of an optical waveguide-type tactile sensor, which is composed of an acrylic hemispherical dome, a light source, an array of rubber sensing elements, and a CCD camera.

  7. Static thrust-vectoring performance of nonaxisymmetric convergent-divergent nozzles with post-exit yaw vanes. M.S. Thesis - George Washington Univ., Aug. 1988

    NASA Technical Reports Server (NTRS)

    Foley, Robert J.; Pendergraft, Odis C., Jr.

    1991-01-01

    A static (wind-off) test was conducted in the Static Test Facility of the 16-ft transonic tunnel to determine the performance and turning effectiveness of post-exit yaw vanes installed on two-dimensional convergent-divergent nozzles. One nozzle design that was previously tested was used as a baseline, simulating dry power and afterburning power nozzles at both 0 and 20 degree pitch vectoring conditions. Vanes were installed on these four nozzle configurations to study the effects of vane deflection angle, longitudinal and lateral location, size, and camber. All vanes were hinged at the nozzle sidewall exit, and in addition, some were also hinged at the vane quarter chord (double-hinged). The vane concepts tested generally produced yaw thrust vectoring angles much less than the geometric vane angles, for (up to 8 percent) resultant thrust losses. When the nozzles were pitch vectored, yawing effectiveness decreased as the vanes were moved downstream. Thrust penalties and yawing effectiveness both decreased rapidly as the vanes were moved outboard (laterally). Vane length and height changes increased yawing effectiveness and thrust ratio losses, while using vane camber, and double-hinged vanes increased resultant yaw angles by 50 to 100 percent.

  8. A novel three-axis AIM vibration sensor for high accuracy condition monitoring

    Microsoft Academic Search

    Markus Nowack; Danny Reuter; Andreas Bertz; Matthias Kuechler; Torsten Aurich; Claus Dittrich; T. Gessner

    2010-01-01

    We present a novel micromachining approach for on chip three-axis capacitive high aspect ratio acceleration sensors made from standard silicon wafers. The patented AIM (air gap insulated microstructures) technology with their excellent device properties regarding temperature behavior, capacitive sensitivity and reliability was modified for enabling out-of-plane differential measurements. Therefore electrodes with different heights have been patterned by using one additional

  9. Dynamic analysis of a three-axis robot wrist and optimization of its structure

    Microsoft Academic Search

    Dae Sun Hong; U-il Jang; Jung-Hee Kwon

    2010-01-01

    A Multi-axis wrist as an end effecter of an industrial robot provides high flexibility to perform various tasks such as welding, cutting, painting and others. Recently, a new three-axis wrist has been developed for gantry-type robots whose payload is 250N. In designing such a wrist, structure analysis including statics and dynamics should be carried out to guarantee the performance of

  10. Transparent SU8 Three-Axis Micro Strain Gauge Force Sensing Pillar Arrays for Biological Applications

    Microsoft Academic Search

    N. Klejwal; N. Harjeel; R. Kwon; S. M. Coulthard; B. L. Pruitt

    2007-01-01

    This paper presents three-axis micro strain gauge force-sensitive pillar arrays constructed of multiple layers of SU-8 and metal on quartz substrates to create transparent sensors for use in standard inverted microscopes. The sensor meets specific requirements for measuring tactile sensitivity and forces exerted during locomotion by small organisms such as fruit flies (Drosophila melanogaster), including: 1 muN force sensitivity, >25

  11. An Experimental Optical Three-axis Tactile Sensor for Micro-Robots

    Microsoft Academic Search

    Masahiro Ohka; Yasunaga Mitsuya; Isamu Higashioka; Hisanori Kabeshita

    2005-01-01

    SUMMARY This paper describes a micro-optical three-axis tactile sensor capable of sensing not only normal force, but also shearing force. The normal force was detected from the integrated gray-scale values of bright pixels emitted from the contact area of conical feelers. The conical feelers were formed on a rubber sheet surface that maintains contact with an optical waveguide plate. The

  12. Three-axis vibration measurement by using a grating-interferometric vibrometer

    NASA Astrophysics Data System (ADS)

    Ito, So; Aihara, Ryo; Kim, Woo Jae; Shimizu, Yuki; Gao, Wei

    2014-08-01

    Three-axis vibration measurement of the linear air-bearing stage demonstrated by utilizing the method of the multi-axis laser interferometer is discussed. In order to detect the X-Y-Z directional vibration of the positioning stage table simultaneously, two-dimensional XY gratings are utilized as the scale grating and the reference grating of the interferometer. The X- and Y-directional positive and negative first-order diffracted beams are superimposed to generate the interference signals on the photodetectors. When the multi-axis vibration is applied to the scale grating, the intensities of the interference signals in X- and Y-directions varied corresponding to the vibration of the scale grating. Consequently, three-axis vibrations of the scale grating can be calculated by processing the X- and Y-directional positive and negative first-order interference signals. In this paper, a three-axis vibrometer based on the grating-interferometer has been developed for measurement of the positioning stage table vibration. The detection method of the vibration based on the Doppler frequency shift has been demonstrated. As an application of the multi-axis grating-interferometric vibrometer, multi-axis vibrations of the linear air-bearing stage are measured by using the developed vibrometer.

  13. Integrated steepest-directed and iso-cusped toolpath generation for three-axis CNC machining of sculptured parts

    Microsoft Academic Search

    G. W Vickers; Z Dong

    2003-01-01

    Today, sculptured parts are widely used in aeronautical, automotive, and many other industries. To make high-quality sculptured surfaces through efficient toolpaths in three-axis CNC machining is a major technical challenge. In this work, a new toolpath generation method for three-axis CNC milling, the Steepest-Directed and Iso-Cusped (SDIC) toolpath generation scheme, is introduced. The method integrates the steepest-directed and iso-cusped toolpaths

  14. A three-axis accelerometer for high temperatures with low temperature dependence using a constant temperature control of SOI piezoresistors

    Microsoft Academic Search

    Kyung Il Lee; H. Takao; K. Sawada; M. Ishida

    2003-01-01

    In this paper, a three-axis accelerometer for high temperatures using constant temperature control of SOI piezoresistors is proposed for reduction of temperature drift. The accelerometer has surrounding mass structure, and piezoresistors for four wheatstone bridges to detect three-axis acceleration. A temperature sensor using the whole resistance of four wheatstone bridges and micro-heaters are integrated on the beam structures. The structure

  15. Study on grinding of free-form optics surface in three-axis CNC machine

    NASA Astrophysics Data System (ADS)

    Yang, Haicheng; Zhang, Yun-long; Zhang, Feng; Wang, Zhibin; Bao, Long-xiang; Su, Ying; Guo, Rui; Liu, Xuan-min

    2014-08-01

    Due to the glass is a type of brittle material, so the high-precision free-form optics of glass material is usually machined by the technical of grinding. In this paper, for the characteristics of the diamond grinding wheel, analyzing the grinding path of free-form optics and mathematical model of the path is established based on the three-axis CNC grinding device. Moreover, the cause of the interference in the process of grinding is analyzed and the methods of avoiding. Finally, based on the above analysis results, through the experiment, the free-form optics surface accuracy was reached to 3.6um, realize the machining of the free-form optics.

  16. A Three-Axis Force Sensor for Dual Finger Haptic Interfaces

    PubMed Central

    Fontana, Marco; Marcheschi, Simone; Salsedo, Fabio; Bergamasco, Massimo

    2012-01-01

    In this work we present the design process, the characterization and testing of a novel three-axis mechanical force sensor. This sensor is optimized for use in closed-loop force control of haptic devices with three degrees of freedom. In particular the sensor has been conceived for integration with a dual finger haptic interface that aims at simulating forces that occur during grasping and surface exploration. The sensing spring structure has been purposely designed in order to match force and layout specifications for the application. In this paper the design of the sensor is presented, starting from an analytic model that describes the characteristic matrix of the sensor. A procedure for designing an optimal overload protection mechanism is proposed. In the last part of the paper the authors describe the experimental characterization and the integrated test on a haptic hand exoskeleton showing the improvements in the controller performances provided by the inclusion of the force sensor. PMID:23202012

  17. Algorithms for Automated Characterization of Three-Axis Stabilized GEOs using Non-Resolved Optical Observations

    NASA Astrophysics Data System (ADS)

    Murray-Krezan, J.; Inbody, W.; Dentamaro, A.; Gregory, S.; Dao, P.; Fulcoly, D.

    2012-09-01

    Non-resolved optical observations of satellites have been known to supply researchers with valuable information about satellite status. Until recently most non-resolved analysis techniques have required an expert human in the loop in order to attribute observed information to satellite features. We are designing algorithms that automate the process of rapidly characterizing satellites from non-resolved optical data of three-axis stabilized geostationary satellites. We will present background information on corrections for lighting conditions that vary as a function of the Earth's season, and permit automated satellite characterization algorithms. Much of this information is empirical, based on a GEO-Sat Color Photometry Catalog, for which collection began in 2004 and continues into the present.

  18. Intracalibration of particle detectors on a three-axis stabilized geostationary platform

    NASA Astrophysics Data System (ADS)

    Rowland, W.; Weigel, R. S.

    2012-11-01

    We describe an algorithm for intracalibration of measurements from plasma or energetic particle detectors on a three-axis stabilized platform. Modeling and forecasting of Earth's radiation belt environment requires data from particle instruments, and these data depend on measurements which have an inherent calibration uncertainty. Pre-launch calibration is typically performed, but on-orbit changes in the instrument often necessitate adjustment of calibration parameters to mitigate the effect of these changes on the measurements. On-orbit calibration practices for particle detectors aboard spin-stabilized spacecraft are well established. Three-axis stabilized platforms, however, pose unique challenges even when comparisons are being performed between multiple telescopes measuring the same energy ranges aboard the same satellite. This algorithm identifies time intervals when different telescopes are measuring particles with the same pitch angles. These measurements are used to compute scale factors which can be multiplied by the pre-launch geometric factor to correct any changes. The approach is first tested using measurements from GOES-13 MAGED particle detectors over a 5-month time period in 2010. We find statistically significant variations which are generally on the order of 5% or less. These results do not appear to be dependent on Poisson statistics nor upon whether a dead time correction was performed. When applied to data from a 5-month interval in 2011, one telescope shows a 10% shift from the 2010 scale factors. This technique has potential for operational use to help maintain relative calibration between multiple telescopes aboard a single satellite. It should also be extensible to inter-calibration between multiple satellites.

  19. Thermomechanical Actuator-Based Three-Axis Optical Scanner for High-Speed Two-Photon Endomicroscope Imaging

    PubMed Central

    Chen, Shih-Chi; Choi, Heejin; So, Peter T. C.; Culpepper, Martin L.

    2015-01-01

    This paper presents the design and characterization of a three-axis thermomechanical actuator-based endoscopic scanner for obtaining ex vivo two-photon images. The scanner consisted of two sub-systems: 1) an optical system (prism, gradient index lens, and optical fiber) that was used to deliver and collect light during imaging and 2) a small-scale silicon electromechanical scanner that could raster scan the focal point of the optics through a specimen. The scanner can be housed within a 7 mm Ø endoscope port and can scan at the speed of 3 kHz × 100 Hz × 30 Hz along three axes throughout a 125 × 125 × 100 ?m3 volume. The high-speed thermomechanical actuation was achieved through the use of geometric contouring, pulsing technique, and mechanical frequency multiplication (MFM), where MFM is a new method for increasing the device cycling speed by pairing actuators of unequal forward and returning stroke speeds. Sample cross-sectional images of 15-?m fluorescent beads are presented to demonstrate the resolution and optical cross-sectioning capability of the two-photon imaging system. PMID:25673965

  20. Calibration of QM-MOURA three-axis magnetometer and gradiometer

    NASA Astrophysics Data System (ADS)

    Díaz-Michelena, M.; Sanz, R.; Cerdán, M. F.; Fernández, A. B.

    2015-01-01

    MOURA instrument is a three-axis magnetometer and gradiometer designed and developed for Mars MetNet Precursor mission. The initial scientific goal of the instrument is to measure the local magnetic field in the surroundings of the lander i.e. to characterize the magnetic environment generated by the remanent magnetization of the crust and the superimposed daily variations of the field produced either by the solar wind incidence or by the thermomagnetic variations. Therefore, the qualification model (QM) will be tested in representative scenarios like magnetic surveys on terrestrial analogues of Mars and monitoring solar events, with the aim to achieve some experience prior to the arrival to Mars. In this work, we present a practical first approach for calibration of the instrument in the laboratory; a finer correction after the comparison of MOURA data with those of a reference magnetometer located in San Pablo de los Montes (SPT) INTERMAGNET Observatory; and a comparative recording of a geomagnetic storm as a demonstration of the compliance of the instrument capabilities with the scientific objectives.

  1. Three-axis optical force plate for studies in small animal locomotor mechanics

    SciTech Connect

    Hsieh, S. Tonia [Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138 (United States)

    2006-05-15

    The use of force plates to measure whole-body locomotor mechanics is a well-established technique. However, commercially available force plates are not sensitive enough for use on small-bodied vertebrates or invertebrates. The standard design for single- and multiple-axis, high-sensitivity force plates built by individual research groups uses semiconductor foil strain gauges to measure deflections; yet foil strain gauges are highly temperature and position sensitive, resulting in a drifting base line and nonlinear responses. I present here a design for a three-axis optical force plate that was successfully calibrated to measure forces as small as 1.5 mN and is capable of determining the position of center of pressure with a mean error of 0.07 cm along the X axis and 0.13 cm along the Y axis. Using optical sensors instead of foil strain gauges to measure deflection, this force plate is not subject to temperature-related drift and is more robust against slight positioning inaccuracies. This force plate was used to measure forces produced by amphibious fishes weighing less than 2 g as they jumped off the force platform.

  2. A uniplanar three-axis gradient set for in vivo magnetic resonance microscopy.

    PubMed

    Demyanenko, Andrey V; Zhao, Lin; Kee, Yun; Nie, Shuyi; Fraser, Scott E; Tyszka, J Michael

    2009-09-01

    We present an optimized uniplanar magnetic resonance gradient design specifically tailored for MR imaging applications in developmental biology and histology. Uniplanar gradient designs sacrifice gradient uniformity for high gradient efficiency and slew rate, and are attractive for surface imaging applications where open access from one side of the sample is required. However, decreasing the size of the uniplanar gradient set presents several unique engineering challenges, particularly for heat dissipation and thermal insulation of the sample from gradient heating. We demonstrate a new three-axis, target-field optimized uniplanar gradient coil design that combines efficient cooling and insulation to significantly reduce sample heating at sample-gradient distances of less than 5mm. The instrument is designed for microscopy in horizontal bore magnets. Empirical gradient current efficiencies in the prototype coils lie between 3.75G/cm/A and 4.5G/cm/A with current and heating-limited maximum gradient strengths between 235G/cm and 450G/cm at a 2% duty cycle. The uniplanar gradient prototype is demonstrated with non-linearity corrections for both high-resolution structural imaging of tissue slices and for long time-course imaging of live, developing amphibian embryos in a horizontal bore 7T magnet. PMID:19539503

  3. A Three-Axis Optical Tactile Sensor (FEM Contact Analyses and Sensing Experiments Using a Large-Sized Tactile Sensor)

    Microsoft Academic Search

    Masahiro Ohka; Yasunaga Mitsuya; Sadao Takeuchi; H. Ishihara; O. Kamekawa

    1995-01-01

    This paper describes a new three-axis tactile sensor equipped with an optical waveguide plate mounted on a robot manipulator. After a series of FEM contact analyses and evaluation experiments were conducted, an experimental large-sized tactile sensor intended for employment in evaluation experiments was designed and produced. The experimental results confirmed that the tactile sensor is capable of detecting the distribution

  4. 3-Axis Magnetic Sensor Hybrid The Honeywell HMC2003 is a high sensitivity, three-axis magnetic sensor hybrid

    E-print Network

    Kleinfeld, David

    3-Axis Magnetic Sensor Hybrid HMC2003 The Honeywell HMC2003 is a high sensitivity, three-axis magnetic sensor hybrid assembly used to measure low magnetic field strengths. Honeywell's most sensitive product excellence and performance by introducing innovative solid-state magnetic sensor solutions

  5. Design, fabrication and implementation of smart three axis compliant interconnects for ultra-thin chip stacking technology

    Microsoft Academic Search

    Parthiban Arunasalam; Harold D. Ackler; Bahgat G. Sammakia

    2006-01-01

    This paper reports the current status of a novel MEMS based ultra-high density compliant interconnect technology that was proposed in the last Electronic Components and Technology Conference (ECTC). This MEMS-based interconnect, which we call smart three axis compliant (STAC) interconnects are directly fabricated onto electrical contact pads or thru-silicon vias on die at the wafer-level. These interconnects are initially bound

  6. Flight-Determined, Subsonic, Lateral-Directional Stability and Control Derivatives of the Thrust-Vectoring F-18 High Angle of Attack Research Vehicle (HARV), and Comparisons to the Basic F-18 and Predicted Derivatives

    NASA Technical Reports Server (NTRS)

    Iliff, Kenneth W.; Wang, Kon-Sheng Charles

    1999-01-01

    The subsonic, lateral-directional, stability and control derivatives of the thrust-vectoring F-1 8 High Angle of Attack Research Vehicle (HARV) are extracted from flight data using a maximum likelihood parameter identification technique. State noise is accounted for in the identification formulation and is used to model the uncommanded forcing functions caused by unsteady aerodynamics. Preprogrammed maneuvers provided independent control surface inputs, eliminating problems of identifiability related to correlations between the aircraft controls and states. The HARV derivatives are plotted as functions of angles of attack between 10deg and 70deg and compared to flight estimates from the basic F-18 aircraft and to predictions from ground and wind tunnel tests. Unlike maneuvers of the basic F-18 aircraft, the HARV maneuvers were very precise and repeatable, resulting in tightly clustered estimates with small uncertainty levels. Significant differences were found between flight and prediction; however, some of these differences may be attributed to differences in the range of sideslip or input amplitude over which a given derivative was evaluated, and to differences between the HARV external configuration and that of the basic F-18 aircraft, upon which most of the prediction was based. Some HARV derivative fairings have been adjusted using basic F-18 derivatives (with low uncertainties) to help account for differences in variable ranges and the lack of HARV maneuvers at certain angles of attack.

  7. Characterization of the non axial thrust generated by large solid propellant rocket motors in three axis stabilized ascent

    NASA Technical Reports Server (NTRS)

    Kosmann, W. J.; Dionne, E. R.; Klemetson, R. W.

    1978-01-01

    Nonaxial thrusts produced by solid rocket motors during three-axis stabilized attitude control have been determined from ascent experience on twenty three Burner II, Burner IIA and Block 5D-1 upper stage vehicles. A data base representing four different rocket motor designs (three spherical and one extended spherical) totaling twenty five three-axis stabilized firings is generated. Solid rocket motor time-varying resultant and lateral side force vector magnitudes, directions and total impulses, and roll torque couple magnitudes, directions, and total impulses are tabulated in the appendix. Population means and three sigma deviations are plotted. Existing applicable ground test side force and roll torque magnitudes and total impulses are evaluated and compared to the above experience data base. Within the spherical motor population, the selected AEDC ground test data consistently underestimated experienced motor side forces, roll torques and total impulses. Within the extended spherical motor population, the selected AEDC test data predicted experienced motor side forces, roll torques, and total impulses, with surprising accuracy considering the very small size of the test and experience populations.

  8. Fully printed flexible fingerprint-like three-axis tactile and slip force and temperature sensors for artificial skin.

    PubMed

    Harada, Shingo; Kanao, Kenichiro; Yamamoto, Yuki; Arie, Takayuki; Akita, Seiji; Takei, Kuniharu

    2014-12-23

    A three-axis tactile force sensor that determines the touch and slip/friction force may advance artificial skin and robotic applications by fully imitating human skin. The ability to detect slip/friction and tactile forces simultaneously allows unknown objects to be held in robotic applications. However, the functionalities of flexible devices have been limited to a tactile force in one direction due to difficulties fabricating devices on flexible substrates. Here we demonstrate a fully printed fingerprint-like three-axis tactile force and temperature sensor for artificial skin applications. To achieve economic macroscale devices, these sensors are fabricated and integrated using only printing methods. Strain engineering enables the strain distribution to be detected upon applying a slip/friction force. By reading the strain difference at four integrated force sensors for a pixel, both the tactile and slip/friction forces can be analyzed simultaneously. As a proof of concept, the high sensitivity and selectivity for both force and temperature are demonstrated using a 3×3 array artificial skin that senses tactile, slip/friction, and temperature. Multifunctional sensing components for a flexible device are important advances for both practical applications and basic research in flexible electronics. PMID:25437513

  9. Method for three-axis attitude determination by image-processed star constellation matching

    Microsoft Academic Search

    Hartmut Renken; Hans J. Rath

    1997-01-01

    An unmanned system for automatically 3-axis attitude determination by star constellation matching is a very useful tool for applications primary in the field of satellite technology, where stars are visible all the time. A special designed CCD-camera-system, which is sensitive enough to detect stars, points to the direction to be determinated and captures stars within the camera field of view.

  10. Three-axis stabilization of spacecraft using parameter-independent nonlinear quaternion feedback

    NASA Technical Reports Server (NTRS)

    Joshi, Suresh M.; Kelkar, Atul G.

    1994-01-01

    This paper considers the problem of rigid spacecraft. A nonlinear control law which uses the feedback of the unit quaternion and the measured angular velocities is proposed and is shown to provide global asymptotic stability. The control law does not require the knowledge of the system parameters, and is therefore robust to modeling errors. The significance of the control law is that it can be used for large-angle maneuvers with guaranteed stability.

  11. A three-axis micromachined accelerometer with a CMOS position-sense interface and digital offset-trim electronics

    SciTech Connect

    Lemkin, M.; Boser, B.E. [Univ. of California, Berkeley, CA (United States)] [Univ. of California, Berkeley, CA (United States)

    1999-04-01

    This paper describes a three-axis accelerometer implemented in a surface-micromachining technology with integrated CMOS. The accelerometer measures changes in a capacitive half-bridge to detect deflections of a proof mass, which result from acceleration input. The half-bridge is connected to a fully differential position-sense interface, the output of which is used for one-bit force feedback. By enclosing the proof mass in a one-bit feedback loop, simultaneous force balancing and analog-to-digital conversion are achieved. On-chip digital offset-trim electronics enable compensation of random offset in the electronic interface. Analytical performance calculations are shown to accurately model device behavior. The fabricated single-chip accelerometer measures 4 {times} 4 mm{sup 2}, draws 27 mA from a 5-V supply, and has a dynamic range of 84, 81, and 70 dB along the x-, y-, and z-axes, respectively.

  12. exTAS: a new concept in three axis spectroscopy for small samples

    NASA Astrophysics Data System (ADS)

    Piovano, A.; Roux, S.; Kulda, J.

    2014-07-01

    The progress in neutron delivery systems and in neutron focusing techniques has made possible neutron studies of excitations in sub-cm3-sized single crystals, which are still much larger than crystal sizes needed for standard laboratory characterization techniques. In an effort to further reduce this gap we are proposing the exTAS project, which intends to stimulate a paradigm shift towards the use of mm3-sized samples in neutron spectroscopy. The exTAS project aims to boost the TAS sensitivity limits by combining sharp mm-sized focal spots, minimizing penumbra effects in sample environment illumination, with a spectrometer layout downscaled to a tabletop size and enclosed in a shielding casemate. The reduced spectrometer dimensions will provide enhanced flexibility in adapting the momentum resolution to the problem being studied and will facilitate the sub-millimetre positioning accuracy of its components, matching the reduced focal spot size.

  13. OPMILL - MICRO COMPUTER PROGRAMMING ENVIRONMENT FOR CNC MILLING MACHINES THREE AXIS EQUATION PLOTTING CAPABILITIES

    NASA Technical Reports Server (NTRS)

    Ray, R. B.

    1994-01-01

    OPMILL is a computer operating system for a Kearney and Trecker milling machine that provides a fast and easy way to program machine part manufacture with an IBM compatible PC. The program gives the machinist an "equation plotter" feature which plots any set of equations that define axis moves (up to three axes simultaneously) and converts those equations to a machine milling program that will move a cutter along a defined path. Other supported functions include: drill with peck, bolt circle, tap, mill arc, quarter circle, circle, circle 2 pass, frame, frame 2 pass, rotary frame, pocket, loop and repeat, and copy blocks. The system includes a tool manager that can handle up to 25 tools and automatically adjusts tool length for each tool. It will display all tool information and stop the milling machine at the appropriate time. Information for the program is entered via a series of menus and compiled to the Kearney and Trecker format. The program can then be loaded into the milling machine, the tool path graphically displayed, and tool change information or the program in Kearney and Trecker format viewed. The program has a complete file handling utility that allows the user to load the program into memory from the hard disk, save the program to the disk with comments, view directories, merge a program on the disk with one in memory, save a portion of a program in memory, and change directories. OPMILL was developed on an IBM PS/2 running DOS 3.3 with 1 MB of RAM. OPMILL was written for an IBM PC or compatible 8088 or 80286 machine connected via an RS-232 port to a Kearney and Trecker Data Mill 700/C Control milling machine. It requires a "D:" drive (fixed-disk or virtual), a browse or text display utility, and an EGA or better display. Users wishing to modify and recompile the source code will also need Turbo BASIC, Turbo C, and Crescent Software's QuickPak for Turbo BASIC. IBM PC and IBM PS/2 are registered trademarks of International Business Machines. Turbo BASIC and Turbo C are trademarks of Borland International.

  14. Three-axis distributed fiber optic strain measurement in 3D woven composite structures

    NASA Astrophysics Data System (ADS)

    Castellucci, Matt; Klute, Sandra; Lally, Evan M.; Froggatt, Mark E.; Lowry, David

    2013-03-01

    Recent advancements in composite materials technologies have broken further from traditional designs and require advanced instrumentation and analysis capabilities. Success or failure is highly dependent on design analysis and manufacturing processes. By monitoring smart structures throughout manufacturing and service life, residual and operational stresses can be assessed and structural integrity maintained. Composite smart structures can be manufactured by integrating fiber optic sensors into existing composite materials processes such as ply layup, filament winding and three-dimensional weaving. In this work optical fiber was integrated into 3D woven composite parts at a commercial woven products manufacturing facility. The fiber was then used to monitor the structures during a VARTM manufacturing process, and subsequent static and dynamic testing. Low cost telecommunications-grade optical fiber acts as the sensor using a high resolution commercial Optical Frequency Domain Reflectometer (OFDR) system providing distributed strain measurement at spatial resolutions as low as 2mm. Strain measurements using the optical fiber sensors are correlated to resistive strain gage measurements during static structural loading.

  15. Development of a flexible three-axis tactile sensor based on screen-printed carbon nanotube-polymer composite

    NASA Astrophysics Data System (ADS)

    Pyo, Soonjae; Lee, Jae-Ik; Kim, Min-Ook; Chung, Taeyoung; Oh, Yongkeun; Lim, Soo-Chul; Park, Joonah; Kim, Jongbaeg

    2014-07-01

    A flexible, three-axis carbon nanotube (CNT)-polymer composite-based tactile sensor is presented. The proposed sensor consists of a flexible substrate, four sensing cells, and a bump structure. A CNT-polydimethylsiloxane (PDMS) composite is produced by a solvent evaporation method, and thus, the CNTs are well-dispersed within the PDMS matrix. The composite is directly patterned onto a flexible substrate using a screen printing technique to fabricate a sensor with four sensing cells. When a force is applied on the bump, the magnitude and direction of force could be detected by comparing the changes in electrical resistance of each sensing cell caused by the piezoresistive effect of the composite. The experimentally verified sensing characteristics of the fabricated sensor exhibit a linear relationship between the resistance change and the applied force, and the measured sensitivities of the sensor for the normal and shear forces are 6.67 and 86.7%/N for forces up to 2.0 and 0.5?N, respectively. Experiments to verify the load-sensing repeatability show a maximum 2.00% deviation of the resistance change within the tested force range.

  16. Transition of a technology base for advanced aircraft gas turbine control systems

    Microsoft Academic Search

    M. E. McGlone

    1998-01-01

    Technology assessments during the 1980s projected the development of advanced military fighter aircraft that would require propulsion systems that could accommodate multimission capability with super maneuverability. These propulsion systems would be required to provide significantly improved thrust to weight, reduced thrust specific fuel consumption, and up and away thrust vectoring capabilities. Digital electronic control systems with significantly expanded capabilities would

  17. Optimal orbit transfers by linear and nonlinear programming for the stochastic optimization of the apogee maneuver of three-axis stabilized geostationary satellites

    Microsoft Academic Search

    A. Leibold

    1980-01-01

    A method for the stochastic optimization of the injection from the transfer orbit and for the deterministic optimization of the positioning after the apogee maneuver for three-axis stabilized geostationary satellites is described. The nonlinear programming problem of the apogee impulse parameter optimization is done by a gradient-free method. During the optimization, error cases in the range of + or -

  18. Three-axis acoustic device for levitation of droplets in an open gas stream and its application to examine sulfur dioxide absorption by water droplets.

    PubMed

    Stephens, Terrance L; Budwig, Ralph S

    2007-01-01

    Two acoustic devices to stabilize a droplet in an open gas stream (single-axis and three-axis levitators) have been designed and tested. The gas stream was provided by a jet apparatus with a 64 mm exit diameter and a uniform velocity profile. The acoustic source used was a Langevin vibrator with a concave reflector. The single-axis levitator relied primarily on the radial force from the acoustic field and was shown to be limited because of significant droplet wandering. The three-axis levitator relied on a combination of the axial and radial forces. The three-axis levitator was applied to examine droplet deformation and circulation and to investigate the uptake of SO(2) from the gas stream to the droplet. Droplets ranging in diameters from 2 to 5 mm were levitated in gas streams with velocities up to 9 ms. Droplet wandering was on the order of a half droplet diameter for a 3 mm diameter droplet. Droplet circulation ranged from the predicted Hadamard-Rybczynski pattern to a rotating droplet pattern. Droplet pH over a central volume of the droplet was measured by planar laser induced fluorescence. The results for the decay of droplet pH versus time are in general agreement with published theory and experiments. PMID:17503939

  19. Apollo guidance, navigation and control: Guidance system operations plan for manned CM earth orbital and lunar missions using Program COLOSSUS 3. Section 3: Digital autopilots (revision 14)

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Digital autopilots for the manned command module earth orbital and lunar missions using program COLOSSUS 3 are discussed. Subjects presented are: (1) reaction control system digital autopilot, (2) thrust vector control autopilot, (3) entry autopilot and mission control programs, (4) takeover of Saturn steering, and (5) coasting flight attitude maneuver routine.

  20. A simple attitude data filter for three-axis attitude initialization for autonomous ascent of Shuttle-launched spacecraft

    NASA Technical Reports Server (NTRS)

    Joshi, R. T.; Swale, J. F.

    1981-01-01

    A method for accurately initializing spacecraft attitude after release from the Orbiter is described. It is noted that the method is suitable for an autonomous ascent to mission orbit. Test results are given from a FORTRAN simulation of the estimation algorithm using measurement data from a detailed spacecraft dynamics simulation program. The technique here is orbital yaw-gyrocompassing. Attitude is estimated through a Kalman filter, using pitch and roll measurements from an earth sensor, while gyro data provide the system dynamics information. In the tests described, gyro and earth sensor data are generated by an existing control system simulation of earth-search and yaw-gyrocompassing attitude dynamics; they include realistic errors such as delays, random noise and quantization effects. The estimated attitude history is compared with the true attitude history from the simulation program to assess the accuracy and convergence of the filter in the presence of noisy measurements and disturbances, including thruster firings for momentum control. It is noted that since the earth sensor provides direct measurements of pitch and roll, the main criterion of filter performance is yaw accuracy.

  1. A new three-axis vibrating sample magnetometer for continuous high-temperature magnetization measurements: applications to paleo- and archeo-intensity determinations

    NASA Astrophysics Data System (ADS)

    Le Goff, Maxime; Gallet, Yves

    2004-12-01

    We have developed a new three-axis vibrating sample magnetometer, which allows continuous high-temperature magnetization measurements of individual cylindrical ˜0.75 cm 3 samples up to ˜650 °C and the acquisition of thermoremanent magnetization (TRM) in any direction and field intensity up to 200 ?T. We propose a fast (less than 2.5 h) automated experimental procedure adapted from Boyd's [Nature 319 (1986) 208-209] modified version of the Thellier and Thellier [Ann. Geophys. 15 (1959) 285-376] method which provides continuous intensity determinations over a large (typically 300 °C) temperature interval for each sample. This procedure allows one to take into account both the cooling rate dependence of TRM acquisition and anisotropy of TRM. Several examples of analyses of ancient magnetization demonstrate the quality and reliability of the data and illustrate the promising potential of this new instrument in paleo- and archeomagnetism.

  2. Two-photon three-axis digital scanned light-sheet microscopy (2P3A-DSLM)

    NASA Astrophysics Data System (ADS)

    Zong, Weijian; Zhao, Jia; Chen, Xuanyang; Lin, Yuan; Ren, Huixia; Zhang, Yunfeng; Fan, Ming; Zhou, Zhuan; Cheng, Heping; Sun, Yujie; Chen, Liangyi

    2014-09-01

    In this presentation we report a new 3D scanned DSLM. The system combined 1) two-photon excitation, 2) scanning along the illumination axis (x-axis) using tunable acoustic gradient lens (TAG) to stretch the Rayleigh range [5], 3) scanning vertically to the illumination axis (y-axis) by one galvo mirror to create light sheet. 4) scanning along Z-axis to do fast 3D imaging by another galvo mirror. The image plane was kept aligned with the fast z-axis scanned light sheet plane by an electric tunable lens (ETL) as described in ref. 6. The light sheet can be tailored to any shape between 50×50 ?m2 and more than 500×500 ?m2 with constant thickness limited by diffraction and fast imaging rates limited by the detector. The tailorable illumination area allows multi-scale field of view (FOV), and is consequently capable of imaging cells, tissue and live animals in one setup.

  3. Design and Integration of an Actuated Nose Strake Control System

    NASA Technical Reports Server (NTRS)

    Flick, Bradley C.; Thomson, Michael P.; Regenie, Victoria A.; Wichman, Keith D.; Pahle, Joseph W.; Earls, Michael R.

    1996-01-01

    Aircraft flight characteristics at high angles of attack can be improved by controlling vortices shed from the nose. These characteristics have been investigated with the integration of the actuated nose strakes for enhanced rolling (ANSER) control system into the NASA F-18 High Alpha Research Vehicle. Several hardware and software systems were developed to enable performance of the research goals. A strake interface box was developed to perform actuator control and failure detection outside the flight control computer. A three-mode ANSER control law was developed and installed in the Research Flight Control System. The thrust-vectoring mode does not command the strakes. The strakes and thrust-vectoring mode uses a combination of thrust vectoring and strakes for lateral- directional control, and strake mode uses strakes only for lateral-directional control. The system was integrated and tested in the Dryden Flight Research Center (DFRC) simulation for testing before installation in the aircraft. Performance of the ANSER system was monitored in real time during the 89-flight ANSER flight test program in the DFRC Mission Control Center. One discrepancy resulted in a set of research data not being obtained. The experiment was otherwise considered a success with the majority of the research objectives being met.

  4. Actuator participation in a bending mode identification system

    NASA Technical Reports Server (NTRS)

    Thompson, Z.; Davis, P.

    1972-01-01

    A hydraulic actuator designed for a thrust vector control system used as a shaker for a vehicle to determine the bending mode frequencies is described. The actuator is used as the prime mover and the frequency sensor for the flexible vehicle in a test tower. Advantages in using the actuator piston position with respect to a commanded position to obtain the bending mode frequencies are shown.

  5. Global Positioning System Integer Ambiguity Resolution without Attitude Knowledge

    E-print Network

    Crassidis, John L.

    1 Global Positioning System Integer Ambiguity Resolution without Attitude Knowledge John L measurements from Global Positioning System (GPS) receivers provides a novel approach for three-axis attitude

  6. Forebody vortex control as a complement to thrust vectoring

    NASA Technical Reports Server (NTRS)

    Malcolm, G. N.; Ng, T. T.

    1990-01-01

    The desire to enhance the controllability of fighter aircraft at high angles of attack, particularly yaw control, has fostered an interest in both vectored thrust and active control of forebody vortices. This paper reviews several methods of forebody vortex control that have been investigated with water and wind tunnel tests of both generic and actual fighter configurations. The methods investigated include pneumatic or blowing techniques using surface-mounted jets and slots, surface suction, variable-height deployable strakes, and rotatable tip strakes. Flow visualization, and force and moment measurements have shown that all of the methods are effective in manipulating the forebody vortices over a wide range of angles of attack and sideslip, primarily through control over flow separation on the surface of the forebody. All are most effective when applied near the forebody tip. The advantages and limitations of the various methods are reviewed.

  7. Control of Ducted Fan Flying Object Using Thrust Vectoring

    NASA Astrophysics Data System (ADS)

    Miwa, Masafumi; Shigematsu, Yuki; Yamashita, Takashi

    Recently, R/C helicopter is used in fields of aerial photography and aerial investigation. But helicopter rotor blades are not covered, and the thrust is generated by high rotational speed. Thus R/C helicopter has a high risk of damage. In this study, we developed a new flying object using ducted fans instead of rotor blades. At first, PD control was employed for pitch and roll attitude control, but it caused steady state error. Moreover, PI-D control was used instead of PD control, and it reduced the steady state error. We succeeded to achieve stable hovering by 3-axes (roll, pitch and yaw axis) attitude control.

  8. Titan 3E/Centaur D-1T Systems Summary

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A systems and operational summary of the Titan 3E/Centaur D-1T program is presented which describes vehicle assembly facilities, launch facilities, and management responsibilities, and also provides detailed information on the following separate systems: (1) mechanical systems, including structural components, insulation, propulsion units, reaction control, thrust vector control, hydraulic systems, and pneumatic equipment; (2) astrionics systems, such as instrumentation and telemetry, navigation and guidance, C-Band tracking system, and range safety command system; (3) digital computer unit software; (4) flight control systems; (5) electrical/electronic systems; and (6) ground support equipment, including checkout equipment.

  9. The Control System for the X-33 Linear Aerospike Engine

    NASA Technical Reports Server (NTRS)

    Jackson, Jerry E.; Espenschied, Erich; Klop, Jeffrey

    1998-01-01

    The linear aerospike engine is being developed for single-stage -to-orbit (SSTO) applications. The primary advantages of a linear aerospike engine over a conventional bell nozzle engine include altitude compensation, which provides enhanced performance, and lower vehicle weight resulting from the integration of the engine into the vehicle structure. A feature of this integration is the ability to provide thrust vector control (TVC) by differential throttling of the engine combustion elements, rather than the more conventional approach of gimballing the entire engine. An analysis of the X-33 flight trajectories has shown that it is necessary to provide +/- 15% roll, pitch and yaw TVC authority with an optional capability of +/- 30% pitch at select times during the mission. The TVC performance requirements for X-33 engine became a major driver in the design of the engine control system. The thrust level of the X-33 engine as well as the amount of TVC are managed by a control system which consists of electronic, instrumentation, propellant valves, electro-mechanical actuators, spark igniters, and harnesses. The engine control system is responsible for the thrust control, mixture ratio control, thrust vector control, engine health monitoring, and communication to the vehicle during all operational modes of the engine (checkout, pre-start, start, main-stage, shutdown and post shutdown). The methodology for thrust vector control, the health monitoring approach which includes failure detection, isolation, and response, and the basic control system design are the topic of this paper. As an additional point of interest a brief description of the X-33 engine system will be included in this paper.

  10. Three-axis superconducting gravity gradiometer

    SciTech Connect

    Paik, H.J.

    1989-06-27

    This patent describes a gradiometer having a sensitive axis for detecting a gravity gradient along the sensitive axis, comprising: a pair of accelerometers having respective sensitive axes; each accelerometer including a proof mass having a pair of hollowed out annular portions; each proof mass having at least one sensing coil arranged adjacent a bottom-side surface of the respective proof mass in one of the hollowed out portions and a levitation coil arranged adjacent a second bottom-side surface of the respective proof mass in the other hollowed out portion, at least one sensing coil and the levitation coil thus being located on the same side of the respective proof mass in relation to the direction of an external force exerted on the gradiometer thereby to compensate for temperature induced changes in magnetic field penetration into the respective proof mass; at least one first superconducting circuit in which the sensing coils of the accelerometers are interconnected and in which a first persistent current flows, the first circuit having an output indicative of a gravity gradient along the sensitive axis of the gradiometer.

  11. X-31 high angle of attack control system performance

    NASA Technical Reports Server (NTRS)

    Huber, Peter; Seamount, Patricia

    1994-01-01

    The design goals for the X-31 flight control system were: (1) level 1 handling qualities during post-stall maneuvering (30 to 70 degrees angle-of-attack); (2) thrust vectoring to enhance performance across the flight envelope; and (3) adequate pitch-down authority at high angle-of-attack. Additional performance goals are discussed. A description of the flight control system is presented, highlighting flight control system features in the pitch and roll axes and X-31 thrust vectoring characteristics. The high angle-of-attack envelope clearance approach will be described, including a brief explanation of analysis techniques and tools. Also, problems encountered during envelope expansion will be discussed. This presentation emphasizes control system solutions to problems encountered in envelope expansion. An essentially 'care free' envelope was cleared for the close-in-combat demonstrator phase. High angle-of-attack flying qualities maneuvers are currently being flown and evaluated. These results are compared with pilot opinions expressed during the close-in-combat program and with results obtained from the F-18 HARV for identical maneuvers. The status and preliminary results of these tests are discussed.

  12. An electromechanical actuation system for an expendable launch vehicle

    NASA Technical Reports Server (NTRS)

    Burrows, Linda M.; Roth, Mary E.

    1992-01-01

    A major effort at NASA-Lewis in recent years has been to develop electro-mechanical actuators (EMA's) to replace the hydraulic systems used for thrust vector control (TVC) on launch vehicles. This is an attempt to overcome the inherent inefficiencies and costs associated with the existing hydraulic structures. General Dynamics Space Systems Division, under contract to NASA Lewis, is developing 18.6 kW (25 hp), 29.8 kW (40 hp), and 52.2 kW (70 hp) peak EMA systems to meet the power demands for TVC on a family of vehicles developed for the National Launch System. These systems utilize a pulse population modulated converter and field-oriented control scheme to obtain independent control of both the voltage and frequency. These techniques allow an induction motor to be operated at its maximum torque at all times.

  13. The Principle and Algorithm of Earthquake Alarm System Designed for Families

    Microsoft Academic Search

    Ping He; Huiqi Sun; Wei Shang; Pan Li

    \\u000a Combined with a 51 SCM, AT89LV55, a three-axis accelerometer, ADXL335, and a digital-to-analog conversion chip, AD7708, a\\u000a seismic alarm system has been designed, which can be placed and used in residents’ homes or some public places. ADXL335 is\\u000a used to measure the acceleration of three axis, X axis, Y axis and Z axis. The design, a combination of performance chip

  14. Aircraft Spin Recovery, with and without Thrust Vectoring, Using Nonlinear Dynamic Inversion

    Microsoft Academic Search

    P. K. Raghavendra; Tuhin Sahai; P. Ashwani Kumar; Manan Chauhan; N. Ananthkrishnan

    2005-01-01

    The present paper addresses the problem of spin recovery of an aircraft as a nonlinear inverse dynamics problem of determining the control inputs that need to be applied to transfer the aircraft from a spin state to a level trim flight condition. A stable, oscillatory, flat, left spin state is first identified from a standard bifurcation analysis of the aircraft

  15. A numerical and experimental investigation of the thrust vector control by secondary gas injection

    NASA Astrophysics Data System (ADS)

    Waidmann, Winfried

    1991-07-01

    A numerical and experimental analysis of the cross injection of secondary gas stream into a supersonic flow is presented. The two dimensional compressible Navier-Stokes equations were solved by the explicit Runge-Kutta finite volume method. The equations describing the turbulent flow are closed by an algebraic turbulence model. The results of the numerical calculations are compared with experimental results performed in a rectangular expansion nozzle with a two dimensional injector. Shadow graphs, wall pressure, and side thrust measurements were used as diagnostic tools. A parametric study concerning the influence of different injection conditions and gas media delivers the best injection conditions for a maximal side thust. The effect of the different jet injection conditions is discussed in connection with the corresponding flow structure.

