Science.gov

Sample records for tieg1 regulates bmal1

  1. Possible role of TIEG1 as a feedback regulator of myostatin and TGF-{beta} in myoblasts

    SciTech Connect

    Miyake, Masato; Hayashi, Shinichiro; Iwasaki, Shunsuke; Chao, Guozheng; Takahashi, Hideyuki; Watanabe, Kouichi; Ohwada, Shyuichi; Aso, Hisashi; Yamaguchi, Takahiro

    2010-03-19

    Myostatin and TGF-{beta} negatively regulate skeletal muscle development and growth. Both factors signal through the Smad2/3 pathway. However, the regulatory mechanism of myostatin and TGF-{beta} signaling remains unclear. TGF-{beta} inducible early gene (TIEG) 1 is highly expressed in skeletal muscle and has been implicated in the modulation of TGF-{beta} signaling. These findings prompted us to investigate the effect of TIEG1 on myostatin and TGF-{beta} signaling using C2C12 myoblasts. Myostatin and TGF-{beta} induced the expression of TIEG1 and Smad7 mRNAs, but not TIEG2 mRNA, in proliferating C2C12 cells. When differentiating C2C12 myoblasts were stimulated by myostatin, TIEG1 mRNA was up-regulated at a late stage of differentiation. In contrast, TGF-{beta} enhanced TIEG1 expression at an early stage. Overexpression of TIEG1 prevented the transcriptional activation of Smad by myostatin and TGF-{beta} in both proliferating or differentiating C2C12 cells, but the expression of Smad2 and Smad7 mRNAs was not affected. Forced expression of TIEG1 inhibited myogenic differentiation but did not cause more inhibition than the empty vector in the presence of myostatin or TGF-{beta}. These results demonstrate that TIEG1 is one possible feedback regulator of myostatin and TGF-{beta} that prevents excess action in myoblasts.

  2. TGFβ2 regulates hypothalamic Trh expression through the TGFβ inducible early gene-1 (TIEG1) during fetal development

    PubMed Central

    Martínez-Armenta, Miriam; de León-Guerrero, Sol Díaz; Catalán, Ana; Alvarez-Arellano, Lourdes; Uribe, Rosa Maria; Subramaniam, Malayannan; Charli, Jean-Louis; Pérez-Martínez, Leonor

    2015-01-01

    The hypothalamus regulates the homeostasis of the organism by controlling hormone secretion from the pituitary. The molecular mechanisms that regulate the differentiation of the hypothalamic thyrotropin-releasing hormone (TRH) phenotype are poorly understood. We have previously shown that Klf10 or TGFβ inducible early gene-1 (TIEG1) is enriched in fetal hypothalamic TRH neurons. Here, we show that expression of TGFβ isoforms (1–3) and both TGFβ receptors (TβRI and II) occurs in the hypothalamus concomitantly with the establishment of TRH neurons during late embryonic development. TGFβ2 induces Trh expression via a TIEG1 dependent mechanism. TIEG1 regulates Trh expression through an evolutionary conserved GC rich sequence on the Trh promoter. Finally, in mice deficient in TIEG1, Trh expression is lower than in wild type animals at embryonic day 17. These results indicate that TGFβ signaling, through the upregulation of TIEG1, plays an important role in the establishment of Trh expression in the embryonic hypothalamus. PMID:25448845

  3. Circadian Factor BMAL1 in Histaminergic Neurons Regulates Sleep Architecture

    PubMed Central

    Yu, Xiao; Zecharia, Anna; Zhang, Zhe; Yang, Qianzi; Yustos, Raquel; Jager, Polona; Vyssotski, Alexei L.; Maywood, Elizabeth S.; Chesham, Johanna E.; Ma, Ying; Brickley, Stephen G.; Hastings, Michael H.; Franks, Nicholas P.; Wisden, William

    2014-01-01

    Summary Circadian clocks allow anticipation of daily environmental changes [1]. The suprachiasmatic nucleus (SCN) houses the master clock, but clocks are also widely expressed elsewhere in the body [1]. Although some peripheral clocks have established roles [1], it is unclear what local brain clocks do [2, 3]. We tested the contribution of one putative local clock in mouse histaminergic neurons in the tuberomamillary nucleus to the regulation of the sleep-wake cycle. Histaminergic neurons are silent during sleep, and start firing after wake onset [4–6]; the released histamine, made by the enzyme histidine decarboxylase (HDC), enhances wakefulness [7–11]. We found that hdc gene expression varies with time of day. Selectively deleting the Bmal1 (also known as Arntl or Mop3 [12]) clock gene from histaminergic cells removes this variation, producing higher HDC expression and brain histamine levels during the day. The consequences include more fragmented sleep, prolonged wake at night, shallower sleep depth (lower nonrapid eye movement [NREM] δ power), increased NREM-to-REM transitions, hindered recovery sleep after sleep deprivation, and impaired memory. Removing BMAL1 from histaminergic neurons does not, however, affect circadian rhythms. We propose that for mammals with polyphasic/nonwake consolidating sleep, the local BMAL1-dependent clock directs appropriately timed declines and increases in histamine biosynthesis to produce an appropriate balance of wake and sleep within the overall daily cycle of rest and activity specified by the SCN. PMID:25454592

  4. Circadian factor BMAL1 in histaminergic neurons regulates sleep architecture.

    PubMed

    Yu, Xiao; Zecharia, Anna; Zhang, Zhe; Yang, Qianzi; Yustos, Raquel; Jager, Polona; Vyssotski, Alexei L; Maywood, Elizabeth S; Chesham, Johanna E; Ma, Ying; Brickley, Stephen G; Hastings, Michael H; Franks, Nicholas P; Wisden, William

    2014-12-01

    Circadian clocks allow anticipation of daily environmental changes. The suprachiasmatic nucleus (SCN) houses the master clock, but clocks are also widely expressed elsewhere in the body. Although some peripheral clocks have established roles, it is unclear what local brain clocks do. We tested the contribution of one putative local clock in mouse histaminergic neurons in the tuberomamillary nucleus to the regulation of the sleep-wake cycle. Histaminergic neurons are silent during sleep, and start firing after wake onset; the released histamine, made by the enzyme histidine decarboxylase (HDC), enhances wakefulness. We found that hdc gene expression varies with time of day. Selectively deleting the Bmal1 (also known as Arntl or Mop3) clock gene from histaminergic cells removes this variation, producing higher HDC expression and brain histamine levels during the day. The consequences include more fragmented sleep, prolonged wake at night, shallower sleep depth (lower nonrapid eye movement [NREM] δ power), increased NREM-to-REM transitions, hindered recovery sleep after sleep deprivation, and impaired memory. Removing BMAL1 from histaminergic neurons does not, however, affect circadian rhythms. We propose that for mammals with polyphasic/nonwake consolidating sleep, the local BMAL1-dependent clock directs appropriately timed declines and increases in histamine biosynthesis to produce an appropriate balance of wake and sleep within the overall daily cycle of rest and activity specified by the SCN. PMID:25454592

  5. Cryptochrome 1 regulates the circadian clock through dynamic interactions with the BMAL1 C terminus.

    PubMed

    Xu, Haiyan; Gustafson, Chelsea L; Sammons, Patrick J; Khan, Sanjoy K; Parsley, Nicole C; Ramanathan, Chidambaram; Lee, Hsiau-Wei; Liu, Andrew C; Partch, Carrie L

    2015-06-01

    The molecular circadian clock in mammals is generated from transcriptional activation by the bHLH-PAS transcription factor CLOCK-BMAL1 and subsequent repression by PERIOD and CRYPTOCHROME (CRY). The mechanism by which CRYs repress CLOCK-BMAL1 to close the negative feedback loop and generate 24-h timing is not known. Here we show that, in mouse fibroblasts, CRY1 competes for binding with coactivators to the intrinsically unstructured C-terminal transactivation domain (TAD) of BMAL1 to establish a functional switch between activation and repression of CLOCK-BMAL1. TAD mutations that alter affinities for co-regulators affect the balance of repression and activation to consequently change the intrinsic circadian period or eliminate cycling altogether. Our results suggest that CRY1 fulfills its role as an essential circadian repressor by sequestering the TAD from coactivators, and they highlight regulation of the BMAL1 TAD as a critical mechanism for establishing circadian timing. PMID:25961797

  6. CLOCK and BMAL1 Regulate Muscle Insulin Sensitivity via SIRT1 in Male Mice.

    PubMed

    Liu, Jun; Zhou, Ben; Yan, Menghong; Huang, Rui; Wang, Yuangao; He, Zhishui; Yang, Yonggang; Dai, Changgui; Wang, Yiqian; Zhang, Fang; Zhai, Qiwei

    2016-06-01

    Circadian misalignment induces insulin resistance in both human and animal models, and skeletal muscle is the largest organ response to insulin. However, how circadian clock regulates muscle insulin sensitivity and the underlying molecular mechanisms are still largely unknown. Here we show circadian locomotor output cycles kaput (CLOCK) and brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein (BMAL)-1, two core circadian transcription factors, are down-regulated in insulin-resistant C2C12 myotubes and mouse skeletal muscle. Furthermore, insulin signaling is attenuated in the skeletal muscle of Clock(Δ19/Δ19) mice, and knockdown of CLOCK or BMAL1 by small interfering RNAs induces insulin resistance in C2C12 myotubes. Consistently, ectopic expression of CLOCK and BMAL1 improves insulin sensitivity in C2C12 myotubes. Moreover, CLOCK and BMAL1 regulate the expression of sirtuin 1 (SIRT1), an important regulator of insulin sensitivity, in C2C12 myotubes and mouse skeletal muscle, and two E-box elements in Sirt1 promoter are responsible for its CLOCK- and BMAL1-dependent transcription in muscle cells. Further studies show that CLOCK and BMAL1 regulate muscle insulin sensitivity through SIRT1. In addition, we find that BMAL1 and SIRT1 are decreased in the muscle of mice maintained in constant darkness, and resveratrol supplementation activates SIRT1 and improves insulin sensitivity. All these data demonstrate that CLOCK and BMAL1 regulate muscle insulin sensitivity via SIRT1, and activation of SIRT1 might be a potential valuable strategy to attenuate muscle insulin resistance related to circadian misalignment. PMID:27035655

  7. Bmal1 is an essential regulator for circadian cytosolic Ca²⁺ rhythms in suprachiasmatic nucleus neurons.

    PubMed

    Ikeda, Masayuki; Ikeda, Masaaki

    2014-09-01

    The hypothalamic suprachiasmatic nucleus (SCN) plays a pivotal role in the mammalian circadian clock system. Bmal1 is a clock gene that drives transcriptional-translational feedback loops (TTFLs) for itself and other genes, and is expressed in nearly all SCN neurons. Despite strong evidence that Bmal1-null mutant mice display arrhythmic behavior under constant darkness, the function of Bmal1 in neuronal activity is unknown. Recently, periodic changes in the levels of intracellular signaling messengers, such as cytosolic Ca(2+) and cAMP, were suggested to regulate TTFLs. However, the opposite aspect of how clock gene TTFLs regulate cytosolic signaling remains unclear. To investigate intracellular Ca(2+) dynamics under Bmal1 perturbations, we cotransfected some SCN neurons with yellow cameleon together with wild-type or dominant-negative Bmal1 using a gene-gun applied for mouse organotypic cultures. Immunofluorescence staining for a tag protein linked to BMAL1 showed nuclear expression of wild-type BMAL1 and its degradation within 1 week after transfection in SCN neurons. However, dominant-negative BMAL1 did not translocate into the nucleus and the cytosolic signals persisted beyond 1 week. Consistently, circadian Ca(2+) rhythms in SCN neurons were inhibited for longer periods by dominant-negative Bmal1 overexpression. Furthermore, SCN neurons transfected with a Bmal1 shRNA lengthened, whereas those overexpressing wild-type Bmal1 shortened, the periods of Ca(2+) rhythms, with a significant reduction in their amplitude. BMAL1 expression was intact in the majority of neighboring neurons in organotypic cultures. Therefore, we conclude that proper intrinsic Bmal1 expression, but not passive signaling via cell-to-cell interactions, is the determinant of circadian Ca(2+) rhythms in SCN neurons. PMID:25186748

  8. PI3K regulates BMAL1/CLOCK-mediated circadian transcription from the Dbp promoter.

    PubMed

    Morishita, Yoshikazu; Miura, Daiki; Kida, Satoshi

    2016-06-01

    The circadian rhythm generated by circadian clock underlies a molecular mechanism of rhythmic transcriptional regulation by transcription factor BMAL1/CLOCK. Importantly, the circadian clock is coordinated by exogenous cues to accommodate to changes in the external environment. However, the molecular mechanisms by which intracellular-signaling pathways mediate the adjustments of the circadian transcriptional rhythms remain unclear. In this study, we found that pharmacological inhibition or shRNA-mediated knockdown of phosphatidylinositol 3-kinase (PI3K) blocked upregulation of Dbp mRNA induced by serum shock in NIH 3T3 cells. Moreover, the inhibition of PI3K significantly reduced the promoter activity of the Dbp gene, as well as decreased the recruitment of BMAL1/CLOCK to the E-box in the Dbp promoter. Interestingly, the inhibition of PI3K blocked heterodimerization of BMAL1 and CLOCK. Our findings suggest that PI3K signaling plays a modulatory role in the regulation of the transcriptional rhythm of the Dbp gene by targeting BMAL1 and CLOCK. PMID:27022680

  9. [BMAL1 gene regulates the osteogenic differentiation of bone marrow mesenchymal stem cells].

    PubMed

    Xiaoguang, Li; Xiao-long, Guo; Bin, Guo

    2016-06-01

    Periodontitis is a chronic infective disease characterized as the destruction of the supporting tissues of the teeth. Bone marrow mesenchymal stem cells, which are ideal adult stem cells for the regeneration of supporting tissues, may play important roles in restoring the structure and function of the periodontium and in promoting the treatment of periodontal disease. As a consequence, the characteristics, especially osteogenic differentiation mechanism, of these stem cells have been extensively investigated. The regulation of the physiological behavior of these stem cells is associated with BMAL1 gene. This gene is a potential treatment target for periodontal disease, although the specific mechanism remains inconclusive. This study aimed to describe the characteristics of BMAL1 gene and its ability to regulate the osteogenic differentiation of stem cells. PMID:27526460

  10. Bidirectional CLOCK/BMAL1-dependent circadian gene regulation by retinoic acid in vitro

    SciTech Connect

    Shirai, Hidenori; Oishi, Katsutaka; Ishida, Norio . E-mail: n.ishida@aist.go.jp

    2006-12-15

    A central circadian clock located in the suprachiasmatic nucleus (SCN) of the mammalian hypothalamus entrains peripheral clocks through both neural and humoral factors. Although candidates for entrainment factors have been described, their details remain obscure. Here, we screened ligands for nuclear receptors that affect CLOCK/BMAL1-dependent transactivation of the mouse Period1 (mPer1) gene in NIH3T3 cells. We found that retinoic acids (RAs) significantly up-regulate mPer1 expression in an E-box-dependent manner. We also found that RAs up-regulate the expression of other E-box-dependent circadian genes such as mPer2, arginine vasopressin (mAVP), and peroxisome proliferator-activated receptor {alpha} (mPPAR{alpha}). Surprisingly, the effect of RAs on CLOCK/BMAL1 (E-box)-dependent mRNA expression was bidirectional and depended on the presence of exogenous retinoic acid receptor {alpha} (RAR{alpha}). These results suggest that RAs regulate the CLOCK/BMAL1-dependent transcription of circadian genes in a complex manner.

  11. Smooth-muscle BMAL1 participates in blood pressure circadian rhythm regulation

    PubMed Central

    Xie, Zhongwen; Su, Wen; Liu, Shu; Zhao, Guogang; Esser, Karyn; Schroder, Elizabeth A.; Lefta, Mellani; Stauss, Harald M.; Guo, Zhenheng; Gong, Ming Cui

    2014-01-01

    As the central pacemaker, the suprachiasmatic nucleus (SCN) has long been considered the primary regulator of blood pressure circadian rhythm; however, this dogma has been challenged by the discovery that each of the clock genes present in the SCN is also expressed and functions in peripheral tissues. The involvement and contribution of these peripheral clock genes in the circadian rhythm of blood pressure remains uncertain. Here, we demonstrate that selective deletion of the circadian clock transcriptional activator aryl hydrocarbon receptor nuclear translocator–like (Bmal1) from smooth muscle, but not from cardiomyocytes, compromised blood pressure circadian rhythm and decreased blood pressure without affecting SCN-controlled locomotor activity in murine models. In mesenteric arteries, BMAL1 bound to the promoter of and activated the transcription of Rho-kinase 2 (Rock2), and Bmal1 deletion abolished the time-of-day variations in response to agonist-induced vasoconstriction, myosin phosphorylation, and ROCK2 activation. Together, these data indicate that peripheral inputs contribute to the daily control of vasoconstriction and blood pressure and suggest that clock gene expression outside of the SCN should be further evaluated to elucidate pathogenic mechanisms of diseases involving blood pressure circadian rhythm disruption. PMID:25485682

  12. Smooth-muscle BMAL1 participates in blood pressure circadian rhythm regulation.

    PubMed

    Xie, Zhongwen; Su, Wen; Liu, Shu; Zhao, Guogang; Esser, Karyn; Schroder, Elizabeth A; Lefta, Mellani; Stauss, Harald M; Guo, Zhenheng; Gong, Ming Cui

    2015-01-01

    As the central pacemaker, the suprachiasmatic nucleus (SCN) has long been considered the primary regulator of blood pressure circadian rhythm; however, this dogma has been challenged by the discovery that each of the clock genes present in the SCN is also expressed and functions in peripheral tissues. The involvement and contribution of these peripheral clock genes in the circadian rhythm of blood pressure remains uncertain. Here, we demonstrate that selective deletion of the circadian clock transcriptional activator aryl hydrocarbon receptor nuclear translocator-like (Bmal1) from smooth muscle, but not from cardiomyocytes, compromised blood pressure circadian rhythm and decreased blood pressure without affecting SCN-controlled locomotor activity in murine models. In mesenteric arteries, BMAL1 bound to the promoter of and activated the transcription of Rho-kinase 2 (Rock2), and Bmal1 deletion abolished the time-of-day variations in response to agonist-induced vasoconstriction, myosin phosphorylation, and ROCK2 activation. Together, these data indicate that peripheral inputs contribute to the daily control of vasoconstriction and blood pressure and suggest that clock gene expression outside of the SCN should be further evaluated to elucidate pathogenic mechanisms of diseases involving blood pressure circadian rhythm disruption. PMID:25485682

  13. Calorie restriction regulates circadian clock gene expression through BMAL1 dependent and independent mechanisms.

    PubMed

    Patel, Sonal A; Velingkaar, Nikkhil; Makwana, Kuldeep; Chaudhari, Amol; Kondratov, Roman

    2016-01-01

    Feeding behavior, metabolism and circadian clocks are interlinked. Calorie restriction (CR) is a feeding paradigm known to extend longevity. We found that CR significantly affected the rhythms in the expression of circadian clock genes in mice on the mRNA and protein levels, suggesting that CR reprograms the clocks both transcriptionally and post-transcriptionally. The effect of CR on gene expression was distinct from the effects of time-restricted feeding or fasting. Furthermore, CR affected the circadian output through up- or down-regulation of the expression of several clock-controlled transcriptional factors and the longevity candidate genes. CR-dependent effects on some clock gene expression were impaired in the liver of mice deficient for BMAL1, suggesting importance of this transcriptional factor for the transcriptional reprogramming of the clock, however, BMAL1- independent mechanisms also exist. We propose that CR recruits biological clocks as a natural mechanism of metabolic optimization under conditions of limited energy resources. PMID:27170536

  14. Calorie restriction regulates circadian clock gene expression through BMAL1 dependent and independent mechanisms

    PubMed Central

    Patel, Sonal A.; Velingkaar, Nikkhil; Makwana, Kuldeep; Chaudhari, Amol; Kondratov, Roman

    2016-01-01

    Feeding behavior, metabolism and circadian clocks are interlinked. Calorie restriction (CR) is a feeding paradigm known to extend longevity. We found that CR significantly affected the rhythms in the expression of circadian clock genes in mice on the mRNA and protein levels, suggesting that CR reprograms the clocks both transcriptionally and post-transcriptionally. The effect of CR on gene expression was distinct from the effects of time-restricted feeding or fasting. Furthermore, CR affected the circadian output through up- or down-regulation of the expression of several clock-controlled transcriptional factors and the longevity candidate genes. CR-dependent effects on some clock gene expression were impaired in the liver of mice deficient for BMAL1, suggesting importance of this transcriptional factor for the transcriptional reprogramming of the clock, however, BMAL1- independent mechanisms also exist. We propose that CR recruits biological clocks as a natural mechanism of metabolic optimization under conditions of limited energy resources. PMID:27170536

  15. Interactive Organization of the Circadian Core Regulators PER2, BMAL1, CLOCK and PML

    PubMed Central

    Miki, Takao; Zhao, Zhaoyang; Lee, Cheng Chi

    2016-01-01

    The BMAL1 and CLOCK heterodimer in the mammalian circadian transcriptional complex is thought to be repressed by PER2 and CRY1 via direct interactions. We recently reported that PER2 is largely cytosolic in Pml−/− cells and did not co-immunoprecipitate (co-IP) with BMAL1 or CLOCK. Here, using multi-color immunofluorescence (IF) staining and co-IP, we observed a nuclear distribution of BMAL1 and a predominately cytosolic distribution of CLOCK in Pml−/− MEF. In the presence of WT PML, PER2 co-localized with BMAL1 in the nucleus. In Pml−/− MEF transfected with mutant K487R PML, we observed that BMAL1 and PER2 co-localized with K487R PML in the cytosol. Furthermore, cytosolic CLOCK and PER2 displayed a significant non-overlapping IF staining pattern. In Bmal1−/− MEF, CLOCK was primarily cytosolic while PML and PER2 were nuclear. Together, our studies suggest that PML mediates the binding of PER2 to BMAL1 in the BMAL1/CLOCK heterodimer and is an important component in the organization of a functional clock complex in the nucleus. Our studies also support that BMAL1 is important for CLOCK nuclear localization. PMID:27383066

  16. Interactive Organization of the Circadian Core Regulators PER2, BMAL1, CLOCK and PML.

    PubMed

    Miki, Takao; Zhao, Zhaoyang; Lee, Cheng Chi

    2016-01-01

    The BMAL1 and CLOCK heterodimer in the mammalian circadian transcriptional complex is thought to be repressed by PER2 and CRY1 via direct interactions. We recently reported that PER2 is largely cytosolic in Pml(-/-) cells and did not co-immunoprecipitate (co-IP) with BMAL1 or CLOCK. Here, using multi-color immunofluorescence (IF) staining and co-IP, we observed a nuclear distribution of BMAL1 and a predominately cytosolic distribution of CLOCK in Pml(-/-) MEF. In the presence of WT PML, PER2 co-localized with BMAL1 in the nucleus. In Pml(-/-) MEF transfected with mutant K487R PML, we observed that BMAL1 and PER2 co-localized with K487R PML in the cytosol. Furthermore, cytosolic CLOCK and PER2 displayed a significant non-overlapping IF staining pattern. In Bmal1(-/-) MEF, CLOCK was primarily cytosolic while PML and PER2 were nuclear. Together, our studies suggest that PML mediates the binding of PER2 to BMAL1 in the BMAL1/CLOCK heterodimer and is an important component in the organization of a functional clock complex in the nucleus. Our studies also support that BMAL1 is important for CLOCK nuclear localization. PMID:27383066

  17. Synergistic regulation of the mouse orphan nuclear receptor SHP gene promoter by CLOCK-BMAL1 and LRH-1

    SciTech Connect

    Oiwa, Ako; Kakizawa, Tomoko . E-mail: tkaki@hsp.md.shinshu-u.ac.jp; Miyamoto, Takahide; Yamashita, Koh; Jiang, Wei; Takeda, Teiji; Suzuki, Satoru; Hashizume, Kiyoshi

    2007-02-23

    Small heterodimer partner (SHP; NR0B2) is an orphan nuclear receptor and acts as a repressor for wide variety of nuclear hormone receptors. We demonstrated here that mouse SHP mRNA showed a circadian expression pattern in the liver. Transient transfection of the mSHP promoter demonstrated that CLOCK-BMAL1, core circadian clock components, bound to E-box (CACGTG), and stimulated the promoter activity by 4-fold. Liver receptor homologue-1 (LRH-1; NR5A2) stimulated the mSHP promoter, and CLOCK-BMAL1 synergistically enhanced the LRH-1-mediated transactivation. Interestingly, SHP did not affect the CLOCK-BMAL1-mediated promoter activity, but strongly repressed the synergistic activation of CLOCK-BMAL1 and LRH-1. Furthermore, in vitro pull-down assays revealed the existence of direct protein-protein interaction between LRH-1 and CLOCK. In summary, this study shows that CLOCK-BMAL1, LRH-1 and SHP coordinately regulate the mSHP gene to generate the circadian oscillation. The cyclic expression of mSHP may affect daily activity of other nuclear receptors and contribute to circadian liver functions.

  18. CLOCK-BMAL1 regulate the cardiac L-type calcium channel subunit CACNA1C through PI3K-Akt signaling pathway.

    PubMed

    Chen, Yanhong; Zhu, Didi; Yuan, Jiamin; Han, Zhonglin; Wang, Yao; Qian, Zhiyong; Hou, Xiaofeng; Wu, Tingting; Zou, Jiangang

    2016-09-01

    The heterodimerized transcription factors CLOCK-BMAL1 regulate the cardiomyocyte circadian rhythms. The L-type calcium currents play important role in the cardiac electrogenesis and arrhythmogenesis. Whether and how the CLOCK-BMAL1 regulate the cardiac L-type calcium channels are yet to be determined. The functions of the L-type calcium channels were evaluated with patch clamping techniques. Recombinant adenoviruses of CLOCK and BMAL1 were used in the expression experiments. We reported that the expressions and functions of CACNA1C (the α-subunit of the L-type calcium channels) showed circadian rhythms, with the peak at zeitgeber time 3 (ZT3). The endocardial action potential durations 90 (APD90) were correspondingly longer at ZT3. The protein levels of the phosphorylated Akt at threonine 308 (pAkt T308) also showed circadian rhythms. Overexpressions of CLOCK-BMAL1 significantly reduced the levels of CACNA1C while increasing the levels of pAkt T308 and pik3r1. Furthermore, the inhibitory effects of CLOCK-BMAL1 on CACNA1C could be abolished by the Akt inhibitor MK2206 or the PDK1 inhibitor GSK2334470. Collectively, our findings suggested that the expressions of the cardiac CACNA1C were under the CLOCK-BMAL1 regulation, probably through the PI3K-Akt signal pathway. PMID:27376484

  19. DNA binding, but not interaction with Bmal1, is responsible for DEC1-mediated transcription regulation of the circadian gene mPer1

    PubMed Central

    2004-01-01

    DEC1 (differentially expressed in chondrocytes 1) and DEC2 are E-box-binding transcription factors and exhibit a circadian expression pattern. Recently, both proteins were found to repress the Clock/Bmal1-activated E-box promoters (e.g. mPer1). Yeast two-hybrid assay detected interactions between Bmal1 and DECs. It was hypothesized that DEC-mediated repression on the mPer1 promoter is achieved by binding to E-box elements and interacting with Bmal1. In the present study, we report that E-box binding rather than Bmal1 interaction is responsible for the observed repression. In the absence of Clock/Bmal1, both DEC1 and DEC2 markedly repressed the mPer1 promoter reporter; however, DNA-binding mutants showed no repressive activity. Similarly, DEC1, but not its DNA-binding mutants, repressed the Clock/Bmal1-induced activation. In addition, DEC1R58P, a DNA-binding mutant with Bmal1 interactivity, repressed neither the mPer1 reporter directly nor the Clock/Bmal1-induced activation, providing direct evidence that DNA binding, rather than Bmal1 interactions, is responsible for the repression on the mPer1 promoter. Furthermore, disruption of the Sp1 site in the proximal promoter of mPer1 increased the repression of DEC1 proteins. Previous studies with mouse DEC2 showed that this factor interacts with Sp1. These findings suggest that DEC proteins regulate the expression of mPer1 through E-box binding and Sp1 interaction. Alterations on circadian systems are increasingly recognized as important risk factors for disease initiation and progression, and the expression of Dec genes is rapidly induced by environmental stimuli and is highly increased in tumour tissues. Therefore de-regulated expression of DEC genes probably alters normal circadian rhythms and contributes significantly to the pathogenesis of many diseases including cancer. PMID:15193144

  20. TIEG1-null tenocytes display age-dependent differences in their gene expression, adhesion, spreading and proliferation properties

    SciTech Connect

    Haddad, Oualid; Gumez, Laurie; Hawse, John R.; Subramaniam, Malayannan; Spelsberg, Thomas C.; Bensamoun, Sabine F.

    2011-07-15

    The remodeling of extracellular matrix is a crucial mechanism in tendon development and the proliferation of fibroblasts is a key factor in this process. The purpose of this study was to further elucidate the role of TIEG1 in mediating important tenocyte properties throughout the aging process. Wildtype and TIEG1 knockout tenocytes adhesion, spreading and proliferation were characterized on different substrates (fibronectin, collagen type I, gelatin and laminin) and the expression levels of various genes known to be involved with tendon development were analyzed by RT-PCR. The experiments revealed age-dependent and substrate-dependent properties for both wildtype and TIEG1 knockout tenocytes. Taken together, our results indicate an important role for TIEG1 in regulating tenocytes adhesion, spreading, and proliferation throughout the aging process. Understanding the basic mechanisms of TIEG1 in tenocytes may provide valuable information for treating multiple tendon disorders.

  1. A Novel Bmal1 Mutant Mouse Reveals Essential Roles of the C-Terminal Domain on Circadian Rhythms

    PubMed Central

    Cheon, Solmi; Row, Hansang; Lee, Jiyeon; Han, Dong-Hee; Cho, Sehyung; Kim, Kyungjin

    2015-01-01

    The mammalian circadian clock is an endogenous biological timer comprised of transcriptional/translational feedback loops of clock genes. Bmal1 encodes an indispensable transcription factor for the generation of circadian rhythms. Here, we report a new circadian mutant mouse from gene-trapped embryonic stem cells harboring a C-terminus truncated Bmal1 (Bmal1GTΔC) allele. The homozygous mutant (Bmal1GTΔC/GTΔC) mice immediately lost circadian behavioral rhythms under constant darkness. The heterozygous (Bmal1+/GTΔC) mice displayed a gradual loss of rhythms, in contrast to Bmal1+/- mice where rhythms were sustained. Bmal1GTΔC/GTΔC mice also showed arrhythmic mRNA and protein expression in the SCN and liver. Lack of circadian reporter oscillation was also observed in cultured fibroblast cells, indicating that the arrhythmicity of Bmal1GTΔC/GTΔC mice resulted from impaired molecular clock machinery. Expression of clock genes exhibited distinct responses to the mutant allele in Bmal1+/GTΔC and Bmal1GTΔC/GTΔC mice. Despite normal cellular localization and heterodimerization with CLOCK, overexpressed BMAL1GTΔC was unable to activate transcription of Per1 promoter and BMAL1-dependent CLOCK degradation. These results indicate that the C-terminal region of Bmal1 has pivotal roles in the regulation of circadian rhythms and the Bmal1GTΔC mice constitute a novel model system to evaluate circadian functional mechanism of BMAL1. PMID:26394143

  2. CRY Drives Cyclic CK2-Mediated BMAL1 Phosphorylation to Control the Mammalian Circadian Clock

    PubMed Central

    Tamaru, Teruya; Hattori, Mitsuru; Honda, Kousuke; Nakahata, Yasukazu; Sassone-Corsi, Paolo; van der Horst, Gijsbertus T. J.; Ozawa, Takeaki; Takamatsu, Ken

    2015-01-01

    Intracellular circadian clocks, composed of clock genes that act in transcription-translation feedback loops, drive global rhythmic expression of the mammalian transcriptome and allow an organism to anticipate to the momentum of the day. Using a novel clock-perturbing peptide, we established a pivotal role for casein kinase (CK)-2-mediated circadian BMAL1-Ser90 phosphorylation (BMAL1-P) in regulating central and peripheral core clocks. Subsequent analysis of the underlying mechanism showed a novel role of CRY as a repressor for protein kinase. Co-immunoprecipitation experiments and real-time monitoring of protein–protein interactions revealed that CRY-mediated periodic binding of CK2β to BMAL1 inhibits BMAL1-Ser90 phosphorylation by CK2α. The FAD binding domain of CRY1, two C-terminal BMAL1 domains, and particularly BMAL1-Lys537 acetylation/deacetylation by CLOCK/SIRT1, were shown to be critical for CRY-mediated BMAL1–CK2β binding. Reciprocally, BMAL1-Ser90 phosphorylation is prerequisite for BMAL1-Lys537 acetylation. We propose a dual negative-feedback model in which a CRY-dependent CK2-driven posttranslational BMAL1–P-BMAL1 loop is an integral part of the core clock oscillator. PMID:26562092

  3. Effects of BMAL1-SIRT1-positive cycle on estrogen synthesis in human ovarian granulosa cells: an implicative role of BMAL1 in PCOS.

    PubMed

    Zhang, Jiaou; Liu, Jiansheng; Zhu, Kai; Hong, Yan; Sun, Yun; Zhao, Xiaoming; Du, Yanzhi; Chen, Zi-Jiang

    2016-08-01

    Brain and muscle ARNT-like protein 1 (BMAL1) is necessary for fertility and has been found to be essential to follicle growth and steroidogenesis. Sirtuin1 (SIRT1) has been reported to interact with BMAL1 and function in a circadian manner. Evidence has shown that SIRT1 regulates aromatase expression in estrogen-producing cells. We aimed to ascertain if there is a relationship between polycystic ovary syndrome (PCOS) and BMAL1, and whether and how BMAL1 takes part in estrogen synthesis in human granulosa cells (hGCs). Twenty-four women diagnosed with PCOS and 24 healthy individuals undergoing assisted reproduction were studied. BMAL1 expression in their granulosa cells (GCs) was observed by quantitative real-time polymerase chain reaction (qRT-PCR). The level of expression in the PCOS group was lower than that of the group without PCOS (p < 0.05). We also analyzed estrogen synthesis and aromatase expression in KGN cell lines. Both were downregulated after BMAL1 and SIRT1 knock-down and, conversely, upregulated after overexpression treatments of these two genes in KGN cells. Both BMAL1 and SIRT1 had a mutually positive regulation, as did the phosphorylation of JNK. Furthermore, JNK overexpression increased estrogen synthesis activity and the expression levels of aromatase, BMAL1, and SIRT1. In KGN and hGCs, estrogen synthesis and aromatase expression were downregulated after treatment with JNK and SIRT1 inhibitors. In addition, BMAL1, SIRT1, and JNK expression levels were all downregulated. Our results demonstrate the effects of BMAL1 on estrogen synthesis in hGCs and suggest a BMAL1-SIRT1-JNK positive feedback cycle in this process, which points out an important role of BMAL1 in the development of PCOS. PMID:27117143

  4. TIEG1-NULL OSTEOCYTES DISPLAY DEFECTS IN THEIR MORPHOLOGY, DENSITY AND SURROUNDING BONE MATRIX

    PubMed Central

    Haddad, Oualid; Hawse, John R.; Subramaniam, Malayannan; Spelsberg, Thomas C.; Bensamoun, Sabine F.

