Sample records for tibial external rotation

  1. Does lateral versus medial exposure influence total knee tibial component final external rotation? A CT based study.

    PubMed

    Passeron, D; Gaudot, F; Boisrenoult, P; Fallet, L; Beaufils, P

    2009-10-01

    A previous study demonstrated that performing a total knee arthroplasty through a lateral approach including anterior tibial tuberosity (ATT) osteotomy (refixed in its original position) presented numerous advantages: correcting the preoperative patella lateral tilt and improving postoperative patella tracking. We hypothesized that these improvements in patella centering were, at least in part, due to an increased external rotation of the tibial component. Postoperative scannographic studies were, therefore, undertaken to measure tibial component rotation and analyze the results according the medial and lateral exposure used. Rotational positioning of the tibial component is influenced by the lateral or medial approach selected at surgery. Forty-five CAT scans, performed according to the protocol criteria of the French Hip and Knee Society (SFHG), were studied 3 months postoperatively: 15 knees operated through the lateral approach and 30 knees operated through a standard medial approach. The total knee utilized in all these cases was a posteriorly stabilized, fixed-bearing, design. We measured first the angle formed between the perpendicular to the transverse axis of the tibial component and the axis joining the ATT to the center of the knee; second we also measured the coronal distance between the center of the component and the anterior tibial tuberosity (ATT). In the group using the medial approach, the lateral position of the ATT was 7 + or - 3mm with a rotation angle of 18 degrees . In the group using the lateral approach these measurements were respectively 1 + or - 4mm and 2 degrees (p<0.0001). External rotation of the tibial component is substantially increased by the lateral approach compared to the medial approach. Better exposure of the lateral tibial plateau is probably responsible of this difference. This increased external rotation improves postoperative patella tracking. Prospective; comparative; non-randomized study; level 3. 2009 Elsevier Masson

  2. Gender differences in passive knee biomechanical properties in tibial rotation.

    PubMed

    Park, Hyung-Soon; Wilson, Nicole A; Zhang, Li-Qun

    2008-07-01

    The anterior cruciate ligament (ACL) is the most commonly injured knee ligament with the highest incidence of injury in female athletes who participate in pivoting sports. Noncontact ACL injuries commonly occur with both internal and external tibial rotation. ACL impingement against the lateral wall of the intercondylar notch during tibial external rotation and abduction has been proposed as an injury mechanism, but few studies have evaluated in vivo gender-specific differences in laxity and stiffness in external and internal tibial rotations. The purpose of this study was to evaluate these differences. The knees of 10 male and 10 female healthy subjects were rotated between internal and external tibial rotation with the knee at 60 degrees of flexion. Joint laxity, stiffness, and energy loss were compared between male and female subjects. Women had higher laxity (p = 0.01), lower stiffness (p = 0.038), and higher energy loss (p = 0.008) in external tibial rotation than did men. The results suggest that women may be at greater risk of ACL injury resulting from impingement against the lateral wall of the intercondylar notch, which has been shown to be associated with external tibial rotation and abduction.

  3. Does Maximal External Tibial Component Rotation Influence Tibiofemoral Load Distribution in the Primary Knee Arthroplasty Setting: A Comparison of Neutral vs Maximal Anatomical External Rotatory States.

    PubMed

    Manning, William A; Ghosh, Kanishka M; Blain, Alasdair P; Longstaff, Lee M; Rushton, Steven P; Deehan, David J

    2017-06-01

    Tibial component rotation at time of knee arthroplasty can influence conformity, load transmission across the polyethylene surface, and perhaps ultimately determined survivorship. Optimal tibial component rotation on the cut surface is reliant on standard per operative manual stressing. This subjective assessment aims to balance constraint and stability of the articulation through a full arc of movement. Using a cadaveric model, computer navigation and under defined, previously validated loaded conditions mimicking the in vivo setting, the influence of maximal tibial component external rotation compared with the neutral state was examined for changes in laxity and tibiofemoral continuous load using 3D displacement measurement and an orthosensor continuous load sensor implanted within the polyethylene spacer in a simulated single radius total knee arthroplasty. No significant difference was found throughout arc of motion (0-115 degrees of flexion) for maximal varus and/or valgus or rotatory laxity between the 2 states. The neutral state achieved equivalence for mediolateral load distribution at each point of flexion. We have found that external rotation of the tibial component increased medial compartment load in comparison with the neutral position. Compared with the neutral state, external rotation consistently effected a marginal, but not significant reduction in lateral load under similar loading conditions. The effects were most pronounced in midflexion. On the basis of these findings, we would advocate for the midtibial tubercle point to determine tibial component rotation and caution against component external rotation. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Ideal tibial intramedullary nail insertion point varies with tibial rotation.

    PubMed

    Walker, Richard M; Zdero, Rad; McKee, Michael D; Waddell, James P; Schemitsch, Emil H

    2011-12-01

    The aim of the study was to investigate how superior entry point varies with tibial rotation and to identify landmarks that can be used to identify suitable radiographs for successful intramedullary nail insertion. The proximal tibia and knee were imaged for 12 cadaveric limbs undergoing 5° increments of internal and external rotation. Medial and lateral arthrotomies were performed, the ideal superior entry point was identified, and a 2-mm Kirschner wire inserted. A second Kirschner wire was sequentially placed at the 5-mm and then the 10-mm position, both medial and lateral to the initial Kirschner wire. Radiographs of the knee were obtained for all increments. The changing position of the ideal nail insertion point was recorded. A 30° arc (range, 25°-40°) provided a suitable anteroposterior radiograph. On the neutral anteroposterior radiograph, the Kirschner wire was 54% ± 1.5% (range, 51-56%) from the medial edge of the tibial plateau. For every 5° of rotation, the Kirschner wire moved 3% of the plateau width. During external rotation, a misleading medial entry point was obtained. A fibular bisector line correlated with an entry point that was ideal or up to 5 mm lateral to this but never medial. The film that best showed the fibular bisector line was between 0° and 10° of internal rotation of the tibia. The fibula head bisector line can be used to avoid choosing external rotation views and, thus, avoid medial insertion points. The current results may help the surgeon prevent malalignment during intramedullary nailing in proximal tibial fractures.

  5. Isokinetic evaluation of internal/external tibial rotation strength after the use of hamstring tendons for anterior cruciate ligament reconstruction.

    PubMed

    Armour, Tanya; Forwell, Lorie; Litchfield, Robert; Kirkley, Alexandra; Amendola, Ned; Fowler, Peter J

    2004-01-01

    Evaluation of the knee after an anterior cruciate ligament reconstruction with the use of the semitendinosus and gracilis (hamstring) autografts has primarily focused on flexion and extension strength. The semitendinosus and gracilis muscles contribute to internal tibial rotation, and it has been suggested that harvest of these tendons for the purpose of an anterior cruciate ligament reconstruction contributes to internal tibial rotation weakness. Internal tibial rotation strength may be affected by the semitendinosus and gracilis harvest after anterior cruciate ligament reconstruction. Prospective evaluation of internal and external tibial rotation strength. Inclusion criteria for subjects (N = 30): unilateral anterior cruciate ligament reconstruction at least 2 years previously, a stable anterior cruciate ligament (<5-mm side-to-side difference) at time of testing confirmed by surgeon and KT-1000 arthrometer, no history of knee problems after initial knee reconstruction, a normal contralateral knee, and the ability to comply with the testing protocol. In an attempt to minimize unwanted subtalar joint motion, subjects were immobilized using an ankle brace and tested at angular velocities of 60 degrees /s, 120 degrees /s, and 180 degrees /s at a knee flexion angle of 90 degrees . The mean peak torque measurements for internal rotation strength of the operative limb (60 degrees /s, 17.4 +/- 4.5 ft-lb; 120 degrees /s, 13.9 +/- 3.3 ft-lb; 180 degrees /s, 11.6 +/- 3.0 ft-lb) were statistically different compared to the nonoperated limb (60 degrees /s, 20.5 +/- 4.7 ft-lb; 120 degrees /s, 15.9 +/- 3.8 ft-lb; 180 degrees /s, 13.4 +/- 3.8 ft-lb) at 60 degrees /s (P = .012), 120 degrees /s (P = .036), and 180 degrees /s (P = .045). The nonoperative limb demonstrated greater strength at all speeds. The mean torque measurements for external rotation were statistically similar when compared to the nonoperated limb at all angular velocities. We have shown through our study that

  6. Prediction of Tibial Rotation Pathologies Using Particle Swarm Optimization and K-Means Algorithms.

    PubMed

    Sari, Murat; Tuna, Can; Akogul, Serkan

    2018-03-28

    The aim of this article is to investigate pathological subjects from a population through different physical factors. To achieve this, particle swarm optimization (PSO) and K-means (KM) clustering algorithms have been combined (PSO-KM). Datasets provided by the literature were divided into three clusters based on age and weight parameters and each one of right tibial external rotation (RTER), right tibial internal rotation (RTIR), left tibial external rotation (LTER), and left tibial internal rotation (LTIR) values were divided into three types as Type 1, Type 2 and Type 3 (Type 2 is non-pathological (normal) and the other two types are pathological (abnormal)), respectively. The rotation values of every subject in any cluster were noted. Then the algorithm was run and the produced values were also considered. The values of the produced algorithm, the PSO-KM, have been compared with the real values. The hybrid PSO-KM algorithm has been very successful on the optimal clustering of the tibial rotation types through the physical criteria. In this investigation, Type 2 (pathological subjects) is of especially high predictability and the PSO-KM algorithm has been very successful as an operation system for clustering and optimizing the tibial motion data assessments. These research findings are expected to be very useful for health providers, such as physiotherapists, orthopedists, and so on, in which this consequence may help clinicians to appropriately designing proper treatment schedules for patients.

  7. Assessment of tibial rotation and meniscal movement using kinematic magnetic resonance imaging

    PubMed Central

    2014-01-01

    Objective This work aimed to assess tibial rotations, meniscal movements, and morphological changes during knee flexion and extension using kinematic magnetic resonance imaging (MRI). Methods Thirty volunteers with healthy knees were examined using kinematic MRI. The knees were imaged in the transverse plane with flexion and extension angles from 0° to 40° and 40° to 0°, respectively. The tibial interior and exterior rotation angles were measured, and the meniscal movement range, height change, and side movements were detected. Results The tibia rotated internally (11.55° ± 3.20°) during knee flexion and rotated externally (11.40° ± 3.0°) during knee extension. No significant differences were observed between the internal and external tibial rotation angles (P > 0.05), between males and females (P > 0.05), or between the left and right knee joints (P > 0.05). The tibial rotation angle with a flexion angle of 0° to 24° differed significantly from that with a flexion angle of 24° to 40° (P < 0.01). With knee flexion, the medial and lateral menisci moved backward and the height of the meniscus increased. The movement range was greater in the anterior horn than in the posterior horn and greater in the lateral meniscus than in the medial meniscus (P < 0.01). During backward movements of the menisci, the distance between the anterior and posterior horns decreased, with the decrease more apparent in the lateral meniscus (P < 0.01). The side movements of the medial and lateral menisci were not obvious, and a smaller movement range was found than that of the forward and backward movements. Conclusion Knee flexion and extension facilitated internal and external tibial rotations, which may be related to the ligament and joint capsule structure and femoral condyle geometry. PMID:25142267

  8. Effect of ACL Transection on Internal Tibial Rotation in an in Vitro Simulated Pivot Landing

    PubMed Central

    Oh, Youkeun K.; Kreinbrink, Jennifer L.; Ashton-Miller, James A.; Wojtys, Edward M.

    2011-01-01

    Background: The amount of resistance provided by the ACL (anterior cruciate ligament) to axial tibial rotation remains controversial. The goal of this study was to test the primary hypotheses that ACL transection would not significantly affect tibial rotation under the large impulsive loads associated with a simulated pivot landing but would increase anterior tibial translation. Methods: Twelve cadaveric knees (mean age of donors [and standard deviation] at the time of death, 65.0 ± 10.5 years) were mounted in a custom testing apparatus to simulate a single-leg pivot landing. A compound impulsive load was applied to the distal part of the tibia with compression (∼800 N), flexion moment (∼40 N-m), and axial tibial torque (∼17 N-m) in the presence of five trans-knee muscle forces. A differential variable reluctance transducer mounted on the anteromedial aspect of the ACL measured relative strain. With the knee initially in 15° of flexion, and after five combined compression and flexion moment (baseline) loading trials, six trials were conducted with the addition of either internal or external tibial torque (internal or external loading), and then six baseline trials were performed. The ACL was then sectioned, six baseline trials were repeated, and then six trials of either the internal or the external loading condition, whichever had initially resulted in the larger relative ACL strain, were carried out. Tibiofemoral kinematics were measured optoelectronically. The results were analyzed with a nonparametric Wilcoxon signed-rank test. Results: Following ACL transection, the increase in the normalized internal tibial rotation was significant but small (0.7°/N-m ± 0.3°/N-m to 0.8°/N-m ± 0.3°/N-m, p = 0.012), while anterior tibial translation increased significantly (3.8 ± 2.9 to 7.0 ± 2.9 mm, p = 0.017). Conclusions: ACL transection leads to a small increase in internal tibial rotation, equivalent to a 13% decrease in the dynamic rotational resistance

  9. The influence of applied internal and external rotation on the pivot shift phenomenon.

    PubMed

    Kopf, Sebastian; Musahl, Volker; Perka, Carsten; Kauert, Ralf; Hoburg, Arnd; Becker, Roland

    2017-04-01

    The pivot shift test is performed in different techniques and the rotation of the tibia seems to have a significant impact on the amount of the pivot shift phenomenon. It has been hypothesised that external rotation will increase the phenomenon due to less tension at the iliotibial band in knee extension. Twenty-four patients with unilateral anterior cruciate ligament insufficiency were included prospectively. The pivot shift test was performed bilaterally in internal and external tibial rotation under general anaesthesia. Knee motion was captured using a femoral and a tibial inertial sensor. The difference between positive and negative peak values in Euclidean norm of acceleration was calculated to evaluate the amount of the pivot shift phenomenon. The pivot shift phenomenon was significantly increased in patients with ACL insufficiency when the test was performed in external [mean 5.2 ms - 2 (95% CI 4.3-6.0)] compared to internal tibial rotation [mean 4.4 ms - 2 (95% CI 3.5-5.4)] (p = 0.002). In healthy, contralateral knees did not show any difference between external [mean 4.0 ms - 2 (95% CI 3.3-4.7)] and internal tibial rotation [mean 4.0 ms - 2 (95% CI 3.4-4.6)] (ns). The pivot shift phenomenon was increased with external rotation in ACL-insufficient knees, and therefore, one should perform the pivot shift test, rather, in external rotation to easily evoke the, sometimes difficult to detect, pivot shift phenomenon. I (diagnostic study).

  10. External fixation using locking plate in distal tibial fracture: a finite element analysis.

    PubMed

    Zhang, Jingwei; Ebraheim, Nabil; Li, Ming; He, Xianfeng; Schwind, Joshua; Liu, Jiayong; Zhu, Limei

    2015-08-01

    External fixation of tibial fractures using a locking plate has been reported with favorable results in some selected patients. However, the stability of external plate fixation in this fracture pattern has not been previously demonstrated. We investigated the stability of external plate fixation with different plate-bone distances. In this study, the computational processing model of external fixation of a distal tibial metaphyseal fracture utilizing the contralateral femoral less invasive stabilization system plate was analyzed. The plate was placed on the anteromedial aspect of tibia with different plate-bone distances: 1, 10, 20, and 30 mm. Under axial load, the stiffness of construct in all groups was higher than intact tibia. Under axial load with an internal rotational force, the stiffness of construct with 1 and 10 mm plate-bone distances was similar to that of an intact tibia and the stiffness of the construct with 20 and 30 mm distances was lower than that of an intact tibia. Under axial load with an external rotational force, the stiffness of the construct in all groups was lower than that of an intact tibia. The maximum plate stresses were concentrated at the two most distal screws and were highest in the construct with the 10 mm plate-bone distance, and least in the construct with a 1 mm plate-bone distance. To guarantee a stable external plate fixation in distal tibial fracture, the plate-bone distance should be less than 30 mm.

  11. Maximizing tibial coverage is detrimental to proper rotational alignment.

    PubMed

    Martin, Stacey; Saurez, Alex; Ismaily, Sabir; Ashfaq, Kashif; Noble, Philip; Incavo, Stephen J

    2014-01-01

    Traditionally, the placement of the tibial component in total knee arthroplasty (TKA) has focused on maximizing coverage of the tibial surface. However, the degree to which maximal coverage affects correct rotational placement of symmetric and asymmetric tibial components has not been well defined and might represent an implant design issue worthy of further inquiry. Using four commercially available tibial components (two symmetric, two asymmetric), we sought to determine (1) the overall amount of malrotation that would occur if components were placed for maximal tibial coverage; and (2) whether the asymmetric designs would result in less malrotation than the symmetric designs when placed for maximal coverage in a computer model using CT reconstructions. CT reconstructions of 30 tibial specimens were used to generate three-dimensional tibia reconstructions with attention to the tibial anatomic axis, the tibial tubercle, and the resected tibial surface. Using strict criteria, four commercially available tibial designs (two symmetric, two asymmetric) were placed on the resected tibial surface. The resulting component rotation was examined. Among all four designs, 70% of all tibial components placed in orientation maximizing fit to resection surface were internally malrotated (average 9°). The asymmetric designs had fewer cases of malrotation (28% and 52% for the two asymmetric designs, 100% and 96% for the two symmetric designs; p < 0.001) and less malrotation on average (2° and 5° for the asymmetric designs, 14° for both symmetric designs; p < 0.001). Maximizing tibial coverage resulted in implant malrotation in a large percentage of cases. Given similar amounts of tibial coverage, correct rotational positioning was more likely to occur with the asymmetric designs. Malrotation of components is an important cause of failure in TKA. Priority should be given to correct tibial rotational positioning. This study suggested that it is easier to balance rotation and

  12. Anatomic tibial component design can increase tibial coverage and rotational alignment accuracy: a comparison of six contemporary designs.

    PubMed

    Dai, Yifei; Scuderi, Giles R; Bischoff, Jeffrey E; Bertin, Kim; Tarabichi, Samih; Rajgopal, Ashok

    2014-12-01

    The aim of this study was to comprehensively evaluate contemporary tibial component designs against global tibial anatomy. We hypothesized that anatomically designed tibial components offer increased morphological fit to the resected proximal tibia with increased alignment accuracy compared to symmetric and asymmetric designs. Using a multi-ethnic bone dataset, six contemporary tibial component designs were investigated, including anatomic, asymmetric, and symmetric design types. Investigations included (1) measurement of component conformity to the resected tibia using a comprehensive set of size and shape metrics; (2) assessment of component coverage on the resected tibia while ensuring clinically acceptable levels of rotation and overhang; and (3) evaluation of the incidence and severity of component downsizing due to adherence to rotational alignment and overhang requirements, and the associated compromise in tibial coverage. Differences in coverage were statistically compared across designs and ethnicities, as well as between placements with or without enforcement of proper rotational alignment. Compared to non-anatomic designs investigated, the anatomic design exhibited better conformity to resected tibial morphology in size and shape, higher tibial coverage (92% compared to 85-87%), more cortical support (posteromedial region), lower incidence of downsizing (3% compared to 39-60%), and less compromise of tibial coverage (0.5% compared to 4-6%) when enforcing proper rotational alignment. The anatomic design demonstrated meaningful increase in tibial coverage with accurate rotational alignment compared to symmetric and asymmetric designs, suggesting its potential for less intra-operative compromises and improved performance. III.

  13. The use of a robotic tibial rotation device and an electromagnetic tracking system to accurately reproduce the clinical dial test.

    PubMed

    Stinton, S K; Siebold, R; Freedberg, H; Jacobs, C; Branch, T P

    2016-03-01

    The purpose of this study was to: (1) determine whether a robotic tibial rotation device and an electromagnetic tracking system could accurately reproduce the clinical dial test at 30° of knee flexion; (2) compare rotation data captured at the footplates of the robotic device to tibial rotation data measured using an electromagnetic sensor on the proximal tibia. Thirty-two unilateral ACL-reconstructed patients were examined using a robotic tibial rotation device that mimicked the dial test. The data reported in this study is only from the healthy legs of these patients. Torque was applied through footplates and was measured using servomotors. Lower leg motion was measured at the foot using the motors. Tibial motion was also measured through an electromagnetic tracking system and a sensor on the proximal tibia. Load-deformation curves representing rotational motion of the foot and tibia were compared using Pearson's correlation coefficients. Off-axis motions including medial-lateral translation and anterior-posterior translation were also measured using the electromagnetic system. The robotic device and electromagnetic system were able to provide axial rotation data and translational data for the tibia during the dial test. Motion measured at the foot was not correlated to motion of the tibial tubercle in internal rotation or in external rotation. The position of the tibial tubercle was 26.9° ± 11.6° more internally rotated than the foot at torque 0 Nm. Medial-lateral translation and anterior-posterior translation were combined to show the path of the tubercle in the coronal plane during tibial rotation. The information captured during a manual dial test includes both rotation of the tibia and proximal tibia translation. All of this information can be captured using a robotic tibial axial rotation device with an electromagnetic tracking system. The pathway of the tibial tubercle during tibial axial rotation can provide additional information about knee

  14. Tibial rotation under combined in vivo loading after single- and double-bundle anterior cruciate ligament reconstruction.

    PubMed

    Tsarouhas, Alexander; Iosifidis, Michael; Spyropoulos, Giannis; Kotzamitelos, Dimitrios; Tsatalas, Themistoklis; Giakas, Giannis

    2011-12-01

    To evaluate in vivo the differences in tibial rotation between single- and double-bundle anterior cruciate ligament (ACL)-reconstructed knees under combined loading conditions. An 8-camera optoelectronic system and a force plate were used to collect kinematic and kinetic data from 14 patients with double-bundle ACL reconstruction, 14 patients with single-bundle reconstruction, 12 ACL-deficient subjects, and 12 healthy control individuals while performing 2 tasks. The first included walking, 60° pivoting, and stair ascending, and the second included stair descending, 60° pivoting, and walking. The 2 variables evaluated were the maximum range of internal-external tibial rotation and the maximum knee rotational moment. Tibial rotation angles were not significantly different across the 4 groups (P = .331 and P = .851, respectively) or when side-to-side differences were compared within groups (P = .216 and P = .371, respectively) for the ascending and descending maneuvers, nor were rotational moments among the 4 groups (P = .418 and P = .290, respectively). Similarly, for the descending maneuver, the rotational moments were not significantly different between sides (P = .192). However, for the ascending maneuver, rotational moments of the affected sides were significantly lower by 20.5% and 18.7% compared with their intact counterparts in the single-bundle (P = .015) and double-bundle (P = .05) groups, respectively. High-intensity activities combining stair ascending or descending with pivoting produce similar tibial rotation in single- and double-bundle ACL-reconstructed patients. During such maneuvers, the reconstructed knee may be subjected to significantly lower rotational loads compared with the intact knee. Level III, retrospective comparative study. Copyright © 2011 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  15. External fixation of tibial pilon fractures and fracture healing.

    PubMed

    Ristiniemi, Jukka

    2007-06-01

    Distal tibial fractures are rare and difficult to treat because the bones are subcutaneous. External fixation is commonly used, but the method often results in delayed union. The aim of the present study was to find out the factors that affect fracture union in tibial pilon fractures. For this purpose, prospective data collection of tibial pilon fractures was carried out in 1998-2004, resulting in 159 fractures, of which 83 were treated with external fixation. Additionally, 23 open tibial fractures with significant > 3 cm bone defect that were treated with a staged method in 2000-2004 were retrospectively evaluated. The specific questions to be answered were: What are the risk factors for delayed union associated with two-ring hybrid external fixation? Does human recombinant BMP-7 accelerate healing? What is the role of temporary ankle-spanning external fixation? What is the healing potential of distal tibial bone loss treated with a staged method using antibiotic beads and subsequent autogenous cancellous grafting compared to other locations of the tibia? The following risk factors for delayed healing after external fixation were identified: post-reduction fracture gap of >3 mm and fixation of the associated fibula fracture. Fracture displacement could be better controlled with initial temporary external fixation than with early definitive fixation, but it had no significant effect on healing time, functional outcome or complication rate. Osteoinduction with rhBMP-7 was found to accelerate fracture healing and to shorten the sick leave. A staged method using antibiotic beads and subsequent autogenous cancellous grafting proved to be effective in the treatment of tibial bone loss. Healing potential of the bone loss in distal tibia was at least equally good as in other locations of the tibia.

  16. Influence of Component Rotation in Total Knee Arthroplasty on Tibiofemoral Kinematics-A Cadaveric Investigation.

    PubMed

    Maderbacher, Guenther; Keshmiri, Armin; Springorum, Hans R; Maderbacher, Hermann; Grifka, Joachim; Baier, Clemens

    2017-09-01

    Physiological tibiofemoral kinematics have been shown to be important for good knee function after total knee arthroplasty (TKA). The purpose of the present study was to investigate the influence of component rotation on tibiofemoral kinematics during knee flexion. We asked which axial component alignment best reconstructs physiological tibiofemoral kinematics and which combinations should be avoided. Ten healthy cadaveric knees were examined. By means of a navigational device, tibiofemoral kinematics between 0° and 90° of flexion were assessed before and after TKA using the following different rotational component alignment: femoral components: ligament balanced, 6° internal, 3° external rotation, and 6° external rotation in relation to the posterior condylar line; tibial components: self-adapted, 6° internal rotation, and 6° external rotation. Physiological tibiofemoral kinematics could be partly reconstructed by TKA. Ligament-balanced femoral rotation and 6° femoral external rotation both in combination with 6° tibial component external rotation, and 3° femoral external rotation in combination with 6° tibial component internal rotation or self-aligning tibial component were able to restore tibial longitudinal rotation. Largest kinematical differences were found for the combination femoral component internal and tibial component external rotations. From a kinematic-based view, surgeons should avoid internal rotation of femoral components. However, even often recommended combinations of rotational component alignment (3° femoral external and tibial external rotation) significantly change tibiofemoral kinematics. Self-aligning tibial components solely restored tibiofemoral kinematics with the combination of 3° femoral component of external rotation. For the future, navigational devices might help to axially align components to restore patient-specific and natural tibiofemoral kinematics. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Knee braces can decrease tibial rotation during pivoting that occurs in high demanding activities.

    PubMed

    Giotis, Dimitrios; Tsiaras, Vasilios; Ristanis, Stavros; Zampeli, Franceska; Mitsionis, Grigoris; Stergiou, Nicholas; Georgoulis, Anastasios D

    2011-08-01

    The purpose of this study was to investigate whether knee braces could effectively decrease tibial rotation during high demanding activities. Using an in vivo three-dimensional kinematic analysis, 21 physically active, healthy, male subjects were evaluated. Each subject performed two tasks that were used extensively in the literature because they combine increased rotational and translational loads on the knee, (1) descending from a stair and subsequent pivoting and (2) landing from a platform and subsequent pivoting under three conditions: (A) wearing a prophylactic brace (braced), (B) wearing a patellofemoral brace (sleeved), and (C) unbraced condition. In the first task, tibial rotation during the pivoting phase was significantly decreased in the braced condition as compared to the sleeved condition (P = 0.019) and the non-braced condition (P = 0.002). In the second task, the same variable was significantly decreased in the braced condition as compared to the sleeved (P = 0.001) and the unbraced condition (P < 0.001). The sleeved condition also produced significantly decreased tibial rotation with respect to the unbraced condition (P = 0.021). Bracing decreased tibial rotation in activities where increased translational and rotational forces were applied. Because knee braces decreased tibial rotation, they can possibly be used with ACL-reconstructed and ACL-deficient patients to prevent such problems. Case-control study, Level III.

  18. Effect of tibial positioning on the diagnosis of posterolateral rotatory instability in the posterior cruciate ligament-deficient knee.

    PubMed

    Strauss, Eric J; Ishak, Charbel; Inzerillo, Christopher; Walsh, Michael; Yildirim, Gokce; Walker, Peter; Jazrawi, Laith; Rosen, Jeffrey

    2007-08-01

    To determine whether positioning of the tibia affects the degree of tibial external rotation seen during a dial test in the posterior cruciate ligament (PCL)-posterolateral corner (PLC)-deficient knee. Laboratory investigation. Biomechanics laboratory. An anterior force applied to the tibia in the combined PCL-PLC-deficient knee will yield increased tibial external rotation during a dial test. The degree of tibial external rotation was measured with 5 Nm of external rotation torque applied to the tibia at both 30 degrees and 90 degrees of knee flexion. Before the torque was applied, an anterior force, a posterior force, or neutral (normal, reduced control) force was applied to the tibia. External rotation measurements were repeated after sequential sectioning of the PCL, the posterolateral structures and the fibular collateral ligament (FCL). Baseline testing of the intact specimens demonstrated a mean external rotation of 18.6 degrees with the knee flexed to 30 degrees (range 16.1-21.0 degrees ), and a mean external rotation of 17.3 degrees with the knee flexed to 90 degrees (range 13.8-20.0 degrees ). Sequential sectioning of the PCL, popliteus and popliteofibular ligament, and the FCL led to a significant increase in tibial external rotation compared with the intact knee for all testing scenarios. After sectioning of the popliteus and popliteofibular ligament, the application of an anterior force during testing led to a mean tibial external rotation that was 5 degrees greater than during testing in the neutral position and 7.5 degrees greater than during testing with a posterior force. In the PCL, popliteus/popliteofibular ligament and FCL-deficient knee, external rotation was 9 degrees and 12 degrees greater with the application of an anterior force during testing compared with neutral positioning and the application of a posterior force, respectively. An anterior force applied to the tibia during the dial test in a combined PCL-PLC-injured knee increased the

  19. Landing strategies focusing on the control of tibial rotation in the initial contact period of one-leg forward hops.

    PubMed

    Chen, W-L; Chen, Y-T; Huang, S-Y; Yang, C-Y; Wu, C-D; Chang, C-W

    2017-08-01

    Anterior cruciate ligament (ACL) reconstruction (ACLR) surgeries successfully restore anterior tibial translation but not tibial rotation. This study aimed to explore landing strategies focusing on the control of tibial rotation at landing when the ACL is most vulnerable. Three groups of male subjects (50 ACLRs, 26 basketball players, and 31 controls) participated in one-leg forward hop tests for determining the tibial rotatory landing strategies adopted during the initial landing phase. The differences in knee kinematics and muscle activities between internal and external tibial rotatory (ITR, ETR) landing strategies were examined. A higher proportion of basketball players (34.6%) were found to adopt ITR strategies (controls: 6.5%), exhibiting significantly greater hopping distance and knee strength. After adjusting for hopping distance, subjects adopting ITR strategies were found to hop faster with straighter knees at foot contact and with greater ITR and less knee adduction angular displacement during the initial landing phase. However, significantly greater angular displacement in knee flexion, greater medial hamstring activities, and greater co-contraction index of hamstrings and medial knee muscles were also found during initial landing. Our results support the importance of the recruitments of medial hamstrings or the local co-contraction in assisting the rotatory control of the knee during initial landing for avoiding ACL injuries. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Muscle activity response to external moment during single-leg drop landing in young basketball players: the importance of biceps femoris in reducing internal rotation of knee during landing.

    PubMed

    Fujii, Meguru; Sato, Haruhiko; Takahira, Naonobu

    2012-01-01

    Internal tibial rotation with the knee close to full extension combined with valgus collapse during drop landing generally results in non-contact anterior cruciate ligament (ACL) injury. The purpose of this study was to investigate the relationship between internal rotation of the knee and muscle activity from internal and external rotator muscles, and between the internal rotation of knee and externally applied loads on the knee during landing in collegiate basketball players. Our hypothesis was that the activity of biceps femoris muscle would be an important factor reducing internal knee rotation during landing. The subjects were 10 collegiate basketball students: 5 females and 5 males. The subjects performed a single-leg drop landing from a 25-cm height. Femoral and tibial kinematics were measured using a 3D optoelectronic tracking system during the drop landings, and then the knee angular motions were determined. Ground reaction forces and muscle activation patterns (lateral hamstring and medial hamstring) were simultaneously measured and computed. Results indicated that lower peak internal tibial rotation angle at the time of landing was associated with greater lateral hamstring activity (r = -0.623, p < 0.001). When gender was considered, the statistically significant correlation remained only in females. There was no association between the peak internal tibial rotation angle and the knee internal rotation moment. Control of muscle activity in the lateral to medial hamstring would be an important factor in generating sufficient force to inhibit excessive internal rotation during landing. Strengthening the biceps femoris might mitigate the higher incidence of non-contact ACL injury in female athletes. Key pointsLower activity of the external rotator muscle of the knee, which inhibits internal rotation of the knee, may be the reason why females tend to show a large internal rotation of the knee during drop landing.Externally applied internal rotation moment of

  1. Reliability of frames of reference used for tibial component rotation in total knee arthroplasty.

    PubMed

    Page, Stephen R; Deakin, Angela H; Payne, Anthony P; Picard, Frederic

    2011-01-01

    This study evaluated seven different frames of reference used for tibial component rotation in total knee arthroplasty (TKA) to determine which ones showed good reliability between bone specimens. An optoelectronic system based around a computer-assisted surgical navigation system was used to measure and locate 34 individual anatomical landmarks on 40 tibias. Each particular frame of reference was reconstructed from a group of data points taken from the surface of each bone. The transverse axis was used as the baseline to which the other axes were compared, and the differences in angular rotation between the other six reference frames and the transverse axis were calculated. There was high variability in the tibial rotational alignment associated with all frames of reference. Of the references widely used in current TKA procedures, the tibial tuberosity axis and the anterior condylar axis had lower standard deviations (6.1° and 7.3°, respectively) than the transmalleolar axis and the posterior condylar axis (9.3° for both). In conclusion, we found high variability in the frames of reference used for tibial rotation alignment. However, the anterior condylar axis and transverse axis may warrant further tests with the use of navigation. Combining different frames of reference such as the tibial tuberosity axis, anterior condylar axis and transverse axis may reduce the range of errors found in all of these measurements.

  2. Improvement of the knee center of rotation during walking after opening wedge high tibial osteotomy.

    PubMed

    Kim, Kyungsoo; Feng, Jun; Nha, Kyung Wook; Park, Won Man; Kim, Yoon Hyuk

    2015-06-01

    Accurate measurement of the center of rotation of the knee joint is indispensable for prediction of joint kinematics and kinetics in musculoskeletal models. However, no study has yet identified the knee center of rotations during several daily activities before and after high tibial osteotomy surgery, which is one surgical option for treating knee osteoarthritis. In this study, an estimation method for determining the knee joint center of rotation was developed by applying the optimal common shape technique and symmetrical axis of rotation approach techniques to motion-capture data and validated for typical activities (walking, squatting, climbing up stairs, walking down stairs) of 10 normal subjects. The locations of knee joint center of rotations for injured and contralateral knees of eight subjects with osteoarthritis, both before and after high tibial osteotomy surgery, were then calculated during walking. It was shown that high tibial osteotomy surgery improved the knee joint center of rotation since the center of rotations for the injured knee after high tibial osteotomy surgery were significantly closer to those of the normal healthy population. The difference between the injured and contralateral knees was also generally reduced after surgery, demonstrating increased symmetry. These results indicate that symmetry in both knees can be recovered in many cases after high tibial osteotomy surgery. Moreover, the recovery of center of rotation in the injured knee was prior to that of symmetry. This study has the potential to provide fundamental information that can be applied to understand abnormal kinematics in patients, diagnose knee joint disease, and design a novel implants for knee joint surgeries. © IMechE 2015.

  3. In Vivo Tibial Fit and Rotational Analysis of a Customized, Patient-Specific TKA versus Off-the-Shelf TKA.

    PubMed

    Schroeder, Lennart; Martin, Gregory

    2018-05-25

    In total knee arthroplasty (TKA), surgeons often face the decision of maximizing tibial component fit and achieving correct rotational alignment at the same time. Customized implants (CIMs) address this difficulty by aiming to replicate the anatomical joint structure, utilizing data from patient-specific knee geometry during the manufacturing. We intraoperatively compared component fit in four tibial zones of a CIM to that of three different off-the-shelf (OTS) TKA designs in 44 knees. Additionally, we assessed the rotational alignment of the tibia using computed tomography (CT)-based computer aided design model analysis. Overall the CIM device showed significantly better component fit than the OTS TKAs. While 18% of OTS designs presented an implant overhang of 3 mm or more, none of the CIM components did ( p  < 0.05). There was a larger percentage of CIMs seen with optimal fit (≤1 mm implant overhang to ≤1 mm tibial bone undercoverage) than in OTS TKAs. Also, OTS implants showed significantly more component underhang of ≥3 mm than the CIM design (37 vs. 18%). The rotational analysis revealed that 45% of the OTS tibial components showed a rotational deviation of more than 5 degrees and 4% of more than 10 degrees to a tibial rotational axis described by Cobb et al. No deviation was seen for the CIM, as the device is designed along this axis. Using the medial one-third of the tibial tubercle as the rotational landmark, 95% of the OTS trays demonstrated a rotational deviation of more than 5 degrees and 73% of more than 10 degrees compared with 73% of CIM tibial trays with more than 5 degrees and 27% with more than 10 degrees. Based on our findings, we believe that the CIM TKA provides both better rotational alignment and tibial fit without causing overhang of the tibial tray than the three examined OTS implants. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  4. Combined CT-based and image-free navigation systems in TKA reduces postoperative outliers of rotational alignment of the tibial component.

    PubMed

    Mitsuhashi, Shota; Akamatsu, Yasushi; Kobayashi, Hideo; Kusayama, Yoshihiro; Kumagai, Ken; Saito, Tomoyuki

    2018-02-01

    Rotational malpositioning of the tibial component can lead to poor functional outcome in TKA. Although various surgical techniques have been proposed, precise rotational placement of the tibial component was difficult to accomplish even with the use of a navigation system. The purpose of this study is to assess whether combined CT-based and image-free navigation systems replicate accurately the rotational alignment of tibial component that was preoperatively planned on CT, compared with the conventional method. We compared the number of outliers for rotational alignment of the tibial component using combined CT-based and image-free navigation systems (navigated group) with those of conventional method (conventional group). Seventy-two TKAs were performed between May 2012 and December 2014. In the navigated group, the anteroposterior axis was prepared using CT-based navigation system and the tibial component was positioned under control of the navigation. In the conventional group, the tibial component was placed with reference to the Akagi line that was determined visually. Fisher's exact probability test was performed to evaluate the results. There was a significant difference between the two groups with regard to the number of outliers: 3 outliers in the navigated group compared with 12 outliers in the conventional group (P < 0.01). We concluded that combined CT-based and image-free navigation systems decreased the number of rotational outliers of tibial component, and was helpful for the replication of the accurate rotational alignment of the tibial component that was preoperatively planned.

  5. The Effect of Arch Drop on Tibial Rotation and Tibiofemoral Contact Stress in Postpartum Women.

    PubMed

    Rabe, Kaitlin; Segal, Neil A; Waheed, Saphia; Anderson, Donald D

    2018-04-26

    Women are at greater risk for knee osteoarthritis and numerous other lower limb musculoskeletal disorders. Arch drop during pregnancy and the resultant excessive pronation of the feet may alter loading patterns and contribute to the greater prevalence of knee osteoarthritis in women. To determine the effect of arch drop on tibial rotation and tibiofemoral contact stress. Interventional study with internal control. Biomechanics laboratory. Eleven postpartum women (age 33.4 ± 5.3 years, body mass 76.1 ± 13.5 kg) who had lost arch height with pregnancy in a previous study. Subjects underwent standing computed tomography (SCT) with their knees in a 20° fixed-flexed position with and without semirigid arch supports to reconstitute prepregnancy arch height. Magnetic resonance imaging of the knee was acquired at a flexion angle equivalent to that of SCT. Bone and cartilage were manually segmented on the magnetic resonance images and segmented surfaces were registered to the 3-dimensional SCT image sets for the arch-supported and -unsupported conditions. These models were used to measure changes in tibial rotation, as well as to estimate contact stress in the medial and lateral tibiofemoral compartments, using computational methods. Change in tibial rotation and tibiofemoral contact stress with arch drop. Arch drop resulted in a mean tibial internal rotation of 0.75 ± 1.33° (P < .05). Changes in mean or peak contact stress were not detected. Arch drop causes internal tibial rotation, resulting in a shift in the tibiofemoral articulation. An associated increase in contact stress was not detected. Internal rotation of the tibia increases stress on the anterior cruciate ligament and menisci, potentially explaining the greater prevalence of knee disorders in postpartum women. Copyright © 2018 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  6. Does Tibial Slope Affect Perception of Coronal Alignment on a Standing Anteroposterior Radiograph?

    PubMed

    Schwartz, Adam J; Ravi, Bheeshma; Kransdorf, Mark J; Clarke, Henry D

    2017-07-01

    A standing anteroposterior (AP) radiograph is commonly used to evaluate coronal alignment following total knee arthroplasty (TKA). The impact of coronal alignment on TKA outcomes is controversial, perhaps due to variability in imaging and/or measurement technique. We sought to quantify the effect of image rotation and tibial slope on coronal alignment. Using a standard extramedullary tibial alignment guide, 3 cadaver legs were cut to accept a tibial tray at 0°, 3°, and 7° of slope. A computed tomography scan of the entire tibia was obtained for each specimen to confirm neutral coronal alignment. Images were then obtained at progressive 10° intervals of internal and external rotation up to 40° maximum in each direction. Images were then randomized and 5 blinded TKA surgeons were asked to determine coronal alignment. Continuous data values were transformed to categorical data (neutral [0], valgus [L], and varus [R]). Each 10° interval of external rotation of a 7° sloped tibial cut (or relative internal rotation of a tibial component viewed in the AP plane) resulted in perception of an additional 0.75° of varus. The slope of the proximal tibia bone cut should be taken into account when measuring coronal alignment on a standing AP radiograph. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Forefoot-rearfoot coupling patterns and tibial internal rotation during stance phase of barefoot versus shod running.

    PubMed

    Eslami, Mansour; Begon, Mickaël; Farahpour, Nader; Allard, Paul

    2007-01-01

    Based on twisted plate and mitered hinge models of the foot and ankle, forefoot-rearfoot coupling motion patterns can contribute to the amount of tibial rotation. The present study determined the differences of forefoot-rearfoot coupling patterns as well as excessive excursion of tibial internal rotation in shod versus barefoot conditions during running. Sixteen male subjects ran 10 times at 170 steps per minute under the barefoot and shod conditions. Forefoot-rearfoot coupling motions were assessed by measuring mean relative phase angle during five intervals of stance phase for the main effect of five time intervals and two conditions (ANOVA, P<0.05). Tibial internal rotation excursion was compared between the shod and barefoot conditions over the first 50% of stance phase using paired t-test, (P<0.05). Forefoot adduction/abduction and rearfoot eversion/inversion coupling motion patterns were significantly different between the conditions and among the intervals (P<0.05; effect size=0.47). The mean absolute relative angle was significantly modified to 37 degrees in-phase relationship at the heel-strike of running with shoe wears. No significant differences were noted in the tibial internal rotation excursion between shod and barefoot conditions. Significant variations in the forefoot adduction/abduction and rearfoot eversion/inversion coupling patterns could have little effect on the amount of tibial internal rotation excursion. Yet it remains to be determined whether changes in the frontal plane forefoot-rearfoot coupling patterns influence the tibia kinematics for different shoe wears or foot orthotic interventions. The findings question the rational for the prophylactic use of forefoot posting in foot orthoses.

  8. Minimally invasive treatment of tibial pilon fractures through arthroscopy and external fixator-assisted reduction.

    PubMed

    Luo, Huasong; Chen, Liaobin; Liu, Kebin; Peng, Songming; Zhang, Jien; Yi, Yang

    2016-01-01

    The aim of this study was to evaluate the clinical outcome of tibial pilon fractures treated with arthroscopy and assisted reduction with an external fixator. Thirteen patients with tibial pilon fractures underwent assisted reduction for limited lower internal fixation with an external fixator under arthroscopic guidance. The weight-bearing time was decided on the basis of repeat radiography of the tibia 3 months after surgery. Postoperative ankle function was evaluated according to the Mazur scoring system. Healing of fractures was achieved in all cases, with no complications such as severe infection, skin necrosis, or an exposed plate. There were 9 excellent, 2 good, and 2 poor outcomes, scored according to the Mazur system. The acceptance rate was 85%. Arthroscopy and external fixator-assisted reduction for the minimally invasive treatment of tibial pilon fractures not only produced less trauma but also protected the soft tissues and blood supply surrounding the fractures. External fixation could indirectly provide reduction and effective operative space for arthroscopic implantation, especially for AO type B fractures and partial AO type C1 fractures.

  9. Tibial rotational osteotomy for idiopathic torsion. A comparison of the proximal and distal osteotomy levels.

    PubMed

    Krengel, W F; Staheli, L T

    1992-10-01

    A retrospective analysis was done of 52 rotational tibial osteotomies (RTOs) performed on 35 patients with severe idiopathic tibial torsion. Thirty-nine osteotomies were performed at the proximal or midtibial level. Thirteen were performed at the distal tibial level with a technique previously described by one of the authors. Serious complications occurred in five (13%) of the proximal and in none of the distal RTOs. For severe and persisting idiopathic tibial torsion, the authors recommend correction by RTO at the distal level. Proximal level osteotomy is indicated only when a varus or valgus deformity required concurrent correction.

  10. External versus internal fixation for bicondylar tibial plateau fractures: systematic review and meta-analysis.

    PubMed

    Metcalfe, David; Hickson, Craig J; McKee, Lesley; Griffin, Xavier L

    2015-12-01

    It is uncertain whether external fixation or open reduction internal fixation (ORIF) is optimal for patients with bicondylar tibial plateau fractures. A systematic review using Ovid MEDLINE, Embase Classic, Embase, AMED, the Cochrane Library, Open Grey, Orthopaedic Proceedings, WHO International Clinical Trials Registry Platform, Current Controlled Trials, US National Institute for Health Trials Registry, and the Cochrane Central Register of Controlled Trials. The search was conducted on 3rd October 2014 and no language limits were applied. Inclusion criteria were all clinical study designs comparing external fixation with open reduction internal fixation of bicondylar tibial plateau fractures. Studies of only one treatment modality were excluded, as were those that included unicondylar tibial plateau fractures. Treatment effects from studies reporting dichotomous outcomes were summarised using odds ratios. Continuous outcomes were converted to standardized mean differences to assess the treatment effect, and inverse variance methods used to combine data. A fixed effect model was used for meta-analyses. Patients undergoing external fixation were more likely to have returned to preinjury activities by six and twelve months (P = 0.030) but not at 24 months follow-up. However, external fixation was complicated by a greater number of infections (OR 2.59, 95 % CI 1.25-5.36, P = 0.01). There were no statistically significant differences in the rates of deep infection, venous thromboembolism, compartment syndrome, or need for re-operation between the two groups. Although external fixation and ORIF are associated with different complication profiles, both are acceptable strategies for managing bicondylar tibial plateau fractures.

  11. Distal tibial pilon fractures (AO/OTA type B, and C) treated with the external skeletal and minimal internal fixation method.

    PubMed

    Milenković, Sasa; Mitković, Milorad; Micić, Ivan; Mladenović, Desimir; Najman, Stevo; Trajanović, Miroslav; Manić, Miodrag; Mitković, Milan

    2013-09-01

    Distal tibial pilon fractures include extra-articular fractures of the tibial metaphysis and the more severe intra-articular tibial pilon fractures. There is no universal method for treating distal tibial pilon fractures. These fractures are treated by means of open reduction, internal fixation (ORIF) and external skeletal fixation. The high rate of soft-tissue complications associated with primary ORIF of pilon fractures led to the use of external skeletal fixation, with limited internal fixation as an alternative technique for definitive management. The aim of this study was to estimate efficacy of distal tibial pilon fratures treatment using the external skeletal and minimal internal fixation method. We presented a series of 31 operated patients with tibial pilon fractures. The patients were operated on using the method of external skeletal fixation with a minimal internal fixation. According to the AO/OTA classification, 17 patients had type B fracture and 14 patients type C fractures. The rigid external skeletal fixation was transformed into a dynamic external skeletal fixation 6 weeks post-surgery. This retrospective study involved 31 patients with tibial pilon fractures, average age 41.81 (from 21 to 60) years. The average follow-up was 21.86 (from 12 to 48) months. The percentage of union was 90.32%, nonunion 3.22% and malunion 6.45%. The mean to fracture union was 14 (range 12-20) weeks. There were 4 (12.19%) infections around the pins of the external skeletal fixator and one (3.22%) deep infections. The ankle joint arthrosis as a late complication appeared in 4 (12.90%) patients. All arthroses appeared in patients who had type C fractures. The final functional results based on the AOFAS score were excellent in 51.61%, good in 32.25%, average in 12.90% and bad in 3.22% of the patients. External skeletal fixation and minimal internal fixation of distal tibial pilon fractures is a good method for treating all types of inta-articular pilon fractures. In

  12. Posterior tibial slope and femoral sizing affect posterior cruciate ligament tension in posterior cruciate-retaining total knee arthroplasty.

    PubMed

    Kuriyama, Shinichi; Ishikawa, Masahiro; Nakamura, Shinichiro; Furu, Moritoshi; Ito, Hiromu; Matsuda, Shuichi

    2015-08-01

    During cruciate-retaining total knee arthroplasty, surgeons sometimes encounter increased tension of the posterior cruciate ligament. This study investigated the effects of femoral size, posterior tibial slope, and rotational alignment of the femoral and tibial components on forces at the posterior cruciate ligament in cruciate-retaining total knee arthroplasty using a musculoskeletal computer simulation. Forces at the posterior cruciate ligament were assessed with the standard femoral component, as well as with 2-mm upsizing and 2-mm downsizing in the anterior-posterior dimension. These forces were also determined with posterior tibial slope angles of 5°, 7°, and 9°, and lastly, were measured in 5° increments when the femoral (tibial) components were positioned from 5° (15°) of internal rotation to 5° (15°) of external rotation. Forces at the posterior cruciate ligament increased by up to 718N with the standard procedure during squatting. The 2-mm downsizing of the femoral component decreased the force at the posterior cruciate ligament by up to 47%. The 2° increment in posterior tibial slope decreased the force at the posterior cruciate ligament by up to 41%. In addition, posterior cruciate ligament tension increased by 11% during internal rotation of the femoral component, and increased by 18% during external rotation of the tibial component. These findings suggest that accurate sizing and bone preparation are very important to maintain posterior cruciate ligament forces in cruciate-retaining total knee arthroplasty. Care should also be taken regarding malrotation of the femoral and tibial components because this increases posterior cruciate ligament tension. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Global rotation has high sensitivity in ACL lesions within stress MRI.

    PubMed

    Espregueira-Mendes, João; Andrade, Renato; Leal, Ana; Pereira, Hélder; Skaf, Abdala; Rodrigues-Gomes, Sérgio; Oliveira, J Miguel; Reis, Rui L; Pereira, Rogério

    2017-10-01

    This study aims to objectively compare side-to-side differences of P-A laxity alone and coupled with rotatory laxity within magnetic resonance imaging, in patients with total anterior cruciate ligament (ACL) rupture. This prospective study enrolled sixty-one patients with signs and symptoms of unilateral total anterior cruciate ligament rupture, which were referred to magnetic resonance evaluation with simultaneous instrumented laxity measurements. Sixteen of those patients were randomly selected to also have the contralateral healthy knee laxity profile tested. Images were acquired for the medial and lateral tibial plateaus without pressure, with postero-anterior translation, and postero-anterior translation coupled with maximum internal and external rotation, respectively. All parameters measured were significantly different between healthy and injured knees (P < 0.05), with exception of lateral plateau without stress. The difference between injured and healthy knees for medial and lateral tibial plateaus anterior displacement (P < 0.05) and rotation (P < 0.001) was statistically significant. It was found a significant correlation between the global rotation of the lateral tibial plateau (lateral plateau with internal + external rotation) with pivot-shift, and between the anterior global translation of both tibial plateaus (medial + lateral tibial plateau) with Lachman. The anterior global translation of both tibial plateaus was the most specific test with a cut-off point of 11.1 mm (93.8 %), and the global rotation of the lateral tibial plateau was the most sensitive test with a correspondent cut-off point of 15.1 mm (92.9 %). Objective laxity quantification of ACL-injured knees showed increased sagittal laxity, and simultaneously in sagittal and transversal planes, when compared to their healthy contralateral knee. Moreover, when measuring instability from anterior cruciate ligament ruptures, the anterior global translation of both tibial plateaus

  14. Bracing can partially limit tibial rotation during stressful activities after anterior crucial ligament reconstruction with a hamstring graft.

    PubMed

    Giotis, D; Paschos, N K; Zampeli, F; Pappas, E; Mitsionis, G; Georgoulis, A D

    2016-09-01

    Hamstring graft has substantial differences with BPTB graft regarding initial mechanical strength, healing sequence, and vascularization, which may imply that a different approach during rehabilitation period is required. The purpose of this study was to investigate the influence of knee bracing on tibial rotation in ACL-reconstructed patients with a hamstring autograft during high loading activities. The hypothesis was that there would be a decrease in tibial rotation in the ACL-reconstructed braced knee as compared to the unbraced knee. Twenty male patients having undergone unilateral ACL reconstruction with a semitendinosus/gracilis autograft were assessed. Kinematic data were collected with an eight-camera optoelectronic system during two stressful tasks: (1) descending from a stair and subsequent pivoting; and (2) landing from a platform and subsequent pivoting. In each patient, three different experimental conditions were evaluated: (A) wearing a prophylactic brace (braced condition); (B) wearing a patellofemoral brace (sleeved condition); (C) without brace (unbraced condition). The intact knee without brace served as a control. Tibial rotation was significantly lower in the intact knee compared to all three conditions of the ACL-reconstructed knee (P≤0.01 for both tasks). Presence of a brace or sleeve resulted in lower tibial rotation than in the unbraced condition (p=0.003 for descending/pivot and P=0.0004 for landing/pivot). The braced condition resulted in lower rotation than the sleeved condition for descending/pivoting (P=0.031) while no differences were found for landing/pivoting (P=0.230). Knee bracing limited the excessive tibial rotation during pivoting under high loading activities in ACL-reconstructed knees with a hamstring graft. This partial restoration of normal kinematics may have a potential beneficial effect in patients recovering from ACL reconstruction with a hamstring autograft. Level III, case-control therapeutic study. Copyright

  15. Management of tibial fractures using a circular external fixator in two calves.

    PubMed

    Aithal, Hari Prasad; Kinjavdekar, Prakash; Amarpal; Pawde, Abhijit Motiram; Singh, Gaj Raj; Setia, Harish Chandra

    2010-07-01

    To report the repair of tibial diaphyseal fractures in 2 calves using a circular external skeletal fixator (CEF). Clinical report. Crossbred calves (n=2; age: 6 months; weight: 55 and 60 kg). Mid-diaphyseal tibial fractures were repaired by the use of a 4-ring CEF (made of aluminum rings with 2 mm K-wires) alone in 1 calf and in combination with hemicerclage wiring in 1 calf. Both calves had good weight bearing with moderate lameness postoperatively. Fracture healing occurred by day 60 in 1 calf and by day 30 in calf 2. The CEF was well maintained and tolerated by both calves through fracture healing. Joint mobility and limb usage improved gradually after CEF removal. CEF provided a stable fixation of tibial fractures and healing within 60 days and functional recovery within 90 days. CEF can be safely and successfully used for the management of selected tibial fractures in calves.

  16. [High tibial osteotomy--fixation by means of external fixation--indication, technique, complications (author's transl)].

    PubMed

    Klems, H

    1976-02-01

    High tibial osteotomy has proved its value in the treatment of gonarthrosis with or without axis deformity. The thrust of weight-bearing and other stresses is lessened on the degenerated tibial condyle and transferred to the more normal condyle. The stable fixation by means of external fixation allows early movement of the knee joint.-R-ferences to operative technique, indication, complications and after-treatment.

  17. Hybrid external fixation in the treatment of tibial pilon fractures: A retrospective analysis of 162 fractures.

    PubMed

    Galante, Vito N; Vicenti, Giovanni; Corina, Gianfranco; Mori, Claudio; Abate, Antonella; Picca, Girolamo; Conserva, Vito; Speciale, Domenico; Scialpi, Lorenzo; Tartaglia, Nicola; Caiaffa, Vincenzo; Moretti, Biagio

    2016-10-01

    To determine the efficacy of hybrid external fixation in the treatment of tibial pilon fractures. Retrospective, multicentre study. Adult patients with tibial pilon fractures treated with hybrid external fixation. Fracture reduction with ligamentotaxis and fixation with XCaliber hybrid external fixator. Fracture union, complications, functional outcome (Mazur Ankle Score). Union was obtained in 159 fractures at an average of 125days; there were three delayed unions and three non-unions. The most frequent complication was superficial pin-track infections (48), all of which responded to local wound care and antibiotics. There were no deep infections and no DVT. Only one fracture had loss of reduction that required frame revision. The overall functional scores were 91 (excellent) for AO/OTA type A fractures, 89 (good) for type B fractures, and 75 (satisfactory) for type C fractures. Hybrid external fixation is an effective method of stabilising tibial pilon fractures, particularly those with marked comminution. The minimally-invasive technique and stable fixation enable early mobilisation, with good functional results and minimal complications. Level IV Case series. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Effect of Tibial Plateau Levelling Osteotomy on Cranial Tibial Subluxation in the Feline Cranial Cruciate Deficient Stifle Joint: An Ex Vivo Experimental Study.

    PubMed

    Bilmont, A; Retournard, M; Asimus, E; Palierne, S; Autefage, A

    2018-06-11

     This study evaluated the effects of tibial plateau levelling osteotomy on cranial tibial subluxation and tibial rotation angle in a model of feline cranial cruciate ligament deficient stifle joint.  Quadriceps and gastrocnemius muscles were simulated with cables, turnbuckles and a spring in an ex vivo limb model. Cranial tibial subluxation and tibial rotation angle were measured radiographically before and after cranial cruciate ligament section, and after tibial plateau levelling osteotomy, at postoperative tibial plateau angles of +5°, 0° and -5°.  Cranial tibial subluxation and tibial rotation angle were not significantly altered after tibial plateau levelling osteotomy with a tibial plateau angle of +5°. Additional rotation of the tibial plateau to a tibial plateau angle of 0° and -5° had no significant effect on cranial tibial subluxation and tibial rotation angle, although 2 out of 10 specimens were stabilized by a postoperative tibial plateau angle of -5°. No stabilization of the cranial cruciate ligament deficient stifle was observed in this model of the feline stifle, after tibial plateau levelling osteotomy.  Given that stabilization of the cranial cruciate ligament deficient stifle was not obtained in this model, simple transposition of the tibial plateau levelling osteotomy technique from the dog to the cat may not be appropriate. Schattauer GmbH Stuttgart.

  19. [Mobility of a polyethylene tibial insert in a mobile total knee prosthesis].

    PubMed

    Castel, E; Roger, B; Camproux, A; Saillant, G

    1999-03-01

    We have studied the mobility of a mobile tibial implant in total knee arthroplasty (TKA) by a radiographical evaluation. We analyzed mobility of the polyethylene tibial insert of 15 "G2S" TKA implanted for one year or more. We established a dynamic radiographical evaluation. We used 3 weight-bearing radiographs: AP in extension and two lateral (one in extension and one at 90 degrees of flexion), two AP with femoral internal and external rotation, 2 strict lateral X-rays in neutral rotation in antero-posterior replacement with a 25 kilograms strength Telos, and 2 AP in varus and valgus with Telos. Wilcoxon's test and Fisher's exact test were used for statistical evaluation. Our study demonstrated preservation of the polyethylene mobility in tibial TKA implant in all movements: in rotation, in antero-posterior translation with Telos, and even in antero-posterior translation during physiological condition with flexion-extension weight-bearing radiographs. Statistical tests were very significant. We noticed that flexion induced anterior translation of tibial polyethylene when PCL was preserved. This study answered to our question whether mobility of TKA tibial implant persists after implantation. This mobility should reduce loosening forces to the tibia and stress in the polyethylene component. Now we have to determine the amplitude of mobility required to reach this objective.

  20. Do modern total knee replacements improve tibial coverage?

    PubMed

    Meier, Malin; Webb, Jonathan; Collins, Jamie E; Beckmann, Johannes; Fitz, Wolfgang

    2018-01-25

    The purpose of the present study is to compare newer designs of various symmetric and asymmetric tibial components and measure tibial bone coverage using the rotational safe zone defined by two commonly utilized anatomic rotational landmarks. Computed tomography scans (CT scans) of one hundred consecutive patients scheduled for total knee arthroplasty were obtained pre-operatively. A virtual proximal tibial cut was performed and two commonly used rotational axes were added for each image: the medio-lateral axis (ML-axis) and the medial 1/3 tibial tubercle axis (med-1/3-axis). Different symmetric and asymmetric implant designs were then superimposed in various rotational positions for best cancellous and cortical coverage. The images were imported to a public domain imaging software, and cancellous and cortical bone coverage was computed for each image, with each implant design in various rotational positions. One single implant type could not be identified that provided the best cortical and cancellous coverage of the tibia, irrespective of using the med-1/3-axis or the ML-axis for rotational alignment. However, it could be confirmed that the best bone coverage was dependent on the selected rotational landmark. Furthermore, improved bone coverage was observed when tibial implant positions were optimized between the two rotational axes. Tibial coverage is similar for symmetric and asymmetric designs, but depends on the rotational landmark for which the implant is designed. The surgeon has the option to improve tibial coverage by optimizing placement between the two anatomic rotational alignment landmarks, the medial 1/3 and the ML-axis. Surgeons should be careful assessing intraoperative rotational tibial placement using the described anatomic rotational landmarks to optimize tibial bony coverage without compromising patella tracking. III.

  1. Tibial lengthening using a humeral intramedullary nail combined with a single-plane external fixator for leg discrepancy in sequelae of poliomyelitis.

    PubMed

    Chen, Daoyun; Chen, Jianmin; Liu, Fanggang; Jiang, Yao

    2011-03-01

    The sequelae of poliomyelitis are the common causes of leg discrepancy. Tibial lengthening is an effective way to solve this problem but it is associated with a high rate of complications. In this study, we combined the use of humeral nail and external fixator in tibial lengthening with the purpose of reducing lengthening complications. Compared with the cases lengthened by a single-plane external fixator alone, this combined strategy was found to be beneficial in maintaining the tibial alignment. Therefore, it can be recommended as a good technique for tibial lengthening in patients with sequelae of poliomyelitis.

  2. Motion at the Tibial and Polyethylene Component Interface in a Mobile-Bearing Total Ankle Replacement.

    PubMed

    Lundeen, Gregory A; Clanton, Thomas O; Dunaway, Linda J; Lu, Minggen

    2016-08-01

    Normal biomechanics of the ankle joint includes sagittal as well as axial rotation. Current understanding of mobile-bearing motion at the tibial-polyethylene interface in total ankle arthroplasty (TAA) is limited to anterior-posterior (AP) motion of the polyethylene component. The purpose of our study was to define the motion of the polyethylene component in relation to the tibial component in a mobile-bearing TAA in both the sagittal and axial planes in postoperative patients. Patients who were a minimum of 12 months postoperative from a third-generation mobile-bearing TAA were identified. AP images were saved at maximum internal and external rotation, and the lateral images were saved in maximum plantarflexion and dorsiflexion. Sagittal range of motion and AP translation of the polyethylene component were measured from the lateral images. Axial rotation was determined by measuring the relative position of the 2 wires within the polyethylene component on AP internal and external rotation imaging. This relationship was compared to a table developed from fluoroscopic images taken at standardized degrees of axial rotation of a nonimplanted polyethylene with the associated length relationship of the 2 imbedded wires. Sixteen patients were included in this investigation, 9 (56%) were male and average age was 68 (range, 49-80) years. Time from surgery averaged 25 (range, 12-38) months. Total sagittal range of motion averaged 23±9 (range, 9-33) degrees. Axial motion for total internal and external rotation of the polyethylene component on the tibial component averaged 6±5 (range, 0-18) degrees. AP translation of the polyethylene component relative to the tibial component averaged 1±1 (range, 0-3) mm. There was no relationship between axial rotation or AP translation of the polyethylene component and ankle joint range of motion (P > .05). To our knowledge, this is the first investigation to measure axial and sagittal motion of the polyethylene component at the tibial

  3. [Comparison study on locking compress plate external fixator and standard external fixator for treatment of tibial open fractures].

    PubMed

    Wu, Gang; Luo, Xiaozhong; Tan, Lun; Lin, Xu; Wu, Chao; Guo, Yong; Zhong, Zewei

    2013-11-01

    To compare the clinical results of locking compress plate (LCP) as an external fixator and standard external fixator for treatment of tibial open fractures. Between May 2009 and June 2012, 59 patients with tibial open fractures were treated with LCP as an external fixator in 36 patients (group A), and with standard external fixator in 23 patients (group B). There was no significant difference in gender, age, cause of injury, affected side, type of fracture, location, and interval between injury and surgery between 2 groups (P > 0.05). The time of fracture healing and incision healing, the time of partial weight-bearing, the range of motion (ROM) of knee and ankle, and complications were compared between 2 groups. The incidence of pin-track infection in group A (0) was significantly lower than that in group B (21.7%) (P=0.007). No significant difference was found in the incidence of superficial infection and deep infection of incision, and the time of incision healing between 2 groups (P > 0.05). Deep vein thrombosis occurred in 5 cases of group A and 2 cases of group B, showing no significant difference (Chi(2)=0.036, P=0.085). All patients were followed up 15.2 months on average (range, 9-28 months) in group A, and 18.6 months on average (range, 9-47 months) in group B. The malunion rate and nonunion rate showed no significant difference between groups A and B (0 versus 13.0% and 0 versus 8.7%, P > 0.05); the delayed union rate of group A (2.8%) was significantly lower than that of group B (21.7%) (Chi(2)=5.573, P=0.018). Group A had shorter time of fracture healing, quicker partial weight-bearing, greater ROM of the knee and ankle than group B (P < 0.05). The LCP external fixator can obtain reliable fixation in treating tibial open fracture, and has good patients' compliance, so it is helpful to do functional exercise, improve fracture healing and function recovery, and reduce the complication incidence.

  4. Tibial component alignment and risk of loosening in unicompartmental knee arthroplasty: a radiographic and radiostereometric study.

    PubMed

    Barbadoro, P; Ensini, A; Leardini, A; d'Amato, M; Feliciangeli, A; Timoncini, A; Amadei, F; Belvedere, C; Giannini, S

    2014-12-01

    Unicompartmental knee arthroplasty (UKA) has shown a higher rate of revision compared with total knee arthroplasty. The success of UKA depends on prosthesis component alignment, fixation and soft tissue integrity. The tibial cut is the crucial surgical step. The hypothesis of the present study is that tibial component malalignment is correlated with its risk of loosening in UKA. This study was performed in twenty-three patients undergoing primary cemented unicompartmental knee arthroplasties. Translations and rotations of the tibial component and the maximum total point motion (MTPM) were measured using radiostereometric analysis at 3, 6, 12 and 24 months. Standard radiological evaluations were also performed immediately before and after surgery. Varus/valgus and posterior slope of the tibial component and tibial-femoral axes were correlated with radiostereometric micro-motion. A survival analysis was also performed at an average of 5.9 years by contacting patients by phone. Varus alignment of the tibial component was significantly correlated with MTPM, anterior tibial sinking, varus rotation and anterior and medial translations from radiostereometry. The posterior slope of the tibial component was correlated with external rotation. The survival rate at an average of 5.9 years was 89%. The two patients who underwent revision presented a tibial component varus angle of 10° for both. There is correlation between varus orientation of the tibial component and MTPM from radiostereometry in unicompartmental knee arthroplasties. Particularly, a misalignment in varus larger than 5° could lead to risk of loosening the tibial component. Prognostic studies-retrospective study, Level II.

  5. Paediatric tibial shaft fractures treated by open reduction and stabilization with monolateral external fixation

    PubMed Central

    Simon, A.-L.; Apostolou, N.; Vidal, C.; Ferrero, E.; Mazda, K.; Ilharreborde, B.

    2018-01-01

    Abstract Purpose Elastic stable intramedullary nailing is increasingly used for surgical treatment of tibial shaft fractures, but frequently requires immobilization and delayed full weight-bearing. Therefore, external fixation remains interesting. The aim was to report clinico-radiological outcomes of monolateral external fixation for displaced and unstable tibial shaft fractures in children. Methods All tibial fractures consecutively treated by monolateral external fixation between 2008 and 2013 were followed. Inclusion criteria included skeletal immaturity and closed and open Gustilo I fractures caused by a direct impact. Patients were seen until two years postoperatively. Demographics, mechanism of injury, surgical data and complications were recorded. Anteroposterior and lateral side radiographs were performed at each visit. Full-limb 3D reconstructions using biplanar stereroradiography was performed for final limb length and alignment measures. Results A total of 45 patients (mean age 9.7 years ± 0.5) were included. In all, 17 were Gustilo I fractures, with no difference between open and closed fractures for any data. Mean time to full weight bearing was 18.2 days ± 0.7. After 15 days, 39 patients returned to school. Hardware removal (mean time to union 15.6 weeks ± 0.8) was performed during consultation under analgesic gas. There were no cases of nonunion. No fracture healed with > 10° of angulation (mean 5.1° ± 0.4°). Leg-length discrepancy > 10 mm was found for six patients. Conclusions This procedure can be a safe and simple surgical treatment for children with tibial shaft fractures. Few complications and early return to school were reported, with the limitations of non-comparative study. Level of Evidence IV PMID:29456750

  6. Lower-extremity rotational profile and toe-walking in preschool children with autism spectrum disorder.

    PubMed

    Arik, Atilla; Aksoy, Cemalettin; Aysev, Ayla; Akçakin, Melda

    2018-04-24

    The aim of this study was to establish the torsional and toe-walking profiles of children with autism spectrum disorder (ASD), and to analyze the correlations between torsion, toe-walking, autism severity score, and age. In total, 79 consecutive children with autism were examined to determine their hip rotations, thigh-foot angle, degree of toe-walking, and autism severity. Femoral and tibial torsion values, of the preschool patients, were compared statistically with age-matched controls. The hip rotation profile of the patients was similar to the normal group. Nearly a half of the patients with ASD present excessive external tibial torsion. The difference in the tibial torsion between patients and normal children was statistically significant. A weak correlation was found only between tibial torsion and the autism severity score, but no correlation was found between the other parameters. External tibial torsion is the cardinal and persistent orthopedic manifestation among patients with ASD. Toe-walking is the second most common such manifestation and is an independent orthopedic feature in these patients. External tibial torsion may potentially contribute toward the described gait abnormalities in patients with ASD.

  7. Ball-joint versus single monolateral external fixators for definitive treatment of tibial shaft fractures.

    PubMed

    Beltsios, Michail; Mavrogenis, Andreas F; Savvidou, Olga D; Karamanis, Eirineos; Kokkalis, Zinon T; Papagelopoulos, Panayiotis J

    2014-07-01

    To compare modular monolateral external fixators with single monolateral external fixators for the treatment of open and complex tibial shaft fractures, to determine the optimal construct for fracture union. A total of 223 tibial shaft fractures in 212 patients were treated with a monolateral external fixator from 2005 to 2011; 112 fractures were treated with a modular external fixator with ball-joints (group A), and 111 fractures were treated with a single external fixator without ball-joints (group B). The mean follow-up was 2.9 years. We retrospectively evaluated the operative time for fracture reduction with the external fixator, pain and range of motion of the knee and ankle joints, time to union, rate of malunion, reoperations and revisions of the external fixators, and complications. The time for fracture reduction was statistically higher in group B; the rate of union was statistically higher in group B; the rate of nonunion was statistically higher in group A; the mean time to union was statistically higher in group A; the rate of reoperations was statistically higher in group A; and the rate of revision of the external fixator was statistically higher in group A. Pain, range of motion of the knee and ankle joints, rates of delayed union, malunion and complications were similar. Although modular external fixators are associated with faster intraoperative fracture reduction with the external fixator, single external fixators are associated with significantly better rates of union and reoperations; the rates of delayed union, malunion and complications are similar.

  8. Femoral Component External Rotation Affects Knee Biomechanics: A Computational Model of Posterior-stabilized TKA.

    PubMed

    Kia, Mohammad; Wright, Timothy M; Cross, Michael B; Mayman, David J; Pearle, Andrew D; Sculco, Peter K; Westrich, Geoffrey H; Imhauser, Carl W

    2018-01-01

    varus-valgus rotation through the flexion range. The computational model predicted that femoral component external rotation relative to the posterior condylar axis unloads the MCL and the medial compartment; however, these effects were inconsistent from knee to knee. When the femoral component was externally rotated by 9° rather than 0° in knees one, two, and three, the maximum force carried by the MCL decreased a respective 55, 88, and 297 N; the medial contact forces decreased at most a respective 90, 190, and 570 N; external tibial rotation in early flexion increased by a respective 4.6°, 1.1°, and 3.3°; and varus angulation of the tibia relative to the femur in late flexion increased by 8.4°, 8.0°, and 7.9°, respectively. With 3° of femoral component external rotation relative to the posterior condylar axis, the femoral component was still externally rotated by up to 2.7° relative to the sTEA in these three neutrally aligned knees. Variations in MCL force from knee to knee with 3° of femoral component external rotation were related to the ratio of the distances from the femoral insertion of the MCL to the posterior and distal cuts of the implant; the closer this ratio was to 1, the more uniform were the MCL tensions from 0° to 90° flexion. A larger ratio of distances from the femoral insertion of the MCL to the posterior and distal cuts may cause clinically relevant increases in both MCL tension and compartmental contact forces. To obtain more consistent ligament tensions through flexion, it may be important to locate the posterior and distal aspects of the femoral component with respect to the proximal insertion of the MCL such that a ratio of 1 is achieved.

  9. External fixation combined with delayed internal fixation in treatment of tibial plateau fractures with dislocation.

    PubMed

    Tao, Xingguang; Chen, Nong; Pan, Fugen; Cheng, Biao

    2017-10-01

    The aim of this study was to evaluate the clinical efficacy of external fixation, delayed open reduction, and internal fixation in treating tibial plateau fracture with dislocation.Clinical data of 34 patients diagnosed with tibial plateau fracture complicated with dislocation between January 2009 and May 2015 were retrospectively analyzed. Fifteen patients in group A underwent early calcaneus traction combined with open reduction and internal fixation and 19 in group B received early external fixation combined with delayed open reduction and internal fixation. Operation time, postoperative complication, bone healing time, knee joint range of motion, initial weight-bearing time, Rasmussen tibial plateau score, and knee function score (HSS) were statistically compared between 2 groups.The mean follow-up time was 18.6 months (range: 5-24 months). The mean operation time in group A was 96 minutes, significantly longer than 71 minutes in group B (P < .05). In group A, 5 cases had postoperative complications and 1 in group B (P < .05). The mean bone healing time in group A was 6.9 months (range: 5-9 months) and 6.0 months (range: 5-8 months) in group B (P > .05). In group A, initial weight-bearing time in group A was (14.0 ± 3.6) weeks, significantly differing from (12.9 ± 2.8) weeks in group B (P < 0.05). In group A, the mean knee joint range of motion was 122° (range: 95°-150°) and 135° (range: 100°-160°) in group B (P > 0.05). Rasmussen tibial plateau score in group A was slightly lower than that in group B (P > .05). The excellent rate of knee joint function in group A was 80% and 84.21% in group B (P > .05).External fixation combined with delayed open reduction and internal fixation is a safer and more efficacious therapy of tibial plateau fracture complicated with dislocation compared with early calcaneus traction and open reduction and internal fixation.

  10. Navigation-based femorotibial rotation pattern correlated with flexion angle after total knee arthroplasty.

    PubMed

    Ishida, Kazunari; Shibanuma, Nao; Matsumoto, Tomoyuki; Sasaki, Hiroshi; Takayama, Koji; Matsuzaki, Tokio; Tei, Katsumasa; Kuroda, Ryosuke; Kurosaka, Masahiro

    2016-01-01

    To investigate whether intraoperative kinematics obtained by navigation systems can be divided into several kinematic patterns and to assess the correlation between the intraoperative kinematics with maximum flexion angles before and after total knee arthroplasty (TKA). Fifty-four posterior-stabilised (PS) TKA implanted using an image-free navigation system were evaluated. At registration and after implantation, tibial internal rotation angles at maximum extension, 30°, 45°, 60°, 90°, and maximum flexion were collected. The rotational patterns were divided into four groups and were examined the correlation with maximum flexion before and after operation. Tibial internal rotation from 90° of flexion to maximum flexion at registration was correlated with maximum flexion angles pre- and postoperatively. The four groups showed statistically different kinematic patterns. The group with tibial external rotation up to 90° of flexion, following tibial internal rotation at registration, achieved better flexion angles, compared to those of another groups (126.7° ± 12.0°, p < 0.05). The group with tibial external rotation showed the worst flexion angles (80.0° ± 40.4°, p < 0.05). Furthermore, the group with limited extension showed worse flexion angles (111.6° ± 8.9°, p < 0.05). Navigation-based kinematic patterns found at registration predict postoperative maximum flexion angle in PS TKA. Navigation-based kinematics can be useful information during TKA surgery. Diagnostic studies, development of diagnostic criteria in a consecutive series of patients and a universally applied "gold" standard, Level II.

  11. Temporary Stabilization with External Fixator in 'Tripolar' Configuration in Two Steps Treatment of Tibial Pilon Fractures.

    PubMed

    Daghino, Walter; Messina, Marco; Filipponi, Marco; Alessandro, Massè

    2016-01-01

    The tibial pilon fractures represent a complex therapeutic problem for the orthopedic surgeon, given the frequent complications and outcomes disabling. The recent medical literature indicates that the best strategy to reduce amount of complications in tibial pilon fractures is two-stages procedure. We describe our experience in the primary stabilization of these fractures. We treated 36 cases with temporary external fixation in a simple configuration, called "tripolar": this is an essential structure (only three screws and three rods), that is possible to perform even without the availability of X-rays and with simple anesthesia or sedation. We found a sufficient mechanical stability for the nursing post-operative, in absence of intraoperative and postoperative problems. The time between trauma and temporary stabilization ranged between 3 and 144 hours; surgical average time was 8.4 minutes. Definitive treatment was carried out with a delay of a minimum of 4 and a maximum of 15 days from the temporary stabilization, always without problems, both in case of ORIF (open reduction, internal fixation) or circular external fixation. Temporary stabilization with external fixator in 'tripolar' configuration seems to be the most effective strategy in two steps treatment of tibial pilon fractures. These preliminary encouraging results must be confirmed by further studies with more cases.

  12. Activation of biceps femoris long head reduces tibiofemoral anterior shear force and tibial internal rotation torque in healthy subjects

    PubMed Central

    Azmi, Nur Liyana; Ding, Ziyun; Xu, Rui

    2018-01-01

    The anterior cruciate ligament (ACL) provides resistance to tibial internal rotation torque and anterior shear at the knee. ACL deficiency results in knee instability. Optimisation of muscle contraction through functional electrical stimulation (FES) offers the prospect of mitigating the destabilising effects of ACL deficiency. The hypothesis of this study is that activation of the biceps femoris long head (BFLH) reduces the tibial internal rotation torque and the anterior shear force at the knee. Gait data of twelve healthy subjects were measured with and without the application of FES and taken as inputs to a computational musculoskeletal model. The model was used to investigate the optimum levels of BFLH activation during FES gait in reducing the anterior shear force to zero. This study found that FES significantly reduced the tibial internal rotation torque at the knee during the stance phase of gait (p = 0.0322) and the computational musculoskeletal modelling revealed that a mean BFLH activation of 20.8% (±8.4%) could reduce the anterior shear force to zero. At the time frame when the anterior shear force was zero, the internal rotation torque was reduced by 0.023 ± 0.0167 Nm/BW, with a mean 188% reduction across subjects (p = 0.0002). In conclusion, activation of the BFLH is able to reduce the tibial internal rotation torque and the anterior shear force at the knee in healthy control subjects. This should be tested on ACL deficient subject to consider its effect in mitigating instability due to ligament deficiency. In future clinical practice, activating the BFLH may be used to protect ACL reconstructions during post-operative rehabilitation, assist with residual instabilities post reconstruction, and reduce the need for ACL reconstruction surgery in some cases. PMID:29304102

  13. Activation of biceps femoris long head reduces tibiofemoral anterior shear force and tibial internal rotation torque in healthy subjects.

    PubMed

    Azmi, Nur Liyana; Ding, Ziyun; Xu, Rui; Bull, Anthony M J

    2018-01-01

    The anterior cruciate ligament (ACL) provides resistance to tibial internal rotation torque and anterior shear at the knee. ACL deficiency results in knee instability. Optimisation of muscle contraction through functional electrical stimulation (FES) offers the prospect of mitigating the destabilising effects of ACL deficiency. The hypothesis of this study is that activation of the biceps femoris long head (BFLH) reduces the tibial internal rotation torque and the anterior shear force at the knee. Gait data of twelve healthy subjects were measured with and without the application of FES and taken as inputs to a computational musculoskeletal model. The model was used to investigate the optimum levels of BFLH activation during FES gait in reducing the anterior shear force to zero. This study found that FES significantly reduced the tibial internal rotation torque at the knee during the stance phase of gait (p = 0.0322) and the computational musculoskeletal modelling revealed that a mean BFLH activation of 20.8% (±8.4%) could reduce the anterior shear force to zero. At the time frame when the anterior shear force was zero, the internal rotation torque was reduced by 0.023 ± 0.0167 Nm/BW, with a mean 188% reduction across subjects (p = 0.0002). In conclusion, activation of the BFLH is able to reduce the tibial internal rotation torque and the anterior shear force at the knee in healthy control subjects. This should be tested on ACL deficient subject to consider its effect in mitigating instability due to ligament deficiency. In future clinical practice, activating the BFLH may be used to protect ACL reconstructions during post-operative rehabilitation, assist with residual instabilities post reconstruction, and reduce the need for ACL reconstruction surgery in some cases.

  14. Which Tibial Tray Design Achieves Maximum Coverage and Ideal Rotation: Anatomic, Symmetric, or Asymmetric? An MRI-based study.

    PubMed

    Stulberg, S David; Goyal, Nitin

    2015-10-01

    Two goals of tibial tray placement in TKA are to maximize coverage and establish proper rotation. Our purpose was to utilize MRI information obtained as part of PSI planning to determine the impact of tibial tray design on the relationship between coverage and rotation. MR images for 100 consecutive knees were uploaded into PSI software. Preoperative planning software was used to evaluate 3 different tray designs: anatomic, symmetric, and asymmetric. Approximately equally good coverage was achieved with all three trays. However, the anatomic compared to symmetric/asymmetric trays required less malrotation (0.3° vs 3.0/2.4°; P < 0.001), with a higher proportion of cases within 5° of neutral (97% vs 73/77%; P < 0.001). In this study, the anatomic tibia optimized the relationship between coverage and rotation. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Do physical examination and CT-scan measures of femoral neck anteversion and tibial torsion relate to each other?

    PubMed

    Sangeux, Morgan; Mahy, Jessica; Graham, H Kerr

    2014-01-01

    Informed clinical decision making for femoral and/or tibial de-rotation osteotomies requires accurate measurement of patient function through gait analysis and anatomy through physical examination of bony torsions. Validity of gait analysis has been extensively studied; however, controversy remains regarding the accuracy of physical examination measurements of femoral and tibial torsion. Comparison between CT-scans and physical examination measurements of femoral neck anteversion (FNA) and external tibial torsion (ETT) were retrospectively obtained for 98 (FNA) and 64 (ETT) patients who attended a tertiary hospital for instrumented gait analysis between 2007 and 2010. The physical examination methods studied for femoral neck anteversion were the trochanteric prominence angle test (TPAT) and the maximum hip rotation arc midpoint (Arc midpoint) and for external tibial torsion the transmalleolar axis (TMA). Results showed that all physical examination measurements statistically differed to the CT-scans (bias(standard deviation): -2(14) for TPAT, -10(12) for Arc midpoint and -16(9) for TMA). Bland and Altman plots showed that method disagreements increased with increasing bony torsions in all cases but notably for TPAT. Regression analysis showed that only TMA and CT-scan measurement of external tibial torsion demonstrated good (R(2)=57%) correlation. Correlations for both TPAT (R(2)=14%) and Arc midpoint (R(2)=39%) with CT-scan measurements of FNA were limited. We conclude that physical examination should be considered as screening techniques rather than definitive measurement methods for FNA and ETT. Further research is required to develop more accurate measurement methods to accompany instrumented gait analysis. Copyright © 2013. Published by Elsevier B.V.

  16. External fixation combined with delayed internal fixation in treatment of tibial plateau fractures with dislocation

    PubMed Central

    Tao, Xingguang; Chen, Nong; Pan, Fugen; Cheng, Biao

    2017-01-01

    Abstract The aim of this study was to evaluate the clinical efficacy of external fixation, delayed open reduction, and internal fixation in treating tibial plateau fracture with dislocation. Clinical data of 34 patients diagnosed with tibial plateau fracture complicated with dislocation between January 2009 and May 2015 were retrospectively analyzed. Fifteen patients in group A underwent early calcaneus traction combined with open reduction and internal fixation and 19 in group B received early external fixation combined with delayed open reduction and internal fixation. Operation time, postoperative complication, bone healing time, knee joint range of motion, initial weight-bearing time, Rasmussen tibial plateau score, and knee function score (HSS) were statistically compared between 2 groups. The mean follow-up time was 18.6 months (range: 5–24 months). The mean operation time in group A was 96 minutes, significantly longer than 71 minutes in group B (P < .05). In group A, 5 cases had postoperative complications and 1 in group B (P < .05). The mean bone healing time in group A was 6.9 months (range: 5–9 months) and 6.0 months (range: 5–8 months) in group B (P > .05). In group A, initial weight-bearing time in group A was (14.0 ± 3.6) weeks, significantly differing from (12.9 ± 2.8) weeks in group B (P < 0.05). In group A, the mean knee joint range of motion was 122° (range: 95°–150°) and 135° (range: 100°–160°) in group B (P > 0.05). Rasmussen tibial plateau score in group A was slightly lower than that in group B (P > .05). The excellent rate of knee joint function in group A was 80% and 84.21% in group B (P > .05). External fixation combined with delayed open reduction and internal fixation is a safer and more efficacious therapy of tibial plateau fracture complicated with dislocation compared with early calcaneus traction and open reduction and internal fixation. PMID:29019890

  17. The role of the deep medial collateral ligament in controlling rotational stability of the knee.

    PubMed

    Cavaignac, Etienne; Carpentier, Karel; Pailhé, Regis; Luyckx, Thomas; Bellemans, Johan

    2015-10-01

    The tibial insertion of the deep medial collateral ligament (dMCL) is frequently sacrificed when the proximal tibial cut is performed during total knee arthroplasty. The role of the dMCL in controlling the knee's rotational stability is still controversial. The aim of this study was to quantify the rotational laxity induced by an isolated lesion of the dMCL as it occurs during tibial preparation for knee arthroplasty. An isolated resection of the deep MCL was performed in 10 fresh-frozen cadaver knees. Rotational laxity was measured during application of a standard 5.0 N.m rotational torque. Maximal tibial rotation was measured at different knee flexion angles using an image-guided navigation system (Medivision Surgetics system, Praxim, Grenoble, France) before and after dMCL resection. In all cases, internal and external tibial rotation increased after dMCL resection. Total rotational laxity increased significantly for all knee flexion angles, with an average difference of +7.8° (SD 5.7) with the knee in extension, +8.9° (SD 1.9) in 30° flexion, +7° (SD 2.9) in 60° flexion and +5.3° (SD 2.8) in 90° flexion. Sacrificing the tibial insertion of the deep MCL increases rotational laxity of the knee by 5°-9°, depending on the knee flexion angle. Based on our findings, new surgical techniques and implants that preserve the dMCL insertion such as tibial inlay components should be developed. Further clinical evaluations are necessary.

  18. What are the bias, imprecision, and limits of agreement for finding the flexion-extension plane of the knee with five tibial reference lines?

    PubMed

    Brar, Abheetinder S; Howell, Stephen M; Hull, Maury L

    2016-06-01

    Internal-external (I-E) malrotation of the tibial component is associated with poor function after total knee arthroplasty (TKA). Kinematically aligned (KA) TKA uses a functionally defined flexion-extension (F-E) tibial reference line, which is parallel to the F-E plane of the extended knee, to set I-E rotation of the tibial component. Sixty-two, three-dimensional bone models of normal knees were analyzed. We computed the bias (mean), imprecision (±standard deviation), and limits of agreement (mean±2 standard deviations) of the angle between five anatomically defined tibial reference lines used in mechanically aligned (MA) TKA and the F-E tibial reference line (+external). The following are the bias, imprecision, and limits of agreement of the angle between the F-E tibial reference line and 1) the tibial reference lines connecting the medial border (-2°±6°, -14° to 10°), medial 1/3 (6°±6°, -6° to 18°), and the most anterior point of the tibial tubercle (9°±4°, -1° to 17°) with the center of the posterior cruciate ligament, and 2) the tibial reference lines perpendicular to the posterior condylar axis of the tibia (-3°±4°, -11° to 5°), and a line connecting the centers of the tibial condyles (1°±4°, -7° to 9°). Based on these in vitro findings, it might be prudent to reconsider setting the I-E rotation of the tibial component to tibial reference lines that have bias, imprecision, and limits of agreement that fall outside the -7° to 10° range associated with high function after KA TKA. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Navigation-based tibial rotation at 90° of flexion is associated with better range of motion in navigated total knee arthroplasty.

    PubMed

    Ishida, Kazunari; Shibanuma, Nao; Matsumoto, Tomoyuki; Sasaki, Hiroshi; Takayama, Koji; Hiroshima, Yuji; Kuroda, Ryosuke; Kurosaka, Masahiro

    2016-08-01

    In clinical practice, people with better femorotibial rotation in the flexed position often achieve a favourable postoperative maximum flexion angle (MFA). However, no objective data have been reported to support this clinical observation. In the present study, we aimed to investigate the correlation between the amount of intraoperative rotation and the pre- and postoperative flexion angles. Fifty-five patients with varus osteoarthritis undergoing computer-assisted posterior-stabilized total knee arthroplasty (TKA) were enrolled. After registration, rotational stress was applied towards the knee joint, and the rotational angles were recorded by using a navigation system at maximum extension and 90° of flexion. After implantation, rotational stress was applied for a second time, and the angles were recorded once more. The MFA was measured before surgery and 1 month after surgery, and the correlation between the amount of femorotibial rotation during surgery and the MFA was statistically evaluated. Although the amount of tibial rotation at maximum extension was not correlated with the MFA, the amount of tibial rotation at 90° of flexion after registration was positively correlated with the pre- and postoperative MFA (both p < 0.005). However, no significant relationship was observed between the amount of tibial rotation after implantation and the postoperative MFA (n.s.). The results showed that better femorotibial rotation at 90° of flexion is associated with a favourable postoperative MFA, suggesting that the flexibility of the surrounding soft tissues is an important factor for obtaining a better MFA, which has important clinical relevance. Hence, further evaluation of navigation-based kinematics during TKA may provide useful information on MFA. Diagnostic studies, development of diagnostic criteria in a consecutive series of patients, and a universally applied "gold" standard, Level II.

  20. Temporary Stabilization with External Fixator in ‘Tripolar’ Configuration in Two Steps Treatment of Tibial Pilon Fractures

    PubMed Central

    Daghino, Walter; Messina, Marco; Filipponi, Marco; Alessandro, Massè

    2016-01-01

    Background: The tibial pilon fractures represent a complex therapeutic problem for the orthopedic surgeon, given the frequent complications and outcomes disabling. The recent medical literature indicates that the best strategy to reduce amount of complications in tibial pilon fractures is two-stages procedure. We describe our experience in the primary stabilization of these fractures. Methods: We treated 36 cases with temporary external fixation in a simple configuration, called "tripolar": this is an essential structure (only three screws and three rods), that is possible to perform even without the availability of X-rays and with simple anesthesia or sedation. Results: We found a sufficient mechanical stability for the nursing post-operative, in absence of intraoperative and postoperative problems. The time between trauma and temporary stabilization ranged between 3 and 144 hours; surgical average time was 8.4 minutes. Definitive treatment was carried out with a delay of a minimum of 4 and a maximum of 15 days from the temporary stabilization, always without problems, both in case of ORIF (open reduction, internal fixation) or circular external fixation Conclusion: Temporary stabilization with external fixator in ‘tripolar’ configuration seems to be the most effective strategy in two steps treatment of tibial pilon fractures. These preliminary encouraging results must be confirmed by further studies with more cases. PMID:27123151

  1. Tibial lengthening using a reamed type intramedullary nail and an Ilizarov external fixator

    PubMed Central

    Kim, Hayoung; Kim, Kap Jung; Ahn, Jae Hoon; Choy, Won Sik; Kim, Yong In; Koo, Jea Yun

    2008-01-01

    The aim of this study was to evaluate the efficacy of tibial lengthening using a reamed type intramedullary nail and an Ilizarov external fixator for the treatment of leg length discrepancy or short stature. This retrospective study was performed on 18 tibiae (13 patients) in which attempts were made to reduce complications. We used an Ilizarov external fixator and a nail (10 mm diameter in 17 tibiae and 11 mm in one tibia) in combination. Average limb lengthening was 4.19 cm (range, 2.5–5.5). The mean duration of external fixation was 12.58 days per centimetre gain in length, and the mean consolidation index was 40.53 (range, 35.45–51.85). All distracted segments healed spontaneously without refracture or malalignment. Gradual limb lengthening using a reamed type intramedullary nail and circular external fixation in combination was found to be reliable and effective and reduced external fixation time with fewer complications. PMID:18415098

  2. Treatment of segmental tibial fractures with supercutaneous plating.

    PubMed

    He, Xianfeng; Zhang, Jingwei; Li, Ming; Yu, Yihui; Zhu, Limei

    2014-08-01

    Segmental tibial fractures usually follow a high-energy trauma and are often associated with many complications. The purpose of this report is to describe the authors' results in the treatment of segmental tibial fractures with supercutaneous locking plates used as external fixators. Between January 2009 and March 2012, a total of 20 patients underwent external plating (supercutaneous plating) of the segmental tibial fractures using a less-invasive stabilization system locking plate (Synthes, Paoli, Pennsylvania). Six fractures were closed and 14 were open (6 grade IIIa, 2 grade IIIb, 4 grade II, and 2 grade I, according to the Gustilo classification). When imaging studies confirmed bone union, the plates and screws were removed in the outpatient clinic. Average time of follow-up was 23 months (range, 12-47 months). All fractures achieved union. Median time to union was 19 weeks (range, 12-40 weeks) for the proximal fractures and 22 weeks (range, 12-42 weeks) for the distal fractures. Functional results were excellent in 17 patients and good in 3. Delayed union of the fracture occurred in 2 patients. All patients' radiographs showed normal alignment. No rotational deformities and leg shortening were seen. No incidences of deep infection or implant failures occurred. Minor screw tract infection occurred in 2 patients. A new 1-stage protocol using supercutaneous plating as a definitive fixator for segmental tibial fractures is less invasive, has a lower cost, and has a shorter hospitalization time. Surgeons can achieve good reduction, soft tissue reconstruction, stable fixation, and high union rates using supercutaneous plating. The current patients obtained excellent knee and ankle joint motion and good functional outcomes and had a comfortable clinical course. Copyright 2014, SLACK Incorporated.