  16. Durability tests of a five centimeter diameter ion thruster system

    NASA Technical Reports Server (NTRS)

    Nakanishi, S.

    1972-01-01

    A modified Hughes SIT-5 system is being tested for durability at the Lewis Research Center. As of October 1, 1972, the thruster subsystem has logged over 8000 hours of operation. The initial 2023 hours were run with a translating screen thrust vector grid. The thruster is currently operating with an electrostatic type vector grid. Profiles and maps taken at widely separated intervals show that performance and operating characteristics have remained essentially constant. Overall efficiency is about 32 percent and power to thrust ratio is 170 watts per millipound at a specific impulse of 2500 seconds. Telescopic examination of the vector grid shows some sputtering erosion due to charge exchange and direct impingement ions.

  17. Pointing and control for planetary spacecraft - The first twenty years

    NASA Technical Reports Server (NTRS)

    Pace, G. D.

    1980-01-01

    The evolution of guidance and control systems for United States planetary and unmanned lunar spacecraft over the last 20 years is traced. The characteristics of the guidance and control systems used on spacecraft from the Range lunar impactor to the planned Galileo Jupiter orbiter and entry probe are surveyed, with attention given to the uses of three-axis stabilized, spin-stabilized and dual-spin designs. System performance trends that have evolved to meet the increasing science and mission requirements of the spacecraft are considered in the areas of attitude references, control consumables, dynamics and system modeling, thrust vector control, optical navigation, manuever turns, maneuver velocity control, instrument pointing, and antenna pointing. Hardware trends in optical sensors, inertial sensors, processing electronics, electromechanical devices, and system testing and reliability are also reviewed. The achievements represented by these advances are emphasized, and it is predicted that future developments will be in the areas of increased control system autonomy and performance requirements.

  18. Numerical and classical analysis of V/STOL aircraft using selected propulsion systems

    NASA Technical Reports Server (NTRS)

    Wilson, S. B., III; Kidwell, G. H., Jr.; Christiansen, R. S.

    1981-01-01

    The development needed for the evolution of selected V/STOL research vehicles into optimized antisubmarine warfare (ASW) aircraft configurations, using numerical procedures and traditional analytical methods, has been examined. Three propulsion systems, which represent state-of-the-art development aimed at solving the thrust-vectoring and attitude-control problems of V/STOL aircraft, are analyzed. The use of NASA computer programs for aircraft synthesis (ACSYNT), and for optimizing configurations (COMMIN), coupled with contractor-supplied propulsion system data provides for accurate performance prediction of the selected ASW configurations. Particular emphasis on the transition phase between the research vehicle and the optimized configuration demonstrates the strengths and weaknesses of using generic research aircraft instead of building prototypes to demonstrate new technology

  19. Three-axis electron-beam test facility

    NASA Astrophysics Data System (ADS)

    Dayton, J. A., Jr.; Ebihara, B. T.

    1981-03-01

    An electron beam test facility, which consists of a precision multidimensional manipulator built into an ultra-high-vacuum bell jar, was designed, fabricated, and operated at Lewis Research Center. The position within the bell jar of a Faraday cup which samples current in the electron beam under test, is controlled by the manipulator. Three orthogonal axes of motion are controlled by stepping motors driven by digital indexers, and the positions are displayed on electronic totalizers. In the transverse directions, the limits of travel are approximately + or - 2.5 cm from the center with a precision of 2.54 micron (0.0001 in.); in the axial direction, approximately 15.0 cm of travel are permitted with an accuracy of 12.7 micron (0.0005 in.). In addition, two manually operated motions are provided, the pitch and yaw of the Faraday cup with respect to the electron beam can be adjusted to within a few degrees. The current is sensed by pulse transformers and the data are processed by a dual channel box car averager with a digital output. The beam tester can be operated manually or it can be programmed for automated operation. In the automated mode, the beam tester is controlled by a microcomputer (installed at the test site) which communicates with a minicomputer at the central computing facility. The data are recorded and later processed by computer to obtain the desired graphical presentations.

  20. Three-axis magnetic attitude control algorithms for small satellites

    Microsoft Academic Search

    Mahmut Reyhanoglu; Jaime Rubio Hervas

    2011-01-01

    Recently there has been a surge of interest in developing new techniques for the attitude control of small satellites using only magnetic actuation. Although the control torque at any instant can only be generated perpendicular to the geomagnetic field vector, such a spacecraft is still controllable if the magnetic field along its orbit is periodic in time. In this paper

  1. Development of three-axis actuator for HD-DVD

    Microsoft Academic Search

    Dong-Ju Lee; Kang-Nyung Lee; No-Cheol Park; Young-Pil Park

    2005-01-01

    There is much research being conducted on developing information storage devices based on formats of Blu-ray Disc (BD) and HD-DVD with requirements for high-density storage devices. This trend is set toward the use of a short-wave length laser and objective lens (OL) with high numerical aperture in optical storage devices. However, it causes the rapid decrease of tilt margin. Therefore,

  2. Electron Paramagnetic Resonance -- Nuclear Magnetic Resonance Three Axis Vector Magnetometer

    NASA Astrophysics Data System (ADS)

    Bulatowicz, Michael; Clark, Philip; Griffith, Robert; Larsen, Michael; Mirijanian, James

    2012-06-01

    The Northrop Grumman Corporation is leveraging the technology developed for the Nuclear Magnetic Resonance Gyroscope (NMRG) to build a combined Electron Paramagnetic Resonance -- Nuclear Magnetic Resonance (EPR-NMR) magnetometer. The EPR-NMR approach provides a high bandwidth and high sensitivity simultaneous measurement of all three vector components of the magnetic field averaged over the small volume of the sensor's one vapor cell. This poster will describe the history, operational principles, and design basics of the EPR-NMR magnetometer including an overview of the NSD designs developed and demonstrated to date. General performance results will also be presented.

  3. Three-axis strain and temperature fiber optic grating sensor

    NASA Astrophysics Data System (ADS)

    Udd, Eric; Nelson, Drew V.; Lawrence, Craig M.; Ferguson, Bruce A.

    1996-05-01

    For many applications it would be highly desirable to be able to measure all three axes of strain and temperature internal to composite materials. Conventional electrical strain gauges are undesirable to embed into composite materials because of their size, conductive nature, susceptibility to electromagnetic interference, incompatibility with the host material and temperature limitations. All of the tests done to date with single element fiber sensors have been limited to the measurement of strain in the in plane dimension. This paper describes an innovative fiber sensor based on dual overlaid fiber gratings on short lengths of birefringent polarization preserving fiber that allows three axes of strain and temperature to be measured at a single point.

  4. Three-axis electron-beam test facility

    NASA Technical Reports Server (NTRS)

    Dayton, J. A., Jr.; Ebihara, B. T.

    1981-01-01

    An electron beam test facility, which consists of a precision multidimensional manipulator built into an ultra-high-vacuum bell jar, was designed, fabricated, and operated at Lewis Research Center. The position within the bell jar of a Faraday cup which samples current in the electron beam under test, is controlled by the manipulator. Three orthogonal axes of motion are controlled by stepping motors driven by digital indexers, and the positions are displayed on electronic totalizers. In the transverse directions, the limits of travel are approximately + or - 2.5 cm from the center with a precision of 2.54 micron (0.0001 in.); in the axial direction, approximately 15.0 cm of travel are permitted with an accuracy of 12.7 micron (0.0005 in.). In addition, two manually operated motions are provided, the pitch and yaw of the Faraday cup with respect to the electron beam can be adjusted to within a few degrees. The current is sensed by pulse transformers and the data are processed by a dual channel box car averager with a digital output. The beam tester can be operated manually or it can be programmed for automated operation. In the automated mode, the beam tester is controlled by a microcomputer (installed at the test site) which communicates with a minicomputer at the central computing facility. The data are recorded and later processed by computer to obtain the desired graphical presentations.

  5. Ultra miniature novel three-axis micro accelerometer

    Microsoft Academic Search

    R. Amarasinghe; D. V. Dao; V. T. Dau; S. Sugiyama

    2009-01-01

    This paper presents for the first time the design, fabrication and characterization of an ultra miniaturized novel 3-axis accelerometer with nanoscale piezoresistive sensing elements and read out circuits. It was developed using MEMS\\/NEMS machining and fabrication techniques. This sensor consists of a new sub-millimeter structure with seismic mass and combined cross-beam and surrounding beams. It can detect three components of

  6. Solar electric propulsion thrust subsystem development

    NASA Technical Reports Server (NTRS)

    Masek, T. D.

    1973-01-01

    The Solar Electric Propulsion System developed under this program was designed to demonstrate all the thrust subsystem functions needed on an unmanned planetary vehicle. The demonstration included operation of the basic elements, power matching input and output voltage regulation, three-axis thrust vector control, subsystem automatic control including failure detection and correction capability (using a PDP-11 computer), operation of critical elements in thermal-vacuum-, zero-gravity-type propellant storage, and data outputs from all subsystem elements. The subsystem elements, functions, unique features, and test setup are described. General features and capabilities of the test-support data system are also presented. The test program culminated in a 1500-h computer-controlled, system-functional demonstration. This included simultaneous operation of two thruster/power conditioner sets. The results of this testing phase satisfied all the program goals.

  7. Durability tests of a five-centimeter diameter ion thruster system.

    NASA Technical Reports Server (NTRS)

    Nakanishi, S.

    1972-01-01

    A modified Hughes SIT-5 system is being tested for durability at the Lewis Research Center. As of Oct. 1, 1972, the thruster subsystem has logged over 8000 hours of operation. The initial 2023 hours were run with a translating screen thrust vector grid. The thruster is currently operating with an electrostatic type vector grid. Profiles and maps taken at widely separated intervals show that performance and operating characteristics have remained essentially constant. Overall efficiency is about 32 per cent and power to thrust ratio is 170 watts per millipound at a specific impulse of 2500 seconds. Telescopic examination of the vector grid shows some sputtering erosion due to charge exchange and direct impingement ions. An independent test of the propellant storage and cathode-isolator-vaporizer subsystem has demonstrated good reliability under simulated thruster operating conditions.

  8. Predicting performance of candidates to replace Halon 2402 (Freon 114B2) in the Minuteman III Second Stage LITVC system

    NASA Astrophysics Data System (ADS)

    Glenn, D. E.

    1992-07-01

    Halon 2402 is the liquid injectant currently used in the Liquid Injection Thrust Vector Control (LITVC) system of the Minuteman III Second Stage motor. A replacement for Halon is required which provides comparable performance in terms of maximum side force and total impulse without detrimental environmental effects. The search for a replacement requires identification of desired thermochemical properties and prediction of performance. The method and procedures used for prediction of injection performance are described. Results of tests performed on benchmark liquids and an initial list of possible injectants using the Walker-Shandor and CFD models are presented and compared. Results from future live motor tests will be compared with the present predictions and used to validate the approach taken to select and predict the performance of new LITVC fluids.

  9. Magellan spacecraft thermal control system design and performance

    Microsoft Academic Search

    James C. Neuman; Joseph A. Buescher; Gregory J. Esterl

    1993-01-01

    A thermal control system of the Magellan spacecraft launched on May 4, 1989 to perform radar mapping and other science experiments is described. The thermal control system design required sustained operations near Venus in a three-axis stabilized spacecraft. It is concluded that, despite the constraints imposed by Magellan's thermal degradation, the primary mission goal of mapping at least 70 percent

  10. A New Algorithm for Attitude Determination Using Global Positioning System Signals

    E-print Network

    Crassidis, John L.

    A New Algorithm for Attitude Determination Using Global Positioning System Signals John L-by-point (deterministic) attitude solution of a vehicle using Global Positioning System phase difference measurements Global Positioning System (GPS) receivers provides a novel approach for three-axis attitude determination

  11. Design and development issues for a control actuation system for the AdKEM

    Microsoft Academic Search

    Stephen C. Cayson

    1992-01-01

    The paper addresses three issues critical to the design and development of the control actuation system (CAS) for the Advanced Kinetic Energy Missile (AdKEM), a hypersonic, kinetic energy weapon system. First of all, the small missile diameter requires that a high performance, three-axis control system be packaged within a limited amount of space. The second critical issue is the need

  12. Managing vulnerabilities of information systems to security incidents

    Microsoft Academic Search

    Fariborz Farahmand; Shamkant B. Navathe; Philip H. Enslow Jr.; Gunter P. Sharp

    2003-01-01

    Information security-conscious managers of organizations have the responsibility to advise their senior management of the level of risks faced by the information systems. This requires managers to conduct vulnerability assessment as the first step of a risk analysis approach. However, a lack of real world data classification of security threats and develops a three-axis view of the threat space. It

  13. Predictive Attitude Estimation Using Global Positioning System Signals

    E-print Network

    Crassidis, John L.

    determination mission was flown on the REX-II spacecraft [6], which furthermore tested actual attitude control for three-axis attitude determination has been successfully proven on many systems in the past [1 GPS attitude determination using post-processed measurements. To obtain maximum GPS visibility

  14. Dynamic interactions between hypersonic vehicle aerodynamics and propulsion system performance

    NASA Technical Reports Server (NTRS)

    Flandro, G. A.; Roach, R. L.; Buschek, H.

    1992-01-01

    Described here is the development of a flexible simulation model for scramjet hypersonic propulsion systems. The primary goal is determination of sensitivity of the thrust vector and other system parameters to angle of attack changes of the vehicle. Such information is crucial in design and analysis of control system performance for hypersonic vehicles. The code is also intended to be a key element in carrying out dynamic interaction studies involving the influence of vehicle vibrations on propulsion system/control system coupling and flight stability. Simple models are employed to represent the various processes comprising the propulsion system. A method of characteristics (MOC) approach is used to solve the forebody and external nozzle flow fields. This results in a very fast computational algorithm capable of carrying out the vast number of simulation computations needed in guidance, stability, and control studies. The three-dimensional fore- and aft body (nozzle) geometry is characterized by the centerline profiles as represented by a series of coordinate points and body cross-section curvature. The engine module geometry is represented by an adjustable vertical grid to accommodate variations of the field parameters throughout the inlet and combustor. The scramjet inlet is modeled as a two-dimensional supersonic flow containing adjustable sidewall wedges and multiple fuel injection struts. The inlet geometry including the sidewall wedge angles, the number of injection struts, their sweepback relative to the vehicle reference line, and strut cross-section are user selectable. Combustion is currently represented by a Rayleigh line calculation including corrections for variable gas properties; improved models are being developed for this important element of the propulsion flow field. The program generates (1) variation of thrust magnitude and direction with angle of attack, (2) pitching moment and line of action of the thrust vector, (3) pressure and temperature distributions throughout the system, and (4) performance parameters such as thrust coefficient, specific impulse, mass flow rates, and equivalence ratio. Preliminary results are in good agreement with available performance data for systems resembling the NASP vehicle configuration.

  15. Exact steering law for pyramid-type four control moment gyro systems

    E-print Network

    Roberts, Mark

    internal actuators used in attitude control systems of spacecrafts and satellites. A single gimbal CMG is not very efficient way of control either. Authors have derived analytical solution of exact feedback CMGs pyramid system. A rest- to-rest three axis attitude control problem is solved analytically

  16. A system for autonomous navigation and attitude determination in geostationary orbit

    Microsoft Academic Search

    P. Maute; O. Defonte

    1990-01-01

    The results of a joint CNES-Aerospatiale study leading to an autonomous navigation and three-axis attitude determination system are presented. The principles, software architecture, preprocessing, navigator, orbit control, and hardware configuration of the system are described. The optimization process is described as well with attention given to sensor architecture and operational modes. It is found that the presence of an additional

  17. Aircraft ground test and subscale model results of axial thrust loss caused by thrust vectoring using turning vanes

    NASA Technical Reports Server (NTRS)

    Johnson, Steven A.

    1992-01-01

    The NASA-Dryden F/A-18 high alpha research vehicle was modified to incorporate three independently controlled turning vanes located aft of the primary nozzle of each engine to vector thrust for pitch and yaw control. Ground measured axial thrust losses were compared with the results from a 14.25 pct. cold jet model for single and dual vanes inserted up to 25 degs into the engine exhaust. Data are presented for nozzle pressure ratios of 2.0 and 3.0 and nozzle exit areas of 253 and 348 sq in. The results indicate that subscale nozzle test results properly predict trends but underpredict the full scale results by approx. 1 to 4.5 pct. in thrust loss.

  18. Problems in flight system simulation

    Microsoft Academic Search

    E. J. McGlinn

    1958-01-01

    In the summer of 1951, the Research Laboratories Division of Bendix Aviation Corporation initiated the development of a high-performance three-axis flight systems simulator for the Office of Naval Research, Department of the Navy. This effort was completed late in 1953 with the satisfactory construction of analog equipment designed primarily for the simulation of high-speed air-to-air missiles in real time. This

  19. Study of attitude control systems using the earth's magnetic field at synchronous altitudes

    Microsoft Academic Search

    R. S. Harris

    1978-01-01

    Those control functions, typical of spin stabilized and three axis stabilized momentum biased satellites that are suitable for implementation by magnetic control concepts, are discussed and detailed design of such control systems is presented including hardware and interface requirements. A model of the geomagnetic field at geosynchronous altitude was derived including three basic field components - one generated within the

  20. Stealth treatment of turntable in ultra-wideband Radio Frequency Simulation System

    Microsoft Academic Search

    Hua Li; Jianjiang Zhou; Hanwu Zhao; Gencai Zhu

    2010-01-01

    Stealth treatment of turntable in Radio Frequency Simulation System (RFSS) with large relative bandwidth is studied in this paper. First, the shape design of three-axis turntable is optimized. Then, the surface-induced current distribution of turntable under horizontal polarization is computed and strong scattering regions are analyzed. Finally, stealth treatments as choosing absorbing materials and suitable coating methods are tested. Based

  1. Critical engine system design characteristics for SSTO vehicles

    NASA Astrophysics Data System (ADS)

    Fanciullo, Thomas J.; Judd, D. C.; Obrien, C. J.

    1992-02-01

    Engine system design characteristics are summarized for typical vertical take-off and landing (VTOL) and vertical take-off and horizontal landing (VTHL) Strategic Defense Initiative Organization (SDIO) single stage to orbit (SSTO) vehicles utilizing plug nozzle configurations. Power cycle selection trades involved the unique modular platelet engine (MPE) with the use of (1) LO2 and LH2 at fixed and variable mixture ratios, (2) LO2 and propane or RP-1, and (3) dual fuels (LO2 with LH2 and C3H8). The number of thrust cells and modules were optimized. Dual chamber bell and a cluster of conventional bell nozzle configurations were examined for comparison with the plug configuration. Thrust modulation (throttling) was selected for thrust vector control. Installed thrust ratings were established to provide an additional 20 percent overthrust capability for engine out operation. Turbopumps were designed to operate at subcritical speeds to facilitate a wide range of throttling and long life. A unique dual spool arrangement with hydrostatic bearings was selected for the LH2 turbopump. Controls and health monitoring with expert systems for diagnostics are critical subsystems to ensure minimum maintenance and supportability for a less than seven day turnaround. The use of an idle mode start, in conjunction with automated health condition monitoring, allows the rocket propulsion system to operate reliably in the manner of present day aircraft propulsion.

  2. A new mobile phone-based ECG monitoring system.

    PubMed

    Iwamoto, Junichi; Yonezawa, Yoshiharu; Ogawa, Hiromichi Maki Hidekuni; Ninomiya, Ishio; Sada, Kouji; Hamada, Shingo; Hahn, Allen W; Caldwell, W Morton

    2007-01-01

    We have developed a system for monitoring a patient's electrocardiogram (ECG) and movement during daily activities. The complete system is mounted on chest electrodes and continuously samples the ECG and three axis accelerations. When the patient feels a heart discomfort, he or she pushes the data transmission switch on the recording system and the system sends the recorded ECG waveforms and three axis accelerations of the two prior minutes, and for two minutes after the switch is pressed. The data goes directly to a hospital server computer via a 2.4 GHz low power mobile phone. These data are stored on a server computer and downloaded to the physician's Java mobile phone. The physician can display the data on the phone's liquid crystal display. PMID:17487101

  3. Design and on-orbit performance of the attitude determination and control system for the ZDPS-1A pico-satellite

    NASA Astrophysics Data System (ADS)

    Xiang, Tian; Meng, Tao; Wang, Hao; Han, Ke; Jin, Zhong-He

    2012-08-01

    The ZDPS-1A pico-satellite, developed by the Zhejiang University, is featured with a three-axis stabilizing capability. It is 15×15×15 cm3 cube-shaped satellite with a total mass of 3.5 kg. ZDPS-1A is the first pico-satellite that has been launched successfully in China. The mission of ZDPS-1A is on-orbit system verification of student-build pico-satellite and wide range earth observation with a micro panoramic camera. A miniature momentum wheel is employed to offer gyro stiffness stability in the pitch (orbit normal) axis. Magnetic coils are employed to generate control torques to achieve the three-axis stabilization of nadir-pointing. The attitude sensors employed in the design include two three-axis magnetometers (TAMs), a three-axis gyro, and two sun sensors. Both ground simulations and on-orbit testing are conducted to verify the feasibility of the given attitude determination and control system (ADCS).

  4. A system to measure surface fluxes of momentum, sensible heat, water vapour and carbon dioxide

    Microsoft Academic Search

    J. B. Moncrieff; J. M. Massheder; H. de Bruin; J. A. Elbers; T. Friborg; B. Heusinkveld; P. Kabat; S. Scott; H. Soegaard; A. Verhoef

    1997-01-01

    An eddy covariance system is described which has been developed jointly at a number of European laboratories and which was used widely in HAPEX-Sahel. The system uses commercially available instrumentation: a three-axis sonic anemometer and an IR gas analyser which is used in a closed-path mode, i.e. air is brought to the optical bench by being ducted down a sampling

  5. Analysis for dynamics decoupling of photoelectric tracking system with collimated axis eccentricity

    NASA Astrophysics Data System (ADS)

    Xu, Zhengfeng; Chen, Jinling; Chen, Hongbin; Tang, Tao

    2007-12-01

    The horizontal or X-Y tracking gimbal of photoelectric system has spatial blind region because of themselves framework limit, In order to solve the problem of blind region and also track object with high-precision and speediness, a new three-axis photoelectric theodolite system with collimation axis eccentricity is brought forward, It can achieve large-scale space tracking by means of mutual conversion of tracking modes. There is dynamics and inertia coupling in the three-axis photoelectric tracking system, the kind of coupling will directly affect the static state, dynamic state characteristics and indeed system stability. To get high performance photoelectric tracking system, dynamics coupling must be took into account in three-axis photoelectric tracking system. The matrix transformation of angle velocity and moment can be derived from the reference frame relation of three-axis photoelectric tracking system with collimation axis eccentricity; the kinematics property is analyzed by momentum theorem and angular momentum theorem. Through the analysis of inertia coupling in axes, their object differential equation is gained. In the last, the system nonlinear coupling dynamics model is built using multi-body system theory and Lagrange-Eula equation. From the analysis of dynamic equation, it is evident that the photoelectric tracking system with three input and three output contain complicated nonlinear coupling factor, the study of decoupling control must be carried through in order to get high-precision control system. By importing the geometry coordinate transformation, dynamic compensation and nonlinear state feedback, the nonlinear factor can get accurate elimination on base of the system reversibility of input and output, the three-axis photoelectric tracking system control differential equation can be got nonlinear decoupling by static state feedback, several variable photoelectric tracking system turn into three respective self-governed singularity input and output control system to achieve state or output tracking control. The coupling and decoupling control system is respectively simulated using MATLAB's simulink toolbox. Simulation results have proved that the decoupling control method proposed and the decoupling controller designed for system are effective.

  6. Design of power electronics for TVC EMA systems

    Microsoft Academic Search

    R. Mark Nelms

    1993-01-01

    The Composite Development Division of the Propulsion Laboratory at Marshall Space Flight Center (MSFC) is currently developing a class of electromechanical actuators (EMA's) for use in space transportation applications such as thrust vector control (TVC) and propellant control valves (PCV). These high power servomechanisms will require rugged, reliable, and compact power electronic modules capable of modulating several hundred amperes of

  7. The control system for the X-33 linear aerospike engine

    Microsoft Academic Search

    J. E. Jackson; E. Espenschied; J. Klop

    1998-01-01

    The linear aerospike engine is being developed for single-stage-to-orbit (SSTO) applications. The primary advantages of a linear aerospike engine over a conventional bell nozzle engine include altitude compensation, which provides enhanced performance, and lower vehicle weight resulting from the integration of the engine into the vehicle structure. A feature of this integration is the ability to provide thrust vector control

  8. A Wireless Swing Angle Measurement Scheme Using Attitude Heading Reference System Sensing Units Based on Microelectromechanical Devices

    PubMed Central

    Gao, Bingtuan; Zhu, Zhenyu; Zhao, Jianguo; Huang, Boran

    2014-01-01

    Feasible real-time swing angle measurement is significant to improve the efficiency and safety of industrial crane systems. This paper presents a wireless microelectromechanical system (MEMS)-based swing angle measurement system. The system consists of two attitude heading reference system (AHRS) sensing units with a wireless communication function, which are mounted on the hook (or payload) and the jib (or base) of the crane, respectively. With a combination of a three-axis accelerometer, a three-axis gyroscope and a three-axis magnetometer, the standard extended Kalman filter (EKF) is used to estimate the desired orientation of the payload and the base. Wireless ZigBee communication is employed to transmit the orientation of the payload to the sensing unit mounted on the base, which measures the orientation of the base. Because several physical parameters from the payload to the base can be acquired from the original crane control system, the swing angles of the payload can be calculated based on the two measured orientation parameters together with the known physical parameters. Experiments were performed to show the feasibility and effectiveness of the proposed swing angle measurement system. PMID:25436657

  9. Space Launch System Implementation of Adaptive Augmenting Control

    NASA Technical Reports Server (NTRS)

    VanZwieten, Tannen S.; Wall, John H.; Orr, Jeb S.

    2014-01-01

    Given the complex structural dynamics, challenging ascent performance requirements, and rigorous flight certification constraints owing to its manned capability, the NASA Space Launch System (SLS) launch vehicle requires a proven thrust vector control algorithm design with highly optimized parameters to robustly demonstrate stable and high performance flight. On its development path to preliminary design review (PDR), the stability of the SLS flight control system has been challenged by significant vehicle flexibility, aerodynamics, and sloshing propellant dynamics. While the design has been able to meet all robust stability criteria, it has done so with little excess margin. Through significant development work, an adaptive augmenting control (AAC) algorithm previously presented by Orr and VanZwieten, has been shown to extend the envelope of failures and flight anomalies for which the SLS control system can accommodate while maintaining a direct link to flight control stability criteria (e.g. gain & phase margin). In this paper, the work performed to mature the AAC algorithm as a baseline component of the SLS flight control system is presented. The progress to date has brought the algorithm design to the PDR level of maturity. The algorithm has been extended to augment the SLS digital 3-axis autopilot, including existing load-relief elements, and necessary steps for integration with the production flight software prototype have been implemented. Several updates to the adaptive algorithm to increase its performance, decrease its sensitivity to expected external commands, and safeguard against limitations in the digital implementation are discussed with illustrating results. Monte Carlo simulations and selected stressing case results are shown to demonstrate the algorithm's ability to increase the robustness of the integrated SLS flight control system.

  10. X-31 in Banked Flight over Edwards AFB

    NASA Technical Reports Server (NTRS)

    1994-01-01

    One of two X-31 Enhanced Fighter Maneuverability Demonstrator aircraft, flown by an international test organization at NASA's Dryden Flight Research Center, Edwards, California, turns tightly over the desert floor on a research flight. The aircraft obtained data that may apply to the design and development of highly-maneuverable aircraft of the future. The X-31 had a three-axis thrust-vectoring system, coupled with advanced flight controls, to allow it to maneuver tightly at very high angles of attack. The X-31 Enhanced Fighter Maneuverability (EFM) demonstrator flew at the Ames- Dryden Flight Research Facility, Edwards, California (redesignated the Dryden Flight Research Center in 1994) from February 1992 until 1995 and before that at the Air Force's Plant 42 in Palmdale, California. The goal of the project was to provide design information for the next generation of highly maneuverable fighter aircraft. This program demonstrated the value of using thrust vectoring (directing engine exhaust flow) coupled with an advanced flight control system to provide controlled flight to very high angles of attack. The result was a significant advantage over most conventional fighters in close-in combat situations. The X-31 flight program focused on agile flight within the post-stall regime, producing technical data to give aircraft designers a better understanding of aerodynamics, effectiveness of flight controls and thrust vectoring, and airflow phenomena at high angles of attack. Stall is a condition of an airplane or an airfoil in which lift decreases and drag increases due to the separation of airflow. Thrust vectoring compensates for the loss of control through normal aerodynamic surfaces that occurs during a stall. Post-stall refers to flying beyond the normal stall angle of attack, which in the X-31 was at a 30-degree angle of attack. During Dryden flight testing, the X-31 aircraft established several milestones. On November 6, 1992, the X-31 achieved controlled flight at a 70-degree angle of attack. On April 29, 1993, the second X-31 successfully executed a rapid minimum-radius, 180-degree turn using a post-stall maneuver, flying well beyond the aerodynamic limits of any conventional aircraft. This revolutionary maneuver has been called the 'Herbst Maneuver' after Wolfgang Herbst, a German proponent of using post-stall flight in air-to-air combat. It is also called a 'J Turn' when flown to an arbitrary heading change. The aircraft was flown in tactical maneuvers against an F/A-18 and other tactical aircraft as part of the test flight program. During November and December 1993, the X-31 reached a supersonic speed of Mach 1.28. In 1994, the X-31 program installed software to demonstrate quasi-tailless operation. The X-31 flight test program was conducted by an international test organization (ITO) managed by the Advanced Research Projects Office (ARPA), known as the Defense Advanced Research Projects Office (DARPA) before March 1993. The ITO included the U.S. Navy and U.S. Air Force, Rockwell Aerospace, the Federal Republic of Germany, Daimler-Benz (formerly Messerschmitt-Bolkow-Blohm and Deutsche Aerospace), and NASA. Gary Trippensee was the ITO director and NASA Project Manager. Pilots came from participating organizations. The X-31 was 43.33 feet long with a wingspan of 23.83 feet. It was powered by a single General Electric P404-GE-400 turbofan engine that produced 16,000 pounds of thrust in afterburner.

  11. X-31 in Flight with F-18 Chase

    NASA Technical Reports Server (NTRS)

    1994-01-01

    One of two X-31 Enhanced Fighter Maneuverability Demonstrator aircraft (top), flown by an international test organization at NASA's Dryden Flight Research Center, Edwards, California, is seen here accompanied by a NASA F-18 chase aircraft during a research flight over the desert floor. The X-31 had a three-axis thrust-vectoring system, coupled with advanced flight controls, to allow it to maneuver tightly at very high angles of attack. The X-31 Enhanced Fighter Maneuverability (EFM) demonstrator flew at the Ames- Dryden Flight Research Facility, Edwards, California (redesignated the Dryden Flight Research Center in 1994) from February 1992 until 1995 and before that at the Air Force's Plant 42 in Palmdale, California. The goal of the project was to provide design information for the next generation of highly maneuverable fighter aircraft. This program demonstrated the value of using thrust vectoring (directing engine exhaust flow) coupled with an advanced flight control system to provide controlled flight to very high angles of attack. The result was a significant advantage over most conventional fighters in close-in combat situations. The X-31 flight program focused on agile flight within the post-stall regime, producing technical data to give aircraft designers a better understanding of aerodynamics, effectiveness of flight controls and thrust vectoring, and airflow phenomena at high angles of attack. Stall is a condition of an airplane or an airfoil in which lift decreases and drag increases due to the separation of airflow. Thrust vectoring compensates for the loss of control through normal aerodynamic surfaces that occurs during a stall. Post-stall refers to flying beyond the normal stall angle of attack, which in the X-31 was at a 30-degree angle of attack. During Dryden flight testing, the X-31 aircraft established several milestones. On November 6, 1992, the X-31 achieved controlled flight at a 70-degree angle of attack. On April 29, 1993, the second X-31 successfully executed a rapid minimum-radius, 180-degree turn using a post-stall maneuver, flying well beyond the aerodynamic limits of any conventional aircraft. This revolutionary maneuver has been called the 'Herbst Maneuver' after Wolfgang Herbst, a German proponent of using post-stall flight in air-to-air combat. It is also called a 'J Turn' when flown to an arbitrary heading change. The aircraft was flown in tactical maneuvers against an F/A-18 and other tactical aircraft as part of the test flight program. During November and December 1993, the X-31 reached a supersonic speed of Mach 1.28. In 1994, the X-31 program installed software to demonstrate quasi-tailless operation. The X-31 flight test program was conducted by an international test organization (ITO) managed by the Advanced Research Projects Office (ARPA), known as the Defense Advanced Research Projects Office (DARPA) before March 1993. The ITO included the U.S. Navy and U.S. Air Force, Rockwell Aerospace, the Federal Republic of Germany, Daimler-Benz (formerly Messerschmitt-Bolkow-Blohm and Deutsche Aerospace), and NASA. Gary Trippensee was the ITO director and NASA Project Manager. Pilots came from participating organizations. The X-31 was 43.33 feet long with a wingspan of 23.83 feet. It was powered by a single General Electric P404-GE-400 turbofan engine that produced 16,000 pounds of thrust in afterburner.

  12. X-31 in Flight over Edwards AFB

    NASA Technical Reports Server (NTRS)

    1994-01-01

    One of two X-31 Enhanced Fighter Maneuverability Demonstrator aircraft, flown by an international test organization at NASA's Dryden Flight Research Center, Edwards, California, turns tightly over the desert floor on a research flight. The aircraft obtained data that may apply to the design and development of highly-maneuverable aircraft of the future. The X-31 had a three-axis thrust-vectoring system, coupled with advanced flight controls, to allow it to maneuver tightly at very high angles of attack. The X-31 Enhanced Fighter Maneuverability (EFM) demonstrator flew at the Ames- Dryden Flight Research Facility, Edwards, California (redesignated the Dryden Flight Research Center in 1994) from February 1992 until 1995 and before that at the Air Force's Plant 42 in Palmdale, California. The goal of the project was to provide design information for the next generation of highly maneuverable fighter aircraft. This program demonstrated the value of using thrust vectoring (directing engine exhaust flow) coupled with an advanced flight control system to provide controlled flight to very high angles of attack. The result was a significant advantage over most conventional fighters in close-in combat situations. The X-31 flight program focused on agile flight within the post-stall regime, producing technical data to give aircraft designers a better understanding of aerodynamics, effectiveness of flight controls and thrust vectoring, and airflow phenomena at high angles of attack. Stall is a condition of an airplane or an airfoil in which lift decreases and drag increases due to the separation of airflow. Thrust vectoring compensates for the loss of control through normal aerodynamic surfaces that occurs during a stall. Post-stall refers to flying beyond the normal stall angle of attack, which in the X-31 was at a 30-degree angle of attack. During Dryden flight testing, the X-31 aircraft established several milestones. On November 6, 1992, the X-31 achieved controlled flight at a 70-degree angle of attack. On April 29, 1993, the second X-31 successfully executed a rapid minimum-radius, 180-degree turn using a post-stall maneuver, flying well beyond the aerodynamic limits of any conventional aircraft. This revolutionary maneuver has been called the 'Herbst Maneuver' after Wolfgang Herbst, a German proponent of using post-stall flight in air-to-air combat. It is also called a 'J Turn' when flown to an arbitrary heading change. The aircraft was flown in tactical maneuvers against an F/A-18 and other tactical aircraft as part of the test flight program. During November and December 1993, the X-31 reached a supersonic speed of Mach 1.28. In 1994, the X-31 program installed software to demonstrate quasi-tailless operation. The X-31 flight test program was conducted by an international test organization (ITO) managed by the Advanced Research Projects Office (ARPA), known as the Defense Advanced Research Projects Office (DARPA) before March 1993. The ITO included the U.S. Navy and U.S. Air Force, Rockwell Aerospace, the Federal Republic of Germany, Daimler-Benz (formerly Messerschmitt-Bolkow-Blohm and Deutsche Aerospace), and NASA. Gary Trippensee was the ITO director and NASA Project Manager. Pilots came from participating organizations. The X-31 was 43.33 feet long with a wingspan of 23.83 feet. It was powered by a single General Electric P404-GE-400 turbofan engine that produced 16,000 pounds of thrust in afterburner.

  13. X-31 in Flight with F-18 Chase

    NASA Technical Reports Server (NTRS)

    1994-01-01

    A head-on view of the X-31 Enhanced Fighter Maneuverability Demonstrator aircraft (right), accompanied by a NASA F-18 chase aircraft during a research flight over the desert floor. The X-31 had a three-axis thrust-vectoring system, coupled with advanced flight controls, to allow it to maneuver tightly at very high angles of attack. The X-31 Enhanced Fighter Maneuverability (EFM) demonstrator flew at the Ames- Dryden Flight Research Facility, Edwards, California (redesignated the Dryden Flight Research Center in 1994) from February 1992 until 1995 and before that at the Air Force's Plant 42 in Palmdale, California. The goal of the project was to provide design information for the next generation of highly maneuverable fighter aircraft. This program demonstrated the value of using thrust vectoring (directing engine exhaust flow) coupled with an advanced flight control system to provide controlled flight to very high angles of attack. The result was a significant advantage over most conventional fighters in close-in combat situations. The X-31 flight program focused on agile flight within the post-stall regime, producing technical data to give aircraft designers a better understanding of aerodynamics, effectiveness of flight controls and thrust vectoring, and airflow phenomena at high angles of attack. Stall is a condition of an airplane or an airfoil in which lift decreases and drag increases due to the separation of airflow. Thrust vectoring compensates for the loss of control through normal aerodynamic surfaces that occurs during a stall. Post-stall refers to flying beyond the normal stall angle of attack, which in the X-31 was at a 30-degree angle of attack. During Dryden flight testing, the X-31 aircraft established several milestones. On November 6, 1992, the X-31 achieved controlled flight at a 70-degree angle of attack. On April 29, 1993, the second X-31 successfully executed a rapid minimum-radius, 180-degree turn using a post-stall maneuver, flying well beyond the aerodynamic limits of any conventional aircraft. This revolutionary maneuver has been called the 'Herbst Maneuver' after Wolfgang Herbst, a German proponent of using post-stall flight in air-to-air combat. It is also called a 'J Turn' when flown to an arbitrary heading change. The aircraft was flown in tactical maneuvers against an F/A-18 and other tactical aircraft as part of the test flight program. During November and December 1993, the X-31 reached a supersonic speed of Mach 1.28. In 1994, the X-31 program installed software to demonstrate quasi-tailless operation. The X-31 flight test program was conducted by an international test organization (ITO) managed by the Advanced Research Projects Office (ARPA), known as the Defense Advanced Research Projects Office (DARPA) before March 1993. The ITO included the U.S. Navy and U.S. Air Force, Rockwell Aerospace, the Federal Republic of Germany, Daimler-Benz (formerly Messerschmitt-Bolkow-Blohm and Deutsche Aerospace), and NASA. Gary Trippensee was the ITO director and NASA Project Manager. Pilots came from participating organizations. The X-31 was 43.33 feet long with a wingspan of 23.83 feet. It was powered by a single General Electric P404-GE-400 turbofan engine that produced 16,000 pounds of thrust in afterburner.

  14. X-31 Kiel Probe Side View

    NASA Technical Reports Server (NTRS)

    1993-01-01

    A photograph of the noseboom on the X-31 shows the Kiel air data probe angled at 10 degrees to better align the tip with the airflow at very high angles of attack. The devices were mounted on the nose of the X-31s to measure air pressure. Icing in the unheated Kiel probe on the first X-31 (Bu. No. 164584), caused that aircraft to crash on January 19, 1995. The aircraft obtained data that may apply to the design and development of highly-maneuverable aircraft of the future. Each had a three-axis thrust-vectoring system, coupled with advanced flight controls, to allow it to maneuver tightly at very high angles of attack. The X-31 Enhanced Fighter Maneuverability (EFM) demonstrator flew at the Ames- Dryden Flight Research Facility, Edwards, California (redesignated the Dryden Flight Research Center in 1994) from February 1992 until 1995 and before that at the Air Force's Plant 42 in Palmdale, California. The goal of the project was to provide design information for the next generation of highly maneuverable fighter aircraft. This program demonstrated the value of using thrust vectoring (directing engine exhaust flow) coupled with an advanced flight control system to provide controlled flight to very high angles of attack. The result was a significant advantage over most conventional fighters in close-in combat situations. The X-31 flight program focused on agile flight within the post-stall regime, producing technical data to give aircraft designers a better understanding of aerodynamics, effectiveness of flight controls and thrust vectoring, and airflow phenomena at high angles of attack. Stall is a condition of an airplane or an airfoil in which lift decreases and drag increases due to the separation of airflow. Thrust vectoring compensates for the loss of control through normal aerodynamic surfaces that occurs during a stall. Post-stall refers to flying beyond the normal stall angle of attack, which in the X-31 was at a 30-degree angle of attack. During Dryden flight testing, the X-31 aircraft established several milestones. On November 6, 1992, the X-31 achieved controlled flight at a 70-degree angle of attack. On April 29, 1993, the second X-31 successfully executed a rapid minimum-radius, 180-degree turn using a post-stall maneuver, flying well beyond the aerodynamic limits of any conventional aircraft. This revolutionary maneuver has been called the 'Herbst Maneuver' after Wolfgang Herbst, a German proponent of using post-stall flight in air-to-air combat. It is also called a 'J Turn' when flown to an arbitrary heading change. The aircraft was flown in tactical maneuvers against an F/A-18 and other tactical aircraft as part of the test flight program. During November and December 1993, the X-31 reached a supersonic speed of Mach 1.28. In 1994, the X-31 program installed software to demonstrate quasi-tailless operation. The X-31 flight test program was conducted by an international test organization (ITO) managed by the Advanced Research Projects Office (ARPA), known as the Defense Advanced Research Projects Office (DARPA) before March 1993. The ITO included the U.S. Navy and U.S. Air Force, Rockwell Aerospace, the Federal Republic of Germany, Daimler-Benz (formerly Messerschmitt-Bolkow-Blohm and Deutsche Aerospace), and NASA. Gary Trippensee was the ITO director and NASA Project Manager. Pilots came from participating organizations. The X-31 was 43.33 feet long with a wingspan of 23.83 feet. It was powered by a single General Electric P404-GE-400 turbofan engine that produced 16,000 pounds of thrust in afterburner.

  15. X-31 Kiel Probe Close-up Showing Inside

    NASA Technical Reports Server (NTRS)

    1993-01-01

    A close-up photograph of the Kiel air data probe on the noseboom on the X-31 aircraft shows the orifices used to collect air pressure measurements. Icing in the unheated Kiel probe on the first X-31 (Bu. No. 164584) caused that aircraft to crash. The aircraft obtained data that may apply to the design and development of highly-maneuverable aircraft of the future. Each has a three-axis thrust-vectoring system, coupled with advanced flight controls, to allow it to maneuver tightly at very high angles of attack. The X-31 Enhanced Fighter Maneuverability (EFM) demonstrator flew at the Ames- Dryden Flight Research Facility, Edwards, California (redesignated the Dryden Flight Research Center in 1994) from February 1992 until 1995 and before that at the Air Force's Plant 42 in Palmdale, California. The goal of the project was to provide design information for the next generation of highly maneuverable fighter aircraft. This program demonstrated the value of using thrust vectoring (directing engine exhaust flow) coupled with an advanced flight control system to provide controlled flight to very high angles of attack. The result was a significant advantage over most conventional fighters in close-in combat situations. The X-31 flight program focused on agile flight within the post-stall regime, producing technical data to give aircraft designers a better understanding of aerodynamics, effectiveness of flight controls and thrust vectoring, and airflow phenomena at high angles of attack. Stall is a condition of an airplane or an airfoil in which lift decreases and drag increases due to the separation of airflow. Thrust vectoring compensates for the loss of control through normal aerodynamic surfaces that occurs during a stall. Post-stall refers to flying beyond the normal stall angle of attack, which in the X-31 was at a 30-degree angle of attack. During Dryden flight testing, the X-31 aircraft established several milestones. On November 6, 1992, the X-31 achieved controlled flight at a 70-degree angle of attack. On April 29, 1993, the second X-31 successfully executed a rapid minimum-radius, 180-degree turn using a post-stall maneuver, flying well beyond the aerodynamic limits of any conventional aircraft. This revolutionary maneuver has been called the 'Herbst Maneuver' after Wolfgang Herbst, a German proponent of using post-stall flight in air-to-air combat. It is also called a 'J Turn' when flown to an arbitrary heading change. The aircraft was flown in tactical maneuvers against an F/A-18 and other tactical aircraft as part of the test flight program. During November and December 1993, the X-31 reached a supersonic speed of Mach 1.28. In 1994, the X-31 program installed software to demonstrate quasi-tailless operation. The X-31 flight test program was conducted by an international test organization (ITO) managed by the Advanced Research Projects Office (ARPA), known as the Defense Advanced Research Projects Office (DARPA) before March 1993. The ITO included the U.S. Navy and U.S. Air Force, Rockwell Aerospace, the Federal Republic of Germany, Daimler-Benz (formerly Messerschmitt-Bolkow-Blohm and Deutsche Aerospace), and NASA. Gary Trippensee was the ITO director and NASA Project Manager. Pilots came from participating organizations. The X-31 was 43.33 feet long with a wingspan of 23.83 feet. It was powered by a single General Electric P404-GE-400 turbofan engine that produced 16,000 pounds of thrust in afterburner.