    2011-01-01

    Through the development of TGFβ-inducible early gene-1 (TIEG1) knockout (KO) mice, we have demonstrated that TIEG1 plays an important role in osteoblast-mediated bone mineralization, and in bone resistance to mechanical strain. To further investigate the influence of TIEG1 in skeletal maintenance, osteocytes were analyzed by transmission electron microscopy using TIEG1 KO and wild-type mouse femurs at one, three and eight months of age. The results revealed an age-dependent change in osteocyte surface and density, suggesting a role for TIEG1 in osteocyte development. Moreover, there was a decrease in the amount of hypomineralized bone matrix surrounding the osteocytes in TIEG1 KO mice relative to wild-type controls. While little is known about the function or importance of this hypomineralized bone matrix immediately adjacent to osteocytes, this study reveals significant differences in this bone microenvironment and suggests that osteocyte function may be compromised in the absence of TIEG1 expression. PMID:22121306

  5. Investigations of the CLOCK and BMAL1 Proteins Binding to DNA: A Molecular Dynamics Simulation Study

    PubMed Central

    Xue, Tuo; Song, Chunnian; Wang, Qing; Wang, Yan; Chen, Guangju

    2016-01-01

    The circadian locomotor output cycles kaput (CLOCK), and brain and muscle ARNT-like 1 (BMAL1) proteins are important transcriptional factors of the endogenous circadian clock. The CLOCK and BMAL1 proteins can regulate the transcription-translation activities of the clock-related genes through the DNA binding. The hetero-/homo-dimerization and DNA combination of the CLOCK and BMAL1 proteins play a key role in the positive and negative transcriptional feedback processes. In the present work, we constructed a series of binary and ternary models for the bHLH/bHLH-PAS domains of the CLOCK and BMAL1 proteins, and the DNA molecule, and carried out molecular dynamics simulations, free energy calculations and conformational analysis to explore the interaction properties of the CLOCK and BMAL1 proteins with DNA. The results show that the bHLH domains of CLOCK and BMAL1 can favorably form the heterodimer of the bHLH domains of CLOCK and BMAL1 and the homodimer of the bHLH domains of BMAL1. And both dimers could respectively bind to DNA at its H1-H1 interface. The DNA bindings of the H1 helices in the hetero- and homo-bHLH dimers present the rectangular and diagonal binding modes, respectively. Due to the function of the α-helical forceps in these dimers, the tight gripping of the H1 helices to the major groove of DNA would cause the decrease of interactions at the H1-H2 interfaces in the CLOCK and BMAL1 proteins. The additional PAS domains in the CLOCK and BMAL1 proteins affect insignificantly the interactions of the CLOCK and BMAL1 proteins with the DNA molecule due to the flexible and long loop linkers located at the middle of the PAS and bHLH domains. The present work theoretically explains the interaction mechanisms of the bHLH domains of the CLOCK and BMAL1 proteins with DNA. PMID:27153104

  6. Insulin post-transcriptionally modulates Bmal1 protein to affect the hepatic circadian clock.

    PubMed

    Dang, Fabin; Sun, Xiujie; Ma, Xiang; Wu, Rong; Zhang, Deyi; Chen, Yaqiong; Xu, Qian; Wu, Yuting; Liu, Yi

    2016-01-01

    Although food availability is a potent synchronizer of the peripheral circadian clock in mammals, the underlying mechanisms are unclear. Here, we show that hepatic Bmal1, a core transcription activator of the molecular clock, is post-transcriptionally regulated by signals from insulin, an important hormone that is temporally controlled by feeding. Insulin promotes postprandial Akt-mediated Ser42-phosphorylation of Bmal1 to induce its dissociation from DNA, interaction with 14-3-3 protein and subsequently nuclear exclusion, which results in the suppression of Bmal1 transcriptional activity. Inverted feeding cycles not only shift the phase of daily insulin oscillation, but also elevate the amplitude due to food overconsumption. This enhanced and reversed insulin signalling initiates the reset of clock gene rhythms by altering Bmal1 nuclear accumulation in mouse liver. These results reveal the molecular mechanism of insulin signalling in regulating peripheral circadian rhythms. PMID:27576939

  7. Loss of BMAL1 in ovarian steroidogenic cells results in implantation failure in female mice.

    PubMed

    Liu, Yan; Johnson, Brian P; Shen, Anna L; Wallisser, Jacqueline A; Krentz, Kathy J; Moran, Susan M; Sullivan, Ruth; Glover, Edward; Parlow, Albert F; Drinkwater, Norman R; Schuler, Linda A; Bradfield, Christopher A

    2014-09-30

    The circadian clock plays a significant role in many aspects of female reproductive biology, including estrous cycling, ovulation, embryonic implantation, onset of puberty, and parturition. In an effort to link cell-specific circadian clocks to their specific roles in female reproduction, we used the promoter that controls expression of Steroidogenic Factor-1 (SF1) to drive Cre-recombinase-mediated deletion of the brain muscle arnt-like 1 (Bmal1) gene, known to encode an essential component of the circadian clock (SF1-Bmal1(-/-)). The resultant SF1-Bmal1(-/-) females display embryonic implantation failure, which is rescued by progesterone supplementation, or bilateral or unilateral transplantation of wild-type ovaries into SF1-Bmal1(-/-) dams. The observation that the central clock, and many other peripheral clocks, are fully functional in this model allows the assignment of the implantation phenotype to the clock in ovarian steroidogenic cells and distinguishes it from more general circadian related systemic pathology (e.g., early onset arthropathy, premature aging, ovulation, late onset of puberty, and abnormal estrous cycle). Our ovarian transcriptome analysis reveals that deletion of ovarian Bmal1 disrupts expression of transcripts associated with the circadian machinery and also genes critical for regulation of progesterone production, such as steroidogenic acute regulatory factor (Star). Overall, these data provide a powerful model to probe the interlocking and synergistic network of the circadian clock and reproductive systems. PMID:25225411

  8. Clock Gene Bmal1 Modulates Human Cartilage Gene Expression by Crosstalk With Sirt1.

    PubMed

    Yang, Wei; Kang, Xiaomin; Liu, Jiali; Li, Huixia; Ma, Zhengmin; Jin, Xinxin; Qian, Zhuang; Xie, Tianping; Qin, Na; Feng, Dongxu; Pan, Wenjie; Chen, Qian; Sun, Hongzhi; Wu, Shufang

    2016-08-01

    The critical regulation of the peripheral circadian gene implicated in osteoarthritis (OA) has been recently recognized; however, the causative role and clinical potential of the peripheral circadian rhythm attributable to such effects remain elusive. The purpose of this study was to elucidate the role of a circadian gene Bmal1 in human cartilage and pathophysiology of osteoarthritis. In our present study, the mRNA and protein levels of circadian rhythm genes, including nicotinamide adenine dinucleotide oxidase (NAD(+)) and sirtuin 1 (Sirt1), in human knee articular cartilage were determined. In OA cartilage, the levels of both Bmal1 and NAD(+) decreased significantly, which resulted in the inhibition of nicotinamide phosphoribosyltransferase activity and Sirt1 expression. Furthermore, the knockdown of Bmal1 was sufficient to decrease the level of NAD(+) and aggravate OA-like gene expression changes under the stimulation of IL-1β. The overexpression of Bmal1 relieved the alteration induced by IL-1β, which was consistent with the effect of the inhibition of Rev-Erbα (known as NR1D1, nuclear receptor subfamily 1, group D). On the other hand, the transfection of Sirt1 small interfering RNA not only resulted in a reduction of the protein expression of Bmal1 and a moderate increase of period 2 (per2) and Rev-Erbα but also further exacerbated the survival of cells and the expression of cartilage matrix-degrading enzymes induced by IL-1β. Overexpression of Sirt1 restored the metabolic imbalance of chondrocytes caused by IL-1β. These observations suggest that Bmal1 is a key clock gene to involve in cartilage homeostasis mediated through sirt1 and that manipulating circadian rhythm gene expression implicates an innovative strategy to develop novel therapeutic agents against cartilage diseases. PMID:27253997

  9. Quantitative Analyses of Cryptochrome-mBMAL1 Interactions

    PubMed Central

    Czarna, Anna; Breitkreuz, Helena; Mahrenholz, Carsten C.; Arens, Julia; Strauss, Holger M.; Wolf, Eva

    2011-01-01

    The mammalian cryptochromes mCRY1 and mCRY2 act as transcriptional repressors within the 24-h transcription-translational feedback loop of the circadian clock. The C-terminal tail and a preceding predicted coiled coil (CC) of the mCRYs as well as the C-terminal region of the transcription factor mBMAL1 are involved in transcriptional feedback repression. Here we show by fluorescence polarization and isothermal titration calorimetry that purified mCRY1/2CCtail proteins form stable heterodimeric complexes with two C-terminal mBMAL1 fragments. The longer mBMAL1 fragment (BMAL490) includes Lys-537, which is rhythmically acetylated by mCLOCK in vivo. mCRY1 (but not mCRY2) has a lower affinity to BMAL490 than to the shorter mBMAL1 fragment (BMAL577) and a K537Q mutant version of BMAL490. Using peptide scan analysis we identify two mBMAL1 binding epitopes within the coiled coil and tail regions of mCRY1/2 and document the importance of positively charged mCRY1 residues for mBMAL1 binding. A synthetic mCRY coiled coil peptide binds equally well to the short and to the long (wild-type and K537Q mutant) mBMAL1 fragments. In contrast, a peptide including the mCRY1 tail epitope shows a lower affinity to BMAL490 compared with BMAL577 and BMAL490(K537Q). We propose that Lys-537mBMAL1 acetylation enhances mCRY1 binding by affecting electrostatic interactions predominantly with the mCRY1 tail. Our data reveal different molecular interactions of the mCRY1/2 tails with mBMAL1, which may contribute to the non-redundant clock functions of mCRY1 and mCRY2. Moreover, our study suggests the design of peptidic inhibitors targeting the interaction of the mCRY1 tail with mBMAL1. PMID:21521686

  10. BMAL1-dependent circadian oscillation of nuclear CLOCK: posttranslational events induced by dimerization of transcriptional activators of the mammalian clock system

    PubMed Central

    Kondratov, Roman V.; Chernov, Mikhail V.; Kondratova, Anna A.; Gorbacheva, Victoria Y.; Gudkov, Andrei V.; Antoch, Marina P.

    2003-01-01

    Mammalian CLOCK and BMAL1 are two members of bHLH-PAS-containing family of transcription factors that represent the positive elements of circadian autoregulatory feedback loop. In the form of a heterodimer, they drive transcription from E-box enhancer elements in the promoters of responsive genes. We have examined abundance, posttranslational modifications, cellular localization of endogenous and ectopically expressed CLOCK and BMAL1 proteins. Nuclear/cytoplasm distribution of CLOCK was found to be under circadian regulation. Analysis of subcellular localization of CLOCK in embryo fibroblasts of mice carrying different germ-line circadian mutations showed that circadian regulation of nuclear accumulation of CLOCK is BMAL1-dependent. Formation of CLOCK/BMAL1 complex following ectopic coexpression of both proteins is followed by their codependent phosphorylation, which is tightly coupled to CLOCK nuclear translocation and degradation. This binding-dependent coregulation is specific for CLOCK/BMAL1 interaction, as no other PAS domain protein that can form a complex with either CLOCK or BMAL1 was able to induce similar effects. Importantly, all posttranslational events described in our study are coupled with active transactivation complex formation, which argues for their significant functional role. Altogether, these results provide evidence for an additional level of circadian system control, which is based on regulation of transcriptional activity or/and availability of CLOCK/BMAL1 complex. PMID:12897057

  11. The Transcriptional Repressor ID2 Can Interact with the Canonical Clock Components CLOCK and BMAL1 and Mediate Inhibitory Effects on mPer1 Expression*

    PubMed Central

    Ward, Sarah M.; Fernando, Shanik J.; Hou, Tim Y.; Duffield, Giles E.

    2010-01-01

    ID2 is a rhythmically expressed HLH transcriptional repressor. Deletion of Id2 in mice results in circadian phenotypes, highlighted by disrupted locomotor activity rhythms and an enhanced photoentrainment response. ID2 can suppress the transactivation potential of the positive elements of the clock, CLOCK-BMAL1, on mPer1 and clock-controlled gene (CCG) activity. Misregulation of CCGs is observed in Id2−/− liver, and mutant mice exhibit associated alterations in lipid homeostasis. These data suggest that ID2 contributes to both input and output components of the clock and that this may be via interaction with the bHLH clock proteins CLOCK and BMAL1. The aim of the present study was to explore this potential interaction. Coimmunoprecipitation analysis revealed the capability of ID2 to complex with both CLOCK and BMAL1, and mammalian two-hybrid analysis revealed direct interactions of ID2, ID1 and ID3 with CLOCK and BMAL1. Deletion of the ID2 HLH domain rendered ID2 ineffective at inhibiting CLOCK-BMAL1 transactivation, suggesting that interaction between the proteins is via the HLH region. Immunofluorescence analysis revealed overlapping localization of ID2 with CLOCK and BMAL1 in the cytoplasm. Overexpression of CLOCK and BMAL1 in the presence of ID2 resulted in a significant reduction in their nuclear localization, revealing that ID2 can sequester CLOCK and BMAL1 to the cytoplasm. Serum stimulation of Id2−/− mouse embryonic fibroblasts resulted in an enhanced induction of mPer1 expression. These data provide the basis for a molecular mechanism through which ID2 could regulate aspects of both clock input and output through a time-of-day specific interaction with CLOCK and BMAL1. PMID:20861012

  12. Impact of clock gene Bmal1 deficiency on nutritionally induced obesity in mice.

    PubMed

    Hemmeryckx, Bianca; Himmelreich, Uwe; Hoylaerts, Marc F; Lijnen, Henri R

    2011-03-01

    To evaluate the hypothesis that the clock gene Bmal1 (brain and muscle arnt like protein-1) plays a role in the development of obesity, 5-week-old male Bmal1-deficient (Bmal1(-/-)) mice and wild-type littermates (Bmal1(+/+)) were kept on a high-fat diet (HFD) for 15 weeks. Despite an initial accelerated weight gain of Bmal1(-/-) mice, body weight and subcutaneous (SC) and gonadal (GON) adipose tissue mass were comparable to Bmal1(+/+) mice at the end of the diet period. Noninvasive magnetic resonance imaging scanning revealed a modest increase in fat content in Bmal1(-/-) mice after 10 weeks of HFD, whereas at the start and the end of the HFD feeding no differences were observed between both genotypes. After 15 weeks of HFD, adipocyte and blood vessel size and density were similar for Bmal1(+/+) and Bmal1(-/-) mice. However, the weight of major organs was significantly reduced in Bmal1(-/-) mice, confirming the premature ageing phenotype. Thus, we hypothesize that an initial accelerated increase in body weight and fat mass of Bmal1(-/-) mice on HFD may have been offset by the effect of premature ageing on organ weight, resulting in comparable weights after 15 weeks of HFD. PMID:21030946

  13. Genomic Convergence among ERRα, PROX1, and BMAL1 in the Control of Metabolic Clock Outputs

    PubMed Central

    Dufour, Catherine R.; Levasseur, Marie-Pier; Pham, Nguyen Hoai Huong; Eichner, Lillian J.; Wilson, Brian J.; Charest-Marcotte, Alexis; Duguay, David; Poirier-Héon, Jean-François; Cermakian, Nicolas; Giguère, Vincent

    2011-01-01

    Metabolic homeostasis and circadian rhythms are closely intertwined biological processes. Nuclear receptors, as sensors of hormonal and nutrient status, are actively implicated in maintaining this physiological relationship. Although the orphan nuclear receptor estrogen-related receptor α (ERRα, NR3B1) plays a central role in the control of energy metabolism and its expression is known to be cyclic in the liver, its role in temporal control of metabolic networks is unknown. Here we report that ERRα directly regulates all major components of the molecular clock. ERRα-null mice also display deregulated locomotor activity rhythms and circadian period lengths under free-running conditions, as well as altered circulating diurnal bile acid and lipid profiles. In addition, the ERRα-null mice exhibit time-dependent hypoglycemia and hypoinsulinemia, suggesting a role for ERRα in modulating insulin sensitivity and glucose handling during the 24-hour light/dark cycle. We also provide evidence that the newly identified ERRα corepressor PROX1 is implicated in rhythmic control of metabolic outputs. To help uncover the molecular basis of these phenotypes, we performed genome-wide location analyses of binding events by ERRα, PROX1, and BMAL1, an integral component of the molecular clock. These studies revealed the existence of transcriptional regulatory loops among ERRα, PROX1, and BMAL1, as well as extensive overlaps in their target genes, implicating these three factors in the control of clock and metabolic gene networks in the liver. Genomic convergence of ERRα, PROX1, and BMAL1 transcriptional activity thus identified a novel node in the molecular circuitry controlling the daily timing of metabolic processes. PMID:21731503

  14. Chronotype and stability of spontaneous locomotor activity rhythm in BMAL1-deficient mice.

    PubMed

    Pfeffer, Martina; Korf, Horst-Werner; von Gall, Charlotte

    2015-02-01

    Behavior, physiological functions and cognitive performance change over the time of the day. These daily rhythms are either externally driven by rhythmic environmental cues such as the light/dark cycle (masking) or controlled by an internal circadian clock, the suprachiasmatic nucleus (SCN), which can be entrained to the light/dark cycle. Within a given species, there is genetically determined variability in the temporal preference for the onset of the active phase, the chronotype. The chronotype is the phase of entrainment between external and internal time and is largely regulated by the circadian clock. Genetic variations in clock genes and environmental influences contribute to the distribution of chronotypes in a given population. However, little is known about the determination of the chronotype, the stability of the locomotor rhythm and the re-synchronization capacity to jet lag in an animal without a functional endogenous clock. Therefore, we analyzed the chronotype of BMAL1-deficient mice (BMAL1-/-) as well as the effects of repeated experimental jet lag on locomotor activity rhythms. Moreover, light-induced period expression in the retina was analyzed to assess the responsiveness of the circadian light input system. In contrast to wild-type mice, BMAL1-/- showed a significantly later chronotype, adapted more rapidly to both phase advance and delay but showed reduced robustness of rhythmic locomotor activity after repeated phase shifts. However, photic induction of Period in the retina was not different between the two genotypes. Our findings suggest that a disturbed clockwork is associated with a late chronotype, reduced rhythm stability and higher vulnerability to repeated external desynchronization. PMID:25216070

  15. Rhythmic expression of miR-27b-3p targets the clock gene Bmal1 at the posttranscriptional level in the mouse liver.

    PubMed

    Zhang, Wenxiang; Wang, Peng; Chen, Siyu; Zhang, Zhao; Liang, Tingming; Liu, Chang

    2016-06-01

    Circadian clocks orchestrate daily oscillations in mammalian behaviors, physiology, and gene expression. MicroRNAs (miRNAs) play a crucial role in fine-tuning of the circadian system. However, little is known about the direct regulation of the clock genes by specific miRNAs. In this study, we found that miR-27b-3p exhibits rhythmic expression in the metabolic tissues of the mice subjected to constant darkness. MiR-27b-3p's expression is induced in livers of unfed and ob/ob mice. In addition, the oscillation phases of miR-27b-3p can be reversed by restricted feeding, suggesting a role of peripheral clock in regulating its rhythmicity. Bioinformatics analysis indicated that aryl hydrocarbon receptor nuclear translocator-like (also known as Bmal1) may be a direct target of miR-27b-3p. Luciferase reporter assay showed that miR-27b-3p suppressed Bmal1 3' UTR activity in a dose-dependent manner, and mutagenesis of their binding site abolished this suppression. Furthermore, overexpression of miR-27b-3p dose-dependently reduced the protein expression levels of BMAL1 and impaired the endogenous BMAL1 and gluconeogenic protein rhythmicity. Collectively, our results suggest that miR-27b-3p plays an important role in the posttranscriptional regulation of BMAL1 protein in the liver. MiR-27b-3p may serve as a novel node to integrate the circadian clock and energy metabolism.-Zhang, W., Wang, P., Chen, S., Zhang, Z., Liang, T., Liu, C. Rhythmic expression of miR-27b-3p targets the clock gene Bmal1 at the posttranscriptional level in the mouse liver. PMID:26919869

  16. Dual attenuation of proteasomal and autophagic BMAL1 degradation in ClockΔ19/+ mice contributes to improved glucose homeostasis

    PubMed Central

    Jeong, Kwon; He, Baokun; Nohara, Kazunari; Park, Noheon; Shin, Youngmin; Kim, Seonghwa; Shimomura, Kazuhiro; Koike, Nobuya; Yoo, Seung-Hee; Chen, Zheng

    2015-01-01

    Circadian clocks orchestrate essential physiology in response to various cues, yet their mechanistic and functional plasticity remains unclear. Here, we investigated ClockΔ19/+ heterozygous (Clk/+) mice, known to display lengthened periodicity and dampened amplitude, as a model of partially perturbed clocks. Interestingly, Clk/+ mice exhibited improved glycemic control and resistance to circadian period lengthening under high-fat diet (HFD). Furthermore, BMAL1 protein levels in Clk/+ mouse liver were upregulated compared with wild-type (WT) mice under HFD. Pharmacological and molecular studies showed that BMAL1 turnover entailed proteasomal and autophagic activities, and CLOCKΔ19 attenuated both processes. Consistent with an important role of BMAL1 in glycemic control, enhanced activation of insulin signaling was observed in Clk/+ mice relative to WT in HFD. Finally, transcriptome analysis revealed reprogramming of clock-controlled metabolic genes in Clk/+ mice. Our results demonstrate a novel role of autophagy in circadian regulation and reveal an unforeseen plasticity of circadian and metabolic networks. PMID:26228022

  17. Generation of myometrium-specific Bmal1 knockout mice for parturition analysis.

    PubMed

    Ratajczak, Christine K; Asada, Minoru; Allen, Gregg C; McMahon, Douglas G; Muglia, Lisa M; Smith, Donté; Bhattacharyya, Sandip; Muglia, Louis J

    2012-01-01

    Human and rodent studies indicate a role for circadian rhythmicity and associated clock gene expression in supporting normal parturition. The importance of clock gene expression in tissues besides the suprachiasmatic nucleus is emerging. Here, a Bmal1 conditional knockout mouse line and a novel Cre transgenic mouse line were used to examine the role of myometrial Bmal1 in parturition. Ninety-two percent (22/24) of control females but only 64% (14/22) of females with disrupted myometrial Bmal1 completed parturition during the expected time window of 5p.m. on Day 19 through to 9a.m. on Day 19.5 of gestation. However, neither serum progesterone levels nor uterine transcript expression of the contractile-associated proteins Connexin43 and Oxytocin receptor differed between females with disrupted myometrial Bmal1 and controls during late gestation. The data indicate a role for myometrial Bmal1 in maintaining normal time of day of parturition. PMID:22697126

  18. TIEG1 Null Mouse-Derived Osteoblasts Are Defective in Mineralization and in Support of Osteoclast Differentiation In Vitro

    PubMed Central

    Subramaniam, Malayannan; Gorny, Genevieve; Johnsen, Steven A.; Monroe, David G.; Evans, Glenda L.; Fraser, Daniel G.; Rickard, David J.; Rasmussen, Kay; van Deursen, Jan M. A.; Turner, Russell T.; Oursler, Merry Jo; Spelsberg, Thomas C.

    2005-01-01

    Transforming growth factor β-inducible early gene 1 (TIEG1) is a member of the Krüppel-like transcription factor family. To understand the physiological role of TIEG1, we generated TIEG−/− (null) mice and found that the TIEG−/− mice had increased osteoblast numbers with no increased bone formation parameters. However, when calvarial osteoblasts (OBs) were isolated from neonatal TIEG−/− and TIEG+/+ mice and cultured in vitro, the TIEG−/− cells displayed reduced expression of important OB differentiation markers. When the OBs were differentiated in vitro by treatment with bone morphogenic protein 2, the OBs from TIEG+/+ calvaria displayed several mineralized nodules in culture, whereas those from TIEG−/− mice showed no nodules. To characterize the OBs' ability to support osteoclast differentiation, the OBs from TIEG+/+ and TIEG−/− mice were cultured with marrow and spleen cells from TIEG+/+ mice. Significantly fewer osteoclasts developed when TIEG−/− OBs were used to support osteoclast differentiation than when TIEG+/+ OBs were used. Examination of gene expression in the TIEG−/− OBs revealed decreased RANKL and increased OPG expression compared to TIEG+/+ OBs. The addition of RANKL to these cocultures only partially restored the ability of TIEG−/− OBs to support osteoclast differentiation, whereas M-CSF alone or combined with RANKL had no additional effect on osteoclast differentiation. We conclude from these data that TIEG1 expression in OBs is critical for both osteoblast-mediated mineralization and osteoblast support of osteoclast differentiation. PMID:15657444

  19. Methylation on the Circadian Gene BMAL1 Is Associated with the Effects of a Weight Loss Intervention on Serum Lipid Levels.

    PubMed

    Samblas, Mirian; Milagro, Fermin I; Gómez-Abellán, Purificación; Martínez, J Alfredo; Garaulet, Marta

    2016-06-01

    The circadian clock system has been linked to the onset and development of obesity and some accompanying comorbidities. Epigenetic mechanisms, such as DNA methylation, are putatively involved in the regulation of the circadian clock system. The aim of this study was to investigate the influence of a weight loss intervention based on an energy-controlled Mediterranean dietary pattern in the methylation levels of 3 clock genes, BMAL1, CLOCK, and NR1D1, and the association between the methylation levels and changes induced in the serum lipid profile with the weight loss treatment. The study sample enrolled 61 women (body mass index = 28.6 ± 3.4 kg/m(2); age: 42.2 ± 11.4 years), who followed a nutritional program based on a Mediterranean dietary pattern. DNA was isolated from whole blood obtained at the beginning and end point. Methylation levels at different CpG sites of BMAL1, CLOCK, and NR1D1 were analyzed by Sequenom's MassArray. The energy-restricted intervention modified the methylation levels of different CpG sites in BMAL1 (CpGs 5, 6, 7, 9, 11, and 18) and NR1D1 (CpGs 1, 10, 17, 18, 19, and 22). Changes in cytosine methylation in the CpG 5 to 9 region of BMAL1 with the intervention positively correlated with the eveningness profile (p = 0.019). The baseline methylation of the CpG 5 to 9 region in BMAL1 positively correlated with energy (p = 0.047) and carbohydrate (p = 0.017) intake and negatively correlated with the effect of the weight loss intervention on total cholesterol (p = 0.032) and low-density lipoprotein cholesterol (p = 0.005). Similar significant and positive correlations were found between changes in methylation levels in the CpG 5 to 9 region of BMAL1 due to the intervention and changes in serum lipids (p < 0.05). This research describes apparently for the first time an association between changes in the methylation of the BMAL1 gene with the intervention and the effects of a weight loss intervention on blood lipids levels. PMID:26873744

  20. The chondrocyte clock gene Bmal1 controls cartilage homeostasis and integrity

    PubMed Central

    Dudek, Michal; Gossan, Nicole; Yang, Nan; Im, Hee-Jeong; Ruckshanthi, Jayalath P.D.; Yoshitane, Hikari; Li, Xin; Jin, Ding; Wang, Ping; Boudiffa, Maya; Bellantuono, Ilaria; Fukada, Yoshitaka; Boot-Handford, Ray P.; Meng, Qing-Jun

    2015-01-01

    Osteoarthritis (OA) is the most prevalent and debilitating joint disease, and there are currently no effective disease-modifying treatments available. Multiple risk factors for OA, such as aging, result in progressive damage and loss of articular cartilage. Autonomous circadian clocks have been identified in mouse cartilage, and environmental disruption of circadian rhythms in mice predisposes animals to OA-like damage. However, the contribution of the cartilage clock mechanisms to the maintenance of tissue homeostasis is still unclear. Here, we have shown that expression of the core clock transcription factor BMAL1 is disrupted in human OA cartilage and in aged mouse cartilage. Furthermore, targeted Bmal1 ablation in mouse chondrocytes abolished their circadian rhythm and caused progressive degeneration of articular cartilage. We determined that BMAL1 directs the circadian expression of many genes implicated in cartilage homeostasis, including those involved in catabolic, anabolic, and apoptotic pathways. Loss of BMAL1 reduced the levels of phosphorylated SMAD2/3 (p-SMAD2/3) and NFATC2 and decreased expression of the major matrix-related genes Sox9, Acan, and Col2a1, but increased p-SMAD1/5 levels. Together, these results define a regulatory mechanism that links chondrocyte BMAL1 to the maintenance and repair of cartilage and suggest that circadian rhythm disruption is a risk factor for joint diseases such as OA. PMID:26657859

  1. Timing of expression of the core clock gene Bmal1 influences its effects on aging and survival

    PubMed Central

    Yang, Guangrui; Chen, Lihong; Grant, Gregory R.; Paschos, Georgios; Song, Wen-Liang; Musiek, Erik S.; Lee, Vivian; McLoughlin, Sarah C.; Grosser, Tilo; Cotsarelis, George; FitzGerald, Garret A.

    2016-01-01

    The absence of Bmal1, a core clock gene, results in a loss of circadian rhythms, an acceleration of aging, and a shortened life span in mice. To address the importance of circadian rhythms in the aging process, we generated conditional Bmal1 knockout mice that lacked the BMAL1 protein during adult life and found that wild-type circadian variations in wheel-running activity, heart rate, and blood pressure were abolished. Ocular abnormalities and brain astrogliosis were conserved irrespective of the timing of Bmal1 deletion. However, life span, fertility, body weight, blood glucose levels, and age-dependent arthropathy - which are altered in standard Bmal1 knockout mice - remained unaltered, while atherosclerosis and hair growth improved, in the conditional adult-life Bmal1 knockout mice, despite abolition of clock function. Hepatic RNA-Seq revealed that expression of oscillatory genes was dampened in the adult-life Bmal1 knockout mice, while overall gene expression was largely unchanged. Thus, many phenotypes in conventional Bmal1 knockout mice, hitherto attributed to disruption of circadian rhythms, reflect the loss of properties of BMAL1 that are independent of its role in the clock. These findings prompt re-evaluation of the systemic consequences of disruption of the molecular clock. PMID:26843191

  2. Sleep loss reduces the DNA-binding of BMAL1, CLOCK, and NPAS2 to specific clock genes in the mouse cerebral cortex.

    PubMed

    Mongrain, Valérie; La Spada, Francesco; Curie, Thomas; Franken, Paul

    2011-01-01

    We have previously demonstrated that clock genes contribute to the homeostatic aspect of sleep regulation. Indeed, mutations in some clock genes modify the markers of sleep homeostasis and an increase in homeostatic sleep drive alters clock gene expression in the forebrain. Here, we investigate a possible mechanism by which sleep deprivation (SD) could alter clock gene expression by quantifying DNA-binding of the core-clock transcription factors CLOCK, NPAS2, and BMAL1 to the cis-regulatory sequences of target clock genes in mice. Using chromatin immunoprecipitation (ChIP), we first showed that, as reported for the liver, DNA-binding of CLOCK and BMAL1 to target clock genes changes in function of time-of-day in the cerebral cortex. Tissue extracts were collected at ZT0 (light onset), -6, -12, and -18, and DNA enrichment of E-box or E'-box containing sequences was measured by qPCR. CLOCK and BMAL1 binding to Cry1, Dbp, Per1, and Per2 depended on time-of-day, with maximum values reached at around ZT6. We then observed that SD, performed between ZT0 and -6, significantly decreased DNA-binding of CLOCK and BMAL1 to Dbp, consistent with the observed decrease in Dbp mRNA levels after SD. The DNA-binding of NPAS2 and BMAL1 to Per2 was also decreased by SD, although SD is known to increase Per2 expression in the cortex. DNA-binding to Per1 and Cry1 was not affected by SD. Our results show that the sleep-wake history can affect the clock molecular machinery directly at the level of chromatin binding thereby altering the cortical expression of Dbp and Per2 and likely other targets. Although the precise dynamics of the relationship between DNA-binding and mRNA expression, especially for Per2, remains elusive, the results also suggest that part of the reported circadian changes in DNA-binding of core clock components in tissues peripheral to the suprachiasmatic nuclei could, in fact, be sleep-wake driven. PMID:22039518

  3. Sleep Loss Reduces the DNA-Binding of BMAL1, CLOCK, and NPAS2 to Specific Clock Genes in the Mouse Cerebral Cortex

    PubMed Central

    Curie, Thomas; Franken, Paul

    2011-01-01

    We have previously demonstrated that clock genes contribute to the homeostatic aspect of sleep regulation. Indeed, mutations in some clock genes modify the markers of sleep homeostasis and an increase in homeostatic sleep drive alters clock gene expression in the forebrain. Here, we investigate a possible mechanism by which sleep deprivation (SD) could alter clock gene expression by quantifying DNA-binding of the core-clock transcription factors CLOCK, NPAS2, and BMAL1 to the cis-regulatory sequences of target clock genes in mice. Using chromatin immunoprecipitation (ChIP), we first showed that, as reported for the liver, DNA-binding of CLOCK and BMAL1 to target clock genes changes in function of time-of-day in the cerebral cortex. Tissue extracts were collected at ZT0 (light onset), −6, −12, and −18, and DNA enrichment of E-box or E'-box containing sequences was measured by qPCR. CLOCK and BMAL1 binding to Cry1, Dbp, Per1, and Per2 depended on time-of-day, with maximum values reached at around ZT6. We then observed that SD, performed between ZT0 and −6, significantly decreased DNA-binding of CLOCK and BMAL1 to Dbp, consistent with the observed decrease in Dbp mRNA levels after SD. The DNA-binding of NPAS2 and BMAL1 to Per2 was also decreased by SD, although SD is known to increase Per2 expression in the cortex. DNA-binding to Per1 and Cry1 was not affected by SD. Our results show that the sleep-wake history can affect the clock molecular machinery directly at the level of chromatin binding thereby altering the cortical expression of Dbp and Per2 and likely other targets. Although the precise dynamics of the relationship between DNA-binding and mRNA expression, especially for Per2, remains elusive, the results also suggest that part of the reported circadian changes in DNA-binding of core clock components in tissues peripheral to the suprachiasmatic nuclei could, in fact, be sleep-wake driven. PMID:22039518

  4. Cardiomyocyte-specific Bmal1 deletion in mice triggers diastolic dysfunction, extracellular matrix response, and impaired resolution of inflammation.

    PubMed

    Ingle, Kevin A; Kain, Vasundhara; Goel, Mehak; Prabhu, Sumanth D; Young, Martin E; Halade, Ganesh V

    2015-12-01

    The mammalian circadian clock consists of multiple transcriptional regulators that coordinate biological processes in a time-of-day-dependent manner. Cardiomyocyte-specific deletion of the circadian clock component, Bmal1 (aryl hydrocarbon receptor nuclear translocator-like protein 1), leads to age-dependent dilated cardiomyopathy and decreased lifespan in mice. We investigated whether cardiomyocyte-specific Bmal1 knockout (CBK) mice display early alterations in cardiac diastolic function, extracellular matrix (ECM) remodeling, and inflammation modulators by investigating CBK mice and littermate controls at 8 and 28 wk of age (i.e., prior to overt systolic dysfunction). Left ventricles of CBK mice exhibited (P < 0.05): 1) progressive abnormal diastolic septal annular wall motion and reduced pulmonary venous flow only at 28 wk of age; 2) progressive worsening of fibrosis in the interstitial and endocardial regions from 8 to 28 wk of age; 3) increased (>1.5 fold) expression of collagen I and III, as well as the matrix metalloproteinases MMP-9, MMP-13, and MMP-14 at 28 wk of age; 4) increased transcript levels of neutrophil chemotaxis and leukocyte migration genes (Ccl2, Ccl8, Cxcl2, Cxcl1, Cxcr2, Il1β) with no change in Il-10 and Il-13 genes expression; and 5) decreased levels of 5-LOX, HO-1 and COX-2, enzymes indicating impaired resolution of inflammation. In conclusion, genetic disruption of the cardiomyocyte circadian clock results in diastolic dysfunction, adverse ECM remodeling, and proinflammatory gene expression profiles in the mouse heart, indicating signs of early cardiac aging in CBK mice. PMID:26432841

  5. Palmitate Inhibits SIRT1-Dependent BMAL1/CLOCK Interaction and Disrupts Circadian Gene Oscillations in Hepatocytes

    PubMed Central

    Tong, Xin; Zhang, Deqiang; Arthurs, Blake; Li, Pei; Durudogan, Leigh; Gupta, Neil; Yin, Lei

    2015-01-01

    Elevated levels of serum saturated fatty acid palmitate have been shown to promote insulin resistance, increase cellular ROS production, and trigger cell apoptosis in hepatocytes during the development of obesity. However, it remains unclear whether palmitate directly impacts the circadian clock in hepatocytes, which coordinates nutritional inputs and hormonal signaling with downstream metabolic outputs. Here we presented evidence that the molecular clock is a novel target of palmitate in hepatocytes. Palmitate exposure at low dose inhibits the molecular clock activity and suppresses the cyclic expression of circadian targets including Dbp, Nr1d1 and Per2 in hepatocytes. Palmitate treatment does not seem to alter localization or reduce protein expression of BMAL1 and CLOCK, the two core components of the molecular clock in hepatocytes. Instead, palmitate destabilizes the protein-protein interaction between BMAL1-CLOCK in a dose and time-dependent manner. Furthermore, we showed that SIRT1 activators could reverse the inhibitory action of palmitate on BMAL1-CLOCK interaction and the clock gene expression, whereas inhibitors of NAD synthesis mimic the palmitate effects on the clock function. In summary, our findings demonstrated that palmitate inhibits the clock function by suppressing SIRT1 function in hepatocytes. PMID:26075729

  6. Circadian adaptation to cell injury stresses: a crucial interplay of BMAL1 and HSF1.

    PubMed

    Tamaru, Teruya; Ikeda, Masaaki

    2016-07-01

    The circadian clock system confers daily anticipatory physiological processes with the ability to be reset by environmental cues. This "circadian adaptation system" (CAS), driven by cell-autonomous molecular clocks, orchestrates various rhythmic physiological processes in the entire body. Hence, the dysfunction of these clocks exacerbates various diseases, which may partially be due to the impairment of protective pathways. If this is the case, how does the CAS respond to cell injury stresses that are critical in maintaining health and life by evoking protective pathways? To address this question, here we review and discuss recent evidence revealing life-protective (pro-survival) molecular networks between clock (e.g., BMAL1, CLOCK, and PER2) and adaptation (e.g., HSF1, Nrf2, NF-κB, and p53) pathways, which are evoked by various cell injury stresses (e.g., heat, reactive oxygen species, and UV). The CK2 protein kinase-integrated interplay of the BMAL1 (clock) and HSF1 (heat-shock response) pathways is one of the crucial events in CAS. PMID:26910317

  7. The circadian clock gene Bmal1 acts as a potential anti-oncogene in pancreatic cancer by activating the p53 tumor suppressor pathway.

    PubMed

    Jiang, Weiliang; Zhao, Senlin; Jiang, Xiaohua; Zhang, Erquan; Hu, Guoyong; Hu, Bin; Zheng, Ping; Xiao, Junhua; Lu, Zhanjun; Lu, Yingying; Ni, Jianbo; Chen, Congying; Wang, Xingpeng; Yang, Lijuan; Wan, Rong

    2016-02-28

    Disruption of the circadian clock has been shown to be associated with tumor development. This study aimed to investigate the role of the core circadian gene Bmal1 in pancreatic cancer (PC). We first found that the levels of Bmal1 were downregulated in PC samples and were closely correlated with the clinicopathological features of patients. To dissect the underlying mechanism, we performed a RNA-seq assay followed by systematic gene function and pathway enrichment analyses. We detected an anti-apoptotic and pro-proliferative transcriptome profile after Bmal1 knockdown in PC cells. Further in vitro and in vivo studies confirmed that Bmal1 overexpression significantly inhibited cell proliferation and invasion and induced G2/M cell cycle arrest, whereas Bmal1 knockdown promoted PC growth, as demonstrated in Bmal1-manipulated AsPC-1 and BxPC-3 cell lines. Our mechanistic studies indicated that Bmal1 could directly bind to the p53 gene promoter and thereby transcriptionally activate the downstream tumor suppressor pathway in a p53-dependent manner. In sum, our findings suggest that Bmal1 acts as an anti-oncogene in PC and represents a potential biomarker for its diagnosis. PMID:26683776

  8. The harmala alkaloid harmine is a modulator of circadian Bmal1 transcription.

    PubMed

    Onishi, Yoshiaki; Oishi, Katsutaka; Kawano, Yasuhiro; Yamazaki, Yoshimitsu

    2012-02-01

    Biological rhythms are orchestrated by a cell-autonomous clock system that drives the rhythmic cascade of clock genes. We established an assay system using NIH 3T3 cells stably expressing the Bmal1 promoter-driven luciferase reporter gene and used it to analyse circadian oscillation of the gene. Modulators of PKC (protein kinase C) revealed that an activator and an inhibitor represented short- and long-period phenotypes respectively which were consistent with reported effects of PKC on the circadian clock and validated the assay system. We examined the effects of the alkaloid harmine, contained in Hoasca, which has a wide spectrum of pharmacological actions, on circadian rhythms using the validated assay system. Harmine dose dependently elongated the period. Furthermore, EMSA (electrophoretic mobility-shift assay) and Western-blot analysis showed that harmine enhanced the transactivating function of RORα (retinoid-related orphan receptor α), probably by increasing its nuclear translocation. Exogenous expression of RORα also caused a long period, confirming the phenotype indicated by harmine. These results suggest that harmine extends the circadian period by enhancing RORα function and that harmine is a new candidate that contributes to the control of period length in mammalian cells. PMID:21401525

  9. Dynamical mechanism of Bmal 1 / Rev- erbα loop in circadian clock

    NASA Astrophysics Data System (ADS)

    Li, Ying; Liu, Zengrong

    2015-07-01

    In mammals, the circadian clock is driven by multiple integrated transcriptional feedback loops involving three kinds of central clock-controlled elements (CCEs): E-boxes, D-boxes and ROR-elements. With the aid of CCEs, the concentrations of the active proteins are approximated by the delayed concentrations of mRNAs, which simplifies the circadian system drastically. The regulatory loop composed by BMAL1 and REV-ERB- α plays important roles in circadian clock. With delay differential equations, we gave a mathematical model of this loop and investigated its dynamical mechanisms. Specially, we theoretically provided the sufficient conditions for sustained oscillation of the loop with Hopf bifurcation theory. The total of delays determines the emergence of oscillators, which explains the crucial roles of delays in circadian clock revealed by biological experiments. Numerically, we studied the amplitude and period against the variations of delays and the degradation rates. The different sensitivities of amplitude and period on these factors provide ideas to adjust the amplitude or period of circadian oscillators.