  3. Internal-external malalignment of the femoral component in kinematically aligned total knee arthroplasty increases tibial force imbalance but does not change laxities of the tibiofemoral joint.

    PubMed

    Riley, Jeremy; Roth, Joshua D; Howell, Stephen M; Hull, Maury L

    2018-06-01

    The purposes of this study were to quantify the increase in tibial force imbalance (i.e. magnitude of difference between medial and lateral tibial forces) and changes in laxities caused by  2° and 4° of internal-external (I-E) malalignment of the femoral component in kinematically aligned total knee arthroplasty. Because I-E malalignment would introduce the greatest changes to the articular surfaces near 90° of flexion, the hypotheses were that the tibial force imbalance would be significantly increased near 90° flexion and that primarily varus-valgus laxity would be affected near 90° flexion. Kinematically aligned TKA was performed on ten human cadaveric knee specimens using disposable manual instruments without soft tissue release. One 3D-printed reference femoral component, with unmodified geometry, was aligned to restore the native distal and posterior femoral joint lines. Four 3D-printed femoral components, with modified geometry, introduced I-E malalignments of 2° and 4° from the reference component. Medial and lateral tibial forces were measured from 0° to 120° flexion using a custom tibial force sensor. Bidirectional laxities in four degrees of freedom were measured from 0° to 120° flexion using a custom load application system. Tibial force imbalance increased the greatest at 60° flexion where a regression analysis against the degree of I-E malalignment yielded sensitivities (i.e. slopes) of 30 N/° (medial tibial force > lateral tibial force) and 10 N/° (lateral tibial force > medial tibial force) for internal and external malalignments, respectively. Valgus laxity increased significantly with the 4° external component with the greatest increase of 1.5° occurring at 90° flexion (p < 0.0001). With the tibial component correctly aligned, I-E malalignment of the femoral component caused significant increases in tibial force imbalance. Minimizing I-E malalignment lowers the increase in the tibial force imbalance. By keeping

  4. Hybrid External Fixation for Arbeitsgemeinschaft für Osteosynthesefragen (AO) 43-C Tibial Plafond Fractures.

    PubMed

    Abd-Almageed, Emad; Marwan, Yousef; Esmaeel, Ali; Mallur, Amarnath; El-Alfy, Barakat

    2015-01-01

    Arbeitsgemeinschaft für Osteosynthesefragen (AO) type 43-C tibial plafond/pilon fractures represent a challenge for the treating orthopedic surgeon. We assessed the outcomes of using hybrid external fixation for this fracture type. The present prospective cohort study was started in August 2009 and ended by July 2012. Thirty consecutive patients (mean age 37.4 ± 10.7 years) with a type C tibial plafond fracture who had presented to our tertiary care orthopedic hospital were included. Motor vehicle accidents and fall from height were the cause of the fracture in 14 (46.7%) and 13 (43.3%) patients, respectively. A type C3 fracture was present in 25 patients (83.3%), and type C1 and C2 fractures were present in 2 (6.7%) and 3 (10.0%) patients, respectively. Nine fractures (30.0%) were open. Hybrid external fixation was used for all fractures. All fractures were united; clinical healing was achieved by a mean of 18.1 ± 2.2 weeks postoperatively and radiologic healing at a mean of 18.9 ± 1.9 weeks. The fixator was removed at a mean of 20.4 ± 2.0 weeks postoperatively. At a mean follow-up point of 13.4 ± 2.6 months, the mean modified Mazur ankle score was 84.6 ± 10.4. It was not associated with wound classification (p = .256). The most commonly seen complication was ankle osteoarthritis (17 patients; 56.7%); however, it was mild in >50.0% of the affected patients. In conclusion, using hybrid external fixation for type C tibial plafond fractures resulted in good outcomes. However, this should be investigated further in studies with a higher level of evidence. Copyright © 2015 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  5. Importance of tibial slope for stability of the posterior cruciate ligament deficient knee.

    PubMed

    Giffin, J Robert; Stabile, Kathryne J; Zantop, Thore; Vogrin, Tracy M; Woo, Savio L-Y; Harner, Christopher D

    2007-09-01

    Previous studies have shown that increasing tibial slope can shift the resting position of the tibia anteriorly. As a result, sagittal osteotomies that alter slope have recently been proposed for treatment of posterior cruciate ligament (PCL) injuries. Increasing tibial slope with an osteotomy shifts the resting position anteriorly in a PCL-deficient knee, thereby partially reducing the posterior tibial "sag" associated with PCL injury. This shift in resting position from the increased slope causes a decrease in posterior tibial translation compared with the PCL-deficient knee in response to posterior tibial and axial compressive loads. Controlled laboratory study. Three knee conditions were tested with a robotic universal force-moment sensor testing system: intact, PCL-deficient, and PCL-deficient with increased tibial slope. Tibial slope was increased via a 5-mm anterior opening wedge osteotomy. Three external loading conditions were applied to each knee condition at 0 degrees, 30 degrees, 60 degrees, 90 degrees, and 120 degrees of knee flexion: (1) 134-N anterior-posterior (A-P) tibial load, (2) 200-N axial compressive load, and (3) combined 134-N A-P and 200-N axial loads. For each loading condition, kinematics of the intact knee were recorded for the remaining 5 degrees of freedom (ie, A-P, medial-lateral, and proximal-distal translations, internal-external and varus-valgus rotations). Posterior cruciate ligament deficiency resulted in a posterior shift of the tibial resting position to 8.4 +/- 2.6 mm at 90 degrees compared with the intact knee. After osteotomy, tibial slope increased from 9.2 degrees +/- 1.0 degrees in the intact knee to 13.8 degrees +/- 0.9 degrees. This increase in slope reduced the posterior sag of the PCL-deficient knee, shifting the resting position anteriorly to 4.0 +/- 2.0 mm at 90 degrees. Under a 200-N axial compressive load with the osteotomy, an additional increase in anterior tibial translation to 2.7 +/- 1.7 mm at 30 degrees was

  6. The Effect of Tibial Plateau Levelling Osteotomy on Stifle Extensor Mechanism Load: A Canine Ex Vivo Study.

    PubMed

    Drew, Jarrod O; Glyde, Mark R; Hosgood, Giselle L; Hayes, Alex J

    2018-02-01

     To evaluate the effect of tibial plateau levelling osteotomy on stifle extensor mechanism load in an ex vivo cruciate-intact canine cadaveric model.   Ex vivo mechanical testing study.  Cadaveric canine pelvic limbs ( n  = 6).  A 21-mm tibial radial osteotomy was performed on pelvic limbs ( n  = 6) prior to being mounted into a load-bearing limb press. The proximal tibial segment was incrementally rotated until the anatomical tibial plateau angle had been rotated to at least 1°. The proportional change in stifle extensor mechanism load between the anatomical tibial plateau angle and the neutralized (∼6.5 degrees) and over-rotated (∼1°) tibial plateau angle was analysed using a one-sample t -test against a null hypothesis of no change. A p -value ≤0.05 was considered significant.  There was no significant change in the stifle extensor mechanism load from the anatomical tibial plateau angle (308 N [261-355 N]) to the neutralized tibial plateau angle (313 N [254-372 N]; p =.81), or from the anatomical tibial plateau angle to the over-rotated tibial plateau angle (303 N [254-352 N; p  = 0.67).  Tibial plateau levelling osteotomy does not significantly alter stifle extensor mechanism load at either a neutralized or over-rotated tibial plateau angle in our cruciate-intact model. Schattauer GmbH Stuttgart.

  7. The necessity of clinical application of tibial reduction for detection of underestimated posterolateral rotatory instability in combined posterior cruciate ligament and posterolateral corner deficient knee.

    PubMed

    Lee, Han-Jun; Park, Yong-Beom; Ko, Young-Bong; Kim, Seong-Hwan; Kwon, Hyeok-Bin; Yu, Dong-Seok; Jung, Young-Bok

    2015-10-01

    The purpose of this study was to evaluate the usefulness of tibial reduction during dial test for clinical detection of underestimated posterolateral rotatory instability (PLRI) in combined posterior cruciate ligament (PCL)-posterolateral corner (PLC) deficient knee in terms of external rotation laxity and clinical outcomes. Twenty-one patients who classified as grade I PLRI using dial test with subluxated tibia, but classified as grade II with tibial reduction evaluated retrospectively. The mean follow-up was 39.3 months (range 24-61 months). Each patient was evaluated by the following variables: posterior translation and varus laxity on radiograph, KT-1000 arthrometer, dial test (reduced and subluxated position), International Knee Documentation Committee, Orthopädische Arbeitsgruppe Knie scoring system and Tegner activity scale. There were significant improvements in posterior tibial translation (8.6 ± 2.0 to 2.1 ± 1.0 mm; P < 0.001), varus laxity (3.3 ± 1.3 to 1.4 ± 0.5 mm; P < 0.001) and external rotation (13.2° ± 0.8° to 3.6° ± 1.1° at 30°, 13.3° ± 0.9° to 3.6° ± 0.9° at 90°; P < 0.001). The clinical scores were improved significantly at the last follow-up (P < 0.001). The external tibial rotation during dial test with tibial reduction increased from 6.8° ± 0.9 to 13.2° ± 0.8° at 30° of knee flexion, from 7.0° ± 0.8° to 13.3° ± 0.9° at 90° (P < 0.001). The clinical application of reduction of posteriorly subluxated tibia during the dial test was essential for an appropriate treatment of underestimated PLRI in combined PCL-PLC deficient knee. Retrospective case series, Level IV.

  8. Comparison of tibial shaft ski fractures in children and adults.

    PubMed

    Hamada, Tomo; Matsumoto, Kazu; Ishimaru, Daichi; Sumi, Hiroshi; Shimizu, Katsuji

    2014-09-01

    To examine whether child and adult skiers have different risk factors or mechanisms of injury for tibial shaft fractures. Descriptive epidemiological study. Prospectively analyzed the epidemiologic factors, injury types, and injury mechanisms at Sumi Memorial Hospital. This study analyzed information obtained from 276 patients with tibial fractures sustained during skiing between 2004 and 2012. We focused on 174 ski-related tibial shaft fractures with respect to the following factors: age, gender, laterality of fracture, skill level, mechanism of fracture (fall vs collision), scene of injury (steepness of slope), snow condition, and weather. Fracture pattern was graded according to Arbeitsgemeinschaft für Osteosynthesefragen (AO) classification and mechanical direction [external (ER) or internal rotation (IR)]. Tibial shaft fractures were the most common in both children (89.3%) and adults (47.4%). There were no significant differences in gender, side of fracture, mechanism of fracture, snow condition, or weather between children and adults. Skill levels were significantly lower in children than in adults (P < 0.0001). Type A fractures were more dominant in children (73 cases, 72.3%) than in adults (39 cases, 53.4%). There was significantly more ER in children than in adults (P < 0.0001). Among children, female patients had significantly more IR than ER; in contrast, among adults, women were injured by ER. We found significant differences in some of these parameters, suggesting that child and adult skiers have different risk factors or mechanisms of injury for tibial shaft fractures.

  9. Posterior Tibial Slope Angle Correlates With Peak Sagittal and Frontal Plane Knee Joint Loading During Robotic Simulations of Athletic Tasks.

    PubMed

    Bates, Nathaniel A; Nesbitt, Rebecca J; Shearn, Jason T; Myer, Gregory D; Hewett, Timothy E

    2016-07-01

    Tibial slope angle is a nonmodifiable risk factor for anterior cruciate ligament (ACL) injury. However, the mechanical role of varying tibial slopes during athletic tasks has yet to be clinically quantified. To examine the influence of posterior tibial slope on knee joint loading during controlled, in vitro simulation of the knee joint articulations during athletic tasks. Descriptive laboratory study. A 6 degree of freedom robotic manipulator positionally maneuvered cadaveric knee joints from 12 unique specimens with varying tibial slopes (range, -7.7° to 7.7°) through drop vertical jump and sidestep cutting tasks that were derived from 3-dimensional in vivo motion recordings. Internal knee joint torques and forces were recorded throughout simulation and were linearly correlated with tibial slope. The mean (±SD) posterior tibial slope angle was 2.2° ± 4.3° in the lateral compartment and 2.3° ± 3.3° in the medial compartment. For simulated drop vertical jumps, lateral compartment tibial slope angle expressed moderate, direct correlations with peak internally generated knee adduction (r = 0.60-0.65), flexion (r = 0.64-0.66), lateral (r = 0.57-0.69), and external rotation torques (r = 0.47-0.72) as well as inverse correlations with peak abduction (r = -0.42 to -0.61) and internal rotation torques (r = -0.39 to -0.79). Only frontal plane torques were correlated during sidestep cutting simulations. For simulated drop vertical jumps, medial compartment tibial slope angle expressed moderate, direct correlations with peak internally generated knee flexion torque (r = 0.64-0.69) and lateral knee force (r = 0.55-0.74) as well as inverse correlations with peak external torque (r = -0.34 to -0.67) and medial knee force (r = -0.58 to -0.59). These moderate correlations were also present during simulated sidestep cutting. The investigation supported the theory that increased posterior tibial slope would lead to greater magnitude knee joint moments, specifically

  10. Shoulder abduction and external rotation restoration with nerve transfer.

    PubMed

    Kostas-Agnantis, Ioannis; Korompilias, Anastasios; Vekris, Marios; Lykissas, Marios; Gkiatas, Ioannis; Mitsionis, Gregory; Beris, Alexander

    2013-03-01

    In upper brachial plexus palsy patients, loss of shoulder function and elbow flexion is obvious as the result of paralysed muscles innervated by the suprascapular, axillary and musculocutaneus nerve. Shoulder stabilisation, restoration of abduction and external rotation are important as more distal functions will be affected by the shoulder situation. Between 2005 and 2011, eleven patients with upper type brachial plexus palsy were operated on with triceps nerve branch transfer to anterior axillary nerve branch and spinal accessory nerve transfer to the suprascapular nerve for shoulder abduction and external rotation restoration. Nine patients met the inclusion criteria for the study. All patients were men with ages ranged from 21 to 35 years (average, 27.4 years). The interval between injury and surgery ranged from 4 to 11 months (average, 7.2 months). Atrophy of the supraspinatus, infraspinatus and deltoid muscle and subluxation at the glenohumeral joint was obvious in all patients preoperatively. During the pre-op examination all patients had at least muscle grading 4 on the triceps muscle. The mean post-operative value of shoulder abduction was 112.2° (range: 60-170°) while preoperatively none of the patients was able for abduction (p<0.001). The mean post-operative value of shoulder external rotation was 66° (range: 35-110°) while preoperatively none of them was able for external rotation (p<0.001). Postoperative values of shoulder abduction were significantly better that those of external rotation (p=0.0004). The postoperative average muscle grading for shoulder abduction according the MRC scale was 3.6±0.5 and for the shoulder external rotation was 3.2±0.4. Combined nerve transfer by using the spinal accessory nerve for suprascapular nerve neurotisation and one of the triceps nerve branches for axillary nerve and teres minor branch neurotisation is an excellent choice for shoulder abduction and external rotation restoration. Copyright © 2013 Elsevier

  11. Measurement of the end-to-end distances between the femoral and tibial insertion sites of the anterior cruciate ligament during knee flexion and with rotational torque.

    PubMed

    Wang, Joon Ho; Kato, Yuki; Ingham, Sheila J M; Maeyama, Akira; Linde-Rosen, Monica; Smolinski, Patrick; Fu, Freddie H

    2012-10-01

    The aim of this study was to determine the end-to-end distance changes in anterior cruciate ligament (ACL) fibers during flexion/extension and internal/external rotation of the knee. The positional relation between the femur and tibia of 10 knees was digitized on a robotic system during flexion/extension and with an internal/external rotational torque (5 Nm). The ACL insertion site data, acquired by 3-dimensional scanning, were superimposed on the positional data. The end-to-end distances of 5 representative points on the femoral and tibial insertion sites of the ACL were calculated. The end-to-end distances of all representative points except the most anterior points were longest at full extension and shortest at 90°. The distances of the anteromedial (AM) and posterolateral (PL) bundles were 37.2 ± 2.1 mm and 27.5 ± 2.8 mm, respectively, at full extension and 34.7 ± 2.4 mm and 20.7 ± 2.3 mm, respectively, at 90°. Only 4 knees had an isometric point, which was 1 of the 3 anterior points. Under an internal torque, both bundles became longer with statistical meaning at all flexion angles (P = .005). The end-to-end distances of all points became longest with internal torque at full extension and shortest with an external torque at 90°. Only 4 of 10 specimens had an isometric point at a variable anterior point. The end-to-end distances of the AM and PL bundles were longer in extension and shorter in flexion. The nonisometric tendency of the ACL and the end-to-end distance change during knee flexion/extension and internal/external rotation should be considered during ACL reconstruction to avoid overconstraint of the graft. Copyright © 2012 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  12. Minimally invasive surgical technique: Percutaneous external fixation combined with titanium elastic nails for selective treatment of tibial fractures.

    PubMed

    Tu, Kai-Kai; Zhou, Xian-Ting; Tao, Zhou-Shan; Chen, Wei-Kai; Huang, Zheng-Liang; Sun, Tao; Zhou, Qiang; Yang, Lei

    2015-12-01

    Several techniques have been described to treat tibial fractures, which respectively remains defects. This article presents a novel intra- and extramedullary fixation technique: percutaneous external fixator combined with titanium elastic nails (EF-TENs system). The purpose of this study is to introduce this new minimally invasive surgical technique and selective treatment of tibial fractures, particularly in segmental fractures, diaphysis fractures accompanied with distal or proximal bone subfissure, or fractures with poor soft-tissue problems. Following ethical approval, thirty-two patients with tibial fractures were treated by the EF-TENs system between January 2010 and December 2012. The follow-up studies included clinical and radiographic examinations. All relevant outcomes were recorded during follow-up. All thirty-two patients were achieved follow-ups. According to the AO classification, 3 Type A, 9 Type B and 20 Type C fractures were included respectively. According to the Anderson-Gustilo classification, there were 5 Type Grade II, 3 Type Grade IIIA and 2 Type Grade IIIB. Among 32 patients, 8 of them were segmental fractures. 12 fractures accompanied with bone subfissure. Results showed no nonunion case, with an average time of 23.7 weeks (range, 14-32 weeks). Among them, there were 3/32 delayed union patients and 0/32 malunion case. 4/32 patients developed a pin track infection and no patient suffered deep infection. The external fixator was removed with a mean time of 16.7 weeks (range, 10-26 weeks). Moreover, only 1/32 patient suffered with the restricted ROM of ankle, none with the restricted ROM of knee. This preliminary study indicated that the EF-TENs system, as a novel intra- and extramedullary fixation technique, had substantial effects on selective treatment of tibial fractures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Immobilization in External Rotation Versus Internal Rotation After Primary Anterior Shoulder Dislocation: A Meta-analysis of Randomized Controlled Trials.

    PubMed

    Whelan, Daniel B; Kletke, Stephanie N; Schemitsch, Geoffrey; Chahal, Jaskarndip

    2016-02-01

    The recurrence rate after primary anterior shoulder dislocation is high, especially in young, active individuals. Recent studies have suggested external rotation immobilization as a method to reduce the rate of recurrent shoulder dislocation in comparison to traditional sling immobilization. To assess and summarize evidence from randomized controlled trials on the effect of internal rotation versus external rotation immobilization on the rate of recurrence after primary anterior shoulder dislocation. Meta-analysis. PubMed, MEDLINE, EMBASE, the Cochrane Central Register of Controlled Trials, and abstracts from recent proceedings were searched for eligible studies. Two reviewers selected studies for inclusion, assessed methodological quality, and extracted data. Six randomized controlled trials (632 patients) were included in this review. Demographic and prognostic variables measured at baseline were similar in the pooled groups. The average age was 30.1 years in the pooled external rotation group and 30.3 years in the pooled internal rotation group. Two studies found that external rotation immobilization reduced the rate of recurrence after initial anterior shoulder dislocation compared with conventional internal rotation immobilization, whereas 4 studies failed to find a significant difference between the 2 groups. This meta-analysis suggested no overall significant difference in the rate of recurrence among patients treated with internal rotation versus external rotation immobilization (risk ratio, 0.69; 95% CI, 0.42-1.14; P = .15). There was no significant difference in the rate of compliance between internal and external rotation immobilization (P = .43). The Western Ontario Shoulder Instability Index scores were pooled across 3 studies, and there was no significant difference between the 2 groups (P = .54). Immobilization in external rotation is not significantly more effective in reducing the recurrence rate after primary anterior shoulder dislocation than

  14. Tibial lengthening over intramedullary nails

    PubMed Central

    Burghardt, R. D.; Manzotti, A.; Bhave, A.; Paley, D.

    2016-01-01

    Objectives The purpose of this study was to compare the results and complications of tibial lengthening over an intramedullary nail with treatment using the traditional Ilizarov method. Methods In this matched case study, 16 adult patients underwent 19 tibial lengthening over nails (LON) procedures. For the matched case group, 17 patients who underwent 19 Ilizarov tibial lengthenings were retrospectively matched to the LON group. Results The mean external fixation time for the LON group was 2.6 months and for the matched case group was 7.6 months. The mean lengthening amounts for the LON and the matched case groups were 5.2 cm and 4.9 cm, respectively. The radiographic consolidation time in the LON group was 6.6 months and in the matched case group 7.6 months. Using a clinical and radiographic outcome score that was designed for this study, the outcome was determined to be excellent in 17 and good in two patients for the LON group. The outcome was excellent in 14 and good in five patients in the matched case group. The LON group had increased blood loss and increased cost. The LON group had four deep infections; the matched case group did not have any deep infections. Conclusions The outcomes in the LON group were comparable with the outcomes in the matched case group. The LON group had a shorter external fixation time but experienced increased blood loss, increased cost, and four cases of deep infection. The advantage of reducing external fixation treatment time may outweigh these disadvantages in patients who have a healthy soft-tissue envelope. Cite this article: J. E. Herzenberg. Tibial lengthening over intramedullary nails: A matched case comparison with Ilizarov tibial lengthening. Bone Joint Res 2016;5:1–10. doi: 10.1302/2046-3758.51.2000577 PMID:26764351

  15. What Components Comprise the Measurement of the Tibial Tuberosity-Trochlear Groove Distance in a Patellar Dislocation Population?

    PubMed

    Tensho, Keiji; Akaoka, Yusuke; Shimodaira, Hiroki; Takanashi, Seiji; Ikegami, Shota; Kato, Hiroyuki; Saito, Naoto

    2015-09-02

    The tibial tuberosity-trochlear groove distance is used as an indicator for medial tibial tubercle transfer; however, to our knowledge, no studies have verified whether this distance is strongly affected by tubercle lateralization at the proximal part of the tibia. We hypothesized that the tibial tuberosity-trochlear groove distance is mainly affected by tibial tubercle lateralization at the proximal part of the tibia. Forty-four patients with a history of patellar dislocation and forty-four age and sex-matched controls were analyzed with use of computed tomography. The tibial tuberosity-trochlear groove distance, tibial tubercle lateralization, trochlear groove medialization, and knee rotation were measured and were compared between the patellar dislocation group and the control group. The association between the tibial tuberosity-trochlear groove distance and three other parameters was calculated with use of the Pearson correlation coefficient and partial correlation analysis. There were significant differences in the tibial tuberosity-trochlear groove distance (p < 0.001) and knee rotation (p < 0.001), but there was no difference in the tibial tubercle lateralization (p = 0.13) and trochlear groove medialization (p = 0.08) between the patellar dislocation group and the control group. The tibial tuberosity-trochlear groove distance had no linear correlation with tubercle lateralization (r = 0.21) or groove medialization (r = -0.15); however, knee rotation had a good positive correlation in the patellar dislocation group (r = 0.62). After adjusting for the remaining parameters, knee rotation strongly correlated with the tibial tuberosity-trochlear groove distance (r = 0.69, p < 0.001), whereas tubercle lateralization showed moderate significant correlations in the patellar dislocation group (r = 0.42; p = 0.005). Because the tibial tuberosity-trochlear groove distance is affected more by knee rotation than by tubercle malposition, its use as an indicator for

  16. Tibial bone fractures occurring after medioproximal tibial bone grafts for oral and maxillofacial reconstruction.

    PubMed

    Kim, Il-Kyu; Cho, Hyun-Young; Pae, Sang-Pill; Jung, Bum-Sang; Cho, Hyun-Woo; Seo, Ji-Hoon

    2013-12-01

    Oral and maxillofacial defects often require bone grafts to restore missing tissues. Well-recognized donor sites include the anterior and posterior iliac crest, rib, and intercalvarial diploic bone. The proximal tibia has also been explored as an alternative donor site. The use of the tibia for bone graft has many benefits, such as procedural ease, adequate volume of cancellous and cortical bone, and minimal complications. Although patients rarely complain of pain, swelling, discomfort, or dysfunction, such as gait disturbance, both patients and surgeons should pay close attention to such after effects due to the possibility of tibial fracture. The purpose of this study is to analyze tibial fractures that occurring after osteotomy for a medioproximal tibial graft. An analysis was intended for patients who underwent medioproximal tibial graft between March 2004 and December 2011 in Inha University Hospital. A total of 105 subjects, 30 females and 75 males, ranged in age from 17 to 78 years. We investigated the age, weight, circumstance, and graft timing in relation to tibial fracture. Tibial fractures occurred in four of 105 patients. There were no significant differences in graft region, shape, or scale between the fractured and non-fractured patients. Patients who undergo tibial grafts must be careful of excessive external force after the operation.

  17. Effects of humeral head compression taping on the isokinetic strength of the shoulder external rotator muscle in patients with rotator cuff tendinitis.

    PubMed

    Kim, Moon-Hwan; Oh, Jae-Seop

    2015-01-01

    [Purpose] The purpose of this study was to examine the effects of humeral head compression taping (HHCT) on the strength of the shoulder external rotator muscle in patients with rotator cuff tendinitis. [Subjects and Methods] Twenty patients with rotator cuff tendinitis were recruited. The shoulder external rotator strength was measured using a Biodex isokinetic dynamometer system. A paired t-test was performed to evaluate within-group differences in the strength of the shoulder external rotator muscle. [Results] Significantly higher shoulder external rotator peak torque and peak torque per body weight were found in the HHCT condition than in the no-taping condition. [Conclusion] HHCT may effectively increase the shoulder external rotator muscle strength in patients with rotator cuff tendinitis.

  18. Tibial lengthening over humeral and tibial intramedullary nails in patients with sequelae of poliomyelitis: a comparative study.

    PubMed

    Chen, Daoyun; Chen, Jianmin; Jiang, Yao; Liu, Fanggang

    2011-06-01

    Leg discrepancy is common after poliomyelitis. Tibial lengthening is an effective way to solve this problem. It is believed lengthening over a tibial intramedullary nail can provide a more comfortable lengthening process than by the conventional technique. However, patients with sequelae of poliomyelitis typically have narrow intramedullary canals allowing limited space for inserting a tibial intramedullary nail and Kirschner wires. To overcome this problem, we tried using humeral nails instead of tibial nails in the lengthening procedure. In this study, we used humeral nails in 20 tibial lengthening procedures and compared the results with another group of patients who were treated with tibial lengthening over tibial intramedullary nails. The mean consolidation index, percentage of increase and external fixation index did not show significant differences between the two groups. However, less blood loss and shorter operating time were noted in the humeral nail group. More patients encountered difficulty with the inserted intramedullary nail in the tibial nail group procedure. The complications did not show a statistically significant difference between the two techniques on follow-up. In conclusion, we found the humeral nail lengthening technique was more suitable in leg discrepancy patients with sequelae of poliomyelitis.

  19. Influence of fixation point of latissimus dorsi tendon transfer for irreparable rotator cuff tear on glenohumeral external rotation: A cadaver study.

    PubMed

    Bargoin, K; Boissard, M; Kany, J; Grimberg, J

    2016-12-01

    Latissimus dorsi tendon transfer is a surgical option for treating irreparable posterosuperior rotator cuff tears, notably when attempting to reconstruct active external rotation. We hypothesized that the positioning of the transfer's point of fixation would differ depending on the desired elbow-to-body external rotation or external rotation with the elbow abducted. Seven shoulders from four whole frozen cadavers were used. We created two systems to install the subject in a semi-seated position to allow external rotation elbow to body and the arm abducted 90°. Traction sutures were positioned on the latissimus dorsi muscle and a massive tear of the rotator cuff was created. We tested six different transfer positions. Muscle contraction of the latissimus dorsi was stimulated using 10-N and 20-N suspended weights. The point of fixation of the latissimus dorsi on the humeral head had an influence on the elbow-to-body external rotation and with 90° abduction (P<0.001). The fixation point for a maximum external rotation with the elbow to the body was the anterolateral position (P<0.016). The fixation point for a maximum external rotation at 90° abduction was the position centered on the infraspinatus footprint (P<0.078). The optimal point of fixation differs depending on whether external rotation is restored at 0° or 90° abduction. Fundamental study, anatomic study. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  20. Load Sharing Among Collateral Ligaments, Articular Surfaces, and the Tibial Post in Constrained Condylar Knee Arthroplasty.

    PubMed

    Wang, Xiaonan; Malik, Aamer; Bartel, Donald L; Wright, Timothy M; Padgett, Douglas E

    2016-08-01

    The normal knee joint maintains stable motion during activities of daily living. After total knee arthroplasty (TKA), stability is achieved by the conformity of the bearing surfaces of the implant components, ligaments, and constraint structures incorporated in the implant design. The large, rectangular tibial post in constrained condylar knee (CCK) arthroplasty, often used in revision surgery, provides added stability, but increases susceptibility to polyethylene wear as it contacts the intercondylar box on the femoral component. We examined coronal plane stability to understand the relative contributions of the mechanisms that act to stabilize the CCK knee under varus-valgus loading, namely, load distribution between the medial and lateral condyles, contact of the tibial post with the femoral intercondylar box, and elongation of the collateral ligaments. A robot testing system was used to determine the joint stability in human cadaveric knees as described by the moment versus angular rotation behavior under varus-valgus moments at 0 deg, 30 deg, and 90 deg of flexion. The angular rotation of the CCK knee in response to the physiological moments was limited to ≤1.5 deg. The primary stabilizing mechanism was the redistribution of the contact force on the bearing surfaces. Contact between the tibial post and the femoral box provided a secondary stabilizing mechanism after lift-off of a condyle had occurred. Collateral ligaments provide limited stability because little ligament elongation occurred under such small angular rotations. Compressive loads applied across the knee joint, such as would occur with the application of muscle forces, enhanced the ability of the bearing surfaces to provide resisting internal varus-valgus moment and, thus, reduced the exposure of the tibial post to the external varus-valgus loads. Our results suggest that the CCK stability can be refined by considering both the geometry of the bearing surfaces and the contacting geometry

  1. Using external and internal locking plates in a two-stage protocol for treatment of segmental tibial fractures.

    PubMed

    Ma, Ching-Hou; Tu, Yuan-Kun; Yeh, Jih-Hsi; Yang, Shih-Chieh; Wu, Chin-Hsien

    2011-09-01

    The tibial segmental fractures usually follow high-energy trauma and are often associated with many complications. We designed a two-stage protocol for these complex injuries. The aim of this study was to assess the outcome of tibial segmental fractures treated according to this protocol. A prospective series of 25 consecutive segmental tibial fractures were treated using a two-stage procedure. In the first stage, a low-profile locking plate was applied as an external fixator to temporarily immobilize the fractures after anatomic reduction had been achieved followed by soft-tissue reconstruction. The second stage involved definitive internal fixation with a locking plate using a minimally invasive percutaneous plate osteosynthesis technique. The median follow-up was 32 months (range, 20-44 months). All fractures achieved union. The median time for the proximal fracture union was 23 weeks (range, 12-30 weeks) and that for distal fracture union was 27 weeks (range, 12-46 weeks; p = 0.08). Functional results were excellent in 21 patients and good in 4 patients. There were three cases of delayed union of distal fracture. Valgus malunion >5 degrees occurred in two patients, and length discrepancy >1 cm was observed in two patients. Pin tract infection occurred in three patients. Use of the two-stage procedure for treatment of segmental tibial fractures is recommended. Surgeons can achieve good reduction with stable temporary fixation, soft-tissue reconstruction, ease of subsequent definitive fixation, and high union rates. Our patients obtained excellent knee and ankle joint motion, good functional outcomes, and a comfortable clinical course.

  2. Bilateral double level tibial lengthening in dwarfism.

    PubMed

    Burghardt, Rolf D; Yoshino, Koichi; Kashiwagi, Naoya; Yoshino, Shigeo; Bhave, Anil; Paley, Dror; Herzenberg, John E

    2015-12-01

    Outcome assessment after double level tibial lengthening in patients with dwarfism. Fourteen patients with dwarfism were analyzed after bilateral simultaneous double level tibial lengthening. Average age was 15.1 years. Average lengthening was 13.5 cm. The two levels were lengthened by an average of 7.5 cm proximally and 6.0 cm distally. Concomitant deformities were also addressed during lengthening. External fixation treatment time averaged 8.8 months. Healing index averaged 0.7 months/cm. Bilateral tibial lengthening for dwarfism is difficult, but the results are usually quite gratifying.

  3. Canine stifle joint biomechanics associated with tibial plateau leveling osteotomy predicted by use of a computer model.

    PubMed

    Brown, Nathan P; Bertocci, Gina E; Marcellin-Little, Denis J

    2014-07-01

    To evaluate effects of tibial plateau leveling osteotomy (TPLO) on canine stifle joint biomechanics in a cranial cruciate ligament (CrCL)-deficient stifle joint by use of a 3-D computer model simulating the stance phase of gait and to compare biomechanics in TPLO-managed, CrCL-intact, and CrCL-deficient stifle joints. Computer simulations of the pelvic limb of a Golden Retriever. A previously developed computer model of the canine pelvic limb was used to simulate TPLO stabilization to achieve a tibial plateau angle (TPA) of 5° (baseline value) in a CrCL-deficient stifle joint. Sensitivity analysis was conducted for tibial fragment rotation of 13° to -3°. Ligament loads, relative tibial translation, and relative tibial rotation were determined and compared with values for CrCL-intact and CrCL-deficient stifle joints. TPLO with a 5° TPA converted cranial tibial translation to caudal tibial translation and increased loads placed on the remaining stifle joint ligaments, compared with results for a CrCL-intact stifle joint. Lateral collateral ligament load was similar, medial collateral ligament load increased, and caudal cruciate ligament load decreased after TPLO, compared with loads for a CrCL-deficient stifle joint. Relative tibial rotation after TPLO was similar to that of a CrCL-deficient stifle joint. Stifle joint biomechanics were affected by TPLO fragment rotation. In the model, stifle joint biomechanics were partially improved after TPLO, compared with CrCL-deficient stifle joint biomechanics, but TPLO did not fully restore CrCL-intact stifle joint biomechanics. Overrotation of the tibial fragment negatively influenced stifle joint biomechanics by increasing caudal tibial translation.

  4. Electromyographic activity of selected scapular stabilizers during glenohumeral internal and external rotation contractions.

    PubMed

    Schachter, Aaron K; McHugh, Malachy P; Tyler, Timothy F; Kreminic, Ian J; Orishimo, Karl F; Johnson, Christopher; Ben-Avi, Simon; Nicholas, Stephen J

    2010-09-01

    An important synergistic relationship exists between the scapular stabilizers and the glenohumeral rotators. Information on the relative contribution of the scapular stabilizers to glenohumeral rotation would be useful for exercise prescription for overhead athletes and for patients with shoulder pathology. We hypothesized that the scapular stabilizers would be highly active during both maximal and submaximal internal and external rotation. Eight healthy male volunteers (16 shoulders) performed internal and external glenohumeral rotation testing at maximal and submaximal intensities. They also performed a scapular retraction rowing exercise at maximal and submaximal levels. Electromyographic (EMG) signals were recorded from the infraspinatus, pectoralis major, serratus anterior, and middle trapezius. Values were compared among muscle groups, among individual muscles at different intensity levels, and among individual muscles at different points in the arc of motion. For submaximal glenohumeral internal rotation, activity in the scapular stabilizers was not different (P = .1-.83) from activity in the internal rotator throughout the range of motion. For the initial two-thirds of maximal internal rotation, middle trapezius activity and pectoralis major activity were higher (P < .05) than serratus anterior activity. For submaximal external rotation, activity in the scapular stabilizers during the middle phase of the motion was higher (P < .05) than activity in the external rotators. For maximal external rotation these differences were present throughout the motion with middle trapezius activity exceeding 100% maximal voluntary contraction. The scapular stabilizers functioned at a similar or higher intensity than the glenohumeral rotators during internal and external rotation. This highlights the importance of training the scapular stabilizers in upper extremity athletes and in patients with shoulder pathology. (c) 2010 Journal of Shoulder and Elbow Surgery Board of

  5. Latissimus dorsi transfer to restore external rotation with reverse shoulder arthroplasty: a biomechanical study.

    PubMed

    Favre, Philippe; Loeb, Michael D; Helmy, Naeder; Gerber, Christian

    2008-01-01

    In patients with pseudoparesis of the shoulder resulting from irreparable rotator cuff tears, reverse shoulder arthroplasty (RSA) can restore active elevation, but external rotation remains less predictable. Latissimus dorsi transfer (LDT) has been shown to be effective in restoring external rotation in patients with posterosuperior tears of the rotator cuff. The aim of this study is to determine the capacity of the LDT to restore external rotation in combination with RSA and to investigate the mechanical advantage produced by 3 different insertion sites. A biomechanical model was created using a reverse total shoulder prosthesis with 3 different transfer insertions. Moment arms were measured for 2 static positions and 1 motion of the humerus. The moment arm analysis showed that LDT can improve active external rotation in the setting of a reverse prosthesis. An insertion site on the posterior side of the greater tuberosity (adjacent to the teres minor insertion) produced a greater external rotation moment arm.

  6. Fixator-assisted medial tibial plateau elevation to treat severe Blount's disease: outcomes at maturity.

    PubMed

    Fitoussi, F; Ilharreborde, B; Lefevre, Y; Souchet, P; Presedo, A; Mazda, K; Penneçot, G F

    2011-04-01

    Severe forms of Blount's disease may be associated with medial tibial plateau (MTP) depression. Management should then take account of joint congruence, laxity, limb axis, torsional abnomality, leg length discrepancy (LLD) and eventual recurrence history. Eight knees (six patients) were managed in a single step comprising MTP elevation osteotomy, lateral epiphysiodesis and proximal tibia osteotomy to correct varus and rotational deformity. Fixation was achieved using an Ilizarov external fixator. Mean age was 10.5 years. Mean hip-knee-ankle (HKA) angle was 151°; distal femoral varus, 94°; metaphyseal-diaphyseal angle (MDA), 27°; and angle of depression of the medial tibial plateau (ADMTP), 42°. Predicted residual proximal tibial growth was 2.6 cm. At a mean 48 months' follow-up, results were good in six cases, medium in one and poor (due to incomplete lateral epiphysiodesis) in one. Mean lateral tibial torsion was 9° and final LLD 11 mm. Weight-bearing was resumed at 2 months, and the fixator was removed at 5.5 months postoperatively. At end of follow-up, mean HKA angle was 179.6°, MDA 7.3° and ADMTP 5.4°. This technically demanding procedure gave satisfactory results in terms of axes and congruence; longer term assessment remains needed. Level IV. Retrospective study. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  7. Anatomical landmarks of the distal femoral condyles are not always parallel to the tibial bone cut surface in flexion during total knee arthroplasty.

    PubMed

    Itokazu, Maki; Minoda, Yukihide; Ikebuchi, Mitsuhiko; Mizokawa, Shigekazu; Ohta, Yoichi; Nakamura, Hiroaki

    2016-08-01

    Soft tissue balancing is crucial to the success of total knee arthroplasty (TKA). To create a rectangular flexion joint gap, the rotation of the femoral component is important. The purpose of this study is to determine whether or not anatomical landmarks of the distal femoral condyles are parallel to the tibial bone cut surface in flexion. Forty-eight patients (three male and 45 female) with a mean age of 74years were examined. During the operation, we estimated the flexion joint gap with the following three techniques. 1) a three degree external cut to the posterior condylar line (MR1), 2) a parallel cut to the surgical transepicondylar axis (MR2), and 3) a parallel cut to the anatomical transepicondylar axis (MR3). The flexion joint gap was 1.1±3.0° (mean±standard deviation (SD)) in internal rotation in the case of MR1, 0.9±3.4° in internal rotation in the case of MR2, and 2.1±3.4° in external rotation in the case of MR3. An outlier (flexion joint gap >3.0°) was observed in 12 cases (25%) in MR1, 13 cases (27%) in MR2, and 15 cases (31%) in MR3. The anatomical landmarks of the distal femoral condyles are not always parallel to the tibial bone cut surface in flexion. To create a rectangular flexion joint gap, the rotation of the femoral component rotation is based not only on the anatomical landmarks but also on the ligament balance. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Limited rotation of the mobile-bearing in a rotating platform total knee prosthesis.

    PubMed

    Garling, E H; Kaptein, B L; Nelissen, R G H H; Valstar, E R

    2007-01-01

    The hypothesis of this study was that the polyethylene bearing in a rotating platform total knee prosthesis shows axial rotation during a step-up motion, thereby facilitating the theoretical advantages of mobile-bearing knee prostheses. We examined 10 patients with rheumatoid arthritis who had a rotating platform total knee arthroplasty (NexGen LPS mobile, Zimmer Inc. Warsaw, USA). Fluoroscopic data was collected during a step-up motion six months postoperatively. A 3D-2D model fitting technique was used to reconstruct the in vivo 3D kinematics. The femoral component showed more axial rotation than the polyethylene mobile-bearing insert compared to the tibia during extension. In eight knees, the femoral component rotated internally with respect to the tibia during extension. In the other two knees the femoral component rotated externally with respect to the tibia. In all 10 patients, the femur showed more axial rotation than the mobile-bearing insert indicating the femoral component was sliding on the polyethylene of the rotating platform during the step-up motion. Possible explanations are a too limited conformity between femoral component and insert, the anterior located pivot location of the investigated rotating platform design, polyethylene on metal impingement and fibrous tissue formation between the mobile-bearing insert and the tibial plateau.

  9. [Surgical treatment of tibial nonunion after wounding by high velocity missile and external fixators: a case report].

    PubMed

    Golubović, Ivan; Vukašinović, Zoran; Stojiljković, Predrag; Golubović, Zoran; Stojiljković, Danilo; Radovanović, Zoran; Ilić, Nenad; Najman, Stevo; Višnjić, Aleksandar; Arsić, Stojanka

    2012-01-01

    The missiles of modern firearms can cause severe fractures of the extremity. High velocity missile fractures of the tibia are characterized by massive tissue destruction and primary contamination with polymorphic bacteria. Treatment of these fractures is often complicated by delayed healing, poor position healing, nonhealing and bone tissue infection. We present the management of tibial nonunion after wounding by high velocity missile and primary treatment by external fixation in a 25-year-old patient. The patient was primarily treated with external fixation and reconstructive operations of the soft tissue without union of the fracture. Seven months after injury we placed a compression-distraction external fixator type Mitkovic and started with compression and distraction in the fracture focus after osteotomy of the fibula and autospongioplasty. We recorded satisfactory fracture healing and good functional outcome. Contamination and devitalization of the soft-tissue envelope increase the risk of infection and nonunion in fractures after wounding by high velocity missile. The use of the compression-distraction external fixator type Mitkovic may be an effective method in nonunions of the tibia after this kind of injury.

  10. A Meta-Analysis for Postoperative Complications in Tibial Plafond Fracture: Open Reduction and Internal Fixation Versus Limited Internal Fixation Combined With External Fixator.

    PubMed

    Wang, Dong; Xiang, Jian-Ping; Chen, Xiao-Hu; Zhu, Qing-Tang

    2015-01-01

    The treatment of tibial plafond fractures is challenging to foot and ankle surgeons. Open reduction and internal fixation and limited internal fixation combined with an external fixator are 2 of the most commonly used methods of tibial plafond fracture repair. However, conclusions regarding the superior choice remain controversial. The present meta-analysis aimed to quantitatively compare the postoperative complications between open reduction and internal fixation and limited internal fixation combined with an external fixator for tibial plafond fractures. Nine studies with 498 fractures in 494 patients were included in the present study. The meta-analysis found no significant differences in bone healing complications (risk ratio [RR] 1.17, 95% confidence interval [CI] 0.68 to 2.01, p = .58], nonunion (RR 1.09, 95% CI 0.51 to 2.36, p = .82), malunion or delayed union (RR 1.24, 95% CI 0.57 to 2.69, p = .59), superficial (RR 1.56, 95% CI 0.43 to 5.61, p = .50) and deep (RR 1.89, 95% CI 0.62 to 5.80) infections, arthritis symptoms (RR 1.20, 95% CI 0.92 to 1.58, p = .18), or chronic osteomyelitis (RR 0.31, 95% CI 0.05 to 1.84, p = .20) between the 2 groups. Copyright © 2015 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  11. Reliability of Measurement of Glenohumeral Internal Rotation, External Rotation, and Total Arc of Motion in 3 Test Positions

    PubMed Central

    Kevern, Mark A.; Beecher, Michael; Rao, Smita

    2014-01-01

    Context: Athletes who participate in throwing and racket sports consistently demonstrate adaptive changes in glenohumeral-joint internal and external rotation in the dominant arm. Measurements of these motions have demonstrated excellent intrarater and poor interrater reliability. Objective: To determine intrarater reliability, interrater reliability, and standard error of measurement for shoulder internal rotation, external rotation, and total arc of motion using an inclinometer in 3 testing procedures in National Collegiate Athletic Association Division I baseball and softball athletes. Design: Cross-sectional study. Setting: Athletic department. Patients or Other Participants Thirty-eight players participated in the study. Shoulder internal rotation, external rotation, and total arc of motion were measured by 2 investigators in 3 test positions. The standard supine position was compared with a side-lying test position, as well as a supine test position without examiner overpressure. Results: Excellent intrarater reliability was noted for all 3 test positions and ranges of motion, with intraclass correlation coefficient values ranging from 0.93 to 0.99. Results for interrater reliability were less favorable. Reliability for internal rotation was highest in the side-lying position (0.68) and reliability for external rotation and total arc was highest in the supine-without-overpressure position (0.774 and 0.713, respectively). The supine-with-overpressure position yielded the lowest interrater reliability results in all positions. The side-lying position had the most consistent results, with very little variation among intraclass correlation coefficient values for the various test positions. Conclusions: The results of our study clearly indicate that the side-lying test procedure is of equal or greater value than the traditional supine-with-overpressure method. PMID:25188316

  12. Differences in Medial and Lateral Posterior Tibial Slope: An Osteological Review of 1090 Tibiae Comparing Age, Sex, and Race.

    PubMed

    Weinberg, Douglas S; Williamson, Drew F K; Gebhart, Jeremy J; Knapik, Derrick M; Voos, James E

    2017-01-01

    Injuries to the anterior cruciate ligament (ACL) are common, and a number of knee morphological variables have been identified as risk factors for an ACL injury, including the posterior tibial slope (TS). However, limited data exist regarding innate population differences in the TS. To (1) establish normative values for the medial and lateral posterior TS; (2) determine what differences exist between ages, sexes, and races; and (3) determine how internal or external tibial rotation (as occurs during sagittal knee motion) influences the stereotactic perception of the TS. Cross-sectional study; Level of evidence, 3. A total of 545 cadaveric specimens (1090 tibiae) were obtained from the Hamann-Todd osteological collection. Specimens were leveled in the coronal, sagittal, and axial planes using a digital laser. Virtual representations of each bone were created with a 3-dimensional digitizer apparatus. The TS of the medial and lateral tibial plateaus were measured using techniques adapted from previous radiographic protocols. Medial and lateral TS were then again measured on 200 tibiae that were internally and externally rotated by 10° (axially). The mean (±SD) medial TS was 6.9° ± 3.7° posterior, which was greater than the mean lateral TS of 4.7° ± 3.6° posterior ( P < .001). Neither the medial nor lateral TS changed with age. Women had a greater mean TS compared with men on both the medial (7.5° ± 3.8° vs 6.8° ± 3.7°, respectively; P = .03) and lateral (5.2° ± 3.5° vs 4.6° ± 3.5°, respectively; P = .04) sides. Black specimens had a greater mean medial TS (8.7° ± 3.6° vs 5.8° ± 3.3°, respectively; P < .001) and lateral TS (5.9° ± 3.3° vs 3.8° ± 3.5°, respectively; P < .001) compared with white specimens. Axial rotation was shown to increase the perception of the medial and lateral TS ( P < .001). The medial TS was shown to be greater than the lateral TS. Important sex- and race-based differences exist in the TS. This study also

  13. Role of Joshi's external stabilization system with percutaneous screw fixation in high-energy tibial condylar fractures associated with severe soft tissue injuries.

    PubMed

    Gupta, Ashish-Kumar; Sapra, Rahul; Kumar, Rakesh; Gupta, Som-Prakash; Kaushik, Devwart; Gaba, Sahil; Bansal, Mahesh Chand; Dayma, Ratan Lal

    2015-01-01

    The treatment of high-energy tibial condylar fractures which are associated with severe soft tissue injuries remains contentious and challenging. In this study, we assessed the results of Joshi's external stabilization system (JESS) by using the principle of ligamentotaxis and percutaneous screw fixation for managing high-energy tibial condylar fractures associated with severe soft tissue injuries. Between June 2008 and June 2010, 25 consecutive patients who were 17e71 years (mean, 39.7), underwent the JESS fixation for high-energy tibial condylar fractures associated with severe soft tissue injuries. Out of 25 patients, 2 were lost during follow-up and in 1 case early removal of frame was done, leaving 22 cases for final follow-up. Among them, 11 had poor skin condition with abrasions and blisters and 2 were open injuries (Gustilo-Anderson grade I&II). The injury mechanisms were motor vehicle accidents (n=19), fall from a height (n=2) and assault (n=1). The fractures were classified according to Schatzker classification system. There were 7 type-V, 14 type-VI and 1 type-lV Schatzker's tibial plateau fractures. The average interval between the injury and surgery was 6.8 days (range 2-13). The average hospital stay was 13 days (range, 7-22). The average interval between the surgery and full weight bearing was 13.6 weeks (range 11-20). The average range of knee flexion was 121°(range 105°-135°). The normal extension of the knee was observed in 20 patients, and an extensor lag of 5°-8° was noted in 2 patients. The complications included superficial pin tract infections (n=4) with no knee stiffness. JESS with lag screw fixation combines the benefit of traction, external fixation, and limited internal fixation, at the same time as allowing the ease of access to the soft tissue for wound checks, pin care, dressing changes, measurement of compartment pressure, and the monitoring of the neurovascular status. In a nutshell, JESS along with screw fixation offers a

  14. Open tibial fractures grade IIIC treated successfully with external fixation, negative-pressure wound therapy and recombinant human bone morphogenetic protein 7.

    PubMed

    Babiak, Ireneusz

    2014-10-01

    The aim of the therapy in open tibial fractures grade III was to cover the bone with soft tissue and achieve healed fracture without persistent infection. Open tibial fractures grade IIIC with massive soft tissue damage require combined orthopaedic, vascular and plastic-reconstructive procedures. Negative-pressure wound therapy (NPWT), used in two consecutive cases with open fracture grade IIIC of the tibia diaphysis, healed extensive soft tissue defect with exposure of the bone. NPWT eventually allowed for wound closure by split skin graft within 21-25 days. Ilizarov external fixator combined with application of recombinant human bone morphogenetic protein-7 at the site of delayed union enhanced definitive bone healing within 16-18 months. © 2012 The Authors. International Wound Journal © 2012 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  15. Unlocking the talus by eversion limits medial ankle injury risk during external rotation.

    PubMed

    Button, Keith D; Wei, Feng; Haut, Roger C

    2015-10-15

    Eversion prior to excessive external foot rotation has been shown to predispose the anterior tibiofibular ligament (ATiFL) to failure, yet protect the anterior deltoid ligament (ADL) from failure despite high levels of foot rotation. The purpose of the current study was to measure the rotations of both the subtalar and talocrural joints during foot external rotation at sub-failure levels in either a neutral or a pre-everted position as a first step towards understanding the mechanisms of injury in previous studies. Fourteen (seven pairs) cadaver lower extremities were externally rotated 20° in either a pre-everted or neutral configuration, without producing injury. Motion capture was performed to track the tibia, talus, and calcaneus motions, and a joint coordinate system was used to analyze motions of the two joints. While talocrural joint rotation was greater in the neutral ankle (13.3±2.0° versus 10.5±2.7°, p=0.006), subtalar joint rotation was greater in the pre-everted ankle (2.4±1.9° versus 1.1±1.0°, p=0.014). Overall, the talocrural joint rotated more than the subtalar joint (11.9±2.8° versus 1.8±1.6°, p<0.001). It was proposed that the calcaneus and talus 'lock' in a neutral position, but 'unlock' when the ankle is everted prior to rotation. This locking/unlocking mechanism could be responsible for an increased subtalar rotation, but decreased talocrural rotation when the ankle is pre-everted, protecting the ADL from failure. This study may provide information valuable to the study of external rotation kinematics and injury risk. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Displaceability of SLAP lesion on shoulder MR arthrography with external rotation position.

    PubMed

    Jung, Jin Young; Ha, Doo Hoe; Lee, Sang Min; Blacksin, Marcia F; Kim, Kyung Ah; Kim, Jae Wha

    2011-08-01

    To investigate the usefulness of the external rotation (ER) position on magnetic resonance (MR) arthrography for the diagnosis of superior labral anterior to posterior (SLAP) lesion. Approval of institutional review board was obtained, and informed consent was waived. The MR arthrograms of 210 shoulders that were arthroscopically confirmed as SLAP lesion in 163 shoulders and intact superior labrum in 47 shoulders were retrospectively reviewed in each neutral and ER position for the diagnosis of SLAP lesion, the extent of distraction of the torn labrum, and the external rotation angle. The sensitivity, specificity, and diagnostic accuracy of MR arthrograms for determining SLAP lesion were assessed in each position. For the arthroscopically confirmed group, the diagnosis of SLAP lesion and the extent of distraction about the tear were compared between neutral and ER positions by Fisher's exact test and the paired t-test. The correlation between the external rotation angle and the diagnosis of SLAP lesion, and between the external rotation angle and the differences in the extent of distraction were evaluated in the ER position using the ANOVA test. Sensitivity and diagnostic accuracy of MR arthrography for SLAP lesion increased from 64.4% and 71.0% in the neutral position to 78.5% and 81.9% in the ER position, respectively, without change of specificity, which was 93.6% in both positions. The diagnosis of SLAP lesion was changed from negative to SLAP lesion in 16.0% of the arthroscopically confirmed group. Mean difference in the extent of distraction about the tear was 0.69 mm (range -1.40 ∼ 6.67 mm), which was statistically significant. There was no relationship between the external rotation angle and the diagnosis of SLAP lesion, and between the external rotation angle and the differences in the extent of distraction. Shoulder MR arthrography with additional ER positioning helps in the diagnosis of SLAP lesion and provides information about the displaceability

  17. [Surgical treatment of pronation and supination external rotation trimalleolar fractures].

    PubMed

    Xu, Ye-qing; Zhan, Bei-lei; He, Fei-xiong; Wei, Hong-da

    2008-04-01

    To explore the operative method and its clinical effects of pronation and supination external rotation trimalleolar fractures. From March 2000 to July 2006,42 patients of the pronation and supination external rotation trimalleolar fractures treated with open reduction and internal fixation. Thirty-one were males and 11 were females,with an average age of 40.5 years (from 19 to 76 years). Four cases were open fractures and 38 cases close fractures. The fractures were classified as pronation-external rotation (grade IV) injury in 18 cases and supination-external rotation (grade IV)in 24 cases according to the system of Lauge-Hansen. The time of injury to operation was 2 hours to 27 days. The medial, lateral and posterior malleolus were exposed by standard anteromedial and Gatellier-Chastang approaches. The reduction and internal fixation started with the posterior,then the medial and the lateral malleolus and distal tibiofibular syndesmosis in sequence. The anteroposterior, lateral and mostise X-ray films were taken after operation. All the patients were followed up for an average time of 13.5 months(from 6 to 24 months). The time of union was from 12 to 16 weeks. The results were excellent in 20,good in 16, fair in 4 and poor in 2 cases according to Baird-Jackson ankle scoring system based on pain, stability, walking ability,range of motion and radiological manifestations. The excellent and good rate was 85.7%. There were no infection,malunion and nonunion of the fractures except that the inserted screw to distal tibiofibular syndesmosis was broken in 1 case. The key of operative treatment is to restore the anatomy of ankle and to regain the ankle function maximally.

  18. Self-Powered Nanocomposites under an External Rotating Magnetic Field for Noninvasive External Power Supply Electrical Stimulation.

    PubMed

    Wu, Fengluan; Jin, Long; Zheng, Xiaotong; Yan, Bingyun; Tang, Pandeng; Yang, Huikai; Deng, Weili; Yang, Weiqing

    2017-11-08

    Electrical stimulation in biology and gene expression has attracted considerable attention in recent years. However, it is inconvenient that the electric stimulation needs to be supplied an implanted power-transported wire connecting the external power supply. Here, we fabricated a self-powered composite nanofiber (CNF) and developed an electric generating system to realize electrical stimulation based on the electromagnetic induction effect under an external rotating magnetic field. The self-powered CNFs generating an electric signal consist of modified MWNTs (m-MWNTs) coated Fe 3 O 4 /PCL fibers. Moreover, the output current of the nanocomposites can be increased due to the presence of the magnetic nanoparticles during an external magnetic field is applied. In this paper, these CNFs were employed to replace a bullfrog's sciatic nerve and to realize the effective functional electrical stimulation. The cytotoxicity assays and animal tests of the nanocomposites were also used to evaluate the biocompatibility and tissue integration. These results demonstrated that this self-powered CNF not only plays a role as power source but also can act as an external power supply under an external rotating magnetic field for noninvasive the replacement of injured nerve.

  19. Does medial tenderness predict deep deltoid ligament incompetence in supination-external rotation type ankle fractures?

    PubMed

    DeAngelis, Nicola A; Eskander, Mark S; French, Bruce G

    2007-04-01

    To identify whether medial tenderness is a predictor of deep deltoid ligament incompetence in supination-external rotation ankle fractures. All Weber B lateral malleolar fractures with normal medial clear space over a 9 month period were prospectively included in the study. Fracture patterns not consistent with a supination-external rotation mechanism were excluded. High-volume tertiary care referral center and Level I trauma center. Fifty-five skeletally mature patients with a Weber B lateral malleolar fracture and normal medial clear space presenting to our institution were included. All study patients had ankle anteroposterior, lateral, and mortise radiographs. Each patient was seen and evaluated by an orthopedic specialist and the mechanism of injury was recorded. Each patient was assessed for tenderness to palpation in the region of the deltoid ligament and then had an external rotation stress mortise radiograph. Correlating medial tenderness with deep deltoid competence as measured by stress radiographs. Thirteen patients (23.6%) were tender medially and had a positive external rotation stress radiograph. Thirteen patients (23.6%) were tender medially and had a negative external rotation stress radiograph. Nineteen patients (34.5%) were nontender medially and had a negative external rotation stress radiograph. Ten patients (18.2%) were nontender medially and had a positive external rotation stress radiograph. We calculated a chi statistic of 2.37 as well as the associated P value of 0.12. Medial tenderness as a measure of deep deltoid ligament incompetence had a sensitivity of 57%, a specificity of 59%, a positive predictive value of 50%, a negative predictive value of 66%, and an accuracy of 42%. There was no statistical significance between the presence of medial tenderness and deep deltoid ligament incompetence. There is a 25% chance of the fracture in question with medial tenderness having a positive external rotation stress and a 25% chance the fracture

  20. Effect of rotational alignment on outcome of total knee arthroplasty

    PubMed Central

    Breugem, Stefan J; van den Bekerom, Michel PJ; Tuinebreijer, Willem E; van Geenen, Rutger C I

    2015-01-01

    Background and purpose Poor outcomes have been linked to errors in rotational alignment of total knee arthroplasty components. The aims of this study were to determine the correlation between rotational alignment and outcome, to review the success of revision for malrotated total knee arthroplasty, and to determine whether evidence-based guidelines for malrotated total knee arthroplasty can be proposed. Patients and methods We conducted a systematic review including all studies reporting on both rotational alignment and functional outcome. Comparable studies were used in a correlation analysis and results of revision were analyzed separately. Results 846 studies were identified, 25 of which met the inclusion criteria. From this selection, 11 studies could be included in the correlation analysis. A medium positive correlation (ρ = 0.44, 95% CI: 0.27–0.59) and a large positive correlation (ρ = 0.68, 95% CI: 0.64–0.73) were found between external rotation of the tibial component and the femoral component, respectively, and the Knee Society score. Revision for malrotation gave positive results in all 6 studies in this field. Interpretation Medium and large positive correlations were found between tibial and femoral component rotational alignment on the one hand and better functional outcome on the other. Revision of malrotated total knee arthroplasty may be successful. However, a clear cutoff point for revision for malrotated total knee arthroplasty components could not be identified. PMID:25708694

  1. Effectiveness of Hip External Rotator Strengthening Exercise in Korean Postural Bowleg Women.

    PubMed

    Park, Seong Hoon; Lee, Jun Won; Kim, Joo Hyun; Tak, Kyoung Seok; Lee, Byeong Ho; Suh, In Suck

    2017-08-01

    Postural bowleg is a subclinical entity with both aesthetic and functional outcomes and appears to be common in East Asian countries. Internal rotation of the hip joint is associated with varus alignment at the knee joint of the bowleg. Strengthening exercise for the hip external rotator muscles seems to be effective in improving varus alignment of bowleg, but no standardized exercise program exists. A standardized active resistance strengthening exercise for hip external rotator muscles could improve varus alignment of the lower limb in bowlegged Korean women. In this article, a case series study was conducted to observe changes following a standardized 3-month program using equipment designed for strengthening of the hip external rotator muscles. Photogrammetric and radiographic data were used to compare the gap between knees and tibiofemoral (TF) angles before and after the exercise program. As a result, on average, the knee gap decreased by 1.6 cm. The TF angle decreased by 1.5°. Regression analysis revealed a statistically significant association between changes in knee gap and TF angle. The standardized 3-month active resistance strengthening exercise program of hip external rotator muscles was effective in improving postural deviation and cosmetic outcomes in bowlegged Korean women. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  2. The comparison of femoral component rotational alignment with transepicondylar axis in mobile bearing TKA, CT-scan study.

    PubMed

    Witoolkollachit, Polawat; Seubchompoo, Onuma

    2008-07-01

    The tibial axis referencing method with a balanced tension flexion gap at 90 degrees knee flexion provides adequate femoral component rotation usually in external rotation, the trans-epicondylar line being parallel to the proximal tibial cut. The LCS mobile bearing TKA uses this technique to automatically determine the femoral component rotation with desired tension. The determination of the epicondyles may lead to some confusion. On the lateral side, the prominence of the lateral condyle makes it easy to define. However on the medial side, some surgeons use the prominent part of the medial epicondyle (well recognized on CT scan as the most proximal ridge that gives insertion to the superficial collateral ligament) and use the anatomical transepicondylar axis (aTEA). Other surgeons use the depression below called sulcus that defines the surgical transepicondylar axis (sTEA). The authors evaluated 40 clinically successful mobile bearing TKA in 33 patients. All the knees were performed by single surgeon and the rotational alignment of the femoral component was applied with balanced flexion gap technique. Post-op CT-scans were done in all knees with 2-mm interval and measurement of the different angles (between aTEA and the prosthetic posterior condylar line and between the sTEA and the prosthetic posterior condylar line) with the UTHSCSA Imagetool (IT) version 3 from the University of Texas Health Science Center at San Antonio. The authors found that the mean femoral implant angle was in 2.39 degrees (SD = 2.80) of internal rotation with reference to the aTEA and in 1.34 degrees (SD = 1.57 degrees) of external rotation with reference to the sTEA when the medial sulcus was perfectly detected (nine knees, 22.5%). The angle between the aTEA and the sTEA was -3.98 degrees (SD = 1.05 degrees). No patella subluxation was identified. Nineteen or 47.5% of the femoral components were in internal or external femoral rotation of more than 3 degrees to the aTEA. When sTEA was

  3. The influence of the test setup on knee joint kinematics - A meta-analysis of tibial rotation.

    PubMed

    Hacker, Steffen P; Ignatius, Anita; Dürselen, Lutz

    2016-09-06

    The human knee is one of the most investigated joints in the human body. Various test setups exist to measure and analyse knee kinematics in vitro which differ in a wide range of parameters. The purpose of this article is to find an answer to the question if the test setup influences the kinematic outcome of studies and to what extend the results can be compared. To answer this question, we compared the tibial rotation as a function of flexion angle presented in 19 published studies. Raw data was extracted via image segmentation from the graphs depicted in these publications and the differences between the publications was analysed. Additionally, all test setups were compared regarding four aspects: method for angle calculation, system for data acquisition, loading condition and testing rig design. The resulting correlation matrix shows the influence of the test setup on the study outcome. Our results indicate that each study needs to collect its own reference data. Finally, we provide a mean internal rotation as a function of flexion angle based on more than 140 specimens tested in 14 different studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Favourable rotational alignment outcomes in PSI knee arthroplasty: A Level 1 systematic review and meta-analysis.

    PubMed

    Mannan, A; Smith, T O

    2016-03-01

    Implant malposition in total knee arthroplasty (TKA) often results in unsatisfactory outcomes. Rotational malalignment leads to impaired patellar tracking, stability and joint biomechanics. Patient-specific instrumentation aims to improve three-dimensional implant positioning while reducing overall costs of instrumentation. A PRISMA compliant search of all relevant literature between 2000 and 2014 was performed. The primary outcome of interest was deviation from a neutral femoral and tibial axial alignment of patient-specific instrumentation (PSI) vs conventional instrumentation. Femoral rotation was measured with reference to the transepicondylar axis. Tibial rotation was reported with reference to the anterior tibial tuberosity and a "best fit" with the anterior tibial cortex. Six randomised studies met the inclusion criteria reporting on a total of 444 knees. Computed tomography (CT) based PSI systems were used exclusively in three studies, and two further studies in association with magnetic resonance imaging (MRI). MRI was used exclusively in one study. Mean femoral rotation in the conventional group was: -1.7 to 1.6° (vs -1.7 to 1° in the PSI group). Meta-analysis demonstrated a significant treatment effect favouring PSI with increased accuracy in "three-degree outliers" with femoral rotation: Z=2.07, P=0.04. A single study reported tibial rotational outcomes with no significant difference demonstrated in conventional instrumentation vs PSI. This Level 1 meta-analysis demonstrates favourable femoral rotational alignment outcomes in PSI knee arthroplasty. Only limited data is available for tibial rotational outcomes. Further studies with standardised "gold-standard" measurement criteria are required to clarify tibial rotational outcomes in PSI TKA. 1. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Factors affecting the impingement angle of fixed- and mobile-bearing total knee replacements: a laboratory study.

    PubMed

    Walker, Peter S; Yildirim, Gokce; Sussman-Fort, Jon; Roth, Jonathan; White, Brian; Klein, Gregg R

    2007-08-01

    Maximum flexion-or impingement angle-is defined as the angle of flexion when the posterior femoral cortex impacts the posterior edge of the tibial insert. We examined the effects of femoral component placement on the femur, the slope angle of the tibial component, the location of the femoral-tibial contact point, and the amount of internal or external rotation. Posterior and proximal femoral placement, a more posterior femoral-tibial contact point, and a more tibial slope all increased maximum flexion, whereas rotation reduced it. A mobile-bearing knee gave results similar to those of the fixed-bearing knee, but there was no loss of flexion in internal or external rotation if the mobile bearing moved with the femur. In the absence of negative factors, a flexion angle of 150 degrees can be reached before impingement.

  6. A Bizarre, Unexplained, and Progressive External Rotation of the Shoulder as a Presentation of a Metastatic Deposit in the Rotator Cuff.

    PubMed

    El-Tawil, Sherif; Prinja, Aditya; Stanton, Jeremy

    2015-01-01

    We describe the first reported case of a tumour deposit within the rotator cuff presenting as a bizarre, progressive, and fixed external rotation deformity of the shoulder. It is also the first reported case to our knowledge of an oesophageal primary metastasising to the rotator cuff.

  7. A Bizarre, Unexplained, and Progressive External Rotation of the Shoulder as a Presentation of a Metastatic Deposit in the Rotator Cuff

    PubMed Central

    El-Tawil, Sherif; Prinja, Aditya; Stanton, Jeremy

    2015-01-01

    We describe the first reported case of a tumour deposit within the rotator cuff presenting as a bizarre, progressive, and fixed external rotation deformity of the shoulder. It is also the first reported case to our knowledge of an oesophageal primary metastasising to the rotator cuff. PMID:26543658

  8. [Outcome of operative treatment for supination-external rotation Lauge-Hansen stage IV ankle fractures].

    PubMed

    Kołodziej, Łukasz; Boczar, Tomasz; Bohatyrewicz, Andrzej; Zietek, Paweł

    2010-01-01

    Ankle fractures are among the most common musculoskeletal injures. These fractures occur with an overall age- and sex-adjusted incidence rate around 180 per 100 000 person-years. The most frequent mechanism is considered to be supination-external rotation (60 to 80% of all ankle fractures) consisting of pathologic external rotation of the foot initially placed in some degree of supination. According to Lauge-Hansen classification, ankle joint structures are damaged in a sequence where the final, stage IV injuries, represents transverse fracture of the medial malleolus or its equivalent-rupture of the deltoid ligament. The aim of this study is to compare the results of two subtypes of supination-external rotation stage IV fractures. 43 patients treated surgically in 2006 to 2007 at Authors institution because of stage IV supination-external rotation ankle fracture were submitted to retrospective analysis. There were 25 patients with bimalleolar fracture (type 1) and in 18 patients with lateral malleolar fracture with accompanying rupture of the deltoid ligament (type 2). The mean age was 46 years (from 20 to 82 years). Average follow up period was 37 months (from 24 to 46 months). For the evaluation of treatment AOFAS hind-foot score (American Orthopedic Foot and Ankle Society) was used. The mean AOFAS score scale for Type 1 fractures was 85 points and for type 2 was significantly higher and amounted to 91 points (p < 0.05). Supination-external rotation stage IV ankle fractures with medial malleolar fracture, requires the implementation of additional diagnostic and therapeutic strategies and procedures in order to improve the outcome of results.

  9. Kinematic analysis of hip and knee rotation and other contributors to ballet turnout.

    PubMed

    Quanbeck, Amy E; Russell, Jeffrey A; Handley, Sara C; Quanbeck, Deborah S

    2017-02-01

    Turnout, or external rotation (ER) of the lower extremities, is essential in ballet. The purpose of this study was to utilise physical examination and a biomechanical method for obtaining functional kinematic data using hip and knee joint centres to identify the relative turnout contributions from hip rotation, femoral anteversion, knee rotation, tibial torsion, and other sources. Ten female dancers received a lower extremity alignment assessment, including passive hip rotation, femoral anteversion, tibial torsion, weightbearing foot alignment, and Beighton hypermobility score. Next, turnout was assessed using plantar pressure plots and three-dimensional motion analysis; participants performed turnout to ballet first position on both a plantar pressure mat and friction-reducing discs. A retro-reflective functional marker motion capture system mapped the lower extremities and hip and knee joint centres. Mean total turnout was 129±15.7° via plantar pressure plots and 135±17.8° via kinematics. Bilateral hip ER during turnout was 49±10.2° (36% of total turnout). Bilateral knee ER during turnout was 41±5.9° (32% of total turnout). Hip ER contribution to total turnout measured kinematically was less than expected compared to other studies, where hip ER was determined without functional kinematic data. Knee ER contributed substantially more turnout than expected or previously reported. This analysis method allows precise assessment of turnout contributors.

  10. Effects of hand grip exercise on shoulder joint internal rotation and external rotation peak torque.

    PubMed

    Lee, Dong-Rour; Jong-Soon Kim, Laurentius

    2016-08-10

    The goal of this study is to analyze the effects of hand grip training on shoulder joint internal rotation (IR)/external rotation (ER) peak torque for healthy people. The research was conducted on 23 healthy adults in their 20 s-30 s who volunteered to participate in the experiment. Hand grip power test was performed on both hands of the research subjects before/after the test to study changes in hand grip power. Isokinetic machine was used to measure the concentric IRPT (internal rotation peak torque) and concentric ERPT (external rotation peak torque) at the velocity of 60°/sec, 90°/sec, and 180°/sec before/after the test. Hand grip training was performed daily on the subject's right hand only for four weeks according to exercise program. Finally, hand grip power of both hands and the maximum torque values of shoulder joint IR/ER were measured before/after the test and analyzed. There was a statistically significant difference in the hand grip power of the right hand, which was subject to hand grip training, after the experiment. Also, statistically significant difference for shoulder ERPT was found at 60°/sec. Hand grip training has a positive effect on shoulder joint IRPT/ERPT and therefore can help strengthen muscles around the shoulder without using weight on the shoulder. Consequently, hand grip training would help maintain strengthen the muscles around the shoulder in the early phase of rehabilitation process after shoulder surgery.

  11. Syndesmotic fixation in supination-external rotation ankle fractures: a prospective randomized study.

    PubMed

    Pakarinen, Harri J; Flinkkilä, Tapio E; Ohtonen, Pasi P; Hyvönen, Pekka H; Lakovaara, Martti T; Leppilahti, Juhana I; Ristiniemi, Jukka Y

    2011-12-01

    This study was designed to assess whether transfixion of an unstable syndesmosis is necessary in supination-external rotation (Lauge-Hansen SE/Weber B)-type ankle fractures. A prospective study of 140 patients with unilateral Lauge-Hansen supination-external rotation type 4 ankle fractures was done. After bony fixation, the 7.5-Nm standardized external rotation (ER) stress test for both ankles was performed under fluoroscopy. A positive stress examination was defined as a difference of more than 2 mm side-to-side in the tibiotalar or tibiofibular clear spaces on mortise radiographs. If the stress test was positive, the patient was randomized to either syndesmotic transfixion with 3.5-mm tricortical screws or no syndesmotic fixation. Clinical outcome was assessed using the Olerud-Molander scoring system, RAND 36-Item Health Survey, and Visual Analogue Scale (VAS) to measure pain and function after a minimum 1-year of followup. Twenty four (17%) of 140 patients had positive standardized 7.5-Nm ER stress tests after malleolar fixation. The stress view was positive three times on tibiotalar clear space, seven on tibiofibular clear space, and 14 times on both tibiotalar and tibiofibular clear spaces. There was no significant difference between the two randomization groups with regards to Olerud-Molander functional score, VAS scale measuring pain and function, or RAND 36-Item Health Survey pain or physical function at 1 year. Relevant syndesmotic injuries are rare in supination-external rotation ankle fractures, and syndesmotic transfixion with a screw did not influence the functional outcome or pain after the 1-year followup compared with no fixation.

  12. Comparison of two-staged ORIF and limited internal fixation with external fixator for closed tibial plafond fractures.

    PubMed

    Wang, Cheng; Li, Ying; Huang, Lei; Wang, Manyi

    2010-10-01

    To compare the results of two-staged open reduction and internal fixation (ORIF) and limited internal fixation with external fixator (LIFEF) for closed tibial plafond fractures. From January 2005 to June 2007, 56 patients with closed type B3 or C Pilon fractures were randomly allocated into groups I and II. Two-staged ORIF was performed in group I and LIFEF in group II. The outcome measures included bone union, nonunion, malunion, pin-tract infection, wound infection, osteomyelitis, ankle joint function, etc. These postoperative data were analyzed with Statistical Package for Social Sciences (SPSS) 13.0. Incidence of superficial soft tissue infection (involved in wound infection or pin-tract infection) in group I was lower than that in group II (P < 0.05), with significant difference. Group I has significantly less radiation exposure (P < 0.001). Group II had higher rates of malunion, delayed union, and arthritis symptoms, with no statistical significance. Both groups resulted similar ankle joint function. Logistic regression analysis indicated that smoking and fracture pattern were the two factors significantly influencing the final outcomes. In the treatment of closed tibial plafond fractures, both two-staged ORIF and LIFEF offer similar results. Patients undergo LIFEF carry significantly greater radiation exposure and higher superficial soft tissue infection rate (usually occurs on pin tract and does not affect the final outcomes).

  13. Effect of axial tibial torque direction on ACL relative strain and strain rate in an in vitro simulated pivot landing.

    PubMed

    Oh, Youkeun K; Kreinbrink, Jennifer L; Wojtys, Edward M; Ashton-Miller, James A

    2012-04-01

    Anterior cruciate ligament (ACL) injuries most frequently occur under the large loads associated with a unipedal jump landing involving a cutting or pivoting maneuver. We tested the hypotheses that internal tibial torque would increase the anteromedial (AM) bundle ACL relative strain and strain rate more than would the corresponding external tibial torque under the large impulsive loads associated with such landing maneuvers. Twelve cadaveric female knees [mean (SD) age: 65.0 (10.5) years] were tested. Pretensioned quadriceps, hamstring, and gastrocnemius muscle-tendon unit forces maintained an initial knee flexion angle of 15°. A compound impulsive test load (compression, flexion moment, and internal or external tibial torque) was applied to the distal tibia while recording the 3D knee loads and tibofemoral kinematics. AM-ACL relative strain was measured using a 3 mm DVRT. In this repeated measures experiment, the Wilcoxon signed-rank test was used to test the null hypotheses with p < 0.05 considered significant. The mean (±SD) peak AM-ACL relative strains were 5.4 ± 3.7% and 3.1 ± 2.8% under internal and external tibial torque, respectively. The corresponding mean (± SD) peak AM-ACL strain rates reached 254.4 ± 160.1%/s and 179.4 ± 109.9%/s, respectively. The hypotheses were supported in that the normalized mean peak AM-ACL relative strain and strain rate were 70 and 42% greater under internal than under external tibial torque, respectively (p = 0.023, p = 0.041). We conclude that internal tibial torque is a potent stressor of the ACL because it induces a considerably (70%) larger peak strain in the AM-ACL than does a corresponding external tibial torque. Copyright © 2011 Orthopaedic Research Society.

  14. EFFECT OF AXIAL TIBIAL TORQUE DIRECTION ON ACL RELATIVE STRAIN AND STRAIN RATE IN AN IN VITRO SIMULATED PIVOT LANDING

    PubMed Central

    Oh, Youkeun K.; Kreinbrink, Jennifer L.; Wojtys, Edward M.; Ashton-Miller, James A.

    2011-01-01

    Anterior cruciate ligament (ACL) injuries most frequently occur under the large loads associated with a unipedal jump landing involving a cutting or pivoting maneuver. We tested the hypotheses that internal tibial torque would increase the anteromedial (AM) bundle ACL relative strain and strain rate more than would the corresponding external tibial torque under the large impulsive loads associated with such landing maneuvers. Twelve cadaveric female knees [mean (SD) age: 65.0 (10.5) years] were tested. Pretensioned quadriceps, hamstring and gastrocnemius muscle-tendon unit forces maintained an initial knee flexion angle of 15°. A compound impulsive test load (compression, flexion moment and internal or external tibial torque) was applied to the distal tibia while recording the 3-D knee loads and tibofemoral kinematics. AM-ACL relative strain was measured using a 3mm DVRT. In this repeated measures experiment, the Wilcoxon Signed-Rank test was used to test the null hypotheses with p<0.05 considered significant. The mean (± SD) peak AM-ACL relative strains were 5.4±3.7 % and 3.1±2.8 % under internal and external tibial torque, respectively. The corresponding mean (± SD) peak AM-ACL strain rates reached 254.4±160.1 %/sec and 179.4±109.9 %/sec, respectively. The hypotheses were supported in that the normalized mean peak AM-ACL relative strain and strain rate were 70% and 42% greater under internal than external tibial torque, respectively (p=0.023, p=0.041). We conclude that internal tibial torque is a potent stressor of the ACL because it induces a considerably (70%) larger peak strain in the AM-ACL than does a corresponding external tibial torque. PMID:22025178

  15. Dependence of locked mode behavior on frequency and polarity of a rotating external magnetic perturbation

    NASA Astrophysics Data System (ADS)

    Inoue, S.; Shiraishi, J.; Takechi, M.; Matsunaga, G.; Isayama, A.; Hayashi, N.; Ide, S.

    2018-02-01

    Active control and stabilization of locked modes (LM) via rotating external magnetic perturbations are numerically investigated under a realistic low resistivity condition. To explore plasma responses to rotating and/or static external magnetic perturbations, we have developed a resistive magnetohydrodynamic code ‘AEOLUS-IT’. By using AEOLUS-IT, dependencies of mode behavior on frequency and polarity of the rotating magnetic perturbation are successfully clarified. Here, the rotational direction of the rotating magnetic perturbation to the equilibrium plasma rotation in the laboratory frame is referred to as ‘polarity’. The rotating magnetic perturbation acts on the background rotating plasma in the presence of a static field. Under such circumstances, there exist bifurcated states of the background rotating plasma, which should be taken into account when studying the dependence of the mode behavior on the rotating magnetic perturbation. It is found that there exist an optimum frequency and polarity of the rotating magnetic perturbation to control the LM, and that the LM is effectively stabilized by a co-polarity magnetic perturbation in comparison with a counter-polarity one.

  16. Comparison of fixed-bearing and mobile-bearing total knee arthroplasty after high tibial osteotomy.

    PubMed

    Hernigou, Philippe; Huys, Maxime; Pariat, Jacques; Roubineau, François; Flouzat Lachaniette, Charles Henri; Dubory, Arnaud

    2018-02-01

    There is no information comparing the results of fixed-bearing total knee replacement and mobile-bearing total knee replacement in the same patients previously treated by high tibial osteotomy. The purpose was therefore to compare fixed-bearing and mobile-bearing total knee replacements in patients treated with previous high tibial osteotomy. We compared the results of 57 patients with osteoarthritis who had received a fixed-bearing prosthesis after high tibial osteotomy with the results of 41 matched patients who had received a rotating platform after high tibial osteotomy. The match was made for length of follow-up period. The mean follow-up was 17 years (range, 15-20 years). The patients were assessed clinically and radiographically. The pre-operative knee scores had no statistically significant differences between the two groups. So was the case with the intra-operative releases, blood loss, thromboembolic complications and infection rates in either group. There was significant improvement in both groups of knees, and no significant difference was observed between the groups (i.e., fixed-bearing and mobile-bearing knees) for the mean Knee Society knee clinical score (95 and 92 points, respectively), or the Knee Society knee functional score (82 and 83 points, respectively) at the latest follow-up. However, the mean post-operative knee motion was higher for the fixed-bearing group (117° versus 110°). In the fixed-bearing group, one knee was revised because of periprosthetic fracture. In the rotating platform mobile-bearing group, one knee was revised because of aseptic loosening of the tibial component. The Kaplan-Meier survivorship for revision at ten years of follow-up was 95.2% for the fixed bearing prosthesis and 91.1% for the rotating platform mobile-bearing prosthesis. Although we did manage to detect significant differences mainly in clinical and radiographic results between the two groups, we found no superiority or inferiority of the mobile

  17. Flexibility of internal and external glenohumeral rotation of junior female tennis players and its correlation with performance ranking.

    PubMed

    Chiang, Ching-Cheng; Hsu, Chih-Chia; Chiang, Jinn-Yen; Chang, Weng-Cheng; Tsai, Jong-Chang

    2016-12-01

    [Purpose] The purpose of this study was to compare the internal and external rotation of the dominant and nondominant shoulders of adolescent female tennis players. The correlation between the shoulder rotation range of motion and the player's ranking was also analyzed. [Subjects and Methods] Twenty-one female junior tennis players who were 13 to 18 years old participated in this study. A standard goniometer was used to measure the internal and external rotation of both glenohumeral joints. The difference in internal and external rotation was calculated as the glenohumeral rotation deficit. The year-end ranking of each player was obtained from the Chinese Taipei Tennis Association. [Results] The internal rotation of the dominant shoulder was significantly smaller than that of the nondominant shoulder. Moreover, player ranking was significantly and negatively correlated with the internal rotation range of motion of both shoulders. On the other hand, the correlations of the internal and external rotation ranges of motion with the age, height, and weight were not significant. [Conclusion] The flexibility of the glenohumeral internal rotation is smaller in the dominant shoulder than of the nondominant shoulder in these junior female tennis players. Flexibility of the glenohumeral internal rotation may be a factor affecting performance in junior female tennis players.

  18. Improper trunk rotation sequence is associated with increased maximal shoulder external rotation angle and shoulder joint force in high school baseball pitchers.

    PubMed

    Oyama, Sakiko; Yu, Bing; Blackburn, J Troy; Padua, Darin A; Li, Li; Myers, Joseph B

    2014-09-01

    In a properly coordinated throwing motion, peak pelvic rotation velocity is reached before peak upper torso rotation velocity, so that angular momentum can be transferred effectively from the proximal (pelvis) to distal (upper torso) segment. However, the effects of trunk rotation sequence on pitching biomechanics and performance have not been investigated. The aim of this study was to investigate the effects of trunk rotation sequence on ball speed and on upper extremity biomechanics that are linked to injuries in high school baseball pitchers. The hypothesis was that pitchers with improper trunk rotation sequence would demonstrate lower ball velocity and greater stress to the joint. Descriptive laboratory study. Three-dimensional pitching kinematics data were captured from 72 high school pitchers. Subjects were considered to have proper or improper trunk rotation sequences when the peak pelvic rotation velocity was reached either before or after the peak upper torso rotation velocity beyond the margin of error (±3.7% of the time from stride-foot contact to ball release). Maximal shoulder external rotation angle, elbow extension angle at ball release, peak shoulder proximal force, shoulder internal rotation moment, and elbow varus moment were compared between groups using independent t tests (α < 0.05). Pitchers with improper trunk rotation sequences (n = 33) demonstrated greater maximal shoulder external rotation angle (mean difference, 7.2° ± 2.9°, P = .016) and greater shoulder proximal force (mean difference, 9.2% ± 3.9% body weight, P = .021) compared with those with proper trunk rotation sequences (n = 22). No other variables differed significantly different between groups. High school baseball pitchers who demonstrated improper trunk rotation sequences demonstrated greater maximal shoulder external rotation angle and shoulder proximal force compared with pitchers with proper trunk rotation sequences. Improper sequencing of the trunk and torso alter

  19. Lumbar lordosis angle and trunk and lower-limb electromyographic activity comparison in hip neutral position and external rotation during back squats.

    PubMed

    Oshikawa, Tomoki; Morimoto, Yasuhiro; Kaneoka, Koji

    2018-03-01

    [Purpose] To compare the lumbar lordosis angle and electromyographic activities of the trunk and lower-limb muscles in the hip neutral position and external rotation during back squats. [Subjects and Methods] Ten healthy males without severe low back pain or lower-limb injury participated in this study. The lumbar lordosis angle and electromyographic activities were measured using three-dimensional motion-capture systems and surface electrodes during four back squats: parallel back squats in the hip neutral position and external rotation and full back squats in the hip neutral position and external rotation. A paired t-test was used to compare parallel and full back squats measurements in the hip neutral position and external rotation, respectively. [Results] During parallel back squats, the average lumbar lordosis angle was significantly larger in hip external rotation than in the hip neutral position. During full back squats, lumbar erector spinae and multifidus activities were significantly lower in hip external rotation than in the hip neutral position, whereas gluteus maximus activity was significantly higher in hip external rotation than in the hip neutral position. [Conclusion] The back squat in hip external rotation induced improvement of lumbar kyphosis, an increasing of the gluteus maximus activity and a decrease of both lumbar erector spinae and multifidus activities.

  20. Lumbar lordosis angle and trunk and lower-limb electromyographic activity comparison in hip neutral position and external rotation during back squats

    PubMed Central

    Oshikawa, Tomoki; Morimoto, Yasuhiro; Kaneoka, Koji

    2018-01-01

    [Purpose] To compare the lumbar lordosis angle and electromyographic activities of the trunk and lower-limb muscles in the hip neutral position and external rotation during back squats. [Subjects and Methods] Ten healthy males without severe low back pain or lower-limb injury participated in this study. The lumbar lordosis angle and electromyographic activities were measured using three-dimensional motion-capture systems and surface electrodes during four back squats: parallel back squats in the hip neutral position and external rotation and full back squats in the hip neutral position and external rotation. A paired t-test was used to compare parallel and full back squats measurements in the hip neutral position and external rotation, respectively. [Results] During parallel back squats, the average lumbar lordosis angle was significantly larger in hip external rotation than in the hip neutral position. During full back squats, lumbar erector spinae and multifidus activities were significantly lower in hip external rotation than in the hip neutral position, whereas gluteus maximus activity was significantly higher in hip external rotation than in the hip neutral position. [Conclusion] The back squat in hip external rotation induced improvement of lumbar kyphosis, an increasing of the gluteus maximus activity and a decrease of both lumbar erector spinae and multifidus activities. PMID:29581666

  1. The effects of sectioning the spring ligament on rearfoot stability and posterior tibial tendon efficiency.

    PubMed

    Jennings, Meagan M; Christensen, Jeffery C

    2008-01-01

    Posterior tibial tendon insufficiency has been implicated as a cause of adult acquired flatfoot. Multiple theories are debated as to whether or not a flatfoot deformity develops secondary to insufficiency of the posterior tibial tendon or of the ligamentous structures such as the spring ligament complex. This cadaveric study was undertaken in an attempt to determine the effect that sectioning the spring ligament complex has on foot stability, and whether engagement of the posterior tibial tendon would be able to compensate for the loss of the spring ligament complex. A 3-dimensional kinematic system and a custom-loading frame were used to quantify rotation about the talus, navicular, and calcaneus in 5 cadaveric specimens, before and after sectioning the spring ligament complex, while incremental tension was applied to the posterior tibial tendon. This study demonstrated that sectioning the spring ligament complex created instability in the foot for which the posterior tibial tendon was unable to compensate. Sectioning the spring ligament complex also produced significant changes in talar, navicular, and calcaneal rotations. During simulated midstance, the navicular plantarflexed, adducted, and everted; the talar head plantarflexed, adducted, and inverted; and the calcaneus plantarflexed, abducted, and everted, after sectioning the spring ligament complex. The results of this study indicate that the spring ligament complex is the major stabilizer of the arch during midstance and that the posterior tibial tendon is incapable of fully accommodating for its insufficiency, suggesting that the spring ligament complex should be evaluated and, if indicated, repaired in flatfoot reconstruction. 5.

  2. Management of tibial non-unions according to a novel treatment algorithm.

    PubMed

    Ferreira, Nando; Marais, Leonard Charles

    2015-12-01

    Tibial non-unions represent a spectrum of conditions that are challenging to treat. The optimal management remains unclear despite the frequency with which these diagnoses are encountered. The aim of this study was to determine the outcome of tibial non-unions managed according to a novel tibial non-union treatment algorithm. One hundred and eighteen consecutive patients with 122 uninfected tibial non-unions were treated according to our proposed tibial non-union treatment algorithm. All patients were followed-up clinically and radiologically for a minimum of six months after external fixator removal. Four patients were excluded because they did not complete the intended treatment process. The final study population consisted of 94 men and 24 women with a mean age of 34 years. Sixty-seven non-unions were stiff hypertrophic, 32 mobile atrophic, 16 mobile oligotrophic and one true pseudoarthrosis. Six non-unions were classified as type B1 defect non-unions. Bony union was achieved after the initial surgery in 113/122 (92.6%) tibias. Nine patients had failure of treatment. Seven persistent non-unions were successfully retreated according to the tibial non-union treatment algorithm. This resulted in final bony union in 120/122 (98.3%) tibias. The proposed tibial non-union treatment algorithm appears to produce high union rates across a diverse group of tibial non-unions. Tibial non-unions however, remain difficult to treat and should be referred to specialist units where advanced reconstructive techniques are practiced on a regular basis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Anthropometric measurements of tibial plateau and correlation with the current tibial implants.

