Science.gov

Sample records for time-resolved fluorescence spectroscopy

  1. Diagnosis of meningioma by time-resolved fluorescence spectroscopy.

    PubMed

    Butte, Pramod V; Pikul, Brian K; Hever, Aviv; Yong, William H; Black, Keith L; Marcu, Laura

    2005-01-01

    We investigate the use of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) as an adjunctive tool for the intraoperative rapid evaluation of tumor specimens and delineation of tumor from surrounding normal tissue. Tissue autofluorescence is induced with a pulsed nitrogen laser (337 nm, 1.2 ns) and the intensity decay profiles are recorded in the 370 to 500 nm spectral range with a fast digitizer (0.2 ns resolution). Experiments are conducted on excised specimens (meningioma, dura mater, cerebral cortex) from 26 patients (97 sites). Spectral intensities and time-dependent parameters derived from the time-resolved spectra of each site are used for tissue characterization. A linear discriminant analysis algorithm is used for tissue classification. Our results reveal that meningioma is characterized by unique fluorescence characteristics that enable discrimination of tumor from normal tissue with high sensitivity (>89%) and specificity (100%). The accuracy of classification is found to increase (92.8% cases in the training set and 91.8% in the cross-validated set correctly classified) when parameters from both the spectral and the time domain are used for discrimination. Our findings establish the feasibility of using TR-LIFS as a tool for the identification of meningiomas and enables further development of real-time diagnostic tools for analyzing surgical tissue specimens of meningioma or other brain tumors. PMID:16409091

  2. Time-resolved Hyperspectral Fluorescence Spectroscopy using Frequency Modulated Excitation

    SciTech Connect

    ,; Neill, M

    2012-07-01

    An intensity-modulated excitation light source is used together with a micro channel plate intensified CCD (ICCD) detector gated at a slightly different frequency to generate a beat frequency from a fluorescent sample. The addition of a spectrograph produces a hyperspectral time-resolved data product where the resulting beat frequency is detected with a low frame rate camera. Measuring the beat frequency of the spectrum as a function of time allows separation of the excited fluorescence from ambient constant light sources. The excitation and detector repetition rates are varied over a range of discrete frequencies, and the phase shift of the beat wave maps out the emission decay rate(s).

  3. [Laser-time-resolved fluorescence spectroscopy in immunoassays].

    PubMed

    Pan, L; Du, J; Xie, W; Du, Q; Yun, Q

    2000-06-01

    This paper described a laser-excited time-resolved fluoroimmunoassay set. It made lanthanide ion to couple the anhydrde of diethylenetriaminepentaacetic acid (DTPAA) for labeling antibodies. The experiment used polystyrene tap coated with HCV antigen as the solid phase and a chelate of the rare earth metal europium as fluorescent label. A nitrogen laser beam was used to excite the Eu3- chelates and after 60 microseconds delay time, the emission fluorescence was measured. Background fluorescence of short lifetimes caused by serum components and Raman scattering can be eliminated by set the delay time. In the system condition, fluorescent spectra and fluorescent lifetimes of Eu3+ beta-naphthoyltrifluroacetone (NTA) chelates were measured. The fluorescent lifetime value is 650 microseconds. The maximum emission wavelength is 613 nm. The linear range of europium ion concentration is 1 x 10(-7)-1 x 10(-11) g.mL-1 and the detection limit is 1 x 10(-13) g.mL-1. The relative standard deviation of determination (n = 12) for samples at 0.01 ng.mL-1 magnitude is 6.4%. Laser-TRFIA was also found to be suitable for diagnosis of HCV. The sensitivity and specificity were comparable to enzyme immunoassay. The result was obtained with laser-TRFIA for 29 human correlated well with enzyme immunoassay. PMID:12958930

  4. Time-resolved FRET fluorescence spectroscopy of visible fluorescent protein pairs.

    PubMed

    Visser, A J W G; Laptenok, S P; Visser, N V; van Hoek, A; Birch, D J S; Brochon, J-C; Borst, J W

    2010-01-01

    Förster resonance energy transfer (FRET) is a powerful method for obtaining information about small-scale lengths between biomacromolecules. Visible fluorescent proteins (VFPs) are widely used as spectrally different FRET pairs, where one VFP acts as a donor and another VFP as an acceptor. The VFPs are usually fused to the proteins of interest, and this fusion product is genetically encoded in cells. FRET between VFPs can be determined by analysis of either the fluorescence decay properties of the donor molecule or the rise time of acceptor fluorescence. Time-resolved fluorescence spectroscopy is the technique of choice to perform these measurements. FRET can be measured not only in solution, but also in living cells by the technique of fluorescence lifetime imaging microscopy (FLIM), where fluorescence lifetimes are determined with the spatial resolution of an optical microscope. Here we focus attention on time-resolved fluorescence spectroscopy of purified, selected VFPs (both single VFPs and FRET pairs of VFPs) in cuvette-type experiments. For quantitative interpretation of FRET-FLIM experiments in cellular systems, details of the molecular fluorescence are needed that can be obtained from experiments with isolated VFPs. For analysis of the time-resolved fluorescence experiments of VFPs, we have utilised the maximum entropy method procedure to obtain a distribution of fluorescence lifetimes. Distributed lifetime patterns turn out to have diagnostic value, for instance, in observing populations of VFP pairs that are FRET-inactive. PMID:19693494

  5. Time-resolved fluorescence spectroscopy for chemical sensors

    NASA Astrophysics Data System (ADS)

    Draxler, Sonja; Lippitsch, Max E.

    1996-07-01

    A family of sensors is presented with fluorescence decay-time measurements used as the sensing technique. The concept is to take a single fluorophore with a suitably long fluorescence decay time as the basic building block for numerous different sensors. Analyte recognition can be performed by different functional groups that are necessary for selective interaction with the analyte. To achieve this, the principle of excited-state electron transfer is applied with pyrene as the fluorophore. Therefore the same instrumentation based on a small, ambient air-nitrogen laser and solid-state electronics can be used to measure different analytes, for example, oxygen, pH, carbon dioxide, potassium, ammonium, lead, cadmium, zinc, and phosphate.

  6. Multispectral scanning time-resolved fluorescence spectroscopy (TRFS) technique for intravascular diagnosis

    PubMed Central

    Xie, Hongtao; Bec, Julien; Liu, Jing; Sun, Yang; Lam, Matthew; Yankelevich, Diego R.; Marcu, Laura

    2012-01-01

    This study describes a scanning time-resolved fluorescence spectroscopy (TRFS) system designed to continuously acquire fluorescence emission and to reconstruct fluorescence lifetime images (FLIM) from a luminal surface by using a catheter-based optical probe with rotary joint and pull-back device. The ability of the system to temporally and spectrally resolve the fluorescence emission from tissue was validated using standard dyes and tissue phantoms (e.g., ex vivo pig aorta phantom). Current results demonstrate that this system is capable to reliably resolve the fluorescence emission of multiple fluorophores located in the lumen; and suggest its potential for intravascular detection of distinct biochemical features of atherosclerotic plaques. PMID:22808425

  7. Tubulin equilibrium unfolding followed by time-resolved fluorescence and fluorescence correlation spectroscopy

    PubMed Central

    Sánchez, Susana A.; Brunet, Juan E.; Jameson, David M.; Lagos, Rosalba; Monasterio, Octavio

    2004-01-01

    The pathway for the in vitro equilibrium unfolding of the tubulin heterodimer by guanidinium chloride (GdmCl) has been studied using several spectroscopic techniques, specifically circular dichroism (CD), two-photon Fluorescence Correlation Spectroscopy (FCS), and time-resolved fluorescence, including lifetime and dynamic polarization. The results show that tubulin unfolding is characterized by distinct processes that occur in different GdmCl concentration ranges. From 0 to 0.5 M GdmCl, a slight alteration of the tubulin heterodimer occurs, as evidenced by a small, but reproducible increase in the rotational correlation time of the protein and a sharp decrease in the secondary structure monitored by CD. In the range 0.5–1.5 M GdmCl, significant decreases in the steady-state anisotropy and average lifetime of the intrinsic tryptophan fluorescence occur, as well as a decrease in the rotational correlation time, from 48 to 26 nsec. In the same GdmCl range, the number of protein molecules (labeled with Alexa 488), as determined by two-photon FCS measurements, increases by a factor of two, indicating dissociation of the tubulin dimer into monomers. From 1.5 to 4 M GdmCl, these monomers unfold, as evidenced by the continual decrease in the tryptophan steady-state anisotropy, average lifetime, and rotational correlation time, concomitant with secondary structural changes. These results help to elucidate the unfolding pathway of the tubulin heterodimer and demonstrate the value of FCS measurements in studies on oligomeric protein systems. PMID:14691224

  8. Fluorescence imaging and time-resolved spectroscopy of steroid using confocal synchrotron radiation microscopy

    NASA Astrophysics Data System (ADS)

    Gerritsen, Hans C.; van der Oord, C. J. R.; Levine, Yehudi K.; Munro, Ian H.; Jones, Gareth R.; Shaw, D. A.; Rommerts, Fokko F.

    1994-08-01

    The Confocal Synchrotron Radiation Microscope at Daresbury was used in a study of the transport and distribution of the steroid Coumestrol in single Leydig cells. The broad spectrum of synchrotron radiation in combination with UV compatible microscope optics affords the extension of confocal microscopy from the visible to the UV region down to about 200 nm. Consequently fluorescent molecules with absorption bands in the UV can be imaged. In addition the pulsed nature of the light source allows us to perform time-resolved fluorescence spectroscopy experiments on microscopic volumes. Coumestrol is a naturally fluorescing plant steroid exhibiting estrogenic activity. In physiological environments it has an absorption peak in the UV at 340 nm and it emits around 440 nm. First results indicate that the Coumestrol transport through the cell membrane is diffusion limited. The weak fluorescence observed in the nuclei of the Leydig cells may be due to fluorescence quenching arising from the interaction of the Coumesterol with nuclear components. However, micro-volume time-resolved fluorescence spectroscopy experiments on cell nuclei have revealed the same decay behavior for Coumesterol in both the cytoplasm and nucleus of the cells.

  9. Revealing the photophysics of gold-nanobeacons via time-resolved fluorescence spectroscopy.

    PubMed

    Wei, Guoke; Simionesie, Dorin; Sefcik, Jan; Sutter, Jens U; Xue, Qingjiang; Yu, Jun; Wang, Jinliang; Birch, David J S; Chen, Yu

    2015-12-15

    We demonstrate that time-resolved fluorescence spectroscopy is a powerful tool to investigate the conformation states of hairpin DNA on the surface of gold nanoparticles (AuNPs) and energy transfer processes in Au-nanobeacons. Long-range fluorescence quenching of Cy5 by AuNPs has been found to be in good agreement with electrodynamics modeling. Moreover, time-correlated single-photon counting (TCSPC) is shown to be promising for real-time monitoring of the hybridization kinetics of Au-nanobeacons, with up to 60% increase in decay time component and 300% increase in component fluorescence fraction observed. Our results also indicate the importance of the stem and spacer designs for the performance of Au-nanobeacons. PMID:26670500

  10. Design and evaluation of a device for fast multispectral time-resolved fluorescence spectroscopy and imaging

    SciTech Connect

    Yankelevich, Diego R.; Ma, Dinglong; Liu, Jing; Sun, Yang; Sun, Yinghua; Bec, Julien; Marcu, Laura; Elson, Daniel S.

    2014-03-15

    The application of time-resolved fluorescence spectroscopy (TRFS) to in vivo tissue diagnosis requires a method for fast acquisition of fluorescence decay profiles in multiple spectral bands. This study focusses on development of a clinically compatible fiber-optic based multispectral TRFS (ms-TRFS) system together with validation of its accuracy and precision for fluorescence lifetime measurements. It also presents the expansion of this technique into an imaging spectroscopy method. A tandem array of dichroic beamsplitters and filters was used to record TRFS decay profiles at four distinct spectral bands where biological tissue typically presents fluorescence emission maxima, namely, 390, 452, 542, and 629 nm. Each emission channel was temporally separated by using transmission delays through 200 μm diameter multimode optical fibers of 1, 10, 19, and 28 m lengths. A Laguerre-expansion deconvolution algorithm was used to compensate for modal dispersion inherent to large diameter optical fibers and the finite bandwidth of detectors and digitizers. The system was found to be highly efficient and fast requiring a few nano-Joule of laser pulse energy and <1 ms per point measurement, respectively, for the detection of tissue autofluorescent components. Organic and biological chromophores with lifetimes that spanned a 0.8–7 ns range were used for system validation, and the measured lifetimes from the organic fluorophores deviated by less than 10% from values reported in the literature. Multi-spectral lifetime images of organic dye solutions contained in glass capillary tubes were recorded by raster scanning the single fiber probe in a 2D plane to validate the system as an imaging tool. The lifetime measurement variability was measured indicating that the system provides reproducible results with a standard deviation smaller than 50 ps. The ms-TRFS is a compact apparatus that makes possible the fast, accurate, and precise multispectral time-resolved fluorescence

  11. Use of time-resolved fluorescence spectroscopy to evaluate diagnostic value of collagen degradation products.

    PubMed

    Sikora, Joanna; Cyrankiewicz, Michał; Wybranowski, Tomasz; Ziomkowska, Blanka; Ośmiałowski, Borys; Obońska, Ewa; Augustyńska, Beata; Kruszewski, Stefan; Kubica, Jacek

    2015-05-01

    The concentration of collagen degradation products (CDPs) may reflect the process of left ventricular remodeling (LVR). The aim of this study was to evaluate the potential diagnostic usefulness of time-resolved fluorescence spectroscopy (TRFS) in assessment of CDPs. The preliminary experiment was designed to establish if CDPs’ characteristics might be visible by mean fluorescence lifetime (FLT) in determined conditions. The in vitro model of CDPs was prepared by conducting the hydrolysis of type III collagen. The FLT of samples was measured by the time-resolved spectrometer Life Spec II with the subnanosecond pulsed 360-nm EPLED diode. The FLTs were obtained by deconvolution analysis of the data using a multiexponential model of fluorescence decay. In order to determine the limit of traceability of CDPs, a comparison of different collagen/plasma ratio in samples was performed. The results of our study showed that the increase of added plasma to hydrolyzed collagen extended the mean FLT. Thus, the diagnosis of LVR based on measurements using TRFS is possible. However, it is important to point out the experiment was preliminary and further investigation in this field of research is crucial. PMID:25764396

  12. Probing Ternary Complex Equilibria of Crown Ether Ligands by Time-Resolved Fluorescence Spectroscopy

    PubMed Central

    2015-01-01

    Ternary complex formation with solvent molecules and other adventitious ligands may compromise the performance of metal-ion-selective fluorescent probes. As Ca(II) can accommodate more than 6 donors in the first coordination sphere, commonly used crown ether ligands are prone to ternary complex formation with this cation. The steric strain imposed by auxiliary ligands, however, may result in an ensemble of rapidly equilibrating coordination species with varying degrees of interaction between the cation and the specific donor atoms mediating the fluorescence response, thus diminishing the change in fluorescence properties upon Ca(II) binding. To explore the influence of ligand architecture on these equilibria, we tethered two structurally distinct aza-15-crown-5 ligands to pyrazoline fluorophores as reporters. Due to ultrafast photoinduced electron-transfer (PET) quenching of the fluorophore by the ligand moiety, the fluorescence decay profile directly reflects the species composition in the ground state. By adjusting the PET driving force through electronic tuning of the pyrazoline fluorophores, we were able to differentiate between species with only subtle variations in PET donor abilities. Concluding from a global analysis of the corresponding fluorescence decay profiles, the coordination species composition was indeed strongly dependent on the ligand architecture. Altogether, the combination of time-resolved fluorescence spectroscopy with selective tuning of the PET driving force represents an effective analytical tool to study dynamic coordination equilibria and thus to optimize ligand architectures for the design of high-contrast cation-responsive fluorescence switches. PMID:25313708

  13. Time-resolved fluorescence polarization spectroscopy of visible and near infrared dyes in picosecond dynamics

    NASA Astrophysics Data System (ADS)

    Pu, Yang; Alfano, Robert R.

    2015-03-01

    Near-infrared (NIR) dyes absorb and emit light within the range from 700 to 900 nm have several benefits in biological studies for one- and/or two-photon excitation for deeper penetration of tissues. These molecules undergo vibrational and rotational motion in the relaxation of the excited electronic states, Due to the less than ideal anisotropy behavior of NIR dyes stemming from the fluorophores elongated structures and short fluorescence lifetime in picosecond range, no significant efforts have been made to recognize the theory of these dyes in time-resolved polarization dynamics. In this study, the depolarization of the fluorescence due to emission from rotational deactivation in solution will be measured with the excitation of a linearly polarized femtosecond laser pulse and a streak camera. The theory, experiment and application of the ultrafast fluorescence polarization dynamics and anisotropy are illustrated with examples of two of the most important medical based dyes. One is NIR dye, namely Indocyanine Green (ICG) and is compared with Fluorescein which is in visible range with much longer lifetime. A set of first-order linear differential equations was developed to model fluorescence polarization dynamics of NIR dye in picosecond range. Using this model, the important parameters of ultrafast polarization spectroscopy were identified: risetime, initial time, fluorescence lifetime, and rotation times.