  10. Modulation of learning and memory by the targeted deletion of the circadian clock gene Bmal1 in forebrain circuits.

    PubMed

    Snider, Kaitlin H; Dziema, Heather; Aten, Sydney; Loeser, Jacob; Norona, Frances E; Hoyt, Kari; Obrietan, Karl

    2016-07-15

    A large body of literature has shown that the disruption of circadian clock timing has profound effects on mood, memory and complex thinking. Central to this time keeping process is the master circadian pacemaker located within the suprachiasmatic nucleus (SCN). Of note, within the central nervous system, clock timing is not exclusive to the SCN, but rather, ancillary oscillatory capacity has been detected in a wide range of cell types and brain regions, including forebrain circuits that underlie complex cognitive processes. These observations raise questions about the hierarchical and functional relationship between the SCN and forebrain oscillators, and, relatedly, about the underlying clock-gated synaptic circuitry that modulates cognition. Here, we utilized a clock knockout strategy in which the essential circadian timing gene Bmal1 was selectively deleted from excitatory forebrain neurons, whilst the SCN clock remained intact, to test the role of forebrain clock timing in learning, memory, anxiety, and behavioral despair. With this model system, we observed numerous effects on hippocampus-dependent measures of cognition. Mice lacking forebrain Bmal1 exhibited deficits in both acquisition and recall on the Barnes maze. Notably, loss of forebrain Bmal1 abrogated time-of-day dependent novel object location memory. However, the loss of Bmal1 did not alter performance on the elevated plus maze, open field assay, and tail suspension test, indicating that this phenotype specifically impairs cognition but not affect. Together, these data suggest that forebrain clock timing plays a critical role in shaping the efficiency of learning and memory retrieval over the circadian day. PMID:27091299

  11. Differential effects of light and feeding on circadian organization of peripheral clocks in a forebrain Bmal1 mutant

    PubMed Central

    Izumo, Mariko; Pejchal, Martina; Schook, Andrew C; Lange, Ryan P; Walisser, Jacqueline A; Sato, Takashi R; Wang, Xiaozhong; Bradfield, Christopher A; Takahashi, Joseph S

    2014-01-01

    In order to assess the contribution of a central clock in the hypothalamic suprachiasmatic nucleus (SCN) to circadian behavior and the organization of peripheral clocks, we generated forebrain/SCN-specific Bmal1 knockout mice by using floxed Bmal1 and pan-neuronal Cre lines. The forebrain knockout mice showed >90% deletion of BMAL1 in the SCN and exhibited an immediate and complete loss of circadian behavior in constant conditions. Circadian rhythms in peripheral tissues persisted but became desynchronized and damped in constant darkness. The loss of synchrony was rescued by light/dark cycles and partially by restricted feeding (only in the liver and kidney but not in the other tissues) in a distinct manner. These results suggest that the forebrain/SCN is essential for internal temporal order of robust circadian programs in peripheral clocks, and that individual peripheral clocks are affected differently by light and feeding in the absence of a functional oscillator in the forebrain. DOI: http://dx.doi.org/10.7554/eLife.04617.001 PMID:25525750

  12. A meeting of two chronobiological systems: circadian proteins Period1 and BMAL1 modulate the human hair cycle clock.

    PubMed

    Al-Nuaimi, Yusur; Hardman, Jonathan A; Bíró, Tamás; Haslam, Iain S; Philpott, Michael P; Tóth, Balázs I; Farjo, Nilofer; Farjo, Bessam; Baier, Gerold; Watson, Rachel E B; Grimaldi, Benedetto; Kloepper, Jennifer E; Paus, Ralf

    2014-03-01

    The hair follicle (HF) is a continuously remodeled mini organ that cycles between growth (anagen), regression (catagen), and relative quiescence (telogen). As the anagen-to-catagen transformation of microdissected human scalp HFs can be observed in organ culture, it permits the study of the unknown controls of autonomous, rhythmic tissue remodeling of the HF, which intersects developmental, chronobiological, and growth-regulatory mechanisms. The hypothesis that the peripheral clock system is involved in hair cycle control, i.e., the anagen-to-catagen transformation, was tested. Here we show that in the absence of central clock influences, isolated, organ-cultured human HFs show circadian changes in the gene and protein expression of core clock genes (CLOCK, BMAL1, and Period1) and clock-controlled genes (c-Myc, NR1D1, and CDKN1A), with Period1 expression being hair cycle dependent. Knockdown of either BMAL1 or Period1 in human anagen HFs significantly prolonged anagen. This provides evidence that peripheral core clock genes modulate human HF cycling and are an integral component of the human hair cycle clock. Specifically, our study identifies BMAL1 and Period1 as potential therapeutic targets for modulating human hair growth. PMID:24005054

  13. Histone mono-ubiquitination by a Clock–Bmal1 complex marks Per1 and Per2 genes for circadian feedback

    PubMed Central

    Tamayo, Alfred G.; Duong, Hao A.; Robles, Maria S.; Mann, Matthias; Weitz, Charles J.

    2015-01-01

    Circadian rhythms in mammals are driven by a feedback loop in which the transcription factor Clock–Bmal1 activates expression of Per and Cry proteins, which together form a large nuclear complex (Per complex) that represses Clock–Bmal1 activity. We found that mouse Clock–Bmal1 recruits the Ddb1–Cullin-4 ubiquitin ligase to Per, Cry, and other circadian target genes. Histone 2B mono-ubiquitination at Per genes was rhythmic and depended on Bmal1, Ddb1, and Cullin-4a. Depletion of Ddb1–Cullin-4a or independent reduction of Histone 2B mono-ubiquitination caused defective circadian feedback and reduced the association of the Per complex with DNA-bound Clock–Bmal1. Clock–Bmal1 thus covalently marks Per genes for subsequent recruitment of the Per complex. Our results reveal a chromatin-mediated signal from the positive to the negative limb of the clock that provides a licensing mechanism for circadian feedback. PMID:26323038

  14. Bmal1 and Beta cell clock are required for adaptation to circadian disruption, and their loss of function leads to oxidative stress-induced Beta cell failure in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Circadian disruption has deleterious effects on metabolism. Global deletion of Bmal1, a core clock gene, results in Beta cell dysfunction and diabetes. However, it is unknown if this is due to loss of cell-autonomous function of Bmal1 in Beta cells. To address this, we generated mice with Beta cell ...

  15. The effect of new monochromatic light regimes on egg production and expression of the circadian gene BMAL1 in pigeons1.

    PubMed

    Wang, Y; Ding, J T; Yang, H M; Cao, W; Li, Y B

    2015-05-01

    We examined the effect of monochromatic light supplementation on pigeon reproductive performance and on the expression of the brain and muscle aryl hydrocarbon receptor nuclear translocator-like (BMAL1) protein in the hypothalamic-pituitary-gonadal (HPG) axis. White King pigeons were selected randomly from 4 lofts (510 pairs/loft) with 3 subgroups/loft. The lofts were exposed to one of 4 light treatments for 3 months administered in the morning and evening as follows: blue light (480 nm), green light (540 nm), red light (660 nm), and control white light. The laying rate, fertility rate, and birth rate were recorded. After 3 months, 48 birds were selected randomly from the 4 lofts (6 females and 6 males from each loft), sacrificed, and the HPG axis was isolated. Following exposure to red light, laying rate was greater than the control group (P = 0.013), but there were no significant differences in the fertility rate (P = 0.41) or birth rate (P = 0.66). Expression of BMAL1 in the hypothalamus was unaffected by the light regime but was greater in the pituitary of females exposed to red light (P = 0.046) and in the pituitary of males exposed to the control white light (P = 0.059). The change in BMAL1 expression in the pituitary of females was negatively correlated with birth rate in monochromatic light (P = 0.021). We suggest that reproductive performance of pigeons is improved by light supplementation in the morning and evening. According to these data, 100 pigeons exposed to red light could lay 26.68 more eggs per month than the control group. Additionally, BMAL1 expression in the HPG axis of pigeons exposed to monochromatic light correlated with birth rate. PMID:25701204

  16. The peripheral clock regulates human pigmentation.

    PubMed

    Hardman, Jonathan A; Tobin, Desmond J; Haslam, Iain S; Farjo, Nilofer; Farjo, Bessam; Al-Nuaimi, Yusur; Grimaldi, Benedetto; Paus, Ralf

    2015-04-01

    Although the regulation of pigmentation is well characterized, it remains unclear whether cell-autonomous controls regulate the cyclic on-off switching of pigmentation in the hair follicle (HF). As human HFs and epidermal melanocytes express clock genes and proteins, and given that core clock genes (PER1, BMAL1) modulate human HF cycling, we investigated whether peripheral clock activity influences human HF pigmentation. We found that silencing BMAL1 or PER1 in human HFs increased HF melanin content. Furthermore, tyrosinase expression and activity, as well as TYRP1 and TYRP2 mRNA levels, gp100 protein expression, melanocyte dendricity, and the number gp100+ HF melanocytes, were all significantly increased in BMAL1 and/or PER1-silenced HFs. BMAL1 or PER1 silencing also increased epidermal melanin content, gp100 protein expression, and tyrosinase activity in human skin. These effects reflect direct modulation of melanocytes, as BMAL1 and/or PER1 silencing in isolated melanocytes increased tyrosinase activity and TYRP1/2 expression. Mechanistically, BMAL1 knockdown reduces PER1 transcription, and PER1 silencing induces phosphorylation of the master regulator of melanogenesis, microphthalmia-associated transcription factor, thus stimulating human melanogenesis and melanocyte activity in situ and in vitro. Therefore, the molecular clock operates as a cell-autonomous modulator of human pigmentation and may be targeted for future therapeutic strategies. PMID:25310406

  17. The Cardiomyocyte Molecular Clock Regulates the Circadian Expression of Kcnh2 and Contributes to Ventricular Repolarization

    PubMed Central

    Schroder, Elizabeth A.; Burgess, Don E.; Zhang, Xiping; Lefta, Mellani; Smith, Jennifer L.; Patwardhan, Abhijit; Bartos, Daniel C.; Elayi, Claude S.; Esser, Karyn A.; Delisle, Brian P.

    2015-01-01

    Background Sudden Cardiac Death (SCD) follows a diurnal variation. Data suggest the timing of SCD is influenced by circadian (~24 hour) changes in neurohumoral and cardiomyocyte-specific regulation of the heart’s electrical properties. Objective The basic helix-loop-helix transcription factors BMAL1 and CLOCK coordinate the circadian expression of select genes. We tested whether Bmal1 expression in cardiomyocytes contributes to K+ channel expression and diurnal changes in ventricular repolarization. Methods We utilized transgenic mice that allow for the inducible cardiomyocyte-specific deletion of Bmal1 (iCSΔBmal1−/−). We used quantitative PCR, voltage-clamping, promoter-reporter bioluminescence assays, and electrocardiographic (ECG) telemetry. Results Although several K+ channel gene transcripts were downregulated in iCSΔBmal1−/− mouse hearts, only Kcnh2 exhibited a robust circadian pattern of expression that was disrupted in iCSΔBmal1−/− hearts. Kcnh2 underlies the rapidly activating delayed-rectifier K+ current (IKr), and IKr recorded from iCSΔBmal1−/− ventricular cardiomyocytes was ~50% compared to control myocytes. Promoter-reporter assays demonstrated that the human Kcnh2 promoter is transactivated by the co-expression of BMAL1 and CLOCK. ECG analysis showed iCSΔBmal1−/− mice developed a prolongation in the heart rate corrected QT (QTc) interval during the light (resting)-phase. This was secondary to an augmented circadian rhythm in the uncorrected QT interval without a corresponding change in the RR interval. Conclusion The molecular clock in the heart regulates the circadian expression of Kcnh2, modifies K+ channel gene expression and is important for normal ventricular repolarization. Disruption of the cardiomyocyte circadian clock mechanism likely unmasks diurnal changes in ventricular repolarization that could contribute to an increased risk of cardiac arrhythmias/SCD. PMID:25701773

  18. α1B-Adrenergic receptor signaling controls circadian expression of Tnfrsf11b by regulating clock genes in osteoblasts

    PubMed Central

    Hirai, Takao; Tanaka, Kenjiro; Togari, Akifumi

    2015-01-01

    ABSTRACT Circadian clocks are endogenous and biological oscillations that occur with a period of <24 h. In mammals, the central circadian pacemaker is localized in the suprachiasmatic nucleus (SCN) and is linked to peripheral tissues through neural and hormonal signals. In the present study, we investigated the physiological function of the molecular clock on bone remodeling. The results of loss-of-function and gain-of-function experiments both indicated that the rhythmic expression of Tnfrsf11b, which encodes osteoprotegerin (OPG), was regulated by Bmal1 in MC3T3-E1 cells. We also showed that REV-ERBα negatively regulated Tnfrsf11b as well as Bmal1 in MC3T3-E1 cells. We systematically investigated the relationship between the sympathetic nervous system and the circadian clock in osteoblasts. The administration of phenylephrine, a nonspecific α1-adrenergic receptor (AR) agonist, stimulated the expression of Tnfrsf11b, whereas the genetic ablation of α1B-AR signaling led to the alteration of Tnfrsf11b expression concomitant with Bmal1 and Per2 in bone. Thus, this study demonstrated that the circadian regulation of Tnfrsf11b was regulated by the clock genes encoding REV-ERBα (Nr1d1) and Bmal1 (Bmal1, also known as Arntl), which are components of the core loop of the circadian clock in osteoblasts. PMID:26453621

  19. The Zebrafish Period2 Protein Positively Regulates the Circadian Clock through Mediation of Retinoic Acid Receptor (RAR)-related Orphan Receptor α (Rorα)*

    PubMed Central

    Wang, Mingyong; Zhong, Zhaomin; Zhong, Yingbin; Zhang, Wei; Wang, Han

    2015-01-01

    We report the characterization of a null mutant for zebrafish circadian clock gene period2 (per2) generated by transcription activator-like effector nuclease and a positive role of PER2 in vertebrate circadian regulation. Locomotor experiments showed that per2 mutant zebrafish display reduced activities under light-dark and 2-h phase delay under constant darkness, and quantitative real time PCR analyses showed up-regulation of cry1aa, cry1ba, cry1bb, and aanat2 but down-regulation of per1b, per3, and bmal1b in per2 mutant zebrafish, suggesting that Per2 is essential for the zebrafish circadian clock. Luciferase reporter assays demonstrated that Per2 represses aanat2 expression through E-box and enhances bmal1b expression through the Ror/Rev-erb response element, implicating that Per2 plays dual roles in the zebrafish circadian clock. Cell transfection and co-immunoprecipitation assays revealed that Per2 enhances bmal1b expression through binding to orphan nuclear receptor Rorα. The enhancing effect of mouse PER2 on Bmal1 transcription is also mediated by RORα even though it binds to REV-ERBα. Moreover, zebrafish Per2 also appears to have tissue-specific regulatory roles in numerous peripheral organs. These findings help define the essential functions of Per2 in the zebrafish circadian clock and in particular provide strong evidence for a positive role of PER2 in the vertebrate circadian system. PMID:25544291

  20. Circadian regulation of ATP release in astrocytes.

    PubMed

    Marpegan, Luciano; Swanstrom, Adrienne E; Chung, Kevin; Simon, Tatiana; Haydon, Philip G; Khan, Sanjoy K; Liu, Andrew C; Herzog, Erik D; Beaulé, Christian

    2011-06-01

    Circadian clocks sustain daily oscillations in gene expression, physiology, and behavior, relying on transcription-translation feedback loops of clock genes for rhythm generation. Cultured astrocytes display daily oscillations of extracellular ATP, suggesting that ATP release is a circadian output. We hypothesized that the circadian clock modulates ATP release via mechanisms that regulate acute ATP release from glia. To test the molecular basis for circadian ATP release, we developed methods to measure in real-time ATP release and Bmal1::dLuc circadian reporter expression in cortical astrocyte cultures from mice of different genotypes. Daily rhythms of gene expression required functional Clock and Bmal1, both Per1 and Per2, and both Cry1 and Cry2 genes. Similarly, high-level, circadian ATP release also required a functional clock mechanism. Whereas blocking IP(3) signaling significantly disrupted ATP rhythms with no effect on Bmal1::dLuc cycling, blocking vesicular release did not alter circadian ATP release or gene expression. We conclude that astrocytes depend on circadian clock genes and IP(3) signaling to express daily rhythms in ATP release. PMID:21653839

  1. Circadian regulation of ATP release in astrocytes

    PubMed Central

    Marpegan, Luciano; Swanstrom, Adrienne E.; Chung, Kevin; Simon, Tatiana; Haydon, Philip G.; Khan, Sanjoy K.; Liu, Andrew C.; Herzog, Erik D.; Beaulé, Christian

    2011-01-01

    Circadian clocks sustain daily oscillations in gene expression, physiology and behavior, relying on transcription-translation feedback loops of clock genes for rhythm generation. Cultured astrocytes display daily oscillations of extracellular ATP, suggesting that ATP release is a circadian output. We hypothesized that the circadian clock modulates ATP release via mechanisms that regulate acute ATP release from glia. To test the molecular basis for circadian ATP release, we developed methods to measure in real-time ATP release and Bmal1::dLuc circadian reporter expression in cortical astrocyte cultures from mice of different genotypes. Daily rhythms of gene expression required functional Clock and Bmal1, both Per1 and Per2, and both Cry1 and Cry2 genes. Similarly, high level, circadian ATP release also required a functional clock mechanism. Whereas blocking IP3 signaling significantly disrupted ATP rhythms with no effect on Bmal1::dLuc cycling, blocking vesicular release did not alter circadian ATP release or gene expression. We conclude that astrocytes depend on circadian clock genes and IP3 signaling to express daily rhythms in ATP release. PMID:21653839

  2. The De-Ubiquitinylating Enzyme, USP2, Is Associated with the Circadian Clockwork and Regulates Its Sensitivity to Light

    PubMed Central

    Scoma, Heather Dehlin; Humby, Monica; Yadav, Geetha; Zhang, Qingjiong; Fogerty, Joseph; Besharse, Joseph C.

    2011-01-01

    We have identified a novel component of the circadian clock that regulates its sensitivity to light at the evening light to dark transition. USP2 (Ubiquitin Specific Protease 2), which de-ubiquitinylates and stabilizes target proteins, is rhythmically expressed in multiple tissues including the SCN. We have developed a knockout model of USP2 and found that exposure to low irradiance light at ZT12 increases phase delays of USP2−/− mice compared to wildtype. We additionally show that USP2b is in a complex with several clock components and regulates the stability and turnover of BMAL1, which in turn alters the expression of several CLOCK/BMAL1 controlled genes. Rhythmic expression of USP2 in the SCN and other tissues offers a new level of control of the clock machinery through de-ubiqutinylation and suggests a role for USP2 during circadian adaptation to environmental day length changes. PMID:21966515

  3. Pancreatic β-cell Enhancers Regulate Rhythmic Transcription of Genes Controlling Insulin Secretion

    PubMed Central

    Perelis, Mark; Marcheva, Biliana; Ramsey, Kathryn Moynihan; Schipma, Matthew J.; Hutchison, Alan L.; Taguchi, Akihiko; Peek, Clara Bien; Hong, Heekyung; Huang, Wenyu; Omura, Chiaki; Allred, Amanda L.; Bradfield, Christopher A.; Dinner, Aaron R.; Barish, Grant D.; Bass, Joseph

    2015-01-01

    The mammalian transcription factors CLOCK and BMAL1 are essential components of the molecular clock that coordinate behavior and metabolism with the solar cycle. Genetic or environmental perturbation of circadian cycles contributes to metabolic disorders including type 2 diabetes. To study the impact of the cell-autonomous clock on pancreatic β-cell function, we examined islets from mice with either intact or disrupted BMAL1 expression both throughout life and limited to adulthood. We found pronounced oscillation of insulin secretion that was synchronized with the expression of genes encoding secretory machinery and signaling factors that regulate insulin release. CLOCK/BMAL1 co-localized with the pancreatic transcription factor PDX1 within active enhancers distinct from those controlling rhythmic metabolic gene networks in liver. β-cell clock ablation in adult mice caused severe glucose intolerance. Thus cell-type specific enhancers underlie the circadian control of peripheral metabolism throughout life and may help explain its deregulation in diabetes. PMID:26542580

  4. Astakine 2--the dark knight linking melatonin to circadian regulation in crustaceans.

    PubMed

    Watthanasurorot, Apiruck; Saelee, Netnapa; Phongdara, Amornrat; Roytrakul, Sittiruk; Jiravanichpaisal, Pikul; Söderhäll, Kenneth; Söderhäll, Irene

    2013-03-01

    Daily, circadian rhythms influence essentially all living organisms and affect many physiological processes from sleep and nutrition to immunity. This ability to respond to environmental daily rhythms has been conserved along evolution, and it is found among species from bacteria to mammals. The hematopoietic process of the crayfish Pacifastacus leniusculus is under circadian control and is tightly regulated by astakines, a new family of cytokines sharing a prokineticin (PROK) domain. The expression of AST1 and AST2 are light-dependent, and this suggests an evolutionarily conserved function for PROK domain proteins in mediating circadian rhythms. Vertebrate PROKs are transmitters of circadian rhythms of the suprachiasmatic nucleus (SCN) in the brain of mammals, but the mechanism by which they function is unknown. Here we demonstrate that high AST2 expression is induced by melatonin in the brain. We identify RACK1 as a binding protein of AST2 and further provide evidence that a complex between AST2 and RACK1 functions as a negative-feedback regulator of the circadian clock. By DNA mobility shift assay, we showed that the AST2-RACK1 complex will interfere with the binding between BMAL1 and CLK and inhibit the E-box binding activity of the complex BMAL1-CLK. Finally, we demonstrate by gene knockdown that AST2 is necessary for melatonin-induced inhibition of the complex formation between BMAL1 and CLK during the dark period. In summary, we provide evidence that melatonin regulates AST2 expression and thereby affects the core clock of the crustacean brain. This process may be very important in all animals that have AST2 molecules, i.e. spiders, ticks, crustaceans, scorpions, several insect groups such as Hymenoptera, Hemiptera, and Blattodea, but not Diptera and Coleoptera. Our findings further reveal an ancient evolutionary role for the prokineticin superfamily protein that links melatonin to direct regulation of the core clock gene feedback loops. PMID:23555281

  5. p53 Regulates Period2 Expression and the Circadian Clock

    PubMed Central

    Miki, Takao; Matsumoto, Tomoko; Zhao, Zhaoyang; Lee, Cheng Chi

    2013-01-01

    The mechanistic interconnectivity between circadian regulation and the genotoxic stress response remains poorly understood. Here we show that the expression of Period 2 (Per2), a circadian regulator, is directly regulated by p53 binding to a response element in the Per2 promoter. This p53 response element is evolutionarily conserved and overlaps with the E-Box element critical for BMAL1/CLOCK binding and its transcriptional activation of Per2 expression. Our studies reveal that p53 blocks BMAL1/CLOCK binding to the Per2 promoter leading to repression of Per2 expression. In the suprachiasmatic nucleus (SCN), p53 expression and its binding to the Per2 promoter are under circadian control. Per2 expression in the SCN is altered by p53 deficiency or stabilization of p53 by Nutlin-3. Behaviorally, p53−/− mice have a shorter period length that lacks stability and they exhibit impaired photo-entrainment to a light pulse under a free-running state. Our studies demonstrate that p53 modulates mouse circadian behavior. PMID:24051492

  6. Class IIa Histone Deacetylases Are Conserved Regulators of Circadian Function*

    PubMed Central

    Fogg, Paul C. M.; O'Neill, John S.; Dobrzycki, Tomasz; Calvert, Shaun; Lord, Emma C.; McIntosh, Rebecca L. L.; Elliott, Christopher J. H.; Sweeney, Sean T.; Hastings, Michael H.; Chawla, Sangeeta

    2014-01-01

    Class IIa histone deacetylases (HDACs) regulate the activity of many transcription factors to influence liver gluconeogenesis and the development of specialized cells, including muscle, neurons, and lymphocytes. Here, we describe a conserved role for class IIa HDACs in sustaining robust circadian behavioral rhythms in Drosophila and cellular rhythms in mammalian cells. In mouse fibroblasts, overexpression of HDAC5 severely disrupts transcriptional rhythms of core clock genes. HDAC5 overexpression decreases BMAL1 acetylation on Lys-537 and pharmacological inhibition of class IIa HDACs increases BMAL1 acetylation. Furthermore, we observe cyclical nucleocytoplasmic shuttling of HDAC5 in mouse fibroblasts that is characteristically circadian. Mutation of the Drosophila homolog HDAC4 impairs locomotor activity rhythms of flies and decreases period mRNA levels. RNAi-mediated knockdown of HDAC4 in Drosophila clock cells also dampens circadian function. Given that the localization of class IIa HDACs is signal-regulated and influenced by Ca2+ and cAMP signals, our findings offer a mechanism by which extracellular stimuli that generate these signals can feed into the molecular clock machinery. PMID:25271152

  7. EGR1 regulates hepatic clock gene amplitude by activating Per1 transcription

    PubMed Central

    Tao, Weiwei; Wu, Jing; Zhang, Qian; Lai, Shan-Shan; Jiang, Shan; Jiang, Chen; Xu, Ying; Xue, Bin; Du, Jie; Li, Chao-Jun

    2015-01-01

    The mammalian clock system is composed of a master clock and peripheral clocks. At the molecular level, the rhythm-generating mechanism is controlled by a molecular clock composed of positive and negative feedback loops. However, the underlying mechanisms for molecular clock regulation that affect circadian clock function remain unclear. Here, we show that Egr1 (early growth response 1), an early growth response gene, is expressed in mouse liver in a circadian manner. Consistently, Egr1 is transactivated by the CLOCK/BMAL1 heterodimer through a conserved E-box response element. In hepatocytes, EGR1 regulates the transcription of several core clock genes, including Bmal1, Per1, Per2, Rev-erbα and Rev-erbβ, and the rhythm amplitude of their expression is dependent on EGR1’s transcriptional function. Further mechanistic studies indicated that EGR1 binds to the proximal region of the Per1 promoter to activate its transcription directly. When the peripheral clock is altered by light or feeding behavior transposition in Egr1-deficient mice, the expression phase of hepatic clock genes shifts normally, but the amplitude is also altered. Our data reveal a critical role for EGR1 in the regulation of hepatic clock circuitry, which may contribute to the rhythm stability of peripheral clock oscillators. PMID:26471974

  8. Transcriptional regulation via nuclear receptor crosstalk required for the Drosophila circadian clock.

    PubMed

    Jaumouillé, Edouard; Machado Almeida, Pedro; Stähli, Patrick; Koch, Rafael; Nagoshi, Emi

    2015-06-01

    Circadian clocks in large part rely on transcriptional feedback loops. At the core of the clock machinery, the transcriptional activators CLOCK/BMAL1 (in mammals) and CLOCK/CYCLE (CLK/CYC) (in Drosophila) drive the expression of the period (per) family genes. The PER-containing complexes inhibit the activity of CLOCK/BMAL1 or CLK/CYC, thereby forming a negative feedback loop [1]. In mammals, the ROR and REV-ERB family nuclear receptors add positive and negative transcriptional regulation to this core negative feedback loop to ensure the generation of robust circadian molecular oscillation [2]. Despite the overall similarities between mammalian and Drosophila clocks, whether comparable mechanisms via nuclear receptors are required for the Drosophila clock remains unknown. We show here that the nuclear receptor E75, the fly homolog of REV-ERB α and REV-ERB β, and the NR2E3 subfamily nuclear receptor UNF are components of the molecular clocks in the Drosophila pacemaker neurons. In vivo assays in conjunction with the in vitro experiments demonstrate that E75 and UNF bind to per regulatory sequences and act together to enhance the CLK/CYC-mediated transcription of the per gene, thereby completing the core transcriptional feedback loop necessary for the free-running clockwork. Our results identify a missing link in the Drosophila clock and highlight the significance of the transcriptional regulation via nuclear receptors in metazoan circadian clocks. PMID:26004759

  9. Transcriptional Regulation via Nuclear Receptor Crosstalk Required for the Drosophila Circadian Clock

    PubMed Central

    Jaumouillé, Edouard; Machado Almeida, Pedro; Stähli, Patrick; Koch, Rafael; Nagoshi, Emi

    2015-01-01

    Summary Circadian clocks in large part rely on transcriptional feedback loops. At the core of the clock machinery, the transcriptional activators CLOCK/BMAL1 (in mammals) and CLOCK/CYCLE (CLK/CYC) (in Drosophila) drive the expression of the period (per) family genes. The PER-containing complexes inhibit the activity of CLOCK/BMAL1 or CLK/CYC, thereby forming a negative feedback loop [1]. In mammals, the ROR and REV-ERB family nuclear receptors add positive and negative transcriptional regulation to this core negative feedback loop to ensure the generation of robust circadian molecular oscillation [2]. Despite the overall similarities between mammalian and Drosophila clocks, whether comparable mechanisms via nuclear receptors are required for the Drosophila clock remains unknown. We show here that the nuclear receptor E75, the fly homolog of REV-ERB α and REV-ERB β, and the NR2E3 subfamily nuclear receptor UNF are components of the molecular clocks in the Drosophila pacemaker neurons. In vivo assays in conjunction with the in vitro experiments demonstrate that E75 and UNF bind to per regulatory sequences and act together to enhance the CLK/CYC-mediated transcription of the per gene, thereby completing the core transcriptional feedback loop necessary for the free-running clockwork. Our results identify a missing link in the Drosophila clock and highlight the significance of the transcriptional regulation via nuclear receptors in metazoan circadian clocks. PMID:26004759

  10. Circadian Clock Regulates Bone Resorption in Mice.

    PubMed

    Xu, Cheng; Ochi, Hiroki; Fukuda, Toru; Sato, Shingo; Sunamura, Satoko; Takarada, Takeshi; Hinoi, Eiichi; Okawa, Atsushi; Takeda, Shu

    2016-07-01

    The circadian clock controls many behavioral and physiological processes beyond daily rhythms. Circadian dysfunction increases the risk of cancer, obesity, and cardiovascular and metabolic diseases. Although clinical studies have shown that bone resorption is controlled by circadian rhythm, as indicated by diurnal variations in bone resorption, the molecular mechanism of circadian clock-dependent bone resorption remains unknown. To clarify the role of circadian rhythm in bone resorption, aryl hydrocarbon receptor nuclear translocator-like (Bmal1), a prototype circadian gene, was knocked out specifically in osteoclasts. Osteoclast-specific Bmal1-knockout mice showed a high bone mass phenotype due to reduced osteoclast differentiation. A cell-based assay revealed that BMAL1 upregulated nuclear factor of activated T cells, cytoplasmic, calcineurin-dependent 1 (Nfatc1) transcription through its binding to an E-box element located on the Nfatc1 promoter in cooperation with circadian locomotor output cycles kaput (CLOCK), a heterodimer partner of BMAL1. Moreover, steroid receptor coactivator (SRC) family members were shown to interact with and upregulate BMAL1:CLOCK transcriptional activity. Collectively, these data suggest that bone resorption is controlled by osteoclastic BMAL1 through interactions with the SRC family and binding to the Nfatc1 promoter. © 2016 American Society for Bone and Mineral Research. PMID:26841172

  11. RORγ directly regulates the circadian expression of clock genes and downstream targets in vivo.

    PubMed

    Takeda, Yukimasa; Jothi, Raja; Birault, Veronique; Jetten, Anton M

    2012-09-01

    In this study, we demonstrate that the lack of retinoic acid-related orphan receptor (ROR) γ or α expression in mice significantly reduced the peak expression level of Cry1, Bmal1, E4bp4, Rev-Erbα and Per2 in an ROR isotype- and tissue-selective manner without affecting the phase of their rhythmic expression. Analysis of RORγ/RORα double knockout mice indicated that in certain tissues RORγ and RORα exhibited a certain degree of redundancy in regulating clock gene expression. Reporter gene analysis showed that RORγ was able to induce reporter gene activity through the RORE-containing regulatory regions of Cry1, Bmal1, Rev-Erbα and E4bp4. Co-expression of Rev-Erbα or addition of a novel ROR antagonist repressed this activation. ChIP-Seq and ChIP-Quantitative real-time polymerase chain reaction (QPCR) analysis demonstrated that in vivo RORγ regulate these genes directly and in a Zeitgeber time (ZT)-dependent manner through these ROREs. This transcriptional activation by RORs was associated with changes in histone acetylation and chromatin accessibility. The rhythmic expression of RORγ1 by clock proteins may lead to the rhythmic expression of RORγ1 target genes. The presence of RORγ binding sites and its down-regulation in RORγ-/- liver suggest that the rhythmic expression of Avpr1a depends on RORγ consistent with the concept that RORγ1 provides a link between the clock machinery and its regulation of metabolic genes. PMID:22753030

  12. A role for cryptochromes in sleep regulation

    PubMed Central

    Wisor, Jonathan P; O'Hara, Bruce F; Terao, Akira; Selby, Chris P; Kilduff, Thomas S; Sancar, Aziz; Edgar, Dale M; Franken, Paul

    2002-01-01

    Background The cryptochrome 1 and 2 genes (cry1 and cry2) are necessary for the generation of circadian rhythms, as mice lacking both of these genes (cry1,2-/-) lack circadian rhythms. We studied sleep in cry1,2-/- mice under baseline conditions as well as under conditions of constant darkness and enforced wakefulness to determine whether cryptochromes influence sleep regulatory processes. Results Under all three conditions, cry1,2-/- mice exhibit the hallmarks of high non-REM sleep (NREMS) drive (i.e., increases in NREMS time, NREMS consolidation, and EEG delta power during NREMS). This unexpected phenotype was associated with elevated brain mRNA levels of period 1 and 2 (per1,2), and albumin d-binding protein (dbp), which are known to be transcriptionally inhibited by CRY1,2. To further examine the relationship between circadian genes and sleep homeostasis, we examined wild type mice and rats following sleep deprivation and found increased levels of per1,2 mRNA and decreased levels of dbp mRNA specifically in the cerebral cortex; these changes subsided with recovery sleep. The expression of per3, cry1,2, clock, npas2, bmal1, and casein-kinase-1ε did not change with sleep deprivation. Conclusions These results indicate that mice lacking cryptochromes are not simply a genetic model of circadian arrhythmicity in rodents and functionally implicate cryptochromes in the homeostatic regulation of sleep. PMID:12495442

  13. A Second Class of Nuclear Receptors for Oxysterols: Regulation of RORα and RORγ activity by 24S-Hydroxycholesterol (Cerebrosterol)

    PubMed Central

    Wang, Yongjun; Kumar, Naresh; Crumbley, Christine; Griffin, Patrick R.; Burris, Thomas P.

    2010-01-01

    The retinoic acid receptor-related orphan receptor α and γ (RORα [NR1F1] and RORγ [NR1F3]) are members of the nuclear hormone receptor superfamily. These 2 receptors regulate many physiological processes including development, metabolism and immunity. We recently found that certain oxysterols, namely the 7-substituted oxysterols, bound to the ligand binding domains (LBDs) of RORα and RORγ with high affinity, altered the LBD conformation and reduced coactivator binding resulting in suppression of the constitutive transcriptional activity of these two receptors. Here, we show that another oxysterol, 24S-hydroxycholesterol (24S-OHC), is also a high affinity ligand for RORα and RORγ (Ki ∼ 25 nM). 24S-OHC is also known as cerebrosterol due to its high level in the brain where it plays an essential role as an intermediate in cholesterol elimination from the CNS. 24S-OHC functions as a RORα/γ inverse agonist suppressing the constitutive transcriptional activity of these receptors in cotransfection assays. Additionally, 24S-OHC suppressed the expression of several RORα target genes including BMAL1 and REV-ERBα in a ROR-dependent manner. We also demonstrate that 24S-OHC decreases the ability of RORα to recruit the coactivator SRC-2 when bound to the BMAL1 promoter. We also noted that 24(S), 25-epoxycholesterol selectively suppressed the activity of RORγ. These data indicate that RORα and RORγ may serve as sensors of oxsterols. Thus, RORα and RORγ display an overlapping ligand preference with another class of oxysterol nuclear receptors, the liver X receptors (LXRα [NR1H3] and LXRβ [NR1H2]). PMID:20211758

  14. ARNTL (BMAL1) and NPAS2 Gene Variants Contribute to Fertility and Seasonality

    PubMed Central

    Kovanen, Leena; Saarikoski, Sirkku T.; Aromaa, Arpo; Lönnqvist, Jouko; Partonen, Timo

    2010-01-01

    Background Circadian clocks guide the metabolic, cell-division, sleep-wake, circadian and seasonal cycles. Abnormalities in these clocks may be a health hazard. Circadian clock gene polymorphisms have been linked to sleep, mood and metabolic disorders. Our study aimed to examine polymorphisms in four key circadian clock genes in relation to seasonal variation, reproduction and well-being in a sample that was representative of the general population, aged 30 and over, living in Finland. Methodology/Principal Findings Single-nucleotide polymorphisms in the ARNTL, ARNTL2, CLOCK and NPAS2 genes were genotyped in 511 individuals. 19 variants were analyzed in relation to 31 phenotypes that were assessed in a health interview and examination study. With respect to reproduction, women with ARNTL rs2278749 TT genotype had more miscarriages and pregnancies, while NPAS2 rs11673746 T carriers had fewer miscarriages. NPAS2 rs2305160 A allele carriers had lower Global Seasonality Scores, a sum score of six items i.e. seasonal variation of sleep length, social activity, mood, weight, appetite and energy level. Furthermore, carriers of A allele at NPAS2 rs6725296 had greater loadings on the metabolic factor (weight and appetite) of the global seasonality score, whereas individuals with ARNTL rs6290035 TT genotype experienced less seasonal variation of energy level. Conclusions/Significance ARNTL and NPAS2 gene variants were associated with reproduction and with seasonal variation. Earlier findings have linked ARNTL to infertility in mice, but this is the first time when any polymorphism of these genes is linked to fertility in humans. PMID:20368993

  15. Bmal1 is a direct transcriptional target of the orphan nuclear receptor, NR2F1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Orphan nuclear receptor NR2F1 (also known as COUP-TFI, Chicken Ovalbumin Upstream Promoter Transcription Factor I) is a highly conserved member of the nuclear receptor superfamily. NR2F1 plays a critical role during embryonic development, particularly in the central and peripheral nervous systems a...