  16. X-31 Landing with Drag Chute Deploy

    NASA Technical Reports Server (NTRS)

    1995-01-01

    One of two X-31 Enhanced Fighter Maneuverability Demonstrator aircraft, flown by an international test organization at NASA's Dryden Flight Research Center, Edwards, California, deploys its drag chute upon landing after a research flight. The aircraft obtained data that may apply to the design and development of highly-maneuverable flights of the future. The X-31 had a three-axis thrust-vectoring system, coupled with advanced flight controls, to allow it to maneuver tightly at very high angles of attack. The X-31 Enhanced Fighter Maneuverability (EFM) demonstrator flew at the Ames- Dryden Flight Research Facility, Edwards, California (redesignated the Dryden Flight Research Center in 1994) from February 1992 until 1995 and before that at the Air Force's Plant 42 in Palmdale, California. The goal of the project was to provide design information for the next generation of highly maneuverable fighter aircraft. This program demonstrated the value of using thrust vectoring (directing engine exhaust flow) coupled with an advanced flight control system to provide controlled flight to very high angles of attack. The result was a significant advantage over most conventional fighters in close-in combat situations. The X-31 flight program focused on agile flight within the post-stall regime, producing technical data to give aircraft designers a better understanding of aerodynamics, effectiveness of flight controls and thrust vectoring, and airflow phenomena at high angles of attack. Stall is a condition of an airplane or an airfoil in which lift decreases and drag increases due to the separation of airflow. Thrust vectoring compensates for the loss of control through normal aerodynamic surfaces that occurs during a stall. Post-stall refers to flying beyond the normal stall angle of attack, which in the X-31 was at a 30-degree angle of attack. During Dryden flight testing, the X-31 aircraft established several milestones. On November 6, 1992, the X-31 achieved controlled flight at a 70-degree angle of attack. On April 29, 1993, the second X-31 successfully executed a rapid minimum-radius, 180-degree turn using a post-stall maneuver, flying well beyond the aerodynamic limits of any conventional aircraft. This revolutionary maneuver has been called the 'Herbst Maneuver' after Wolfgang Herbst, a German proponent of using post-stall flight in air-to-air combat. It is also called a 'J Turn' when flown to an arbitrary heading change. The aircraft was flown in tactical maneuvers against an F/A-18 and other tactical aircraft as part of the test flight program. During November and December 1993, the X-31 reached a supersonic speed of Mach 1.28. In 1994, the X-31 program installed software to demonstrate quasi-tailless operation. The X-31 flight test program was conducted by an international test organization (ITO) managed by the Advanced Research Projects Office (ARPA), known as the Defense Advanced Research Projects Office (DARPA) before March 1993. The ITO included the U.S. Navy and U.S. Air Force, Rockwell Aerospace, the Federal Republic of Germany, Daimler-Benz (formerly Messerschmitt-Bolkow-Blohm and Deutsche Aerospace), and NASA. Gary Trippensee was the ITO director and NASA Project Manager. Pilots came from participating organizations. The X-31 was 43.33 feet long with a wingspan of 23.83 feet. It was powered by a single General Electric P404-GE-400 turbofan engine that produced 16,000 pounds of thrust in afterburner.

  17. Development of a GPS-aided motion measurement, pointing, and stabilization system for a Synthetic Aperture Radar. [Global Positioning System (GPS)

    SciTech Connect

    Fellerhoff, J.R.; Kohler, S.M.

    1991-01-01

    An advanced Synthetic Aperture Radar Motion Compensation System has been developed by Sandia National Laboratories (SNL). The system includes a miniaturized high accuracy ring laser gyro inertial measurement unit, a three axis gimbal pointing and stabilization assembly, a differential Global Positioning System (GPS) navigation aiding system, and a pilot guidance system. The system provides several improvements over previous SNL motion compensation systems and is capable of antenna stabilization to less than 0.01 degrees RMS and absolute position measurement to less than 5.0 meters RMS. These accuracies have been demonstrated in recent flight testing aboard a DHC-6-300 Twin Otter'' aircraft.

  18. Three-axis optical force plate for studies in small animal locomotor S. Tonia Hsieh

    E-print Network

    Lauder, George V.

    force plates are not sensitive enough for use on small-bodied vertebrates or invertebrates. The standard and velocity information extracted from video footage, it is pos- sible to calculate torques and other forces

  19. Three-axis Attitude Control with Two Reaction Wheels and Magnetic Torquer Bars

    Microsoft Academic Search

    Bryce A. Roberts; Jeffrey W. Kruk; Thomas B. Ake; Tom S. Englar; Daniel M. Rovner

    2004-01-01

    The Far Ultraviolet Spectroscopic Explorer satellite was launched in 1999 and began a three-year prime mission to collect high-resolution s pectra in the far ultraviolet bandpass. Two and a half years after launch, mechanical failure of two out of four reaction wheels reduced the satellite to two-axis control, halting scie nce observations. This failure prompted modification of the FUSE attitude

  20. Homogeneity studies of multifilamentary BSCCO tapes by three-axis Hall sensor magnetometry

    Microsoft Academic Search

    Jaakko Paasi; Tapio Kalliohaka; Aki Korpela; L. Soderlund; P. F. Hermann; Jozef Kvitkovic; M. Majoros

    1999-01-01

    A new generation of Hall sensor magnetometer for non-destructive studies of superconductor homogeneity is proposed and tested. The magnetometer allows us to measure the three-dimensional spatial dependence of all three components of magnetic field produced by applied or induced currents in the conductor. This new technique is more sensitive to detect small obstacles in the current path than the old

  1. Constant scallop-height tool path generation for three-axis sculptured surface machining

    Microsoft Academic Search

    Hsi-yung Feng; Huiwen Li

    2002-01-01

    This paper presents a new approach for the determination of efficient tool paths in the machining of sculptured surfaces using 3-axis ball-end milling. The objective is to keep the scallop height constant across the machined surface such that redundant tool paths are minimized. Unlike most previous studies on constant scallop-height machining, the present work determines the tool paths without resorting

  2. Geometric Criteria for Gouge-Free Three-Axis Milling of Sculptured Surfaces

    Microsoft Academic Search

    Helmut Pottmann; Johannes Wallner; Georg Glaeser; Bahram Ravani

    1999-01-01

    The paper presents a geometric investigation of collisionfree3-axis milling of surfaces. We consider surfaces with aglobal shape condition: they shall be interpretable as graphsof bivariate functions or shall be star-shaped with respectto a point. If those surfaces satisfy a local millability criterioninvolving curvature information, it is proved that thisimplies globally gouge-free milling. The proofs are basedon general offset surfaces. The

  3. Development of a fold-out rigid solar array for three axis-stabilized geosynchronous satellites

    Microsoft Academic Search

    G. Barkats

    1980-01-01

    This array was developed for point-to-point spacecraft communication purposes. The various components (panel, yoke, and wings), structures and special materials used are described together with the tilting and stowing mechanisms. The panel cell network is made up of four identical interchangeable subpanels. The masses of the different components are itemized. The functional behavior of the equipment is presented together with

  4. A real-time NURBS surface interpolator for precision three-axis CNC machining

    Microsoft Academic Search

    M.-C. Tsai; C.-W. Cheng; M.-Y. Cheng

    2003-01-01

    Due to the fact that the cutting occurs around the cutter contact (CC) point, the efficiency and quality of CNC machining can be improved significantly if the CC velocity along the surface is kept costant. Conventional approaches to machining mainly maintain a constant cutter location (CL) velocity, so that the CC velocity along the surface is often not constant and

  5. Measurement of finger posture and three-axis fingertip touch force using fingernail sensors

    Microsoft Academic Search

    Stephen A. Mascaro; H. Harry Asada

    2004-01-01

    When the human fingertip is pressed against a surface or bent, the hemodynamic state of the fingertip is altered due to mechanical interactions between the fingernail and bone. Normal force, shear force, and finger extension\\/flexion all result in different patterns of blood volume beneath the fingernail. This phenomenon has been exploited in order to detect finger forces and finger posture

  6. Neutron resonance spin-echo upgrade at the three-axis spectrometer FLEXX

    NASA Astrophysics Data System (ADS)

    Groitl, F.; Keller, T.; Quintero-Castro, D. L.; Habicht, K.

    2015-02-01

    We describe the upgrade of the neutron resonance spin-echo setup at the cold neutron triple-axis spectrometer FLEXX at the BER II neutron source at the Helmholtz-Zentrum Berlin. The parameters of redesigned key components are discussed, including the radio frequency (RF) spin-flip coils, the magnetic shield, and the zero field coupling coils. The RF-flippers with larger beam windows allow for an improved neutron flux transfer from the source to the sample and further to the analyzer. The larger beam cross sections permit higher coil inclination angles and enable measurements on dispersive excitations with a larger slope of the dispersion. Due to the compact design of the spin-echo units in combination with the increased coil tilt angles, the accessible momentum-range in the Larmor diffraction mode is substantially enlarged. In combination with the redesigned components of the FLEXX spectrometer, including the guide, the S-bender polarizer, the double focusing monochromator, and a Heusler crystal analyzer, the count rate increased by a factor of 15.5, and the neutron beam polarization is enhanced. The improved performance extends the range of feasible experiments, both for inelastic scattering on excitation lifetimes in single crystals, and for high-resolution Larmor diffraction. The experimental characterization of the instrument components demonstrates the reliable performance of the new neutron resonance spin-echo option, now available for the scientific community at FLEXX.

  7. Design of a three-axis parallel-configuration robot for gantry mounting

    NASA Astrophysics Data System (ADS)

    Fielding, Edward R.; Shapiro, Lyall S.; Slogrove, D. A.

    1995-08-01

    A parallel configuration robot is based on closed loop kinematic chains, these offer a number of advantages in terms of strength and rigidity, leading to improved accuracy in robotic assembly applications. This paper, in addition to presenting the basic design issues, discusses the control strategy for the robot. The control of the robot will be PC based, and the main component of the control circuit is an LM 628 motion control chip. A design for the control circuitry is presented in the paper. A full simulation of the design has been carried out using a commercial dynamic simulation package (CADSI DADS) and these results are presented. These include the mapping of the work envelope, the joint angles of the links to enable linear movement of the tool platform, and the torque requirements for the joint actuators.

  8. Characterizing skin using a three-axis parallel drive force-sensitive micro-robot.

    PubMed

    Flynn, Cormac; Taberner, Andrew J; Nielsen, Poul M F

    2010-01-01

    There is a strong need to measure the complex mechanical properties of soft tissues such as skin. An in vivo experiment characterizing the mechanical response of human skin is presented. A rich set of deformations were applied to several positions on the arm using a novel force-sensitive micro-robot. All sites studied exhibit highly non-linear, anisotropic, and viscoelastic behavior. The experiments determined directions in which the skin response was stiffest. These directions agree with accepted orientations of Langer or relaxed skin tension lines. PMID:21096723

  9. Design of power electronics for TVC and EMA systems

    NASA Technical Reports Server (NTRS)

    Nelms, R. Mark; Bell, J. Brett; Shepherd, Michael T.

    1994-01-01

    The Component Development Division of the Propulsion Laboratory at Marshall Space Flight Center (MSFC) is currently developing a class of electromechanical actuators (EMA's) for use in space transportation applications such as thrust vector control (TVC) and propellant control valves (PCV). These high power servomechanisms will require rugged, reliable, and compact power electronic modules capable of modulating several hundred amperes of current at up to 270 volts. MSFC has selected the brushless dc motor for implementation in EMA's. A previous project performed by Auburn University examined the use of the resonant dc link (RDCL) inverter, pulse density modulation (PDM), and mos-controlled thyristors (MCT's) for speed control of a brushless dc motor. The speed of the brushless dc motor is proportional to the applied stator voltage. In a PDM system, the control system determines the number of resonant voltage pulses which must be applied to the stator to achieve a desired speed. The addition of a waveshaping circuit to the front end of a standard three-phase inverter yields a RDCL inverter; the resonant voltage pulses are produced through the action of this wave shaping circuit and the inverter. This project has focused on the implementation of a system which permits zero-voltage switching with the bus voltage clamped at the input voltage level. In the same manner as the RDCL inverter, the inverter selected for this implementation is a combination of waveshaping circuit and a standard three-phase inverter. In addition, this inverter allows a pulse-width modulated (PWM)-like control scheme instead of a PDM scheme. The operation of waveshaping circuit will be described through analysis and waveforms. Design relationships will also be presented.

  10. Underwater test qualification of the Tomahawk booster and jet tab TVC system

    Microsoft Academic Search

    O. Brevig; K. I. Sleigh; R. W. Casebolt; J. R. Ellison

    1979-01-01

    The test results from the underwater static test firings and the underwater missile launches for the qualification of the Tomahawk booster and jet tab thrust vector control (TVC) are presented. The booster motor is described, noting that it is required to launch the missile from a submerged submarine, travel underwater until broach, and to propel the missile to booster burnout

  11. Galactical ultra wide angle Schmidt system

    NASA Astrophysics Data System (ADS)

    Miski, T.; Weber, K.-H.

    1990-03-01

    The Galactical Ultrawideangle Schmidt System (GAUSS) camera is described. The camera is designed for operation in a wavelengh range extending far into vacuum ultraviolet. A three axis stabilized platform with a control range of plus or minus five degrees integrated into the camera design is described. The stages involved in developing the camera are outlined. The unit is designed to be carried on the D2 Spacelab mission accommodated on the D2 Utility Support Structure (USS). Difficulties in meeting contradicting requirements of high precision and wide temperature ranges for a variety of mechanisms with quite different performances are discussed.

  12. Design and development issues for a control actuation system for the AdKEM

    NASA Astrophysics Data System (ADS)

    Cayson, Stephen C.

    1992-05-01

    The paper addresses three issues critical to the design and development of the control actuation system (CAS) for the Advanced Kinetic Energy Missile (AdKEM), a hypersonic, kinetic energy weapon system. First of all, the small missile diameter requires that a high performance, three-axis control system be packaged within a limited amount of space. The second critical issue is the need for a high speed solenoid so that the system performance requirements may be met. Experimental data are presented to quantify the solenoid performance. Finally, the issue of control fin flutter, a phenomenon that could cause control system failure, is addressed.

  13. Space Launch System Development Status

    NASA Technical Reports Server (NTRS)

    Lyles, Garry

    2014-01-01

    Development of NASA's Space Launch System (SLS) heavy lift rocket is shifting from the formulation phase into the implementation phase in 2014, a little more than three years after formal program approval. Current development is focused on delivering a vehicle capable of launching 70 metric tons (t) into low Earth orbit. This "Block 1" configuration will launch the Orion Multi-Purpose Crew Vehicle (MPCV) on its first autonomous flight beyond the Moon and back in December 2017, followed by its first crewed flight in 2021. SLS can evolve to a130-t lift capability and serve as a baseline for numerous robotic and human missions ranging from a Mars sample return to delivering the first astronauts to explore another planet. Benefits associated with its unprecedented mass and volume include reduced trip times and simplified payload design. Every SLS element achieved significant, tangible progress over the past year. Among the Program's many accomplishments are: manufacture of Core Stage test panels; testing of Solid Rocket Booster development hardware including thrust vector controls and avionics; planning for testing the RS-25 Core Stage engine; and more than 4,000 wind tunnel runs to refine vehicle configuration, trajectory, and guidance. The Program shipped its first flight hardware - the Multi-Purpose Crew Vehicle Stage Adapter (MSA) - to the United Launch Alliance for integration with the Delta IV heavy rocket that will launch an Orion test article in 2014 from NASA's Kennedy Space Center. Objectives of this Earth-orbit flight include validating the performance of Orion's heat shield and the MSA design, which will be manufactured again for SLS missions to deep space. The Program successfully completed Preliminary Design Review in 2013 and Key Decision Point C in early 2014. NASA has authorized the Program to move forward to Critical Design Review, scheduled for 2015 and a December 2017 first launch. The Program's success to date is due to prudent use of proven technology, infrastructure, and workforce from the Saturn and Space Shuttle programs, a streamlined management approach, and judicious use of new technologies. The result is a safe, affordable, sustainable, and evolutionary path to development of an unprecedented capability for future missions across the solar system. In an environment of economic challenges, the nationwide SLS team continues to meet ambitious budget and schedule targets. This paper will discuss SLS program and technical accomplishments over the past year and provide a look at the milestones and challenges ahead.

  14. Six-degree-of-freedom simulation of an astronaut detumble system

    NASA Technical Reports Server (NTRS)

    Fowler, W. T.; Neff, J. M.

    1991-01-01

    The problem of stabilizing the attitude of an untethered astronaut in a three-axis tumble is addressed. A simple six thruster detumbling system mounted on the astronaut's Portable Life Support System backpack is analyzed as a possible solution. A six-degree-of-freedom dynamical model is constructed using the Clohessy-Wiltshire equations, Euler's moment equations, and quaternions. The six thruster system produces both moments and forces when activated. However, it is shown that the thrust forces acting on the body during detumbling do not significantly affect the translational motion.

  15. Field Mapping System for Solenoid Magnet

    NASA Astrophysics Data System (ADS)

    Park, K. H.; Jung, Y. K.; Kim, D. E.; Lee, H. G.; Park, S. J.; Chung, C. W.; Kang, B. K.

    2007-01-01

    A three-dimensional Hall probe mapping system for measuring the solenoid magnet of PLS photo-cathode RF e-gun has been developed. It can map the solenoid field either in Cartesian or in cylindrical coordinate system with a measurement reproducibility better than 5 × 10-5 T. The system has three axis motors: one for the azimuthal direction and the other two for the x and z direction. This architecture makes the measuring system simple in fabrication. The magnetic center was calculated using the measured axial component of magnetic field Bz in Cartesian coordinate system because the accuracy of magnetic axis measurement could be improved significantly by using Bz, instead of the radial component of magnetic field Br. This paper describes the measurement system and summarizes the measurement results for the solenoid magnetic of PLS photo-cathode RF e-gun.

  16. CMG-Augmented Control of a Hovering VTOL Platform

    NASA Technical Reports Server (NTRS)

    Lim, K. B.; Moerder, D. D.

    2007-01-01

    This paper describes how Control Moment Gyroscopes (CMGs) can be used for stability augmentation to a thrust vectoring system for a generic Vertical Take-Off and Landing platform. The response characteristics of the platform which uses only thrust vectoring and a second configuration which includes a single-gimbal CMG array are simulated and compared for hovering flight while subject to severe air turbulence. Simulation results demonstrate the effectiveness of a CMG array in its ability to significantly reduce the agility requirement on the thrust vectoring system. Albeit simplifying physical assumptions on a generic CMG configuration, the numerical results also suggest that reasonably sized CMGs will likely be sufficient for a small hovering vehicle.

  17. Motion capture of a pad measured with accelerometers during squeal noise in a real brake system

    NASA Astrophysics Data System (ADS)

    Renaud, Franck; Chevallier, Gaël; Dion, Jean-Luc; Taudière, Guillaume

    2012-11-01

    The operating deflection shape of a pad during squeal noise is measured on a real brake system with three-axis accelerometers. A time-frequency analysis is performed that highlights the dependency of squeal on the hydraulic pressure of the system and shows that squeal occurs simultaneously with harmonic components. The operating deflection shape of this pad before and during squeal is then visualized using interpolation, showing the predominance of bending motion. Finally, the pad motions observed are compared to the real modal basis of a detailed Finite Element model.

  18. Analysis and testing of a soft actuation system for segmented reflector articulation and isolation

    NASA Technical Reports Server (NTRS)

    Jandura, Louise; Agronin, Michael L.

    1991-01-01

    Segmented reflectors have been proposed for space-based applications such as optical communication and large-diameter telescopes. An actuation system for mirrors in a space-based segmented mirror array has been developed as part of the National Aeronautics and Space Administration-sponsored Precision Segmented Reflector program. The actuation system, called the Articulated Panel Module (APM), articulates a mirror panel in 3 degrees of freedom in the submicron regime, isolates the panel from structural motion, and simplifies space assembly of the mirrors to the reflector backup truss. A breadboard of the APM has been built and is described. Three-axis modeling, analysis, and testing of the breadboard is discussed.

  19. An electromechanical actuation system for an expendable launch vehicle

    NASA Technical Reports Server (NTRS)

    Burrows, Linda M.; Roth, Mary Ellen

    1992-01-01

    A major effort at the NASA Lewis Research Center in recent years has been to develop electro-mechanical actuators (EMA's) to replace the hydraulic systems used for thrust vector control (TVC) on launch vehicles. This is an attempt ot overcome the inherent inefficiencies and costs associated with the existing hydraulic structures. General Dynamics Space Systems Division, under contract to NASA Lewis, is developing 18.6 kW (25 hp), 29.8 kW (40 hp), and 52.2 kW (70 hp) peak EMA systems to meet the power demands for TVC on a family of vehicles developed for the National Launch System. These systems utilize a pulse population modulated converter and field-oriented control scheme to obtain independent control of both the voltage and frequency. These techniques allow an induction motor to be operated at its maximum torque at all times. At NASA Lewis, we are building on this technology to develop our own in-house system capable of meeting the peak power requirements for an expendable launch vehicle (ELV) such as the Atlas. Our EMA will be capable of delivering 22.4 kW (30 hp) peak power with a nominal of 6.0 kW (8 hp). This system differs from the previous ones in two areas: (1) the use of advanced control methods, and (2) the incorporation of built-in-test. The advanced controls are essential for minimizing the controller size, while the built-in-test is necessary to enhance the system reliability and vehicle health monitoring. The ultimate goal of this program is to demonstrate an EMA which will be capable of self-test and easy integration into other projects. This paper will describe the effort underway at NASA Lewis to develop an EMA for an Atlas class ELV. An explanation will be given for each major technology block, and the status of each major technology block and the status of the overall program will be reported.

  20. NASA's Space Launch System Development Status

    NASA Technical Reports Server (NTRS)

    Lyles, Garry

    2014-01-01

    Development of the National Aeronautics and Space Administration's (NASA's) Space Launch System (SLS) heavy lift rocket is shifting from the formulation phase into the implementation phase in 2014, a little more than 3 years after formal program establishment. Current development is focused on delivering a vehicle capable of launching 70 metric tons (t) into low Earth orbit. This "Block 1" configuration will launch the Orion Multi-Purpose Crew Vehicle (MPCV) on its first autonomous flight beyond the Moon and back in December 2017, followed by its first crewed flight in 2021. SLS can evolve to a130t lift capability and serve as a baseline for numerous robotic and human missions ranging from a Mars sample return to delivering the first astronauts to explore another planet. Benefits associated with its unprecedented mass and volume include reduced trip times and simplified payload design. Every SLS element achieved significant, tangible progress over the past year. Among the Program's many accomplishments are: manufacture of core stage test barrels and domes; testing of Solid Rocket Booster development hardware including thrust vector controls and avionics; planning for RS- 25 core stage engine testing; and more than 4,000 wind tunnel runs to refine vehicle configuration, trajectory, and guidance. The Program shipped its first flight hardware - the Multi-Purpose Crew Vehicle Stage Adapter (MSA) - to the United Launch Alliance for integration with the Delta IV heavy rocket that will launch an Orion test article in 2014 from NASA's Kennedy Space Center. The Program successfully completed Preliminary Design Review in 2013 and will complete Key Decision Point C in 2014. NASA has authorized the Program to move forward to Critical Design Review, scheduled for 2015 and a December 2017 first launch. The Program's success to date is due to prudent use of proven technology, infrastructure, and workforce from the Saturn and Space Shuttle programs, a streamlined management approach, and judicious use of new technologies. The result is a safe, affordable, sustainable, and evolutionary path to development of an unprecedented capability for future missions across the solar system. In an environment of economic challenges, the nationwide SLS team continues to meet ambitious budget and schedule targets. This paper will discuss SLS Program and technical accomplishments over the past year and provide a look at the milestones and challenges ahead.

  1. A marine direction finding system based on global positioning system

    NASA Astrophysics Data System (ADS)

    D?ni?or, Alin; Izet-Ünsalan, Kunsel-Özel; Ünsalan, Deniz; Tama?, Razvan; D?ni?or, Cosmin

    2015-02-01

    Direction finding and attitude determination is of utmost importance for marine, aerial, spatial and land-based navigation [1], as well as control of vehicles, in surveying and in target acquisition of tracking radars. These problems can be solved using dedicated sensors commonly named as compasses and rate gyros. Unfortunately, the classical means of attitude determination both by magnetic and gyrocompasses become unusable at extreme latitudes. Furthermore, gyrocompasses inherently yield erroneous results on high speed craft. Three-axis attitude of a vehicle can be determined using a GPS receiver with multiple antennas, by measuring carrier phases [2], signal strength [3], or integrated INS/GPS systems [4]. This paper proposes a new method of attitude determination using two low-cost GPS receivers.

  2. Space Shuttle 1976 into mainstream development - Program commitments on schedule to insure careful progress

    NASA Technical Reports Server (NTRS)

    Malkin, M. S.

    1976-01-01

    A progress report is given on various systems, noting conformity to schedule or changes in design. The Orbiter thermal protection system, the Space Shuttle main engine, the intertank for the structural test article (STA), thrust vector control systems, the Kennedy Space Center launch processing system, and Orbiters No. 1 and No. 2 are discussed.

  3. Near real-time stereo vision system

    NASA Technical Reports Server (NTRS)

    Anderson, Charles H. (inventor); Matthies, Larry H. (inventor)

    1993-01-01

    The apparatus for a near real-time stereo vision system for use with a robotic vehicle is described. The system is comprised of two cameras mounted on three-axis rotation platforms, image-processing boards, a CPU, and specialized stereo vision algorithms. Bandpass-filtered image pyramids are computed, stereo matching is performed by least-squares correlation, and confidence ranges are estimated by means of Bayes' theorem. In particular, Laplacian image pyramids are built and disparity maps are produced from the 60 x 64 level of the pyramids at rates of up to 2 seconds per image pair. The first autonomous cross-country robotic traverses (of up to 100 meters) have been achieved using the stereo vision system of the present invention with all computing done onboard the vehicle. The overall approach disclosed herein provides a unifying paradigm for practical domain-independent stereo ranging.

  4. Precision Pointing Control System (PPCS) system design and analysis. [for gimbaled experiment platforms

    NASA Technical Reports Server (NTRS)

    Frew, A. M.; Eisenhut, D. F.; Farrenkopf, R. L.; Gates, R. F.; Iwens, R. P.; Kirby, D. K.; Mann, R. J.; Spencer, D. J.; Tsou, H. S.; Zaremba, J. G.

    1972-01-01

    The precision pointing control system (PPCS) is an integrated system for precision attitude determination and orientation of gimbaled experiment platforms. The PPCS concept configures the system to perform orientation of up to six independent gimbaled experiment platforms to design goal accuracy of 0.001 degrees, and to operate in conjunction with a three-axis stabilized earth-oriented spacecraft in orbits ranging from low altitude (200-2500 n.m., sun synchronous) to 24 hour geosynchronous, with a design goal life of 3 to 5 years. The system comprises two complementary functions: (1) attitude determination where the attitude of a defined set of body-fixed reference axes is determined relative to a known set of reference axes fixed in inertial space; and (2) pointing control where gimbal orientation is controlled, open-loop (without use of payload error/feedback) with respect to a defined set of body-fixed reference axes to produce pointing to a desired target.

  5. Thermal design of the IUE hydrazine auxiliary propulsion system. [International Ultraviolet Explorer

    NASA Technical Reports Server (NTRS)

    Skladany, J. T.; Kelly, W. H.

    1977-01-01

    The International Ultraviolet Explorer is a large astronomical observatory scheduled to be placed in a three-axis stabilized synchronous orbit in the fourth quarter of 1977. The Hydrazine Auxiliary Propulsion System (HAPS) must perform a number of spacecraft maneuvers to achieve a successful mission. This paper describes the thermal design which accomplishes temperature control between 5 and 65 C for all orbital conditions by utilizing multilayer insulation and commandable component heaters. A primary design criteria was the minimization of spacecraft power by the selective use of the solar environment. The thermal design was carefully assessed and verified in both spacecraft thermal balance and subsystem solar simulation testing.

  6. Tracking and data relay satellite system configuration and tradeoff study. Volume 1: Study summary

    NASA Technical Reports Server (NTRS)

    Hill, T. E.

    1973-01-01

    A study was conducted to determine the configuration and tradeoffs of a tracking and data relay satellite. The study emphasized the design of a three axis stabilized satellite and a telecommunications system optimized for support of low and medium data rate user spacecraft. Telecommunications support to low and high, or low medium, and high data rate users, considering launches with the Delta 2914, the Atlas/Centaur, and the space shuttle was also considered. The following subjects are presented: (1) launch and deployment profile, (2) spacecraft mechanical and structural design, (3) attitude stabilization and control subsystem, and (4) reliability analysis.

  7. Finite element based electric motor design optimization

    Microsoft Academic Search

    C. Warren Campbell

    1993-01-01

    The purpose of this effort was to develop a finite element code for the analysis and design of permanent magnet electric motors. These motors would drive electromechanical actuators in advanced rocket engines. The actuators would control fuel valves and thrust vector control systems. Refurbishing the hydraulic systems of the Space Shuttle after each flight is costly and time consuming. Electromechanical

  8. Performance tests of two precision attitude determination systems

    NASA Technical Reports Server (NTRS)

    Mcaloon, K. J.; Farrenkopf, R. L.; Belsky, F. J.; Mann, R. J.

    1977-01-01

    Results of laboratory performance tests of two satellite attitude determination systems are given. One system employed a strapdown star tracker and gyro assembly, the other a single axis, gimballed star tracker and a gyro assembly. The laboratory tests simulated those orbit conditions which would be experienced on a three axis stabilized, earth pointed satellite in geosynchronous orbit. A ground-fixed laboratory test was performed in which system axes remained stationary in the laboratory coordinates while revolving star beams stimulated the star trackers. The laboratory instrumentation techniques used to meet the stringent accuracy requirements are described. Results are presented which show both systems met the performance goal of 3.6 arc seconds. Comparative analyses of both systems are also discussed.

  9. Underactuated spacecraft angular velocity stabilization and three-axis attitude stabilization using two single gimbal control moment gyros

    Microsoft Academic Search

    Lei Jin; Shijie Xu

    2010-01-01

    Angular velocity stabilization control and attitude stabilization control for an underactuated spacecraft using only two single\\u000a gimbal control moment gyros (SGCMGs) as actuators is investigated. First of all, the dynamic model of the underactuated spacecraft\\u000a is established and the singularity of different configurations with the two SGCMGs is analyzed. Under the assumption that\\u000a the gimbal axes of the two SGCMGs

  10. Eclipse II: a new parallel mechanism enabling continuous 360-degree spinning plus three-axis translational motions

    Microsoft Academic Search

    Jongwon Kim; Jae-Chul Hwang; Jin-Sung Kim; Cornel C. Iurascu; Frank Chongwoo Park; Young Man Cho

    2002-01-01

    This paper presents the Eclipse II, a new six-degrees-of-freedom parallel mechanism, which can be used as a basis for general motion simulators. The Eclipse II is capable of x, y, and z axes translations, and a, b, and c axes rotations. In particular, it has the advantage of enabling continuous 360° spinning of the platform. We first describe the computational

  11. Fluid slosh studies. Volume 1: Study of slosh dynamics of fluid filled containers on three-axis stabilized spacecraft

    Microsoft Academic Search

    H. G. Beig

    1984-01-01

    The problems of the localization of fluid monopropellants in spacecraft tanks are documented. A mathematical formulation and an approximate solution of the cross section of the equilibrium shapes of the liquid surfaces is given. Sample calculations are performed on a tank of type TV-SAT, and guidelines for propellant management devices are derived. In order to obtain mechanical analogs for the

  12. Design and development of an automated three axis machine that prints images on top of the foam of certain beverages

    E-print Network

    Richardson, Jeremy S. H

    2009-01-01

    The goal of this research was to design and develop a working alpha prototype of the flagship product for a local startup called Onlatte, Inc. OnLatte specializes in automated printing of images on top of the foam of ...

  13. Description of the Space Shuttle Reaction Control System

    NASA Technical Reports Server (NTRS)

    Blevins, D. R.; Hohmann, C. W.

    1975-01-01

    The Space Shuttle RCS (reaction control system) is required to provide propulsion thrust for precise attitude control and three-axis translation. This capability must be provided for external tank separation, on-orbit operation, deorbit, and reentry. In order to meet these requirements a bipropellant, pressure-fed system utilizing monomethylhydrazine as fuel, and nitrogen tetroxide as oxidizer has been selected. The RCS engines include 38 primary thrusters rated at 870 lbf thrust and 6 vernier thrusters rated at 25 lbf thrust. The system is divided into three removable modules (one forward and two aft) to achieve maintenance and turnaround requirements. In order to provide additional mission flexibility, the aft modules can be connected together or interconnected with the OMS (orbital maneuvering system).

  14. Strapdown system performance optimization test evaluations (SPOT), volume 1

    NASA Technical Reports Server (NTRS)

    Blaha, R. J.; Gilmore, J. P.

    1973-01-01

    A three axis inertial system was packaged in an Apollo gimbal fixture for fine grain evaluation of strapdown system performance in dynamic environments. These evaluations have provided information to assess the effectiveness of real-time compensation techniques and to study system performance tradeoffs to factors such as quantization and iteration rate. The strapdown performance and tradeoff studies conducted include: (1) Compensation models and techniques for the inertial instrument first-order error terms were developed and compensation effectivity was demonstrated in four basic environments; single and multi-axis slew, and single and multi-axis oscillatory. (2) The theoretical coning bandwidth for the first-order quaternion algorithm expansion was verified. (3) Gyro loop quantization was identified to affect proportionally the system attitude uncertainty. (4) Land navigation evaluations identified the requirement for accurate initialization alignment in order to pursue fine grain navigation evaluations.

  15. Quaternion-Based Unscented Kalman Filter for Accurate Indoor Heading Estimation Using Wearable Multi-Sensor System

    PubMed Central

    Yuan, Xuebing; Yu, Shuai; Zhang, Shengzhi; Wang, Guoping; Liu, Sheng

    2015-01-01

    Inertial navigation based on micro-electromechanical system (MEMS) inertial measurement units (IMUs) has attracted numerous researchers due to its high reliability and independence. The heading estimation, as one of the most important parts of inertial navigation, has been a research focus in this field. Heading estimation using magnetometers is perturbed by magnetic disturbances, such as indoor concrete structures and electronic equipment. The MEMS gyroscope is also used for heading estimation. However, the accuracy of gyroscope is unreliable with time. In this paper, a wearable multi-sensor system has been designed to obtain the high-accuracy indoor heading estimation, according to a quaternion-based unscented Kalman filter (UKF) algorithm. The proposed multi-sensor system including one three-axis accelerometer, three single-axis gyroscopes, one three-axis magnetometer and one microprocessor minimizes the size and cost. The wearable multi-sensor system was fixed on waist of pedestrian and the quadrotor unmanned aerial vehicle (UAV) for heading estimation experiments in our college building. The results show that the mean heading estimation errors are less 10° and 5° to multi-sensor system fixed on waist of pedestrian and the quadrotor UAV, respectively, compared to the reference path. PMID:25961384

  16. Quaternion-based unscented Kalman filter for accurate indoor heading estimation using wearable multi-sensor system.

    PubMed

    Yuan, Xuebing; Yu, Shuai; Zhang, Shengzhi; Wang, Guoping; Liu, Sheng

    2015-01-01

    Inertial navigation based on micro-electromechanical system (MEMS) inertial measurement units (IMUs) has attracted numerous researchers due to its high reliability and independence. The heading estimation, as one of the most important parts of inertial navigation, has been a research focus in this field. Heading estimation using magnetometers is perturbed by magnetic disturbances, such as indoor concrete structures and electronic equipment. The MEMS gyroscope is also used for heading estimation. However, the accuracy of gyroscope is unreliable with time. In this paper, a wearable multi-sensor system has been designed to obtain the high-accuracy indoor heading estimation, according to a quaternion-based unscented Kalman filter (UKF) algorithm. The proposed multi-sensor system including one three-axis accelerometer, three single-axis gyroscopes, one three-axis magnetometer and one microprocessor minimizes the size and cost. The wearable multi-sensor system was fixed on waist of pedestrian and the quadrotor unmanned aerial vehicle (UAV) for heading estimation experiments in our college building. The results show that the mean heading estimation errors are less 10° and 5° to multi-sensor system fixed on waist of pedestrian and the quadrotor UAV, respectively, compared to the reference path. PMID:25961384

  17. Advanced electric motor technology: Flux mapping

    Microsoft Academic Search

    George B. Doane III; Warren Campbell; Larry W. Brantley; Garvin Dean

    1992-01-01

    This report contains the assumptions, mathematical models, design methodology, and design points involved with the design of an electromechanical actuator (EMA) suitable for directing the thrust vector of a large MSFC\\/NASA launch vehicle. Specifically the design of such an actuator for use on the upcoming liquid fueled National Launch System (NLS) is considered culminating in a point design of both

  18. Computer program for prediction of fuel consumption statistical data for an upper stage three-axes stabilized on-off control system

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A FORTRAN coded computer program and method to predict the reaction control fuel consumption statistics for a three axis stabilized rocket vehicle upper stage is described. A Monte Carlo approach is used which is more efficient by using closed form estimates of impulses. The effects of rocket motor thrust misalignment, static unbalance, aerodynamic disturbances, and deviations in trajectory, mass properties and control system characteristics are included. This routine can be applied to many types of on-off reaction controlled vehicles. The pseudorandom number generation and statistical analyses subroutines including the output histograms can be used for other Monte Carlo analyses problems.

  19. GRATIS: Pointing and Tracking System

    NASA Astrophysics Data System (ADS)

    Seiffert, M. D.; Lubin, P. M.; Craig, W. W.; McLean, R.; Harrison, F.

    1992-12-01

    The Gamma-Ray Arc Minute Telescope Imaging System (GRATIS; see companion paper by Harrison et al.) requires a balloon-borne stabilized platform capable of 20 arc second absolute pointing accuracy. We have developed a system which uses computer-based inertial-guidance control of an azimuth-elevation pointing mechanism for the telescope. An innovative computer-based star pattern recognition system automatically generates drift corrections from an image acquired by a Peltier cooled CCD camera. The inertial guidance system provides three axis pointing information with approximately 12 arc seconds precision. This is a true inertial guidance system with gyros, accelerometers, and an integral navigational processor. The gyros have high relative pointing precision, but a slow drift component degrades their absolute accuracy. Control of the elevation position is accomplished through a torque motor that is directly coupled to the telescope. Azimuth control is accomplished through an active zero-stiction bearing at the top of the gondola and a reaction wheel at the bottom. The pointing system has been fully constructed and tested and has been mated with the telescope. We present the results of an extensive series of tracking tests.

  20. Attitude Dynamics and Control of Solar Sails

    NASA Astrophysics Data System (ADS)

    Sperber, Evan

    Solar sails are space vehicles that rely on solar radiation pressure in order to generate forces for thrust and attitude control torques. They exhibit characteristics such as large moments of inertia, fragility of various system components, and long mission durations that make attitude control a particularly difficult engineering problem. Thrust vector control (TVC) is a family of sailcraft attitude control techniques that is on a short list of strategies thought to be suitable for the primary attitude control of solar sails. Every sailcraft TVC device functions by manipulating the relative locations of the composite mass center (cm) of the sailcraft and the center of pressure (cp) of at least one of its reflectors. Relative displacement of these two points results in body torques that can be used to steer the sailcraft. This dissertation presents a strategy for the large-angle reorientation of a sailcraft using TVC. Two forms of TVC, namely the panel and ballast mass translation methods are well represented in the literature, while rigorous studies regarding a third form, gimballed mass rotation, are conspicuously absent. The gimballed mass method is physically realized by placing a ballast mass, commonly the sailcraft's scientific payload, at the tip of a gimballed boom that has its base fixed at some point on the sailcraft. A TVC algorithm will then strategically manipulate the payload boom's gimbal angles, thereby changing the projection of the sailcraft cm in the plane of the sail. This research demonstrates effective three-axis attitude control of a model sailcraft using numerical simulation of its nonlinear equations of motion. The particular TVC algorithm developed herein involves two phases---the first phase selects appropriate gimbal rates with the objective that the sailcraft be placed in the neighborhood of its target orientation. It was discovered, however that concomitantly minimizing attitude error as well as residual body rate was not possible using soley this method. By solving the one-dimensional Euler's equation, a single gimbal angle can be found that will cause simultaneous convergence of both these quantities to their respective target values. The second phase of control consists of calculating such an angle, and then setting and maintaining this configuration until the maneuver is completed. iiOnce the validity of the approach is confirmed via simulation for a model sailcraft, it is demonstrated that three-axis attitude control can be performed using this approach by executing a sequence of maneuvers about principal axes. The algorithm is implemented directly inline with the nonlinear equations of motion and simulations are conducted for sailcraft of various sizes that are representative of the dimensions proposed in the literature for future missions.

  1. Wellborne inertial navigation system

    SciTech Connect

    Kelsey, J.R.

    1983-01-01

    A phototype wireline tool which includes a downhole inertial platform and a surface computer to spatially map a well is described. The hardware consists of a single-gimbaled inertial platform with accelerometers and gyros to obtain three-axis motion information. The gyroscope and accelerometer outputs are transmitted to a computer at the surface which calculates probe attitude relative to north, east, and vertical. Double integration of the accelerometer data provides the position information. A conventional 7-conductor wireline is used for the system data transmission. System accuracy is enhanced by advances made in the computer software which processes the data received from the tool. The software uses statistical sampling estimation to obtain optimal estimates of the system errors. Measurement errors are determined by periodically stopping the tool during the logging procedure and observing the indicated velocity measurements. This procedure, known as Kalman filtering, results in increased accuracy of the data. Present mapping systems have an X-Y-Z location accuracy of +- 100 to +- 200 feet for a typical well depth of 10,000 feet. Test results show that the new system is accurate to about +- 1 foot per 1000 feet of well depth. Unlike conventional systems, the inertial navigator does not require any sort of projection of the cable length (which may not be accurately known). Also this system provides continuous data throughout the wellbore and logging speeds on the order of 10 ft/sec appear possible. The hardware and software associated with this mapping system are described and the recent field test results are reported.

  2. Magnetic control systems for large spacecraft with applications to space telescope

    NASA Technical Reports Server (NTRS)

    Dougherty, H.; Machnick, J.; Nakashima, A.; Henry, J.; Tompetrini, K.

    1981-01-01

    Magnetic control systems for large space vehicles offer the advantage of a simple, reliable, low cost augmentation to the primary control system. When used for momentum management, a magnetic torque source offers a long life and noncontaminant environment when compared to a mass expulsion torque source. These qualities make such systems suitable for employment with the Space Telescope, which is a long life, high performance vehicle with optics and scientific instruments which would be degraded by contamination due to mass expulsion products. The various applications of magnetic systems on the Space Telescope are considered. The future trend in magnetic control of large space vehicles lies in providing a known three axis reference for backup operations, such as recovery of the primary control mode.