  14. Distinction of brain tissue, low grade and high grade glioma with time-resolved fluorescence spectroscopy.

    PubMed

    Yong, William H; Butte, Pramod V; Pikul, Brian K; Jo, Javier A; Fang, Qiyin; Papaioannou, Thanassis; Black, Keith; Marcu, Laura

    2006-01-01

    Neuropathology frozen section diagnoses are difficult in part because of the small tissue samples and the paucity of adjunctive rapid intraoperative stains. This study aims to explore the use of time-resolved laser-induced fluorescence spectroscopy as a rapid adjunctive tool for the diagnosis of glioma specimens and for distinction of glioma from normal tissues intraoperatively. Ten low grade gliomas, 15 high grade gliomas without necrosis, 6 high grade gliomas with necrosis and/or radiation effect, and 14 histologically uninvolved "normal" brain specimens are spectroscopicaly analyzed and contrasted. Tissue autofluorescence was induced with a pulsed Nitrogen laser (337 nm, 1.2 ns) and the transient intensity decay profiles were recorded in the 370-500 nm spectral range with a fast digitized (0.2 ns time resolution). Spectral intensities and time-dependent parameters derived from the time-resolved spectra of each site were used for tissue characterization. A linear discriminant analysis diagnostic algorithm was used for tissue classification. Both low and high grade gliomas can be distinguished from histologically uninvolved cerebral cortex and white matter with high accuracy (above 90%). In addition, the presence or absence of treatment effect and/or necrosis can be identified in high grade gliomas. Taking advantage of tissue autofluorescence, this technique facilitates a direct and rapid investigation of surgically obtained tissue. PMID:16368511

  15. Time-resolved spectroscopy of the intrinsic fluorescence of nucleic acid species

    NASA Astrophysics Data System (ADS)

    Daniels, Malcolm; Hart, Lucas P.; Ho, Paul S.; Ballini, Jean-Pierre; Vigny, Paul

    1990-05-01

    Polarization and lifetime studies have shown that the fluorescence from nucleic acid species is complex, both at the individual chromophore level and because of the effect of stacking interactions on the electronic states. Recent work aimed at elucidating some aspects of this behavior by decay analysis and time-resolved spectroscopy is surveyed. Experimental work has been carried out using the ACO synchrotron at LURE, France) with time-correlated single photon counting, or a frequency-doubled N2-pumped dye laser, pulse width 700 ps, with fast-gated (100 ps width) analog detection and signal averaging. Decay curves are treated by global analysis using the Marquardt non-linear least-squares algorithm (synchrotron data) or the SPLMOD program (EMBO), which carries out a non-linear leastsquares minimization using cubic splines, for the laser data. Resolution of the decay data gives a model-based estimate of the number of components and their lifetimes. This information is then used to deconvolute timewindowed spectra (time-delayed spectra) into the time-resolved spectra. It is a particular feature of the combination of delayed photon counting with the continuous wavelength distribution of pulsed synchrotron radiation that excitation spectra correlating with emissions of different lifetimes can be obtained by uninterrupted repetitive scanning over a wide range of exciting wavelengths, in the present work from 230 nm to 354 urn. Such time-delayed excitation spectra can also be deconvoluted into components corresponding to the various time-resolved emission spectra. Examples of these three types of information viz resolved lifetimes, time-resolved emission spectra and their excitation spectra are presented and discussed for the following systems. I. adenosine; 6N, 6N-dimethyladenosine; protonated adenosine; this work shows the role of rotamers in the excited state behavior of this chromophore and demonstrates the forbidden nature of the lowest excited state. II. d(AT); d

  16. Light adaptation of the unicellular red alga, Cyanidioschyzon merolae, probed by time-resolved fluorescence spectroscopy.

    PubMed

    Ueno, Yoshifumi; Aikawa, Shimpei; Kondo, Akihiko; Akimoto, Seiji

    2015-08-01

    Photosynthetic organisms change the quantity and/or quality of their pigment-protein complexes and the interactions among these complexes in response to light conditions. In the present study, we analyzed light adaptation of the unicellular red alga Cyanidioschyzon merolae, whose pigment composition is similar to that of cyanobacteria because its phycobilisomes (PBS) lack phycoerythrin. C. merolae were grown under different light qualities, and their responses were measured by steady-state absorption, steady-state fluorescence, and picosecond time-resolved fluorescence spectroscopies. Cells were cultivated under four monochromatic light-emitting diodes (blue, green, yellow, and red), and changes in pigment composition and energy transfer were observed. Cells grown under blue and green light increased their relative phycocyanin levels compared with cells cultured under white light. Energy-transfer processes to photosystem I (PSI) were sensitive to yellow and red light. The contribution of direct energy transfer from PBS to PSI increased only under yellow light, while red light induced a reduction in energy transfer from photosystem II to PSI and an increase in energy transfer from light-harvesting chlorophyll protein complex I to PSI. Differences in pigment composition, growth, and energy transfer under different light qualities are discussed. PMID:25577254

  17. Intraoperative delineation of primary brain tumors using time-resolved fluorescence spectroscopy.

    PubMed

    Butte, Pramod V; Fang, Qiyin; Jo, Javier A; Yong, William H; Pikul, Brian K; Black, Keith L; Marcu, Laura

    2010-01-01

    The goal of this study is to determine the potential of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) as an adjunctive tool for delineation of brain tumor from surrounding normal tissue in order to assist the neurosurgeon in near-complete tumor excision. A time-domain TR-LIFS prototype apparatus (gated photomultiplier detection, fast digitizer) was used for recording tissue autofluorescence in normal cortex (NC), normal white matter (NWM), and various grades of gliomas intraoperatively. Tissue fluorescence was induced with a pulsed nitrogen laser (337 nm, 700 ps), and the intensity decay profiles were recorded in the 360- to 550-nm spectral range (10-nm interval). Histopathological analysis (hematoxylin & eosin) of the biopsy samples taken from the site of TR-LIFS measurements was used for validation of spectroscopic results. Preliminary results on 17 patients demonstrate that normal cortex (N=16) and normal white matter (N=3) show two peaks of fluorescence emission at 390 nm (lifetime=1.8+/-0.3 ns) and 460 nm (lifetime=0.8+/-0.1 ns). The 390-nm emission peak is absent in low-grade glioma (N=5; lifetime=1.1 ns) and reduced in high-grade glioma (N=9; lifetime=1.7+/-0.4 ns). The emission characteristics at 460 nm in all tissues correlated with the nicotinamide adenine dinucleotide fluorescence (peak: 440 to 460 nm; lifetime: 0.8 to 1.0 ns). These findings demonstrate the potential of using TR-LIFS as a tool for enhanced delineation of brain tumors during surgery. In addition, this study evaluates similarities and differences between TR-LIFS signatures of brain tumors obtained in vivo and those previously reported in ex vivo brain tumor specimens. PMID:20459282

  18. Intraoperative delineation of primary brain tumors using time-resolved fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Butte, Pramod V.; Fang, Qiyin; Jo, Javier A.; Yong, William H.; Pikul, Brian K.; Black, Keith L.; Marcu, Laura

    2010-03-01

    The goal of this study is to determine the potential of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) as an adjunctive tool for delineation of brain tumor from surrounding normal tissue in order to assist the neurosurgeon in near-complete tumor excision. A time-domain TR-LIFS prototype apparatus (gated photomultiplier detection, fast digitizer) was used for recording tissue autofluorescence in normal cortex (NC), normal white matter (NWM), and various grades of gliomas intraoperatively. Tissue fluorescence was induced with a pulsed nitrogen laser (337 nm, 700 ps), and the intensity decay profiles were recorded in the 360- to 550-nm spectral range (10-nm interval). Histopathological analysis (hematoxylin & eosin) of the biopsy samples taken from the site of TR-LIFS measurements was used for validation of spectroscopic results. Preliminary results on 17 patients demonstrate that normal cortex (N=16) and normal white matter (N=3) show two peaks of fluorescence emission at 390 nm (lifetime=1.8+/-0.3 ns) and 460 nm (lifetime=0.8+/-0.1 ns). The 390-nm emission peak is absent in low-grade glioma (N=5; lifetime=1.1 ns) and reduced in high-grade glioma (N=9; lifetime=1.7+/-0.4 ns). The emission characteristics at 460 nm in all tissues correlated with the nicotinamide adenine dinucleotide fluorescence (peak: 440 to 460 nm lifetime: 0.8 to 1.0 ns). These findings demonstrate the potential of using TR-LIFS as a tool for enhanced delineation of brain tumors during surgery. In addition, this study evaluates similarities and differences between TR-LIFS signatures of brain tumors obtained in vivo and those previously reported in ex vivo brain tumor specimens.

  19. Time-resolved spectroscopy of charge-transfer fluorescent molecules in polymer matrices

    NASA Astrophysics Data System (ADS)

    Hofstraat, Johannes W.; Verhey, H. J.; Verhoeven, Jan W.; Kuemke, M.; McGown, Linda B.; Novikov, Eugene G.; van Hoek, Arie; Visser, Antonie J. W. G.

    1996-03-01

    Time-resolved fluorescence measurements have been carried out on charge-transfer fluorescent molecules incorporated in polymeric lattices, consisting of polystyrene cores and polyglycidylmethacrylate shells, and in polymethylmethacrylate thin films. New approaches to the analysis of fluorescence lifetime data obtained for molecules in polymer matrices had to be applied, since conventional analysis methods appeared not suitable for such strongly heterogeneous systems. The polymer lattices could be characterized by application of phase- resolved fluorescence lifetime measurements followed by maximum-entropy methods for data analysis. The thin films were studied using time-correlated single photon counting fluorescence lifetime measurements and data analysis with a home-built program based on stretched exponential decays. Interactions of the fluorescent guest molecules could be established by combined fluorescence lifetime and depolarization measurements. Suggestions for further improvements in fluorescence lifetime methods for characterization of polymeric materials have been made.

  20. Lasing dynamics study by femtosecond time-resolved fluorescence non-collinear optical parametric amplification spectroscopy

    NASA Astrophysics Data System (ADS)

    Wei, Dang; Qing, Liao; Peng-Cheng, Mao; Hong-Bing, Fu; Yu-Xiang, Weng

    2016-05-01

    Femtosecond time-resolved fluorescence non-collinear optical parametric amplification spectroscopy (FNOPAS) is a versatile technique with advantages of high sensitivity, broad detection bandwidth, and intrinsic spectrum correction function. These advantages should benefit the study of coherent emission, such as measurement of lasing dynamics. In this letter, the FNOPAS was used to trace the lasing process in Rhodamine 6G (R6G) solution and organic semiconductor nano-wires. High-quality transient emission spectra and lasing dynamic traces were acquired, which demonstrates the applicability of FNOPAS in the study of lasing dynamics. Our work extends the application scope of the FNOPAS technique. Project supported by the National Natural Science Foundation of China (Grant Nos. 20925313 and 21503066), the Innovation Program of Chinese Academy of Sciences (Grant No. KJCX2-YW-W25), the Postdoctoral Project of Hebei University, China, and the Project of Science and Technology Bureau of Baoding City, China (Grant No. 15ZG029).

  1. Adsorption of Uranyl on Gibbsite: A Time-Resolved Laser-Induced Fluorescence Spectroscopy Study

    SciTech Connect

    Chang, Hyun-shik; Korshin, Gregory V.; Wang, Zheming; Zachara, John M.

    2006-02-15

    Uranyl adsorbed on gibbsite at pH 4.0-8.0 and ionic strengths (ISs) 0.001-0.4 M (NaClO4) in the absence of carbonate was studied using time-resolved laser-induced fluorescence spectroscopy (TRLIFS) under cryogenic conditions. TRLIFS data showed the presence of several distinct emission components. Their contributions were determined using the evolving factor analysis approach. Four components denoted as species A, B, C, and D were discerned. Each of them was characterized by a characteristic response to pH and IS changes and also by a unique combination of the values of the fundamental transition energy E0,0, vibronic spacing E, and half-width of the vibronic lines W. Species A and B were major contributors to the overall emission. They were mainly affected by the pH and predominated below and above pH 5.0, respectively. In contrast with that, the contribution of species C was noticeable only at IS = 0.001 M, while it was suppressed or absent at high IS values. It was concluded that species A and B are likely to correspond to inner-sphere surface aluminol complexes AlO-(UO2)+ and AlO-(UO2)OH, while species C was hypothesized to correspond to electrostatically bound uranyl complexes (predominantly [UO2(OH)3]-).

  2. Time-Resolved Light Scattering and Fluorescence Spectroscopy in Biomedical and Model Random Media

    NASA Astrophysics Data System (ADS)

    Das, Bidyut Baran

    Optical spectroscopy, light scattering and ultrafast time-gated imaging have been shown to offer novel approaches to study the optical characteristics of various biomedical and other random media. Fluorescence spectra from human malignant and nonmalignant breast tissues were measured at 300 nm excitation and a significant spectral difference was found between the two tissue types by using the ratio of fluorescence intensities at 340 and 440 nm. Optical density measurements on thin breast tissues show that the scattering cross-sections of breast tissues are relatively constant over the visible and the uv region. Transport mean free paths and the absorption lengths for various tissues and model random media were measured using time-resolved transmission. The scattering coefficients for human breast and chicken tissues were found to remain relatively constant in 570-630 nm wavelength region while they change significantly at 1064 nm. Chicken breast and fat tissues were found to be good models for human breast tissues as the values of the optical parameters of the two tissue types are about the same. The less scattering observed at 1064 nm makes tissues more transparent in the NIR region making it easier to image in thick tissues. Time-resolved backscattering measurements show that the scattering and the absorption parameters of a random medium can be obtained accurately in a two-fiber configuration as long as the radial distance is more than about seven times the transport mean free path of the sample. The single point source-detection configuration provides a tool to diagnose breast malignancy though it fails to give accurate values of the optical parameters of tissues. This failure is attributed to the invalidity of the diffusion approximation in this experimental configuration. A 2.5 mm thin chicken fat strip was imaged inside a 40 mm thick chicken breast tissue using snake photons at 625 nm with ultrafast time-gated detection. A simple model to describe the effect

  3. Time-resolved and steady-state fluorescence spectroscopy from bacteria subjected to bactericidal agents

    NASA Astrophysics Data System (ADS)

    Katz, Alvin; Alimova, Alexandra; Siddique, Masood; Savage, Howard E.; Shah, Mahendra; Rosen, Richard; Alfano, Robert

    2004-03-01

    The time-resolved and steady-state changes in fluorescence were investigated from one spore-forming (Bacillus subtilis) and four non-spore forming (Escherichia coli, Staphylococcus aureus, Enterococcus faecalis, and Pseudomonas aeruginosa) bacteria subjected to different bactericidal agents. The bactericidal agents were sodium hypochlorite (bleach) hydrogen peroxide, formaldehyde, and UV light exposure. Application of sodium hypochlorite resulted in an almost total lose of fluorescence signal and large decrease in the optical density of the bacterial suspension. Addition of hydrogen peroxide resulted in a 35% decrease in emission intensity fom the Sa and an 85-95% decrease for the other bacteria. Ultraviolet light exposure resulted in a 5-35% decrease in the emission intensity of the tryptophan band. The addition of formaldehyde to the bacteria did not result in significant changes in the steady-state emission intensity, but did shift the tryptophan emission peak position to shorter wavelengths by 3 to 5 nm. Time-resolved fluorescence measurements showed that the fluorescence lifetime of tryptophan in the bacteria could not be described by a single exponential decay, and was similar to that of tryptophan in neutral aqueous solution. Upon addition of formaldehyde to the Gram positive bacteria (Bs and Sa) the strength of the short lifetime component increased dramatically, while for the Gram negative bacteria, a smaller increase was observed. These fluorescence changes reflect the different mechanisms of the bactericidal agents and may provide a useful tool to monitor the effectiveness of disinfectants.