  16. Regulation of period 1 expression in cultured rat pineal

    NASA Technical Reports Server (NTRS)

    Fukuhara, Chiaki; Dirden, James C.; Tosini, Gianluca

    2002-01-01

    The aim of the present study was to investigate the in vitro expression of Period 1 (Per1), Period 2 (Per2) and arylalkylamine N-acetyltransferase (AA-NAT) genes in the rat pineal gland to understand the mechanism(s) regulating the expression of these genes in this organ. Pineals, when maintained in vitro for 5 days, did not show circadian rhythmicity in the expression of any of the three genes monitored. Norepinephrine (NE) induced AA-NAT and Per1, whereas its effect on Per2 was negligible. Contrary to what was observed in other systems, NE stimulation did not induce circadian expression of Per1. The effect of NE on Per1 level was dose- and receptor subtype-dependent, and both cAMP and cGMP induced Per1. Per1 was not induced by repeated NE - or forskolin - stimulation. Protein synthesis was not necessary for NE-induced Per1, but it was for reduction of Per1 following NE stimulation. Per1 transcription in pinealocytes was activated by BMAL1/CLOCK. Our results indicate that important differences are present in the regulation of these genes in the mammalian pineal. Copyright 2002 S. Karger AG, Basel.

  17. CLOCK-Controlled Polyphonic Regulation of Circadian Rhythms through Canonical and Noncanonical E-Boxes

    PubMed Central

    Yoshitane, Hikari; Ozaki, Haruka; Terajima, Hideki; Du, Ngoc-Hien; Suzuki, Yutaka; Fujimori, Taihei; Kosaka, Naoki; Shimba, Shigeki; Sugano, Sumio; Takagi, Toshihisa

    2014-01-01

    In mammalian circadian clockwork, the CLOCK-BMAL1 complex binds to DNA enhancers of target genes and drives circadian oscillation of transcription. Here we identified 7,978 CLOCK-binding sites in mouse liver by chromatin immunoprecipitation-sequencing (ChIP-Seq), and a newly developed bioinformatics method, motif centrality analysis of ChIP-Seq (MOCCS), revealed a genome-wide distribution of previously unappreciated noncanonical E-boxes targeted by CLOCK. In vitro promoter assays showed that CACGNG, CACGTT, and CATG(T/C)G are functional CLOCK-binding motifs. Furthermore, we extensively revealed rhythmically expressed genes by poly(A)-tailed RNA-Seq and identified 1,629 CLOCK target genes within 11,926 genes expressed in the liver. Our analysis also revealed rhythmically expressed genes that have no apparent CLOCK-binding site, indicating the importance of indirect transcriptional and posttranscriptional regulations. Indirect transcriptional regulation is represented by rhythmic expression of CLOCK-regulated transcription factors, such as Krüppel-like factors (KLFs). Indirect posttranscriptional regulation involves rhythmic microRNAs that were identified by small-RNA-Seq. Collectively, CLOCK-dependent direct transactivation through multiple E-boxes and indirect regulations polyphonically orchestrate dynamic circadian outputs. PMID:24591654

  18. SUMOylation of DEC1 Protein Regulates Its Transcriptional Activity and Enhances Its Stability

    PubMed Central

    Li, Shujing; Bi, Hailian; Yang, Chunhua; Zhao, Feng; Liu, Ying; Ao, Xiang; Chang, Alan K.; Wu, Huijian

    2011-01-01

    Differentiated embryo-chondrocyte expressed gene 1 (DEC1, also known as sharp2, stra13, or BHLHB2) is a mammalian basic helix-loop-helix protein that is involved in many aspects of gene regulation through acting as a transcription factor. Changes in DEC1 expression levels have been implicated in the development of cancers. Using COS-7 cell, we showed that DEC1 can be modified by the small ubiquitin-like modifiers, SUMO1, 2 and 3. Two major SUMOylation sites (K159 and K279) were identified in the C-terminal domain of DEC1. Substitution of either K159 or K279 with arginine reduced DEC1 SUMOylation, but substitution of both K159 and K279 abolished SUMOylation, and more protein appeared to be retained in the cytoplasm compared to wild-type DEC1. The expression of DEC1 was up-regulated after serum starvation as previously reported, but at the same time, serum starvation also led to more SUMOylation of DEC1. In MCF-7 cells SUMOylation also stabilized DEC1 through inhibiting its ubiquitination. Moreover, SUMOylation of DEC1 promoted its repression of CLOCK/BMAL1-mediated transcriptional activity through recruitment of histone deacetylase1. These findings suggested that posttranslational modification of DEC1 in the form of SUMOylation may serve as a key factor that regulates the function of DEC1 in vivo. PMID:21829689

  19. USP2 regulates the intracellular localization of PER1 and circadian gene expression.

    PubMed

    Yang, Yaoming; Duguay, David; Fahrenkrug, Jan; Cermakian, Nicolas; Wing, Simon S

    2014-08-01

    Endogenous 24-h rhythms in physiology are driven by a network of circadian clocks located in most tissues. The molecular clock mechanism is based on feedback loops involving clock genes and their protein products. Posttranslational modifications, including ubiquitination, are important for regulating the clock feedback mechanism. Recently, we showed that the deubiquitinating enzyme ubiquitin-specific peptidase 2 (USP2) associates with clock proteins and deubiquitinates PERIOD1 (PER1) but does not affect its overall stability. Mice devoid of USP2 display defects in clock function. Here, we show that USP2 regulates nucleocytoplasmic shuttling and nuclear retention of PER1 and its repressive role on the clock transcription factors CLOCK and BMAL1. The rhythm of nuclear entry of PER1 in Usp2 knockout mouse embryonic fibroblasts (MEFs) was advanced but with reduced nuclear accumulation of PER1. Although Per1 mRNA expression rhythm remained intact in the Usp2 KO MEFs, the expression profiles of other core clock genes were altered. This was also true for the expression of clock-controlled genes (e.g., Dbp, Tef, Hlf, E4bp4). A similar phase advance of PER1 nuclear localization rhythm and alteration of clock gene expression profiles were also observed in livers of Usp2 KO mice. Taken together, our results demonstrate a novel function of USP2 in the molecular clock in which it regulates PER1 function by gating its nuclear entry and accumulation. PMID:25238854

  20. Negative reciprocal regulation between Sirt1 and Per2 modulates the circadian clock and aging

    PubMed Central

    Wang, Rui-Hong; Zhao, Tingrui; Cui, Kairong; Hu, Gangqing; Chen, Qiang; Chen, Weiping; Wang, Xin-Wei; Soto-Gutierrez, Alejandro; Zhao, Keji; Deng, Chu-Xia

    2016-01-01

    Sirtuin 1 (SIRT1) is involved in both aging and circadian-clock regulation, yet the link between the two processes in relation to SIRT1 function is not clear. Using Sirt1-deficient mice, we found that Sirt1 and Period 2 (Per2) constitute a reciprocal negative regulation loop that plays important roles in modulating hepatic circadian rhythmicity and aging. Sirt1-deficient mice exhibited profound premature aging and enhanced acetylation of histone H4 on lysine16 (H4K16) in the promoter of Per2, the latter of which leads to its overexpression; in turn, Per2 suppresses Sirt1 transcription through binding to the Sirt1 promoter at the Clock/Bmal1 site. This negative reciprocal relationship between SIRT1 and PER2 was also observed in human hepatocytes. We further demonstrated that the absence of Sirt1 or the ectopic overexpression of Per2 in the liver resulted in a dysregulated pace of the circadian rhythm. The similar circadian rhythm was also observed in aged wild type mice. The interplay between Sirt1 and Per2 modulates aging gene expression and circadian-clock maintenance. PMID:27346580

  1. Negative reciprocal regulation between Sirt1 and Per2 modulates the circadian clock and aging.

    PubMed

    Wang, Rui-Hong; Zhao, Tingrui; Cui, Kairong; Hu, Gangqing; Chen, Qiang; Chen, Weiping; Wang, Xin-Wei; Soto-Gutierrez, Alejandro; Zhao, Keji; Deng, Chu-Xia

    2016-01-01

    Sirtuin 1 (SIRT1) is involved in both aging and circadian-clock regulation, yet the link between the two processes in relation to SIRT1 function is not clear. Using Sirt1-deficient mice, we found that Sirt1 and Period 2 (Per2) constitute a reciprocal negative regulation loop that plays important roles in modulating hepatic circadian rhythmicity and aging. Sirt1-deficient mice exhibited profound premature aging and enhanced acetylation of histone H4 on lysine16 (H4K16) in the promoter of Per2, the latter of which leads to its overexpression; in turn, Per2 suppresses Sirt1 transcription through binding to the Sirt1 promoter at the Clock/Bmal1 site. This negative reciprocal relationship between SIRT1 and PER2 was also observed in human hepatocytes. We further demonstrated that the absence of Sirt1 or the ectopic overexpression of Per2 in the liver resulted in a dysregulated pace of the circadian rhythm. The similar circadian rhythm was also observed in aged wild type mice. The interplay between Sirt1 and Per2 modulates aging gene expression and circadian-clock maintenance. PMID:27346580

  2. Diurnal regulation of hypothalamic kisspeptin is disrupted during mouse pregnancy.

    PubMed

    Yap, Cassandra C; Wharfe, Michaela D; Mark, Peter J; Waddell, Brendan J; Smith, Jeremy T

    2016-06-01

    Kisspeptin, the neuropeptide product of the Kiss1 gene, is critical in driving the hypothalamic-pituitary-gonadal (HPG) axis. Kisspeptin neurons in the anteroventral periventricular nucleus (AVPV) and arcuate nucleus (Arc) of the hypothalamus mediate differential effects, with the Arc regulating negative feedback of sex steroids and the AVPV regulating positive feedback, vital for the preovulatory surge and gated under circadian control. We aimed to characterize hypothalamic Kiss1 and Kiss1r mRNA expression in nonpregnant and pregnant mice, and investigate potential circadian regulation. Anterior and posterior hypothalami were collected from C57BL/6J mice at diestrus, proestrus, and days 6, 10, 14, and 18 of pregnancy, at six time points across 24h, for real-time PCR analysis of gene expression. Analysis confirmed that Kiss1 mRNA expression in the AVPV increased at ZT13 during proestrus, with a luteinizing hormone surge observed thereafter. No diurnal regulation was seen at diestrus or at any stage of pregnancy. Anterior hypothalamic Avp mRNA expression exhibited no diurnal variation, but Avpr1a peaked at 12:00h during proestrus, possibly reflecting the circadian input from the suprachiasmatic nucleus to AVPV Kiss1 neurons. Rfrp (Npvf) expression in the posterior hypothalamus did not demonstrate diurnal variation at any stage. Clock genes Bmal1 and Rev-erbα were strongly diurnal, but there was little change between diestrus/proestrus and pregnancy. Our data indicate the absence of the circadian input to Kiss1 in pregnancy, despite high gestational estradiol levels and normal clock gene expression, and may suggest a disruption of a kisspeptin-specific diurnal rhythm that operates in the nonpregnant state. PMID:27068699

  3. Brain and muscle Arnt-like 1 promotes skeletal muscle regeneration through satellite cell expansion

    SciTech Connect

    Chatterjee, Somik; Yin, Hongshan; Nam, Deokhwa; Li, Yong; Ma, Ke

    2015-02-01

    Circadian clock is an evolutionarily conserved timing mechanism governing diverse biological processes and the skeletal muscle possesses intrinsic functional clocks. Interestingly, although the essential clock transcription activator, Brain and muscle Arnt-like 1 (Bmal1), participates in maintenance of muscle mass, little is known regarding its role in muscle growth and repair. In this report, we investigate the in vivo function of Bmal1 in skeletal muscle regeneration using two muscle injury models. Bmal1 is highly up-regulated by cardiotoxin injury, and its genetic ablation significantly impairs regeneration with markedly suppressed new myofiber formation and attenuated myogenic induction. A similarly defective regenerative response is observed in Bmal1-null mice as compared to wild-type controls upon freeze injury. Lack of satellite cell expansion accounts for the regeneration defect, as Bmal1{sup −/−} mice display significantly lower satellite cell number with nearly abolished induction of the satellite cell marker, Pax7. Furthermore, satellite cell-derived primary myoblasts devoid of Bmal1 display reduced growth and proliferation ex vivo. Collectively, our results demonstrate, for the first time, that Bmal1 is an integral component of the pro-myogenic response that is required for muscle repair. This mechanism may underlie its role in preserving adult muscle mass and could be targeted therapeutically to prevent muscle-wasting diseases. - Highlights: • Bmal1 is highly inducible by muscle injury and myogenic stimuli. • Genetic ablation of Bmal1 significantly impairs muscle regeneration. • Bmal1 promotes satellite cell expansion during muscle regeneration. • Bmal1-deficient primary myoblasts display attenuated growth and proliferation.

  4. The molecular mechanism regulating the autonomous circadian expression of Topoisomerase I in NIH3T3 cells.

    PubMed

    Yang, Fang; Nakajima, Yoshihiro; Kumagai, Megumi; Ohmiya, Yoshihiro; Ikeda, Masaaki

    2009-02-27

    To identify whether Topoisomerase I (TopoI) has autonomous circadian rhythms regulated by clock genes, we tested mouse TopoI (mTopoI) promoter oscillation in NIH3T3 cells using a real-time monitoring assay and TopoI mRNA oscillations using real-time RT-PCR. Analysis of the mTopoI promoter region with Matlnspector software revealed two putative E-box (E1 and E2) and one DBP/E4BP4-binding element (D-box). Luciferase assays indicated that mTopoI gene expression was directly regulated by clock genes. The real-time monitoring assay showed that E-box and D-box response elements participate in the regulation of the circadian expression of mTopoI. Furthermore, a gel-shift assay showed that E2 is a direct target of the BMAL1/CLOCK heterodimer and DBP binds to the putative D-site. These results indicate that TopoI is expressed in an autonomous circadian rhythm in NIH3T3 cells. PMID:19138663

  5. The PXDLS linear motif regulates circadian rhythmicity through protein–protein interactions

    PubMed Central

    Shalev, Moran; Aviram, Rona; Adamovich, Yaarit; Kraut-Cohen, Judith; Shamia, Tal; Ben-Dor, Shifra; Golik, Marina; Asher, Gad

    2014-01-01

    The circadian core clock circuitry relies on interlocked transcription-translation feedback loops that largely count on multiple protein interactions. The molecular mechanisms implicated in the assembly of these protein complexes are relatively unknown. Our bioinformatics analysis of short linear motifs, implicated in protein interactions, reveals an enrichment of the Pro-X-Asp-Leu-Ser (PXDLS) motif within circadian transcripts. We show that the PXDLS motif can bind to BMAL1/CLOCK and disrupt circadian oscillations in a cell-autonomous manner. Remarkably, the motif is evolutionary conserved in the core clock protein REV-ERBα, and additional proteins implicated in the clock's function (NRIP1, CBP). In this conjuncture, we uncover a novel cross talk between the two principal core clock feedback loops and show that BMAL/CLOCK and REV-ERBα interact and that the PXDLS motif of REV-ERBα participates in their binding. Furthermore, we demonstrate that the PXDLS motifs of NRIP1 and CBP are involved in circadian rhythmicity. Our findings suggest that the PXDLS motif plays an important role in circadian rhythmicity through regulation of protein interactions within the clock circuitry and that short linear motifs can be employed to modulate circadian oscillations. PMID:25260595

  6. Dopamine receptor-mediated regulation of neuronal "clock" gene expression.

    PubMed

    Imbesi, M; Yildiz, S; Dirim Arslan, A; Sharma, R; Manev, H; Uz, T

    2009-01-23

    Using a transgenic mice model (i.e. "clock" knockouts), clock transcription factors have been suggested as critical regulators of dopaminergic behaviors induced by drugs of abuse. Moreover, it has been shown that systemic administration of psychostimulants, such as cocaine and methamphetamine regulates the striatal expression of clock genes. However, it is not known whether dopamine receptors mediate these regulatory effects of psychostimulants at the cellular level. Primary striatal neurons in culture express dopamine receptors as well as clock genes and have been successfully used in studying dopamine receptor functioning. Therefore, we investigated the role of dopamine receptors on neuronal clock gene expression in this model using specific receptor agonists. We found an inhibitory effect on the expression of mClock and mPer1 genes with the D2-class (i.e. D2/D3) receptor agonist quinpirole. We also found a generalized stimulatory effect on the expression of clock genes mPer1, mClock, mNPAS2 (neuronal PAS domain protein 2), and mBmal1 with the D1-class (i.e. D1) receptor agonist SKF38393. Further, we tested whether systemic administration of dopamine receptor agonists causes similar changes in striatal clock gene expression in vivo. We found quinpirole-induced alterations in mPER1 protein levels in the mouse striatum (i.e. rhythm shift). Collectively, our results indicate that the dopamine receptor system may mediate psychostimulant-induced changes in clock gene expression. Using striatal neurons in culture as a model, further research is needed to better understand how dopamine signaling modulates the expression dynamics of clock genes (i.e. intracellular signaling pathways) and thereby influences neuronal gene expression, neuronal transmission, and brain functioning. PMID:19017537

  7. CUL4-DDB1-CDT2 E3 Ligase Regulates the Molecular Clock Activity by Promoting Ubiquitination-Dependent Degradation of the Mammalian CRY1

    PubMed Central

    Tong, Xin; Zhang, Deqiang; Guha, Anirvan; Arthurs, Blake; Cazares, Victor; Gupta, Neil; Yin, Lei

    2015-01-01

    The CUL4-DDB1 E3 ligase complex serves as a critical regulator in various cellular processes, including cell proliferation, DNA damage repair, and cell cycle progression. However, whether this E3 ligase complex regulates clock protein turnover and the molecular clock activity in mammalian cells is unknown. Here we show that CUL4-DDB1-CDT2 E3 ligase ubiquitinates CRY1 and promotes its degradation both in vitro and in vivo. Depletion of the major components of this E3 ligase complex, including Ddb1, Cdt2, and Cdt2-cofactor Pcna, leads to CRY1 stabilization in cultured cells or in the mouse liver. CUL4A-DDB1-CDT2 E3 ligase targets lysine 585 within the C-terminal region of CRY1 protein, shown by the CRY1 585KA mutant’s resistance to ubiquitination and degradation mediated by the CUL4A-DDB1 complex. Surprisingly, both depletion of Ddb1 and over-expression of Cry1-585KA mutant enhance the oscillatory amplitude of the Bmal1 promoter activity without altering its period length, suggesting that CUL4A-DDB1-CDT2 E3 targets CRY1 for degradation and reduces the circadian amplitude. All together, we uncovered a novel biological role for CUL4A-DDB1-CDT2 E3 ligase that regulates molecular circadian behaviors via promoting ubiquitination-dependent degradation of CRY1. PMID:26431207

  8. Regulation of clock-controlled genes in mammals.

    PubMed

    Bozek, Katarzyna; Relógio, Angela; Kielbasa, Szymon M; Heine, Markus; Dame, Christof; Kramer, Achim; Herzel, Hanspeter

    2009-01-01

    The complexity of tissue- and day time-specific regulation of thousands of clock-controlled genes (CCGs) suggests that many regulatory mechanisms contribute to the transcriptional output of the circadian clock. We aim to predict these mechanisms using a large scale promoter analysis of CCGs.Our study is based on a meta-analysis of DNA-array data from rodent tissues. We searched in the promoter regions of 2065 CCGs for highly overrepresented transcription factor binding sites. In order to compensate the relatively high GC-content of CCG promoters, a novel background model to avoid a bias towards GC-rich motifs was employed. We found that many of the transcription factors with overrepresented binding sites in CCG promoters exhibit themselves circadian rhythms. Among the predicted factors are known regulators such as CLOCKratioBMAL1, DBP, HLF, E4BP4, CREB, RORalpha and the recently described regulators HSF1, STAT3, SP1 and HNF-4alpha. As additional promising candidates of circadian transcriptional regulators PAX-4, C/EBP, EVI-1, IRF, E2F, AP-1, HIF-1 and NF-Y were identified. Moreover, GC-rich motifs (SP1, EGR, ZF5, AP-2, WT1, NRF-1) and AT-rich motifs (MEF-2, HMGIY, HNF-1, OCT-1) are significantly overrepresented in promoter regions of CCGs. Putative tissue-specific binding sites such as HNF-3 for liver, NKX2.5 for heart or Myogenin for skeletal muscle were found. The regulation of the erythropoietin (Epo) gene was analysed, which exhibits many binding sites for circadian regulators. We provide experimental evidence for its circadian regulated expression in the adult murine kidney. Basing on a comprehensive literature search we integrate our predictions into a regulatory network of core clock and clock-controlled genes. Our large scale analysis of the CCG promoters reveals the complexity and extensiveness of the circadian regulation in mammals. Results of this study point to connections of the circadian clock to other functional systems including metabolism

  9. Involvement of 5-HT₃ and 5-HT₄ receptors in the regulation of circadian clock gene expression in mouse small intestine.

    PubMed

    Aoki, Natsumi; Watanabe, Hiroyuki; Okada, Kazuya; Aoki, Kazuyuki; Imanishi, Takuma; Yoshida, Daisuke; Ishikawa, Ryosuke; Shibata, Shigenobu

    2014-01-01

    Several lines of evidence suggest that 5-HT receptors play a critical role in the expression of clock genes in the suprachiasmatic nucleus, the main circadian oscillator in hamsters. The contributions of 5-HT-receptor subtypes in the intestine, where they are expressed at high concentrations, are however not yet clarified. The 5-HT synthesis inhibitor, p-chlorophenylalanine, attenuated the daily rhythm of Per1 and Per2 gene expression in the intestine. Injection of 5-HT and agonists of the 5-HT3 and 5-HT4 receptors increased Per1/Per2 expression and decreased Bmal1 expression in a dose-dependent manner. Although treatment with antagonists of 5-HT3 and 5-HT4 alone did not affect clock gene expression, co-injection of these antagonists with 5-HT blocked the 5-HT-induced changes in clock gene expression. Increased tissue levels of 5-HT due to treatment with the antidepressants clomipramine and fluvoxamine did not affect clock gene expression. The present results suggest that the 5-HT system in the small intestine may play a critical role in regulating circadian rhythms through 5-HT3/5-HT4-receptor activation. PMID:24492464

  10. The Proteomic Profile of Deleted in Breast Cancer 1 (DBC1) Interactions Points to a Multifaceted Regulation of Gene Expression.

    PubMed

    Giguère, Sophie S B; Guise, Amanda J; Jean Beltran, Pierre M; Joshi, Preeti M; Greco, Todd M; Quach, Olivia L; Kong, Jeffery; Cristea, Ileana M

    2016-03-01

    Deleted in breast cancer 1 (DBC1) has emerged as an important regulator of multiple cellular processes, ranging from gene expression to cell cycle progression. DBC1 has been linked to tumorigenesis both as an inhibitor of histone deacetylases, HDAC3 and sirtuin 1, and as a transcriptional cofactor for nuclear hormone receptors. However, despite mounting interest in DBC1, relatively little is known about the range of its interacting partners and the scope of its functions. Here, we carried out a functional proteomics-based investigation of DBC1 interactions in two relevant cell types, T cells and kidney cells. Microscopy, molecular biology, biochemistry, and mass spectrometry studies allowed us to assess DBC1 mRNA and protein levels, localization, phosphorylation status, and protein interaction networks. The comparison of DBC1 interactions in these cell types revealed conserved regulatory roles for DBC1 in gene expression, chromatin organization and modification, and cell cycle progression. Interestingly, we observe previously unrecognized DBC1 interactions with proteins encoded by cancer-associated genes. Among these interactions are five components of the SWI/SNF complex, the most frequently mutated chromatin remodeling complex in human cancers. Additionally, we identified a DBC1 interaction with TBL1XR1, a component of the NCoR complex, which we validated by reciprocal isolation. Strikingly, we discovered that DBC1 associates with proteins that regulate the circadian cycle, including DDX5, DHX9, and SFPQ. We validated this interaction by colocalization and reciprocal isolation. Functional assessment of this association demonstrated that DBC1 protein levels are important for regulating CLOCK and BMAL1 protein oscillations in synchronized T cells. Our results suggest that DBC1 is integral to the maintenance of the circadian molecular clock. Furthermore, the identified interactions provide a valuable resource for the exploration of pathways involved in DBC1

  11. [Molecular oscillatory machinery of circadian rhythms].

    PubMed

    Yamaguchi, Yoshiaki; Okamura, Hitoshi

    2012-07-01

    Many metabolic and physiological processes display daily rhythms oscillated by the internal circadian clock system. This rhythm is generated by interlocked transcription-(post) translation feedback loops of clock genes: the core oscillatory loop, being composed of CLOCK/BMAL1 heterodimer activating the expressions of PER and CRY that directly repress CLOCK/BMAL1, is accompanied by accessory loops consisted with REV-ERB nuclear receptor repressing Bmal1 or with DBP competing with E4BP4 on D-box site. These clock proteins are regulated by phosphorylation and ubiquitination (PER/CRY), and acetylation (CLOCK/BMAL1). Recently, a deacetylating protein SIRT1 mediated metabolic pathway is discovered to be interlocked with core oscillatory loop via Nampt expression, a late-limiting enzyme in NAD+ salvage pathway. Since many key-step enzymes of metabolisms are regulated by the circadian clock, circadian clock system may intimately link to cellular metabolism. PMID:22844791

  12. Clock-Controlled Regulation of the Acute Effects of Norepinephrine on Chick Pineal Melatonin Rhythms.

    PubMed

    Li, Ye; Cassone, Vincent M

    2015-12-01

    The chicken pineal gland synthesizes and releases melatonin rhythmically in light/dark (LD) cycles, with high melatonin levels during the dark phase, and in constant darkness (DD) for several cycles before it gradually damps to arrhythmicity in DD. Daily administration of norepinephrine (NE) in vivo and in vitro prevents the damping and restores the melatonin rhythm. To investigate the role of the circadian clock on melatonin rhythm damping and of its restoration by NE, the effects of NE administration at different phases of the melatonin cycle revealed a robust rhythm in NE sensitivity in which NE efficacy in increasing melatonin amplitude peaked in late subjective night and early subjective day, suggesting a clock underlying NE sensitivity. However, NE itself had no effect on circadian phase or period of the melatonin rhythms. Transcriptional analyses indicated that even though the rhythm of melatonin output damped to arrhythmicity, messenger RNA (mRNA) encoding clock genes gper2, gper3, gBmal1, gclock, gcry1, and gcry2; enzymes associated with melatonin biosynthesis; and enzymes involved in cyclic nucleotide signaling remained robustly rhythmic. Of these, only gADCY1 (adenylate cyclase 1) and gPDE4D (cAMP-specific 3',5'-cyclic phosphodiesterase 4D) were affected by NE administration at the mRNA levels, and only ADCY1 was affected at the protein level. The data strongly suggest that damping of the melatonin rhythm in the chick pineal gland occurs at the posttranscriptional level and that a major role of the clock is to regulate pinealocytes' sensitivity to neuronal input from the brain. PMID:26446873

  13. When the circadian clock meets the melanin pigmentary system.

    PubMed

    Slominski, Andrzej T; Hardeland, Rüdiger; Reiter, Russel J

    2015-04-01

    Silencing of BMAL1 and PER1 stimulates melanogenic activity of follicular and epidermal melanocytes, indicating a novel role for peripheral circadian clock processes in the regulation of melanin pigmentation. Linking the expression levels of BMAL1/PER1 with changes in melanogenesis opens exciting opportunities to study the role of the local molecular clock in modulation of melanocyte functions in the hair follicle and the epidermis with attendant effects on epidermal barrier functions in general. PMID:25785947

  14. TTF1, a homeodomain containing transcription factor, contributes to regulating periodic oscillations in GnRH gene expression

    PubMed Central

    Matagne, Valerie; Kim, Jae Geun; Ryu, Byung Jun; Hur, Min Kyu; Kim, Min Sung; Kim, Kyungjin; Park, Byong Seo; Damante, Giuseppe; Smiley, Gregory; Lee, Byung Ju; Ojeda, Sergio R.

    2012-01-01

    Thyroid transcription factor 1 (TTF1), a member of the NK family of transcription factors required for basal forebrain morphogenesis, functions in the postnatal hypothalamus as a transcriptional regulator of genes encoding neuromodulators and hypophysiotrophic peptides. One of these peptides is gonadotropin-releasing hormone (GnRH). Here we show that Ttf1 mRNA abundance vary in a diurnal and melatonin-dependent fashion in the preoptic area (POA) of the rat, with maximal Ttf1 expression attained during the dark phase of the light/dark cycle, preceding the nocturnal peak in GnRH mRNA content. GnRH promoter activity oscillates in a circadian manner in GT1-7 cells, and this pattern is enhanced by TTF1 and blunted by siRNA-mediated Ttf1 gene silencing. TTF1 trans-activates GnRH transcription by binding to two sites in the GnRH promoter. Rat GnRH neurons in situ contain key proteins components of the positive (BMAL1, CLOCK) and negative (PER1) limbs of the circadian oscillator, and these proteins repress Ttf1 promoter activity in vitro. In contrast, Ttf1 transcription is activated by CRY1, a clock component required for circadian rhythmicity. In turn, TTF1 represses transcription of Rev-erbα, a heme receptor that controls circadian transcription within the positive limb of the circadian oscillator. These findings suggest that TTF1 is a component of the molecular machinery controlling circadian oscillations in GnRH gene transcription. PMID:22356123

  15. SRC-2 Is an Essential Coactivator for Orchestrating Metabolism and Circadian Rhythm

    PubMed Central

    Stashi, Erin; Lanz, Rainer B.; Mao, Jianqiang; Michailidis, George; Zhu, Bokai; Kettner, Nicole M.; Putluri, Nagireddy; Reineke, Erin L.; Reineke, Lucas C.; Dasgupta, Subhamoy; Dean, Adam; Stevenson, Connor R.; Sivasubramanian, Natarajan; Sreekumar, Arun; DeMayo, Francesco; York, Brian; Fu, Loning; O'Malley, Bert W.

    2014-01-01

    SUMMARY Synchrony of the mammalian circadian clock is achieved by complex transcriptional and translational feedback loops centered on the BMAL1: CLOCK heterodimer. Modulation of circadian feedback loops is essential for maintaining rhythmicity, yet the role of transcriptional coactivators in driving BMAL1:CLOCK transcriptional networks is largely unexplored. Here, we show diurnal hepatic steroid receptor coactivator 2 (SRC-2) recruitment to the genome that extensively overlaps with the BMAL1 cistrome during the light phase, targeting genes that enrich for circadian and metabolic processes. Notably, SRC-2 ablation impairs wheel-running behavior, alters circadian gene expression in several peripheral tissues, alters the rhythmicity of the hepatic metabolome, and deregulates the synchronization of cell-autonomous metabolites. We identify SRC-2 as a potent coregulator of BMAL1:CLOCK and find that SRC-2 targets itself with BMAL1:CLOCK in a feedforward loop. Collectively, our data suggest that SRC-2 is a transcriptional coactivator of the BMAL1:CLOCK oscillators and establish SRC-2 as a critical positive regulator of the mammalian circa-dian clock. PMID:24529706

  16. Rhythmicity of the intestinal microbiota is regulated by gender and the host circadian clock

    PubMed Central

    Liang, Xue; Bushman, Frederic D.; FitzGerald, Garret A.

    2015-01-01

    In mammals, multiple physiological, metabolic, and behavioral processes are subject to circadian rhythms, adapting to changing light in the environment. Here we analyzed circadian rhythms in the fecal microbiota of mice using deep sequencing, and found that the absolute amount of fecal bacteria and the abundance of Bacteroidetes exhibited circadian rhythmicity, which was more pronounced in female mice. Disruption of the host circadian clock by deletion of Bmal1, a gene encoding a core molecular clock component, abolished rhythmicity in the fecal microbiota composition in both genders. Bmal1 deletion also induced alterations in bacterial abundances in feces, with differential effects based on sex. Thus, although host behavior, such as time of feeding, is of recognized importance, here we show that sex interacts with the host circadian clock, and they collectively shape the circadian rhythmicity and composition of the fecal microbiota in mice. PMID:26240359

  17. Clock-controlled output gene Dbp is a regulator of Arnt/Hif-1β gene expression in pancreatic islet β-cells

    SciTech Connect

    Nakabayashi, Hiroko; Ohta, Yasuharu Yamamoto, Masayoshi; Susuki, Yosuke; Taguchi, Akihiko; Tanabe, Katsuya; Kondo, Manabu; Hatanaka, Masayuki; Nagao, Yuko; Tanizawa, Yukio

    2013-05-03

    Highlights: •Arnt mRNA expressed in a circadian manner in mouse pancreatic islets. •Expressions of Dbp and Arnt damped in the islets of a diabetic model mouse. •DBP and E4BP4 regulate Arnt promoter activity by direct binding. •Arnt may have a role in connecting circadian rhythm and metabolism. -- Abstract: Aryl hydrocarbon receptor nuclear translocator (ARNT)/hypoxia inducible factor-1β (HIF-1β) has emerged as a potential determinant of pancreatic β-cell dysfunction and type 2 diabetes in humans. An 82% reduction in Arnt expression was observed in islets from type 2 diabetic donors as compared to non-diabetic donors. However, few regulators of Arnt expression have been identified. Meanwhile, disruption of the clock components CLOCK and BMAL1 is known to result in hypoinsulinemia and diabetes, but the molecular details remain unclear. In this study, we identified a novel molecular connection between Arnt and two clock-controlled output genes, albumin D-element binding protein (Dbp) and E4 binding protein 4 (E4bp4). By conducting gene expression studies using the islets of Wfs1{sup −/−} A{sup y}/a mice that develop severe diabetes due to β-cell apoptosis, we demonstrated clock-related gene expressions to be altered in the diabetic mice. Dbp mRNA decreased by 50%, E4bp4 mRNA increased by 50%, and Arnt mRNA decreased by 30% at Zeitgever Time (ZT) 12. Mouse pancreatic islets exhibited oscillations of clock gene expressions. E4BP4, a D-box negative regulator, oscillated anti-phase to DBP, a D-box positive regulator. We also found low-amplitude circadian expression of Arnt mRNA, which peaked at ZT4. Over-expression of DBP raised both mRNA and protein levels of ARNT in HEK293 and MIN6 cell lines. Arnt promoter-driven luciferase reporter assay in MIN6 cells revealed that DBP increased Arnt promoter activity by 2.5-fold and that E4BP4 competitively inhibited its activation. In addition, on ChIP assay, DBP and E4BP4 directly bound to D-box elements within the

  18. The mammalian molecular clockwork controls rhythmic expression of its own input pathway components.

    PubMed

    Pfeffer, Martina; Müller, Christian M; Mordel, Jérôme; Meissl, Hilmar; Ansari, Nariman; Deller, Thomas; Korf, Horst-Werner; von Gall, Charlotte

    2009-05-13

    The core molecular clockwork in the suprachiasmatic nucleus (SCN) is based on autoregulatory feedback loops of transcriptional activators (CLOCK/NPAS2 and BMAL1) and inhibitors (mPER1-2 and mCRY1-2). To synchronize the phase of the molecular clockwork to the environmental day and night condition, light at dusk and dawn increases mPer expression. However, the signal transduction pathways differ remarkably between the day/night and the night/day transition. Light during early night leads to intracellular Ca(2+) release by neuronal ryanodine receptors (RyRs), resulting in phase delays. Light during late night triggers an increase in guanylyl cyclase activity, resulting in phase advances. To date, it is still unknown how the core molecular clockwork regulates the availability of the respective input pathway components. Therefore, we examined light resetting mechanisms in mice with an impaired molecular clockwork (BMAL1(-/-)) and the corresponding wild type (BMAL1(+/+)) using in situ hybridization, real-time PCR, immunohistochemistry, and a luciferase reporter system. In addition, intracellular calcium concentrations (Ca(2+)(i)) were measured in SCN slices using two-photon microscopy. In the SCN of BMAL1(-/-) mice Ryr mRNA and RyR protein levels were reduced, and light-induced mPer expression was selectively impaired during early night. Transcription assays with NIH3T3 fibroblasts showed that Ryr expression was activated by CLOCK::BMAL1 and inhibited by mCRY1. The Ca(2+)(i) response of SCN cells to the RyR agonist caffeine was reduced in BMAL1(-/-) compared with BMAL1(+/+) mice. Our findings provide the first evidence that the mammalian molecular clockwork influences Ryr expression and thus controls its own photic input pathway components. PMID:19439589

  19. Clock-controlled output gene Dbp is a regulator of Arnt/Hif-1β gene expression in pancreatic islet β-cells.

    PubMed

    Nakabayashi, Hiroko; Ohta, Yasuharu; Yamamoto, Masayoshi; Susuki, Yosuke; Taguchi, Akihiko; Tanabe, Katsuya; Kondo, Manabu; Hatanaka, Masayuki; Nagao, Yuko; Tanizawa, Yukio

    2013-05-01

    Aryl hydrocarbon receptor nuclear translocator (ARNT)/hypoxia inducible factor-1β (HIF-1β) has emerged as a potential determinant of pancreatic β-cell dysfunction and type 2 diabetes in humans. An 82% reduction in Arnt expression was observed in islets from type 2 diabetic donors as compared to non-diabetic donors. However, few regulators of Arnt expression have been identified. Meanwhile, disruption of the clock components CLOCK and BMAL1 is known to result in hypoinsulinemia and diabetes, but the molecular details remain unclear. In this study, we identified a novel molecular connection between Arnt and two clock-controlled output genes, albumin D-element binding protein (Dbp) and E4 binding protein 4 (E4bp4). By conducting gene expression studies using the islets of Wfs1(-/-) A(y)/a mice that develop severe diabetes due to β-cell apoptosis, we demonstrated clock-related gene expressions to be altered in the diabetic mice. Dbp mRNA decreased by 50%, E4bp4 mRNA increased by 50%, and Arnt mRNA decreased by 30% at Zeitgever Time (ZT) 12. Mouse pancreatic islets exhibited oscillations of clock gene expressions. E4BP4, a D-box negative regulator, oscillated anti-phase to DBP, a D-box positive regulator. We also found low-amplitude circadian expression of Arnt mRNA, which peaked at ZT4. Over-expression of DBP raised both mRNA and protein levels of ARNT in HEK293 and MIN6 cell lines. Arnt promoter-driven luciferase reporter assay in MIN6 cells revealed that DBP increased Arnt promoter activity by 2.5-fold and that E4BP4 competitively inhibited its activation. In addition, on ChIP assay, DBP and E4BP4 directly bound to D-box elements within the Arnt promoter in MIN6 cells. These results suggest that in mouse pancreatic islets mRNA expression of Arnt fluctuates significantly in a circadian manner and that the down-regulation of Dbp and up-regulation E4bp4 contribute to direct suppression of Arnt expression in diabetes. PMID:23567972

  20. VOLTAGE REGULATOR

    DOEpatents

    Von Eschen, R.L.; Scheele, P.F.