    PubMed

    Erkocak, Omer Faruk; Kucukdurmaz, Fatih; Sayar, Safak; Erdil, Mehmet Emin; Ceylan, Hasan Huseyin; Tuncay, Ibrahim

    2016-09-01

    The aim of the study was to make an anthropometric analysis at the resected surfaces of the proximal tibia in the Turkish population and to compare the data with the dimensions of tibial components in current use. We hypothesized that tibial components currently available on the market do not fulfil the requirements of this population and a new tibial component design may be required, especially for female patients with small stature. Anthropometric data from the proximal tibia of 226 knees in 226 Turkish subjects were measured using magnetic resonance imaging. We measured the mediolateral, middle anteroposterior, medial and lateral anteroposterior dimensions and the aspect ratio of the resected proximal tibial surface. All morphological data were compared with the dimensions of five contemporary tibial implants, including asymmetric and symmetric design types. The dimensions of the tibial plateau of Turkish knees demonstrated significant differences according to gender (P < 0.05). Among the different tibial implants reviewed, neither asymmetric nor symmetric designs exhibited a perfect conformity to proximal tibial morphology in size and shape. The vast majority of tibial implants involved in this study tend to overhang anteroposteriorly, and a statistically significant number of women (21 %, P < 0.05) had tibial anteroposterior diameters smaller than the smallest available tibial component. Tibial components designed according to anthropometric measurements of Western populations do not perfectly meet the requirements of Turkish population. These data could provide the basis for designing the optimal and smaller tibial component for this population, especially for women, is required for best fit. II.

  4. Anterior Cruciate Ligament Reconstruction with Tibial Attachment Preserving Hamstring Graft without Implant on Tibial Side

    PubMed Central

    Sinha, Skand; Naik, Ananta Kumar; Maheshwari, Mridul; Sandanshiv, Sumedh; Meena, Durgashankar; Arya, Rajendra K

    2018-01-01

    Background: Tibial attachment preserving hamstring graft could prevent potential problems of free graft in anterior cruciate ligament (ACL) reconstruction such as pull out before graft-tunnel healing or rupture before ligamentization. Different implants have been reportedly used for tibial side fixation with this technique. We investigated short-term outcome of ACL reconstruction (ACLR) with tibial attachment sparing hamstring graft without implant on the tibial side by outside in technique. Materials and Methods: Seventy nine consecutive cases of ACL tear having age of 25.7 ± 6.8 years were included after Institutional Board Approval. All subjects were male. The mean time interval from injury to surgery was of 7.5 ± 6.4 months. Hamstring tendons were harvested with open tendon stripper leaving the tibial insertion intact. The free ends of the tendons were whip stitched, quadrupled, and whip stitched again over the insertion site of hamstring with fiber wire (Arthrex). Single bundle ACLR was done by outside in technique and the femoral tunnel was created with cannulated reamer. The graft was pulled up to the external aperture of femoral tunnel and fixed with interference screw (Arthrex). The scoring was done by Lysholm, Tegner, and KT 1000 by independent observers. All cases were followed up for 2 years. Results: The mean length of quadrupled graft attached to tibia was 127.65 ± 7.5 mm, and the mean width was 7.52 ± 0.78 mm. The mean preoperative Lysholm score of 47.15 ± 9.6, improved to 96.8 ± 2.4 at 1 year. All cases except two returned to the previous level of activity after ACLR. There was no significant difference statistically between preinjury (5.89 ± 0.68) and postoperative (5.87 ± 0.67) Tegner score. The anterior tibial translation (ATT) (KT 1000) improved from 11.44 ± 1.93 mm to 3.59 ± 0.89 mm. The ATT of operated knee returned to nearly the similar value as of the opposite knee (3.47 ± 1.16 mm). The Pivot shift test was negative in all cases

  5. Multigrid Computations of 3-D Incompressible Internal and External Viscous Rotating Flows

    NASA Technical Reports Server (NTRS)

    Sheng, Chunhua; Taylor, Lafayette K.; Chen, Jen-Ping; Jiang, Min-Yee; Whitfield, David L.

    1996-01-01

    This report presents multigrid methods for solving the 3-D incompressible viscous rotating flows in a NASA low-speed centrifugal compressor and a marine propeller 4119. Numerical formulations are given in both the rotating reference frame and the absolute frame. Comparisons are made for the accuracy, efficiency, and robustness between the steady-state scheme and the time-accurate scheme for simulating viscous rotating flows for complex internal and external flow applications. Prospects for further increase in efficiency and accuracy of unsteady time-accurate computations are discussed.

  6. Gravity versus manual external rotation stress view in evaluating ankle stability: a prospective study.

    PubMed

    LeBa, Thu-Ba; Gugala, Zbigniew; Morris, Randal P; Panchbhavi, Vinod K

    2015-06-01

    The purpose of this prospective study was to determine whether gravity versus manual external rotation stress testing effectively detects widening of the medial clear space in isolated ankle fractures when compared with the uninjured contralateral side. Manual external rotation stress and gravity stress tests were performed on injured and uninjured ankles of ankle fracture patients in a clinic setting. Medial clear space measurements were recorded and differences between gravity and manual stress views were determined. Twenty consecutive patients with ankle injury were enrolled in the study. When compared with the uninjured side, gravity stress views showed a statistically significant (P = .017) increase in medial clear space widening (1.85 ± 1.07 mm) compared with manual stress view widening (1.35 ± 1.04 mm). This study suggests that gravity stress views are as effective as manual external rotation stress views in detecting medial clear space widening in isolated fibular fractures. Diagnostic, Level II: Prospective, comparative trial. © 2014 The Author(s).

  7. Reduced glenohumeral rotation, external rotation weakness and scapular dyskinesis are risk factors for shoulder injuries among elite male handball players: a prospective cohort study.

    PubMed

    Clarsen, Benjamin; Bahr, Roald; Andersson, Stig Haugsboe; Munk, Rikke; Myklebust, Grethe

    2014-09-01

    To determine whether rotator cuff strength, glenohumeral joint range of motion and scapular control are associated with shoulder injuries among elite male handball players. A total of 206 players in the Norwegian elite handball league for men were tested prior to the 2011-2012 season. Measures included: (1) glenohumeral internal and external rotation range of motion, (2) isometric internal rotation, external rotation and abduction strength and (3) assessment of scapular dyskinesis. Players were followed prospectively for the entire regular season (30 weeks), with shoulder problems registered bi-weekly using the Oslo Sports Trauma Research Center Overuse Injury Questionnaire. A cumulative severity score was calculated for each player based on their questionnaire responses. This was used as the outcome measure in risk factor analyses. The average prevalence of shoulder problems throughout the season was 28% (95% CI 25% to 31%). The prevalence of substantial shoulder problems, defined as those leading to moderate or severe reductions in handball participation or performance, or to time loss, was 12% (95% CI 11% to 13%). Significant associations were found between obvious scapular dyskinesis (OR 8.41, 95% CI 1.47 to 48.1, p<0.05), total rotational motion (OR 0.77 per 5° change, 95% CI 0.56 to 0.995, p<0.05) and external rotation strength (OR 0.71 per 10 Nm change, 95% CI 0.44 to 0.99, p<0.05) and shoulder injury. Injury prevention programmes should incorporate interventions aimed at improving glenohumeral rotational range of motion, external rotation strength and scapular control. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  8. Optimized functional femoral rotation in navigated total knee arthroplasty considering ligament tension.

    PubMed

    Walde, T A; Bussert, J; Sehmisch, S; Balcarek, P; Stürmer, K M; Walde, H J; Frosch, K H

    2010-12-01

    Femoral malrotation in total knee arthroplasty is correlated to an increased number of revisions. Anatomic landmarks such as Whiteside line, posterior condyle axis and transepicondylar axis are used for determining femoral component rotation. The femoral rotation achieved with the anatomical landmarks is compared to the femoral rotation achieved by a navigated ligament tension-based tibia-first technique. Ninety-three consecutive patients with gonarthritis were prospectively enrolled. Intraoperatively the anatomical landmarks for femoral rotation and the achieved femoral rotation using a navigated tension-based tibia-first technique were determined and stored for further comparison. A pre- and postoperative functional diagram displaying the extension and flexion and varus or valgus positions was also part of the evaluation. Using anatomical landmarks the rotational errors ranged from 12.2° of internal rotation to 15.5° of external rotation from parallel to the tibial resection surface at 90° flexion. A statistical significant improved femoral rotation was achieved using the ligament tension-based method with a rotational error ranged from 3.0° of internal rotation to 2.4° of external rotation. The functional analyses demonstrated statistical significant lower varus/valgus deviations within the flexion range and an improved maximum varus deviation at 90° flexion using the ligament tension-based method. Compared to the anatomical landmarks a balanced, almost parallel flexion gap was achieved using a navigation technique taking the ligament tension of the knee joint into account. As a result the improved femoral rotation was demonstrated by the functional evaluation. Unilateral overloading of the polyethylene inlay and unilateral instability can thus be avoided. Copyright © 2009 Elsevier B.V. All rights reserved.

  9. Femoral anteversion and tibial torsion only explain 25% of variance in regression analysis of foot progression angle in children with diplegic cerebral palsy

    PubMed Central

    2013-01-01

    Background The relationship between torsional bony deformities and rotational gait parameters has not been sufficiently investigated. This study was to investigate the degree of contribution of torsional bony deformities to rotational gait parameters in patients with diplegic cerebral palsy (CP). Methods Thirty three legs from 33 consecutive ambulatory patients (average age 9.5 years, SD 6.9 years; 20 males and 13 females) with diplegic CP who underwent preoperative three dimensional gait analysis, foot radiographs, and computed tomography (CT) were included. Adjusted foot progression angle (FPA) was retrieved from gait analysis by correcting pelvic rotation from conventional FPA, which represented the rotational gait deviation of the lower extremity from the tip of the femoral head to the foot. Correlations between rotational gait parameters (FPA, adjusted FPA, average pelvic rotation, average hip rotation, and average knee rotation) and radiologic measurements (acetabular version, femoral anteversion, knee torsion, tibial torsion, and anteroposteriortalo-first metatarsal angle) were analyzed. Multiple regression analysis was performed to identify significant contributing radiographic measurements to adjusted FPA. Results Adjusted FPA was significantly correlated with FPA (r=0.837, p<0.001), contralateral FPA (r=0.492, p=0.004), pelvic rotation during gait (r=−0.489, p=0.004), knee rotation during gait (r=0.376, p=0.031), and femoral anteversion (r=0.350, p=0.046). In multiple regression analysis, femoral anteversion (p=0.026) and tibial torsion (p=0.034) were found to be the significant contributing structural deformities to the adjusted FPA (R2=0.247). Conclusions Femoral anteversion and tibial torsion were found to be the significant structural deformities that could affect adjusted FPA in patients with diplegic CP. Femoral anteversion and tibial torsion could explain only 24.7% of adjusted FPA. PMID:23767833

  10. Three-dimensional knee motion before and after high tibial osteotomy for medial knee osteoarthritis.

    PubMed

    Takemae, Takashi; Omori, Go; Nishino, Katsutoshi; Terajima, Kazuhiro; Koga, Yoshio; Endo, Naoto

    2006-11-01

    High tibial osteotomy (HTO) is an established surgical option for treating medial knee osteoarthritis. HTO moves the mechanical load on the knee joint from the medial compartment to the lateral compartment by changing the leg alignment, but the effects of the operation remain unclear. The purpose of this study was to evaluate the change in three-dimensional knee motion before and after HTO, focusing on lateral thrust and screw home movement, and to investigate the relationship between the change in knee motion and the clinical results. A series of 19 patients with medial knee osteoarthritis who had undergone HTO were evaluated. We performed a clinical assessment, radiological evaluation, and motion analysis at 2.4 years postoperatively. The clinical assessment was performed using the Japanese Orthopaedic Association knee score. The score was significantly improved in all patients after operation. Motion analysis revealed that lateral thrust, which was observed in 18 of the 20 knees before operation, was reduced to 7 knees after operation. Regarding active terminal extension of the knee, three patterns of rotational movement were observed before operation: screw home movement (external rotation), reverse screw home movement (internal rotation), and no rotation. By contrast, after operation, only reverse screw home movement and no rotation were observed; the screw home movement disappeared in all patients. In the knees with reverse screw home movement after operation, the preoperative score was significantly lower than those in the knees with no rotation after operation. Kinetically, HTO was useful for suppressing lateral thrust in medial knee osteoarthritis, although the rotational movement of the knee joint was unchanged.

  11. A Biomechanical Study of Posteromedial Tibial Plateau Fracture Stability: Do They All Require Fixation?

    PubMed

    Cuéllar, Vanessa G; Martinez, Danny; Immerman, Igor; Oh, Cheongeun; Walker, Peter S; Egol, Kenneth A

    2015-07-01

    Although the posteromedial fragment in tibial plateau fractures is often considered unstable, biomechanical evidence supporting this view is lacking. We aimed to evaluate the stability of the fragment in a cadaver model. Our hypothesis was that under the expected small axial force during rehabilitation and the combined effects of this force with shear force, internal rotation torque, and varus moment, the most common posteromedial tibial fragment morphology could maintain stability in early flexion. Axial compression force alone or combined with posterior shear, internal rotation torque, or varus moment was applied to the femurs of 5 fresh cadaveric knees. A Tekscan pressure mapping system was used to measure pressure and contact area between the femoral condyles, meniscus, and tibial plateau. A Microscribe 3D digitizer was used to define the 3-dimensional positions of the femur and tibia. A 10-mm and then a 20-mm osteotomy was created with a saw at an angle of 30 degrees in the axial plane with respect to the tangent of the posterior tibial plateau and 75 degrees in the sagittal plane, representing a typical posteromedial fracture fragment. At each flexion angle (15, 30, 60, 90, and 120 degrees) and loading condition (axial compression only, compression with shear force, torque, and varus moment), distal displacement of the medial femoral condyle and the tibial fracture fragments was determined. For the 10-mm fragment, medial femoral condyle displacement was little affected up to approximately 30-degree flexion, after which it increased. For the 20-mm fragment, there was progressive medial femoral condyle displacement with increasing flexion from baseline. However, for the 10- and 20-mm fragments themselves, displacements were noted at every flexion angle, starting at 1.7 mm inferior displacement with 15 degrees of flexion and internal rotation torque and up to 10.2 mm displacement with 90 degrees of flexion and varus bending moment. In this cadaveric model of a

  12. Patient-specific positioning guides for total knee arthroplasty: no significant difference between final component alignment and pre-operative digital plan except for tibial rotation.

    PubMed

    Boonen, Bert; Schotanus, Martijn G M; Kerens, Bart; Hulsmans, Frans-Jan; Tuinebreijer, Wim E; Kort, Nanne P

    2017-09-01

    To assess whether there is a significant difference between the alignment of the individual femoral and tibial components (in the frontal, sagittal and horizontal planes) as calculated pre-operatively (digital plan) and the actually achieved alignment in vivo obtained with the use of patient-specific positioning guides (PSPGs) for TKA. It was hypothesised that there would be no difference between post-op implant position and pre-op digital plan. Twenty-six patients were included in this non-inferiority trial. Software permitted matching of the pre-operative MRI scan (and therefore calculated prosthesis position) to a pre-operative CT scan and then to a post-operative full-leg CT scan to determine deviations from pre-op planning in all three anatomical planes. For the femoral component, mean absolute deviations from planning were 1.8° (SD 1.3), 2.5° (SD 1.6) and 1.6° (SD 1.4) in the frontal, sagittal and transverse planes, respectively. For the tibial component, mean absolute deviations from planning were 1.7° (SD 1.2), 1.7° (SD 1.5) and 3.2° (SD 3.6) in the frontal, sagittal and transverse planes, respectively. Absolute mean deviation from planned mechanical axis was 1.9°. The a priori specified null hypothesis for equivalence testing: the difference from planning is >3 or <-3 was rejected for all comparisons except for the tibial transverse plane. PSPG was able to adequately reproduce the pre-op plan in all planes, except for the tibial rotation in the transverse plane. Possible explanations for outliers are discussed and highlight the importance for adequate training surgeons before they start using PSPG in their day-by-day practise. Prospective cohort study, Level II.

  13. Risk Factors for Medial Tibial Stress Syndrome in Active Individuals: An Evidence-Based Review.

    PubMed

    Winkelmann, Zachary K; Anderson, Dustin; Games, Kenneth E; Eberman, Lindsey E

    2016-12-01

    , study population, outcome measurements, assessment of the outcome, and analysis and data presentation. Any disagreement between the authors was discussed and resolved by consensus. A total of 165 papers were initially identified, and 21 original research studies were included in this systematic review. More than 100 risk factors were identified in the 21 studies. Continuous data were reported 3 or more times for risk factors of body mass index (BMI), navicular drop, ankle plantar-flexion range of motion (ROM), ankle-dorsiflexion ROM, ankle-eversion ROM, ankle-inversion ROM, quadriceps angle, hip internal-rotation ROM, and hip external-rotation ROM. As compared with the control group, significant risk factors for developing MTSS identified in the literature were (1) greater BMI (mean difference [MD] = 0.79, 95% confidence interval [CI] = 0.38, 1.20; P < .001), (2) greater navicular drop (MD = 1.9 mm, 95% CI = 0.54, 1.84 mm; P < .001), (3) greater ankle plantar-flexion ROM (MD = 5.94°, 95% CI = 3.65°, 8.24°; P < .001), and (4) greater hip external-rotation ROM (MD = 3.95°, 95% CI = 1.78°, 6.13°; P < .001). Ankle-dorsiflexion ROM (MD = -0.01°, 95% CI = -0.96, 0.93; P = .98), ankle-eversion ROM (MD = 1.17°, 95% CI = -0.02, 2.36; P = .06), ankle-inversion ROM (MD = 0.98°, 95% CI = -3.11°, 5.07°; P = .64), quadriceps angle (MD = -0.22°, 95% CI = -0.95°, 0.50°; P = .54), and hip internal-rotation ROM (MD = 0.18°, 95% CI = -5.37°, 5.73°; P = .95), were not different between individuals with MTSS and controls. The primary factors that appeared to put a physically active individual at risk for MTSS were increased BMI, increased navicular drop, greater ankle plantar-flexion ROM, and greater hip external-rotation ROM. These primary risk factors can guide health care professionals in the prevention and treatment of MTSS.

  14. Risk Factors for Medial Tibial Stress Syndrome in Active Individuals: An Evidence-Based Review

    PubMed Central

    Winkelmann, Zachary K.; Anderson, Dustin; Games, Kenneth E.; Eberman, Lindsey E.

    2016-01-01

    previous researchers. The checklist contained 5 categories: study objective, study population, outcome measurements, assessment of the outcome, and analysis and data presentation. Any disagreement between the authors was discussed and resolved by consensus. Main Results: A total of 165 papers were initially identified, and 21 original research studies were included in this systematic review. More than 100 risk factors were identified in the 21 studies. Continuous data were reported 3 or more times for risk factors of body mass index (BMI), navicular drop, ankle plantar-flexion range of motion (ROM), ankle-dorsiflexion ROM, ankle-eversion ROM, ankle-inversion ROM, quadriceps angle, hip internal-rotation ROM, and hip external-rotation ROM. As compared with the control group, significant risk factors for developing MTSS identified in the literature were (1) greater BMI (mean difference [MD] = 0.79, 95% confidence interval [CI] = 0.38, 1.20; P < .001), (2) greater navicular drop (MD = 1.9 mm, 95% CI = 0.54, 1.84 mm; P < .001), (3) greater ankle plantar-flexion ROM (MD = 5.94°, 95% CI = 3.65°, 8.24°; P < .001), and (4) greater hip external-rotation ROM (MD = 3.95°, 95% CI = 1.78°, 6.13°; P < .001). Ankle-dorsiflexion ROM (MD = −0.01°, 95% CI = −0.96, 0.93; P = .98), ankle-eversion ROM (MD = 1.17°, 95% CI = −0.02, 2.36; P = .06), ankle-inversion ROM (MD = 0.98°, 95% CI = −3.11°, 5.07°; P = .64), quadriceps angle (MD = −0.22°, 95% CI = −0.95°, 0.50°; P = .54), and hip internal-rotation ROM (MD = 0.18°, 95% CI = −5.37°, 5.73°; P = .95), were not different between individuals with MTSS and controls. Conclusions: The primary factors that appeared to put a physically active individual at risk for MTSS were increased BMI, increased navicular drop, greater ankle plantar-flexion ROM, and greater hip external-rotation ROM. These primary risk factors can guide health care professionals in the prevention and treatment of MTSS. PMID:27835043

  15. Is computed tomography an accurate and reliable method for measuring total knee arthroplasty component rotation?

    PubMed

    Figueroa, José; Guarachi, Juan Pablo; Matas, José; Arnander, Magnus; Orrego, Mario

    2016-04-01

    Computed tomography (CT) is widely used to assess component rotation in patients with poor results after total knee arthroplasty (TKA). The purpose of this study was to simultaneously determine the accuracy and reliability of CT in measuring TKA component rotation. TKA components were implanted in dry-bone models and assigned to two groups. The first group (n = 7) had variable femoral component rotations, and the second group (n = 6) had variable tibial tray rotations. CT images were then used to assess component rotation. Accuracy of CT rotational assessment was determined by mean difference, in degrees, between implanted component rotation and CT-measured rotation. Intraclass correlation coefficient (ICC) was applied to determine intra-observer and inter-observer reliability. Femoral component accuracy showed a mean difference of 2.5° and the tibial tray a mean difference of 3.2°. There was good intra- and inter-observer reliability for both components, with a femoral ICC of 0.8 and 0.76, and tibial ICC of 0.68 and 0.65, respectively. CT rotational assessment accuracy can differ from true component rotation by approximately 3° for each component. It does, however, have good inter- and intra-observer reliability.

  16. Staged minimally invasive plate osteosynthesis of proximal tibial fractures with acute compartment syndrome.

    PubMed

    Kim, Joon-Woo; Oh, Chang-Wug; Oh, Jong-Keon; Kyung, Hee-Soo; Park, Kyeong-Hyeon; Kim, Hee-June; Jung, Jae-Wook; Jung, Young-Soo

    2017-06-01

    High-energy proximal tibial fractures often accompany compartment syndrome and are usually treated by fasciotomy with external fixation followed by secondary plating. However, the initial soft tissue injury may affect bony union, the fasciotomy incision or external fixator pin sites may lead to postoperative wound infections, and the staged procedure itself may adversely affect lower limb function. We assess the results of staged minimally invasive plate osteosynthesis (MIPO) for proximal tibial fractures with acute compartment syndrome. Twenty-eight patients with proximal tibial fractures accompanied by acute compartment syndrome who underwent staged MIPO and had a minimum of 12 months follow-up were enrolled. According to the AO/OTA classification, 6 were 41-A, 15 were 41-C, 2 were 42-A and 5 were 42-C fractures; this included 6 cases of open fractures. Immediate fasciotomy was performed once compartment syndrome was diagnosed and stabilization of the fracture followed using external fixation. After the soft tissue condition normalized, internal conversion with MIPO was done on an average of 37 days (range, 9-158) after index trauma. At the time of internal conversion, the external fixator pin site grades were 0 in 3 cases, 1 in 12 cases, 2 in 10 cases and 3 in 3 cases, as described by Dahl. Radiographic assessment of bony union and alignment and a functional assessment using the Knee Society Score and American Orthopedic Foot and Ankle Society (AOFAS) score were carried out. Twenty-six cases achieved primary bony union at an average of 18.5 weeks. Two cases of nonunion healed after autogenous bone grafting. The mean Knee Society Score and the AOFAS score were 95 and 95.3 respectively, at last follow-up. Complications included 1 case of osteomyelitis in a patient with a grade IIIC open fracture and 1 case of malunion caused by delayed MIPO due to poor wound conditions. Duration of external fixation and the external fixator pin site grade were not related to the

  17. Relationships between in vivo dynamic knee joint loading, static alignment and tibial subchondral bone microarchitecture in end-stage knee osteoarthritis.

    PubMed

    Roberts, B C; Solomon, L B; Mercer, G; Reynolds, K J; Thewlis, D; Perilli, E

    2018-04-01

    To study, in end-stage knee osteoarthritis (OA) patients, relationships between indices of in vivo dynamic knee joint loads obtained pre-operatively using gait analysis, static knee alignment, and the subchondral trabecular bone (STB) microarchitecture of their excised tibial plateau quantified with 3D micro-CT. Twenty-five knee OA patients scheduled for total knee arthroplasty underwent pre-operative gait analysis. Mechanical axis deviation (MAD) was determined radiographically. Following surgery, excised tibial plateaus were micro-CT-scanned and STB microarchitecture analysed in four subregions (anteromedial, posteromedial, anterolateral, posterolateral). Regional differences in STB microarchitecture and relationships between joint loading and microarchitecture were examined. STB microarchitecture differed among subregions (P < 0.001), anteromedially exhibiting highest bone volume fraction (BV/TV) and lowest structure model index (SMI). Anteromedial BV/TV and SMI correlated strongest with the peak external rotation moment (ERM; r = -0.74, r = 0.67, P < 0.01), despite ERM being the lowest (by factor of 10) of the moments considered, with majority of ERM measures below accuracy thresholds; medial-to-lateral BV/TV ratios correlated with ERM, MAD, knee adduction moment (KAM) and internal rotation moment (|r|-range: 0.54-0.74). When controlling for walking speed, KAM and MAD, the ERM explained additional 11-30% of the variations in anteromedial BV/TV and medial-to-lateral BV/TV ratio (R 2  = 0.59, R 2  = 0.69, P < 0.01). This preliminary study suggests significant associations between tibial plateau STB microarchitecture and knee joint loading indices in end-stage knee OA patients. Particularly, anteromedial BV/TV correlates strongest with ERM, whereas medial-to-lateral BV/TV ratio correlates strongest with indicators of medial-to-lateral joint loading (MAD, KAM) and rotational moments. However, associations with ERM should be interpreted with caution

  18. Posterior tibial slope impacts intraoperatively measured mid-flexion anteroposterior kinematics during cruciate-retaining total knee arthroplasty.

    PubMed

    Dai, Yifei; Cross, Michael B; Angibaud, Laurent D; Hamad, Cyril; Jung, Amaury; Jenny, Jean-Yves

    2018-02-23

    Posterior tibial slope (PTS) for cruciate-retaining (CR) total knee arthroplasty (TKA) is usually pre-determined by the surgeon. Limited information is available comparing different choices of PTS on the kinematics of the CR TKA, independent of the balancing of the extension gap. This study hypothesized that with the same balanced extension gap, the choice of PTS significantly impacts the intraoperatively measured kinematics of CR TKA. Navigated CR TKAs were performed on seven fresh-frozen cadavers with healthy knees and intact posterior cruciate ligament (PCL). A custom designed tibial baseplate was implanted to allow in situ modification of the PTS, which altered the flexion gap but maintained the extension gap. Knee kinematics were measured by performing passive range of motion (ROM) tests from full extension to 120° of flexion on the intact knee and CR TKAs with four different PTSs (1°, 4°, 7°, and 10°). The measured kinematics were compared across test conditions to assess the impact of PTS. With a consistent extension gap, the change of PTS had significant impact on the anteroposterior (AP) kinematics of the CR TKA knees in mid-flexion range (45°-90°), but not so much for the high-flexion range (90°-120°). No considerable impacts were found on internal/external (I/E) rotation and hip-knee-ankle (HKA) angle. However, the findings on the individual basis suggested the impact of PTS on I/E rotation and HKA angle may be patient-specific. The data suggested that the choice of PTS had the greatest impact on the mid-flexion AP translation among the intraoperatively measured kinematics. This impact may be considered while making surgical decisions in the context of AP kinematics. When using a tibial component designed with "center" pivoting PTS, a surgeon may be able to fine tune the PTS to achieve proper mid-flexion AP stability.

  19. Kinematically aligned total knee arthroplasty limits high tibial forces, differences in tibial forces between compartments, and abnormal tibial contact kinematics during passive flexion.

    PubMed

    Roth, Joshua D; Howell, Stephen M; Hull, Maury L

    2018-06-01

    Following total knee arthroplasty (TKA), high tibial forces, large differences in tibial forces between the medial and lateral compartments, and anterior translation of the contact locations of the femoral component on the tibial component during passive flexion indicate abnormal knee function. Because the goal of kinematically aligned TKA is to restore native knee function without soft tissue release, the objectives were to determine how well kinematically aligned TKA limits high tibial forces, differences in tibial forces between compartments, and anterior translation of the contact locations of the femoral component on the tibial component during passive flexion. Using cruciate retaining components, kinematically aligned TKA was performed on thirteen human cadaveric knee specimens with use of manual instruments without soft tissue release. The tibial forces and tibial contact locations were measured in both the medial and lateral compartments from 0° to 120° of passive flexion using a custom tibial force sensor. The average total tibial force (i.e. sum of medial + lateral) ranged from 5 to 116 N. The only significant average differences in tibial force between compartments occurred at 0° of flexion (29 N, p = 0.0008). The contact locations in both compartments translated posteriorly in all thirteen kinematically aligned TKAs by an average of 14 mm (p < 0.0001) and 18 mm (p < 0.0001) in the medial and lateral compartments, respectively, from 0° to 120° of flexion. After kinematically aligned TKA, average total tibial forces due to the soft tissue restraints were limited to 116 N, average differences in tibial forces between compartments were limited to 29 N, and a net posterior translation of the tibial contact locations was observed in all kinematically aligned TKAs during passive flexion from 0° to 120°, which are similar to what has been measured previously in native knees. While confirmation in vivo is warranted, these findings give

  20. Mobile-bearing knees reduce rotational asymmetric wear.

    PubMed

    Ho, Fang-Yuan; Ma, Hon-Ming; Liau, Jiann-Jong; Yeh, Chuan-Ren; Huang, Chun-Hsiung

    2007-09-01

    Polyethylene wear of bearing components is the most common long-term complication in total knee arthroplasty. One would anticipate differing kinematics would generate different wear patterns (including wear type, degree, and symmetry) on the articulating surface of mobile-bearing and fixed-bearing inserts. Because mobile-bearing designs facilitate movement of the insert relative to the tray when the knee rotates, we hypothesized mobile-bearing designs would reduce the incidence of rotational asymmetric wear. We examined 51 worn tibial inserts, including 15 from mobile-bearing rotating-platform posterior-cruciate-sacrificing dished prostheses and 36 from fixed-bearing posterior-cruciate-retaining flat prostheses, which were retrieved at revision surgery with an average implantation time of 115 months. We divided wear types into low-grade wear (burnishing, abrasion, and cold flow) and high-grade wear (scratching, pitting, metal embedding, and delamination) to assess wear degree of polyethylene. To assess symmetry of wear, the insert surface was divided into medial and lateral sides and each side was further divided into three equal zones along the anteroposterior direction. Low-grade wear was more common in mobile-bearing knees, whereas high-grade wear was more common in fixed-bearing knees. We identified no internal/external rotational asymmetric wear or anteroposterior asymmetric wear in mobile-bearing knees.

  1. Effects of 6-week sling-based training of the external-rotator muscles on the shoulder profile in elite female high school handball players.

    PubMed

    Genevois, Cyril; Berthier, Philippe; Guidou, Vincent; Muller, Franck; Thiebault, Boris; Rogowski, Isabelle

    2014-11-01

    In women's handball, the large numbers of throws and passes make the shoulder region vulnerable to overuse injuries. Repetitive throwing motions generate imbalance between shoulder internal- and external-rotator muscles. It has not yet been established whether sling-based training can improve shoulder external-rotator muscle strength. This study investigated the effectiveness of a 6-wk strengthening program in improving shoulder functional profile in elite female high school handball players. Crossover study. National elite handball training center. 25 elite female high school handball players. The program, completed twice per week for 6 wk, included sling-based strengthening exercises using a suspension trainer for external rotation with scapular retraction and scapular retraction alone. Maximal shoulder external- and internal-rotation strength, shoulder external- and internal-rotation range of motion (ROM), and maximal throwing velocity were assessed preintervention and postintervention for dominant and nondominant sides. After sling training, external- and internal-rotation strength increased significantly for both sides (P ≤ .001, and P = .004, respectively), with the result that there was no significant change in external- and internal-rotation strength ratios for either the dominant or the nondominant shoulder. No significant differences were observed for external-rotation ROM, while internal-rotation ROM decreased moderately, in particular in the dominant shoulder (P = .005). Maximal throwing velocity remained constant for the dominant arm, whereas a significant increase was found for the nondominant arm (P = .017). This 6-wk strengthening program was effective in improving shoulder external-rotator muscle strength but resulted in a decrease in the ROM in shoulder internal rotation, while throwing velocity remained stable. Adding a stretching program to this type of sling-based training program might help avoid potential detrimental effects on shoulder ROM.

  2. Three-dimensional evaluation of cyclic displacement in single-row and double-row rotator cuff reconstructions under static external rotation.

    PubMed

    Lorbach, Olaf; Kieb, Matthias; Raber, Florian; Busch, Lüder C; Kohn, Dieter M; Pape, Dietrich

    2013-01-01

    The double-row suture bridge repair was recently introduced and has demonstrated superior biomechanical results and higher yield load compared with the traditional double-row technique. It therefore seemed reasonable to compare this second generation of double-row constructs to the modified single-row double mattress reconstruction. The repair technique, initial tear size, and tendon subregion will have a significant effect on 3-dimensional (3D) cyclic displacement under additional static external rotation of a modified single-row compared with a double-row rotator cuff repair. Controlled laboratory study. Rotator cuff tears (small to medium: 25 mm; medium to large: 35 mm) were created in 24 human cadaveric shoulders. Rotator cuff repairs were performed as modified single-row or double-row repairs, and cyclic loading (10-60 N, 10-100 N) was applied under 20° of external rotation. Radiostereometric analysis was used to calculate cyclic displacement in the anteroposterior (x), craniocaudal (y), and mediolateral (z) planes with a focus on the repair constructs and the initial tear size. Moreover, differences in cyclic displacement of the anterior compared with the posterior tendon subregions were calculated. Significantly lower cyclic displacement was seen in small to medium tears for the single-row compared with double-row repair at 60 and 100 N in the x plane (P = .001) and y plane (P = .001). The results were similar in medium to large tears at 100 N in the x plane (P = .004). Comparison of 25-mm versus 35-mm tears did not show any statistically significant differences for the single-row repairs. In the double-row repairs, lower gap formation was found for the 35-mm tears (P ≤ .05). Comparison of the anterior versus posterior tendon subregions revealed a trend toward higher anterior gap formation, although this was statistically not significant. The tested single-row reconstruction achieved superior results in 3D cyclic displacement to the tested double

  3. Medial Tibial Stress Shielding: A Limitation of Cobalt Chromium Tibial Baseplates.

    PubMed

    Martin, J Ryan; Watts, Chad D; Levy, Daniel L; Kim, Raymond H

    2017-02-01

    Stress shielding is a well-recognized complication associated with total knee arthroplasty. However, this phenomenon has not been thoroughly described. Specifically, no study to our knowledge has evaluated the radiographic impact of utilizing various tibial component compositions on tibial stress shielding. We retrospectively reviewed 3 cohorts of 50 patients that had a preoperative varus deformity and were implanted with a titanium, cobalt chromium (CoCr), or an all polyethylene tibial implant. A radiographic comparative analysis was performed to evaluate the amount of medial tibial bone loss in each cohort. In addition, a clinical outcomes analysis was performed on the 3 cohorts. The CoCr was noted to have a statistically significant increase in medial tibial bone loss compared with the other 2 cohorts. The all polyethylene cohort had a statistically significantly higher final Knee Society Score and was associated with the least amount of stress shielding. The CoCr tray is the most rigid of 3 implants that were compared in this study. Interestingly, this cohort had the highest amount of medial tibial bone loss. In addition, 1 patient in the CoCr cohort had medial soft tissue irritation which was attributed to a prominent medial tibial tray which required revision surgery to mitigate the symptoms. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. The effect of proximal tibial slope on dynamic stability testing of the posterior cruciate ligament- and posterolateral corner-deficient knee.

    PubMed

    Petrigliano, Frank A; Suero, Eduardo M; Voos, James E; Pearle, Andrew D; Allen, Answorth A

    2012-06-01

    Proximal tibial slope has been shown to influence anteroposterior translation and tibial resting point in the posterior cruciate ligament (PCL)-deficient knee. The effect of proximal tibial slope on rotational stability of the knee is unknown. Change in proximal tibial slope produced via osteotomy can influence both static translation and dynamic rotational kinematics in the PCL/posterolateral corner (PLC)-deficient knee. Controlled laboratory study. Posterior drawer, dial, and mechanized reverse pivot-shift (RPS) tests were performed on hip-to-toe specimens and translation of the lateral and medial compartments measured utilizing navigation (n = 10). The PCL and structures of the PLC were then sectioned. Stability testing was repeated, and compartmental translation was recorded. A proximal tibial osteotomy in the sagittal plane was then performed achieving either +5° or -5° of tibial slope variation, after which stability testing was repeated (n = 10). Analysis was performed using 1-way analysis of variance (ANOVA; α = .05). Combined sectioning of the PCL and PLC structures resulted in a 10.5-mm increase in the posterior drawer, 15.5-mm increase in the dial test at 30°, 14.5-mm increase in the dial test at 90°, and 17.9-mm increase in the RPS (vs intact; P < .05). Increasing the posterior slope (high tibial osteotomy [HTO] +5°) in the PCL/PLC-deficient knee reduced medial compartment translation by 3.3 mm during posterior drawer (vs deficient; P < .05) but had no significant effect on the dial test at 30°, dial test at 90°, or RPS. Conversely, reversing the slope (HTO -5°) caused a 4.8-mm increase in medial compartment translation (vs deficient state; P < .05) during posterior drawer and an 8.6-mm increase in lateral compartment translation and 9.0-mm increase in medial compartment translation during RPS (vs deficient state; P < .05). Increasing posterior tibial slope diminished static posterior instability of the PCL/PLC-deficient knee as measured by the

  5. Does the latissimus dorsi tendon transfer for massive rotator cuff tears remain active postoperatively and restore active external rotation?

    PubMed

    Henseler, Jan Ferdinand; Nagels, Jochem; Nelissen, Rob G H H; de Groot, Jurriaan H

    2014-04-01

    The purpose of this study is to evaluate the muscle activity with surface electromyography (EMG) and the clinical outcome of the latissimus dorsi transfer. It remains unclear whether the clinical results of the latissimus dorsi transfer for massive posterosuperior rotator cuff tears are achieved either by active muscle contractions or by a passive tenodesis effect of the transfer. Eight patients were evaluated preoperatively and at 1 year (SD, 0.1) after the latissimus dorsi transfer. Clinical evaluation of outcomes included active range of motion, Constant score, and visual analog scale (VAS) for pain and activities of daily living (ADL). Muscle activity was recorded with EMG during directional isometric abduction and adduction tasks. The external rotation in adduction improved from 23° to 51° (P = .03). The external rotation in abduction improved from 10° to 70° (P = .02). The mean Constant score improved from 39 to 62 postoperatively (P = .01). The VAS for pain at rest improved from 3.3 preoperatively to 0.1 (P = .02). The VAS for ADL improved from 4.9 to 2.3 (P = .05). The transferred latissimus dorsi remained active in all cases, as reflected by increased latissimus dorsi EMG activity during abduction tasks. In addition, the latissimus dorsi EMG activity shifted from preoperative antagonistic co-activation in adduction to synergistic activation in abduction. The latissimus dorsi has synergistic muscle activity after transfer. Apart from a tenodesis effect, directional muscle activity seems relevant for improved clinical outcome and pain relief. A specific gain was observed for external rotation in elevated arm positions, a motion essential for ADL tasks. Copyright © 2014 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.

  6. Incidence of infection after early intramedullary nailing of open tibial shaft fractures stabilized with pinless external fixators

    PubMed Central

    Kulshrestha, Vikas

    2008-01-01

    Background: A major drawback of conventional fixator system is the penetration of fixator pins into the medullary canal. The pins create a direct link between the medullary cavity and outer environment, leading to higher infection rates on conversion to intramedullary nailing. This disadvantage is overcome by the AO pinless fixator, in which the trocar points are clamped onto the outer cortex without penetrating it. This study was designed to evaluate the role of AO pinless fixators in primary stabilization of open diaphyseal tibial fractures that received staged treatment because of delayed presentation or poor general condition. We also analyzed the rate of infection on early conversion to intramedullary nail. Materials and Methods: This study is a retrospective review of 30 open diaphyseal fractures of tibia, which were managed with primary stabilization with pinless fixator and early exchange nailing. Outcome was evaluated in terms of fracture union and rate of residual infection. The data were compared with that available in the literature. Results: All the cases were followed up for a period of 2 years. The study includes Gustilo type 1 (n=10), 14 Gustilo type 2 (n=14), and type3 (n=6) cases. 6 cases (20%) had clamp site infection, 2 cases (6.7%) had deep infection, and in 28 cases (93%) the fracture healed and consolidated well. Conclusion: This study has highlighted the valuable role of pinless external fixator in the management of open tibial fractures in terms of safety and ease of application as well as the advantage of early conversion to intramedullary implant without the risk of deep infection. PMID:19753227

  7. Minimally-invasive plate osteosynthesis in distal tibial fractures: Results and complications.

    PubMed

    Vidović, Dinko; Matejčić, Aljoša; Ivica, Mihovil; Jurišić, Darko; Elabjer, Esmat; Bakota, Bore

    2015-11-01

    Distal tibial or pilon fractures are usually the result of combined compressive and shear forces, and may result in instability of the metaphysis, with or without articular depression, and injury to the soft tissue. The complexity of injury, lack of muscle cover and poor vascularity make these fractures difficult to treat. Surgical treatment of distal tibial fractures includes several options: external fixation, IM nailing, ORIF and minimally-invasive plate osteosynthesis (MIPO). Management of distal tibial fractures with MIPO enables preservation of soft tissue and remaining blood supply. This is a report of a series of prospectively studied closed distal tibial and pilon fractures treated with MIPO. A total of 21 patients with closed distal tibial or pilon fractures were enrolled in the study between March 2008 and November 2013 and completed follow-up. Demographic characteristics, mechanism of injury, time required for union, ankle range of motion and complications were recorded. Fractures were classified according to the AO/OTA classification. Nineteen patients were initially managed with an ankle-spanning external fixator. When the status of the soft tissue had improved and swelling had subsided enough, a definitive internal fixation with MIPO was performed. Patients were invited for follow-up examinations at 3 and 6 weeks and then at intervals of 6 to 8 weeks until 12 months. Mean age of the patients was 40.1 years (range 19-67 years). Eighteen cases were the result of high-energy trauma and three were the result of low-energy trauma. According to the AO/OTA classification there were extraarticular and intraarticular fractures, but only simple articular patterns without depression or comminution. The average time for fracture union was 19.7 weeks (range 12-38 weeks). Mean range of motion was 10° of dorsiflexion (range 5-15°) and 28.3° of plantar flexion (range 20-35°). Three cases were metalwork-related complications. Two patients underwent plate removal

  8. Lower extremity control during turns initiated with and without hip external rotation.

    PubMed

    Zaferiou, Antonia M; Flashner, Henryk; Wilcox, Rand R; McNitt-Gray, Jill L

    2017-02-08

    The pirouette turn is often initiated in neutral and externally rotated hip positions by dancers. This provides an opportunity to investigate how dancers satisfy the same mechanical objectives at the whole-body level when using different leg kinematics. The purpose of this study was to compare lower extremity control strategies during the turn initiation phase of pirouettes performed with and without hip external rotation. Skilled dancers (n=5) performed pirouette turns with and without hip external rotation. Joint kinetics during turn initiation were determined for both legs using ground reaction forces (GRFs) and segment kinematics. Hip muscle activations were monitored using electromyography. Using probability-based statistical methods, variables were compared across turn conditions as a group and within-dancer. Despite differences in GRFs and impulse generation between turn conditions, at least 90% of each GRF was aligned with the respective leg plane. A majority of the net joint moments at the ankle, knee, and hip acted about an axis perpendicular to the leg plane. However, differences in shank alignment relative to the leg plane affected the distribution of the knee net joint moment when represented with respect to the shank versus the thigh. During the initiation of both turns, most participants used ankle plantar flexor moments, knee extensor moments, flexor and abductor moments at the push leg׳s hip, and extensor and abductor moments at the turn leg׳s hip. Representation of joint kinetics using multiple reference systems assisted in understanding control priorities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Dynamic Ultrasonography of the Deep External Rotator Musculature of the Hip: A Descriptive Study.

    PubMed

    Battaglia, Patrick J; Mattox, Ross; Haun, Daniel W; Welk, Aaron B; Kettner, Norman W

    2016-07-01

    No detailed reports exist describing the methodology of ultrasound image acquisition of the deep external rotator muscles of the hip. Because gluteal pain and sciatica are common, ultrasound may be a useful dynamic imaging adjunct in the evaluation of these patients. To describe dynamic ultrasonography of the deep external rotator muscles of the hip for diagnostic purposes. Descriptive. University radiology department. Participants (n = 25; 14 male) without gluteal pain or sciatica were enrolled (mean age 27.6 ± 4.7 years; mean body mass index 26.0 ± 4.1 kg/m(2)). Ultrasonographic cine clips oriented to the long axis of each deep external rotator muscle were captured. In addition, cine clips of the piriformis tendon and obturator internus tendon were obtained. Cine clips were analyzed approximately 1 week after completion of image acquisition independently by 2 blinded raters. A 5-point Likert scale to evaluate the diagnostic utility of the ultrasound image. The modal Likert scores for rater 1 were as follows: piriformis muscle = 4; piriformis tendon = 4; superior gemellus muscle = 3; obturator internus muscle = 4; obturator internus tendon = 4; inferior gemellus muscle = 4; quadratus femoris muscle = 4. The modal scores for rater 2 were: piriformis muscle = 4; piriformis tendon = 3; superior gemellus muscle = 4; obturator internus muscle = 3; obturator internus tendon = 4; inferior gemellus muscle = 3; quadratus femoris muscle = 4. Dynamic ultrasonography may be useful to image the hip deep external rotator musculature for diagnostic purposes and therefore aid in the evaluation of gluteal pain and sciatica. Future work should investigate the reliability and validity of ultrasonography in the evaluation of pathology of these muscles. Copyright © 2016 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  10. Proximal Tibial Bone Graft

    MedlinePlus

    ... All Site Content AOFAS / FootCareMD / Treatments Proximal Tibial Bone Graft Page Content What is a bone graft? Bone grafts may be needed for various ... the proximal tibia. What is a proximal tibial bone graft? Proximal tibial bone graft (PTBG) is a ...

  11. Minimal internal fixation augmented by small wire transfixion frames for high-energy tibial plateau fractures.

    PubMed

    Katsenis, Dimitris; Athanasiou, Vasilis; Vasilis, Athanasiou; Megas, Panayiotis; Panayiotis, Megas; Tyllianakis, Minos; Minos, Tillianakis; Lambiris, Elias

    2005-04-01

    To evaluate the outcome of bicondylar tibial plateau fractures treated with minimal internal fixation augmented by small wire external fixation frames and to assess the necessity of bridging the knee joint by extending the external fixation to the distal femur. This is a retrospective study of 48 tibial plateau fractures. There were 40 (83.5%) Schatzker type VI fractures, 8 Schatzker type V fractures, and 18 (37.5%) fractures were open. A complex injury according to the Tscherne-Lobenhoffer classification was recorded in 30 (62.5%) patients. All fractures were treated with combined minimally invasive internal and external fixation. Closed reduction was achieved in 32 (66.6%) of the fractures. Extension of the external fixation to the distal femur was done in 30 (62.5%) fractures. Results were assessed according to the criteria of Honkonen-Jarvinen. Follow-up ranged from 28 to 60 months with an average of 38 months. All fractures but 1 united at an average of 13.5 weeks (range 11-18 weeks). One patient developed an infected nonunion of the diaphyseal segment of his fracture. Thirty-nine (81%) patients achieved an excellent or good radiologic result. An excellent or good final clinical result was recorded in 36 patients (76%). Bridging the knee joint did not affect significantly the result (P < 0.418). No significant correlation was found between the type of fracture and the final score (P < 0.458). Hybrid internal and external fixation combined with tibiofemoral extension of the fixation is an attractive treatment option for complex tibial plateau fractures.

  12. Management of Open Tibial Shaft Fractures: Does the Timing of Surgery Affect Outcomes?

    PubMed

    Duyos, Oscar A; Beaton-Comulada, David; Davila-Parrilla, Ariel; Perez-Lopez, Jose Carlos; Ortiz, Krystal; Foy-Parrilla, Christian; Lopez-Gonzalez, Francisco

    2017-03-01

    Open tibial shaft fractures require emergent care. Treatment with intravenous antibiotics and fracture débridement within 6 to 24 hours is recommended. Few studies have examined outcomes when surgical treatment is performed >24 hours after occurrence of the fracture. This retrospective study included 227 patients aged ≥18 years with isolated open tibial shaft fractures in whom the time to initial débridement was >24 hours. The statistical analysis was based on time from injury to surgical débridement, Gustilo-Anderson classification, method of fixation, union status, and infection status. Fractures débrided within 24 to 48 hours and 48 to 96 hours after injury did not show a statistically significant difference in terms of infection rates (P = 0.984). External fixation showed significantly greater infection rates (P = 0.044) and nonunion rates (P = 0.001) compared with intramedullary nailing. Open tibial shaft fractures should be débrided within 24 hours after injury. Our data indicate that after the 24-hour period and up to 4 days, the risk of infection remains relatively constant independent of the time to débridement. Patients treated with external fixation had more complications than did patients treated with other methods of fixation. Primary reamed intramedullary nailing appears to be a reasonable option for the management of Gustilo-Anderson types 1 and 2 open tibial shaft fractures. Level III retrospective study.

  13. A NEW CLINICAL MUSCLE FUNCTION TEST FOR ASSESSMENT OF HIP EXTERNAL ROTATION STRENGTH: AUGUSTSSON STRENGTH TEST.

    PubMed

    Augustsson, Jesper

    2016-08-01

    Dynamic clinical tests of hip strength applicable on patients, non-athletes and athletes alike, are lacking. The aim of this study was therefore to develop and evaluate the reliability of a dynamic muscle function test of hip external rotation strength, using a novel device. A second aim was to determine if gender differences exist in absolute and relative hip strength using the new test. Fifty-three healthy sport science students (34 women and 19 men) were tested for hip external rotation strength using a device that consisted of a strap connected in series with an elastic resistance band loop, and a measuring tape connected in parallel with the elastic resistance band. The test was carried out with the subject side lying, positioned in 45 ° of hip flexion and the knees flexed to 90 ° with the device firmly fastened proximally across the knees. The subject then exerted maximal concentric hip external rotation force against the device thereby extending the elastic resistance band. The displacement achieved by the subject was documented by the tape measure and the corresponding force production was calculated. Both right and left hip strength was measured. Fifteen of the subjects were tested on repeated occasions to evaluate test-retest reliability. No significant test-retest differences were observed. Intra-class correlation coefficients ranged 0.93-0.94 and coefficients of variation 2.76-4.60%. In absolute values, men were significantly stronger in hip external rotation than women (right side 13.2 vs 11.0 kg, p = 0.001, left side 13.2 vs 11.5 kg, p = 0.002). There were no significant differences in hip external rotation strength normalized for body weight (BW) between men and women (right side 0.17 kg/BW vs 0.17 kg/BW, p = 0.675, left side 0.17 kg/BW vs 0.18 kg/BW, p = 0.156). The new muscle function test showed high reliability and thus could be useful for measuring dynamic hip external rotation strength in patients, non-athletes and athletes

  14. Muscle recruitment patterns of the subscapularis, serratus anterior and other shoulder girdle muscles during isokinetic internal and external rotations.

    PubMed

    Gaudet, Sylvain; Tremblay, Jonathan; Begon, Mickael

    2018-05-01

    The aims of this study were to investigate the differences in peak muscle activity and recruitment patterns during high- and low-velocity, concentric and eccentric, internal and external isokinetic shoulder rotations. Electromyographic activity of the rotator cuff and eight superficial muscles of the shoulder girdle was recorded on 25 healthy adults during isokinetic internal and external shoulder rotation at 60°/s and 240°/s. Peak muscle activity, electromyographic envelopes and peak isokinetic moments were analyzed using three-factor ANOVA and statistical parametric mapping. The subscapularis and serratus anterior showed moderate to high peak activity levels during each conditions, while the middle and posterior deltoids, upper, middle and lower trapezius, infraspinatus and supraspinatus showed higher peak activity levels during external rotations (+36.5% of maximum voluntary activation (MVA)). The pectoralis major and latissimus dorsi were more active during internal rotations (+40% of MVA). Only middle trapezius and pectoralis major electromyographic activity decreased with increasing velocity. Peak muscle activity was similar or lower during eccentric contractions, although the peak isokinetic moment increased by 35% on average. The subscapularis and serratus anterior appear to be important stabilizers of the glenohumeral joint and scapula. Isokinetic eccentric training at high velocities may allow for faster recruitment of the shoulder girdle muscles, which could improve joint stability during shoulder internal and external rotations.

  15. Comparison of intraoperative anthropometric measurements of the proximal tibia and tibial component in total knee arthroplasty.

    PubMed

    Miyatake, Naohisa; Sugita, Takehiko; Aizawa, Toshimi; Sasaki, Akira; Maeda, Ikuo; Kamimura, Masayuki; Fujisawa, Hirokazu; Takahashi, Atsushi

    2016-09-01

    Precise matching of the tibial component and resected bony surfaces and proper rotational implanting of the tibial component are crucial for successful total knee arthroplasty. We aimed to analyze the exact anthropometric proximal tibial data of Japanese patients undergoing total knee arthroplasty and correlate the measurements with the dimensions of current total knee arthroplasty systems. A total of 703 knees in 566 Japanese patients who underwent total knee arthroplasty for osteoarthritis were included. The bone resection in the proximal tibia was performed perpendicular to the tibial axis in the frontal plane. Measurements of the proximal tibia were intraoperatively obtained after proximal tibial preparation. There were significant positive correlations between the lateral anteroposterior and medial anteroposterior and mediolateral dimensions. A progressive decrease in the mediolateral/lateral anteroposterior ratio with an increasing lateral anteroposterior dimension or the mediolateral/anteroposterior ratio with an increasing anteroposterior dimension was observed. The lateral anteroposterior dimension was smaller than the medial anteroposterior dimension by a mean of 4.8 ± 2.0 mm. The proximal tibia exhibited asymmetry between the lateral and medial plateaus. A comparison of the morphological data and dimensions of the implants, one of which was a symmetric tibial component (NexGen) and the others were asymmetric (Genesis II and Persona), indicated that an asymmetric tibial component could be beneficial to maximize tibial plateau coverage. This study provided important reference data for designing a proper tibial component for Japanese people. The proximal tibial cut surface was asymmetric. There was wide dispersion in the lateral anteroposterior, medial anteroposterior, and mediolateral dimensions depending on the patient. Our data showed that the tibial components of the Genesis II and Persona rather than that of the NexGen may be preferable for

  16. The effect of plate position and size on tibial slope in high tibial osteotomy: a cadaveric study.

    PubMed

    Rubino, L Joseph; Schoderbek, Robert J; Golish, S Raymond; Baumfeld, Joshua; Miller, Mark D

    2008-01-01

    Opening wedge high tibial osteotomies are performed for degenerative changes and varus. Opening wedge osteotomies can change proximal tibial slope in the sagittal plane, possibly imparting stability in the ACL-deficient knee. The aim of this study was to assess the effect of plate position and size on change in tibial slope. Eight cadaveric knees underwent opening wedge high tibial osteotomy with Puddu plates of each different size. Plates were placed anterior, central, and posterior for each size used. Lateral radiographs were obtained. Tibial slope was measured and compared with baseline slope. Tibial slope was affected by plate position (P < 0.05) and size (P < 0.001). Smaller, posterior plates had less effect on tibial slope. However, anterior and central plates increased tibial slope over all plate sizes (P < 0.05). This study found that tibial slope increases with opening wedge high tibial osteotomy. Larger corrections and anterior placement of the plate are associated with larger increases in slope.

  17. The Tibial Slope in Patients With Achondroplasia: Its Characterization and Possible Role in Genu Recurvatum Development.

    PubMed

    Brooks, Jaysson T; Bernholt, David L; Tran, Kevin V; Ain, Michael C

    2016-06-01

    Genu recurvatum, a posterior resting position of the knee, is a common lower extremity deformity in patients with achondroplasia and has been thought to be secondary to ligamentous laxity. To the best of our knowledge, the role of the tibial slope has not been investigated, and no studies describe the tibial slope in patients with achondroplasia. Our goals were to characterize the tibial slope in children and adults with achondroplasia, explore its possible role in the development of genu recurvatum, and compare the tibial slope in patients with achondroplasia to that in the general population. We reviewed 252 lateral knee radiographs of 130 patients with achondroplasia seen at our clinic from November 2007 through September 2013. Patients were excluded if they had previous lower extremity surgery or radiographs with extreme rotation. We analyzed patient demographics and, on all radiographs, the tibial slope. We then compared the mean tibial slope to norms in the literature. Tibial slopes >90 degrees had an anterior tibial slope and received a positive prefix. Statistical analysis included intraclass and interclass reliability, Pearson correlation coefficient, and the Student t tests (significance, P<0.05). The overall mean tibial slope for the 252 knees was +1.32±7 degrees, which was significantly more anterior than the normal slopes reported in the literature for adults (7.2 to 10.7 degrees, P=0.0001) and children (10 to 11 degrees, P=0.0001). The Pearson correlation coefficient for mean tibial slope and age showed negative correlations of -0.4011 and -0.4335 for left and right knees, respectively. This anterior tibial slope produces proximal and posterior vector force components, which may shift the knee posteriorly in weightbearing. The mean tibial slope is significantly more anterior in patients with achondroplasia than in the general population; however, this difference diminishes as patients' age. An anterior tibial slope may predispose to a more posterior

  18. Tibial tunnel aperture location during single-bundle posterior cruciate ligament reconstruction: comparison of tibial guide positions.

    PubMed

    Shin, Young-Soo; Han, Seung-Beom; Hwang, Yeok-Ku; Suh, Dong-Won; Lee, Dae-Hee

    2015-05-01

    We aimed to compare posterior cruciate ligament (PCL) tibial tunnel location after tibial guide insertion medial (between the PCL remnant and the medial femoral condyle) and lateral (between the PCL remnant and the anterior cruciate ligament) to the PCL stump as determined by in vivo 3-dimensional computed tomography (3D-CT). Tibial tunnel aperture location was analyzed by immediate postoperative in vivo CT in 66 patients who underwent single-bundle PCL reconstruction, 31 by over-the-PCL and 35 by under-the-PCL tibial guide insertion techniques. Tibial tunnel positions were measured in the medial to lateral and proximal to distal directions of the posterior proximal tibia. The center of the tibial tunnel aperture was located more laterally (by 2.7 mm) in the over-the-PCL group than in the under-the-PCL group (P = .040) and by a relative percentage (absolute value/tibial width) of 3.2% (P = .031). Tibial tunnel positions in the proximal to distal direction, determined by absolute value and relative percentage, were similar in the 2 groups. Tibial tunnel apertures were located more laterally after lateral-to-the-PCL tibial guide insertion than after medial-to-the-PCL tibial guide insertion. There was, however, no significant difference between these techniques in distance from the joint line to the tibial tunnel aperture. Insertion lateral to the PCL stump may result in better placement of the PCL in its anatomic footprint. Level III, retrospective comparative study. Copyright © 2015 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  19. Effect of tibial tuberosity advancement on femorotibial contact mechanics and stifle kinematics.

    PubMed

    Kim, Stanley E; Pozzi, Antonio; Banks, Scott A; Conrad, Bryan P; Lewis, Daniel D

    2009-01-01

    Objective- To evaluate the effects of tibial tuberosity advancement (TTA) on femorotibial contact mechanics and 3-dimensional kinematics in cranial cruciate ligament (CrCL)-deficient stifles of dogs. Study Design- In vitro biomechanical study. Animals- Unpaired pelvic limbs from 8 dogs, weighing 28-35 kg. Methods- Digital pressure sensors placed subjacent to the menisci were used to measure femorotibial contact force, contact area, peak and mean contact pressure, and peak pressure location with the limb under an axial load of 30% body weight and a stifle angle of 135 degrees . Three-dimensional static poses of the stifle were obtained using a Microscribe digitizing arm. Each specimen was tested under normal, CrCL-deficient, and TTA-treated conditions. Repeated measures analysis of variance with a Tukey post hoc test (P<.05) was used for statistical comparison. Results- Significant disturbances to all measured contact mechanic parameters were evident after CrCL transection, which corresponded to marked cranial tibial subluxation and internal tibial rotation in the CrCL-deficient stifle. No significant differences in any contact mechanic and kinematic parameters were detected between normal and TTA-treated stifles. Conclusion- TTA eliminates craniocaudal stifle instability during simulated weight-bearing and concurrently restores femorotibial contact mechanics to normal. Clinical Relevance- TTA may mitigate the progression of stifle osteoarthritis in dogs afflicted with CrCL insufficiency by eliminating cranial tibial thrust while preserving the normal orientation of the proximal tibial articulating surface.

  20. Influence of Medial Collateral Ligament Release for Internal Rotation of Tibia in Posterior-Stabilized Total Knee Arthroplasty: A Cadaveric Study.

    PubMed

    Wada, Keizo; Hamada, Daisuke; Tamaki, Shunsuke; Higashino, Kosaku; Fukui, Yoshihiro; Sairyo, Koichi

    2017-01-01

    Previous studies suggested that changes in kinematics in total knee arthroplasty (TKA) affected satisfaction level. The aim of this cadaveric study was to evaluate the effect of medial collateral ligament (MCL) release by multiple needle puncture on knee rotational kinematics in posterior-stabilized TKA. Six fresh, frozen cadaveric knees were included in this study. All TKA procedures were performed with an image-free navigation system using a 10-mm polyethylene insert. Tibial internal rotation was assessed to evaluate intraoperative knee kinematics. Multiple needle puncturing was performed 5, 10, and 15 times for the hard portion of the MCL at 90° knee flexion. Kinematic analysis was performed after every 5 punctures. After performing 15 punctures, a 14-mm polyethylene insert was inserted, and kinematic analysis was performed. The tibial internal rotation angle at maximum knee flexion without multiple needle puncturing was significantly larger (9.42°) than that after 15 punctures (3°). Negative correlation (Pearson r = -0.715, P < .001) between tibial internal rotation angle at maximum knee flexion and frequency of puncture was observed. The tibial internal rotation angle with a 14-mm insert was significantly larger (7.25°) compared with the angle after 15 punctures. Tibial internal rotation during knee flexion was reduced by extensive MCL release using multiple needle puncturing and was recovered by increasing of medial tightness. From the point of view of knee kinematics, medial tightness should be allowed to maintain the internal rotation angle of the tibia during knee flexion which might lead to patient satisfaction. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Objective guidelines for removing an external fixator after tibial lengthening using pixel value ratio: a pilot study.

    PubMed

    Zhao, Li; Fan, Qing; Venkatesh, K P; Park, Man S; Song, Hae Ryong

    2009-12-01

    During limb lengthening over an intramedullary nail, decisions regarding external fixator removal and weightbearing depend on the amount of callus seen at the lengthening area on radiographs. However, this method is subjective and objective evaluation of the amount of callus likely would minimize nail or interlocking screw breakage and refracture after fixator removal. We asked how many cortices with full corticalization of the newly formed bone at the lengthening area are needed to allow fixator removal and full weightbearing and how to radiographically determine the stage of corticalization. We retrospectively reviewed 17 patients (34 lengthenings) who underwent bilateral tibial lengthenings over an intramedullary nail. The average gain in length was 7.2 +/- 3.4 cm. We determined the pixel value ratio (ratio of pixel value of regenerate versus the mean pixel value of adjacent bone) of the lengthened area on radiographs. There were no nail or screw breakage and refracture. Partial weightbearing with crutches was permitted when the pixel value ratio was 1 in two cortices and full weightbearing without crutches was permitted when the pixel value ratio was 1 in three cortices. The pixel value ratio on radiographs can be an objective parameter for callus measurement and may provide guidelines for the timing of external fixator removal. We cannot determine from our limited data the minimum pixel value in how many cortices would suggest safe removal, but we can say our criteria were not associated with subsequent refracture.

  2. Effect of scapular external rotation on the axillary nerve during the arthroscopic Latarjet procedure: an anatomical investigation.

    PubMed

    Reinares, Felipe; Werthel, Jean-David; Moraiti, Constantina; Valenti, Philippe

    2017-10-01

    The first purpose of this study is to measure the distance between the axillary nerve and the exit point of K-wires placed retrograde through the glenoid in the setting of an arthroscopic Latarjet procedure. The second objective is to evaluate whether manual external rotation of the scapula alters that distance. In seven fresh-frozen specimens, two 2.0-mm K-wires were drilled through the glenoid using an arthroscopic Latarjet retrograde glenoid guide. These were drilled into the glenoid at the 7- and 8-o'clock positions (right shoulders) and at the 4- and 5-o'clock positions (left). K-wires were oriented parallel to the glenoid articular surface and perpendicular to the long superoinferior axis of the glenoid, 7 mm medial to the joint surface. Two independent evaluators measured the distances between the axillary nerve and the exit point of the K-wires in the horizontal plane (AKHS for the superior K-wire and AKHI for the inferior K-wire) and in the vertical plane (AKV). Measurements were taken with the scapula left free and were repeated with the scapula placed at 15° and 30° of external rotation. With the scapula left free, scapular external rotation was 34° ± 2.3°. In this position, the AKHS was 2.5 ± 1.6, 6.3 ± 1.2 mm at 15° of external rotation (ER) and 11.4 ± 1.4 mm at 30° ER. The AKHI distance was 0.37 ± 1.6, 3.4 ± 1.4 and 10.6 ± 2.1 mm, respectively, for the scapula left free, at 15° ER and 30° of ER. The AKV distances were, respectively, 0.12 ± 0.2, 4.9 ± 1.6 and 9.9 ± 1.7 mm. The increase in all distances was statistically significant (p < 0.001). Increasing scapular external rotation significantly increases the distance between the axillary nerve and the exit point of the K-wires, increasing the margin of safety during this procedure. Therefore, increased external rotation of the scapula could be an effective tool to decrease the risk of iatrogenic axillary nerve injury. Cadaveric study, Level V.

  3. Clinical assessment of external rotation for the diagnosis of anterior shoulder hyperlaxity.

    PubMed

    Ropars, M; Fournier, A; Campillo, B; Bonan, I; Delamarche, P; Crétual, A; Thomazeau, H

    2010-12-01

    The aim of this study was to evaluate two methods of clinical assessment for external rotation of the shoulder to optimise the diagnosis of hyperlaxity in patients being selected for surgery for stabilisation of chronic anterior instability. External rotation was evaluated in 70 healthy student volunteers by two examiners (intertester study) using two methods of assessment at 15-day intervals (intratester study). The first method used was the protocol described for the Instability Severity Index Score (ISIS). In this case, the subject was evaluated in the sitting position, bilaterally with passive range of motion movements. The shoulder was considered hyperlax if ER1 was greater than 85°. With the second, so-called "elbow on the table" (EOT) method, the subject was evaluated in the decubitus dorsal position, unilaterally with passive range of motion. The subject was considered to be hyperlax if ER1 was greater than 90°. Kappa values for intra- and intertester agreement with the ISIS method were average, while they were satisfactory with the intraclass coefficient (ICC). Kappa values for inter- and intratester agreement with the EOT method were average and good, respectively. This tendency was confirmed by the ICC which went from good to excellent for the two examiners in both series of measurements using the EOT method, showing better reproducibility with this method. Our study confirms that the most reproducible method for assessing external rotation is obtained by unilateral assessment of the patient in the decubitus dorsal position, with passive range of motion. An ER1 of 90° is the necessary threshold for hyperlaxity because of elbow retropulsion with this method, which provides immediate and visual evaluation and eliminates the necessity of goniometry. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  4. Medial Tibial Stress Syndrome in Active Individuals: A Systematic Review and Meta-analysis of Risk Factors

    PubMed Central

    Reinking, Mark F.; Austin, Tricia M.; Richter, Randy R.; Krieger, Mary M.

    2016-01-01

    Context: Medial tibial stress syndrome (MTSS) is a common condition in active individuals and presents as diffuse pain along the posteromedial border of the tibia. Objective: To use cross-sectional, case-control, and cohort studies to identify significant MTSS risk factors. Data Sources: Bibliographic databases (PubMed, Scopus, CINAHL, SPORTDiscus, EMBASE, EBM Reviews, PEDRo), grey literature, electronic search of full text of journals, manual review of reference lists, and automatically executed PubMed MTSS searches were utilized. All searches were conducted between 2011 and 2015. Study Selection: Inclusion criteria were determined a priori and included original research with participants’ pain diffuse, located in the posterior medial tibial region, and activity related. Study Design: Systematic review with meta-analysis. Level of evidence: Level 4. Data Extraction: Titles and abstracts were reviewed to eliminate citations that did not meet the criteria for inclusion. Study characteristics identified a priori were extracted for data analysis. Statistical heterogeneity was examined using the I2 index and Cochran Q test, and a random-effects model was used to calculate the meta-analysis when 2 or more studies examined a risk factor. Two authors independently assessed study quality. Results: Eighty-three articles met the inclusion criteria, and 22 articles included risk factor data. Of the 27 risk factors that were in 2 or more studies, 5 risk factors showed a significant pooled effect and low statistical heterogeneity, including female sex (odds ratio [OR], 2.35; CI, 1.58-3.50), increased weight (standardized mean difference [SMD], 0.24; CI, 0.03-0.45), higher navicular drop (SMD, 0.44; CI, 0.21-0.67), previous running injury (OR, 2.18; CI, 1.00-4.72), and greater hip external rotation with the hip in flexion (SMD, 0.44; CI, 0.23-0.65). The remaining risk factors had a nonsignificant pooled effect or significant pooled effect with high statistical heterogeneity

  5. Gyrokinetic simulations with external resonant magnetic perturbations: Island torque and nonambipolar transport with plasma rotation

    NASA Astrophysics Data System (ADS)

    Waltz, R. E.; Waelbroeck, F. L.

    2012-03-01

    Static external resonant magnetic field perturbations (RMPs) have been added to the gyrokinetic code GYRO [J. Candy and R. E. Waltz, J. Comp. Phys. 186, 545 (2003)]. This allows nonlinear gyrokinetic simulations of the nonambipolar radial current flow jr, and the corresponding j→×B→ plasma torque (density) R[jrBp/c], induced by magnetic islands that break the toroidal symmetry of a tokamak. This extends the previous GYRO formulation for the transport of toroidal angular momentum (TAM) [R. E. Waltz, G. M. Staebler, J. Candy, and F. L. Hinton, Phys. Plasmas 14, 122507 (2007); errata 16, 079902 (2009)]. The focus is on electrostatic full torus radial slice simulations of externally induced q =m/n=6/3 islands with widths 5% of the minor radius or about 20 ion gyroradii. Up to moderately strong E ×B rotation, the island torque scales with the radial electric field at the resonant surface Er, the island width w, and the intensity I of the high-n micro-turbulence, as Erw√I . The radial current inside the island is carried (entirely in the n =3 component) and almost entirely by the ion E ×B flux, since the electron E ×B and magnetic flutter particle fluxes are cancelled. The net island torque is null at zero Er rather than at zero toroidal rotation. This means that while the expected magnetic braking of the toroidal plasma rotation occurs at strong co- and counter-current rotation, at null toroidal rotation, there is a small co-directed magnetic acceleration up to the small diamagnetic (ion pressure gradient driven) co-rotation corresponding to the zero Er and null torque. This could be called the residual stress from an externally induced island. At zero Er, the only effect is the expected partial flattening of the electron temperature gradient within the island. Finite-beta GYRO simulations demonstrate almost complete RMP field screening and n =3 mode unlocking at strong Er.

  6. Ilizarov bone transport versus fibular graft for reconstruction of tibial bone defects in children.

    PubMed

    Abdelkhalek, Mostafa; El-Alfy, Barakat; Ali, Ayman M

    2016-11-01

    The aim of this study was to compare the results of treatment of segmental tibial defects in the pediatric age group using an Ilizarov external fixator versus a nonvascularized fibular bone graft. This study included 24 patients (age range from 5.5 to 15 years) with tibial bone defects: 13 patients were treated with bone transport (BT) and 11 patients were treated with a nonvascularized fibular graft (FG). The outcome parameters were bone results (union, deformity, infection, leg-length discrepancy) and functional results: external fixation index and external fixation time. In group A (BT), one patient developed refracture at the regenerate site, whereas, in group B (FG), after removal of the external fixator, one of the FGs developed a stress fracture. The external fixator time in group A was 10.7 months (range 8-14.5) versus 7.8 months (range 4-11.5 months) in group B (FG). In group A (BT), one patient had a limb-length discrepancy (LLD), whereas, in group B (FG), three patients had LLD. The functional and bone results of the Ilizarov BT technique were excellent in 23.1 and 30.8%, good in 38.5 and 46.2, fair in 30.8 and 15.4, and poor in 7.6 and 7.6%, respectively. The poor functional result was related to the poor bone result because of prolonged external fixator time resulting in significant pain, limited ankle motion, whereas the functional and bone results of fibular grafting were excellent in 9.1 and 18.2%, good in 63.6 and 45.5%, fair in 18.2 and 27.2%, and poor in 9.1 and 9.1%, respectively. Segmental tibial defects can be effectively treated with both methods. The FG method provides satisfactory results, with early removal of the external fixator. However, it had a limitation in patients with severe infection and those with LLD. Also, it requires a long duration of limb bracing until adequate hypertrophy of the graft. The Ilizarov method has the advantages of early weight bearing, treatment of postinfection bone defect in a one-stage surgery, and the

  7. Posteromedial Meniscocapsular Lesions Increase Tibiofemoral Joint Laxity With Anterior Cruciate Ligament Deficiency, and Their Repair Reduces Laxity.

    PubMed

    Stephen, Joanna M; Halewood, Camilla; Kittl, Christoph; Bollen, Steve R; Williams, Andy; Amis, Andrew A

    2016-02-01

    Injury to the posteromedial meniscocapsular junction has been identified after anterior cruciate ligament (ACL) rupture; however, there is a lack of objective evidence investigating how this affects knee kinematics or whether increased laxity can be restored by repair. Such injury is often overlooked at surgery, with possible compromise to results. (1) Sectioning the posteromedial meniscocapsular junction in an ACL-deficient knee will result in increased anterior tibial translation and rotation. (2) Isolated ACL reconstruction in the presence of a posteromedial meniscocapsular junction lesion will not restore intact knee laxity. (3) Repair of the posteromedial capsule at the time of ACL reconstruction will reduce tibial translation and rotation to normal. (4) These changes will be clinically detectable. Controlled laboratory study. Nine cadaveric knees were mounted in a test rig where knee kinematics were recorded from 0° to 100° of flexion by use of an optical tracking system. Measurements were recorded with the following loads: 90-N anterior-posterior tibial forces, 5-N·m internal-external tibial rotation torques, and combined 90-N anterior force and 5-N·m external rotation torque. Manual Rolimeter readings of anterior translation were taken at 30° and 90°. The knees were tested in the following conditions: intact, ACL deficient, ACL deficient and posteromedial meniscocapsular junction sectioned, ACL deficient and posteromedial meniscocapsular junction repaired, ACL patellar tendon reconstruction with posteromedial meniscocapsular junction repair, and ACL reconstructed and capsular lesion re-created. Statistical analysis used repeated-measures analysis of variance and post hoc paired t tests with Bonferroni correction. Tibial anterior translation and external rotation were both significantly increased compared with the ACL-deficient knee after posterior meniscocapsular sectioning (P < .05). These parameters were restored after ACL reconstruction and

  8. Post-Cam Design and Contact Stress on Tibial Posts in Posterior-Stabilized Total Knee Prostheses: Comparison Between a Rounded and a Squared Design.

    PubMed

    Watanabe, Toshifumi; Koga, Hideyuki; Horie, Masafumi; Katagiri, Hiroki; Sekiya, Ichiro; Muneta, Takeshi

    2017-12-01

    The post-cam mechanism in posterior stabilized (PS) prostheses plays an important role in total knee arthroplasty (TKA). The purpose of this study is to clarify the difference of the contact stress on the tibial post between a rounded post-cam design and a squared design during deep knee flexion and at hyperextension using the three-dimensional (3D) finite element models. We created 2 types of 3D, finite element models of PS prostheses (types A and B), whose surfaces were identical except for the post-cam geometries: type A has a rounded post-cam design, while type B has a squared design. Both types have a similar curved-shape intercondylar notch of the femoral component. Stress distributions, peak contact stresses, and contact areas on the tibial posts at 90°, 120°, and 150° flexion with/without 10° tibial internal rotation and at 10° hyperextension were compared between the 2 models. Type B demonstrated more concentrated stress distribution compared to type A. The peak contact stresses were similar in both groups during neutral flexion; however, the stresses were much higher in type B during flexion with 10° rotation and at hyperextension. The higher peak contact stresses corresponded to the smaller contact areas in the tibial post. A rounded post-cam design demonstrated less stress concentration during flexion with rotation and at hyperextension compared with a squared design. The results would be useful for development of implant designs and prediction of the contact stress on the tibial post in PS total knee arthroplasty. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Increases in tibial force imbalance but not changes in tibiofemoral laxities are caused by varus-valgus malalignment of the femoral component in kinematically aligned TKA.

    PubMed

    Riley, Jeremy; Roth, Joshua D; Howell, Stephen M; Hull, Maury L

    2018-01-29

    -valgus malalignment did not significantly change varus, internal-external rotation, anterior-posterior, and compression-distraction laxities from 0° to 120° flexion. At only 30° of flexion, 4° of varus malalignment increased valgus laxity 1° (p = 0.0014). At 0° flexion, V-V malalignment of the femoral component caused the tibial force imbalance to increase significantly, whereas the laxities were relatively unaffected. Because tibial force imbalance has the potential to adversely affect patient-reported outcomes and satisfaction, surgeons should strive to limit errors in resecting the distal femoral condyles to within ± 0.5 mm which in turn limits the average increase in tibial force imbalance to 68 N. Because laxities were generally unaffected, instability resulting from large increases in laxity is not a clinical concern within the ± 4° range tested. Therapeutic, Level II.

  10. Are undesirable contact kinematics minimized after kinematically aligned total knee arthroplasty? An intersurgeon analysis of consecutive patients.

    PubMed

    Howell, Stephen M; Hodapp, Esther E; Vernace, Joseph V; Hull, Maury L; Meade, Thomas D

    2013-10-01

    Tibiofemoral contact kinematics or knee implant motions have a direct influence on patient function and implant longevity and should be evaluated for any new alignment technique such as kinematically aligned total knee arthroplasty (TKA). Edge loading of the tibial liner and external rotation (reverse of normal) and adduction of the tibial component on the femoral component are undesirable contact kinematics that should be minimized. Accordingly, this study determined whether the overall prevalence of undesirable contact kinematics during standing, mid kneeling near 90 degrees and full kneeling with kinematically aligned TKA are minimal and not different between groups of consecutive patients treated by different surgeons. Three surgeons were asked to perform cemented, kinematically aligned TKA with patient-specific guides in a consecutive series of patients with their preferred cruciate-retaining (CR) implant. In vivo tibiofemoral contact positions were obtained using a 3- to 2-dimensional image registration technique in 69 subjects (Vanguard CR-TKA N = 22, and Triathlon CR-TKA N = 47). Anterior or posterior edge loading of the tibial liner was not observed. The overall prevalence of external rotation of the tibial component on the femoral component of 6 % was low and not different between surgeons (n.s.). The overall prevalence of adduction of the tibial component on the femoral component of 4 % was low and not different between surgeons (n.s.). Kinematically aligned TKA minimized the undesirable contact kinematics of edge loading of the tibial liner, and external rotation and adduction of the tibial component on the femoral component during standing and kneeling, which suggests an optimistic prognosis for durable long-term function. III.

  11. Tibial Plateau Fractures in Elderly Patients

    PubMed Central

    Vemulapalli, Krishna C.; Gary, Joshua L.; Donegan, Derek J.

    2016-01-01

    Tibial plateau fractures are common in the elderly population following a low-energy mechanism. Initial evaluation includes an assessment of the soft tissues and surrounding ligaments. Most fractures involve articular depression leading to joint incongruity. Treatment of these fractures may be complicated by osteoporosis, osteoarthritis, and medical comorbidities. Optimal reconstruction should restore the mechanical axis, provide a stable construct for mobilization, and reestablish articular congruity. This is accomplished through a variety of internal or external fixation techniques or with acute arthroplasty. Regardless of the treatment modality, particular focus on preservation and maintenance of the soft tissue envelope is paramount. PMID:27551570

  12. Tibial plateau fracture following gracilis-semitendinosus anterior cruciate ligament reconstruction: The tibial tunnel stress-riser.

    PubMed

    Sundaram, R O; Cohen, D; Barton-Hanson, N

    2006-06-01

    Tibial plateau fractures following anterior cruciate ligament (ACL) reconstruction are extremely rare. This is the first reported case of a tibial plateau fracture following four-strand gracilis-semitendinosus autograft ACL reconstruction. The tibial tunnel alone may behave as a stress riser which can significantly reduce bone strength.

  13. Biological approach to treatment of intra-articular proximal tibial fractures with double osteosynthesis.

    PubMed

    Singh, Saurabh; Patel, Pankaj R; Joshi, Anil Kumar; Naik, Rajnikant N; Nagaraj, Chethan; Kumar, Sudeep

    2009-02-01

    The treatment of intra-articular proximal tibial fractures is associated with complications, and much conflicting literature exists concerning the treatment of choice. In our study, an attempt has been made to develop an ideal and adequate treatment protocol for these intra-articular fractures. The principle of double osteosynthesis, i.e., lateral minimally invasive plate osteosynthesis (MIPO), was combined with a medial external fixator to treat 22 intra-articular proximal tibial fractures with soft tissue injury with a mean follow-up of 25 months. Superficial pin track infection was observed in one case, and no soft tissue breakdown was noted. Loss of articular reconstruction was reported in one case. Bridging callus was seen at 12 weeks (8 weeks-7 months). The principle of substitution or double osteosynthesis, i.e., lateral MIPO, was combined with a medial external fixator and proved to be a fairly good method of fixation in terms of results and complications.

  14. Hand-held dynamometer testing of the internal and external rotator musculature based on selected positions to establish normative data and unilateral ratios.

    PubMed

    Riemann, Bryan L; Davies, George J; Ludwig, Lauren; Gardenhour, Helen

    2010-12-01

    Objective documentation is needed of shoulder internal and external rotator strength using hand-held dynamometry in selected positions commonly used in a clinic. We compared strength measures and unilateral ratios between gender, limbs (dominant, nondominant), and 3 testing positions. We hypothesized that men would be stronger than women, the dominant shoulder would be stronger than the nondominant shoulder, and the seated neutral (0° adduction) and seated 30° abduction, 30° scaption, 30° diagonal (30°-30°-30°) positions would be stronger than the prone at 90°-90° position. Three positions (prone at 90°, seated at neutral, and seated at 30°-30°-30°) were evaluated in 181 individuals using hand-held dynamometry. Three separate 3-factor (limb by position by gender) analyses of variance were conducted on internal rotation, external rotation, and unilateral ratios. Although the dominant limb was significantly stronger (P < .001) than the nondominant for internal rotation, there was no difference for external rotation. The external rotators demonstrated significantly greater strength in the prone at 90° position compared with the seated at neutral (P = .001) and seated at 30°-30°-30° (P = .002) positions. The internal rotators demonstrated significantly greater (P = .036) strength in the neutral position than in the prone at 90° position for the women. The unilateral ratio of external rotators/internal rotators ranged from 86% to 99%. For the women, the prone at 90° ratio was significantly greater than seated at neutral (P = .001) and seated at 30°-30°-30° (P = .001) positions. Moderate strength relationships (r = 0.506 to 0.572) were revealed between body mass and all strength measures. The results of this study provide evidence to interpret normative data, bilateral comparisons and unilateral ratios of the internal/external rotators in the 3 selected positions. Because there are no differences between the seated at neutral and 30°-30°-30

  15. Tibial Tray Thickness Significantly Increases Medial Tibial Bone Resorption in Cobalt-Chromium Total Knee Arthroplasty Implants.

    PubMed

    Martin, J Ryan; Watts, Chad D; Levy, Daniel L; Miner, Todd M; Springer, Bryan D; Kim, Raymond H

    2017-01-01

    Stress shielding is an uncommon complication associated with primary total knee arthroplasty. Patients are frequently identified radiographically with minimal clinical symptoms. Very few studies have evaluated risk factors for postoperative medial tibial bone loss. We hypothesized that thicker cobalt-chromium tibial trays are associated with increased bone loss. We performed a retrospective review of 100 posterior stabilized, fixed-bearing total knee arthroplasty where 50 patients had a 4-mm-thick tibial tray (thick tray cohort) and 50 patients had a 2.7-mm-thick tibial tray (thin tray cohort). A clinical evaluation and a radiographic assessment of medial tibial bone loss were performed on both cohorts at a minimum of 2 years postoperatively. Mean medial tibial bone loss was significantly higher in the thick tray cohort (1.07 vs 0.16 mm; P = .0001). In addition, there were significantly more patients with medial tibial bone loss in the thick tray group compared with the thin tray group (44% vs 10%, P = .0002). Despite these differences, there were no statistically significant differences in range of motion, knee society score, complications, or revision surgeries performed. A thicker cobalt-chromium tray was associated with significantly more medial tibial bone loss. Despite these radiographic findings, we found no discernable differences in clinical outcomes in our patient cohort. Further study and longer follow-up are needed to understand the effects and clinical significance of medial tibial bone loss. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. ACL double-bundle reconstruction with one tibial tunnel provides equal stability compared to two tibial tunnels.

    PubMed

    Drews, Björn Holger; Seitz, Andreas Martin; Huth, Jochen; Bauer, Gerhard; Ignatius, Anita; Dürselen, Lutz

    2017-05-01

    The purpose of this study was to investigate whether an anterior cruciate ligament (ACL) double-bundle reconstruction with one tibial tunnel displays the same in vitro stability as a conventional double-bundle reconstruction with two tibial tunnels when using the same tensioning protocol. In 11 fresh-frozen cadaveric knees, ACL double-bundle reconstruction with one and two tibial tunnels was performed. The two grafts were tightened using 80 N in different flexion angles (anteromedial-bundle at 60° and posterolateral-bundle at 15°). Anterior tibial translation (134 N) and translation with combined rotatory and valgus loads (10 Nm valgus stress and 4 Nm internal tibial torque) were determined at 0°, 30°, 60° and 90° flexion. Measurements were taken in intact ACL, resected ACL, three-tunnel reconstruction and four-tunnel reconstruction. Additionally, the tension on the grafts was determined. Student's t test was performed for statistical analysis of the related samples. Significance was set at p < 0.017 according to Bonferroni correction. The two reconstructive techniques displayed no significant differences in comparison with the intact ACL in anterior tibial translation at 0°, 60° and 90° of flexion. The same results were obtained for the anterior tibial translation with a combined rotatory load at 60° and 90°. When directly comparing both reconstructive techniques, there were no significant differences for the anterior tibial translation and combined rotatory load at all flexion angles. The measured tension on grafts displayed similar load sharing between both bundles. Except at full extension, both grafts displayed a significantly different tension increase under anterior tibial translation for both techniques (p = 0.0086). Tightening both bundles in ACL double-bundle reconstruction with one or two tibial tunnels in different flexion angles achieved comparable restoration of stability, although there was different load sharing on the bundles

  17. Cranial tibial wedge osteotomy: a technique for eliminating cranial tibial thrust in cranial cruciate ligament repair.

    PubMed

    Slocum, B; Devine, T

    1984-03-01

    Cranial tibial wedge osteotomy, surgical technique for cranial cruciate ligament rupture, was performed on 19 stifles in dogs. This procedure leveled the tibial plateau, thus causing weight-bearing forces to be compressive and eliminating cranial tibial thrust. Without cranial tibial thrust, which was antagonistic to the cranial cruciate ligament and its surgical reconstruction, cruciate ligament repairs were allowed to heal without constant loads. This technique was meant to be used as an adjunct to other cranial cruciate ligament repair techniques.

  18. Gait retraining and incidence of medial tibial stress syndrome in army recruits.

    PubMed

    Sharma, Jagannath; Weston, Matthew; Batterham, Alan M; Spears, Iain R

    2014-09-01

    Gait retraining, comprising biofeedback and/or an exercise intervention, might reduce the risk of musculoskeletal conditions. The purpose was to examine the effect of a gait-retraining program on medial tibial stress syndrome incidence during a 26-wk basic military training regimen. A total of 450 British Army recruits volunteered. On the basis of a baseline plantar pressure variable (mean foot balance during the first 10% of stance), participants classified as at risk of developing medial tibial stress syndrome (n = 166) were randomly allocated to an intervention (n = 83) or control (n = 83) group. The intervention involved supervised gait retraining, including exercises to increase neuromuscular control and flexibility (three sessions per week) and biofeedback enabling internalization of the foot balance variable (one session per week). Both groups continued with the usual military training regimen. Diagnoses of medial tibial stress syndrome over the 26-wk regimen were made by physicians blinded to the group assignment. Data were modeled in a survival analysis using Cox regression, adjusting for baseline foot balance and time to peak heel rotation. The intervention was associated with a substantially reduced instantaneous relative risk of medial tibial stress syndrome versus control, with an adjusted HR of 0.25 (95% confidence interval, 0.05-0.53). The number needed to treat to observe one additional injury-free recruit in intervention versus control at 20 wk was 14 (11 to 23) participants. Baseline foot balance was a nonspecific predictor of injury, with an HR per 2 SD increment of 5.2 (1.6 to 53.6). The intervention was effective in reducing incidence of medial tibial stress syndrome in an at-risk military sample.

  19. Inducible displacement of cemented tibial components ten years after total knee arthroplasty.

    PubMed

    Lam Tin Cheung, K; Lanting, B A; McCalden, R W; Yuan, X; MacDonald, S J; Naudie, D D; Teeter, M G

    2018-02-01

    The aim of this study was to evaluate the long-term inducible displacement of cemented tibial components ten years after total knee arthroplasty (TKA). A total of 15 patients from a previously reported prospective trial of fixation using radiostereometric analysis (RSA) were examined at a mean of 11 years (10 to 11) postoperatively. Longitudinal supine RSA examinations were acquired at one week, one year, and two years postoperatively and at final follow-up. Weight-bearing RSA examinations were also undertaken with the operated lower limb in neutral and in maximum internal rotation positions. Maximum total point motion (MTPM) was calculated for the longitudinal and inducible displacement examinations (supine versus standing, standing versus internal rotation, and supine versus standing with internal rotation). All patients showed some inducible displacement. Two patients with radiolucent lines had greater mean standing-supine MTPM displacement (1.35; sd 0.38) compared with the remaining patients (0.68; sd 0.36). These two patients also had a greater mean longitudinal MTPM at ten years (0.64; sd 0.50) compared with the remaining patients (0.39; sd 0.13 mm). Small inducible displacements in well-fixed cemented tibial components were seen ten years postoperatively, of a similar magnitude to that which has been reported for well-fixed components one to two years postoperatively. Greater displacements were found in components with radiolucent lines. Cite this article: Bone Joint J 2018;100-B:170-5. ©2018 The British Editorial Society of Bone & Joint Surgery.

  20. Effect of tibial plateau leveling osteotomy on femorotibial contact mechanics and stifle kinematics.

    PubMed

    Kim, Stanley E; Pozzi, Antonio; Banks, Scott A; Conrad, Bryan P; Lewis, Daniel D

    2009-01-01

    To evaluate the effects of tibial plateau leveling osteotomy (TPLO) on femorotibial contact mechanics and 3-dimensional (3D) kinematics in cranial cruciate ligament (CrCL)-deficient stifles of dogs. In vitro biomechanical study. Unpaired pelvic limbs from 8 dogs, weighing 28-35 kg. Digital pressure sensors placed subjacent to the menisci were used to measure femorotibial contact force, contact area, peak and mean contact pressure, and peak pressure location with the limb under an axial load of 30% body weight and a stifle angle of 135 degrees. Three-dimensional static poses of the stifle were obtained using a Microscribe digitizing arm. Each specimen was tested under normal, CrCL-deficient, and TPLO-treated conditions. Repeated measures analysis of variance with a Tukey post hoc test (P<.05) was used for statistical comparison. Significant disturbances to all measured contact mechanical variables were evident after CrCL transection, which corresponded to marked cranial tibial subluxation and increased internal tibial rotation in the CrCL-deficient stifle. No significant differences in 3D femorotibial alignment were observed between normal and TPLO-treated stifles; however, femorotibial contact area remained significantly smaller and peak contact pressures in both medial and lateral stifle compartments were positioned more caudally on the tibial plateau, when compared with normal. Whereas TPLO eliminates craniocaudal stifle instability during simulated weight bearing, the procedure fails to concurrently restore femorotibial contact mechanics to normal. Progression of stifle osteoarthritis in dogs treated with TPLO may be partly the result of abnormal stifle contact mechanics induced by altering the orientation of the proximal tibial articulating surface.