  4. Dynamics and Flexibility of Human Aromatase Probed by FTIR and Time Resolved Fluorescence Spectroscopy

    PubMed Central

    Sadeghi, Sheila J.; Castrignanò, Silvia; Mei, Giampiero; Di Venere, Almerinda; Nicolai, Eleonora; Allegra, Paola; Gilardi, Gianfranco

    2013-01-01

    Human aromatase (CYP19A1) is a steroidogenic cytochrome P450 converting androgens into estrogens. No ligand-free crystal structure of the enzyme is available to date. The crystal structure in complex with the substrate androstenedione and the steroidal inhibitor exemestane shows a very compact conformation of the enzyme, leaving unanswered questions on the conformational changes that must occur to allow access of the ligand to the active site. As H/D exchange kinetics followed by FTIR spectroscopy can provide information on the conformational changes in proteins where solvent accessibility is affected, here the amide I region was used to measure the exchange rates of the different elements of the secondary structure for aromatase in the ligand-free form and in the presence of the substrate androstenedione and the inhibitor anastrozole. Biphasic exponential functions were found to fit the H/D exchange data collected as a function of time. Two exchange rates were assigned to two populations of protons present in different flexible regions of the protein. The addition of the substrate androstenedione and the inhibitor anastrozole lowers the H/D exchange rates of the α-helices of the enzyme when compared to the ligand-free form. Furthermore, the presence of the inhibitor anastrozole lowers exchange rate constant (k1) for β-sheets from 0.22±0.06 min−1 for the inhibitor-bound enzyme to 0.12±0.02 min−1 for the free protein. Dynamics effects localised in helix F were studied by time resolved fluorescence. The data demonstrate that the fluorescence lifetime component associated to Trp224 emission undergoes a shift toward longer lifetimes (from ≈5.0 to ≈5.5 ns) when the substrate or the inhibitor are present, suggesting slower dynamics in the presence of ligands. Together the results are consistent with different degrees of flexibility of the access channel and therefore different conformations adopted by the enzyme in the free, substrate- and inhibitor

  5. Far-field infrared super-resolution microscopy using picosecond time-resolved transient fluorescence detected IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Sakai, Makoto; Kawashima, Yasutake; Takeda, Akihiro; Ohmori, Tsutomu; Fujii, Masaaki

    2007-05-01

    A new far-field infrared super-resolution microscopy combining laser fluorescence microscope and picosecond time-resolved transient fluorescence detected IR (TFD-IR) spectroscopy is proposed. TFD-IR spectroscopy is a kind of IR-visible/UV double resonance spectroscopy, and detects IR transitions by the transient fluorescence due to electronic transition originating from vibrationally excited level populated by IR light. IR images of rhodamine-6G solution and of fluorescent beads were clearly observed by monitoring the transient fluorescence. Super-resolution twice higher than the diffraction limit for IR light was achieved. The IR spectrum due to the transient fluorescence was also measured from spatial domains smaller than the diffraction limit.

  6. Drug/protein interactions studied by time-resolved fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Gustavsson, Thomas; Markovitsi, Dimitra; Vayá, Ignacio; Bonancía, Paula; Jiménez, M. C.; Miranda, Miguel A.

    2014-09-01

    We report here on a recent time-resolved fluorescence study [1] of the interaction between flurbiprofen (FBP), a chiral non-steroidal anti-inflammatory drug, and human serum albumin (HSA), the main transport protein in the human body. We compare the results obtained for the drug-protein complex with those of various covalently linked flurbiprofentryptophan dyads having well-defined geometries. In all cases stereoselective dynamic fluorescence quenching is observed, varying greatly from one system to another. In addition, the fluorescence anisotropy decays also display a clear stereoselectivity. For the drug-protein complexes, this can be interpreted in terms of the protein microenvironment playing a significant role in the conformational relaxation of FBP, which is more restricted in the case of the (R)- enantiomer.

  7. Analysis of hydrocarbon-bearing fluid inclusions (HCFI) using time-resolved fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Przyjalgowski, Milosz A.; Ryder, Alan G.; Feely, Martin; Glynn, Thomas J.

    2005-06-01

    Hydrocarbon-bearing fluid inclusions (HCFI) are microscopic cavities within rocks that are filled with petroleum oil, the composition of which may not have changed since the trapping event. Thus, the composition of that entrapped oil can provide information about the formation and evolution of the oil reservoir. This type of information is important to the petroleum production and exploration industries. Crude oil fluorescence originates from the presence of cyclic aromatic compounds and the nature of the emission is governed by the chemical composition of the oil. Fluorescence based methods are widely used for analysis of crude oil because they offer robust, non-contact and non-destructive measurement options. The goal of our group is the development of a non-destructive analytical method for HCFI using time-resolved fluorescence methods. In broad terms, crude oil fluorescence behavior is governed by the concentration of quenching species and the distribution of fluorophores. For the intensity averaged fluorescence lifetime, the best correlations have been found between polar or alkane concentrations, but these are not suitable for robust, quantitative analysis. We have recently started to investigate another approach for characterizing oils by looking at Time-resolved Emission Spectra (TRES). TRES are constructed from intensities sampled at discrete times during the fluorescence decay of the sample. In this study, TRES, from a series of 10 crude oils from the Middle East, have been measured at discrete time gates (0.5 ns, 1 ns, 2 ns, 4 ns) over the 450-700 nm wavelength range. The spectral changes in TRES, such as time gate dependent Stokes' shift and spectral broadening, are analyzed in the context of energy transfer rates. In this work, the efficacy of using TRES for fingerprinting individual oils and HCFI is also demonstrated.

  8. [Discrimination of Crude Oil Samples Using Laser-Induced Time-Resolved Fluorescence Spectroscopy].

    PubMed

    Han, Xiao-shuang; Liu, De-qing; Luan, Xiao-ning; Guo, Jin-jia; Liu, Yong-xin; Zheng, Rong-er

    2016-02-01

    The Laser-induced fluorescence spectra combined with pattern recognition method has been widely applied in discrimination of different spilled oil, such as diesel, gasoline, and crude oil. However, traditional three-dimension fluorescence analysis method, which is not adapted to requirement of field detection, is limited to laboratory investigatio ns. The development of oil identification method for field detection is significant to quick response and operation of oil spill. In this paper, a new method based on laser-induced time-resolved fluorescence combined with support vector machine (SVM) model was introduced to discriminate crude oil samples. In this method, time-resolved spectra data was descended into two dimensions with selecting appropriate range in time and wavelength domains respectively to form a SVM data base. It is found that the classification accurate rate increased with an appropriate selection. With a selected range from 54 to 74 ns in time domain, the classification accurate rate has been increased from 83.3% (without selection) to 88.1%. With a selected wavelength range of 387.00~608.87 nm, the classification accurate rate of suspect oil was improved from 84% (without selection) to 100%. Since the detection delay of fluorescence lidar fluctuates due to wave and platform swing, the identification method with optimizing in both time and wavelength domains could offer a better flexibility for field applications. It is hoped that the developed method could provide some useful reference with data reduction for classification of suspect crude oil in the future development. PMID:27209747

  9. Time-resolved fluorescence spectroscopy for intraoperative assistance of thyroid surgery

    NASA Astrophysics Data System (ADS)

    Bachmann, L.; Brandao, M. P.; Iwakura, R.; Basilio, F. S.; Haleplian, K.; Ito, A. S.; Conti de Freitas, L. C.

    2016-03-01

    Searching for new methods to provide information of biochemical composition and structure is critical to improve the prognosis of thyroid diseases. The use of time-resolved fluorescence techniques to detect biochemical composition and tissue structure alterations could help develop a portable, minimally invasive, and non-destructive method to assist during surgical procedures. This research looks for employ a fluorescence technique based on lifetime measurements to differentiate healthy and benign lesions from malignant thyroid tissue. We employ a wide range of excitation and chose a more appropriate region for this work: 298-300 nm; and the fluorescence decay was measured at 340-450 nm. We observed fluorescence lifetimes at 340 nm emission of 0.80+/-0.26 and 3.94+/-0.47 ns for healthy tissue; 0.90+/-0.24 and 4.05+/-0.46 ns for benign lesions; and 1.21+/-0.14 and 4.63+/-0.25 ns for malignant lesions. For 450 nm emissions, we obtain lifetimes of 0.25+/-0.18 and 3.99+/-0.39 ns for healthy tissue, 0.24+/-0.17 and 4.20+/-0.48 ns for benign lesions, 0.33+/-0.32 and 4.55+/-0.55 ns for malignant lesions. We successfully demonstrated that fluorescence lifetimes at 340 nm emission can differentiate between thyroid malignant and healthy/benign tissues.

  10. Time-resolved and steady-state fluorescence spectroscopy for the assessment of skin photoaging process

    NASA Astrophysics Data System (ADS)

    D´Almeida, Camila de Paula; Campos, Carolina; Saito Nogueira, Marcelo; Pratavieira, Sebastião.; Kurachi, Cristina

    2015-06-01

    pathology. The optical properties of these intrinsic fluorophores respond to the microenvironment and the metabolic status, thus making fluorescence spectroscopy a valuable tool to study the conditions of biological tissues. The purpose of this study is to investigate the hairless mice skin metabolic changes during the photoaging process through lifetime and fluorescence measurements targeting NADH and FAD. Two lasers centered at 378 nm and 445 nm, respectively, perform excitation of NADH and FAD. The fluorescence acquisition is carried out at mice dorsal and ventral regions throughout the photoaging protocol and aging process. Differences in fluorescence and lifetime data between young and photoaged mice measurements were observed. The endogenous fluorescence spectrum of photoaged dorsal skin showed an increase compared to young and aged skin. Lifetime of bound NADH and free FAD presented an increase in the first week that continued until the end of the protocol. Aging process is being investigated to complement the information obtained from fluorescence data and lifetime of photoaging process.

  11. TIME-RESOLVED VIBRATIONAL SPECTROSCOPY

    SciTech Connect

    Andrei Tokmakoff, MIT; Paul Champion, Northeastern University; Edwin J. Heilweil, NIST; Keith A. Nelson, MIT; Larry Ziegler, Boston University

    2009-05-14

    This document contains the Proceedings from the 14th International Conference on Time-Resolved Vibrational Spectroscopy, which was held in Meredith, NH from May 9-14, 2009. The study of molecular dynamics in chemical reaction and biological processes using time-resolved spectroscopy plays an important role in our understanding of energy conversion, storage, and utilization problems. Fundamental studies of chemical reactivity, molecular rearrangements, and charge transport are broadly supported by the DOE’s Office of Science because of their role in the development of alternative energy sources, the understanding of biological energy conversion processes, the efficient utilization of existing energy resources, and the mitigation of reactive intermediates in radiation chemistry. In addition, time-resolved spectroscopy is central to all five of DOE’s grand challenges for fundamental energy science. The Time-Resolved Vibrational Spectroscopy conference is organized biennially to bring the leaders in this field from around the globe together with young scientists to discuss the most recent scientific and technological advances. The latest technology in ultrafast infrared, Raman, and terahertz spectroscopy and the scientific advances that these methods enable were covered. Particular emphasis was placed on new experimental methods used to probe molecular dynamics in liquids, solids, interfaces, nanostructured materials, and biomolecules.

  12. Detection of cancer cells in prostate tissue with time-resolved fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Gerich, C. E.; Opitz, J.; Toma, M.; Sergon, M.; Füssel, S.; Nanke, R.; Fehre, J.; Wirth, M.; Baretton, G.; Schreiber, J.

    2011-03-01

    Goals: Improving cancer diagnosis is one of the important challenges at this time. The precise differentiation between benign and malignant tissue is in the oncology and oncologic surgery of the utmost significance. A new diagnostic system, that facilitates the decision which tissue has to be removed, would be appreciated. In previous studies many attempts were made to use tissue fluorescence for cancer recognition. However, no clear correlation was found between tissue type and fluorescence parameters like time and wavelength dependent fluorescence intensity I(t, λ). The present study is focused on cooperative behaviour of cells in benign or malignant prostates tissue reflecting differences in their metabolism. Material and Methods: 50 prostate specimens were obtained directly after radical prostatectomy and from each specimen 6 punch biopsies were taken. Time-resolved fluorescence spectra were recorded for 4 different measurement points for each biopsy. The pathologist evaluated each measurement point separately. An algorithm was developed to determine a relevant parameter of the time dependent fluorescence data (fractal dimension DF ). The results of the finding and the DF -value were correlated for each point and then analysed with statistical methods. Results: A total of 1200 measurements points were analysed. The optimal algorithm and conditions for discrimination between malignant and non-malignant tissue areas were found. The correct classification could be stated in 93.4% of analysed points. The ROC-curve (AUC = 0.94) confirms the chosen statistical method as well as it informs about the specificity (0.94) and sensitivity (0.90). Conclusion: The new method seems to offer a very helpful diagnostic tool for pathologists as well as for surgery.

  13. Time-resolved fluorescence spectroscopy of matrix-isolated silver atoms after pulsed excitation of inner-shell transitions

    NASA Astrophysics Data System (ADS)

    Hebert, T.; Wiggenhauser, H.; Schriever, U.; Kolb, D. M.

    1990-02-01

    The energy dissipation in matrix-isolated silver atoms after pulsed vacuum ultraviolet (VUV) excitation of 4d-5p transitions has been studied by time-resolved fluorescence spectroscopy. The decay behavior of the various fluorescence bands has been analyzed and a model for the relaxation process proposed within the framework of a two-dimensional configuration-coordinate diagram. If minute quantities of Ag2 are present in the matrix, the analysis requires consideration of energy transfer between silver atoms and dimers.

  14. Fluorescence polarization spectroscopy and time-resolved fluorescence kinetics of native cancerous and normal rat kidney tissues.

    PubMed Central

    Tata, D B; Foresti, M; Cordero, J; Tomashefsky, P; Alfano, M A; Alfano, R R

    1986-01-01

    Steady state fluorescence polarization spectra and time-resolved emission decay kinetics have been measured in vitro from malignant and normal rat kidney tissue. The degrees of polarization and emission lifetimes from the cancerous and normal systems are different. The spectroscopic differences are attributed to environmental transformations local to the native flavin and porphyrin fluorophors' binding sites. PMID:3489490

  15. Synthesis of Ag clusters in microemulsions: A time-resolved UV vis and fluorescence spectroscopy study

    NASA Astrophysics Data System (ADS)

    Ledo, Ana; Martínez, F.; López-Quintela, M. A.; Rivas, J.

    2007-09-01

    The combined use of the microemulsion technique and the kinetic control allows the preparation of small silver clusters. By using UV-vis and fluorescence spectroscopy the main stages by which the clusters grow, before the formation of nanoparticles, were elucidated. Transmission electron microscopy (TEM) and scanning tunnelling microscopy (STM) were used to further characterize the samples. Two main stages were clearly identified, which are associated with: (1) the formation of Ag n clusters with n<10, which self-aggregate into one atom high 2D nanodiscs of 3.2 nm size and (2) Ag n clusters, which self-aggregate into 3D nanostructures of 1.5 nm in size. The fluorescence properties observed with both stages show that the formed clusters are small enough to display a molecule-like behaviour.

  16. Discrimination of human coronary artery atherosclerotic lipid-rich lesions by time-resolved laser-induced fluorescence spectroscopy.

    PubMed

    Marcu, L; Fishbein, M C; Maarek, J M; Grundfest, W S

    2001-07-01

    Lesion composition plays a significant role in atherosclerotic lesion instability and rupture. Current clinical techniques cannot fully characterize lesion composition or accurately identify unstable lesions. This study investigates the use of time-resolved fluorescence spectroscopy for unstable atherosclerotic lesion diagnosis. The fluorescence of human coronary artery samples was induced with nitrogen laser and detected in the 360- to 510-nm wavelength range. The samples were sorted into 7 groups according to the AHA classification: normal wall and types I, II(a) (fatty streaks), III (preatheroma), IV (atheroma), V(a) (fibrous), and V(b) (calcified) lesions. Spectral intensities and time-dependent parameters [average lifetime tau(f); decay constants: tau(1) (fast-term), tau(2) (slow-term), A(1) (fast-term amplitude contribution)] derived from the time-resolved spectra of coronary samples were used for tissue characterization. We determined that a few intensity values at longer wavelengths (>430 nm) and time-dependent parameters at peak emission region (390 nm) discriminate between all types of arterial samples except between normal wall and type I lesions. The lipid-rich lesions (more unstable) can be discriminated from fibrous lesions (more stable) on the basis of time-dependent parameters (lifetime and fast-term decay). We inferred that features of lipid fluorescence are reflected on lipid-rich lesion emission. Our results demonstrate that analysis of the time-resolved spectra may be used to enhance the discrimination between different grades of atherosclerotic lesions and provide a means of discrimination between lipid-rich and fibrous lesions. PMID:11451759

  17. The study of polyplex formation and stability by time-resolved fluorescence spectroscopy of SYBR Green I-stained DNA.