  3. Real time measurement system based on wireless instrumented sphere.

    PubMed

    Roa, Yull Heilordt Henao; Fruett, Fabiano; Ferreira, Marcos David

    2013-01-01

    In this work, we developed a new measurement system which includes a Wireless Instrumented Sphere (WIS) and a Graphical User Interface (GUI) software, called Real Time Analysis (RTA). This system is able to acquire, process and visualize the three axis acceleration of the WIS allowing the identification and measurements of rotations, vibrations and impacts in real time. The aim of this instrument is to help the fruit producers to reduce food wasting and improve quality, especially in Brazil, one of the major agricultural countries in the world, whose losses could surpass 20% along the post-harvesting handling chain. Additionally, a data Post Processing Analysis software (PPA) provided of a video synchronization option was developed to determine the impact magnitude, position and even the cause of the impact itself (drop, fruit-to-sphere impact, etc.). Both GUIs presented graphics of the three axis acceleration vectors, acceleration magnitude and velocity, as well as the calculations of the number of impacts (peak detection), maximum, minimum and average impact magnitude. The WIS board was encapsulated in the middle of a spherical transparent polyurethane elastomer. It was also intended to be a small, simple, robust and low cost instrument. Its final diameter of approximately 63 mm, 160 g weight and 1.1 relative density. The RTA reduces the time for testing and is suitable for a fast feedback and allows the user to make adjustments in the experiment setup, packing system or even monitor any process along the post-harvesting handling chain, with an immediate response. The PPA with video synchronization option, proved to be a unique tool, relating the acceleration information with the video position. PMID:25674411

  4. New HWIL motion system developments

    NASA Astrophysics Data System (ADS)

    Carter, John M.

    2001-08-01

    Performance and payload capacity requirements for hardware- in-the-loop motion systems have been growing. This paper describes several new systems that have advanced the state- of-the-art. A Four-Axis, electrically driven system weights 50 tons, has a 20,000-pound payload capacity, and approaches 1-arc second pointing accuracy. Several new hydraulic Five- Axis Flight Motion Simulators (FMS) have larger payload and increased acceleration/bandwidths. An environmentally hardened three-axis open range FMS will be installed atop a 300-foot tower. A new dual-target motion system installed at DERA in the UK is 56 feet wide, 41 feet tall, and has a 12- meter target radius. An electric Five-Axis FMS is under construction for the ballistic missile defense program. This machine will have continuous displacement on the three UUT axes and inner target axis, and achieves high dynamic and pointing accuracy with a 32-kg, 63-cm diameter payload. A new state-space controller has been developed for all Carco simulators.

  5. Controlling Attitude of a Solar-Sail Spacecraft Using Vanes

    NASA Technical Reports Server (NTRS)

    Mettler, Edward; Acikmese, Ahmet; Ploen, Scott

    2006-01-01

    A paper discusses a concept for controlling the attitude and thrust vector of a three-axis stabilized Solar Sail spacecraft using only four single degree-of-freedom articulated spar-tip vanes. The vanes, at the corners of the sail, would be turned to commanded angles about the diagonals of the square sail. Commands would be generated by an adaptive controller that would track a given trajectory while rejecting effects of such disturbance torques as those attributable to offsets between the center of pressure on the sail and the center of mass. The controller would include a standard proportional + derivative part, a feedforward part, and a dynamic component that would act like a generalized integrator. The controller would globally track reference signals, and in the presence of such control-actuator constraints as saturation and delay, the controller would utilize strategies to cancel or reduce their effects. The control scheme would be embodied in a robust, nonlinear algorithm that would allocate torques among the vanes, always finding a stable solution arbitrarily close to the global optimum solution of the control effort allocation problem. The solution would include an acceptably small angle, slow limit-cycle oscillation of the vanes, while providing overall thrust vector pointing stability and performance.

  6. Computer simulation of aircraft motions and propulsion system dynamics for the YF-12 aircraft at supersonic cruise conditions

    NASA Technical Reports Server (NTRS)

    Brown, S. C.

    1973-01-01

    A computer simulation of the YF-12 aircraft motions and propulsion system dynamics is presented. The propulsion system was represented in sufficient detail so that interactions between aircraft motions and the propulsion system dynamics could be investigated. Six degree-of-freedom aircraft motions together with the three-axis stability augmentation system were represented. The mixed compression inlets and their controls were represented in the started mode for a range of flow conditions up to the inlet unstart boundary. Effects of inlet moving geometry on aircraft forces and movements as well as effects of aircraft motions on the inlet behavior were simulated. The engines, which are straight subjects, were represented in the afterburning mode, with effects of changes in aircraft flight conditions included. The simulation was capable of operating in real time.

  7. Attitude control system conceptual design for the GOES-N spacecraft series

    NASA Technical Reports Server (NTRS)

    Markley, F. L.; Bauer, F. H.; Deily, J. J.; Femiano, M. D.

    1991-01-01

    The attitude determination sensing and processing of the system are considered, and inertial reference units, star trackers, and beacons and landmarks are discussed as well as an extended Kalman filter and expected attitude-determination performance. The baseline controller is overviewed, and a spacecraft motion compensation (SMC) algorithm, disturbance environment, and SMC performance expectations are covered. Detailed simulation results are presented, and emphasis is placed on dynamic models, attitude estimation and control, and SMC disturbance accommmodation. It is shown that the attitude control system employing gyro/star tracker sensing and active three-axis control with reaction wheels is capable of maintaining attitude errors of 1.7 microrad or less on all axes in the absence of attitude disturbances, and that the sensor line-of-sight pointing errors can be reduced to 0.1 microrad by SMC.

  8. Analytic investigation of the AEM-A/HCMM attitude control system performance. [Application Explorer Missions/Heat Capacity Mapping Mission

    NASA Technical Reports Server (NTRS)

    Lerner, G. M.; Huang, W.; Shuster, M. D.

    1977-01-01

    The Heat Capacity Mapping Mission (HCMM), scheduled for launch in 1978, will be three-axis stabilized relative to the earth in a 600-kilometer altitude, polar orbit. The autonomous attitude control system consists of three torquing coils and a momentum wheel driven in response to error signals computed from data received from an infrared horizon sensor and a magnetometer. This paper presents a simple model of the attitude dynamics and derives the equations that determine the stability of the system during both attitude acquisition (acquisition-mode) and mission operations (mission-mode). Modifications to the proposed mission-mode control laws which speed the system's response to transient attitude errors and reduce the steady-state attitude errors are suggested. Numerical simulations are performed to validate the results obtained with the simple model.

  9. A wellbore inertial navigation system

    SciTech Connect

    Kelsey, J.R.

    1983-02-01

    A prototype wireline tool which includes a downhole inertial platform and a surface computer to spatially map a well is described. The hardware consists of a single-gimballed inertial platform with accelerometers and gyros to obtain three-axis motion information. The gyroscope and accelerometer outputs are transmitted to a computer at the surface which calculates probe attitude relative to north, east, and vertical. Double integration of the accelerometer data provides the position information. A conventional 7-conductor wireline is used for the system data transmission. System accuracy is enhanced by advances made in the computer software which processes the data received from the tool. The software uses statistical sampling estimation to obtain optimal estimates of the system errors. Measurement errors are determined by periodically stopping the tool during the logging procedure and observing the indicated velocity measurements. This procedure, known as Kalman filtering, results in increased accuracy of the data. Present mapping systems have an X-Y-Z location accuracy of 100 to 200 feet for a typical well depth of 10,000 feet. Test results show that the new system is accurate to about 1 foot per 1000 feet of well depth. Unlike conventional systems, the inertial navigator does not require any sort of projection of the cable length (which may not be accurately known). Also, this system provides continuous data throughout the wellbore and logging speeds on the order of 10 ft/sec appear possible. The hardware and software associated with this mapping system are described and the recent field test results are reported.

  10. Overview of HIT Diagnostic Systems

    NASA Astrophysics Data System (ADS)

    Jarboe, T. R.; Hamp, W. T.; Izzo, V. A.; Nelson, B. A.; O'Neill, R. G.; Raman, R.; Redd, A. J.; Sieck, P. E.; Smith, R. J.; Askren, A. E.; Siirilla, A.

    2004-11-01

    HIT--II is a modestly sized spherical torus device (R=0.3m, a=0.2m), capable of forming and sustaining discharges using either or both Ohmic and Coaxial Helicity Injection (CHI) current drive. HIT--SI is a similarly sized spheromak device, which forms and sustains its discharges using Steady Inductive Helicity Injection (SIHI). The broad range of physical parameters that can be acheived in these plasmas is a challenge to accurate and reliable diagnostic systems. The HIT diagnostic suite includes: multi-point Thomson scattering, two-channel tangentially-viewing FIR interferometry, 16-channel single-chord ion Doppler spectroscopy, a three-stem internal magnetic probing array, arrays of surface-mounted three-axis magnetic probes, a multi-stem Langmuir probing array, SPRED and bolometry, H-?, HXR and Z_eff detectors, and dual symmetrically-viewing VUV spectrometers. The HIT--SI device also has an internal magnetic probe array installed in one of its SIHI injectors. A multi-chord photodiode array, capable of measuring emission of either total light or only in certain SXR bands, is under construction.

  11. Integrated calibration of magnetic gradient tensor system

    NASA Astrophysics Data System (ADS)

    Gang, Yin; Yingtang, Zhang; Hongbo, Fan; GuoQuan, Ren; Zhining, Li

    2015-01-01

    Measurement precision of a magnetic gradient tensor system is not only connected with the imperfect performance of magnetometers such as bias, scale factor, non-orthogonality and misalignment errors, but also connected with the external soft-iron and hard-iron magnetic distortion fields when the system is used as a strapdown device. So an integrated scalar calibration method is proposed in this paper. In the first step, a mathematical model for scalar calibration of a single three-axis magnetometer is established, and a least squares ellipsoid fitting algorithm is proposed to estimate the detailed error parameters. For the misalignment errors existing at different magnetometers caused by the installation process and misalignment errors aroused by ellipsoid fitting estimation, a calibration method for combined misalignment errors is proposed in the second step to switch outputs of different magnetometers into the ideal reference orthogonal coordinate system. In order to verify effectiveness of the proposed method, simulation and experiment with a cross-magnetic gradient tensor system are performed, and the results show that the proposed method estimates error parameters and improves the measurement accuracy of magnetic gradient tensor greatly.

  12. Closeup view of an Aft Skirt being prepared for mating ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view of an Aft Skirt being prepared for mating with sub assemblies in the Solid Rocket Booster Assembly and Refurbishment Facility at Kennedy Space Center. The most prominent feature in this view are the six Thrust Vector Control System access ports, three per hydraulic actuator. - Space Transportation System, Solid Rocket Boosters, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  13. Lift/cruise fan VTOL aircraft

    NASA Technical Reports Server (NTRS)

    Quigley, H. C.; Franklin, J. A.

    1977-01-01

    The paper gives an overview of the technology related to lift/cruise fan VTOL aircraft, covering propulsion systems, thrust deflection, flight dynamics, controls, displays, aerodynamics, and configurations. Piloting problems are discussed, and the need for integration of power management and thrust-vector controls is pointed out. Major components for a high-bypass-ratio lift/cruise fan propulsion system for VTOL aircraft have been tested.

  14. Variable structure-based nonlinear missile guidance\\/autopilot design with highly maneuverable actuators

    Microsoft Academic Search

    Fu-Kuang Yeh; Kai-Yuan Cheng; Li-Chen Fu

    2004-01-01

    In this brief, we propose a variable structure based nonlinear missile guidance\\/autopilot system with highly maneuverable actuators, mainly consisting of thrust vector control and divert control system, for the task of intercepting of a theater ballistic missile. The aim of the present work is to achieve bounded target interception under the mentioned 5 degree-of-freedom (DOF) control such that the distance

  15. Preliminary Design of the Guidance, Navigation, and Control System of the Altair Lunar Lander

    NASA Technical Reports Server (NTRS)

    Lee, Allan Y.; Ely, Todd; Sostaric, Ronald; Strahan, Alan; Riedel, Joseph E.; Ingham, Mitch; Wincentsen, James; Sarani, Siamak

    2010-01-01

    Guidance, Navigation, and Control (GN&C) is the measurement and control of spacecraft position, velocity, and attitude in support of mission objectives. This paper provides an overview of a preliminary design of the GN&C system of the Lunar Lander Altair. Key functions performed by the GN&C system in various mission phases will first be described. A set of placeholder GN&C sensors that is needed to support these functions is next described. To meet Crew safety requirements, there must be high degrees of redundancy in the selected sensor configuration. Two sets of thrusters, one on the Ascent Module (AM) and the other on the Descent Module (DM), will be used by the GN&C system. The DM thrusters will be used, among other purposes, to perform course correction burns during the Trans-lunar Coast. The AM thrusters will be used, among other purposes, to perform precise angular and translational controls of the ascent module in order to dock the ascent module with Orion. Navigation is the process of measurement and control of the spacecraft's "state" (both the position and velocity vectors of the spacecraft). Tracking data from the Earth-Based Ground System (tracking antennas) as well as data from onboard optical sensors will be used to estimate the vehicle state. A driving navigation requirement is to land Altair on the Moon with a landing accuracy that is better than 1 km (radial 95%). Preliminary performance of the Altair GN&C design, relative to this and other navigation requirements, will be given. Guidance is the onboard process that uses the estimated state vector, crew inputs, and pre-computed reference trajectories to guide both the rotational and the translational motions of the spacecraft during powered flight phases. Design objectives of reference trajectories for various mission phases vary. For example, the reference trajectory for the descent "approach" phase (the last 3-4 minutes before touchdown) will sacrifice fuel utilization efficiency in order to provide landing site visibility for both the crew and the terrain hazard detection sensor system. One output of Guidance is the steering angle commands sent to the 2 degree-of-freedom (dof) gimbal actuation system of the descent engine. The engine gimbal actuation system is controlled by a Thrust Vector Control algorithm that is designed taking into account the large quantities of sloshing liquids in tanks mounted on Altair. In this early design phase of Altair, the GN&C system is described only briefly in this paper and the emphasis is on the GN&C architecture (that is still evolving). Multiple companion papers will provide details that are related to navigation, optical navigation, guidance, fuel sloshing, rendezvous and docking, machine-pilot interactions, and others. The similarities and differences of GN&C designs for Lunar and Mars landers are briefly compared.

  16. Finite Element Simulation of a Space Shuttle Solid Rocket Booster Aft Skirt Splashdown Using an Arbitrary Lagrangian-Eulerian Approach

    Microsoft Academic Search

    Matthew E. Melis

    2003-01-01

    Explicit finite element techniques employing an Arbitrary Lagrangian-Eulerian (ALE) methodology, within the transient dynamic code LS-DYNA, are used to predict splashdown loads on a proposed replacement\\/upgrade of the hydrazine tanks on the thrust vector control system housed within the aft skirt of a Space Shuttle Solid Rocket Booster. Two preliminary studies are performed prior to the full aft skirt analysis:

  17. Explicit Finite Element Techniques Used to Characterize Splashdown of the Space Shuttle Solid Rocket Booster Aft Skirt

    NASA Technical Reports Server (NTRS)

    Melis, Matthew E.

    2003-01-01

    NASA Glenn Research Center s Structural Mechanics Branch has years of expertise in using explicit finite element methods to predict the outcome of ballistic impact events. Shuttle engineers from the NASA Marshall Space Flight Center and NASA Kennedy Space Flight Center required assistance in assessing the structural loads that a newly proposed thrust vector control system for the space shuttle solid rocket booster (SRB) aft skirt would expect to see during its recovery splashdown.

  18. Beam Position and Phase Monitor - Wire Mapping System

    SciTech Connect

    Watkins, Heath A [Los Alamos National Laboratory; Shurter, Robert B. [Los Alamos National Laboratory; Gilpatrick, John D. [Los Alamos National Laboratory; Kutac, Vincent G. [Los Alamos National Laboratory; Martinez, Derwin [Los Alamos National Laboratory

    2012-04-10

    The Los Alamos Neutron Science Center (LANSCE) deploys many cylindrical beam position and phase monitors (BPPM) throughout the linac to measure the beam central position, phase and bunched-beam current. Each monitor is calibrated and qualified prior to installation to insure it meets LANSCE requirements. The BPPM wire mapping system is used to map the BPPM electrode offset, sensitivity and higher order coefficients. This system uses a three-axis motion table to position the wire antenna structure within the cavity, simulating the beam excitation of a BPPM at a fundamental frequency of 201.25 MHz. RF signal strength is measured and recorded for the four electrodes as the antenna position is updated. An effort is underway to extend the systems service to the LANSCE facility by replacing obsolete electronic hardware and taking advantage of software enhancements. This paper describes the upgraded wire positioning system's new hardware and software capabilities including its revised antenna structure, motion control interface, RF measurement equipment and Labview software upgrades. The main purpose of the wire mapping system at LANSCE is to characterize the amplitude response versus beam central position of BPPMs before they are installed in the beam line. The wire mapping system is able to simulate a beam using a thin wire and measure the signal response as the wire position is varied within the BPPM aperture.

  19. Hovering Dual-Spin Vehicle Groundwork for Bias Momentum Sizing Validation Experiment

    NASA Technical Reports Server (NTRS)

    Rothhaar, Paul M.; Moerder, Daniel D.; Lim, Kyong B.

    2008-01-01

    Angular bias momentum offers significant stability augmentation for hovering flight vehicles. The reliance of the vehicle on thrust vectoring for agility and disturbance rejection is greatly reduced with significant levels of stored angular momentum in the system. A methodical procedure for bias momentum sizing has been developed in previous studies. This current study provides groundwork for experimental validation of that method using an experimental vehicle called the Dual-Spin Test Device, a thrust-levitated platform. Using measured data the vehicle's thrust vectoring units are modeled and a gust environment is designed and characterized. Control design is discussed. Preliminary experimental results of the vehicle constrained to three rotational degrees of freedom are compared to simulation for a case containing no bias momentum to validate the simulation. A simulation of a bias momentum dominant case is presented.

  20. 356 IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. 17, NO. 2, APRIL 2012 Design and Control of a Three-Axis Serial-Kinematic

    E-print Network

    Leang, Kam K.

    is presented. The stage is designed for high-bandwidth applications that include video- rate scanning probe of the stage are evaluated for pre- cision tracking at high-scan rates: 1) open-loop smooth inputs; 2) PID alignment, and micro- and nanomachining. Par- ticularly, video-rate scanning probe microscopy (SPM) [1

  1. 26 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 20, NO. 1, FEBRUARY 2004 Measurement of Finger Posture and Three-Axis

    E-print Network

    Mascaro, Stephen A.

    the fingernail and bone. Normal force, shear force, and finger extension/flexion all result in different patterns force, lateral shear force, longitudinal shear force, and bending angle based on readings from human subjects. Results show that on average, shear forces can be predicted with 0.5 N root mean square

  2. Hybrid fault diagnosis of nonlinear systems using neural parameter estimators.

    PubMed

    Sobhani-Tehrani, E; Talebi, H A; Khorasani, K

    2014-02-01

    This paper presents a novel integrated hybrid approach for fault diagnosis (FD) of nonlinear systems taking advantage of both the system's mathematical model and the adaptive nonlinear approximation capability of computational intelligence techniques. Unlike most FD techniques, the proposed solution simultaneously accomplishes fault detection, isolation, and identification (FDII) within a unified diagnostic module. At the core of this solution is a bank of adaptive neural parameter estimators (NPEs) associated with a set of single-parameter fault models. The NPEs continuously estimate unknown fault parameters (FPs) that are indicators of faults in the system. Two NPE structures, series-parallel and parallel, are developed with their exclusive set of desirable attributes. The parallel scheme is extremely robust to measurement noise and possesses a simpler, yet more solid, fault isolation logic. In contrast, the series-parallel scheme displays short FD delays and is robust to closed-loop system transients due to changes in control commands. Finally, a fault tolerant observer (FTO) is designed to extend the capability of the two NPEs that originally assumes full state measurements for systems that have only partial state measurements. The proposed FTO is a neural state estimator that can estimate unmeasured states even in the presence of faults. The estimated and the measured states then comprise the inputs to the two proposed FDII schemes. Simulation results for FDII of reaction wheels of a three-axis stabilized satellite in the presence of disturbances and noise demonstrate the effectiveness of the proposed FDII solutions under partial state measurements. PMID:24239987

  3. Simulation model of the F/A-18 high angle-of-attack research vehicle utilized for the design of advanced control laws

    NASA Technical Reports Server (NTRS)

    Strickland, Mark E.; Bundick, W. Thomas; Messina, Michael D.; Hoffler, Keith D.; Carzoo, Susan W.; Yeager, Jessie C.; Beissner, Fred L., Jr.

    1996-01-01

    The 'f18harv' six degree-of-freedom nonlinear batch simulation used to support research in advanced control laws and flight dynamics issues as part of NASA's High Alpha Technology Program is described in this report. This simulation models an F/A-18 airplane modified to incorporate a multi-axis thrust-vectoring system for augmented pitch and yaw control power and actuated forebody strakes for enhanced aerodynamic yaw control power. The modified configuration is known as the High Alpha Research Vehicle (HARV). The 'f18harv' simulation was an outgrowth of the 'f18bas' simulation which modeled the basic F/A-18 with a preliminary version of a thrust-vectoring system designed for the HARV. The preliminary version consisted of two thrust-vectoring vanes per engine nozzle compared with the three vanes per engine actually employed on the F/A-18 HARV. The modeled flight envelope is extensive in that the aerodynamic database covers an angle-of-attack range of -10 degrees to +90 degrees, sideslip range of -20 degrees to +20 degrees, a Mach Number range between 0.0 and 2.0, and an altitude range between 0 and 60,000 feet.

  4. X-31A Tactical Utility Flight Testing

    NASA Technical Reports Server (NTRS)

    Friehmelt, Holger; Guetter, Richard; Kim, Quirin

    1997-01-01

    The two X-31A were jointly built by Daimler-Benz Aerospace AG and Rockwell International. These German-American experimental aircraft were designed to explore the new realm of flight far beyond stall by employing advanced technologies like thrust vectoring and sophisticated flight control systems. The X-31A aircraft is equipped with a thrust vectoring system consisting of three aft mounted paddles to deflect the thrust vector in both pitch and yaw axes, thus providing the X-31A in this 'Enhanced Fighter Maneuverability program with an agility and maneuverability never seen before. The tactical utility of the X-31A using post stall technologies has been revealed in an extensive flight test campaign against various current state-of-the-art fighter aircraft in a close-in combat arena. The test philosophy included both simulation and flight test. The tremendous tactical advantage of the X-31A during the tactical utility evaluation flight test phase was accompanied by a deepened insight into post stall tactics its typical maneuvers, impacts on pilot-aircraft interfaces and requirements for future weapons to both engineers and the military community. Some selected aspects of the tactical utility of the X-31A using post stall technologies unveiled by the International Test Organization are presented here.

  5. Space Launch System Ascent Flight Control Design

    NASA Technical Reports Server (NTRS)

    Orr, Jeb S.; Wall, John H.; VanZwieten, Tannen S.; Hall, Charles E.

    2014-01-01

    A robust and flexible autopilot architecture for NASA's Space Launch System (SLS) family of launch vehicles is presented. The SLS configurations represent a potentially significant increase in complexity and performance capability when compared with other manned launch vehicles. It was recognized early in the program that a new, generalized autopilot design should be formulated to fulfill the needs of this new space launch architecture. The present design concept is intended to leverage existing NASA and industry launch vehicle design experience and maintain the extensibility and modularity necessary to accommodate multiple vehicle configurations while relying on proven and flight-tested control design principles for large boost vehicles. The SLS flight control architecture combines a digital three-axis autopilot with traditional bending filters to support robust active or passive stabilization of the vehicle's bending and sloshing dynamics using optimally blended measurements from multiple rate gyros on the vehicle structure. The algorithm also relies on a pseudo-optimal control allocation scheme to maximize the performance capability of multiple vectored engines while accommodating throttling and engine failure contingencies in real time with negligible impact to stability characteristics. The architecture supports active in-flight disturbance compensation through the use of nonlinear observers driven by acceleration measurements. Envelope expansion and robustness enhancement is obtained through the use of a multiplicative forward gain modulation law based upon a simple model reference adaptive control scheme.

  6. Space Launch System Ascent Flight Control Design

    NASA Technical Reports Server (NTRS)

    VanZwieten, Tannen S.; Orr, Jeb S.; Wall, John H.; Hall, Charles E.

    2014-01-01

    A robust and flexible autopilot architecture for NASA's Space Launch System (SLS) family of launch vehicles is presented. As the SLS configurations represent a potentially significant increase in complexity and performance capability of the integrated flight vehicle, it was recognized early in the program that a new, generalized autopilot design should be formulated to fulfill the needs of this new space launch architecture. The present design concept is intended to leverage existing NASA and industry launch vehicle design experience and maintain the extensibility and modularity necessary to accommodate multiple vehicle configurations while relying on proven and flight-tested control design principles for large boost vehicles. The SLS flight control architecture combines a digital three-axis autopilot with traditional bending filters to support robust active or passive stabilization of the vehicle's bending and sloshing dynamics using optimally blended measurements from multiple rate gyros on the vehicle structure. The algorithm also relies on a pseudo-optimal control allocation scheme to maximize the performance capability of multiple vectored engines while accommodating throttling and engine failure contingencies in real time with negligible impact to stability characteristics. The architecture supports active in-flight load relief through the use of a nonlinear observer driven by acceleration measurements, and envelope expansion and robustness enhancement is obtained through the use of a multiplicative forward gain modulation law based upon a simple model reference adaptive control scheme.

  7. TRMM On Orbit Attitude Control System Performance

    NASA Technical Reports Server (NTRS)

    Robertson, Brent; Placanica, Sam; Morgenstern, Wendy

    1999-01-01

    This paper presents an overview of the Tropical Rainfall Measuring Mission (TRMM) Attitude Control System (ACS) along with detailed in-flight performance results for each operational mode. The TRMM spacecraft is an Earth-pointed, zero momentum bias satellite launched on November 27, 1997 from Tanegashima Space Center, Japan. TRMM is a joint mission between NASA and the National Space Development Agency (NASDA) of Japan designed to monitor and study tropical rainfall and the associated release of energy. Launched to provide a validation for poorly known rainfall data sets generated by global climate models, TRMM has demonstrated its utility by reducing uncertainties in global rainfall measurements by a factor of two. The ACS is comprised of Attitude Control Electronics (ACE), an Earth Sensor Assembly (ESA), Digital Sun Sensors (DSS), Inertial Reference Units (IRU), Three Axis Magnetometers (TAM), Coarse Sun Sensors (CSS), Magnetic Torquer Bars (MTB), Reaction Wheel Assemblies (RWA), Engine Valve Drivers (EVD) and thrusters. While in Mission Mode, the ESA provides roll and pitch axis attitude error measurements and the DSS provide yaw updates twice per orbit. In addition, the TAM in combination with the IRU and DSS can be used to provide pointing in a contingency attitude determination mode which does not rely on the ESA. Although the ACS performance to date has been highly successful, lessons were learned during checkout and initial on-orbit operation. This paper describes the design, on-orbit checkout, performance and lessons learned for the TRMM ACS.

  8. An overview of autonomous rendezvous and docking system technology development

    NASA Astrophysics Data System (ADS)

    Nelson, Kurt D.

    The Centaur upper stage was selected for an airborne avionics modernization program. The parts used in the existing avionics units were obsolete. Continued use of existing hardware would require substantial redesign, yet would result in the use of outdated hardware. Out of date processes, with very expensive and labor intensive technologies, were being used for manufacturing. The Atlas/Centaur avionics were to be procured at a fairly high rate that demanded the use of modern components. The new avionics also reduce size, weight, power, and parts count with a dramatic improvement in reliability. Finally, the cost leverage derived from upgrading the avionics as opposed to any other subsystem for the existing Atlas/Centaur was a very large consideration in the upgrade decision. The upgrade program is a multiyear effort that began in 1989. It includes telemetry, guidance and navigation, control electronics, thrust vector control, and redundancy levels.

  9. Design, analysis, and testing of a precision guidance, navigation, and control system for a dual-spinning Cubesat

    E-print Network

    Wise, Evan Dale

    2013-01-01

    The Microsized Microwave Atmospheric Satellite (MicroMAS) combines two traditional control approaches: a dual spinner and a three-axis gyrostat. Unlike typical dual spinners, the purpose of MicroMAS 's 2U bus and spinner ...

  10. System

    NASA Astrophysics Data System (ADS)

    Diao, Jiang; Fan, Guozheng; Liu, Xuan; Xie, Bing

    2014-10-01

    Molecular dynamics simulations were carried out to investigate the anionic structures of the molten CaO-SiO2-P2O5 system. The results show that the average first nearest-neighbor distances for Si-O and P-O pairs are 1.61 and 1.53 Å, respectively. As expected, above 98 pct P and 95 pct Si show fourfold coordination and form tetrahedral structures. Due to the high basicity, nonbridging oxygen occupies a predominant position in Si and P tetrahedron. Based on the oxygen number of different types, the structures of both Si and P tetrahedron were classified as Q 0, Q 1, Q 2, Q 3, and Q 4, where the superscript referred to the number of bridging oxygen atoms. With the substitution of P2O5 for SiO2, Q 0 decreased and other type of Q i units increased. For Si tetrahedron, Q 2 and Q 3 show most notable change, for P tetrahedron, Q 1and Q 2 show the most notable change. The change of Q i units for Si tetrahedron is larger than that for P tetrahedron. The concentration of free oxygen decreases remarkably with the increase of P2O5 content. The Si-O-P linkage is energetically more favorable than Si-O-Si and P-O-P linkages. P ion has a tendency to promote the polymerization of phosphosilicate melts.

  11. Magnetic Position and Orientation Tracking System

    Microsoft Academic Search

    Frederick Raab; Ernest Blood; Terry Steiner; Herbert Jones

    1979-01-01

    Three-axis generation and sensing of quasi-static magneticdipole fields provide information sufficient to determine both the position and orientation of the sensor relative to the source. Linear rotation transformations based upon the previous measurements are applied to both the source excitation and sensor output vectors, yielding quantities that are linearly propotional to small changes in the position and orientation. Changes are

  12. Initial development of direct interaction for a transfer robotic Arm system for caregivers.

    PubMed

    Jeannis, Hervens; Grindle, Garrett G; Kelleher, Annmarie; Wang, Hongwu; Brewer, Bambi; Cooper, Rory

    2013-06-01

    The most common injuries in healthcare are related to transfers. The Strong Arm system assists caregivers in providing fully dependent transfers from an electric power wheelchair to a bed, shower bench, toilet or other surface. However, this system currently controlled by buttons could be more successful with a more intuitive method during use. This paper presents the initial development of direct interaction for a robotic transfer system called Strong Arm. Direct interaction was used to make a transfer system more intuitive to operate using a three-axis load cell. To move Strong Arm, the user must apply intentional force on any of the given axes by surpassing the axis threshold. Unintentional movement could lead to injury. The results indicate that the thresholds for each axis were at least 3.5 N in X, 16.9 N in Y and 5.3N in Z in order to prevent unintentional forces from a human hand that would cause the robot to move. PMID:24187209

  13. JOURNAL OF GUIDANCE, CONTROL, AND DYNAMICS Vol. 26, No. 2, MarchApril 2003

    E-print Network

    Lightsey, Glenn

    JOURNAL OF GUIDANCE, CONTROL, AND DYNAMICS Vol. 26, No. 2, March­April 2003 Three-Axis Attitude Determination Using Global Positioning System Signal Strength Measurements E. Glenn Lightsey¤ and Jared Madsen-phase algorithm for deriving three-axis attitude solutions from global positioning system (GPS) signal sources

  14. A smartphone-based driver safety monitoring system using data fusion.

    PubMed

    Lee, Boon-Giin; Chung, Wan-Young

    2012-01-01

    This paper proposes a method for monitoring driver safety levels using a data fusion approach based on several discrete data types: eye features, bio-signal variation, in-vehicle temperature, and vehicle speed. The driver safety monitoring system was developed in practice in the form of an application for an Android-based smartphone device, where measuring safety-related data requires no extra monetary expenditure or equipment. Moreover, the system provides high resolution and flexibility. The safety monitoring process involves the fusion of attributes gathered from different sensors, including video, electrocardiography, photoplethysmography, temperature, and a three-axis accelerometer, that are assigned as input variables to an inference analysis framework. A Fuzzy Bayesian framework is designed to indicate the driver's capability level and is updated continuously in real-time. The sensory data are transmitted via Bluetooth communication to the smartphone device. A fake incoming call warning service alerts the driver if his or her safety level is suspiciously compromised. Realistic testing of the system demonstrates the practical benefits of multiple features and their fusion in providing a more authentic and effective driver safety monitoring. PMID:23247416

  15. A Smartphone-Based Driver Safety Monitoring System Using Data Fusion

    PubMed Central

    Lee, Boon-Giin; Chung, Wan-Young

    2012-01-01

    This paper proposes a method for monitoring driver safety levels using a data fusion approach based on several discrete data types: eye features, bio-signal variation, in-vehicle temperature, and vehicle speed. The driver safety monitoring system was developed in practice in the form of an application for an Android-based smartphone device, where measuring safety-related data requires no extra monetary expenditure or equipment. Moreover, the system provides high resolution and flexibility. The safety monitoring process involves the fusion of attributes gathered from different sensors, including video, electrocardiography, photoplethysmography, temperature, and a three-axis accelerometer, that are assigned as input variables to an inference analysis framework. A Fuzzy Bayesian framework is designed to indicate the driver’s capability level and is updated continuously in real-time. The sensory data are transmitted via Bluetooth communication to the smartphone device. A fake incoming call warning service alerts the driver if his or her safety level is suspiciously compromised. Realistic testing of the system demonstrates the practical benefits of multiple features and their fusion in providing a more authentic and effective driver safety monitoring. PMID:23247416

  16. Structure and properties of nano-hydroxypatite scaffolds for bone tissue engineering with a selective laser sintering system.

    PubMed

    Shuai, Cijun; Gao, Chengde; Nie, Yi; Hu, Huanlong; Zhou, Ying; Peng, Shuping

    2011-07-15

    In this study, nano-hydroxypatite (n-HAP) bone scaffolds are prepared by a homemade selective laser sintering (SLS) system based on rapid prototyping (RP) technology. The SLS system consists of a precise three-axis motion platform and a laser with its optical focusing device. The implementation of arbitrary complex movements based on the non-uniform rational B-Spline (NURBS) theory is realized in this system. The effects of the sintering processing parameters on the microstructure of n-HAP are tested with x-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). The particles of n-HAP grow gradually and tend to become spherical-like from the initial needle-like shape, but still maintain a nanoscale structure at scanning speeds between 200 and 300 mm min(-1) when the laser power is 50 W, the light spot diameter 4 mm, and the layer thickness 0.3 mm. In addition, these changes do not result in decomposition of the n-HAP during the sintering process. The results suggest that the newly developed n-HAP scaffolds have the potential to serve as an excellent substrate in bone tissue engineering. PMID:21642759

  17. General view of a Solid Rocket Motor Nozzle in the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of a Solid Rocket Motor Nozzle in the Solid Rocket Booster (SRB) Assembly and Refurbishment Facility at Kennedy Space Center, being prepared to be mated with the Aft Skirt. In this view you can see the attach brackets where the Thrust Vector Control System actuators connect to the nozzle which can swivel the nozzle up to 3.5 degrees to redirect the thrust to steer and maintain the Shuttle's programmed trajectory. - Space Transportation System, Solid Rocket Boosters, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  18. Use of the flight simulator in the design of a STOL research aircraft.

    NASA Technical Reports Server (NTRS)

    Spitzer, R. E.; Rumsey, P. C.; Quigley, H. C.

    1972-01-01

    Piloted simulator tests on the NASA-Ames Flight Simulator for Advanced Aircraft motion base played a major role in guiding the design of the Modified C-8A 'Buffalo' augmentor wing jet flap STOL research airplane. Design results are presented for the flight control systems, lateral-directional SAS, hydraulic systems, and engine and thrust vector controls. Emphasis is given to lateral control characteristics on STOL landing approach, engine-out control and recovery techniques in the powered-lift regime, and operational flight procedures which affected airplane design.

  19. Book Corrections for Optimal Estimation of Dynamic Systems

    E-print Network

    Crassidis, John L.

    .D., and Oh, S.D., "Three-Axis Attitude Determination from Vector Observations," Journal of Guidance velocity. This also needs to be changed on page 176. 2 #12;Chapter 4 · The MATLAB code for Example 4 is described in the example. The simulation has now been corrected in the MATLAB code to reflect what

  20. Integrated attitude determination and control system via magnetic measurements and actuation

    NASA Astrophysics Data System (ADS)

    Abdelrahman, Mohammad; Park, Sang-Young

    2011-08-01

    A nonlinear control scheme using a Modified State-Dependent Riccati Equation (MSDRE) is developed through a pseudo-linearization of spacecraft augmented nonlinear dynamics and kinematics. The full-state knowledge required for the control loop is provided through a generalized algorithm for spacecraft three-axis attitude and rate estimation based on the utilization of magnetometer measurements and their time derivatives, while the control torque is generated via magnetorquers. The stability of the controller is investigated through Lyapunov function analysis and the local observability of the estimator is verified. The resulted attitude determination and control system has shown the capability of estimating the attitude better than 5 deg and rate of order 0.03 deg/s in addition to maintain the pointing accuracy within 5 deg in each axis with pointing stability of less than 0.05 deg/s. Monte-Carlo simulations are used to demonstrate the global asymptotic stability of the controller and the estimator for various initial conditions.

  1. Piloting considerations for terminal area operations of civil tiltwing and tiltrotor aircraft

    NASA Technical Reports Server (NTRS)

    Hindson, William S.; Hardy, Gordon H.; Tucker, George E.; Decker, William A.

    1993-01-01

    The existing body of research to investigate airworthiness, performance, handling, and operational requirements for STOL and V/STOL aircraft was reviewed for its applicability to the tiltrotor and tiltwing design concepts. The objective of this study was to help determine the needs for developing civil certification criteria for these aircraft concepts. Piloting tasks that were considered included configuration and thrust vector management, glidepath control, deceleration to hover, and engine failure procedures. Flight control and cockpit display systems that have been found necessary to exploit the low-speed operating characteristics of these aircraft are described, and beneficial future developments are proposed.

  2. Design and flight test of a robust autopilot for the IRIS-T air-to-air missile

    Microsoft Academic Search

    Harald Buschek

    2003-01-01

    The Infra-Red Imaging System-Tail\\/thrust-vector controlled (IRIS-T) missile is a next-generation short-range air-to-air missile currently developed by Germany, Greece, Italy, Norway, and Sweden. IRIS-T is characterized by an extreme maneuverability for close-in air-to-air combat. The corresponding highly nonlinear and rapidly time-varying dynamics constitute a significant challenge for the autopilot design. Robust control techniques are employed to design lateral and roll controllers

  3. U.S. Space Shuttle Solid Rocket Booster - Return to flight

    NASA Technical Reports Server (NTRS)

    Coates, K. D.; Smith, J. D.; Aldridge, L. L.; Heidemann, W. B.; Langhenry, M. T.

    1987-01-01

    The Space Shuttle Solid Rocket Booster (SRB) redesign program instituted in the wake of the Challenger accident encompassed a design requirements review, a failure modes effect analysis/critical items list determination, a hazards analysis, an operational maintenance and requirements specification study, the definition of operational maintenance instructions and launch commit criteria, and design certification and flight readiness reviews. Attention is presently given to the SRB's thrust vector control, separation, and recovery functions, as well as its electrical and instrumentation systems and its case assembly and hardware interfaces.

  4. Statistical error model for a solar electric propulsion thrust subsystem

    NASA Technical Reports Server (NTRS)

    Bantell, M. H.

    1973-01-01

    The solar electric propulsion thrust subsystem statistical error model was developed as a tool for investigating the effects of thrust subsystem parameter uncertainties on navigation accuracy. The model is currently being used to evaluate the impact of electric engine parameter uncertainties on navigation system performance for a baseline mission to Encke's Comet in the 1980s. The data given represent the next generation in statistical error modeling for low-thrust applications. Principal improvements include the representation of thrust uncertainties and random process modeling in terms of random parametric variations in the thrust vector process for a multi-engine configuration.

  5. A simple 5-DoF MR-compatible motion signal measurement system.

    PubMed

    Chung, Soon-Cheol; Kim, Hyung-Sik; Yang, Jae-Woong; Lee, Su-Jeong; Choi, Mi-Hyun; Kim, Ji-Hye; Yeon, Hong-Won; Park, Jang-Yeon; Yi, Jeong-Han; Tack, Gye-Rae

    2011-09-01

    The purpose of this study was to develop a simple motion measurement system with magnetic resonance (MR) compatibility and safety. The motion measurement system proposed here can measure 5-DoF motion signals without deteriorating the MR images, and it has no effect on the intense and homogeneous main magnetic field, the temporal-gradient magnetic field (which varies rapidly with time), the transceiver radio frequency (RF) coil, and the RF pulse during MR data acquisition. A three-axis accelerometer and a two-axis gyroscope were used to measure 5-DoF motion signals, and Velcro was used to attach a sensor module to a finger or wrist. To minimize the interference between the MR imaging system and the motion measurement system, nonmagnetic materials were used for all electric circuit components in an MR shield room. To remove the effect of RF pulse, an amplifier, modulation circuit, and power supply were located in a shielded case, which was made of copper and aluminum. The motion signal was modulated to an optic signal using pulse width modulation, and the modulated optic signal was transmitted outside the MR shield room using a high-intensity light-emitting diode and an optic cable. The motion signal was recorded on a PC by demodulating the transmitted optic signal into an electric signal. Various kinematic variables, such as angle, acceleration, velocity, and jerk, can be measured or calculated by using the motion measurement system developed here. This system also enables motion tracking by extracting the position information from the motion signals. It was verified that MR images and motion signals could reliably be measured simultaneously. PMID:21487903

  6. An Overview of the NASA F-18 High Alpha Research Vehicle

    NASA Technical Reports Server (NTRS)

    Bowers, Albion H.; Pahle, Joseph W.; Wilson, R. Joseph; Flick, Bradley C.; Rood, Richard L.

    1996-01-01

    This paper gives an overview of the NASA F-18 High Alpha Research Vehicle. The three flight phases of the program are introduced, along with the specific goals and data examples taken during each phase. The aircraft configuration and systems needed to perform the disciplinary and inter-disciplinary research are discussed. The specific disciplines involved with the flight research are introduced, including aerodynamics, controls, propulsion, systems, and structures. Decisions that were made early in the planning of the aircraft project and the results of those decisions are briefly discussed. Each of the three flight phases corresponds to a particular aircraft configuration, and the research dictated the configuration to be flown. The first phase gathered data with the baseline F-18 configuration. The second phase was the thrust-vectoring phase. The third phase used a modified forebody with deployable nose strakes. Aircraft systems supporting these flights included extensive instrumentation systems, integrated research flight controls using flight control hardware and corresponding software, analog interface boxes to control forebody strakes, a thrust-vectoring system using external post-exit vanes around axisymmetric nozzles, a forebody vortex control system with strakes, and backup systems using battery-powered emergency systems and a spin recovery parachute.

  7. Accuracy Studies of a Magnetometer-Only Attitude-and-Rate-Determination System

    NASA Technical Reports Server (NTRS)

    Challa, M. (Editor); Wheeler, C. (Editor)

    1996-01-01

    A personal computer based system was recently prototyped that uses measurements from a three axis magnetometer (TAM) to estimate the attitude and rates of a spacecraft using no a priori knowledge of the spacecraft's state. Past studies using in-flight data from the Solar, Anomalous, and Magnetospheric Particles Explorer focused on the robustness of the system and demonstrated that attitude and rate estimates could be obtained accurately to 1.5 degrees (deg) and 0.01 deg per second (deg/sec), respectively, despite limitations in the data and in the accuracies of te truth models. This paper studies the accuracy of the Kalman filter in the system using several orbits of in-flight Earth Radiation Budget Satellite (ERBS) data and attitude and rate truth models obtained from high precision sensors to demonstrate the practical capabilities. This paper shows the following: Using telemetered TAM data, attitude accuracies of 0.2 to 0.4 deg and rate accuracies of 0.002 to 0.005 deg/sec (within ERBS attitude control requirements of 1 deg and 0.0005 deg/sec) can be obtained with minimal tuning of the filter; Replacing the TAM data in the telemetry with simulated TAM data yields corresponding accuracies of 0.1 to 0.2 deg and 0.002 to 0.005 deg/sec, thus demonstrating that the filter's accuracy can be significantly enhanced by further calibrating the TAM. Factors affecting the fillter's accuracy and techniques for tuning the system's Kalman filter are also presented.