  1. External rotation elastic bands at the lower limb decrease rearfoot eversion during walking: a preliminary proof of concept

    PubMed Central

    Souza, Thales R.; Araújo, Vanessa L.; Silva, Paula L.; Carvalhais, Viviane O. C.; Resende, Renan A.; Fonseca, Sérgio T.

    2016-01-01

    ABSTRACT Background Reducing rearfoot eversion is a commonly desired effect in clinical practice to prevent or treat musculoskeletal dysfunction. Interventions that pull the lower limb into external rotation may reduce rearfoot eversion. Objective This study investigated whether the use of external rotation elastic bands, of different levels of stiffness, will decrease rearfoot eversion during walking. We hypothesized that the use of elastic bands would decrease rearfoot eversion and that the greater the band stiffness, the greater the eversion reduction. Method Seventeen healthy participants underwent three-dimensional kinematic analysis of the rearfoot and shank. The participants walked on a treadmill with and without high- and low-stiffness bands. Frontal-plane kinematics of the rearfoot-shank joint complex was obtained during the stance phase of walking. Repeated-measures ANOVAs were used to compare discrete variables that described rearfoot eversion-inversion: mean eversion-inversion; eversion peak; and eversion-inversion range of motion. Results The low-stiffness and high-stiffness bands significantly decreased eversion and increased mean eversion-inversion (p≤0.037) and eversion peak (p≤0.006) compared with the control condition. Both bands also decreased eversion-inversion range of motion (p≤0.047) compared with control by reducing eversion. The high-stiffness band condition was not significantly different from the low-stiffness band condition for any variables (p≥0.479). Conclusion The results indicated that the external rotation bands decreased rearfoot eversion during walking. This constitutes preliminary experimental evidence suggesting that increasing external rotation moments at the lower limb may reduce rearfoot eversion, which needs further testing. PMID:27849289

  2. Gender differences in knee kinematics and muscle activity during single limb drop landing.

    PubMed

    Nagano, Yasuharu; Ida, Hirofumi; Akai, Masami; Fukubayashi, Toru

    2007-06-01

    The likelihood of sustaining an ACL injury in a noncontact situation is two to eight times greater for females than for males. However, the mechanism and risk factors of ACL injury are still unknown. We compared knee kinematics as well as electromyographic activity during landing between male and female athletes. Eighteen male athletes and nineteen female athletes participated in the experiment. The angular displacements of flexion/extension, valgus/varus, and internal/external tibial rotation, as well as the translational displacements of anterior/posterior tibial translation during single limb drop landing were calculated. Simultaneous electromyographical activity of the rectus femoris (RF) and hamstrings (Ham) was taken. During landing, internal tibial rotation of the females was significantly larger than that of the males, while differences were not observed in flexion, varus, valgus, and anterior tibial translation. Hamstrings/quadriceps ratio (HQR) for the 50 ms time period before foot contact was greater in males than in females. The mechanism of noncontact ACL injury during a single limb drop landing would be internal tibial rotation combined with valgus rotation of the knee. Increased internal tibial rotation combined with greater quadriceps activity and a low HQR could be one reason female athletes have a higher incidence of noncontact ACL injuries.

  3. [Manipulative reduction and percutaneous Kirschner wire internal fixation for grade IV supination-external rotation ankle fractures].

    PubMed

    Li, Jia; Sun, Jin-Ke; Wang, Chen-Lin

    2017-06-25

    To investigate surgical skills and clinical effects of manipulative reduction and percutaneous Kirschner wire internal fixation in treating grade IV supination-external rotation ankle fractures. From May 2013 to October 2016, 35 patients with grade IV supination-external rotation ankle fractures were treated with percutaneous Kirschner wire internal fixation, involving 22 males and 13 females with an average age of 38.2 years ranged from 18 to 65 years old. The time from injury to operation ranged from 2 h to 10 d with an average of 5 d. Reduction quality was assessed by Burwell-Charnley radiological criteria. Baird-Jackson ankle scoring system was used to assess clinical effects. Thirty-three patients were followed up from 10 to 28 months with an average of 14 months. Fracture healing time ranged from 10 to 18 weeks with an average of 12 weeks. According to Burwell-Charnley radiological criteria, 30 cases were obtained anatomic reduction, 3 cases moderate. According to Baird-Jackson ankle scoring system, total score was 93.8±5.4, 17 cases got excellent result, 12 good, 2 fair and 2 poor. Manipulative reduction and percutaneous Kirschner wire internal fixation in treating grade IV supination-external rotation ankle fractures has advantages of reliable efficacy, less complications. But higher require techniques were required for closed reduction. It is not suitable for severe crushed fracture and compressive articular surface fracture.

  4. [Missed diagnosis of hiding posterior marginal fracture of ankle with pronation-external rotation type and its treatment].

    PubMed

    Wang, Jia; Zhang, Yun-Tong; Zhang, Chun-Cai; Tang, Yang

    2014-01-01

    To analyze causes of missed diagnosis of hiding post-malleolar fractures in treating ankle joint fractures of pronation-external rotation type according to Lauge-Hansen classification and assess its medium-term outcomes. Among 103 patients with ankle joint fracture of pronation-external rotation type treated from March 2002 to June 2010,9 patients were missed diagnosis,including 6 males and 3 females,with a mean age of 35.2 years old (ranged, 18 to 55 years old) . Four patients were diagnosed during operation, 2 patients were diagnosed 2 or 3 days after first surgery and 3 patients came from other hospital. All the patients were treated remedially with lag screws and lock plates internal fixation. After operation,ankle joint function was evaluated according to American Orthopaedic Foot and Ankle Society (AOFAS). All the 9 patients were followed up, and the duration ranged from 14 to 30 months (averaged, 17 months). No incision infection was found, and all incision healed at the first stage. At the latest follow-up, AOFAS was 83.0 +/- 4.4, the score of 4 patients diagnosed during operation was 85.0 +/- 2.9, and the score of 5 patients treated by secondary operation was 81.0 +/- 5.3. All the patients got fracture union observed by X-ray at a mean time of 2.2 months after operation. There were no complications such as internal fixation loosing, broken and vascular or nerve injuries. Ankle joint fracture of pronation-external rotation type may be combined with hiding post-malleolar fractures. So to patients with ankle joint fracture of pronation-external rotation type, lateral X-ray should be read carefully, and if necessary, CT or MRI examination should be performed. If adding lateral X-ray examination after reduction of exterior and interior ankle joint fixation, the missed diagnosis may be avoided.

  5. The Valgus Inclination of the Tibial Component Increases the Risk of Medial Tibial Condylar Fractures in Unicompartmental Knee Arthroplasty.

    PubMed

    Inoue, Shinji; Akagi, Masao; Asada, Shigeki; Mori, Shigeshi; Zaima, Hironori; Hashida, Masahiko

    2016-09-01

    Medial tibial condylar fractures (MTCFs) are a rare but serious complication after unicompartmental knee arthroplasty. Although some surgical pitfalls have been reported for MTCFs, it is not clear whether the varus/valgus tibial inclination contributes to the risk of MTCFs. We constructed a 3-dimensional finite elemental method model of the tibia with a medial component and assessed stress concentrations by changing the inclination from 6° varus to 6° valgus. Subsequently, we repeated the same procedure adding extended sagittal bone cuts of 2° and 10° in the posterior tibial cortex. Furthermore, we calculated the bone volume that supported the tibial component, which is considered to affect stress distribution in the medial tibial condyle. Stress concentrations were observed on the medial tibial metaphyseal cortices and on the anterior and posterior tibial cortices in the corner of cut surfaces in all models; moreover, the maximum principal stresses on the posterior cortex were larger than those on the anterior cortex. The extended sagittal bone cuts in the posterior tibial cortex increased the stresses further at these 3 sites. In the models with a 10° extended sagittal bone cut, the maximum principal stress on the posterior cortex increased as the tibial inclination changed from 6° varus to 6° valgus. The bone volume decreased as the inclination changed from varus to valgus. In this finite element method, the risk of MTCFs increases with increasing valgus inclination of the tibial component and with increased extension of the sagittal cut in the posterior tibial cortex. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. [Influencing factors for trauma-induced tibial infection in underground coal mine].

    PubMed

    Meng, W Z; Guo, Y J; Liu, Z K; Li, Y F; Wang, G Z

    2016-07-20

    Objective: To investigate the influencing factors for trauma-induced tibial infection in underground coal mine. Methods: A retrospective analysis was performed for the clinical data of 1 090 patients with tibial fracture complicated by bone infection who were injured in underground coal mine and admitted to our hospital from January 1995 to August 2015, including the type of trauma, injured parts, severity, and treatment outcome. The association between risk factors and infection was analyzed. Results: Among the 1 090 patients, 357 had the clinical manifestations of acute and chronic bone infection, 219 had red and swollen legs with heat pain, and 138 experienced skin necrosis, rupture, and discharge of pus. The incidence rates of tibial infection from 1995 to 2001, from 2002 to 2008, and from 2009 to 2015 were 31%, 26.9%, and 20.2%, respectively. The incidence rate of bone infection in the proximal segment of the tibia was significantly higher than that in the middle and distal segments (42.1% vs 18.9%/27.1%, P <0.01) . As for patients with different types of trauma (Gustilo typing) , the patients with type III fracture had a significantly higher incidence rate of bone infection than those with type I/II infection (52.8% vs 21.8%/24.6%, P <0.01) . The incidence rates of bone infection after bone traction, internal fixation with steel plates, fixation with external fixator, and fixation with intramedullary nail were 20.7%, 43.5%, 21.4%, and 26.1%, respectively, suggesting that internal fixation with steel plates had a significantly higher incidence rate of bone infection than other fixation methods ( P <0.01) . The multivariate logistic regression analysis showed that the position of tibial fracture and type of fracture were independent risk factors for bone infection. Conclusion: There is a high incidence rate of trauma-induced tibial infection in workers in underground coal mine. The position of tibial fracture and type of fracture are independent risk factors

  7. Development and validation of a computational model to study the effect of foot constraint on ankle injury due to external rotation.

    PubMed

    Wei, Feng; Hunley, Stanley C; Powell, John W; Haut, Roger C

    2011-02-01

    Recent studies, using two different manners of foot constraint, potted and taped, document altered failure characteristics in the human cadaver ankle under controlled external rotation of the foot. The posterior talofibular ligament (PTaFL) was commonly injured when the foot was constrained in potting material, while the frequency of deltoid ligament injury was higher for the taped foot. In this study an existing multibody computational modeling approach was validated to include the influence of foot constraint, determine the kinematics of the joint under external foot rotation, and consequently obtain strains in various ligaments. It was hypothesized that the location of ankle injury due to excessive levels of external foot rotation is a function of foot constraint. The results from this model simulation supported this hypothesis and helped to explain the mechanisms of injury in the cadaver experiments. An excessive external foot rotation might generate a PTaFL injury for a rigid foot constraint, and an anterior deltoid ligament injury for a pliant foot constraint. The computational models may be further developed and modified to simulate the human response for different shoe designs, as well as on various athletic shoe-surface interfaces, so as to provide a computational basis for optimizing athletic performance with minimal injury risk.

  8. Management of simple (types A and B) closed tibial shaft fractures using percutaneous lag-screw fixation and Ilizarov external fixation in adults.

    PubMed

    El-Sayed, Mohamed; Atef, Ashraf

    2012-10-01

    Although intramedullary fixation of closed simple (type A or B) diaphyseal tibial fractures in adults is well tolerated by patients, providing lower morbidity rates and better mobility, it is associated with some complications. This study evaluated the results of managing these fractures using percutaneous minimal internal fixation using one or more lag screws, and Ilizarov external fixation. This method was tested to evaluate its efficacy in immediate weight bearing, fracture healing and prevention of any post-immobilisation stiffness of the ankle and knee joints. This randomised blinded study was performed at a referral, academically supervised, level III trauma centre. Three hundred and twenty-four of the initial 351 patients completed this study and were followed up for a minimum of 12 (12-88) months. Patient ages ranged from 20 to 51 years, with a mean of 39 years. Ankle and knee movements and full weight bearing were encouraged immediately postoperatively. Solid union was assessed clinically and radiographically. Active and passive ankle and knee ranges of motion were measured and compared with the normal side using the Wilcoxon signed rank test for matched pairs. Subjective Olerud and Molander Ankle Score was used to detect any ankle joint symptoms at the final follow-up. No patient showed delayed or nonunion. All fractures healed within 95-129 days. Based on final clinical and radiographic outcomes, this technique proves to be adequate for managing simple diaphyseal tibial fractures. On the other hand, it is relatively expensive, technically demanding, necessitates exposure to radiation and patients are expected to be frame friendly.

  9. Intramedullary nailing in the treatment of aseptic tibial nonunion.

    PubMed

    Megas, P; Panagiotopoulos, E; Skriviliotakis, S; Lambiris, E

    2001-04-01

    Fifty patients suffering from aseptic tibial nonunion underwent reamed intramedullary nailing (I.N.) and were retrospectively reviewed. Thirty-six patients were initially treated with external fixation, six with plate and screws, one with a static I.N., and seven with plaster of Paris. Eighteen of the fractures were initially open (A: 5, B: 6, and C: 7 according to the Gustilo classification). In 34 cases a closed procedure was performed, whereas in sixteen, an opening at the nonunion site was unavoidable either to remove metalwork or realign the fragments. Following failed external fixation, secondary I.N. was performed at least 10 days after removal of the device. Bone grafts from the iliac crest were used in three cases, and a fibular osteotomy was performed in 33. Patients were followed up for an average of 2.5 years after nailing, ranging from 10 months to 7 years. A solid union was achieved in all patients within a period of 6 months. One patient developed late infection, which settled after nail removal and one patient developed impending compartment syndrome which was detected on the first post-operative day and was treated with a fasciotomy. Transient peroneal nerve palsy occurred in one patient and this recovered in 3 months, whereas in nine patients a clinically acceptable deformity was noticed. In conclusion, we believe that reamed intramedullary nailing is a highly effective treatment for aseptic tibial nonunions. Early and late complications are rare and bone graft is rarely needed. The method allows early weight bearing even before solid union occurs, short hospitalisation time and early return to work without external support.

  10. [Tibial periostitis ("medial tibial stress syndrome")].

    PubMed

    Fournier, Pierre-Etienne

    2003-06-01

    Medial tibial stress syndrome is characterised by complaints along the posteromedial tibia. Runners and athletes involved in jumping activities may develop this syndrome. Increased stress to stabilize the foot especially when excessive pronation is present explain the occurrence this lesion.

  11. Successful correction of tibial bone deformity through multiple surgical procedures, liquid nitrogen-pretreated bone tumor autograft, three-dimensional external fixation, and internal fixation in a patient with primary osteosarcoma: a case report.

    PubMed

    Takeuchi, Akihiko; Yamamoto, Norio; Shirai, Toshiharu; Nishida, Hideji; Hayashi, Katsuhiro; Watanabe, Koji; Miwa, Shinji; Tsuchiya, Hiroyuki

    2015-12-07

    In a previous report, we described a method of reconstruction using tumor-bearing autograft treated by liquid nitrogen for malignant bone tumor. Here we present the first case of bone deformity correction following a tumor-bearing frozen autograft via three-dimensional computerized reconstruction after multiple surgeries. A 16-year-old female student presented with pain in the left lower leg and was diagnosed with a low-grade central tibial osteosarcoma. Surgical bone reconstruction was performed using a tumor-bearing frozen autograft. Bone union was achieved at 7 months after the first surgical procedure. However, local tumor recurrence and lung metastases occurred 2 years later, at which time a second surgical procedure was performed. Five years later, the patient developed a 19° varus deformity and underwent a third surgical procedure, during which an osteotomy was performed using the Taylor Spatial Frame three-dimensional external fixation technique. A fourth corrective surgical procedure was performed in which internal fixation was achieved with a locking plate. Two years later, and 10 years after the initial diagnosis of tibial osteosarcoma, the bone deformity was completely corrected, and the patient's limb function was good. We present the first report in which a bone deformity due to a primary osteosarcoma was corrected using a tumor-bearing frozen autograft, followed by multiple corrective surgical procedures that included osteotomy, three-dimensional external fixation, and internal fixation.

  12. Treatment of open tibial shaft fracture with soft tissue and bone defect caused by aircraft bomb--case report.

    PubMed

    Golubović, Zoran; Vidić, Goran; Trenkić, Srbobran; Vukasinović, Zoran; Lesić, Aleksandar; Stojiljković, Predrag; Stevanović, Goran; Golubović, Ivan; Visnjić, Aleksandar; Najman, Stevo

    2010-01-01

    Aircraft bombs can cause severe orthopaedic injuries. Tibia shaft fractures caused by aircraft bombs are mostly comminuted and followed by bone defects, which makes the healing process extremely difficult and prone to numerous complications. The goal of this paper is to present the method of treatment and the end results of treatment of a serious open tibial fracture with soft and bone tissue defects resulting from aircraft bomb shrapnel wounds. A 26-year-old patient presented with a tibial fracture as the result of a cluster bomb shrapnel wound. He was treated applying the method of external bone fixation done two days after wounding, as well as of early coverage of the lower leg soft tissue defects done on the tenth day after the external fixation of the fracture. The external fixator was removed after five months, whereas the treatment was continued by means of functional plaster cast for another two months. The final functional result was good. Radical wound debridement, external bone fixation of the fracture, and early reconstruction of any soft tissue and bone defects are the main elements of the treatment of serious fractures.

  13. Intraoperative assessment of the stability of the distal tibiofibular joint in supination-external rotation injuries of the ankle: sensitivity, specificity, and reliability of two clinical tests.

    PubMed

    Pakarinen, Harri; Flinkkilä, Tapio; Ohtonen, Pasi; Hyvönen, Pekka; Lakovaara, Martti; Leppilahti, Juhana; Ristiniemi, Jukka

    2011-11-16

    This study was designed to assess the sensitivity, specificity, and interobserver reliability of the hook test and the stress test for the intraoperative diagnosis of instability of the distal tibiofibular joint following fixation of ankle fractures resulting from supination-external rotation forces. We conducted a prospective study of 140 patients with an unstable unilateral ankle fracture resulting from a supination-external rotation mechanism (Lauge-Hansen SE). After internal fixation of the malleolar fracture, a hook test and an external rotation stress test under fluoroscopy were performed independently by the lead surgeon and assisting surgeon, followed by a standardized 7.5-Nm external rotation stress test of each ankle under fluoroscopy. A positive stress test result was defined as a side-to-side difference of >2 mm in the tibiotalar or the tibiofibular clear space on mortise radiographs. The sensitivity and specificity of each test were calculated with use of the standardized 7.5-Nm external rotation stress test as a reference. Twenty-four (17%) of the 140 patients had a positive standardized 7.5-Nm external rotation stress test after internal fixation of the malleolar fracture. The hook test had a sensitivity of 0.25 (95% confidence interval, 0.12 to 0.45) and a specificity of 0.98 (95% confidence interval, 0.94 to 1.0) for the detection of the same instabilities. The external rotation stress test had a sensitivity of 0.58 (95% confidence interval, 0.39 to 0.76) and a specificity of 0.96 (95% confidence interval, 0.90 to 0.98). Both tests had excellent interobserver reliability, with 99% agreement for the hook test and 98% for the stress test. Interobserver agreement for the hook test and the clinical stress test was excellent, but the sensitivity of these tests was insufficient to adequately detect instability of the syndesmosis intraoperatively.

  14. [Effect of axial stress stimulation on tibial and fibular open fractures healing after Taylor space stent fixation].

    PubMed

    Ge, Qihang; Wan, Chunyou; Liu, Yabei; Ji, Xu; Ma, Jihai; Cao, Haikun; Yong, Wei; Liu, Zhao; Zhang, Ningning

    2017-08-01

    To investigate the effect of axial stress stimulation on tibial and fibular open fractures healing after Taylor space stent fixation. The data of 45 cases with tibial and fibular open fractures treated by Taylor space stent fixation who meet the selection criteria between January 2015 and June 2016 were retrospectively analysed. The patients were divided into trial group (23 cases) and control group (22 cases) according to whether the axial stress stimulation was performed after operation. There was no significant difference in gender, age, affected side, cause of injury, type of fracture, and interval time from injury to operation between 2 groups ( P >0.05). The axial stress stimulation was performed in trial group after operation. The axial load sharing ratio was tested, and when the value was less than 10%, the external fixator was removed. The fracture healing time, full weight-bearing time, and external fixator removal time were recorded and compared. After 6 months of external fixator removal, the function of the limb was assessed by Johner-Wruhs criteria for evaluation of final effectiveness of treatment of tibial shaft fractures. There were 2 and 3 cases of needle foreign body reaction in trial group and control group, respectively, and healed after symptomatic anti allergic treatment. All the patients were followed up 8-12 months with an average of 10 months. All the fractures reached clinical healing, no complication such as delayed union, nonunion, or osteomyelitis occurred. The fracture healing time, full weight-bearing time, and external fixator removal time in trial group were significantly shorter than those in control group ( P <0.05). After 6 months of external fixator removal, the function of the limb was excellent in 13 cases, good in 6 cases, fair in 3 cases, and poor in 1 case in trial group, with an excellent and good rate of 82.6%; and was excellent in 5 cases, good in 10 cases, fair in 4 cases, and poor in 3 cases in control group, with an

  15. External torsion in a proximal tibia and internal torsion in a distal tibia occur independently in varus osteoarthritic knees compared to healthy knees.

    PubMed

    Mochizuki, Tomoharu; Tanifuji, Osamu; Koga, Yoshio; Hata, Ryosuke; Mori, Takahiro; Nishino, Katsutoshi; Sato, Takashi; Kobayashi, Koichi; Omori, Go; Sakamoto, Makoto; Tanabe, Yuji; Endo, Naoto

    2017-05-01

    The relative torsional angle of the distal tibia is dependent on a deformity of the proximal tibia, and it is a commonly used torsional parameter to describe deformities of the tibia; however, this parameter cannot show the location and direction of the torsional deformity in the entire tibia. This study aimed to identify the detailed deformity in the entire tibia via a coordinate system based on the diaphysis of the tibia by comparing varus osteoarthritic knees to healthy knees. In total, 61 limbs in 58 healthy subjects (age: 54 ± 18 years) and 55 limbs in 50 varus osteoarthritis (OA) subjects (age: 72 ± 7 years) were evaluated. The original coordinate system based on anatomic points only from the tibial diaphysis was established. The evaluation parameters were 1) the relative torsion in the distal tibia to the proximal tibia, 2) the proximal tibial torsion relative to the tibial diaphysis, and 3) the distal tibial torsion relative to the tibial diaphysis. The relative torsion in the distal tibia to the proximal tibia showed external torsion in both groups, while the external torsion was lower in the OA group than in the healthy group (p < 0.0001). The proximal tibial torsion relative to the tibial diaphysis had a higher external torsion in the OA group (p = 0.012), and the distal tibial torsion relative to the tibial diaphysis had a higher internal torsion in the OA group (p = 0.004) in comparison to the healthy group. The reverse torsional deformity, showing a higher external torsion in the proximal tibia and a higher internal torsion in the distal tibia, occurred independently in the OA group in comparison to the healthy group. Clinically, this finding may prove to be a pathogenic factor in varus osteoarthritic knees. Level Ⅲ. Copyright © 2017 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.

  16. Supination external rotation ankle fractures: A simpler pattern with better outcomes

    PubMed Central

    Tejwani, Nirmal C; Park, Ji Hae; Egol, Kenneth A

    2015-01-01

    Background: Rotational injuries are the most common and usually classified as per the Lauge Hansen classification; with the most common subgroup being the supination external rotation (SER) mechanism. Isolated fractures of the distal fibula (SE2) without associated ligamentous injury are usually treated with a splint or brace and the patient may be allowed to weight bear as tolerated. This study reports the functional outcomes following a stable, low energy, rotational ankle fracture supination external rotation (SER2) when compared to unstable SER4 fractures treated operatively. Materials and Methods: 64 patients who were diagnosed and treated nonoperatively for a stable SER2 ankle fracture were followed prospectively. In the comparison group, 93 operatively treated fibular fractures were extracted from a prospectively collected database and evaluated comparison. Baseline characteristics obtained by trained interviewers at the time of injury included: Patient demographics, short form-36, short musculoskeletal functional assessment (SMFA) and American Orthopedic Foot and Ankle Society (AOFAS) questionnaires. Patients were followed at 3, 6 and 12 months postsurgery. Additional information obtained at each followup point included any complications or evidence on fracture healing. Data were analyzed by the Student's t-test and theFisher's Exact Test to compare demographic and functional outcomes between the two cohorts. P < 0.05 was considered to be significant. Results: The average of patients’ age in the stable fracture cohort was 43 versus 45 in the SER4 group. Nearly 64% of the patient population was female when compared with 37% in the operative group. In the SER2 by 6 months all patients had returned to baseline functional status. There were 18 delayed unions (all healed by 6 months). Based on the functional outcome scores all patients had returned to preoperative level. In comparison, SE4 patients had less functional recovery at 3 and 6 months (P < 0

  17. Correlation between physical examination and three-dimensional gait analysis in the assessment of rotational abnormalities in children with cerebral palsy.

    PubMed

    Teixeira, Fernando Borge; Ramalho Júnior, Amancio; Morais Filho, Mauro César de; Speciali, Danielli Souza; Kawamura, Catia Miyuki; Lopes, José Augusto Fernandes; Blumetti, Francesco Camara

    2018-01-01

    Objective To evaluate the correlation between physical examination data concerning hip rotation and tibial torsion with transverse plane kinematics in children with cerebral palsy; and to determine which time points and events of the gait cycle present higher correlation with physical examination findings. Methods A total of 195 children with cerebral palsy seen at two gait laboratories from 2008 and 2016 were included in this study. Physical examination measurements included internal hip rotation, external hip rotation, mid-point hip rotation and the transmalleolar axis angle. Six kinematic parameters were selected for each segment to assess hip rotation and shank-based foot rotation. Correlations between physical examination and kinematic measures were analyzed by Spearman correlation coefficients, and a significance level of 5% was considered. Results Comparing physical examination measurements of hip rotation and hip kinematics, we found moderate to strong correlations for all variables (p<0.001). The highest coefficients were seen between the mid-point hip rotation on physical examination and hip rotation kinematics (rho range: 0.48-0.61). Moderate correlations were also found between the transmalleolar axis angle measurement on physical examination and foot rotation kinematics (rho range 0.44-0.56; p<0.001). Conclusion These findings may have clinical implications in the assessment and management of transverse plane gait deviations in children with cerebral palsy.

  18. In vitro modeling of human tibial strains during exercise in micro-gravity

    NASA Technical Reports Server (NTRS)

    Peterman, M. M.; Hamel, A. J.; Cavanagh, P. R.; Piazza, S. J.; Sharkey, N. A.

    2001-01-01

    Prolonged exposure to micro-gravity causes substantial bone loss (Leblanc et al., Journal of Bone Mineral Research 11 (1996) S323) and treadmill exercise under gravity replacement loads (GRLs) has been advocated as a countermeasure. To date, the magnitudes of GRLs employed for locomotion in space have been substantially less than the loads imposed in the earthbound 1G environment, which may account for the poor performance of locomotion as an intervention. The success of future treadmill interventions will likely require GRLs of greater magnitude. It is widely held that mechanical tissue strain is an important intermediary signal in the transduction pathway linking the external loading environment to bone maintenance and functional adaptation; yet, to our knowledge, no data exist linking alterations in external skeletal loading to alterations in bone strain. In this preliminary study, we used unique cadaver simulations of micro-gravity locomotion to determine relationships between localized tibial bone strains and external loading as a means to better predict the efficacy of future exercise interventions proposed for bone maintenance on orbit. Bone strain magnitudes in the distal tibia were found to be linearly related to ground reaction force magnitude (R(2)>0.7). Strain distributions indicated that the primary mode of tibial loading was in bending, with little variation in the neutral axis over the stance phase of gait. The greatest strains, as well as the greatest strain sensitivity to altered external loading, occurred within the anterior crest and posterior aspect of the tibia, the sites furthest removed from the neutral axis of bending. We established a technique for estimating local strain magnitudes from external loads, and equations for predicting strain during simulated micro-gravity walking are presented.

  19. [Application of tibial mechanical axis locator in tibial extra-articular deformity in total knee arthroplasty].

    PubMed

    Li, Guoliang; Han, Guangpu; Zhang, Jinxiu; Ma, Shiqiang; Guo, Donghui; Yuan, Fulu; Qi, Bingbing; Shen, Runbin

    2013-07-01

    To explore the application value of self-made tibial mechanical axis locator in tibial extra-articular deformity in total knee arthroplasty (TKA) for improving the lower extremity force line. Between January and August 2012, 13 cases (21 knees) of osteoarthritis with tibial extra-articular deformity were treated, including 5 males (8 knees) and 8 females (13 knees) with an average age of 66.5 years (range, 58-78 years). The disease duration was 2-5 years (mean, 3.5 years). The knee society score (KSS) was 45.5 +/- 15.5. Extra-articular deformities included 1 case of knee valgus (2 knees) and 12 cases of knee varus (19 knees). Preoperative full-length X-ray films of lower extremities showed 10-21 degrees valgus or varus deformity of tibial extra joint. Self-made tibial mechanical axis locator was used to determine and mark coronal tibial mechanical axis under X-ray before TKA, and then osteotomy was performed with extramedullary positioning device according to the mechanical axis marker.' All incisions healed by first intention, without related complications of infection and joint instability. All patients were followed up 5-12 months (mean, 8.3 months). The X-ray examination showed < 2 degrees knee deviation angle in the others except 1 case of 2.9 degrees knee deviation angle at 3 days after operation, and the accurate rate was 95.2%. No loosening or instability of prosthesis occurred during follow-up. KSS score was 85.5 +/- 15.0 at last follow-up, showing significant difference when compared with preoperative score (t=12.82, P=0.00). The seft-made tibial mechanical axis locator can improve the accurate rate of the lower extremity force line in TKA for tibia extra-articular deformity.

  20. Cemented tibial component fixation performs better than cementless fixation: a randomized radiostereometric study comparing porous-coated, hydroxyapatite-coated and cemented tibial components over 5 years.

    PubMed

    Carlsson, Ake; Björkman, Anders; Besjakov, Jack; Onsten, Ingemar

    2005-06-01

    The question whether the tibial component of a total knee arthroplasty should be fixed to bone with or without bone cement has not yet been definitely answered. We studied movements between the tibial component and bone by radiostereometry (RSA) in total knee replacement (TKR) for 3 different types of fixation: cemented fixation (C-F), uncemented porous fixation (UC-F) and uncemented porous hydroxyapatite fixation (UCHA-F). 116 patients with osteoarthrosis, who had 146 TKRs, were included in 2 randomized series. The first series included 86 unilateral TKRs stratified into 1 of the 3 types of fixation. The second series included 30 patients who had simultaneous bilateral TKR surgery, and who were stratified into 3 subgroups of pairwise comparisons of the 3 types of fixation. After 5 years 2 knees had been revised, neither of which were due to loosening. 1 UCHA-F knee in the unilateral series showed a large and continuous migration and a poor clinical result, and is a pending failure. The C-F knees rotated and migrated less than UC-F and UCHA-F knees over 5 years. UCHA-F migrated less than UC-F after 1 year. Cementing of the tibial component offers more stable bone-implant contact for 5 years compared to uncemented fixation. When using uncemented components, however, there is evidence that augmenting a porous surface with hydroxyapatite may mean less motion between implant and bone after the initial postoperative year.

  1. Internal tibial torsion correction study. [measurements of strain for corrective rotation of stressed tibia

    NASA Technical Reports Server (NTRS)

    Cantu, J. M.; Madigan, C. M.

    1974-01-01

    A quantitative study of internal torsion in the entire tibial bone was performed by using strain gauges to measure the amount of deformation occuring at different locations. Comparison of strain measurements with physical dimensions of the bone produced the modulus of rigidity and its behavior under increased torque. Computerized analysis of the stress distribution shows that more strain occurs near the torqued ends of the bones where also most of the twisting and fracturing takes place.

  2. High-energy fractures of the tibial plateau. Knee function after longer follow-up.

    PubMed

    Weigel, Dennis P; Marsh, J Lawrence

    2002-09-01

    Studies of the long-term outcomes of treatment of fractures of the tibial plateau have included wide mixtures of fracture types and mostly low-energy split and split-depression fractures. The long-term results of treatment of high-energy intra-articular proximal tibial fractures are unknown. The purpose of this study was to assess the function of the knee and the development of arthrosis at a minimum of five years after injury in a consecutive series of patients in whom a high-energy fracture of the tibial plateau had been treated with a uniform technique of external fixation. Between July 1988 and December 1994, thirty patients with a total of thirty-one fractures of the tibial plateau were treated with a monolateral external fixator and limited internal fixation of the articular surface. Follow-up data on twenty-four knees in twenty-three patients were obtained at a mean of ninety-eight months. Twenty patients (twenty knees) returned specifically for the study, at which time they completed an Iowa Knee Score questionnaire and a Short Form-36 (SF-36) general health survey, a physical examination was performed, and weight-bearing radiographs were made. The results of the SF-36 evaluations for fourteen patients and the Knee Scores for twelve were compared with those obtained five years previously, at two to four years after the injury. After healing, no patient required a secondary reconstructive procedure. The range of motion of the knee averaged 3 degrees of extension to 120 degrees flexion, which was an average of 87% of the total arc of the contralateral knee. The average Iowa Knee Score was 90 points (range, 72 to 100 points). For twelve patients, the Iowa Knee Score previously recorded at two to four years averaged 92 points, as did the score at the time of the latest follow-up. Thirteen patients rated their outcome as excellent; six, as good; and three, as fair. Fifteen patients were working, and ten of them were performing strenuous labor. Radiographs showed

  3. Negative pressure wound therapy for Gustilo Anderson grade IIIb open tibial fractures.

    PubMed

    Park, Chul Hyun; Shon, Oog Jin; Kim, Gi Beom

    2016-09-01

    Traditionally, Gustilo Anderson grade IIIb open tibial fractures have been treated by initial wide wound debridement, stabilization of fracture with external fixation, and delayed wound closure. The purpose of this study is to evaluate the clinical and radiological results of staged treatment using negative pressure wound therapy (NPWT) for Gustilo Anderson grade IIIb open tibial fractures. 15 patients with Gustilo Anderson grade IIIb open tibial fractures, treated using staged protocol by a single surgeon between January 2007 and December 2011 were reviewed in this retrospective study. The clinical results were assessed using a Puno scoring system for severe open fractures of the tibia at the last followup. The range of motion (ROM) of the knee and ankle joints and postoperative complication were evaluated at the last followup. The radiographic results were assessed using time to bone union, coronal and sagittal angulations and a shortening at the last followup. The mean score of Puno scoring system was 87.4 (range 67-94). The mean ROM of the knee and ankle joints was 121.3° (range 90°-130°) and 37.7° (range 15°-50°), respectively. Bone union developed in all patients and the mean time to union was 25.3 weeks (range 16-42 weeks). The mean coronal angulation was 2.1° (range 0-4°) and sagittal was 2.7° (range 1-4°). The mean shortening was 4.1 mm (range 0-8 mm). Three patients had partial flap necrosis and 1 patient had total flap necrosis. There was no superficial and deep wound infection. Staged treatment using NPWT decreased the risks of infection and requirement of flap surgeries in Gustilo Anderson grade IIIb open tibial fractures. Therefore, staged treatment using NPWT could be a useful treatment option for Gustilo Anderson grade IIIb open tibial fractures.

  4. Influence of glenoid component design and humeral component retroversion on internal and external rotation in reverse shoulder arthroplasty: a cadaver study.

    PubMed

    Berhouet, J; Garaud, P; Favard, L

    2013-12-01

    A common disadvantage of reverse shoulder arthroplasty is limitation of the range of arm rotation. Several changes to the prosthesis design and implantation technique have been suggested to improve rotation range of motion (ROM). Glenoid component design and degree of humeral component retroversion influence rotation ROM after reverse shoulder arthroplasty. The Aequalis Reversed™ shoulder prosthesis (Tornier Inc., Edina, MN, USA) was implanted into 40 cadaver shoulders. Eight glenoid component combinations were tested, five with the 36-mm sphere (centred seating, eccentric seating, inferior tilt, centred with a 5-mm thick lateralised spacer, and centred with a 7-mm thick lateralised spacer) and three with the 42-mm sphere (centred with no spacer or with a 7-mm or 10-mm spacer). Humeral component position was evaluated with 0°, 10°, 20°, 30°, and 40° of retroversion. External and internal rotation ROMs to posterior and anterior impingement on the scapular neck were measured with the arm in 20° of abduction. The large glenosphere (42 mm) was associated with significantly (P<0.05) greater rotation ROMs, particularly when combined with a lateralised spacer (46° internal and 66° external rotation). Rotation ROMs were smallest with the 36-mm sphere. Greater humeral component retroversion was associated with a decrease in internal rotation and a significant increase (P<0.05) in external rotation. The best balance between rotation ROMs was obtained with the native retroversion, which was estimated at 17.5° on average in this study. Our anatomic study in a large number of cadavers involved a detailed and reproducible experimental protocol. However, we did not evaluate the variability in scapular anatomy. Earlier studies of the influence of technical parameters did not take humeral component retroversion into account. In addition, no previous studies assessed rotation ROMs. Rotation ROM should be improved by the use of a large-diameter glenosphere with a spacer to

  5. Which Surgical Treatment for Open Tibial Shaft Fractures Results in the Fewest Reoperations? A Network Meta-analysis.

    PubMed

    Foote, Clary J; Guyatt, Gordon H; Vignesh, K Nithin; Mundi, Raman; Chaudhry, Harman; Heels-Ansdell, Diane; Thabane, Lehana; Tornetta, Paul; Bhandari, Mohit

    2015-07-01

    Open tibial shaft fractures are one of the most devastating orthopaedic injuries. Surgical treatment options include reamed or unreamed nailing, plating, Ender nails, Ilizarov fixation, and external fixation. Using a network meta-analysis allows comparison and facilitates pooling of a diverse population of randomized trials across these approaches in ways that a traditional meta-analysis does not. Our aim was to perform a network meta-analysis using evidence from randomized trials on the relative effect of alternative approaches on the risk of unplanned reoperation after open fractures of the tibial diaphysis. Our secondary study endpoints included malunion, deep infection, and superficial infection. A network meta-analysis allows for simultaneous consideration of the relative effectiveness of multiple treatment alternatives. To do this on the subject of surgical treatments for open tibial fractures, we began with systematic searches of databases (including EMBASE and MEDLINE) and performed hand searches of orthopaedic journals, bibliographies, abstracts from orthopaedic conferences, and orthopaedic textbooks, for all relevant material published between 1980 and 2013. Two authors independently screened abstracts and manuscripts and extracted the data, three evaluated the risk of bias in individual studies, and two applied Grading of Recommendation Assessment, Development and Evaluation (GRADE) criteria to bodies of evidence. We included all randomized and quasirandomized trials comparing two (or more) surgical treatment options for open tibial shaft fractures in predominantly (ie, > 80%) adult patients. We calculated pooled estimates for all direct comparisons and conducted a network meta-analysis combining direct and indirect evidence for all 15 comparisons between six stabilization strategies. Fourteen trials published between 1989 and November 2011 met our inclusion criteria; the trials comprised a total of 1279 patients surgically treated for open tibial

  6. Distinct hip and rearfoot kinematics in female runners with a history of tibial stress fracture.

    PubMed

    Milner, Clare E; Hamill, Joseph; Davis, Irene S

    2010-02-01

    Cross-sectional controlled laboratory study. To investigate the kinematics of the hip, knee, and rearfoot in the frontal and transverse planes in female distance runners with a history of tibial stress fracture. Tibial stress fractures are a common overuse injury in runners, accounting for up to half of all stress fractures. Abnormal kinematics of the lower extremity may contribute to abnormal musculoskeletal load distributions, leading to an increased risk of stress fractures. Thirty female runners with a history of tibial stress fracture were compared to 30 age-matched and weekly-running-distance-matched control subjects with no previous lower extremity bony injuries. Kinematic and kinetic data were collected using a motion capture system and a force platform, respectively, as subjects ran in the laboratory. Selected variables of interest were compared between the groups using a multivariate analysis of variance (MANOVA). Peak hip adduction and peak rearfoot eversion angles were greater in the stress fracture group compared to the control group. Peak knee adduction and knee internal rotation angles and all joint angles at impact peak were similar between the groups. Runners with a previous tibial stress fracture exhibited greater peak hip adduction and rearfoot eversion angles during the stance phase of running compared to healthy controls. A consequence of these mechanics may be altered load distribution within the lower extremity, predisposing individuals to stress fracture.

  7. Posterior tibial slope in medial opening-wedge high tibial osteotomy: 2-D versus 3-D navigation.

    PubMed

    Yim, Ji Hyeon; Seon, Jong Keun; Song, Eun Kyoo

    2012-10-01

    Although opening-wedge high tibial osteotomy (HTO) is used to correct deformities, it can simultaneously alter tibial slope in the sagittal plane because of the triangular configuration of the proximal tibia, and this undesired change in tibial slope can influence knee kinematics, stability, and joint contact pressure. Therefore, medial opening-wedge HTO is a technically demanding procedure despite the use of 2-dimensional (2-D) navigation. The authors evaluated the posterior tibial slope pre- and postoperatively in patients who underwent navigation-assisted opening-wedge HTO and compared posterior slope changes for 2-D and 3-dimensional (3-D) navigation versions. Patients were randomly divided into 2 groups based on the navigation system used: group A (2-D guidance for coronal alignment; 17 patients) and group B (3-D guidance for coronal and sagittal alignments; 17 patients). Postoperatively, the mechanical axis was corrected to a mean valgus of 2.81° (range, 1°-5.4°) in group A and 3.15° (range, 1.5°-5.6°) in group B. A significant intergroup difference existed for the amount of posterior tibial slope change (Δ slope) pre- and postoperatively (P=.04).Opening-wedge HTO using navigation offers accurate alignment of the lower limb. In particular, the use of 3-D navigation results in significantly less change in the posterior tibial slope postoperatively than does the use of 2-D navigation. Accordingly, the authors recommend the use of 3-D navigation systems because they provide real-time intraoperative information about coronal, sagittal, and transverse axes and guide the maintenance of the native posterior tibial slope. Copyright 2012, SLACK Incorporated.

  8. The Anteroposterior Axis of the Proximal Tibia Can Change After Tibial Resection in Total Knee Arthroplasty: Computer Simulation Using Asian Osteoarthritis Knees.

    PubMed

    Ushio, Tetsuro; Mizu-Uchi, Hideki; Okazaki, Ken; Ma, Yuan; Kuwashima, Umito; Iwamoto, Yukihide

    2017-03-01

    We evaluated the effect of cutting surface on the anteroposterior (AP) axis of the proximal tibia using a 3-dimensional (3D) bone model to ensure proper tibial rotational alignment in total knee arthroplasty. 3D bone models were reconstructed from the preoperative computed tomography data of 93 Japanese osteoarthritis knees with varus deformity. The AP axis was defined as the perpendicular bisector of the medial and lateral condylar centers in a 3D coordinate system. Bone cutting of the proximal tibia was performed with various tibial posterior slopes (0°, 3°, 7°) to the mechanical axis, and we compared the AP axes before and after bone cutting. The AP axis before bone cutting crossed a point at about 16% (one-sixth) of the distance from the medial edge of the patellar tendon at its tibial attachment. The AP axis after bone cutting was significantly internally rotated at all posterior slopes: 4.1° at slope 0°, 3.0° at slope 3°, and 2.1° at slope 7°. The percentages of cases with differences of more than 3° or 5° were 66.7% and 34.4% at slope 0°, 53.8% and 24.7% at slope 3°, and 38.3% and 11.8% at slope 7°, respectively. The AP axis of the proximal tibia may be rotated internally after resection of the proximal tibia in total knee arthroplasty. Hence, surgeons should recognize the effect of changes in the cutting surface on rotational alignment of the proximal tibia. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Relationship between the tibial mechanical axis and bony anatomical landmarks of the calf and foot as measured on radiographs obtained with a new laser-calibrated position.

    PubMed

    He, Peiheng; Zhu, Qi; Zhang, Zhaohui; Zou, Xuenong; Xu, Dongliang

    2013-01-01

    To investigate relationship between the tibial mechanical axis and bony landmarks of the calf and foot by developing a new laser-calibrated position for radiography of the lower limb. A total of 120 volunteers were randomly divided into two groups. All subjects were marked with skin projection of the hypothetical axis of the calf on the frontal and sagittal planes. Radiographs of weight-bearing full-length lower-limb were obtained by the laser-calibrated positioning in the experimental group, and by the use of conventional technique in the control group. To consider the rotation of the calf, radiological features of the knee and ankle were investigated. The relationship between the tibial mechanical axis and the bony landmarks of the calf and foot were also measured. Anteroposterior view depicted a tangential projection on the superior/inferior tibiofibular syndesmosis and between lateral malleolus and talus in ankle mortise in the experimental group. Bony overlap on the superior/inferior tibiofibular syndesmosis and between lateral malleolus and talus was seen in control group. On the tangential projection, it also presented a clear wheel-like contour of the medial femoral condyle, but a partial overlap between medial femoral condyle and tibial plateau. The femoral joint angle between the connecting line at the lowest point of the medial and lateral femoral condyles and the tibial mechanical axis was 83.6° ± 2.49° in the experimental group and 85.3° ± 2.18° in the control group (P < 0.001). The tibial tubercle-axis distance from the center of the medial and middle one-third of the tibial tubercle to the tibial mechanical axis was 1.5 mm in the experimental group and 3.7 mm in the control group (P < 0.05). The malleoli-axis distance from the midpoint of the bimalleolar line joining the tips of the medial and lateral malleoli to the tibial mechanical axis was 1.9 mm in the experimental group and 6.9 mm in the control group (P < 0.001). Lateral view showed no

  10. Surgical treatment of a proximal diaphyseal tibial deformity associated with partial caudal and cranial cruciate ligament deficiency and patella baja.

    PubMed

    Vincenti, S; Knell, S; Pozzi, A

    2017-04-01

    Caudal cruciate ligament injury can be a complication following tibial plateau leveling osteotomy (TPLO) (Slocum und Slocum, 1993) especially if the post-operative Tibial Plateau Angle (TPA) is less than 5 degree. We describe a case of negative TPA associated with partial cranial and caudal ligament rupture treated with a center of rotation of angulation (CORA) based cranial tibial opening wedge osteotomy and tibial tuberosity transposition. A 13 kg, mixed breed dog was presented for right pelvic limb lameness. Radiographically a bilateral patella baja and a malformed tibia tuberosity along with a bilateral TPA of -8 degree were detected. Arthroscopically a partial rupture of the cranial and caudal cruciate ligaments were found. A cranial tibial opening wedge osteotomy of 23 degree and a fibular ostectomy were performed. The osteotomy was fixed with a 8 holes ALPS 9 (KYON, Switzerland) and a 3-holes 2.0mm UniLock plate (Synthes, Switzerland). Then a proximal tibial tuberosity transposition of 10mm was performed and fixed with a pin and tension band construct. The postoperative TPA was 15 degree. The radiographic controls at 6, 10 weeks, 6 months and 1 year after surgery revealed an unchanged position of the implants and progressive healing of the osteotomies. At the 6 and 12 months recheck evaluation the dog had no evidence of lameness or stifle pain and radiographs revealed complete healing of the osteotomy site and no implant failure. The diaphyseal CORA based osteotomy allowed accurate correction of a proximal tibial deformity associated with negative TPA.

  11. The role of fibers in the femoral attachment of the anterior cruciate ligament in resisting tibial displacement.

    PubMed

    Kawaguchi, Yasuyuki; Kondo, Eiji; Takeda, Ryo; Akita, Keiichi; Yasuda, Kazunori; Amis, Andrew A

    2015-03-01

    The purpose was to clarify the load-bearing functions of the fibers of the femoral anterior cruciate ligament (ACL) attachment in resisting tibial anterior drawer and rotation. A sequential cutting study was performed on 8 fresh-frozen human knees. The femoral attachment of the ACL was divided into a central area that had dense fibers inserting directly into the femur and anterior and posterior fan-like extension areas. The ACL fibers were cut sequentially from the bone: the posterior fan-like area in 2 stages, the central dense area in 4 stages, and then the anterior fan-like area in 2 stages. Each knee was mounted in a robotic joint testing system that applied tibial anteroposterior 6-mm translations and 10° or 15° of internal rotation at 0° to 90° of flexion. The reduction of restraining force or moment was measured after each cut. The central area resisted 82% to 90% of the anterior drawer force; the anterior fan-like area, 2% to 3%; and the posterior fan-like area, 11% to 15%. Among the 4 central areas, most load was carried close to the roof of the intercondylar notch: the anteromedial bundle resisted 66% to 84% of the force and the posterolateral bundle resisted 16% to 9% from 0° to 90° of flexion. There was no clear pattern for tibial internal rotation, with the load shared among the posterodistal and central areas near extension and mostly the central areas in flexion. Under the experimental conditions described, 66% to 84% of the resistance to tibial anterior drawer arose from the ACL fibers at the central-proximal area of the femoral attachment, corresponding to the anteromedial bundle; the fan-like extension fibers contributed very little. This work did not support moving a single-bundle ACL graft to the side wall of the notch or attempting to cover the whole attachment area if the intention was to mimic how the natural ACL resists tibial displacements. There is ongoing debate about how best to reconstruct the ACL to restore normal knee function

  12. The Role of Fibers in the Femoral Attachment of the Anterior Cruciate Ligament in Resisting Tibial Displacement

    PubMed Central

    Kawaguchi, Yasuyuki; Kondo, Eiji; Takeda, Ryo; Akita, Keiichi; Yasuda, Kazunori; Amis, Andrew A.

    2015-01-01

    Purpose The purpose was to clarify the load-bearing functions of the fibers of the femoral anterior cruciate ligament (ACL) attachment in resisting tibial anterior drawer and rotation. Methods A sequential cutting study was performed on 8 fresh-frozen human knees. The femoral attachment of the ACL was divided into a central area that had dense fibers inserting directly into the femur and anterior and posterior fan-like extension areas. The ACL fibers were cut sequentially from the bone: the posterior fan-like area in 2 stages, the central dense area in 4 stages, and then the anterior fan-like area in 2 stages. Each knee was mounted in a robotic joint testing system that applied tibial anteroposterior 6-mm translations and 10° or 15° of internal rotation at 0° to 90° of flexion. The reduction of restraining force or moment was measured after each cut. Results The central area resisted 82% to 90% of the anterior drawer force; the anterior fan-like area, 2% to 3%; and the posterior fan-like area, 11% to 15%. Among the 4 central areas, most load was carried close to the roof of the intercondylar notch: the anteromedial bundle resisted 66% to 84% of the force and the posterolateral bundle resisted 16% to 9% from 0° to 90° of flexion. There was no clear pattern for tibial internal rotation, with the load shared among the posterodistal and central areas near extension and mostly the central areas in flexion. Conclusions Under the experimental conditions described, 66% to 84% of the resistance to tibial anterior drawer arose from the ACL fibers at the central-proximal area of the femoral attachment, corresponding to the anteromedial bundle; the fan-like extension fibers contributed very little. This work did not support moving a single-bundle ACL graft to the side wall of the notch or attempting to cover the whole attachment area if the intention was to mimic how the natural ACL resists tibial displacements. Clinical Relevance There is ongoing debate about how best

  13. Foot and ankle function after tibial overlengthening.

    PubMed

    Emara, Khaled M; Diab, Ramy Ahmed; El Ghazali, Sherif; Farouk, Amr; El Kersh, Mohamed Ahmed

    2014-01-01

    Lengthening the tibia more than 25% of its original length can be indicated for proximal femoral deficiency, poliomyelitis, or femoral infected nonunion. Such lengthening of the tibia can adversely affect the ankle or foot shape and function. The present study aimed to assess the effect of tibial lengthening of more than 25% of its original length on the foot and ankle shape and function compared with the preoperative condition. This was a retrospective study of 13 children with severe proximal focal femoral deficiency, Aitken classification type D, who had undergone limb lengthening from June 2000 to June 2008 using Ilizarov external fixators. The techniques used in tibial lengthening included lengthening without intramedullary rodding and lengthening over a nail. The foot assessment was done preoperatively, at fixator removal, and then annually for 3 years, documenting the range of motion and deformity of the ankle and subtalar joints and big toe and the navicular height, calcaneal pitch angle, and talo-first metatarsal angle. At fixator removal, all cases showed equinocavovarus deformity, with decreased ankle, subtalar, and big toe motion. The mean American Orthopedic Foot and Ankle Society score was significantly reduced. During follow-up, the range of motion, foot deformity, and American Orthopedic Foot and Ankle Society score improved, reaching nearly to the preoperative condition by 2 years of follow-up. The results of our study have shown that tibial overlengthening has an adverse effect on foot and ankle function. This effect was reversible in the patients included in the present study. Lengthening of more than 25% can be safely done after careful discussion with the patients and their families about the probable effects of lengthening on foot and ankle function. Copyright © 2014 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  14. Medial tibial stress syndrome: a critical review.

    PubMed

    Moen, Maarten H; Tol, Johannes L; Weir, Adam; Steunebrink, Miriam; De Winter, Theodorus C

    2009-01-01

    Medial tibial stress syndrome (MTSS) is one of the most common leg injuries in athletes and soldiers. The incidence of MTSS is reported as being between 4% and 35% in military personnel and athletes. The name given to this condition refers to pain on the posteromedial tibial border during exercise, with pain on palpation of the tibia over a length of at least 5 cm. Histological studies fail to provide evidence that MTSS is caused by periostitis as a result of traction. It is caused by bony resorption that outpaces bone formation of the tibial cortex. Evidence for this overloaded adaptation of the cortex is found in several studies describing MTSS findings on bone scan, magnetic resonance imaging (MRI), high-resolution computed tomography (CT) scan and dual energy x-ray absorptiometry. The diagnosis is made based on physical examination, although only one study has been conducted on this subject. Additional imaging such as bone, CT and MRI scans has been well studied but is of limited value. The prevalence of abnormal findings in asymptomatic subjects means that results should be interpreted with caution. Excessive pronation of the foot while standing and female sex were found to be intrinsic risk factors in multiple prospective studies. Other intrinsic risk factors found in single prospective studies are higher body mass index, greater internal and external ranges of hip motion, and calf girth. Previous history of MTSS was shown to be an extrinsic risk factor. The treatment of MTSS has been examined in three randomized controlled studies. In these studies rest is equal to any intervention. The use of neoprene or semi-rigid orthotics may help prevent MTSS, as evidenced by two large prospective studies.

  15. Enhancing Friction Stir Weldability of 6061-T6 Al and AZ31B Mg Alloys Assisted by External Non-rotational Shoulder

    NASA Astrophysics Data System (ADS)

    Ji, Shude; Huang, Ruofei; Meng, Xiangchen; Zhang, Liguo; Huang, Yongxian

    2017-05-01

    In order to increase cooling rate and then reduce the amounts of intermetallic compounds, external non-rotational shoulder tool system derived from traditional tool in friction stir welding was used to join dissimilar Al and Mg alloys. In this study, based on the external non-rotational shoulder, the weldability of Al and Mg alloys was significantly improved. The non-rotational shoulder tool is propitious to make more materials into weld, increase cooling rate and then reduce material adhesion of rotational pin, obtaining sound joint with smaller flashes and smooth surface. Importantly, the thickness of intermetallic compounds layer is reduced compared with traditional tool. Meanwhile, hardness values of dissimilar joint present uneven distribution, resulting from complex intercalated structures in nugget zone (NZ) featured by intermetallic compound layers and fine recrystallized Mg and Al grains. Compared with traditional tool, non-rotational shoulder is beneficial to higher tensile properties of joint. Due to the intermetallic compound layer formed in the interface of Al-Mg, the welding joint easily fractures at the NZ, presenting the typical brittle fracture mode.

  16. Extrinsic Factors as Component Positions to Bone and Intrinsic Factors Affecting Postoperative Rotational Limb Alignment in Total Knee Arthroplasty.

    PubMed

    Mochizuki, Tomoharu; Sato, Takashi; Tanifuji, Osamu; Watanabe, Satoshi; Kobayashi, Koichi; Endo, Naoto

    2018-02-13

    This study aimed to identify the factors affecting postoperative rotational limb alignment of the tibia relative to the femur. We hypothesized that not only component positions but also several intrinsic factors were associated with postoperative rotational limb alignment. This study included 99 knees (90 women and 9 men) with a mean age of 77 ± 6 years. A three-dimensional (3D) assessment system was applied under weight-bearing conditions to biplanar long-leg radiographs using 3D-to-2D image registration technique. The evaluation parameters were (1) component position; (2) preoperative and postoperative coronal, sagittal, and rotational limb alignment; (3) preoperative bony deformity, including femoral torsion, condylar twist angle, and tibial torsion; and (4) preoperative and postoperative range of motion (ROM). In multiple linear regression analysis using a stepwise procedure, postoperative rotational limb alignment was associated with the following: (1) rotation of the component position (tibia: β = 0.371, P < .0001; femur: β = -0.327, P < .0001), (2) preoperative rotational limb alignment (β = 0.253, P = .001), (3) postoperative flexion angle (β = 0.195, P = .007), and (4) tibial torsion (β = 0.193, P = .010). In addition to component positions, the intrinsic factors, such as preoperative rotational limb alignment, ROM, and tibial torsion, affected postoperative rotational limb alignment. On a premise of correct component positions, the intrinsic factors that can be controlled by surgeons should be taken care. In particular, ROM is necessary to be improved within the possible range to acquire better postoperative rotational limb alignment. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Does a conservative tibial cut in conventional total knee arthroplasty violate the deep medial collateral ligament?

    PubMed

    Maes, Michael; Luyckx, Thomas; Bellemans, Johan

    2014-11-01

    Based on the anatomy of the deep medial collateral ligament (MCL), it was hypothesized that at least part of its cross-sectional insertion area is jeopardized while performing a standard tibial cut in conventional total knee arthroplasty (TKA). The aim of this study was to determine whether it is anatomically possible to preserve the tibial deep MCL insertion during conventional TKA. Thirty-three unpaired cadaveric knee specimens were used for this study. Knees with severe varus/valgus deformity or damage to the medial structures of the knee were excluded. In the first part of the study, the dimensions of the tibial insertion of the deep MCL and its relationship to the joint line were recorded. Next, the cross-sectional area of the deep MCL insertion was determined using calibrated digital photographic analysis. In the second part, the effect of a standard 9-mm 3° sloped tibial cut on the structural integrity of the deep MCL cross-sectional insertion area was determined using conventional instrumentation. The proximal border of the deep MCL insertion site on the tibia was located on average 4.7 ± 1.2 mm distally to the joint line. After performing a standard 9-mm 3° sloped tibial cut, on average 54% of the deep MCL insertion area was resected. In 29% of the cases, the deep MCL insertion area was completely excised. The deep MCL cannot routinely be preserved in conventional TKA. The deep MCL insertion is at risk and may be jeopardized in case of a tibial cut 9 mm below the native joint line. As the deep MCL is a distinct medial stabilizer and plays an important role in rotational stability, this may have implications in future designs of both unicondylar and total knee arthroplasty, but further research is necessary.

  18. Study on a magnetic spiral-type wireless capsule endoscope controlled by rotational external permanent magnet

    NASA Astrophysics Data System (ADS)

    Ye, Bo; Zhang, Wei; Sun, Zhen-jun; Guo, Lin; Deng, Chao; Chen, Ya-qi; Zhang, Hong-hai; Liu, Sheng

    2015-12-01

    In this paper, the authors propose rotating an external permanent magnet (EPM) to manipulate the synchronous rotation of a magnetic spiral-type wireless capsule endoscope (WCE), and the synchronous rotation of the WCE is converted to its translational motion in intestinal tract. In order to preliminarily verify the feasibility of this method, a handheld actuator (HA) controlled by micro controller unit, a magnetic spiral-type WCE and a bracket were fabricated, theoretical analysis and simulations about the control distance of this method were performed, and in ex-vivo tests were examined in porcine small intestine to verify the control distance and control performances of this method. It was demonstrated that this method showed good performances in controlling the translational motion of the magnetic spiral-type WCE, and this method has great potential to be used in clinical application.

  19. Complex tibial fracture outcomes following treatment with low-intensity pulsed ultrasound.

    PubMed

    Leung, Kwok-Sui; Lee, Wing-Sze; Tsui, Hon-For; Liu, Paul Po-Lung; Cheung, Wing-Hoi

    2004-03-01

    A clinical study was conducted to investigate the effect of low-intensity pulsed ultrasound (US) stimulation (LIPUS) on the healing of complex tibial fractures. Thirty complex tibial fractures were randomly assigned to the treatment with LIPUS (n = 16) or by a dummy machine (sham-exposed: n = 14). The fractures were immobilized by either internal or external fixations according to the clinical indications. LIPUS was given 20 min/day for 90 days. Fracture healing was monitored by clinical, radiological, densitometric and biochemical assessments. The LIPUS-treated group showed statistically significantly better healing, as demonstrated by all assessments. Complications were minimal in the LIPUS group. There were two cases of delayed union, with one in each group. There were two cases of infection in the control group. The delayed-union cases were subsequently treated by LIPUS and the infection cases were treated with standard protocol. Fracture healing in these patients was again treated by LIPUS.

  20. Incidence and epidemiology of tibial shaft fractures.

    PubMed

    Larsen, Peter; Elsoe, Rasmus; Hansen, Sandra Hope; Graven-Nielsen, Thomas; Laessoe, Uffe; Rasmussen, Sten

    2015-04-01

    The literature lacks recent population-based epidemiology studies of the incidence, trauma mechanism and fracture classification of tibial shaft fractures. The purpose of this study was to provide up-to-date information on the incidence of tibial shaft fractures in a large and complete population and report the distribution of fracture classification, trauma mechanism and patient baseline demographics. Retrospective reviews of clinical and radiological records. A total of 196 patients were treated for 198 tibial shaft fractures in the years 2009 and 2010. The mean age at time of fracture was 38.5 (21.2SD) years. The incidence of tibial shaft fracture was 16.9/100,000/year. Males have the highest incidence of 21.5/100,000/year and present with the highest frequency between the age of 10 and 20, whereas women have a frequency of 12.3/100,000/year and have the highest frequency between the age of 30 and 40. AO-type 42-A1 was the most common fracture type, representing 34% of all tibial shaft fractures. The majority of tibial shaft fractures occur during walking, indoor activity and sports. The distribution among genders shows that males present a higher frequency of fractures while participating in sports activities and walking. Women present the highest frequency of fractures while walking and during indoor activities. This study shows an incidence of 16.9/100,000/year for tibial shaft fractures. AO-type 42-A1 was the most common fracture type, representing 34% of all tibial shaft fractures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Increased revision rate with posterior tibial tunnel placement after using the 70-degree tibial guide in ACL reconstruction.

    PubMed

    Inderhaug, Eivind; Raknes, Sveinung; Østvold, Thomas; Solheim, Eirik; Strand, Torbjørn

    2017-01-01

    To map knee morphology radiographically in a population with a torn ACL and to investigate whether anatomic factors could be related to outcomes after ACL reconstruction at mid- to long-term follow-up. Further, we wanted to assess tibial tunnel placement after using the 70-degree "anti-impingement" tibial tunnel guide and investigate any relation between tunnel placement and revision surgery. Patients undergoing ACL reconstruction involving the 70-degree tibial guide from 2003 to 2008 were included. Two independent investigators analysed pre- and post-operative radiographs. Demographic data and information on revision surgery were collected from an internal database. Anatomic factors and post-operative tibial tunnel placements were investigated as predictors of revision. Three-hundred and seventy-seven patients were included in the study. A large anatomic variation with significant differences between men and women was seen. None of the anatomic factors could be related to a significant increase in revision rate. Patients with a posterior tibial tunnel placement, defined as 50 % or more posterior on the Amis and Jakob line, did, however, have a higher risk of revision surgery compared to patients with an anterior tunnel placement (P = 0.03). Use of the 70-degree tibial guide did result in a high incidence (47 %) of posterior tibial tunnel placements associated with an increased rate of revision surgery. The current study was, however, not able to identify any anatomic variation that could be related to a higher risk of revision surgery. Avoiding graft impingement from the femoral roof in anterior tibial tunnel placements is important, but the insight that overly posterior tunnel placement can lead to inferior outcome should also be kept in mind when performing ACL surgery. IV.

  2. Fractures of the Tibial Plateau Involve Similar Energies as the Tibial Pilon but Greater Articular Surface Involvement

    PubMed Central

    Dibbern, Kevin; Kempton, Laurence B.; Higgins, Thomas F.; Morshed, Saam; McKinley, Todd O.; Marsh, J. Lawrence; Anderson, Donald D.

    2016-01-01

    Patients with tibial pilon fractures have a higher incidence of post-traumatic osteoarthritis than those with fractures of the tibial plateau. This may indicate that pilon fractures present a greater mechanical insult to the joint than do plateau fractures. We tested the hypothesis that fracture energy and articular fracture edge length, two independent indicators of severity, are higher in pilon than plateau fractures. We also evaluated if clinical fracture classification systems accurately reflect severity. Seventy-five tibial plateau fractures and fifty-two tibial pilon fractures from a multi-institutional study were selected to span the spectrum of severity. Fracture severity measures were calculated using objective CT-based image analysis methods. The ranges of fracture energies measured for tibial plateau and pilon fractures were 3.2 to 33.2 Joules (J) and 3.6 to 32.2 J, respectively, and articular fracture edge lengths were 68.0 to 493.0 mm and 56.1 to 288.6 mm, respectively. There were no differences in the fracture energies between the two fracture types, but plateau fractures had greater articular fracture edge lengths (p<0.001). The clinical fracture classifications generally reflected severity, but there was substantial overlap of fracture severity measures between different classes. Clinical Significance Similar fracture energies with different degrees of articular surface involvement suggest a possible explanation for dissimilar rates of post-traumatic osteoarthritis for fractures of the tibial plateau compared to the tibial pilon. The substantial overlap of severity measures between different fracture classes may well have confounded prior clinical studies relying on fracture classification as a surrogate for severity. PMID:27381653

  3. Free flap reconstructions of tibial fractures complicated after internal fixation.

    PubMed

    Nieminen, H; Kuokkanen, H; Tukiainen, E; Asko-Seljavaara, S

    1995-04-01

    The cases of 15 patients are presented where microvascular soft-tissue reconstructions became necessary after internal fixation of tibial fractures. Primarily, seven of the fractures were closed. Eleven fractures had originally been treated by open reduction and internal fixation using plates and screws, and four by intramedullary nailing. All of the patients suffered from postoperative complications leading to exposure of the bone or fixation material. The internal fixation material was removed and radical revision of dead and infected tissue was carried out in all cases. Soft tissue reconstruction was performed using a free microvascular muscle flap (11 latissimus dorsi, three rectus abdominis, and one gracilis). In eight cases the nonunion of the fracture indicated external fixation. The microvascular reconstruction was successful in all 15 patients. In one case the recurrence of deep infection finally indicated a below-knee amputation. In another case, chronic infection with fistulation recurred postoperatively. After a mean follow-up of 26 months the soft tissue coverage was good in all the remaining 13 cases. All the fractures united. Microvascular free muscle flap reconstruction of the leg is regarded as a reliable method for salvaging legs with large soft-tissue defects or defects in the distal leg. If after internal fixation of the tibial fracture the osteosynthesis material or fracture is exposed, reconstruction of the soft-tissue can successfully be performed by free flap transfer. By radical revision, external fixation, bone grafting, and a free flap the healing of the fracture can be achieved.

  4. Trifurcation of the tibial nerve within the tarsal tunnel.

    PubMed

    Develi, Sedat

    2018-05-01

    The tibial nerve is the larger terminal branch of the sciatic nerve and it terminates in the tarsal tunnel by giving lateral and medial plantar nerves. We present a rare case of trifurcation of the tibial nerve within the tarsal tunnel. The variant nerve curves laterally after branching from the tibial nerve and courses deep to quadratus plantae muscle. Interestingly, posterior tibial artery was also terminating by giving three branches. These branches were accompanying the terminal branches of the tibial nerve.

  5. Total knee arthroplasty in patients with a prior fracture of the tibial plateau.

    PubMed

    Weiss, Nicholas G; Parvizi, Javad; Trousdale, Robert T; Bryce, Rex D; Lewallen, David G

    2003-02-01

    A fracture of the tibial plateau may predispose the knee to the development of posttraumatic arthritis. Malunion, intra-articular chondro-osseous defects, limb malalignment, retained internal fixation devices, and poor surrounding soft tissues may in turn compromise the outcome of total knee arthroplasty. The aim of our study was to evaluate the results of total knee arthroplasty in patients with a previous fracture of the tibial plateau. The results of sixty-two condylar total knee arthroplasties performed with cement, from 1988 to 1999, in sixty-two patients with a previous fracture of the tibial plateau were reviewed. The fracture of the tibial plateau had been treated by open reduction and internal fixation in thirty-eight knees, external fixation in one knee, and nonoperatively in twenty-three knees. There were forty women and twenty-two men with an average age of sixty-three years at the time of the arthroplasty. Knee Society scores were recorded preoperatively and at the time of follow-up, at an average of 4.7 years, and complications were noted. No patient was lost to follow-up. The mean Knee Society scores improved significantly (p < 0.0001), from 43.9 points for pain and 52 points for function preoperatively to 82.9 and 84 points, respectively, at the time of the latest follow-up. There were thirteen reoperations, which included manipulation with the patient under anesthesia (five knees), wound revision (three knees), and component revision (five knees). There were six intraoperative complications (10%). A postoperative complication occurred in sixteen knees (26%). The vast majority of patients treated with total knee arthroplasty after a previous fracture of the tibial plateau have substantial improvement in function and relief of pain. However, these patients are at increased risk for perioperative complications, as evidenced by the high reoperation rate of 21% in this study.

  6. Synchrotron radiation external beam rotational radiotherapy of breast cancer: proof of principle.

    PubMed

    Di Lillo, Francesca; Mettivier, Giovanni; Castriconi, Roberta; Sarno, Antonio; Stevenson, Andrew W; Hall, Chris J; Häusermann, Daniel; Russo, Paolo

    2018-05-01

    The principle of rotational summation of the absorbed dose for breast cancer treatment with orthovoltage X-ray beams was proposed by J. Boone in 2012. Here, use of X-ray synchrotron radiation for image guided external beam rotational radiotherapy treatment of breast cancer is proposed. Tumor irradiation occurs with the patient in the prone position hosted on a rotating bed, with her breast hanging from a hole in the bed, which rotates around a vertical axis passing through the tumor site. Horizontal collimation of the X-ray beam provides for whole breast or partial breast irradiation, while vertical translation of the bed and successive rotations allow for irradiation of the full tumor volume, with dose rates which permit also hypofractionated treatments. In this work, which follows a previous preliminary report, results are shown of a full series of measurements on polyethylene and acrylic cylindrical phantoms carried out at the Australian Synchrotron, confirmed by Geant4 Monte Carlo simulations, intended to demonstrate the proof of principle of the technique. Dose measurements were carried out with calibrated ion chambers, radiochromic films and thermoluminescence dosimeters. The photon energy investigated was 60 keV. Image guidance may occur with the transmitted beam for contrast-enhanced breast computed tomography. For a horizontal beam collimation of 1.5 cm and rotation around the central axis of a 14 cm-diameter polyethylene phantom, a periphery-to-center dose ratio of 14% was measured. The simulations showed that under the same conditions the dose ratio decreases with increasing photon energy down to 10% at 175 keV. These values are comparable with those achievable with conventional megavoltage radiotherapy of breast cancer with a medical linear accelerator. Dose painting was demonstrated with two off-center `cancer foci' with 1.3 Gy and 0.6 Gy target doses. The use of a radiosensitizing agent for dose enhancement is foreseen.

  7. Gyrokinetic Simulations with External Resonant Magnetic Perturbations: Island Torque and Nonambipolar Transport with Rotation

    NASA Astrophysics Data System (ADS)

    Waltz, R. E.; Waelbroeck, F. L.

    2012-03-01

    Static external resonant magnetic perturbations (RMPs) have been added to the δf gyrokinetic code GYRO. This allows nonlinear gyrokinetic simulations of the nonambipolar radial current flow jr and the corresponding plasma torque (density) R[jrBθ/c], induced by islands that break the toroidal symmetry of a tokamak. This extends previous GYRO simulations for the transport of toroidal angular momentum (TAM) [1,2]. The focus is on full torus radial slice electrostatic simulations of induced q=m/n=6/3 islands with widths 5% of the minor radius. The island torque scales with the radial electric field Er the island width w, and the intensity I of the high-n micro-turbulence, as wErI^1/2. The net island torque is null at zero Er rather than at zero toroidal rotation. This means that there is a small co-directed magnetic acceleration to the small diamagnetic co-rotation corresponding to the zero Er which can be called the residual stress [2] from an externally induced island. Finite-beta GYRO simulations of a core radial slice demonstrate island unlocking and the RMP screening. 6pt[1] R.E. Waltz, et al., Phys. Plasmas 14, 122507 (2007). [2] R.E. Waltz, et al., Phys. Plasmas 18, 042504 (2011).

  8. Histological analysis of the tibial anterior cruciate ligament insertion.

    PubMed

    Oka, Shinya; Schuhmacher, Peter; Brehmer, Axel; Traut, Ulrike; Kirsch, Joachim; Siebold, Rainer

    2016-03-01

    This study was performed to investigate the morphology of the tibial anterior cruciate ligament (ACL) by histological assessment. The native (undissected) tibial ACL insertion of six fresh-frozen cadaveric knees was cut into four sagittal sections parallel to the long axis of the medial tibial spine. For histological evaluation, the slices were stained with haematoxylin and eosin, Safranin O and Russell-Movat pentachrome. All slices were digitalized and analysed at a magnification of 20×. The anterior tibial ACL insertion was bordered by a bony anterior ridge. The most medial ACL fibres inserted from the medial tibial spine and were adjacent to the articular cartilage of the medial tibial plateau. Parts of the bony insertions of the anterior and posterior horns of the lateral meniscus were in close contact with the lateral part of the tibial ACL insertion. A small fat pad was located just posterior to the functional ACL fibres. The anterior-posterior length of the medial ACL insertion was an average of 10.8 ± 1.1 mm compared with the lateral, which was only 6.2 ± 1.1 mm (p < 0.001). There were no central or posterolateral inserting ACL fibres. The shape of the bony tibial ACL insertion was 'duck-foot-like'. In contrast to previous findings, the functional mid-substance fibres arose from the most posterior part of the 'duck-foot' in a flat and 'c-shaped' way. The most anterior part of the tibial ACL insertion was bordered by a bony anterior ridge and the most medial by the medial tibial spine. No posterolateral fibres nor ACL bundles have been found histologically. This histological investigation may improve our understanding of the tibial ACL insertion and may provide important information for anatomical ACL reconstruction.

  9. Advantages and disadvantages of pinless external fixation.

    PubMed

    Thomas, S R; Giele, H; Simpson, A H

    2000-12-01

    The AO pinless external fixator (PEF) uses trocar tipped clamps to grip the outer tibial cortex rather than pins to transfix it. Its main advantage is to avoid further contamination of the medullary canal in open tibial fractures where a nail may subsequently be used. We tested the anatomical safety of this device and its effect on plastic surgical procedures compared with a standard unilateral external fixator (UEF).The PEF and UEF were placed on two amputated limbs which were then dissected. Structures at risk were traced on ten cadaver limbs. We found that important anatomical structures were endangered by the PEF and that safe zones could not always be defined. The UEF avoided these structures. Plastic surgical approaches were made more difficult by the PEF which imposed limitations on local flap design and endangered the arterial perforators which supply them. We conclude that safety is compromised by the PEF because margins for error are small. It poses additional problems in soft tissue reconstruction and highlights the need for co-operation between plastic surgical and orthopaedic teams in choice of fixation device.

  10. Exercise therapy for treatment of supraspinatus tears does not alter glenohumeral kinematics during internal/external rotation with the arm at the side.

    PubMed

    Ferrer, Gerald A; Miller, R Matthew; Zlotnicki, Jason P; Tashman, Scott; Irrgang, James J; Musahl, Volker; Debski, Richard E

    2018-01-01

    Rotator cuff tears are a significant clinical problem, with exercise therapy being a common treatment option for patients. Failure rates of exercise therapy may be due to the failure to improve glenohumeral kinematics. Tears involving the supraspinatus may result in altered glenohumeral kinematics and joint instability for internal/external rotation with the arm at the side because not all muscles used to stabilize the glenohumeral joint are functioning normally. The objective of the study is to assess in vivo glenohumeral kinematic changes for internal/external rotation motions with the arm at the side of patients with a symptomatic full-thickness supraspinatus tear before and after a 12-week exercise therapy programme. Five patients underwent dynamic stereoradiography analysis before and after a 12-week exercise therapy protocol to measure changes in glenohumeral kinematics during transverse plane internal/external rotation with the arm at the side. Patient-reported outcomes and shoulder strength were also evaluated. No patient sought surgery immediately following exercise therapy. Significant improvements in isometric shoulder strength and patient-reported outcomes were observed (p < 0.05). No significant changes in glenohumeral kinematics following physical therapy were found. Isolated supraspinatus tears resulted in increased joint translations compared to healthy controls from the previous literature for internal/external rotation with the arm at the side. Despite satisfactory clinical outcomes following exercise therapy, glenohumeral kinematics did not change. The lack of changes may be due to the motion studied or the focus of current exercise therapy protocols being increasing shoulder strength and restoring range of motion. Current exercise therapy protocols should be adapted to also focus on restoring glenohumeral kinematics to improve joint stability since exercise therapy may have different effects depending on the motions of daily living. Prognostic

  11. Preserving the PCL during the tibial cut in total knee arthroplasty.

    PubMed

    Cinotti, G; Sessa, P; Amato, M; Ripani, F R; Giannicola, G

    2017-08-01

    Previous studies have shown that the PCL insertion may be damaged during the tibial cut performed in total knee arthroplasty. We investigated the maximum thickness of a tibial cut that preserves the PCL insertion and to what extent the posterior slope of the tibial cut and that of the patient's tibial plateaus affect the outcome. MR images of 83 knees were analysed. The maximum thickness of a tibial cut that preserves the PCL using a posterior slope of 0°, 3°, 5° and parallel to the patient's slope of the tibial plateau, was evaluated. Correlations between the results and the degrees of the posterior slope of the patient's tibial plateaus were also investigated. The maximum thickness of a tibial cut that preserves the entire PCL insertion was, on average, 5.5, 4.7, 4.2 and 3.1 mm when a posterior slope of 0°, 3°, 5° and parallel to the patients' tibial plateaus was used, respectively. When the 25th percentile was considered, the maximum thickness of a tibial cut that preserved the PCL was 4 and 3 mm with a tibial cut of 0° and 5° of posterior slope, respectively. The maximum thickness of a tibial cut that preserved the PCL was significantly greater in patients with a sagittal slope of the tibial plateaus more than 8° than in those with a sagittal slope less than 8°. In cruciate retaining implants, the PCL insertion may be spared in the majority of patients by performing a tibial cut of 4 mm, or even less when a posterior slope of 3°-5° is used. The clinical relevance of our study is that the execution of a conservative tibial cut, followed by a second tibial resection to achieve the thickness required for the tibial component to be implanted, may be an alternative technique to spare the PCL in CR TKA. II.

  12. Bypass grafting to the anterior tibial artery.

    PubMed

    Armour, R H

    1976-01-01

    Four patients with severe ischaemia of a leg due to atherosclerotic occlusion of the tibial and peroneal arteries had reversed long saphenous vein grafts to the patent lower part of the anterior tibial artery. Two of these grafts continue to function 19 and 24 months after operation respectively. One graft failed on the fifth postoperative day and another occluded 4 months after operation. The literature on femorotibial grafting has been reviewed. The early failure rate of distal grafting is higher than in the case of femoropopliteal bypass, but a number of otherwise doomed limbs can be salvaged. Contrary to widely held views, grafting to the anterior tibial artery appears to give results comparable to those obtained when the lower anastomosis is made to the posterior tibial artery.

  13. Physeal growth arrest after tibial lengthening in achondroplasia

    PubMed Central

    2012-01-01

    Background and purpose Bilateral tibial lengthening has become one of the standard treatments for upper segment-lower segment disproportion and to improve quality of life in achondroplasia. We determined the effect of tibial lengthening on the tibial physis and compared tibial growth that occurred at the physis with that in non-operated patients with acondroplasia. Methods We performed a retrospective analysis of serial radiographs until skeletal maturity in 23 achondroplasia patients who underwent bilateral tibial lengthening before skeletal maturity (lengthening group L) and 12 achondroplasia patients of similar height and age who did not undergo tibial lengthening (control group C). The mean amount of lengthening of tibia in group L was 9.2 cm (lengthening percentage: 60%) and the mean age at the time of lengthening was 8.2 years. The mean duration of follow-up was 9.8 years. Results Skeletal maturity (fusion of physis) occurred at 15.2 years in group L and at 16.0 years in group C. The actual length of tibia (without distraction) at skeletal maturity was 238 mm in group L and 277 mm in group C (p = 0.03). The mean growth rates showed a decrease in group L relative to group C from about 2 years after surgery. Physeal closure was most pronounced on the anterolateral proximal tibial physis, with relative preservation of the distal physis. Interpretation Our findings indicate that physeal growth rate can be disturbed after tibial lengthening in achondroplasia, and a close watch should be kept for such an occurrence—especially when lengthening of more than 50% is attempted. PMID:22489887

  14. Concomitant Posterior Hip Dislocation, Ipsilateral Intertrochanteric- and Proximal Tibial- Fractures with Popliteal Artery Injury: A Challenging Trauma Mélange.

    PubMed

    Chotai, Pranit N; Ebraheim, Nabil A; Hart, Ryan; Wassef, Andrew

    2015-11-05

    Constellation of ipsilateral posterior hip dislocation, intertrochanteric- and proximal tibial fracture with popliteal artery injury is rare. Management of this presentation is challenging. A motor vehicle accident victim presented with these injuries, but without any initial signs of vascular compromise. Popliteal artery injury was diagnosed intra-operatively and repaired. This was followed by external fixation of tibial fracture, open reduction of dislocated hip and internal fixation of intertrochanteric fracture. Patient regained bilateral complete weight bearing and returned to pre-accident activity level. Apt surgical management including early repair of vascular injury in such a trauma mélange allows for a positive postoperative outcome.

  15. Risk of anterior cruciate ligament fatigue failure is increased by limited internal femoral rotation during in vitro repeated pivot landings.

    PubMed

    Beaulieu, Mélanie L; Wojtys, Edward M; Ashton-Miller, James A

    2015-09-01

    A reduced range of hip internal rotation is associated with increased peak anterior cruciate ligament (ACL) strain and risk for injury. It is unknown, however, whether limiting the available range of internal femoral rotation increases the susceptibility of the ACL to fatigue failure. Risk of ACL failure is significantly greater in female knee specimens with a limited range of internal femoral rotation, smaller femoral-ACL attachment angle, and smaller tibial eminence volume during repeated in vitro simulated single-leg pivot landings. Controlled laboratory study. A custom-built testing apparatus was used to simulate repeated single-leg pivot landings with a 4×-body weight impulsive load that induces knee compression, knee flexion, and internal tibial torque in 32 paired human knee specimens from 8 male and 8 female donors. These test loads were applied to each pair of specimens, in one knee with limited internal femoral rotation and in the contralateral knee with femoral rotation resisted by 2 springs to simulate the active hip rotator muscles' resistance to stretch. The landings were repeated until ACL failure occurred or until a minimum of 100 trials were executed. The angle at which the ACL originates from the femur and the tibial eminence volume were measured on magnetic resonance images. The final Cox regression model (P = .024) revealed that range of internal femoral rotation and sex of donor were significant factors in determining risk of ACL fatigue failure. The specimens with limited range of internal femoral rotation had a failure risk 17.1 times higher than did the specimens with free rotation (P = .016). The female knee specimens had a risk of ACL failure 26.9 times higher than the male specimens (P = .055). Limiting the range of internal femoral rotation during repetitive pivot landings increases the risk of an ACL fatigue failure in comparison with free rotation in a cadaveric model. Screening for restricted internal rotation at the hip in ACL

  16. Anatomical glenohumeral internal rotation deficit and symmetric rotational strength in male and female young beach volleyball players.

    PubMed

    Saccol, Michele Forgiarini; Almeida, Gabriel Peixoto Leão; de Souza, Vivian Lima

    2016-08-01

    Beach volleyball is a sport with a high demand of shoulder structures that may lead to adaptations in range of motion (ROM) and strength like in other overhead sports. Despite of these possible alterations, no study evaluated the shoulder adaptations in young beach volleyball athletes. The aim of this study was to compare the bilateral ROM and rotation strength in the shoulders of young beach volleyball players. Goniometric passive shoulder ROM of motion and isometric rotational strength were evaluated in 19 male and 14 female asymptomatic athletes. External and internal ROM, total rotation motion, glenohumeral internal rotation deficit (GIRD), external rotation and internal rotation strength, bilateral deficits and external rotation to internal rotation ratio were measured. The statistical analysis included paired Student's t-test and analysis of variance with repeated measures. Significantly lower dominant GIRD was found in both groups (p<0.05), but only 6 athletes presented pathological GIRD. For strength variables, no significant differences for external or internal rotation were evident. Young beach volleyball athletes present symmetric rotational strength and shoulder ROM rotational adaptations that can be considered as anatomical. These results indicate that young practitioners of beach volleyball are subject to moderate adaptations compared to those reported for other overhead sports. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Correlation between hindfoot joint three-dimensional kinematics and the changes of the medial arch angle in stage II posterior tibial tendon dysfunction flatfoot.

    PubMed

    Zhang, Yi-Jun; Xu, Jian; Wang, Yue; Lin, Xiang-Jin; Ma, Xin

    2015-02-01

    The aim of this study was to explore the correlation between the kinematics of the hindfoot joint and the medial arch angle change in stage II posterior tibial tendon dysfunction flatfoot three-dimensionally under loading. Computed tomography (CT) scans of 12 healthy feet and 12 feet with stage II posterior tibial tendon dysfunction flatfoot were taken both in non- and full-body-weight-bearing condition. The CT images of the hindfoot bones were reconstructed into three-dimensional models with Mimics and Geomagic reverse engineering software. The three-dimensional changes of the hindfoot joint were calculated to determine their correlation to the medial longitudinal arch angle. The medial arch angle change was larger in stage II posterior tibial tendon dysfunction flatfoot compared to that in healthy foot under loading. The rotation and translation of the talocalcaneal joint, the talonavicular joint and the calcanocuboid joint had little influence on the change of the medial arch angle in healthy foot. However, the eversion of the talocalcaneal joint, the proximal translation of the calcaneus relative to the talus and the dorsiflexion of talonavicular joint could increase the medial arch angle in stage II posterior tibial tendon dysfunction flatfoot under loading. Joint instability occurred in patients with stage II posterior tibial tendon dysfunction flatfoot under loading. Limitation of over movement of the talocalcaneal joint and the talonavicular joint may help correct the medial longitudinal arch in stage II posterior tibial tendon dysfunction flatfoot. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Upper lid crease approach for margin rotation in trachomatous cicatricial entropion without external sutures.

    PubMed

    Cruz, Antonio Augusto Velasco E; Akaishi, Patricia M S; Al-Dufaileej, Mohammed; Galindo-Ferreiro, Alicia

    2015-01-01

    To describe the use of a lid crease incision for upper eyelid margin rotation in cicatricial entropion combining internal traction on the anterior lamella, tarsotomy, and tarsal overlap without external sutures. Surgical description: The main steps of the procedure consisted of exposure of the entire tarsal plate up to the eyelashes followed by tarsotomy through the conjunctiva. A double-armed 6.0 polyglactin suture was then passed through the distal tarsal fragment to the marginal section of the orbicularis oculi muscle. As the sutures were tied, the distal tarsus advanced over the marginal section, and traction was exerted on the marginal strip of the orbicularis muscle. There were no bolsters or external knots. The pretarsal skin-muscle flap was closed with a 6.0 plain gut suture. We used this procedure at a tertiary hospital in Saudi Arabia from 2013 to 2014. Sixty upper lids of 40 patients (23 women and 17 men) were operated on, with an age range of 44-99 years [mean ± standard deviation (SD) = 70.9 ± 13.01 years]. Bilateral surgery was performed on 21 patients. Follow-up ranged from 1 to 12 months (mean 3.0 ± 2.71 months). Forty percent of the patients (24 lids) had more than 3 months' follow-up. The postoperative lid margin position was good in all cases. Trichiasis (two lashes) was observed in only one patient with unilateral entropion on the medial aspect of the operated lid. The upper lid margin can be effectively rotated through a lid crease incision with internal sutures. The technique combines the main mechanisms of the Wies and Trabut approaches and avoids the use of bolsters or external sutures, which require a second consultation to be removed. Some other lid problems, such as ptosis, retraction, or dermatochalasis, can be concomitantly addressed during the procedure.

  19. Turnout in Classical Dance: Is It Possible to Enhance the External Rotation of the Lower Limb by a Myofascial Manipulation? A Pilot Study.

    PubMed

    Lohr, Christine; Schmidt, Tobias

    2017-12-15

    Turnout in classical dance refers to the external rotation of the lower extremities so that the longitudinal axes of the feet form an angle of up to 180°. To what extent a myofascial manipulation (myofascial release, MFR) could enhance this external rotation is as yet unknown. In this pilot study, 16 students of dance and 3 dance instructors were randomly assigned to an intervention group (IG; N = 10) and a group of controls (CG; N = 9). Isolated external hip rotation (EHR) and functional turnout (TO) were evaluated three times (pre-, post-, and follow-up measurement) using a plurimeter and Functional Footprints® rotation discs. In addition, subjectively perceived physical flexibility (PPF) was determined by means of a written survey. The interval between pre- and post-measurement and between post- and follow-up measurement was 4 weeks. Only the IG received four 20-minute MFR treatments of the lower limb at weekly intervals between pre- and post-measurement. In both the post-measurement (pre- versus post-: p = 0.038, d = 0.77) and the follow-up measurement (pre- versus follow-up: p < 0.001, d = 1.66) the IG showed a significantly improved isolated EHR of the right hip and a significantly increased PPF (pre- versus post-: p = 0.047, d = 0.73; pre- versus follow-up: p = 0.012, d = 1.00). The left EHR as well as the right and left TO were not affected by the intervention. It was demonstrated that four sessions of MFR of the lower limb can induce an improvement in the isolated external hip rotation (right hip). The beneficial effects of the treatment regarding an improvement of functional turnout could not be entirely verified in this pilot study. However, the significant increase in the participants' subjective flexibility supports the promising trend in the objective parameters and emphasizes the need to undertake further research.

  20. Minimizing Alteration of Posterior Tibial Slope During Opening Wedge High Tibial Osteotomy: a Protocol with Experimental Validation in Paired Cadaveric Knees

    PubMed Central

    Westermann, Robert W; DeBerardino, Thomas; Amendola, Annunziato

    2014-01-01

    Introduction The High Tibial Osteotomy (HTO) is a reliable procedure in addressing uni- compartmental arthritis with associated coronal deformities. With osteotomy of the proximal tibia, there is a risk of altering the tibial slope in the sagittal plane. Surgical techniques continue to evolve with trends towards procedure reproducibility and simplification. We evaluated a modification of the Arthrex iBalance technique in 18 paired cadaveric knees with the goals of maintaining sagittal slope, increasing procedure efficiency, and decreasing use of intraoperative fluoroscopy. Methods Nine paired cadaveric knees (18 legs) underwent iBalance medial opening wedge high tibial osteotomies. In each pair, the right knee underwent an HTO using the modified technique, while all left knees underwent the traditional technique. Independent observers evaluated postoperative factors including tibial slope, placement of hinge pin, and implant placement. Specimens were then dissected to evaluate for any gross muscle, nerve or vessel injury. Results Changes to posterior tibial slope were similar using each technique. The change in slope in traditional iBalance technique was -0.3° ±2.3° and change in tibial slope using the modified iBalance technique was -0.4° ±2.3° (p=0.29). Furthermore, we detected no differences in posterior tibial slope between preoperative and postoperative specimens (p=0.74 traditional, p=0.75 modified). No differences in implant placement were detected between traditional and modified techniques. (p=0.85). No intraoperative iatrogenic complications (i.e. lateral cortex fracture, blood vessel or nerve injury) were observed in either group after gross dissection. Discussion & Conclusions Alterations in posterior tibial slope are associated with HTOs. Both traditional and modified iBalance techniques appear reliable in coronal plane corrections without changing posterior tibial slope. The present modification of the Arthrex iBalance technique may increase the

  1. Proximal tibial osteotomy. A survivorship analysis.

    PubMed

    Ritter, M A; Fechtman, R A

    1988-01-01

    Proximal tibial osteotomy is generally accepted as a treatment for the patient with unicompartmental arthritis. However, a few reports of the long-term results of this procedure are available in the literature, and none have used the technique known as survivorship analysis. This technique has an advantage over conventional analysis because it does not exclude patients for inadequate follow-up, loss to follow-up, or patient death. In this study, survivorship analysis was applied to 78 proximal tibial osteotomies, performed exclusively by the senior author for the correction of a preoperative varus deformity, and a survival curve was constructed. It was concluded that the reliable longevity of the proximal tibial osteotomy is approximately 6 years.