    PubMed

    D'Andrea, Cosimo; Pezzoli, Daniele; Malloggi, Chiara; Candeo, Alessia; Capelli, Giulio; Bassi, Andrea; Volonterio, Alessandro; Taroni, Paola; Candiani, Gabriele

    2014-12-01

    Polyplexes are nanoparticles formed by the self-assembly of DNA/RNA and cationic polymers specifically designed to deliver exogenous genetic material to cells by a process called transfection. There is a general consensus that a subtle balance between sufficient extracellular protection and intracellular release of nucleic acids is a key factor for successful gene delivery. Therefore, there is a strong need to develop suitable tools and techniques for enabling the monitoring of the stability of polyplexes in the biological environment they face during transfection. In this work we propose time-resolved fluorescence spectroscopy in combination with SYBR Green I-DNA dye as a reliable tool for the in-depth characterization of the DNA/vector complexation state. As a proof of concept, we provide essential information on the assembly and disassembly of complexes formed between DNA and each of three cationic polymers, namely a novel promising chitosan-graft-branched polyethylenimine copolymer (Chi-g-bPEI), one of its building block 2 kDa bPEI and the gold standard transfectant 25 kDa bPEI. Our results highlight the higher information content provided by the time-resolved studies of SYBR Green I/DNA, as compared to conventional steady state measurements of ethidium bromide/DNA that enabled us to draw relationships among fluorescence lifetime, polyplex structural changes and transfection efficiency. PMID:25308511

  18. Picosecond time-resolved fluorescence spectroscopy of K-590 in the bacteriorhodopsin photocycle.

    PubMed Central

    Atkinson, G H; Blanchard, D; Lemaire, H; Brack, T L; Hayashi, H

    1989-01-01

    The fluorescence spectrum of a distinct isometric and conformational intermediate formed on the 10(-11) s time scale during the bacteriorhodopsin (BR) photocycle is observed at room temperature using a two laser, pump-probe technique with picosecond time resolution. The BR photocycle is initiated by pulsed (8 ps) excitation at 565 nm, whereas the fluorescence is generated by 4-ps laser pulses at 590 nm. The unstructured fluorescence extends from 650 to 880 nm and appears in the same general spectral region as the fluorescence spectrum assigned to BR-570. The transient fluorescence spectrum can be distinguished from that assigned to BR-570 by a larger emission quantum yield (approximately twice that of BR-570) and by a maximum intensity near 731 nm (shifted 17 nm to higher energy from the maximum of the BR-570 fluorescence spectrum). The fluorescence spectrum of BR-570 only is measured with low energy, picosecond pulsed excitation at 590 nm and is in good agreement with recent data in the literature. The assignment of the transient fluorescence spectrum to the K-590 intermediate is based on its appearance at time delays longer than 40 ps. The K-590 fluorescence spectrum remains unchanged over the entire 40-100-ps interval. The relevance of these fluorescence data with respect to the molecular mechanism used to model the primary processes in the BR photocycle also is discussed. PMID:2713439

  19. Coherent photon interference elimination and spectral correction in femtosecond time-resolved fluorescence non-collinear optical parametric amplification spectroscopy

    NASA Astrophysics Data System (ADS)

    Dang, Wei; Mao, Pengcheng; Weng, Yuxiang

    2013-07-01

    We report an improved setup of femtosecond time-resolved fluorescence non-collinear optical parametric amplification spectroscopy (FNOPAS) with a 210 fs temporal response. The system employs a Cassegrain objective to collect and focus fluorescence photons, which eliminates the interference from the coherent photons in the fluorescence amplification by temporal separation of the coherent photons and the fluorescence photons. The gain factor of the Cassegrain objective-assisted FNOPAS is characterized as 1.24 × 105 for Rhodamine 6G. Spectral corrections have been performed on the transient fluorescence spectra of Rhodamine 6G and Rhodamine 640 in ethanol by using an intrinsic calibration curve derived from the spectrum of superfluorescence, which is generated from the amplification of the vacuum quantum noise. The validity of spectral correction is illustrated by comparisons of spectral shape and peak wavelength between the corrected transient fluorescence spectra of these two dyes acquired by FNOPAS and their corresponding standard reference spectra collected by the commercial streak camera. The transient fluorescence spectra of the Rhodamine 6G were acquired in an optimized phase match condition, which gives a deviation in the peak wavelength between the retrieved spectrum and the reference spectrum of 1.0 nm, while those of Rhodamine 640 were collected in a non-optimized phase match condition, leading to a deviation in a range of 1.0-3.0 nm. Our results indicate that the improved FNOPAS can be a reliable tool in the measurement of transient fluorescence spectrum for its high temporal resolution and faithfully corrected spectrum.

  20. Development of a dual-modal tissue diagnostic system combining time-resolved fluorescence spectroscopy and ultrasonic backscatter microscopy.

    PubMed

    Sun, Yang; Park, Jesung; Stephens, Douglas N; Jo, Javier A; Sun, Lei; Cannata, Jonathan M; Saroufeem, Ramez M G; Shung, K Kirk; Marcu, Laura

    2009-06-01

    We report a tissue diagnostic system which combines two complementary techniques of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) and ultrasonic backscatter microscopy (UBM). TR-LIFS evaluates the biochemical composition of tissue, while UBM provides tissue microanatomy and enables localization of the region of diagnostic interest. The TR-LIFS component consists of an optical fiber-based time-domain apparatus including a spectrometer, gated multichannel plate photomultiplier, and fast digitizer. It records the fluorescence with high sensitivity (nM concentration range) and time resolution as low as 300 ps. The UBM system consists of a transducer, pulser, receiving circuit, and positioning stage. The transducer used here is 45 MHz, unfocused, with axial and lateral resolutions 38 and 200 microm. Validation of the hybrid system and ultrasonic and spectroscopic data coregistration were conducted both in vitro (tissue phantom) and ex vivo (atherosclerotic tissue specimens of human aorta). Standard histopathological analysis of tissue samples was used to validate the UBM-TRLIFS data. Current results have demonstrated that spatially correlated UBM and TR-LIFS data provide complementary characterization of both morphology (necrotic core and calcium deposits) and biochemistry (collagen, elastin, and lipid features) of the atherosclerotic plaques at the same location. Thus, a combination of fluorescence spectroscopy with ultrasound imaging would allow for better identification of features associated with tissue pathologies. Current design and performance of the hybrid system suggests potential applications in clinical diagnosis of atherosclerotic plaque. PMID:19566223

  1. Time-resolved spectroscopy and fluorescence resonance energy transfer in the study of excimer laser damage of chromatin

    NASA Astrophysics Data System (ADS)

    Radu, L.; Mihailescu, I.; Radu, S.; Gazdaru, D.

    2007-09-01

    The analysis of chromatin damage produced by a 248 nm excimer laser radiation, for doses of 0.3-3 MJ/m 2 was carried out by time-resolved spectroscopy and fluorescence resonance energy transfer (FRET). The chromatin was extracted from a normal and a tumoral tissue of Wistar rats. The decrease with laser dose of the relative contribution of the excited state lifetimes of ethidium bromide (EtBr) bounded to chromatin constitutes an evidence of the reduction of chromatin deoxyribonucleic acid (DNA) double-strand structure. FRET was performed from dansyl chloride to acridine orange, both coupled to chromatin. The increase of the average distance between these ligands, under the action of laser radiation, reflects a loosening of the chromatin structure. The radiosensitivity of tumor tissue chromatin is higher than that of a normal tissue. The determination of the chromatin structure modification in an excimer laser field can be of interest in laser therapy.

  2. Homogeneous time-resolved G protein-coupled receptor-ligand binding assay based on fluorescence cross-correlation spectroscopy.

    PubMed

    Antoine, Thomas; Ott, David; Ebell, Katharina; Hansen, Kerrin; Henry, Luc; Becker, Frank; Hannus, Stefan

    2016-06-01

    G protein-coupled receptors (GPCRs) mediate many important physiological functions and are considered as one of the most successful therapeutic target classes for a wide spectrum of diseases. Drug discovery projects generally benefit from a broad range of experimental approaches for screening compound libraries and for the characterization of binding modes of drug candidates. Owing to the difficulties in solubilizing and purifying GPCRs, assay formats have been so far mainly limited to cell-based functional assays and radioligand binding assays. In this study, we used fluorescence cross-correlation spectroscopy (FCCS) to analyze the interaction of detergent-solubilized receptors to various types of GPCR ligands: endogenous peptides, small molecules, and a large surrogate antagonist represented by a blocking monoclonal antibody. Our work demonstrates the suitability of the homogeneous and time-resolved FCCS assay format for a robust, high-throughput determination of receptor-ligand binding affinities and kinetic rate constants for various therapeutically relevant GPCRs. PMID:26954998

  3. Modified diglycol-amides for actinide separation: solvent extraction and time-resolved laser fluorescence spectroscopy complexation studies

    SciTech Connect

    Wilden, A.; Modolo, G.; Lange, S.; Sadowski, F.; Bosbach, D.; Beele, B.B.; Panak, P.J.; Skerencak-Frech, A.; Geist, A.; Iqbal, M.; Verboom, W.

    2013-07-01

    In this work, the back-bone of the diglycolamide-structure of the TODGA extractant was modified by adding one or two methyl groups to the central methylene carbon-atoms. The influence of these structural modifications on the extraction behavior of trivalent actinides and lanthanides and other fission products was studied in solvent extraction experiments. The addition of methyl groups to the central methylene carbon atoms leads to reduced distribution ratios, also for Sr(II). This reduced extraction efficiency for Sr(II) is beneficial for process applications, as the co-extraction of Sr(II) can be avoided, resulting in an easier process design. The use of these modified diglycol-amides in solvent extraction processes is discussed. Furthermore, the complexation of Cm(III) and Eu(III) to the ligands was studied using Time-Resolved-Laser-Fluorescence-Spectroscopy (TRLFS). The complexes were characterized by slope analysis and conditional stability constants were determined.

  4. In Situ Planetary Mineralogy Using Simultaneous Time Resolved Fluorescence and Raman Spectroscopy

    NASA Technical Reports Server (NTRS)

    Blacksberg, J.; Rossman , G.R.

    2011-01-01

    Micro-Raman spectroscopy is one of the primary methods of mineralogical analysis in the laboratory, and more recently in the field. Because of its versatility and ability to interrogate rocks in their natural form it is one of the front runners for the next generation of in situ instruments designed to explore adverse set of solar system bodies (e.g. Mars, Venus, the Moon, and other primitive bodies such as asteroids and the Martian moons Phobos and Deimos), as well as for pre-selection of rock and soil samples for potential cache and return missions.

  5. Interaction of europium and nickel with calcite studied by Rutherford Backscattering Spectrometry and Time-Resolved Laser Fluorescence Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sabau, A.; Pipon, Y.; Toulhoat, N.; Lomenech, C.; Jordan, N.; Moncoffre, N.; Barkleit, A.; Marmier, N.; Brendler, V.; Surblé, S.; Giffaut, E.

    2014-08-01

    This study aims at elucidating the mechanisms regulating the interaction of Eu and Ni with calcite (CaCO3). Calcite powders or single crystals (some mm sized) were put into contact with Eu or Ni solutions at concentrations ranging from 10-3 to 10-5 mol L-1 for Eu and 10-3 mol L-1 for Ni. The sorption durations ranged from 1 week to 1 month. Rutherford Backscattering Spectrometry (RBS) well adapted to discriminate incorporation processes such as: (i) adsorption or co precipitation at the mineral surfaces or, (ii) incorporation into the mineral structure (through diffusion for instance), has been carried out. Moreover, using the fluorescence properties of europium, the results have been compared to those obtained by Time-Resolved Laser Fluorescence Spectroscopy (TRLFS) on calcite powders. For the single crystals, complementary SEM observations of the mineral surfaces at low voltage were also performed. Results showed that Ni accumulates at the calcite surface whereas Eu is also incorporated at a greater depth. Eu seems therefore to be incorporated into two different states in calcite: (i) heterogeneous surface accumulation and (ii) incorporation at depth greater than 160 nm after 1 month of sorption. Ni was found to accumulate at the surface of calcite without incorporation.

  6. Comparison of beetroot extracts originating from several sites using time-resolved laser-induced fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Rabasović, M. S.; Šević, D.; Terzić, M.; Marinković, B. P.

    2012-05-01

    Beetroot (Beta vulgaris) juice contains a large number of fluorophores which can fluoresce. There is a growing interest in beetroot extracts analysis. In contrast, there is only limited information about beetroot obtained without sample preparation and/or extraction of components from the sample. In this work, we continue our previous study (Rabasović et al 2009 Acta Phys. Pol. A 116 570-2), analyzing and comparing beetroot extracts from several sites, using the time-resolved laser-induced fluorescence technique to measure the fluorescence of samples at different excitation wavelengths (340-470 nm) and for different sample dilutions.

  7. Multi-channel lock-in amplifier assisted femtosecond time-resolved fluorescence non-collinear optical parametric amplification spectroscopy with efficient rejection of superfluorescence background

    SciTech Connect

    Mao, Pengcheng; Wang, Zhuan; Dang, Wei; Weng, Yuxiang

    2015-12-15

    Superfluorescence appears as an intense background in femtosecond time-resolved fluorescence noncollinear optical parametric amplification spectroscopy, which severely interferes the reliable acquisition of the time-resolved fluorescence spectra especially for an optically dilute sample. Superfluorescence originates from the optical amplification of the vacuum quantum noise, which would be inevitably concomitant with the amplified fluorescence photons during the optical parametric amplification process. Here, we report the development of a femtosecond time-resolved fluorescence non-collinear optical parametric amplification spectrometer assisted with a 32-channel lock-in amplifier for efficient rejection of the superfluorescence background. With this spectrometer, the superfluorescence background signal can be significantly reduced to 1/300–1/100 when the seeding fluorescence is modulated. An integrated 32-bundle optical fiber is used as a linear array light receiver connected to 32 photodiodes in one-to-one mode, and the photodiodes are further coupled to a home-built 32-channel synchronous digital lock-in amplifier. As an implementation, time-resolved fluorescence spectra for rhodamine 6G dye in ethanol solution at an optically dilute concentration of 10{sup −5}M excited at 510 nm with an excitation intensity of 70 nJ/pulse have been successfully recorded, and the detection limit at a pump intensity of 60 μJ/pulse was determined as about 13 photons/pulse. Concentration dependent redshift starting at 30 ps after the excitation in time-resolved fluorescence spectra of this dye has also been observed, which can be attributed to the formation of the excimer at a higher concentration, while the blueshift in the earlier time within 10 ps is attributed to the solvation process.

  8. Multi-channel lock-in amplifier assisted femtosecond time-resolved fluorescence non-collinear optical parametric amplification spectroscopy with efficient rejection of superfluorescence background

    NASA Astrophysics Data System (ADS)

    Mao, Pengcheng; Wang, Zhuan; Dang, Wei; Weng, Yuxiang

    2015-12-01

    Superfluorescence appears as an intense background in femtosecond time-resolved fluorescence noncollinear optical parametric amplification spectroscopy, which severely interferes the reliable acquisition of the time-resolved fluorescence spectra especially for an optically dilute sample. Superfluorescence originates from the optical amplification of the vacuum quantum noise, which would be inevitably concomitant with the amplified fluorescence photons during the optical parametric amplification process. Here, we report the development of a femtosecond time-resolved fluorescence non-collinear optical parametric amplification spectrometer assisted with a 32-channel lock-in amplifier for efficient rejection of the superfluorescence background. With this spectrometer, the superfluorescence background signal can be significantly reduced to 1/300-1/100 when the seeding fluorescence is modulated. An integrated 32-bundle optical fiber is used as a linear array light receiver connected to 32 photodiodes in one-to-one mode, and the photodiodes are further coupled to a home-built 32-channel synchronous digital lock-in amplifier. As an implementation, time-resolved fluorescence spectra for rhodamine 6G dye in ethanol solution at an optically dilute concentration of 10-5M excited at 510 nm with an excitation intensity of 70 nJ/pulse have been successfully recorded, and the detection limit at a pump intensity of 60 μJ/pulse was determined as about 13 photons/pulse. Concentration dependent redshift starting at 30 ps after the excitation in time-resolved fluorescence spectra of this dye has also been observed, which can be attributed to the formation of the excimer at a higher concentration, while the blueshift in the earlier time within 10 ps is attributed to the solvation process.

  9. Multi-channel lock-in amplifier assisted femtosecond time-resolved fluorescence non-collinear optical parametric amplification spectroscopy with efficient rejection of superfluorescence background.

    PubMed

    Mao, Pengcheng; Wang, Zhuan; Dang, Wei; Weng, Yuxiang

    2015-12-01

    Superfluorescence appears as an intense background in femtosecond time-resolved fluorescence noncollinear optical parametric amplification spectroscopy, which severely interferes the reliable acquisition of the time-resolved fluorescence spectra especially for an optically dilute sample. Superfluorescence originates from the optical amplification of the vacuum quantum noise, which would be inevitably concomitant with the amplified fluorescence photons during the optical parametric amplification process. Here, we report the development of a femtosecond time-resolved fluorescence non-collinear optical parametric amplification spectrometer assisted with a 32-channel lock-in amplifier for efficient rejection of the superfluorescence background. With this spectrometer, the superfluorescence background signal can be significantly reduced to 1/300-1/100 when the seeding fluorescence is modulated. An integrated 32-bundle optical fiber is used as a linear array light receiver connected to 32 photodiodes in one-to-one mode, and the photodiodes are further coupled to a home-built 32-channel synchronous digital lock-in amplifier. As an implementation, time-resolved fluorescence spectra for rhodamine 6G dye in ethanol solution at an optically dilute concentration of 10(-5)M excited at 510 nm with an excitation intensity of 70 nJ/pulse have been successfully recorded, and the detection limit at a pump intensity of 60 μJ/pulse was determined as about 13 photons/pulse. Concentration dependent redshift starting at 30 ps after the excitation in time-resolved fluorescence spectra of this dye has also been observed, which can be attributed to the formation of the excimer at a higher concentration, while the blueshift in the earlier time within 10 ps is attributed to the solvation process. PMID:26724012

  10. Role of polyplex intermediate species on gene transfer efficiency: polyethylenimine-DNA complexes and time-resolved fluorescence spectroscopy.