    1962-04-24

    A transistorized voltage regulator which provides very close voitage regulation up to about 180 deg F is described. A diode in the positive line provides a constant voltage drop from the input to a regulating transistor emitter. An amplifier is coupled to the positive line through a resistor and is connected between a difference circuit and the regulating transistor base which is negative due to the difference in voltage drop across thc diode and the resistor so that a change in the regulator output causes the amplifier to increase or decrease the base voltage and current and incrcase or decrease the transistor impedance to return the regulator output to normal. (AEC)

  1. The adipocyte clock controls brown adipogenesis through the TGF-Beta and BMP signaling pathways

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The molecular clock is intimately linked to metabolic regulation, and brown adipose tissue plays a key role in energy homeostasis. However, whether the cell-intrinsic clock machinery participates in brown adipocyte development is unknown. Here, we show that Bmal1 (also known as ARNTL), the essential...

  2. A Role for Id2 in Regulating Photic Entrainment of the Mammalian Circadian System

    PubMed Central

    Duffield, Giles E.; Watson, Nathan P.; Mantani, Akio; Peirson, Stuart N.; Robles-Murguia, Maricela; Loros, Jennifer J.; Israel, Mark A.; Dunlap, Jay C.

    2009-01-01

    Summary Inhibitor of DNA binding genes (Id1–Id4) encode helix-loop-helix (HLH) transcriptional repressors associated with development and tumorigenesis [1, 2], but little is known concerning the function(s) of these genes in normal adult animals. Id2 was identified in DNA microarray screens for rhythmically expressed genes [3–5], and further analysis revealed a circadian pattern of expression of all four Id genes in multiple tissues including the suprachiasmatic nucleus. To explore an in vivo function, we generated and characterized deletion mutations of Id2 and of Id4. Id2−/− mice exhibit abnormally rapid entrainment and an increase in the magnitude of the phase shift of the pacemaker. A significant proportion of mice also exhibit disrupted rhythms when maintained under constant darkness. Conversely, Id4−/− mice did not exhibit a noticeable circadian phenotype. In vitro studies using an mPer1 and an AVP promoter reporter revealed the potential for ID1, ID2, and ID3 proteins to interact with the canonical basic HLH clock proteins BMAL1 and CLOCK. These data suggest that the Id genes may be important for entrainment and operation of the mammalian circadian system, potentially acting through BMAL1 and CLOCK targets. PMID:19217292

  3. Preschool Regulations.

    ERIC Educational Resources Information Center

    Nebraska State Dept. of Health and Human Services, Lincoln.

    Published by the Department of Health and Human Services, as required by Nebraska law, this guide details regulations for the physical well-being, safety, and protection of children and defines the minimum levels of acceptable services to be provided in Nebraska preschools. The first section of the guide lists specific preschool regulations,…

  4. Thyroxine Differentially Modulates the Peripheral Clock: Lessons from the Human Hair Follicle

    PubMed Central

    Hardman, Jonathan A.; Haslam, Iain S.; Farjo, Nilofer; Farjo, Bessam; Paus, Ralf

    2015-01-01

    The human hair follicle (HF) exhibits peripheral clock activity, with knock-down of clock genes (BMAL1 and PER1) prolonging active hair growth (anagen) and increasing pigmentation. Similarly, thyroid hormones prolong anagen and stimulate pigmentation in cultured human HFs. In addition they are recognized as key regulators of the central clock that controls circadian rhythmicity. Therefore, we asked whether thyroxine (T4) also influences peripheral clock activity in the human HF. Over 24 hours we found a significant reduction in protein levels of BMAL1 and PER1, with their transcript levels also decreasing significantly. Furthermore, while all clock genes maintained their rhythmicity in both the control and T4 treated HFs, there was a significant reduction in the amplitude of BMAL1 and PER1 in T4 (100 nM) treated HFs. Accompanying this, cell-cycle progression marker Cyclin D1 was also assessed appearing to show an induced circadian rhythmicity by T4 however, this was not significant. Contrary to short term cultures, after 6 days, transcript and/or protein levels of all core clock genes (BMAL1, PER1, clock, CRY1, CRY2) were up-regulated in T4 treated HFs. BMAL1 and PER1 mRNA was also up-regulated in the HF bulge, the location of HF epithelial stem cells. Together this provides the first direct evidence that T4 modulates the expression of the peripheral molecular clock. Thus, patients with thyroid dysfunction may also show a disordered peripheral clock, which raises the possibility that short term, pulsatile treatment with T4 might permit one to modulate circadian activity in peripheral tissues as a target to treat clock-related disease. PMID:25822259

  5. Thyroxine differentially modulates the peripheral clock: lessons from the human hair follicle.

    PubMed

    Hardman, Jonathan A; Haslam, Iain S; Farjo, Nilofer; Farjo, Bessam; Paus, Ralf

    2015-01-01

    The human hair follicle (HF) exhibits peripheral clock activity, with knock-down of clock genes (BMAL1 and PER1) prolonging active hair growth (anagen) and increasing pigmentation. Similarly, thyroid hormones prolong anagen and stimulate pigmentation in cultured human HFs. In addition they are recognized as key regulators of the central clock that controls circadian rhythmicity. Therefore, we asked whether thyroxine (T4) also influences peripheral clock activity in the human HF. Over 24 hours we found a significant reduction in protein levels of BMAL1 and PER1, with their transcript levels also decreasing significantly. Furthermore, while all clock genes maintained their rhythmicity in both the control and T4 treated HFs, there was a significant reduction in the amplitude of BMAL1 and PER1 in T4 (100 nM) treated HFs. Accompanying this, cell-cycle progression marker Cyclin D1 was also assessed appearing to show an induced circadian rhythmicity by T4 however, this was not significant. Contrary to short term cultures, after 6 days, transcript and/or protein levels of all core clock genes (BMAL1, PER1, clock, CRY1, CRY2) were up-regulated in T4 treated HFs. BMAL1 and PER1 mRNA was also up-regulated in the HF bulge, the location of HF epithelial stem cells. Together this provides the first direct evidence that T4 modulates the expression of the peripheral molecular clock. Thus, patients with thyroid dysfunction may also show a disordered peripheral clock, which raises the possibility that short term, pulsatile treatment with T4 might permit one to modulate circadian activity in peripheral tissues as a target to treat clock-related disease. PMID:25822259

  6. Microgravity influences circadian clock oscillation in human keratinocytes

    PubMed Central

    Ranieri, Danilo; Cucina, Alessandra; Bizzarri, Mariano; Alimandi, Maurizio; Torrisi, Maria Rosaria

    2015-01-01

    Microgravity and sudden changes of gravitational forces exert numerous effects on tissues, organs and apparatus. Responses to these forces variably applied to cells indicate the existence of mechanotransduction pathways able to modulate transcription. Oscillation of circadian clocks similarly influences many cellular and metabolic processes. Here we hypothesized that signals derived from changes of gravitational forces applied to epidermal cells might influence their physiology in harmony with the oscillation of the molecular clock. In this study, we describe amplified oscillations of Bmal1 circadian clock gene in human keratinocytes exposed to short simulated microgravity and to rapid variation of gravitational forces. We found that exposure to microgravity enhances the amplitude of the Bmal1 feedback loop sustained by an apparently lower variability of Rev-erbα transcription, while recovery from microgravity is characterized by increased amplitude of Bmal1 expression and elongation of the oscillatory periods of Bmal1 and Rev-erbα. These data highlight the existence of integrated signaling network connecting mechanosensitive pathways to circadian gene regulation. PMID:26448904

  7. Circadian and feeding rhythms differentially affect rhythmic mRNA transcription and translation in mouse liver

    PubMed Central

    Atger, Florian; Gobet, Cédric; Marquis, Julien; Martin, Eva; Wang, Jingkui; Weger, Benjamin; Lefebvre, Grégory; Descombes, Patrick; Naef, Felix; Gachon, Frédéric

    2015-01-01

    Diurnal oscillations of gene expression are a hallmark of rhythmic physiology across most living organisms. Such oscillations are controlled by the interplay between the circadian clock and feeding rhythms. Although rhythmic mRNA accumulation has been extensively studied, comparatively less is known about their transcription and translation. Here, we quantified simultaneously temporal transcription, accumulation, and translation of mouse liver mRNAs under physiological light–dark conditions and ad libitum or night-restricted feeding in WT and brain and muscle Arnt-like 1 (Bmal1)-deficient animals. We found that rhythmic transcription predominantly drives rhythmic mRNA accumulation and translation for a majority of genes. Comparison of wild-type and Bmal1 KO mice shows that circadian clock and feeding rhythms have broad impact on rhythmic gene expression, Bmal1 deletion affecting surprisingly both transcriptional and posttranscriptional levels. Translation efficiency is differentially regulated during the diurnal cycle for genes with 5′-Terminal Oligo Pyrimidine tract (5′-TOP) sequences and for genes involved in mitochondrial activity, many harboring a Translation Initiator of Short 5′-UTR (TISU) motif. The increased translation efficiency of 5′-TOP and TISU genes is mainly driven by feeding rhythms but Bmal1 deletion also affects amplitude and phase of translation, including TISU genes. Together this study emphasizes the complex interconnections between circadian and feeding rhythms at several steps ultimately determining rhythmic gene expression and translation. PMID:26554015

  8. Effect of peripheral circadian dysfunction on metabolic disease in response to a diabetogenic diet.

    PubMed

    Pijut, Sonja S; Corbett, Danielle E; Wang, Yuhuan; Li, Jianing; Charnigo, Richard J; Graf, Gregory A

    2016-06-01

    BMAL1 is a core component of the transcription/translation machinery that regulates central and peripheral circadian rhythms that coordinate behavior and metabolism, respectively. Our objective was to determine the impact of BMAL1 in adipose alone or in combination with liver on metabolic phenotypes. Control, adipose-Bmal1 knockout (ABKO), and liver- and adipose-Bmal1 knockout (LABKO) female mice were placed in TSE System metabolic chambers for metabolic phenotyping. A second cohort of male mice was fed a control or diabetogenic diet, and body weight and composition, glucose tolerance, insulin sensitivity, and serum and hepatic lipids were measured. Both female ABKO and LABKO mice exhibited increased food consumption compared with control mice. ABKO mice also exhibited increased overall activity predominantly during the light phase compared with both control and LABKO mice and were protected from increased weight gain. When the male cohort was challenged with a diabetogenic diet, LABKO mice had increased body weight due to increased fat mass compared with control and ABKO mice. However, these mice did not present further impairments in glycemic control, adipose inflammation, or liver injury. LABKO mice had increased hepatic cholesterol and elevated expression of cholesterol synthesis and uptake genes. Our data indicate that deletion of this allele in adipose or in combination with liver alters feeding behavior and locomotor activity. However, obesity is exacerbated only with the combination of liver and adipose deletion. PMID:27048996

  9. Voltage regulator

    SciTech Connect

    Rossetti, N.

    1986-12-09

    This patent describes a prior art integrated circuit voltage regulator having an unregulated voltage input terminal and a regulated voltage output terminal, and further comprising: a first transistor having an emitter, a collector and a base, the first transistor having a first base-emitter voltage characteristic, the collector of the first transistor being connected through a first resistor to a current source. The current source is derived from the unregulated voltage, the emitter of the first transistor being connected through a second resistor to a reference voltage; and a second transistor having an emitter, a collector and a base, the second transistor having a second base-emitter voltage characteristic, the base of the second transistor being connected to the collector of the first transistor. The collector of the second transistor is connected to the current source, the emitter of the second transistor being connected to the reference voltage. The regulated output of the voltage regulator is provided at the collector of the second transistor and the regulated voltage output is a function of the first base-emitter voltage characteristic of the first transistor plus the quantity comprising the difference between the first base-emitter voltage characteristic of the first transistor and the second base-emitter voltage characteristic of the second transistor, times the ratio of the value of resistance of the first resistor and the value of resistance of the second resistor. The improvement described here comprises: a third transistor having a collector, an emitter and a base.

  10. Common Genetic Variation in Circadian Rhythm Genes and Risk of Epithelial Ovarian Cancer (EOC)

    PubMed Central

    Jim, Heather S.L.; Lin, Hui-Yi; Tyrer, Jonathan P.; Lawrenson, Kate; Dennis, Joe; Chornokur, Ganna; Chen, Zhihua; Chen, Ann Y.; Permuth-Wey, Jennifer; Aben, Katja KH.; Anton-Culver, Hoda; Antonenkova, Natalia; Bruinsma, Fiona; Bandera, Elisa V.; Bean, Yukie T.; Beckmann, Matthias W.; Bisogna, Maria; Bjorge, Line; Bogdanova, Natalia; Brinton, Louise A.; Brooks-Wilson, Angela; Bunker, Clareann H.; Butzow, Ralf; Campbell, Ian G.; Carty, Karen; Chang-Claude, Jenny; Cook, Linda S.; Cramer, Daniel W.; Cunningham, Julie M.; Cybulski, Cezary; Dansonka-Mieszkowska, Agnieszka; du Bois, Andreas; Despierre, Evelyn; Sieh, Weiva; Doherty, Jennifer A.; Dörk, Thilo; Dürst, Matthias; Easton, Douglas F.; Eccles, Diana M.; Edwards, Robert P.; Ekici, Arif B.; Fasching, Peter A.; Fridley, Brooke L.; Gao, Yu-Tang; Gentry-Maharaj, Aleksandra; Giles, Graham G.; Glasspool, Rosalind; Goodman, Marc T.; Gronwald, Jacek; Harter, Philipp; Hasmad, Hanis N.; Hein, Alexander; Heitz, Florian; Hildebrandt, Michelle A.T.; Hillemanns, Peter; Hogdall, Claus K.; Hogdall, Estrid; Hosono, Satoyo; Iversen, Edwin S.; Jakubowska, Anna; Jensen, Allan; Ji, Bu-Tian; Karlan, Beth Y.; Kellar, Melissa; Kiemeney, Lambertus A.; Krakstad, Camilla; Kjaer, Susanne K.; Kupryjanczyk, Jolanta; Vierkant, Robert A.; Lambrechts, Diether; Lambrechts, Sandrina; Le, Nhu D.; Lee, Alice W.; Lele, Shashi; Leminen, Arto; Lester, Jenny; Levine, Douglas A.; Liang, Dong; Lim, Boon Kiong; Lissowska, Jolanta; Lu, Karen; Lubinski, Jan; Lundvall, Lene; Massuger, Leon F.A.G.; Matsuo, Keitaro; McGuire, Valerie; McLaughlin, John R.; McNeish, Ian; Menon, Usha; Milne, Roger L.; Modugno, Francesmary; Thomsen, Lotte; Moysich, Kirsten B.; Ness, Roberta B.; Nevanlinna, Heli; Eilber, Ursula; Odunsi, Kunle; Olson, Sara H.; Orlow, Irene; Orsulic, Sandra; Palmieri Weber, Rachel; Paul, James; Pearce, Celeste L.; Pejovic, Tanja; Pelttari, Liisa M.; Pike, Malcolm C.; Poole, Elizabeth M.; Schernhammer, Eva; Risch, Harvey A.; Rosen, Barry; Rossing, Mary Anne; Rothstein, Joseph H.; Rudolph, Anja; Runnebaum, Ingo B.; Rzepecka, Iwona K.; Salvesen, Helga B.; Schwaab, Ira; Shu, Xiao-Ou; Shvetsov, Yurii B.; Siddiqui, Nadeem; Song, Honglin; Southey, Melissa C.; Spiewankiewicz, Beata; Sucheston-Campbell, Lara; Teo, Soo-Hwang; Terry, Kathryn L.; Thompson, Pamela J.; Tangen, Ingvild L.; Tworoger, Shelley S.; van Altena, Anne M.; Vergote, Ignace; Walsh, Christine S.; Wang-Gohrke, Shan; Wentzensen, Nicolas; Whittemore, Alice S.; Wicklund, Kristine G.; Wilkens, Lynne R.; Wu, Anna H.; Wu, Xifeng; Woo, Yin-Ling; Yang, Hannah; Zheng, Wei; Ziogas, Argyrios; Amankwah, Ernest; Berchuck, Andrew; Schildkraut, Joellen M.; Kelemen, Linda E.; Ramus, Susan J.; Monteiro, Alvaro N.A.; Goode, Ellen L.; Narod, Steven A.; Gayther, Simon A.; Pharoah, Paul D. P.; Sellers, Thomas A.; Phelan, Catherine M.

    2016-01-01

    Disruption in circadian gene expression, whether due to genetic variation or environmental factors (e.g., light at night, shiftwork), is associated with increased incidence of breast, prostate, gastrointestinal and hematologic cancers and gliomas. Circadian genes are highly expressed in the ovaries where they regulate ovulation; circadian disruption is associated with several ovarian cancer risk factors (e.g., endometriosis). However, no studies have examined variation in germline circadian genes as predictors of ovarian cancer risk and invasiveness. The goal of the current study was to examine single nucleotide polymorphisms (SNPs) in circadian genes BMAL1, CRY2, CSNK1E, NPAS2, PER3, REV1 and TIMELESS and downstream transcription factors KLF10 and SENP3 as predictors of risk of epithelial ovarian cancer (EOC) and histopathologic subtypes. The study included a test set of 3,761 EOC cases and 2,722 controls and a validation set of 44,308 samples including 18,174 (10,316 serous) cases and 26,134 controls from 43 studies participating in the Ovarian Cancer Association Consortium (OCAC). Analysis of genotype data from 36 genotyped SNPs and 4600 imputed SNPs indicated that the most significant association was rs117104877 in BMAL1 (OR = 0.79, 95% CI = 0.68–0.90, p = 5.59 × 10−4]. Functional analysis revealed a significant down regulation of BMAL1 expression following cMYC overexpression and increasing transformation in ovarian surface epithelial (OSE) cells as well as alternative splicing of BMAL1 exons in ovarian and granulosa cells. These results suggest that variation in circadian genes, and specifically BMAL1, may be associated with risk of ovarian cancer, likely through disruption of hormonal pathways. PMID:26807442

  11. NORM regulations

    SciTech Connect

    Gray, P.

    1997-02-01

    The author reviews the question of regulation for naturally occuring radioactive material (NORM), and the factors that have made this a more prominent concern today. Past practices have been very relaxed, and have often involved very poor records, the involvment of contractors, and the disposition of contaminated equipment back into commercial service. The rationale behind the establishment of regulations is to provide worker protection, to exempt low risk materials, to aid in scrap recycling, to provide direction for remediation and to examine disposal options. The author reviews existing regulations at federal and state levels, impending legislation, and touches on the issue of site remediation and potential liabilities affecting the release of sites contaminated by NORM.

  12. Small Heterodimer Partner (NR0B2) Coordinates Nutrient Signaling and the Circadian Clock in Mice.

    PubMed

    Wu, Nan; Kim, Kang Ho; Zhou, Ying; Lee, Jae Man; Kettner, Nicole M; Mamrosh, Jennifer L; Choi, Sungwoo; Fu, Loning; Moore, David D

    2016-09-01

    Circadian rhythm regulates multiple metabolic processes and in turn is readily entrained by feeding-fasting cycles. However, the molecular mechanisms by which the peripheral clock senses nutrition availability remain largely unknown. Bile acids are under circadian control and also increase postprandially, serving as regulators of the fed state in the liver. Here, we show that nuclear receptor Small Heterodimer Partner (SHP), a regulator of bile acid metabolism, impacts the endogenous peripheral clock by directly regulating Bmal1. Bmal1-dependent gene expression is altered in Shp knockout mice, and liver clock adaptation is delayed in Shp knockout mice upon restricted feeding. These results identify SHP as a potential mediator connecting nutrient signaling with the circadian clock. PMID:27427832

  13. PPARs Integrate the Mammalian Clock and Energy Metabolism

    PubMed Central

    Chen, Lihong; Yang, Guangrui

    2014-01-01

    Peroxisome proliferator-activated receptors (PPARs) are a group of nuclear receptors that function as transcription factors regulating the expression of numerous target genes. PPARs play an essential role in various physiological and pathological processes, especially in energy metabolism. It has long been known that metabolism and circadian clocks are tightly intertwined. However, the mechanism of how they influence each other is not fully understood. Recently, all three PPAR isoforms were found to be rhythmically expressed in given mouse tissues. Among them, PPARα and PPARγ are direct regulators of core clock components, Bmal1 and Rev-erbα, and, conversely, PPARα is also a direct Bmal1 target gene. More importantly, recent studies using knockout mice revealed that all PPARs exert given functions in a circadian manner. These findings demonstrated a novel role of PPARs as regulators in correlating circadian rhythm and metabolism. In this review, we summarize advances in our understanding of PPARs in circadian regulation. PMID:24693278

  14. On the Role of Histamine Receptors in the Regulation of Circadian Rhythms

    PubMed Central

    Rozov, Stanislav V.; Porkka-Heiskanen, Tarja; Panula, Pertti

    2015-01-01

    Several lines of evidence suggest a regulatory role of histamine in circadian rhythms, but little is known about signaling pathways that would be involved in such a putative role. The aim of this study was to examine whether histamine mediates its effects on the circadian system through Hrh1 or Hrh3 receptors. We assessed both diurnal and free-running locomotor activity rhythms of Hrh1-/- and Hrh3-/- mice. We also determined the expression of Per1, Per2 and Bmal1 genes in the suprachiasmatic nuclei, several areas of the cerebral cortex and striatum under symmetric 24 h light-dark cycle at zeitgeber times 14 and 6 by using radioactive in situ hybridization. We found no differences between Hrh1-/- and wild type mice in the length, amplitude and mesor of diurnal and free-running activity rhythms as well as in expression of Per1, Per2 and Bmal1 genes in any of the examined brain structures. The amplitude of free-running activity rhythm of the Hrh3-/- mice was significantly flattened, whereas the expression of the clock genes in Hrh3-/- mice was similar to the wild type animals in all of the assessed brain structures. Therefore, the knockout of Hrh1 receptor had no effects on the circadian rhythm of spontaneous locomotion, and a knockout of Hrh3 receptor caused a substantial reduction of free-running activity rhythm amplitude, but none of these knockout models affected the expression patterns of the core clock genes in any of the studied brain structures. PMID:26660098

  15. Charge regulation circuit

    DOEpatents

    Ball, Don G.

    1992-01-01

    A charge regulation circuit provides regulation of an unregulated voltage supply in the range of 0.01%. The charge regulation circuit is utilized in a preferred embodiment in providing regulated voltage for controlling the operation of a laser.

  16. Molecular components of the circadian clock in mammals.

    PubMed

    Takahashi, J S

    2015-09-01

    The circadian clock mechanism in animals involves a transcriptional feedback loop in which the bHLH-PAS proteins CLOCK and BMAL1 form a transcriptional activator complex to activate the transcription of the Period and Cryptochrome genes, which in turn feed back to repress their own transcription. In the mouse liver, CLOCK and BMAL1 interact with the regulatory regions of thousands of genes, which are both cyclically and constitutively expressed. The circadian transcription in the liver is clustered in phase and this is accompanied by circadian occupancy of RNA polymerase II recruitment and initiation. These changes also lead to circadian fluctuations in histone H3 lysine4 trimethylation (H3K4me3) as well as H3 lysine9 acetylation (H3K9ac) and H3 lysine27 acetylation (H3K27ac). Thus, the circadian clock regulates global transcriptional poise and chromatin state by regulation of RNA polymerase II. PMID:26332962

  17. Facilitated physiological adaptation to prolonged circadian disruption through dietary supplementation with essence of chicken.

    PubMed

    Wu, Tao; Yao, Cencen; Tsang, Fai; Huang, Liangfeng; Zhang, Wanjing; Jiang, Jianguo; Mao, Youxiang; Shao, Yujian; Kong, Boda; Singh, Paramjeet; Fu, Zhengwei

    2015-01-01

    Synchrony between circadian and metabolic processes is critical to the maintenance of energy homeostasis. Studies on essence of chicken (EC), a chicken meat extract rich in proteins, amino acids and peptides, showed its effectiveness in alleviating fatigue and promoting metabolism. A recent study revealed that it facilitated the re-entrainment of clock genes (Bmal1, Cry1, Dec1, Per1 and Per2) in the pineal gland and liver in a rat model of circadian disruption. Here, we investigated the role of EC-facilitated circadian synchrony in the maintenance of the energy homeostasis using a mouse model of prolonged circadian disruption. Prolonged circadian disruption (12 weeks) resulted in hepatic maladaptation, manifested by a mild but significant (p < 0.05) hepatomegaly, accompanied by disturbed hepatic lipid metabolism and liver injury (indicated by increased circulating hepatic enzymes). Evidently, there was marked elevations of hepatic inflammatory mediators (interleukin-1beta and interleukin-6), suggesting an underlying inflammation leading to the hepatic injury and functional impairment. Importantly, the disruption paradigm caused the decoupling between key metabolic regulators (e.g. mTOR and AMPK) and hepatic clock genes (Per1, Cry1, Dec1, Bmal1). Further, we showed that the loss of circadian synchrony between the master and hepatic clock genes (Per1, Cry1, Dec1, Bmal1) could be the underlying cause of the maladaptation. When supplemented with EC, the functional impairment and inflammation were abolished. The protective effects could be linked to its effectiveness in maintaining the synchrony between the master and hepatic clocks, and the resultant improved coupling of the circadian oscillators (Per1, Cry1, Dec1, Bmal1) and metabolic regulators (mTOR, AMPK). Overall, EC supplementation promoted the physiological adaptation to the prolonged circadian disruption through facilitation of endogenous circadian synchrony and the coupling of circadian oscillators and

  18. The orphan receptor Rev-erbα gene is a target of the circadian clock pacemaker

    PubMed Central

    Triqueneaux, Gérard; Thenot, Sandrine; Kakizawa, Tomoko; Antoch, Marina P; Safi, Rachid; Takahashi, Joseph S; Delaunay, Franck; Laudet, Vincent

    2013-01-01

    Rev-erbα is a ubiquitously expressed orphan nuclear receptor which functions as a constitutive transcriptional repressor and is expressed in vertebrates according to a robust circadian rhythm. We report here that two Rev-erbα mRNA isoforms, namely Rev-erbα1 and Rev-erbα2, are generated through alternative promoter usage and that both show a circadian expression pattern in an in vitro system using serum-shocked fibroblasts. Both promoter regions P1 (Rev-erbα1) and P2 (Rev-erbα2) contain several E-box DNA sequences, which function as response elements for the core circadian-clock components: CLOCK and BMAL1. The CLOCK–BMAL1 heterodimer stimulates the activity of both P1 and P2 promoters in transient transfection assay by 3–6-fold. This activation was inhibited by the overexpression of CRY1, a component of the negative limb of the circadian transcriptional loop. Critical E-box elements were mapped within both promoters. This regulation is conserved in vertebrates since we found that the CLOCK–BMAL1 heterodimer also regulates the zebrafish Rev-erbα gene. In line with these data Rev-erbα circadian expression was strongly impaired in the livers of Clock mutant mice and in the pineal glands of zebrafish embryos treated with Clock and Bmal1 antisense oligonucleotides. Together these data demonstrate that CLOCK is a critical regulator of Rev-erbα circadian gene expression in evolutionarily distant vertebrates and suggest a role for Rev-erbα in the circadian clock output. PMID:15591021

  19. Altered Stra13 and Dec2 circadian gene expression in hypoxic cells

    SciTech Connect

    Guillaumond, Fabienne; Lacoche, Samuel; Dulong, Sandrine; Grechez-Cassiau, Aline; Filipski, Elisabeth; Li, Xiao-Mei; Levi, Francis; Berra, Edurne; Delaunay, Franck; Teboul, Michele

    2008-05-16

    The circadian system regulates rhythmically most of the mammalian physiology in synchrony with the environmental light/dark cycle. Alteration of circadian clock gene expression has been associated with tumour progression but the molecular links between the two mechanisms remain poorly defined. Here we show that Stra13 and Dec2, two circadian transcriptional regulators which play a crucial role in cell proliferation and apoptosis are overexpressed and no longer rhythmic in serum shocked fibroblasts treated with CoCl{sub 2,} a substitute of hypoxia. This effect is associated with a loss of circadian expression of the clock genes Rev-erb{alpha} and Bmal1, and the clock-controlled gene Dbp. Consistently, cotransfection assays demonstrate that STRA13 and DEC2 both antagonize CLOCK:BMAL1 dependent transactivation of the Rev-erb{alpha} and Dbp promoters. Using a transplantable osteosarcoma tumour model, we show that hypoxia is associated with altered circadian expression of Stra13, Dec2, Rev-erb{alpha}, Bmal1 and Dbp in vivo. These observations collectively support the notion that overexpression of Stra13 and Dec2 links hypoxia signalling to altered circadian clock gene expression.

  20. Circadian Rhythmicity of Active GSK3 Isoforms Modulates Molecular Clock Gene Rhythms in the Suprachiasmatic Nucleus

    PubMed Central

    Besing, R.C.; Paul, J.R.; Hablitz, L.M.; Rogers, C.O.; Johnson, R.L.; Young, M.E.; Gamble, K.L.

    2015-01-01

    The suprachiasmatic nucleus (SCN) drives and synchronizes daily rhythms at the cellular level via transcriptional-translational feedback loops comprised of clock genes such as Bmal1 and Period (Per). Glycogen synthase kinase 3 (GSK3), a serine/threonine kinase, phosphorylates at least five core clock proteins and shows diurnal variation in phosphorylation state (inactivation) of the GSK3β isoform. Whether phosphorylation of the other primary isoform (GSK3α) varies across the subjective day-night cycle is unknown. The purpose of this study was to determine if the endogenous rhythm of GSK3 (α and β) phosphorylation is critical for rhythmic BMAL1 expression and normal amplitude and periodicity of the molecular clock in the SCN. Significant circadian rhythmicity of phosphorylated GSK3 (α and β) was observed in the SCN from wild-type mice housed in constant darkness for two weeks. Importantly, chronic activation of both GSK3 isoforms impaired rhythmicity of the GSK3 target BMAL1. Furthermore, chronic pharmacological inhibition of GSK3 with 20 μM CHIR-99021 enhanced the amplitude and shortened the period of PER2::luciferase rhythms in organotypic SCN slice cultures. These results support the model that GSK3 activity status is regulated by the circadian clock and that GSK3 feeds back to regulate the molecular clock amplitude in the SCN. PMID:25724980

  1. Multimedia regulated chemicals

    SciTech Connect

    Lee, C.C.; Huffman, G.L.; Mao, Y.L.

    1999-10-01

    This article examines those chemicals that are listed in either environmental laws or regulations. Its objective is to help readers determine which laws regulate what types of chemicals and which types of chemicals are regulated by what laws. It is multimedia in scope, describing the various chemicals that are regulated in the different media (i.e., air, water, or land).

  2. Regulating Rho GTPases and their regulators.

    PubMed

    Hodge, Richard G; Ridley, Anne J

    2016-08-01

    Rho GTPases regulate cytoskeletal and cell adhesion dynamics and thereby coordinate a wide range of cellular processes, including cell migration, cell polarity and cell cycle progression. Most Rho GTPases cycle between a GTP-bound active conformation and a GDP-bound inactive conformation to regulate their ability to activate effector proteins and to elicit cellular responses. However, it has become apparent that Rho GTPases are regulated by post-translational modifications and the formation of specific protein complexes, in addition to GTP-GDP cycling. The canonical regulators of Rho GTPases - guanine nucleotide exchange factors, GTPase-activating proteins and guanine nucleotide dissociation inhibitors - are regulated similarly, creating a complex network of interactions to determine the precise spatiotemporal activation of Rho GTPases. PMID:27301673

  3. A baculovirus photolyase with DNA repair activity and circadian clock regulatory function.

    PubMed

    Biernat, Magdalena A; Eker, André P M; van Oers, Monique M; Vlak, Just M; van der Horst, Gijsbertus T J; Chaves, Inês

    2012-02-01

    Cryptochromes and photolyases belong to the same family of flavoproteins but, despite being structurally conserved, display distinct functions. Photolyases use visible light to repair ultraviolet-induced DNA damage. Cryptochromes, however, function as blue-light receptors, circadian photoreceptors, or repressors of the CLOCK/BMAL1 heterodimer, the transcription activator controlling the molecular circadian clock. Here, we present evidence that the functional divergence between cryptochromes and photolyases is not so univocal. Chrysodeixis chalcites nucleopolyhedrovirus possesses 2 photolyase-like genes: phr1 and phr2. We show that PHR1 and PHR2 are able to bind the CLOCK protein. Only for PHR2, however, the physical interaction with CLOCK represses CLOCK/BMAL1-driven transcription. This result shows that binding of photolyase per se is not sufficient to inhibit the CLOCK/BMAL1 heterodimer. PHR2, furthermore, affects the oscillation of immortalized mouse embryonic fibroblasts, suggesting that PHR2 can regulate the molecular circadian clock. These findings are relevant for further understanding the evolution of cryptochromes and photolyases as well as behavioral changes induced in insects by baculoviruses. PMID:22306969

  4. Emerging Models for the Molecular Basis of Mammalian Circadian Timing

    PubMed Central

    2015-01-01

    Mammalian circadian timekeeping arises from a transcription-based feedback loop driven by a set of dedicated clock proteins. At its core, the heterodimeric transcription factor CLOCK:BMAL1 activates expression of Period, Cryptochrome, and Rev-Erb genes, which feed back to repress transcription and create oscillations in gene expression that confer circadian timing cues to cellular processes. The formation of different clock protein complexes throughout this transcriptional cycle helps to establish the intrinsic ∼24 h periodicity of the clock; however, current models of circadian timekeeping lack the explanatory power to fully describe this process. Recent studies confirm the presence of at least three distinct regulatory complexes: a transcriptionally active state comprising the CLOCK:BMAL1 heterodimer with its coactivator CBP/p300, an early repressive state containing PER:CRY complexes, and a late repressive state marked by a poised but inactive, DNA-bound CLOCK:BMAL1:CRY1 complex. In this review, we analyze high-resolution structures of core circadian transcriptional regulators and integrate biochemical data to suggest how remodeling of clock protein complexes may be achieved throughout the 24 h cycle. Defining these detailed mechanisms will provide a foundation for understanding the molecular basis of circadian timing and help to establish new platforms for the discovery of therapeutics to manipulate the clock. PMID:25303119

  5. Glucocorticoid-mediated Period2 induction delays the phase of circadian rhythm

    PubMed Central

    Cheon, Solmi; Park, Noheon; Cho, Sehyung; Kim, Kyungjin

    2013-01-01

    Glucocorticoid (GC) signaling synchronizes the circadian rhythm of individual peripheral cells and induces the expression of circadian genes, including Period1 (Per1) and Period2 (Per2). However, no GC response element (GRE) has been reported in the Per2 promoter region. Here we report the molecular mechanisms of Per2 induction by GC signaling and its relevance to the regulation of circadian timing. We found that GC prominently induced Per2 expression and delayed the circadian phase. The overlapping GRE and E-box (GE2) region in the proximal Per2 promoter was responsible for GC-mediated Per2 induction. The GRE in the Per2 promoter was unique in that brain and muscle ARNT-like protein-1 (BMAL1) was essential for GC-induced Per2 expression, whereas other GRE-containing promoters, such as Per1 and mouse mammary tumor virus, responded to dexamethasone in the absence of BMAL1. This specialized regulatory mechanism was mediated by BMAL1-dependent binding of the GC receptor to GRE in Per2 promoter. When Per2 induction was abrogated by the mutation of the GRE or E-box, the circadian oscillation phase failed to be delayed compared with that of the wild-type. Therefore, the current study demonstrates that the rapid Per2 induction mediated by GC is crucial for delaying the circadian rhythm. PMID:23620290

  6. Men and women differ in their diurnal expression of monocyte peroxisome proliferator-activated receptor-α in the fed but not in the fasted state.