  2. Compartment syndrome after tibial plateau fracture☆

    PubMed Central

    Pitta, Guilherme Benjamin Brandão; dos Santos, Thays Fernanda Avelino; dos Santos, Fernanda Thaysa Avelino; da Costa Filho, Edelson Moreira

    2014-01-01

    Fractures of the tibial plateau are relatively rare, representing around 1.2% of all fractures. The tibia, due to its subcutaneous location and poor muscle coverage, is exposed and suffers large numbers of traumas, not only fractures, but also crush injuries and severe bruising, among others, which at any given moment, could lead compartment syndrome in the patient. The case is reported of a 58-year-old patient who, following a tibial plateau fracture, presented compartment syndrome of the leg and was submitted to decompressive fasciotomy of the four right compartments. After osteosynthesis with internal fixation of the tibial plateau using an L-plate, the patient again developed compartment syndrome. PMID:26229779

  3. Biomechanical Comparison of External Fixation and Compression Screws for Transverse Tarsal Joint Arthrodesis.

    PubMed

    Latt, L Daniel; Glisson, Richard R; Adams, Samuel B; Schuh, Reinhard; Narron, John A; Easley, Mark E

    2015-10-01

    Transverse tarsal joint arthrodesis is commonly performed in the operative treatment of hindfoot arthritis and acquired flatfoot deformity. While fixation is typically achieved using screws, failure to obtain and maintain joint compression sometimes occurs, potentially leading to nonunion. External fixation is an alternate method of achieving arthrodesis site compression and has the advantage of allowing postoperative compression adjustment when necessary. However, its performance relative to standard screw fixation has not been quantified in this application. We hypothesized that external fixation could provide transverse tarsal joint compression exceeding that possible with screw fixation. Transverse tarsal joint fixation was performed sequentially, first with a circular external fixator and then with compression screws, on 9 fresh-frozen cadaveric legs. The external fixator was attached in abutting rings fixed to the tibia and the hindfoot and a third anterior ring parallel to the hindfoot ring using transverse wires and half-pins in the tibial diaphysis, calcaneus, and metatarsals. Screw fixation comprised two 4.3 mm headless compression screws traversing the talonavicular joint and 1 across the calcaneocuboid joint. Compressive forces generated during incremental fixator foot ring displacement to 20 mm and incremental screw tightening were measured using a custom-fabricated instrumented miniature external fixator spanning the transverse tarsal joint. The maximum compressive force generated by the external fixator averaged 186% of that produced by the screws (range, 104%-391%). Fixator compression surpassed that obtainable with screws at 12 mm of ring displacement and decreased when the tibial ring was detached. No correlation was found between bone density and the compressive force achievable by either fusion method. The compression across the transverse tarsal joint that can be obtained with a circular external fixator including a tibial ring exceeds that

  4. Gender differences in rotation of the shank during single-legged drop landing and its relation to rotational muscle strength of the knee.

    PubMed

    Kiriyama, Shinya; Sato, Haruhiko; Takahira, Naonobu

    2009-01-01

    Increased shank rotation during landing has been considered to be one of the factors for noncontact anterior cruciate ligament injuries in female athletes. There have been no known gender differences in rotational knee muscle strength, which is expected to inhibit exaggerated shank rotation. Women have less knee external rotator strength than do men. Lower external rotator strength is associated with increased internal shank rotation at the time of landing. Controlled laboratory study. One hundred sixty-nine healthy young subjects (81 female and 88 male; age, 17.0 +/- 1.0 years) volunteered to participate in this study. The subjects performed single-legged drop landings from a 20-cm height. Femoral and shank kinematics were measured using a 3D optoelectronic tracking system during the drop landings, and then the joint angles around the knee (flexion/extension, valgus/varus, and internal/external rotation) were calculated. The maximal isometric rotational muscle strength of the knee was measured at 30 degrees of knee flexion in a supine position using a dynamometer. The female subjects had significantly less external shank rotation strength than did the male subjects (P < .001). Female subjects also exhibited significantly greater peak shank internal rotation angles than did males during landing (P < .05). Moderate but significant association was found between the maximum shank external rotation strength and the peak shank internal rotation angle during landing (r = -0.322, P < .01). Female subjects tended to have poor shank external rotator strength. This may lead to large shank internal rotation movement during the single-legged drop landing. Improving strength training of the external rotator muscle may help decrease the rates of anterior cruciate ligament injury in female athletes.

  5. Two-View Gravity Stress Imaging Protocol for Nondisplaced Type II Supination External Rotation Ankle Fractures: Introducing the Gravity Stress Cross-Table Lateral View.

    PubMed

    Boffeli, Troy J; Collier, Rachel C; Gervais, Samuel J

    Assessing ankle stability in nondisplaced Lauge-Hansen supination external rotation type II injuries requires stress imaging. Gravity stress mortise imaging is routinely used as an alternative to manual stress imaging to assess deltoid integrity with the goal of differentiating type II from type IV injuries in cases without a posterior or medial fracture. A type II injury with a nondisplaced fibula fracture is typically treated with cast immobilization, and a type IV injury is considered unstable and often requires operative repair. The present case series (two patients) highlights a standardized 2-view gravity stress imaging protocol and introduces the gravity stress cross-table lateral view. The gravity stress cross-table lateral view provides a more thorough evaluation of the posterior malleolus owing to the slight external rotation and posteriorly directed stress. External rotation also creates less bony overlap between the tibia and fibula, allowing for better visualization of the fibula fracture. Gravity stress imaging confirmed medial-sided injury in both cases, confirming the presence of supination external rotation type IV or bimalleolar equivalent fractures. Open reduction and internal fixation was performed, and both patients achieved radiographic union. No further treatment was required at 21 and 33 months postoperatively. Copyright © 2017 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  6. Computer simulation of the effects of shoe cushioning on internal and external loading during running impacts.

    PubMed

    Miller, Ross H; Hamill, Joseph

    2009-08-01

    Biomechanical aspects of running injuries are often inferred from external loading measurements. However, previous research has suggested that relationships between external loading and potential injury-inducing internal loads can be complex and nonintuitive. Further, the loading response to training interventions can vary widely between subjects. In this study, we use a subject-specific computer simulation approach to estimate internal and external loading of the distal tibia during the impact phase for two runners when running in shoes with different midsole cushioning parameters. The results suggest that: (1) changes in tibial loading induced by footwear are not reflected by changes in ground reaction force (GRF) magnitudes; (2) the GRF loading rate is a better surrogate measure of tibial loading and stress fracture risk than the GRF magnitude; and (3) averaging results across groups may potentially mask differential responses to training interventions between individuals.

  7. Error field assessment from driven rotation of stable external kinks at EXTRAP-T2R reversed field pinch

    NASA Astrophysics Data System (ADS)

    Volpe, F. A.; Frassinetti, L.; Brunsell, P. R.; Drake, J. R.; Olofsson, K. E. J.

    2013-04-01

    A new non-disruptive error field (EF) assessment technique not restricted to low density and thus low beta was demonstrated at the EXTRAP-T2R reversed field pinch. Stable and marginally stable external kink modes of toroidal mode number n = 10 and n = 8, respectively, were generated, and their rotation sustained, by means of rotating magnetic perturbations of the same n. Due to finite EFs, and in spite of the applied perturbations rotating uniformly and having constant amplitude, the kink modes were observed to rotate non-uniformly and be modulated in amplitude. This behaviour was used to precisely infer the amplitude and approximately estimate the toroidal phase of the EF. A subsequent scan permitted to optimize the toroidal phase. The technique was tested against deliberately applied as well as intrinsic EFs of n = 8 and 10. Corrections equal and opposite to the estimated error fields were applied. The efficacy of the error compensation was indicated by the increased discharge duration and more uniform mode rotation in response to a uniformly rotating perturbation. The results are in good agreement with theory, and the extension to lower n, to tearing modes and to tokamaks, including ITER, is discussed.

  8. Risk factors associated with exertional medial tibial pain: a 12 month prospective clinical study.

    PubMed

    Burne, S G; Khan, K M; Boudville, P B; Mallet, R J; Newman, P M; Steinman, L J; Thornton, E

    2004-08-01

    To investigate in a military setting the potential role of intrinsic biomechanical and anthropometric risk factors for, and the incidence of, exertional medial tibial pain (EMTP). A prospective clinical outcome study in a cohort of 122 men and 36 women at the Australian Defence Force Academy. Each cadet underwent measurements of seven intrinsic variables: hip range of motion, leg length discrepancy, lean calf girth, maximum ankle dorsiflexion range, foot type, rear foot alignment, and tibial alignment. Test-retest reliability was undertaken on each variable. A physician recorded any cadet presenting with diagnostic criteria of EMTP. Records were analysed at 12 months for EMTP presentation and for military fitness test results. 23 cadets (12 men, 11 women) met the criteria for EMTP after 12 months, with a cross gender (F/M) odds ratio of 3.1. In men, both internal and external range of hip motion was greater in those with EMTP: left internal (12 degrees, p = 0.000), right internal (8 degrees, p = 0.014), left external (8 degrees, p = 0.042), right external (9 degrees, p = 0.026). Lean calf girth was lower by 4.2% for the right leg (p = 0.040) but by only 2.9% for the left leg (p = 0.141). No intrinsic risk factor was associated with EMTP in women. EMTP was the major cause for non-completion of the run component of the ADFA fitness test in both men and women. Greater internal and external hip range of motion and lower lean calf girth were associated with EMTP in male military cadets. Women had high rates of injury, although no intrinsic factor was identified. Reasons for this sex difference need to be identified.

  9. Risk factors associated with exertional medial tibial pain: a 12 month prospective clinical study

    PubMed Central

    Burne, S; Khan, K; Boudville, P; Mallet, R; Newman, P; Steinman, L; Thornton, E

    2004-01-01

    Objective: To investigate in a military setting the potential role of intrinsic biomechanical and anthropometric risk factors for, and the incidence of, exertional medial tibial pain (EMTP). Methods: A prospective clinical outcome study in a cohort of 122 men and 36 women at the Australian Defence Force Academy. Each cadet underwent measurements of seven intrinsic variables: hip range of motion, leg length discrepancy, lean calf girth, maximum ankle dorsiflexion range, foot type, rear foot alignment, and tibial alignment. Test–retest reliability was undertaken on each variable. A physician recorded any cadet presenting with diagnostic criteria of EMTP. Records were analysed at 12 months for EMTP presentation and for military fitness test results. Results: 23 cadets (12 men, 11 women) met the criteria for EMTP after 12 months, with a cross gender (F/M) odds ratio of 3.1. In men, both internal and external range of hip motion was greater in those with EMTP: left internal (12°, p = 0.000), right internal (8°, p = 0.014), left external (8°, p = 0.042), right external (9°, p = 0.026). Lean calf girth was lower by 4.2% for the right leg (p = 0.040) but by only 2.9% for the left leg (p = 0.141). No intrinsic risk factor was associated with EMTP in women. EMTP was the major cause for non-completion of the run component of the ADFA fitness test in both men and women. Conclusions: Greater internal and external hip range of motion and lower lean calf girth were associated with EMTP in male military cadets. Women had high rates of injury, although no intrinsic factor was identified. Reasons for this sex difference need to be identified. PMID:15273181

  10. Long-term outcome of pronation-external rotation ankle fractures treated with syndesmotic screws only.

    PubMed

    Lambers, Kaj T A; van den Bekerom, Michel P J; Doornberg, Job N; Stufkens, Sjoerd A S; van Dijk, C Niek; Kloen, Peter

    2013-09-04

    There is sparse information in the literature on the outcome of Maisonneuve-type pronation-external rotation ankle fractures treated with syndesmotic screws. The primary aim of this study was to determine the long-term results of such treatment of these fractures as indicated by standardized patient-based and physician-based outcome measures. The secondary aim was to identify predictors of the outcome with use of bivariate and multivariate statistical analysis. Fifty patients with pronation-external rotation (predominantly Maisonneuve) fractures were treated with open reduction and internal fixation of the syndesmosis utilizing only one or two screws. The results were evaluated at a mean of twenty-one years after the fracture utilizing three standardized outcomes instruments: (1) the Foot and Ankle Ability Measure (FAAM), (2) the American Orthopaedic Foot & Ankle Society (AOFAS) ankle-hindfoot scale, and (3) the Center for Epidemiologic Studies-Depression (CES-D) Scale. Osteoarthritis was graded according to the van Dijk and revised Takakura radiographic scoring systems. Bivariate and multivariate analyses were performed to identify predictors of long-term outcome. Forty-four (92%) of forty-eighty patients had good or excellent AOFAS scores, and forty-four (90%) of forty-nine had good or excellent FAAM scores. Arthrodesis for severe osteoarthritis was performed in two patients. Radiographic evidence of osteoarthritis was observed in twenty-four (49%) of forty-nine patients. Multivariate analysis identified pain as the most important independent predictor of long-term ankle function as indicated by the AOFAS and FAAM scores, explaining 91% and 53% of the variation in scores, respectively. Analysis of pain as the dependent variable in bivariate analyses revealed that depression, ankle range of motion, and a subsequent surgery were significantly correlated with higher pain scores. No firm conclusions could be drawn after multivariate analysis of predictors of pain

  11. High tibial osteotomy in knee laxities: Concepts review and results

    PubMed Central

    Robin, Jonathan G.; Neyret, Philippe

    2016-01-01

    Patients with unstable, malaligned knees often present a challenging management scenario, and careful attention must be paid to the clinical history and examination to determine the priorities of treatment. Isolated knee instability treated with ligament reconstruction and isolated knee malalignment treated with periarticular osteotomy have both been well studied in the past. More recently, the effects of high tibial osteotomy on knee instability have been studied. Lateral closing-wedge high tibial osteotomy tends to reduce the posterior tibial slope, which has a stabilising effect on anterior tibial instability that occurs with ACL deficiency. Medial opening-wedge high tibial osteotomy tends to increase the posterior tibia slope, which has a stabilising effect in posterior tibial instability that occurs with PCL deficiency. Overall results from recent studies indicate that there is a role for combined ligament reconstruction and periarticular knee osteotomy. The use of high tibial osteotomy has been able to extend the indication for ligament reconstruction which, when combined, may ultimately halt the evolution of arthritis and preserve their natural knee joint for a longer period of time. Cite this article: Robin JG, Neyret P. High tibial osteotomy in knee laxities: Concepts review and results. EFORT Open Rev 2016;1:3-11. doi: 10.1302/2058-5241.1.000001. PMID:28461908

  12. Histological Analysis of the Tibial Anterior Cruciate Ligament Insertion

    PubMed Central

    Siebold, Rainer; Oka, Shinya; Traut, Ulrike; Schuhmacher, Peter; Kirsch, Joachim

    2017-01-01

    Objective: To describe the morphology of the tibial ACL insertion by histological assessment in the sagittal plane. Methods: For histology the native (undissected) tibial ACL insertion of 6 fresh-frozen cadaveric knees was cut into 4 sagittal sections parallel to the long axis of the medial tibial spine. The slices were stained with hematoxylin and eosin, Safranin O and Russell-Movat pentachrome. All slices were digitalized and analyzed at a magnification of ×20. Results: From medial to lateral the anterior-posterior lengths of the ACL insertion were an average of 10.2, 9.3, 7.6 and 5.8 mm. The anterior margin of the tibial ACL insertion raised from an anterior ridge. The most medial ACL fibers rose along with a peak of the anterior part of the medial tibial spine in which the direct insertion was adjacent to the articular cartilage. Parts of the bony insertions of the anterior and posterior horns of the lateral meniscus were in close contact to the lateral ACL insertion. A small fat pad was located just posterior to the tibial ACL insertion. There were no central or posterolateral inserting ACL fibers in the area intercondylaris anterior. Conclusion: The functional intraligamentous midsubstance ACL fibers arose from the most posterior part of its bony tibial insertion in a flat and “C-shape” way. The anterior border of this functional ACL started from a bony ‘anterior ridge’ and the medial border was along with a peak of the medial tibial spine.

  13. Multipoles and Force on External Points for a Two-layered Spheroidal Liquid Mass Rotating Differentialy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cisneros-Parra, Joel U.; Martinez-Herrera, Francisco J.; Montalvo-Castro, J. Daniel

    We recently reported on a series of equilibrium figures for a self-gravitating heterogeneous liquid body, consisting of two concentric distorted spheroids, “nucleus” and “atmosphere,” each endowed with its own internal motion of differential rotation. In our current work, we calculate the body’s force at external points and obtain a multipolar expansion of the potential. We also give an account of figures with prolate nuclei, which remained unnoticed by us in our former paper.

  14. Predictive formula for the length of tibial tunnel in anterior crucitate ligament reconstruction.

    PubMed

    Chernchujit, Bancha; Barthel, Thomas

    2009-12-01

    The anterior cruciate ligament (ACL) reconstruction using bone-patellar tendon bone graft is a common procedure in orthopedics. One challenging problem found is a graft-tunnel mismatch. Previous studies have reported the mathematic formula to predict the tibial angle length and angle to avoid graft-tunnel mismatch but these formulas have shown limited predictability. To propose a predictive formula for the length of tibial tunnel and to examine its predictability. Thirty six patients (26 males, 14 females) with ACL injury were included in this study. The preoperativemedial proximal tibial angle was measured. Intraoperatively, the tibial tunnel length and tibial entry point were measured. The postoperative coronal and saggital angle of tibial tunnel were measured from knee radiograph. The data were analysed by using trigonometry correlation and formulate the predictive formula of tibial tunnel length. We found that tibial tunnel length (T) has trigonometric correlation between the location of tibial tunnel entry point (w), coronal angle of tibial tunnel (b), saggital angle of tibial tunnel (a) and the medial proximal tibial slope (c) by using this formula T = Wcos(c)tan(b)/sin(a) This proposed predictive formula can well predict the length of the tibial tunnel at preoperative period to avoid graft-tunnel mismatch.

  15. Models of tibial fracture healing in normal and Nf1-deficient mice.

    PubMed

    Schindeler, Aaron; Morse, Alyson; Harry, Lorraine; Godfrey, Craig; Mikulec, Kathy; McDonald, Michelle; Gasser, Jürg A; Little, David G

    2008-08-01

    Delayed union and nonunion are common complications associated with tibial fractures, particularly in the distal tibia. Existing mouse tibial fracture models are typically closed and middiaphyseal, and thus poorly recapitulate the prevailing conditions following surgery on a human open distal tibial fracture. This report describes our development of two open tibial fracture models in the mouse, where the bone is broken either in the tibial midshaft (mid-diaphysis) or in the distal tibia. Fractures in the distal tibial model showed delayed repair compared to fractures in the tibial midshaft. These tibial fracture models were applied to both wild-type and Nf1-deficient (Nf1+/-) mice. Bone repair has been reported to be exceptionally problematic in human NF1 patients, and these patients can also spontaneously develop tibial nonunions (known as congenital pseudarthrosis of the tibia), which are recalcitrant to even vigorous intervention. pQCT analysis confirmed no fundamental differences in cortical or cancellous bone in Nf1-deficient mouse tibiae compared to wild-type mice. Although no difference in bone healing was seen in the tibial midshaft fracture model, the healing of distal tibial fractures was found to be impaired in Nf1+/- mice. The histological features associated with nonunited Nf1+/- fractures were variable, but included delayed cartilage removal, disproportionate fibrous invasion, insufficient new bone anabolism, and excessive catabolism. These findings imply that the pathology of tibial pseudarthrosis in human NF1 is complex and likely to be multifactorial.

  16. Proximal tibial fracture following anterior cruciate ligament reconstruction surgery: a biomechanical analysis of the tibial tunnel as a stress riser.

    PubMed

    Aldebeyan, Wassim; Liddell, Antony; Steffen, Thomas; Beckman, Lorne; Martineau, Paul A

    2017-08-01

    This is the first biomechanical study to examine the potential stress riser effect of the tibial tunnel or tunnels after ACL reconstruction surgery. In keeping with literature, the primary hypothesis tested in this study was that the tibial tunnel acts as a stress riser for fracture propagation. Secondary hypotheses were that the stress riser effect increases with the size of the tunnel (8 vs. 10 mm), the orientation of the tunnel [standard (STT) vs. modified transtibial (MTT)], and with the number of tunnels (1 vs. 2). Tibial tunnels simulating both single bundle hamstring graft (8 mm) and bone-patellar tendon-bone graft (10 mm) either STT or MTT position, as well as tunnels simulating double bundle (DB) ACL reconstruction (7, 6 mm), were drilled in fourth-generation saw bones. These five experimental groups and a control group consisting of native saw bones without tunnels were loaded to failure on a Materials Testing System to simulate tibial plateau fracture. There were no statistically significant differences in peak load to failure between any of the groups, including the control group. The fracture occurred through the tibial tunnel in 100 % of the MTT tunnels (8 and 10 mm) and 80 % of the DB tunnels specimens; however, the fractures never (0 %) occurred through the tibial tunnel of the standard tunnels (8 or 10 mm) (P = 0.032). In the biomechanical model, the tibial tunnel does not appear to be a stress riser for fracture propagation, despite suggestions to the contrary in the literature. Use of a standard, more vertical tunnel decreases the risk of ACL graft compromise in the event of a fracture. This may help to inform surgical decision making on ACL reconstruction technique.

  17. Description of the Posterolateral Rotatory Drawer Maneuver for the Identification of Posterolateral Corner Injury

    PubMed Central

    Angelini, Fábio Janson; Bonadio, Marcelo Batista; Helito, Camilo Partezani; da Mota e Albuquerque, Roberto Freire; Pécora, José Ricardo; Camanho, Gilberto Luis

    2014-01-01

    Injury to the posterolateral corner (PLC) is difficult to diagnose; most lesions of this type are included within the context of complex knee injuries. Study of the posterolateral complex is growing in importance because of the complex instability generated by these injuries. Although various physical examination tests are described for the diagnosis of PLC lesions, in 72% of cases these lesions are not identified at their initial presentation, which shows the difficulty in both performing these tests and interpreting the results. The maneuver described in this report is performed by executing external rotation of the leg. With the thumb of the proximally positioned hand, the examiner evaluates the positioning of the lateral tibial plateau in relation to the femoral condyle. With this maneuver, in lesions of the PLC and particularly lesions of its external rotation–restricting structures, we observe external rotation of the tibia and posterior subluxation of the lateral tibial plateau that cause the anterior edge of the tibial plateau to be posteriorized in relation to the anterior edge of the lateral femoral condyle. The idea behind this maneuver is not to eliminate the use of other tests but, rather, to add it to a diagnostic arsenal that still has interpretation flaws. PMID:24904781

  18. Glenosphere size in reverse shoulder arthroplasty: is larger better for external rotation and abduction strength?

    PubMed

    Müller, Andreas M; Born, Marian; Jung, Christian; Flury, Matthias; Kolling, Christoph; Schwyzer, Hans-Kaspar; Audigé, Laurent

    2018-01-01

    The role of glenosphere size in reverse shoulder arthroplasty (RSA) may be important in prosthetic stability, joint kinematics, rotator cuff tension and excursion, scapular impingement, humeral lateralization, deltoid wrap, and the occurrence of "notching." This study compared short- and midterm clinical and radiographic outcomes for 2 different glenosphere sizes of a single RSA type with respect to implant positioning, glenoid size, and morphology. This retrospective analysis included 68 RSA procedures that were prospectively documented in a local register during a 5-year postoperative period. Two glenosphere diameter sizes of 36 mm (n = 33) and 44 mm (n = 35) were used. Standard radiographs were made preoperatively (ie, baseline) and at 6, 12, 24, and 60 months after surgery. Range of motion, strength, the Constant-Murley score, and the Shoulder Pain and Disability Index were also assessed at all follow-up visits. The effect of glenosphere size on measured outcomes was adjusted for baseline values, patient gender, and humeral head diameter. No significant differences were found in the functional scores between treatment groups at all follow-up assessments. At the 12-month follow-up, patients with a 44-mm glenosphere had greater external rotation in adduction (mean difference, 12°; P = .001) and abduction strength (mean difference, 1.4 kg; P = .026) compared with those with the smaller implant. These differences remained at 60 months. Scapular notching was observed in 38% of all patients, without any relevant difference between the groups. An increase in glenosphere diameter leads to a clinically moderate but significant increase in external rotation in adduction and abduction strength at midterm follow-up. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  19. Measurement of Posterior Tibial Slope Using Magnetic Resonance Imaging.

    PubMed

    Karimi, Elham; Norouzian, Mohsen; Birjandinejad, Ali; Zandi, Reza; Makhmalbaf, Hadi

    2017-11-01

    Posterior tibial slope (PTS) is an important factor in the knee joint biomechanics and one of the bone features, which affects knee joint stability. Posterior tibial slope has impact on flexion gap, knee joint stability and posterior femoral rollback that are related to wide range of knee motion. During high tibial osteotomy and total knee arthroplasty (TKA) surgery, proper retaining the mechanical and anatomical axis is important. The aim of this study was to evaluate the value of posterior tibial slope in medial and lateral compartments of tibial plateau and to assess the relationship among the slope with age, gender and other variables of tibial plateau surface. This descriptive study was conducted on 132 healthy knees (80 males and 52 females) with a mean age of 38.26±11.45 (20-60 years) at Imam Reza hospital in Mashhad, Iran. All patients, selected and enrolled for MRI in this study, were admitted for knee pain with uncertain clinical history. According to initial physical knee examinations the study subjects were reported healthy. The mean posterior tibial slope was 7.78± 2.48 degrees in the medial compartment and 6.85± 2.24 degrees in lateral compartment. No significant correlation was found between age and gender with posterior tibial slope ( P ≥0.05), but there was significant relationship among PTS with mediolateral width, plateau area and medial plateau. Comparison of different studies revealed that the PTS value in our study is different from other communities, which can be associated with genetic and racial factors. The results of our study are useful to PTS reconstruction in surgeries.

  20. Strain Distribution in the Anterior Inferior Tibiofibular Ligament, Posterior Inferior Tibiofibular Ligament, and Interosseous Membrane Using Digital Image Correlation.

    PubMed

    Xu, Daorong; Wang, Yibei; Jiang, Chunyu; Fu, Maoqing; Li, Shiqi; Qian, Lei; Sun, Peidong; Ouyang, Jun

    2018-05-01

    Ligament repair and augmentation techniques can stabilize syndesmosis injuries. However, little is known about the mechanical behavior of syndesmotic ligaments. The aim of this study was to analyze full-field strain, strain trend under foot rotation, and subregional strain differences of the anterior inferior tibiofibular ligament (AITFL), posterior inferior tibiofibular ligament (PITFL), and interosseous membrane (IOM). Eleven fresh-frozen lower limbs were dissected to expose the AITFL, PITFL, and IOM. The foot underwent rotation from 0° to 25° internal and 35° external, with 3 ankle positions (neutral, 15° dorsiflexion, and 25° plantarflexion) and a vertical load of 430 N. Ligament strain was recorded using digital image correlation. The mean strain on the AITFL with 35° external rotation was greater in the proximal portion compared with distal portion in the neutral position ( P = .009) and dorsiflexion ( P = .003). The mean strain in the tibial insertion and midsubstance near tibial insertion were greater when compared with other regions ( P = .018 and P = .009). The subregions of mean strain in the PITFL and IOM groups were not significantly different. The strain trend of AITFL, PITFL, and IOM showed common transformation, just when the foot was externally rotated. The findings of this study show that a significantly high strain was observed on the proximal part and the midsubstance near the Chaput tubercle of the AITFL when the ankle was externally rotated. All 3 ligaments resisted the torque in the syndesmosis by external rotation of the foot. This study allows for better understanding of the mechanical behavior of the syndesmosis ligaments, which could influence the repair technique and AITFL augmentation techniques.

  1. Tibial Stress Injuries: Decisive Diagnosis and Treatment of "Shin Splints."

    ERIC Educational Resources Information Center

    Couture, Christopher J.; Karlson, Kristine A.

    2002-01-01

    Tibial stress injuries, commonly called shin splints, often result when bone remodeling processes adopt inadequately to repetitive stress. Physicians who are caring for athletic patients must have a thorough understanding of this continuum of injuries, including medial tibial stress syndrome and tibial stress fractures, because there are…

  2. Tibial Eminence Involvement With Tibial Plateau Fracture Predicts Slower Recovery and Worse Postoperative Range of Knee Motion.

    PubMed

    Konda, Sanjit R; Driesman, Adam; Manoli, Arthur; Davidovitch, Roy I; Egol, Kenneth A

    2017-07-01

    To examine 1-year functional and clinical outcomes in patients with tibial plateau fractures with tibial eminence involvement. Retrospective analysis of prospectively collected data. Academic Medical Center. All patients who presented with a tibial plateau fracture (Orthopaedic Trauma Association (OTA) 41-B and 41-C). Patients were divided into fractures with a tibial eminence component (+TE) and those without (-TE) cohorts. All patients underwent similar surgical approaches and fixation techniques for fractures. No tibial eminence fractures received fixation specifically. Short musculoskeletal functional assessment (SMFA), pain (Visual Analogue Scale), and knee range-of-motion (ROM) were evaluated at 3, 6, and 12 months postoperatively and compared between cohorts. Two hundred ninety-three patients were included for review. Patients with OTA 41-C fractures were more likely to have an associated TE compared with 41-B fractures (63% vs. 28%, P < 0.01). At 3 months postoperatively, the +TE cohort was noted to have worse knee ROM (75.16 ± 51 vs. 86.82 ± 53 degree, P = 0.06). At 6 months, total SMFA and knee ROM was significantly worse in the +TE cohort (29 ± 17 vs. 21 ± 18, P ≤ 0.01; 115.6 ± 20 vs. 124.1 ± 15, P = 0.01). By 12 months postoperatively, only knee ROM remained significantly worse in the +TE cohort (118.7 ± 15 vs. 126.9 ± 13, P < 0.01). Multivariate analysis revealed that tibial eminence involvement was a significant predictor of ROM at 6 and 12 months and SFMA at 6 months. Body mass index was found to be a significant predictor of ROM and age was a significant predictor of total SMFA at all time points. Knee ROM remains worse throughout the postoperative period in the +TE cohort. Functional outcome improves less rapidly in the +TE cohort but achieves similar results by 1 year. Prognostic Level III. See Instructions for Authors for a complete description of levels of evidence.

  3. Risk of Anterior Cruciate Ligament Fatigue Failure Is Increased by Limited Internal Femoral Rotation During In Vitro Repeated Pivot Landings

    PubMed Central

    Beaulieu, Mélanie L.; Wojtys, Edward M.; Ashton-Miller, James A.

    2015-01-01

    Background A reduced range of hip internal rotation is associated with increased peak anterior cruciate ligament (ACL) strain and risk for injury. It is unknown, however, whether limiting the available range of internal femoral rotation increases the susceptibility of the ACL to fatigue failure. Hypothesis Risk of ACL failure is significantly greater in female knee specimens with a limited range of internal femoral rotation, smaller femoral-ACL attachment angle, and smaller tibial eminence volume during repeated in vitro simulated single-leg pivot landings. Study Design Controlled laboratory study. Methods A custom-built testing apparatus was used to simulate repeated single-leg pivot landings with a 4×-body weight impulsive load that induces knee compression, knee flexion, and internal tibial torque in 32 paired human knee specimens from 8 male and 8 female donors. These test loads were applied to each pair of specimens, in one knee with limited internal femoral rotation and in the contralateral knee with femoral rotation resisted by 2 springs to simulate the active hip rotator muscles’ resistance to stretch. The landings were repeated until ACL failure occurred or until a minimum of 100 trials were executed. The angle at which the ACL originates from the femur and the tibial eminence volume were measured on magnetic resonance images. Results The final Cox regression model (P = .024) revealed that range of internal femoral rotation and sex of donor were significant factors in determining risk of ACL fatigue failure. The specimens with limited range of internal femoral rotation had a failure risk 17.1 times higher than did the specimens with free rotation (P = .016). The female knee specimens had a risk of ACL failure 26.9 times higher than the male specimens (P = .055). Conclusion Limiting the range of internal femoral rotation during repetitive pivot landings increases the risk of an ACL fatigue failure in comparison with free rotation in a cadaveric model

  4. Strain Response of the Anterior Cruciate Ligament to Uniplanar and Multiplanar Loads During Simulated Landings: Implications for Injury Mechanism.

    PubMed

    Kiapour, Ata M; Demetropoulos, Constantine K; Kiapour, Ali; Quatman, Carmen E; Wordeman, Samuel C; Goel, Vijay K; Hewett, Timothy E

    2016-08-01

    Despite basic characterization of the loading factors that strain the anterior cruciate ligament (ACL), the interrelationship(s) and additive nature of these loads that occur during noncontact ACL injuries remain incompletely characterized. In the presence of an impulsive axial compression, simulating vertical ground-reaction force during landing (1) both knee abduction and internal tibial rotation moments would result in increased peak ACL strain, and (2) a combined multiplanar loading condition, including both knee abduction and internal tibial rotation moments, would increase the peak ACL strain to levels greater than those under uniplanar loading modes alone. Controlled laboratory study. A cadaveric model of landing was used to simulate dynamic landings during a jump in 17 cadaveric lower extremities (age, 45 ± 7 years; 9 female and 8 male). Peak ACL strain was measured in situ and characterized under impulsive axial compression and simulated muscle forces (baseline) followed by addition of anterior tibial shear, knee abduction, and internal tibial rotation loads in both uni- and multiplanar modes, simulating a broad range of landing conditions. The associations between knee rotational kinematics and peak ACL strain levels were further investigated to determine the potential noncontact injury mechanism. Externally applied loads, under both uni- and multiplanar conditions, resulted in consistent increases in peak ACL strain compared with the baseline during simulated landings (by up to 3.5-fold; P ≤ .032). Combined multiplanar loading resulted in the greatest increases in peak ACL strain (P < .001). Degrees of knee abduction rotation (R(2) = 0.45; β = 0.42) and internal tibial rotation (R(2) = 0.32; β = 0.23) were both significantly correlated with peak ACL strain (P < .001). However, changes in knee abduction rotation had a significantly greater effect size on peak ACL strain levels than did internal tibial rotation (by ~2-fold; P < .001). In the presence

  5. Medial tibial plateau morphology and stress fracture location: A magnetic resonance imaging study.

    PubMed

    Yukata, Kiminori; Yamanaka, Issei; Ueda, Yuzuru; Nakai, Sho; Ogasa, Hiroyoshi; Oishi, Yosuke; Hamawaki, Jun-Ichi

    2017-06-18

    To determine the location of medial tibial plateau stress fractures and its relationship with tibial plateau morphology using magnetic resonance imaging (MRI). A retrospective review of patients with a diagnosis of stress fracture of the medial tibial plateau was performed for a 5-year period. Fourteen patients [three female and 11 male, with an average age of 36.4 years (range, 15-50 years)], who underwent knee MRI, were included. The appearance of the tibial plateau stress fracture and the geometry of the tibial plateau were reviewed and measured on MRI. Thirteen of 14 stress fractures were linear, and one of them stellated on MRI images. The location of fractures was classified into three types. Three fractures were located anteromedially (AM type), six posteromedially (PM type), and five posteriorly (P type) at the medial tibial plateau. In addition, tibial posterior slope at the medial tibial plateau tended to be larger when the fracture was located more posteriorly on MRI. We found that MRI showed three different localizations of medial tibial plateau stress fractures, which were associated with tibial posterior slope at the medial tibial plateau.

  6. Medial tibial plateau morphology and stress fracture location: A magnetic resonance imaging study

    PubMed Central

    Yukata, Kiminori; Yamanaka, Issei; Ueda, Yuzuru; Nakai, Sho; Ogasa, Hiroyoshi; Oishi, Yosuke; Hamawaki, Jun-ichi

    2017-01-01

    AIM To determine the location of medial tibial plateau stress fractures and its relationship with tibial plateau morphology using magnetic resonance imaging (MRI). METHODS A retrospective review of patients with a diagnosis of stress fracture of the medial tibial plateau was performed for a 5-year period. Fourteen patients [three female and 11 male, with an average age of 36.4 years (range, 15-50 years)], who underwent knee MRI, were included. The appearance of the tibial plateau stress fracture and the geometry of the tibial plateau were reviewed and measured on MRI. RESULTS Thirteen of 14 stress fractures were linear, and one of them stellated on MRI images. The location of fractures was classified into three types. Three fractures were located anteromedially (AM type), six posteromedially (PM type), and five posteriorly (P type) at the medial tibial plateau. In addition, tibial posterior slope at the medial tibial plateau tended to be larger when the fracture was located more posteriorly on MRI. CONCLUSION We found that MRI showed three different localizations of medial tibial plateau stress fractures, which were associated with tibial posterior slope at the medial tibial plateau. PMID:28660141

  7. [Surgical approaches to tibial plateau fractures].

    PubMed

    Krause, Matthias; Müller, Gunnar; Frosch, Karl-Heinz

    2018-06-06

    Intra-articular tibial plateau fractures can present a surgical challenge due to complex injury patterns and compromised soft tissue. The treatment goal is to spare the soft tissue and an anatomical reconstruction of the tibial articular surface. Depending on the course of the fracture, a fracture-specific access strategy is recommended to provide correct positioning of the plate osteosynthesis. While the anterolateral approach is used in the majority of lateral tibial plateau fractures, only one third of the joint surface is visible; however, posterolateral fragments require an individual approach, e. g. posterolateral or posteromedial. If necessary, osteotomy of the femoral epicondyles can improve joint access for reduction control. Injuries to the posterior columns should be anatomically reconstructed and biomechanically correctly addressed via posterior approaches. Bony posterior cruciate ligament tears can be refixed via a minimally invasive posteromedial approach.

  8. Rotator cuff strength in recurrent anterior shoulder instability.

    PubMed

    Edouard, Pascal; Degache, Francis; Beguin, Laurent; Samozino, Pierre; Gresta, Giorgio; Fayolle-Minon, Isabelle; Farizon, Frédéric; Calmels, Paul

    2011-04-20

    Although rotator-cuff muscle contraction plays an important role in stabilizing the glenohumeral joint, little is known about the role of these muscles in the pathophysiology of recurrent anterior instability. We intended to analyze the association between isokinetic internal rotator and external rotator muscle strength and glenohumeral joint instability in patients with recurrent anterior instability that was not previously treated surgically. We enrolled thirty-seven patients with unilateral recurrent anterior posttraumatic shoulder dislocation and eleven healthy nonathletic subjects in this controlled study. The association between internal rotator and external rotator strength and shoulder instability was analyzed by side-to-side comparisons and comparisons with a control group. Isokinetic internal rotator and external rotator strength was evaluated with a Con-Trex dynamometer, with the subject seated and the shoulder abducted 45° in the scapular plane. Tests were performed at 180°/s, 120°/s, and 60°/s in concentric mode for both sides. Peak torque normalized to body weight and external rotator to internal rotator ratio were calculated for each angular velocity. Clinical and isokinetic evaluation was done by the same rehabilitation physician. The association between shoulder instability and internal rotator and external rotator strength was associated with side-to-side differences (p < 0.05). Compared with a control group, strength values were lower on the pathological shoulder side of the patients with shoulder instability than on the healthy contralateral shoulder of control subjects at 180°/s and 120°/s (p < 0.05). The side-to-side differences were increased when the nondominant upper-extremity side was involved and were decreased when the dominant side was involved. There was no association between glenohumeral joint instability and external rotator to internal rotator ratio. Internal rotator and external rotator weakness was associated with recurrent

  9. Tibial stress injuries: decisive diagnosis and treatment of 'shin splints'.

    PubMed

    Couture, Christopher J; Karlson, Kristine A

    2002-06-01

    Tibial stress injuries, commonly called 'shin splints,' often result when bone remodeling processes adapt inadequately to repetitive stress. Physicians who care for athletic patients need a thorough understanding of this continuum of injuries, including medial tibial stress syndrome and tibial stress fractures, because there are implications for appropriate diagnosis, management, and prevention.

  10. Understanding the etiology of the posteromedial tibial stress fracture.

    PubMed

    Milgrom, Charles; Burr, David B; Finestone, Aharon S; Voloshin, Arkady

    2015-09-01

    Previous human in vivo tibial strain measurements from surface strain gauges during vigorous activities were found to be below the threshold value of repetitive cyclical loading at 2500 microstrain in tension necessary to reduce the fatigue life of bone, based on ex vivo studies. Therefore it has been hypothesized that an intermediate bone remodeling response might play a role in the development of tibial stress fractures. In young adults tibial stress fractures are usually oblique, suggesting that they are the result of failure under shear strain. Strains were measured using surface mounted unstacked 45° rosette strain gauges on the posterior aspect of the flat medial cortex just below the tibial midshaft, in a 48year old male subject while performing vertical jumps, staircase jumps and running up and down stadium stairs. Shear strains approaching 5000 microstrain were recorded during stair jumping and vertical standing jumps. Shear strains above 1250 microstrain were recorded during runs up and down stadium steps. Based on predictions from ex vivo studies, stair and vertical jumping tibial shear strain in the test subject was high enough to potentially produce tibial stress fracture subsequent to repetitive cyclic loading without necessarily requiring an intermediate remodeling response to microdamage. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Management of Gustilo Anderson III B open tibial fractures by primary fascio-septo-cutaneous local flap and primary fixation: The 'fix and shift' technique.

    PubMed

    Ramasamy, P R

    2017-01-01

    Open fractures of tibia have posed great difficulty in managing both the soft tissue and the skeletal components of the injured limb. Gustilo Anderson III B open tibial fractures are more difficult to manage than I, II, and III A fractures. Stable skeletal fixation with immediate soft tissue cover has been the key to the successful outcome in treating open tibial fractures, in particular, Gustilo Anderson III B types. If the length of the open wound is larger and if the exposed surface of tibial fracture and tibial shaft is greater, then the management becomes still more difficult. Thirty six Gustilo Anderson III B open tibial fractures managed between June 2002 and December 2013 with "fix and shift" technique were retrospectively reviewed. All the 36 patients managed by this technique had open wounds measuring >5 cm (post debridement). Under fix and shift technique, stable fixation involved primary external fixator application or primary intramedullary nailing of the tibial fracture and immediate soft tissue cover involved septocutaneous shift, i.e., shifting of fasciocutaneous segments based on septocutaneous perforators. Primary fracture union rate was 50% and reoperation rate (bone stimulating procedures) was 50%. Overall fracture union rate was 100%. The rate of malunion was 14% and deep infection was 16%. Failure of septocutaneous shift was 2.7%. There was no incidence of amputation. Management of Gustilo Anderson III B open tibial fractures with "fix and shift" technique has resulted in better outcome in terms of skeletal factors (primary fracture union, overall union, and time for union and malunion) and soft tissue factors (wound healing, flap failure, access to secondary procedures, and esthetic appearance) when compared to standard methods adopted earlier. Hence, "fix and shift" could be recommended as one of the treatment modalities for open III B tibial fractures.

  12. Temporary Fixation Using a Long Femoral-tibial Nail to Treat a Displaced Medial Tibial Plateau Fracture in a 90-year-old Patient: A Case Report.

    PubMed

    Batta, V; Sinha, S; Trompeter, A

    2017-01-01

    Tibial plateau fractures are complex injuries in the elderly population. When traditional methods of fixation are not suitable, an alternative method needs to be chosen for a favorable outcome. We demonstrate a previously undescribed treatment for displaced tibial plateau fractures in the very elderly with poor soft-tissue integrity. A 90-year-old woman suffered an open, Gustilo Grade IIIA, displaced fracture of the tibial plateau. An intramedullary knee arthrodesis, the femoral-tibial nail was used to temporarily stabilize her fracture. She was able to weight bear immediately postfixation. A long femoral-tibial nail allows favorable fracture and soft tissue healing, ease of nursing and immediate full weight-bearing. It shows good promise and should be considered as a management option when traditional methods are not applicable in select patients.

  13. Management of acetabular fractures with modified posterior approach to spare external hip rotators.

    PubMed

    Sarlak, Ahmet Y; Selek, Ozgur; Inanir, Murat; Musaoglu, Resul; Baran, Tuncay

    2014-04-01

    In the present study the quality of reduction and incidence of complications in hip external rotator sparing modified posterior approach was assessed in both simple and complex acetabular fractures. This retrospective study includes 37 patients (38 hips) with a mean age of 42.1 years (range 21-60), that had been treated for displaced acetabular fractures from June 2007 through May 2011. They were reviewed at a mean of 3 years (20-67 months). The fractures were classified according to the Letournel-Judet classification. Anatomic reduction and stable fixation of the fracture with less than 2mm residual displacement was achieved in 28 of 38 hips. At the final follow up the patients were evaluated clinically according to Merle d'Aubigne and Postel scoring system which had been modified by Matta and radiologically based on the criteria described by Matta. The clinical results were excellent in 20, good in 8, fair in 8, and poor 2 hips. Complications included two superficial local wound infection and 10 heterotopic ossification with 7 of the cases having grade I heterotopic ossification. Avascular necrosis of the femoral head was not seen in any of the 38 hips. One patient with preoperative sciatic nerve palsy had complete recovery of neurologic function. There were no cases of deep vein thrombosis or pulmonary embolism. The functional outcome was satisfactory in most of the cases and comparable with other larger series. Using the limited part of Henry's sciatic nerve exposure skin incision - working in the plane between gluteus maximus and the tensor fascia lata as in the classical Gibson approach and two portal external rotator hip sparing approach resulted in good fracture reduction without approach related complications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Bone stress in runners with tibial stress fracture.

    PubMed

    Meardon, Stacey A; Willson, John D; Gries, Samantha R; Kernozek, Thomas W; Derrick, Timothy R

    2015-11-01

    Combinations of smaller bone geometry and greater applied loads may contribute to tibial stress fracture. We examined tibial bone stress, accounting for geometry and applied loads, in runners with stress fracture. 23 runners with a history of tibial stress fracture & 23 matched controls ran over a force platform while 3-D kinematic and kinetic data were collected. An elliptical model of the distal 1/3 tibia cross section was used to estimate stress at 4 locations (anterior, posterior, medial and lateral). Inner and outer radii for the model were obtained from 2 planar x-ray images. Bone stress differences were assessed using two-factor ANOVA (α=0.05). Key contributors to observed stress differences between groups were examined using stepwise regression. Runners with tibial stress fracture experienced greater anterior tension and posterior compression at the distal tibia. Location, but not group, differences in shear stress were observed. Stepwise regression revealed that anterior-posterior outer diameter of the tibia and the sagittal plane bending moment explained >80% of the variance in anterior and posterior bone stress. Runners with tibial stress fracture displayed greater stress anteriorly and posteriorly at the distal tibia. Elevated tibial stress was associated with smaller bone geometry and greater bending moments about the medial-lateral axis of the tibia. Future research needs to identify key running mechanics associated with the sagittal plane bending moment at the distal tibia as well as to identify ways to improve bone geometry in runners in order to better guide preventative and rehabilitative efforts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Syndesmotic fixation in supination-external rotation ankle fractures: a prospective randomized study.

    PubMed

    Kortekangas, Tero H J; Pakarinen, Harri J; Savola, Olli; Niinimäki, Jaakko; Lepojärvi, Sannamari; Ohtonen, Pasi; Flinkkilä, Tapio; Ristiniemi, Jukka

    2014-10-01

    This study compared mid-term functional and radiologic results of syndesmotic transfixation with no fixation in supination external rotation (SER) ankle fractures with intraoperatively confirmed syndesmosis disruption. Our hypothesis was that early-stage good functional results would remain and unfixed syndesmosis disruption in SER IV ankle fractures would not lead to an increased incidence of osteoarthritis. A prospective study of 140 operatively treated patients with Lauge-Hansen SER IV (Weber B) ankle fractures was performed. After bony fixation, the 7.5-Nm standardized external rotation stress test for both ankles was performed under fluoroscopy. A positive stress examination was defined as a difference of more than 2 mm side-to-side in the tibiotalar or tibiofibular clear spaces on mortise radiographs. The patients were randomized to either syndesmotic screw fixation (13 patients) or no syndesmotic fixation (11 patients). After a minimum of 4 years of follow-up (mean, 58 months), ankle function and pain (Olerud-Molander, a 100-mm visual analogue scale [VAS] for ankle function and pain) and quality of life (RAND-36) of all 24 patients were assessed. Ankle joint congruity and osteoarthritis were assessed using mortise and lateral projection plain weight-bearing radiographs and magnetic resonance imaging (MRI; 3T) scans. Improvement in Olerud-Molander score, VAS, and RAND-36 showed no significant difference between groups during the follow-up. In the syndesmotic transfixation group, improvements in all functional parameters and pain measurements were not significant, whereas in the group without syndesmotic fixation, the Olerud-Molander score improved from 84 to 93 (P = .007) and the pain (VAS) score improved from 11 to 4 (P = .038) from 1 year to last follow-up. X-ray or MRI imaging showed no difference between groups at the last follow-up visit. With the numbers available, no significant difference in functional outcome or radiologic findings could be detected

  16. Tibial stress fracture after computer-navigated total knee arthroplasty.

    PubMed

    Massai, F; Conteduca, F; Vadalà, A; Iorio, R; Basiglini, L; Ferretti, A

    2010-06-01

    A correct alignment of the tibial and femoral component is one of the most important factors determining favourable long-term results of a total knee arthroplasty (TKA). The accuracy provided by the use of the computer navigation systems has been widely described in the literature so that their use has become increasingly popular in recent years; however, unpredictable complications, such as displaced or stress femoral or tibial fractures, have been reported to occur a few weeks after the operation. We present a case of a stress tibial fracture that occurred after a TKA performed with the use of a computer navigation system. The stress fracture, which eventually healed without further complications, occurred at one of the pinhole sites used for the placement of the tibial trackers.

  17. Temporary Fixation Using a Long Femoral-tibial Nail to Treat a Displaced Medial Tibial Plateau Fracture in a 90-year-old Patient: A Case Report

    PubMed Central

    Batta, V; Sinha, S; Trompeter, A

    2017-01-01

    Introduction: Tibial plateau fractures are complex injuries in the elderly population. When traditional methods of fixation are not suitable, an alternative method needs to be chosen for a favorable outcome. We demonstrate a previously undescribed treatment for displaced tibial plateau fractures in the very elderly with poor soft-tissue integrity. Case Report: A 90-year-old woman suffered an open, Gustilo Grade IIIA, displaced fracture of the tibial plateau. An intramedullary knee arthrodesis, the femoral-tibial nail was used to temporarily stabilize her fracture. She was able to weight bear immediately postfixation. Conclusion: A long femoral-tibial nail allows favorable fracture and soft tissue healing, ease of nursing and immediate full weight-bearing. It shows good promise and should be considered as a management option when traditional methods are not applicable in select patients. PMID:29181350

  18. Early prophylactic autogenous bone grafting in type III open tibial fractures.

    PubMed

    Kesemenli, Cumhur C; Kapukaya, Ahmet; Subaşi, Mehmet; Arslan, Huseyin; Necmioğlu, Serdar; Kayikçi, Cuma

    2004-08-01

    The authors report the results achieved in patients with type III open tibial fractures who underwent primary autogenous bone grafting at the time of debridement and skeletal stabilisation. Twenty patients with a mean age of 35.8 years (range, 24-55) were treated between 1996 and 1999. Eight fractures were type IIIA, 11 were type IIIB, and 1 was type IIIC. At the index procedure, wound debridement, external fixation and autogenous bone grafting with bone coverage were achieved. The mean follow-up period was 46 months (range, 34-55). The mean time to fixator removal was 21 weeks (range, 14-35), and the mean time to union was 28 weeks (range, 19-45). Skin coverage was achieved by a myocutaneous flap in 2 patients, late primary closure in 4, and split skin grafting in 14. One (5%) of the patients experienced delayed union, and 1 (5%) developed infection. In tibial type III open fractures, skin coverage may be delayed, using the surrounding soft tissue to cover any exposed bone after thorough débridement and wound cleansing. Primary prophylactic bone grafting performed at the same time reduces the rate of delayed union, shortens the time to union, and does not increase the infection rate.

  19. Determination of ankle external fixation stiffness by expedited interactive finite element analysis.

    PubMed

    Nielsen, Jonathan K; Saltzman, Charles L; Brown, Thomas D

    2005-11-01

    Interactive finite element analysis holds the potential to quickly and accurately determine the mechanical stiffness of alternative external fixator frame configurations. Using as an example Ilizarov distraction of the ankle, a finite element model and graphical user interface were developed that provided rapid, construct-specific information on fixation rigidity. After input of specific construct variables, the finite element software determined the resulting tibial displacement for a given configuration in typically 15s. The formulation was employed to investigate constructs used to treat end-stage arthritis, both in a parametric series and for five specific clinical distraction cases. Parametric testing of 15 individual variables revealed that tibial half-pins were much more effective than transfixion wires in limiting axial tibial displacement. Factors most strongly contributing to stiffening the construct included placing the tibia closer to the fixator rings, and mounting the pins to the rings at the nearest circumferential location to the bone. Benchtop mechanical validation results differed inappreciably from the finite element computations.

  20. Radial and tibial fracture repair with external skeletal fixation. Effects of fracture type, reduction, and complications on healing.

    PubMed

    Johnson, A L; Kneller, S K; Weigel, R M

    1989-01-01

    Twenty-eight consecutive fractures of the canine radius and tibia were treated with external skeletal fixation as the primary method of stabilization. The time of fixation removal (T1) and the time to unsupported weight-bearing (T2) were correlated with: (1) bone involved; (2) communication of the fracture with the external environment; (3) severity of the fracture; (4) proximity of the fracture to the nutrient artery; (5) method of reduction; (6) diaphyseal displacement after reduction; and (7) gap between cortical fragments after reduction. The Kruskal-Wallis one-way analysis of variance was used to test the correlation with p less than .05 set as the criterion for significance. The median T1 was 10 weeks and the median T2 was 11 weeks. None of the variables correlated significantly with either of the healing times; however, there was a strong trend toward longer healing times associated with open fractures and shorter healing times associated with closed reduction. Periosteal and endosteal callus uniting the fragments were observed radiographically in comminuted fractures, with primary bone union observed in six fractures in which anatomic reduction was achieved. Complications observed in the treatment of these fractures included: bone lysis around pins (27 fractures), pin track drainage (27 fractures), pin track hemorrhage (1 fracture), periosteal reaction around pins (27 fractures), radiographic signs consistent with osteomyelitis (12 fractures), degenerative joint disease (2 dogs), and nonunion (1 fracture). Valgus or rotational malalignment resulted in 16 malunions of fractures. One external fixation device was replaced and four loose pins were removed before the fractures healed. One dog was treated with antibiotics during the postoperative period because clinical signs of osteomyelitis appeared.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Outcome of intramedullary interlocking SIGN nail in tibial diaphyseal fracture.

    PubMed

    Khan, Irfanullah; Javed, Shahzad; Khan, Gauhar Nawaz; Aziz, Amer

    2013-03-01

    To determine the outcome of intramedullary interlocking surgical implant generation network (SIGN) nail in diaphyseal tibial fractures in terms of union and failure of implant (breakage of nail or interlocking screws). Case series. Orthopaedics and Spinal Surgery, Ghurki Trust Teaching Hospital, Lahore Medical and Dental College, Lahore, from September 2008 to August 2009. Fifty patients aged 14 - 60 years, of either gender were included, who had closed and Gustilo type I and II open fractures reported in 2 weeks, whose closed reduction was not possible or was unsatisfactory and fracture was located 7 cm below knee joint to 7 cm above ankle joint. Fractures previously treated with external fixator, infected fractures and unfit patients were excluded. All fractures were fixed with intramedullary interlocking SIGN nail and were followed clinically and radiographically for union and for any implant failure. Forty one (88%) patients had united fracture within 6 months, 5 (10%) patients had delayed union while 4 (8%) patients had non-union. Mean duration for achieving union was 163 + 30.6 days. Interlocking screws were broken in 2 patients while no nail was broken in any patient. Intramedullary interlocking nailing is an effective measure in treating closed and grade I and II open tibial fractures. It provides a high rate of union less complications and early return to function.

  2. The soleal line: a cause of tibial pseudoperiostitis.

    PubMed

    Levine, A H; Pais, M J; Berinson, H; Amenta, P S

    1976-04-01

    An unusually prominent soleal line (a normal anatomic variant) may mimic periosteal reaction along the posterior margin of the proximal tibial shaft. This area of pseudoperiostitis is differentiated from hyperostoses arising from the anterior tibial tubercle and the interosseous membrane. It is always associated with normal, undisturbed architecture of the underlying bone.

  3. Application of an Externally Applied Rotating Magnetic Field for Control of MHD Relaxation Phenomena in the HIST Spherical Torus Device

    NASA Astrophysics Data System (ADS)

    Kikuchi, Yusuke; Yoshikawa, Tatsuya; Nishioka, Tsutomu; Hashimoto, Shotaro; Fukumoto, Naoyuki; Nagata, Masayoshi

    Application of an externally applied rotating magnetic field (RMF) for control of MHD relaxation phenomena driven by a coaxial helicity injection has been proposed in the HIST spherical torus device. In this letter, the plasma responses to the RMF evaluated by magnetic fields inside the plasma in HIST are shown.

  4. Can tibial plateau fractures be reduced and stabilised through an angiosome-sparing antero-lateral approach?

    PubMed

    Solomon, Lucian B; Boopalan, P R J V C; Chakrabarty, Adhiraj; Callary, Stuart A

    2014-04-01

    Tibial plateau fractures (TPFs) are an independent, non-modifiable risk factor for surgical site infections (SSIs). Current antero-lateral approaches to the knee dissect through the anterior tibial angiosome (ATA), which may contribute to a higher rate of SSIs. The aim of this study was to develop an angiosome-sparing antero-lateral approach to allow reduction and fixation of lateral TPFs and to investigate its feasibility in a consecutive cohort. Twenty cadaveric knees were dissected to define the position of the vessels supplying the ATA from the lateral tibial condyle to the skin perforators. Based on these results, an angiosome-sparing surgical approach to treat lateral TPFs was developed. Fifteen consecutive patients were subsequently treated through this approach. Clinical outcomes included assessment of SSI and Lysholm score. Fracture healing and stability were assessed using the Rasmussen score and radiostereometric analysis (RSA). At the latest follow-up between 1 and 4 years, there was no report of SSI. Nine patients (60%) had good or excellent Lysholm scores. The mean Rasmussen score at final follow-up was 17 (median 18, range 14-18) with 10 patients (66%) graded as excellent. Fracture fragment migration measured using RSA was below 2mm in all cases. This study has demonstrated that an angiosome-sparing antero-lateral approach to the lateral tibial plateau is feasible. Adequate stability of these fracture types was achieved by positioning a buttress plate away from the bone and superficial to the regional fascial layer as an 'internal-external fixator'. The angiosome-sparing approach developed was able to be used in a prospective cohort and the clinical results to date are encouraging. Future clinical studies need to investigate the potential benefits of this surgical approach when compared with the previously described antero-lateral approaches. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  5. Dipole interaction of the Quincke rotating particles.

    PubMed

    Dolinsky, Yu; Elperin, T

    2012-02-01

    We study the behavior of particles having a finite electric permittivity and conductivity in a weakly conducting fluid under the action of the external electric field. We consider the case when the strength of the external electric field is above the threshold, and particles rotate due to the Quincke effect. We determine the magnitude of the dipole interaction of the Quincke rotating particles and the shift of frequency of the Quincke rotation caused by the dipole interaction between the particles. It is demonstrated that depending on the mutual orientation of the vectors of angular velocities of particles, vector-directed along the straight line between the centers of the particles and the external electric field strength vector, particles can attract or repel each other. In contrast to the case of nonrotating particles when the magnitude of the dipole interaction increases with the increase of the strength of the external electric field, the magnitude of the dipole interaction of the Quincke rotating particles either does not change or decreases with the increase of the strength of the external electric field depending on the strength of the external electric field and electrodynamic parameters of the particles.

  6. Dipole interaction of the Quincke rotating particles

    NASA Astrophysics Data System (ADS)

    Dolinsky, Yu.; Elperin, T.

    2012-02-01

    We study the behavior of particles having a finite electric permittivity and conductivity in a weakly conducting fluid under the action of the external electric field. We consider the case when the strength of the external electric field is above the threshold, and particles rotate due to the Quincke effect. We determine the magnitude of the dipole interaction of the Quincke rotating particles and the shift of frequency of the Quincke rotation caused by the dipole interaction between the particles. It is demonstrated that depending on the mutual orientation of the vectors of angular velocities of particles, vector-directed along the straight line between the centers of the particles and the external electric field strength vector, particles can attract or repel each other. In contrast to the case of nonrotating particles when the magnitude of the dipole interaction increases with the increase of the strength of the external electric field, the magnitude of the dipole interaction of the Quincke rotating particles either does not change or decreases with the increase of the strength of the external electric field depending on the strength of the external electric field and electrodynamic parameters of the particles.

  7. Tibial component considerations in bicruciate-retaining total knee arthroplasty: A 3D MRI evaluation of proximal tibial anatomy.

    PubMed

    Saxena, Vishal; Anari, Jason B; Ruutiainen, Alexander T; Voleti, Pramod B; Stephenson, Jason W; Lee, Gwo-Chin

    2016-08-01

    Restoration of normal anatomy and proper ligament balance are theoretical prerequisites for reproducing physiological kinematics with bicruciate-retaining total knee arthroplasty (TKA). The purpose of this study was to use a 3D MRI technique to evaluate the topography of the proximal tibia and outline considerations in tibial component design for bicruciate-retaining TKA. We identified 100 consecutive patients (50 males and 50 females) between ages 20 and 40 years with knee MRIs without arthritis, dysplasia, ACL tears, or prior knee surgery. A novel 3D MRI protocol coordinating axial, coronal, and sagittal images was used to measure: 1) medial and lateral posterior tibial slopes; 2) medial and lateral coronal slopes; and 3) distance from the anterior tibia to the ACL footprint. There was no overall difference in medial and lateral posterior tibial slopes (5.5° (95% CI 5.0 to 6.0°) vs. 5.4° (95% CI 4.8 to 6.0°), respectively (p=0.80)), but 41 patients had side-to-side differences greater than 3°. The medial coronal slope was greater than the lateral coronal slope (4.6° (95% CI 4.0 to 5.1°) vs. 3.3° (95% CI 2.9 to 3.7°), respectively (p<0.0001)). Females had less clearance between the anterior tibia and ACL footprint than males (10.8mm (95% CI 10.4 to 11.2mm) vs. 13.0mm (95% CI 12.5 to 13.5mm), respectively (p<0.0001)). Due to highly variable proximal tibial topography, a monoblock bicruciate-retaining tibial baseplate may not reproduce normal anatomy in all patients. Level IV - Anatomic research study. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Fracture reduction and primary ankle arthrodesis: a reliable approach for severely comminuted tibial pilon fracture.

    PubMed

    Beaman, Douglas N; Gellman, Richard

    2014-12-01

    Posttraumatic arthritis and prolonged recovery are typical after a severely comminuted tibial pilon fracture, and ankle arthrodesis is a common salvage procedure. However, few reports discuss the option of immediate arthrodesis, which may be a potentially viable approach to accelerate overall recovery in patients with severe fracture patterns. (1) How long does it take the fracture to heal and the arthrodesis to fuse when primary ankle arthrodesis is a component of initial fracture management? (2) How do these patients fare clinically in terms of modified American Orthopaedic Foot and Ankle Society (AOFAS) scores and activity levels after this treatment? (3) Does primary ankle arthrodesis heal in an acceptable position when anterior ankle arthrodesis plates are used? During a 2-year period, we performed open fracture reduction and internal fixation in 63 patients. Eleven patients (12 ankles) with severely comminuted high-energy tibial pilon fractures were retrospectively reviewed after surgical treatment with primary ankle arthrodesis and fracture reduction. Average patient age was 58 years, and minimum followup was 6 months (average, 14 months; range, 6-22 months). Anatomically designed anterior ankle arthrodesis plates were used in 10 ankles. Ring external fixation was used in nine ankles with concomitant tibia fracture or in instances requiring additional fixation. Clinical evaluation included chart review, interview, the AOFAS ankle-hindfoot score, and radiographic evaluation. All of the ankle arthrodeses healed at an average of 4.4 months (range, 3-5 months). One patient had a nonunion at the metaphyseal fracture, which healed with revision surgery. The average AOFAS ankle-hindfoot score was 83 with 88% having an excellent or good result. Radiographic and clinical analysis confirmed a plantigrade foot without malalignment. No patients required revision surgery for malunion. Primary ankle arthrodesis combined with fracture reduction for the severely comminuted

  9. Tibial shaft fractures in football players

    PubMed Central

    Chang, Winston R; Kapasi, Zain; Daisley, Susan; Leach, William J

    2007-01-01

    Background Football is officially the most popular sport in the world. In the UK, 10% of the adult population play football at least once a year. Despite this, there are few papers in the literature on tibial diaphyseal fractures in this sporting group. In addition, conflicting views on the nature of this injury exist. The purpose of this paper is to compare our experience of tibial shaft football fractures with the little available literature and identify any similarities and differences. Methods and Results A retrospective study of all tibial football fractures that presented to a teaching hospital was undertaken over a 5 year period from 1997 to 2001. There were 244 tibial fractures treated. 24 (9.8%) of these were football related. All patients were male with a mean age of 23 years (range 15 to 29) and shin guards were worn in 95.8% of cases. 11/24 (45.8%) were treated conservatively, 11/24 (45.8%) by Grosse Kemp intramedullary nail and 2/24 (8.3%) with plating. A difference in union times was noted, conservative 19 weeks compared to operative group 23.9 weeks (p < 0.05). Return to activity was also different in the two groups, conservative 27.6 weeks versus operative 23.3 weeks (p < 0.05). The most common fracture pattern was AO Type 42A3 in 14/24 (58.3%). A high number 19/24 (79.2%) were simple transverse or short oblique fractures. There was a low non-union rate 1/24 (4.2%) and absence of any open injury in our series. Conclusion Our series compared similarly with the few reports available in the literature. However, a striking finding noted by the authors was a drop in the incidence of tibial shaft football fractures. It is likely that this is a reflection of recent compulsory FIFA regulations on shinguards as well as improvements in the design over the past decade since its introduction. PMID:17567522

  10. Glenohumeral joint rotation range of motion in competitive swimmers.

    PubMed

    Riemann, Bryan L; Witt, Joe; Davies, George J

    2011-08-01

    Much research has examined shoulder range of motion adaptations in overhead-unilateral athletes. Based on the void examining overhead-bilateral athletes, especially competitive swimmers, we examined shoulder external rotation, isolated internal rotation, composite internal rotation, and total arc of motion range of motion of competitive swimmers. The range of motion of registered competitive swimmers (n = 144, age = 12-61 years) was compared by limb (dominant, non-dominant), sex, and age group (youth, high school, college, masters). Significantly (P < 0.05) greater dominant external rotation was observed for both men and women high school and college swimmers, youth women swimmers, and men masters swimmers compared with the non-dominant limb. The isolated internal rotation (glenohumeral rotation), composite internal rotation (glenohumeral rotation plus scapulothoracic protraction), and total arc of motion (external rotation plus composite internal rotation) of the non-dominant limb was significantly greater than that of the dominant limb by sex and age group. Youth and high school swimmers demonstrated significantly greater composite internal rotation than college and masters swimmers. Youth swimmers displayed significantly greater total arc of motion than all other age groups. These data will aid in the interpretation of shoulder range of motion values in competitive swimmers during preseason screenings, injury evaluations and post-rehabilitation programmes, with the results suggesting that differences exist in bilateral external rotation, isolated internal rotation, composite internal rotation, and total arc of motion range of motion.

  11. Tibial Bowing and Pseudarthrosis in Neurofibromatosis Type 1

    DTIC Science & Technology

    2014-04-01

    Neurofibromatosis Type 1 PRINCIPAL INVESTIGATOR: Dr. David Stevenson CONTRACTING ORGANIZATION: University of Utah SALT LAKE CITY...COVERED 1 April 2013 - 31 March 2014 4. TITLE AND SUBTITLE Tibial Bowing and Pseudarthrosis in Neurofibromatosis Type 1 5a. CONTRACT NUMBER...SUPPLEMENTARY NOTES 14. ABSTRACT Anterolateral tibial bowing is a morbid skeletal manifestation observed in 5% of children with neurofibromatosis

  12. Comparison of volumetric bone mineral density in the tibial region of interest for ACL reconstruction.

    PubMed

    Klein, Scott A; Nyland, John; Caborn, David N M; Kocabey, Yavuz; Nawab, Akbar

    2005-12-01

    Adequate tibial bone mineral density (BMD) is essential to soft tissue graft fixation during anterior cruciate ligament (ACL) reconstruction. The purpose of this study was to compare volumetric bone plug density measurements at the tibial region of interest for ACL reconstruction using a standardized immersion technique and Archimedes' principle. Cancellous bone cores were harvested from the proximal, middle, and distal metaphyseal regions of the lateral tibia and from the standard tibial tunnel location used for ACL reconstruction of 18 cadaveric specimens. Proximal tibial cores displayed 32.6% greater BMD than middle tibial cores and 31.8% greater BMD than distal tibial cores, but did not differ from the BMD of the tibial tunnel cores. Correlational analysis confirmed that the cancellous BMD in the tibial tunnel related to the cancellous BMD of the proximal and distal lateral tibial metaphysis. In conjunction with its adjacent cortical bone, the cancellous BMD of the region used for standard tibial tunnel placement provides an effective foundation for ACL graft fixation. In tibia with poor BMD, bicortical fixation that incorporates cortical bone from the distal tibial tunnel region is recommended.

  13. Cranial tibial thrust: a primary force in the canine stifle.

    PubMed

    Slocum, B; Devine, T

    1983-08-15

    A cranially directed force identified within the canine stifle joint was termed cranial tibial thrust. It was generated during weight bearing by tibial compression, of which the tarsal tendon of the biceps femoris is a major contributor, and by the slope of the tibial plateau, found to have a mean cranially directed inclination of 22.6 degrees. This force may be an important factor in cranial cruciate ligament rupture and in generation of cranial drawer sign.

  14. Tibial component coverage based on bone mineral density of the cut tibial surface during unicompartmental knee arthroplasty: clinical relevance of the prevention of tibial component subsidence.

    PubMed

    Lee, Yong Seuk; Yun, Ji Young; Lee, Beom Koo

    2014-01-01

    An optimally implanted tibial component during unicompartmental knee arthroplasty would be flush with all edges of the cut tibial surface. However, this is often not possible, partly because the tibial component may not be an ideal shape or because the ideal component size may not be available. In such situations, surgeons need to decide between component overhang and underhang and as to which sites must be covered and which sites could be undercovered. The objectives of this study were to evaluate the bone mineral density of the cut surface of the proximal tibia around the cortical rim and to compare the bone mineral density according to the inclusion of the cortex and the site-specific matched evaluation. One hundred and fifty consecutive patients (100 men and 50 women) were enrolled in this study. A quantitative computed tomography was used to determine the bone density of the cut tibial surface. Medial and lateral compartments were divided into anterior, middle, and posterior regions, and these three regions were further subdivided into two regions according to containment of cortex. The site-specific matched comparison (medial vs. lateral) of bone mineral density was performed. In medial sides, the mid-region, including the cortex, showed the highest bone mineral density in male and female patients. The posterior region showed the lowest bone mineral density in male patients, and the anterior and posterior regions showed the lowest bone mineral density in female patients. Regions including cortex showed higher bone mineral density than pure cancellous regions in medial sides. In lateral sides, posterior regions including cortex showed highest bone mineral density with statistical significance in both male and female patients. The anterior region showed the lowest bone mineral density in both male and female patients. The mid-region of the medial side and the posterior region of the lateral side are relatively safe without cortical coverage when the component

  15. Is intramedullary nailing applicable for distal tibial fractures with ankle joint extension?

    PubMed

    Beytemür, Ozan; Albay, Cem; Adanır, Oktay; Yüksel, Serdar; Güleç, Mehmet Akif

    2016-12-01

    This study aims to evaluate the functional and radiographic results and treatment complications of AO/OTA (Arbeitsgemeinschaft fur Osteosynthesefragen/Orthopaedic Trauma Association) type 43C1 and C2 fractures treated with intramedullary nailing. We retrospectively evaluated 35 AO/OTA type 43C1 and C2 patients (26 males, 9 females; mean age 39.8±16.9 years; range 19 to 82 years) treated with intramedullary nailing. Two interfragmentary screws out of nail were applied in 10 patients (29%), while one interfragmentary screw out of nail was applied in 17 patients (49%). Intramedullary nailing was applied in eight patients (23%) without external screws. Fracture union, union time, alignment problems, and complications were evaluated. Clinical evaluation of patients was conducted using the Olerud and Molander score and by measuring the ankle joint range of motion. Union was achieved in all 35 patients. Mean union time was 16.5±2.8 weeks (range 12 to 24 weeks) and mean Olerud and Molander score was 88±8.24. Varus deformity was detected in one patient, valgus deformity was detected in two patients, and rotation deformity was detected in one patient. Superficial infection was detected in three patients (9%). Deep infection was not detected in any patient. Intramedullary nailing is not contraindicated for simple intra-articular distal tibial fractures. In these fractures, intramedullary nailing performed in accordance with its technique, with an additional percutaneous screw if necessary, is a successful treatment option with high fracture union rates, high functional results, and low complication rates.

  16. Kinematics of anterior cruciate ligament-deficient knees in a Chinese population during stair ascent.

    PubMed

    Zhao, Chang; Lin, Chuangxin; Wang, Wenhao; Zeng, Chun; Fang, Hang; Pan, Jianying; Cai, Daozhang

    2016-08-08

    The purpose of this study was to measure the tibiofemoral kinematics of anterior cruciate ligament (ACL) deficiency in a Chinese population and compare the kinematics with published data about a Caucasian population. Unilateral knees of 18 Chinese ACL-deficient (ACL-D) subjects were studied while subjects ascended stairs. Kinematic alteration was compared between ACL-D knees and contralateral ACL-intact (ACL-I) knees. The kinematic alteration of ACL deficiency was also compared between the Chinese population and published data about a Caucasian population. A statistical difference was found in the three-dimensional rotations between ACL-D and ACL-I knees. In the sagittal plane, ACL-I knees had a larger flexion angle than ACL-D knees during 40 to 50 % of the activity during stair ascent (P < 0.027) and throughout the gait cycle. A significant difference in rotational motion between ACL-D and ACL-I knees was also observed in the frontal plane during 40 to 60 % (P < 0.017) of the activity and in the transverse plane during 70 to 80 % (P < 0.028) of the activity. A greater tibial varus was demonstrated in the Chinese population while the published data revealed external tibial rotation and a statistical difference in translation in the Caucasian population. ACL-D knees show different kinematics than ACL-I knees in the Chinese population. ACL-I knees had a larger flexion angle than ACL-D knees in the middle stage of the activity during stair ascent. A significant difference in rotational motion between ACL-D and ACL-I knees was also observed in the frontal plane during the middle phase and in the transverse plane during the terminal phase of the activity. A greater tibial varus was demonstrated in the Caucasian population while the published data revealed external tibial rotation and a statistical difference in translation in the Caucasian population.

  17. Soft tissue management of children's open tibial fractures – a review of seventy children over twenty years

    PubMed Central

    Rao, P; Schaverien, MV; Stewart, KJ

    2010-01-01

    INTRODUCTION The management of open tibial fractures in children represents a unique reconstructive challenge. The aim of the study was to evaluate the management of paediatric open tibial fractures with particular regard to soft tissue management. PATIENTS AND METHODS A retrospective case-note analysis was performed for all children presenting with an open tibial fracture at a single institution over a 20-year period for 1985 to 2005. RESULTS Seventy children were reviewed of whom 41 were males and 29 females. Overall, 91% (n = 64) of children suffered their injury as a result of a vehicle-related injury. The severity of the fracture with respect to the Gustilo classification was: Grade I, 42% (n = 29); Grade II, 24% (n = 17); Grade III, 34% (n = 24; 7 Grade 3a, 16 Grade 3b, 1 Grade 3c). The majority of children were treated with external fixation and conservative measures, with a mean hospital in-patient stay of 13.3 days. Soft tissue cover was provided by plastic surgeons in 31% of all cases. Four cases of superficial wound infection occurred (6%), one case of osteomyelitis and one case of flap failure. The limb salvage was greater than 98%. CONCLUSIONS In this series, complications were associated with delayed involvement of plastic surgeons. Retrospective analysis has shown a decreased incidence of open tibial fractures which is reported in similar studies. Gustilo grade was found to correlate with length of hospital admission and plastic surgery intervention. We advocate, when feasible, the use of local fas-ciocutaneous flaps (such as distally based fasciocutaneous and adipofascial flaps), which showed a low complication rate in children. PMID:20501017

  18. Physiological joint line total knee arthroplasty designs are especially sensitive to rotational placement - A finite element analysis.

    PubMed

    Moewis, Philippe; Checa, Sara; Kutzner, Ines; Hommel, Hagen; Duda, Georg N

    2018-01-01

    Mechanical and kinematical aligning techniques are the usual positioning methods during total knee arthroplasty. However, alteration of the physiological joint line and unbalanced medio-lateral load distribution are considered disadvantages in the mechanical and kinematical techniques, respectively. The aim of this study was to analyse the influence of the joint line on the strain and stress distributions in an implanted knee and their sensitivity to rotational mal-alignment. Finite element calculations were conducted to analyse the stresses in the PE-Inlay and the mechanical strains at the bone side of the tibia component-tibia bone interface during normal positioning of the components and internal and external mal-rotation of the tibial component. Two designs were included, a horizontal and a physiological implant. The loading conditions are based on internal knee joint loads during walking. A medialization of the stresses on the PE-Inlay was observed in the physiological implant in a normal position, accompanied by higher stresses in the mal-rotated positions. Within the tibia component-tibia bone interface, similar strain distributions were observed in both implant geometries in the normal position. However, a medialization of the strains was observed in the physiological implant in both mal-rotated conditions with greater bone volume affected by higher strains. Although evident changes due to mal-rotation were observed, the stresses do not suggest a local plastic deformation of the PE-Inlay. The strains values within most of the tibia component-tibia bone interface were in the physiological strain zone and no significant bone changes would be expected. The physiological cut on the articular aspect showed no detrimental effect compared to the horizontal implant.

  19. Total knee arthroplasty and fractures of the tibial plateau

    PubMed Central

    Softness, Kenneth A; Murray, Ryan S; Evans, Brian G

    2017-01-01

    Tibial plateau fractures are common injuries that occur in a bimodal age distribution. While there are various treatment options for displaced tibial plateau fractures, the standard of care is open reduction and internal fixation (ORIF). In physiologically young patients with higher demand and better bone quality, ORIF is the preferred method of treating these fractures. However, future total knee arthroplasty (TKA) is a consideration in these patients as post-traumatic osteoarthritis is a common long-term complication of tibial plateau fractures. In older, lower demand patients, ORIF is potentially less favorable for a variety of reasons, namely fixation failure and the need for delayed weight bearing. In some of these patients, TKA can be considered as primary mode of treatment. This paper will review the literature surrounding TKA as both primary treatment and as a salvage measure in patients with fractures of the tibial plateau. The outcomes, complications, techniques and surgical challenges are also discussed. PMID:28251061

  20. Treatment of large posttraumatic tibial bone defects using the Ilizarov method: a subjective outcome assessment.

    PubMed

    Krappinger, Dietmar; Irenberger, Alexander; Zegg, Michael; Huber, Burkhart

    2013-06-01

    The treatment of large posttraumatic tibial bone defects using the Ilizarov method was shown to be successful in several studies. These studies, however, typically focus on the radiological and functional outcome using objective parameters only. The aim of the present study was therefore to assess the objective and subjective outcome of a consecutive series of patients with large posttraumatic tibial bone defects using the Ilizarov method. Additionally, it was our goal to assess the physical and mental stress for the patients and their relatives during the long treatment period and the general health status at final follow-up. A consecutive series of 15 patients with posttraumatic tibial bone defects of >30 mm after sustaining open tibial fractures and failure of internal fixation was included. The objective outcome was assessed at final follow-up using Paley's criteria. For the assessment of the subjective outcome, all patients were asked to evaluate their satisfaction with the function of the lower leg, the cosmetic appearance and overall outcome as well. The physical and mental stress of the treatment for the patients and the nearest relative of patients were assessed at the time of frame removal using a custom-made questionnaire. The SF-36 was used to evaluate the general health status at final follow-up. Solid bone union with stable soft tissue coverage and eradication of infection was achieved in all patients despite a high complication rate. The functional outcome at final follow-up was excellent or good in all patients. The patients' satisfaction with the overall outcome and the function of the lower extremity was high as well. The fear of amputation and complications was the major subjective burden for both the patients and their relatives. The long external fixation time is another relevant issue. The Ilizarov method is a safe option for the treatment of large posttraumatic tibial bone defects after failure of internal fixation despite the high

  1. Distal tibial fractures are a poorly recognised complication with fibula free flaps.

    PubMed

    Durst, A; Clibbon, J; Davis, B

    2015-09-01

    The fibula free flap is ideal for complex jaw reconstructions, with low reported donor and flap morbidity. We discuss a distal tibial stress fracture two months following a vascularised fibula free flap procedure. Despite being an unrecognised complication, a literature review produced 13 previous cases; only two were reported in the reconstructive surgery literature, with the most recent claiming to be the first. The majority of these studies treated this fracture non-operatively; none reported their patient follow-up. Each case presented with ipsilateral leg pain, which has been cited as an early donor site morbidity in as many as 40% of fibula free flap cases. It is known that the fibula absorbs at least 15% of leg load on weight bearing. Studies have shown severe valgus deformities in up to 25% of patients with fibulectomies. We treated our patient operatively, first correcting his worsening valgus deformity with an external fixator, then reinforcing his healed fracture with a long distal tibial plate. We believe that this complication is underreported, unexpected and not mentioned during the consenting process. By highlighting the management of our case and the literature, we aim to increase awareness (and thus further reporting and appropriate management) of this debilitating complication.

  2. MR arthrography including abduction and external rotation images in the assessment of atraumatic multidirectional instability of the shoulder.

    PubMed

    Schaeffeler, Christoph; Waldt, Simone; Bauer, Jan S; Kirchhoff, Chlodwig; Haller, Bernhard; Schröder, Michael; Rummeny, Ernst J; Imhoff, Andreas B; Woertler, Klaus

    2014-06-01

    To evaluate diagnostic signs and measurements in the assessment of capsular redundancy in atraumatic multidirectional instability (MDI) of the shoulder on MR arthrography (MR-A) including abduction/external rotation (ABER) images. Twenty-one MR-A including ABER position of 20 patients with clinically diagnosed MDI and 17 patients without instability were assessed by three radiologists. On ABER images, presence of a layer of contrast between the humeral head (HH) and the anteroinferior glenohumeral ligament (AIGHL) (crescent sign) and a triangular-shaped space between the HH, AIGHL and glenoid (triangle sign) were evaluated; centring of the HH was measured. Anterosuperior herniation of the rotator interval (RI) capsule and glenoid version were determined on standard imaging planes. The crescent sign had a sensitivity of 57 %/62 %/48 % (observers 1/2/3) and specificity of 100 %/100 %/94 % in the diagnosis of MDI. The triangle sign had a sensitivity of 48 %/57 %/48 % and specificity of 94 %/94 %/100 %. The combination of both signs had a sensitivity of 86 %/90 %/81 % and specificity of 94 %/94 %/94 %. A positive triangle sign was significantly associated with decentring of the HH. Measurements of RI herniation, RI width and glenoid were not significantly different between both groups. Combined assessment of redundancy signs on ABER position MR-A allows for accurate differentiation between patients with atraumatic MDI and patients with clinically stable shoulders; measurements on standard imaging planes appear inappropriate. MR arthrography has the possibility to accurately identify patients with atraumatic MDI. Imaging of the shoulder in abduction and external rotation provides additive information. Capsular enlargement of the shoulder can be diagnosed on MR arthrography.

  3. [Treatment of complex tibial plateau fractures with bilateral locking plate and bone graft].

    PubMed

    Yan, Ying-Jie; Cheng, Zhan-Wei; Feng, Kai; Yan, Shao-Hua

    2012-07-01

    To explore the effective methods for the treatment of complex tibial plateau fractures. From May 2008 to April 2011, 28 patients with complex tibial plateau fractures were treated indirect reduction techniques, bilateral locking plate fixation combined with autologous bone grafts. There were 21 males and 7 females, with an average age of 43 years ranging from 21 to 65. There were 11 cases in Schatzker type V, 17 in VI. The effect was evaluated by Rasmussen standard on clinical and radiological. All patients were followed-up for 7 to 36 months (averaged of 21.5 months). Healing time of fracture was from 3 to 8 months (averaged 5.5 months). The results of Rasmussen scores in clinical was 4.50 +/- 1.32 in pain, 4.32 +/- 1.63 in walking ability, 4.07 +/- 1.34 in knee activity, 4.78 +/- 1.27 in stability of the knee, 4.85 +/- 1.12 in stretch knee; the results in radiation was 5.07 +/- 0.92 in articular surface collapse, 5.00 +/- 0.98 in platform widened, 5.14 +/- 0.85 in knee external varus. The effect result was excellent in 8 cases, good in 15, fair in 3 and poor in 2. The key for the treatment of complex tibial plateau fractures was to fully assess the damage as much as possible to protect the soft tissue, select the appropriate timing of surgery and surgical incision, application of indirect reduction techniques, limited incision and effective internal fixation to restore joint surface smooth and good limb alignment, early exercise, in order to achieve maximum recovery of joint function.

  4. Patient reported health related quality of life early outcomes at 12 months after surgically managed tibial plafond fracture.

    PubMed

    Bonato, Luke J; Edwards, Elton R; Gosling, Cameron McR; Hau, Raphael; Hofstee, Dirk Jan; Shuen, Alex; Gabbe, Belinda J

    2017-04-01

    Tibial plafond fractures represent a small but complex subset of fractures of the lower limb. The aim of this study was to describe the health related quality of life, pain and return to work outcomes 12 months following surgically managed tibial plafond fracture. The Victorian Orthopaedic Trauma Outcomes Registry (VOTOR) database was used to identify patients with tibial plafond fractures. All patients captured by VOTOR with a tibial plafond fracture between September 2003 and July 2009, were identified consecutively and comprised the initial cohort. The radiographs of all identified patients were classified using the AO/OTA fracture classification. A review of the included patient's medical records was performed. Data were collected on the injury event, management and complications. Outcomes at 12 months were prospectively collected by telephone interview and included return to work, a numerical rating scale for assessment of pain and the Short Form 12 (SF-12). There were 98 unilateral tibial plafond fractures; 91 fractures were managed operatively, 4 non-operatively and 3 underwent amputation. The 91 operatively managed patients were the focus of this study. A two-stage management approach, involving temporary external fixation, followed by definitive open reduction and internal fixation, was the most common operative treatment. The follow-up rate at 12 months was 70%. 57% had returned to work by 12 months post-injury, the median (IQR) pain score was 2 (0-5) and 27% reported moderate to severe persistent pain. Mean PCS-12 scores were significantly lower than Australian norms (p=0.99), 38.2 for males and 37.5 for females. The presence of persistent pain, loss of physical health and a low return to work rate highlights the profound impact of tibial plafond fractures on patients' lives. Although this study looked at the early 12 month results, it is expected these outcomes will continue to improve over time. Further studies, with larger patient numbers, must focus

  5. Fibular fixation as an adjuvant to tibial intramedullary nailing in the treatment of combined distal third tibia and fibula fractures: a biomechanical investigation.

    PubMed

    Morin, Paul M; Reindl, Rudolf; Harvey, Edward J; Beckman, Lorne; Steffen, Thomas

    2008-02-01

    Distal third tibia fractures have classically been treated with standard plating, but intramedullary (IM) nailing has gained popularity. Owing to the lack of interference fit of the nail in the metaphyseal bone of the distal tibia, it may be beneficial to add rigid plating of the fibula to augment the overall stability of fracture fixation in this area. This study sought to assess the biomechanical effect of adding a fibular plate to standard IM nailing in the treatment of distal third tibia and fibula fractures. Eight cadaveric tibia specimens were used. Tibial fixation consisted of a solid titanium nail locked with 3 screws distally and 2 proximally, and fibular fixation consisted of a 3.5 mm low-contact dynamic compression plate. A section of tibia and fibula was removed. Testing was accomplished with an MTS machine. Each leg was tested 3 times; with and without a fibular plate and with a repetition of the initial test condition. Vertical displacements were tested with an axial load up to 500 N, and angular rotation was tested with torques up to 5 N*m. The difference in axial rotation was the only statistically significant finding (p = 0.003), with fibular fixation resulting in 1.1 degrees less rotation through the osteotomy site (17.96 degrees v. 19.10 degrees ). Over 35% of this rotational displacement occurred at the nail-locking bolt interface with the application of small torsional forces. Fibular plating in addition to tibial IM fixation of distal third tibia and fibula fractures leads to slightly increased resistance to torsional forces. This small improvement may not be clinically relevant.

  6. Numerical Study of Rotating Turbulence with External Forcing

    NASA Technical Reports Server (NTRS)

    Yeung, P. K.; Zhou, Ye

    1998-01-01

    Direct numerical simulation at 256(exp 3) resolution have been carried out to study the response of isotropic turbulence to the concurrent effects of solid-body rotation and numerical forcing at the large scales. Because energy transfer to the smaller scales is weakened by rotation, energy input from forcing gradually builds up at the large scales, causing the overall kinetic energy to increase. At intermediate wavenumbers the energy spectrum undergoes a transition from a limited k(exp -5/3) inertial range to k(exp -2) scaling recently predicted in the literature. Although the Reynolds stress tensor remains approximately isotropic and three-components, evidence for anisotropy and quasi- two-dimensionality in length scales and spectra in different velocity components and directions is strong. The small scales are found to deviate from local isotropy, primarily as a result of anisotropic transfer to the high wavenumbers. To understand the spectral dynamics of this flow we study the detailed behavior of nonlinear triadic interactions in wavenumber space. Spectral transfer in the velocity component parallel to the axis of rotation is qualitatively similar to that in non-rotating turbulence; however the perpendicular component is characterized by a greatly suppressed energy cascade at high wavenumber and a local reverse transfer at the largest scales. The broader implications of this work are briefly addressed.

  7. Femoral component rotation in patellofemoral joint replacement.

    PubMed

    van Jonbergen, Hans-Peter W; Westerbeek, Robin E

    2018-06-01

    Clinical outcomes in patellofemoral joint replacement may be related to femoral component rotation. Assessment of rotational alignment is however difficult as patients with isolated patellofemoral osteoarthritis often have trochlear dysplasia. The use of the medial malleolus as a landmark to guide rotation has been suggested. The purpose of our study was to evaluate this technique with regard to femoral component rotation, and to correlate rotation with clinical outcomes at one-year follow-up. Forty-one knees in 39 patients had patellofemoral joint replacement using the Zimmer Gender-Solutions patellofemoral prosthesis. Intraoperatively, we determined femoral component rotational alignment using an extramedullary rod aimed at the inferior tip of the medial malleolus. Postoperatively, we measured the angle between the femoral component and the anatomical transepicondylar axis using CT. The amount of rotation was correlated with clinical outcomes at one-year follow-up. Forty knees in 38 patients were available for one-year follow-up. Mean femoral component rotation relative to the anatomical transepicondylar axis was 1.4° external rotation (range, -3.8 to 5.7°). We found no statistically significant correlation between femoral component rotation and change from baseline KOOS subscales at one-year follow-up. Our findings show that when using the medial malleolus as a landmark to guide rotation, the femoral component of the patellofemoral prosthesis was oriented in external rotation relative to the anatomical transepicondylar axis in 80% of knees. Our study did not show a relation between the amount of external rotation and clinical outcomes. Level III. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Can the tibial slope be measured on lateral knee radiographs?

    PubMed

    Faschingbauer, M; Sgroi, M; Juchems, M; Reichel, H; Kappe, T

    2014-12-01

    The posterior tibial slope influences both the natural knee stability as well as the stability and kinematics after total knee arthroplasty (TKA). Exact definition of the posterior tibial slope (PTS) requires lateral radiographs of the lower limb. Only lateral knee radiographs are routinely obtained after TKA, however. The purpose of the present study therefore was to analyse the relationship between PTS measurement results on short and expanded lateral knee radiographs. The PTS was measured on 100 consecutive lateral radiographs of the lower limb using the mechanical and three diaphyseal axes with various distances below the tibial plateau. Significant differences between PTS results were found for all three diaphyseal axes, with the smallest differences and the strongest correlation for a diaphyseal axis at 16 and 20 cm below the tibial plateau. Using short distances below the tibial plateau (6 and 10 cm) resulted in an overestimation of the PTS of 3°, on average. The PTS measurements in long lateral knee radiographs are more accurate compared to short radiographs. On short lateral knee radiographs, only a estimation of the PTS can be carried out. Diagnostic study, Level II.