    PubMed

    Ketola, Tiia-Maaria; Hanzlíková, Martina; Urtti, Arto; Lemmetyinen, Helge; Yliperttula, Marjo; Vuorimaa, Elina

    2011-03-01

    Polyethylenimine (PEI) is a cationic DNA condensing polymer that facilitates gene transfer into the mammalian cells. The highest gene transfer with branched PEI is obtained at high nitrogen/phosphate (N/P) ratios with free PEI present. The small molecular weight PEI alone is not able to mediate DNA transfection. Here, we used recently developed time-resolved fluorescence spectroscopic method to study the mechanism of PEI-DNA complex formation and to investigate how free PEI, mean molecular weight, and branching of PEI affect the complexes. Analysis of fluorescence lifetimes and time-resolved spectra revealed that for both linear and branched high-molecular-weight PEI the complexation takes place in two steps, but the small-molecular-weight branched PEI complexed DNA at a single step. According to the binding constants obtained from time-resolved spectroscopic measurements, the affinity of N/P complexation per nitrogen atom is highest for LPEI and weakest for BPEI, whereas SPEI-DNA complexation showed intermediate values. Thus, the binding constant alone does not give adequate measure for transfection efficiency. On the other hand, the presence of intermediate states during the polyplex formation seems to be favorable for the gene transfection. Free PEI had no impact on the physical state of PEI-DNA complexes, even though it was essential for gene transfection in the cell culture. In conclusion, the molecular size and topology of PEI have direct influence on the DNA complexation but the free PEI does not. Free PEI must facilitate transfection at the cellular level and not via indirect effects on the PEI-DNA complexes. PMID:21291220

  11. Photosystem II Does Not Possess a Simple Excitation Energy Funnel: Time-Resolved Fluorescence Spectroscopy Meets Theory

    PubMed Central

    2013-01-01

    The experimentally obtained time-resolved fluorescence spectra of photosystem II (PS II) core complexes, purified from a thermophilic cyanobacterium Thermosynechococcus vulcanus, at 5–180 K are compared with simulations. Dynamic localization effects of excitons are treated implicitly by introducing exciton domains of strongly coupled pigments. Exciton relaxations within a domain and exciton transfers between domains are treated on the basis of Redfield theory and generalized Förster theory, respectively. The excitonic couplings between the pigments are calculated by a quantum chemical/electrostatic method (Poisson-TrEsp). Starting with previously published values, a refined set of site energies of the pigments is obtained through optimization cycles of the fits of stationary optical spectra of PS II. Satisfactorily agreement between the experimental and simulated spectra is obtained for the absorption spectrum including its temperature dependence and the linear dichroism spectrum of PS II core complexes (PS II-CC). Furthermore, the refined site energies well reproduce the temperature dependence of the time-resolved fluorescence spectrum of PS II-CC, which is characterized by the emergence of a 695 nm fluorescence peak upon cooling down to 77 K and the decrease of its relative intensity upon further cooling below 77 K. The blue shift of the fluorescence band upon cooling below 77 K is explained by the existence of two red-shifted chlorophyll pools emitting at around 685 and 695 nm. The former pool is assigned to Chl45 or Chl43 in CP43 (Chl numbering according to the nomenclature of Loll et al. Nature2005, 438, 1040) while the latter is assigned to Chl29 in CP47. The 695 nm emitting chlorophyll is suggested to attract excitations from the peripheral light-harvesting complexes and might also be involved in photoprotection. PMID:23537277

  12. Effect of ouabain on metabolic oxidative state in living cardiomyocytes evaluated by time-resolved spectroscopy of endogenous NAD(P)H fluorescence

    NASA Astrophysics Data System (ADS)

    Chorvatova, Alzbeta; Elzwiei, Fathia; Mateasik, Anton; Chorvat, Dusan

    2012-10-01

    Time-resolved spectrometry of endogenous nicotinamide dinucleotide phosphate [NAD(P)H] fluorescence is a useful method to evaluate metabolic oxidative state in living cells. Ouabain is a well-known pharmaceutical drug used in the treatment of cardiovascular disease, the effects of which on myocardial metabolism were recently demonstrated. Mechanisms implicated in these actions are still poorly understood. We investigate the effect of ouabain on the metabolic oxidative state of living cardiac cells identified by time-resolved fluorescence spectroscopy of mitochondrial NAD(P)H. Spectral unmixing is used to resolve individual NAD(P)H fluorescence components. Ouabain decreased the integral intensity of NAD(P)H fluorescence, leading to a reduced component amplitudes ratio corresponding to a change in metabolic state. We also noted that lactate/pyruvate, affecting the cytosolic NADH gradient, increased the effect of ouabain on the component amplitudes ratio. Cell oxidation levels, evaluated as the percentage of oxidized NAD(P)H, decreased exponentially with rising concentrations of the cardiac glycoside. Ouabain also stimulated the mitochondrial NADH production. Our study sheds a new light on the role that ouabain plays in the regulation of metabolic state, and presents perspective on a noninvasive, pharmaceutical approach for testing the effect of drugs on the mitochondrial metabolism by means of time-resolved fluorescence spectroscopy in living cells.

  13. Fluorescence-suppressed time-resolved Raman spectroscopy of pharmaceuticals using complementary metal-oxide semiconductor (CMOS) single-photon avalanche diode (SPAD) detector.

    PubMed

    Rojalin, Tatu; Kurki, Lauri; Laaksonen, Timo; Viitala, Tapani; Kostamovaara, Juha; Gordon, Keith C; Galvis, Leonardo; Wachsmann-Hogiu, Sebastian; Strachan, Clare J; Yliperttula, Marjo

    2016-01-01

    In this work, we utilize a short-wavelength, 532-nm picosecond pulsed laser coupled with a time-gated complementary metal-oxide semiconductor (CMOS) single-photon avalanche diode (SPAD) detector to acquire Raman spectra of several drugs of interest. With this approach, we are able to reveal previously unseen Raman features and suppress the fluorescence background of these drugs. Compared to traditional Raman setups, the present time-resolved technique has two major improvements. First, it is possible to overcome the strong fluorescence background that usually interferes with the much weaker Raman spectra. Second, using the high photon energy excitation light source, we are able to generate a stronger Raman signal compared to traditional instruments. In addition, observations in the time domain can be performed, thus enabling new capabilities in the field of Raman and fluorescence spectroscopy. With this system, we demonstrate for the first time the possibility of recording fluorescence-suppressed Raman spectra of solid, amorphous and crystalline, and non-photoluminescent and photoluminescent drugs such as caffeine, ranitidine hydrochloride, and indomethacin (amorphous and crystalline forms). The raw data acquired by utilizing only the picosecond pulsed laser and a CMOS SPAD detector could be used for identifying the compounds directly without any data processing. Moreover, to validate the accuracy of this time-resolved technique, we present density functional theory (DFT) calculations for a widely used gastric acid inhibitor, ranitidine hydrochloride. The obtained time-resolved Raman peaks were identified based on the calculations and existing literature. Raman spectra using non-time-resolved setups with continuous-wave 785- and 532-nm excitation lasers were used as reference data. Overall, this demonstration of time-resolved Raman and fluorescence measurements with a CMOS SPAD detector shows promise in diverse areas, including fundamental chemical research, the

  14. Time-resolved photoelectron spectroscopy of liquids

    NASA Astrophysics Data System (ADS)

    Buchner, Franziska; Lübcke, Andrea; Heine, Nadja; Schultz, Thomas

    2010-11-01

    We present a novel setup for the investigation of ultrafast dynamic processes in a liquid jet using time-resolved photoelectron spectroscopy. A magnetic-bottle type spectrometer with a high collection efficiency allows the very sensitive detection of photoelectrons emitted from a 10 μm thick liquid jet. This translates into good signal/noise ratio and rapid data acquisition making femtosecond time-resolved experiments feasible. We describe the experimental setup, a detailed spectrometer characterization based on the spectroscopy of nitric oxide in the gas phase, and results from femtosecond time-resolved experiments on sodium iodide solutions. The latter experiments reveal the formation and evolution of the solvated electron and we characterize two distinct spectral components corresponding to initially thermalized and unthermalized solvated electrons. The absence of dark states in photoionization, the direct measurement of electron binding energies, and the ability to resolve dynamic processes on the femtosecond time scale make time-resolved photoelectron spectroscopy from the liquid jet a very promising method for the characterization of photochemical processes in liquids.

  15. Time-resolved photoelectron spectroscopy of liquids.

    PubMed

    Buchner, Franziska; Lübcke, Andrea; Heine, Nadja; Schultz, Thomas

    2010-11-01

    We present a novel setup for the investigation of ultrafast dynamic processes in a liquid jet using time-resolved photoelectron spectroscopy. A magnetic-bottle type spectrometer with a high collection efficiency allows the very sensitive detection of photoelectrons emitted from a 10 μm thick liquid jet. This translates into good signal/noise ratio and rapid data acquisition making femtosecond time-resolved experiments feasible. We describe the experimental setup, a detailed spectrometer characterization based on the spectroscopy of nitric oxide in the gas phase, and results from femtosecond time-resolved experiments on sodium iodide solutions. The latter experiments reveal the formation and evolution of the solvated electron and we characterize two distinct spectral components corresponding to initially thermalized and unthermalized solvated electrons. The absence of dark states in photoionization, the direct measurement of electron binding energies, and the ability to resolve dynamic processes on the femtosecond time scale make time-resolved photoelectron spectroscopy from the liquid jet a very promising method for the characterization of photochemical processes in liquids. PMID:21133461

  16. Time-resolved multiple probe spectroscopy

    SciTech Connect

    Greetham, G. M.; Sole, D.; Clark, I. P.; Parker, A. W.; Pollard, M. R.; Towrie, M.

    2012-10-15

    Time-resolved multiple probe spectroscopy combines optical, electronic, and data acquisition capabilities to enable measurement of picosecond to millisecond time-resolved spectra within a single experiment, using a single activation pulse. This technology enables a wide range of dynamic processes to be studied on a single laser and sample system. The technique includes a 1 kHz pump, 10 kHz probe flash photolysis-like mode of acquisition (pump-probe-probe-probe, etc.), increasing the amount of information from each experiment. We demonstrate the capability of the instrument by measuring the photolysis of tungsten hexacarbonyl (W(CO){sub 6}) monitored by IR absorption spectroscopy, following picosecond vibrational cooling of product formation through to slower bimolecular diffusion reactions on the microsecond time scale.

  17. Time-resolved fluorescence decay measurements for flowing particles

    DOEpatents

    Deka, C.; Steinkamp, J.A.

    1999-06-01

    Time-resolved fluorescence decay measurements are disclosed for flowing particles. An apparatus and method for the measurement and analysis of fluorescence for individual cells and particles in flow are described, wherein the rapid measurement capabilities of flow cytometry and the robust measurement and analysis procedures of time-domain fluorescence lifetime spectroscopy are combined. A pulse-modulated CW laser is employed for excitation of the particles. The characteristics and the repetition rate of the excitation pulses can be readily adjusted to accommodate for fluorescence decays having a wide range of lifetimes. 12 figs.

  18. Time-resolved fluorescence decay measurements for flowing particles

    DOEpatents

    Deka, Chiranjit; Steinkamp, John A.

    1999-01-01

    Time-resolved fluorescence decay measurements for flowing particles. An apparatus and method for the measurement and analysis of fluorescence for individual cells and particles in flow are described, wherein the rapid measurement capabilities of flow cytometry and the robust measurement and analysis procedures of time-domain fluorescence lifetime spectroscopy are combined. A pulse-modulated cw laser is employed for excitation of the particles. The characteristics and the repetition rate of the excitation pulses can be readily adjusted to accommodate for fluorescence decays having a wide range of lifetimes.

  19. Role of Coherent Low-Frequency Motion in Excited-State Proton Transfer of Green Fluorescent Protein Studied by Time-Resolved Impulsive Stimulated Raman Spectroscopy.

    PubMed

    Fujisawa, Tomotsumi; Kuramochi, Hikaru; Hosoi, Haruko; Takeuchi, Satoshi; Tahara, Tahei

    2016-03-30

    Green fluorescent protein (GFP) from jellyfish Aequorea victoria, an essential bioimaging tool, luminesces via excited-state proton transfer (ESPT) in which the phenolic proton of the p-hydroxybenzylideneimidazolinone chromophore is transferred to Glu222 through a hydrogen-bond network. In this process, the ESPT mediated by the low-frequency motion of the chromophore has been proposed. We address this issue using femtosecond time-resolved impulsive stimulated Raman spectroscopy. After coherently exciting low-frequency modes (<300 cm(-1)) in the excited state of GFP, we examined the excited-state structural evolution and the ESPT dynamics within the dephasing time of the low-frequency vibration. A clear anharmonic vibrational coupling is found between one high-frequency mode of the chromophore (phenolic CH bend) and a low-frequency mode at ∼104 cm(-1). However, the data show that this low-frequency motion does not substantially affect the ESPT dynamics. PMID:26943852

  20. Differences in excitation energy transfer of Arthrospira platensis cells grown in seawater medium and freshwater medium, probed by time-resolved fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Arba, Muhammad; Aikawa, Shimpei; Niki, Kenta; Yokono, Makio; Kondo, Akihiko; Akimoto, Seiji

    2013-11-01

    Excitation energy transfer of Arthrospira platensis cells grown in f/2 medium (a high salinity medium) and SOT medium (a control) was investigated by steady-state and time-resolved spectroscopies. Growth in f/2 medium induced changes in absorption and fluorescence spectra as well as in the energy transfer pathways. Excitation energy captured by phycobilisome (PBS) was transferred directly to photosystem (PS) I, instead of being first transferred to an intermediate (PBS → PSII → PSI), as observed in SOT medium. The respiration rate increased while photosynthetic rate reduced in f/2 medium. Possible causes of the differences in light-harvesting and energy-transfer processes between the two media are discussed.

  1. Interaction of quinine sulfate with anionic micelles of sodium dodecylsulfate: A time-resolved fluorescence spectroscopy at different pH

    NASA Astrophysics Data System (ADS)

    Joshi, Sunita; Pant, Debi D.

    2015-09-01

    Photophysical behavior and rotational relaxation dynamics of quinine sulfate (QS) in anionic surfactant, sodium dodecylsulfate (SDS) at different pH have been studied using steady state and time resolved fluorescence spectroscopy. It has been observed that the cationic form of quinine sulfate (at pH 2) forms a fluorescent ion pair complex with the surfactant molecules at lower concentrations of surfactant. However, for higher concentrations of SDS, the probe molecules bind strongly with the micelles and reside at the water-micelle interface. At pH 7, QS is singly protonated in bulk aqueous solution. At lower concentrations of SDS aggregation between probe and surfactant molecules has been observed. However, for higher concentrations of SDS, an additional fluorescence peak corresponding to dicationic form of QS appears and this has been attributed to double protonation of the QS molecule in micellar solution. At pH 7, in the presence of SDS micelles, the photophysical properties of QS showed substantial changes compared to that in the bulk water solution. At pH 12, an increase in fluorescence intensity and lifetime has been observed and this has been attributed to the increase in radiative rate due to the incorporation of QS at the micelle-water interface. The local pH at micellar surface has been found different from the pH of bulk solution.

  2. Interaction of quinine sulfate with anionic micelles of sodium dodecylsulfate: A time-resolved fluorescence spectroscopy at different pH.

    PubMed

    Joshi, Sunita; Pant, Debi D

    2015-09-01

    Photophysical behavior and rotational relaxation dynamics of quinine sulfate (QS) in anionic surfactant, sodium dodecylsulfate (SDS) at different pH have been studied using steady state and time resolved fluorescence spectroscopy. It has been observed that the cationic form of quinine sulfate (at pH 2) forms a fluorescent ion pair complex with the surfactant molecules at lower concentrations of surfactant. However, for higher concentrations of SDS, the probe molecules bind strongly with the micelles and reside at the water-micelle interface. At pH 7, QS is singly protonated in bulk aqueous solution. At lower concentrations of SDS aggregation between probe and surfactant molecules has been observed. However, for higher concentrations of SDS, an additional fluorescence peak corresponding to dicationic form of QS appears and this has been attributed to double protonation of the QS molecule in micellar solution. At pH 7, in the presence of SDS micelles, the photophysical properties of QS showed substantial changes compared to that in the bulk water solution. At pH 12, an increase in fluorescence intensity and lifetime has been observed and this has been attributed to the increase in radiative rate due to the incorporation of QS at the micelle-water interface. The local pH at micellar surface has been found different from the pH of bulk solution. PMID:25863459

  3. Modification of energy-transfer processes in the cyanobacterium, Arthrospira platensis, to adapt to light conditions, probed by time-resolved fluorescence spectroscopy.