  8. Quantification of AC electromagnetic tracking system accuracy in a CT scanner environment

    NASA Astrophysics Data System (ADS)

    Shen, Eric; Shechter, Guy; Kruecker, Jochen; Stanton, Douglas

    2007-03-01

    The purpose of this study was to quantify the effects of a computed tomography (CT) scanner environment on the positional accuracy of an AC electromagnetic tracking system, the second generation NDI Aurora. A three-axis positioning robot was used to move an electromagnetically tracked needle above the CT table throughout a 30cm by 30cm axial plane sampled in 2.5cm steps. The corresponding position data was captured from the Aurora and was registered to the positioning system data using a rigid body transformation minimizing the least squares L2-norm. Data was sampled at varying distances from the CT gantry (three feet, two feet, and one foot) and with the CT table in a nominal position and lowered by 10cm. A coordinate system was defined with the x axis normal to the CT table and the origin at the center of the CT table, and the z axis spanning the table in the lateral direction with the origin at the center of the CT table. In this coordinate system, the positional relationships of each sampled point, the CT table, and the Aurora field generator are clearly defined. This allows error maps to be displayed in accurate spatial relationship to the CT scanner as well as to a representative patient anatomy. By quantifying the distortions in relation to the position of CT scanner components and the Aurora field generator, the optimal working field of view and recommended guidelines for operation can be determined such that targeting inside human anatomy can be done with reasonable expectations of desired performance.

  9. Real-time visual sensing system achieving high-speed 3D particle tracking with nanometer resolution.

    PubMed

    Cheng, Peng; Jhiang, Sissy M; Menq, Chia-Hsiang

    2013-11-01

    This paper presents a real-time visual sensing system, which is created to achieve high-speed three-dimensional (3D) motion tracking of microscopic spherical particles in aqueous solutions with nanometer resolution. The system comprises a complementary metal-oxide-semiconductor (CMOS) camera, a field programmable gate array (FPGA), and real-time image processing programs. The CMOS camera has high photosensitivity and superior SNR. It acquires images of 128×120 pixels at a frame rate of up to 10,000 frames per second (fps) under the white light illumination from a standard 100 W halogen lamp. The real-time image stream is downloaded from the camera directly to the FPGA, wherein a 3D particle-tracking algorithm is implemented to calculate the 3D positions of the target particle in real time. Two important objectives, i.e., real-time estimation of the 3D position matches the maximum frame rate of the camera and the timing of the output data stream of the system is precisely controlled, are achieved. Two sets of experiments were conducted to demonstrate the performance of the system. First, the visual sensing system was used to track the motion of a 2 ?m polystyrene bead, whose motion was controlled by a three-axis piezo motion stage. The ability to track long-range motion with nanometer resolution in all three axes is demonstrated. Second, it was used to measure the Brownian motion of the 2 ?m polystyrene bead, which was stabilized in aqueous solution by a laser trapping system. PMID:24216655

  10. Cape Canaveral Air Force Station, Launch Complex 39, Solid Rocket ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Cape Canaveral Air Force Station, Launch Complex 39, Solid Rocket Booster Disassembly & Refurbishment Complex, Thrust Vector Control Deservicing Facility, Hangar Road, Cape Canaveral, Brevard County, FL

  11. Maintaining Aura's Orbit Requirements Under New Maneuver Operations

    NASA Technical Reports Server (NTRS)

    Johnson, Megan; Petersen, Jeremy D.

    2014-01-01

    The Earth Observing System (EOS) Afternoon Constellation consists of five member missions (GCOM-W1, Aqua, CALIPSO, CloudSat, and Aura), each of which maintain a frozen, sun-synchronous orbit with a 16-day repeating ground track that follows the Worldwide Reference System-2 (WRS-2). Under nominal science operations for Aura, the propulsion system is oriented such that the resultant thrust vector is aligned 13.493 degrees away from the velocity vector along the yaw axis. When performing orbit maintenance maneuvers, the spacecraft performs a yaw slew to align the thrust vector in the appropriate direction. A new Drag Make Up (DMU) maneuver operations scheme has been implemented for Aura alleviating the need for the 13.493 degree yaw slew. The focus of this investigation is to assess the impact that no-slew DMU maneuver operations will have on Auras Mean Local Time (MLT) which drives the required along track separation between Aura and the constellation members, as well as Auras frozen orbit properties, eccentricity and argument of perigee. Seven maneuver strategies were analyzed to determine the best operational approach. A mirror pole strategy, with maneuvers alternating at the North and South poles, was implemented operationally to minimize impact to the MLT. Additional analysis determined that the mirror pole strategy could be further modified to include frozen orbit maneuvers and thus maintain both MLT and the frozen orbit properties under no-slew operations

  12. Cloud Absorption Radiometer Autonomous Navigation System - CANS

    NASA Technical Reports Server (NTRS)

    Kahle, Duncan; Gatebe, Charles; McCune, Bill; Hellwig, Dustan

    2013-01-01

    CAR (cloud absorption radiometer) acquires spatial reference data from host aircraft navigation systems. This poses various problems during CAR data reduction, including navigation data format, accuracy of position data, accuracy of airframe inertial data, and navigation data rate. Incorporating its own navigation system, which included GPS (Global Positioning System), roll axis inertia and rates, and three axis acceleration, CANS expedites data reduction and increases the accuracy of the CAR end data product. CANS provides a self-contained navigation system for the CAR, using inertial reference and GPS positional information. The intent of the software application was to correct the sensor with respect to aircraft roll in real time based upon inputs from a precision navigation sensor. In addition, the navigation information (including GPS position), attitude data, and sensor position details are all streamed to a remote system for recording and later analysis. CANS comprises a commercially available inertial navigation system with integral GPS capability (Attitude Heading Reference System AHRS) integrated into the CAR support structure and data system. The unit is attached to the bottom of the tripod support structure. The related GPS antenna is located on the P-3 radome immediately above the CAR. The AHRS unit provides a RS-232 data stream containing global position and inertial attitude and velocity data to the CAR, which is recorded concurrently with the CAR data. This independence from aircraft navigation input provides for position and inertial state data that accounts for very small changes in aircraft attitude and position, sensed at the CAR location as opposed to aircraft state sensors typically installed close to the aircraft center of gravity. More accurate positional data enables quicker CAR data reduction with better resolution. The CANS software operates in two modes: initialization/calibration and operational. In the initialization/calibration mode, the software aligns the precision navigation sensors and initializes the communications interfaces with the sensor and the remote computing system. It also monitors the navigation data state for quality and ensures that the system maintains the required fidelity for attitude and positional information. In the operational mode, the software runs at 12.5 Hz and gathers the required navigation/attitude data, computes the required sensor correction values, and then commands the sensor to the required roll correction. In this manner, the sensor will stay very near to vertical at all times, greatly improving the resulting collected data and imagery. CANS greatly improves quality of resulting imagery and data collected. In addition, the software component of the system outputs a concisely formatted, high-speed data stream that can be used for further science data processing. This precision, time-stamped data also can benefit other instruments on the same aircraft platform by providing extra information from the mission flight.

  13. Finding an environmentally acceptable replacement for Halon 2402 that meets Minuteman LITVC performance criteria

    NASA Astrophysics Data System (ADS)

    Shell, Vaughn; Marlow, Mike; Nimitz, Jon

    1992-07-01

    Halon 2402 (Freon 114B2) is injected into the hot gas exhaust stream of the Minuteman second-stage solid propellant rocket motor nozzle to provide thrust vector control. In response to environmental concerns, specifically ozone depletion, the U.S. Air Force has established a program to find and qualify a replacement for Halon 2402. Because of anticipated schedule constraints, two parallel paths consisting of a 'drop-in' replacement, and a complete thrust vector control system redesign will be pursued during the first phase of the program. Tasks within the first phase support a series of candidate down selections. These tasks include review of various data bases for possible candidates and then evaluating the candidates in terms of environmental effects, cost, storability, compatibility, packaging, and performance. The culmination of the first phase will be two static motor firings in which two drop-in injectant candidates and two redesign system candidates will be tested to determine actual performance. The results of the firings will dictate which path (drop-in or redesign) and which injectant to pursue for formal qualification. Presently, Phase I is approximately 50 percent complete with the many candidates being reduced to three for each path.

  14. Acoustic containerless experiment system: A non-contact surface tension measurement

    NASA Technical Reports Server (NTRS)

    Elleman, D. D.; Wang, T. G.; Barmatz, M.

    1988-01-01

    The Acoustic Containerless Experiment System (ACES) was flown on STS 41-B in February 1984 and was scheduled to be reflown in 1986. The primary experiment that was to be conducted with the ACES module was the containerless melting and processing of a fluoride glass sample. A second experiment that was to be conducted was the verification of a non-contact surface tension measurement technique using the molten glass sample. The ACES module consisted of a three-axis acoustic positioning module that was inside an electric furnace capable of heating the system above the melting temperature of the sample. The acoustic module is able to hold the sample with acoustic forces in the center of the chamber and, in addition, has the capability of applying a modulating force on the sample along one axis of the chamber so that the molten sample or liquid drop could be driven into one of its normal oscillation modes. The acoustic module could also be adjusted so that it could place a torque on the molten drop and cause the drop to rotate. In the ACES, a modulating frequency was applied to the drop and swept through a range of frequencies that would include the n = 2 mode. A maximum amplitude of the drop oscillation would indicate when resonance was reached and from that data the surface tension could be calculated. For large viscosity samples, a second technique for measuring surface tension was developed. The results of the ACES experiment and some of the problems encountered during the actual flight of the experiment will be discussed.

  15. 3D Maneuvers For Asymmetric Under-Actuated Rigid Body 

    E-print Network

    Kim, Dong Hoon

    2013-08-01

    Most spacecraft are designed to be maneuvered to achieve pointing goals. This is generally accomplished by designing a three-axis control system. This work explores new maneuver strategies when only two control inputs are available: (i) sequential...

  16. Propulsion Flight Research at NASA Dryden From 1967 to 1997

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Ray, Ronald J.; Conners, Timothy R.; Walsh, Kevin R.

    1997-01-01

    From 1967 to 1997, pioneering propulsion flight research activities have been conceived and conducted at the NASA Dryden Flight Research Center. Many of these programs have been flown jointly with the United States Department of Defense, industry, or the Federal Aviation Administration. Propulsion research has been conducted on the XB-70, F-111 A, F-111E, YF-12, JetStar, B-720, MD-11, F-15, F- 104, Highly Maneuverable Aircraft Technology, F-14, F/A-18, SR-71, and the hypersonic X-15 airplanes. Research studies have included inlet dynamics and control, in-flight thrust computation, integrated propulsion controls, inlet and boattail drag, wind tunnel-to-flight comparisons, digital engine controls, advanced engine control optimization algorithms, acoustics, antimisting kerosene, in-flight lift and drag, throttle response criteria, and thrust-vectoring vanes. A computer-controlled thrust system has been developed to land the F-15 and MD-11 airplanes without using any of the normal flight controls. An F-15 airplane has flown tests of axisymmetric thrust-vectoring nozzles. A linear aerospike rocket experiment has been developed and tested on the SR-71 airplane. This paper discusses some of the more unique flight programs, the results, lessons learned, and their impact on current technology.

  17. Bias Momentum Sizing for Hovering Dual-Spin Platforms

    NASA Technical Reports Server (NTRS)

    Lim, Kyong B.; Shin, Jong-Yeob; Moerder, Daniel D.

    2006-01-01

    An atmospheric flight vehicle in hover is typically controlled by varying its thrust vector. Achieving both levitation and attitude control with the propulsion system places considerable demands on it for agility and precision, particularly if the vehicle is statically unstable, or nearly so. These demands can be relaxed by introducing an appropriately sized angular momentum bias aligned with the vehicle's yaw axis, thus providing an additional margin of attitude stability about the roll and pitch axes. This paper describes a methodical approach for trading off angular momentum bias level needed with desired levels of vehicle response due to the design disturbance environment given a vehicle's physical parameters. It also describes several simplifications that provide a more physical and intuitive understanding of dual-spin dynamics for hovering atmospheric vehicles. This approach also mitigates the need for control torques and inadvertent actuator saturation difficulties in trying to stabilize a vehicle via control torques produced by unsteady aerodynamics, thrust vectoring, and unsteady throttling. Simulation results, based on a subscale laboratory test flying platform, demonstrate significant improvements in the attitude control robustness of the vehicle with respect to both wind disturbances and off-center of gravity payload changes during flight.

  18. Warm gas TVC design study

    NASA Technical Reports Server (NTRS)

    Moorhead, S. B., Jr.

    1973-01-01

    A warm gas thrust vector control system was studied to optimize the injection geometry for a specific engine configuration, and an injection valve was designed capable of meeting the base line requirements. To optimize injection geometry, studies were made to determine the performance effects of varying injection location, angle, port size, and port configuration. Having minimized the injection flow rate required, a warm gas valve was designed to handle the required flow. A direct drive hydraulic servovalve capable of operating with highly contaminated hydraulic fluid was designed. The valve is sized to flow 15 gpm at 3000 psia and the direct drive feature is capable of applying a spool force of 200 pounds. The baseline requirements are the development of 6 deg of thrust vector control utilizing 2000 F (total temperature) gas for 180 seconds on a 1.37 million pound thrust engine burning LOX and RP-1 at a chamber pressure of 250 psia with a 155 inch long conical nozzle having a 68 inch diameter throat and a 153 inch diameter exit.

  19. Estimating Thruster Impulses From IMU and Doppler Data

    NASA Technical Reports Server (NTRS)

    Lisano, Michael E.; Kruizinga, Gerhard L.

    2009-01-01

    A computer program implements a thrust impulse measurement (TIM) filter, which processes data on changes in velocity and attitude of a spacecraft to estimate the small impulsive forces and torques exerted by the thrusters of the spacecraft reaction control system (RCS). The velocity-change data are obtained from line-of-sight-velocity data from Doppler measurements made from the Earth. The attitude-change data are the telemetered from an inertial measurement unit (IMU) aboard the spacecraft. The TIM filter estimates the threeaxis thrust vector for each RCS thruster, thereby enabling reduction of cumulative navigation error attributable to inaccurate prediction of thrust vectors. The filter has been augmented with a simple mathematical model to compensate for large temperature fluctuations in the spacecraft thruster catalyst bed in order to estimate thrust more accurately at deadbanding cold-firing levels. Also, rigorous consider-covariance estimation is applied in the TIM to account for the expected uncertainty in the moment of inertia and the location of the center of gravity of the spacecraft. The TIM filter was built with, and depends upon, a sigma-point consider-filter algorithm implemented in a Python-language computer program.

  20. System Design of Propulsion Systems for Moon or Planetary Descent Vehicles

    NASA Astrophysics Data System (ADS)

    Peukert, M.; Riehle, M.

    Future planetary exploration missions will require the landing of larger payloads more softly and precisely than recently performed. The paper considers several future missions, the landing requirements produce different thrust level needed for the landing vehicle but are similar in many other repects. To fulfil the mission needs of these planetary lander studies, preferably with a common chemical propulsion subsystem concept for all these studies to use as much commonalities as possible, a trade- off has been performed comparing the most promising concepts. These are the concept of a throttable turbo pump engine, of main and assist engines and the clustered/plug nozzle concept. There the propulsion concept of a clustered/plug nozzle is proposed. A discussion is given which shows the advantages of this concept. One of its major advantages is the scalability to different mission, spacecraft mass und thrust requirements. Once the clustered/plug nozzle concept is developed it can easily be adapted to different thrust needs. Therefore just the thruster forming the primary nozzle of the plug nozzle has to be exchanged; the conceptual layout of the propulsion subsystem remains unchanged. The wide variety of the Astrium in-house monopropellant and bi-propellant thruster portfolio supports this scalability. Additional benefits of this concept like stepwise thrust variation or the possibility to incorporate thrust vector steering make this concept even more attractive. The develop- ment risk and the costs of the proposed clustered/plug nozzle concept are expected to be significantly lower than that of a dedicated single main engine.

  1. Tactile sensing-based control algorithm for real-time grasp synthesis in object manipulation tasks of humanoid robot fingers

    Microsoft Academic Search

    Hanafiah Yussof; Masahiro Ohka; Hirofumi Suzuki; Nobuyuki Morisawa

    2008-01-01

    This paper presents development of tactile sensing-based control algorithm for humanoid robot finger system with optical three-axis tactile sensor mounted on fingertips. Our aim is to develop an intelligent control system that can recognize stiffness of unknown objects and respond to sudden changes of objectpsilas weight during object manipulation. For this purpose, we developed a novel optical three-axis tactile sensor

  2. Kinematics of Hooke universal joint robot wrists

    NASA Technical Reports Server (NTRS)

    Mckinney, William S., Jr.

    1988-01-01

    The singularity problem associated with wrist mechanisms commonly found on industrial manipulators can be alleviated by redesigning the wrist so that it functions as a three-axis gimbal system. This paper discussess the kinematics of gimbal robot wrists made of one and two Hooke universal joints. Derivations of the resolved rate motion control equations for the single and double Hooke universal joint wrists are presented using the three-axis gimbal system as a theoretical wrist model.

  3. Waterhammer Testing and Modeling of the Ares I Upper Stage Reaction Control System

    NASA Technical Reports Server (NTRS)

    Williams, J. Hunter; Holt, Kimberly A.

    2010-01-01

    NASA's Ares I rocket is the agency's first step in completing the goals of the Constellation Program, which plans to deliver a new generation of space explorers into low earth orbit for future missions to the International Space Station, the moon, and other destinations within the solar system. Ares I is a two-stage rocket topped by the Orion crew capsule and its service module. The launch vehicle's First Stage is a single, five-segment reusable solid rocket booster (RSRB), derived from the Space Shuttle Program's four segment RSRB. The vehicle's Upper Stage, being designed at Marshall Space Flight Center (MSFC), is propelled by a single J-2X Main Engine fueled with liquid oxygen and liquid hydrogen. During active Upper Stage flight of the Ares I launch vehicle, the Upper Stage Reaction Control System (US ReCS) will perform attitude control operations for the vehicle. The US ReCS will provide three-axis attitude control capability (roll, pitch, and yaw) for the Upper Stage while the J-2X is not firing and roll control capability while the engine is firing. Because of the requirements imposed upon the system, the design must accommodate rapid pulsing of multiple thrusters simultaneously to maintain attitude control. In support of these design activities and in preparation for Critical Design Review, analytical models of the US ReCS propellant feed system have been developed using the Thermal Hydraulic Library of MSC.EASY5 v.2008, herein referred to as EASY5. EASY5 is a commercially available fluid system modeling package with significant history of modeling space propulsion systems. In Fall 2009, a series of development tests were conducted at MSFC on a cold-flow test article for the US ReCS, herein referred to as System Development Test Article (SDTA). A subset of those tests performed were aimed at examining the effects of waterhammer on a flight-representative system and to ensure that those effects could be quantified with analytical models and incorporated into the design of the flight system. This paper presents an overview of the test article and the test approach, along with a discussion of the analytical modeling methodology. In addition, the results of that subset of development tests, along with analytical model pre-test predictions and post-test model correlations, will also be discussed in detail.

  4. Design Challenges of Power Systems for Instrumented Spacecraft with Very Low Perigees in the Earth's Ionosphere

    NASA Technical Reports Server (NTRS)

    Moran, Vickie Eakin; Manzer, Dominic D.; Pfaff, Robert E.; Grebowsky, Joseph M.; Gervin, Jan C.

    1999-01-01

    Designing a solar array to power a spacecraft bus supporting a set of instruments making in situ plasma and neutral atmosphere measurements in the ionosphere at altitudes of 120km or lower poses several challenges. The driving scientific requirements are the field-of-view constraints of the instruments resulting in a three-axis stabilized spacecraft, the need for an electromagnetically unperturbed environment accomplished by designing an electrostatically conducting solar array surface to avoid large potentials, making the spacecraft body as small and as symmetric as possible, and body-mounting the solar array. Furthermore, the life and thermal constraints, in the midst of the effects of the dense atmosphere at low altitude, drive the cross-sectional area of the spacecraft to be small particularly normal to the ram direction. Widely varying sun angles and eclipse durations add further complications, as does the growing desire for multiple spacecraft to resolve spatial and temporal variations packaged into a single launch vehicle. Novel approaches to insure adequate orbit-averaged power levels of approximately 250W include an oval-shaped cross section to increase the solar array collecting area during noon-midnight orbits and the use of a flywheel energy storage system. The flywheel could also be used to help maintain the spacecraft's attitude, particularly during excursions to the lowest perigee altitudes. This paper discusses the approaches used in conceptual power designs for both the proposed Dipper and the Global Electrodynamics Connections (GEC) Mission currently being studied at the NASA/Goddard Space Flight Center.

  5. Development of the command data system and ground software for the SEDSAT-1 microsatellite

    NASA Technical Reports Server (NTRS)

    Wells, B. Earl

    1996-01-01

    SEDSAT-1 is designed to be a low cost scientific satellite which is to be used to perform a minimum of five tasks which include: (1) the acquisition of a number of important parameters associated with the tethering processes from the payloads perspective (such as accelerations incurred and imaging data of the tether during deployment), (2) to act as a remote sensing platform for making measurements of the Earth's Atmosphere (allowing research to be performed in such areas as vertical lightning observation, visible light spectrography, and cloud cover studies, (3) to act as a general purpose amateur radio communication satellite relaying information back to earth, (4) to demonstrate the feasibility of the deployment in low earth orbit of advanced technology such as the Gallium Arsenide Solar Cells, Nickel Metal Hydride batteries, and multi-chip module technology and, (5) to support student's active participation in applying the disciplines of engineering and science to space-based hardware platforms. The project includes the Three-axis Accelerometer System, TAS, Experiment which is designed to report the accelerations that the satellite undergoes during the tethering operations and during the second phase of the mission when the free floating satellite comes in contact with orbit debris. The SEASIS (SEDS Earth, Atmosphere, and Space Imaging System) is another SEDSAT experiment designed to provide images of the tether during its deployment and the earth during the second phase of the mission. To control these experiments and virtually all other satellite operations the Command Data System, CDS is employed. This system utilizes a moderate complexity micro-controller controlled by tasks operating under a real-time operating system to dynamically monitor and control the satellite. The scope of this researchers efforts has been in the general area of coordinating and assisting the student researchers with the development of the CDS and ground station interfaces. This included the low level CDS hardware design and the formulization of a general software plan and schedule for both the CDS and ground station portions of the project.

  6. System requirements. [Space systems

    SciTech Connect

    Austin, R.E.

    1982-06-01

    Requirements of future space systems, including large space systems, that operate beyond the space shuttle are discussed. Typical functions required of propulsion systems in this operational regime include payload placement, retrieval, observation, servicing, space debris control and support to large space systems. These functional requirements are discussed in conjunction with two classes of propulsion systems: (1) primary or orbit transfer vehicle (OTV) and (2) secondary or systems that generally operate within or relatively near an operational base orbit. Three propulsion system types are described in relation to these requirements: cryogenic OTV, teleoperator maneuvering system and a solar electric OTV.

  7. Closeup view of the interior of an Aft Skirt being ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view of the interior of an Aft Skirt being tested and prepared for mating with sub assemblies in the Solid Rocket Booster (SRB) Assembly and Refurbishment Facility at Kennedy Space Center. This view is showing the SRB Thrust Vector Control (TVC) System which includes independent auxiliary power units for each actuator to pressurize their respective hydraulic systems. When the Nozzle is mated with the Aft Skirt the two actuators, located on the left and right side of the TVC System in this view, can swivel it up to 3.5 degrees to redirect the thrust to steer and maintain the Shuttle's programmed trajectory. - Space Transportation System, Solid Rocket Boosters, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  8. Space Shuttle Propulsion Safety Upgrades

    NASA Technical Reports Server (NTRS)

    Humphries, William Randy, Jr.; McCool, Alex (Technical Monitor)

    2000-01-01

    This document is a viewgraph presentation which reviews the proposed upgrades to the Space Shuttle Propulsion system, to improve safety, and reduce significant hazards. The goals of the program are to reduce the risk of a catastrophe in ascent, to achieve significant reduction in orbital and entry systems, and to improve the crew cockpit situational awareness for managing the critical operational situations. The document reviews the upgrades to the propulsion system which are planned to improve the safety. These include modifications to the Advanced Thrust Vector Control, modifications to the Space Shuttle Main Engine Block III, improvement in the Advanced Health Management System, the use of Friction Stir welding on the external tank, which is expected to improve mechanical properties, and reduce defect rate, and the modification of the propellant grains geometry.

  9. Electrical Actuation Technology Bridging

    NASA Technical Reports Server (NTRS)

    Hammond, Monica (compiler); Sharkey, John (compiler)

    1993-01-01

    This document contains the proceedings of the NASA Electrical Actuation Technology Bridging (ELA-TB) Workshop held in Huntsville, Alabama, September 29-October 1, 1992. The workshop was sponsored by the NASA Office of Space Systems Development and Marshall Space Flight Center (MSFC). The workshop addressed key technologies bridging the entire field of electrical actuation including systems methodology, control electronics, power source systems, reliability, maintainability, and vehicle health management with special emphasis on thrust vector control (TVC) applications on NASA launch vehicles. Speakers were drawn primarily from industry with participation from universities and government. In addition, prototype hardware demonstrations were held at the MSFC Propulsion Laboratory each afternoon. Splinter sessions held on the final day afforded the opportunity to discuss key issues and to provide overall recommendations. Presentations are included in this document.

  10. V/STOL flying qualities research using the X-22A

    NASA Technical Reports Server (NTRS)

    Smith, R. E.

    1974-01-01

    The X-22A has four ducted propellers and four engines. The engines are connected to a common system of rotating shafts which distribute propulsive power to the four propellers. Changes in the direction of the thrust vector are accomplished by rotating the ducts, which are interconnected so that all rotate through the same angle. Thrust magnitude is determined by a collective pitch lever, very similar to a helicopter. There are four variable stability system (VSS) controllers: thrust, pitch, roll, and yaw, and three artificial feel servos for the evaluation pilot cockpit controls, each employing electrohydraulic servos. Longitudinal flying qualities for STOL landing approach, and lateral-directional flying qualities and control power requirements for STOL landing approach are discussed. Attention is given to the data acquisition and processing system.

  11. Attitude determination and control system simulation and analysis for low-cost micro-satellites

    Microsoft Academic Search

    Andrew D. Anderson; Jerry J. Sellers; Yoshi Hashida

    2004-01-01

    The Air Force Academy's latest satellite endeavor, FalconSAT-3, is a 50 kg microsatellite being developed by faculty and cadets, and is the Air Force Academy's first attempt at achieving three axis attitude determination and control (ADCS). FalconSAT-3 carries three payloads to conduct DoD research. The attitude requirements for FalconSAT-3 include pointing the satellite within +\\/- five degrees of ram direction,

  12. Attitude determination and control system simulation and analysis for low-cost micro-satellites

    Microsoft Academic Search

    Andrew D. Anderson; Jerry I. Sellers; Yoshi Hashida

    2004-01-01

    The Air Force Academy's latest satellite endeavor, FalconSAT-3, is a 50 kg microsatellite being developed by faculty and cadets, and is the Air Force Academy's first attempt at achieving three axis attitude determination and control (ADCS). FalconSAT-3 will carry three payloads to conduct DoD research. The attitude requirements for FalconSAT-3 include pointing the satellite within +\\/- five degrees of ram

  13. Integrated attitude determination and control system via magnetic measurements and actuation

    Microsoft Academic Search

    Mohammad Abdelrahman; Sang-Young Park

    2011-01-01

    A nonlinear control scheme using a Modified State-Dependent Riccati Equation (MSDRE) is developed through a pseudo-linearization of spacecraft augmented nonlinear dynamics and kinematics. The full-state knowledge required for the control loop is provided through a generalized algorithm for spacecraft three-axis attitude and rate estimation based on the utilization of magnetometer measurements and their time derivatives, while the control torque is

  14. Evaluation of the Performance Characteristics of the CGLSS and NLDN Systems Based on Two Years of Ground-Truth Data from Launch Complex 39B, Kennedy Space Center, Florida

    NASA Technical Reports Server (NTRS)

    Mata, Carlos T.; Hill, Jonathan D.; Mata, Angel G.; Cummins, Kenneth L.

    2014-01-01

    From May 2011 through July 2013, the lightning instrumentation at Launch Complex 39B (LC39B) at the Kennedy Space Center, Florida, has obtained high-speed video records and field change waveforms (dE/dt and three-axis dH/dt) for 54 negative polarity return strokes whose strike termination locations and times are known with accuracy of the order of 10 m or less and 1 µs, respectively. A total of 18 strokes terminated directly to the LC39B lighting protection system (LPS), which contains three 181 m towers in a triangular configuration, an overhead catenary wire system on insulating masts, and nine down conductors. An additional 9 strokes terminated on the 106 m lightning protection mast of Launch Complex 39A (LC39A), which is located about 2.7 km southeast of LC39B. The remaining 27 return strokes struck either on the ground or attached to low-elevation grounded objects within about 500 m of the LC39B LPS. Leader/return stroke sequences were imaged at 3200 frames/sec by a network of six Phantom V310 high-speed video cameras. Each of the three towers on LC39B had two high-speed cameras installed at the 147 m level with overlapping fields of view of the center of the pad. The locations of the strike points of 54 return strokes have been compared to time-correlated reports of the Cloud-to-Ground Lightning Surveillance System (CGLSS) and the National Lightning Detection Network (NLDN), and the results of this comparison will be presented and discussed.

  15. The Software Design for the Wide-Field Infrared Explorer Attitude Control System

    NASA Technical Reports Server (NTRS)

    Anderson, Mark O.; Barnes, Kenneth C.; Melhorn, Charles M.; Phillips, Tom

    1998-01-01

    The Wide-Field Infrared Explorer (WIRE), currently scheduled for launch in September 1998, is the fifth of five spacecraft in the NASA/Goddard Small Explorer (SMEX) series. This paper presents the design of WIRE's Attitude Control System flight software (ACS FSW). WIRE is a momentum-biased, three-axis stabilized stellar pointer which provides high-accuracy pointing and autonomous acquisition for eight to ten stellar targets per orbit. WIRE's short mission life and limited cryogen supply motivate requirements for Sun and Earth avoidance constraints which are designed to prevent catastrophic instrument damage and to minimize the heat load on the cryostat. The FSW implements autonomous fault detection and handling (FDH) to enforce these instrument constraints and to perform several other checks which insure the safety of the spacecraft. The ACS FSW implements modules for sensor data processing, attitude determination, attitude control, guide star acquisition, actuator command generation, command/telemetry processing, and FDH. These software components are integrated with a hierarchical control mode managing module that dictates which software components are currently active. The lowest mode in the hierarchy is the 'safest' one, in the sense that it utilizes a minimal complement of sensors and actuators to keep the spacecraft in a stable configuration (power and pointing constraints are maintained). As higher modes in the hierarchy are achieved, the various software functions are activated by the mode manager, and an increasing level of attitude control accuracy is provided. If FDH detects a constraint violation or other anomaly, it triggers a safing transition to a lower control mode. The WIRE ACS FSW satisfies all target acquisition and pointing accuracy requirements, enforces all pointing constraints, provides the ground with a simple means for reconfiguring the system via table load, and meets all the demands of its real-time embedded environment (16 MHz Intel 80386 processor with 80387 coprocessor running under the VRTX operating system). The mode manager organizes and controls all the software modules used to accomplish these goals, and in particular, the FDH module is tightly coupled with the mode manager.

  16. A high-fidelity batch simulation environment for integrated batch and piloted air combat simulation analysis

    NASA Technical Reports Server (NTRS)

    Goodrich, Kenneth H.; Mcmanus, John W.; Chappell, Alan R.

    1992-01-01

    A batch air combat simulation environment known as the Tactical Maneuvering Simulator (TMS) is presented. The TMS serves as a tool for developing and evaluating tactical maneuvering logics and to evaluate the tactical implications of perturbations to aircraft performance or supporting systems. The TMS is capable of simulating air combat between any number of engagement participants, with practical limits imposed by computer memory and processing power. Aircraft are modeled using equations of motion, control laws, aerodynamics and propulsive characteristics, and databases representative of a modern high-performance aircraft with and without thrust-vectoring capability are included. A Tactical Autopilot is implemented in the aircraft simulation model to convert guidance commands issued by computerized maneuvering logics in the form of desired angle-of-attack and wind axis-bank angle into inputs to the inner-loop control augmentation system of the aircraft.

  17. Xenon ion propulsion for orbit transfer

    NASA Technical Reports Server (NTRS)

    Rawlin, V. K.; Patterson, M. J.; Gruber, R. P.

    1990-01-01

    The status of critical ion propulsion system elements is reviewed. Electron bombardment ion thrusters for primary propulsion have evolved to operate on xenon in the 5-10 kW power range. Thruster efficiencies of 0.7 and specific impulse values of 4000 s have been documented. The baseline thruster currently under development by NASA LeRC includes ring-cusp magnetic field plasma containment and dished two-grid ion optics. Based on past experience and demonstrated simplifications, power processors for these thrusters should have approximately 500 parts, a mass of 40 kg, and an efficiency near 0.94. Thrust vector control, via individual thruster gimbals, is a mature technology. High pressure, gaseous xenon propellant storage and control schemes, using flight qualified hardware, result in propellant tankage fractions between 0.1 and 0.2. In-space and ground integration testing has demonstrated that ion propulsion systems can be successfully integrated with their host spacecraft.

  18. Advanced electric motor technology: Flux mapping

    NASA Astrophysics Data System (ADS)

    Doane, George B., III; Campbell, Warren; Brantley, Larry W.; Dean, Garvin

    1992-04-01

    This report contains the assumptions, mathematical models, design methodology, and design points involved with the design of an electromechanical actuator (EMA) suitable for directing the thrust vector of a large MSFC/NASA launch vehicle. Specifically the design of such an actuator for use on the upcoming liquid fueled National Launch System (NLS) is considered culminating in a point design of both the servo system and the electric motor needed. A major thrust of the work is in selecting spur gear and roller screw reduction ratios to achieve simultaneously wide bandwidth, maximum power transfer, and disturbance rejection while meeting specified horsepower requirements at a given stroking speed as well as a specified maximum stall force. An innovative feedback signal is utilized in meeting these diverse objectives.

  19. The Implementation of Satellite Control System Software Using Object Oriented Design

    NASA Technical Reports Server (NTRS)

    Anderson, Mark O.; Reid, Mark; Drury, Derek; Hansell, William; Phillips, Tom

    1998-01-01

    NASA established the Small Explorer (SMEX) program in 1988 to provide frequent opportunities for highly focused and relatively inexpensive space science missions that can be launched into low earth orbit by small expendable vehicles. The development schedule for each SMEX spacecraft was three years from start to launch. The SMEX program has produced five satellites; Solar Anomalous and Magnetospheric Particle Explorer (SAMPEX), Fast Auroral Snapshot Explorer (FAST), Submillimeter Wave Astronomy Satellite (SWAS), Transition Region and Coronal Explorer (TRACE) and Wide-Field Infrared Explorer (WIRE). SAMPEX and FAST are on-orbit, TRACE is scheduled to be launched in April of 1998, WIRE is scheduled to be launched in September of 1998, and SWAS is scheduled to be launched in January of 1999. In each of these missions, the Attitude Control System (ACS) software was written using a modular procedural design. Current program goals require complete spacecraft development within 18 months. This requirement has increased pressure to write reusable flight software. Object-Oriented Design (OOD) offers the constructs for developing an application that only needs modification for mission unique requirements. This paper describes the OOD that was used to develop the SMEX-Lite ACS software. The SMEX-Lite ACS is three-axis controlled, momentum stabilized, and is capable of performing sub-arc-minute pointing. The paper first describes the high level requirements which governed the architecture of the SMEX-Lite ACS software. Next, the context in which the software resides is explained. The paper describes the benefits of encapsulation, inheritance and polymorphism with respect to the implementation of an ACS software system. This paper will discuss the design of several software components that comprise the ACS software. Specifically, Object-Oriented designs are presented for sensor data processing, attitude control, attitude determination and failure detection. The paper addresses the benefits of the OOD versus a conventional procedural design. The final discussion in this paper will address the establishment of the ACS Foundation Class (AFC) Library. The AFC is a large software repository, requiring a minimal amount of code modifications to produce ACS software for future projects, saving production time and costs.

  20. Body Systems

    NSDL National Science Digital Library

    2011-11-02

    What are the parts and functions of the different systems in the body? Circulatory System Watch the Circulatory System and the Heart video. Complete one of the Circulatory System quizzes. Excretory System Label the parts of the excretory system. Respiratory System Quiz Complete respiratory system quiz to review parts. Skeletal System Label each part of the skeletal system. Vocabulary Review Change the settings to only include body system terms and play Hangman to review new vocabulary. ...

  1. Preparations for flight research to evaluate actuated forebody strakes on the F-18 high-alpha research vehicle

    NASA Technical Reports Server (NTRS)

    Murri, Daniel G.; Shah, Gautam H.; Dicarlo, Daniel J.

    1994-01-01

    As part of the NASA High-Angle-of-Attack Technology Program (HATP), flight tests are currently being conducted with a multi-axis thrust vectoring system applied to the NASA F-18 High Alpha Research Vehicle (HARV). A follow-on series of flight tests with the NASA F-18 HARV will be focusing on the application of actuated forebody strake controls. These controls are designed to provide increased levels of yaw control at high angles of attack where conventional aerodynamic controls become ineffective. The series of flight tests are collectively referred to as the Actuated Nose Strakes for Enhanced Rolling (ANSER) Flight Experiment. The development of actuated forebody strake controls for the F-18 HARV is discussed and a summary of the ground tests conducted in support of the flight experiment is provided. A summary of the preparations for the flight tests is also provided.

  2. Pulsed Plasma Thruster Plume Study: Symmetry and Impact on Spacecraft Surfaces

    NASA Technical Reports Server (NTRS)

    Arrington, Lynn A.; Marrese, Colleen M.; Blandino, John J.

    2000-01-01

    Twenty-four witness plates were positioned on perpendicular arrays near a breadboard Pulsed Plasma Thruster (PPT) to collect plume constituents for analysis. Over one million shots were fired during the experiment at 43 J using fluorocarbon polymer propellant. The asymmetry of the film deposition on the witness plates was investigated with mass and thickness measurements and correlated with off-axis thrust vector measurements. The composition of the films was determined. The transmittance and reflectance of the films were measured and the absorption coefficients were calculated in the wavelength range from 350 to 1200 mn. These data were applied to calculate the loss in signal intensity through the films, which will impact the visibility of spaceborne interferometer systems positioned by these thrusters.

  3. Finite Element Simulation of a Space Shuttle Solid Rocket Booster Aft Skirt Splashdown Using an Arbitrary Lagrangian-eulerian Approach

    NASA Technical Reports Server (NTRS)

    Melis, Matthew E.

    2003-01-01

    Explicit finite element techniques employing an Arbitrary Lagrangian-Eulerian (ALE) methodology, within the transient dynamic code LS-DYNA, are used to predict splashdown loads on a proposed replacement/upgrade of the hydrazine tanks on the thrust vector control system housed within the aft skirt of a Space Shuttle Solid Rocket Booster. Two preliminary studies are performed prior to the full aft skirt analysis: An analysis of the proposed tank impacting water without supporting aft skirt structure, and an analysis of space capsule water drop tests conducted at NASA's Langley Research Center. Results from the preliminary studies provide confidence that useful predictions can be made by applying the ALE methodology to a detailed analysis of a 26-degree section of the skirt with proposed tank attached. Results for all three studies are presented and compared to limited experimental data. The challenges of using the LS-DYNA ALE capability for this type of analysis are discussed.

  4. Thrust-induced effects on low-speed aerodynamics of fighter aircraft. [Langley 4- by 7-meter tunnel

    NASA Technical Reports Server (NTRS)

    Banks, D. W.; Quinto, P. F.; Paulson, J. W., Jr.

    1982-01-01

    Results of NASA Langley has conducted wind-tunnel investigations of several fighter configurations conducted to determine the effects of both thrust vectoring and spanwise blowing are reviewed. A recent joint NASA/Grumman Aerospace Corporation/U.S. Air Force Wright Aeronautical Laboratory wind-tunnel investigation was conducted to examine the effects of spanwise blowing on the trailing-edge flap system. This application contrasts with the more familiar method of spanwise blowing near the wing leading edge. Another joint program among NASA/McDonnell Aircraft Company/U.S. Air Force Wright Aeronautical Laboratory investigated the effects of reverse thrust on the low-speed aerodynamics of an F-15 configuration. The F-15 model was fitted with a rotating van thrust reverser concept which could simulate both in-flight reversing for approach and landing or full reversing for ground roll reduction. The significant results of these two joint programs are reported.

  5. Bias Momentum Sizing for Hovering Dual-Spin Platforms

    NASA Technical Reports Server (NTRS)

    Lim, K. B.; Shin, J-Y.; Moerder, D. D.

    2005-01-01

    An atmospheric flight vehicle in hover is typically controlled by varying its thrust vector. Achieving both levitation and control with the propulsion system places considerable demands on it for agility and precision, particularly if the vehicle is statically unstable, or nearly so. These demands can be relaxed by introducing an appropriately sized angular momentum bias about the vehicle's yaw axis, thus providing an additional margin of attitude stability about the roll and pitch axes. This paper describes an approach for specifying the appropriate size of such angular momentum bias, based on the vehicle s physical parameters and its disturbance environment. It also describes several simplifications that provide a more physical and intuitive understanding of the dynamics. This will enhance the possibility of practically applying this technology to a flying vehicle.

  6. A Boiling-Potassium Fluoride Reactor for an Artificial-Gravity NEP Vehicle

    NASA Technical Reports Server (NTRS)

    Sorensen, Kirk; Juhasz, Albert

    2007-01-01

    Several years ago a rotating manned spacecraft employing nuclear-electric propulsion was examined for Mars exploration. The reactor and its power conversion system essentially served as the counter-mass to an inflatable manned module. A solid-core boiling potassium reactor based on the MPRE concept of the 1960s was baselined in that study. This paper proposes the use of a liquid-fluoride reactor, employing direct boiling of potassium in the core, as a means to overcome some of the residual issues with the MPRE reactor concept. Several other improvements to the rotating Mars vehicle are proposed as well, such as Canfield joints to enable the electric engines to track the inertial thrust vector during rotation, and innovative "cold-ion" engine technologies to improve engine performance.

  7. Library System Library System

    E-print Network

    Cinabro, David

    Library System #12;Library System 5150 Anthony Wayne Drive David Adamany Undergraduate Library that for the current fiscal year, we've been given an additional $600,000 for our library materials budget. We're very subscriptions. The Wayne State University Libraries are deeply committed to providing our faculty and students

  8. X-31 at High Angle of Attack

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The X-31 aircraft, on a research mission from NASA's Dryden Flight Research Center, Edwards, California, is flying nearly perpendicular to the flight path while performing the Herbst maneuver. Effectively using the entire airframe as a speed brake and using the aircrafts unique thrust vectoring system to maintain control, the pilot rapidly rolls the aircraft to reverse the direction of flight, completing the maneuver with acceleration back to high speed in the opposite direction. This type of turning capability could reduce the turning time of a fighter aircraft by 30 percent. The Herbst maneuver was first conducted in an X-31 on April 29, 1993, in the No. 2 X-31 aircraft by German test pilot Karl-Heinz Lang. The X-31 Enhanced Fighter Maneuverability (EFM) demonstrator flew at the Ames- Dryden Flight Research Facility, Edwards, California (redesignated the Dryden Flight Research Center in 1994) from February 1992 until 1995 and before that at the Air Force's Plant 42 in Palmdale, California. The goal of the project was to provide design information for the next generation of highly maneuverable fighter aircraft. This program demonstrated the value of using thrust vectoring (directing engine exhaust flow) coupled with an advanced flight control system to provide controlled flight to very high angles of attack. The result was a significant advantage over most conventional fighters in close-in combat situations. The X-31 flight program focused on agile flight within the post-stall regime, producing technical data to give aircraft designers a better understanding of aerodynamics, effectiveness of flight controls and thrust vectoring, and airflow phenomena at high angles of attack. Stall is a condition of an airplane or an airfoil in which lift decreases and drag increases due to the separation of airflow. Thrust vectoring compensates for the loss of control through normal aerodynamic surfaces that occurs during a stall. Post-stall refers to flying beyond the normal stall angle of attack, which in the X-31 was at a 30-degree angle of attack. During Dryden flight testing, the X-31 aircraft established several milestones. On November 6, 1992, the X-31 achieved controlled flight at a 70-degree angle of attack. On April 29, 1993, the second X-31 successfully executed a rapid minimum-radius, 180-degree turn using a post-stall maneuver, flying well beyond the aerodynamic limits of any conventional aircraft. This revolutionary maneuver has been called the 'Herbst Maneuver' after Wolfgang Herbst, a German proponent of using post-stall flight in air-to-air combat. It is also called a 'J Turn' when flown to an arbitrary heading change. The aircraft was flown in tactical maneuvers against an F/A-18 and other tactical aircraft as part of the test flight program. During November and December 1993, the X-31 reached a supersonic speed of Mach 1.28. In 1994, the X-31 program installed software to demonstrate quasi-tailless operation. The X-31 flight test program was conducted by an international test organization (ITO) managed by the Advanced Research Projects Office (ARPA), known as the Defense Advanced Research Projects Office (DARPA) before March 1993. The ITO included the U.S. Navy and U.S. Air Force, Rockwell Aerospace, the Federal Republic of Germany, Daimler-Benz (formerly Messerschmitt-Bolkow-Blohm and Deutsche Aerospace), and NASA. Gary Trippensee was the ITO director and NASA Project Manager. Pilots came from participating organizations. The X-31 was 43.33 feet long with a wingspan of 23.83 feet. It was powered by a single General Electric P404-GE-400 turbofan engine that produced 16,000 pounds of thrust in afterburner.