  9. Effect of an external magnetic field on particle acceleration by a rotating black hole surrounded with quintessential energy

    NASA Astrophysics Data System (ADS)

    Shaymatov, Sanjar; Ahmedov, Bobomurat; Stuchlík, Zdeněk; Abdujabbarov, Ahmadjon

    We investigate particle motion and collisions in the vicinity of rotating black holes immersed in combined cosmological quintessential scalar field and external magnetic field. The quintessential dark-energy field governing the spacetime structure is characterized by the quintessential state parameter ωq ∈ (‑1; ‑1/3) characterizing its equation of state, and the quintessential field-intensity parameter c determining the static radius where the black hole attraction is just balanced by the quintessential repulsion. The magnetic field is assumed to be test field that is uniform close to the static radius, where the spacetime is nearly flat, being characterized by strength B there. Deformations of the test magnetic field in vicinity of the black hole, caused by the Ricci non-flat spacetime structure are determined. General expression of the center-of-mass energy of the colliding charged or uncharged particles near the black hole is given and discussed in several special cases. In the case of nonrotating black holes, we discuss collisions of two particles freely falling from vicinity of the static radius, or one such a particle colliding with charged particle revolving at the innermost stable circular orbit. In the case of rotating black holes, we discuss briefly particles falling in the equatorial plane and colliding in close vicinity of the black hole horizon, concentrating attention to the interplay of the effects of the quintessential field and the external magnetic field. We demonstrate that the ultra-high center-of-mass energy can be obtained for black holes placed in an external magnetic field for an infinitesimally small quintessential field-intensity parameter c; the center-of-mass energy decreases if the quintessential field-intensity parameter c increases.

  10. A biomechanical evaluation to optimize the configuration of a hinged external fixator for the primary treatment of severely displaced intraarticular calcaneus fractures with soft tissue damage.

    PubMed

    Besch, Lutz; Schmidt, Ina; Mueller, Michael; Daniels-Wredenhagen, Mark; Hilgert, Ralf-Eric; Varoga, Deike; Seekamp, Andreas

    2008-01-01

    The purpose of this investigation was to develop an optimized hinged external fixator for the primary treatment of dislocated, intra-articular calcaneus fractures with associated soft tissue damage. To this end, a calcaneus model was made out of a polyurethane block, and a steel cylinder served as the ankle joint and was connected to a synthetic model of the tibia via a metal clamp. A saw cut served as the fracture in the model. A Steinmann nail and Schanz screw were placed in defined positions in the model and connected medially and laterally with longitudinal support rods. The fixator allowed a total of 20 degrees of plantar- and dorsiflexion, with rotation in the virtual axis of the upper ankle joint. Changes in the model fracture were measured during cyclical strain, and at different screw positions in the model tibia and calcaneus. Miniature force sensors located on the longitudinal support rods, and a plantar tension spring, were used to measure pressure and tension. Reproducible values were determined and, with the optimal configuration, shifting within the osteotomy was minimal. In the experimental configuration, optimal tibial screw placement was 70 mm proximal to the rotation axis of the upper ankle joint, and optimal placement of the Steinmann nail was in the posterior surface of the calcaneus. These findings indicated that the hinged fixator allows 20 degrees of ankle movement without alteration of the rotation axis, and suggest that this type of external fixator can be used in all types of calcaneal fracture regardless of the soft tissue damage. ACFAS Level of Clinical Evidence: 5c.

  11. Posterior tibial slope as a risk factor for anterior cruciate ligament rupture in soccer players.

    PubMed

    Senişik, Seçkin; Ozgürbüz, Cengizhan; Ergün, Metin; Yüksel, Oğuz; Taskiran, Emin; Işlegen, Cetin; Ertat, Ahmet

    2011-01-01

    Anterior cruciate ligament (ACL) is the primary stabilizer of the knee. An impairment of any of the dynamic or static stability providing factors can lead to overload on the other factors and ultimately to deterioration of knee stability. This can result in anterior tibial translation and rupture of the ACL. The purpose of this study was to examine the influence of tibial slope on ACL injury risk on soccer players. A total of 64 elite soccer players and 45 sedentary controls were included in this longitudinal and controlled study. The angle between the tibial mid-diaphysis line and the line between the anterior and posterior edges of the medial tibial plateau was measured as the tibial slope via lateral radiographs. Individual player exposure, and injuries sustained by the participants were prospectively recorded. Eleven ACL injuries were documented during the study period. Tibial slope was not different between soccer players and sedentary controls. Tibial slope in the dominant and non-dominant legs was greater for the injured players compared to the uninjured players. The difference reached a significant level only for the dominant legs (p < 0.001). While the tibial slopes of the dominant and non-dominant legs were not different on uninjured players (p > 0.05), a higher tibial slope was observed in dominant legs of injured players (p < 0.05). Higher tibial slope on injured soccer players compared to the uninjured ones supports the idea that the tibial slope degree might be an important risk factor for ACL injury. Key pointsDominant legs' tibial slopes of the injured players were significantly higher compared to the uninjured players (p < 0.001).Higher tibial slope was determined in dominant legs compared to the non-dominant side, for the injured players (p = 0.042). Different tibial slope measures in dominant and non-dominant legs might be the result of different loading and/or adaptation patterns in soccer.

  12. Hip rotation range of motion in sitting and prone positions in healthy Japanese adults

    PubMed Central

    Han, Heonsoo; Kubo, Akira; Kurosawa, Kazuo; Maruichi, Shizuka; Maruyama, Hitoshi

    2015-01-01

    [Purpose] The aim of this study was to elucidate the difference in hip external and internal rotation ranges of motion (ROM) between the prone and sitting positions. [Subjects] The subjects included 151 students. [Methods] Hip rotational ROM was measured with the subjects in the prone and sitting positions. Two-way repeated measures analysis of variance (ANOVA) was used to analyze ipsilateral hip rotation ROM in the prone and sitting positions in males and females. The total ipsilateral hip rotation ROM was calculated by adding the measured values for external and internal rotations. [Results] Ipsilateral hip rotation ROM revealed significant differences between two positions for both left and right internal and external rotations. Hip rotation ROM was significantly higher in the prone position than in the sitting position. Hip rotation ROM significantly differed between the men and women. Hip external rotation ROM was significantly higher in both positions in men; conversely, hip internal rotation ROM was significantly higher in both positions in women. [Conclusion] Hip rotation ROM significantly differed between the sexes and between the sitting and prone positions. Total ipsilateral hip rotation ROM, total angle of external rotation, and total angle of internal rotation of the left and right hips greatly varied, suggesting that hip joint rotational ROM is widely distributed. PMID:25729186

  13. Primary Ankle Arthrodesis for Severely Comminuted Tibial Pilon Fractures.

    PubMed

    Al-Ashhab, Mohamed E

    2017-03-01

    Management of severely comminuted, complete articular tibial pilon fractures (Rüedi and Allgöwer type III) remains a challenge, with few treatment options providing good clinical outcomes. Twenty patients with severely comminuted tibial pilon fractures underwent primary ankle arthrodesis with a retrograde calcaneal nail and autogenous fibular bone graft. The fusion rate was 100% and the varus malunion rate was 10%. Fracture union occurred at a mean of 16 weeks (range, 13-18 weeks) postoperatively. Primary ankle arthrodesis is a successful method for treating highly comminuted tibial pilon fractures, having a low complication rate and a high satisfaction score. [Orthopedics. 2017; 40(2):e378-e381.]. Copyright 2016, SLACK Incorporated.

  14. 21 CFR 888.3590 - Knee joint tibial (hemi-knee) metallic resurfacing uncemented prosthesis.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Knee joint tibial (hemi-knee) metallic resurfacing... Knee joint tibial (hemi-knee) metallic resurfacing uncemented prosthesis. (a) Identification. A knee joint tibial (hemi-knee) metallic resurfacing uncemented prosthesis is a device intended to be implanted...

  15. Influence of post-cam design of posterior stabilized knee prosthesis on tibiofemoral motion during high knee flexion.

    PubMed

    Lin, Kun-Jhih; Huang, Chang-Hung; Liu, Yu-Liang; Chen, Wen-Chuan; Chang, Tsung-Wei; Yang, Chan-Tsung; Lai, Yu-Shu; Cheng, Cheng-Kung

    2011-10-01

    The post-cam design of contemporary posterior stabilized knee prosthesis can be categorized into flat-on-flat or curve-on-curve contact surfaces. The curve-on-curve design has been demonstrated its advantage of reducing stress concentration when the knee sustained an anteroposterior force with tibial rotation. How the post-cam design affects knee kinematics is still unknown, particularly, to compare the difference between the two design features. Analyzing knee kinematics of posterior stabilized knee prosthesis with various post-cam designs should provide certain instructions to the modification of prosthesis design. A dynamic knee model was utilized to investigate tibiofemoral motion of various post-cam designs during high knee flexion. Two posterior stabilized knee models were constructed with flat-on-flat and curve-on-curve contact surfaces of post-cam. Dynamic data of axial tibial rotation and femoral translation were measured from full-extension to 135°. Internal tibial rotation increased with knee flexion in both designs. Before post-cam engagement, the magnitude of internal tibial rotation was close in the two designs. However, tibial rotation angle decreased beyond femoral cam engaged with tibial post. The rate of reduction of tibial rotation was relatively lower in the curve-on-curve design. From post-cam engagement to extreme flexion, the curve-on-curve design had greater internal tibial rotation. Motion constraint was generated by medial impingement of femoral cam on tibial post. It would interfere with the axial motion of the femur relative to the tibia, resulting in decrease of internal tibial rotation. Elimination of rotational constraint should be necessary for achieving better tibial rotation during high knee flexion. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. All-Polyethylene Tibial Components: An Analysis of Long-Term Outcomes and Infection.

    PubMed

    Houdek, Matthew T; Wagner, Eric R; Wyles, Cody C; Watts, Chad D; Cass, Joseph R; Trousdale, Robert T

    2016-07-01

    There is debate regarding tibial component modularity and composition in total knee arthroplasty (TKA). Biomechanical studies have suggested improved stress distribution in metal-backed tibias; however, these results have not translated clinically. The purpose of this study was to analyze the outcomes of all-polyethylene components and to compare the results to those with metal-backed components. We reviewed 31,939 patients undergoing a primary TKA over a 43-year period (1970-2013). There were 28,224 (88%) metal-backed and 3715 (12%) all-polyethylene tibial components. The metal-backed and all-polyethylene groups had comparable demographics with respect to gender, age and body mass index (BMI). Mean follow-up was 7 years. The mean survival for all primary TKAs at the 5-, 10-, 20- and 30-year time points was 95%, 89%, 73%, and 57%, respectively. All-polyethylene tibial components were found to have a significantly improved (P < .0001) survivorship when compared with their metal-backed counterparts. All-polyethylene tibial components were also found to have a significantly lower rate of infection, instability, tibial component loosening, and periprosthetic fracture. The all-polyethylene group had improved survival rates in all age groups, except in patients 85 years old or greater, where there was no significant difference. All-polyethylene tibial components had improved survival for all BMI groups except in the morbidly obese (BMI ≥ 40) where there was no significant difference. All-polyethylene tibial components had significantly improved implant survival, reduced rates of postoperative infection, fracture, and tibial component loosening. All polyethylene should be considered for most of the patients, regardless of age and BMI. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Complex Medial Meniscus Tears Are Associated With a Biconcave Medial Tibial Plateau.

    PubMed

    Barber, F Alan; Getelman, Mark H; Berry, Kathy L

    2017-04-01

    To determine whether an association exists between a biconcave medial tibial plateau and complex medial meniscus tears. A consecutive series of stable knees undergoing arthroscopy were evaluated retrospectively with the use of preoperative magnetic resonance imaging (MRI), radiographs, and arthroscopy documented by intraoperative videos. Investigators independently performed blinded reviews of the MRI or videos. Based on the arthroscopy findings, medial tibial plateaus were classified as either biconcave or not biconcave. A transverse coronal plane ridge, separating the front of the tibial plateau from the back near the inner margin of the posterior body of the medial meniscus, was defined as biconcave. The medial plateau slope was calculated with MRI sagittal views. General demographic information, body mass index, and arthroscopically confirmed knee pathology were recorded. A total of 179 consecutive knees were studied from July 2014 through August 2015; 49 (27.2%) biconcave medial tibial plateaus and 130 (72.8%) controls were identified at arthroscopy. Complex medial meniscus tears were found in 103. Patients with a biconcave medial tibial plateau were found to have more complex medial meniscus tears (69.4%) than those without a biconcavity (53.1%) (P = .049) despite having lower body mass index (P = .020). No difference in medial tibial plateau slope was observed for biconcavities involving both cartilage and bone, bone only, or an indeterminate group (P = .47). Biconcave medial tibial plateaus were present in 27.4% of a consecutive series of patients undergoing knee arthroscopy. A biconcave medial tibial plateau was more frequently associated with a complex medial meniscus tear. Level III, case-control study. Copyright © 2016 Arthroscopy Association of North America. All rights reserved.

  18. Incidence and risk factors for surgical site infection after open reduction and internal fixation of tibial plateau fracture: A systematic review and meta-analysis.

    PubMed

    Shao, Jiashen; Chang, Hengrui; Zhu, Yanbin; Chen, Wei; Zheng, Zhanle; Zhang, Huixin; Zhang, Yingze

    2017-05-01

    This study aimed to quantitatively summarize the risk factors associated with surgical site infection after open reduction and internal fixation of tibial plateau fracture. Medline, Embase, CNKI, Wanfang database and Cochrane central database were searched for relevant original studies from database inception to October 2016. Eligible studies had to meet quality assessment criteria according to the Newcastle-Ottawa Scale, and had to evaluate the risk factors for surgical site infection after open reduction and internal fixation of tibial plateau fracture. Stata 11.0 software was used for this meta-analysis. Eight studies involving 2214 cases of tibial plateau fracture treated by open reduction and internal fixation and 219 cases of surgical site infection were included in this meta-analysis. The following parameters were identified as significant risk factors for surgical site infection after open reduction and internal fixation of tibial plateau fracture (p < 0.05): open fracture (OR 3.78; 95% CI 2.71-5.27), compartment syndrome (OR 3.53; 95% CI 2.13-5.86), operative time (OR 2.15; 95% CI 1.53-3.02), tobacco use (OR 2.13; 95% CI 1.13-3.99), and external fixation (OR 2.07; 95% CI 1.05-4.09). Other factors, including male sex, were not identified as risk factors for surgical site infection. Patients with the abovementioned medical conditions are at risk of surgical site infection after open reduction and internal fixation of tibial plateau fracture. Surgeons should be cognizant of these risks and give relevant preoperative advice. Copyright © 2017. Published by Elsevier Ltd.

  19. Total knee replacement-cementless tibial fixation with screws: 10-year results.

    PubMed

    Ersan, Önder; Öztürk, Alper; Çatma, Mehmet Faruk; Ünlü, Serhan; Akdoğan, Mutlu; Ateş, Yalım

    2017-12-01

    The aim of this study was to evaluate the long term clinical and radiological results of cementless total knee replacement. A total of 51 knees of 49 patients (33 female and 16 male; mean age: 61.6 years (range, 29-66 years)) who underwent TKR surgery with a posterior stabilized hydroxyapatite coated knee implant were included in this study. All of the tibial components were fixed with screws. The HSS scores were examined preoperatively and at the final follow-up. Radiological assessment was performed with Knee Society evaluating and scoring system. Kaplan-Meier survival analysis was performed to rule out the survival of the tibial component. The mean HSS scores were 45.8 (range 38-60) and 88.1 (range 61-93), preoperatively and at the final follow-up respectively. Complete radiological assessment was performed for 48 knees. Lucent lines at the tibial component were observed in 4 patients; one of these patients underwent a revision surgery due to the loosening of the tibial component. The 10-year survival rate of a tibial component was 98%. Cementless total knee replacement has satisfactory long term clinical results. Primary fixation of the tibial component with screws provides adequate stability even in elderly patients with good bone quality. Level IV, Therapeutic study. Copyright © 2017 Turkish Association of Orthopaedics and Traumatology. Production and hosting by Elsevier B.V. All rights reserved.

  20. Modified arthroscopic suture fixation of a displaced tibial eminence fracture.

    PubMed

    Lehman, Ronald A; Murphy, Kevin P; Machen, M Shaun; Kuklo, Timothy R

    2003-02-01

    This study describes a new arthroscopic method using a whip-stitch technique for treating a displaced type III tibial eminence fracture. A 12-year-old girl who sustained a displaced type III tibial eminence fracture was treated with arthroscopic fixation using the Arthrosew disposable suture device (Surgical Dynamics, Norwalk, CT) to place a whip stitch into the anterior cruciate ligament (ACL). The Arthrex ACL guide (Arthrex, Naples, FL) was used to reduce the avulsed tibial spine fragment. Sutures were then passed through the tibial tunnel and secured over a bony bridge with the knee in 20 degrees of flexion. At 9 months, the patient has a full range of motion with normal Lachman and anterior drawer testing, and she has returned to competitive basketball. Radiographs show complete fracture healing. KT-1000 and isokinetic testing at 9-month follow-up show only minimal side-to-side differences. The Arthrosew device provides a significant advantage in the treatment of type III and IV fractures of the tibial eminence by obtaining arthroscopic fixation within the substance of the ACL, thus obviating arthrotomy and hardware placement. This technique also restores the proper length and tension to the ACL, and provides a simplified, reproducible method of treatment for this injury.

  1. The Effect of Graft Strength on Knee Laxity and Graft In-Situ Forces after Posterior Cruciate Ligament Reconstruction

    PubMed Central

    Lai, Yu-Shu; Chen, Wen-Chuan; Huang, Chang-Hung; Cheng, Cheng-Kung; Chan, Kam-Kong; Chang, Ting-Kuo

    2015-01-01

    Surgical reconstruction is generally recommended for posterior cruciate ligament (PCL) injuries; however, the use of grafts is still a controversial problem. In this study, a three-dimensional finite element model of the human tibiofemoral joint with articular cartilage layers, menisci, and four main ligaments was constructed to investigate the effects of graft strengths on knee kinematics and in-situ forces of PCL grafts. Nine different graft strengths with stiffness ranging from 0% (PCL rupture) to 200%, in increments of 25%, of an intact PCL’s strength were used to simulate the PCL reconstruction. A 100 N posterior tibial drawer load was applied to the knee joint at full extension. Results revealed that the maximum posterior translation of the PCL rupture model (0% stiffness) was 6.77 mm in the medial compartment, which resulted in tibial internal rotation of about 3.01°. After PCL reconstruction with any graft strength, the laxity of the medial tibial compartment was noticeably improved. Tibial translation and rotation were similar to the intact knee after PCL reconstruction with graft strengths ranging from 75% to 125% of an intact PCL. When the graft’s strength surpassed 150%, the medial tibia moved forward and external tibial rotation greatly increased. The in-situ forces generated in the PCL grafts ranged from 13.15 N to 75.82 N, depending on the stiffness. In conclusion, the strength of PCL grafts have has a noticeable effect on anterior-posterior translation of the medial tibial compartment and its in-situ force. Similar kinematic response may happen in the models when the PCL graft’s strength lies between 75% and 125% of an intact PCL. PMID:26001045

  2. The effect of graft strength on knee laxity and graft in-situ forces after posterior cruciate ligament reconstruction.

    PubMed

    Lai, Yu-Shu; Chen, Wen-Chuan; Huang, Chang-Hung; Cheng, Cheng-Kung; Chan, Kam-Kong; Chang, Ting-Kuo

    2015-01-01

    Surgical reconstruction is generally recommended for posterior cruciate ligament (PCL) injuries; however, the use of grafts is still a controversial problem. In this study, a three-dimensional finite element model of the human tibiofemoral joint with articular cartilage layers, menisci, and four main ligaments was constructed to investigate the effects of graft strengths on knee kinematics and in-situ forces of PCL grafts. Nine different graft strengths with stiffness ranging from 0% (PCL rupture) to 200%, in increments of 25%, of an intact PCL's strength were used to simulate the PCL reconstruction. A 100 N posterior tibial drawer load was applied to the knee joint at full extension. Results revealed that the maximum posterior translation of the PCL rupture model (0% stiffness) was 6.77 mm in the medial compartment, which resulted in tibial internal rotation of about 3.01°. After PCL reconstruction with any graft strength, the laxity of the medial tibial compartment was noticeably improved. Tibial translation and rotation were similar to the intact knee after PCL reconstruction with graft strengths ranging from 75% to 125% of an intact PCL. When the graft's strength surpassed 150%, the medial tibia moved forward and external tibial rotation greatly increased. The in-situ forces generated in the PCL grafts ranged from 13.15 N to 75.82 N, depending on the stiffness. In conclusion, the strength of PCL grafts have has a noticeable effect on anterior-posterior translation of the medial tibial compartment and its in-situ force. Similar kinematic response may happen in the models when the PCL graft's strength lies between 75% and 125% of an intact PCL.

  3. Anterior tibial stress fractures treated with anterior tension band plating in high-performance athletes.

    PubMed

    Cruz, Alexandre Santa; de Hollanda, João Paris Buarque; Duarte, Aires; Hungria Neto, José Soares

    2013-06-01

    The non-surgical treatment of anterior tibial cortex stress fractures requires long periods of abstention from sports activities and often results in non-union. Many different surgical techniques have already been previously described to treat these fractures, but there is no consensus on the best treatment. We describe the outcome of treatment using anterior tibial tension band plating in three high-performance athletes (4 legs) with anterior tibial cortex stress fractures. Tibial osteosynthesis with a 3.5-mm locking compression plate in the anterolateral aspect of the tibia was performed in all patients diagnosed with anterior tibial stress fracture after September 2010 at Santa Casa Hospital. All of the fractures were consolidated within a period of 3 months after surgery, allowing for an early return to pre-injury levels of competitive sports activity. There were no infection, non-union, malunion or anterior knee pain complications. Anterior tibial tension band plating leads to prompt fracture consolidation and is a good alternative for the treatment of anterior tibial cortex stress fractures. Bone grafts were shown to be unnecessary.

  4. Metal-backed versus all-polyethylene tibial components in primary total knee arthroplasty

    PubMed Central

    2011-01-01

    Background and purpose The choice of either all-polyethylene (AP) tibial components or metal-backed (MB) tibial components in total knee arthroplasty (TKA) remains controversial. We therefore performed a meta-analysis and systematic review of randomized controlled trials that have evaluated MB and AP tibial components in primary TKA. Methods The search strategy included a computerized literature search (Medline, EMBASE, Scopus, and the Cochrane Central Register of Controlled Trials) and a manual search of major orthopedic journals. A meta-analysis and systematic review of randomized or quasi-randomized trials that compared the performance of tibial components in primary TKA was performed using a fixed or random effects model. We assessed the methodological quality of studies using Detsky quality scale. Results 9 randomized controlled trials (RCTs) published between 2000 and 2009 met the inclusion quality standards for the systematic review. The mean standardized Detsky score was 14 (SD 3). We found that the frequency of radiolucent lines in the MB group was significantly higher than that in the AP group. There were no statistically significant differences between the MB and AP tibial components regarding component positioning, knee score, knee range of motion, quality of life, and postoperative complications. Interpretation Based on evidence obtained from this study, the AP tibial component was comparable with or better than the MB tibial component in TKA. However, high-quality RCTs are required to validate the results. PMID:21895503

  5. Effect of tibial plateau leveling on stability of the canine cranial cruciate-deficient stifle joint: an in vitro study.

    PubMed

    Reif, Ullrich; Hulse, Donald A; Hauptman, Joe G

    2002-01-01

    To evaluate the effect of tibial plateau leveling on joint motion in canine stifle joints in which the cranial cruciate ligament (CCL) had been severed. In vitro cadaver study. Six canine cadaver hind legs. Radiographs of the stifle joints were made to evaluate the tibial plateau angle with respect to the long axis of the tibia. The specimens were mounted in a custom-made testing device to measure cranio-caudal translation of the tibia with respect to the femur. An axial load was applied to the tibia, and its position was recorded in the normal stifle, after transection of the CCL, and after tibial plateau leveling. Further, the amount of caudal tibial thrust was measured in the tibial plateau leveled specimen while series of eight linearly increasing axial tibial loads were applied. Transection of the CCL resulted in cranial tibial translation when axial tibial load was applied. After tibial plateau leveling, axial loading resulted in caudal translation of the tibia. Increasing axial tibial load caused a linear increase in caudal tibial thrust in all tibial plateau-leveled specimens. After tibial plateau leveling, axial tibial load generates caudal tibial thrust, which increases if additional axial load is applied. Tibial plateau leveling osteotomy may prevent cranial translation during weight bearing in dogs with CCL rupture by converting axial load into caudal tibial thrust. The amount of caudal tibial thrust seems to be proportional to the amount of weight bearing. Copyright 2002 by The American College of Veterinary Surgeons

  6. Measurement of bone adjacent to tibial shaft fracture.

    PubMed

    Findlay, S C; Eastell, R; Ingle, B M

    2002-12-01

    Delayed union and non-union are common complications after fracture of the tibial shaft. Response of the surrounding bone as a fracture heals could be monitored using techniques currently used in the study of osteoporosis. The aims of our study were to: (1) evaluate the decrement in bone measurements made close to the fracture using dual-energy X-ray absorptiometry (DXA), quantitative ultrasound (QUS) and peripheral quantitative computed tomography (pQCT); (2) compare values for fractured versus non-fractured leg to determine the duration of decrement in bone measurements; and (3) calculate short-term precision in DXA, QUS and pQCT in order to calculate the ratio of decrement to precision (response ratio, RR) to determine the optimal test for monitoring changes after tibial fracture. The biggest decrement in bone measurements at the ipsilateral limb of 28 patients with tibial shaft fracture was observed at the pQCT tibial trabecular sites (distal = 19%, p<0.0001; proximal 5% = 21%, p<0.001; proximal 10% = 28%, p<0.001) and the ultradistal tibia/fibula measured by DXA (19%, p<0.0001). When comparing Z-scores, the magnitude of decrements at the ipsilateral limb was bigger for variables measured directly at the tibia, both proximal and distal to the fracture. The magnitude of the decrement in ultradistal tibia/fibula BMD decreased as the time since fracture increased ( r = 0.55). When response ratios are considered, pQCT measurements at the distal tibia (RR 6-8) and proximal 5% and 10% trabecular sites (RR 5 and 9 respectively) were found to be the most sensitive to change. Therefore, pQCT of the trabecular regions of either the proximal or distal tibia should prove the most sensitive measurement for monitoring changes in bone adjacent to a tibial shaft fracture.

  7. Ground reaction forces and bone parameters in females with tibial stress fracture.

    PubMed

    Bennell, Kim; Crossley, Kay; Jayarajan, Jyotsna; Walton, Elizabeth; Warden, Stuart; Kiss, Z Stephen; Wrigley, Tim

    2004-03-01

    Tibial stress fracture is a common overuse running injury that results from the interplay of repetitive mechanical loading and bone strength. This research project aimed to determine whether female runners with a history of tibial stress fracture (TSF) differ in ground reaction force (GRF) parameters during running, regional bone density, and tibial bone geometry from those who have never sustained a stress fracture (NSF). Thirty-six female running athletes (13 TSF; 23 NSF) ranging in age from 18 to 44 yr were recruited for this cross-sectional study. The groups were well matched for demographic, training, and menstrual parameters. A force platform measured selected GRF parameters (peak and time to peak for vertical impact and active forces, and horizontal braking and propulsive forces) during overground running at 4.0 m.s.(-1). Lumbar spine, proximal femur, and distal tibial bone mineral density were assessed by dual energy x-ray absorptiometry. Tibial bone geometry (cross-sectional dimensions and areas, and second moments of area) was calculated from a computerized tomography scan at the junction of the middle and distal thirds. There were no significant differences between the groups for any of the GRF, bone density, or tibial bone geometric parameters (P > 0.05). Both TSF and NSF subjects had bone density levels that were average or above average compared with a young adult reference range. Factor analysis followed by discriminant function analysis did not find any combinations of variables that differentiated between TSF and NSF groups. These findings do not support a role for GRF, bone density, or tibial bone geometry in the development of tibial stress fractures, suggesting that other risk factors were more important in this cohort of female runners.

  8. Isometric hip-rotator torque production at varying degrees of hip flexion.

    PubMed

    Johnson, Sam; Hoffman, Mark

    2010-02-01

    Hip torque production is associated with certain knee injuries. The hip rotators change function depending on hip angle. To compare hip-rotator torque production between 3 angles of hip flexion, limbs, and sexes. Descriptive. University sports medicine research laboratory. 15 men and 15 women, 19-39 y. Three 6-s maximal isometric contractions of the hip external and internal rotators at 10 degrees, 40 degrees, and 90 degrees of hip flexion on both legs. Average torque normalized to body mass. Internal-rotation torque was greatest at 90 degrees of hip flexion, followed by 40 degrees of hip flexion and finally 10 degrees of hip flexion. External-rotation torque was not different based on hip flexion. The nondominant leg's external rotators were stronger than the dominant leg's, but the reverse was true for internal rotators. Finally, the men had more overall rotator torque. Hip-rotation torque production varies between flexion angle, leg, and sex. Clinicians treating lower extremity problems need to be aware of these differences.

  9. Bone microarchitecture of the tibial plateau in skeletal health and osteoporosis.

    PubMed

    Krause, Matthias; Hubert, Jan; Deymann, Simon; Hapfelmeier, Alexander; Wulff, Birgit; Petersik, Andreas; Püschel, Klaus; Amling, Michael; Hawellek, Thelonius; Frosch, Karl-Heinz

    2018-05-07

    Impaired bone structure poses a challenge for the treatment of osteoporotic tibial plateau fractures. As knowledge of region-specific structural bone alterations is a prerequisite to achieving successful long-term fixation, the aim of the current study was to characterize tibial plateau bone structure in patients with osteoporosis and the elderly. Histomorphometric parameters were assessed by high-resolution peripheral quantitative computed tomography (HR-pQCT) in 21 proximal tibiae from females with postmenopausal osteoporosis (mean age: 84.3 ± 4.9 years) and eight female healthy controls (45.5 ± 6.9 years). To visualize region-specific structural bony alterations with age, the bone mineral density (Hounsfield units) was additionally analyzed in 168 human proximal tibiae. Statistical analysis was based on evolutionary learning using globally optimal regression trees. Bone structure deterioration of the tibial plateau due to osteoporosis was region-specific. Compared to healthy controls (20.5 ± 4.7%) the greatest decrease in bone volume fraction was found in the medio-medial segments (9.2 ± 3.5%, p < 0.001). The lowest bone volume was found in central segments (tibial spine). Trabecular connectivity was severely reduced. Importantly, in the anterior and posterior 25% of the lateral and medial tibial plateaux, trabecular support and subchondral cortical bone thickness itself were also reduced. Thinning of subchondral cortical bone and marked bone loss in the anterior and posterior 25% of the tibial plateau should require special attention when osteoporotic patients require fracture fixation of the posterior segments. This knowledge may help to improve the long-term, fracture-specific fixation of complex tibial plateau fractures in osteoporosis. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Comparison of long-term results between osteo-odonto-keratoprosthesis and tibial bone keratoprosthesis.

    PubMed

    Charoenrook, Victor; Michael, Ralph; de la Paz, Maria Fideliz; Temprano, José; Barraquer, Rafael I

    2018-04-01

    To compare the anatomical and the functional results between osteo-odonto-keratoprosthesis (OOKP) and keratoprosthesis using tibial bone autograft (Tibial bone KPro). We reviewed the charts of 258 patients; 145 had OOKP whereas 113 had Tibial bone KPro implanted. Functional success was defined as best corrected visual acuity ≥0.05 on decimal scale and anatomical success as retention of the keratoprosthesis lamina. Kaplan-Meier survival curves were calculated for anatomical and functional survival as well as to estimate the probability of post-op complications. The anatomical survival for both KPro groups was not significantly different and was estimated as 67% for OOKP and 54% for Tibial bone KPro at 10 years after surgery. There was also no difference found after subdividing for primary diagnosis groups such as chemical injury, thermal burn, trachoma and all autoimmune cases combined. Estimated functional survival at 10 years post-surgery was 49% for OOKP and 25% for Tibial bone KPro, which was significantly different. The probability of patients with Tibial bone KPro developing one or more post-operative complications at 10 years after surgery (65%) was significantly higher than those with OOKP (40%). Mucous membrane necrosis and retroprosthetic membrane formation were more common in Tibial bone KPro than OOKP. Both types of autologous biological KPro, OOKP and Tibial bone KPro, had statistically similar rate of keratoprosthesis extrusion. Although functional success rate was significantly higher in OOKP, it may have been influenced by a better visual potential in the patients in this group. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Effect of tibial slope on the stability of the anterior cruciate ligament-deficient knee.

    PubMed

    Voos, James E; Suero, Eduardo M; Citak, Musa; Petrigliano, Frank P; Bosscher, Marianne R F; Citak, Mustafa; Wickiewicz, Thomas L; Pearle, Andrew D

    2012-08-01

    We aimed to quantify the effect of changes in tibial slope on the magnitude of anterior tibial translation (ATT) in the anterior cruciate ligament (ACL)-deficient knee during the Lachman and mechanized pivot shift tests. We hypothesized that increased posterior tibial slope would increase the amount of ATT of an ACL-deficient knee, while leveling the slope of the tibial plateau would decrease the amount of ATT. Lachman and mechanized pivot shift tests were performed on hip-to-toe cadaveric specimens, and ATT of the lateral and the medial compartments was measured using navigation (n = 11). The ACL was then sectioned. Stability testing was repeated, and ATT was recorded. A proximal tibial osteotomy in the sagittal plane was then performed achieving either +5 or -5° of tibial slope variation after which stability testing was repeated (n = 10). Sectioning the ACL resulted in a significant increase in ATT in both the Lachman and mechanized pivot shift tests (P < 0.05). Increasing or decreasing the slope of the tibial plateau had no effect on ATT during the Lachman test (n.s.). During the mechanized pivot shift tests, a 5° increase in posterior slope resulted in a significant increase in ATT compared to the native knee (P < 0.05), while a 5° decrease in slope reduced ATT to a level similar to that of the intact knee. Tibial slope changes did not affect the magnitude of translation during a Lachman test. However, large changes in tibial slope variation affected the magnitude of the pivot shift.

  12. Effect of limb rotation on radiographic alignment in total knee arthroplasties.

    PubMed

    Radtke, Kerstin; Becher, Christoph; Noll, Yvonne; Ostermeier, Sven

    2010-04-01

    Even in a well-aligned total knee arthroplasty (TKA), limb rotation at the time of radiographic assessment will alter the measurement of alignment. This could influence the radiographic outcome of TKA. The purpose of this study was to evaluate the effect of limb rotation on radiographic alignment after TKA and to establish a re-calculation of this rotation by using existing radiographic landmarks. Synthetic femur and tibia (Sawbones), Inc. Vashon Island, WA) were used to create a TKA of the Triathlon knee prosthesis system (Stryker), Limerick, Ireland). The femoral alignment was 6.5 degrees valgus. The model was fixed in an upright stand. Five series of nine anteroposterior (AP) long leg radiographs were taken on a 30 cm x 120 cm plates in full extension with the limb rotated, in 5 degrees increments, from 20 degrees external rotation to 20 degrees internal rotation. After digitizing each radiograph (Scanner Hewlett Packard XJ 527), an observer measured the anatomic mechanical angle of the femur [AMA ( degrees )], the mechanical lateral proximal femur angle [mLPFA ( degrees )], the mechanical lateral distal femur angle [mLDFA ( degrees )], the mechanical medial proximal tibia angle [mMPTA ( degrees )] and the mechanical lateral distal tibia angle [mLDTA ( degrees )] using a digital measurement software (MediCAD, Hectec, Altfraunhofen, Germany). Besides, the observer measured the geometrical distances of the femoral component figured on the long leg radiograph. A ratio of one distance to another was measured (called femoral component distance ratio). The average radiographic anatomic alignment ranged from 6.827 degrees AMA (SD = 0.22 degrees ) in 20 degrees internal rotation to 4.627 degrees AMA (SD = 0.22 degrees ) in 20 degrees external rotation. Average mLPFA ( degrees ) ranged from 101.63 degrees (SD = 0.63) in 20 degrees internal rotation to 93.60 degrees (SD = 0.74 degrees ) in 20 degrees external rotation. Average mLDFA ( degrees ) ranged from 90.59 degrees

  13. Dynamic Stress Testing Is Unnecessary for Unimalleolar Supination-External Rotation Ankle Fractures with Minimal Fracture Displacement on Lateral Radiographs.

    PubMed

    Nortunen, Simo; Leskelä, Hannu-Ville; Haapasalo, Heidi; Flinkkilä, Tapio; Ohtonen, Pasi; Pakarinen, Harri

    2017-03-15

    This study aimed to identify factors from standard radiographs that contributed to the stability of the ankle mortise in patients with isolated supination-external rotation fractures of the lateral malleolus (OTA/AO 44-B). Non-stress radiographs of the mortise and lateral views, without medial clear space widening or incongruity, were prospectively collected for 286 consecutive patients (mean age, 45 years [range, 16 to 85 years]), including 144 female patients (mean age, 50 years [range, 17 to 85 years]) and 142 male patients (mean age, 40 years [range, 16 to 84 years]) from 2 trauma centers. The radiographs were analyzed for fracture morphology by 2 orthopaedic surgeons, who were blinded to each other's measurements and to the results of external rotation stress radiographs (the reference for stability). Factors significantly associated with ankle mortise stability were tested in multiple logistic regression. Receiver operating characteristic analyses were performed for continuous variables to determine optimal thresholds. A sensitivity of >90% was used as the criterion for an optimal threshold. According to external rotation stress radiographs, 217 patients (75.9%) had a stable injury, defined as that with a medial clear space of <5 mm. Independent factors that predicted stable ankle mortise were female sex (odds ratio [OR], 2.5 [95% confidence interval (CI), 1.4 to 4.6]), a posterior diastasis of <2 mm (corresponding with a sensitivity of 0.94 and specificity of 0.39) on lateral radiographs (OR, 10.8 [95% CI, 3.7 to 31.5]), and only 2 fracture fragments (OR, 7.3 [95% CI, 2.1 to 26.3]). When the posterior diastasis was <2 mm and only 2 fracture fragments were present, the probability of a stable ankle mortise was 0.98 for 48 female patients (16.8%) and 0.94 for 37 male patients (12.9%). Patients with noncomminuted lateral malleolar fractures (85 patients [29.7%]) could be diagnosed with a stable ankle mortise without further stress testing, when the fracture

  14. Bilateral tibial lengthening over the nail: our experience of 143 cases.

    PubMed

    Motallebi Zadeh, Nader; Mortazavi, Seyedeh Hamideh; Khaki, Siavash; Heidari, Kazem; Karbasi, Ashraf; Ostad Rahimi, Sedigheh

    2014-09-01

    Using lengthening over an intramedullary nail as a technique for cosmetic purposes improves the individuals' quality of life and provides more satisfactory results due to less external fixator period. This study reports a case series of 143 individuals who underwent bilateral tibial lengthening over an intramedullary nail for cosmetic purposes together with the review of parameters related to the surgery and complications. Level of satisfaction was measured with the standard visual analog scale at least 1 year after removal of external fixator. In this study, mean (SD) age of patients was 26.6 (7.26) years. 85 (59.4%) participants were male and 58 (40.6%) were female. Mean end lengthening of all individuals was 6.65 cm. The mean external fixator period was 93.7 days. Complication rate was 0.74 per segment but it decreased to 0.45 when pin-tract infection was excluded. Complications were categorized based on Paley et al.'s classification as 129 problems, 85 obstacles and no sequelae. Interestingly, 44 (30.8%) individuals had no problem and obstacle. Lengthening over an intramedullary nail provides bone formation in equal quality to that obtained by the conventional Ilizarov method, along with lower rate of complications. The large number of individuals involved in our study is a remarkable benefit which could be used as an appropriate sample to compare results for outcomes and complications.

  15. Tibial Acceleration and Spatiotemporal Mechanics in Distance Runners During Reduced-Body-Weight Conditions.

    PubMed

    Moran, Matthew F; Rickert, Brendan J; Greer, Beau K

    2017-05-01

    Treadmills that unload runners via a differential air-pressure (DAP) bladder (eg, AlterG Anti-Gravity Treadmill) are commonly used to reduce effective body weight (BW) in a clinical setting. However, the relationship between the level of unloading and tibial stress is currently unknown. To determine the relationship between tibial impact acceleration and level of BW unloading during running. Cross-sectional. University motion-analysis laboratory. 15 distance runners (9 male, 6 female; 20.4 ± 2.4 y, 60.1 ± 12.6 kg). Peak tibial acceleration and peak-to-peak tibial acceleration were measured via a uniaxial accelerometer attached to the tibia during a 37-min continuous treadmill run that simulated reduced-BW conditions via a DAP bladder. The trial began with a 10-min run at 100% BW followed by nine 3-min stages where BW was systematically reduced from 95% to 60% in 5% increments. There was no significant relationship between level of BW and either peak tibial acceleration or peak-to-peak tibial acceleration (P > .05). Both heart rate and step rate were significantly reduced with each 5% reduction in BW level (P < .01). Although ground-reaction forces are reduced when running in reduced-BW conditions on a DAP treadmill, tibial shock magnitudes are unchanged as an alteration in spatiotemporal running mechanics (eg, reduced step rate) and may nullify the unloading effect.

  16. Every Mass or Mass Group When Created Will have No Motion, Linear, Rotational or Vibratory Motion, Singly or in Some Combination, Which May Be Later Modified by External Forces--A Natural Law

    NASA Astrophysics Data System (ADS)

    Brekke, Stewart

    2010-03-01

    Every mass or mass group, from atoms and molecules to stars and galaxies,has no motion, is vibrating, rotating,or moving linearly, singularly or in some combination. When created, the excess energy of creation will generate a vibration, rotation and/or linear motion besides the mass or mass group. Curvilinear or orbital motion is linear motion in an external force field. External forces, such as photon, molecular or stellar collisions may over time modify the inital rotational, vibratory or linear motions of the mass of mass group. The energy equation for each mass or mass group is E=mc^2 + 1/2mv^2 + 1/2I2̂+ 1/2kx0^2 + WG+ WE+ WM.

  17. [Magnetic resonance imaging of tibial periostitis].

    PubMed

    Meyer, X; Boscagli, G; Tavernier, T; Aczel, F; Weber, F; Legros, R; Charlopain, P; Martin, J P

    1998-01-01

    Tibial periostitis frequently occurs in athletes. We present our experience with MRI in a series of 7 patients (11 legs) with this condition. The clinical presentation and scintigraphic scanning suggested the diagnosis. MRI exploration of 11 legs demonstrated a high band-like juxta-osseous signal enhancement of SE and IR T2 weighted sequences in 6 cases, a signal enhancement after i.v. contrast administration in 4. Tibial periostitis is a clinical diagnosis and MRI and scintigraphic findings can be used to assure the differential diagnosis in difficult cases with stress fracture. MRI can visualize juxta-osseous edematous and inflammatory reactions and an increased signal would appear to be characteristic when the band-like image is fixed to the periosteum.

  18. Arthroscopic Management of Tibial Spine Avulsion Fractures: Principles and Techniques.

    PubMed

    Strauss, Eric J; Kaplan, Daniel James; Weinberg, Maxwell E; Egol, Jonathan; Jazrawi, Laith M

    2018-05-15

    Tibial spine fractures are uncommon injuries affecting the insertion of the anterior cruciate ligament on the tibia. They typically occur in skeletally immature patients aged 8 to 14 years and result from hyperextension of the knee with a valgus or rotational force. Diagnosis is based on history, physical examination, and standard radiographs. The use of MRI can identify entrapped soft tissue that may prevent reduction. Open or arthroscopic repair is indicated in patients with partially displaced fractures (>5 mm) with one third to one half of the avulsed fragment elevated, in patients who have undergone unsuccessful nonsurgical reduction and long leg casting or bracing, and in patients with completely displaced fractures. Arthroscopy offers reduced invasiveness and decreased morbidity. Suture fixation and screw fixation have produced successful results. Suture fixation can eliminate the risk of fracture fragment comminution during screw insertion, the risk of neurovascular injury, and the need for hardware removal. Suture fixation is ideal in cases in which existing comminution prevents screw fixation.

  19. Femoral sizing in total knee arthroplasty is rotation dependant.

    PubMed

    Koninckx, Angelique; Deltour, Arnaud; Thienpont, Emmanuel

    2014-12-01

    The mismatch between the medio-lateral (ML) and the antero-posterior (AP) size of femoral components in total knee arthroplasty (TKA) has been linked to gender, ethnicity, morphotype and height differences in patients. The hypothesis of this study was that the AP size measurement of a femoral component increases with more external rotation in posterior referencing TKA. During a 2-year period, 201 patients were included in this prospective study. The AP distance of the distal femur was measured with an AP sizer of the Vanguard (Biomet, Warsaw, US) knee system. This AP sizer allows to dial in external rotation by 1° increments and to determine the femoral size with an anterior boom. AP size was noted at 0°, 3° and 5° of external rotation and then compared for ML matching. Antero-posterior and corresponding ML sizes match perfectly for the Vanguard at 0° of external rotation and a central boom position on the anterior femoral surface. Then, the anterior boom was positioned on the antero-lateral cortex and the AP size increased a mean (SD) 1 (0.5) mm. With 3° of external rotation, the AP size increased a mean (SD) 2.3 (0.4) mm and for 5° a mean (SD) 3.8 (0.3) mm (P < 0.05). This increase in AP size resulted in ML overhang of 2.2 (1.2) mm for 3° and 4.8 (2.6) mm for 5° (P < 0.05). Antero-posterior size measurement of the distal femur is determined by the anatomy of the anterior surface with a higher antero-lateral cortex and the amount of external rotation that is dialled in during surgery. Since these parameters vary case per case, the availability of narrow components offers more surgical options to the surgeon and its importance extends beyond the gender aspect allowing different amounts of external rotation to be used without ML overhang. II.

  20. Shoulder External Rotation Fatigue and Scapular Muscle Activation and Kinematics in Overhead Athletes

    PubMed Central

    Joshi, Mithun; Thigpen, Charles A.; Bunn, Kevin; Karas, Spero G.; Padua, Darin A.

    2011-01-01

    Context: Glenohumeral external rotation (GH ER) muscle fatigue might contribute to shoulder injuries in overhead athletes. Few researchers have examined the effect of such fatigue on scapular kinematics and muscle activation during a functional movement pattern. Objective: To examine the effects of GH ER muscle fatigue on upper trapezius, lower trapezius, serratus anterior, and infraspinatus muscle activation and to examine scapular kinematics during a diagonal movement task in overhead athletes. Setting: Human performance research laboratory. Design: Descriptive laboratory study. Patients or Other Participants: Our study included 25 overhead athletes (15 men, 10 women; age = 20 ± 2 years, height = 180 ± 11 cm, mass = 80 ± 11 kg) without a history of shoulder pain on the dominant side. Interventions: We tested the healthy, dominant shoulder through a diagonal movement task before and after a fatiguing exercise involving low-resistance, high-repetition, prone GH ER from 0° to 75° with the shoulder in 90° of abduction. Main Outcome Measure(s): Surface electromyography was used to measure muscle activity for the upper trapezius, lower trapezius, serratus anterior, and infraspinatus. An electromyographic motion analysis system was used to assess 3-dimensional scapular kinematics. Repeated-measures analyses of variance (phase × condition) were used to test for differences. Results: We found a decrease in ascending-phase and descending-phase lower trapezius activity (F1,25 = 5.098, P = .03) and an increase in descending-phase infraspinatus activity (F1,25 = 5.534, P = .03) after the fatigue protocol. We also found an increase in scapular upward rotation (F1,24 = 3.7, P = .04) postfatigue. Conclusions: The GH ER muscle fatigue protocol used in this study caused decreased lower trapezius and increased infraspinatus activation concurrent with increased scapular upward rotation range of motion during the functional task. This highlights the interdependence of scapular

  1. Rotation in total knee arthroplasty: no difference between patient-specific and conventional instrumentation.

    PubMed

    Parratte, Sébastien; Blanc, Guillaume; Boussemart, Thomas; Ollivier, Matthieu; Le Corroller, Thomas; Argenson, Jean-Noël

    2013-10-01

    It was our hypothesis that patient-specific instrumentation (PSI) can improve the accuracy of the rotational alignment in TKA based on the concept of the system and on the potential to clearly identify pre-operatively during planning the classical anatomical landmarks that serve as references to set-up the rotation both for the femur and tibia. In this prospective comparative randomized study, 40 patients (20 in each group) operated in our institution between September 2012 and January 2013 by the 2 senior authors were included. Randomization of patients into one of the two groups was done by the Hospital Informatics Department with the use of a systematic sampling method. All patients received the same cemented high-flex mobile bearing TKA. In the PSI group, implant position was compared to the planed position using previously validated dedicated software. The position of the implants (frontal and sagittal) was compared in the 2 groups on standard X-rays, and the rotational position was analysed on post-operative CT-scan. 90 % of the patients add <2° or mm of difference between the planned position of the implants and the obtained position, except for the tibial rotation where the variations were much higher. Mean HKA was 179° (171-185) in the PSI group with 4 outliers (2 varus: 171° and 172°:184° and 185°) and 178.3° with 2 outliers (171° and 176°) in the control group. No difference was observed between the two groups concerning the frontal and sagittal position of the implants on the ML and AP X-rays. No significant difference of femoral rotation was observed between the two groups with a mean of 0.4° in the PSI group and 0.2° in the control group (p: n.s). Mean tibial rotation was 8° of internal rotation in the PSI group and 15° of internal rotation in the standard group (p: n.s). Based on our results, we were unable to confirm our hypothesis as PSI cannot improve rotation in TKA. More work needs to be done to more clearly define the place of PSI

  2. Influence of the posterior tibial slope on the flexion gap in total knee arthroplasty.

    PubMed

    Okazaki, Ken; Tashiro, Yasutaka; Mizu-uchi, Hideki; Hamai, Satoshi; Doi, Toshio; Iwamoto, Yukihide

    2014-08-01

    Adjusting the joint gap length to be equal in both extension and flexion is an important issue in total knee arthroplasty (TKA). It is generally acknowledged that posterior tibial slope affects the flexion gap; however, the extent to which changes in the tibial slope angle directly affect the flexion gap remains unclear. This study aimed to clarify the influence of tibial slope changes on the flexion gap in cruciate-retaining (CR) or posterior-stabilizing (PS) TKA. The flexion gap was measured using a tensor device with the femoral trial component in 20 cases each of CR- and PS-TKA. A wedge plate with a 5° inclination was placed on the tibial cut surface by switching its front-back direction to increase or decrease the tibial slope by 5°. The flexion gap after changing the tibial slope was compared to that of the neutral slope measured with a flat plate that had the same thickness as that of the wedge plate center. When the tibial slope decreased or increased by 5°, the flexion gap decreased or increased by 1.9 ± 0.6mm or 1.8 ± 0.4mm, respectively, with CR-TKA and 1.2 ± 0.4mm or 1.1 ± 0.3mm, respectively, with PS-TKA. The influence of changing the tibial slope by 5° on the flexion gap was approximately 2mm with CR-TKA and 1mm with PS-TKA. This information is useful when considering the effect of manipulating the tibial slope on the flexion gap when performing CR- or PS-TKA. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Pseudoaneurysm of the Anterior Tibial Artery following Ankle Arthroscopy in a Soccer Player.

    PubMed

    Tonogai, Ichiro; Matsuura, Tetsuya; Iwame, Toshiyuki; Wada, Keizo; Takasago, Tomoya; Goto, Tomohiro; Hamada, Daisuke; Kawatani, Yohei; Fujimoto, Eiki; Kitagawa, Tetsuya; Takao, Shyoichiro; Iwamoto, Seiji; Yamanaka, Moriaki; Harada, Masafumi; Sairyo, Koichi

    2017-01-01

    Ankle arthroscopy carries a lower risk of vascular complications when standard anterolateral and anteromedial portals are used. However, the thickness of the fat pad at the anterior ankle affords little protection for the thin-walled anterior tibial artery, rendering it susceptible to indirect damage during procedures performed on the anterior ankle joint. To our knowledge, only 11 cases of pseudoaneurysm involving the anterior tibial artery after ankle arthroscopy have been described in the literature. Here we reported a rare case of a 19-year-old soccer player who presented with pseudoaneurysm of the anterior tibial artery following ankle arthroscopy using an ankle distraction method and underwent anastomosis for the anterior tibial artery injury. Excessive distraction of the ankle puts the neurovascular structures at greater risk for iatrogenic injury of the anterior tibial artery during ankle arthroscopy. Surgeons should look carefully for postoperative ankle swelling and pain after ankle arthroscopy.

  4. Pseudoaneurysm of the Anterior Tibial Artery following Ankle Arthroscopy in a Soccer Player

    PubMed Central

    Iwame, Toshiyuki; Hamada, Daisuke; Fujimoto, Eiki; Kitagawa, Tetsuya; Takao, Shyoichiro; Iwamoto, Seiji; Yamanaka, Moriaki; Harada, Masafumi

    2017-01-01

    Ankle arthroscopy carries a lower risk of vascular complications when standard anterolateral and anteromedial portals are used. However, the thickness of the fat pad at the anterior ankle affords little protection for the thin-walled anterior tibial artery, rendering it susceptible to indirect damage during procedures performed on the anterior ankle joint. To our knowledge, only 11 cases of pseudoaneurysm involving the anterior tibial artery after ankle arthroscopy have been described in the literature. Here we reported a rare case of a 19-year-old soccer player who presented with pseudoaneurysm of the anterior tibial artery following ankle arthroscopy using an ankle distraction method and underwent anastomosis for the anterior tibial artery injury. Excessive distraction of the ankle puts the neurovascular structures at greater risk for iatrogenic injury of the anterior tibial artery during ankle arthroscopy. Surgeons should look carefully for postoperative ankle swelling and pain after ankle arthroscopy. PMID:28607785

  5. A 3D finite element model to investigate prosthetic interface stresses of different posterior tibial slope.

    PubMed

    Shen, Yi; Li, Xiaomiao; Fu, Xiaodong; Wang, Weili

    2015-11-01

    Posterior tibial slope that is created during proximal tibial resection in total knee arthroplasty has emerged as an important factor in the mechanics of the knee joint and the surgical outcome. But the ideal degree of posterior tibial slope for recovery of the knee joint function and preventions of complications remains controversial and should vary in different racial groups. The objective of this paper is to investigate the effects of posterior tibial slope on contact stresses in the tibial polyethylene component of total knee prostheses. Three-dimensional finite element analysis was used to calculate contact stresses in tibial polyethylene component of total knee prostheses subjected to a compressive load. The 3D finite element model of total knee prosthesis was constructed from the images produced by 3D scanning technology. Stresses in tibial polyethylene component were calculated with four different posterior tibial slopes (0°, 3°, 6° and 9°). The 3D finite element model of total knee prosthesis we presented was well validated. We found that the stress distribution in the polythene as evaluated by the distributions of the von Mises stress, the maximum principle stress, the minimum principle stress and the Cpress were more uniform with 3° and 6° posterior tibial slopes than with 0° and 9° posterior tibial slopes. Moreover, the peaks of the above stresses and trends of changes with increasing degree of knee flexion were more ideal with 3° and 6° posterior slopes. The results suggested that the tibial component inclination might be favourable to 7°-10° so far as the stress distribution is concerned. The range of the tibial component inclination also can decrease the wear of polyethylene. Chinese posterior tibial slope is bigger than in the West, and the current domestic use of prostheses is imported from the West, so their demands to tilt back bone cutting can lead to shorten the service life of prostheses; this experiment result is of important

  6. Asymmetry in gait pattern following bicondylar tibial plateau fractures-A prospective one-year cohort study.

    PubMed

    Elsoe, Rasmus; Larsen, Peter

    2017-07-01

    Despite the high number of studies evaluating outcomes following tibial plateau fractures, the literature lacks studies including the objective assessment of gait pattern. The purpose of the present study was to evaluate asymmetry in gait patterns at 12 months after frame removal following ring fixation of a tibial plateau fracture. The study design was a prospective cohort study. The primary outcome measurement was the gait patterns 12 months after frame removal measured with a pressure-sensitive mat. The mat registers footprints and present gait speed, cadence, as well as temporal and spatial parameters of the gait cycle. Gait patterns were compared to a healthy reference population. Twenty-three patients were included with a mean age of 54.4 years (32-78 years). Patients presented with a shorter step-length of the injured leg compared to the non-injured leg (asymmetry of 11.3%). Analysis of single-support showed shorter support time of the injured leg compared to the non-injured leg (asymmetry of 8.7%). Moreover, analysis of swing-time showed increased swing-time of the injured leg (asymmetry of 8.9%). Compared to a healthy reference population, increased asymmetry in all gait patterns was observed. The association between asymmetry and health-related quality of life (HRQOL) showed moderate associations (single-support: R=0.50, P=0.03; step-length: R=0.43, P=0.07; swing-time: R=0.46, P=0.05). Compared to a healthy reference population, gait asymmetry is common 12 months after frame removal in patients treated with external ring fixation following a tibial plateau fracture of the tibia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. A Profile of Glenohumeral Internal and External Rotation Motion in the Uninjured High School Baseball Pitcher, Part II: Strength

    PubMed Central

    Hurd, Wendy J.; Kaplan, Kevin M.; ElAttrache, Neal S.; Jobe, Frank W.; Morrey, Bernard F.; Kaufman, Kenton R.

    2011-01-01

    Context: A database describing the range of normal rotator cuff strength values in uninjured high school pitchers has not been established. Chronologic factors that contribute to adaptations in strength also have not been established. Objectives: To establish a normative profile of rotator cuff strength in uninjured high school baseball pitchers and to determine whether bilateral differences in rotator cuff strength are normal findings in this age group. Design: Cohort study. Setting: Baseball playing field. Patients or Other Participants: A total of 165 uninjured male high school baseball pitchers (age = 16 ± 1 years, height = 1.8 ± 0.1 m, mass = 76.8 ± 10.1 kg, pitching experience = 7 ± 2 years). Main Outcome Measure(s): Isometric rotator cuff strength was measured bilaterally with a handheld dynamometer. We calculated side-to-side differences in strength (external rotation [ER], internal rotation [IR], and the ratio of ER:IR at 90° of abduction), differences in strength by age, and the influence of chronologic factors (participant age, years of pitching experience) on limb strength. Results: Side-to-side differences in strength were found for ER, IR, and ER:IR ratio at 90° of abduction. Age at the time of testing was a significant but weak predictor of both ER strength (R2 = 0.032, P = .02) and the ER:IR ratio (R2 = 0.051, P = .004) at 90° of abduction. Conclusions: We established a normative profile of rotator cuff strength for the uninjured high school baseball pitcher that might be used to assist clinicians and researchers in the interpretation of muscle strength performance in this population. These data further suggested that dominant-limb adaptations in rotator cuff strength are a normal finding in this age group and did not demonstrate that these adaptations were a consequence of the age at the time of testing or the number of years of pitching experience. PMID:21669099

  8. Effects of diabetic peripheral neuropathy on gait in vascular trans-tibial amputees.

    PubMed

    Nakajima, Hiroshi; Yamamoto, Sumiko; Katsuhira, Junji

    2018-07-01

    Patients with diabetes often develop diabetic peripheral neuropathy, which is a distal symmetric polyneuropathy, so foot function on the non-amputated side is expected to affect gait in vascular trans-tibial amputees. However, there is little information on the kinematics and kinetics of gait or the effects of diabetic peripheral neuropathy in vascular trans-tibial amputees. This study aimed to clarify these effects, including the biomechanics of the ankle on the non-amputated side. Participants were 10 vascular trans-tibial amputees with diabetic peripheral neuropathy (group V) and 8 traumatic trans-tibial amputees (group T). Each subject's gait was analyzed at a self-selected speed using a three-dimensional motion analyzer and force plates. Ankle plantarflexion angle, heel elevation angle, and peak and impulse of anterior ground reaction force were smaller on the non-amputated side during pre-swing in group V than in group T. Center of gravity during pre-swing on the non-amputated side was lower in group V than in group T. Hip extension torque during loading response on the prosthetic side was greater in group V than in group T. These findings suggest that the biomechanical function of the ankle on the non-amputated side during pre-swing is poorer in vascular trans-tibial amputees with DPN than in traumatic trans-tibial amputees; the height of the center of gravity could not be maintained during this phase in vascular trans-tibial amputees with diabetic peripheral neuropathy. The hip joint on the prosthetic side compensated for this diminished function at the ankle during loading response. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Avulsion of the tibial tuberosity in a litter of greyhound puppies.

    PubMed

    Skelly, C M; McAllister, H; Donnelly, W J

    1997-10-01

    Avulsion of the tibial tuberosity was diagnosed in six of seven greyhound littermates aged five and a half months. The puppies showed hindlimb lameness of varying severity. Radiological assessment of affected stifle joints revealed partial or complete avulsion of the tibial tuberosities. In four puppies the lesions were bilateral. Euthanasia of the two most severely affected puppies was performed; the changes observed on histopathological examination of their cranioproximal tibiae suggested that the underlying lesion was that of osteochondrosis. A hereditary predisposition in greyhounds to osteochondrosis of the physis between the apophysis and the cranioproximal tibial diaphysis is postulated.

  10. Automated Measurement of Patient-Specific Tibial Slopes from MRI

    PubMed Central

    Amerinatanzi, Amirhesam; Summers, Rodney K.; Ahmadi, Kaveh; Goel, Vijay K.; Hewett, Timothy E.; Nyman, Edward

    2017-01-01

    Background: Multi-planar proximal tibial slopes may be associated with increased likelihood of osteoarthritis and anterior cruciate ligament injury, due in part to their role in checking the anterior-posterior stability of the knee. Established methods suffer repeatability limitations and lack computational efficiency for intuitive clinical adoption. The aims of this study were to develop a novel automated approach and to compare the repeatability and computational efficiency of the approach against previously established methods. Methods: Tibial slope geometries were obtained via MRI and measured using an automated Matlab-based approach. Data were compared for repeatability and evaluated for computational efficiency. Results: Mean lateral tibial slope (LTS) for females (7.2°) was greater than for males (1.66°). Mean LTS in the lateral concavity zone was greater for females (7.8° for females, 4.2° for males). Mean medial tibial slope (MTS) for females was greater (9.3° vs. 4.6°). Along the medial concavity zone, female subjects demonstrated greater MTS. Conclusion: The automated method was more repeatable and computationally efficient than previously identified methods and may aid in the clinical assessment of knee injury risk, inform surgical planning, and implant design efforts. PMID:28952547

  11. Nail or plate in the management of distal extra-articular tibial fracture, what is better? Valutation of outcomes

    PubMed Central

    Bisaccia, Michele; Cappiello, Andrea; Meccariello, Luigi; Rinonapoli, Giuseppe; Falzarano, Gabriele; Medici, Antonio; Vicente, Cristina Ibáñez; Piscitelli, Luigi; Stano, Verdiana; Bisaccia, Olga; Caraffa, Auro

    2018-01-01

    Introduction: Distal tibial fractures are the most common long bone fractures. Several studies focusing on the methods of treatment of displaced distal tibial fractures have been published. To date, locked plates, intramedullary nails and external fixation are the three most used techniques. The aim of our study was to compare intramedullary nail (IMN) and locked plate (LP) for treatment of this kind of fracture. Materials and methods: We collected data on 81 patients with distal tibial fractures (distance from the joint between 40 and 100 mm) and we divided into two groups: IMN and LP. We compared in the 2 groups the mean operation time, the mean union time, the infection rate the rate of malunion and nonunion, the full weight bearing time. Results: No patient in the two groups developed a nonunion. None of the patients obtained a fair or poor outcome. Overall 52 patients obtained an excellent result (69.3%) and 23 obtained a good result (30.6%). Discussion: Our study results indicate a superiority of IMN over LP in terms of lower rates of infections and statistically significant shorter time to full weight bearing. Whereas LP appeared to be advantageous over IMN in terms of leading to a better anatomical and fixed reductions of the fracture and a lower rate of union complications. The two treatments achieved comparable results in terms of operation time, hospital stay, union time and functional outcomes. PMID:29469802

  12. Does human immunodeficiency virus status affect early wound healing in open surgically stabilised tibial fractures?: A prospective study.

    PubMed

    Howard, N E; Phaff, M; Aird, J; Wicks, L; Rollinson, P

    2013-12-01

    We compared early post-operative rates of wound infection in HIV-positive and -negative patients presenting with open tibial fractures managed with surgical fixation. The wounds of 84 patients (85 fractures), 28 of whom were HIV positive and 56 were HIV negative, were assessed for signs of infection using the ASEPIS wound score. There were 19 women and 65 men with a mean age of 34.8 years. A total of 57 fractures (17 HIV-positive, 40 HIV-negative) treated with external fixation were also assessed using the Checkett score for pin-site infection. The remaining 28 fractures were treated with internal fixation. No significant difference in early post-operative wound infection between the two groups of patients was found (10.7% (n = 3) vs 19.6% (n = 11); relative risk (RR) 0.55 (95% confidence interval (CI) 0.17 to 1.8); p = 0.32). There was also no significant difference in pin-site infection rates (17.6% (n = 3) vs 12.5% (n = 5); RR 1.62 (95% CI 0.44 to 6.07); p = 0.47). The study does not support the hypothesis that HIV significantly increases the rate of early wound or pin-site infection in open tibial fractures. We would therefore suggest that a patient's HIV status should not alter the management of open tibial fractures in patients who have a CD4 count > 350 cells/μl.

  13. Single Stage Tibial Osteotomy and Long Stem Total Knee Arthroplasty to Correct Adverse Consequences of Unequal Tibial Lengthening with an Ilizarov Circular Fixator.

    PubMed

    Fletcher, M D

    2015-01-01

    Correction of limb alignment or length discrepancy by circular external fixation is an accepted technique which relies on the correct biomechanical application of the frame and precise corrections which are frequently delegated to the patient to perform. Errors can occur in the execution of the correction by the patient and may result in significant deformity that requires remedial intervention. A 67 Caucasian female underwent multifocal limb reconstruction of the lower limb utilising a complex Ilizarov frame. Attendance at follow-up visits did not occur and the patient presented at 6 months with severe deformity due to incorrect execution of the correction protocol which resulted in a 45 degree varus deformity of the tibia. Subsequent correction via acute tibial osteotomy and stabilisation with a stemmed total knee replacement resulted in a good outcome. Patient compliance with post-operative management is paramount with distraction osteogenesis and should be ensured prior to embarking on lengthening or deformity correction.

  14. Long-term complications following tibial plateau levelling osteotomy in small dogs with tibial plateau angles > 30°.

    PubMed

    Knight, Rebekah; Danielski, Alan

    2018-04-21

    Tibial plateau levelling osteotomy (TPLO) is commonly performed for surgical management of cranial cruciate ligament (CCL) disease. It has been suggested that small dogs may have steeper tibial plateau angles (TPAs) than large dogs, which has been associated with increased complication rates after TPLO. A retrospective study was performed to assess the rate and nature of long-term complications following TPLO in small dogs with TPAs>30°. Medical records were reviewed for dogs with TPAs>30° treated for CCL rupture by TPLO with a 2.0 mm plate over a five-year period. Radiographs were assessed to determine TPA, postoperative tibial tuberosity width and to identify any complication. Up-to-date medical records were obtained from the referring veterinary surgeon and any complications in the year after surgery were recorded. The effects of different variables on complication rate were assessed using logistic regression analysis. Minor complications were reported in 22.7 per cent of cases. This is similar to or lower than previously reported complication rates for osteotomy techniques in small dogs and dogs with steep TPAs. A smaller postoperative TPA was the only variable significantly associated with an increased complication rate. No major complications were identified. © British Veterinary Association (unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  15. Reporting the Fatigue Life of 316L Stainless Steel Locking Compression Plate Implants: The Role of the Femoral and Tibial Biomechanics During the Gait.

    PubMed

    Rice, Devyn; Shaat, Mohamed

    2017-10-01

    In this study, the fatigue characteristics of femoral and tibial locking compression plate (LCP) implants are determined accounting for the knee biomechanics during the gait. A biomechanical model for the kinematics and kinetics of the knee joint during the complete gait cycle is proposed. The rotations of the femur, tibia, and patella about the knee joint during the gait are determined. Moreover, the patellar-tendon force (PT), quadriceps-tendon force (QT), the tibiofemoral joint force (TFJ), and the patellofemoral joint force (PFJ) through the standard gait cycle are obtained as functions of the body weight (BW). On the basis of the derived biomechanics of the knee joint, the fatigue factors of safety along with the fatigue life of 316L stainless steel femoral and tibial LCP implants are reported as functions of the BW and bone fracture location, for the first time. The reported results reveal that 316L stainless steel LCP implants for femoral surgeries are preferred for conditions in which the bone fracture is close to the knee joint and the BW is less than 80 kg. For tibial surgeries, 316L stainless steel LCP implants can be used for conditions in which the bone fracture is close to the knee joint and the BW is less than 100 kg. This study presents a critical guide for the determination of the fatigue characteristics of LCP implants. The obtained results reveal that the fatigue analyses should be performed on the basis of the body biomechanics to guarantee accurate designs of LCP implants for femoral and tibial orthopedic surgeries.

  16. Standing balance in people with trans-tibial amputation due to vascular causes: A literature review.

    PubMed

    Seth, Mayank; Lamberg, Eric

    2017-08-01

    Balance is an important variable to consider during the rehabilitation process of individuals with trans-tibial amputation. Limited evidence exists on the balance abilities of people with trans-tibial amputation due to vascular causes. The purpose of this article is to review literature and determine if standing balance is diminished in people with trans-tibial amputation due to vascular causes. Literature review. Data were obtained from PubMed, Google Scholar, OandP.org , CINHAL, and Science Direct. Studies were selected only if they included standing balance assessment of people with unilateral trans-tibial amputation due to vascular causes. The review yielded seven articles that met the inclusion criteria. The general test methodology required participants to stand still on force platforms, with feet together, while center of pressure or postural sway was recorded. According to the findings of this review, individuals with trans-tibial amputees due to vascular causes have diminished balance abilities. Limited evidence suggests their balance might be further diminished as compared to individuals with trans-tibial amputation due to trauma. Although the evidence is limited, because of the underlying pathology and presence of comorbidities in individuals with trans-tibial amputation due to vascular causes, one cannot ignore these findings, as even a minor injury from a fall may develop into a non-healing ulcer and affect their health and well-being more severely than individuals with trans-tibial amputation due to trauma. Clinical relevance Individuals with trans-tibial amputation due to vascular causes have diminished balance abilities compared to healthy individuals and individuals with trans-tibial amputation due to trauma. This difference should be considered when designing and fabricating prostheses. Prosthetists and rehabilitation clinicians should consider designing amputation cause-specific rehabilitation interventions, focussing on balance and other

  17. Segmental transports for posttraumatic lower extremity bone defects: are femoral bone transports safer than tibial?

    PubMed

    Liodakis, Emmanouil; Kenawey, Mohamed; Krettek, Christian; Ettinger, Max; Jagodzinski, Michael; Hankemeier, Stefan

    2011-02-01

    The long-term outcomes following femoral and tibial segment transports are not well documented. Purpose of the study is to compare the complication rates and life quality scores of femoral and tibial transports in order to find what are the complication rates of femoral and tibial monorail bone transports and if they are different? We retrospectively analyzed the medical records of 8 femoral and 14 tibial consecutive segment transports performed with the monorail technique between 2001 and 2008 in our institution. Mean follow-up was 5.1 ± 2.1 years with a minimum follow-up of 2 years. Aetiology of the defects was posttraumatic in all cases. Four femoral (50%) and nine tibial (64%) fractures were open. The Short Form-36 (SF-36) health survey was used to compare the life quality after femoral and tibial bone transports. The Mann-Whiney U test, Fisher exact test, and the Student's two tailed t-test were used for statistical analysis. P ≤ 0.05 was considered to be statistically significant. The tibial transport was associated with higher rates of severe complications and additional procedures (1.5 ± 0.9 vs. 3.4 ± 2.7, p = 0.048). Three patients of the tibial group were amputated because of recurrent infections and one developed a complete regenerate insufficiency that was treated with partial diaphyseal tibial replacement. Contrary to that none of patients of the femoral group developed a complete regenerate insufficiency or was amputated. Tibial bone transports have a higher rate of complete and incomplete regenerate insufficiency and can more often end in an amputation. The authors suggest systematic weekly controls of the CRP value and of the callus formation in patients with posttraumatic tibia bone transports. Further comparative studies comparing the results of bone transports with and without intramedullary implants are necessary.

  18. L'ostéotomie fémorale de varisation par ouverture externe pour les gonarthroses fémoro-tibiales latérales sur genuvalgum idiopathique: étude rétrospective de 10 cas

    PubMed Central

    Cheikh, Asma Ben; Maitigue, Mahmoud Ben; Masmoudi, Karim; Mouelhi, Thabet; Naouar, Nader; Grissa, Yamen; Bouattour, Karim; Osman, Walid; Ben Ayeche, Mohamed Laziz

    2017-01-01

    L'ostéotomie fémorale de varisation est un traitement conservateur des gonarthroses uni-compartimentales externes qui reste de pratique peu courante et dont les résultats sont peu étudiés. L'objectif de ce travail était d'évaluer les résultats cliniques et radiologiques de l'ostéotomie fémorale de varisation chez les sujets présentant une gonarthrose fémoro-tibiale externe sur genou valgum idiopathique répertoriés sur une période de 21 ans(de 1992 à 2013) au service d'Orthopédie du CHU Sahloul à Sousse. L'évaluation clinique des patients a été faite à partir du score IKS (International Knee Society). L'évaluation radiologique a été basée sur un bilan pré opératoire et un bilan au dernier recul. L'étude portait sur une série de 9 patients (et 10 genoux) dont l'âge moyen était de 45,2 ans avec un sex ratio de 0,5. Le recul moyen était de 99 mois. Le score genou moyen est passé de 48,4 points en préopératoire à 73,5 points au dernier recul avec une amélioration statistiquement significative (p<10-3). Le score fonctionnel moyen s'est amélioré d'une façon significative avec une valeur préopératoire de 49,5 points et une valeur 72 pointsau dernier recul. La correction finale a permis de réduire le valgus à une moyenne de 3,7° pour une valeur pré-opératoire de 14°. Cette étude, ainsi que l'analyse de la littérature, nous ont permis de déduire que l'ostéotomie fémorale de varisation est l'indication de choix dans les genuvalgum invalidant d'origine fémorale, en l'absence d'arthrite rhumatismale, de surcharge pondérale, d'arthrose fémoro-tibiale interne ou fémoro-patellaire sévère. PMID:29138658

  19. Physeal growth arrest after tibial lengthening in achondroplasia: 23 children followed to skeletal maturity.

    PubMed

    Song, Sang-Heon; Agashe, Mandar Vikas; Huh, Young-Jae; Hwang, Soon-Young; Song, Hae-Ryong

    2012-06-01

    Bilateral tibial lengthening has become one of the standard treatments for upper segment-lower segment disproportion and to improve quality of life in achondroplasia. We determined the effect of tibial lengthening on the tibial physis and compared tibial growth that occurred at the physis with that in non-operated patients with achondroplasia. We performed a retrospective analysis of serial radiographs until skeletal maturity in 23 achondroplasia patients who underwent bilateral tibial lengthening before skeletal maturity (lengthening group L) and 12 achondroplasia patients of similar height and age who did not undergo tibial lengthening (control group C). The mean amount of lengthening of tibia in group L was 9.2 cm (lengthening percentage: 60%) and the mean age at the time of lengthening was 8.2 years. The mean duration of follow-up was 9.8 years. Skeletal maturity (fusion of physis) occurred at 15.2 years in group L and at 16.0 years in group C. The actual length of tibia (without distraction) at skeletal maturity was 238 mm in group L and 277 mm in group C (p = 0.03). The mean growth rates showed a decrease in group L relative to group C from about 2 years after surgery. Physeal closure was most pronounced on the anterolateral proximal tibial physis, with relative preservation of the distal physis. Our findings indicate that physeal growth rate can be disturbed after tibial lengthening in achondroplasia, and a close watch should be kept for such an occurrence-especially when lengthening of more than 50% is attempted.

  20. High resolution ultrasonography of the tibial nerve in diabetic peripheral neuropathy.

    PubMed

    Singh, Kunwarpal; Gupta, Kamlesh; Kaur, Sukhdeep

    2017-12-01

    High-resolution ultrasonography of the tibial nerve is a fast and non invasive tool for diagnosis of diabetic peripheral neuropathy. Our study was aimed at finding out the correlation of the cross sectional area and maximum thickness of nerve fascicles of the tibial nerve with the presence and severity of diabetic peripheral neuropathy. 75 patients with type 2 diabetes mellitus clinically diagnosed with diabetic peripheral neuropathy were analysed, and the severity of neuropathy was determined using the Toronto Clinical Neuropathy Score. 58 diabetic patients with no clinical suspicion of diabetic peripheral neuropathy and 75 healthy non-diabetic subjects were taken as controls. The cross sectional area and maximum thickness of nerve fascicles of the tibial nerves were calculated 3 cm cranial to the medial malleolus in both lower limbs. The mean cross sectional area (22.63 +/- 2.66 mm 2 ) and maximum thickness of nerve fascicles (0.70 mm) of the tibial nerves in patients with diabetic peripheral neuropathy compared with both control groups was significantly larger, and statistically significant correlation was found with the Toronto Clinical Neuropathy Score ( p < 0.001). The diabetic patients with no signs of peripheral neuropathy had a larger mean cross sectional area (14.40 +/- 1.72 mm 2 ) and maximum thickness of nerve fascicles of the tibial nerve (0.40 mm) than healthy non-diabetic subjects (12.42 +/- 1.01 mm 2 and 0.30 mm respectively). The cross sectional area and maximum thickness of nerve fascicles of the tibial nerve is larger in diabetic patients with or without peripheral neuropathy than in healthy control subjects, and ultrasonography can be used as a good screening tool in these patients.

  1. Chronic shin splints. Classification and management of medial tibial stress syndrome.

    PubMed

    Detmer, D E

    1986-01-01

    A clinical classification and treatment programme has been developed for chronic medial tibial stress syndrome. Medial tibial stress syndrome has been reported to be either tibial stress fracture or microfracture, tibial periostitis, or distal deep posterior chronic compartment syndrome. Three chronic types exist and may coexist: Type I (tibial microfracture, bone stress reaction or cortical fracture); type II (periostalgia from chronic avulsion of the periosteum at the periosteal-fascial junction); and type III (chronic compartment syndrome syndrome). Type I disease is treated nonoperatively. Operations for resistant types II and III medial tibial stress syndrome were performed in 41 patients. Bilaterality was common (type II, 50% type III, 88%). Seven had coexistent type II/III; one had type I/II. Preoperative symptoms averaged 24 months in type II, 6 months in type III, and 33 months in types II/III. Mean age was 22 years (15 to 51). Resting compartment pressures were normal in type II (mean 12 mm Hg) and elevated in type III and type II/III (mean 23 mm Hg). Type II and type II/III patients received fasciotomy plus periosteal cauterisation. Type III patients had fasciotomy only. All procedures were performed on an outpatient basis using local anaesthesia. Follow up was complete and averaged 6 months (2 to 14 months). Improved performance was as follows: type II, 93%, type III, 100%; type II/III, 86%. Complete cures were as follows: type II, 78%; type III, 75%; and type II/III, 57%. This experience suggests that with precise diagnosis and treatment involving minimal risk and cost the athlete has a reasonable chance of return to full activity.

  2. [Comparison of LCP and locked intramedullary nailing fixation in treatment of tibial diaphysis fractures].

    PubMed

    Huang, Peng; Tang, Peifu; Yao, Qi

    2007-11-01

    To evaluate the treatment results of LCP and locked intramedullary nailing for tibial diaphysis fractures. From October 2003 to April 2006, 55 patients with tibial diaphysis fractures (58 fractures) were treated. Of them there were 39 males and 16 females with an average of 39 years years ( 14 to 62 years). The fractures were on the left side in 27 patients and on the right side in 31 patients (3 patients had bilateral involvement). Thirty-four fractures were treated by intramedullary nailing (intramedullary nailing group) and 24 fractures by LCP fixation (LCP group). The average disease course was 3 days (intramedullary nailing group) and 3.1 days (LCP group). The operation time, the range of motion of knee and ankle joints, fracture healing time, and complications were evaluated. The patients were followed up 8-26 months (13 months on average). The operation time was 84.0+/-9.2 min (intramedullary nailing group) and 69.0+/-8.4 min (LCP group); the average cost in hospital was yen 19,297.78 in the intramedullary nailing group and yen 14,116.55 in the LCP group respectively, showing significant differences (P < 0.05). The flexion and extension of knee joint was 139.0 +/- 3.7 degrees and 4.0 +/- 0.7 degrees in intramedullary nailing group and 149.0+/-4.2 degrees and 0+/-0.4 degrees in LCP group, showing no significant difference (P>0.05). The doral flexion and plantar flexion of ankle joint were 13.0+/-1.7 degrees and 41.0+/-2.6 degrees in intramedullary nailing group, and 10.0+/-1.4 degrees and 44.0+/-2.3 degrees in LCP group, showing no significant differences (P>0.05). The mean healing time was 3.3 months in intramedullary nailing group, and 3. 1 months in LCP group. Length discrepancy occurred in 1 case (2.5 cm), delayed union in 1 case and nailing end trouble in 3 cases in intramedullary nailing group; moreover rotation deformity occurred 1 case and anterior knee pain occurred in 6 cases (17.1%). One angulation and open fracture developed osteomyelitis in 1

  3. An external dosimetry audit programme to credential static and rotational IMRT delivery for clinical trials quality assurance.

    PubMed

    Eaton, David J; Tyler, Justine; Backshall, Alex; Bernstein, David; Carver, Antony; Gasnier, Anne; Henderson, Julia; Lee, Jonathan; Patel, Rushil; Tsang, Yatman; Yang, Huiqi; Zotova, Rada; Wells, Emma

    2017-03-01

    External dosimetry audits give confidence in the safe and accurate delivery of radiotherapy. The RTTQA group have performed an on-site audit programme for trial recruiting centres, who have recently implemented static or rotational IMRT, and those with major changes to planning or delivery systems. Measurements of reference beam output were performed by the host centre, and by the auditor using independent equipment. Verification of clinical plans was performed using the ArcCheck helical diode array. A total of 54 measurement sessions were performed between May 2014 and June 2016 at 28 UK institutions, reflecting the different combinations of planning and delivery systems used at each institution. Average ratio of measured output between auditor and host was 1.002±0.006. Average point dose agreement for clinical plans was -0.3±1.8%. Average (and 95% lower confidence intervals) of gamma pass rates at 2%/2mm, 3%/2mm and 3%/3mm respectively were: 92% (80%), 96% (90%) and 98% (94%). Moderately significant differences were seen between fixed gantry angle and rotational IMRT, and between combination of planning systems and linac manufacturer, but not between anatomical treatment site or beam energy. An external audit programme has been implemented for universal and efficient credentialing of IMRT treatments in clinical trials. Good agreement was found between measured and expected doses, with few outliers, leading to a simple table of optimal and mandatory tolerances for approval of dosimetry audit results. Feedback was given to some centres leading to improved clinical practice. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  4. [Clinical observation on external humeral epicondylitis treated with back-rotation traction].

    PubMed

    Fu, Rui-yang; Wang, Ya-ling; Gu, Zhong-zhong; Wang, Bao-hu; Zhu, Qi; Li, Ye; Wang, En-ping

    2009-02-01

    To evaluate the clinical effect of manipulation on external humeral epicondylitis, and to explore the functional mechanism and ideal treatment. Eighty-six patients who had been treated with acupuncture, obturation and needle-knife were divided into routine group and treatment group randomly. In routine group, there were 42 cases (male 13, female 29, means 40.8 years); and in treatment group there were 44 cases (male 16, female 28, means 41.2 years). There's no further treatment for the routine group after the therapy above, while the treatment group was added with back-rotation traction manipulation. Taking Verhaar therapy effect appraisal system of tennis-ball elbow to evaluate elbow function. After 7 days of therapy, the results were excellent in 13 cases, good in 16, fair in 4, poor in 9 in the routine group; and excellent in 38, good in 4 and fair in 2 in treatment group; and the effect in the treatment group were better than that of the routine group (P < 0.010). Half a year later, in the routine group 38 cases recurrenced and in the treatment group 10 cases recurrenced. Making manipulation after routine acupuncture, local obturation and needle-knife has active meaning to remove trauma inflammation, prevent re-conglutination, promote recovery and prevent recurrence.

  5. Pathomorphism of spiral tibial fractures in computed tomography imaging.

    PubMed

    Guzik, Grzegorz

    2011-01-01

    Spiral fractures of the tibia are virtually homogeneous with regard to their pathomorphism. The differences that are seen concern the level of fracture of the fibula, and, to a lesser extent, the level of fracture of the tibia, the length of fracture cleft, and limb shortening following the trauma. While conventional radiographs provide sufficient information about the pathomorphism of fractures, computed tomography can be useful in demonstrating the spatial arrangement of bone fragments and topography of soft tissues surrounding the fracture site. Multiple cross-sectional computed tomography views of spiral fractures of the tibia show the details of the alignment of bone chips at the fracture site, axis of the tibial fracture cleft, and topography of soft tissues that are not visible on standard radiographs. A model of a spiral tibial fracture reveals periosteal stretching with increasing spiral and longitudinal displacement. The cleft in tibial fractures has a spiral shape and its line is invariable. Every spiral fracture of both crural bones results in extensive damage to the periosteum and may damage bellies of the long flexor muscle of toes, flexor hallucis longus as well as the posterior tibial muscle. Computed tomography images of spiral fractures of the tibia show details of damage that are otherwise invisible on standard radiographs. Moreover, CT images provide useful information about the spatial location of the bone chips as well as possible threats to soft tissues that surround the fracture site. Every spiral fracture of the tibia is associated with disruption of the periosteum. 1. Computed tomography images of spiral fractures of the tibia show details of damage otherwise invisible on standard radiographs, 2. The sharp end of the distal tibial chip can damage the tibialis posterior muscle, long flexor muscles of the toes and the flexor hallucis longus, 3. Every spiral fracture of the tibia is associated with disruption of the periosteum.

  6. The immediate effect of neuromuscular joint facilitation on the rotation of the tibia during walking.

    PubMed

    Li, Desheng; Huang, Qiuchen; Huo, Ming; Hiiragi, Yukinobu; Maruyama, Hitoshi

    2017-01-01

    [Purpose] The aim of this study was to investigate the change in tibial rotation during walking among young adults after neuromuscular joint facilitation therapy. [Subjects and Methods] The subjects were twelve healthy young people (6 males, 6 females). A neuromuscular joint facilitation intervention and nonintervention were performed. The interventions were performed one after the other, separated by a 1-week interval. The order of the interventions was completely randomized. The rotation of the tibia during walking was evaluated before and after treatment. [Results] The neuromuscular joint facilitation group demonstrated increased lateral rotation of the tibia in the overall gait cycle and stance phase, and decreased medial rotation of the tibia in the overall gait cycle, stance phase, and swing phase after the neuromuscular joint facilitation intervention. In the control group, there were no significant differences. [Conclusion] These results suggest neuromuscular joint facilitation intervention has an immediate effect on the rotational function of the knee.

  7. Assessment of the midflexion rotational laxity in posterior-stabilized total knee arthroplasty.

    PubMed

    Hino, Kazunori; Kutsuna, Tatsuhiko; Oonishi, Yoshio; Watamori, Kunihiko; Kiyomatsu, Hiroshi; Iseki, Yasutake; Watanabe, Seiji; Ishimaru, Yasumitsu; Miura, Hiromasa

    2017-11-01

    To evaluate changes in midflexion rotational laxity before and after posterior-stabilized (PS)-total knee arthroplasty (TKA). Twenty-nine knees that underwent PS-TKA were evaluated. Manual mild passive rotational stress was applied to the knees, and the internal-external rotational angle was measured automatically by a navigation system at 30°, 45°, 60°, and 90° of knee flexion. The post-operative internal rotational laxity was statistically significantly increased compared to the preoperative level at 30°, 45°, 60°, and 90° of flexion. The post-operative external rotational laxity was statistically significantly decreased compared to the preoperative level at 45° and 60° of flexion. The post-operative internal-external rotational laxity was statistically significantly increased compared to the preoperative level only at 30° of flexion. The preoperative and post-operative rotational laxity showed a significant correlation at 30°, 45°, 60°, and 90° of flexion. Internal-external rotational laxity increases at the initial flexion range due to resection of both the anterior or posterior cruciate ligaments and retention of the collateral ligaments in PS-TKA. Preoperative and post-operative rotational laxity indicated a significant correlation at the midflexion range. This study showed that a large preoperative rotational laxity increased the risk of a large post-operative laxity, especially at the initial flexion range in PS-TKA. III.

  8. Sequential avulsions of the tibial tubercle in an adolescent basketball player.

    PubMed

    Huang, Ying Chieh; Chao, Ying-Hao; Lien, Fang-Chieh

    2010-05-01

    Tibial tubercle avulsion is an uncommon fracture in physically active adolescents. Sequential avulsion of tibial tubercles is extremely rare. We reported a healthy, active 15-year-old boy who suffered from left tibial tubercle avulsion fracture during a basketball game. He received open reduction and internal fixation with two smooth Kirschner wires and a cannulated screw, with every effort to reduce the plate injury. Long-leg splint was used for protection followed by programmed rehabilitation. He recovered uneventfully and returned to his previous level of activity soon. Another avulsion fracture happened at the right tibial tubercle 3.5 months later when he was playing the basketball. From the encouragement of previous successful treatment, we provided him open reduction and fixation with two small-caliber screws. He recovered uneventfully and returned to his previous level of activity soon. No genu recurvatum or other deformity was happening in our case at the end of 2-year follow-up. No evidence of Osgood-Schlatter disease or osteogenesis imperfecta was found. Sequential avulsion fractures of tibial tubercles are rare. Good functional recovery can often be obtained like our case if we treat it well. To a physically active adolescent, we should never overstate the risk of sequential avulsion of the other leg to postpone the return to an active, functional life.

  9. Effects of a compression garment on shoulder external rotation force outputs during isotonic contractions.

    PubMed

    Tsuruike, Masaaki; Ellenbecker, Todd S

    2013-02-01

    The use of compression garments (CGs) has been advocated for performance enhancement and recovery in athletes. The effect of a CG on humeral rotation motor control has not been previously tested. The purpose of this study was to examine the isotonic contraction of external rotation (ER) of the glenohumeral joint at different force outputs to determine the effect of wearing a long sleeve CG on muscular performance. Twelve male college tennis players and 12 male college soccer players were tested for ER of the dominant shoulder during both concentric and eccentric isotonic contractions. The subjects performed 5 consecutive repetitions of both concentric and eccentric ER at 20-30% and 40-50% of maximum voluntary isometric contraction (MVIC) intensities. All subjects were tested with and without CG as well as with and without ongoing visual feedback information (OVFI). The order of CG wearing and the presence of OVFI were randomly assigned across all subjects. The results indicated a significant 3-way interaction between CG wearing and OVFI across 2 loads. Specifically, significantly different mean value of the completion time was found between OVFI and no-OVFI without CG wearing at 40-50% of MVIC, whereas no difference in the completion time was found with and without OVFI with CG wearing. Taken together, with CG wearing, athletes may have ER at 40-50% of MVIC more readily maintained by peripheral feedback without visuomotor control imposed on force outputs as compared without CG wearing.

  10. Gender differences in the restoration of knee joint biomechanics during gait after anterior cruciate ligament reconstruction.

    PubMed

    Asaeda, Makoto; Deie, Masataka; Fujita, Naoto; Kono, Yoshifumi; Terai, Chiaki; Kuwahara, Wataru; Watanabe, Hodaka; Kimura, Hiroaki; Adachi, Nobuo; Sunagawa, Toru; Ochi, Mitsuo

    2017-03-01

    The aim of our study was to evaluate the effects of gender on recovery of knee joint biomechanics over the stance phase of gait after reconstruction of the anterior cruciate ligament (ACL). Gait parameters and knee joint kinematics and kinetics were compared in 32 patients (16 male and 16 female) who underwent ACL reconstruction for a unilateral ACL deficiency, with comparison to an age-, height-, and weight-matched Control group. Knee flexion, adduction and tibial rotation angles were measured and knee extension and abduction moment was calculated by inverse dynamics methods. Females exhibited more tibial external rotation, in both the Control and ACL groups (P<0.05), which was not changed after ACL reconstruction. Prior to reconstruction, sagittal plane biomechanics were changed, in both males and females, compared to the Control groups (P<0.05). These abnormal sagittal plane mechanics were recovered at 12months, but not six months post-reconstruction. We identified gender-based differences in tibial rotation that influenced the kinematics and kinetics of the knee over the stance phase of gait, both pre-operatively and post-ACL reconstruction. Evaluation of biomechanical effects of ACL injury, before and after reconstruction, should be separately evaluated for females and males. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Functional and radiological evaluations of high-energy tibial plateau fractures treated with double-buttress plate fixation.

    PubMed

    Yu, Z; Zheng, L; Zhang, Y; Li, J; Ma, Bao'an

    2009-05-14

    This study was designed to evaluate the functional and radiological outcomes of patients with complex tibial plateau fractures treated with double-buttress plate fixation. Sixty five cases of complex (Schatzker type V and VI) tibial plateau fractures were treated with double-buttress plate fixation in our centre from September 2001 to September 2006 through two separate plate incisions. Fifty four patients were followed up for a period ranging from 12 to 48 months and evaluated for the functional and radiological outcomes by a series of standard questionnaire and measurement. Due to the good exposure without any extensive soft-tissue dissection of the double-buttress plate fixation, the fractures in all 54 patients were healed and the treatment achieved greater than 90% of satisfactory-to-excellent rates of reduction. The mean time of bone union was 15.4 weeks (range, 12-30 weeks), and the mean time of full weight-bearing was 18.7 weeks (range, 14-26 weeks). At the final follow-up visit, no patients showed knee instability; the mean range of motion was 107.6 degrees (range, 85 degrees -130 degrees ). For all patients, no statistically significant difference in the functional outcomes was observed between their 6-months and final follow-up visits; or in the radiological findings between their immediate postoperative and final follow-up examinations. Double-buttress plate fixation is a feasible treatment option for bilcondylar and complex tibial plateau fractures. Although technically demanding, it offers reliable stability without additional postoperative adjuvant external fixation, and at the same time avoids extensive soft tissue dissection, allowing the early painless range of motion.