    PubMed

    Akimoto, Seiji; Yokono, Makio; Aikawa, Shimpei; Kondo, Akihiko

    2013-11-01

    In cyanobacteria, the interactions among pigment-protein complexes are modified in response to changes in light conditions. In the present study, we analyzed excitation energy transfer from the phycobilisome and photosystem II to photosystem I in the cyanobacterium Arthrospira (Spirulina) platensis. The cells were grown under lights with different spectral profiles and under different light intensities, and the energy-transfer characteristics were evaluated using steady-state absorption, steady-state fluorescence, and picosecond time-resolved fluorescence spectroscopy techniques. The fluorescence rise and decay curves were analyzed by global analysis to obtain fluorescence decay-associated spectra. The direct energy transfer from the phycobilisome to photosystem I and energy transfer from photosystem II to photosystem I were modified depending on the light quality, light quantity, and cultivation period. However, the total amount of energy transferred to photosystem I remained constant under the different growth conditions. We discuss the differences in energy-transfer processes under different cultivation and light conditions. PMID:23605291

  4. Time-resolved detection of aromatic compounds on planetary surfaces by ultraviolet laser induced fluorescence and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Eshelman, E.; Daly, M. G.; Slater, G.; Cloutis, E.

    2015-12-01

    Raman spectroscopic instruments are highly capable in the search for organics on Mars due to the potential to perform rapid and nondestructive measurements on unprepared samples. Upcoming and future Raman instruments are likely to also incorporate laser-induced fluorescence (LIF) capabilities, which can be added for modest cost and complexity. We demonstrate that it is possible to obtain sub-ns fluorescence lifetime measurements of Mars-relevant organics and minerals if a fast time-gating capability is used with an intensified detector and a short ultraviolet laser pulse. This serves a primary purpose of discriminating mineral from short-lived (less than 10 ns) organic fluorescence, considered a potential biosignature. Additionally, lifetime measurements may assist in determining if more than one fluorescing species is present and provide information concerning the molecular structure as well as the local environment. Fast time-gating is also useful at longer visible or near-IR wavelengths, as this approach increases the sensitivity of the instrument to organic material by removing the majority of the fluorescence background from the Raman signal and reducing the effect of ambient light.

  5. Time Resolved Raman and Fluorescence Spectrometer for Planetary Mineralogy

    NASA Astrophysics Data System (ADS)

    Blacksberg, Jordana; Rossman, George

    2010-05-01

    Raman spectroscopy is a prime candidate for the next generation of planetary instruments, as it addresses the primary goal of mineralogical analysis which is structure and composition. It does not require sample preparation and provides unique mineral fingerprints, even for mixed phase samples. However, large fluorescence return from many mineral samples under visible light excitation can seriously compromise the quality of the spectra or even render Raman spectra unattainable. Fluorescence interference is likely to be a problem on Mars and is evident in Raman spectra of Martian Meteorites[1]. Our approach uses time resolution for elimination of fluorescence from Raman spectra, allowing for traditional visible laser excitation (532 nm). Since Raman occurs instantaneously with the laser pulse and fluorescence lifetimes vary from nsec to msec depending on the mineral, it is possible to separate them out in time. Complementary information can also be obtained simultaneously using the time resolved fluorescence data. The Simultaneous Spectral Temporal Adaptive Raman Spectrometer (SSTARS) is a planetary instrument under development at the Jet Propulsion Laboratory, capable of time-resolved in situ Raman and fluorescence spectroscopy. A streak camera and pulsed miniature microchip laser provide psec scale time resolution. Our ability to observe the complete time evolution of Raman and fluorescence in minerals provides a foundation for design of pulsed Raman and fluorescence spectrometers in diverse planetary environments. We will discuss the SSTARS instrument design and performance capability. We will also present time-resolved pulsed Raman spectra collected from a relevant set of minerals selected using available data on Mars mineralogy[2]. Of particular interest are minerals resulting from aqueous alteration on Mars. For comparison, we will present Raman spectra obtained using a commercial continuous wave (CW) green (514 nm) Raman system. In many cases using a CW laser

  6. ESIPT and photodissociation of 3-hydroxychromone in solution: photoinduced processes studied by static and time-resolved UV/Vis, fluorescence, and IR spectroscopy.

    PubMed

    Chevalier, Katharina; Grün, Anneken; Stamm, Anke; Schmitt, Yvonne; Gerhards, Markus; Diller, Rolf

    2013-11-01

    The spectral properties of fluorescence sensors such as 3-hydroxychromone (3-HC) and its derivatives are sensitive to interaction with the surrounding medium as well as to substitution. 3-HC is a prototype system for other derivatives because it is the basic unit of all flavonoides undergoing ESIPT and is not perturbed by a substituent. In this study, the elementary processes and intermediate states in the photocycle of 3-HC as well as its anion were identified and characterized by the use of static and femtosecond time-resolved spectroscopy in different solvents (methylcyclohexane, acetonitrile, ethanol, and water at different pH). Electronic absorption and fluorescence spectra and lifetimes of the intermediate states were obtained for the normal, tautomer and anionic excited state, while mid-IR vibrational spectra yielded structural information on ground and excited states of 3-HC. A high sensitivity on hydrogen-bonding perturbations was observed, leading to photoinduced anion formation in water, while in organic solvents, different processes are suggested, including slow picosecond ESIPT and contribution of the trans-structure excited state or a different stable solvation state with different direction of OH. The formation of the latter could be favored by the lack of a substituent increasing contact points for specific solute-solvent interactions at the hydroxyl group compared to substituted derivatives. The effect of substituents has to be considered for the design of future fluorescence sensors based on 3-HC. PMID:24083478

  7. In vivo validation of a bimodal technique combining time-resolved fluorescence spectroscopy and ultrasonic backscatter microscopy for diagnosis of oral carcinoma

    NASA Astrophysics Data System (ADS)

    Sun, Yang; Xie, Hongtao; Liu, Jing; Lam, Matthew; Chaudhari, Abhijit J.; Zhou, Feifei; Bec, Julien; Yankelevich, Diego R.; Dobbie, Allison; Tinling, Steven L.; Gandour-Edwards, Regina F.; Monsky, Wayne L.; Gregory Farwell, D.; Marcu, Laura

    2012-11-01

    Tissue diagnostic features generated by a bimodal technique integrating scanning time-resolved fluorescence spectroscopy (TRFS) and ultrasonic backscatter microscopy (UBM) are investigated in an in vivo hamster oral carcinoma model. Tissue fluorescence is excited by a pulsed nitrogen laser and spectrally and temporally resolved using a set of filters/dichroic mirrors and a fast digitizer, respectively. A 41-MHz focused transducer (37-μm axial, 65-μm lateral resolution) is used for UBM scanning. Representative lesions of the different stages of carcinogenesis show that fluorescence characteristics complement ultrasonic features, and both correlate with histological findings. These results demonstrate that TRFS-UBM provide a wealth of co-registered, complementary data concerning tissue composition and structure as it relates to disease status. The direct co-registration of the TRFS data (sensitive to surface molecular changes) with the UBM data (sensitive to cross-sectional structural changes and depth of tumor invasion) is expected to play an important role in pre-operative diagnosis and intra-operative determination of tumor margins.

  8. In vivo validation of a bimodal technique combining time-resolved fluorescence spectroscopy and ultrasonic backscatter microscopy for diagnosis of oral carcinoma.

    PubMed

    Sun, Yang; Xie, Hongtao; Liu, Jing; Lam, Matthew; Chaudhari, Abhijit J; Zhou, Feifei; Bec, Julien; Yankelevich, Diego R; Dobbie, Allison; Tinling, Steven L; Gandour-Edwards, Regina F; Monsky, Wayne L; Farwell, D Gregory; Marcu, Laura

    2012-11-01

    Tissue diagnostic features generated by a bimodal technique integrating scanning time-resolved fluorescence spectroscopy (TRFS) and ultrasonic backscatter microscopy (UBM) are investigated in an in vivo hamster oral carcinoma model. Tissue fluorescence is excited by a pulsed nitrogen laser and spectrally and temporally resolved using a set of filters/dichroic mirrors and a fast digitizer, respectively. A 41-MHz focused transducer (37-μm axial, 65-μm lateral resolution) is used for UBM scanning. Representative lesions of the different stages of carcinogenesis show that fluorescence characteristics complement ultrasonic features, and both correlate with histological findings. These results demonstrate that TRFS-UBM provide a wealth of co-registered, complementary data concerning tissue composition and structure as it relates to disease status. The direct co-registration of the TRFS data (sensitive to surface molecular changes) with the UBM data (sensitive to cross-sectional structural changes and depth of tumor invasion) is expected to play an important role in pre-operative diagnosis and intra-operative determination of tumor margins. PMID:23117798

  9. Energy transfer in the primary stages of the photosynthetic process investigated by picosecond time resolved fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Pellegrino, F.

    The fate of the absorbed light energy in the primary stages of the photosynthetic process was studied. In particular, the energy transfer in the accessory pigment complex consisting of carotenoids, Chl. a and Chl. b in higher green plants and phycobiliproteins in blue-green algae were investigated. These accessory pigments are responsible for the highly efficient transfer of the excitation energy to the photochemically active reaction center traps. The risetime, decay time, fluorescence depolarization, temperature and intensity dependence of the fluoresence emission from higher green plant and algal photosystems were directly measured. Excitation was provided by single picosecond laser pulses, as well as a train of pulses at 530 nm, within an intensity range of 10 to the 12th power to 10 to the 16th power photons/sq cm per pulse.

  10. Fulvic acid complexation of Eu(III) and Cm(III) at elevated temperatures studied by time-resolved laser fluorescence spectroscopy.

    PubMed

    Fröhlich, Daniel R; Skerencak-Frech, Andrej; Gast, Michael; Panak, Petra J

    2014-11-01

    The interaction of Eu(III) and Cm(III) with three different aquatic fulvic acids (FA) was studied as a function of the temperature (T = 20-80 °C) in 0.1 M NaCl solution by time-resolved laser fluorescence spectroscopy. The speciation of both trivalent metal ions was determined by peak deconvolution of the recorded fluorescence spectra. For each studied metal ion-FA system only one complexed species is formed under the given experimental conditions. The stability constants at 20, 40, 60 and 80 °C (log β'(T)) were determined according to the charge neutralization model. The log β' (20 °C) for the different FAs show similar values (log β(20 °C) = 5.60-6.29). The stability constants increase continuously with increasing temperature by approximately 0.3-1.0 orders of magnitude. The reaction enthalpies and entropies are derived from the integrated Van't Hoff equation. The results show that all investigated complexation reactions are endothermic and entropy-driven. PMID:25207846

  11. Speciation of Eu3+ bound to humic substances by time-resolved laser fluorescence spectroscopy (TRLFS) and parallel factor analysis (PARAFAC)

    NASA Astrophysics Data System (ADS)

    Lukman, Steven; Saito, Takumi; Aoyagi, Noboru; Kimura, Takaumi; Nagasaki, Shinya

    2012-07-01

    The bioavailability and toxicity of metal ions including radionuclides in the biosphere are greatly influenced by their speciation. Humic substances (HSs) are important constituents of various soil and water systems and have significant impact on the speciation and mobility of metal ions because of their high affinity to metal ions. In this study, the speciation of europium (Eu3+), a chemical homologue of trivalent actinides, with HSs collected from various origins was investigated by time-resolved laser fluorescence spectroscopy (TRLFS). The difficulties associated with the separation of the contribution of different Eu3+ species due to overlapping spectra or similar fluorescence lifetimes were addressed and mitigated by applying a multi-mode factor analysis, parallel factor analysis (PARAFAC), which resulted in the number, spectra, decay curves and relative fluorescence intensity profiles of different Eu3+ species. Subsequently, the interpretation of the Eu3+ species, was tackled by principal component analysis (PCA) and partial linear square (PLS) regression to deduce the nature of the Eu3+ species by taking into account the physicochemical properties of the HSs. Three factors corresponding to different Eu3+ species were obtained at 70 μM Eu3+ for all HSs investigated except for one humic acid. One of the factors corresponded to free Eu3+ ion interacting with HSs via diffusion. The remaining two factors were thought to be Eu3+ bound to HSs: one bound to acidic functional groups of HSs and the other to the sites of HSs influenced by the carbon backbone structures. It was also found that the latter factor exhibited strong energy transfer from the excited Eu3+ center to HSs. At lower Eu3+ concentration (10 μM), two factors having similar fluorescent characteristics to those of the second and third factors were obtained.

  12. NI-49SMART SUCKER: NEXT GENERATION SMART SURGICAL TOOL FOR INTRAOPERATIVE BRAIN TUMOR RESECTION USING TIME RESOLVED LASER INDUCED FLUORESCENCE SPECTROSCOPY

    PubMed Central

    Kittle, David S.; Butte, Pramod V.; Vasefi, Fartash; Patil, Chirag G.; Black, Keith

    2014-01-01

    Primary brain tumors are highly lethal tumors where surgical resection is the primary treatment of choice. It has been shown that survival rate is directly related to the extent of tumor resection. In order to aid the surgeon in achieving near-complete resection, novel technologies are required. Time-resolved laser induced fluorescence spectroscopy (TRLIFS) promises to be one such technology, where the tissue is excited using an ultra-short laser and the corresponding fluorescence intensity decay is captured. Based on the fluorescence spectrum and the decay characteristics at various color bands from TRLIFS, differentiation of tumor from the normal brain tissue is possible in real-time. We built a portable TRLIFS system using custom optics and hardware (laser excitation: 355nm, 400ps pulse width, 5 uJ/pulse; PMT detector: Photek, rise time 80 picoseconds; digitizer: 7 Giga-samples per second) which is capable of providing the results in real time (every 50 milliseconds). We have designed a custom probe which is attached to a Roton sucker "Smart sucker" to collect the data during surgical resection from patients at Cedars-Sinai Medical Center. The histopathological diagnosis of the site under study with TRLIFS is confirmed with a biopsy and H-E staining. We will present our preliminary data from human brain tumor samples collected in-vivo. Our preliminary study shows that TRLIFS is capable of classifying low grade tumors with high sensitivity and specificity. This study will also demonstrate the potential of using the TRLIFS system to enhance the surgical instrumentation, aiding surgeons in near-complete excision of tumors and bringing these instruments into the next generation of smart tools.

  13. Time-Resolved Synchronous Fluorescence for Biomedical Diagnosis

    PubMed Central

    Zhang, Xiaofeng; Fales, Andrew; Vo-Dinh, Tuan

    2015-01-01

    This article presents our most recent advances in synchronous fluorescence (SF) methodology for biomedical diagnostics. The SF method is characterized by simultaneously scanning both the excitation and emission wavelengths while keeping a constant wavelength interval between them. Compared to conventional fluorescence spectroscopy, the SF method simplifies the emission spectrum while enabling greater selectivity, and has been successfully used to detect subtle differences in the fluorescence emission signatures of biochemical species in cells and tissues. The SF method can be used in imaging to analyze dysplastic cells in vitro and tissue in vivo. Based on the SF method, here we demonstrate the feasibility of a time-resolved synchronous fluorescence (TRSF) method, which incorporates the intrinsic fluorescent decay characteristics of the fluorophores. Our prototype TRSF system has clearly shown its advantage in spectro-temporal separation of the fluorophores that were otherwise difficult to spectrally separate in SF spectroscopy. We envision that our previously-tested SF imaging and the newly-developed TRSF methods will combine their proven diagnostic potentials in cancer diagnosis to further improve the efficacy of SF-based biomedical diagnostics. PMID:26404289

  14. Thymine Dimer Formation probed by Time-Resolved Vibrational Spectroscopy

    NASA Astrophysics Data System (ADS)

    Schreier, Wolfgang J.; Schrader, Tobias E.; Roller, Florian O.; Gilch, Peter; Zinth, Wolfgang; Kohler, Bern

    Cyclobutane pyrimidine dimers are the major photoproducts formed when DNA is exposed to UV light. Femtosecond time-resolved vibrational spectroscopy reveals that thymine dimers are formed in thymidine oligonucleotides in an ultrafast photoreaction.

  15. Conformational States of the Rapana thomasiana Hemocyanin and Its Substructures Studied by Dynamic Light Scattering and Time-Resolved Fluorescence Spectroscopy

    PubMed Central

    Georgieva, Dessislava; Schwark, Daniel; Nikolov, Peter; Idakieva, Krassimira; Parvanova, Katja; Dierks, Karsten; Genov, Nicolay; Betzel, Christian

    2005-01-01

    Hemocyanins are dioxygen-transporting proteins freely dissolved in the hemolymph of mollusks and arthropods. Dynamic light scattering and time-resolved fluorescence measurements show that the oxygenated and apo-forms of the Rapana thomasiana hemocyanin, its structural subunits RtH1 and RtH2, and those of the functional unit RtH2e, exist in different conformations. The oxygenated respiratory proteins are less compact and more asymmetric than the respective apo-forms. Different conformational states were also observed for the R. thomasiana hemocyanin in the absence and presence of an allosteric regulator. The results are in agreement with a molecular mechanism for cooperative dioxygen binding in molluscan hemocyanins including transfer of conformational changes from one functional unit to another. PMID:15533921

  16. Time-resolved orbital angular momentum spectroscopy

    SciTech Connect

    Noyan, Mehmet A.; Kikkawa, James M.