    PubMed

    Wege, Nicole; Schutkowski, Alexandra; Boenn, Markus; Bialek, Joanna; Schlitt, Axel; Noack, Frank; Grosse, Ivo; Stangl, Gabriele I

    2015-07-01

    Peroxisome proliferator-activated receptor-α (PPARα) plays a pivotal role in regulating metabolic response to fasting and is an inhibitor of inflammatory pathways in immune cells. It represents a therapeutic target for treatment of several diseases, mainly hyperlipidemia. To shed light on PPARα expression changes in response to fasting, young healthy male and female volunteers were fed or fasted for 24 hours. Monocytes were analyzed every 2 hours to compile both profiles of mRNA and protein expression of PPARα and its interactive partner, the circadian pacemaker brain and muscle aryl hydrocarbon receptor nuclear translocator like-1 (BMAL1). We found that women change their diurnal expression profiles of PPARα and BMAL1 when switching from the fed to the fasted state, whereas men do not. Interestingly, the PPARα and BMAL1 profiles of men and women in the fed state are different, whereas the profiles in the fasted state are virtually identical. The finding of diametrically opposite responses of male and female PPARα expression in the fed state might have practical implication in human medicine as PPARα activators like fibrates are used for the therapy of chronic lymphocytic leukemia, microvascular complications in diabetes, and kidney diseases. PMID:25825462

  7. Load regulating expansion fixture

    DOEpatents

    Wagner, Lawrence M.; Strum, Michael J.

    1998-01-01

    A free standing self contained device for bonding ultra thin metallic films, such as 0.001 inch beryllium foils. The device will regulate to a predetermined load for solid state bonding when heated to a bonding temperature. The device includes a load regulating feature, whereby the expansion stresses generated for bonding are regulated and self adjusting. The load regulator comprises a pair of friction isolators with a plurality of annealed copper members located therebetween. The device, with the load regulator, will adjust to and maintain a stress level needed to successfully and economically complete a leak tight bond without damaging thin foils or other delicate components.

  8. Load regulating expansion fixture

    DOEpatents

    Wagner, L.M.; Strum, M.J.

    1998-12-15

    A free standing self contained device for bonding ultra thin metallic films, such as 0.001 inch beryllium foils is disclosed. The device will regulate to a predetermined load for solid state bonding when heated to a bonding temperature. The device includes a load regulating feature, whereby the expansion stresses generated for bonding are regulated and self adjusting. The load regulator comprises a pair of friction isolators with a plurality of annealed copper members located therebetween. The device, with the load regulator, will adjust to and maintain a stress level needed to successfully and economically complete a leak tight bond without damaging thin foils or other delicate components. 1 fig.

  9. Emotion Regulation in Parenthood

    PubMed Central

    Rutherford, Helena J.V.; Wallace, Norah S.; Laurent, Heidemarie K.; Mayes, Linda C.

    2015-01-01

    Emotion regulation, defined as the capacity to influence one’s experience and expression of emotion, is a complex skill now recognized to evolve throughout the lifetime. Here we examine the role of emotion regulation in parenthood, and propose that regulatory function during this period is distinct from the emotion regulation skills acquired and implemented during other periods of life. In this review, we consider the unique demands of caring for a child and recognize that parents have to maintain a regulated state as well as facilitate regulation in their child, especially early in development. We examine neurobiological, hormonal and behavioral shifts during the transition to parenthood that may facilitate parental regulation in response to infant cues. Furthermore, we consider how parents shape emotion regulation in their child, and the clinical implications of regulatory functioning within the parent-child relationship. PMID:26085709

  10. Pressure reducing regulator

    DOEpatents

    Whitehead, John C.; Dilgard, Lemoyne W.

    1995-01-01

    A pressure reducing regulator that controls its downstream or outlet pressure to a fixed fraction of its upstream or inlet pressure. The regulator includes a housing which may be of a titanium alloy, within which is located a seal or gasket at the outlet end which may be made of annealed copper, a rod, and piston, each of which may be made of high density graphite. The regulator is insensitive to temperature by virtue of being without a spring or gas sealed behind a diaphragm, and provides a reference for a system in which it is being used. The rod and piston of the regulator are constructed, for example, to have a 1/20 ratio such that when the downstream pressure is less than 1/20 of the upstream pressure the regulator opens and when the downstream pressure exceeds 1/20 of the upstream pressure the regulator closes.

  11. Pressure reducing regulator

    DOEpatents

    Whitehead, J.C.; Dilgard, L.W.

    1995-10-10

    A pressure reducing regulator that controls its downstream or outlet pressure to a fixed fraction of its upstream or inlet pressure is disclosed. The regulator includes a housing which may be of a titanium alloy, within which is located a seal or gasket at the outlet end which may be made of annealed copper, a rod, and piston, each of which may be made of high density graphite. The regulator is insensitive to temperature by virtue of being without a spring or gas sealed behind a diaphragm, and provides a reference for a system in which it is being used. The rod and piston of the regulator are constructed, for example, to have a 1/20 ratio such that when the downstream pressure is less than 1/20 of the upstream pressure the regulator opens and when the downstream pressure exceeds 1/20 of the upstream pressure the regulator closes. 10 figs.

  12. TOWARD MORE EFFECTIVE REGULATION

    SciTech Connect

    J. GRAF

    2000-06-01

    This paper proposes a model relationship between the operator engaged in a hazardous activity, the regulator of that activity, and the general public. The roles and responsibilities of each entity are described in a way that allows effective communication flow. The role of the regulator is developed using the steam boiler as an example of a hazard subject to regulation; however, the model applies to any regulated activity. In this model the safety analyst has the extremely important role of communicating sometimes difficult technical information to the regulator in a way that the regulator can provide credible assurance to the general public as to the adequacy of the control of the hazardous activity. The conclusion asserts that acceptance of the model, understanding of the roles and responsibilities and definition of who communicates what information to whom will mitigate frustration on the part of each of the three entities.

  13. [Epigenetic regulation in spermatogenesis].

    PubMed

    Xu, Chen; Song, Ning

    2014-05-01

    Spermatogenesis is a process consisting of spermatogonial proliferation, spermatocytic meiosis, and spermiogenesis, and is also considered to be a process in which heterochromatins gradually aggregate and finally reach a highly condensed formation in the sperm head. Recent studies show that epigenetic regulation plays a key role in spermatogenesis. This review discusses the mechanisms of epigenetic regulation in spermatogenesis in three aspects, DNA methylation, histone modification, and noncoding RNAs. These factors are essential for spermatogenesis, fertilization, and embryogenesis by mutual regulation as well as by gene expression regulation, transposon activation, sex chromosome inactivation, and genome imprinting. PMID:24908726

  14. Federal Powers of Regulation.

    ERIC Educational Resources Information Center

    Rhyne, William S.

    1979-01-01

    Reflects the special considerations in affecting, rather than merely evaluating, the outcome of constitutional litigation over federal regulation of state and local government labor relations. (Author/IRT)

  15. The Right to Regulate

    NASA Technical Reports Server (NTRS)

    Vittek, J. F.

    1972-01-01

    An introduction to the historical and constitutional framework of industry regulation by local and Federal Governments is presented. Problems of the confiscation of private property without due process, government control and the rights and duties of the regulated industry are discussed.

  16. Regulation of University Teaching

    ERIC Educational Resources Information Center

    Lindblom-Ylanne, Sari; Nevgi, Anne; Trigwell, Keith

    2011-01-01

    The aims of the present study are twofold: firstly, to explore dimensions in the regulation of teaching in a multidisciplinary sample of university teachers, and secondly, to analyse factors related to the regulation of university teaching. Seventy-three university teachers representing several disciplines participated in the study. These teachers…

  17. Plant Growth Regulators.

    ERIC Educational Resources Information Center

    Nickell, Louis G.

    1978-01-01

    Describes the effect of "plant growth regulators" on plants, such as controlling the flowering, fruit development, plant size, and increasing crop yields. Provides a list of plant growth regulators which includes their chemical, common, and trade names, as well as their different use(s). (GA)

  18. Altered feeding differentially regulates circadian rhythms and energy metabolism in liver and muscle of rats.

    PubMed

    Reznick, Jane; Preston, Elaine; Wilks, Donna L; Beale, Susan M; Turner, Nigel; Cooney, Gregory J

    2013-01-01

    Energy metabolism follows a diurnal pattern responding to the light/dark cycle and food availability. This study investigated the impact of restricting feeding to the daylight hours and feeding a high fat diet on circadian clock (bmal1, dbp, tef and e4bp4) and metabolic (pepck, fas, ucp3, pdk4) gene expression and markers of energy metabolism in muscle and liver of rats. The results show that in chow-fed rats switched to daylight feeding, the peak diurnal expression of genes in liver was shifted by 6-12h while expression of these genes in muscle remained in a similar phase to rats feeding ad libitum. High fat feeding during the daylight hours had limited effect on clock gene expression in liver or muscle but shifted the peak expression of metabolic genes (pepck, fas) in liver by 6-12h. The differential effects of daylight feeding on gene and protein expression in muscle and liver were accompanied by an 8% reduction in whole body energy expenditure, a 20-30% increased glycogen content during the light phase in muscle of day-fed rats and increased adipose tissue deposition per gram food consumed. These data demonstrate that a mismatch of feeding and light/dark cycle disrupts tissue metabolism in muscle with significant consequences for whole body energy homeostasis. PMID:22952003

  19. Regulation of megakaryocytopoiesis.

    PubMed

    Caen, J P; Han, Z C; Bellucci, S; Alemany, M

    1999-09-01

    After 35 years of research, a physiological regulator of platelet production has been identified and the recombinant protein is available. With the discovery of thrombopoietin (TPO), its potential use in a wide variety of clinical megakaryocytic and platelet disorders has been expected and clinical trials have been undertaken. To date, the reported encouraging pre-clinical studies indicate that, as with erythropoietin or G-CSF, minimal toxicity can be expected. A potential limiting side-effect of TPO could be the induction of thrombosis. Nevertheless, it is too early to know whether this cytokine will be of major therapeutic importance for patients with life-threatening thrombocytopenia, such as patients undergoing bone marrow transplantation or subjected to a high dose of chemotherapy. Several experimental and clinical studies are still needed to determine the efficacy of TPO in the prevention or the amelioration of bleeding, which is the ultimate goal for the appropriate use of cytokines with haemostatic benefit. Basic and clinical studies on regulators of megakaryocytopoiesis have rapidly progressed. Now, there is no doubt that some of these regulators are effective in correcting haematopoietic disorders of various aetiologies. Studies on negative regulators not only are important to understand the regulation of megakaryocytopoiesis in normal and pathological states but also have a potential clinical application. Some of these regulators have been shown to be effective in the treatment of essential thrombocythaemia and other myeloproliferative disorders. Platelet factor 4 (PF4) and some other chemokines are also capable of protecting progenitor cells from the cytotoxicity of chemotherapeutic drugs. However, detailed investigations are still required to determine the precise mechanism(s) of action of these regulators and to establish the optimal clinical protocols of negative regulators alone or in association with positive regulators for the treatment of various

  20. Phosphoinositides regulate ion channels

    PubMed Central

    Hille, Bertil; Dickson, Eamonn J.; Kruse, Martin; Vivas, Oscar; Suh, Byung-Chang

    2014-01-01

    Phosphoinositides serve as signature motifs for different cellular membranes and often are required for the function of membrane proteins. Here, we summarize clear evidence supporting the concept that many ion channels are regulated by membrane phosphoinositides. We describe tools used to test their dependence on phosphoinositides, especially phosphatidylinositol 4,5-bisphosphate, and consider mechanisms and biological meanings of phosphoinositide regulation of ion channels. This lipid regulation can underlie changes of channel activity and electrical excitability in response to receptors. Since different intracellular membranes have different lipid compositions, the activity of ion channels still in transit towards their final destination membrane may be suppressed until they reach an optimal lipid environment. PMID:25241941

  1. HIGH PRESSURE GAS REGULATOR

    DOEpatents

    Ramage, R.W.

    1962-05-01

    A gas regulator operating on the piston and feedback principle is described. The device is particularly suitable for the delicate regulation of high pressure, i.e., 10,000 psi and above, gas sources, as well as being perfectly adaptable for use on gas supplies as low as 50 psi. The piston is adjustably connected to a needle valve and the movement of the piston regulates the flow of gas from the needle valve. The gas output is obtained from the needle valve. Output pressure is sampled by a piston feedback means which, in turn, regulates the movement of the main piston. When the output is other than the desired value, the feedback system initiates movement of the main piston to allow the output pressure to be corrected or to remain constant. (AEC)

  2. R2 REGULATED FACILITIES

    EPA Science Inventory

    The Facility Registry System (FRS) is a centrally managed database that identifies facilities, sites or places subject to environmental regulations or of environmental interest. FRS creates high-quality, accurate, and authoritative facility identification records through rigorous...

  3. Proposed EEOC Regulations.

    ERIC Educational Resources Information Center

    Farrell, Michael

    1978-01-01

    This article explains how proposed Equal Employment Opportunity Commission (EEOC) regulations attempt to circumvent the case of Weber vs Kaiser Aluminum Corp. by providing employers with backpay immunity in reverse discrimination suits. (Author)

  4. On regulating perceived risk.

    PubMed

    van Andel, F G

    1985-01-01

    Modern society increasingly depends on government regulation to manage risks. Until recently, evaluation of risks of technology was primarily considered a technical problem. However, public controversy has politicized the issue of risk, raising questions about the role of experts. This paper briefly explores the nature of technical risks of aircraft, nuclear energy and medicines. It is contended that in the case of aircraft intensive regulation has led to a measurable improvement of its safety record. The constant call for more regulation in the areas of medicines and nuclear energy on the other hand seems more the result of public controversy, since the actual effect of regulatory measures on safety is too difficult to show. This stresses the important role of the media, a theme, which is elaborated by reviewing a number of cases. The general conclusion is concerned with the notion that public pressure is the only rationale which makes regulators step in. Regulatory decision-making about risk, then, is more anecdotal than systematic, because public controversy is unpredictable. As a consequence regulators can no longer seek to minimize harm, but must now move towards the aim of minimizing perceived harm. Finally, in the light of this assumption, some thought is given to costs and benefits of medicines and nuclear energy. It is appropriate to make a strong case for medicines in this context, for, as opposed to nuclear energy, alternatives are usually not available. PMID:10271778

  5. Mechanisms Regulating Protein Localization.

    PubMed

    Bauer, Nicholas C; Doetsch, Paul W; Corbett, Anita H

    2015-10-01

    Cellular functions are dictated by protein content and activity. There are numerous strategies to regulate proteins varying from modulating gene expression to post-translational modifications. One commonly used mode of regulation in eukaryotes is targeted localization. By specifically redirecting the localization of a pool of existing protein, cells can achieve rapid changes in local protein function. Eukaryotic cells have evolved elegant targeting pathways to direct proteins to the appropriate cellular location or locations. Here, we provide a general overview of these localization pathways, with a focus on nuclear and mitochondrial transport, and present a survey of the evolutionarily conserved regulatory strategies identified thus far. We end with a description of several specific examples of proteins that exploit localization as an important mode of regulation. PMID:26172624

  6. Androgen receptor genomic regulation

    PubMed Central

    Jin, Hong-Jian; Kim, Jung

    2013-01-01

    The transcriptional activity of the androgen receptor (AR) is not only critical for the normal development and function of the prostate but also pivotal to the onset and progression of prostate cancer (PCa). The studies of AR transcriptional regulation were previously limited to a handful of AR-target genes. Owing to the development of various high-throughput genomic technologies, significant advances have been made in recent years. Here we discuss the discoveries of genome-wide androgen-regulated genes in PCa cell lines, animal models and tissues using expression microarray and sequencing, the mapping of genomic landscapes of AR using Combining Chromatin Immunoprecipitation (ChIP)-on-chip and ChIP-seq assays, the interplay of transcriptional cofactors in defining AR binding profiles, and the genomic regulation and AR reprogramming in advanced PCa. PMID:25237629

  7. Environmentally regulated aerospace coatings

    NASA Technical Reports Server (NTRS)

    Morris, Virginia L.

    1995-01-01

    Aerospace coatings represent a complex technology which must meet stringent performance requirements in the protection of aerospace vehicles. Topcoats and primers are used, primarily, to protect the structural elements of the air vehicle from exposure to and subsequent degradation by environmental elements. There are also many coatings which perform special functions, i.e., chafing resistance, rain erosion resistance, radiation and electric effects, fuel tank coatings, maskants, wire and fastener coatings. The scheduled promulgation of federal environmental regulations for aerospace manufacture and rework materials and processes will regulate the emissions of photochemically reactive precursors to smog and air toxics. Aerospace organizations will be required to identify, qualify and implement less polluting materials. The elimination of ozone depleting chemicals (ODC's) and implementation of pollution prevention requirements are added constraints which must be addressed concurrently. The broad categories of operations affected are the manufacture, operation, maintenance, and repair of military, commercial, general aviation, and space vehicles. The federal aerospace regulations were developed around the precept that technology had to be available to support the reduction of organic and air toxic emissions, i.e., the regulations cannot be technology forcing. In many cases, the regulations which are currently in effect in the South Coast Air Quality Management District (SCAQMD), located in Southern California, were used as the baseline for the federal regulations. This paper addresses strategies used by Southern California aerospace organizations to cope with these regulatory impacts on aerospace productions programs. All of these regulatory changes are scheduled for implementation in 1993 and 1994, with varying compliance dates established.

  8. Nuclear regulation and safety

    SciTech Connect

    Hendrie, J.M.

    1982-01-01

    Nuclear regulation and safety are discussed from the standpoint of a hypothetical country that is in the process of introducing a nuclear power industry and setting up a regulatory system. The national policy is assumed to be in favor of nuclear power. The regulators will have responsibility for economic, reliable electric production as well as for safety. Reactor safety is divided into three parts: shut it down, keep it covered, take out the afterheat. Emergency plans also have to be provided. Ways of keeping the core covered with water are discussed. (DLC)

  9. Search for reasonable regulations

    SciTech Connect

    Latz, J.

    1985-06-01

    The Linowes Commission recommendation that penalties be imposed to improve record keeping and security at production sites on federal and Indian lands led to the Federal Oil and Gas Royalty Management Act. The author outlines the background and provisions of the act. Public hearings to receive comments raised concerns that the regulations exceeded congressional intent and were too inflexible. The Bureau of Land Management responded with modifications which help to clarify and simplify the regulations and to eliminate automatic penalties. The next step is for the states to respond to the proposed rules and procedures.

  10. Regulation of plasminogen receptors.

    PubMed

    Herren, Thomas; Swaisgood, Carmen; Plow, Edward F

    2003-01-01

    Many eukaryotic and prokaryotic cells bind plasminogen in a specific and saturable manner. When plasminogen is bound to cell-surface proteins with C-terminal lysines via its lysine binding sites, its activation to plasmin is accelerated, and cell-bound plasmin is protected from inactivation by natural inhibitors. Plasmin mediates direct or indirect degradation of the extracellular matrix, and bound plasmin is used by cells to facilitate migration through extracellular matrices. Since cell migration and tissue remodelling are the underpinnings of many physiological and pathological responses, the modulation of plasminogen receptors may serve as a primary regulatory mechanism for control of many cellular responses. Specific examples of cell types on which plasminogen receptors undergo modulation include: fibroblasts, where modulation may contribute to cartilage and bone destruction in rheumatoid arthritis; leukemic cells, where enhanced plasminogen binding may contribute to the heightened fibrinolytic state in the patients; other tumor cells, where up-regulation may support invasion and metastasis; bacteria, where enhanced plasminogen binding may facilitate tissue destruction and invasion; platelets, where up-regulation of plasminogen binding may play a role in regulating clot lysis; and adipocytes, where the modulation of plasminogen receptor expression may regulate cell differentiation and fat accumulation. Two pathways for modulation of plasminogen receptors have been characterized: A protease-dependent pathway can either up-regulate or down-regulate plasminogen binding to cells by changing the availability of plasminogen-binding proteins with C-terminal lysines. New receptors may be generated by trypsin-like proteases, including plasmin, which create new C-terminal lysines; other enzymes may expose existing membrane proteins by altering the cell surface; or receptor function may be lost by removal of C-terminal lysines. The basic carboxypeptidases of blood

  11. The Impact of Regulating Social Science Research with Biomedical Regulations

    ERIC Educational Resources Information Center

    Durosinmi, Brenda Braxton

    2011-01-01

    The Impact of Regulating Social Science Research with Biomedical Regulations Since 1974 Federal regulations have governed the use of human subjects in biomedical and social science research. The regulations are known as the Federal Policy for the Protection of Human Subjects, and often referred to as the "Common Rule" because 18 Federal…

  12. Other-Regulation in Collaborative Groups: Implications for Regulation Quality

    ERIC Educational Resources Information Center

    Rogat, Toni Kempler; Adams-Wiggins, Karlyn R.

    2014-01-01

    The current study examines variation in other-regulation, conceptualized as efforts by one student to regulate their group's work. This study extends research which has conceptualized other-regulation as temporarily guiding others' conceptual understanding and skill development by broadening the spectrum of other-regulation to include…

  13. Regulation and Markets

    ERIC Educational Resources Information Center

    Gardner, Margaret; Wells, Julie

    2007-01-01

    There has been much critical comment in recent years about the tensions between the regulation imposed on public universities and the flexibility needed to compete effectively in international and national markets for students and funding. In the partisan world of politics each side points the finger at the other as the author of "too much"…

  14. METABOLIC PATHWAY REGULATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research efforts in the past two decades have revealed the complex mechanisms employed by fungi to control gene activity. The tremendous expansion in our knowledge of the regulation of nitrogen metabolism and carbon metabolism, due largely to the powerful combination of genetics, biochemistry, and ...

  15. HIGH VOLTAGE REGULATOR

    DOEpatents

    Wright, B.T.

    1959-06-01

    A high voltage regulator for use with calutrons is described which rapidly restores accelerating voltage after a sudden drop such as is caused by sparking. The rapid restoration characteristic prevents excessive contamination of lighter mass receiver pockets by the heavier mass portion of the beam. (T.R.H.)

  16. Regulation of Energy Balance.

    ERIC Educational Resources Information Center

    Bray, George A.

    1985-01-01

    Explains relationships between energy intake and expenditure focusing on the cellular, chemical and neural mechanisms involved in regulation of energy balance. Information is referenced specifically to conditions of obesity. (Physicians may earn continuing education credit by completing an appended test). (ML)

  17. Focus on PTEN Regulation

    PubMed Central

    Bermúdez Brito, Miriam; Goulielmaki, Evangelia; Papakonstanti, Evangelia A.

    2015-01-01

    The role of phosphatase and tensin homolog on chromosome 10 (PTEN) as a tumor suppressor has been for a long time attributed to its lipid phosphatase activity against PI(3,4,5)P3, the phospholipid product of the class I PI3Ks. Besides its traditional role as a lipid phosphatase at the plasma membrane, a wealth of data has shown that PTEN can function independently of its phosphatase activity and that PTEN also exists and plays a role in the nucleus, in cytoplasmic organelles, and extracellularly. Accumulating evidence has shed light on diverse physiological functions of PTEN, which are accompanied by a complex regulation of its expression and activity. PTEN levels and function are regulated transcriptionally, post-transcriptionally, and post-translationally. PTEN is also sensitive to regulation by its interacting proteins and its localization. Herein, we summarize the current knowledge on mechanisms that regulate the expression and enzymatic activity of PTEN and its role in human diseases. PMID:26284192

  18. Lightweight Regulated Power Supply

    NASA Technical Reports Server (NTRS)

    Mclyman, C. W.

    1985-01-01

    Power-supply circuit regulates output voltage by adjusting frequency of chopper circuit according to variations. Currently installed in battery charger for electric wheelchair, circuit is well suited to other uses in which light weight is important - for example, in portable computers, radios, and test instruments.

  19. Metabolic regulation of yeast

    NASA Astrophysics Data System (ADS)

    Fiechter, A.

    1982-12-01

    Metabolic regulation which is based on endogeneous and exogeneous process variables which may act constantly or time dependently on the living cell is discussed. The observed phenomena of the regulation are the result of physical, chemical, and biological parameters. These parameters are identified. Ethanol is accumulated as an intermediate product and the synthesis of biomass is reduced. This regulatory effect of glucose is used for the aerobic production of ethanol. Very high production rates are thereby obtained. Understanding of the regulation mechanism of the glucose effect has improved. In addition to catabolite repression, several other mechanisms of enzyme regulation have been described, that are mostly governed by exogeneous factors. Glucose also affects the control of respiration in a third class of yeasts which are unable to make use of ethanol as a substrate for growth. This is due to the lack of any anaplerotic activity. As a consequence, diauxic growth behavior is reduced to a one-stage growth with a drastically reduced cell yield. The pulse chemostat technique, a systematic approach for medium design is developed and medium supplements that are essential for metabolic control are identified.

  20. Growth regulation of cancer

    SciTech Connect

    Lippman, M.E. )

    1988-01-01

    This book contains proceedings of an Ortho-UCLA Symposium on growth regulation of cancer. Included are the following chapters: Swiss 3T3 mouse embryo fibroblasts transfected with a human Prepro-GRP gene synthesize and secrete Pro-GRP rather than GRP, proto-oncogenes as mediators of growth and development: discussion summary, animal studies and clinical trials.

  1. Regulating the Internet

    ERIC Educational Resources Information Center

    Anderson, Byron

    2007-01-01

    The Internet's breakthrough to primetime usage beginning in the mid-1990s evolved in an era of openness. Unfettered access seemed key to Internet development. An important foundation for the 1996 Telecommunications Act was the theory that the telecom industry would work best if it were free of government regulation, a guiding principle that has…

  2. Lysosomal Trafficking Regulator (LYST).

    PubMed

    Ji, Xiaojie; Chang, Bo; Naggert, Jürgen K; Nishina, Patsy M

    2016-01-01

    Regulation of vesicle trafficking to lysosomes and lysosome-related organelles (LROs) as well as regulation of the size of these organelles are critical to maintain their functions. Disruption of the lysosomal trafficking regulator (LYST) results in Chediak-Higashi syndrome (CHS), a rare autosomal recessive disorder characterized by oculocutaneous albinism, prolonged bleeding, severe immunodeficiency, recurrent bacterial infection, neurologic dysfunction and hemophagocytic lympohistiocytosis (HLH). The classic diagnostic feature of the syndrome is enlarged LROs in all cell types, including lysosomes, melanosomes, cytolytic granules and platelet dense bodies. The most striking CHS ocular pathology observed is an enlargement of melanosomes in the retinal pigment epithelium (RPE), which leads to aberrant distribution of eye pigmentation, and results in photophobia and decreased visual acuity. Understanding the molecular function of LYST and identification of its interacting partners may provide therapeutic targets for CHS and other diseases associated with the regulation of LRO size and/or vesicle trafficking, such as asthma, urticaria and Leishmania amazonensis infections. PMID:26427484

  3. ELECTRON EMISSION REGULATING MEANS

    DOEpatents

    Brenholdt, I.R.

    1957-11-19

    >An electronic regulating system is described for controlling the electron emission of a cathode, for example, the cathode in a mass spectrometer. The system incorporates a transformer having a first secondary winding for the above-mentioned cathode and a second secondary winding for the above-mentioned cathode and a second secondary winding load by grid controlled vacuum tubes. A portion of the electron current emitted by the cathode is passed through a network which develops a feedback signal. The system arrangement is completed by using the feedback signal to control the vacuum tubes in the second secondary winding through a regulator tube. When a change in cathode emission occurs, the feedback signal acts to correct this change by adjusting the load on the transformer.

  4. Regulation of Meiotic Recombination

    SciTech Connect

    Gregory p. Copenhaver

    2011-11-09

    Meiotic recombination results in the heritable rearrangement of DNA, primarily through reciprocal exchange between homologous chromosome or gene conversion. In plants these events are critical for ensuring proper chromosome segregation, facilitating DNA repair and providing a basis for genetic diversity. Understanding this fundamental biological mechanism will directly facilitate trait mapping, conventional plant breeding, and development of genetic engineering techniques that will help support the responsible production and conversion of renewable resources for fuels, chemicals, and the conservation of energy (1-3). Substantial progress has been made in understanding the basal recombination machinery, much of which is conserved in organisms as diverse as yeast, plants and mammals (4, 5). Significantly less is known about the factors that regulate how often and where that basal machinery acts on higher eukaryotic chromosomes. One important mechanism for regulating the frequency and distribution of meiotic recombination is crossover interference - or the ability of one recombination event to influence nearby events. The MUS81 gene is thought to play an important role in regulating the influence of interference on crossing over. The immediate goals of this project are to use reverse genetics to identify mutants in two putative MUS81 homologs in the model plant Arabidopsis thaliana, characterize those mutants and initiate a novel forward genetic screen for additional regulators of meiotic recombination. The long-term goal of the project is to understand how meiotic recombination is regulated in higher eukaryotes with an emphasis on the molecular basis of crossover interference. The ability to monitor recombination in all four meiotic products (tetrad analysis) has been a powerful tool in the arsenal of yeast geneticists. Previously, the qrt mutant of Arabidopsis, which causes the four pollen products of male meiosis to remain attached, was developed as a facile system

  5. Siglecs and Immune Regulation

    PubMed Central

    Pillai, Shiv; Netravali, Ilka Arun; Cariappa, Annaiah; Mattoo, Hamid

    2013-01-01

    Sialic acid binding Ig-like lectins or Siglecs vary in their specificity for sialic acid containing ligands and are mainly expressed by cells of the immune system. Many siglecs are inhibitory receptors expressed in innate immune cells that regulate inflammation mediated by DAMPs and PAMPs. This family also includes molecules involved in adhesion and phagocytosis and receptors that can associate with the ITAM containing DAP12 adaptor. Siglecs contribute to the inhibition of immune cells both by binding to cis-ligands (expressed in the same cells) as well as by responding to pathogen derived sialoglycoconjugates. They can help maintain tolerance in B lymphocytes, modulate the activation of conventional and plasmacytoid dendritic cells, and contribute to the regulation of T cell function both directly and indirectly. Siglecs modulate immune responses influencing almost every cell in the immune system, and are of relevance both in health and disease. PMID:22224769

  6. Regulation of inflammasome signaling

    PubMed Central

    Rathinam, Vijay A K; Vanaja, Sivapriya Kailasan; Fitzgerald, Katherine A

    2012-01-01

    Innate immune responses have the ability to both combat infectious microbes and drive pathological inflammation. Inflammasome complexes are a central component of these processes through their regulation of interleukin 1β (IL-1β), IL-18 and pyroptosis. Inflammasomes recognize microbial products or endogenous molecules released from damaged or dying cells both through direct binding of ligands and indirect mechanisms. The potential of the IL-1 family of cytokines to cause tissue damage and chronic inflammation emphasizes the importance of regulating inflammasomes. Many regulatory mechanisms have been identified that act as checkpoints for attenuating inflammasome signaling at multiple steps. Here we discuss the various regulatory mechanisms that have evolved to keep inflammasome signaling in check to maintain immunological balance. PMID:22430786

  7. Redox regulated peroxisome homeostasis

    PubMed Central

    Wang, Xiaofeng; Li, Shuo; Liu, Yu; Ma, Changle

    2014-01-01

    Peroxisomes are ubiquitous organelles present in nearly all eukaryotic cells. Conserved functions of peroxisomes encompass beta-oxidation of fatty acids and scavenging of reactive oxygen species generated from diverse peroxisomal metabolic pathways. Peroxisome content, number, and size can change quickly in response to environmental and/or developmental cues. To achieve efficient peroxisome homeostasis, peroxisome biogenesis and degradation must be orchestrated. We review the current knowledge on redox regulated peroxisome biogenesis and degradation with an emphasis on yeasts and plants. PMID:25545794

  8. Fibrinogen gene regulation.

    PubMed

    Fish, Richard J; Neerman-Arbez, Marguerite

    2012-09-01

    The Aα, Bβ and γ polypeptide chains of fibrinogen are encoded by a three gene cluster on human chromosome four. The fibrinogen genes (FGB-FGA-FGG) are expressed almost exclusively in hepatocytes where their output is coordinated to ensure a sufficient mRNA pool for each chain and maintain an abundant plasma fibrinogen protein level. Fibrinogen gene expression is controlled by the activity of proximal promoters which contain binding sites for hepatocyte transcription factors, including proteins which influence fibrinogen transcription in response to acute-phase inflammatory stimuli. The fibrinogen gene cluster also contains cis regulatory elements; enhancer sequences with liver activities identified by sequence conservation and functional genomics. While the transcriptional control of this gene cluster is fascinating biology, the medical impetus to understand fibrinogen gene regulation stems from the association of cardiovascular disease risk with high level circulating fibrinogen. In the general population this level varies from about 1.5 to 3.5 g/l. This variation between individuals is influenced by genotype, suggesting there are genetic variants contributing to fibrinogen levels which reside in fibrinogen regulatory loci. A complete picture of how fibrinogen genes are regulated will therefore point towards novel sources of regulatory variants. In this review we discuss regulation of the fibrinogen genes from proximal promoters and enhancers, the influence of acute-phase stimulation, post-transcriptional regulation by miRNAs and functional regulatory variants identified in genetic studies. Finally, we discuss the fibrinogen locus in light of recent advances in understanding chromosomal architecture and suggest future directions for researching the mechanisms that control fibrinogen expression. PMID:22836683

  9. Regulating Telecommunications in Europe

    NASA Astrophysics Data System (ADS)

    Cave, Martin

    This chapter describes and assesses the new regime for regulating electronic communications services, which came into force in Europe in July 2003. The first two sections describe, respectively, the previous regime (the 1998 package) and the new regime. The third section discusses experience of the new system up to the end of 2007,1 whereas the fourth evaluates its operation and the plans, already in place, to reform it.

  10. Redox regulated peroxisome homeostasis.

    PubMed

    Wang, Xiaofeng; Li, Shuo; Liu, Yu; Ma, Changle

    2015-01-01

    Peroxisomes are ubiquitous organelles present in nearly all eukaryotic cells. Conserved functions of peroxisomes encompass beta-oxidation of fatty acids and scavenging of reactive oxygen species generated from diverse peroxisomal metabolic pathways. Peroxisome content, number, and size can change quickly in response to environmental and/or developmental cues. To achieve efficient peroxisome homeostasis, peroxisome biogenesis and degradation must be orchestrated. We review the current knowledge on redox regulated peroxisome biogenesis and degradation with an emphasis on yeasts and plants. PMID:25545794

  11. Ensembl regulation resources.

    PubMed

    Zerbino, Daniel R; Johnson, Nathan; Juetteman, Thomas; Sheppard, Dan; Wilder, Steven P; Lavidas, Ilias; Nuhn, Michael; Perry, Emily; Raffaillac-Desfosses, Quentin; Sobral, Daniel; Keefe, Damian; Gräf, Stefan; Ahmed, Ikhlak; Kinsella, Rhoda; Pritchard, Bethan; Brent, Simon; Amode, Ridwan; Parker, Anne; Trevanion, Steven; Birney, Ewan; Dunham, Ian; Flicek, Paul

    2016-01-01

    New experimental techniques in epigenomics allow researchers to assay a diversity of highly dynamic features such as histone marks, DNA modifications or chromatin structure. The study of their fluctuations should provide insights into gene expression regulation, cell differentiation and disease. The Ensembl project collects and maintains the Ensembl regulation data resources on epigenetic marks, transcription factor binding and DNA methylation for human and mouse, as well as microarray probe mappings and annotations for a variety of chordate genomes. From this data, we produce a functional annotation of the regulatory elements along the human and mouse genomes with plans to expand to other species as data becomes available. Starting from well-studied cell lines, we will progressively expand our library of measurements to a greater variety of samples. Ensembl's regulation resources provide a central and easy-to-query repository for reference epigenomes. As with all Ensembl data, it is freely available at http://www.ensembl.org, from the Perl and REST APIs and from the public Ensembl MySQL database server at ensembldb.ensembl.org. Database URL: http://www.ensembl.org. PMID:26888907

  12. Restructuring nuclear regulations.

    PubMed Central

    Mossman, Kenneth L

    2003-01-01

    Nuclear regulations are a subset of social regulations (laws to control activities that may negatively impact the environment, health, and safety) that concern control of ionizing radiation from radiation-producing equipment and from radioactive materials. The impressive safety record among nuclear technologies is due, in no small part, to the work of radiation safety professionals and to a protection system that has kept pace with the rapid technologic advancements in electric power generation, engineering, and medicine. The price of success, however, has led to a regulatory organization and philosophy characterized by complexity, confusion, public fear, and increasing economic costs. Over the past 20 years, regulatory costs in the nuclear sector have increased more than 250% in constant 1995 U.S. dollars. Costs of regulatory compliance can be reduced sharply, particularly when health and environmental benefits of risk reduction are questionable. Three key regulatory areas should be closely examined and modified to improve regulatory effectiveness and efficiency: a) radiation protection should be changed from a risk-based to dose-based system; b) the U.S. government should adopt the modern metric system (International System of Units), and radiation quantities and units should be simplified to facilitate international communication and public understanding; and c) a single, independent office is needed to coordinate nuclear regulations established by U.S. federal agencies and departments. PMID:12515683

  13. Aboveground storage tank regulations

    SciTech Connect

    Geyer, W. )

    1993-01-01

    There are critical differences between the potential for environmental impact of aboveground and underground oil storage. For example, while leaks from underground storage tanks (USTs) seep into soil or aquifers, the concern with aboveground storage tanks (ASTs) is that an overfill or tank rupture can cause product to escape into a navigable stream and immediately create an oil spill pollution incident. The US Environmental Protection Agency (EPA) has very distinct programs outlining regulation parameters for each type of storage, including source of authority, regulatory cutoffs and exclusions, definitions, prevention and response requirements, and penalties, etc. Engineers considering changes or recommending a change in type of storage, particularly from a UST to an AST, need to be aware of existing federal regulations. Since the federal UST program began, remediation costs have skyrocketed as a result of the need to clean up leaking tank and piping sites, backfill and surrounding soil or groundwater. Compliance with federal and state UST regulations has not been cheap, and is expected to top $23 billion, according to some estimates. Partly as a result, market demand has shifted toward use of aboveground storage tanks, a trend that is expected to continue. Industry figures show a 100% increase in factory fabricated aboveground tank activity during the last four years.