  12. Management of combined knee medial compartmental and patellofemoral osteoarthritis with lateral closing wedge osteotomy with anterior translation of the distal tibial fragment: Does the degree of anteriorization affect the functional outcome and posterior tibial slope?

    PubMed

    Sadek, Ahmed F; Osman, Mohammed K; Laklok, Mohamed A

    2016-10-01

    The aim of this study was to assess the effect of degree of anterior translation of the distal tibial fragment after lateral closing wedge high tibial osteotomy in patients having combined knee medial compartmental and patellofemoral osteoarthritis. A retrospective study was conducted on 64 patients who were operated on for combined knee medial compartmental and patellofemoral osteoarthritis, by lateral closing wedge high tibial osteotomy with anterior translation of the distal tibial fragment. They were divided into two groups; Group I comprising 32 patients (34 knees, mean age of 51.4±7years) whose degree of anterior translation was <1cm and Group II comprising 32 patients (33 knees, mean age of 52.2±8.3years) whose degree of anterior translation was >1.5cm. The final assessment was performed via: visual analog scale, postoperative Knee Society clinical rating system function score, active range of motion, time to union, degree of correction of mechanical axis, posterior tibial slope, and Insall-Salvati ratio. Group II patients exhibited statistically superior mean postoperative score and better return to their work than Group I (P=0.013, 0.076, respectively). Both groups showed statistically significant differences between the preoperative and postoperative evaluation parameters (P<0.001). The posterior tibial slope was decreased in both groups but with no significant difference (P=0.527). Lateral closing wedge high tibial osteotomy combined with anterior translation of the distal tibial fragment more than 1.5cm achieved significantly better postoperative functional knee score. Both groups exhibited comparatively decreased posterior tibial slope. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Open-Wedge High Tibial Osteotomy: RCT 2 Years RSA Follow-Up.

    PubMed

    Lind-Hansen, Thomas Bruno; Lind, Martin Carøe; Nielsen, Poul Torben; Laursen, Mogens Berg

    2016-11-01

    We investigated the influence of three different bone grafting materials on stability and clinical outcome of the healing open-wedge high tibial osteotomy (OW-HTO) with immediate partial weight bearing. A total of 45 (3 × 15) patients were randomized to injectable calcium phosphate cement (Calcibon; Biomet-Merck Biomaterials GmbH, Darmstadt, Germany), local bone autograft, or iliac crest autograft. Stability of the bony healing was evaluated with radiostereometric analysis (RSA) up to 24 months postoperatively. Clinical outcome was evaluated with the knee injury and osteoarthritis outcome score (KOOS). RSA revealed translations and rotations close to zero regardless of bone grafting material, with no statistically significant differences between the groups. Clinically, the Calcibon group had lower quality of life KOOS subscore at 2 years follow-up. We conclude that with a stable implant and 6 weeks of partial weight bearing, local autografting is sufficient to achieve solid bone consolidation following OW-HTO. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  14. The Hillman Rotation: An External Clinic Model.

    ERIC Educational Resources Information Center

    Sears, Joan M.; Veith, Jack

    2000-01-01

    Describes the external optometric education program at the Sidney Hillman Health Centre (Chicago, Illinois). Discusses the history of the clinic, its administrative and educational philosophy, and its affiliation with two prominent hospitals and the Illinois College of Optometry. (DB)

  15. Evaluation of Hip Internal and External Rotation Range of Motion as an Injury Risk Factor for Hip, Abdominal and Groin Injuries in Professional Baseball Players

    PubMed Central

    Ma, Richard; Zhou, Hanbing; Thompson, Matthew; Dawson, Courtney; Nguyen, Joseph; Coleman, Struan

    2015-01-01

    Normal hip range of motion (ROM) is essential in running and transfer of energy from lower to upper extremities during overhead throwing. Dysfunctional hip ROM may alter lower extremity kinematics and predispose athletes to hip and groin injuries. The purpose of this study is characterize hip internal/external ROM (Arc) and its effect on the risk of hip, hamstring, and groin injuries in professional baseball players. Bilateral hip internal and external ROM was measured on all baseball players (N=201) in one professional organization (major and minor league) during spring training. Players were organized according to their respective positions. All injuries were documented prospectively for an entire MLB season (2010 to 2011). Data was analyzed according to position and injuries during the season. Total number of players (N=201) with an average age of 24±3.6 (range=17-37). Both pitchers (N=93) and catchers (N=22) had significantly decreased mean hip internal rotation and overall hip arc of motion compared to the positional players (N=86). Players with hip, groin, and hamstring injury also had decreased hip rotation arc when compared to the normal group. Overall, there is a correlation between decreased hip internal rotation and total arc of motion with hip, hamstring, and groin injuries. PMID:26793294

  16. Flat midsubstance of the anterior cruciate ligament with tibial "C"-shaped insertion site.

    PubMed

    Siebold, Rainer; Schuhmacher, Peter; Fernandez, Francis; Śmigielski, Robert; Fink, Christian; Brehmer, Axel; Kirsch, Joachim

    2015-11-01

    This anatomical cadaver study was performed to investigate the flat appearance of the midsubstance shape of the anterior cruciate ligament (ACL) and its tibial "C"-shaped insertion site. The ACL midsubstance and the tibial ACL insertion were dissected in 20 cadaveric knees (n = 6 fresh frozen and n = 14 paraffined). Magnifying spectacles were used for all dissections. Morphometric measurements were performed using callipers and on digital photographs. In all specimens, the midsubstance of the ACL was flat with a mean width of 9.9 mm, thickness of 3.9 mm and cross-sectional area of 38.7 mm(2). The "direct" "C"-shaped tibial insertion runs from along the medial tibial spine to the anterior aspect of the lateral meniscus. The mean width (length) of the "C" was 12.6 mm, its thickness 3.3 mm and area 31.4 mm(2). The centre of the "C" was the bony insertion of the anterior root of the lateral meniscus overlayed by fat and crossed by the ACL. No posterolateral (PL) inserting ACL fibres were found. Together with the larger "indirect" part (area 79.6 mm(2)), the "direct" one formed a "duck-foot"-shaped footprint. The tibial ACL midsubstance and tibial "C"-shaped insertion are flat and are resembling a "ribbon". The centre of the "C" is the bony insertion of the anterior root of the lateral meniscus. There are no central or PL inserting ACL fibres. Anatomical ACL reconstruction may therefore require a flat graft and a "C"-shaped tibial footprint reconstruction with an anteromedial bone tunnel for single bundle and an additional posteromedial bone tunnel for double bundle.

  17. Inverted u-shaped purse and rotation flaps: correcting the inferoposterior deformity of reconstructed ears after canaloplasty of the external auditory meatus.

    PubMed

    Ji, Chenyang; Zhang, Jinming; An, Geng; Liang, Weiqiang; Pan, Shujuan; Chen, Yuhong; Wei, Zhe; Zhang, Ganlin

    2012-06-01

    After patients with congenital microtia receive external ear canal plasty, the mastoid area usually has insufficient space for ear reconstruction. Hence, after ear reconstruction, an inferoposterior position deformity of the ear appears to some extent. Using inverted U-shaped purse and rotation flaps can correct this deformity effectively. From May of 2009 to September of 2011, five patients received the described procedures in the authors' department. Inverted U-shaped purse and rotation flaps were used for all the patients. The inverted U-shaped purse flap was used to reduce the area of the canal orifice and to lower the position, and the rotation flap was applied to turn the ear in a more superoposterior position. Two patients also received full-thickness skin grafting to cover the secondary wound. In four patients, V-Y-plasty or Z-plasty was used to adjust the flap transition. For the five patients, the distances between the ear antihelix and canal orifice were shortened, and the areas of the canal orifice were diminished. The retroversion of the auricle was corrected in various degrees, and the angles of the long axis of the auricle and the horizontal line were increased an average of 14.4°. The vertical distance between the top of the helix and the center of the canal orifice was increased an average of 15.2 mm. A slight dog ear deformity in front of the crus of the helix was left after the operation, but it was alleviated in the follow-up period. By using inverted U-shaped purse and rotation flaps, the inferoposterior position deformity of the reconstructed ear after external ear canal plasty in congenital microtia can be resolved effectively. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors http://www.springer.com/00266.

  18. A Profile of Glenohumeral Internal and External Rotation Motion in the Uninjured High School Baseball Pitcher, Part I: Motion

    PubMed Central

    Hurd, Wendy J.; Kaplan, Kevin M.; ElAttrache, Neal S.; Jobe, Frank W.; Morrey, Bernard F.; Kaufman, Kenton R.

    2011-01-01

    Context: The magnitude of motion that is normal for the throwing shoulder in uninjured baseball pitchers has not been established. Chronologic factors contributing to adaptations in motion present in the thrower's shoulder also have not been established. Objectives: To develop a normative profile of glenohumeral rotation motion in uninjured high school baseball pitchers and to evaluate the effect of chronologic characteristics on the development of adaptations in shoulder rotation motion. Design: Cohort study. Setting: Baseball playing field. Patients or Other Participants: A total of 210 uninjured male high school baseball pitchers (age = 16±1.1 years, height = 1.8 + 0.1 m, mass = 77.5±11.2 kg, pitching experience = 6±2.3 years). Intervention(s): Using standard goniometric techniques, we measured passive rotational glenohumeral range of motion bilaterally with participants in the supine position. Main Outcome Measure(s): Paired t tests were performed to identify differences in motion between limbs for the group. Analysis of variance and post hoc Tukey tests were conducted to identify differences in motion by age. Linear regressions were performed to determine the influence of chronologic factors on limb motion. Results: Rotation motion characteristics for the population were established. We found no difference between sides for external rotation (ER) at 0° of abduction (t209 = 0.658, P = .51), but we found side-to-side differences in ER (t209 = −13.012, P<.001) and internal rotation (t209 = 15.304, P<.001) at 90° of abduction. Age at the time of testing was a significant negative predictor of ER motion for the dominant shoulder (R2 = 0.019, P = .049) because less ER motion occurred at the dominant shoulder with advancing age. We found no differences in rotation motion in the dominant shoulder across ages (F4,205 range, 0.451–1.730, P>.05). Conclusions: This range-of-motion profile might be used to assist with the interpretation of normal and atypical

  19. Medial tibial pain. A prospective study of its cause among military recruits.

    PubMed

    Milgrom, C; Giladi, M; Stein, M; Kashtan, H; Margulies, J; Chisin, R; Steinberg, R; Swissa, A; Aharonson, Z

    1986-12-01

    In a prospective study of 295 infantry recruits during 14 weeks of basic training, 41% had medial tibial pain. Routine scintigraphic evaluation in cases of medial tibial bone pain showed that 63% had abnormalities. A stress fracture was found in 46%. Only two patients had periostitis. None had ischemic medial compartment syndrome. Physical examination could not differentiate between cases with medial tibial bone pain secondary to stress fractures and those with scintigraphically normal tibias. When both pain and swelling were localized in the middle one-third of the tibia, the lesion most likely proved to be a stress fracture.

  20. Rotational glenohumeral adaptations are associated with shoulder pathology in professional male handball players.

    PubMed

    Lubiatowski, Przemyslaw; Kaczmarek, Piotr; Cisowski, Pawel; Breborowicz, Ewa; Grygorowicz, Monika; Dzianach, Marcin; Krupecki, Tomasz; Laver, Lior; Romanowski, Leszek

    2018-01-01

    Glenohumeral range of motion adaptations may affect throwing athletes and contribute to shoulder injury. The purpose of this study was to evaluate shoulder rotation deficits among elite professional handball players and its correlation to the presence of shoulder pain and morphological changes. Eighty-seven elite professional handball players and 41 healthy non-athlete volunteers participated in the study. Evaluations included measurement of range of internal and external rotation, total arch of motion, identification of shoulder pain and ultrasound scan for diagnosis of rotator cuff tears and internal impingement. Glenohumeral rotational deficits (>20-25°) were found among 11 players group (13%). The throwing shoulders in the players group showed a decrease in internal rotation and an increase in external rotation with significantly larger ranges among players compared to the non-athlete group. Internal rotation deficit >20° was associated with higher incidence of shoulder pain among players. Both internal rotation deficits (>25°) and total arch of motion deficit (>20°) co-existed with higher incidence of internal impingement. Shoulder pain was common (36/97-41%) and was associated with decreased external rotation and total arch of motion. Internal impingement (found in 13/87-15%) correlated with decreased rotation ranges and a greater deficit in total arch of motion, whereas higher gain in external rotation correlated with a partial rotator cuff tear (found in 12/87-14%). Shoulder pathologies and problems commonly affected the group of handball players. Greater glenohumeral rotational deficits in throwing shoulders of handball players correlate with shoulder pain and internal impingement, while increased external rotation with partial rotator cuff tears. Such deficits affect 13% of the athlete population. Major clinical relevance of the study is to monitor handball players' shoulders both clinically and by proper imaging. Evaluation of range of rotation seems

  1. Asymmetry in gait pattern following tibial shaft fractures - a prospective one-year follow-up study of 49 patients.

    PubMed

    Larsen, Peter; Laessoe, Uffe; Rasmussen, Sten; Graven-Nielsen, Thomas; Berre Eriksen, Christian; Elsoe, Rasmus

    2017-01-01

    Despite the high number of studies evaluating the outcomes following tibial shaft fractures, the literature lacks studies including objective assessment of patients' recovery regarding gait pattern. The purpose of the present study was to evaluate whether gait patterns at 6 and 12 months post-operatively following intramedullary nailing of a tibial shaft fracture are different compared with a healthy reference population. The study design was a prospective cohort study. The primary outcome measurement was the gait patterns at 6 and 12 months post-operatively measured with a 6-metre-long pressure-sensitive mat. The mat registers footprints and present gait speed, cadence as well as temporal and spatial parameters of the gait cycle. Gait patterns were compared to a healthy reference population. 49 patients were included with a mean age of 43.1 years (18-79 years). Forty-three patients completed the 12-month follow-up (88%). Gait speed and cadence were significantly increased between the 6- and 12-month follow-up (P<0.001). At 6-month follow-up, patients showed considerable asymmetry in the injured leg compared with the non-injured leg: single-support time 12.8% shorter, swing-time 12.8% longer, step-length 11.9% shorter, and rotation of the foot increased by 32.3%. At the 12-month follow-up, gait asymmetry become almost normalized compared to a healthy reference group. In patients treated by intramedullary nailing following a tibial shaft fracture, gait asymmetry accompanied with slower speed and cadence are common during the first 6 months and become normalized compared with a healthy reference population between 6 and 12 months post-operatively. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Tibial and fibular nerves evaluation using intraoperative electromyography in rats.

    PubMed

    Nepomuceno, André Coelho; Politani, Elisa Landucci; Silva, Eduardo Guandelini da; Salomone, Raquel; Longo, Marco Vinicius Losso; Salles, Alessandra Grassi; Faria, José Carlos Marques de; Gemperli, Rolf

    2016-08-01

    To evaluate a new model of intraoperative electromyographic (EMG) assessment of the tibial and fibular nerves, and its respectives motor units in rats. Eight Wistar rats underwent intraoperative EMG on both hind limbs at two different moments: week 0 and week 12. Supramaximal electrical stimulation applied on sciatic nerve, and compound muscle action potential recorded on the gastrocnemius muscle (GM) and the extensor digitorum longus muscle (EDLM) through electrodes at specifics points. Motor function assessment was performaced through Walking Track Test. Exposing the muscles and nerves for examination did not alter tibial (p=0.918) or fibular (p=0.877) function between the evaluation moments. Electromyography of the GM, innervated by the tibial nerve, revealed similar amplitude (p=0.069) and latency (p=0.256) at week 0 and at 12 weeks, creating a standard of normality. Meanwhile, electromyography of the EDLM, innervated by the fibular nerve, showed significant differences between the amplitudes (p=0.003) and latencies (p=0.021) at the two different moments of observation. Intraoperative electromyography determined and quantified gastrocnemius muscle motor unit integrity, innervated by tibial nerve. Although this study was not useful to, objectively, assess extensor digitorum longus muscle motor unit, innervated by fibular nerve.

  3. Total knee arthroplasty after high tibial osteotomy. A comparison study in patients who had bilateral total knee replacement.

    PubMed

    Meding, J B; Keating, E M; Ritter, M A; Faris, P M

    2000-09-01

    The outcome of total knee replacement after high tibial osteotomy remains uncertain. We hypothesized that the results of total knee replacement with or without a previous high tibial osteotomy are similar. The results of a consecutive series of thirty-nine bilateral total knee arthroplasties performed with cement at an average of 8.7 years after unilateral high tibial osteotomy were reviewed. There were twenty-seven men and twelve women. Preoperatively, the knee scores according to the system of the Knee Society were similar for all of the knees; however, valgus alignment and patella infera were more common in the knees with a previous high tibial osteotomy. Bilateral total knee replacement was staged in seven patients and was simultaneous in thirty-two patients. The results of the total knee arthroplasties were retrospectively reviewed with respect to the knee and function scores according to the system of the Knee Society, the radiographic findings, and the complications. Intraoperatively, no notable differences were identified in the number of medial, lateral, or lateral patellar releases required. However, less lateral tibial bone was resected in the group with a previous high tibial osteotomy (average, 3.3 millimeters) than in the group without a high tibial osteotomy (average, 7.5 millimeters). The average duration of follow-up was 7.5 years (range, three to sixteen years) in the group with a previous high tibial osteotomy and 6.8 years (range, two to ten years) in the group without a high tibial osteotomy. At the time of the final follow-up, the knee and function scores were similar for the two groups (89.0 and 81.0 points, respectively, for the group with a previous high tibial osteotomy, and 89.6 and 83.9 points, respectively, for the group without a high tibial osteotomy). Although more knees were free of pain in the group without a previous high tibial osteotomy (thirty-six) than in the group with a previous osteotomy (thirty-three), this difference was

  4. Palaeomagnetic evidence for post-thrusting tectonic rotation in the Southeast Pyrenees, Spain

    NASA Astrophysics Data System (ADS)

    Keller, P.; Lowrie, W.; Gehring, A. U.

    1994-12-01

    The structural framework of the Southeast Pyrenees led to two conflicting interpretations—thrust tectonics vs. wrench tectonics—to explain the geometry of this mountain range. In the present study palaeomagnetic data are presented in an attempt to resolve this conflict. The data reveal different magnetisation directions that indicate tectonic rotations about vertical axes. By means of a regionally homogeneous pattern of rotation, three tectonic units could be distinguished in the Southeast Pyrenees. The Internal Unit in the north reveals no rotation since the Permian. The External Unit to the south shows anticlockwise rotation of 25°, younger than the Early Oligocene. The Pedraforca Unit, placed on the External Unit, shows 57° clockwise rotation which can be assigned to the Neogene. The anticlockwise rotation of the External Unit can be explained by differential compression during the last phase of Pyrenean thrusting, whereas the clockwise rotation of the Pedraforca Unit can be interpreted by post-thrusting tectonics. The rotation pattern of the Southeast Pyrenees provides evidence for both Cretaceous to Paleogene N-S compression and Neogene right-lateral wrench tectonics.

  5. Increased risk of aseptic loosening for 43,525 rotating-platform vs. fixed-bearing total knee replacements

    PubMed Central

    Gothesen, Oystein; Lygre, Stein Hakon L; Lorimer, Michelle; Graves, Stephen; Furnes, Ove

    2017-01-01

    Background and purpose — Given similar functional outcomes with mobile and fixed bearings, a difference in survivorship may favor either. This study investigated the risk of aseptic loosening for the most used subtypes of mobile-bearing rotating-platform knees, in Norway and Australia. Patients and methods — Primary TKRs reported to the Norwegian and Australian joint registries, between 2003 and 2014, were analyzed with aseptic loosening as primary end-point and all revisions as secondary end-point. We hypothesized that no difference would be found in the rate of revision between rotating-platform and the most used fixed-bearing TKRs, or between keeled and non-keeled tibia. Kaplan–Meier estimates and curves, and Cox regression relative risk estimates adjusted for age, sex, and diagnosis were used for comparison. Results — The rotating-platform TKRs had an increased risk of revision for aseptic loosening compared with the most used fixed-bearing knees, in Norway (RR =6, 95% CI 4–8) and Australia (RR =2.1, 95% CI 1.8–2.5). The risk of aseptic loosening as a reason for revision was highest in Norway compared with Australia (RR =1.7, 95% CI 1.4–2.0). The keeled tibial component had the same risk of aseptic loosening as the non-keeled tibia (Australia). Fixation method and subtypes of the tibial components had no impact on the risk of aseptic loosening in these mobile-bearing knees. Interpretation — The rotating-platform TKRs in this study appeared to have a higher risk of revision for aseptic loosening than the most used fixed-bearing TKRs. PMID:28929828

  6. Magnetic resonance imaging of the rotator cuff muscles after baseball pitching.

    PubMed

    Yanagisawa, O; Niitsu, M; Takahashi, H; Itai, Y

    2003-12-01

    The purposes of present study were to investigate quantitatively using functional MR imaging the effect of a series of throwing activities on rotator cuff muscles and to compare the effect of pitching with that of all-out shoulder external rotator exercise as the targeted external rotator muscle group (the infraspinatus and the teres minor). MRI measurements after 135 baseball pitches or all-out shoulder external rotator exercise (concentric mode) in each subject's nondominant shoulder. 6 amateur baseball pitchers. serial T2-weighted images of rotator cuff muscles were obtained before pitching (or shoulder exercise) and immediately, 30, 60 min, 24, 48, 96 hrs after pitching (or shoulder exercise). T2 relaxation times (T2) at each measurement time were calculated for the rotator cuff muscles. Both the supraspinatus and the external rotator muscle group showed significant T2 elevations until 96 hrs after pitching. The subscapularis also showed significantly increased T2 until postpitching 48 hrs. On the other hand, a significant T2 elevation continued until 60 min after shoulder exercise, but thereafter returned towards the value at rest over the next 24 hrs. Long lasting T2 elevations in rotator cuff muscles would be associated with an increase in each intramuscular water content, and may be attributed to the muscle damage that resulted from eccentric contraction during pitching. This information should serve as a useful complement to shoulder injury prevention for baseball pitchers.

  7. Rotational response of superconductors: Magnetorotational isomorphism and rotation-induced vortex lattice

    NASA Astrophysics Data System (ADS)

    Babaev, Egor; Svistunov, Boris

    2014-03-01

    The analysis of nonclassical rotational response of superfluids and superconductors was performed by Onsager [Onsager, Nuovo Cimento, Suppl. 6, 279 (1949), 10.1007/BF02780991] and London [Superfluids (Wiley, New York, 1950)] and crucially advanced by Feynman [Prog. Low Temp. Phys. 1, 17 (1955), 10.1016/S0079-6417(08)60077-3]. It was established that, in the thermodynamic limit, neutral superfluids rotate by forming—without any threshold—a vortex lattice. In contrast, the rotation of superconductors at angular frequency Ω—supported by uniform magnetic field BL∝Ω due to surface currents—is of the rigid-body type (London law). Here we show that, neglecting the centrifugal effects, the behavior of a rotating superconductor is identical to that of a superconductor placed in a uniform fictitious external magnetic field H ˜=-BL. In particular, the isomorphism immediately implies the existence of two critical rotational frequencies in type-2 superconductors.

  8. Repair of Tibiotarsal Rotation in 7 Chukar Partridges (Alectoris chukar) and 12 Domestic Pigeons (Columba livia domestica) with Type-2 External Skeletal Fixator Intramedullary Pin Tie-in.

    PubMed

    Kaya, Didar Aydin; Özsoy, Serhat

    2017-09-01

    Rotational deformities of the long bones affect various avian species. Tibiotarsal rotation may cause the leg to deviate up to 180° from the dorsoplantar axis in a matter of days, thus preventing the birds from walking freely and leading to the inability to stand. In this study, tibiotarsal rotation observed in pigeons and partridges was managed by creating a closed fracture in the tibiotarsus and then, following reduction, stabilizing it with an intramedullary tie-in Type 2 external skeletal fixation system. Functional healing was achieved in 12 pigeons (Columba livia domestica; mean healing time, 38 days) and 7 partridges (Alectoris chukar; mean healing time, 40 days). This treatment was successful. In small bird species (<1 kg), this simple and inexpensive surgical intervention may provide a highly effective method for the treatment of rotational deformities.

  9. [The external patello-tibial transfixation (EPTT). Part II: Clinical application and results].

    PubMed

    Ishaque, B; Gotzen, L; Ziring, E; Petermann, J

    1999-07-01

    In part I of the paper the biomechanical and technical background of the EPTT using the MPT fixator and the indications for this procedure have been described. In part II we report about the clinical application of the EPTT in 67 patients with a wide spectrum of repairs and reconstructions of the extensor mechanism. 48 patients had fresh injuries, 18 of them with severe concomitant knee lesions and 19 patients had neglected rsp. unsuccessfully operated injuries. There were 4 deep infections, two of them related to the MPT fixator. In the patients with uneventful healing the fixator remained in place for 7.3 weeks in average. The clinical, isokinetic and radiological results were reviewed in 17 patients with an average follow-up time of 37.3 months. There were 5 patients with partial patellectomy and tendon reattachment because of lower patella pole comminution and 12 patients with tendon reattachment ruptured at the inferior patella pole or suture repair in midsubstance rupture. The clinical results according to the IKDC score were rated in 3 patients as normal, in 10 patients as nearly normal and in 4 patients as abnormal. This rating was highly dependend on the subjective judgement by the patients who considered their operated knees not as normal as the contralateral knees. From our clinical experiences and results we can derive that the EPTT enables the surgical management of extensor mechanism disruptions with a minimum of internal fixation material and provides a safe protection of the repairs and reconstructions during the healing period. The EPTT allows immediate unrestricted functional rehabilitation and early walking without crutches. Thus the EPTT represents an effective alternative to the patello-tibial cerclage with a wire or synthetic ligaments.

  10. The transverse ligament as a landmark for tibial sagittal insertions of the anterior cruciate ligament: a cadaveric study.

    PubMed

    Kongcharoensombat, Wirat; Ochi, Mitsuo; Abouheif, Mohamed; Adachi, Nobuo; Ohkawa, Shingo; Kamei, Goki; Okuhara, Atushi; Shibuya, Hoyatoshi; Niimoto, Takuya; Nakasa, Tomoyuki; Nakamae, Atsuo; Deie, Masataka

    2011-10-01

    The purpose of this study was to determine the relation between the position of the transverse ligament, the anterior edge of the anterior cruciate ligament (ACL) tibial footprint, and the center of the ACL tibial insertion. We used arthroscopy for localization of the anatomic landmarks, followed by insertions of guide pins under direct visualization, and then the position of these guide pins was checked on plain lateral radiographs. The transverse ligament and the anterior aspect of the ACL tibial footprint were identified by arthroscopy in 20 unpaired cadaveric knees (10 left and 10 right). Guide pins were inserted with tibial ACL adapter drill guides under direct observation at the transverse ligament, the anterior aspect of the tibial footprint, and the center of tibial insertion of the ACL. Then, plain lateral radiographs of specimens were taken. The Amis and Jakob line was used to define the attachment of the ACL tibial insertion and the transverse ligament. A sagittal percentage of the location of the insertion point was determined and calculated from the anterior margin of the tibia in the anteroposterior direction. The transverse ligament averaged 21.20% ± 4.1%, the anterior edge of the ACL tibial insertion averaged 21.60% ± 4.0%, and the center of the ACL tibial insertion averaged 40.30% ± 4.8%. There were similar percent variations between the transverse ligament and the anterior edge of the ACL tibial insertion, with no significant difference between them (P = .38). Intraobserver and interobserver reliability was high, with small standard errors of measurement. This study shows that the transverse ligament coincides with the anterior edge of the ACL tibial footprint in the sagittal plane. The transverse ligament can be considered as a new landmark for tibial tunnel positioning during anatomic ACL reconstruction. Copyright © 2011 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  11. Posterior slope of the tibial implant and the outcome of unicompartmental knee arthroplasty.

    PubMed

    Hernigou, Philippe; Deschamps, Gerard

    2004-03-01

    Laboratory studies have suggested that the sagittal displacements permitted by a knee replacement are influenced by the posterior slope of the tibial implant. The effect of the posterior slope of the tibial implant on the outcome of unicompartmental arthroplasty is not well known. The purpose of the present study was to assess the effect of the posterior slope on the long-term outcome of unicompartmental arthroplasty in knees with intact and deficient anterior cruciate ligaments. We retrospectively reviewed the results of ninety-nine unicompartmental arthroplasties after a mean duration of follow-up of sixteen years. At the time of the arthroplasty, the anterior cruciate ligament was considered to be normal in fifty knees, damaged in thirty-one, and absent in eighteen. At the most recent follow-up, we measured the posterior tibial slope and the anterior tibial translation on standing lateral radiographs. The anteroposterior stability of seventy-seven knees that had not been revised by the time of the most recent follow-up was evaluated clinically. In the group of seventy-seven knees that had not been revised by the time of the most recent follow-up, there was a significant linear relationship between anterior tibial translation (mean, 3.7 mm) and posterior tibial slope (mean, 4.3 degrees ) (p < 0.01). The mean posterior slope of the tibial implant was significantly less in the group of seventy-seven knees without loosening of the implant than it was in the group of seventeen knees with loosening of the implant (p < 0.05). Five ruptures of the anterior cruciate ligament occurred in knees in which the ligament had been considered to be normal at the time of implantation; the posterior tibial slope in these five knees was > or = 13 degrees. Clinical evaluation revealed normal or nearly normal anteroposterior stability at the time of the most recent follow-up in all sixty-six unrevised knees in which the anterior cruciate ligament had been present at the time of

  12. Immediate effects of modified landing pattern on a probabilistic tibial stress fracture model in runners.

    PubMed

    Chen, T L; An, W W; Chan, Z Y S; Au, I P H; Zhang, Z H; Cheung, R T H

    2016-03-01

    Tibial stress fracture is a common injury in runners. This condition has been associated with increased impact loading. Since vertical loading rates are related to the landing pattern, many heelstrike runners attempt to modify their footfalls for a lower risk of tibial stress fracture. Such effect of modified landing pattern remains unknown. This study examined the immediate effects of landing pattern modification on the probability of tibial stress fracture. Fourteen experienced heelstrike runners ran on an instrumented treadmill and they were given augmented feedback for landing pattern switch. We measured their running kinematics and kinetics during different landing patterns. Ankle joint contact force and peak tibial strains were estimated using computational models. We used an established mathematical model to determine the effect of landing pattern on stress fracture probability. Heelstrike runners experienced greater impact loading immediately after landing pattern switch (P<0.004). There was an increase in the longitudinal ankle joint contact force when they landed with forefoot (P=0.003). However, there was no significant difference in both peak tibial strains and the risk of tibial stress fracture in runners with different landing patterns (P>0.986). Immediate transitioning of the landing pattern in heelstrike runners may not offer timely protection against tibial stress fracture, despite a reduction of impact loading. Long-term effects of landing pattern switch remains unknown. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. How does tibial cartilage volume relate to symptoms in subjects with knee osteoarthritis?

    PubMed Central

    Wluka, A; Wolfe, R; Stuckey, S; Cicuttini, F

    2004-01-01

    Background: No consistent relationship between the severity of symptoms of knee osteoarthritis (OA) and radiographic change has been demonstrated. Objectives: To determine the relationship between symptoms of knee OA and tibial cartilage volume, whether pain predicts loss of cartilage in knee OA, and whether change in cartilage volume over time relates to change in symptoms over the same period. Method: 132 subjects with symptomatic, early (mild to moderate) knee OA were studied. At baseline and 2 years later, participants had MRI scans of their knee and completed questionnaires quantifying symptoms of knee OA (knee-specific WOMAC: pain, stiffness, function) and general physical and mental health (SF-36). Tibial cartilage volume was determined from the MRI images. Results: Complete data were available for 117 (89%) subjects. A weak association was found between tibial cartilage volume and symptoms at baseline. The severity of the symptoms of knee OA at baseline did not predict subsequent tibial cartilage loss. However, weak associations were seen between worsening of symptoms of OA and increased cartilage loss: pain (rs = 0.28, p = 0.002), stiffness (rs = 0.17, p = 0.07), and deterioration in function (rs = 0.21, p = 0.02). Conclusion: Tibial cartilage volume is weakly associated with symptoms in knee OA. There is a weak association between loss of tibial cartilage and worsening of symptoms. This suggests that although cartilage is not a major determinant of symptoms in knee OA, it does relate to symptoms. PMID:14962960

  14. Delay in weight bearing in surgically treated tibial shaft fractures is associated with impaired healing: a cohort analysis of 166 tibial fractures.

    PubMed

    Houben, I B; Raaben, M; Van Basten Batenburg, M; Blokhuis, T J

    2018-04-09

    The relation between timing of weight bearing after a fracture and the healing outcome is yet to be established, thereby limiting the implementation of a possibly beneficial effect for our patients. The current study was undertaken to determine the effect of timing of weight bearing after a surgically treated tibial shaft fracture. Surgically treated diaphyseal tibial fractures were retrospectively studied between 2007 and 2015. The timing of initial weight bearing (IWB) was analysed as a predictor for impaired healing in a multivariate regression. Totally, 166 diaphyseal tibial fractures were included, 86 cases with impaired healing and 80 with normal healing. The mean age was 38.7 years (range 16-89). The mean time until IWB was significantly shorter in the normal fracture healing group (2.6 vs 7.4 weeks, p < 0.001). Correlation analysis yielded four possible confounders: infection requiring surgical intervention, fracture type, fasciotomy and open fractures. Logistic regression identified IWB as an independent predictor for impaired healing with an odds ratio of 1.13 per week delay (95% CI 1.03-1.25). Delay in initial weight bearing is independently associated with impaired fracture healing in surgically treated tibial shaft fractures. Unlike other factors such as fracture type or soft tissue condition, early resumption of weight bearing can be influenced by the treating physician and this factor therefore has a direct clinical relevance. This study indicates that early resumption of weight bearing should be the treatment goal in fracture fixation. 3b.

  15. Intraoperative study on anthropometry and gender differences of the proximal tibial plateau at the arthroplasty resection surface.

    PubMed

    Yang, Bo; Yu, Jiakuo; Gong, Xi; Chen, Lianxu; Wang, Yongjian; Wang, Jian; Wang, Haijun; Zhang, Jiying

    2014-01-01

    The tibial plateau is asymmetric with a larger medial plateau. We observed from clinical practice that the shape of the tibial plateau does not always present a larger medial plateau. Tibial plateau also showed other shapes. The purpose of this study was to analyze the anthropometric data of the proximal tibia in a large group of Chinese patients undergoing total knee arthroplasty and to investigate the morphology of the resected proximal tibial surface and its gender differences. A total of 822 knees (164 males, 658 females) from the Chinese population were measured intraoperatively for medial anteroposterior (MAP) and lateral anteroposterior (LAP) dimensions of the resected proximal tibial surface. The difference of MAP and LAP (DML) was also calculated as MAP minus LAP. We then classified the data into three groups based on the DML (<-2, -2 to 2, and >2 mm) to analyze the morphology of the proximal tibia and its distribution between male and female. The shape of proximal tibial plateau was of three types: larger medial plateau type, symmetric type, and larger lateral plateau type. There were significant differences between males and females in relation to the shape distribution of the proximal tibial plateau (P < 0.05). Most of the proximal tibial plateau was asymmetric, with 517 of 822 (62.9%) tibia having a DML >2 mm and 120 of 822 (14.6%) tibia having a DML<-2 mm. Only 185 of 822 (22.5%) tibia had a DML between -2 and 2 mm. The results of this study can be used as a guideline to design tibial components with different DMLs to better match the different anthropometry of the resected tibial surface.

  16. Management of paediatric tibial fractures using two types of circular external fixator: Taylor spatial frame and Ilizarov circular fixator.

    PubMed

    Tafazal, Suhayl; Madan, Sanjeev S; Ali, Farhan; Padman, Manoj; Swift, Simone; Jones, Stanley; Fernandes, James A

    2014-05-01

    The use of circular fixators for the treatment of tibial fractures is well established in the literature. The aim of this study was to compare the Ilizarov circular fixator (ICF) with the Taylor spatial frame (TSF) in terms of treatment results in consecutive patients with tibial fractures that required operative management. A retrospective analysis of patient records and radiographs was performed to obtain patient data, information on injury sustained, the operative technique used, time duration in frame, healing time and complications of treatment. The minimum follow-up was 24 months. Ten patients were treated with ICF between 2000 and 2005, while 15 patients have been treated with TSF since 2005. Two of the 10 treated with ICF and 5 of the 15 treated with TSF were open fractures. All patients went on to achieve complete union. Mean duration in the frame was 12.7 weeks for ICF and 14.8 weeks for the TSF group. Two patients in the TSF group had delayed union and required additional procedures including adjustment of fixator and bone grafting. There was one malunion in the TSF group that required osteotomy and reapplication of frame. There were seven and nine pin-site infections in the ICF and TSF groups, respectively, all of which responded to antibiotics. There were no refractures in either group. In an appropriate patient, both types of circular fixator are equally effective but have different characteristics, with TSF allowing for postoperative deformity correction. Of concern are the two cases of delayed union in the TSF group, all in patients with high-energy injuries. We feel another larger study is required to provide further clarity in this matter. Level II-comparative study.

  17. Comparison of the primary stability of different tibial baseplate concepts to retain both cruciate ligaments during total knee arthroplasty.

    PubMed

    Nowakowski, Andrej M; Stangel, Melanie; Grupp, Thomas M; Valderrabano, Victor

    2013-10-01

    A novel tibial baseplate design (Transversal Support Tibial Plateau) as a new treatment concept for bi-cruciate retaining total knee arthroplasty is evaluated for mechanical stability and compared to other tibial baseplate designs. This concept should provide better primary stability and thus, less subsidence, than implantation of two separate unicondylar tibial baseplates. Different baseplates were implanted into synthetic bone specimens (Sawbones® Pacific Research Laboratories, Inc., Washington, USA), all uncemented. Using a standardized experimental setup, subsidence was achieved, enabling comparison of the models regarding primary stability. Overall implant subsidence was significantly increased for the two separate unicondylar tibial baseplates versus the new Transversal Support Tibial Plateau concept, which showed comparable levels to a conventional tibial baseplate. Reduced subsidence results in better primary stability. Linking of two separate baseplates appears to provide increased primary stability in terms of bony fixation, comparable to that of a conventional single tibial baseplate. © 2013. Published by Elsevier Ltd. All rights reserved.

  18. The medial tibial stress syndrome. A cause of shin splints.

    PubMed

    Mubarak, S J; Gould, R N; Lee, Y F; Schmidt, D A; Hargens, A R

    1982-01-01

    The medial tibial stress syndrome is a symptom complex seen in athletes who complain of exercise-induced pain along the distal posterior-medial aspect of the tibia. Intramuscular pressures within the posterior compartments of the leg were measured in 12 patients with this disorder. These pressures were not elevated and therefore this syndrome is a not a compartment syndrome. Available information suggests that the medial tibial stress syndrome most likely represents a periostitis at this location of the leg.

  19. Metachronous Bilateral Posterior Tibial Artery Aneurysms in Ehlers-Danlos Syndrome Type IV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagspiel, Klaus D., E-mail: kdh2n@virginia.edu; Bonatti, Hugo; Sabri, Saher

    2011-04-15

    Ehlers-Danlos syndrome type IV is a life-threatening genetic connective tissue disorder. We report a 24-year-old woman with EDS-IV who presented with metachronous bilateral aneurysms/pseudoaneurysms of the posterior tibial arteries 15 months apart. Both were treated successfully with transarterial coil embolization from a distal posterior tibial approach.

  20. Case report: comprehensive management of medial tibial stress syndrome

    PubMed Central

    Krenner, Bernard John

    2002-01-01

    Abstract Activity or exercise-induced leg pain is a common complication among competitive and “weekend warrior” athletes. Shin splints is a term that has been used to describe all lower leg pain as a result of activity. There are many different causes of “shin splints,” one of which is medial tibial stress syndrome, and the treating clinician must be aware of potentially serious causes of activity related leg pain. Restoring proper biomechanics to the entire kinetic chain and rehabilitation of the injured area should be the primary aim of treatment to optimize shock absorption. The role inflammation plays in medial tibial stress syndrome is controversial, but in this case, seemed to be a causative factor as symptomatology was dramatically decreased with the addition of proteolytic enzymes. Medial tibial stress syndrome can be quite difficult to treat and keeping athletes away from activities that will slow healing or aggravate the condition can be challenging. “Active” rest is the best way in which to allow proper healing while allowing the athlete to maintain their fitness. PMID:19674573

  1. Surgical treatment of extra-articular or simple intra-articular distal tibial fractures: MIPO versus supercutaneous plating.

    PubMed

    He, Xianfeng; Zhang, Jingwei; Li, Ming; Yu, Yihui; Zhu, Limei

    2014-10-01

    Minimally invasive plate osteosynthesis (MIPO) has become a widely accepted technique to treat distal tibial fractures. Recently, the novel application of a locking plate used as an external fixator (supercutaneous plating) was introduced for the management of open fractures and infected nonunions and even as an adjunct in distraction osteogenesis, which is considered another less invasive method. The aim of this study was to compare the results of supercutaneous plating with closed reduction and minimally invasive plating in the treatment of distal tibial fractures. Forty-eight matched patients were divided according to age, sex, Injury Severity Score, and fracture pattern into the MIPO group and the supercutaneous plating group. Minimum follow-up was 12 months (mean, 18.5 months; range, 12-26 months). No patient had nonunion, hardware breakdown, or deep infection. Patients in the supercutaneous plating group had a significantly shorter mean operative time (65.6±13.2 vs 85.9±14.0 minutes; P=.000), hospital stay (7.5±2.0 vs 13.0±4.4 days; P=.000), and union time (15.2±2.4 vs 17.0±2.8 weeks; P=.000). In the MIPO group, 15 (62.5%) patients reported implant impingement or discomfort and there was 1 incidence of stripping of 15.6% at the time of locking screw removal, whereas in the supercutaneous plating group, no patient reported skin irritation, and removal of the supercutaneous plate was easily performed in clinic without anesthesia. Distal tibial fractures may be treated successfully with MIPO or supercutaneous plating. However, the supercutaneous plating technique may represent a superior surgical option because it offers advantages in terms of mean operative time, hospital stay, and union time; skin irritation; and implant removal. Copyright 2014, SLACK Incorporated.

  2. Magnitude of cement-device interfacial stresses with and without tibial stemming: impact of BMI.

    PubMed

    Gopalakrishnan, Ananthkrishnan; Hedley, Anthony Keith; Kester, Mark A

    2011-03-01

    Patients expect their total knee arthroplasty to relieve pain and to be long lasting. With patients becoming more active, weighing more, and living longer, this expectation becomes increasingly more difficult to fulfill. Patients who are obese and active put greater loads on their implants and may have a greater risk of failure. Although much attention has been paid to decreasing polyethylene wear, a major cause of implant failure, very little research focus has been directed to elucidate other measures to reduce failure, such as the efficacy of prophylactic stemming of the tibial tray. This study explored whether additional mechanical support for tibial base plates would help reduce bone cement stresses in heavy patients, who, like patients with a high activity level, put added stress on their implants. A tibial base plate with a 12-mm-diameter x 50-mm-long stem was compared with the same tibial base plate with a 15-mm-diameter x 20-mm-long end cap using finite element analysis. The results indicate that the tibial base plate with a prophylactic stem significantly reduced compressive and shear stresses on the cement-device interface and therefore may help to reduce the possibility of tibial loosening in these at-risk patients. Further, such studies will aid the surgeon in educating patients and in selecting the appropriate implant strategy.

  3. Effects of the menstrual cycle on lower-limb biomechanics, neuromuscular control, and anterior cruciate ligament injury risk: a systematic review.

    PubMed

    Balachandar, Vivek; Marciniak, Jan-Luigi; Wall, Owen; Balachandar, Chandrika

    2017-01-01

    Anterior cruciate ligament (ACL) injury has a devastating impact on physical and psychological disability. Rates of ACL rupture are significantly greater in females than males during the same sports. Hormonal mechanisms have been proposed but are complex and poorly understood. This systematic review evaluates the effects of menstrual cycle on: 1) lower-limb biomechanics, 2) neuromuscular control, and 3) ACL injury risk. The MEDLINE, CINAHL, SPORTSDiscus, Web of Science, and Google Scholar databases were searched from inception to August 2016 for studies investigating the effects of the menstrual cycle on lower-limb biomechanics, neuromuscular control, and ACL injury risk in females. Three independent reviewers assessed each paper for inclusion and two assessed for quality. Seventeen studies were identified. There is strong evidence that: 1) greatest risk of ACL injury is within the pre-ovulatory phase of the menstrual cycle, and 2) females with greater ACL laxity in the pre-ovulatory phase experience greater knee valgus and greater tibial external rotation during functional activity. Females are at greatest risk of ACL injury during the pre-ovulatory phase of the menstrual cycle through a combination of greater ACL laxity, greater knee valgus, and greater tibial external rotation during functional activity. Ib.

  4. What Strains the Anterior Cruciate Ligament During a Pivot Landing?

    PubMed Central

    Oh, Youkeun K.; Lipps, David B.; Ashton-Miller, James A.; Wojtys, Edward M.

    2015-01-01

    Background The relative contributions of an axial tibial torque and frontal plane moment to anterior cruciate ligament (ACL) strain during pivot landings are unknown. Hypothesis The peak normalized relative strain in the anteromedial (AM) bundle of the ACL is affected by the direction of the axial tibial torque but not by the direction of the frontal plane moment applied concurrently during a simulated jump landing. Study Design Controlled and descriptive laboratory studies. Methods Fifteen adult male knees with pretensioned knee muscle-tendon unit forces were loaded under a simulated pivot landing test. Compression, flexion moment, internal or external tibial torque, and knee varus or valgus moment were simultaneously applied to the distal tibia while recording the 3D knee loads and tibiofemoral kinematics. The AM-ACL relative strain was measured using a 3-mm differential variable reluctance transducer. The results were analyzed using nonparametric Wilcoxon signed–rank tests. A 3D dynamic biomechanical knee model was developed using ADAMS and validated to help interpret the experimental results. Results The mean (SD) peak AM-ACL relative strain was 192% greater (P <.001) under the internal tibial torque combined with a knee varus or valgus moment (7.0% [3.9%] and 7.0% [4.1%], respectively) than under external tibial torque with the same moments (2.4% [2.5%] and 2.4% [3.2%], respectively). The knee valgus moment augmented the AM-ACL strain due to the slope of the tibial plateau inducing mechanical coupling (ie, internal tibial rotation and knee valgus moment); this augmentation occurred before medial knee joint space opening. Conclusion An internal tibial torque combined with a knee valgus moment is the worst-case ACL loading condition. However, it is the internal tibial torque that primarily causes large ACL strain. Clinical Relevance Limiting the maximum coefficient of friction between the shoe and playing surface should limit the peak internal tibial torque

  5. Theoretical discrepancy between cage size and efficient tibial tuberosity advancement in dogs treated for cranial cruciate ligament rupture.

    PubMed

    Etchepareborde, S; Mills, J; Busoni, V; Brunel, L; Balligand, M

    2011-01-01

    To calculate the difference between the desired tibial tuberosity advancement (TTA) along the tibial plateau axis and the advancement truly achieved in that direction when cage size has been determined using the method of Montavon and colleagues. To measure the effect of this difference on the final patellar tendon-tibial plateau angle (PTA) in relation to the ideal 90°. Trigonometry was used to calculate the theoretical actual advancement of the tibial tuberosity in a direction parallel to the tibial plateau that would be achieved by the placement of a cage at the level of the tibial tuberosity in the osteotomy plane of the tibial crest. The same principle was used to calculate the size of the cage that would have been required to achieve the desired advancement. The effect of the difference between the desired advancement and the actual advancement achieved on the final PTA was calculated. For a given desired advancement, the greater the tibial plateau angle (TPA), the greater the difference between the desired advancement and the actual advancement achieved. The maximum discrepancy calculated was 5.8 mm for a 12 mm advancement in a case of extreme TPA (59°). When the TPA was less than 31°, the PTA was in the range of 90° to 95°. A discrepancy does exist between the desired tibial tuberosity advancement and the actual advancement in a direction parallel to the TPA, when the tibial tuberosity is not translated proximally. Although this has an influence on the final PTA, further studies are warranted to evaluate whether this is clinically significant.

  6. Measurement of Knee Rotation Angles Using a Smartphone Application: An Experimental Study of Porcine Knees.

    PubMed

    Kim, Hee-June; Lee, Hyun-Joo; Shin, Ji-Yeon; Choi, Young-Seo; Kyung, Hee-Soo

    2017-12-01

    This study evaluated the efficacy of a smartphone application in the measurement of rotation angles in porcine knees. Two K-wires were fixated to the femoral condyle and anterior tibial crest of 10 porcine legs. The angle created between the K-wires with an external rotation force applied was measured on a photograph and defined as the true angle. The same force was applied to the legs placed on a splint with a smartphone attached to the plantar side. The angle presented on a smartphone application was determined as the measured angle. The differences between the true and measured angles in 30° and 90° knee flexion and differences in measured angles depending on the status of the popliteus tendon were compared. In the intact knees, the mean true angles in 30° and 90° flexion were 20.5°±1.4° and 19.1°±1.3°, respectively, and the mean measured angles in 30° and 90° flexion were 21.1°±0.9° and 18.6°±1.6°, respectively. When the popliteus tendon was cut, the mean true angles in 30° and 90° flexion were 31.4°±1.1° and 38.5°±2.5°, respectively, and the mean measured angles in 30° and 90° flexion were 31.8°±1.2° and 39.2°±2.8°, respectively. The differences between the true and measured angles were not significant. The measured angle increased by more than 10° after cutting of the popliteus tendon in both 30° and 90° flexion. Using a smartphone application could be a good method of measuring knee rotation.

  7. Outcomes of Surgical Treatment for Anterior Tibial Stress Fractures in Athletes: A Systematic Review.

    PubMed

    Chaudhry, Zaira S; Raikin, Steven M; Harwood, Marc I; Bishop, Meghan E; Ciccotti, Michael G; Hammoud, Sommer

    2017-12-01

    Although most anterior tibial stress fractures heal with nonoperative treatment, some may require surgical management. To our knowledge, no systematic review has been conducted regarding surgical treatment strategies for the management of chronic anterior tibial stress fractures from which general conclusions can be drawn regarding optimal treatment in high-performance athletes. This systematic review was conducted to evaluate the surgical outcomes of anterior tibial stress fractures in high-performance athletes. Systematic review; Level of evidence, 4. In February 2017, a systematic review of the PubMed, MEDLINE, Cochrane, SPORTDiscus, and CINAHL databases was performed to identify studies that reported surgical outcomes for anterior tibial stress fractures. Articles meeting the inclusion criteria were screened, and reported outcome measures were documented. A total of 12 studies, published between 1984 and 2015, reporting outcomes for the surgical treatment of anterior tibial stress fractures were included in this review. All studies were retrospective case series. Collectively, surgical outcomes for 115 patients (74 males; 41 females) with 123 fractures were evaluated in this review. The overall mean follow-up was 23.3 months. The most common surgical treatment method reported in the literature was compression plating (n = 52) followed by drilling (n = 33). Symptom resolution was achieved in 108 of 123 surgically treated fractures (87.8%). There were 32 reports of complications, resulting in an overall complication rate of 27.8%. Subsequent tibial fractures were reported in 8 patients (7.0%). Moreover, a total of 17 patients (14.8%) underwent a subsequent procedure after their initial surgery. Following surgical treatment for anterior tibial stress fracture, 94.7% of patients were able to return to sports. The available literature indicates that surgical treatment of anterior tibial stress fractures is associated with a high rate of symptom resolution and return

  8. Treatment of Medial Malleolus or Pure Deltoid Ligament Injury in Patients with Supination-External Rotation Type IV Ankle Fractures.

    PubMed

    Wang, Xu; Zhang, Chao; Yin, Jian-Wen; Wang, Chen; Huang, Jia-Zhang; Ma, Xin; Wang, Cheng-Wei; Wang, Xue

    2017-02-01

    To investigate the effect of internal fixation on postoperative ankle function in patients with supination-external rotation type IV ankle fractures, including medial malleolus fractures and deltoid ligament injury. Between January 2012 and June 2014, patients with medial structure injuries were enrolled in this study and assigned to the medial malleolus fracture group or the deltoid ligament group. The surgical procedures for the two groups were documented. The follow-up endpoint was the time point when the steel plate or screw was removed from the lateral ankle. The Olerud-Molander ankle scoring system was used to assess ankle function. A total of 84 patients with supination-external rotation type IV ankle fractures had complete medical records and were included in this study. The average age of the patients was 44.16 years (range, 15-75). The patient sample included 39 males and 45 females. Overall, 49 patients (19 males and 30 females) suffered a medial malleolus fracture. The average age of these patients was 40.20 years (range, 15-75). Patients with a posterior malleolar fracture fragment >25% of the articular surface accounted for 81.6% (40 patients) of these patients. Overall, 35 patients (20 males and 15 females) experienced a deltoid ligament injury. The average age of these patients was 44.21 years (range, 17-73). Patients with a posterior malleolar fracture fragment >25% of the articular surface accounted for 11.5% (four patients) of these patients. Open reduction was performed in patients with medial malleolus fractures, and two 4.0-mm cannulated screws were used to fixate the posterior malleolus and the medial malleolus. The suture-anchor technique was used to repair the ligaments in patients with deltoid ligament injuries. The follow-up endpoint was the time point when the steel plate and screws were removed from the lateral ankle in patients. The average follow-up period was 13.4 months (range, 11-17). The Olerud-Molander ankle scoring system was

  9. Immobilization in Neutral Rotation for a Glenohumeral Dislocation Using a Sling and Splint

    PubMed Central

    2008-01-01

    The purpose of this manuscript is to provide an expedient means of immobilizing a glenohumeral dislocation in neutral rotation. This technique for post-reduction immobilization of a glenohumeral dislocation is inexpensive and easy to fabricate. Anterior glenohumeral dislocations often involve an avulsion of the labrum from the glenoid rim. In contrast to immobilization in internal rotation, positioning the shoulder in 0-45° of external rotation approximates the labrum and glenoid rim. It is hypothesized that placing the shoulder in a more externally rotated position could allow for better healing and increased joint stability. This technique places the shoulder in neutral rotation, because 45° of external rotation is awkward and may interfere with certain activities of daily living. Structural aluminum malleable (SAM) splints are used as an alternative to a bolster sling. The SAM splints are lightweight, simply shaped, and easily stored. PMID:21509136

  10. Nontraumatic tibial polyethylene insert cone fracture in mobile-bearing posterior-stabilized total knee arthroplasty.

    PubMed

    Tanikake, Yohei; Hayashi, Koji; Ogawa, Munehiro; Inagaki, Yusuke; Kawate, Kenji; Tomita, Tetsuya; Tanaka, Yasuhito

    2016-12-01

    A 72-year-old male patient underwent mobile-bearing posterior-stabilized total knee arthroplasty for osteoarthritis. He experienced a nontraumatic polyethylene tibial insert cone fracture 27 months after surgery. Scanning electron microscopy of the fracture surface of the tibial insert cone suggested progress of ductile breaking from the posterior toward the anterior of the cone due to repeated longitudinal bending stress, leading to fatigue breaking at the anterior side of the cone, followed by the tibial insert cone fracture at the anterior side of the cone, resulting in fracture at the base of the cone. This analysis shows the risk of tibial insert cone fracture due to longitudinal stress in mobile-bearing posterior-stabilized total knee arthroplasty in which an insert is designed to highly conform to the femoral component.

  11. Open wedge high tibial osteotomy using three-dimensional printed models: Experimental analysis using porcine bone.

    PubMed

    Kwun, Jun-Dae; Kim, Hee-June; Park, Jaeyoung; Park, Il-Hyung; Kyung, Hee-Soo

    2017-01-01

    The purpose of this study was to evaluate the usefulness of three-dimensional (3D) printed models for open wedge high tibial osteotomy (HTO) in porcine bone. Computed tomography (CT) images were obtained from 10 porcine knees and 3D imaging was planned using the 3D-Slicer program. The osteotomy line was drawn from the three centimeters below the medial tibial plateau to the proximal end of the fibular head. Then the osteotomy gap was opened until the mechanical axis line was 62.5% from the medial border along the width of the tibial plateau, maintaining the posterior tibial slope angle. The wedge-shaped 3D-printed model was designed with the measured angle and osteotomy section and was produced by the 3D printer. The open wedge HTO surgery was reproduced in porcine bone using the 3D-printed model and the osteotomy site was fixed with a plate. Accuracy of osteotomy and posterior tibial slope was evaluated after the osteotomy. The mean mechanical axis line on the tibial plateau was 61.8±1.5% from the medial tibia. There was no statistically significant difference (P=0.160). The planned and post-osteotomy correction wedge angles were 11.5±3.2° and 11.4±3.3°, and the posterior tibial slope angle was 11.2±2.2° pre-osteotomy and 11.4±2.5° post-osteotomy. There were no significant differences (P=0.854 and P=0.429, respectively). This study showed that good results could be obtained in high tibial osteotomy by using 3D printed models of porcine legs. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Assessment of knee laxity using a robotic testing device: a comparison to the manual clinical knee examination.

    PubMed

    Branch, T P; Stinton, S K; Siebold, R; Freedberg, H I; Jacobs, C A; Hutton, W C

    2017-08-01

    The purpose of this study was to collect knee laxity data using a robotic testing device. The data collected were then compared to the results obtained from manual clinical examination. Two human cadavers were studied. A medial collateral ligament (MCL) tear was simulated in the left knee of cadaver 1, and a posterolateral corner (PLC) injury was simulated in the right knee of cadaver 2. Contralateral knees were left intact. Five blinded examiners carried out manual clinical examination on the knees. Laxity grades and a diagnosis were recorded. Using a robotic knee device which can measure knee laxity in three planes of motion: anterior-posterior, internal-external tibia rotation, and varus-valgus, quantitative data were obtained to document tibial motion relative to the femur. One of the five examiners correctly diagnosed the MCL injury. Robotic testing showed a 1.7° larger valgus angle, 3° greater tibial internal rotation, and lower endpoint stiffness (11.1 vs. 24.6 Nm/°) in the MCL-injured knee during varus-valgus testing when compared to the intact knee and 4.9 mm greater medial tibial translation during rotational testing. Two of the five examiners correctly diagnosed the PLC injury, while the other examiners diagnosed an MCL tear. The PLC-injured knee demonstrated 4.1 mm more lateral tibial translation and 2.2 mm more posterior tibial translation during varus-valgus testing when compared to the intact knee. The robotic testing device was able to provide objective numerical data that reflected differences between the injured knees and the uninjured knees in both cadavers. The examiners that performed the manual clinical examination on the cadaver knees proved to be poor at diagnosing the injuries. Robotic testing could act as an adjunct to the manual clinical examination by supplying numbers that could improve diagnosis of knee injury. Level II.

  13. Nearshore sandbar rotation at single-barred embayed beaches

    NASA Astrophysics Data System (ADS)

    Blossier, B.; Bryan, K. R.; Daly, C. J.; Winter, C.

    2016-04-01

    The location of a shore-parallel nearshore sandbar derived from 7 years of video imagery data at the single-barred embayed Tairua Beach (NZ) is investigated to assess the contribution of barline rotation to the overall morphodynamics of sandbars in embayed environments and to characterize the process of rotation in relation to external conditions. Rotation induces cross-shore barline variations at the embayment extremities on the order of magnitude of those induced by alongshore uniform cross-shore migration of the bar. Two semiempirical models have been developed to relate the barline cross-shore migration and rotation to external wave forcing conditions. The rotation model is directly derived from the cross-shore migration model. Therefore, its formulation advocates for a primary role of cross-shore processes in the rotation of sandbars at embayed beaches. The orientation evolves toward an equilibrium angle directly related to the alongshore wave energy gradient due to two different mechanisms. Either the bar extremities migrate in opposite directions with no overall cross-shore bar migration (pivotal rotation) or the rotation relates to an overall migration of the barline which is not uniform along the beach (migration-driven rotation). Migration and rotation characteristic response times are similar, ranging from 10 to 30 days for mild and energetic wave conditions and above 200 days during very calm conditions or when the bar is located far offshore.

  14. Arc dynamics of a pulsed DC nitrogen rotating gliding arc discharge

    NASA Astrophysics Data System (ADS)

    Zhu, Fengsen; Zhang, Hao; Li, Xiaodong; Wu, Angjian; Yan, Jianhua; Ni, Mingjiang; Tu, Xin

    2018-03-01

    In this study, a novel pulsed direct current (DC) rotating gliding arc (RGA) plasma reactor co-driven by an external magnetic field and a tangential gas flow has been developed. The dynamic characteristics of the rotating gliding arc have been investigated by means of numerical simulation and experiment. The simulation results show that a highly turbulent vortex flow can be generated at the bottom of the RGA reactor to accelerate the arc rotation after arc ignition, whereas the magnitude of gas velocity declined significantly along the axial direction of the RGA reactor. The calculated arc rotation frequency (14.4 Hz) is reasonably close to the experimental result (18.5 Hz) at a gas flow rate of 10 l min-1. In the presence of an external magnet, the arc rotation frequency is around five times higher than that of the RGA reactor without using a magnet, which suggests that the external magnetic field plays a dominant role in the maintenance of the arc rotation in the upper zone of the RGA reactor. In addition, when the magnet is placed outside the reactor reversely to form a reverse external magnetic field, the arc can be stabilized at a fixed position in the inner wall of the outer electrode at a critical gas flow rate of 16 l min-1.

  15. Decreased Shoulder External Rotation and Flexion Are Greater Predictors of Injury Than Internal Rotation Deficits: Analysis of 132 Pitcher-Seasons in Professional Baseball.

    PubMed

    Camp, Christopher L; Zajac, John M; Pearson, David B; Sinatro, Alec M; Spiker, Andrea M; Werner, Brian C; Altchek, David W; Coleman, Struan H; Dines, Joshua S

    2017-09-01

    The primary aims of this work were to (1) describe normal range of motion (ROM) profiles for elite pitchers, (2) describe the characteristics of shoulder and elbow injuries in professional pitchers over a 6-year period in one Major League Baseball organization, and (3) identify ROM measures that were independently associated with a future shoulder or elbow injury. Over 6 seasons (2010-2015), a preseason assessment was performed on all pitchers invited to Major League Baseball Spring Training for a single organization. ROM measures included shoulder flexion, horizontal adduction, external rotation (ER), internal rotation, as well as elbow flexion and extension, were measured for both the dominant and nondominant arm, and total range of motion and deficits were calculated. All noncontact shoulder and elbow injuries were identified. Using multivariate binomial logistic regression analysis to control for age, height, weight, and all other ROM measures, the factors associated with an increased risk of subsequent shoulder or elbow injury were identified. A total of 53 shoulder (n = 25) and elbow (n = 28) injuries occurred during 132 pitcher seasons (n = 81 pitchers). The most significant categorical risk factor associated with increased elbow injury rates was the presence of a shoulder flexion deficit >5° (odds ratio [OR] 2.83; P = .042). For continuous variables, the risk of elbow injury increased by 7% for each degree of increased shoulder ER deficit (OR 1.07; P = .030) and 9% for each degree of decreased shoulder flexion (OR 1.09; P = .017). None of the measures significantly correlated with shoulder injuries. Preseason shoulder ER and flexion deficits are independent risk factors for the development of elbow injuries during the upcoming season. Although prior work has supported the importance of reducing glenohumeral internal rotation deficits in pitchers, this study demonstrates that deficits in shoulder ER and flexion are more significant predictors of

  16. Rotational gait patterns in children and adolescents following tension band plating of idiopathic genua valga.

    PubMed

    Farr, Sebastian; Kranzl, Andreas; Hahne, Julia; Ganger, Rudolf

    2017-08-01

    Literature suggests that children and adolescents with idiopathic genua valga present with considerable gait deviations in frontal and transverse planes, including altered frontal knee moments, reduced external knee rotation, and increased external hip rotation. This study aimed to evaluate gait parameters in these patients after surgical correction using tension band plating (TBP). We prospectively evaluated 24 consecutive, skeletally immature patients, who received full-length standing radiographs and three-dimensional gait analysis before and after correction, and compared the results observed to a group of 11 typically developing peers. Prior to TBP the cohort showed significantly decreased (worse) internal frontal knee moments compared to the control group. After axis correction the mean and maximum knee moments changed significantly into normalized knee moments (p < 0.0001). In the transverse plane, only the foot progression angle (p = 0.020) changed significantly following intervention. Post-correction knee moments were similar to controls (p = 0.175), but the patient cohort exhibited a significantly decreased knee external rotation (p = 0.004) and increased external hip rotation (p < 0.001) during gait. In addition, the effect of transverse plane changes on knee moments in patients with restored, straight limb axis was calculated. Hence, patients with restored alignment but persistence of decreased external knee rotation demonstrated significantly greater knee moments than those without rotational abnormalities (p = 0.001). This study found that frontal knee moments during gait normalized in children with idiopathic genua valga after surgery. However, decreased external knee rotation and increased external hip rotation during gait persisted in the study cohort. Despite radiological correction, decreased external rotation during gait was associated with increases in medial knee loading. Surgical correction for children with genua

  17. Precision assessment of model-based RSA for a total knee prosthesis in a biplanar set-up.

    PubMed

    Trozzi, C; Kaptein, B L; Garling, E H; Shelyakova, T; Russo, A; Bragonzoni, L; Martelli, S

    2008-10-01

    Model-based Roentgen Stereophotogrammetric Analysis (RSA) was recently developed for the measurement of prosthesis micromotion. Its main advantage is that markers do not need to be attached to the implants as traditional marker-based RSA requires. Model-based RSA has only been tested in uniplanar radiographic set-ups. A biplanar set-up would theoretically facilitate the pose estimation algorithm, since radiographic projections would show more different shape features of the implants than in uniplanar images. We tested the precision of model-based RSA and compared it with that of the traditional marker-based method in a biplanar set-up. Micromotions of both tibial and femoral components were measured with both the techniques from double examinations of patients participating in a clinical study. The results showed that in the biplanar set-up model-based RSA presents a homogeneous distribution of precision for all the translation directions, but an inhomogeneous error for rotations, especially internal-external rotation presented higher errors than rotations about the transverse and sagittal axes. Model-based RSA was less precise than the marker-based method, although the differences were not significant for the translations and rotations of the tibial component, with the exception of the internal-external rotations. For both prosthesis components the precisions of model-based RSA were below 0.2 mm for all the translations, and below 0.3 degrees for rotations about transverse and sagittal axes. These values are still acceptable for clinical studies aimed at evaluating total knee prosthesis micromotion. In a biplanar set-up model-based RSA is a valid alternative to traditional marker-based RSA where marking of the prosthesis is an enormous disadvantage.

  18. In vivo axial humero-ulnar rotation in normal and dysplastic canine elbow joints.

    PubMed

    Rohwedder, Thomas; Fischer, Martin; Böttcher, Peter

    2018-04-01

    To prospectively compare relative axial (internal-external) humero-ulnar rotation in normal and dysplastic canine elbow joints. Six normal elbows (five dogs) and seven joints (six dogs) with coronoid disease were examined. After implantation of 0.8 mm tantalum beads into humerus and ulna, biplanar x-ray movies of the implanted elbows were taken while dogs were walking on a treadmill. Based on the 2D bead coordinates of the synchronized x-ray movies virtual 3D humero-ulnar animations were calculated. Based on these, relative internal-external humero-ulnar rotation was measured over the first third of stance phase and expressed as maximal rotational amplitude. Amplitudes from three consecutive steps were averaged and groupwise compared using an unpaired t-test. In normal elbow joints mean axial relative humero-ulnar rotation was 2.9° (SD 1.1). Dysplastic joints showed a significantly greater rotational amplitude (5.3°, SD 2.0; p = 0.0229, 95% confidence interval 0.4-4.4). Dysplastic elbow joints show greater relative internal-external humero-ulnar rotation compared to normal elbows, which might reflect rotational joint instability. Increased relative internal-external humero-ulnar rotation might alter physiological joint contact and pressure patterns. Future studies are needed to verify if this plays a role in the pathogenesis of medial coronoid disease. Schattauer GmbH.

  19. Ceramic hemi-unicondylar arthroplasty in an adolescent patient with idiopathic tibial chondrolysis.

    PubMed

    Dombroski, Derek; Garino, Jonathan; Lee, Gwo-Chin

    2009-06-01

    Despite recent advances in cartilage regeneration and restoration procedures, isolated, large, full-thickness cartilage lesions in young patients continue to pose significant challenges to patients and orthopedic surgeons. Treatment options for this difficult problem have traditionally included arthrodesis, osteotomy, osteochondral allograft, and prosthetic reconstruction. We present a case of an adolescent patient with isolated idiopathic lateral tibial chondrolysis treated with a custom ceramic hemi-unicondylar hemiarthroplasty. Preoperatively, a 3-dimensional computed tomography scan of the patient's knee was obtained to begin manufacturing a conforming custom ceramic insert that would articulate between the tibial base plate and the patient's native lateral femoral cartilage. Through a lateral parapatellar approach, the tibial preparation was carried out using the Zimmer M/G unicompartmental knee system (Warsaw, Indiana), and the tibial base plate was cemented into position in the standard fashion. A custom, conforming, prefabricated ceramic insert (CeramTec, Memphis, Tennessee) was then inserted onto the tibial base plate. At 5-year follow-up, this salvage procedure was successful in relieving pain and restoring function in this young patient. There were no signs of implant loosening or lysis. Magnetic resonance imaging of the knee at last follow-up revealed that the cartilage thickness of the patient's lateral femoral condyle remained unchanged. Unicondylar hemiarthroplasty performed in patients with large unipolar lesions in the knee can provide durable and reliable pain relief. Ceramic is a viable material that can be considered for articulation with native cartilage.

  20. Risk factors associated with medial tibial stress syndrome in runners: a systematic review and meta-analysis

    PubMed Central

    Newman, Phil; Witchalls, Jeremy; Waddington, Gordon; Adams, Roger

    2013-01-01

    Background Medial tibial stress syndrome (MTSS) affects 5%–35% of runners. Research over the last 40 years investigating a range of interventions has not established any clearly effective management for MTSS that is better than prolonged rest. At the present time, understanding of the risk factors and potential causative factors for MTSS is inconclusive. The purpose of this review is to evaluate studies that have investigated various risk factors and their association with the development of MTSS in runners. Methods Medical research databases were searched for relevant literature, using the terms “MTSS AND prevention OR risk OR prediction OR incidence”. Results A systematic review of the literature identified ten papers suitable for inclusion in a meta-analysis. Measures with sufficient data for meta-analysis included dichotomous and continuous variables of body mass index (BMI), ankle dorsiflexion range of motion, navicular drop, orthotic use, foot type, previous history of MTSS, female gender, hip range of motion, and years of running experience. The following factors were found to have a statistically significant association with MTSS: increased hip external rotation in males (standard mean difference [SMD] 0.67, 95% confidence interval [CI] 0.29–1.04, P<0.001); prior use of orthotics (risk ratio [RR] 2.31, 95% CI 1.56–3.43, P<0.001); fewer years of running experience (SMD −0.74, 95% CI −1.26 to −0.23, P=0.005); female gender (RR 1.71, 95% CI 1.15–2.54, P=0.008); previous history of MTSS (RR 3.74, 95% CI 1.17–11.91, P=0.03); increased body mass index (SMD 0.24, 95% CI 0.08–0.41, P=0.003); navicular drop (SMD 0.26, 95% CI 0.02–0.50, P=0.03); and navicular drop >10 mm (RR 1.99, 95% CI 1.00–3.96, P=0.05). Conclusion Female gender, previous history of MTSS, fewer years of running experience, orthotic use, increased body mass index, increased navicular drop, and increased external rotation hip range of motion in males are all significantly

  1. Association between foot type and tibial stress injuries: a systematic review.

    PubMed

    Barnes, A; Wheat, J; Milner, C

    2008-02-01

    To systematically review published articles investigating the association between structural foot characteristics and tibial stress injuries, and to suggest possible future avenues of research in this area. Literature was identified, selected and appraised in accordance with the methods of a systematic review. Articles potentially relevant to the research question were identified by searching the following electronic databases: Amed, Cinahl, Index to UK theses, Medline, PubMed, Scopus, Sports discus and Web of science. Duplicates were removed and, based on the title and abstract, the full text of relevant studies were retrieved. Two reviewers independently assessed papers; this formed the basis for the inclusion of the most appropriate trials. From the 479 articles originally identified, nine were deemed appropriate for inclusion in the review. In general, specific data relating to this relationship was limited. Outcomes of the nine investigations were difficult to compare due to differing methods used across studies. Results have proved conflicting, with limited evidence found to implicate any specific foot type as a potential risk factor for tibial stress injuries. No definitive conclusions can be drawn relating foot structure or function to an increased risk of tibial stress injuries. Extremes of foot types are likely to pose an increased risk of tibial stress injuries compared to normal arched feet.

  2. Higher Rate of Revision in PFC Sigma Primary Total Knee Arthroplasty With Mismatch of Femoro-Tibial Component Sizes.

    PubMed

    Young, Simon W; Clarke, Henry D; Graves, Stephen E; Liu, Yen-Liang; de Steiger, Richard N

    2015-05-01

    Total knee arthroplasty (TKA) systems permit a degree of femoro-tibial component size mismatch. The effect of mismatched components on revision rates has not been evaluated in a large study. We reviewed 21,906 fixed-bearing PFC Sigma primary TKAs using the Australian Orthopaedic Association National Joint Replacement Registry, dividing patients into three groups: no femoro-tibial size mismatch, tibial component size > femoral component size, and femoral component > tibial component. Revision rates were higher when the femoral size was greater than the tibia, compared to both equal size (HR = 1.20 (1.00, 1.45), P = 0.047) and to tibial size greater than femoral (HR = 1.60 (1.08, 2.37), P = 0.019). Potential mechanisms to explain these findings include edge loading of polyethylene and increased tibial component stresses. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Is it possible to re-establish pre-operative patellar kinematics using a ligament-balanced technique in total knee arthroplasty? A cadaveric investigation.

    PubMed

    Keshmiri, Armin; Springorum, Hans; Baier, Clemens; Zeman, Florian; Grifka, Joachim; Maderbacher, Günther

    2015-03-01

    Several authors emphasise that the appearance of patellar maltracking after total knee arthroplasty (TKA) is caused by rotational malalignment of the femoral and tibial components. Ligament-balanced femoral component rotation was not found to be associated with abnormal postoperative patellar position. We hypothesised that a ligament-balanced technique in TKA has the ability to best re-establish patellar kinematics. In ten cadaveric knees TKA was performed assessing femoral rotation in ligament-balanced and different femoral and tibial component rotation alignments. Patellar kinematics after different component rotations were analysed using a commercial computer navigation system. Ligament-balanced femoral rotation showed the best re-establishment of patellar kinematics after TKA compared to the healthy pre-operative knee. In contrast to tibial component rotation, femoral component rotation had a major impact on patellofemoral kinematics. This investigation suggests that a ligament-balanced technique in TKA is most likely to re-establish natural patellofemoral kinematics. Tibial component rotation did not influence patellar kinematics.

  4. Effect of Tibial Posterior Slope on Knee Kinematics, Quadriceps Force, and Patellofemoral Contact Force After Posterior-Stabilized Total Knee Arthroplasty.

    PubMed

    Okamoto, Shigetoshi; Mizu-uchi, Hideki; Okazaki, Ken; Hamai, Satoshi; Nakahara, Hiroyuki; Iwamoto, Yukihide

    2015-08-01

    We used a musculoskeletal model validated with in vivo data to evaluate the effect of tibial posterior slope on knee kinematics, quadriceps force, and patellofemoral contact force after posterior-stabilized total knee arthroplasty. The maximum quadriceps force and patellofemoral contact force decreased with increasing posterior slope. Anterior sliding of the tibial component and anterior impingement of the anterior aspect of the tibial post were observed with tibial posterior slopes of at least 5° and 10°, respectively. Increased tibial posterior slope contributes to improved exercise efficiency during knee extension, however excessive tibial posterior slope should be avoided to prevent knee instability. Based on our computer simulation we recommend tibial posterior slopes of less than 5° in posterior-stabilized total knee arthroplasty. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. [Investigation of tibial bones of the rats exposed on board "Spacelab-2":histomorphometric analysis

    NASA Technical Reports Server (NTRS)

    Durnova, G. N.; Kaplanskii, A. S.; Morey-Holton, E. R.; Vorobeva, V. N.

    1996-01-01

    Proximal metaphyses of tibial bones from the Sprague-Dowly rats exposed in US dedicated space life sciences laboratory SLS-2 for 13-14 days and sacrificed on day 13 in microgravity and within 5 hours and 14 days following recovery were the subject of histological, histochemical, and histomorphometric analyses. After the 13-day flight of SLS-2 the rats showed initial signs of osteopenia in the spongy tissue of tibial bones, secondary spongiosis affected first. Resorption of the secondary spongiosis was consequent to enhanced resorption and inhibition of osteogenesis. In rats sacrificed within 5 hours of recovery manifestations of tibial osteopenia were more evident than in rats sacrificed during the flight. Spaceflight-induced changes in tibial spongiosis were reverse by character the amount of spongy bone was fully compensated and following 14 days of readaptation to the terrestrial gravity.

  6. Individual risk factors for deep infection and compromised fracture healing after intramedullary nailing of tibial shaft fractures: a single centre experience of 480 patients.

    PubMed

    Metsemakers, W-J; Handojo, K; Reynders, P; Sermon, A; Vanderschot, P; Nijs, S

    2015-04-01

    Despite modern advances in the treatment of tibial shaft fractures, complications including nonunion, malunion, and infection remain relatively frequent. A better understanding of these injuries and its complications could lead to prevention rather than treatment strategies. A retrospective study was performed to identify risk factors for deep infection and compromised fracture healing after intramedullary nailing (IMN) of tibial shaft fractures. Between January 2000 and January 2012, 480 consecutive patients with 486 tibial shaft fractures were enrolled in the study. Statistical analysis was performed to determine predictors of deep infection and compromised fracture healing. Compromised fracture healing was subdivided in delayed union and nonunion. The following independent variables were selected for analysis: age, sex, smoking, obesity, diabetes, American Society of Anaesthesiologists (ASA) classification, polytrauma, fracture type, open fractures, Gustilo type, primary external fixation (EF), time to nailing (TTN) and reaming. As primary statistical evaluation we performed a univariate analysis, followed by a multiple logistic regression model. Univariate regression analysis revealed similar risk factors for delayed union and nonunion, including fracture type, open fractures and Gustilo type. Factors affecting the occurrence of deep infection in this model were primary EF, a prolonged TTN, open fractures and Gustilo type. Multiple logistic regression analysis revealed polytrauma as the single risk factor for nonunion. With respect to delayed union, no risk factors could be identified. In the same statistical model, deep infection was correlated with primary EF. The purpose of this study was to evaluate risk factors of poor outcome after IMN of tibial shaft fractures. The univariate regression analysis showed that the nature of complications after tibial shaft nailing could be multifactorial. This was not confirmed in a multiple logistic regression model, which

  7. The effect of isolated valgus moments on ACL strain during single-leg landing: A simulation study

    PubMed Central

    Shin, Choongsoo S.; Chaudhari, Ajit M.; Andriacchi, Thomas P.

    2009-01-01

    Valgus moments on the knee joint during single-leg landing have been suggested as a risk factor for anterior cruciate ligament (ACL) injury. The purpose of this study was to test the influence of isolated valgus moment on ACL strain during single-leg landing. Physiologic levels of valgus moments from an in vivo study of single-leg landing were applied to a three-dimensional dynamic knee model, previously developed and tested for ACL strain measurement during simulated landing. The ACL strain, knee valgus angle, tibial rotation, and medial collateral ligament (MCL) strain were calculated and analyzed. The study shows that the peak ACL strain increased nonlinearly with increasing peak valgus moment. Subjects with naturally high valgus moments showed greater sensitivity for increased ACL strain with increased valgus moment, but ACL strain plateaus below reported ACL failure levels when the applied isolated valgus moment rises above the maximum values observed during normal cutting activities. In addition, the tibia was observed to rotate externally as the peak valgus moment increased due to bony and soft-tissue constraints. In conclusion, knee valgus moment increases peak ACL strain during single-leg landing. However, valgus moment alone may not be sufficient to induce an isolated ACL tear without concomitant damage to the MCL, because coupled tibial external rotation and increasing strain in the MCL prevent proportional increases in ACL strain at higher levels of valgus moment. Training that reduces the external valgus moment, however, can reduce the ACL strain and thus may help athletes reduce their overall ACL injury risk. PMID:19100550

  8. Acute changes in foot strike pattern and cadence affect running parameters associated with tibial stress fractures.

    PubMed

    Yong, Jennifer R; Silder, Amy; Montgomery, Kate L; Fredericson, Michael; Delp, Scott L

    2018-05-18

    Tibial stress fractures are a common and debilitating injury that occur in distance runners. Runners may be able to decrease tibial stress fracture risk by adopting a running pattern that reduces biomechanical parameters associated with a history of tibial stress fracture. The purpose of this study was to test the hypothesis that converting to a forefoot striking pattern or increasing cadence without focusing on changing foot strike type would reduce injury risk parameters in recreational runners. Running kinematics, ground reaction forces and tibial accelerations were recorded from seventeen healthy, habitual rearfoot striking runners while running in their natural running pattern and after two acute retraining conditions: (1) converting to forefoot striking without focusing on cadence and (2) increasing cadence without focusing on foot strike. We found that converting to forefoot striking decreased two risk factors for tibial stress fracture: average and peak loading rates. Increasing cadence decreased one risk factor: peak hip adduction angle. Our results demonstrate that acute adaptation to forefoot striking reduces different injury risk parameters than acute adaptation to increased cadence and suggest that both modifications may reduce the risk of tibial stress fractures. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. In-line rotating capacitive torque sensor

    DOEpatents

    Kronberg, James W.

    1991-01-01

    A method and apparatus for measuring torques developed along a rotating mechanical assembly comprising a rotating inner portion and a stationary outer portion. The rotating portion has an electrically-conductive flexing section fitted between two coaxial shafts in a configuration which varies radially in accordance with applied torque. The stationary portion comprises a plurality of conductive plates forming a surface concentric with and having a diameter slightly larger than the diameter of the rotating portion. The capacitance between the outer, nonrotating and inner, rotating portion varies with changes in the radial configuration of the rotating portion. Signal output varies approximately linearly with torque for small torques, nonlinearly for larger torques. The sensor is preferably surrounded by a conductive shell to minimize electrical interference from external sources.

  10. Descriptive profile of hip rotation range of motion in elite tennis players and professional baseball pitchers.

    PubMed

    Ellenbecker, Todd S; Ellenbecker, Gail A; Roetert, E Paul; Silva, Rogerio Teixeira; Keuter, Greg; Sperling, Fabio

    2007-08-01

    Repetitive loading to the hip joint in athletes has been reported as a factor in the development of degenerative joint disease and intra-articular injury. Little information is available on the bilateral symmetry of hip rotational measures in unilaterally dominant upper extremity athletes. Side-to-side differences in hip joint range of motion may be present because of asymmetrical loading in the lower extremities of elite tennis players and professional baseball pitchers. Cohort (cross-sectional) study (prevalence); Level of evidence, 1. Descriptive measures of hip internal and external rotation active range of motion were taken in the prone position of 64 male and 83 female elite tennis players and 101 male professional baseball pitchers using digital photos and computerized angle calculation software. Bilateral differences in active range of motion between the dominant and nondominant hip were compared using paired t tests and Bonferroni correction for hip internal, external, and total rotation range of motion. A Pearson correlation test was used to test the relationship between years of competition and hip rotation active range of motion. No significant bilateral difference (P > .005) was measured for mean hip internal or external rotation for the elite tennis players or the professional baseball pitchers. An analysis of the number of subjects in each group with a bilateral difference in hip rotation greater than 10 degrees identified 17% of the professional baseball pitchers with internal rotation differences and 42% with external rotation differences. Differences in the elite male tennis players occurred in only 15% of the players for internal rotation and 9% in external rotation. Female subjects had differences in 8% and 12% of the players for internal and external rotation, respectively. Statistical differences were found between the mean total arc of hip range of internal and external rotation in the elite tennis players with the dominant side being greater

  11. ANODAL TRANSCRANIAL DIRECT CURRENT STIMULATION (TDCS) INCREASES ISOMETRIC STRENGTH OF SHOULDER ROTATORS MUSCLES IN HANDBALL PLAYERS.

    PubMed

    Hazime, Fuad Ahmad; da Cunha, Ronaldo Alves; Soliaman, Renato Rozenblit; Romancini, Ana Clara Bezerra; Pochini, Alberto de Castro; Ejnisman, Benno; Baptista, Abrahão Fontes

    2017-06-01

    Weakness of the rotator cuff muscles can lead to imbalances in the strength of shoulder external and internal rotators, change the biomechanics of the glenohumeral joint and predispose an athlete to injury. Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that has demonstrated promising results in a variety of health conditions. However few studies addressed its potential approach in the realm of athletics. The purpose of this study was to investigate if transcranial direct current stimulation (tDCS) technique increases the isometric muscle strength of shoulder external and internal rotators in handball athletes. Randomized, double-blind, placebo-controlled, crossover study. Eight female handball players aged between 17 and 21 years (Mean=19.65; SD=2.55) with 7.1 ± 4.8 years of experience in training, participating in regional and national competitions were recruited. Maximal voluntary isometric contraction (MVIC) of shoulder external and internal rotator muscles was evaluated during and after 30 and 60 minutes post one session of anodal and sham current (2mA; 0.057mA/cm 2 ) with a one-week interval between stimulations. Compared to baseline, MVIC of shoulder external and internal rotators significantly increased after real but not sham tDCS. Between-group differences were observed for external and internal rotator muscles. Maximal voluntary isometric contraction of external rotation increased significantly during tDCS, and 30 and 60 minutes post-tDCS for real tDCS compared to that for sham tDCS. For internal rotation MVIC increased significantly during and 60 minutes post-tDCS. The results indicate that transcranial direct current stimulation temporarily increases maximal isometric contractions of the internal and external rotators of the shoulder in handball players. 2.

  12. Hall effect in the presence of rotation

    NASA Astrophysics Data System (ADS)

    Zubkov, M. A.

    2018-02-01

    A rotating relativistic fermion system is considered. The consideration is based on the Dirac equation written in the laboratory (non-rotating) reference frame. Rotation in this approach gives rise to the effective magnetic and electric fields that act in the same way both on positive and negative electric charges. In the presence of external electric field in the given system the electric current appears orthogonal to both the electric field and the axis of rotation. The possible applications to the physics of quark-gluon plasma are discussed.

  13. Association of physical activity and physical performance with tibial cartilage volume and bone area in young adults.

    PubMed

    Antony, Benny; Venn, Alison; Cicuttini, Flavia; March, Lyn; Blizzard, Leigh; Dwyer, Terence; Cross, Marita; Jones, Graeme; Ding, Changhai

    2015-10-26

    Physical activity has been recommended to patients with knee osteoarthritis for improving their symptoms. However, it is still controversial if physical activity has effects on joint structures including cartilage volume. The aim of this study was to describe the associations between physical activity and performance measured 5 years prior and tibial cartilage volume and bone area in young adults. Subjects broadly representative of the Australian population (n = 328, aged 31-41 years, female 47.3 %) were selected from the Childhood Determinants of Adult Health study. They underwent T1-weighted fat-suppressed magnetic resonance imaging (MRI) scans of their knees. Tibial bone area and cartilage volume were measured from MRI. Physical activity (measured using long international physical activity questionnaire (IPAQ)) and performance measures (long jump, leg muscle strength, physical work capacity (PWC170)) were measured 5 years prior. In multivariable analyses, total physical activity (min/week) (β: 0.30 mm(3), 95 % CI: 0.13,0.47), vigorous (β: 0.54 mm(3), 95 % CI: 0.13,0.94), moderate (β: 0.34 mm(3), 95 % CI: 0.01,0.67), walking (β: 0.40 mm(3), 95 % CI: 0.07,0.72) and IPAQ category (β: 182.9 mm(3), 95 % CI: 51.8,314.0) were positively associated with total tibial cartilage volume but not tibial bone area. PWC170, long jump and leg muscle strength were positively and significantly associated with both total tibial cartilage volume and total tibial bone area; and the associations with tibial cartilage volume decreased in magnitude but remained significant for PWC170 and long jump after further adjustment for tibial bone area. While tibial bone area is affected only by physical performance, total tibial cartilage volume can be influenced by both physical activity and performance in younger adults. The clinical significance suggests a beneficial effect for cartilage but the bone area association was restricted to performance suggesting other factors

  14. The use of weightbearing radiographs to assess the stability of supination-external rotation fractures of the ankle.

    PubMed

    Weber, Martin; Burmeister, Helge; Flueckiger, Gerhard; Krause, Fabian G

    2010-05-01

    Isolated lateral malleolar fractures usually result from a supination-external rotation (SER) injury and may include a deltoid ligament rupture. The necessity of operative treatment is based on the recognition of a relevant medial soft-tissue disruption. Currently used tests to assess ankle stability include manual stress radiographs and gravity stress radiographs, but seem to overestimate the need for fracture fixation. We investigated the use of weightbearing radiographs to distinguish stable and unstable isolated lateral malleolar fractures induced by the SER mechanism in 57 patients. Patients with stable fractures (SER type II according to the Lauge-Hansen classification) were treated non-operatively with varying external support. Forty-seven patients were evaluated by questionnaire and AOFAS ankle-hindfoot score. Follow-up was 18-120 months (mean 62). Fifty-one of fifty-seven (90%) patients were found to have stable fractures (SER type II) and were treated nonoperatively. The AOFAS score was 96.1 points on average (range 85-100) at latest follow-up. Four patients reported minor complaints. A "moderate" correlation of risk factors (i.e. smoking) to delayed bone healing was found while the correlation of varying external support (i.e. bandage, cast) to the AOFAS score and delayed bone healing was "poor". The use of weightbearing radiographs is an easy, pain-free, safe and reliable method to exclude the need for operative treatment, with excellent clinical outcome in the majority of the patients seen at latest follow-up. The delay of 3-10 days until the decision about surgical treatment is well accepted by the patients.

  15. The location of the tibial accelerometer does influence impact acceleration parameters during running.

    PubMed

    Lucas-Cuevas, Angel Gabriel; Encarnación-Martínez, Alberto; Camacho-García, Andrés; Llana-Belloch, Salvador; Pérez-Soriano, Pedro

    2017-09-01

    Tibial accelerations have been associated with a number of running injuries. However, studies attaching the tibial accelerometer on the proximal section are as numerous as those attaching the accelerometer on the distal section. This study aimed to investigate whether accelerometer location influences acceleration parameters commonly reported in running literature. To fulfil this purpose, 30 athletes ran at 2.22, 2.78 and 3.33 m · s -1 with three accelerometers attached with double-sided tape and tightened to the participants' tolerance on the forehead, the proximal section of the tibia and the distal section of the tibia. Time-domain (peak acceleration, shock attenuation) and frequency-domain parameters (peak frequency, peak power, signal magnitude and shock attenuation in both the low and high frequency ranges) were calculated for each of the tibial locations. The distal accelerometer registered greater tibial acceleration peak and shock attenuation compared to the proximal accelerometer. With respect to the frequency-domain analysis, the distal accelerometer provided greater values of all the low-frequency parameters, whereas no difference was observed for the high-frequency parameters. These findings suggest that the location of the tibial accelerometer does influence the acceleration signal parameters, and thus, researchers should carefully consider the location they choose to place the accelerometer so that equivalent comparisons across studies can be made.

  16. Effect of cranial cruciate ligament deficiency, tibial plateau leveling osteotomy, and tibial tuberosity advancement on contact mechanics and alignment of the stifle in flexion.

    PubMed

    Kim, Stanley E; Pozzi, Antonio; Banks, Scott A; Conrad, Bryan P; Lewis, Daniel D

    2010-04-01

    To assess contact mechanics and 3-dimensional (3-D) joint alignment in cranial cruciate ligament (CCL)-deficient stifles before and after tibial plateau leveling osteotomy (TPLO) and tibial tuberosity advancement (TTA) with the stifle in 90 degrees of flexion. In vitro biomechanical study. Cadaveric pelvic limb pairs (n=8) from dogs weighing 28-35 kg. Contralateral limbs were assigned to receive TPLO or TTA. Digital pressure sensors were used to measure femorotibial contact area, peak and mean contact pressure, and peak pressure location with the limb under a load of 30% body weight and stifle flexion angle of 90 degrees . 3-D poses were obtained using a Microscribe digitizer. Specimens were tested under normal, CCL deficient, and treatment conditions. Significant disturbances in alignment were not observed after CCL transection, although medial contact area was 10% smaller than normal (P=.003). There were no significant differences in contact mechanics or alignment between normal and TTA conditions; TPLO induced 6 degrees varus angulation (P<.001), 26% decrease in lateral peak pressure (P=.027), and 18% increase in medial mean pressure (P=.008) when compared with normal. Cranial tibial subluxation is nominal in CCL-deficient stifles loaded in flexion. Stifle alignment and contact mechanics are not altered by TTA, whereas TPLO causes mild varus and a subsequent increase in medial compartment loading. Cranial tibial subluxation of CCL-deficient stifles may not occur during postures that load the stifle in flexion. The significance of minor changes in loading patterns after TPLO is unknown.