    2015-07-20

    We introduce pump-probe magneto-orbital spectroscopy, wherein Laguerre-Gauss optical pump pulses impart orbital angular momentum to the electronic states of a material and subsequent dynamics are studied with 100 fs time resolution. The excitation uses vortex modes that distribute angular momentum over a macroscopic area determined by the spot size, and the optical probe studies the chiral imbalance of vortex modes reflected off the sample. First observations in bulk GaAs yield transients that evolve on time scales distinctly different from population and spin relaxation, as expected, but with surprisingly large lifetimes.

  17. Time-resolved optical fluorescence spectroscopy of heterogeneous turbid media with special emphasis on brain tissue structures including diseased regions: A sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Vaudelle, Fabrice; L'huillier, Jean-Pierre

    2013-09-01

    Fluorescence-enhanced optical imaging based on near-infrared light provides a promising tool to differentiate diseased lesions from normal tissue. However, the measurement sensitivity of the fluorescence signals acquired at the output surface of the tissue is greatly influenced by the tissue structure, the optical properties, the location and the size of the target. In this paper, we present a numerical model based on the Monte Carlo method that allows to simulate time-resolved reflectance signals acquired on the surface of the scalp of a human head model bearing a fluorescent diseased region (tumor, glioma). The influence of tumor depth, tumor size and tumor shape evolution on the computed signals are analyzed by taking into account the multi-layered tissue structure. The simulations show that the mean-time-of-flight and the difference between two mean-times acquired at two source-detector distances are both relevant to this problem type. Furthermore, the simulations suggest that the use of the difference between mean-flight-times may be interesting to probe scattering changes that occur in the cerebrospinal fluid (CSF).

  18. Seventh international conference on time-resolved vibrational spectroscopy

    SciTech Connect

    Dyer, R.B.; Martinez, M.A.D.; Shreve, A.; Woodruff, W.H.

    1997-04-01

    The International Conference on Time-Resolved Vibrational Spectroscopy (TRVS) is widely recognized as the major international forum for the discussion of advances in this rapidly growing field. The 1995 conference was the seventh in a series that began at Lake Placid, New York, 1982. Santa Fe, New Mexico, was the site of the Seventh International Conference on Time-Resolved Vibrational Spectroscopy, held from June 11 to 16, 1995. TRVS-7 was attended by 157 participants from 16 countries and 85 institutions, and research ranging across the full breadth of the field of time-resolved vibrational spectroscopy was presented. Advances in both experimental capabilities for time-resolved vibrational measurements and in theoretical descriptions of time-resolved vibrational methods continue to occur, and several sessions of the conference were devoted to discussion of these advances and the associated new directions in TRVS. Continuing the interdisciplinary tradition of the TRVS meetings, applications of time-resolved vibrational methods to problems in physics, biology, materials science, and chemistry comprised a large portion of the papers presented at the conference.

  19. Time resolved imaging microscopy. Phosphorescence and delayed fluorescence imaging.

    PubMed Central

    Marriott, G; Clegg, R M; Arndt-Jovin, D J; Jovin, T M

    1991-01-01

    An optical microscope capable of measuring time resolved luminescence (phosphorescence and delayed fluorescence) images has been developed. The technique employs two phase-locked mechanical choppers and a slow-scan scientific CCD camera attached to a normal fluorescence microscope. The sample is illuminated by a periodic train of light pulses and the image is recorded within a defined time interval after the end of each excitation period. The time resolution discriminates completely against light scattering, reflection, autofluorescence, and extraneous prompt fluorescence, which ordinarily decrease contrast in normal fluorescence microscopy measurements. Time resolved image microscopy produces a high contrast image and particular structures can be emphasized by displaying a new parameter, the ratio of the phosphorescence to fluorescence. Objects differing in luminescence decay rates are easily resolved. The lifetime of the long lived luminescence can be measured at each pixel of the microscope image by analyzing a series of images that differ by a variable time delay. The distribution of luminescence decay rates is displayed directly as an image. Several examples demonstrate the utility of the instrument and the complementarity it offers to conventional fluorescence microscopy. Images FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 5 FIGURE 6 PMID:1723311

  20. Ultrafast Time-Resolved Emission and Absorption Spectra of meso-Pyridyl Porphyrins upon Soret Band Excitation Studied by Fluorescence Up-Conversion and Transient Absorption Spectroscopy.

    PubMed

    Venkatesh, Yeduru; Venkatesan, M; Ramakrishna, B; Bangal, Prakriti Ranjan

    2016-09-01

    A comprehensive study of ultrafast molecular relaxation processes of isomeric meso-(pyridyl) porphyrins (TpyPs) has been carried out by using femtosecond time-resolved emission and absorption spectroscopic techniques upon pumping at 400 nm, Soret band (B band or S2), in 4:1 dichloromethane (DCM) and tetrahydrofuran (THF) solvent mixture. By combined studies of fluorescence up-conversion, time-correlated single photon counting, and transient absorption spectroscopic techniques, a complete model with different microscopic rate constants associated with elementary processes involved in electronic manifolds has been reported. Besides, a distinct coherent nuclear wave packet motion in Qy state is observed at low-frequency mode, ca. 26 cm(-1) region. Fluorescence up-conversion studies constitute ultrafast time-resolved emission spectra (TRES) over the whole emission range (430-710 nm) starting from S2 state to Qx state via Qy state. Careful analysis of time profiles of up-converted signals at different emission wavelengths helps to reveal detail molecular dynamics. The observed lifetimes are as indicated: A very fast decay component with 80 ± 20 fs observed at ∼435 nm is assigned to the lifetime of S2 (B) state, whereas being a rise component in the region of between 550 and 710 nm emission wavelength pertaining to Qy and Qx states, it is attributed to very fast internal conversion (IC) occurring from B → Qy and B → Qx as well. Two distinct components of Qy emission decay with ∼200-300 fs and ∼1-1.5 ps time constants are due to intramolecular vibrational redistribution (IVR) induced by solute-solvent inelastic collisions and vibrational redistribution induced by solute-solvent elastic collision, respectively. The weighted average of these two decay components is assigned as the characteristic lifetime of Qy, and it ranges between 0.3 and 0.5 ps. An additional ∼20 ± 2 ps rise component is observed in Qx emission, and it is assigned to the formation time of

  1. The dependence of the ultrafast relaxation kinetics of the S2 and S1 states in β-carotene homologs and lycopene on conjugation length studied by femtosecond time-resolved absorption and Kerr-gate fluorescence spectroscopies

    NASA Astrophysics Data System (ADS)

    Kosumi, Daisuke; Fujiwara, Masazumi; Fujii, Ritsuko; Cogdell, Richard J.; Hashimoto, Hideki; Yoshizawa, Masayuki

    2009-06-01

    The ultrafast relaxation kinetics of all-trans-β-carotene homologs with varying numbers of conjugated double bonds n(n =7-15) and lycopene (n =11) has been investigated using femtosecond time-resolved absorption and Kerr-gate fluorescence spectroscopies, both carried out under identical excitation conditions. The nonradiative relaxation rates of the optically allowed S2(1Bu+1) state were precisely determined by the time-resolved fluorescence. The kinetics of the optically forbidden S1(2Ag-1) state were observed by the time-resolved absorption measurements. The dependence of the S1 relaxation rates upon the conjugation length is adequately described by application of the energy gap law. In contrast to this, the nonradiative relaxation rates of S2 have a minimum at n =9 and show a reverse energy gap law dependence for values of n above 11. This anomalous behavior of the S2 relaxation rates can be explained by the presence of an intermediate state (here called the Sx state) located between the S2 and S1 states at large values of n (such as n =11). The presence of such an intermediate state would then result in the following sequential relaxation pathway S2→Sx→S1→S0. A model based on conical intersections between the potential energy curves of these excited singlet states can readily explain the measured relationships between the decay rates and the energy gaps.

  2. [System of ns time-resolved spectroscopy diagnosis and radioprotection].

    PubMed

    Yao, Wei-Bo; Guo, Jian-Ming; Zhang, Yong-min; Tang, Jun-Ping; Cheng, Liang; Xu, Qi-fuo

    2014-06-01

    Cathode plasma of high current electron beam diode is an important research on high power microwave and strong pulsed radio accelerator. It is a reliable method to study cathode plasma by diagnosing the cathode plasma parameters with non-contact spectroscopy measurement system. The present paper introduced the work principle, system composition and performance of the nanosecond (ns) time-resolved spectroscopy diagnosis system. Furthermore, it introduced the implementing method and the temporal relation of lower jitter synchronous trigger system. Simultaneously, the authors designed electromagnetic and radio shield room to protect the diagnosis system due to the high electromagnetic and high X-ray and γ-ray radiation, which seriously interferes with the system. Time-resolved spectroscopy experiment on brass (H62) cathode shows that, the element and matter composition of cathode plasma is clearly increase with the increase in the diode pulsed voltage and current magnitude. The spectroscopy diagnosis system could be of up to 10 ns time resolve capability. It's least is 2 ns. Synchronous trigger system's jitter is less than 4 ns. The spectroscopy diagnosis system will open a new way to study the cathode emission mechanism in depth. PMID:25358142

  3. Protein chip analysis by probing time-resolved UV fluorescence

    NASA Astrophysics Data System (ADS)

    Grigaravicius, Paulius; Dietrich, Rüdiger; Fritzsche, Wolfgang; Greulich, Karl Otto; Horn, Uwe; Knoll, Dietmar; Peters, Sven; Striebel, Hans-Martin; Schellenberg, Peter

    2007-07-01

    We describe a novel label-free method to analyse protein interactions on microarrays as well as in solution. By this technique the time resolved native protein fluorescence in the UV is probed. The method is based on alterations of the protein upon ligand binding, and, as a consequence, of alterations of the environment of the proteins' aromatic amino acids. These amino acids act as internal probes, and as a result, the fluorescence lifetime of the proteins change due to binding to a ligand partner such as another protein. We were able to demonstrate the feasibility of the method with many compounds, including protein-protein, protein-antibody, protein-nucleic acid and protein-small ligand pairs. Unlike to many other label-free techniques, the sensitivity of the method does not depend on the size of the counterbinding ligand and therefore is particularly suitable for drug monitoring, when small molecules are involved.

  4. Probing the Aggregation Behavior of Neat Imidazolium-Based Alkyl Sulfate (Alkyl = Ethyl, Butyl, Hexyl, and Octyl) Ionic Liquids through Time Resolved Florescence Anisotropy and NMR and Fluorescence Correlation Spectroscopy Study.

    PubMed

    Majhi, Debashis; Pabbathi, Ashok; Sarkar, Moloy

    2016-01-14

    Aggregation behavior of a series of neat 1-ethyl 3-methylimidazolium alkyl sulfate (alkyl = ethyl, butyl, hexyl, and octyl) ionic liquids has been investigated through combined time-resolved fluorescence spectroscopy, 1-D and 2-D NMR spectroscopy, and fluorescence correlation spectroscopy (FCS). Interestingly, experimentally measured rotational relaxation times (τr) for ethyl, butyl, hexyl and octyl systems are measured to be 2.25, 1.64, 1.36, and 1.32 times higher than the estimated (from Stokes-Einstein-Debye theory) values for the same respective systems. This indicates that the emitting species is not the monomeric imidazolium moiety rather an associated species, and volume of the rotating fluorescing species decreases even though the length of the alkyl moiety on the anions is increased. The shift in the (1)H proton signal as well as a change in the width of the same signal upon dilution of the neat ionic liquids indicates that ionic liquids exist in the aggregated form. Further investigation through the 2D-ROESY experiment shows that interaction between imidazolium and sulfate is relatively stronger in the ethyl system than that of the longer octyl system. FCS measurements independently show that the hydrodynamic volume decreases with an increase in the anion chain length. The NMR and FCS results are consistent with the findings of the fluorescence anisotropy study. PMID:26654730

  5. Advances in ultrafast time resolved fluorescence physics for cancer detection in optical biopsy

    NASA Astrophysics Data System (ADS)

    Alfano, R. R.

    2012-03-01

    We discuss the use of time resolved fluorescence spectroscopy to extract fundamental kinetic information on molecular species in tissues. The temporal profiles reveal the lifetime and amplitudes associated with key active molecules distinguishing the local spectral environment of tissues. The femtosecond laser pulses at 310 nm excite the tissue. The emission profile at 340 nm from tryptophan is non-exponential due to the micro-environment. The slow and fast amplitudes and lifetimes of emission profiles reveal that cancer and normal states can be distinguished. Time resolved optical methods offer a new cancer diagnostic modality for the medical community.

  6. Sensitive, time-resolved, broadband spectroscopy of single transient processes

    NASA Astrophysics Data System (ADS)

    Fjodorow, Peter; Baev, Ivan; Hellmig, Ortwin; Sengstock, Klaus; Baev, Valery M.

    2015-09-01

    Intracavity absorption spectroscopy with a broadband Er3+-doped fiber laser is applied to time-resolved measurements of transient gain and absorption in electrically excited Xe and Kr plasmas. The achieved time resolution for broadband spectral recording of a single process is 25 µs. For pulsed-periodic processes, the time resolution is limited by the laser pulse duration, which is set here to 3 µs. This pulse duration also predefines the effective absorption path length, which amounts to 900 m. The presented technique can be applied to multicomponent analysis of single transient processes such as shock tube experiments, pulse detonation engines, or explosives.

  7. A 0.18-µm CMOS Array Sensor for Integrated Time-Resolved Fluorescence Detection

    PubMed Central

    Huang, Ta-chien D.; Sorgenfrei, Sebastian; Gong, Ping; Levicky, Rastislav; Shepard, Kenneth L.

    2010-01-01

    This paper describes the design of an active, integrated CMOS sensor array for fluorescence applications which enables time-gated, time-resolved fluorescence spectroscopy. The 64-by-64 array is sensitive to photon densities as low as 8.8 × 106 photons/cm2 with 64-point averaging and, through a differential pixel design, has a measured impulse response of better than 800 ps. Applications include both active microarrays and high-frame-rate imagers for fluorescence lifetime imaging microscopy. PMID:20436922

  8. Time-resolved fluorescence spectroscopy investigation of the effect of 4-hydroxynonenal on endogenous NAD(P)H in living cardiac myocytes

    NASA Astrophysics Data System (ADS)

    Chorvatova, Alzbeta; Aneba, Swida; Mateasik, Anton; Chorvat, Dusan; Comte, Blandine

    2013-06-01

    Lipid peroxidation is a major biochemical consequence of the oxidative deterioration of polyunsaturated lipids in cell membranes and causes damage to membrane integrity and loss of protein function. 4-hydroxy-2-nonenal (HNE), one of the most reactive products of n-6 polyunsaturated fatty acid peroxidation of membrane phospholipids, has been shown to be capable of affecting both nicotinamide adenine dinucleotide (phosphate) reduced [NAD(P)H] as well as NADH production. However, the understanding of its effects in living cardiac cells is still lacking. Our goal was to therefore investigate HNE effects on NAD(P)H noninvasively in living cardiomyocytes. Spectrally resolved lifetime detection of endogenous fluorescence, an innovative noninvasive technique, was employed. Individual fluorescence components were resolved by spectral linear unmixing approach. Gathered results revealed that HNE reduced the amplitude of both resolved NAD(P)H components in a concentration-dependent manner. In addition, HNE increased flavoprotein fluorescence and responsiveness of the NAD(P)H component ratio to glutathione reductase (GR) inhibitor. HNE also increased the percentage of oxidized nucleotides and decreased maximal NADH production. Presented data indicate that HNE provoked an important cell oxidation by acting on NAD(P)H regulating systems in cardiomyocytes. Understanding the precise role of oxidative processes and their products in living cells is crucial for finding new noninvasive tools for biomedical diagnostics of pathophysiological states.

  9. Remote time-resolved filament-induced breakdown spectroscopy of biological materials

    NASA Astrophysics Data System (ADS)

    Xu, H. L.; Liu, W.; Chin, S. L.

    2006-05-01

    We report, for what we believe to be the first time, on the feasibility of remote time-resolved filament-induced breakdown spectroscopy (FIBS) of biological materials. The fluorescence from egg white and yeast powder, induced by femtosecond laser pulse filamentation in air, was detected in the backward direction with targets located 3.5 m away from the detection system. The remarkably distinct spectra of egg white and yeast allow us to propose that this technique, time-resolved FIBS, could be potentially useful for remote detection and identification of harmful biological agents.