  14. Ensembl regulation resources

    PubMed Central

    Zerbino, Daniel R.; Johnson, Nathan; Juetteman, Thomas; Sheppard, Dan; Wilder, Steven P.; Lavidas, Ilias; Nuhn, Michael; Perry, Emily; Raffaillac-Desfosses, Quentin; Sobral, Daniel; Keefe, Damian; Gräf, Stefan; Ahmed, Ikhlak; Kinsella, Rhoda; Pritchard, Bethan; Brent, Simon; Amode, Ridwan; Parker, Anne; Trevanion, Steven; Birney, Ewan; Dunham, Ian; Flicek, Paul

    2016-01-01

    New experimental techniques in epigenomics allow researchers to assay a diversity of highly dynamic features such as histone marks, DNA modifications or chromatin structure. The study of their fluctuations should provide insights into gene expression regulation, cell differentiation and disease. The Ensembl project collects and maintains the Ensembl regulation data resources on epigenetic marks, transcription factor binding and DNA methylation for human and mouse, as well as microarray probe mappings and annotations for a variety of chordate genomes. From this data, we produce a functional annotation of the regulatory elements along the human and mouse genomes with plans to expand to other species as data becomes available. Starting from well-studied cell lines, we will progressively expand our library of measurements to a greater variety of samples. Ensembl’s regulation resources provide a central and easy-to-query repository for reference epigenomes. As with all Ensembl data, it is freely available at http://www.ensembl.org, from the Perl and REST APIs and from the public Ensembl MySQL database server at ensembldb.ensembl.org. Database URL: http://www.ensembl.org PMID:26888907

  15. Regulation reform slows down

    SciTech Connect

    1995-03-29

    Regulatory reformers in Congress are easing off the accelerator as they recognize that some of their more far-reaching proposals lack sufficient support to win passage. Last week the proposed one-year moratorium on new regulations was set back in the Senate by it main sponsor, Sen. Non Nickles (R., OK), who now seeks to replace it with a more moderate bill. Nickel`s substitute bill would give Congress 45 days after a regulation is issued to decide whether to reject it. It also retroactively allows for review of 80 regulations issued since last November 9, 1994. Asked how his new proposal is superior to a moratorium, which is sharply opposed by the Clinton Administration, Nickles says he thinks it is better because its permanent. The Chemical Manufacturer`s Association (CMA) has not publicly made a regulatory moratorium a top priority, but has quietly supported it by joining with other industry groups lobbying on the issue. A moratorium would halt EPA expansion of the Toxics Release Inventory (TRI) and alloys the delisting of several TRI chemicals.

  16. Flow compensating pressure regulator

    NASA Technical Reports Server (NTRS)

    Baehr, E. F. (Inventor)

    1978-01-01

    An apparatus for regulating pressure of treatment fluid during ophthalmic procedures is described. Flow sensing and pressure regulating diaphragms are used to modulate a flow control valve. The pressure regulating diaphragm is connected to the flow control valve to urge the valve to an open position due to pressure being applied to the diaphragm by bias means such as a spring. The flow sensing diaphragm is mechanically connected to the flow control valve and urges it to an opened position because of the differential pressure on the diaphragm generated by a flow of incoming treatment fluid through an orifice in the diaphragm. A bypass connection with a variable restriction is connected in parallel relationship to the orifice to provide for adjusting the sensitivity of the flow sensing diaphragm. A multiple lever linkage system is utilized between the center of the second diaphragm and the flow control valve to multiply the force applied to the valve by the other diaphragm and reverse the direction of the force.

  17. Taiwan Regulation of Biobanks.

    PubMed

    Fan, Chien-Te; Hung, Tzu-Hsun; Yeh, Chan-Kun

    2015-01-01

    This paper introduces legal framework and governance structure in relation to the management and development of biobanks in Taiwan. At first, we briefly describe Taiwan's population, political system and health care system. Secondly, this research introduces biobanking framework of Taiwan including 25 biobanks established with the approval of the Ministry of Health and Welfare. In those biobanks, "Taiwan Biobank" is the first and the largest government-supported biobank which comprises population-based cohort study and disease- oriented study. Since the collection of information, data, and biological specimen of biobanks often involve highly sensitive personal information, in the legal framework of Taiwan, there is a specific regulation, "Human Biobank Management Act" (HBMA), which plays an important role in regulating biobanks in Taiwan. HBMA, the Personal Information Act and other regulations constitute a comprehensive legal and regulatory privacy framework of biobanks. Through the introduction and analysis of the current legal framework applicable to biobanks, we found that there are several challenges that need to be solved appropriately that involve duplicate review systems, the obstacles in the international collaboration, and data sharing between biobanks in Taiwan. PMID:26711420

  18. Improving CS regulations.

    SciTech Connect

    Nesse, R.J.; Scheer, R.M.; Marasco, A.L.; Furey, R.

    1980-10-01

    President Carter issued Executive Order 12044 (3/28/78) that required all Federal agencies to distinguish between significant and insignificant regulations, and to determine whether a regulation will result in major impacts. This study gathered information on the impact of the order and the guidelines on the Office of Conservation and Solar Energy (CS) regulatory practices, investigated problems encountered by the CS staff when implementing the order and guidelines, and recommended solutions to resolve these problems. Major tasks accomplished and discussed are: (1) legislation, Executive Orders, and DOE Memoranda concerning Federal administrative procedures relevant to the development and analysis of regulations within CS reviewed; (2) relevant DOE Orders and Memoranda analyzed and key DOE and CS staff interviewed in order to accurately describe the current CS regulatory process; (3) DOE staff from the Office of the General Counsel, the Office of Policy and Evaluation, the Office of the Environment, and the Office of the Secretary interviewed to explore issues and problems encountered with current CS regulatory practices; (4) the regulatory processes at five other Federal agencies reviewed in order to see how other agencies have approached the regulatory process, dealt with specific regulatory problems, and responded to the Executive Order; and (5) based on the results of the preceding four tasks, recommendations for potential solutions to the CS regulatory problems developed. (MCW)

  19. Regulation of adipocyte lipolysis.

    PubMed

    Frühbeck, Gema; Méndez-Giménez, Leire; Fernández-Formoso, José-Antonio; Fernández, Secundino; Rodríguez, Amaia

    2014-06-01

    In adipocytes the hydrolysis of TAG to produce fatty acids and glycerol under fasting conditions or times of elevated energy demands is tightly regulated by neuroendocrine signals, resulting in the activation of lipolytic enzymes. Among the classic regulators of lipolysis, adrenergic stimulation and the insulin-mediated control of lipid mobilisation are the best known. Initially, hormone-sensitive lipase (HSL) was thought to be the rate-limiting enzyme of the first lipolytic step, while we now know that adipocyte TAG lipase is the key enzyme for lipolysis initiation. Pivotal, previously unsuspected components have also been identified at the protective interface of the lipid droplet surface and in the signalling pathways that control lipolysis. Perilipin, comparative gene identification-58 (CGI-58) and other proteins of the lipid droplet surface are currently known to be key regulators of the lipolytic machinery, protecting or exposing the TAG core of the droplet to lipases. The neuroendocrine control of lipolysis is prototypically exerted by catecholaminergic stimulation and insulin-induced suppression, both of which affect cyclic AMP levels and hence the protein kinase A-mediated phosphorylation of HSL and perilipin. Interestingly, in recent decades adipose tissue has been shown to secrete a large number of adipokines, which exert direct effects on lipolysis, while adipocytes reportedly express a wide range of receptors for signals involved in lipid mobilisation. Recently recognised mediators of lipolysis include some adipokines, structural membrane proteins, atrial natriuretic peptides, AMP-activated protein kinase and mitogen-activated protein kinase. Lipolysis needs to be reanalysed from the broader perspective of its specific physiological or pathological context since basal or stimulated lipolytic rates occur under diverse conditions and by different mechanisms. PMID:24872083

  20. Gastrointestinal hormones regulating appetite.

    PubMed

    Chaudhri, Owais; Small, Caroline; Bloom, Steve

    2006-07-29

    The role of gastrointestinal hormones in the regulation of appetite is reviewed. The gastrointestinal tract is the largest endocrine organ in the body. Gut hormones function to optimize the process of digestion and absorption of nutrients by the gut. In this capacity, their local effects on gastrointestinal motility and secretion have been well characterized. By altering the rate at which nutrients are delivered to compartments of the alimentary canal, the control of food intake arguably constitutes another point at which intervention may promote efficient digestion and nutrient uptake. In recent decades, gut hormones have come to occupy a central place in the complex neuroendocrine interactions that underlie the regulation of energy balance. Many gut peptides have been shown to influence energy intake. The most well studied in this regard are cholecystokinin (CCK), pancreatic polypeptide, peptide YY, glucagon-like peptide-1 (GLP-1), oxyntomodulin and ghrelin. With the exception of ghrelin, these hormones act to increase satiety and decrease food intake. The mechanisms by which gut hormones modify feeding are the subject of ongoing investigation. Local effects such as the inhibition of gastric emptying might contribute to the decrease in energy intake. Activation of mechanoreceptors as a result of gastric distension may inhibit further food intake via neural reflex arcs. Circulating gut hormones have also been shown to act directly on neurons in hypothalamic and brainstem centres of appetite control. The median eminence and area postrema are characterized by a deficiency of the blood-brain barrier. Some investigators argue that this renders neighbouring structures, such as the arcuate nucleus of the hypothalamus and the nucleus of the tractus solitarius in the brainstem, susceptible to influence by circulating factors. Extensive reciprocal connections exist between these areas and the hypothalamic paraventricular nucleus and other energy-regulating centres of the

  1. [Regulation of terpene metabolism

    SciTech Connect

    Croteau, R.

    1992-01-01

    This report describes accomplishments over the past year on understanding of terpene synthesis in mint plants and sage. Specifically reported are the fractionation of 4-S-limonene synthetase, the enzyme responsible for the first committed step to monoterpene synthesis, along with isolation of the corresponding RNA and DNA cloning of its gene; the localization of the enzyme within the oil glands, regulation of transcription and translation of the synthetase, the pathway to camphor biosynthesis,a nd studies on the early stages and branch points of the isoprenoid pathway.

  2. Genes and gene regulation

    SciTech Connect

    MacLean, N.

    1988-01-01

    Genetics has long been a central topic for biologists, and recent progress has captured the public imagination as well. This book addresses questions that are at the leading edge of this continually advancing discipline. In tune with the increasing emphasis on molecular biology and genetic engineering, this text emphasizes the molecular aspects of gene expression, and the evolution of gene sequence organization and control. It reviews the genetic material of viruses, bacteria, and of higher organisms. Cells and organisms are compared in terms of gene numbers, their arrangements within a cell, and the control mechanisms which regulate the activity of genes.

  3. Self-regulating valve

    DOEpatents

    Humphreys, D.A.

    1982-07-20

    A variable, self-regulating valve having a hydraulic loss coefficient proportional to a positive exponential power of the flow rate. The device includes two objects in a flow channel and structure which assures that the distance between the two objects is an increasing function of the flow rate. The range of spacing between the objects is such that the hydraulic resistance of the valve is an increasing function of the distance between the two objects so that the desired hydraulic loss coefficient as a function of flow rate is obtained without variation in the flow area.

  4. REGULATION OF VASCULOGENESIS AND ANGIOGENESIS

    EPA Science Inventory

    Regulation of vasculogenesis and angiogenesis.
    B.D. Abbott
    Reproductive Toxicology Division, Environmental Protection Agency, Research Triangle Park, North Carolina, USA
    Vasculogenesis and angiogenesis are regulated by a complex, interactive family of receptors and lig...

  5. Circadian molecular clock in lung pathophysiology.

    PubMed

    Sundar, Isaac K; Yao, Hongwei; Sellix, Michael T; Rahman, Irfan

    2015-11-15

    Disrupted daily or circadian rhythms of lung function and inflammatory responses are common features of chronic airway diseases. At the molecular level these circadian rhythms depend on the activity of an autoregulatory feedback loop oscillator of clock gene transcription factors, including the BMAL1:CLOCK activator complex and the repressors PERIOD and CRYPTOCHROME. The key nuclear receptors and transcription factors REV-ERBα and RORα regulate Bmal1 expression and provide stability to the oscillator. Circadian clock dysfunction is implicated in both immune and inflammatory responses to environmental, inflammatory, and infectious agents. Molecular clock function is altered by exposomes, tobacco smoke, lipopolysaccharide, hyperoxia, allergens, bleomycin, as well as bacterial and viral infections. The deacetylase Sirtuin 1 (SIRT1) regulates the timing of the clock through acetylation of BMAL1 and PER2 and controls the clock-dependent functions, which can also be affected by environmental stressors. Environmental agents and redox modulation may alter the levels of REV-ERBα and RORα in lung tissue in association with a heightened DNA damage response, cellular senescence, and inflammation. A reciprocal relationship exists between the molecular clock and immune/inflammatory responses in the lungs. Molecular clock function in lung cells may be used as a biomarker of disease severity and exacerbations or for assessing the efficacy of chronotherapy for disease management. Here, we provide a comprehensive overview of clock-controlled cellular and molecular functions in the lungs and highlight the repercussions of clock disruption on the pathophysiology of chronic airway diseases and their exacerbations. Furthermore, we highlight the potential for the molecular clock as a novel chronopharmacological target for the management of lung pathophysiology. PMID:26361874

  6. Modulation of the TGF{beta}/Smad signaling pathway in mesangial cells by CTGF/CCN2

    SciTech Connect

    Abdel Wahab, Nadia . E-mail: nadia.wahab@imperial.ac.uk; Weston, Benjamin S.; Mason, Roger M.

    2005-07-15

    Transforming growth factor-beta (TGF{beta}) drives fibrosis in diseases such as diabetic nephropathy (DN). Connective tissue growth factor (CTGF; CCN2) has also been implicated in this, but the molecular mechanism is unknown. We show that CTGF enhances the TGF{beta}/Smad signaling pathway by transcriptional suppression of Smad 7 following rapid and sustained induction of the transcription factor TIEG-1. Smad 7 is a known antagonist of TGF{beta} signaling and TIEG-1 is a known repressor of Smad 7 transcription. CTGF enhanced TGF{beta}-induced phosphorylation and nuclear translocation of Smad 2 and Smad 3 in mesangial cells. Antisense oligonucleotides directed against TIEG-1 prevented CTGF-induced downregulation of Smad 7. CTGF enhanced TGF{beta}-stimulated transcription of the SBE4-Luc reporter gene and this was markedly reduced by TIEG-1 antisense oligonucleotides. Expression of the TGF{beta}-responsive genes PAI-1 and Col III over 48 h was maximally stimulated by TGF{beta} + CTGF compared to TGF{beta} alone, while CTGF alone had no significant effect. TGF{beta}-stimulated expression of these genes was markedly reduced by both CTGF and TIEG-1 antisense oligonucleotides, consistent with the endogenous induction of CTGF by TGF{beta}. We propose that under pathological conditions, where CTGF expression is elevated, CTGF blocks the negative feedback loop provided by Smad 7, allowing continued activation of the TGF{beta} signaling pathway.

  7. Temperature controlled high voltage regulator

    DOEpatents

    Chiaro, Jr., Peter J.; Schulze, Gerald K.

    2004-04-20

    A temperature controlled high voltage regulator for automatically adjusting the high voltage applied to a radiation detector is described. The regulator is a solid state device that is independent of the attached radiation detector, enabling the regulator to be used by various models of radiation detectors, such as gas flow proportional radiation detectors.

  8. [Regulation of terpene metabolism

    SciTech Connect

    Croteau, R.

    1991-01-01

    During the last grant period, we have completed studies on the key pathways of monoterpene biosynthesis and catabolism in sage and peppermint, and have, by several lines of evidence, deciphered the rate-limiting step of each pathway. We have at least partially purified and characterized the relevant enzymes of each pathway. We have made a strong case, based on analytical, in vivo, and in vitro studies, that terpene accumulation depends upon the balance between biosynthesis and catabolism, and provided supporting evidence that these processes are developmentally-regulated and very closely associated with senescence of the oil glands. Oil gland ontogeny has been characterized at the ultrastructural level. We have exploited foliar-applied bioregulators to delay gland senescence, and have developed tissue explant and cell culture systems to study several elusive aspects of catabolism. We have isolated pure gland cell clusters and localized monoterpene biosynthesis and catabolism within these structures, and have used these preparations as starting materials for the purification to homogeneity of target regulatory'' enzymes. We have thus developed the necessary background knowledge, based on a firm understanding of enzymology, as well as the necessary experimental tools for studying the regulation of monoterpene metabolism at the molecular level. Furthermore, we are now in a position to extend our systematic approach to other terpenoid classes (C[sub 15]-C[sub 30]) produced by oil glands.

  9. Environmental regulations on chlorofluorocarbons

    SciTech Connect

    Hoffman, J.S.; Wells, J.B. )

    1989-05-01

    In August 1988, the US Environmental Protection Agency issued final regulations that implement the Montreal Protocol on Substances that Deplete the Ozone Layer. The regulations require a 50% reduction in consumption of fully halogenated chlorofluorocarbons (CFCs) within 10 years and a freeze on consumption of halons within 4 years. The Montreal Protocol provisions were designed in September 1987 based on the results of a 2-year international series of scientific, technical, and economic workshops. As would be expected, scientific investigations continued during this period. While these investigations suggested that significant global depletion had already occurred, these preliminary findings were not taken into account during negotiations or rulemaking. In March 1988, however, the international Ozone Trends Panel confirmed the findings. Depletion greater than that projected under the Montreal Protocol has already occurred. An early reassessment of the Protocol provisions appears to be inevitable. Restrictions on CFCs will affect the refrigeration and air-conditioning industries. Emerging alternatives to CFCs include newly developed refrigerants, innovative designs, and engineering controls. Key issues in evaluating these alternatives include energy efficiency, capital costs, service to consumers, and compatibility with existing designs.

  10. Buck/boost regulator

    NASA Technical Reports Server (NTRS)

    Paulkovich, J.; Rodriguez, G. E. (Inventor)

    1981-01-01

    A voltage regulated DC to DC converter uses an inductor and a capacitor as storage elements. The inductor is composed of two windings having a common junction. A transformer with a center tap connected to the common junction of the two windings is connected at either end of its winding to ground through controlled switches. One winding of the inductor and either end of the transformer winding are connected by power diodes to the capacitor which supplies the output voltage to a load. The other winding of the inductor is connected to a fourth power diode as a clamping diode. Input voltage is supplied to the inductor through a third controlled switch. A pulse width modulator connected to the output of the converter alternately closes and opens the switches connected to either end of the transformer winding and also closes the switch supplying input voltage to the inductor each time either of the switches connected to the ends of the transformer winding are closed. The duty cycle of the closing and opening of the several switches is adjusted by the pulse modulator to regulate the output voltage.

  11. Profiling of circadian genes expressed in the uterus endometrial stromal cells of pregnant rats as revealed by DNA microarray coupled with RNA interference.

    PubMed

    Tasaki, Hirotaka; Zhao, Lijia; Isayama, Keishiro; Chen, Huatao; Nobuhiko Yamauchi; Yasufumi Shigeyoshi; Hashimoto, Seiichi; Hattori, Masa-Aki

    2013-01-01

    The peripheral circadian oscillator plays an essential role in synchronizing local physiology to operate in a circadian manner via regulation of the expression of clock-controlled genes. The present study aimed to evaluate the circadian rhythms of clock genes and clock-controlled genes expressed in the rat uterus endometrial stromal cells (UESCs) during the stage of implantation by a DNA microarray. Of 12,252 genes showing significantly expression, 7,235 genes displayed significant alterations. As revealed by the biological pathway analysis using the database for annotation, visualization, and integrated discovery online annotation software, genes were involved in cell cycle, glutathione metabolism, MAPK signaling pathway, fatty acid metabolism, ubiquitin mediated proteolysis, focal adhesion, and PPAR signaling pathway. The clustering of clock genes were mainly divided into four groups: the first group was Rorα, Timeless, Npas2, Bmal1, Id2, and Cry2; the second group Per1, Per2, Per3, Dec1, Tef, and Dbp; the third group Bmal2, Cry1, E4bp4, Rorβ, and Clock; the fourth group Rev-erbα. Eleven implantation-related genes and 24 placenta formation-related genes displayed significant alterations, suggesting that these genes involved in implantation and placenta formation are controlled under circadian clock. Some candidates as clock-controlled genes were evaluated by using RNA interference to Bmal1 mRNA. Down-regulation of Igf1 gene expression was observed by Bmal1 silencing, whereas the expression of Inhβa was significantly increased. During active oscillation of circadian clock, the apoptosis-related genes Fas and Caspase3 remained no significant changes, but they were significantly increased by knockdown of Bmal1 mRNA. These results indicate that clock-controlled genes are up- or down-regulated in rat UESCs during the stage of decidualization. DNA microarray analysis coupled with RNA interference will be helpful to understand the physiological roles of some

  12. The regulation of public utilities

    SciTech Connect

    Phillips, C.F. Jr.

    1992-01-01

    The current edition of [open quotes]The Regulation of Public Utilities[close quotes] is divided into 17 chapters which provide an historical analysis of the economic and legal concepts of public utility regulation, rate of return, rate base, operating expenses, rate structure, the electric power and natural gas industries, as well as the telecommunications and water industries. The value of the third edition is limited by the changes that have taken place in public utility regulation since 1992; current topic such as cogeneration, independent power production, and the sea-change in oil pipeline regulations are not discussed. The volume does, however, provide a comprehensive historical background of utility regulation.

  13. 75 FR 10997 - Cuban Assets Control Regulations; Sudanese Sanctions Regulations; Iranian Transactions Regulations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-10

    ...The Department of the Treasury's Office of Foreign Assets Control (``OFAC'') is amending the Sudanese Sanctions Regulations and the Iranian Transactions Regulations to authorize the exportation of certain services and software incident to the exchange of personal communications over the Internet. Similarly, OFAC is amending the Cuban Assets Control Regulations to authorize the exportation of......

  14. Factors regulating microglia activation

    PubMed Central

    Kierdorf, Katrin; Prinz, Marco

    2013-01-01

    Microglia are resident macrophages of the central nervous system (CNS) that display high functional similarities to other tissue macrophages. However, it is especially important to create and maintain an intact tissue homeostasis to support the neuronal cells, which are very sensitive even to minor changes in their environment. The transition from the “resting” but surveying microglial phenotype to an activated stage is tightly regulated by several intrinsic (e.g., Runx-1, Irf8, and Pu.1) and extrinsic factors (e.g., CD200, CX3CR1, and TREM2). Under physiological conditions, minor changes of those factors are sufficient to cause fatal dysregulation of microglial cell homeostasis and result in severe CNS pathologies. In this review, we discuss recent achievements that gave new insights into mechanisms that ensure microglia quiescence. PMID:23630462

  15. Pubertal development and regulation.

    PubMed

    Abreu, Ana Paula; Kaiser, Ursula B

    2016-03-01

    Puberty marks the end of childhood and is a period when individuals undergo physiological and psychological changes to achieve sexual maturation and fertility. The hypothalamic-pituitary-gonadal axis controls puberty and reproduction and is tightly regulated by a complex network of excitatory and inhibitory factors. This axis is active in the embryonic and early postnatal stages of life and is subsequently restrained during childhood, and its reactivation culminates in puberty initiation. The mechanisms underlying this reactivation are not completely known. The age of puberty onset varies between individuals and the timing of puberty initiation is associated with several health outcomes in adult life. In this Series paper, we discuss pubertal markers, epidemiological trends of puberty initiation over time, and the mechanisms whereby genetic, metabolic, and other factors control secretion of gonadotropin-releasing hormone to determine initiation of puberty. PMID:26852256

  16. Magnetostrictive Pressure Regulating System

    NASA Technical Reports Server (NTRS)

    Richard, James A. (Inventor); Pickens, Herman L. (Inventor)

    2013-01-01

    A magnetostrictive pressure regulating system includes a magnetostrictive valve that incorporates a magnetostrictive actuator with at least one current-carrying coil disposed thereabout. A pressure force sensor, in fluid communication with the fluid exiting the valve, includes (i) a magnetostrictive material, (ii) a magnetic field generator in proximity to the magnetostrictive material for inducing a magnetic field in and surrounding the magnetostrictive material wherein lines of magnetic flux passing through the magnetostrictive material are defined, and (iii) a sensor positioned adjacent to the magnetostrictive material and in the magnetic field for measuring changes in at least one of flux angle and flux density when the magnetostrictive material experiences an applied force that is aligned with the lines of magnetic flux. The pressure of the fluid exiting the valve causes the applied force. A controller coupled to the sensor and to the current-carrying coil adjusts a current supplied to the current-carrying coil based on the changes so-measured.

  17. Regulation of Potassium Homeostasis

    PubMed Central

    2015-01-01

    Potassium is the most abundant cation in the intracellular fluid, and maintaining the proper distribution of potassium across the cell membrane is critical for normal cell function. Long-term maintenance of potassium homeostasis is achieved by alterations in renal excretion of potassium in response to variations in intake. Understanding the mechanism and regulatory influences governing the internal distribution and renal clearance of potassium under normal circumstances can provide a framework for approaching disorders of potassium commonly encountered in clinical practice. This paper reviews key aspects of the normal regulation of potassium metabolism and is designed to serve as a readily accessible review for the well informed clinician as well as a resource for teaching trainees and medical students. PMID:24721891

  18. Regulation of Terpene Metabolism

    SciTech Connect

    Rodney Croteau

    2004-03-14

    OAK-B135 Research over the last four years has progressed fairly closely along the lines initially proposed, with progress-driven expansion of Objectives 1, 2 and 3. Recent advances have developed from three research thrusts: 1. Random sequencing of an enriched peppermint oil gland cDNA library has given access to a large number of potential pathway and regulatory genes for test of function; 2. The availability of new DNA probes and antibodies has permitted investigation of developmental regulation and organization of terpenoid metabolism; and 3. The development of a transformation system for peppermint by colleagues at Purdue University has allowed direct transgenic testing of gene function and added a biotechnological component to the project. The current status of each of the original research objectives is outlined below.

  19. Transcription Regulation in Archaea.

    PubMed

    Gehring, Alexandra M; Walker, Julie E; Santangelo, Thomas J

    2016-07-15

    The known diversity of metabolic strategies and physiological adaptations of archaeal species to extreme environments is extraordinary. Accurate and responsive mechanisms to ensure that gene expression patterns match the needs of the cell necessitate regulatory strategies that control the activities and output of the archaeal transcription apparatus. Archaea are reliant on a single RNA polymerase for all transcription, and many of the known regulatory mechanisms employed for archaeal transcription mimic strategies also employed for eukaryotic and bacterial species. Novel mechanisms of transcription regulation have become apparent by increasingly sophisticated in vivo and in vitro investigations of archaeal species. This review emphasizes recent progress in understanding archaeal transcription regulatory mechanisms and highlights insights gained from studies of the influence of archaeal chromatin on transcription. PMID:27137495

  20. TFEB regulates lysosomal proteostasis.

    PubMed

    Song, Wensi; Wang, Fan; Savini, Marzia; Ake, Ashley; di Ronza, Alberto; Sardiello, Marco; Segatori, Laura

    2013-05-15

    Loss-of-function diseases are often caused by destabilizing mutations that lead to protein misfolding and degradation. Modulating the innate protein homeostasis (proteostasis) capacity may lead to rescue of native folding of the mutated variants, thereby ameliorating the disease phenotype. In lysosomal storage disorders (LSDs), a number of highly prevalent alleles have missense mutations that do not impair the enzyme's catalytic activity but destabilize its native structure, resulting in the degradation of the misfolded protein. Enhancing the cellular folding capacity enables rescuing the native, biologically functional structure of these unstable mutated enzymes. However, proteostasis modulators specific for the lysosomal system are currently unknown. Here, we investigate the role of the transcription factor EB (TFEB), a master regulator of lysosomal biogenesis and function, in modulating lysosomal proteostasis in LSDs. We show that TFEB activation results in enhanced folding, trafficking and lysosomal activity of a severely destabilized glucocerebrosidase (GC) variant associated with the development of Gaucher disease (GD), the most common LSD. TFEB specifically induces the expression of GC and of key genes involved in folding and lysosomal trafficking, thereby enhancing both the pool of mutated enzyme and its processing through the secretory pathway. TFEB activation also rescues the activity of a β-hexosaminidase mutant associated with the development of another LSD, Tay-Sachs disease, thus suggesting general applicability of TFEB-mediated proteostasis modulation to rescue destabilizing mutations in LSDs. In summary, our findings identify TFEB as a specific regulator of lysosomal proteostasis and suggest that TFEB may be used as a therapeutic target to rescue enzyme homeostasis in LSDs. PMID:23393155

  1. [Regulation of terpene metabolism

    SciTech Connect

    Croteau, R.

    1989-11-09

    Terpenoid oils, resins, and waxes from plants are important renewable resources. The objective of this project is to understand the regulation of terpenoid metabolism using the monoterpenes (C[sub 10]) as a model. The pathways of monoterpene biosynthesis and catabolism have been established, and the relevant enzymes characterized. Developmental studies relating enzyme levels to terpene accumulation within the oil gland sites of synthesis, and work with bioregulators, indicate that monoterpene production is controlled by terpene cyclases, the enzymes catalyzing the first step of the monoterpene pathway. As the leaf oil glands mature, cyclase levels decline and monoterpene biosynthesis ceases. Yield then decreases as the monoterpenes undergo catabolism by a process involving conversion to a glycoside and transport from the leaf glands to the root. At this site, the terpenoid is oxidatively degraded to acetate that is recycled into other lipid metabolites. During the transition from terpene biosynthesis to catabolism, the oil glands undergo dramatic ultrastructural modification. Degradation of the producing cells results in mixing of previously compartmentized monoterpenes with the catabolic enzymes, ultimately leading to yield decline. This regulatory model is being applied to the formation of other terpenoid classes (C[sub 15] C[sub 20], C[sub 30], C[sub 40]) within the oil glands. Preliminary investigations on the formation of sesquiterpenes (C[sub 15]) suggest that the corresponding cyclases may play a lesser role in determining yield of these products, but that compartmentation effects are important. From these studies, a comprehensive scheme for the regulation of terpene metabolism is being constructed. Results from this project wail have important consequences for the yield and composition of terpenoid natural products that can be made available for industrial exploitation.

  2. Endocannabinoids in cerebrovascular regulation.

    PubMed

    Benyó, Zoltán; Ruisanchez, Éva; Leszl-Ishiguro, Miriam; Sándor, Péter; Pacher, Pál

    2016-04-01

    The cerebral blood flow is tightly regulated by myogenic, endothelial, metabolic, and neural mechanisms under physiological conditions, and a large body of recent evidence indicates that inflammatory pathways have a major influence on the cerebral blood perfusion in certain central nervous system disorders, like hemorrhagic and ischemic stroke, traumatic brain injury, and vascular dementia. All major cell types involved in cerebrovascular control pathways (i.e., smooth muscle, endothelium, neurons, astrocytes, pericytes, microglia, and leukocytes) are capable of synthesizing endocannabinoids and/or express some or several of their target proteins [i.e., the cannabinoid 1 and 2 (CB1 and CB2) receptors and the transient receptor potential vanilloid type 1 ion channel]. Therefore, the endocannabinoid system may importantly modulate the regulation of cerebral circulation under physiological and pathophysiological conditions in a very complex manner. Experimental data accumulated since the late 1990s indicate that the direct effect of cannabinoids on cerebral vessels is vasodilation mediated, at least in part, by CB1 receptors. Cannabinoid-induced cerebrovascular relaxation involves both a direct inhibition of smooth muscle contractility and a release of vasodilator mediator(s) from the endothelium. However, under stress conditions (e.g., in conscious restrained animals or during hypoxia and hypercapnia), cannabinoid receptor activation was shown to induce a reduction of the cerebral blood flow, probably via inhibition of the electrical and/or metabolic activity of neurons. Finally, in certain cerebrovascular pathologies (e.g., subarachnoid hemorrhage, as well as traumatic and ischemic brain injury), activation of CB2 (and probably yet unidentified non-CB1/non-CB2) receptors appear to improve the blood perfusion of the brain via attenuating vascular inflammation. PMID:26825517

  3. Variations in Phase and Amplitude of Rhythmic Clock Gene Expression across Prefrontal Cortex, Hippocampus, Amygdala, and Hypothalamic Paraventricular and Suprachiasmatic Nuclei of Male and Female Rats.

    PubMed

    Chun, Lauren E; Woodruff, Elizabeth R; Morton, Sarah; Hinds, Laura R; Spencer, Robert L

    2015-10-01

    The molecular circadian clock is a self-regulating transcription/translation cycle of positive (Bmal1, Clock/Npas2) and negative (Per1,2,3, Cry1,2) regulatory components. While the molecular clock has been well characterized in the body's master circadian pacemaker, the hypothalamic suprachiasmatic nucleus (SCN), only a few studies have examined both the positive and negative clock components in extra-SCN brain tissue. Furthermore, there has yet to be a direct comparison of male and female clock gene expression in the brain. This comparison is warranted, as there are sex differences in circadian functioning and disorders associated with disrupted clock gene expression. This study examined basal clock gene expression (Per1, Per2, Bmal1 mRNA) in the SCN, prefrontal cortex (PFC), rostral agranular insula, hypothalamic paraventricular nucleus (PVN), amygdala, and hippocampus of male and female rats at 4-h intervals throughout a 12:12 h light:dark cycle. There was a significant rhythm of Per1, Per2, and Bmal1 in the SCN, PFC, insula, PVN, subregions of the hippocampus, and amygdala with a 24-h period, suggesting the importance of an oscillating molecular clock in extra-SCN brain regions. There were 3 distinct clock gene expression profiles across the brain regions, indicative of diversity among brain clocks. Although, generally, the clock gene expression profiles were similar between male and female rats, there were some sex differences in the robustness of clock gene expression (e.g., females had fewer robust rhythms in the medial PFC, more robust rhythms in the hippocampus, and a greater mesor in the medial amygdala). Furthermore, females with a regular estrous cycle had attenuated aggregate rhythms in clock gene expression in the PFC compared with noncycling females. This suggests that gonadal hormones may modulate the expression of the molecular clock. PMID:26271538

  4. Altered dynamics in the circadian oscillation of clock genes in dermal fibroblasts of patients suffering from idiopathic hypersomnia.

    PubMed

    Lippert, Julian; Halfter, Hartmut; Heidbreder, Anna; Röhr, Dominik; Gess, Burkhard; Boentert, Mathias; Osada, Nani; Young, Peter

    2014-01-01

    From single cell organisms to the most complex life forms, the 24-hour circadian rhythm is important for numerous aspects of physiology and behavior such as daily periodic fluctuations in body temperature and sleep-wake cycles. Influenced by environmental cues - mainly by light input -, the central pacemaker in the thalamic suprachiasmatic nuclei (SCN) controls and regulates the internal clock mechanisms which are present in peripheral tissues. In order to correlate modifications in the molecular mechanisms of circadian rhythm with the pathophysiology of idiopathic hypersomnia, this study aimed to investigate the dynamics of the expression of circadian clock genes in dermal fibroblasts of idiopathic hypersomniacs (IH) in comparison to those of healthy controls (HC). Ten clinically and polysomnographically proven IH patients were recruited from the department of sleep medicine of the University Hospital of Muenster. Clinical diagnosis was done by two consecutive polysomnographies (PSG) and Multiple Sleep Latency Test (MSLT). Fourteen clinical healthy volunteers served as control group. Dermal fibroblasts were obtained via punch biopsy and grown in cell culture. The expression of circadian clock genes was investigated by semiquantitative Reverse Transcriptase-PCR qRT-PCR analysis, confirming periodical oscillation of expression of the core circadian clock genes BMAL1, PER1/2 and CRY1/2. The amplitude of the rhythmically expressed BMAL1, PER1 and PER2 was significantly dampened in dermal fibroblasts of IH compared to HC over two circadian periods whereas the overall expression of only the key transcriptional factor BMAL1 was significantly reduced in IH. Our study suggests for the first time an aberrant dynamics in the circadian clock in IH. These findings may serve to better understand some clinical features of the pathophysiology in sleep - wake rhythms in IH. PMID:24454829

  5. Machine learning helps identify CHRONO as a circadian clock component.

    PubMed

    Anafi, Ron C; Lee, Yool; Sato, Trey K; Venkataraman, Anand; Ramanathan, Chidambaram; Kavakli, Ibrahim H; Hughes, Michael E; Baggs, Julie E; Growe, Jacqueline; Liu, Andrew C; Kim, Junhyong; Hogenesch, John B

    2014-04-01

    Over the last decades, researchers have characterized a set of "clock genes" that drive daily rhythms in physiology and behavior. This arduous work has yielded results with far-reaching consequences in metabolic, psychiatric, and neoplastic disorders. Recent attempts to expand our understanding of circadian regulation have moved beyond the mutagenesis screens that identified the first clock components, employing higher throughput genomic and proteomic techniques. In order to further accelerate clock gene discovery, we utilized a computer-assisted approach to identify and prioritize candidate clock components. We used a simple form of probabilistic machine learning to integrate biologically relevant, genome-scale data and ranked genes on their similarity to known clock components. We then used a secondary experimental screen to characterize the top candidates. We found that several physically interact with known clock components in a mammalian two-hybrid screen and modulate in vitro cellular rhythms in an immortalized mouse fibroblast line (NIH 3T3). One candidate, Gene Model 129, interacts with BMAL1 and functionally represses the key driver of molecular rhythms, the BMAL1/CLOCK transcriptional complex. Given these results, we have renamed the gene CHRONO (computationally highlighted repressor of the network oscillator). Bi-molecular fluorescence complementation and co-immunoprecipitation demonstrate that CHRONO represses by abrogating the binding of BMAL1 to its transcriptional co-activator CBP. Most importantly, CHRONO knockout mice display a prolonged free-running circadian period similar to, or more drastic than, six other clock components. We conclude that CHRONO is a functional clock component providing a new layer of control on circadian molecular dynamics. PMID:24737000

  6. Machine Learning Helps Identify CHRONO as a Circadian Clock Component

    PubMed Central

    Venkataraman, Anand; Ramanathan, Chidambaram; Kavakli, Ibrahim H.; Hughes, Michael E.; Baggs, Julie E.; Growe, Jacqueline; Liu, Andrew C.; Kim, Junhyong; Hogenesch, John B.