  9. X-31 at High Angle of Attack

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The X-31 aircraft, on a research mission from NASA's Dryden Flight Research Center, Edwards, California, is flying nearly perpendicular to the flight path while performing the Herbst maneuver. Effectively using the entire airframe as a speed brake and using the aircraft's unique thrust vectoring system to maintain control, the pilot rapidly rolls the aircraft to reverse the direction of flight, completing the maneuver with acceleration back to high speed in the opposite direction. This type of turning capability could reduce the turning time of a fighter aircraft by 30 percent. The Herbst maneuver was first conducted in an X-31 on April 29, 1993, in the No. 2 X-31 aircraft by German test pilot Karl-Heinz Lang. The X-31 Enhanced Fighter Maneuverability (EFM) demonstrator flew at the Ames- Dryden Flight Research Facility, Edwards, California (redesignated the Dryden Flight Research Center in 1994) from February 1992 until 1995 and before that at the Air Force's Plant 42 in Palmdale, California. The goal of the project was to provide design information for the next generation of highly maneuverable fighter aircraft. This program demonstrated the value of using thrust vectoring (directing engine exhaust flow) coupled with an advanced flight control system to provide controlled flight to very high angles of attack. The result was a significant advantage over most conventional fighters in close-in combat situations. The X-31 flight program focused on agile flight within the post-stall regime, producing technical data to give aircraft designers a better understanding of aerodynamics, effectiveness of flight controls and thrust vectoring, and airflow phenomena at high angles of attack. Stall is a condition of an airplane or an airfoil in which lift decreases and drag increases due to the separation of airflow. Thrust vectoring compensates for the loss of control through normal aerodynamic surfaces that occurs during a stall. Post-stall refers to flying beyond the normal stall angle of attack, which in the X-31 was at a 30-degree angle of attack. During Dryden flight testing, the X-31 aircraft established several milestones. On November 6, 1992, the X-31 achieved controlled flight at a 70-degree angle of attack. On April 29, 1993, the second X-31 successfully executed a rapid minimum-radius, 180-degree turn using a post-stall maneuver, flying well beyond the aerodynamic limits of any conventional aircraft. This revolutionary maneuver has been called the 'Herbst Maneuver' after Wolfgang Herbst, a German proponent of using post-stall flight in air-to-air combat. It is also called a 'J Turn' when flown to an arbitrary heading change. The aircraft was flown in tactical maneuvers against an F/A-18 and other tactical aircraft as part of the test flight program. During November and December 1993, the X-31 reached a supersonic speed of Mach 1.28. In 1994, the X-31 program installed software to demonstrate quasi-tailless operation. The X-31 flight test program was conducted by an international test organization (ITO) managed by the Advanced Research Projects Office (ARPA), known as the Defense Advanced Research Projects Office (DARPA) before March 1993. The ITO included the U.S. Navy and U.S. Air Force, Rockwell Aerospace, the Federal Republic of Germany, Daimler-Benz (formerly Messerschmitt-Bolkow-Blohm and Deutsche Aerospace), and NASA. Gary Trippensee was the ITO director and NASA Project Manager. Pilots came from participating organizations. The X-31 was 43.33 feet long with a wingspan of 23.83 feet. It was powered by a single General Electric P404-GE-400 turbofan engine that produced 16,000 pounds of thrust in afterburner.

  10. X-31 Loaded in C-5 Cargo Bay

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The X-31 Enhanced Fighter Maneuverability Technology Demonstrator Aircraft, based at the NASA Dryden Flight Research Center, Edwards Air Force Base, California, is secured inside the fuselage of an Air Force Reserve C-5 transport. The C-5 was used to ferry the X-31 from Europe back to Edwards, after being flown in the Paris Air Show in June 1995. The X-31's right wing, removed so the aircraft could fit inside the C-5, is in the shipping container in the foreground. At the air show, the X-31 demonstrated the value of using thrust vectoring (directing engine exhaust flow) coupled with advanced flight control systems to provide controlled flight at very high angles of attack. The X-31 Enhanced Fighter Maneuverability (EFM) demonstrator flew at the Ames- Dryden Flight Research Facility, Edwards, California (redesignated the Dryden Flight Research Center in 1994) from February 1992 until 1995 and before that at the Air Force's Plant 42 in Palmdale, California. The goal of the project was to provide design information for the next generation of highly maneuverable fighter aircraft. This program demonstrated the value of using thrust vectoring (directing engine exhaust flow) coupled with an advanced flight control system to provide controlled flight to very high angles of attack. The result was a significant advantage over most conventional fighters in close-in combat situations. The X-31 flight program focused on agile flight within the post-stall regime, producing technical data to give aircraft designers a better understanding of aerodynamics, effectiveness of flight controls and thrust vectoring, and airflow phenomena at high angles of attack. Stall is a condition of an airplane or an airfoil in which lift decreases and drag increases due to the separation of airflow. Thrust vectoring compensates for the loss of control through normal aerodynamic surfaces that occurs during a stall. Post-stall refers to flying beyond the normal stall angle of attack, which in the X-31 was at a 30-degree angle of attack. During Dryden flight testing, the X-31 aircraft established several milestones. On November 6, 1992, the X-31 achieved controlled flight at a 70-degree angle of attack. On April 29, 1993, the second X-31 successfully executed a rapid minimum-radius, 180-degree turn using a post-stall maneuver, flying well beyond the aerodynamic limits of any conventional aircraft. This revolutionary maneuver has been called the 'Herbst Maneuver' after Wolfgang Herbst, a German proponent of using post-stall flight in air-to-air combat. It is also called a 'J Turn' when flown to an arbitrary heading change. The aircraft was flown in tactical maneuvers against an F/A-18 and other tactical aircraft as part of the test flight program. During November and December 1993, the X-31 reached a supersonic speed of Mach 1.28. In 1994, the X-31 program installed software to demonstrate quasi-tailless operation. The X-31 flight test program was conducted by an international test organization (ITO) managed by the Advanced Research Projects Office (ARPA), known as the Defense Advanced Research Projects Office (DARPA) before March 1993. The ITO included the U.S. Navy and U.S. Air Force, Rockwell Aerospace, the Federal Republic of Germany, Daimler-Benz (formerly Messerschmitt-Bolkow-Blohm and Deutsche Aerospace), and NASA. Gary Trippensee was the ITO director and NASA Project Manager. Pilots came from participating organizations. The X-31 was 43.33 feet long with a wingspan of 23.83 feet. It was powered by a single General Electric P404-GE-400 turbofan engine that produced 16,000 pounds of thrust in afterburner.

  11. X-31 at High Angle of Attack

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The X-31 aircraft on a research mission from NASA's Dryden Flight Research Center, Edwards, California, is flying nearly perpendicular to the flight path while performing the Herbst maneuver. Effectively using the entire airframe as a speed brake and using the aircrafts unique thrust vectoring system to maintain control, the pilot rapidly rolls the aircraft to reverse the direction of flight, completing the maneuver with acceleration back to high speed in the opposite direction. This type of turning capability could reduce the turning time of a fighter aircraft by 30 percent. The Herbst maneuver was first conducted in an X-31 on April 29, 1993, in the No. 2 X-31 aircraft by German test pilot Karl-Heinz Lang. The X-31 Enhanced Fighter Maneuverability (EFM) demonstrator flew at the Ames- Dryden Flight Research Facility, Edwards, California (redesignated the Dryden Flight Research Center in 1994) from February 1992 until 1995 and before that at the Air Force's Plant 42 in Palmdale, California. The goal of the project was to provide design information for the next generation of highly maneuverable fighter aircraft. This program demonstrated the value of using thrust vectoring (directing engine exhaust flow) coupled with an advanced flight control system to provide controlled flight to very high angles of attack. The result was a significant advantage over most conventional fighters in close-in combat situations. The X-31 flight program focused on agile flight within the post-stall regime, producing technical data to give aircraft designers a better understanding of aerodynamics, effectiveness of flight controls and thrust vectoring, and airflow phenomena at high angles of attack. Stall is a condition of an airplane or an airfoil in which lift decreases and drag increases due to the separation of airflow. Thrust vectoring compensates for the loss of control through normal aerodynamic surfaces that occurs during a stall. Post-stall refers to flying beyond the normal stall angle of attack, which in the X-31 was at a 30-degree angle of attack. During Dryden flight testing, the X-31 aircraft established several milestones. On November 6, 1992, the X-31 achieved controlled flight at a 70-degree angle of attack. On April 29, 1993, the second X-31 successfully executed a rapid minimum-radius, 180-degree turn using a post-stall maneuver, flying well beyond the aerodynamic limits of any conventional aircraft. This revolutionary maneuver has been called the 'Herbst Maneuver' after Wolfgang Herbst, a German proponent of using post-stall flight in air-to-air combat. It is also called a 'J Turn' when flown to an arbitrary heading change. The aircraft was flown in tactical maneuvers against an F/A-18 and other tactical aircraft as part of the test flight program. During November and December 1993, the X-31 reached a supersonic speed of Mach 1.28. In 1994, the X-31 program installed software to demonstrate quasi-tailless operation. The X-31 flight test program was conducted by an international test organization (ITO) managed by the Advanced Research Projects Office (ARPA), known as the Defense Advanced Research Projects Office (DARPA) before March 1993. The ITO included the U.S. Navy and U.S. Air Force, Rockwell Aerospace, the Federal Republic of Germany, Daimler-Benz (formerly Messerschmitt-Bolkow-Blohm and Deutsche Aerospace), and NASA. Gary Trippensee was the ITO director and NASA Project Manager. Pilots came from participating organizations. The X-31 was 43.33 feet long with a wingspan of 23.83 feet. It was powered by a single General Electric P404-GE-400 turbofan engine that produced 16,000 pounds of thrust in afterburner.

  12. X-31 Unloading Returning from Paris Air Show

    NASA Technical Reports Server (NTRS)

    1995-01-01

    After being flown in the Paris Air Show in June 1995, the X-31 Enhanced Fighter Maneuverability Technology Demonstrator Aircraft, based at the NASA Dryden Flight Research Center, Edwards Air Force Base, California, is off-loaded from an Air Force Reserve C-5 transport after the ferry flight back to Edwards. At the air show, the X-31 demonstrated the value of using thrust vectoring (directing engine exhaust flow) coupled with advanced flight control systems to provide controlled flight at very high angles of attack. The X-31 Enhanced Fighter Maneuverability (EFM) demonstrator flew at the Ames- Dryden Flight Research Facility, Edwards, California (redesignated the Dryden Flight Research Center in 1994) from February 1992 until 1995 and before that at the Air Force's Plant 42 in Palmdale, California. The goal of the project was to provide design information for the next generation of highly maneuverable fighter aircraft. This program demonstrated the value of using thrust vectoring (directing engine exhaust flow) coupled with an advanced flight control system to provide controlled flight to very high angles of attack. The result was a significant advantage over most conventional fighters in close-in combat situations. The X-31 flight program focused on agile flight within the post-stall regime, producing technical data to give aircraft designers a better understanding of aerodynamics, effectiveness of flight controls and thrust vectoring, and airflow phenomena at high angles of attack. Stall is a condition of an airplane or an airfoil in which lift decreases and drag increases due to the separation of airflow. Thrust vectoring compensates for the loss of control through normal aerodynamic surfaces that occurs during a stall. Post-stall refers to flying beyond the normal stall angle of attack, which in the X-31 was at a 30-degree angle of attack. During Dryden flight testing, the X-31 aircraft established several milestones. On November 6, 1992, the X-31 achieved controlled flight at a 70-degree angle of attack. On April 29, 1993, the second X-31 successfully executed a rapid minimum-radius, 180-degree turn using a post-stall maneuver, flying well beyond the aerodynamic limits of any conventional aircraft. This revolutionary maneuver has been called the 'Herbst Maneuver' after Wolfgang Herbst, a German proponent of using post-stall flight in air-to-air combat. It is also called a 'J Turn' when flown to an arbitrary heading change. The aircraft was flown in tactical maneuvers against an F/A-18 and other tactical aircraft as part of the test flight program. During November and December 1993, the X-31 reached a supersonic speed of Mach 1.28. In 1994, the X-31 program installed software to demonstrate quasi-tailless operation. The X-31 flight test program was conducted by an international test organization (ITO) managed by the Advanced Research Projects Office (ARPA), known as the Defense Advanced Research Projects Office (DARPA) before March 1993. The ITO included the U.S. Navy and U.S. Air Force, Rockwell Aerospace, the Federal Republic of Germany, Daimler-Benz (formerly Messerschmitt-Bolkow-Blohm and Deutsche Aerospace), and NASA. Gary Trippensee was the ITO director and NASA Project Manager. Pilots came from participating organizations. The X-31 was 43.33 feet long with a wingspan of 23.83 feet. It was powered by a single General Electric P404-GE-400 turbofan engine that produced 16,000 pounds of thrust in afterburner.

  13. X-31 Demonstrating High Angle of Attack - Herbst Maneuver

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The X-31 aircraft on a research mission from NASA's Dryden Flight Research Facility, Edwards, California, is flying nearly perpendicular to the flight path while performing the Herbst maneuver. Effectively using the entire airframe as a speed brake and using the aircraft's unique thrust vectoring system to maintain control, the pilot rapidly rolls the aircraft to reverse the direction of flight, completing the maneuver with acceleration back to high speed in the opposite direction. This type of turning capability could reduce the turning time of a fighter aircraft by 30 percent. The Herbst maneuver was first conducted in an X-31 on April 29, 1993, in the No. 2 aircraft by German test pilot Karl-Heinz Lang. The X-31 Enhanced Fighter Maneuverability (EFM) demonstrator flew at the Ames- Dryden Flight Research Facility, Edwards, California (redesignated the Dryden Flight Research Center in 1994) from February 1992 until 1995 and before that at the Air Force's Plant 42 in Palmdale, California. The goal of the project was to provide design information for the next generation of highly maneuverable fighter aircraft. This program demonstrated the value of using thrust vectoring (directing engine exhaust flow) coupled with an advanced flight control system to provide controlled flight to very high angles of attack. The result was a significant advantage over most conventional fighters in close-in combat situations. The X-31 flight program focused on agile flight within the post-stall regime, producing technical data to give aircraft designers a better understanding of aerodynamics, effectiveness of flight controls and thrust vectoring, and airflow phenomena at high angles of attack. Stall is a condition of an airplane or an airfoil in which lift decreases and drag increases due to the separation of airflow. Thrust vectoring compensates for the loss of control through normal aerodynamic surfaces that occurs during a stall. Post-stall refers to flying beyond the normal stall angle of attack, which in the X-31 was at a 30-degree angle of attack. During Dryden flight testing, the X-31 aircraft established several milestones. On November 6, 1992, the X-31 achieved controlled flight at a 70-degree angle of attack. On April 29, 1993, the second X-31 successfully executed a rapid minimum-radius, 180-degree turn using a post-stall maneuver, flying well beyond the aerodynamic limits of any conventional aircraft. This revolutionary maneuver has been called the 'Herbst Maneuver' after Wolfgang Herbst, a German proponent of using post-stall flight in air-to-air combat. It is also called a 'J Turn' when flown to an arbitrary heading change. The aircraft was flown in tactical maneuvers against an F/A-18 and other tactical aircraft as part of the test flight program. During November and December 1993, the X-31 reached a supersonic speed of Mach 1.28. In 1994, the X-31 program installed software to demonstrate quasi-tailless operation. The X-31 flight test program was conducted by an international test organization (ITO) managed by the Advanced Research Projects Office (ARPA), known as the Defense Advanced Research Projects Office (DARPA) before March 1993. The ITO included the U.S. Navy and U.S. Air Force, Rockwell Aerospace, the Federal Republic of Germany, Daimler-Benz (formerly Messerschmitt-Bolkow-Blohm and Deutsche Aerospace), and NASA. Gary Trippensee was the ITO director and NASA Project Manager. Pilots came from participating organizations. The X-31 was 43.33 feet long with a wingspan of 23.83 feet. It was powered by a single General Electric P404-GE-400 turbofan engine that produced 16,000 pounds of thrust in afterburner.

  14. X-31 Being Loaded into C-5 Cargo Plane

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The X-31 Enhanced Fighter Maneuverability Technology Demonstrator Aircraft, based at the NASA Dryden Flight Research Center, Edwards, California, begins rolling aboard an Air Force Reserve C-5 transport which ferried it on May 22, 1995 to Europe where it was flown in the Paris Air Show in June 1995. To fit in the C-5 the right wing of the X-31 had to be removed. At the air show, the X-31 demonstrated the value of using thrust vectoring (directing engine exhaust flow) coupled with advanced flight control systems to provide controlled flight at very high angles of attack. The X-31 Enhanced Fighter Maneuverability (EFM) demonstrator flew at the Ames- Dryden Flight Research Facility, Edwards, California (redesignated the Dryden Flight Research Center in 1994) from February 1992 until 1995 and before that at the Air Force's Plant 42 in Palmdale, California. The goal of the project was to provide design information for the next generation of highly maneuverable fighter aircraft. This program demonstrated the value of using thrust vectoring (directing engine exhaust flow) coupled with an advanced flight control system to provide controlled flight to very high angles of attack. The result was a significant advantage over most conventional fighters in close-in combat situations. The X-31 flight program focused on agile flight within the post-stall regime, producing technical data to give aircraft designers a better understanding of aerodynamics, effectiveness of flight controls and thrust vectoring, and airflow phenomena at high angles of attack. Stall is a condition of an airplane or an airfoil in which lift decreases and drag increases due to the separation of airflow. Thrust vectoring compensates for the loss of control through normal aerodynamic surfaces that occurs during a stall. Post-stall refers to flying beyond the normal stall angle of attack, which in the X-31 was at a 30-degree angle of attack. During Dryden flight testing, the X-31 aircraft established several milestones. On November 6, 1992, the X-31 achieved controlled flight at a 70-degree angle of attack. On April 29, 1993, the second X-31 successfully executed a rapid minimum-radius, 180-degree turn using a post-stall maneuver, flying well beyond the aerodynamic limits of any conventional aircraft. This revolutionary maneuver has been called the 'Herbst Maneuver' after Wolfgang Herbst, a German proponent of using post-stall flight in air-to-air combat. It is also called a 'J Turn' when flown to an arbitrary heading change. The aircraft was flown in tactical maneuvers against an F/A-18 and other tactical aircraft as part of the test flight program. During November and December 1993, the X-31 reached a supersonic speed of Mach 1.28. In 1994, the X-31 program installed software to demonstrate quasi-tailless operation. The X-31 flight test program was conducted by an international test organization (ITO) managed by the Advanced Research Projects Office (ARPA), known as the Defense Advanced Research Projects Office (DARPA) before March 1993. The ITO included the U.S. Navy and U.S. Air Force, Rockwell Aerospace, the Federal Republic of Germany, Daimler-Benz (formerly Messerschmitt-Bolkow-Blohm and Deutsche Aerospace), and NASA. Gary Trippensee was the ITO director and NASA Project Manager. Pilots came from participating organizations. The X-31 was 43.33 feet long with a wingspan of 23.83 feet. It was powered by a single General Electric P404-GE-400 turbofan engine that produced 16,000 pounds of thrust in afterburner.

  15. X-31 in flight - Herbst Turn

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Two X-31 Enhanced Fighter Maneuverability (EFM) demonstrators were flown at the Rockwell International facility, Palmdale, California, and the NASA Dryden Flight Research Center, Edwards, California, to obtain data that may apply to the design of highly-maneuverable next-generation fighters. The program had its first flight on October 11, 1990, in Palmdale; it ended in June 1995. The X-31 program demonstrated the value of thrust vectoring (directing engine exhaust flow) coupled with advanced flight control systems, to provide controlled flight during close-in air combat at very high angles of attack. The result of this increased maneuverability is an airplane with a significant advantage over conventional fighters. 'Angle-of-attack' (alpha) is an engineering term to describe the angle of an aircraft body and wings relative to its actual flight path. During maneuvers, pilots often fly at extreme angles of attack -- with the nose pitched up while the aircraft continues in its original direction. This can lead to loss of control and result in the loss of the aircraft, pilot or both. Three thrust-vectoring paddles made of graphite epoxy mounted on the exhaust nozzle of the X-31 aircraft directed the exhaust flow to provide control in pitch (up and down) and yaw (right and left) to improve control. The paddles can sustain heat of up to 1,500 degrees centigrade for extended periods of time. In addition the X-31 aircraft were configured with movable forward canards and fixed aft strakes. The canards were small wing-like structures set on the wing line between the nose and the leading edge of the wing. The strakes were set on the same line between the trailing edge of the wing and the engine exhaust. Both supplied additional control in tight maneuvering situations. The X-31 research program produced technical data at high angles of attack. This information is giving engineers and aircraft designers a better understanding of aerodynamics, effectiveness of flight controls and thrust vectoring, and airflow phenomena at high angles of attack. This understanding is expected to lead to design methods that provide better maneuverability in future high performance aircraft and make them safer to fly. An international test organization of about 110 people, managed by the Advanced Research Projects Agency (ARPA), conducted the flight operations at NASA Dryden. The ARPA had requested flight research for the X-31 aircraft be moved there in February 1992. In addition to ARPA and NASA, the international test organization (ITO) included the U.S. Navy, the U.S. Air Force, Rockwell International, the Federal Republic of Germany, and Daimler-Benz Aerospace (formerly Messerschmitt-Bolkow-Blohm and Deutsche Aerospace). NASA was responsible for flight research operations, aircraft maintenance, and research engineering once the program moved to Dryden. The No. 1 X-31 aircraft was lost in an accident January 19, 1995. The pilot, Karl Heinz-Lang, of the Federal Republic of Germany, ejected safely before the aircraft crashed in an unpopulated desert area just north of Edwards. The X-31 program logged an X-plane record of 580 flights during the program, including 555 research missions and 21 in Europe for the 1995 Paris Air Show. A total of 14 pilots representing all agencies of the ITO flew the aircraft. This 32-second clip shows the aircraft at the top of a stall and then thrust vectoring itself around to attain a new heading, thereby allowing the aircraft to gain the advantage over a putative opponent in air-to-air combat. This maneuver is also known as a 'J turn.'

  16. X-31 Quasi-Tailless (Artist Concept)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This is a computer enhanced artist's concept of a semi-tailless X-31 Enhanced Fighter Maneuverability Aircraft in flight. In 1994, software was installed in the X-31 to demonstrate the feasibility of stabilizing a tailless aircraft at supersonic speed, using thrust vectoring. This software allowed destabilization through the control laws of the aircraft in incremental steps to the goal of simulation 100 percent tail-off. Quasi-tailless tests began in 1994. The first phase started with supersonic evaluations at Mach 1.2. Later subsonic evaluations were performed. During the flights the aircraft was destabilized with the rudder to stability levels that would be encountered if the aircraft had a reduced-size vertical tail. The X-31 Enhanced Fighter Maneuverability (EFM) demonstrator flew at the Ames- Dryden Flight Research Facility, Edwards, California (redesignated the Dryden Flight Research Center in 1994) from February 1992 until 1995 and before that at the Air Force's Plant 42 in Palmdale, California. The goal of the project was to provide design information for the next generation of highly maneuverable fighter aircraft. This program demonstrated the value of using thrust vectoring (directing engine exhaust flow) coupled with an advanced flight control system to provide controlled flight to very high angles of attack. The result was a significant advantage over most conventional fighters in close-in combat situations. The X-31 flight program focused on agile flight within the post-stall regime, producing technical data to give aircraft designers a better understanding of aerodynamics, effectiveness of flight controls and thrust vectoring, and airflow phenomena at high angles of attack. Stall is a condition of an airplane or an airfoil in which lift decreases and drag increases due to the separation of airflow. Thrust vectoring compensates for the loss of control through normal aerodynamic surfaces that occurs during a stall. Post-stall refers to flying beyond the normal stall angle of attack, which in the X-31 was at a 30-degree angle of attack. During Dryden flight testing, the X-31 aircraft established several milestones. On November 6, 1992, the X-31 achieved controlled flight at a 70-degree angle of attack. On April 29, 1993, the second X-31 successfully executed a rapid minimum-radius, 180-degree turn using a post-stall maneuver, flying well beyond the aerodynamic limits of any conventional aircraft. This revolutionary maneuver has been called the 'Herbst Maneuver' after Wolfgang Herbst, a German proponent of using post-stall flight in air-to-air combat. It is also called a 'J Turn' when flown to an arbitrary heading change. The aircraft was flown in tactical maneuvers against an F/A-18 and other tactical aircraft as part of the test flight program. During November and December 1993, the X-31 reached a supersonic speed of Mach 1.28. In 1994, the X-31 program installed software to demonstrate quasi-tailless operation. The X-31 flight test program was conducted by an international test organization (ITO) managed by the Advanced Research Projects Office (ARPA), known as the Defense Advanced Research Projects Office (DARPA) before March 1993. The ITO included the U.S. Navy and U.S. Air Force, Rockwell Aerospace, the Federal Republic of Germany, Daimler-Benz (formerly Messerschmitt-Bolkow-Blohm and Deutsche Aerospace), and NASA. Gary Trippensee was the ITO director and NASA Project Manager. Pilots came from participating organizations. The X-31 was 43.33 feet long with a wingspan of 23.83 feet. It was powered by a single General Electric P404-GE-400 turbofan engine that produced 16,000 pounds of thrust in afterburner.

  17. X-31 Quasi-Tailless (Artist Concept)

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is a computer enhanced artist's concept of a semi-tailless X-31 Enhanced Fighter Maneuverability Aircraft in flight. In 1994, software was installed in the X-31 to demonstrate the feasibility of stabilizing a tailless aircraft at supersonic speed, using thrust vectoring. This software allowed destabilization through the control laws of the aircraft in incremental steps to the goal of simulation 100 percent tail-off. Quasi-tailless tests began in 1994. The first phase started with supersonic evaluations at Mach 1.2. Later subsonic evaluations were performed. During the flights the aircraft was destabilized with the rudder to stability levels that would be encountered if the aircraft had a reduced size vertical tail. The X-31 Enhanced Fighter Maneuverability (EFM) demonstrator flew at the Ames- Dryden Flight Research Facility, Edwards, California (redesignated the Dryden Flight Research Center in 1994) from February 1992 until 1995 and before that at the Air Force's Plant 42 in Palmdale, California. The goal of the project was to provide design information for the next generation of highly maneuverable fighter aircraft. This program demonstrated the value of using thrust vectoring (directing engine exhaust flow) coupled with an advanced flight control system to provide controlled flight to very high angles of attack. The result was a significant advantage over most conventional fighters in close-in combat situations. The X-31 flight program focused on agile flight within the post-stall regime, producing technical data to give aircraft designers a better understanding of aerodynamics, effectiveness of flight controls and thrust vectoring, and airflow phenomena at high angles of attack. Stall is a condition of an airplane or an airfoil in which lift decreases and drag increases due to the separation of airflow. Thrust vectoring compensates for the loss of control through normal aerodynamic surfaces that occurs during a stall. Post-stall refers to flying beyond the normal stall angle of attack, which in the X-31 was at a 30-degree angle of attack. During Dryden flight testing, the X-31 aircraft established several milestones. On November 6, 1992, the X-31 achieved controlled flight at a 70-degree angle of attack. On April 29, 1993, the second X-31 successfully executed a rapid minimum-radius, 180-degree turn using a post-stall maneuver, flying well beyond the aerodynamic limits of any conventional aircraft. This revolutionary maneuver has been called the 'Herbst Maneuver' after Wolfgang Herbst, a German proponent of using post-stall flight in air-to-air combat. It is also called a 'J Turn' when flown to an arbitrary heading change. The aircraft was flown in tactical maneuvers against an F/A-18 and other tactical aircraft as part of the test flight program. During November and December 1993, the X-31 reached a supersonic speed of Mach 1.28. In 1994, the X-31 program installed software to demonstrate quasi-tailless operation. The X-31 flight test program was conducted by an international test organization (ITO) managed by the Advanced Research Projects Office (ARPA), known as the Defense Advanced Research Projects Office (DARPA) before March 1993. The ITO included the U.S. Navy and U.S. Air Force, Rockwell Aerospace, the Federal Republic of Germany, Daimler-Benz (formerly Messerschmitt-Bolkow-Blohm and Deutsche Aerospace), and NASA. Gary Trippensee was the ITO director and NASA Project Manager. Pilots came from participating organizations. The X-31 was 43.33 feet long with a wingspan of 23.83 feet. It was powered by a single General Electric P404-GE-400 turbofan engine that produced 16,000 pounds of thrust in afterburner.

  18. Immune System

    MedlinePLUS

    ... could put us out of commission. What the Immune System Does The immune (pronounced: ih- myoon ) system, which ... Continue Things That Can Go Wrong With the Immune System Disorders of the immune system can be broken ...

  19. Endocrine System

    MedlinePLUS

    ... is called the endocrine system . What Is the Endocrine System? Although we rarely think about the endocrine system, ... stores of energy. Back Continue What Does the Endocrine System Do? Once a hormone is secreted, it travels ...

  20. Distributed Systems Multiagent Systems

    E-print Network

    Polani, Daniel

    ; no \\big brother" #15; distributedness 5 #12; Why RoboCup? \\Conventional" Scienti#12;c Approach: #15 { solution of problems in a team { against adversarial conditions { planning, learning and adaptation #15; no \\Big Brother"! #15; prototype for multiagent systems 11 #12; Scenario server agent team 2 agent team 1

  1. Operating Systems.

    ERIC Educational Resources Information Center

    Denning, Peter J.; Brown, Robert L.

    1984-01-01

    A computer operating system spans multiple layers of complexity, from commands entered at a keyboard to the details of electronic switching. In addition, the system is organized as a hierarchy of abstractions. Various parts of such a system and system dynamics (using the Unix operating system as an example) are described. (JN)

  2. Aerospace Systems

    NSDL National Science Digital Library

    This pdf contains a syllabus for a course on aerospace systems as part of the Aerospace Technology Program. This course covers an introduction to expendable and reusable Space Launch Vehicle (SLV) systems including hydraulic, pneumatic, electrical, propulsion, mechanical, HVAC (heating, ventilation and air conditioning), and ECLSS (Environmental Control and Life Support Systems). How systems interact with computer and data acquisition systems is also covered.

  3. Immune System

    MedlinePLUS

    ... JavaScript on. Read more information on enabling JavaScript. Immune System Top Banner Content Area Skip Content Marketing Share ... and growth to maintain optimal health. Understanding the Immune System Overview of the Immune System Features of an ...

  4. Development of the Brain Tissue Scanner Brain Networks Laboratory Technical Report

    E-print Network

    lift stage Three-axis motion controller Stage base and custom bridge Filtered air utility 3.6 Diamond and retracting system Camera transfer lenses 4.6 Camera interface cards for image acquisition 4.7 Camera test dynamic data storage 5.2 Image analysis and data storage system configuration Multi-server storage system

  5. Systems Thinking (and Systems Doing).

    ERIC Educational Resources Information Center

    Brethower, Dale M.; Dams, Peter-Cornelius

    1999-01-01

    Introduces human performance technology (HPT) by answering the following questions related to: what systems does; practical issues and questions to which systems thinking is relevant; research questions and answers with respect to systems thinking; how HPT practitioners can do systems thinking; systems thinking tools; what is and is not known…

  6. Microfluidic Systems Integrated Microfluidic Systems**

    E-print Network

    Ismagilov, Rustem F.

    Microfluidic Systems Integrated Microfluidic Systems** Rustem F. Ismagilov* Keywords: analytical methods · enzymes · microfluidics · microreactors · protein structures Microfluidic systems use networks of channels thinner than a human hair to manipulate nanoliter volumes of re- agents. The goal of microfluidics

  7. Fluid Management System (FMS) fluid systems overview

    NASA Technical Reports Server (NTRS)

    Baird, R. S.

    1990-01-01

    Viewgraphs on fluid management system (FMS) fluid systems overview are presented. Topics addressed include: fluid management system description including system requirements (integrated nitrogen system, integrated water system, and integrated waste gas system) and physical description; and fluid management system evolution.

  8. A study of redundancy management strategy for tetrad strap-down inertial systems. [error detection codes

    NASA Technical Reports Server (NTRS)

    Hruby, R. J.; Bjorkman, W. S.; Schmidt, S. F.; Carestia, R. A.

    1979-01-01

    Algorithms were developed that attempt to identify which sensor in a tetrad configuration has experienced a step failure. An algorithm is also described that provides a measure of the confidence with which the correct identification was made. Experimental results are presented from real-time tests conducted on a three-axis motion facility utilizing an ortho-skew tetrad strapdown inertial sensor package. The effects of prediction errors and of quantization on correct failure identification are discussed as well as an algorithm for detecting second failures through prediction.

  9. Feasibility of small animal cranial irradiation with the microRT system

    PubMed Central

    Kiehl, Erich L.; Stojadinovic, Strahinja; Malinowski, Kathleen T.; Limbrick, David; Jost, Sarah C.; Garbow, Joel R.; Rubin, Joshua B.; Deasy, Joseph O.; Khullar, Divya; Izaguirre, Enrique W.; Parikh, Parag J.; Low, Daniel A.; Hope, Andrew J.

    2008-01-01

    Purpose: To develop and validate methods for small-animal CNS radiotherapy using the microRT system. Materials and Methods: A custom head immobilizer was designed and built to integrate with a pre-existing microRT animal couch. The Delrin® couch-immobilizer assembly, compatible with multiple imaging modalities (CT, microCT, microMR, microPET, microSPECT, optical), was first imaged via CT in order to verify the safety and reproducibility of the immobilization method. Once verified, the subject animals were CT-scanned while positioned within the couch-immobilizer assembly for treatment planning purposes. The resultant images were then imported into CERR, an in-house-developed research treatment planning system, and registered to the microRTP treatment planning space using rigid registration. The targeted brain was then contoured and conformal radiotherapy plans were constructed for two separate studies: (1) a whole-brain irradiation comprised of two lateral beams at the 90° and 270° microRT treatment positions and (2) a hemispheric (left-brain) irradiation comprised of a single A-P vertex beam at the 0° microRT treatment position. During treatment, subject animals (n=48) were positioned to the CERR-generated treatment coordinates using the three-axis microRT motor positioning system and were irradiated using a clinical Ir-192 high-dose-rate remote after-loading system. The radiation treatment course consisted of 5 Gy fractions, 3 days per week. 90% of the subjects received a total dose of 30 Gy and 10% received a dose of 60 Gy. Results: Image analysis verified the safety and reproducibility of the immobilizer. CT scans generated from repeated reloading and repositioning of the same subject animal in the couch-immobilizer assembly were fused to a baseline CT. The resultant analysis revealed a 0.09 mm average, center-of-mass translocation and negligible volumetric error in the contoured, murine brain. The experimental use of the head immobilizer added ±0.1 mm to microRT spatial uncertainty along each axis. Overall, the total spatial uncertainty for the prescribed treatments was ±0.3 mm in all three axes, a 0.2 mm functional improvement over the original version of microRT. Subject tolerance was good, with minimal observed side effects and a low procedure-induced mortality rate. Throughput was high, with average treatment times of 7.72 and 3.13 min?animal for the whole-brain and hemispheric plans, respectively (dependent on source strength). Conclusions: The method described exhibits conformality more in line with the size differential between human and animal patients than provided by previous prevalent approaches. Using pretreatment imaging and microRT-specific treatment planning, our method can deliver an accurate, conformal dose distribution to the targeted murine brain (or a subregion of the brain) while minimizing excess dose to the surrounding tissue. Thus, preclinical animal studies assessing the radiotherapeutic response of both normal and malignant CNS tissue to complex dose distributions, which closer resemble human-type radiotherapy, are better enabled. The procedural and mechanistic framework for this method logically provides for future adaptation into other murine target organs or regions. PMID:18975718

  10. Systems thinking

    Microsoft Academic Search

    Derek Cabrera; Laura Colosi; Claire Lobdell

    2008-01-01

    Evaluation is one of many fields where “systems thinking” is popular and is said to hold great promise. However, there is disagreement about what constitutes systems thinking. Its meaning is ambiguous, and systems scholars have made diverse and divergent attempts to describe it. Alternative origins include: von Bertalanffy, Aristotle, Lao Tsu or multiple aperiodic “waves.” Some scholars describe it as

  11. Solar System

    NSDL National Science Digital Library

    Ms. Wright

    2009-10-09

    An introduction to to the solar system. How to distinguish between the different planets. Activities to play while getting to know the solar system. Cosmic Cookies Solar System Scavenger Hunt Edible Earth Strawkets and Control Strawkets and Thrust Strawkets and Weight ...

  12. Linked Systems.

    ERIC Educational Resources Information Center

    Association of Research Libraries, Washington, DC.

    Three papers are compiled here for research library directors: (1) "Background: Open Systems Interconnection," in which David F. Bishop provides fundamental background information to explain the concept of the emerging technology of linked systems and open systems interconnection--i.e., an agreed upon standard set of conventions or rules that,…

  13. Energy Systems

    NSDL National Science Digital Library

    Office of Educational Partnerships,

    Posters are provided for several different energy conversion systems. Students are provided with cards that give the name and a description of each of the components in an energy system. They match these with the figures on the diagram. Since the groups look at different systems, they also describe their results to the class to share their knowledge.

  14. Systems Thinking 2: Thermodynamic Systems

    NSDL National Science Digital Library

    Linda Vanasupa

    This video explains thermodynamic systems, open and closed systems, and the four key properties of a system. This video is part of the Sustainability Learning Suites, made possible in part by a grant from the National Science Foundation. See 'Learn more about this resource' for Learning Objectives, Assessment, and Activities.

  15. Antenna Systems Advanced Antenna Systems

    E-print Network

    Fang, Yuguang "Michael"

    EEL4461 EEL5462 Fall 2014 Antenna Systems Advanced Antenna Systems Instructor Dr. Jenshan Lin://lss.at.ufl.edu/) Textbooks Required: Balanis, Antenna Theory - Analysis and Design, 3rd ed. 2005 Prerequisite EEL3472 principles of antenna and to apply them to the design and analysis of antenna systems. Students will learn

  16. Operating Systems

    NSDL National Science Digital Library

    Bin Muhammad, Rashid

    Rashid Bin Muhammad at Kent State University presents his page of lectures notes and other instructional materials on operating systems. The site is divided into a number of topics about operating systems: history, structure, process, threads, Solaris-2, CPU / process scheduling, schedule algorithm, interprocess communication, deadlock, important UNIX commands, and references. The site is then followed by links to outside resources to help supplement the material presented here. This is a great resource for computer science instructors teaching students about operating systems.

  17. [Information systems].

    PubMed

    Rodríguez Maniega, José Antonio; Trío Maseda, Reyes

    2005-03-01

    The arrival of victims of the terrorist attacks of 11 March at the hospital put the efficiency of its information systems to the test. To be most efficient, these systems should be simple and directed, above all, to the follow-up of victims and to providing the necessary information to patients and families. A specific and easy to use system is advisable. PMID:15771852

  18. Geothermal systems

    NASA Technical Reports Server (NTRS)

    Mohl, C.

    1978-01-01

    Several tasks of JPL related to geothermal energy are discussed. The major task is the procurement and test and evaluation of a helical screw drive (wellhead unit). A general review of geothermal energy systems is given. The presentation focuses attention on geothermal reservoirs in California, with graphs and charts to support the discussion. Included are discussions on cost analysis, systems maintenance, and a comparison of geothermal and conventional heating and cooling systems.

  19. Systemic Darwinism

    PubMed Central

    Winther, Rasmus Grønfeldt

    2008-01-01

    Darwin's 19th century evolutionary theory of descent with modification through natural selection opened up a multidimensional and integrative conceptual space for biology. We explore three dimensions of this space: explanatory pattern, levels of selection, and degree of difference among units of the same type. Each dimension is defined by a respective pair of poles: law and narrative explanation, organismic and hierarchical selection, and variational and essentialist thinking. As a consequence of conceptual debates in the 20th century biological sciences, the poles of each pair came to be seen as mutually exclusive opposites. A significant amount of 21st century research focuses on systems (e.g., genomic, cellular, organismic, and ecological/global). Systemic Darwinism is emerging in this context. It follows a “compositional paradigm” according to which complex systems and their hierarchical networks of parts are the focus of biological investigation. Through the investigation of systems, Systemic Darwinism promises to reintegrate each dimension of Darwin's original logical space. Moreover, this ideally and potentially unified theory of biological ontology coordinates and integrates a plurality of mathematical biological theories (e.g., self-organization/structure, cladistics/history, and evolutionary genetics/function). Integrative Systemic Darwinism requires communal articulation from a plurality of perspectives. Although it is more general than these, it draws on previous advances in Systems Theory, Systems Biology, and Hierarchy Theory. Systemic Darwinism would greatly further bioengineering research and would provide a significantly deeper and more critical understanding of biological reality. PMID:18697926

  20. Anticipatory systems as linguistic systems

    NASA Astrophysics Data System (ADS)

    Ekdahl, Bertil

    2000-05-01

    The idea of system is well established although not well defined. What makes up a system depends on the observer. Thinking in terms of systems is only a convenient way to conceptualize organizations, natural or artificial, that show coherent properties. Among all properties, which can be ascribed to systems, one property seems to be more outstanding than others, namely that of being anticipatory. In nature, anticipatory properties are found only in living organizations. In this way it can be said to separate non-living systems from living because there is no indication that any natural phenomenon occurring in systems where there is no indication of life is anticipatory. The characteristic of living systems is that they are exposed to the evolution contrary to causal systems that do not undergo changes due to the influence of the environment. Causal systems are related to the past in such a way that subsequent situations can be calculated from knowledge of past situations. In causal systems the past is the cause of the present and there is no reference to the future as a determining agent, contrary to anticipatory systems where expectations are the cause of the present action. Since anticipatory properties are characteristic of living systems, this property, as all other properties in living systems, is a result of the evolution and can be found in plants as well as in animals. Thus, it is not only tied to consciousness but is found at a more basic level, i.e., in the interplay between genotype and phenotype. Anticipation is part of the genetic language in such a way that appropriate actions, for events in the anticipatory systems environment, are inscribed in the genes. Anticipatory behavior, as a result of the interpretation of the genetic language, has been selected by the evolution. In this paper anticipatory systems are regarded as linguistic systems and I argue that as such anticipation cannot be fragmented but must be holistically studied. This has the implication that anticipatory behavior can only partially be described in a computer language and, furthermore, it shows that only a restricted class of anticipatory systems can be transferred to computers.