  17. Does proprioceptive acuity during active knee rotation in the transverse plane vary at different ranges?

    PubMed

    Muaidi, Qassim I

    2016-11-21

    Knee proprioception in the sagittal plane has been widely investigated in prospective studies, however limited information is known about proprioceptive acuity during active knee rotation and the way most commonly injured. To investigate whether proprioceptive acuity during active internal and external knee rotation varies at different ranges in the transverse plane. Healthy volunteers (N: 26) without previous injury or surgery of the knee joint participated in the study.Knee rotation proprioceptive acuity was measured using a custom-designed device. The measure of proprioceptive acuity used in this study was the just-noticeable-difference (JND). Participants actively rotated the knee at different intervals(initial, mid, and terminal internal or external rotation range) to one of four movement blocks and the magnitude of the permitted motion was judged. The means of the JND for proprioceptive acuity at initial internal rotation (0.80° ± 0.06) were significantly (p< 0.002) lower than for mid (1.62° ± 0.18), and terminal (2.08° ± 0.35) internal rotation. The means of the JND for proprioceptive acuity at initial external rotation (1.16° ± 0.10) were significantly (p< 0.04) lower than for mid (1.95° ± 0.30), and terminal (1.97° ± 0.24) internal rotation. Participants perceived smaller differences between active internal and external rotation movements at initial rotation range than at the mid and terminal rotation range of movement. This suggests better proprioceptive acuity at the initial rotation range of movement in the transverse plane.

  18. The effect of posterior tibial slope on knee flexion in posterior-stabilized total knee arthroplasty.

    PubMed

    Shi, Xiaojun; Shen, Bin; Kang, Pengde; Yang, Jing; Zhou, Zongke; Pei, Fuxing

    2013-12-01

    To evaluate and quantify the effect of the tibial slope on the postoperative maximal knee flexion and stability in the posterior-stabilized total knee arthroplasty (TKA). Fifty-six patients (65 knees) who had undergone TKA with the posterior-stabilized prostheses were divided into the following 3 groups according to the measured tibial slopes: Group 1: ≤4°, Group 2: 4°-7° and Group 3: >7°. The preoperative range of the motion, the change in the posterior condylar offset, the elevation of the joint line, the postoperative tibiofemoral angle and the preoperative and postoperative Hospital for Special Surgery (HSS) scores were recorded. The tibial anteroposterior translation was measured using the Kneelax 3 Arthrometer at both the 30° and the 90° flexion angles. The mean values of the postoperative maximal knee flexion were 101° (SD 5), 106° (SD 5) and 113° (SD 9) in Groups 1, 2 and 3, respectively. A significant difference was found in the postoperative maximal flexion between the 3 groups (P < 0.001). However, no significant differences were found between the 3 groups in the postoperative HSS scores, the changes in the posterior condylar offset, the elevation of the joint line or the tibial anteroposterior translation at either the 30° or the 90° flexion angles. A 1° increase in the tibial slope resulted in a 1.8° flexion increment (r = 1.8, R (2) = 0.463, P < 0.001). An increase in the posterior tibial slope can significantly increase the postoperative maximal knee flexion. The tibial slope with an appropriate flexion and extension gap balance during the operation does not affect the joint stability.

  19. Bilateral periprosthetic tibial stress fracture after total knee arthroplasty: A case report.

    PubMed

    Ozdemir, Guzelali; Azboy, Ibrahim; Yilmaz, Baris

    2016-01-01

    Periprosthetic fractures around the knee after total knee arthroplasty can be seen in the femur, tibia and patella. The tibial fractures are rare cases. Our case with bilateral tibial stress fracture developed after total knee arthroplasty (TKA) is the first of its kind in the literature. 75-year-old male patient with bilateral knee osteoarthritis had not benefited from conservative treatment methods previously applied. Left TKA was applied. In the second month postoperatively, periprosthetic tibial fracture was identified and osteosynthesis was implemented with locked tibia proximal plate-screw. Bone union in 12 weeks was observed in his follow-ups. After 15 months of his first operation, TKA was applied to the right knee. Postoperatively in the second month, as in the first operation, periprosthetic tibial fracture was detected. Osteosynthesis with locking plate-screw was applied and union in 12 weeks was observed in his follow-up. He was seen mobilized independently and without support in the last control of the case made in the 24th month after the second operation. The number of TKA applications is expected to increase in the future. The incidence of periprosthetic fractures should also be expected to increase in these cases. Periprosthetic tibial fractures after TKA are rarely seen. The treatment of periprosthetic fractures around the knee after TKA can be difficult. In the case of persistent pain in the upper end of the tibia after the surgery, stress fracture should be considered. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Diagnostic accuracy of the gravity stress test and clinical signs in cases of isolated supination-external rotation-type lateral malleolar fractures.

    PubMed

    Nortunen, S; Flinkkilä, T; Lantto, I; Kortekangas, T; Niinimäki, J; Ohtonen, P; Pakarinen, H

    2015-08-01

    We prospectively assessed the diagnostic accuracy of the gravity stress test and clinical findings to evaluate the stability of the ankle mortise in patients with supination-external rotation-type fractures of the lateral malleolus without widening of the medial clear space. The cohort included 79 patients with a mean age of 44 years (16 to 82). Two surgeons assessed medial tenderness, swelling and ecchymosis and performed the external rotation (ER) stress test (a reference standard). A diagnostic radiographer performed the gravity stress test. For the gravity stress test, the positive likelihood ratio (LR) was 5.80 with a 95% confidence interval (CI) of 2.75 to 12.27, and the negative LR was 0.15 (95% CI 0.07 to 0.35), suggesting a moderate change from the pre-test probability. Medial tenderness, both alone and in combination with swelling and/or ecchymosis, indicated a small change (positive LR, 2.74 to 3.25; negative LR, 0.38 to 0.47), whereas swelling and ecchymosis indicated only minimal changes (positive LR, 1.41 to 1.65; negative LR, 0.38 to 0.47). In conclusion, when gravity stress test results are in agreement with clinical findings, the result is likely to predict stability of the ankle mortise with an accuracy equivalent to ER stress test results. When clinical examination suggests a medial-side injury, however, the gravity stress test may give a false negative result. ©2015 The British Editorial Society of Bone & Joint Surgery.

  1. Larger medial femoral to tibial condylar dimension may trigger posterior root tear of medial meniscus.

    PubMed

    Chung, Jun Young; Song, Hyung Keun; Jung, Myung Kuk; Oh, Hyeong Tak; Kim, Joon Ho; Yoon, Ji-Sang; Min, Byoung-Hyun

    2016-05-01

    The major meniscal functions are load bearing, load distribution, and shock absorption by increasing the tibiofemoral joint (TFJ) contact area and dissipating axial loads by conversion into hoop stresses. The increased hoop strain stretches the meniscus in outward direction towards radius, causing extrusion, which is associated with the root tear and resultant degenerative osteoarthritis. Since the larger contact area of medial TFJ may increase the hoop stresses, we hypothesized that the larger medial femoral to tibial condylar dimension would contribute to the development of medial meniscus posterior root tear (MMPRT). Thus, the purpose of the study was to assess the relationship between MMPRT and medial femoral to tibial condylar dimension. A case-control study was conducted to compare medial femoral to tibial condylar dimensions of patients with complete MMPRT (n = 59) with those of demography-matched controls (n = 59) during the period from 2010 to 2013. In each patient, MRIs were reviewed and several parameters were measured including articulation width of medial femoral condyle (MFC) at 0°, 30°, 60°, and 90°, medial tibial condyle (MTC) width, degree of meniscal extrusion, and medial femoral to tibial condylar width ratio (MFC/MTC) at 0°, 30°, 60°, and 90°, respectively. Demographic and radiographic data were assessed. A larger medial femoral to tibial condylar dimension was associated with MMPRT at 0° and 30° knee angles. Patients with MFC/MTC greater than 0.9 at 0° also showed about 2.5-fold increase in the chance of MMPRT. Those with meniscal extrusion greater than 3 mm also had about 17.1 times greater chance for the presence of MMPRT accordingly. A larger medial femoral to tibial condylar dimension may be considered as one of the regional contributors to the outbreak of MMPRT, and medial femoral to tibial condylar width ratio greater than 0.9 at 0° knee angle may be considered as a significant risk factor for MMPRT. III.

  2. Measuring Eccentric Strength of the Shoulder External Rotators Using a Handheld Dynamometer: Reliability and Validity

    PubMed Central

    Johansson, Fredrik R.; Skillgate, Eva; Lapauw, Mattis L.; Clijmans, Dorien; Deneulin, Valentijn P.; Palmans, Tanneke; Engineer, Human Kinetic; Cools, Ann M.

    2015-01-01

    Context Shoulder strength assessment plays an important role in the clinical examination of the shoulder region. Eccentric strength measurements are of special importance in guiding the clinician in injury prevention or return-to-play decisions after injury. Objective To examine the absolute and relative reliability and validity of a standardized eccentric strength-measurement protocol for the glenohumeral external rotators. Design Descriptive laboratory study. Setting Testing environment at the Department of Rehabilitation Sciences and Physiotherapy of Ghent University, Belgium. Patients or Other Participants Twenty-five healthy participants (9 men and 16 women) without any history of shoulder pain were tested by 2 independent assessors using a handheld dynamometer (HHD) and underwent an isokinetic testing procedure. Intervention(s) The clinical protocol used an HHD, a DynaPort accelerometer to measure acceleration and angular velocity of testing 30°/s over 90° of range of motion, and a Biodex dynamometer to measure isokinetic activity. Main Outcome Measure(s) Three eccentric strength measurements: (1) tester 1 with the HHD, (2) tester 2 with the HHD, and (3) Biodex isokinetic strength measurement. Results The intratester reliability was excellent (0.879 and 0.858), whereas the intertester reliability was good, with an intraclass correlation coefficient between testers of 0.714. Pearson product moment correlation coefficients of 0.78 and 0.70 were noted between the HHD and the isokinetic data, showing good validity of this new procedure. Conclusions Standardized eccentric rotator cuff strength can be tested and measured in the clinical setting with good-to-excellent reliability and validity using an HHD. PMID:25974381

  3. Anterolateral Knee Extra-articular Stabilizers: A Robotic Sectioning Study of the Anterolateral Ligament and Distal Iliotibial Band Kaplan Fibers.

    PubMed

    Geeslin, Andrew G; Chahla, Jorge; Moatshe, Gilbert; Muckenhirn, Kyle J; Kruckeberg, Bradley M; Brady, Alex W; Coggins, Ashley; Dornan, Grant J; Getgood, Alan M; Godin, Jonathan A; LaPrade, Robert F

    2018-05-01

    The individual kinematic roles of the anterolateral ligament (ALL) and the distal iliotibial band Kaplan fibers in the setting of anterior cruciate ligament (ACL) deficiency require further clarification. This will improve understanding of their potential contribution to residual anterolateral rotational laxity after ACL reconstruction and may influence selection of an anterolateral extra-articular reconstruction technique, which is currently a matter of debate. Hypothesis/Purpose: To compare the role of the ALL and the Kaplan fibers in stabilizing the knee against tibial internal rotation, anterior tibial translation, and the pivot shift in ACL-deficient knees. We hypothesized that the Kaplan fibers would provide greater tibial internal rotation restraint than the ALL in ACL-deficient knees and that both structures would provide restraint against internal rotation during a simulated pivot-shift test. Controlled laboratory study. Ten paired fresh-frozen cadaveric knees (n = 20) were used to investigate the effect of sectioning the ALL and the Kaplan fibers in ACL-deficient knees with a 6 degrees of freedom robotic testing system. After ACL sectioning, sectioning was randomly performed for the ALL and the Kaplan fibers. An established robotic testing protocol was utilized to assess knee kinematics when the specimens were subjected to a 5-N·m internal rotation torque (0°-90° at 15° increments), a simulated pivot shift with 10-N·m valgus and 5-N·m internal rotation torque (15° and 30°), and an 88-N anterior tibial load (30° and 90°). Sectioning of the ACL led to significantly increased tibial internal rotation (from 0° to 90°) and anterior tibial translation (30° and 90°) as compared with the intact state. Significantly increased internal rotation occurred with further sectioning of the ALL (15°-90°) and Kaplan fibers (15°, 60°-90°). At higher flexion angles (60°-90°), sectioning the Kaplan fibers led to significantly greater internal rotation

  4. Hydrodynamic Torques and Rotations of Superparamagnetic Bead Dimers

    NASA Astrophysics Data System (ADS)

    Pease, Christopher; Etheridge, J.; Wijesinghe, H. S.; Pierce, C. J.; Prikockis, M. V.; Sooryakumar, R.

    Chains of micro-magnetic particles are often rotated with external magnetic fields for many lab-on-a-chip technologies such as transporting beads or mixing fluids. These applications benefit from faster responses of the actuated particles. In a rotating magnetic field, the magnetization of superparamagnetic beads, created from embedded magnetic nano-particles within a polymer matrix, is largely characterized by induced dipoles mip along the direction of the field. In addition there is often a weak dipole mop that orients out-of-phase with the external rotating field. On a two-bead dimer, the simplest chain of beads, mop contributes a torque Γm in addition to the torque from mip. For dimers with beads unbound to each other, mop rotates individual beads which generate an additional hydrodynamic torque on the dimer. Whereas, mop directly torques bound dimers. Our results show that Γm significantly alters the average frequency-dependent dimer rotation rate for both bound and unbound monomers and, when mop exceeds a critical value, increases the maximum dimer rotation frequency. Models that include magnetic and hydrodynamics torques provide good agreement with the experimental findings over a range of field frequencies.

  5. Posterior tibial nerve stimulation vs parasacral transcutaneous neuromodulation for overactive bladder in children.

    PubMed

    Barroso, Ubirajara; Viterbo, Walter; Bittencourt, Joana; Farias, Tiago; Lordêlo, Patrícia

    2013-08-01

    Parasacral transcutaneous electrical nerve stimulation and posterior tibial nerve stimulation have emerged as effective methods to treat overactive bladder in children. However, to our knowledge no study has compared the 2 methods. We evaluated the results of parasacral transcutaneous electrical nerve stimulation and posterior tibial nerve stimulation in children with overactive bladder. We prospectively studied children with overactive bladder without dysfunctional voiding. Success of treatment was evaluated by visual analogue scale and dysfunctional voiding symptom score, and by level of improvement of each specific symptom. Parasacral transcutaneous electrical nerve stimulation was performed 3 times weekly and posterior tibial nerve stimulation was performed once weekly. A total of 22 consecutive patients were treated with posterior tibial nerve stimulation and 37 with parasacral transcutaneous electrical nerve stimulation. There was no difference between the 2 groups regarding demographic characteristics or types of symptoms. Concerning the evaluation by visual analogue scale, complete resolution of symptoms was seen in 70% of the group undergoing parasacral transcutaneous electrical nerve stimulation and in 9% of the group undergoing posterior tibial nerve stimulation (p = 0.02). When the groups were compared, there was no statistically significant difference (p = 0.55). The frequency of persistence of urgency and diurnal urinary incontinence was nearly double in the group undergoing posterior tibial nerve stimulation. However, this difference was not statistically significant. We found that parasacral transcutaneous electrical nerve stimulation is more effective in resolving overactive bladder symptoms, which matches parental perception. However, there were no statistically significant differences in the evaluation by dysfunctional voiding symptom score, or in complete resolution of urgency or diurnal incontinence. Copyright © 2013 American Urological

  6. Rotational fluxons of Bose-Einstein condensates in coplanar double-ring traps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brand, J.; Institute of Natural Sciences, Massey University; Haigh, T. J.

    Rotational analogs to magnetic fluxons in conventional Josephson junctions are predicted to emerge in the ground state of rotating tunnel-coupled annular Bose-Einstein condensates (BECs). Such topological condensate-phase structures can be manipulated by external potentials. We determine conditions for observing macroscopic quantum tunneling of a fluxon. Rotational fluxons in double-ring BECs can be created, manipulated, and controlled by external potentials in different ways than is possible in the solid-state system, thus rendering them a promising candidate system for studying and utilizing quantum properties of collective many-particle degrees of freedom.

  7. Shoulder Rotator Muscle Dynamometry Characteristics: Side Asymmetry and Correlations with Ball-Throwing Speed in Adolescent Handball Players

    PubMed Central

    Pontaga, Inese; Zidens, Janis

    2014-01-01

    The aim of the investigation was to: 1) compare shoulder external/internal rotator muscles’ peak torques and average power values and their ratios in the dominant and non-dominant arm; 2) determine correlations between shoulder rotator muscles’ peak torques, average power and ball-throwing speed in handball players. Fourteen 14 to 15-year-old male athletes with injury-free shoulders participated in the study (body height: 176 ± 7 cm, body mass 63 ± 9 kg). The tests were carried out by an isokinetic dynamometer system in the shoulder internal and external rotation movements at angular velocities of 60°/s, 90°/s and 240°/s during concentric contractions. The eccentric external– concentric internal rotator muscle contractions were performed at the velocity of 90°/s. The player threw a ball at maximal speed keeping both feet on the floor. The speed was recorded with reflected light rays. Training in handball does not cause significant side asymmetry in shoulder external/internal rotator muscle peak torques or the average power ratio. Positive correlations between isokinetic characteristics of the shoulder internal and external rotator muscles and ball-throwing speed were determined. The power produced by internal rotator muscles during concentric contractions after eccentric contractions of external rotator muscles was significantly greater in the dominant than in the non-dominant arm. Thus, it may be concluded that the shoulder eccentric external/concentric internal rotator muscle power ratio is significantly greater than this ratio in the concentric contractions of these muscles. PMID:25414738

  8. Predictors of failure and success of tibial interventions for critical limb ischemia.

    PubMed

    Fernandez, Nathan; McEnaney, Ryan; Marone, Luke K; Rhee, Robert Y; Leers, Steven; Makaroun, Michel; Chaer, Rabih A

    2010-10-01

    The efficacy of tibial artery endovascular intervention (TAEI) for critical limb ischemia (CLI) and particularly for wound healing is not fully defined. The purpose of this study is to determine predictors of failure and success for TAEI in the setting of CLI. All TAEI for tissue loss or rest pain (Rutherford classes 4, 5, and 6) from 2004 to 2008 were retrospectively reviewed. Clinical outcomes and patency rates were analyzed by multivariable Cox proportional hazards regression and life table analysis. One hundred twenty-three limbs in 111 patients (62% male, mean age 74) were treated. Sixty-seven percent of patients were diabetics, 55% had renal insufficiency, and 21% required hemodialysis. One hundred two limbs (83%) exhibited tissue loss; all others had ischemic rest pain. All patients underwent tibial angioplasty (PTA). Tibial excimer laser atherectomy was performed in 14% of the patients. Interventions were performed on multiple tibial vessels in 20% of limbs. Isolated tibial procedures were performed on 50 limbs (41%), while 73 patients had concurrent ipsilateral superficial femoral artery or popliteal interventions. The mean distal popliteal and tibial runoff score improved from 11.8 ± 3.6 to 6.7 ± 1.6 (P < .001), and the mean ankle-brachial index increased from 0.61 ± 0.26 to 0.85 ± 0.22 (P < .001). Surgical bypass was required in seven patients (6%). The mean follow up was 6.8 ± 6.6 months, while the 1-year primary, primary-assisted, and secondary patency rates were 33%, 50%, and 56% respectively. Limb salvage rate at 1 year was 75%. Factors found to be associated with impaired limb salvage included renal insufficiency (hazard ratio [HR] = 5.7; P = .03) and the need for pedal intervention (HR = 13.75; P = .04). TAEI in an isolated peroneal artery (odds ratio = 7.80; P = .01) was associated with impaired wound healing, whereas multilevel intervention (HR = 2.1; P = .009) and tibial laser atherectomy (HR = 3.1; P = .01) were predictors of wound healing

  9. Influence of Body Position on Shoulder and Trunk Muscle Activation During Resisted Isometric Shoulder External Rotation.

    PubMed

    Krause, David A; Dueffert, Lucas G; Postma, Jaclyn L; Vogler, Eric T; Walsh, Amy J; Hollman, John H

    External rotation (ER) strengthening of the shoulder is an integral component of rehabilitative and preventative programs for overhead athletes. A variety of shoulder ER strengthening exercises are reported, including those intended to integrate the core musculature. The purpose of this study was to examine ER torque and electromyographic (EMG) activation of shoulder and trunk muscles while performing resisted isometric shoulder ER in 3 positions (standing, side lying, and side plank). Significantly greater force and shoulder muscle activation would be generated while side lying given the inherent stability of the position, and greater trunk muscle activation would be generated in the less stable plank position. Quasi-experimental repeated-measures study. Level 5. A convenience sample of 25 healthy overhead recreational athletes (9 men, 16 women) participated in this study. EMG electrodes were placed on the infraspinatus, posterior deltoid, middle trapezius, multifidi, internal obliques, and external obliques. EMG signals were normalized to a maximal isometric contraction. Participants performed resisted isometric ER in standing, side-lying, and side plank positions. Results were analyzed using a repeated-measures analysis of variance with post hoc Bonferroni corrections (α = 0.05). There was no significant difference in ER torque between positions (α = 0.05). A significant difference in EMG activity of shoulder and trunk musculature between positions was found in 7 of the 8 muscles monitored. Significantly greater EMG activity in the infraspinatus, middle trapezius, and the nondominant external and internal obliques was found in the side plank position as compared with standing and side lying. While there was no difference in ER torque between the 3 exercise positions, EMG activity of the shoulder and trunk muscles was dependent on body position. If a clinician is seeking to integrate trunk muscle activation while performing shoulder ER strengthening, the side

  10. In-line rotating capacitive torque sensor

    DOEpatents

    Kronberg, J.W.

    1991-09-10

    Disclosed are a method and apparatus for measuring torques developed along a rotating mechanical assembly comprising a rotating inner portion and a stationary outer portion. The rotating portion has an electrically-conductive flexing section fitted between two coaxial shafts in a configuration which varies radially in accordance with applied torque. The stationary portion comprises a plurality of conductive plates forming a surface concentric with and having a diameter slightly larger than the diameter of the rotating portion. The capacitance between the outer, nonrotating and inner, rotating portion varies with changes in the radial configuration of the rotating portion. Signal output varies approximately linearly with torque for small torques, nonlinearly for larger torques. The sensor is preferably surrounded by a conductive shell to minimize electrical interference from external sources. 18 figures.

  11. An Improved Tibial Force Sensor to Compute Contact Forces and Contact Locations In Vitro After Total Knee Arthroplasty.

    PubMed

    Roth, Joshua D; Howell, Stephen M; Hull, Maury L

    2017-04-01

    Contact force imbalance and contact kinematics (i.e., motion of the contact location in each compartment during flexion) of the tibiofemoral joint are both important predictors of a patient's outcome following total knee arthroplasty (TKA). Previous tibial force sensors have limitations in that they either did not determine contact forces and contact locations independently in the medial and lateral compartments or only did so within restricted areas of the tibial insert, which prevented them from thoroughly evaluating contact force imbalance and contact kinematics in vitro. Accordingly, the primary objective of this study was to present the design and verification of an improved tibial force sensor which overcomes these limitations. The improved tibial force sensor consists of a modified tibial baseplate which houses independent medial and lateral arrays of three custom tension-compression transducers each. This sensor is interchangeable with a standard tibial component because it accommodates tibial articular surface inserts with a range of sizes and thicknesses. This sensor was verified by applying known loads at known locations over the entire surface of the tibial insert to determine the errors in the computed contact force and contact location in each compartment. The root-mean-square errors (RMSEs) in contact force are ≤ 6.1 N which is 1.4% of the 450 N full-scale output. The RMSEs in contact location are ≤ 1.6 mm. This improved tibial force sensor overcomes the limitations of the previous sensors and therefore should be useful for in vitro evaluation of new alignment goals, new surgical techniques, and new component designs in TKA.

  12. Ipsilateral intact fibula as a predictor of tibial plafond fracture pattern and severity.

    PubMed

    Luk, Pamela C; Charlton, Timothy P; Lee, Jackson; Thordarson, David B

    2013-10-01

    The objective of this study was to determine whether there is a difference in fracture pattern and severity of comminution between tibial plafond fractures with and without associated fibular fractures using computed tomography (CT). We hypothesized that the presence of an intact fibula was predictive of increased tibial plafond fracture severity. This was a case control, radiographic review performed at a single level I university trauma center. Between November 2007 and July 2011, 104 patients with 107 operatively treated tibial pilon fractures and preoperative CT scans were identified: 70 patients with 71 tibial plafond fractures had associated fibular fractures, and 34 patients with 36 tibial plafond fractures had intact fibulas. Four criteria were compared between the 2 groups: AO/OTA classification of distal tibia fractures, Topliss coronal and sagittal fracture pattern classification, plafond region of greatest comminution, and degree of proximal extension of fracture line. The intact fibula group had greater percentages of AO/OTA classification B2 type (5.5 vs 0, P = .046) and B3 type (52.8 vs 28.2, P = .013). Conversely, the percentage of AO/OTA classification C3 type was greater in the fractured fibula group (53.5 vs 30.6, P = .025). Evaluation using the Topliss sagittal and coronal classifications revealed no difference between the 2 groups (P = .226). Central and lateral regions of the plafond were the most common areas of comminution in fractured fibula pilons (32% and 31%, respectively). The lateral region of the plafond was the most common area of comminution in intact fibula pilon fractures (42%). There was no statistically significant difference (P = .71) in degree of proximal extension of fracture line between the 2 groups. Tibial plafond fractures with intact fibulas were more commonly associated with AO/OTA classification B-type patterns, whereas those with fractured fibulas were more commonly associated with C-type patterns. An intact fibula

  13. Anterolateral Ligament Expert Group consensus paper on the management of internal rotation and instability of the anterior cruciate ligament - deficient knee.

    PubMed

    Sonnery-Cottet, Bertrand; Daggett, Matthew; Fayard, Jean-Marie; Ferretti, Andrea; Helito, Camilo Partezani; Lind, Martin; Monaco, Edoardo; de Pádua, Vitor Barion Castro; Thaunat, Mathieu; Wilson, Adrian; Zaffagnini, Stefano; Zijl, Jacco; Claes, Steven

    2017-06-01

    Purpose of this paper is to provide an overview of the latest research on the anterolateral ligament (ALL) and present the consensus of the ALL Expert Group on the anatomy, radiographic landmarks, biomechanics, clinical and radiographic diagnosis, lesion classification, surgical technique and clinical outcomes. A consensus on controversial subjects surrounding the ALL and anterolateral knee instability has been established based on the opinion of experts, the latest publications on the subject and an exchange of experiences during the ALL Experts Meeting (November 2015, Lyon, France). The ALL is found deep to the iliotibial band. The femoral origin is just posterior and proximal to the lateral epicondyle; the tibial attachment is 21.6 mm posterior to Gerdy's tubercle and 4-10 mm below the tibial joint line. On a lateral radiographic view the femoral origin is located in the postero-inferior quadrant and the tibial attachment is close to the centre of the proximal tibial plateau. Favourable isometry of an ALL reconstruction is seen when the femoral position is proximal and posterior to the lateral epicondyle, with the ALL being tight upon extension and lax upon flexion. The ALL can be visualised on ultrasound, or on T2-weighted coronal MRI scans with proton density fat-suppressed evaluation. The ALL injury is associated with a Segond fracture, and often occurs in conjunction with acute anterior cruciate ligament (ACL) injury. Recognition and repair of the ALL lesions should be considered to improve the control of rotational stability provided by ACL reconstruction. For high-risk patients, a combined ACL and ALL reconstruction improves rotational control and reduces the rate of re-rupture, without increased postoperative complication rates compared to ACL-only reconstruction. In conclusion this paper provides a contemporary consensus on all studied features of the ALL. The findings warrant future research in order to further test these early observations, with the

  14. Can hip abduction and external rotation discriminate sacroiliac joint pain?

    PubMed

    Adhia, Divya Bharatkumar; Tumilty, Steve; Mani, Ramakrishnan; Milosavljevic, Stephan; Bussey, Melanie D

    2016-02-01

    The primary aim of the study is to determine if Hip Abduction and External Rotation (HABER) test is capable of reproducing familiar pain in individuals with low back pain (LBP) of sacroiliac joint (SIJ) origin (SIJ-positive) when compared with LBP of Non-SIJ origin (SIJ-negative). If so, the secondary aim is to determine the diagnostic accuracy of HABER test against the reference standard of pain provocation tests, and to determine which increments of the HABER test has highest sensitivity and specificity for identifying SIJ-positive individuals. Single-blinded diagnostic accuracy study. Participants [n(122)] between ages of 18-50 y, suffering from chronic non-specific LBP (≥3 months) volunteered in the study. An experienced musculoskeletal physiotherapist evaluated and classified participants into either SIJ-positive [n(45)] or SIJ-negative [n(77)], based on reference standard of pain provocation tests [≥3 positive tests = SIJ-positive]. Another musculoskeletal physiotherapist, blinded to clinical groups, evaluated participants for reproduction of familiar pain during each increment (10°, 20°, 30°, 40°, and 50°) of HABER test. The HABER test reproduced familiar pain in SIJ-positive individuals when compared with SIJ-negative individuals [p (0.001), R(2) (0.38), Exp(β) (5.95-10.32)], and demonstrated moderate level of sensitivity (67%-78%) and specificity (71%-72%) for identifying SIJ-positive individuals. Receiver operator curve analysis demonstrated that the HABER increments of ≥30° have the highest sensitivity (83%-100%) and specificity (52%-64%). The HABER test is capable of reproducing familiar pain in SIJ-positive LBP individuals and has moderate levels of sensitivity and specificity for identifying SIJ-positive LBP individuals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Posterior tibial vein aneurysm presenting as tarsal tunnel syndrome.

    PubMed

    Ayad, Micheal; Whisenhunt, Anumeha; Hong, EnYaw; Heller, Josh; Salvatore, Dawn; Abai, Babak; DiMuzio, Paul J

    2015-06-01

    Tarsal tunnel syndrome is a compressive neuropathy of the posterior tibial nerve within the tarsal tunnel. Its etiology varies, including space occupying lesions, trauma, inflammation, anatomic deformity, iatrogenic injury, and idiopathic and systemic causes. Herein, we describe a 46-year-old man who presented with left foot pain. Work up revealed a venous aneurysm impinging on the posterior tibial nerve. Following resection of the aneurysm and lysis of the nerve, his symptoms were alleviated. Review of the literature reveals an association between venous disease and tarsal tunnel syndrome; however, this report represents the first case of venous aneurysm causing symptomatic compression of the nerve. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  16. The effect of high tibial osteotomy on osteoarthritis of the knee : Clinical and histological observations.

    PubMed

    Koshino, T; Tsuchiya, K

    1979-03-01

    High tibial osteotomies were performed on 136 osteoarthritic knees for correction of varus deformity. Before osteotomy all patients experienced moderate or severe pain, and the knees showed lateral thrust on weight-bearing. The patients were followed up for one to five years. Marked relief of pain was obtained in 112 knees, and the patients were satisfied with the result of operation in 122. These painless knees showed no lateral thrust, and in the majority the deformity had been adequately corrected, with post-operative femoro-tibial angles (standing) ranging from 165° to 174°. Four of 28 knees with femoro-tibial angles of 175° to 179°, when measured one year after operation, showed recurrence of varus deformity three years after osteotomy. Preoperative ranges of knee motion were well maintained after osteotomy even when arthrotomy had also been undertaken. Intra-articular assessment in two patients, several years after operation, showed that the most degenerated portions of the articular surface were completely covered by a fibrocartilagenous layer, with no bare bone.High tibial osteotomy is most effective in osteoarthritic knees with varus deformity, when correction is made to a femoro-tibial angle (standing) of 170° (10° valgus).

  17. The effect of high tibial osteotomy on osteoarthritis of the knee. Clinical and histological observations.

    PubMed

    Koshino, T; Tsuchiya, K

    1979-01-01

    High tibial osteotomies were performed on 136 osteoarthritic knees for correction of varus deformity. Before osteotomy all patients experienced moderate or severe pain, and the knees showed lateral thrust on weight-bearing. The patients were followed up for one to five years. Marked relief of pain was obtained in 112 knees, and the patients were satisfied with the result of operation in 122. These painless knees showed no lateral thrust, and in the majority the deformity had been adequately corrected, with post-operative femoro-tibial angles (standing) ranging from 165 degrees to 174 degrees. Four of 28 knees with femoro-tibial angles of 175 degrees to 179 degrees, when measured one year after operation, showed recurrence of varus deformity three years after osteotomy. Preoperative ranges of knee motion were well maintained after osteotomy even when arthrotomy had also been undertaken. Intra-articular assessment in two patients, several years after operation, showed that the most degenerated portions of the articular surface were completely covered by a fibrocartilagenous layer, with no bare bone. High tibial osteotomy is most effective in osteoarthritic knees with varus deformity, when correction is made to a femoro-tibial angle (standing) of 170 degrees (10 degrees valgus).

  18. [Operative treatment for complex tibial plateau fractures].

    PubMed

    Song, Qi-Zhi; Li, Tao

    2012-03-01

    To explore the surgical methods and clinical evaluation of complex tibial plateau fractures resulted from high-energy injuries. From March 2006 to May 2009,48 cases with complex tibial plateau fractures were treated with open reduction and plate fixation, including 37 males and 11 females, with an average age of 37 years (ranged from 18 to 63 years). According to Schatzker classification, 16 cases were type IV, 20 cases type V and 12 cases type VI. All patients were examined by X-ray flim and CT scan. The function of knee joint were evaluated according to postoperative follow-up X-ray and Knee Merchant Rating. Forty-eight patients were followed up with a mean time of 14 months. According to Knee Merchant Rating, 24 cases got excellent results, 16 cases good, 6 cases fair and 2 cases poor. Appropriate operation time, anatomical reduction, suitable bone graft and reasonable rehabilitation exercises can maximally recovery the function of knee joint.

  19. Biomechanical analysis of posteromedial tibial plateau split fracture fixation.

    PubMed

    Zeng, Zhi-Min; Luo, Cong-Feng; Putnis, Sven; Zeng, Bing-Fang

    2011-01-01

    The purpose of this study was to compare the biomechanical strength of four different fixation methods for a posteromedial tibial plateau split fracture. Twenty-eight tibial plateau fractures were simulated using right-sided synthetic tibiae models. Each fracture model was randomly instrumented with one of the four following constructs, anteroposterior lag-screws, an anteromedial limited contact dynamic compression plate (LC-DCP), a lateral locking plate, or a posterior T-shaped buttress plate. Vertical subsidence of the posteromedial fragment was measured from 500 N to 1500 N during biomechanical testing, the maximum load to failure was also determined. It was found that the posterior T-shaped buttress plate allowed the least subsidence of the posteromedial fragment and produced the highest mean failure load than each of the other three constructs (P=0.00). There was no statistical significant difference between using lag screws or an anteromedial LC-DCP construct for the vertical subsidence at a 1500 N load and the load to failure (P>0.05). This study showed that a posterior-based buttress technique is biomechanically the most stable in-vitro fixation method for posteromedial split tibial plateau fractures, with AP screws and anteromedial-based LC-DCP are not as stable for this type of fracture. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Arthroscopic repair of the posterior horn of the medial meniscus with opening wedge high tibial osteotomy: surgical technique.

    PubMed

    Jung, Kwang Am; Kim, Sung Jae; Lee, Su Chan; Jeong, Jae Hoon; Song, Moon Bok; Lee, Choon Key

    2009-07-01

    Simultaneous repair of a radial tear at the tibial attachment site of the posterior horn of the medial meniscus under special circumstances requiring tibial valgus osteotomy is technically difficult. First, most patients who need an osteotomy have a narrowed medial tibiofemoral joint space. In such a situation, the pull-out suture technique is more difficult to perform than in a normal joint space. Second, pulling out suture strands that penetrate the posterior horn of the medial meniscus to the anterior tibial cortex increases the risk of transection during osteotomy. We performed a meniscus repair combined with an opening wedge tibial valgus osteotomy without complications and present our technique as a new method for use in selective cases necessitating both meniscus repair of a complete radial tear and opening wedge tibial osteotomy.

  1. Section modulus is the optimum geometric predictor for stress fractures and medial tibial stress syndrome in both male and female athletes.

    PubMed

    Franklyn, Melanie; Oakes, Barry; Field, Bruce; Wells, Peter; Morgan, David

    2008-06-01

    Various tibial dimensions and geometric parameters have been linked to stress fractures in athletes and military recruits, but many mechanical parameters have still not been investigated. Sedentary people, athletes with medial tibial stress syndrome, and athletes with stress fractures have smaller tibial geometric dimensions and parameters than do uninjured athletes. Cohort study; Level of evidence, 3. Using a total of 88 subjects, male and female patients with either a tibial stress fracture or medial tibial stress syndrome were compared with both uninjured aerobically active controls and uninjured sedentary controls. Tibial scout radiographs and cross-sectional computed tomography images of all subjects were scanned at the junction of the midthird and distal third of the tibia. Tibial dimensions were measured directly from the films; other parameters were calculated numerically. Uninjured exercising men have a greater tibial cortical cross-sectional area than do their sedentary and injured counterparts, resulting in a greater value of some other cross-sectional geometric parameters, particularly the section modulus. However, for women, the cross-sectional areas are either not different or only marginally different, and there are few tibial dimensions or geometric parameters that distinguish the uninjured exercisers from the sedentary and injured subjects. In women, the main difference between the groups was the distribution of cortical bone about the centroid as a result of the different values of section modulus. Last, medial tibial stress syndrome subjects had smaller tibial cross-sectional dimensions than did their uninjured exercising counterparts, suggesting that medial tibial stress syndrome is not just a soft-tissue injury but also a bony injury. The results show that in men, the cross-sectional area and the section modulus are the key parameters in the tibia to distinguish exercise and injury status, whereas for women, it is the section modulus only.

  2. Area of the tibial insertion site of the anterior cruciate ligament as a predictor for graft size.

    PubMed

    Guenther, Daniel; Irarrázaval, Sebastian; Albers, Marcio; Vernacchia, Cara; Irrgang, James J; Musahl, Volker; Fu, Freddie H

    2017-05-01

    To determine the distribution of different sizes of the area of the tibial insertion site among the population and to evaluate whether preoperative MRI measurements correlate with intraoperative findings to enable preoperative planning of the required graft size to cover the tibial insertion site sufficiently. The hypothesis was that the area of the tibial insertion site varies among individuals and that there is good agreement between MRI and intraoperative measurements. Intraoperative measurements of the tibial insertion site were taken on 117 patients. Three measurements were taken in each plane building a grid to cover the tibial insertion site as closely as possible. The mean of the three measurements in each plane was used for determination of the area. Two orthopaedic surgeons, who were blinded to the intraoperative measurements, took magnetic resonance imaging (MRI) measurements of the area of the tibial insertion site at two different time points. The intraoperative measured mean area was 123.8 ± 21.5 mm 2 . The mean area was 132.8 ± 15.7 mm 2 (rater 1) and 136.7 ± 15.4 mm 2 (rater 2) when determined using MRI. The size of the area was approximately normally distributed. Inter-rater (0.89; 95 % CI 0.84, 0.92; p < 0.001) and intrarater reliability (rater 1: 0.97; 95 % CI 0.95, 0.98; p < 0.001; rater 2: 0.95; 95 % CI 0.92, 0.96; p < 0.001) demonstrated excellent test-retest reliability. There was good agreement between MRI and intraoperative measurement of tibial insertion site area (ICCs rater 1: 0.80; 95 % CI 0.71, 0.87; p < 0.001; rater 2: 0.87; 95 % CI 0.81, 0.91; p < 0.001). The tibial insertion site varies in size and shape. Preoperative determination of the area using MRI is repeatable and enables planning of graft choice and size to optimally cover the tibial insertion site. III.

  3. Treatment of open tibial fracture with bone defect caused by high velocity missiles: a case report.

    PubMed

    Golubović, Zoran; Vukajinović, Zoran; Stojiljković, Predrag; Golubović, Ivan; Visnjić, Aleksandar; Radovanović, Zoran; Najman, Stevo

    2013-01-01

    Tibia fracture caused by high velocity missiles is mostly comminuted and followed by bone defect which makes their healing process extremely difficult and prone to numerous complications. A 34-year-old male was wounded at close range by a semi-automatic gun missile. He was wounded in the distal area of the left tibia and suffered a massive defect of the bone and soft tissue. After the primary treatment of the wound, the fracture was stabilized with an external fixator type Mitkovic, with convergent orientation of the pins. The wound in the medial region of the tibia was closed with the secondary stitch, whereas the wound in the lateral area was closed with the skin transplant after Thiersch. Due to massive bone defect in the area of the rifle-missile wound six months after injury, a medical team placed a reconstructive external skeletal fixator type Mitkovic and performed corticotomy in the proximal metaphyseal area of the tibia. By the method of bone transport (distractive osteogenesis), the bone defect of the tibia was replaced. After the fracture healing seven months from the secondary surgery, the fixator was removed and the patient was referred to physical therapy. Surgical treatment of wounds, external fixation, performing necessary debridement, adequate antibiotic treatment and soft and bone tissue reconstruction are essential in achieving good results in patients with the open tibial fracture with bone defect caused by high velocity missiles. Reconstruction of bone defect can be successfully treated by reconstructive external fixator Mitkovic.

  4. Tibial anatomy in normal small breed dogs including anisometry of various extracapsular stabilizing suture attachment sites.

    PubMed

    Witte, P G

    2015-01-01

    To investigate proximal tibial anatomy and its influence on anisometry of extracapsular stabilizing sutures in small dog breeds. Mediolateral radiographs of the femora, stifles, and tibiae of 12 small breed dogs were acquired with the stifles positioned at various angles. Measurements taken included tibial plateau angle (TPA), diaphyseal: proximal tibial angle (DPA), patellar tendon angle (PTA), Z-angle, relative tibial tuberosity width (rTTW), and the distance between six combinations of two femoral and three tibial extra-capsular stabilizing suture (ECS) attachment sites. Theoretical strain through stifle range-of-motion was recorded. The TPA (32° ± 5.8°), DPA (10.2° ± 7.3°), PTA (103.7° ± 6.2°), and Z-angle (70.4° ± 9.0°) were positively correlated with one another (R >0.7), but none were correlated with rTTW (0.93 ± 0.10). The F2-T1 combination of ECS attachment sites had lowest strain for nine stifles. The shortest attachment site separation was at a stifle flexion of 50° for nine stifles. Proximal tibial anatomy measurements could not predict optimal attachment site combination, optimal stifle angle for suture placement, or ECS strain. There is individual variation in the optimal attachment site combination and stifle angle for suture placement, which may influence consistency of outcomes with ECS.

  5. ACL Roof Impingement Revisited: Does the Independent Femoral Drilling Technique Avoid Roof Impingement With Anteriorly Placed Tibial Tunnels?

    PubMed

    Tanksley, John A; Werner, Brian C; Conte, Evan J; Lustenberger, David P; Burrus, M Tyrrell; Brockmeier, Stephen F; Gwathmey, F Winston; Miller, Mark D

    2017-05-01

    Anatomic femoral tunnel placement for single-bundle anterior cruciate ligament (ACL) reconstruction is now well accepted. The ideal location for the tibial tunnel has not been studied extensively, although some biomechanical and clinical studies suggest that placement of the tibial tunnel in the anterior part of the ACL tibial attachment site may be desirable. However, the concern for intercondylar roof impingement has tempered enthusiasm for anterior tibial tunnel placement. To compare the potential for intercondylar roof impingement of ACL grafts with anteriorly positioned tibial tunnels after either transtibial (TT) or independent femoral (IF) tunnel drilling. Controlled laboratory study. Twelve fresh-frozen cadaver knees were randomized to either a TT or IF drilling technique. Tibial guide pins were drilled in the anterior third of the native ACL tibial attachment site after debridement. All efforts were made to drill the femoral tunnel anatomically in the center of the attachment site, and the surrogate ACL graft was visualized using 3-dimensional computed tomography. Reformatting was used to evaluate for roof impingement. Tunnel dimensions, knee flexion angles, and intra-articular sagittal graft angles were also measured. The Impingement Review Index (IRI) was used to evaluate for graft impingement. Two grafts (2/6, 33.3%) in the TT group impinged upon the intercondylar roof and demonstrated angular deformity (IRI type 1). No grafts in the IF group impinged, although 2 of 6 (66.7%) IF grafts touched the roof without deformation (IRI type 2). The presence or absence of impingement was not statistically significant. The mean sagittal tibial tunnel guide pin position prior to drilling was 27.6% of the sagittal diameter of the tibia (range, 22%-33.9%). However, computed tomography performed postdrilling detected substantial posterior enlargement in 2 TT specimens. A significant difference in the sagittal graft angle was noted between the 2 groups. TT grafts were

  6. [The geometry of the keel determines the behaviour of the tibial tray against torsional forces in total knee replacement].

    PubMed

    García David, S; Cortijo Martínez, J A; Navarro Bermúdez, I; Maculé, F; Hinarejos, P; Puig-Verdié, L; Monllau, J C; Hernández Hermoso, J A

    2014-01-01

    The keel design of the tibial tray is essential for the transmission of the majority of the forces to the peripheral bone structures, which have better mechanical proprieties, thus reducing the risk of loosening. The aim of the present study was to compare the behaviour of different tibial tray designs submitted to torsional forces. Four different tibial components were modelled. The 3-D reconstruction was made using the Mimics software. The solid elements were generated by SolidWorks. The finite elements study was done by Unigraphics. A torsional force of 6 Nm. applied to the lateral aspects of each tibial tray was simulated. The GENUTECH® tibial tray, with peripheral trabecular bone support, showed a lower displacement and less transmitted tensions under torsional forces. The results suggest that a tibial tray with more peripheral support behaves mechanically better than the other studied designs. Copyright © 2013 SECOT. Published by Elsevier Espana. All rights reserved.

  7. Posterior tibial tendon displacement behind the tibia and its interposition in an irreducible isolated ankle dislocation: a case report and literature review

    PubMed Central

    ORTOLANI, ALESSANDRO; BEVONI, ROBERTO; RUSSO, ALESSANDRO; MARCACCI, MAURILIO; GIROLAMI, MAURO

    2016-01-01

    Isolated posteromedial ankle dislocation is a rare condition thanks to the highly congruent anatomical configuration of the ankle mortise, in which the medial and lateral malleoli greatly reduce the rotational movement of the talus, and the strength of the ligaments higher than the malleoli affords protection against fractures. However, other factors, like medial malleolus hypoplasia, laxity of the ligaments, peroneal muscle weakness and previous ankle sprains, could predispose to pure dislocation. In the absence of such factors, only a complex high-energy trauma, with a rotational component, can lead to this event. Irreducibility of an ankle dislocation, which is rarely encountered, can be due to soft tissue interposition. Dislocation of the posterior tibial tendon can be the cause of an irreducible talar dislocation; interposition of this tendon, found to have slid posteriorly to the distal tibia and then passed through the tibioperoneal syndesmosis, is reported in just a few cases of ankle fracture-dislocation. PMID:27900312

  8. Reconstruction of bilateral tibial aplasia and split hand-foot syndrome in a father and daughter.

    PubMed

    Al Kaissi, Ali; Ganger, Rudolf; Klaushofer, Klaus; Grill, Franz

    2014-01-01

    Tibial aplasia is of heterogeneous aetiology, the majority of reports are sporadic. We describe the reconstruction procedures in two subjects - a daughter and father manifested autosomal dominant (AD) inheritance of the bilateral tibial aplasia and split hand-foot syndrome. Reconstruction of these patients required multiple surgical procedures and orthoprosthesis was mandatory. The main goal of treatment was to achieve walking. Stabilization of the ankle joint by fibular-talar-chondrodesis on both sides, followed by bilateral Brown-procedure at the knee joint level has been applied accordingly. The outcome was with improved function of the deformed limbs and walking was achieved with simultaneous designation of orthotic fitting. This is the first study encompassing the diagnosis and management of a father and daughter with bilateral tibial aplasia associated with variable split hand/foot deformity without foot ablation. Our patients showed the typical AD pattern of inheritance of split-hand/foot and tibial aplasia.

  9. [Detection of tibial condylar fractures using 3D imaging with a mobile image amplifier (Siemens ISO-C-3D): Comparison with plain films and spiral CT].

    PubMed

    Kotsianos, D; Rock, C; Wirth, S; Linsenmaier, U; Brandl, R; Fischer, T; Euler, E; Mutschler, W; Pfeifer, K J; Reiser, M

    2002-01-01

    To analyze a prototype mobile C-arm 3D image amplifier in the detection and classification of experimental tibial condylar fractures with multiplanar reconstructions (MPR). Human knee specimens (n = 22) with tibial condylar fractures were examined with a prototype C-arm (ISO-C-3D, Siemens AG), plain films (CR) and spiral CT (CT). The motorized C-arm provides fluoroscopic images during a 190 degrees orbital rotation computing a 119 mm data cube. From these 3D data sets MP reconstructions were obtained. All images were evaluated by four independent readers for the detection and assessment of fracture lines. All fractures were classified according to the Müller AO classification. To confirm the results, the specimens were finally surgically dissected. 97 % of the tibial condylar fractures were easily seen and correctly classified according to the Müller AO classification on MP reconstruction of the ISO-C-3D. There is no significant difference between ISO-C and CT in detection and correct classification of fractures, but ISO-CD-3D is significant by better than CR. The evaluation of fractures with the ISO-C is better than with plain films alone and comparable to CT scans. The three-dimensional reconstruction of the ISO-C can provide important information which cannot be obtained from plain films. The ISO-C-3D may be useful in planning operative reconstructions and evaluating surgical results in orthopaedic surgery of the limbs.

  10. Return to Sport After Tibial Shaft Fractures

    PubMed Central

    Robertson, Greg A. J.; Wood, Alexander M.

    2015-01-01

    Context: Acute tibial shaft fractures represent one of the most severe injuries in sports. Return rates and return-to-sport times after these injuries are limited, particularly with regard to the outcomes of different treatment methods. Objective: To determine the current evidence for the treatment of and return to sport after tibial shaft fractures. Data Sources: OVID/MEDLINE (PubMed), EMBASE, CINAHL, Cochrane Collaboration Database, Web of Science, PEDro, SPORTDiscus, Scopus, and Google Scholar were all searched for articles published from 1988 to 2014. Study Selection: Inclusion criteria comprised studies of level 1 to 4 evidence, written in the English language, that reported on the management and outcome of tibial shaft fractures and included data on either return-to-sport rate or time. Studies that failed to report on sporting outcomes, those of level 5 evidence, and those in non–English language were excluded. Study Design: Systematic review. Level of Evidence: Level 4. Data Extraction: The search used combinations of the terms tibial, tibia, acute, fracture, athletes, sports, nonoperative, conservative, operative, and return to sport. Two authors independently reviewed the selected articles and created separate data sets, which were subsequently combined for final analysis. Results: A total of 16 studies (10 retrospective, 3 prospective, 3 randomized controlled trials) were included (n = 889 patients). Seventy-six percent (672/889) of the patients were men, with a mean age of 27.7 years. Surgical management was assessed in 14 studies, and nonsurgical management was assessed in 8 studies. Return to sport ranged from 12 to 54 weeks after surgical intervention and from 28 to 182 weeks after nonsurgical management (mean difference, 69.5 weeks; 95% CI, –83.36 to −55.64; P < 0.01). Fractures treated surgically had a return-to-sport rate of 92%, whereas those treated nonsurgically had a return rate of 67% (risk ratio, 1.37; 95% CI, 1.20 to 1.57; P < 0

  11. Analysis of Knee Joint Line Obliquity after High Tibial Osteotomy.

    PubMed

    Oh, Kwang-Jun; Ko, Young Bong; Bae, Ji Hoon; Yoon, Suk Tae; Kim, Jae Gyoon

    2016-11-01

    The aim of this study was to evaluate which lower extremity alignment (knee and ankle joint) parameters affect knee joint line obliquity (KJLO) in the coronal plane after open wedge high tibial osteotomy (OWHTO). Overall, 69 knees of patients that underwent OWHTO were evaluated using radiographs obtained preoperatively and from 6 weeks to 3 months postoperatively. We measured multiple parameters of knee and ankle joint alignment (hip-knee-ankle angle [HKA], joint line height [JLH], posterior tibial slope [PS], femoral condyle-tibial plateau angle [FCTP], medial proximal tibial angle [MPTA], mechanical lateral distal femoral angle [mLDFA], KJLO, talar tilt angle [TTA], ankle joint obliquity [AJO], and the lateral distal tibial ground surface angle [LDTGA]; preoperative [-pre], postoperative [-post], and the difference between -pre and -post values [-Δ]). We categorized patients into two groups according to the KJLO-post value (the normal group [within ± 4 degrees, 56 knees] and the abnormal group [greater than ± 4 degrees, 13 knees]), and compared their -pre parameters. Multiple logistic regression analysis was used to examine the contribution of the -pre parameters to abnormal KJLO-post. The mean HKA-Δ (-9.4 ± 4.7 degrees) was larger than the mean KJLO-Δ (-2.1 ± 3.2 degrees). The knee joint alignment parameters (the HKA-pre, FCTP-pre) differed significantly between the two groups ( p  < 0.05). In addition, the HKA-pre (odds ratio [OR] = 1.27, p  = 0.006) and FCTP-pre (OR = 2.13, p  = 0.006) were significant predictors of abnormal KJLO-post. However, -pre ankle joint parameters (TTA, AJO, and LDTGA) did not differ significantly between the two groups and were not significantly associated with the abnormal KJLO-post. The -pre knee joint alignment and knee joint convergence angle evaluated by HKA-pre and FCTP-pre angle, respectively, were significant predictors of abnormal KJLO after OWHTO. However, -pre ankle joint

  12. Study of the anatomy of the tibial nerve and its branches in the distal medial leg.

    PubMed

    Torres, André Leal Gonçalves; Ferreira, Marcus Castro

    2012-01-01

    Determine, through dissection in fresh cadavers, the topographic anatomy of the tibial nerve and its branches at the ankle, in relation to the tarsal tunnel. Bilateral dissections were performed on 26 fresh cadavers and the locations of the tibial nerve bifurcation and its branches were measured in millimeters. For the calcaneal branches, the amount and their respective nerves of origin were also analyzed. The tibial nerve bifurcation occurred under the tunnel in 88% of the cases and proximally in 12%. As for the calcaneal branches, the medial presented with one (58%), two (34%) and three (8%) branches, with the most common source occurring in the tibial nerve (90%) and the lower with a single branch per leg and lateral plantar nerve as the most common origin (70%). Level of Evidence, V Expert opinion .

  13. Evaluation of functional outcome of pilon fractures managed with limited internal fixation and external fixation: A prospective clinical study.

    PubMed

    Meena, Umesh Kumar; Bansal, Mahesh Chand; Behera, Prateek; Upadhyay, Rahul; Gothwal, Gyan Chand

    2017-11-01

    The management of pilon fractures is controversial primarily due to the high rate of complications irrespective of the mode of treatment. Limited internal fixation with external fixation is associated with minimal soft tissue handling. This may reduce the chances of wound dehiscence and infection. This study was designed to evaluate the functional and clinical outcomes in patients treated with limited internal fixation combined with external fixation in pilon fractures. This study was conducted as a prospective clinical study on 56 skeletally mature patients with closed fractures with poor skin condition, and with open grade 1 and grade 2 distal tibial intra-articular fractures. All patients were treated with combined limited internal fixation and ankle spanning external fixation. All fractures in this series united with an average time period of union of 18.3weeks (ranging from 13 weeks to 30 weeks). There was no non-union in any case. There was malunion in 4 cases, varus malunion (>5 degree) in 2 cases and recurvatum in another 2 cases). Excellent to good functional results were observed in 88% cases based on the modified Ovadia and Beals score. The mean ankle dorsiflexion and planter flexion movements were 10.2±5.3 degrees and 27.4±7.2 degrees respectively. infections occurred in 6 patients which included 4 pin tract infections and 2 superficial wound infection, all 6 healed after removal of pin tract and with oral antibiotics. The technique of combined external fixation with internal fixation is safe and effective management option for intra-articular distal tibial fractures.

  14. Survivorship comparison of all-polyethylene and metal-backed tibial components in cruciate-substituting total knee arthroplasty--Chinese experience.

    PubMed

    Shen, Bin; Yang, Jing; Zhou, Zongke; Kang, Pengde; Wang, Liao; Pei, Fuxing

    2009-10-01

    Considering its cost saving, the all-polyethylene tibial component is of potential interest in developing countries like China. But to our knowledge, a survivorship comparison of all-polyethylene and metal-backed tibial components in posterior cruciate ligament-substituting total knee arthroplasty (PS-TKA) has not been studied in China previously. Using survivorship analysis, we have studied the midterm outcome of 34 cemented PS-TKA using an all-polyethylene tibial component and of 34 cemented PS-TKA using a metal-backed tibial component which has an identical articular surface with all-polyethylene tibial components. All operations were performed by the same group of surgeons; 58 patients underwent a unilateral operation and five patients a bilateral operation. These patients had a mean follow-up of 5.9 years (range: 5-7 years); three patients were lost to follow-up and one was revised for infection. No significant difference between the two groups was reported regarding HSS scores, ROM, clinical and radiographic parameters measured and survival rates. Although the Asian lifestyle includes more squatting and bending of the knee, the results of this series of TKA using all-polyethylene tibial components in Chinese people are comparable to the satisfactory results of other reported all-polyethylene series whose patients are mainly Western people. Considering its cost saving and excellent clinical result, the all-polyethylene tibial component is of potential interest in developing countries.

  15. Tibial plateau fracture after primary anatomic double-bundle anterior cruciate ligament reconstruction: a case report.

    PubMed

    Gobbi, Alberto; Mahajan, Vivek; Karnatzikos, Georgios

    2011-05-01

    Tibial plateau fracture after primary anatomic double-bundle anterior cruciate ligament (ACL) reconstruction is rare. To our knowledge, this is the first case report of a tibial plateau fracture after primary anatomic double-bundle ACL reconstruction. In our patient the tibial plateau fracture occurred after a torsional injury to the involved extremity. The fracture occurred 4.5 years after the ACL reconstruction. The fracture was intra-articular Schatzker type IV and had a significant displacement. The patient was treated operatively by open reduction-internal fixation. He recovered well. Copyright © 2011 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  16. Quantitative Comparison of the Microscopic Anatomy of the Human ACL Femoral and Tibial Entheses

    PubMed Central

    Beaulieu, Mélanie L.; Carey, Grace E.; Schlecht, Stephen H.; Wojtys, Edward M.; Ashton-Miller, James A.

    2015-01-01

    The femoral enthesis of the human anterior cruciate ligament (ACL) is known to be more susceptible to injury than the tibial enthesis. To determine whether anatomic differences might help explain this difference, we quantified the microscopic appearance of both entheses in 15 unembalmed knee specimens using light microscopy, toluidine blue stain and image analysis. The amount of calcified fibrocartilage and uncalcified fibrocartilage, and the ligament entheseal attachment angle were then compared between the femoral and tibial entheses via linear mixed-effects models. The results showed marked differences in anatomy between the two entheses. The femoral enthesis exhibited a 3.9-fold more acute ligament attachment angle than the tibial enthesis (p < 0.001), a 43% greater calcified fibrocartilage tissue area (p < 0.001), and a 226% greater uncalcified fibrocartilage depth (p < 0.001), with the latter differences being particularly pronounced in the central region. We conclude that the ACL femoral enthesis has more fibrocartilage and a more acute ligament attachment angle than the tibial enthesis, which provides insight into why it is more vulnerable to failure. PMID:26134706

  17. Stress Fractures of Tibia Treated with Ilizarov External Fixator.

    PubMed

    Górski, Radosław; Żarek, Sławomir; Modzelewski, Piotr; Górski, Ryszard; Małdyk, Paweł

    2016-08-30

    Stress fractures are the result of cyclic loading of the bone, which gradually becomes damaged. Most often they are treated by rest or plaster cast and, in rare cases, by internal fixation. There is little published data on initial reposition followed by stabilization with the Ilizarov apparatus in such fractures. Six patients were treated with an external fixator according to the Ilizarov method for a stress fracture of the tibia between 2007 and 2015. Three patients were initially treated conservatively. Due to increasing tibial deformation, they were qualified for surgical treatment with external stabilization. In the other patients, surgery was the first-line treatment. All patients demonstrated risk factors for a stress fracture. After the surgery, they fully loaded the operated limb. No patient developed malunion, nonunion, infection or venous thrombosis. The average time from the first operation to the removal of the external fixator was 19 weeks. Radiographic and clinical outcomes were satisfactory in all patients. 1. The Ilizarov method allows for successful stabilization of stress fractures of the tibia. 2. It may be a good alternative to internal stabilization, especially in patients with multiple comorbidities which affect bone quality and may impair soft tissue healing.

  18. Is the posterior cruciate ligament necessary for medial pivot knee prostheses with regard to postoperative kinematics?

    PubMed

    Fang, Chao-Hua; Chang, Chia-Ming; Lai, Yu-Shu; Chen, Wen-Chuan; Song, Da-Yong; McClean, Colin J; Kao, Hao-Yuan; Qu, Tie-Bing; Cheng, Cheng-Kung

    2015-11-01

    Excellent clinical and kinematical performance is commonly reported after medial pivot knee arthroplasty. However, there is conflicting evidence as to whether the posterior cruciate ligament should be retained. This study simulated how the posterior cruciate ligament, post-cam mechanism and medial tibial insert morphology may affect postoperative kinematics. After the computational intact knee model was validated according to the motion of a normal knee, four TKA models were built based on a medial pivot prosthesis; PS type, modified PS type, CR type with PCL retained and CR type with PCL sacrificed. Anteroposterior translation and axial rotation of femoral condyles on the tibia during 0°-135° knee flexion were analyzed. There was no significant difference in kinematics between the intact knee model and reported data for a normal knee. In all TKA models, normal motion was almost fully restored, except for the CR type with PCL sacrificed. Sacrificing the PCL produced paradoxical anterior femoral translation and tibial external rotation during full flexion. Either the posterior cruciate ligament or post-cam mechanism is necessary for medial pivot prostheses to regain normal kinematics after total knee arthroplasty. The morphology of medial tibial insert was also shown to produce a small but noticeable effect on knee kinematics. V.

  19. Does a critical rotator cuff tear stage exist?: a biomechanical study of rotator cuff tear progression in human cadaver shoulders.

    PubMed

    Oh, Joo Han; Jun, Bong Jae; McGarry, Michelle H; Lee, Thay Q

    2011-11-16

    It is unknown at which stage of rotator cuff tear the biomechanical environment is altered. The purpose of this study was to determine if a critical rotator cuff tear stage exists that alters glenohumeral joint biomechanics throughout the rotational range of shoulder motion, and to evaluate the biomechanical effect of parascapular muscle-loading. Eight cadaver shoulders were used with a custom testing system. Four progressive rotator cuff tear stages were investigated on the basis of footprint anatomy. Three muscle-loading conditions were examined: rotator cuff only; rotator cuff with deltoid muscle; and rotator cuff, deltoid, pectoralis major, and latissimus dorsi muscles. Testing was performed in the scapular plane with 0°, 30°, and 60° of shoulder abduction. The maximum internal and external rotations were measured with 3.4 Nm of torque. The position of the humeral head apex with respect to the glenoid was calculated with use of a MicroScribe 3DLX digitizing system throughout the rotational range of motion. The abduction capability was determined as the abduction angle achieved with increasing deltoid load. Tear of the entire supraspinatus tendon significantly increased maximum external rotation and significantly decreased abduction capability with higher deltoid loads (p < 0.05). Tear of the entire supraspinatus tendon and half of the infraspinatus tendon significantly shifted the humeral head apex posteriorly at the midrange of rotation and superiorly at maximum internal rotation (p < 0.05). Loading the pectoralis major and latissimus dorsi muscles decreased the amount of humeral head elevation due to deltoid loading. Tear of the entire supraspinatus tendon was the critical stage for increasing rotational range of shoulder motion and for decreased abduction capability. Further tear progression to the infraspinatus muscle was the critical stage for significant changes in humeral head kinematics. The pectoralis major and latissimus dorsi muscles played an

  20. A Case of Nonunion Avulsion Fracture of the Anterior Tibial Eminence

    PubMed Central

    Atsumi, Satoru; Arai, Yuji; Nakagawa, Shuji; Inoue, Hiroaki; Ikoma, Kazuya; Fujiwara, Hiroyoshi; Kubo, Toshikazu

    2016-01-01

    Avulsion fracture of the anterior tibial eminence is an uncommon injury. If bone union does not occur, knee extension will be limited by impingement of the avulsed fragment and knee instability will be induced by dysfunction of the anterior cruciate ligament (ACL). This report describes a 55-year-old woman who experienced an avulsion fracture of the right anterior tibial eminence during recreational skiing. Sixteen months later, she presented at our hospital with limitation of right knee extension. Plain radiography showed nonunion of the avulsion fracture region, and arthroscopy showed that the avulsed fragment impinged the femoral intercondylar notch during knee extension. The anterior region of the bony fragment was debrided arthroscopically until the knee could be extended completely. There was no subsequent instability, and the patient was able to climb a mountain 6 months after surgery. These findings indicate that arthroscopic debridement of an avulsed fragment for nonunion of an avulsion fracture of the anterior tibial eminence is a minimally invasive and effective treatment for middle-aged and elderly patients with a low level of sports activity. PMID:27119035

  1. [Particular posteromedial and posterolateral approaches for the treatment of tibial head fractures].

    PubMed

    Lobenhoffer, P; Gerich, T; Bertram, T; Lattermann, C; Pohlemann, T; Tscheme, H

    1997-12-01

    Tibial plateau fractures with depression of posterior aspects of the proximal tibia cause significant therapeutic problems. Posterior fractures on the medial side are mainly highly instable fracture-dislocations (Moore type I). Posterolateral fractures usually cause massive depression and destruction of the chondral surface. Surgical exposure of these fractures from anterior requires major soft tissue dissection and has a significant complication rate. However, incomplete restoration of the joint surface results in chronic postero-inferior joint subluxation, osteoarthritis and pain. We present new specific approaches for posterior fracture types avoiding large skin incisions, but allowing for atraumatic exposure, reduction and fixation. Posteromedial fracture-dislocations are exposed by a direct posteromedial skin incision and a deep incision between medial collateral ligament and posterior oblique ligament. The posteromedial pillar and the posterior flare of the proximal tibia are visualized. The inferior extent of the joint fragment can be reduced by indirect techniques or direct manipulation of the fragment. Fixation is achieved with subchondral lag screws and an anti-glide plate at the tip of the fragment. Posterolateral fractures are exposed by a transfibular approach: the skin is incised laterally, the peroneal nerve is dissected free. The fibula neck is osteotomized, the tibiofibular syndesmosis is divided and the fibula neck is reflected upwards in one layer with the meniscotibial ligament and the iliotibial tract attachment. Reflexion of the fibula head relaxes the lateral collateral ligament, allows for lateral joint opening and internal rotation of the tibia and thus exposes the posterolateral and posterior aspect of the tibial plateau. Fixation and buttressing on the posterolateral side can be achieved easily with this approach. In closure, the fibula head is fixed back with a lag screw or a tension-band system. These two exposures can be combined in

  2. Study of the anatomy of the tibial nerve and its branches in the distal medial leg

    PubMed Central

    Torres, André Leal Gonçalves; Ferreira, Marcus Castro

    2012-01-01

    Objective Determine, through dissection in fresh cadavers, the topographic anatomy of the tibial nerve and its branches at the ankle, in relation to the tarsal tunnel. Methods Bilateral dissections were performed on 26 fresh cadavers and the locations of the tibial nerve bifurcation and its branches were measured in millimeters. For the calcaneal branches, the amount and their respective nerves of origin were also analyzed. Results The tibial nerve bifurcation occurred under the tunnel in 88% of the cases and proximally in 12%. As for the calcaneal branches, the medial presented with one (58%), two (34%) and three (8%) branches, with the most common source occurring in the tibial nerve (90%) and the lower with a single branch per leg and lateral plantar nerve as the most common origin (70%). Level of Evidence, V Expert opinion. PMID:24453596

  3. Quadriceps force and anterior tibial force occur obviously later than vertical ground reaction force: a simulation study.

    PubMed

    Ueno, Ryo; Ishida, Tomoya; Yamanaka, Masanori; Taniguchi, Shohei; Ikuta, Ryohei; Samukawa, Mina; Saito, Hiroshi; Tohyama, Harukazu

    2017-11-18

    Although it is well known that quadriceps force generates anterior tibial force, it has been unclear whether quadriceps force causes great anterior tibial force during the early phase of a landing task. The purpose of the present study was to examine whether the quadriceps force induced great anterior tibial force during the early phase of a landing task. Fourteen young, healthy, female subjects performed a single-leg landing task. Muscle force and anterior tibial force were estimated from motion capture data and synchronized force data from the force plate. One-way repeated measures analysis of variance and the post hoc Bonferroni test were conducted to compare the peak time of the vertical ground reaction force, quadriceps force and anterior tibial force during the single-leg landing. In addition, we examined the contribution of vertical and posterior ground reaction force, knee flexion angle and moment to peak quadriceps force using multiple linear regression. The peak times of the estimated quadriceps force (96.0 ± 23.0 ms) and anterior tibial force (111.9 ± 18.9 ms) were significantly later than that of the vertical ground reaction force (63.5 ± 6.8 ms) during the single-leg landing. The peak quadriceps force was positively correlated with the peak anterior tibial force (R = 0.953, P < 0.001). Multiple linear regression analysis showed that the peak knee flexion moment contributed significantly to the peak quadriceps force (R 2  = 0.778, P < 0.001). The peak times of the quadriceps force and the anterior tibial force were obviously later than that of the vertical ground reaction force for the female athletes during successful single-leg landings. Studies have reported that the peak time of the vertical ground reaction force was close to the time of anterior cruciate ligament (ACL) disruption in ACL injury cases. It is possible that early contraction of the quadriceps during landing might induce ACL disruption as a result of

  4. The effect of bronchoscope rotation on tracheal tube orientation at the glottic level in a mannequin.

    PubMed

    Wong, David T; Yau, Brian; Thapar, Shikha; Adhikary, Sanjib D

    2010-10-01

    This study examined the effect of external fibreoptic bronchoscope (FOB) rotations on endotracheal tube (ETT) orientations at the glottic level. Using a mannequin, a nasal FOB was inserted for image capture. A second FOB with a preloaded ETT taped to its top was inserted orally into mid-trachea. The FOB with the taped ETT was rotated as a unit in the axial plane to five different external angles (-90°, -45°, 0°, +45°, +90°). At each external rotation, the ETT was advanced into the trachea. The image of the ETT at the glottic level was captured. Endotracheal tube orientation was quantified according to the glottic zone faced by the ETT. The ETT orientations were compared amongst the five external FOB rotations using the Kruskal-Wallis Test, while the ETT orientations at -90°, -45°, +45°, and +90° FOB rotations were compared with 0° rotation using the Mann-Whitney U test. There was a significant difference in the ETT orientations amongst the five FOB rotations (P < 0.001). The ETT orientations at -90°, -45°, +45°, and +90° FOB rotations were different from the 0° rotation (P < 0.001 for all comparisons). A -90° FOB rotation was most effective in turning the ETT tip away from the right laryngeal structures and the interarytenoid tissue. With the ETT loaded on a FOB, rotation of the FOB prior to advancing the ETT is effective in changing the ETT orientation at the glottis. A -90° FOB rotation is most effective in turning the ETT tip away from the right laryngeal structures and interarytenoid tissue.

  5. The effect of trunk rotation during shoulder exercises on the activity of the scapular muscle and scapular kinematics.

    PubMed

    Yamauchi, Taishi; Hasegawa, Satoshi; Matsumura, Aoi; Nakamura, Masatoshi; Ibuki, Satoko; Ichihashi, Noriaki

    2015-06-01

    In patients with shoulder disease, kinetic chain exercises including hip or trunk movement are recommended. However, the actual muscle activation and scapular kinematics of these exercises are not known. The purpose of this study was to examine the effect of trunk rotation on shoulder exercises that are devised to improve scapular function. Thirteen healthy young men participated in this study. Scaption, external rotation in the first and second positions, and prone scapular retraction at 45°, 90°, and 145° of shoulder abduction were performed with and without trunk rotation. Electromyography was used to assess the scapular muscle activity of the upper trapezius (UT), middle trapezius (MT), lower trapezius (LT), and serratus anterior (SA), and electromagnetic motion capture was used to assess scapular motion. The muscle activity ratio, which is the activity of the UT to the MT, LT, and SA, was calculated. These data were compared between 2 conditions (with and without trunk rotation) for each exercise. Adding trunk rotation to scaption, the first external rotation, and the second external rotation significantly increased scapular external rotation and posterior tilt, and all 3 exercises increased LT activation. In addition, trunk rotation with scapular retraction at 90° and 145° of shoulder abduction significantly decreased the UT/LT ratio. Our findings suggest that shoulder exercises with trunk rotation in this study may be effective in patients who have difficulty in enhancing LT activity and suppressing excessive activation of the UT or in cases in which a decreased scapular external rotation or posterior tilt is observed. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  6. Magnetic Actuator Modelling for Rotating Machinery Analysis

    NASA Astrophysics Data System (ADS)

    Mendes, Ricardo Ugliara; de Castro, Hélio Fiori; Cavalca, Kátia Lucchesi; Ferreira, Luiz Otávio Saraiva

    Rotating machines have a wide range of application such as airplanes, factories, laboratories and power plants. Lately, with computer aid design, shafts finite element models including bearings, discs, seals and couplings have been developed, allowing the prediction of the machine behavior. In order to keep confidence during operation, it is necessary to monitor these systems, trying to predict future failures. One of the most applied technique for this purpose is the modal analysis. It consists of applying a perturbation force into the system and then to measure its response. However, there is a difficulty that brings limitations to the excitation of systems with rotating shafts when using impact hammers or shakers, once due to friction, undesired tangential forces and noise can be present in the measurements. Therefore, the study of a non-contact technique of external excitation becomes of high interest. In this sense, the present work deals with the study and development of a finite element model for rotating machines using a magnetic actuator as an external excitation source. This work also brings numerical simulations where the magnetic actuator was used to obtain the frequency response function of the rotating system.

  7. Survivorship comparison of all-polyethylene and metal-backed tibial components in cruciate-substituting total knee arthroplasty—Chinese experience

    PubMed Central

    Shen, Bin; Yang, Jing; Zhou, Zongke; Kang, Pengde; Wang, Liao

    2008-01-01

    Considering its cost saving, the all-polyethylene tibial component is of potential interest in developing countries like China. But to our knowledge, a survivorship comparison of all-polyethylene and metal-backed tibial components in posterior cruciate ligament-substituting total knee arthroplasty (PS-TKA) has not been studied in China previously. Using survivorship analysis, we have studied the midterm outcome of 34 cemented PS-TKA using an all-polyethylene tibial component and of 34 cemented PS-TKA using a metal-backed tibial component which has an identical articular surface with all-polyethylene tibial components. All operations were performed by the same group of surgeons; 58 patients underwent a unilateral operation and five patients a bilateral operation. These patients had a mean follow-up of 5.9 years (range: 5–7 years); three patients were lost to follow-up and one was revised for infection. No significant difference between the two groups was reported regarding HSS scores, ROM, clinical and radiographic parameters measured and survival rates. Although the Asian lifestyle includes more squatting and bending of the knee, the results of this series of TKA using all-polyethylene tibial components in Chinese people are comparable to the satisfactory results of other reported all-polyethylene series whose patients are mainly Western people. Considering its cost saving and excellent clinical result, the all-polyethylene tibial component is of potential interest in developing countries. PMID:18688613

  8. Outcome of limb reconstruction system in open tibial diaphyseal fractures.

    PubMed

    Ajmera, Anand; Verma, Ankit; Agrawal, Mukul; Jain, Saurabh; Mukherjee, Arunangshu

    2015-01-01

    Management of open tibial diaphyseal fractures with bone loss is a matter of debate. The treatment options range from external fixators, nailing, ring fixators or grafting with or without plastic reconstruction. All the procedures have their own set of complications, like acute docking problems, shortening, difficulty in soft tissue management, chronic infection, increased morbidity, multiple surgeries, longer hospital stay, mal union, nonunion and higher patient dissatisfaction. We evaluated the outcome of the limb reconstruction system (LRS) in the treatment of open fractures of tibial diaphysis with bone loss as a definative mode of treatment to achieve union, as well as limb lengthening, simultaneously. Thirty open fractures of tibial diaphysis with bone loss of at least 4 cm or more with a mean age 32.5 years were treated by using the LRS after debridement. Distraction osteogenesis at rate of 1 mm/day was done away from the fracture site to maintain the limb length. On the approximation of fracture ends, the dynamized LRS was left for further 15-20 weeks and patient was mobilized with weight bearing to achieve union. Functional assessment was done by Association for the Study and Application of the Methods of Illizarov (ASAMI) criteria. Mean followup period was 15 months. The mean bone loss was 5.5 cm (range 4-9 cm). The mean duration of bone transport was 13 weeks (range 8-30 weeks) with a mean time for LRS in place was 44 weeks (range 24-51 weeks). The mean implant index was 56.4 days/cm. Mean union time was 52 weeks (range 31-60 weeks) with mean union index of 74.5 days/cm. Bony results as per the ASAMI scoring were excellent in 76% (19/25), good in 12% (3/25) and fair in 4% (1/25) with union in all except 2 patients, which showed poor results (8%) with only 2 patients having leg length discrepancy more than 2.5 cm. Functional results were excellent in 84% (21/25), good in 8% (2/25), fair in 8% (2/25). Pin tract infection was seen in 5 cases, out of which 4

  9. The effect of retained intramedullary nails on tibial bone mineral density.

    PubMed

    Allen, J C; Lindsey, R W; Hipp, J A; Gugala, Z; Rianon, N; LeBlanc, A

    2008-07-01

    Intramedullary nailing has become a standard treatment for adult tibial shaft fractures. Retained intramedullary nails have been associated with stress shielding, although their long-term effect on decreasing tibial bone mineral density is currently unclear. The purpose of this study was to determine if retained tibial intramedullary nails decrease tibial mineral density in patients with successfully treated fractures. Patients treated with statically locked intramedullary nails for isolated, unilateral tibia shaft fractures were studied. Inclusion required that fracture had healed radiographically and that the patient returned to the pre-injury activity level. Data on patient demographic, fracture type, surgical technique, implant, and post-operative functional status were tabulated. Dual energy X-ray absorptiometry was used to measure bone mineral density in selected regions of the affected tibia and the contralateral intact tibia. Image reconstruction software was employed to ensure symmetry of the studied regions. Twenty patients (mean age 43; range 22-77 years) were studied at a mean of 29 months (range 5-60 months) following intramedullary nailing. There was statistically significant reduction of mean bone mineral density in tibiae with retained intramedullary nails (1.02 g/cm(2) versus 1.06 g/cm(2); P=0.04). A significantly greater decrease in bone mineral density was detected in the reamed versus non-reamed tibiae (-7% versus +6%, respectively; P<0.05). The present study demonstrates a small, but statistically significant overall bone mineral density decrease in healed tibiae with retained nails. Intramedullary reaming appears to be a factor potentiating the reduction of tibia bone mineral density in long-term nail retention.

  10. Metrology to quantify wear and creep of polyethylene tibial knee inserts.

    PubMed

    Muratoglu, Orhun K; Perinchief, Rebecca S; Bragdon, Charles R; O'Connor, Daniel O; Konrad, Reto; Harris, William H

    2003-05-01

    Assessment of damage on articular surfaces of ultrahigh molecular weight polyethylene tibial knee inserts primarily has been limited to qualitative methods, such as visual observation and classification of features such as pitting, delamination, and subsurface cracking. Semiquantitative methods also have been proposed to determine the linear penetration and volume of the scar that forms on articular surfaces of tibial knee inserts. The current authors report a new metrologic method that uses a coordinate measuring machine to quantify the dimensions of this scar. The articular surface of the insert is digitized with the coordinate measuring machine before and after regular intervals of testing on a knee simulator. The volume and linear penetration of the scar are calculated by mathematically taking the difference between the digitized surface maps of the worn and unworn articular surfaces. Three conventional polyethylene tibial knee inserts of a posterior cruciate-sparing design were subjected to five million cycles of normal gait on a displacement-driven knee wear simulator in bovine serum. A metrologic method was used to calculate creep and wear contributions to the scar formation on each tibial plateau. Weight loss of the inserts was determined gravimetrically with the appropriate correction for fluid absorption. The total average wear volume was 43 +/- 9 and 41 +/- 4 mm3 measured by the metrologic and gravimetric methods, respectively. The wear rate averaged 8.3 +/- 0.9 and 8.5 +/- 1.6 mm3 per million cycles measured by the metrologic and gravimetric methods, respectively. These comparisons reflected strong agreement between the metrologic and gravimetric methods.

  11. External tank project new technology plan. [development of space shuttle external tank system

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A production plan for the space shuttle external tank configuration is presented. The subjects discussed are: (1) the thermal protection system, (2) thermal coating application techniques, (3) manufacturing and tooling, (4) propulsion system configurations and components, (5) low temperature rotating and sliding joint seals, (6) lightning protection, and (7) nondestructive testing technology.

  12. Scapular Contribution for the End-Range of Shoulder Axial Rotation in Overhead Athletes

    PubMed Central

    Ribeiro, Andrea; Pascoal, Augusto Gil

    2012-01-01

    The aim of this study was to analyze the relative contribution of the scapular motion on the extreme range-of-motion of shoulder external and internal rotation, in overhead athletes. An electromagnetic tracking device (Flock of Birds) was used to record humeral and scapular kinematics. The dominant arm of 26 male subjects (13 athletes and 13 non-athletes) was studied while subjects actively reached end-range of internal and external rotation. Humeral and scapular angles were calculated and compared across groups by means of a t-test for independent samples. A bivariate correlation approach was used to describe the relationship between humeral angles and scapular variables. The range-of-motion of the thoracohumeral angles, during shoulder external rotation was significantly less (p < 0.05) on the athletes group, athletes also positioned their dominant scapula more retracted and posteriorly tilted. A positive correlation was found between glenohumeral angles and scapular tilt (r = 0.6777; p < 0.05). Concerning internal rotation; athletes showed significantly greater (highest) thoracohumeral angles (p < 0.05). Scapula assumed a position more in retraction and anterior tilt. Based on these findings, it is suggested that differences found in athletes seem to reveal an eventual shoulder adaptation to the throwing mechanics. Key points In external rotation end-range, athletes positioned their scapula more in retraction and posterior tilt. In internal rotation end-range, athletes positioned their scapula more in retraction and anterior tilt. Results seem to reveal a sport-related shoulder adaptation. PMID:24150078

  13. Surgical treatment of refractory tibial stress fractures in elite dancers: a case series.

    PubMed

    Miyamoto, Ryan G; Dhotar, Herman S; Rose, Donald J; Egol, Kenneth

    2009-06-01

    Treatment of tibial stress fractures in elite dancers is centered on rest and activity modification. Surgical intervention in refractory cases has important implications affecting the dancers' careers. Refractory tibial stress fractures in dancers can be treated successfully with drilling and bone grafting or intramedullary nailing. Case series; Level of evidence, 4. Between 1992 and 2006, 1757 dancers were evaluated at a dance medicine clinic; 24 dancers (1.4%) had 31 tibial stress fractures. Of that subset, 7 (29.2%) elite dancers with 8 tibial stress fractures were treated operatively with either intramedullary nailing or drilling and bone grafting. Six of the patients were followed up closely until they were able to return to dance. One patient was available only for follow-up phone interview. Data concerning their preoperative treatment regimens, operative procedures, clinical union, radiographic union, and time until return to dance were recorded and analyzed. The mean age of the surgical patients at the time of stress fracture was 22.6 years. The mean duration of preoperative symptoms before surgical intervention was 25.8 months. Four of the dancers were male and 3 were female. All had failed nonoperative treatment regimens. Five patients (5 tibias) underwent drilling and bone grafting of the lesion, and 2 patients (3 tibias) with completed fractures or multiple refractory stress fractures underwent intramedullary nailing. Clinical union was achieved at a mean of 6 weeks and radiographic union at 5.1 months. Return to full dance activity was at an average of 6.5 months postoperatively. Surgical intervention for tibial stress fractures in dancers who have not responded to nonoperative management allowed for resolution of symptoms and return to dancing with minimal morbidity.

  14. Biomechanical Factors in Tibial Stress Fracture

    DTIC Science & Technology

    2001-08-01

    Relationship between Loading Rates and Tibial Accelerometry in Forefoot Strike Runners. Presented at the Annual American Society of Biomechanics Mtg...of the APTA, Seattle, WA, 2/99. McClay, IS, Williams, DS, and Manal, KT. Lower Extremity Mechanics of Runners with a Converted Forefoot Strike ...Management, Inc, 1998-1999 The Effect of Different Orthotic Devices on Lower Extremity Mechanics of Rearfoot and Forefoot Strikers, $3,500. Foot Management

  15. Magnetic island and plasma rotation under external resonant magnetic perturbation in the T-10 tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eliseev, L. G.; Ivanov, N. V., E-mail: ivanov-nv@nrcki.ru; Kakurin, A. M.

    2015-05-15

    Experimental comparison of the m = 2, n = 1 mode and plasma rotation velocities at q = 2 magnetic surface in a wide range of the mode amplitudes is presented. Phase velocity of the mode rotation is measured with a set of poloidal magnetic field sensors located at the inner side of the vacuum vessel wall. Plasma rotation velocity at the q = 2 magnetic surface in the direction of the mode phase velocity is measured with the heavy ion beam probe diagnostics. In the presence of a static Resonant Magnetic Perturbation (RMP), the rotation is irregular that appears as cyclical variations of the mode and plasmamore » instantaneous velocities. The period of these variations is equal to the period of the mode oscillations. In the case of high mode amplitude, the rotation irregularity of the mode is consistent with the rotation irregularity of the resonant plasma layer. On the contrary, the observed rise of the mode rotation irregularity in the case of low mode amplitude occurs without an increase of the rotation irregularity of the resonant plasma layer. The experimental results are simulated and analyzed with the TEAR code based on the two-fluid MHD approximation. Calculated irregularities of the mode and plasma rotation depend on the mode amplitude similar to the experimental data. For large islands, the rotation irregularity is attributed to oscillations of the electromagnetic torque applied to the resonant plasma layer. For small islands, the deviation of the mode rotation velocity from the plasma velocity occurs due to the effect of finite plasma resistivity.« less

  16. The role of fixation and bone quality on the mechanical stability of tibial knee components.

    PubMed

    Lee, R W; Volz, R G; Sheridan, D C

    1991-12-01

    Tibial component loosening remains one of the major causes of failure of cemented and noncemented total knee arthroplasties. In this study, the authors identified the role of implant design, method of fixation, and bone density as it related to implant stability. The physical properties of "good" and "bad" bone were simulated using a "good" and "bad" foam model of the proximal tibia, fabricated in the laboratory from DARO RF-100 foam. A generic tibial component permitting various fixation designs was implanted into "good" and "bad" variable density foam tibial models in both cemented and noncemented modes. The mechanical stability of the implants was determined using a Materials Testing Machine by the application of an eccentrically applied cyclic load. The micromotion (subsidence and lift-off) of the tibial implants was recorded using two Linear Variable Differential Transformers. Statistically significant differences in implant stability were recorded as a function of fixation method. The most rigid implant fixation was achieved using four peripherally placed, 6.5-mm cancellous screws. The addition of a central stem added stability only in the case of "poor" quality foam. The mechanical stability of noncemented implants related directly to the density of the foam. Implant stability was greatly enhanced in "poor" quality foam by the use of cement. The method of implant fixation and bone density are critical determinants to tibial implant stability.

  17. Rotational and peak torque stiffness of rugby shoes.

    PubMed

    Ballal, Moez S; Usuelli, Federico Giuseppe; Montrasio, Umberto Alfieri; Molloy, Andy; La Barbera, Luigi; Villa, Tomaso; Banfi, Giuseppe

    2014-09-01

    Sports people always strive to avoid injury. Sports shoe designs in many sports have been shown to affect traction and injury rates. The aim of this study is to demonstrate the differing stiffness and torque in rugby boots that are designed for the same effect. Five different types of rugby shoes commonly worn by scrum forwards were laboratory tested for rotational stiffness and peak torque on a natural playing surface generating force patterns that would be consistent with a rugby scrum. The overall internal rotation peak torque was 57.75±6.26 Nm while that of external rotation was 56.55±4.36 Nm. The Peak internal and external rotational stiffness were 0.696±0.1 and 0.708±0.06 Nm/deg respectively. Our results, when compared to rotational stiffness and peak torques of football shoes published in the literature, show that shoes worn by rugby players exert higher rotational and peak torque stiffness compared to football shoes when tested on the same natural surfaces. There was significant difference between the tested rugby shoes brands. In our opinion, to maximize potential performance and lower the potential of non-contact injury, care should be taken in choosing boots with stiffness appropriate to the players main playing role. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Correlation of glenohumeral internal rotation deficit and total rotational motion to shoulder injuries in professional baseball pitchers.

    PubMed

    Wilk, Kevin E; Macrina, Leonard C; Fleisig, Glenn S; Porterfield, Ronald; Simpson, Charles D; Harker, Paul; Paparesta, Nick; Andrews, James R

    2011-02-01

    Glenohumeral internal rotation deficit (GIRD) indicates a 20° or greater loss of internal rotation of the throwing shoulder compared with the nondominant shoulder. To determine whether GIRD and a deficit in total rotational motion (external rotation + internal rotation) compared with the nonthrowing shoulder correlate with shoulder injuries in professional baseball pitchers. Case series; Level of evidence, 4. Over 3 competitive seasons (2005 to 2007), passive range of motion measurements were evaluated on the dominant and nondominant shoulders for 170 pitcher-seasons. This included 122 professional pitchers during the 3 seasons of data collection, in which some pitchers were measured during multiple seasons. Ranges of motion were measured with a bubble goniometer during the preseason, by the same examiner each year. External and internal rotation of the glenohumeral joint was assessed with the participant supine and the arm abducted 90° in the plane of the scapula, with the scapula stabilized anteriorly at the coracoid process. The reproducibility of the test methods had an intraclass correlation coefficient of .81. Days in which the player was unable to participate because of injury or surgery were recorded during the season by the medical staff of the team and defined as an injury. Pitchers with GIRD (n = 40) were nearly twice as likely to be injured as those without but without statistical significance (P = .17). Pitchers with total rotational motion deficit greater than 5° had a higher rate of injury. Minor league pitchers were more likely than major league pitchers to be injured. However, when players were injured, major league pitchers missed a significantly greater number of games than minor league pitchers. Compared with pitchers without GIRD, pitchers with GIRD appear to be at a higher risk for injury and shoulder surgery.

  19. Quantitative comparison of the microscopic anatomy of the human ACL femoral and tibial entheses.

    PubMed

    Beaulieu, Mélanie L; Carey, Grace E; Schlecht, Stephen H; Wojtys, Edward M; Ashton-Miller, James A

    2015-12-01

    The femoral enthesis of the human anterior cruciate ligament (ACL) is known to be more susceptible to injury than the tibial enthesis. To determine whether anatomic differences might help explain this difference, we quantified the microscopic appearance of both entheses in 15 unembalmed knee specimens using light microscopy, toluidine blue stain and image analysis. The amount of calcified fibrocartilage and uncalcified fibrocartilage, and the ligament entheseal attachment angle were then compared between the femoral and tibial entheses via linear mixed-effects models. The results showed marked differences in anatomy between the two entheses. The femoral enthesis exhibited a 3.9-fold more acute ligament attachment angle than the tibial enthesis (p<0.001), a 43% greater calcified fibrocartilage tissue area (p<0.001), and a 226% greater uncalcified fibrocartilage depth (p<0.001), with the latter differences being particularly pronounced in the central region. We conclude that the ACL femoral enthesis has more fibrocartilage and a more acute ligament attachment angle than the tibial enthesis, which provides insight into why it is more vulnerable to failure. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  20. Severe lateral tibial bowing with short stature in two siblings--a provisionally novel syndrome.

    PubMed

    Zitano, Lia; Loder, Randall T; Cohen, Mervyn D; Weaver, David D

    2012-09-01

    In this report, we describe two siblings with short stature and severe lateral tibial bowing. In the younger sibling, the bowing was bilateral, while in the older sib, it was unilateral. However, both showed bilateral abnormalities of the distal tibial epiphyses and growth plates. Pseudoarthrosis of the left distal tibial metaphysis and subsequent spontaneous resolution of the abnormality occurred in the younger sibling. The fibulas of both children were of normal diameter and were straight, except for the distal ends. Surgery has almost completely corrected the lower leg bowing in both patients. The type of tibial bowing seen in these children can be associated with a number of syndromes, such as neurofibromatosis type I, Weismann-Netter syndrome, and a variety of environmental caused disorders, such as vitamin D deficient rickets. However, the severity of the bowing present in our patients and the absence of other clinical features differentiates this condition from those reported in the literature. We posit that the condition in the children presented here represents an as yet undescribed syndrome, which is likely to be of genetic origin. Copyright © 2012 Wiley Periodicals, Inc.