    2014-01-01

    Over the last decades, researchers have characterized a set of “clock genes” that drive daily rhythms in physiology and behavior. This arduous work has yielded results with far-reaching consequences in metabolic, psychiatric, and neoplastic disorders. Recent attempts to expand our understanding of circadian regulation have moved beyond the mutagenesis screens that identified the first clock components, employing higher throughput genomic and proteomic techniques. In order to further accelerate clock gene discovery, we utilized a computer-assisted approach to identify and prioritize candidate clock components. We used a simple form of probabilistic machine learning to integrate biologically relevant, genome-scale data and ranked genes on their similarity to known clock components. We then used a secondary experimental screen to characterize the top candidates. We found that several physically interact with known clock components in a mammalian two-hybrid screen and modulate in vitro cellular rhythms in an immortalized mouse fibroblast line (NIH 3T3). One candidate, Gene Model 129, interacts with BMAL1 and functionally represses the key driver of molecular rhythms, the BMAL1/CLOCK transcriptional complex. Given these results, we have renamed the gene CHRONO (computationally highlighted repressor of the network oscillator). Bi-molecular fluorescence complementation and co-immunoprecipitation demonstrate that CHRONO represses by abrogating the binding of BMAL1 to its transcriptional co-activator CBP. Most importantly, CHRONO knockout mice display a prolonged free-running circadian period similar to, or more drastic than, six other clock components. We conclude that CHRONO is a functional clock component providing a new layer of control on circadian molecular dynamics. PMID:24737000

  7. Regulating the regulators: serine/arginine-rich proteins under scrutiny.

    PubMed

    Risso, Guillermo; Pelisch, Federico; Quaglino, Ana; Pozzi, Berta; Srebrow, Anabella

    2012-10-01

    Serine/arginine-rich (SR) proteins are among the most studied splicing regulators. They constitute a family of evolutionarily conserved proteins that, apart from their initially identified and deeply studied role in splicing regulation, have been implicated in genome stability, chromatin binding, transcription elongation, mRNA stability, mRNA export and mRNA translation. Remarkably, this list of SR protein activities seems far from complete, as unexpected functions keep being unraveled. An intriguing aspect that awaits further investigation is how the multiple tasks of SR proteins are concertedly regulated within mammalian cells. In this article, we first discuss recent findings regarding the regulation of SR protein expression, activity and accessibility. We dive into recent studies describing SR protein auto-regulatory feedback loops involving different molecular mechanisms such asunproductive splicing, microRNA-mediated regulation and translational repression. In addition, we take into account another step of regulation of SR proteins, presenting new findings about a variety of post-translational modifications by proteomics approaches and how some of these modifications can regulate SR protein sub-cellular localization or stability. Towards the end, we focus in two recently revealed functions of SR proteins beyond mRNA biogenesis and metabolism, the regulation of micro-RNA processing and the regulation of small ubiquitin-like modifier (SUMO) conjugation. PMID:22941908

  8. Load regulating latch

    NASA Technical Reports Server (NTRS)

    Appleberry, W. T. (Inventor)

    1977-01-01

    A load regulating mechanical latch is described that has a pivotally mounted latch element having a hook-shaped end with a strike roller-engaging laterally open hook for engaging a stationary strike roller. The latch element or hook is pivotally mounted in a clevis end of an elongated latch stem that is adapted for axial movement through an opening in a support plate or bracket mounted to a structural member. A coil spring is disposed over and around the extending latch stem and the lower end of the coil spring engages the support bracket. A thrust washer is removably attached to the other end of the latch stem and engages the other end of the coil spring and compresses the coil spring thereby preloading the spring and the latch element carried by the latch stem. The hook-shaped latch element has a limited degree of axial travel for loading caused by structural distortion which may change the relative positions of the latch element hook and the strike roller. Means are also provided to permit limited tilt of the latch element due to loading of the hook.

  9. Regulation of sphingomyelin metabolism.

    PubMed

    Bienias, Kamil; Fiedorowicz, Anna; Sadowska, Anna; Prokopiuk, Sławomir; Car, Halina

    2016-06-01

    Sphingolipids (SFs) represent a large class of lipids playing diverse functions in a vast number of physiological and pathological processes. Sphingomyelin (SM) is the most abundant SF in the cell, with ubiquitous distribution within mammalian tissues, and particularly high levels in the Central Nervous System (CNS). SM is an essential element of plasma membrane (PM) and its levels are crucial for the cell function. SM content in a cell is strictly regulated by the enzymes of SM metabolic pathways, which activities create a balance between SM synthesis and degradation. The de novo synthesis via SM synthases (SMSs) in the last step of the multi-stage process is the most important pathway of SM formation in a cell. The SM hydrolysis by sphingomyelinases (SMases) increases the concentration of ceramide (Cer), a bioactive molecule, which is involved in cellular proliferation, growth and apoptosis. By controlling the levels of SM and Cer, SMSs and SMases maintain cellular homeostasis. Enzymes of SM cycle exhibit unique properties and diverse tissue distribution. Disturbances in their activities were observed in many CNS pathologies. This review characterizes the physiological roles of SM and enzymes controlling SM levels as well as their involvement in selected pathologies of the Central Nervous System, such as ischemia/hypoxia, Alzheimer disease (AD), Parkinson disease (PD), depression, schizophrenia and Niemann Pick disease (NPD). PMID:26940196

  10. Mechanisms Regulating Glioma Invasion

    PubMed Central

    Paw, Ivy; Carpenter, Richard C.; Watabe, Kounosuke; Debinski, Waldemar; Lo, Hui-Wen

    2015-01-01

    Glioblastoma (GBM) is the most aggressive, deadliest, and most common brain malignancy in adults. Despite the advances made in surgical techniques, radiotherapy and chemotherapy, the median survival for GBM patients has remained at a mere 14 months. GBM poses several unique challenges to currently available treatments for the disease. For example, GBM cells have the propensity to aggressively infiltrate/invade into the normal brain tissues and along the vascular tracks, which prevents complete resection of all malignant cells and limits the effect of localized radiotherapy while sparing normal tissue. Although anti-angiogenic treatment exerts anti-edematic effect in GBM, unfortunately, tumors progress with acquired increased invasiveness. Therefore, it is an important task to gain a deeper understanding of the intrinsic and post-treatment invasive phenotypes of GBM in hopes that the gained knowledge would lead to novel GBM treatments that are more effective and less toxic. This review will give an overview of some of the signaling pathways that have been shown to positively and negatively regulate GBM invasion, including, the PI3K/Akt, Wnt, sonic hedgehog-GLI1, and microRNAs. The review will also discuss several approaches to cancer therapies potentially altering GBM invasiveness. PMID:25796440

  11. Metabolic regulation via enzyme filamentation

    PubMed Central

    Aughey, Gabriel N.; Liu, Ji-Long

    2016-01-01

    Abstract Determining the mechanisms of enzymatic regulation is central to the study of cellular metabolism. Regulation of enzyme activity via polymerization-mediated strategies has been shown to be widespread, and plays a vital role in mediating cellular homeostasis. In this review, we begin with an overview of the filamentation of CTP synthase, which forms filamentous structures termed cytoophidia. We then highlight other important examples of the phenomenon. Moreover, we discuss recent data relating to the regulation of enzyme activity by compartmentalization into cytoophidia. Finally, we hypothesize potential roles for enzyme filament formation in the regulation of metabolism, development and disease. PMID:27098510

  12. Power-MOSFET Voltage Regulator

    NASA Technical Reports Server (NTRS)

    Miller, W. N.; Gray, O. E.

    1982-01-01

    Ninety-six parallel MOSFET devices with two-stage feedback circuit form a high-current dc voltage regulator that also acts as fully-on solid-state switch when fuel-cell out-put falls below regulated voltage. Ripple voltage is less than 20 mV, transient recovery time is less than 50 ms. Parallel MOSFET's act as high-current dc regulator and switch. Regulator can be used wherever large direct currents must be controlled. Can be applied to inverters, industrial furnaces photovoltaic solar generators, dc motors, and electric autos.

  13. Teachers' Regulation of the Classroom.

    ERIC Educational Resources Information Center

    Muir, William K., Jr.

    The nature of teachers' control in classrooms is explored in order: to understand the tension created when noneducators superimpose their rules on the regime of teachers at work and to learn something of a general nature about the antagonism between regulators and those they regulate. Teachers' regulatory powers are based on coercion, exchange, or…

  14. Affect and Self-Regulation

    ERIC Educational Resources Information Center

    Malmivuori, Marja-Liisa

    2006-01-01

    This paper presents affect as an essential aspect of students' self-reflection and self-regulation. The introduced concepts of self-system and self-system process stress the importance of self-appraisals of personal competence and agency in affective responses and self-regulation in problem solving. Students are viewed as agents who constantly…

  15. Regulations: Cutting through the Maze.

    ERIC Educational Resources Information Center

    Edelstein, Frederick S.

    1979-01-01

    Presents an overview of the drafting of regulations for the development and implementation of programs authorized by federal education laws in connection with the Education Amendments of 1978. States that all regulations have been recodified, that is, simplified and clarified. Lists office of education contacts for comments on regulations…

  16. Street sweeping and stormwater regulations

    SciTech Connect

    Not Available

    1993-10-01

    This article examines the role of street sweeping in meeting the requirements of the Clean Water Act stormwater regulations. The article identifies those industrial and municipal activities which are covered by the regulations and cites frequent sweeping of site surfaces for industry and street sweeping for municipalities as an integral part of compliance plans.

  17. Gravity and body mass regulation

    NASA Technical Reports Server (NTRS)

    Warren, L. E.; Horwitz, B. A.; Fuller, C. A.

    1997-01-01

    The effects of altered gravity on body mass, food intake, energy expenditure, and body composition are examined. Metabolic adjustments are reviewed in maintenance of energy balance, neural regulation, and humoral regulation are discussed. Experiments with rats indicate that genetically obese rats respond differently to hypergravity than lean rats.

  18. Deceptive Business Practices: Federal Regulations.

    ERIC Educational Resources Information Center

    Rohrer, Daniel Morgan

    Federal regulations to prevent deceptive advertising seek to balance the advertiser's freedom of speech with protection of the consumer. This paper discusses what the Federal Trade Commission (FTC) has done to regulate advertising and evaluates the adequacy of its controls. The commission uses cease-and-desist orders, affirmative disclosure,…

  19. Regulating Pornography: A Public Dilemma.

    ERIC Educational Resources Information Center

    Thompson, Margaret E.; And Others

    1990-01-01

    Examines attitudes toward sex and pornography by means of a telephone survey of Dane County, Wisconsin, adults. Describes survey questions about sexual attitudes, perceived effects of pornography, and pornography regulation. Concludes that adults who feel more strongly that pornography has negative effects are more opposed to its regulation. (SG)

  20. Design for pressure regulating components

    NASA Technical Reports Server (NTRS)

    Wichmann, H.

    1973-01-01

    The design development for Pressure Regulating Components included a regulator component trade-off study with analog computer performance verification to arrive at a final optimized regulator configuration for the Space Storable Propulsion Module, under development for a Jupiter Orbiter mission. This application requires the pressure regulator to be capable of long-term fluorine exposure. In addition, individual but basically identical (for purposes of commonality) units are required for separate oxidizer and fuel pressurization. The need for dual units requires improvement in the regulation accuracy over present designs. An advanced regulator concept was prepared featuring redundant bellows, all metallic/ceramic construction, friction-free guidance of moving parts, gas damping, and the elimination of coil springs normally used for reference forces. The activities included testing of actual size seat/poppet components to determine actual discharge coefficients and flow forces. The resulting data was inserted into the computer model of the regulator. Computer simulation of the propulsion module performance over two mission profiles indicated satisfactory minimization of propellant residual requirements imposed by regulator performance uncertainties.

  1. Web Regulation Battles Heat Up.

    ERIC Educational Resources Information Center

    Newcombe, Pat

    1999-01-01

    Considers issues involving deregulation and freedom of speech on the Internet versus government regulation and licensing. Discusses a case in Texas that challenged a software program offering legal advice; and a federal regulatory agency's attempt to regulate the opinions and content of newsletters, Web site publishers, and related software. (LRW)

  2. Team Regulation, Regulation of Social Activities or Co-Regulation: Different Labels for Effective Regulation of Learning in CSCL

    ERIC Educational Resources Information Center

    Saab, Nadira

    2012-01-01

    Computer-supported collaborative learning (CSCL) is an approach to learning in which learners can actively and collaboratively construct knowledge by means of interaction and joint problem solving. Regulation of learning is especially important in the domain of CSCL. Next to the regulation of task performance, the interaction between learners who…

  3. Strategic automation of emotion regulation.

    PubMed

    Gallo, Inge Schweiger; Keil, Andreas; McCulloch, Kathleen C; Rockstroh, Brigitte; Gollwitzer, Peter M

    2009-01-01

    As implementation intentions are a powerful self-regulation tool for thought and action (meta-analysis by P. M. Gollwitzer & P. Sheeran, 2006), the present studies were conducted to address their effectiveness in regulating emotional reactivity. Disgust- (Study 1) and fear- (Study 2) eliciting stimuli were viewed under 3 different self-regulation instructions: the goal intention to not get disgusted or frightened, respectively, this goal intention furnished with an implementation intention (i.e., an if-then plan), and a no-self-regulation control group. Only implementation-intention participants succeeded in reducing their disgust and fear reactions as compared to goal-intention and control participants. In Study 3, electrocortical correlates (using dense-array electroencephalography) revealed differential early visual activity in response to spider slides in ignore implementation-intention participants, as reflected in a smaller P1. Theoretical and applied implications of the present findings for emotion regulation via implementation intentions are discussed. PMID:19210061

  4. RNA-guided transcriptional regulation

    DOEpatents

    Church, George M.; Mali, Prashant G.; Esvelt, Kevin M.

    2016-02-23

    Methods of modulating expression of a target nucleic acid in a cell are provided including introducing into the cell a first foreign nucleic acid encoding one or more RNAs complementary to DNA, wherein the DNA includes the target nucleic acid, introducing into the cell a second foreign nucleic acid encoding a nuclease-null Cas9 protein that binds to the DNA and is guided by the one or more RNAs, introducing into the cell a third foreign nucleic acid encoding a transcriptional regulator protein or domain, wherein the one or more RNAs, the nuclease-null Cas9 protein, and the transcriptional regulator protein or domain are expressed, wherein the one or more RNAs, the nuclease-null Cas9 protein and the transcriptional regulator protein or domain co-localize to the DNA and wherein the transcriptional regulator protein or domain regulates expression of the target nucleic acid.

  5. Regulation of GMOs in China.

    PubMed

    Liu, Yinliang

    2008-12-01

    Genetically modified organisms (GMOs) are created by biotechnology to serve people with much benefit while may impose risks to ecological environment and human health and therefore need careful regulation. During the past two decades, GMOs have been well developed in China and so has their corresponding regulation. This paper reviews and comments the multiple aspects of mainly the agricultural GMOs, including their safety assessment, control measures, trade activities, import, labels, and GM food, which have been prescribed by the corresponding laws, regulations and administrative measures. It is held that till present a framework for regulation of agricultural GMOs and GM food has been established basically in China, while a more comprehensive system for regulation of all kinds of GMOs and all kinds of related activities is still needed at present and in the future. PMID:19492727

  6. Regulating chemicals: law, science, and the unbearable burdens of regulation.

    PubMed

    Silbergeld, Ellen K; Mandrioli, Daniele; Cranor, Carl F

    2015-03-18

    The challenges of regulating industrial chemicals remain unresolved in the United States. The Toxic Substances Control Act (TSCA) of 1976 was the first legislation to extend coverage to the regulation of industrial chemicals, both existing and newly registered. However, decisions related to both law and science that were made in passing this law inevitably rendered it ineffectual. Attempts to fix these shortcomings have not been successful. In light of the European Union's passage of innovative principles and requirements for chemical regulation, it is no longer possible to deny the opportunity and need for reform in US law and practice. PMID:25785889

  7. Precipitated silica as flow regulator.

    PubMed

    Müller, Anne-Kathrin; Ruppel, Joanna; Drexel, Claus-Peter; Zimmermann, Ingfried

    2008-08-01

    Flow regulators are added to solid pharmaceutical formulations to improve the flow properties of the powder mixtures. The primary particles of the flow regulators exist in the form of huge agglomerates which are broken down into smaller aggregates during the blending process. These smaller aggregates adsorb at the surface of the solid's grains and thus diminish attractive Van-der-Waals-forces by increasing the roughness of the host's surface. In most cases amorphous silica is used as flow additive but material properties like particle size or bond strength influence the desagglomeration tendency of the agglomerates and thus the flow regulating potency of each silica. For some silica types we will show that the differences in their flow regulating potency are due to the rate and extent by which they are able to cover the surface of the host particles. Binary powder mixtures consisting of a pharmaceutical excipient and an added flow regulator were blended in a Turbula mixer for a defined period of time. As pharmaceutical excipient corn starch was used. The flow regulators were represented by a selection of amorphous silicon dioxide types like a commercial fumed silica and various types of SIPERNAT precipitated silica provided by Evonik-Degussa GmbH, Hanau, Germany. Flowability parameters of the mixtures were characterized by means of a tensile strength tester. The reduction of tensile strength with the blending time can be correlated with an increase in fragmentation of the flow regulator. PMID:18595668

  8. Ball valve regulator reduces noise at regulating stations

    SciTech Connect

    Hogan, M.P.

    1998-10-01

    In recent years, there has been growing concern within the natural gas industry regarding the effect regulating stations have on their surrounding environments. To reduce excessive noise and pollution, many gas distribution and transmission companies have begun utilizing equipment which reduces environmental impact. The below grade ball valve regulator is a prime example of this environment-friendly equipment. Its high capacity, control capabilities, rangeability, and dependability makes the below grade ball valve regulator the preferred method for controlling natural gas flow. Its long-term reliability makes the below grade ball valve regulator the ideal method of, not only maintaining superior flow characteristics, but also of greatly reducing noise created in the station facilities.

  9. Dioscorea Extract (DA-9801) Modulates Markers of Peripheral Neuropathy in Type 2 Diabetic db/db Mice

    PubMed Central

    Moon, Eunjung; Lee, Sung Ok; Kang, Tong Ho; Kim, Hye Ju; Choi, Sang Zin; Son, Mi-Won; Kim, Sun Yeou

    2014-01-01

    The purpose of this study was to investigate the therapeutic effects of DA-9801, an optimized extract of Dioscorea species, on diabetic peripheral neuropathy in a type 2 diabetic animal model. In this study, db/db mice were treated with DA-9801 (30 and 100 mg/kg, daily, p.o.) for 12 weeks. DA-9801 reduced the blood glucose levels and increased the withdrawal latencies in hot plate tests. Moreover, it prevented nerve damage based on increased nerve conduction velocity and ultrastructural changes. Decrease of nerve growth factor (NGF) may have a detrimental effect on diabetic neuropathy. We previously reported NGF regulatory properties of the Dioscorea genus. In this study, DA-9801 induced NGF production in rat primary astrocytes. In addition, it increased NGF levels in the sciatic nerve and the plasma of type 2 diabetic animals. DA-9801 also increased neurite outgrowth and mRNA expression of Tieg1/Klf10, an NGF target gene, in PC12 cells. These results demonstrated the attenuation of diabetic peripheral neuropathy by oral treatment with DA-9801 via NGF regulation. DA-9801 is currently being evaluated in a phase II clinical study. PMID:25414776

  10. EPA regulations require close study

    SciTech Connect

    Wilkins, J.D.

    1981-08-03

    The time to review environmental legislation and to pinpoint unreasonable or unnecessary sections is when the proposed regulation is published in the Federal Register before it becomes law. Four oil and gas industry organizations can help track and evaluate environmental regulations: the A.G.A.'s Environmental Coordination Group, the Interstate Natural Gas Association of America (INGAA) Environmental Subcommittee, the Gulf Coast Environmental Affairs Group, and the Houston Environmental Roundtable. Besides acting as a watchdog, the industry must perform independent studies to provide valid data for writing the regulations. Once the laws are passed, the industry has no choice but to comply; a plea of ignorance will not change the situation.

  11. Emotional regulation strategies and negotiation.

    PubMed

    Yurtsever, Gülçimen

    2004-12-01

    This study examined the relationship between profit achievement and emotional regulation strategies, using Kelley's Negotiation Game to measure profit achievement. The game involves bargaining for the prices of three products. Emotional Regulation Strategies were measured by The Emotional Regulation Questionnaire. Scores were obtained from 104 lower level managers of a bank in Turkey. Their average age was 32.0 yr. (SD=3.7), (39 women and 65 men). A correlation of .65 (p<.01) was obtained between scores on profit achievement with scores on Cognitive Reappraisal strategy and -.50 (p<.01) with scores on Suppression strategy. PMID:15666907

  12. An epithelial circadian clock controls pulmonary inflammation and glucocorticoid action

    PubMed Central

    Gibbs, Julie; Ince, Louise; Matthews, Laura; Mei, Junjie; Bell, Thomas; Yang, Nan; Saer, Ben; Begley, Nicola; Poolman, Toryn; Pariollaud, Marie; Farrow, Stuart; Demayo, Francesco; Hussell, Tracy; Worthen, G Scott; Ray, David; Loudon, Andrew

    2014-01-01

    The circadian system is as an important regulator of immune function. Human inflammatory lung diseases frequently show time-of-day variation in symptom severity and lung function, but the mechanisms and cell types that are underlying these effects remain unclear. We show that pulmonary antibacterial responses are modulated by a circadian clock within epithelial club (Clara) cells. These drive circadian neutrophil recruitment to the lung via the chemokine CXCL5. Genetic ablation of the clock gene Bmal1 (also called Arntl or MOP3) in bronchiolar cells disrupts rhythmic Cxcl5 expression, resulting in exaggerated inflammatory responses to lipopolysaccharide and bacterial infection. Adrenalectomy blocks rhythmic inflammatory responses and the circadian regulation of CXCL5, suggesting a key role for the adrenal axis in driving CXCL5 expression and pulmonary neutrophil recruitment. Glucocorticoid receptor occupancy at the Cxcl5 locus shows circadian oscillations, but this is disrupted in mice with bronchiole-specific ablation of Bmal1, leading to enhanced CXCL5 expression despite normal corticosteroid secretion. In clock-gene disrupted mice the synthetic glucocorticoid dexamethasone loses anti-inflammatory efficacy. We now define a regulatory mechanism that links the circadian clock and glucocorticoid hormones to control both time-of-day variation and also the magnitude of pulmonary inflammation and responses to bacterial infection. PMID:25064128

  13. DEC2-E4BP4 Heterodimer Represses the Transcriptional Enhancer Activity of the EE Element in the Per2 Promoter.

    PubMed

    Tanoue, Shintaro; Fujimoto, Katsumi; Myung, Jihwan; Hatanaka, Fumiyuki; Kato, Yukio; Takumi, Toru

    2015-01-01

    The circadian oscillation of clock gene expression in mammals is based on the interconnected transcriptional/translational feedback loops of Period (Per) and Bmal1. The Per feedback loop initiates transcription through direct binding of the BMAL1-CLOCK (NPAS2) heterodimer to the E-box of the Per2 promoter region. Negative feedback of PER protein on this promoter subsequently represses transcription. Other circadian transcription regulators, particularly E4BP4 and DEC2, regulate the amplitude and phase of Per2 expression rhythms. Moreover, a direct repeat of E-box-like (EE) elements in the Per2 promoter is required for its cell-autonomous circadian rhythm. However, the detailed mechanism for repression of the two core sequences of the EE element in the Per2 promoter region is unknown. Here, we show that E4BP4 binds to the Per2 EE element with DEC2 to repress transcription and identify the DEC2-E4BP4 heterodimer as a key repressor of the tightly interlocked Per2 feedback loop in the mammalian circadian oscillator. Our results suggest an additional modulatory mechanism for tuning of the phase of cell-autonomous Per2 gene expression cycling. PMID:26257703

  14. Analysis and synthesis of high-amplitude Cis-elements in the mammalian circadian clock.

    PubMed

    Kumaki, Yuichi; Ukai-Tadenuma, Maki; Uno, Ken-ichiro D; Nishio, Junko; Masumoto, Koh-hei; Nagano, Mamoru; Komori, Takashi; Shigeyoshi, Yasufumi; Hogenesch, John B; Ueda, Hiroki R

    2008-09-30

    Mammalian circadian clocks consist of regulatory loops mediated by Clock/Bmal1-binding elements, DBP/E4BP4 binding elements, and RevErbA/ROR binding elements. As a step toward system-level understanding of the dynamic transcriptional regulation of the oscillator, we constructed and used a mammalian promoter/enhancer database (http://promoter.cdb.riken.jp/) with computational models of the Clock/Bmal1-binding elements, DBP/E4BP4 binding elements, and RevErbA/ROR binding elements to predict new targets of the clock and subsequently validated these targets at the level of the cell and organism. We further demonstrated the predictive nature of these models by generating and testing synthetic regulatory elements that do not occur in nature and showed that these elements produced high-amplitude circadian gene regulation. Biochemical experiments to characterize these synthetic elements revealed the importance of the affinity balance between transactivators and transrepressors in generating high-amplitude circadian transcriptional output. These results highlight the power of comparative genomics approaches for system-level identification and knowledge-based design of dynamic regulatory circuits. PMID:18815372

  15. DEC2–E4BP4 Heterodimer Represses the Transcriptional Enhancer Activity of the EE Element in the Per2 Promoter

    PubMed Central

    Tanoue, Shintaro; Fujimoto, Katsumi; Myung, Jihwan; Hatanaka, Fumiyuki; Kato, Yukio; Takumi, Toru

    2015-01-01

    The circadian oscillation of clock gene expression in mammals is based on the interconnected transcriptional/translational feedback loops of Period (Per) and Bmal1. The Per feedback loop initiates transcription through direct binding of the BMAL1–CLOCK (NPAS2) heterodimer to the E-box of the Per2 promoter region. Negative feedback of PER protein on this promoter subsequently represses transcription. Other circadian transcription regulators, particularly E4BP4 and DEC2, regulate the amplitude and phase of Per2 expression rhythms. Moreover, a direct repeat of E-box-like (EE) elements in the Per2 promoter is required for its cell-autonomous circadian rhythm. However, the detailed mechanism for repression of the two core sequences of the EE element in the Per2 promoter region is unknown. Here, we show that E4BP4 binds to the Per2 EE element with DEC2 to repress transcription and identify the DEC2–E4BP4 heterodimer as a key repressor of the tightly interlocked Per2 feedback loop in the mammalian circadian oscillator. Our results suggest an additional modulatory mechanism for tuning of the phase of cell-autonomous Per2 gene expression cycling. PMID:26257703

  16. 77 FR 13155 - Waste Regulation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-05

    ... From the Federal Register Online via the Government Publishing Office NATIONAL SCIENCE FOUNDATION Waste Regulation AGENCY: National Science Foundation. ACTION: Notice of permit modification request... Martin personnel will be assuming responsibility for waste management activities. Those activities...

  17. Lipid Regulation of Sodium Channels.

    PubMed

    D'Avanzo, N

    2016-01-01

    The lipid landscapes of cellular membranes are complex and dynamic, are tissue dependent, and can change with the age and the development of a variety of diseases. Researchers are now gaining new appreciation for the regulation of ion channel proteins by the membrane lipids in which they are embedded. Thus, as membrane lipids change, for example, during the development of disease, it is likely that the ionic currents that conduct through the ion channels embedded in these membranes will also be altered. This chapter provides an overview of the complex regulation of prokaryotic and eukaryotic voltage-dependent sodium (Nav) channels by fatty acids, sterols, glycerophospholipids, sphingolipids, and cannabinoids. The impact of lipid regulation on channel gating kinetics, voltage-dependence, trafficking, toxin binding, and structure are explored for Nav channels that have been examined in heterologous expression systems, native tissue, and reconstituted into artificial membranes. Putative mechanisms for Nav regulation by lipids are also discussed. PMID:27586290

  18. Regulation of TAZ in cancer.

    PubMed

    Zhou, Xin; Lei, Qun-Ying

    2016-08-01

    TAZ, a transcriptional coactivator with PDZ-binding motif, is encoded by WWTR1 gene (WW domain containing transcription regulator 1). TAZ is tightly regulated in the hippo pathway-dependent and -independent manner in response to a wide range of extracellular and intrinsic signals, including cell density, cell polarity, F-actin related mechanical stress, ligands of G protein-coupled receptors (GPCRs), cellular energy status, hypoxia and osmotic stress. Besides its role in normal tissue development, TAZ plays critical roles in cell proliferation, differentiation, apoptosis, migration, invasion, epithelial-mesenchymal transition (EMT), and stemness in multiple human cancers. We discuss here the regulators and regulation of TAZ. We also highlight the tumorigenic roles of TAZ and its potential therapeutic impact in human cancers. PMID:27412635

  19. State Regulation of Private Education.

    ERIC Educational Resources Information Center

    Lines, Patricia M.

    1982-01-01

    Examines state laws and the actions of various courts on home instruction and unauthorized educational programs. Suggests reforming the regulation of private education through legislative action that requires periodic testing as an alternative to compulsory school attendance. (Author/MLF)

  20. Targeting epigenetic regulations in cancer.

    PubMed

    Ning, Bo; Li, Wenyuan; Zhao, Wei; Wang, Rongfu

    2016-01-01

    Epigenetic regulation of gene expression is a dynamic and reversible process with DNA methylation, histone modifications, and chromatin remodeling. Recently, groundbreaking studies have demonstrated the importance of DNA and chromatin regulatory proteins from different aspects, including stem cell, development, and tumor genesis. Abnormal epigenetic regulation is frequently associated with diseases and drugs targeting DNA methylation and histone acetylation have been approved for cancer therapy. Although the network of epigenetic regulation is more complex than people expect, new potential druggable chromatin-associated proteins are being discovered and tested for clinical application. Here we review the key proteins that mediate epigenetic regulations through DNA methylation, the acetylation and methylation of histones, and the reader proteins that bind to modified histones. We also discuss cancer associations and recent progress of pharmacological development of these proteins. PMID:26508480

  1. Transistorized converter provides nondissipative regulation

    NASA Technical Reports Server (NTRS)

    1964-01-01

    A transistorized regulator converter efficiently converts fluctuating input voltages to a constant output voltage, avoiding the use of saturable reactors. It is nondissipative in operation and functions in an open loop through variable duty cycles.

  2. APPARATUS FOR REGULATING HIGH VOLTAGE

    DOEpatents

    Morrison, K.G.

    1951-03-20

    This patent describes a high-voltage regulator of the r-f type wherein the modulation of the r-f voltage is accomplished at a high level, resulting in good stabilization over a large range of load conditions.

  3. Nicotinic Regulation of Energy Homeostasis

    PubMed Central

    2012-01-01

    Introduction: The ability of nicotine, the primary psychoactive substance in tobacco smoke, to regulate appetite and body weight is one of the factors cited by smokers that prevents them from quitting and is the primary reason for smoking initiation in teenage girls. The regulation of feeding and metabolism by nicotine is complex, and recent studies have begun to identify nicotinic acetylcholine receptor (nAChR) subtypes and circuits or cell types involved in this regulation. Discussion: We will briefly describe the primary anatomical and functional features of the input, output, and central integration structures of the neuroendocrine systems that regulate energy homeostasis. Then, we will describe the nAChR subtypes expressed in these structures in mammals to identify the possible molecular targets for nicotine. Finally, we will review the effects of nicotine and its withdrawal on feeding and energy metabolism and attribute them to potential central and peripheral cellular targets. PMID:22990212

  4. Flow-compensating pressure regulator

    NASA Technical Reports Server (NTRS)

    Baehr, E. F.

    1979-01-01

    Pressure regulator developed for use with cataract-surgery instrument controls intraocular pressure during substantial variations in flow rate of infusion fluid. Device may be applicable to variety of eye-surgery instruments.

  5. Epigenetic regulation of persistent pain

    PubMed Central

    Bai, Guang; Ren, Ke; Dubner, Ronald

    2014-01-01

    Persistent or chronic pain is tightly associated with various environmental changes and linked to abnormal gene expression within cells processing nociceptive signaling. Epigenetic regulation governs gene expression in response to environmental cues. Recent animal model and clinical studies indicate that epigenetic regulation plays an important role in the development/maintenance of persistent pain and, possibly the transition of acute pain to chronic pain, thus shedding light in a direction for development of new therapeutics for persistent pain. PMID:24948399

  6. Regulating managers. Rules of engagement.

    PubMed

    Marples, S

    2001-09-20

    Regulation of managers would improve patient safety and managers' credibility. Removable offences should include improper conduct. Managers should be required to demonstrate competence in people management, finance and information services. A regulatory code should incorporate the values of integrity, honesty, openness and accountability. In the absence of a regulation system for managers, a medical manager struck off by the General Medical Council could go on to manage another organisation. PMID:11586779

  7. YCRD: Yeast Combinatorial Regulation Database

    PubMed Central

    Wu, Wei-Sheng; Hsieh, Yen-Chen; Lai, Fu-Jou

    2016-01-01

    In eukaryotes, the precise transcriptional control of gene expression is typically achieved through combinatorial regulation using cooperative transcription factors (TFs). Therefore, a database which provides regulatory associations between cooperative TFs and their target genes is helpful for biologists to study the molecular mechanisms of transcriptional regulation of gene expression. Because there is no such kind of databases in the public domain, this prompts us to construct a database, called Yeast Combinatorial Regulation Database (YCRD), which deposits 434,197 regulatory associations between 2535 cooperative TF pairs and 6243 genes. The comprehensive collection of more than 2500 cooperative TF pairs was retrieved from 17 existing algorithms in the literature. The target genes of a cooperative TF pair (e.g. TF1-TF2) are defined as the common target genes of TF1 and TF2, where a TF’s experimentally validated target genes were downloaded from YEASTRACT database. In YCRD, users can (i) search the target genes of a cooperative TF pair of interest, (ii) search the cooperative TF pairs which regulate a gene of interest and (iii) identify important cooperative TF pairs which regulate a given set of genes. We believe that YCRD will be a valuable resource for yeast biologists to study combinatorial regulation of gene expression. YCRD is available at http://cosbi.ee.ncku.edu.tw/YCRD/ or http://cosbi2.ee.ncku.edu.tw/YCRD/. PMID:27392072

  8. To Regulate or Not to Regulate? Views on Electronic Cigarette Regulations and Beliefs about the Reasons for and against Regulation

    PubMed Central

    Sanders-Jackson, Ashley; Tan, Andy S. L.; Bigman, Cabral A.; Mello, Susan; Niederdeppe, Jeff

    2016-01-01

    Background Policies designed to restrict marketing, access to, and public use of electronic cigarettes (e-cigarettes) are increasingly under debate in various jurisdictions in the US. Little is known about public perceptions of these policies and factors that predict their support or opposition. Methods Using a sample of US adults from Amazon Mechanical Turk in May 2015, this paper identifies beliefs about the benefits and costs of regulating e-cigarettes and identifies which of these beliefs predict support for e-cigarette restricting policies. Results A higher proportion of respondents agreed with 8 different reasons to regulate e-cigarettes (48.5% to 83.3% agreement) versus 7 reasons not to regulate e-cigarettes (11.5% to 18.9%). The majority of participants agreed with 7 out of 8 reasons for regulation. When all reasons to regulate or not were included in a final multivariable model, beliefs about protecting people from secondhand vapor and protecting youth from trying e-cigarettes significantly predicted stronger support for e-cigarette restricting policies, whereas concern about government intrusion into individual choices was associated with reduced support. Discussion This research identifies key beliefs that may underlie public support or opposition to policies designed to regulate the marketing and use of e-cigarettes. Advocates on both sides of the issue may find this research valuable in developing strategic campaigns related to the issue. Implications Specific beliefs of potential benefits and costs of e-cigarette regulation (protecting youth, preventing exposure to secondhand vapor, and government intrusion into individual choices) may be effectively deployed by policy makers or health advocates in communicating with the public. PMID:27517716

  9. Thyroid Hormone Regulation of Metabolism

    PubMed Central

    Mullur, Rashmi; Liu, Yan-Yun

    2014-01-01

    Thyroid hormone (TH) is required for normal development as well as regulating metabolism in the adult. The thyroid hormone receptor (TR) isoforms, α and β, are differentially expressed in tissues and have distinct roles in TH signaling. Local activation of thyroxine (T4), to the active form, triiodothyronine (T3), by 5′-deiodinase type 2 (D2) is a key mechanism of TH regulation of metabolism. D2 is expressed in the hypothalamus, white fat, brown adipose tissue (BAT), and skeletal muscle and is required for adaptive thermogenesis. The thyroid gland is regulated by thyrotropin releasing hormone (TRH) and thyroid stimulating hormone (TSH). In addition to TRH/TSH regulation by TH feedback, there is central modulation by nutritional signals, such as leptin, as well as peptides regulating appetite. The nutrient status of the cell provides feedback on TH signaling pathways through epigentic modification of histones. Integration of TH signaling with the adrenergic nervous system occurs peripherally, in liver, white fat, and BAT, but also centrally, in the hypothalamus. TR regulates cholesterol and carbohydrate metabolism through direct actions on gene expression as well as cross-talk with other nuclear receptors, including peroxisome proliferator-activated receptor (PPAR), liver X receptor (LXR), and bile acid signaling pathways. TH modulates hepatic insulin sensitivity, especially important for the suppression of hepatic gluconeogenesis. The role of TH in regulating metabolic pathways has led to several new therapeutic targets for metabolic disorders. Understanding the mechanisms and interactions of the various TH signaling pathways in metabolism will improve our likelihood of identifying effective and selective targets. PMID:24692351

  10. Regulating the Regulators: microRNA and Asthma

    PubMed Central

    2011-01-01

    One obstacle to developing an effective therapeutic strategy to treat or prevent asthma is that the fundamental causes of asthma are not totally understood. Asthma is thought to be a chronic TH2 immune-mediated inflammatory disease. Epigenetic changes are recognized to play a role in the initiation and maintenance of a TH2 response. MicroRNAs (miRNAs) are key epigenetic regulators of gene expression, and their expression is highly regulated, therefore, deregulation of miRNAs may play an important role in the pathogenesis of asthma. Profiling circulating miRNA might provide the highest specificity and sensitivity to diagnose asthma; similarly, correcting potential defects in the miRNA regulation network may lead to new therapeutic modalities to treat this disease. PMID:23282474