  1. Disperse Systems

    Microsoft Academic Search

    Makoto Takeo

    1999-01-01

    Interesting applications for disperse systems exist in many areas of modern technology. Weight and cost savings achieved in engineered foams for complex designs and computer-modeled optical pigments for creating astounding effects in coating are but two examples of such diverse applications. In addition to the cost and material reductions already achieved in existing applications, future applications of disperse systems are

  2. Blackboard systems

    Microsoft Academic Search

    I. D. Craig

    1988-01-01

    The blackboard architecture is becoming an increasingly popular basis for the construction of problem-solving systems which operate in domains requiring qualitatively different kinds of knowledge to be applied in order to arrive at a solution to a problem. This paper presents the metaphor on which blackboard systems are based. The metaphor is then given an interpretation which constitutes the blackboard

  3. Multimedia Systems

    NSDL National Science Digital Library

    Ms Laurie Patterson

    CSC 304. Multimedia Systems (3) Prerequisite: CSC 121. Introduction to technologies of the Internet and networked multimedia systems. Issues in web page design; Internet client/server programming; collaborative computing and group work; network publishing; security and encryption; audio and video compression; ethical issues and privacy; e-commerce; and distributed object computing. Open only to students of junior or senior standing.

  4. Organ Systems

    NSDL National Science Digital Library

    W. R. Klemm

    2001-01-01

    This "Organ Systems" module has five units of instruction that focus on the main classes of functions that a body must perform. Rather than just naming organs of the body and what they do, they present a perspective on the body as a coordinated group of systems that must do certain things correctly in order to survive and thrive.

  5. AlAA 92-0980 Design of Multipurpose Spacecraft BUS

    E-print Network

    . The spacecraft bus uses three- axis stabilization consisting of three reaction wheel system. The electric power differences in orbit, yaw axis control, attitude pointing, and thermal control requirements. The AVHRR payloadAlAA 92-0980 Design of Multipurpose Spacecraft BUS 6. N. Agrawal Naval Postgraduate School Monterey

  6. Robust attitude stabilization of spacecraft using nonlinear quaternion feedback

    Microsoft Academic Search

    S. M. Joshi; A. G. Kelkar; J. T.-Y. Wen

    1995-01-01

    This paper considers the problem of three-axis attitude stabilization of a rigid spacecraft. A nonlinear control law which uses the feedback of the unit quaternion and the measured angular velocities is proposed and is shown to provide global asymptotic stability. The control law does not require the knowledge of the system parameters and is, therefore, robust to modeling errors. The

  7. A double gimballed magnetic bearing momentum wheel for high pointing accuracy and vibration sensitive space applications

    Microsoft Academic Search

    U. J. Bichler

    1991-01-01

    A fully controlled magnetic bearing momentum wheel is well suited as gyroscopic actuator in the attitude control system of spacecraft. It offers the following advantages: an active tilting of the momentum vector with respect to the spacecraft ('vernier gimballing') with the following features: very little power required; three axis attitude control of the spacecraft in a fine pointing range with

  8. Quaternion feedback regulator for large angle maneuvers of underactuated spacecraft

    Microsoft Academic Search

    Jason S. Hall; Marcello Romano; Roberto Cristi

    2010-01-01

    A quaternion feedback regulator is developed to yield three-axis rate stabilization of an underactuated rigid spacecraft's attitude with two body-fixed control torques and arbitrary inertia matrix. Stable control is achieved by properly combining a generalized inverse component for feedback linearization and an auxiliary input to stabilize the underactuated system. The proposed control yields local stability within a domain of attraction

  9. FRACTIONAL REGULATORS FOR SPACECRAFT ATTITUDE STABILIZATION

    Microsoft Academic Search

    A. Kailil; N. Mrani; M. Abid; S. Choukri; M. Mliha Touati; N. Elalami

    2004-01-01

    In order to enhance the performances and satisfy pointing requirements of communication spacecraft or intelligence gathering purposes, Fractional Order Control (FOC) methods were applied to a three-axis reaction wheels spacecraft attitude control system. In this paper, Low Earth Orbit satellite attitude stabilisation with fractional control laws methods is presented. First, the theory relating to such a law of control have

  10. A new control algorithm based on tactile and slippage sensation for robotic hand

    Microsoft Academic Search

    HANAFIAH YUSSOF; JIRO WADA; MASAHIRO OHKA

    2010-01-01

    This paper presents a new control algorithm in robotic hand based on tactile and slippage sensations. Optical three-axis tactile sensor is used as tactile sensing device at the robot hand system to acquire tactile and slippage information. The tactile sensor is based on optical waveguide transduction method that capable of defining normal and shear forces simultaneously. The proposed algorithm consists

  11. DEVELOPMENT OF AN INTELLIGENT ARCHITECTURE FOR WEB-BASED PROGRAMMING & CONTROL OF AN AUTOMATED MANUFACTURING CELL

    Microsoft Academic Search

    S. Manian Ramkumar; Endowed Chair

    This paper discusses the development of an intelligent architecture for web-based programming & control of an automated manufacturing cell. The cell consists of a three-axis TERCO CNC milling machine, an IBM SCARA robot and a raw material feed station. The cell components are integrated using a data acquisition system (DAS), programmed using Visual Basic and controlled through the web. A

  12. Short Planar Gradient Coils for MR Microscopy Using Concentric Return Paths

    Microsoft Academic Search

    Stephen J. Dodd; Chien Ho

    2002-01-01

    The aim of this work is to design a set of gradient coils with an optimal geometry for magnetic resonance microscopy studies. Designs for a three-axis gradient coil system particularly suited for studies with small radiofrequency coils are presented. The novel geometry involves a planar section with concentric return paths to keep the coil short. Reduction of the external field

  13. Modal analysis of car frame by MEMs accelerometr digital network

    Microsoft Academic Search

    Petr Tomcik; Martin Juranek; Jiri Kulhanek

    2012-01-01

    This paper is focused on testing vehicle frame assist in experimental modal analysis. For analysis we will use data from net of three axis MEMS accelerometers. Net of sensors is connected by CAN bus. This measure system can work during ride of vehicle, it means that is enable analyze process instant during ride on road.

  14. Proceedings of an ESA-NASA Workshop on a Joint Solid Earth Program

    NASA Technical Reports Server (NTRS)

    Guyenne, T. Duc (editor); Hunt, James J. (editor)

    1987-01-01

    The NASA geodynamics program; spaceborne magnetometry; spaceborne gravity gradiometry (characterizing the data type); terrestrial gravity data and comparisons with satellite data; GRADIO three-axis electrostatic accelerometers; gradiometer accommodation on board a drag-free satellite; gradiometer mission spectral analysis and simulation studies; and an opto-electronic accelerometer system were discussed.

  15. USING ULTRASONIC ANEMOMETERS TO EVALUATE FACTORS AFFECTING FACE VENTILATION EFFECTIVENESS

    Microsoft Academic Search

    Charles D. Taylor; Robert J. Timko; Edward D. Thimons

    A test system was developed for measuring airflow in the National Institute for Occupational Safety and Health (NIOSH) ventilation gallery using a three-axis ultrasonic anemometer. The gallery was used to simulate face airflow conditions in underground mines having a blowing curtain. Airflow data collected at multiple sampling locations between the face and the end of the curtain were used to

  16. Power system

    DOEpatents

    Hickam, Christopher Dale (Glasford, IL)

    2008-03-18

    A power system includes a prime mover, a transmission, and a fluid coupler having a selectively engageable lockup clutch. The fluid coupler may be drivingly connected between the prime mover and the transmission. Additionally, the power system may include a motor/generator drivingly connected to at least one of the prime mover and the transmission. The power-system may also include power-system controls configured to execute a control method. The control method may include selecting one of a plurality of modes of operation of the power system. Additionally, the control method may include controlling the operating state of the lockup clutch dependent upon the mode of operation selected. The control method may also include controlling the operating state of the motor/generator dependent upon the mode of operation selected.

  17. Systems and Components Fuel Delivery System, Water Delivery System, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Systems and Components - Fuel Delivery System, Water Delivery System, Derrick Crane System, and Crane System Details - Marshall Space Flight Center, F-1 Engine Static Test Stand, On Route 565 between Huntsville and Decatur, Huntsville, Madison County, AL

  18. File Systems File System Overview

    E-print Network

    Hamey, Len

    Pig Cat Cow Dog Goat Owl Ox Hen Ibis Lion Tree After T fig 5.2 Abstract view - properties System file (reposition) Open Close #12;File Creation Find space in the file system Make a new entry in appropriate storage space used by the file Truncate: Empty file Rename: Modify/move directory entry #12;Other

  19. Processing system

    NASA Technical Reports Server (NTRS)

    Hilland, J. E.

    1983-01-01

    To implement the analysis techniques and to provide end-to-end processing, a system was designed with the following capabilities: receive and catalog data from many sources; organize the data on mass storage for rapid access; edit for reasonableness; create new data sets by sorting on parameter, averaging and merging; provide statistical analysis and display tools; and distribute data on demand. Consideration was given to developing a flexible system that could meet immediate workshop needs and respond to future requirements. System architecture and data set details implemented are discussed.

  20. System Toolbox

    NSDL National Science Digital Library

    System Toolbox is designed for system administrators who deal with a variety of platforms. The site covers Windows NT, General Unix, Novell, Linux, Solaris, HP-UX, and the Mac OS. The "toolbox" for each platform offers annotated links to Tools (Disk Management, Anti-Virus, Security, etc.), Articles, and other useful Links. While the information here is hardly comprehensive, the site offers useful, if often basic, resources for administrators. System Toolbox's brand new History section looks promising, with two articles currently posted, "Von Braun's Slide Rule" and "The Godfather of Computing - Charles Babbage." The Comments section allows users to post questions or comments.

  1. The Systems Integration Modeling System

    SciTech Connect

    Danker, W.J.; Williams, J.R. [USDOE Office of Civilian Radioactive Waste Management, Washington, DC (United States)

    1990-10-01

    This paper discusses the systems integration modeling system (SIMS), an analysis tool for the detailed evaluation of the structure and related performance of the Federal Waste Management System (FWMS) and its interface with waste generators. It`s use for evaluations in support of system-level decisions as to FWMS configurations, the allocation, sizing, balancing and integration of functions among elements, and the establishment of system-preferred waste selection and sequencing methods and other operating strategies is presented. SIMS includes major analysis submodels which quantify the detailed characteristics of individual waste items, loaded casks and waste packages, simulate the detailed logistics of handling and processing discrete waste items and packages, and perform detailed cost evaluations.

  2. Tear System

    MedlinePLUS

    ... or tear drainage. Increased Tear Production and Dry Eyes The eye has two sets of structures that ... and cosmetic surgeon who specializes in the eyelids, orbit, and tear drain system. It’s also important that ...

  3. Earth Systems

    NSDL National Science Digital Library

    Houghton Mifflin Science

    This self-contained module on Earth systems includes a range of fun activities that students can perform in the classroom and at home with family members. They impart important concepts such as observation, identification, measurement, and differentiation.

  4. Recommender systems

    NASA Astrophysics Data System (ADS)

    Lü, Linyuan; Medo, Matúš; Yeung, Chi Ho; Zhang, Yi-Cheng; Zhang, Zi-Ke; Zhou, Tao

    2012-10-01

    The ongoing rapid expansion of the Internet greatly increases the necessity of effective recommender systems for filtering the abundant information. Extensive research for recommender systems is conducted by a broad range of communities including social and computer scientists, physicists, and interdisciplinary researchers. Despite substantial theoretical and practical achievements, unification and comparison of different approaches are lacking, which impedes further advances. In this article, we review recent developments in recommender systems and discuss the major challenges. We compare and evaluate available algorithms and examine their roles in the future developments. In addition to algorithms, physical aspects are described to illustrate macroscopic behavior of recommender systems. Potential impacts and future directions are discussed. We emphasize that recommendation has great scientific depth and combines diverse research fields which makes it interesting for physicists as well as interdisciplinary researchers.

  5. Respiratory System

    NSDL National Science Digital Library

    Jim Bidlack

    The purpose, components, and functions of the respiratory system are presented in this learning through disussion and visualizations. Participants learn about the nasal cavity, pharynx, larynx, trachea, bronchi, bronchioles, and alveoli.

  6. Root systems

    NSDL National Science Digital Library

    N/A N/A (U.S. Government; )

    2004-10-30

    One purpose that roots serve is that of anchoring the plant in the ground. Roots also take up water and nutrients for the plant. Plants all have different root system types to fit their individual needs and locations.

  7. Embedded Systems

    NSDL National Science Digital Library

    Leske, Cavin.

    Embedded systems are dedicated computers designed to perform a specific task. They are usually fairly simple devices that are used in areas where powerful, customizable computers are unnecessary; however, they can also be quite complex on occasion. Embedded systems can be found almost anywhere, including automobiles and cellular phones, and their importance is reflected in their near omnipresence.An excellent introduction to embedded systems can be found in the first three pages of this online course material (1). The educational module gives a thorough definition of embedded systems, several examples of where they are used, and a discussion of their common components. For a more detailed explanation of how these devices are used to control various appliances, motors, and other real world products, this site (2) is worth a visit. Sixteen sections comprise the site, and each includes background information and an example experiment. Although certain equipment is required for the experiments, much can be learned simply from reading the introductions. This enlightening essay (3) documents the history and development of embedded systems. Despite being somewhat specific to the author's life, it effectively illustrates the evolution of embedded systems and their incorporation into many facets of everyday life. A paper presented at the 2003 International Cryptology Conference (4) considers the vulnerability of embedded cryptosystems to side channel attacks, which are different from normal security violations because they involve monitoring parts of the hardware system instead of the software. The authors propose the design of private circuits that are resistant to such attacks. The Center for Robotics and Embedded Systems at the University of Southern California is the source of this paper (5) about networked robots. Although it is somewhat dated, the paper provides some valuable insights into how robots can be used in human environments and how they can be controlled and coordinated with wireless communications. An article from Dedicated Systems Magazine (6) highlights the role of embedded systems in NASA's Mars Exploration Rovers, which were launched in June and July 2003. The technologies that enabled the rovers to have powerful, reliable operation are described. The April 2003 issue of ACM Queue (7), the online magazine of the Association for Computing Machinery, is dedicated to embedded systems. Seven articles are included in the issue, dealing with the design and construction process of embedded devices and the hardware/software interface. Lastly, a short paper that was presented at a computer architecture symposium in January 2003 looks ahead to the realization of ubiquitous computing (8). This technology revolution, which has been predicted for many years, promises to make tiny computers embedded in virtually everything, even clothing and walls. The author focuses on the area of intelligent vehicles and wheeled mobile robots.

  8. Disperse Systems

    NASA Astrophysics Data System (ADS)

    Takeo, Makoto

    1999-03-01

    Interesting applications for disperse systems exist in many areas of modern technology. Weight and cost savings achieved in engineered foams for complex designs and computer-modeled optical pigments for creating astounding effects in coating are but two examples of such diverse applications. In addition to the cost and material reductions already achieved in existing applications, future applications of disperse systems are ripe with many heretofore-undeveloped products possessing unprecedented properties. A thorough understanding of the relationship between microscopic composition and the measurable macroscopic behaviour of disperse systems is necessary for technologists to exploit the unique properties of these systems. With such an understanding, the reader will be equipped to develop new products efficiently and to effectively achieve required material properties. Professor Makoto Takeo, the renowned expert from Portland State University, addresses this need for an understanding of disperse systems in a remarkable new text. The current knowledge base is presented and the underlying principles of these systems are revealed in a straightforward and easily accessible manner. It is an indispensable work for those who want to competently enter this fascinating field, and an absolute must for tomorrow's physicists and materials scientists.

  9. Systems Studies

    SciTech Connect

    Graham, R.L.

    1998-03-17

    The Systems Studies Activity had two objectives: (1) to investigate nontechnical barriers to the deployment of biomass production and supply systems and (2) to enhance and extend existing systems models of bioenergy supply and use. For the first objective, the Activity focused on existing bioenergy markets. Four projects were undertaken: a comparative analysis of bioenergy in Sweden and Austria; a one-day workshop on nontechnical barriers jointly supported by the Production Systems Activity; the development and testing of a framework for analyzing barriers and drivers to bioenergy markets; and surveys of wood pellet users in Sweden, Austria and the US. For the second objective, two projects were undertaken. First, the Activity worked with the Integrated BioEnergy Systems (TBS) Activity of TEA Bioenergy Task XIII to enhance the BioEnergy Assessment Model (BEAM). This model is documented in the final report of the IBS Activity. The Systems Studies Activity contributed to enhancing the feedstock portion of the model by developing a coherent set of willow, poplar, and switchgrass production modules relevant to both the US and the UK. The Activity also developed a pretreatment module for switchgrass. Second, the Activity sponsored a three-day workshop on modeling bioenergy systems with the objectives of providing an overview of the types of models used to evaluate bioenergy and promoting communication among bioenergy modelers. There were nine guest speakers addressing different types of models used to evaluate different aspects of bioenergy, ranging from technoeconomic models based on the ASPEN software to linear programming models to develop feedstock supply curves for the US. The papers from this workshop have been submitted to Biomass and Bioenergy and are under editorial review.

  10. Systemic trauma.

    PubMed

    Goldsmith, Rachel E; Martin, Christina Gamache; Smith, Carly Parnitzke

    2014-01-01

    Substantial theoretical, empirical, and clinical work examines trauma as it relates to individual victims and perpetrators. As trauma professionals, it is necessary to acknowledge facets of institutions, cultures, and communities that contribute to trauma and subsequent outcomes. Systemic trauma-contextual features of environments and institutions that give rise to trauma, maintain it, and impact posttraumatic responses-provides a framework for considering the full range of traumatic phenomena. The current issue of the Journal of Trauma & Dissociation is composed of articles that incorporate systemic approaches to trauma. This perspective extends conceptualizations of trauma to consider the influence of environments such as schools and universities, churches and other religious institutions, the military, workplace settings, hospitals, jails, and prisons; agencies and systems such as police, foster care, immigration, federal assistance, disaster management, and the media; conflicts involving war, torture, terrorism, and refugees; dynamics of racism, sexism, discrimination, bullying, and homophobia; and issues pertaining to conceptualizations, measurement, methodology, teaching, and intervention. Although it may be challenging to expand psychological and psychiatric paradigms of trauma, a systemic trauma perspective is necessary on both scientific and ethical grounds. Furthermore, a systemic trauma perspective reflects current approaches in the fields of global health, nursing, social work, and human rights. Empirical investigations and intervention science informed by this paradigm have the potential to advance scientific inquiry, lower the incidence of a broader range of traumatic experiences, and help to alleviate personal and societal suffering. PMID:24617751

  11. Investigating Army systems and Systems of Systems for value robustness

    E-print Network

    Koo, Kevin C. K. (Kevin Cheng Keong)

    2010-01-01

    This thesis proposes a value robustness approach to architect defense systems and Systems of Systems (SoS). A value robust system or SoS has the ability to provide continued value to stakeholders by performing well to meet ...

  12. Solar System

    NSDL National Science Digital Library

    2007-12-12

    This site is part of the space page of the British Broadcasting Corporation (BBC), and provides information about the Sun, the planets and their moons, and other bodies in the solar system. It contains a travel guide to the Solar System including such topics as what to see, reason to visit, how to get there, and local history. A similar travel guide is then available for the Sun, each of the planets, asteroids, and comets. In addition, multiple links for more detailed information as well as space games and puzzles are provided.

  13. Manufacturing Systems

    NSDL National Science Digital Library

    S Wallace

    2010-07-16

    Objective 7:05 - Students will develop an awareness of the designed World through : Describing a manufacturing system; listing and describing the basic type of manufacturing; defining production and manufacturing enterprise;defining AGV, CAD, CIM, CAM, CNC, production tooling, automation, and material processes. Day 1: Introduction/Background Objective Preassessment: Use a KWL chart to assess your students prior knowledge. This will also help you deal with any misconceptions regarding manufacturing system. Students will use the curriculum companion PowerPoint and Objective 7.05 Outline to develop an awarness of: Define manufacturing List and describe the basic types of Manufacturing Student ...

  14. System Overview

    NSDL National Science Digital Library

    This is a description for a learning module from Maricopa Advanced Technology Education Center. This PDF describes the module; access may be purchased by visiting the MATEC website. Technicians face the challenge of building and maintaining knowledge and skills that are applicable to microcomputer architecture. These challenges include keeping up to date on improvements in PC components, changes in PC hardware configurations, integration of new devices within PC systems, and the ability to readily apply their knowledge within the microcomputer manufacturing industry. This module provides an introduction and overview to the major system features that define the architecture of an Intel-based PC. A unique multimedia self-tutorial is included.

  15. The Nervous System Nervous System Functions

    E-print Network

    Brown, Christopher A.

    1 The Nervous System Nervous System Functions The primary functions of the nervous system are...the whole nervous system #12;5 Nervous System Organization Central Nervous System (CNS) Brain Spinal Cord Peripheral Nervous System Somatic NS--receives/sends messages to muscles Autonomic NS

  16. Immune System 1 Running Head: IMMUNE SYSTEM

    E-print Network

    Meagher, Mary

    Immune System 1 Running Head: IMMUNE SYSTEM Immune System Structure and Function Mary W. Meagher: 979-845-4727 CITATION: Meagher, M. W. (2004). Immune system structure and function. In A. Christensen System 2 Immune System Structure and Function The immune system is engaged in a constant surveillance

  17. Systems Science

    ERIC Educational Resources Information Center

    Christakis, Alexander; Hammond, Debora; Jackson, Michael; Laszlo, Alexander; Mitroff, Ian; Snowden, Dave; Troncale, Len; Carr-Chellman, Alison; Spector, J. Michael; Wilson, Brent

    2013-01-01

    Scholars representing the field of systems science were asked to identify what they considered to be the most exciting and imaginative work currently being done in their field, as well as how that work might change our understanding. The scholars included Alexander Christakis, Debora Hammond, Michael Jackson, Alexander Laszlo, Ian Mitroff, Dave…

  18. Immune System

    EPA Science Inventory

    A properly functioning immune system is essential to good health. It defends the body against infectious agents and in some cases tumor cells. Individuals with immune deficiencies resulting from genetic defects, diseases (e.g., AIDS, leukemia), or drug therapies are more suscepti...

  19. Support Systems

    E-print Network

    Wood, Jody

    2009-04-28

    thesis: SUPORT SYSTEMS Commite: __________________________ Chairperson __________________________ __________________________ Date approved: March 24, 2009 iii Abstract Support... has a double-edged consequence. On one hand it offers anonymity. But the resulting privacy comes at a cost ? it requires emotional distance; that distance is what can make someone fel lonely in a crowded room. A study published in 2006 by American...

  20. Tychonic System

    Microsoft Academic Search

    P. Murdin

    2000-01-01

    The world system proposed in 1583 by the Danish astronomer Tycho Brahe (1546-1601). Unable to accept the Copernican doctrine that the Earth moves around the Sun, he put forward the view, later disproved by Kepler (1571-1630), that the planets move around the Sun, but the Sun and Moon move around the Earth. The theory explained the observed variations of the

  1. Memory systems

    Microsoft Academic Search

    Larry R. Squire; Donald Chai

    1998-01-01

    Two recent findings are summarized here that bear on the organization of memory and brain systems. First, the capacity for simple recognition of familiarity (a form of declarative memory) depends on the hippocampal region in both humans and nonhuman primates. Second, probabilistic classification learning (a form of nondeclarative memory akin to habit learning) depends on the caudate nucleus and putamen.

  2. Lithography system

    Microsoft Academic Search

    P. Kruit

    1998-01-01

    Lithography system comprising a light source producing a light beam directed to a mask (3) located in a mask level and an optical demagnifier (4-6) for demagnifying by a factor and focusing the beam. The light beam is focused on a converter element (8) for converting said beam in a further beam having a smaller wavelength than UV light. The

  3. POWER SYSTEMS

    Microsoft Academic Search

    1962-01-01

    Low power output of other devices at this time dictates the use of ; nuclear-reactor systems for manned space explorations. Work up to the present is ; briefly reviewed, and progress and utilization of other power supplies are ; discussed. Pros and cons of solar cells, fuel cells, and thermoelectric and ; thermionic devices are included as well as consideration

  4. Circulatory system

    NSDL National Science Digital Library

    Katie Hale (CSUF; )

    2007-01-22

    The circulatory system includes the heart, blood vessels, and blood. Arteries take blood with oxygen to our organs; veins bring deoxygenated blood to the heart (to be pumped to the lungs to get oxygen). Arteries and veins bring essential nutrients from digestion (such as glucose) to our tissues as well.

  5. Laser system

    Microsoft Academic Search

    H. Karning; F. Prein; K. H. Vierling

    1985-01-01

    A laser system with a folded beam path is disclosed. The beam path is formed by a plurality of mirrors. Mirrors reflect light in a closed loop from one mirror to the other. Electrodes are disposed on opposite sides of the path between the mirrors and form channels through which the path extends. In addition to serving to direct the

  6. D System

    NSDL National Science Digital Library

    D-System is conducting research into program analysis, code generation, and programming tools for data-parallel languages like High Performance Fortran. If this research is successful, computational scientists and engineers will be able to write machine-independent, data-parallel programs for a broad spectrum of scientific applications, and achieve high performance with these programs on a variety of parallel architectures.

  7. Manufacturing Systems

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Advanced Process Systems designed a portable purge unit for NASA use. The unit is designed to protect flight and ground crews from toxic fumes and to provide a post-landing controlled environment for sensitive electronic equipment. Although the work has future spinoff potential, it has also led to a research and development program in conjunction with several universities.

  8. Ventilation systems

    NASA Astrophysics Data System (ADS)

    Olander, L.

    Two different types of ventilation systems and their components are addressed: general ventilation and local or process ventilation. Calculation of the flow rates used in the different systems is addressed. The many different types of flow calculations, how they are used, and some of the computer programs that could be used for these calculations are described. Some calculations start with assumptions regarding air flow rates in rooms and locals. The flow rates can be chosen from rule of thumb or regulations or standards. Thereafter the designer calculates necessary heat and cooling loads, pressure drops, fan effect, etc. The other type of calculation is not very common. By using demands on concentrations, temperatures or air velocities the flow rates are calculated. These calculations include contaminant source generation rates, use of models (physical and theoretical), and computational fluid dynamics. The latter are focused upon.

  9. Systemic treatment.

    PubMed

    Reig, Maria; Gazzola, Alessia; Di Donato, Roberto; Bruix, Jordi

    2014-10-01

    In the last years the management of patients with liver cancer has been improved. The BCLC staging/treatment strategy identifies the optimal candidates for each treatment option and sorafenib is the only effective systemic treatment. Others (sunitinib, brivanib, linifanib, everolimus, ramucirumab) have failed in terms of safety/survival benefit. Some patients at intermediate/early stage, may be considered for systemic therapy when options of higher priority may have failed or not be feasible. The 800 mg/day is the recommended starting dose. Close follow-up and easy access for the patients so that they can report any adverse event and implement dose adjustments is the key point in the management of them. Development of early dermatologic adverse events has been correlated with better outcome and the pattern of radiologic progression characterizes better the prognosis/outcome of these patients. Treatment beyond progression may be considered if there is no option for a second line research trial. PMID:25260318

  10. Burner systems

    DOEpatents

    Doherty, Brian J. (Marblehead, MA)

    1984-07-10

    A burner system particularly useful for downhole deployment includes a tubular combustion chamber unit housed within a tubular coolant jacket assembly. The combustion chamber unit includes a monolithic tube of refractory material whose inner surface defines the combustion zone. A metal reinforcing sleeve surrounds and extends the length of the refractory tube. The inner surface of the coolant jacket assembly and outer surface of the combustion chamber unit are dimensioned so that those surfaces are close to one another in standby condition so that the combustion chamber unit has limited freedom to expand with that expansion being stabilized by the coolant jacket assembly so that compression forces in the refractory tube do not exceed about one-half the safe compressive stress of the material; and the materials of the combustion chamber unit are selected to establish thermal gradient parameters across the combustion chamber unit to maintain the refractory tube in compression during combustion system start up and cool down sequences.

  11. Surveying System

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Sunrise Geodetic Surveys are setting up their equipment for a town survey. Their equipment differs from conventional surveying systems that employ transit rod and chain to measure angles and distances. They are using ISTAC Inc.'s Model 2002 positioning system, which offers fast accurate surveying with exceptional signals from orbiting satellites. The special utility of the ISTAC Model 2002 is that it can provide positioning of the highest accuracy from Navstar PPS signals because it requires no knowledge of secret codes. It operates by comparing the frequency and time phase of a Navstar signal arriving at one ISTAC receiver with the reception of the same set of signals by another receiver. Data is computer processed and translated into three dimensional position data - latitude, longitude and elevation.

  12. Tychonic System

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    The world system proposed in 1583 by the Danish astronomer Tycho Brahe (1546-1601). Unable to accept the Copernican doctrine that the Earth moves around the Sun, he put forward the view, later disproved by Kepler (1571-1630), that the planets move around the Sun, but the Sun and Moon move around the Earth. The theory explained the observed variations of the phases of Venus, for which the Ptolemai...

  13. Gasification system

    DOEpatents

    Haldipur, Gaurang B. (Hempfield, PA); Anderson, Richard G. (Penn Hills, PA); Cherish, Peter (Bethel Park, PA)

    1985-01-01

    A method and system for injecting coal and process fluids into a fluidized bed gasification reactor. Three concentric tubes extend vertically upward into the fluidized bed. Coal particulates in a transport gas are injected through an inner tube, and an oxygen rich mixture of oxygen and steam are injected through an inner annulus about the inner tube. A gaseous medium relatively lean in oxygen content, such as steam, is injected through an annulus surrounding the inner annulus.

  14. Gasification system

    DOEpatents

    Haldipur, Gaurang B. (Hempfield, PA); Anderson, Richard G. (Penn Hills, PA); Cherish, Peter (Bethel Park, PA)

    1983-01-01

    A method and system for injecting coal and process fluids into a fluidized bed gasification reactor. Three concentric tubes extend vertically upward into the fluidized bed. Coal particulates in a transport gas are injected through an inner tube, and an oxygen rich mixture of oxygen and steam are injected through an inner annulus about the inner tube. A gaseous medium relatively lean in oxygen content, such as steam, is injected through an annulus surrounding the inner annulus.

  15. Injection System

    SciTech Connect

    Thomas, J.E.

    1998-06-15

    Felton Medical identified a market need for a handheld portable single shot needleless injection system. This market need was being driven by a global need to eliminate the hazards of medical needle disposal by providing an alternative injection method. Felton Medical brought to this partnership individuals experienced in the research, development, design, assembly, marketing, and servicing of precision animal health medical devices. AlliedSignal provided manufacturing understanding and a facility proficient in product development for small precision mechanical parts and assemblies.

  16. Nanoelectromechanical Systems

    Microsoft Academic Search

    M. L. Roukes

    2000-01-01

    Nanoelectromechanical systems, or NEMS, are MEMS scaled to submicron\\u000adimensions. In this size regime, it is possible to attain extremely high\\u000afundamental frequencies while simultaneously preserving very high mechanical\\u000aresponsivity (small force constants). This powerful combination of attributes\\u000atranslates directly into high force sensitivity, operability at ultralow power,\\u000aand the ability to induce usable nonlinearity with quite modest control forces.

  17. Systemic illness

    Microsoft Academic Search

    Marta Bondanelli; Maria Chiara Zatelli; Maria Rosaria Ambrosio; Ettore C. degli Uberti

    2008-01-01

    Systemic illnesses are associated with alterations in the hypothalamic–pituitary–peripheral hormone axes, which represent\\u000a part of the adaptive response to stressful events and may be influenced by type and severity of illness and\\/or pharmacological\\u000a therapy. The pituitary gland responds to an acute stressful event with two secretory patterns: adrenocorticotropin (ACTH),\\u000a prolactin (PRL) and growth hormone (GH) levels increase, while luteinizing hormone

  18. Copernican System

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    The heliocentric (i.e. `Sun-centered') theory proposed by the Polish astronomer Nicolaus Copernicus (1473-1543), and published by him in 1543 in his book, De Revolutionibus Orbium Coelestium. In this system Copernicus placed the Sun at the center of the universe and regarded the Earth and the planets as moving around it in circular orbits. Because of his retention of the notion of circular motion...

  19. Control and acquisition systems for new scanning transmission x-ray microscopes at Advanced Light Source (abstract)

    NASA Astrophysics Data System (ADS)

    Tyliszczak, T.; Hitchcock, P.; Kilcoyne, A. L. D.; Ade, H.; Hitchcock, A. P.; Fakra, S.; Steele, W. F.; Warwick, T.

    2002-03-01

    Two new scanning x-ray transmission microscopes are being built at beamline 5.3.2 and beamline 7.0 of the Advanced Light Source that have novel aspects in their control and acquisition systems. Both microscopes use multiaxis laser interferometry to improve the precision of pixel location during imaging and energy scans as well as to remove image distortions. Beam line 5.3.2 is a new beam line where the new microscope will be dedicated to studies of polymers in the 250-600 eV energy range. Since this is a bending magnet beam line with lower x-ray brightness than undulator beam lines, special attention is given to the design not only to minimize distortions and vibrations but also to optimize the controls and acquisition to improve data collection efficiency. 5.3.2 microscope control and acquisition is based on a PC computer running WINDOWS 2000. All mechanical stages are moved by stepper motors with rack mounted controllers. A dedicated counter board is used for counting and timing and a multi-input/output board is used for analog acquisition and control of the focusing mirror. A three axis differential laser interferometer is being used to improve stability and precision by careful tracking of the relative positions of the sample and zone plate. Each axis measures the relative distance between a mirror placed on the sample stage and a mirror attached to the zone plate holder. Agilent Technologies HP 10889A servo-axis interferometer boards are used. While they were designed to control servo motors, our tests show that they can be used to directly control the piezo stage. The use of the interferometer servo-axis boards provides excellent point stability for spectral measurements. The interferometric feedback also provides active vibration isolation which reduces deleterious impact of mechanical vibrations up to 20-30 Hz. It also can improve the speed and precision of image scans. Custom C++ software has been written to provide user friendly control of the microscope and integration with visual light microscopy indexing of the samples. The beam line 7.0 microscope upgrade is a new design which will replace the existing microscope. The design is similar to that of beam line 5.3.2, including interferometric position encoding. However the acquisition and control is based on VXI systems, a Sun computer, and LABVIEW™ software. The main objective of the BL 7.0 microscope upgrade is to achieve precise image scans at very high speed (pixel dwells as short as 10 ?s) to take full advantage of the high brightness of the 7.0 undulator beamline. Results of tests and a discussion of the benefits of our scanning microscope designs will be presented.

  20. Braking system

    DOEpatents

    Norgren, D.U.

    1982-09-23

    A balanced braking system comprising a plurality of braking assemblies located about a member to be braked. Each of the braking assemblies consists of a spring biased piston of a first material fitted into a body of a different material which has a greater contraction upon cooling than the piston material. The piston is provided with a recessed head portion over which is positioned a diaphragm and forming a space therebetween to which is connected a pressurized fluid supply. The diaphragm is controlled by the fluid in the space to contact or withdraw from the member to be braked. A cooling means causes the body within which the piston is fitted to contract more than the piston, producing a tight shrink fit therebetween. The braking system is particularly applicable for selectively braking an arbor of an electron microscope which immobilizes, for example, a vertically adjustable low temperature specimen holder during observation. The system provides balanced braking forces which can be easily removed and re-established with minimal disturbance to arbor location.

  1. Multiprocessor system

    SciTech Connect

    Katzman, J.A.; Bartlett, J.F.; Bixler, R.M.; Davidow, W.H.; Despotakis, J.A.; Graziano, P.J.; Green, M.D.; Greig, D.A.; Hayashi, S.J.; Mackie, D.R.

    1987-06-09

    This patent describes an input/output system for a multiprocessor system of the kind in which a plurality of separate processor modules are interconnected for processing, each of the processor modules having a central processing unit and an associated main memory, at least pair of the processor modules each having an input/output channel with each such channel being independent of other such channels, the input/output system comprising: device controller for controlling the transfer of data between the pair of processor modules and a peripheral device, the device controller having multiple ports, with each such port being failure-independent of the other such ports and connected to a respective one of the input/output channels, each port including an enable latch operable in response to a disable command communicated to the port by the associated processor module to disable the port from any further data communication; the device controller including interface logic means responsive to signaling from a one of the processor modules for selecting one of the ports to the exclusion of the other of the ports for data transfers between the peripheral device and the one processor module connected to the selected port through its associated input/output channel; and interprocessor bus means communicating the pair of processor modules to one another for data transfer therebetween; each of processors modules being operable to provide a data communication path to the peripheral device for itself and for the other of the pair of processor modules.

  2. X-33 Attitude Control Using the XRS-2200 Linear Aerospike Engine

    NASA Technical Reports Server (NTRS)

    Hall, Charles E.; Panossian, Hagop V.

    1999-01-01

    The Vehicle Control Systems Team at Marshall Space Flight Center, Structures and Dynamics Laboratory, Guidance and Control Systems Division is designing, under a cooperative agreement with Lockheed Martin Skunkworks, the Ascent, Transition, and Entry flight attitude control systems for the X-33 experimental vehicle. Test flights, while suborbital, will achieve sufficient altitudes and Mach numbers to test Single Stage To Orbit, Reusable Launch Vehicle technologies. Ascent flight control phase, the focus of this paper, begins at liftoff and ends at linear aerospike main engine cutoff (MECO). The X-33 attitude control system design is confronted by a myriad of design challenges: a short design cycle, the X-33 incremental test philosophy, the concurrent design philosophy chosen for the X-33 program, and the fact that the attitude control system design is, as usual, closely linked to many other subsystems and must deal with constraints and requirements from these subsystems. Additionally, however, and of special interest, the use of the linear aerospike engine is a departure from the gimbaled engines traditionally used for thrust vector control (TVC) in launch vehicles and poses certain design challenges. This paper discusses the unique problem of designing the X-33 attitude control system with the linear aerospike engine, requirements development, modeling and analyses that verify the design.

  3. Testing of lift/cruise fan exhaust deflector. [for a tip turbine lift fan in short takeoff aircraft

    NASA Technical Reports Server (NTRS)

    Schlundt, D. W.

    1975-01-01

    A lift/cruise exhaust deflector system for the LF336/A tip turbine lift fan was designed, built, and tested to determine the design and performance characteristics of a large-scale, single swivel nozzle thrust vectoring system. The exhaust deflector static testing was performed at the Ames Research Center outside static test stand facilities. The test hardware was installed on a hydraulic lift platform to permit both in and out of ground effect testing. The exhaust flow of the LF336/A lift fan was vectored from 0 degrees through 130 degrees during selected fan speeds to obtain performance at different operating conditions. The system was operated with and without flow vanes installed in the small radius bends to evaluate the system performance based on a proposed method of improving the internal flow losses. The program also included testing at different ground heights, to the nozzle exhaust plane, to obtain ground effect data, and the testing of two methods of thrust spoiling using a duct bypass door system and nozzle flap system.

  4. ESMDIS: Earth System Model Data Information System

    Microsoft Academic Search

    Yuechen Chi; Carlos R. Mechoso; Michael Stonebraker; Keith Sklower; Richard Troy; Richard R. Muntz; Edmond Mesrobian

    1997-01-01

    The goal of the development of the Earth System Model Data Information System (ESMDIS) are to provide Earth scientists with: 1) an output management system of Earth System Model (ESM) to browse the metadata and retrieve a desired subset of ESM output; 2) an analysis system of ESM output and other related datasets; 3) an automated pipelining system for ESM

  5. Artificial immune system based intrusion detection system

    Microsoft Academic Search

    Vadim D. Kotov; Vladimir I. Vasilyev

    2009-01-01

    In this work the intrusion detection system (IDS) based on artificial immune systems is presented. This IDS traces sequences of applications system calls and then uses the negative selection algorithm to detect changes in the normal system behavior. It works on MS Windows operation system. This IDS also shows a high performance on local area networks when artificial immune systems

  6. X-31 landing

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Two X-31 Enhanced Fighter Maneuverability (EFM) demonstrators were flown at the Rockwell International facility, Palmdale, California, and the NASA Dryden Flight Research Center, Edwards, California, to obtain data that may apply to the design of highly-maneuverable next-generation fighters. The program had its first flight on October 11, 1990, in Palmdale; it ended in June 1995. The X-31 program demonstrated the value of thrust vectoring (directing engine exhaust flow) coupled with advanced flight control systems, to provide controlled flight during close-in air combat at very high angles of attack. The result of this increased maneuverability is an airplane with a significant advantage over conventional fighters. 'Angle-of-attack' (alpha) is an engineering term to describe the angle of an aircraft's body and wings relative to its actual flight path. During maneuvers, pilots often fly at extreme angles of attack -- with the nose pitched up while the aircraft continues in its original direction. This can lead to loss of control and result in the loss of the aircraft, pilot or both. Three thrust vectoring paddles made of graphite epoxy mounted on the exhaust nozzle of the X-31 aircraft directed the exhaust flow to provide control in pitch (up and down) and yaw (right and left) to improve control. The paddles can sustain heat of up to 1,500 degrees centigrade for extended periods of time. In addition the X-31 aircraft were configured with movable forward canards and fixed aft strakes. The canards were small wing-like structures set on the wing line between the nose and the leading edge of the wing. The strakes were set on the same line between the trailing edge of the wing and the engine exhaust. Both supplied additional control in tight maneuvering situations. The X-31 research program produced technical data at high angles of attack. This information is giving engineers and aircraft designers a better understanding of aerodynamics, effectiveness of flight controls and thrust vectoring, and airflow phenomena at high angles of attack. This understanding is expected to lead to design methods that provide better maneuverability in future high performance aircraft and make them safer to fly. An international test organization of about 110 people, managed by the Advanced Research Projects Agency (ARPA), conducted the flight operations at NASA Dryden. The ARPA had requested flight research for the X-31 aircraft be moved there in February 1992. In addition to ARPA and NASA, the international test organization (ITO) included the U.S. Navy, the U.S. Air Force, Rockwell International, the Federal Republic of Germany, and Daimler-Benz Aerospace (formerly Messerschmitt-Bolkow-Blohm and Deutsche Aerospace). NASA was responsible for flight research operations, aircraft maintenance, and research engineering once the program moved to Dryden. The No. 1 X-31 aircraft was lost in an accident January 19, 1995. The pilot, Karl Heinz-Lang, of the Federal Republic of Germany, ejected safely before the aircraft crashed in an unpopulated desert area just north of Edwards. The X-31 program logged an X-plane record of 580 flights during the program, including 555 research missions and 21 in Europe for the 1995 Paris Air Show. A total of 14 pilots representing all agencies of the ITO flew the aircraft. The X-31 aircraft shown on approach with a high angle of attack, touches down with its speed brakes, which can be seen extended just above and behind the wing. The aircraft then begins to rotate the nosegear down to runway contact and deploys a braking parachute that assists in slowing the aircraft after landing.

  7. X-31 Enhanced Fighter Maneuverability Aircraft in Flight

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The X-31 Enhanced Fighter Maneuverability aircraft in flight over California's Mojave desert during a 1992 test flight. The X-31 Enhanced Fighter Maneuverability (EFM) demonstrator flew at the Ames- Dryden Flight Research Facility, Edwards, California (redesignated the Dryden Flight Research Center in 1994) from February 1992 until 1995 and before that at the Air Force's Plant 42 in Palmdale, California. The goal of the project was to provide design information for the next generation of highly maneuverable fighter aircraft. This program demonstrated the value of using thrust vectoring (directing engine exhaust flow) coupled with an advanced flight control system to provide controlled flight to very high angles of attack. The result was a significant advantage over most conventional fighters in close-in combat situations. The X-31 flight program focused on agile flight within the post-stall regime, producing technical data to give aircraft designers a better understanding of aerodynamics, effectiveness of flight controls and thrust vectoring, and airflow phenomena at high angles of attack. Stall is a condition of an airplane or an airfoil in which lift decreases and drag increases due to the separation of airflow. Thrust vectoring compensates for the loss of control through normal aerodynamic surfaces that occurs during a stall. Post-stall refers to flying beyond the normal stall angle of attack, which in the X-31 was at a 30-degree angle of attack. During Dryden flight testing, the X-31 aircraft established several milestones. On November 6, 1992, the X-31 achieved controlled flight at a 70-degree angle of attack. On April 29, 1993, the second X-31 successfully executed a rapid minimum-radius, 180-degree turn using a post-stall maneuver, flying well beyond the aerodynamic limits of any conventional aircraft. This revolutionary maneuver has been called the 'Herbst Maneuver' after Wolfgang Herbst, a German proponent of using post-stall flight in air-to-air combat. It is also called a 'J Turn' when flown to an arbitrary heading change. The aircraft was flown in tactical maneuvers against an F/A-18 and other tactical aircraft as part of the test flight program. During November and December 1993, the X-31 reached a supersonic speed of Mach 1.28. In 1994, the X-31 program installed software to demonstrate quasi-tailless operation. The X-31 flight test program was conducted by an international test organization (ITO) managed by the Advanced Research Projects Office (ARPA), known as the Defense Advanced Research Projects Office (DARPA) before March 1993. The ITO included the U.S. Navy and U.S. Air Force, Rockwell Aerospace, the Federal Republic of Germany, Daimler-Benz (formerly Messerschmitt-Bolkow-Blohm and Deutsche Aerospace), and NASA. Gary Trippensee was the ITO director and NASA Project Manager. Pilots came from participating organizations. The X-31 was 43.33 feet long with a wingspan of 23.83 feet. It was powered by a single General Electric P404-GE-400 turbofan engine that produced 16,000 pounds of thrust in afterburner.

  8. X-31 in flight, Herbst maneuver

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Two X-31 Enhanced Fighter Maneuverability (EFM) demonstrators were flown at the Rockwell International Palmdale, California, facility and the NASA Dryden Flight Research Center, Edwards, California, to obtain data that may apply to the design of highly-maneuverable next-generation fighters. The program had its first flight on October 11, 1990, in Palmdale; it ended in June 1995. The X-31 program demonstrated the value of thrust vectoring (directing engine exhaust flow) coupled with advanced flight control systems, to provide controlled flight during close-in air combat at very high angles of attack. The result of this increased maneuverability is an aircraft with a significant advantage over conventional fighters. 'Angle-of-attack' (alpha) is an engineering term to describe the angle of an aircraft body and wings relative to its actual flight path. During maneuvers, pilots often fly at extreme angles of attack--with the nose pitched up while the aircraft continues in its original direction. This can lead to loss of control and result in the loss of the aircraft, or both. Three thrust-vectoring paddles made of graphite epoxy mounted on the X-31 aircraft exhaust nozzle directed the exhaust flow to provide control in pitch (up and down) and yaw (right and left) to improve control. The paddles can sustain heat of up to 1,500 degrees centigrade for extended periods of time. In addition the X-31 aircraft were configured with movable forward canards and fixed aft strakes. The canards were small wing-like structures set on the wing line between the nose and the leading edge of the wing. The strakes were set on the same line between the trailing edge of the wing and the engine exhaust. Both supplied additional control in tight maneuvering situations. The X-31 research program produced technical data at high angles of attack. This information is giving engineers and aircraft designers a better understanding of aerodynamics, effectiveness of flight controls and thrust vectoring, and airflow phenomena at high angles of attack. This is expected to lead to design methods that provide better maneuverability in future high performance aircraft and make them safer to fly. An international test organization of about 110 people, managed by the Advanced Research Projects Agency (ARPA), conducted the flight operations at NASA Dryden. The ARPA had requested flight research for the X-31 aircraft be moved there in February 1992. In addition to ARPA and NASA, the International Test Organization (ITO) included the U.S. Navy, the U.S. Air Force, Rockwell International, the Federal Republic of Germany, and Daimler-Benz Aerospace (formerly Messerschmitt-Bolkow-Blohm and Deutsche Aerospace). NASA was responsible for flight research operations, aircraft maintenance, and research engineering once the program moved to Dryden. The No. 1 X-31 aircraft was lost in an accident Jan. 19, 1995. The pilot, Karl Heinz-Lang, of the Federal Republic of Germany, ejected safely before the aircraft crashed in an unpopulated desert area just north of Edwards. The X-31 program logged an X-plane record of 580 flights during the program, including 555 research missions and 21 in Europe for the 1995 Paris Air Show. A total of 14 pilots representing all agencies of the ITO flew the aircraft. In this 40-second movie clip the X-31 aircraft is shown performing the 'Herbst maneuver,' which is a rapid, minimum-180-degree turn using a post-stall maneuver flying well beyond the aerodynamic limits of any conventional aircraft. Named after Wolfgang Herbst a proponent of using post-stall flight in air-to-air combat.

  9. X-31 #2 in Flight

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The second X-31 (Bu. No. 164585) Enhanced Fighter Maneuverability (EFM) aircraft flies over Edwards Air Force Base, California. The X-31 Enhanced Fighter Maneuverability (EFM) demonstrator flew at the Ames- Dryden Flight Research Facility, Edwards, California (redesignated the Dryden Flight Research Center in 1994) from February 1992 until 1995 and before that at the Air Force's Plant 42 in Palmdale, California. The goal of the project was to provide design information for the next generation of highly maneuverable fighter aircraft. This program demonstrated the value of using thrust vectoring (directing engine exhaust flow) coupled with an advanced flight control system to provide controlled flight to very high angles of attack. The result was a significant advantage over most conventional fighters in close-in combat situations. The X-31 flight program focused on agile flight within the post-stall regime, producing technical data to give aircraft designers a better understanding of aerodynamics, effectiveness of flight controls and thrust vectoring, and airflow phenomena at high angles of attack. Stall is a condition of an airplane or an airfoil in which lift decreases and drag increases due to the separation of airflow. Thrust vectoring compensates for the loss of control through normal aerodynamic surfaces that occurs during a stall. Post-stall refers to flying beyond the normal stall angle of attack, which in the X-31 was at a 30-degree angle of attack. During Dryden flight testing, the X-31 aircraft established several milestones. On November 6, 1992, the X-31 achieved controlled flight at a 70-degree angle of attack. On April 29, 1993, the second X-31 successfully executed a rapid minimum-radius, 180-degree turn using a post-stall maneuver, flying well beyond the aerodynamic limits of any conventional aircraft. This revolutionary maneuver has been called the 'Herbst Maneuver' after Wolfgang Herbst, a German proponent of using post-stall flight in air-to-air combat. It is also called a 'J Turn' when flown to an arbitrary heading change. The aircraft was flown in tactical maneuvers against an F/A-18 and other tactical aircraft as part of the test flight program. During November and December 1993, the X-31 reached a supersonic speed of Mach 1.28. In 1994, the X-31 program installed software to demonstrate quasi-tailless operation. The X-31 flight test program was conducted by an international test organization (ITO) managed by the Advanced Research Projects Office (ARPA), known as the Defense Advanced Research Projects Office (DARPA) before March 1993. The ITO included the U.S. Navy and U.S. Air Force, Rockwell Aerospace, the Federal Republic of Germany, Daimler-Benz (formerly Messerschmitt-Bolkow-Blohm and Deutsche Aerospace), and NASA. Gary Trippensee was the ITO director and NASA Project Manager. Pilots came from participating organizations. The X-31 was 43.33 feet long with a wingspan of 23.83 feet. It was powered by a single General Electric P404-GE-400 turbofan engine that produced 16,000 pounds of thrust in afterburner.

  10. X-31 Engine Fit Check

    NASA Technical Reports Server (NTRS)

    1998-01-01

    X-31 team members perform an engine fit check on the X-31 Enhanced Fighter Maneuverability demonstrator aircraft in a hangar at the Dryden Flight Research Center, Edwards, California. The X-31 Enhanced Fighter Maneuverability (EFM) demonstrator flew at the Ames- Dryden Flight Research Facility, Edwards, California (redesignated the Dryden Flight Research Center in 1994) from February 1992 until 1995 and before that at the Air Force's Plant 42 in Palmdale, California. The goal of the project was to provide design information for the next generation of highly maneuverable fighter aircraft. This program demonstrated the value of using thrust vectoring (directing engine exhaust flow) coupled with an advanced flight control system to provide controlled flight to very high angles of attack. The result was a significant advantage over most conventional fighters in close-in combat situations. The X-31 flight program focused on agile flight within the post-stall regime, producing technical data to give aircraft designers a better understanding of aerodynamics, effectiveness of flight controls and thrust vectoring, and airflow phenomena at high angles of attack. Stall is a condition of an airplane or an airfoil in which lift decreases and drag increases due to the separation of airflow. Thrust vectoring compensates for the loss of control through normal aerodynamic surfaces that occurs during a stall. Post-stall refers to flying beyond the normal stall angle of attack, which in the X-31 was at a 30-degree angle of attack. During Dryden flight testing, the X-31 aircraft established several milestones. On November 6, 1992, the X-31 achieved controlled flight at a 70-degree angle of attack. On April 29, 1993, the second X-31 successfully executed a rapid minimum-radius, 180-degree turn using a post-stall maneuver, flying well beyond the aerodynamic limits of any conventional aircraft. This revolutionary maneuver has been called the 'Herbst Maneuver' after Wolfgang Herbst, a German proponent of using post-stall flight in air-to-air combat. It is also called a 'J Turn' when flown to an arbitrary heading change. The aircraft was flown in tactical maneuvers against an F/A-18 and other tactical aircraft as part of the test flight program. During November and December 1993, the X-31 reached a supersonic speed of Mach 1.28. In 1994, the X-31 program installed software to demonstrate quasi-tailless operation. The X-31 flight test program was conducted by an international test organization (ITO) managed by the Advanced Research Projects Office (ARPA), known as the Defense Advanced Research Projects Office (DARPA) before March 1993. The ITO included the U.S. Navy and U.S. Air Force, Rockwell Aerospace, the Federal Republic of Germany, Daimler-Benz (formerly Messerschmitt-Bolkow-Blohm and Deutsche Aerospace), and NASA. Gary Trippensee was the ITO director and NASA Project Manager. Pilots came from participating organizations. The X-31 was 43.33 feet long with a wingspan of 23.83 feet. It was powered by a single General Electric P404-GE-400 turbofan engine that produced 16,000 pounds of thrust in afterburner.

  11. X-31 #1 in Flight over Edwards AFB

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The first X-31 (Bu. No. 164584) flies over Edwards Air Force Base, California, in 1993. Aircraft 584 completed 292 flights during the Enhanced Fighter Maneuverability (EFM) program before being lost on January 19, 1995 when icing in the nose probe caused the flight control computer to receive bad data. German test pilot Karl-Heinz Lang ejected after the aircraft became uncontrollable. The program continued, using the second aircraft (Bu. No. 164585). The X-31 Enhanced Fighter Maneuverability (EFM) demonstrator flew at the Ames- Dryden Flight Research Facility, Edwards, California (redesignated the Dryden Flight Research Center in 1994) from February 1992 until 1995 and before that at the Air Force's Plant 42 in Palmdale, California. The goal of the project was to provide design information for the next generation of highly maneuverable fighter aircraft. This program demonstrated the value of using thrust vectoring (directing engine exhaust flow) coupled with an advanced flight control system to provide controlled flight to very high angles of attack. The result was a significant advantage over most conventional fighters in close-in combat situations. The X-31 flight program focused on agile flight within the post-stall regime, producing technical data to give aircraft designers a better understanding of aerodynamics, effectiveness of flight controls and thrust vectoring, and airflow phenomena at high angles of attack. Stall is a condition of an airplane or an airfoil in which lift decreases and drag increases due to the separation of airflow. Thrust vectoring compensates for the loss of control through normal aerodynamic surfaces that occurs during a stall. Post-stall refers to flying beyond the normal stall angle of attack, which in the X-31 was at a 30-degree angle of attack. During Dryden flight testing, the X-31 aircraft established several milestones. On November 6, 1992, the X-31 achieved controlled flight at a 70-degree angle of attack. On April 29, 1993, the second X-31 successfully executed a rapid minimum-radius, 180-degree turn using a post-stall maneuver, flying well beyond the aerodynamic limits of any conventional aircraft. This revolutionary maneuver has been called the 'Herbst Maneuver' after Wolfgang Herbst, a German proponent of using post-stall flight in air-to-air combat. It is also called a 'J Turn' when flown to an arbitrary heading change. The aircraft was flown in tactical maneuvers against an F/A-18 and other tactical aircraft as part of the test flight program. During November and December 1993, the X-31 reached a supersonic speed of Mach 1.28. In 1994, the X-31 program installed software to demonstrate quasi-tailless operation. The X-31 flight test program was conducted by an international test organization (ITO) managed by the Advanced Research Projects Office (ARPA), known as the Defense Advanced Research Projects Office (DARPA) before March 1993. The ITO included the U.S. Navy and U.S. Air Force, Rockwell Aerospace, the Federal Republic of Germany, Daimler-Benz (formerly Messerschmitt-Bolkow-Blohm and Deutsche Aerospace), and NASA. Gary Trippensee was the ITO director and NASA Project Manager. Pilots came from participating organizations. The X-31 was 43.33 feet long with a wingspan of 23.83 feet. It was powered by a single General Electric P404-GE-400 turbofan engine that produced 16,000 pounds of thrust in afterburner.

  12. Purification system

    NASA Technical Reports Server (NTRS)

    Flanagan, David T. (inventor); Gibbons, Randall E. (inventor)

    1992-01-01

    A system for prolonging the life of a granulated activated charcoal (GAC) water treatment device is disclosed in which an ultraviolet light transparent material is used to constrain water to flow over carbon surfaces. It is configured to receive maximum flux from a UV radiation source for the purpose of preventing microbial proliferation on the carbon surfaces; oxidizing organic contaminants adsorbed from the water onto the carbon surfaces and from biodegradation of adsorbed microbial forms; disinfecting water; and oxidizing organic contaminants in the water.

  13. Sterilization System

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Cox Sterile Products, Inc.'s Rapid Heat Transfer Sterilizer employs a heat exchange process that induces rapid air movement; the air becomes the heat transfer medium, maintaining a uniform temperature of 375 degrees Fahrenheit. It features pushbutton controls for three timing cycles for different instrument loads, a six-minute cycle for standard unpackaged instruments, eight minutes for certain specialized dental/medical instruments and 12 minutes for packaged instruments which can then be stored in a drawer in sterile condition. System will stay at 375 degrees all day. Continuous operation is not expensive because of the sterilizer's very low power requirements.

  14. Relaxation System

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Environ Corporation's relaxation system is built around a body lounge, a kind of super easy chair that incorporates sensory devices. Computer controlled enclosure provides filtered ionized air to create a feeling of invigoration, enhanced by mood changing aromas. Occupant is also surrounded by multidimensional audio and the lighting is programmed to change colors, patterns, and intensity periodically. These and other sensory stimulators are designed to provide an environment in which the learning process is stimulated, because research has proven that while an individual is in a deep state of relaxation, the mind is more receptive to new information.

  15. Bearing system

    DOEpatents

    Kapich, Davorin D. (Carlsbad, CA)

    1987-01-01

    A bearing system includes backup bearings for supporting a rotating shaft upon failure of primary bearings. In the preferred embodiment, the backup bearings are rolling element bearings having their rolling elements disposed out of contact with their associated respective inner races during normal functioning of the primary bearings. Displacement detection sensors are provided for detecting displacement of the shaft upon failure of the primary bearings. Upon detection of the failure of the primary bearings, the rolling elements and inner races of the backup bearings are brought into mutual contact by axial displacement of the shaft.

  16. Onsite Wastewater Treatment Systems: Spray Distribution System

    E-print Network

    Lesikar, Bruce J.

    2008-10-23

    Disinfectant storage Pump tank Spray heads Wastewater treatment system Onsite wastewater treatment systems Spray distribution system L-5303 9-08 Figure 1: A spray distribution system with treatment and disinfection devices. S pray distribution... to install of all wastewa- ter distribution systems. However, they require the most wastewater treatment, which increases the cost of a com- plete treatment and final treatment and dispersal system. Spray systems also help conserve Texas? freshwater...

  17. Gastrointestinal system

    PubMed Central

    Cheng, Leo K.; O’Grady, Gregory; Du, Peng; Egbuji, John U.; Windsor, John A.; Pullan, Andrew J.

    2014-01-01

    The functions of the gastrointestinal (GI) tract include digestion, absorption, excretion, and protection. In this review, we focus on the electrical activity of the stomach and small intestine, which underlies the motility of these organs, and where the most detailed systems descriptions and computational models have been based to date. Much of this discussion is also applicable to the rest of the GI tract. This review covers four major spatial scales: cell, tissue, organ, and torso, and discusses the methods of investigation and the challenges associated with each. We begin by describing the origin of the electrical activity in the interstitial cells of Cajal, and its spread to smooth muscle cells. The spread of electrical activity through the stomach and small intestine is then described, followed by the resultant electrical and magnetic activity that may be recorded on the body surface. A number of common and highly symptomatic GI conditions involve abnormal electrical and/or motor activity, which are often termed functional disorders. In the last section of this review we address approaches being used to characterize and diagnose abnormalities in the electrical activity and how these might be applied in the clinical setting. The understanding of electrophysiology and motility of the GI system remains a challenging field, and the review discusses how biophysically based mathematical models can help to bridge gaps in our current knowledge, through integration of otherwise separate concepts. PMID:20836011

  18. Systemic illness.

    PubMed

    Bondanelli, Marta; Zatelli, Maria Chiara; Ambrosio, Maria Rosaria; degli Uberti, Ettore C

    2008-01-01

    Systemic illnesses are associated with alterations in the hypothalamic-pituitary-peripheral hormone axes, which represent part of the adaptive response to stressful events and may be influenced by type and severity of illness and/or pharmacological therapy. The pituitary gland responds to an acute stressful event with two secretory patterns: adrenocorticotropin (ACTH), prolactin (PRL) and growth hormone (GH) levels increase, while luteinizing hormone (LH), follicle-stimulating hormone (FSH) and thyrotropin (TSH) levels may either decrease or remain unchanged, associated with a decreased activity of their target organ. In protracted critical illness, there is a uniformly reduced pulsatile secretion of ACTH, TSH, LH, PRL and GH, causing a reduction in serum levels of the respective target-hormones. These adaptations are initially protective; however, if inadequate or excessive they may be dangerous and may contribute to the high morbidity and mortality risk of these patients. There is no consensus regarding the type of approach, as well as the criteria to use to define pituitary axis function in critically ill patients. We here provide a critical approach to pituitary axis evaluation during systemic illness. PMID:18404385

  19. Solar System!

    NSDL National Science Digital Library

    2014-09-18

    An introduction to our solar system—the planets, our Sun and Moon. To begin, students learn about the history and engineering of space travel. They make simple rockets to acquire a basic understanding Newton's third law of motion. They explore energy transfer concepts and use renewable solar energy for cooking. They see how engineers design tools, equipment and spacecraft to go where it is too far and too dangerous for humans. They explore the Earth's water cycle, and gravity as applied to orbiting bodies. They learn the steps of the design process as they create their own models of planetary rovers made of edible parts. Students conduct experiments to examine soil for signs of life, and explore orbit transfers. While studying about the International Space Station, they investigate the realities of living in space. Activities explore low gravity on human muscles, eating in microgravity, and satellite tracking. Finally, students learn about the context of our solar system—the universe—as they learn about the Hubble Space Telescope, celestial navigation and spectroscopy.

  20. Computer Systems Administrator

    E-print Network

    Computer Systems Administrator Fort Collins, CO POSITION A Computer Systems Administrator (Non activities. RESPONSIBILITIES The System Administrator will provide Unix/Linux, Windows computer system or computer science, and three years computer systems administration experience. DURATION The work is planned

  1. Prosthetic Knee Systems

    MedlinePLUS

    ... of fluid control systems — pneumatic (using air) and hydraulic (using fluid). Pneumatic control. These systems: compress air ... control than friction systems are less effective than hydraulic systems. Hydraulic control. These systems: use liquid (usually ...

  2. Systems Science Harder House

    E-print Network

    of managing complex social and technical systems. In mathematics, engineering, business administration, and the natural and social sciences, systems theorists continue to make important contributions to the growth, dynamical systems, game theory, information theory, neural networks, systems approach, system dynamics

  3. Preliminary Characterizations of Altair Lunar Lander Slosh Dynamics and Some Implications for TVC Design

    NASA Technical Reports Server (NTRS)

    Lee, Allan Y.; Strahan, Alan; Tanimoto, Rebekah; Casillas, Art

    2010-01-01

    During thrust maneuvers, the sloshing of fuel in partially filled tanks could interact with the controlled system in such a way as to cause the overall system to be unstable. This failure mode could be a result of poor coordination between systems engineers of Structures, Propulsion, GN&C, Mission Operations, and other subsystems. Attentions to the following is a minimum: Placements of fuel tanks, Tank shapes and baffle designs, Separation of TVC BW from slosh mode frequencies, Adequacy of excursion range of engine gimbal actuators in all engine burns, BW of sensors (e.g., gyroscopes) and actuators (e.g., engine gimbal), Structural frequencies of spacecraft and engine mounts, Prediction of S/C's c.m. location, canting of gimbal null axis, others. Check overall TVC performance via validated simulation test bed. Modeling fuel slosh during spacecraft thrusting maneuvers • Placement of fuel tanks to guarantee stable interactions between fuel slosh mode and the S/C rigid-body mode • Estimation of slosh frequencies (as a function of mission phases): – Estimation of slosh mode damping • Some implications for Thrust Vector Control design: – Selection of TVC controller bandwidth – Adequacy of the excursion range of engine gimbal actuator • TVC system design: Complex Interactions between GN&C, Propulsion, Structure, and Other Subsystems

  4. Elec 331 -Nervous System Nervous System

    E-print Network

    Pulfrey, David L.

    Elec 331 - Nervous System 1 Nervous System · Central Nervous System ­ Brain ­ Spinal Chord · Peripheral Nervous System ­ "Conductive" network between CNS & organs ­ Neurones · Individual cells · May act Flow of Information neurone #12;Elec 331 - Nervous System 2 Cell States · Resting Potential (Vc = -70m

  5. Systems Biology and Systems Medicine: Technology,

    E-print Network

    Systems Biology and Systems Medicine: Technology, Measurement and Validation Lee Hood Institute for Systems Biology, Seattle How Might One Think About Systems Biology? #12;Radio Waves Sound Waves #12;Immune Response Intra- and inter- cellular networks Development Physiology #12;Contemporary Systems Biology

  6. Artificial Immune Systems 209 Artificial Immune Systems

    E-print Network

    Timmis, Jon

    Artificial Immune Systems 209 Chapter XI Artificial Immune Systems: Using the Immune System, Idea Group Publishing. The immune system is highly distributed, highly adaptive, self encounters. From a computational view- point, the immune system has much to offer by way of inspiration

  7. Systems approach to space plasma systems

    Microsoft Academic Search

    Richard Boynton; Simon Walker

    2010-01-01

    The application of nonlinear system identification methodology was used to review complex space plasma systems. It is shown how the nonlinear system identification approach can lead to a comprehensive description of dynamical processes in developed space plasma turbulences. It is also explained how nonlinear system identification can access the analytical approach to complex dynamical systems such as the magnetosphere.

  8. Skeletal System

    NSDL National Science Digital Library

    VU Bioengineering RET Program,

    Through this unit, written for an honors anatomy and physiology class, students become familiar with the human skeletal system and answer the Challenge Question: When you get home from school, your mother grabs you, and you race to the hospital. Your grandmother fell and was rushed to the emergency room. The doctor tells your family your grandmother has a fractured hip, and she is referring her to an orthopedic specialist. The orthopedic doctor decides to perform a DEXA scan. The result show her BMD is -3.3. What would be a probable diagnosis to her condition? What are some possible causes of her condition? Should her daughter and granddaughter be worried about this condition, and if so, what are measures they could take to prevent this from happening to them?

  9. Bionanomechanical Systems

    NASA Astrophysics Data System (ADS)

    Schmidt, Jacob J.; Montemagno, Carlo D.

    2004-08-01

    Over the past two decades, advances in biophysical instrumentation have enabled the study of molecular motors at the single molecule level. These studies have inspired the creation of biological/inorganic systems powered by such motors in an attempt to exploit their unique sizes, speeds, functions, and energy utilization capabilities. We give a brief overview of the state-of-the-art of biological and synthetic molecular motors and discuss some initial efforts to exploit their function in engineered structures. We also briefly discuss the construction of devices powered by organized and coordinated arrays of millions of motors in which the growth of cardiac muscle tissue over a microfabricated silicon "skeleton" is directed and controlled.

  10. Systemic contact dermatitis Systemic contact dermatitis Systemic contact dermatitis Systemic contact dermatitis Systemic contact dermatitis

    Microsoft Academic Search

    A. K. Bajaj; A. Saraswat

    Systemic contact dermatitis (SCD), better termed systemically reactivated allergic contact dermatitis, is a type of contact hypersensitivity reaction in which ingestion or other systemic exposure to a contact allergen occurs in an already sensitized person. Although the initial sensitizing exposure is usually by topical application, re-exposure by the oral, intravenous or inhalation routes can cause SCD. Even percutaneous exposure through

  11. Systemic Risk in the International System

    E-print Network

    Ingo Piepers

    2009-10-15

    The risk of systemic war seems dependant on the level of criticality and sensitivity of the International System, and the system's conditions. The level of criticality and sensitivity is dependant on the developmental stage of the International System. Initially, following a systemic war, the increase of the level of criticality and sensitivity go hand in hand. However, at a certain stage the sensitivity of the International System for larger sized wars decreases; as a consequence of a network effect, we argue. This network effect results in increased local stability of the System. During this phase the criticality of the International System steadily increases, resulting in a release deficit. This release deficit facilitates a necessary build up of energy to push the International System, by means of systemic war, into a new stability domain. Systemic war is functional in the periodic rebalancing of an anarchistic international system.

  12. 4. System Definition 16 4. System Definition

    E-print Network

    Berlin,Technische Universität

    4. System Definition 16 _____________________________________________________________________________ 4. System Definition Based on our knowledge that we can "join" the dynamic characteristics-up, complete system. A general and simple example of substructuring is the source-transmission element

  13. Onsite Wastewater Treatment Systems: Spray Distribution System 

    E-print Network

    Lesikar, Bruce J.

    2008-10-23

    Spray distribution systems for wastewater are much like lawn sprinkler systems, in that they spray treated wastewater over the surface of a yard. This publication explains how spray distribution systems work, what their design requirements are...

  14. System safety education focused on system management

    NASA Technical Reports Server (NTRS)

    Grose, V. L.

    1971-01-01

    System safety is defined and characteristics of the system are outlined. Some of the principle characteristics include role of humans in hazard analysis, clear language for input and output, system interdependence, self containment, and parallel analysis of elements.

  15. Expanding Alternative Delivery Systems.

    ERIC Educational Resources Information Center

    Baltzer, Jan A.

    Alternative educational delivery systems that might be useful to community colleges are considered. The following categories of delivery systems are covered: broadcast delivery systems; copy delivery systems, print delivery systems, computer delivery systems, telephone delivery systems, and satellites. Among the applications for broadcast…

  16. Integrated Nanofluidic Systems for Systems Biotechnology

    E-print Network

    Fisher, Frank

    Integrated Nanofluidic Systems for Systems Biotechnology Wednesday October 28 2009 Burchard 118, 11 in prestigious journals including Science and Nature Biotechnology. Hong's research interests include Bio

  17. Xenon ion propulsion for orbit transfer

    NASA Technical Reports Server (NTRS)

    Rawlin, V. K.; Patterson, M. J.; Gruber, R. P.

    1990-01-01

    For more than 30 years, NASA has conducted an ion propulsion program which has resulted in several experimental space flight demonstrations and the development of many supporting technologies. Technologies appropriate for geosynchronous stationkeeping, earth-orbit transfer missions, and interplanetary missions are defined and evaluated. The status of critical ion propulsion system elements is reviewed. Electron bombardment ion thrusters for primary propulsion have evolved to operate on xenon in the 5 to 10 kW power range. Thruster efficiencies of 0.7 and specific impulse values of 4000 s were documented. The baseline thruster currently under development by NASA LeRC includes ring-cusp magnetic field plasma containment and dished two-grid ion optics. Based on past experience and demonstrated simplifications, power processors for these thrusters should have approximately 500 parts, a mass of 40 kg, and an efficiency near 0.94. Thrust vector control, via individual thruster gimbals, is a mature technology. High pressure, gaseous xenon propellant storage and control schemes, using flight qualified hardware, result in propellant tankage fractions between 0.1 and 0.2. In-space and ground integration testing has demonstrated that ion propulsion systems can be successfully integrated with their host spacecraft. Ion propulsion system technologies are mature and can significantly enhance and/or enable a variety of missions in the nation's space propulsion program.

  18. Review of V/STOL lift/cruise fan technology

    NASA Technical Reports Server (NTRS)

    Rolls, L. S.; Quigley, H. C.; Perkins, R. G., Jr.

    1976-01-01

    This paper presents an overview of supporting technology programs conducted to reduce the risk in the joint NASA/Navy Lift/Cruise Fan Research and Technology Aircraft Program. The aeronautical community has endeavored to combine the low-speed and lifting capabilities of the helicopter with the high-speed capabilities of the jet aircraft; recent developments have indicated a lift/cruise fan propulsion system may provide these desired characteristics. NASA and the Navy have formulated a program that will provide a research and technology aircraft to furnish viability of the lift/cruise fan aircraft through flight experiences and obtain data on designs for future naval and civil V/STOL aircraft. The supporting technology programs discussed include: (1) design studies for operational aircraft, a research and technology aircraft, and associated propulsion systems; (2) wind-tunnel tests of several configurations; (3) propulsion-system thrust vectoring tests; and (4) simulation. These supporting technology programs have indicated that a satisfactory research and technology aircraft program can be accomplished within the current level of technology.

  19. A high-fidelity, six-degree-of-freedom batch simulation environment for tactical guidance research and evaluation

    NASA Technical Reports Server (NTRS)

    Goodrich, Kenneth H.

    1993-01-01

    A batch air combat simulation environment, the tactical maneuvering simulator (TMS), is presented. The TMS is a tool for developing and evaluating tactical maneuvering logics, but it can also be used to evaluate the tactical implications of perturbations to aircraft performance or supporting systems. The TMS can simulate air combat between any number of engagement participants, with practical limits imposed by computer memory and processing power. Aircraft are modeled using equations of motion, control laws, aerodynamics, and propulsive characteristics equivalent to those used in high-fidelity piloted simulations. Data bases representative of a modern high-performance aircraft with and without thrust-vectoring capability are included. To simplify the task of developing and implementing maneuvering logics in the TMS, an outer-loop control system, the tactical autopilot (TA), is implemented in the aircraft simulation model. The TA converts guidance commands by computerized maneuvering logics from desired angle of attack and wind-axis bank-angle inputs to the inner loop control augmentation system of the aircraft. The capabilities and operation of the TMS and the TA are described.

  20. Interstage Flammability Analysis Approach

    NASA Technical Reports Server (NTRS)

    Little, Jeffrey K.; Eppard, William M.

    2011-01-01

    The Interstage of the Ares I launch platform houses several key components which are on standby during First Stage operation: the Reaction Control System (ReCS), the Upper Stage (US) Thrust Vector Control (TVC) and the J-2X with the Main Propulsion System (MPS) propellant feed system. Therefore potentially dangerous leaks of propellants could develop. The Interstage leaks analysis addresses the concerns of localized mixing of hydrogen and oxygen gases to produce deflagration zones in the Interstage of the Ares I launch vehicle during First Stage operation. This report details the approach taken to accomplish the analysis. Specified leakage profiles and actual flammability results are not presented due to proprietary and security restrictions. The interior volume formed by the Interstage walls, bounding interfaces with the Upper and First Stages, and surrounding the J2-X engine was modeled using Loci-CHEM to assess the potential for flammable gas mixtures to develop during First Stage operations. The transient analysis included a derived flammability indicator based on mixture ratios to maintain achievable simulation times. Validation of results was based on a comparison to Interstage pressure profiles outlined in prior NASA studies. The approach proved useful in the bounding of flammability risk in supporting program hazard reviews.

  1. A High-Fidelity Batch Simulation Environment for Integrated Batch and Piloted Air Combat Simulation Analysis

    NASA Technical Reports Server (NTRS)

    Goodrich, Kenneth H.; McManus, John W.; Chappell, Alan R.

    1992-01-01

    A batch air combat simulation environment known as the Tactical Maneuvering Simulator (TMS) is presented. The TMS serves as a tool for developing and evaluating tactical maneuvering logics. The environment can also be used to evaluate the tactical implications of perturbations to aircraft performance or supporting systems. The TMS is capable of simulating air combat between any number of engagement participants, with practical limits imposed by computer memory and processing power. Aircraft are modeled using equations of motion, control laws, aerodynamics and propulsive characteristics equivalent to those used in high-fidelity piloted simulation. Databases representative of a modern high-performance aircraft with and without thrust-vectoring capability are included. To simplify the task of developing and implementing maneuvering logics in the TMS, an outer-loop control system known as the Tactical Autopilot (TA) is implemented in the aircraft simulation model. The TA converts guidance commands issued by computerized maneuvering logics in the form of desired angle-of-attack and wind axis-bank angle into inputs to the inner-loop control augmentation system of the aircraft. This report describes the capabilities and operation of the TMS.

  2. Incinerator system

    SciTech Connect

    Rathmell, R.K.

    1986-10-07

    An incineration system is described which consists of: combustion chamber structure having an inlet, an outlet, and burner structure in the combustion chamber, heat exchanger structure defining a chamber, divider structure between the heat exchanger chamber and the combustion chamber, an array of tubes extending through the heat exchanger chamber to the inlet of the combustion chamber at the divider structure. The heat exchanger chamber has an inlet coupled to the outlet of the combustion chamber for flow of the combustion products discharged from the combustion chamber through the heat exchanger chamber over the tubes in heat exchange relation, and an outlet for discharge of products from the heat exchanger chamber, aspirator sleeve structure secured to the divider structure between the heat exchanger chamber and the combustion chamber. Each aspirator sleeve receives the outlet end of a heat exchanger tube in slip fit relation so that the heat exchanger tubes are free to thermally expand longitudinally within the aspirator sleeves, and means for flowing vapor through the heat exchanger tubes into the combustion chamber at sufficiently high velocity to produce a reduced pressure effect in the aspirator sleeves in the heat exchanger chamber to draw a minor fraction of combustion products through the aspirator sleeves into the combustion chamber for reincineration.

  3. Separation system

    DOEpatents

    Rubin, Leslie S. (Newton, MA)

    1986-01-01

    A separation system for dewatering radioactive waste materials includes a disposal container, drive structure for receiving the container, and means for releasably attaching the container to the drive structure. Separation structure disposed in the container adjacent the inner surface of the side wall structure retains solids while allowing passage of liquids. Inlet port structure in the container top wall is normally closed by first valve structure that is centrifugally actuated to open the inlet port and discharge port structure at the container periphery receives liquid that passes through the separation structure and is normally closed by second valve structure that is centrifugally actuated to open the discharge ports. The container also includes coupling structure for releasable engagement with the centrifugal drive structure. Centrifugal force produced when the container is driven in rotation by the drive structure opens the valve structures, and radioactive waste material introduced into the container through the open inlet port is dewatered, and the waste is compacted. The ports are automatically closed by the valves when the container drum is not subjected to centrifugal force such that containment effectiveness is enhanced and exposure of personnel to radioactive materials is minimized.

  4. Communication Systems Chair of Communication Systems

    E-print Network

    Schindelhauer, Christian

    1 | 27 Communication Systems 21st lecture Chair of Communication Systems Department of Applied NATed and proxied HTTP connection of a client? Communication Systems Q&A #12;3 | 27 3rd and last part of the communication systems lecture: digital telephony For a rather long time telephone and data networks were

  5. System design description cone penetrometer system

    SciTech Connect

    Seda, R.Y., Westinghouse Hanford

    1996-08-12

    The system design description documents in detail the design of the cone penetrometer system. The systems includes the cone penetrometer physical package, raman spectroscopy package and moisture sensor package. Information pertinent to the system design, development, fabrication and testing is provided.

  6. System Dynamics, Systems Thinking, and Soft OR

    Microsoft Academic Search

    Jay W. Forrester

    1992-01-01

    System dynamics, systems thinking, and soft operations research (soft OR) all aspire to understanding and improvement of systems. In all, the first step interprets the real world into a description used in following stages. In system dynamics, description leads to equations of a model, simulation to understand dynamic behavior, evaluation of alternative policies, education and choice of a better policy,

  7. Biometric System Security Systems and Computer Engineering

    E-print Network

    Adler, Andy

    Biometric System Security Andy Adler Systems and Computer Engineering Carleton University, Ottawa to confidentiality and integrity". Defining biometrics system security is difficult, because of the ways biometric systems differ from tradi- tional computer and cryptographic security [40]. Implicit in all definitions

  8. Communication Systems Chair of Communication Systems

    E-print Network

    Schindelhauer, Christian

    ;3 | 36 Communication Systems GSM interfaces and components #12;4 | 36 Communication Systems GSM (HLR) #12;5 | 36 Communication Systems GSM interfaces and components The several MSC (Operation and Maintenance Center) ­ Network Administration #12;6 | 36 Communication Systems GSM interfaces

  9. Logical Systems Incorporated The Help Systems

    E-print Network

    Mann, Tim

    Logical Systems Incorporated The Help Systems T A B L E O F C O N T E N T S Introduction ..................................... page 2 HELP/CMD ..................................... page 3 HELPRESx ................................... page 17 #12;LDOS Help System Page 1 The LDOS HELP Systems Introduction This documentation covers all

  10. System on Chip or System on Package?

    Microsoft Academic Search

    Rao R. Tummala; Vijay K. Madisetti

    1999-01-01

    The authors propose a new system design paradigm, the system on package, which uses electronic product reengineering to meet time-to-market and performance requirements. The system on package promises a higher return on investment than the system on chip

  11. Complex System Classification

    E-print Network

    Magee, Christopher

    2004-07-24

    The use of terms such as “Engineering Systems”, “System of systems” and others have been coming into greater use over the past decade to denote systems of importance but with implied higher complexity than for the term ...

  12. Mechanical systems: A compilation

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A compilation of several mechanized systems is presented. The articles are contained in three sections: robotics, industrial mechanical systems, including several on linear and rotary systems and lastly mechanical control systems, such as brakes and clutches.

  13. Immune System (For Parents)

    MedlinePLUS

    ... can lead to illness and infection. About the Immune System The immune system is the body's defense against ... that cause colds. Back Continue Problems of the Immune System Disorders of the immune system fall into four ...

  14. Immune System Involvement

    MedlinePLUS

    ... With Health Plans For Your Patients Donate The Immune System and Psoriasis In 1979, researchers coincidentally found that ... immune system is called immunology. How does the immune system affect psoriasis? A normal immune system protects the ...

  15. The V distributed system

    Microsoft Academic Search

    David R. Cheriton

    1988-01-01

    The V distributed System was developed at Stanford University as part of a research project to explore issues in distributed systems. Aspects of the design suggest important directions for the design of future operating systems and communication systems.

  16. Learning About Ares I from Monte Carlo Simulation

    NASA Technical Reports Server (NTRS)

    Hanson, John M.; Hall, Charlie E.

    2008-01-01

    This paper addresses Monte Carlo simulation analyses that are being conducted to understand the behavior of the Ares I launch vehicle, and to assist with its design. After describing the simulation and modeling of Ares I, the paper addresses the process used to determine what simulations are necessary, and the parameters that are varied in order to understand how the Ares I vehicle will behave in flight. Outputs of these simulations furnish a significant group of design customers with data needed for the development of Ares I and of the Orion spacecraft that will ride atop Ares I. After listing the customers, examples of many of the outputs are described. Products discussed in this paper include those that support structural loads analysis, aerothermal analysis, flight control design, failure/abort analysis, determination of flight performance reserve, examination of orbit insertion accuracy, determination of the Upper Stage impact footprint, analysis of stage separation, analysis of launch probability, analysis of first stage recovery, thrust vector control and reaction control system design, liftoff drift analysis, communications analysis, umbilical release, acoustics, and design of jettison systems.

  17. MEMS-based satellite micropropulsion via catalyzed hydrogen peroxide decomposition

    NASA Astrophysics Data System (ADS)

    Hitt, Darren L.; Zakrzwski, Charles M.; Thomas, Michael A.

    2001-12-01

    Microelectromechanical systems (MEMS) techniques offer great potential in satisfying the mission requirements for the next generation of miniaturized spacecraft being designed by NASA and Department of Defense agencies. More commonly referred to as `nanosats', these spacecraft feature masses in the range of 10-100 kg and therefore have unique propulsion requirements. The propulsion systems must be capable of providing extremely low levels of thrust and impulse while also satisfying stringent demands on size, mass, power consumption and cost. We begin with an overview of micropropulsion requirements and some current MEMS-based strategies being developed to meet these needs. The remainder of the paper focuses on the progress being made at NASA Goddard Space Flight Center toward the development of a prototype monopropellant MEMS thruster which uses the catalyzed chemical decomposition of high-concentration hydrogen peroxide as a propulsion mechanism. The products of decomposition are delivered to a microscale converging/diverging supersonic nozzle, which produces the thrust vector; the targeted thrust level is approximately 500 µN with a specific impulse of 140-180 s. Macroscale hydrogen peroxide thrusters have been used for satellite propulsion for decades; however, the implementation of traditional thruster designs on the MEMS scale has uncovered new challenges in fabrication, materials compatibility, and combustion and hydrodynamic modeling. A summary of the achievements of the project to date is given, as is a discussion of remaining challenges and future prospects.

  18. Space shuttle development Motor No. 9 (DM-9), volume 1

    NASA Technical Reports Server (NTRS)

    Garecht, Diane M.

    1990-01-01

    The results obtained during the December 23, 1987 static firing of the DM-9 test article are presented. The DM-9 full-scale static test article employed redesigned solid rocket motor (RSRM) field joint capture feature hardware with J-seal insulation configuration, and nozzle-to-case joint radial bolt design with bonded insulation configuration. The nozzle incorporated RSRM components, including a thicker cowl with involuted outer boot ring. The nozzle employed redundant and verifiable seals in all five joints, and room temperature vulcanization backfill in three joints. With very few exceptions, the DM-9 test article was flight configuration. The test was conducted under extreme weather conditions: temperature of 25 F and wind at 15 to 20 mph. Ballistics performance values were within specification requirements. The RSRM field joint (J-seal) insulation configuration functioned as predicted with no indication of hot gases reaching the capture feature O-rings. There was a blowhole in the polysulfide adhesive in the nozzle-to-case joint, but no evidence of hot gases past the wiper O-ring. Nozzle design changes appeared to perform nominally, with the exception of the outer boot ring, which suffered partial structural breakup late in the test. Field joint heaters maintained the controlling resistance temperature device temperature within the specified requirements during heater operation. The thrust vector control system operated properly. The redesigned water deluge system, temperature conditioning equipment, and other test support equipment performed as planned.

  19. Experience with Ada on the F-18 High Alpha Research Vehicle flight test program

    NASA Technical Reports Server (NTRS)

    Regenie, Victoria A.; Earls, Michael; Le, Jeanette; Thomson, Michael

    1994-01-01

    Considerable experience has been acquired with Ada at the NASA Dryden Flight Research Facility during the on-going High Alpha Technology Program. In this program, an F-18 aircraft has been highly modified by the addition of thrust-vectoring vanes to the airframe. In addition, substantial alteration was made in the original quadruplex flight control system. The result is the High Alpha Research Vehicle. An additional research flight control computer was incorporated in each of the four channels. Software for the research flight control computer was written Ada. To date, six releases of this software have been flown. This paper provides a detailed description of the modifications to the research flight control system. Efficient ground-testing of the software was accomplished by using simulations that used the Ada for portions of their software. These simulations are also described. Modifying and transferring the Ada flight software to the software simulation configuration has allowed evaluation of this language. This paper also discusses such significant issues in using Ada as portability, modifiability, and testability as well as documentation requirements.

  20. Orbital station-keeping for multiple spacecraft interferometry

    NASA Technical Reports Server (NTRS)

    Decou, Anthony B.

    1991-01-01

    This paper presents a three-satellite station-keeping strategy that is applicable to very long (1-100 km) baseline optical interferometry in space using the 'free-flyer' approach. The relative positions of the satellites in an arbitrarily oriented inertial coordinate system are described parametrically, and the continuous thrust vectors required to follow the paths are derived. The paths, which are constrained to be in the U-V plane of an astronomical source (a plane perpendicular to the direction of the source), are always chosen to maximize the use of gravity gradient forces and minimize the use of thrusting which can easily be provided by ion thrusters. Two different thrust programs are presented. One allows the interferometer to take data over an elliptic-shaped area of the U-V plane of arbitrary size for astronomical sources in any direction except close to the orbit plane of the system. The second thrust program reorients the U-V plane from one arbitrary source direction to another.