  10. Multidimensional Time-Resolved Spectroscopy of Vibrational Coherence in Biopolyenes

    NASA Astrophysics Data System (ADS)

    Buckup, Tiago; Motzkus, Marcus

    2014-04-01

    Multidimensional femtosecond time-resolved vibrational coherence spectroscopy allows one to investigate the evolution of vibrational coherence in electronic excited states. Methods such as pump-degenerate four-wave mixing and pump-impulsive vibrational spectroscopy combine an initial ultrashort laser pulse with a nonlinear probing sequence to reinduce vibrational coherence exclusively in the excited states. By carefully exploiting specific electronic resonances, one can detect vibrational coherence from 0 cm-1 to over 2,000 cm-1 and map its evolution. This review focuses on the observation and mapping of high-frequency vibrational coherence for all-trans biological polyenes such as β-carotene, lycopene, retinal, and retinal Schiff base. We discuss the role of molecular symmetry in vibrational coherence activity in the S1 electronic state and the interplay of coupling between electronic states and vibrational coherence.

  11. Nonselective and polarization effects in time-resolved optogalvanic spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhechev, D.; Steflekova, V.

    2016-02-01

    Three interfering effects in optogalvanic (OG) spectroscopy are identified in a hollow cathode discharge (HCD) - OG detector. The laser beam is found to generate two nonselective processes, namely photoelectron emission (PE) from the cathode surface with a sub-breakdown bias applied, and nonresonant space ionization. The convolution of these galvanic contributions was determined experimentally as an instrumental function and a deconvolution procedure to determine the actual OG signal was developed. Specific plasma conductance is detected dependent on the polarization of the laser beam irradiating. Linearly/circularly polarized light beam is found to induce OG signals differ in amplitude (and their shape parameters in the time-resolved OG signals (TROGS)). The phenomena coherence and specific conductance are found to be in causal relationship. The additional conductance due to coherent states of atoms manifests itself as an intrinsic instrumental property of OG detector.

  12. Electron-transfer acceleration investigated by time resolved infrared spectroscopy.

    PubMed

    Vlček, Antonín; Kvapilová, Hana; Towrie, Michael; Záliš, Stanislav

    2015-03-17

    Ultrafast electron transfer (ET) processes are important primary steps in natural and artificial photosynthesis, as well as in molecular electronic/photonic devices. In biological systems, ET often occurs surprisingly fast over long distances of several tens of angströms. Laser-pulse irradiation is conveniently used to generate strongly oxidizing (or reducing) excited states whose reactions are then studied by time-resolved spectroscopic techniques. While photoluminescence decay and UV-vis absorption supply precise kinetics data, time-resolved infrared absorption (TRIR) and Raman-based spectroscopies have the advantage of providing additional structural information and monitoring vibrational energy flows and dissipation, as well as medium relaxation, that accompany ultrafast ET. We will discuss three cases of photoinduced ET involving the Re(I)(CO)3(N,N) moiety (N,N = polypyridine) that occur much faster than would be expected from ET theories. [Re(4-N-methylpyridinium-pyridine)(CO)3(N,N)](2+) represents a case of excited-state picosecond ET between two different ligands that remains ultrafast even in slow-relaxing solvents, beating the adiabatic limit. This is caused by vibrational/solvational excitation of the precursor state and participation of high-frequency quantum modes in barrier crossing. The case of Re-tryptophan assemblies demonstrates that excited-state Trp → *Re(II) ET is accelerated from nanoseconds to picoseconds when the Re(I)(CO)3(N,N) chromophore is appended to a protein, close to a tryptophan residue. TRIR in combination with DFT calculations and structural studies reveals an interaction between the N,N ligand and the tryptophan indole. It results in partial electronic delocalization in the precursor excited state and likely contributes to the ultrafast ET rate. Long-lived vibrational/solvational excitation of the protein Re(I)(CO)3(N,N)···Trp moiety, documented by dynamic IR band shifts, could be another accelerating factor. The last

  13. A Clinical Tissue Oximeter Using NIR Time-Resolved Spectroscopy.

    PubMed

    Fujisaka, Shin-ichi; Ozaki, Takeo; Suzuki, Tsuyoshi; Kamada, Tsuyoshi; Kitazawa, Ken; Nishizawa, Mitsunori; Takahashi, Akira; Suzuki, Susumu

    2016-01-01

    The tNIRS-1, a new clinical tissue oximeter using NIR time-resolved spectroscopy (TRS), has been developed. The tNIRS-1 measures oxygenated, deoxygenated and total hemoglobin and oxygen saturation in living tissues. Two-channel TRS measurements are obtained using pulsed laser diodes (LD) at three wavelengths, multi-pixel photon counters (MPPC) for light detection, and time-to-digital converters (TDC) for time-of-flight photon measurements. Incorporating advanced semiconductor devices helped to make the design of this small-size, low-cost and low-power TRS instrument possible. In order to evaluate the correctness and reproducibility of measurement data obtained with the tNIRS-1, a study using blood phantoms and healthy volunteers was conducted to compare data obtained from a conventional SRS device and data from an earlier TRS system designed for research purposes. The results of the study confirmed the correctness and reproducibility of measurement data obtained with the tNIRS-1. Clinical evaluations conducted in several hospitals demonstrated a high level of usability in clinical situations and confirmed the efficacy of measurement data obtained with the tNIRS-1. PMID:26782242

  14. Noninvasive multimodal evaluation of bioengineered cartilage constructs combining time-resolved fluorescence and ultrasound imaging.

    PubMed

    Fite, Brett Z; Decaris, Martin; Sun, Yinghua; Sun, Yang; Lam, Adrian; Ho, Clark K L; Leach, J Kent; Marcu, Laura

    2011-04-01

    A multimodal diagnostic system that integrates time-resolved fluorescence spectroscopy, fluorescence lifetime imaging microscopy, and ultrasound backscatter microscopy is evaluated here as a potential tool for assessing changes in engineered tissue composition and microstructure nondestructively and noninvasively. The development of techniques capable of monitoring the quality of engineered tissue, determined by extracellular matrix (ECM) content, before implantation would alleviate the need for destructive assays over multiple time points and advance the widespread development and clinical application of engineered tissues. Using a prototype system combining time-resolved fluorescence spectroscopy, FLIM, and UBM, we measured changes in ECM content occurring during chondrogenic differentiation of equine adipose stem cells on 3D biodegradable matrices. The optical and ultrasound results were validated against those acquired via conventional techniques, including collagen II immunohistochemistry, picrosirius red staining, and measurement of construct stiffness. Current results confirm the ability of this multimodal approach to follow the progression of tissue maturation along the chondrogenic lineage by monitoring ECM production (namely, collagen type II) and by detecting resulting changes in mechanical properties of tissue constructs. Although this study was directed toward monitoring chondrogenic tissue maturation, these data demonstrate the feasibility of this approach for multiple applications toward engineering other tissues, including bone and vascular grafts. PMID:21303258

  15. Steady state and time-resolved fluorescence spectroscopic characterization of normal and cancerous urine

    NASA Astrophysics Data System (ADS)

    Rajasekaran, Ramu; Aruna, Prakasa Rao; Balu David, Munusamy; Koteeswaran, Dornadula; Muthuvelu, Kulandaivel; Rai, R.; Ganesan, Singaravelu

    2013-03-01

    Urine is one of the diagnostically important bio fluids, as it has many metabolites and some of them are native fluorophores. There may be a variation in the distribution and the physiochemical properties of the fluorophores during any metabolic change and pathologic conditions. Native fluorescence spectroscopy has been considered as a promising tool to characterize the fluorophores present in the urine. In this study, we aimed at characterizing the urine of both normal and patients with confirmed cancer using steady state and time-resolved fluorescence spectroscopy at 280 nm and 350 nm excitation. It is observed that the metabolites indoxyl sulphate and neopterin and its derivatives are responsible for altered spectral signatures at 280 nm, and 350 nm excitation. The overall spectral data were subjected to Principal Component Analysis and the resultant components were used as input in the linear discriminant analysis. As a total, 84% and 81.8% of samples were correctly classified at 280 nm and 350 nm respectively.

  16. Exploiting Molecular Biology by Time-Resolved Fluorescence Imaging

    NASA Astrophysics Data System (ADS)

    Müller, Francis; Fattinger, Christof

    Many contemporary biological investigations rely on highly sensitive in vitro assays for the analysis of specific molecules in biological specimens, and the main part of these assays depends on high-sensitivity fluorescence detection techniques for the final readout. The analyzed molecules and molecular interactions in the specimen need to be detected in the presence of other highly abundant biomolecules, while the analyzed molecules themselves are only present at nano-, pico-, or even femtomolar concentration.A short scientific rationale of fluorescence is presented. It emphasizes the use of fluorescent labels for sensitive assays in life sciences and specifies the main properties of an ideal fluorophore. With fluorescence lifetimes in the microsecond range and fluorescence quantum yield of 0.4 some water soluble complexes of Ruthenium like modified Ru(sulfobathophenanthroline) complexes fulfill these properties. They are outstanding fluorescent labels for ultrasensitive assays as illustrated in two examples, in drug discovery and in point of care testing.We discuss the fundamentals and the state-of-the-art of the most sensitive time-gated fluorescence assays. We reflect on how the imaging devices currently employed for readout of these assays might evolve in the future. Many contemporary biological investigations rely on highly sensitive in vitro assays for the analysis of specific molecules in biological specimens, and the main part of these assays depends on high-sensitivity fluorescence detection techniques for the final readout. The analyzed molecules and molecular interactions in the specimen need to be detected in the presence of other highly abundant biomolecules, while the analyzed molecules themselves are only present at nano-, pico-, or even femtomolar concentration.A short scientific rationale of fluorescence is presented. It emphasizes the use of fluorescent labels for sensitive assays in life sciences and specifies the main properties of an ideal

  17. Planetary Surface Exploration Using Time-Resolved Laser Spectroscopy on Rovers and Landers

    NASA Astrophysics Data System (ADS)

    Blacksberg, Jordana; Alerstam, Erik; Maruyama, Yuki; Charbon, Edoardo; Rossman, George

    2013-04-01

    Planetary surface exploration using laser spectroscopy has become increasingly relevant as these techniques become a reality on Mars surface missions. The ChemCam instrument onboard the Curiosity rover is currently using laser induced breakdown spectroscopy (LIBS) on a mast-mounted platform to measure elemental composition of target rocks. The RLS Raman Spectrometer is included on the payload for the ExoMars mission to be launched in 2018 and will identify minerals and organics on the Martian surface. We present a next-generation instrument that builds on these widely used techniques to provide a means for performing both Raman spectroscopy and LIBS in conjunction with microscopic imaging. Microscopic Raman spectroscopy with a laser spot size smaller than the grains of interest can provide surface mapping of mineralogy while preserving morphology. A very small laser spot size (~ 1 µm) is often necessary to identify minor phases that are often of greater interest than the matrix phases. In addition to the difficulties that can be posed by fine-grained material, fluorescence interference from the very same material is often problematic. This is particularly true for many of the minerals of interest that form in environments of aqueous alteration and can be highly fluorescent. We use time-resolved laser spectroscopy to eliminate fluorescence interference that can often make it difficult or impossible to obtain Raman spectra. As an added benefit, we have found that with small changes in operating parameters we can include microscopic LIBS using the same hardware. This new technique relies on sub-ns, high rep-rate lasers with relatively low pulse energy and compact solid state detectors with sub-ns time resolution. The detector technology that makes this instrument possible is a newly developed Single-Photon Avalanche Diode (SPAD) sensor array based on Complementary Metal-Oxide Semiconductor (CMOS) technology. The use of this solid state time-resolved detector offers a

  18. Time-resolved fluorescence spectra of arterial fluorescent compounds: reconstruction with the Laguerre expansion technique.

    PubMed

    Maarek, J M; Marcu, L; Snyder, W J; Grundfest, W S

    2000-02-01

    The time-resolved fluorescence spectra of the main arterial fluorescent compounds were retrieved using a new algorithm based on the Laguerre expansion of kernels technique. Samples of elastin, collagen and cholesterol were excited with a pulsed nitrogen laser and the emission was measured at 29 discrete wavelengths between 370 and 510 nm. The expansion of the fluorescence impulse response function on the Laguerre basis of functions was optimized to reproduce the observed fluorescence emission. Collagen lifetime (5.3 ns at 390 nm) was substantially larger than that of elastin (2.3 ns) and cholesterol (1.3 ns). Two decay components were identified in the emission decay of the compounds. For collagen, the decay components were markedly wavelength dependent and hydration dependent such that the emission decay became shorter at higher emission wavelengths and with hydration. The decay characteristics of elastin and cholesterol were relatively unchanged with wavelength and with hydration. The observed variations in the time-resolved spectra of elastin, collagen and cholesterol were consistent with the existence of several fluorophores with different emission characteristics. Because the compounds are present in different proportions in healthy and atherosclerotic arterial walls, characteristic differences in their time-resolved emission spectra could be exploited to assess optically the severity of atherosclerotic lesions. PMID:10687392

  19. A low cost time-resolved Raman spectroscopic sensing system enabling fluorescence rejection.

    PubMed

    Sinfield, Joseph V; Colic, Oliver; Fagerman, Daniel; Monwuba, Chike

    2010-02-01

    This paper describes a novel, compact, fiber-coupled, time-resolved Raman spectroscopy system that takes advantage of recent developments in diode laser and data acquisition technology to exploit the natural temporal separation between Raman and fluorescence phenomena and thereby limits the influence of fluorescence on Raman observations. The unit has been designed to be particularly low cost and is intended to provide the foundation for a wide range of in-line or fieldable sensing devices that can enhance the potential and affordability of in situ chemical analyses. The system operating principles, design, and performance are discussed along with its advantages and tradeoffs relative to traditional continuous wave (CW) Raman techniques. The system relies on a 6.4 kHz repetition rate 900 ps pulsed diode laser operating in the visible wavelength range (532 nm) to enhance the quality of Raman observations relative to CW and infrared systems, particularly for analytes examined in the presence of fluorophores. Time-resolved photon counting, achieved through a combination of off-the-shelf and custom hardware and software, limits the influence of fluorescence on Raman observations under pulsed excitation. The paper presents examples of the quality of Raman signatures that can be obtained with the system for a variety of compounds such as trichloroethylene, benzene, an aqueous nitrate solution, and olive oil. Further, the paper demonstrates an approximately 15-fold improvement in signal-to-noise ratio when comparing long- and short-gated time-resolved photon counting acquisition scenarios for a neat benzene sample doped with rhodamine 6G at a concentration of 1 x 10(-4) M. The system's versatility and effectiveness in the assessment of complex mixtures representative of industrial or field settings is demonstrated through analysis of a gasoline sample. Additional discussion outlines how efficient signal averaging over extended observation periods can enable low

  20. Time-Resolved Spectroscopy of Active Binary Stars

    NASA Technical Reports Server (NTRS)

    Brown, Alexander

    2000-01-01

    This NASA grant covered EUVE observing and data analysis programs during EUVE Cycle 5 GO observing. The research involved a single Guest Observer project 97-EUVE-061 "Time-Resolved Spectroscopy of Active Binary Stars". The grant provided funding that covered 1.25 months of the PI's salary. The activities undertaken included observation planning and data analysis (both temporal and spectral). This project was awarded 910 ksec of observing time to study seven active binary stars, all but one of which were actually observed. Lambda-And was observed on 1997 Jul 30 - Aug 3 and Aug 7-14 for a total of 297 ksec; these observations showed two large complex flares that were analyzed by Osten & Brown (1999). AR Psc, observed for 350 ksec on 1997 Aug 27 - Sep 13, showed only relatively small flares that were also discussed by Osten & Brown (1999). EUVE observations of El Eri were obtained on 1994 August 24-28, simultaneous with ASCA X-ray spectra. Four flares were detected by EUVE with one of these also observed simultaneously, by ASCA. The other three EUVE observations were of the stars BY Dra (1997 Sep 22-28), V478 Lyr (1998 May 18-27), and sigma Gem (1998 Dec 10-22). The first two stars showed a few small flares. The sigma Gem data shows a beautiful complete flare with a factor of ten peak brightness compared to quiescence. The flare rise and almost all the decay phase are observed. Unfortunately no observations in other spectral regions were obtained for these stars. Analysis of the lambda-And and AR Psc observations is complete and the results were published in Osten & Brown (1999). Analysis of the BY Dra, V478 Lyr and sigma Gem EUVE data is complete and will be published in Osten (2000, in prep.). The El Eri EUV analysis is also completed and the simultaneous EUV/X-ray study will be published in Osten et al. (2000, in prep.). Both these latter papers will be submitted in summer 2000. All these results will form part of Rachel Osten's PhD thesis.

  1. Ultrafast time-resolved spectroscopy of xanthophylls at low temperature.

    PubMed

    Cong, Hong; Niedzwiedzki, Dariusz M; Gibson, George N; Frank, Harry A

    2008-03-20

    Many of the spectroscopic features and photophysical properties of xanthophylls and their role in energy transfer to chlorophyll can be accounted for on the basis of a three-state model. The characteristically strong visible absorption of xanthophylls is associated with a transition from the ground state S0 (1(1)Ag-) to the S2 (1(1)Bu+) excited state. The lowest lying singlet state denoted S1 (2(1)Ag-), is a state into which absorption from the ground state is symmetry forbidden. Ultrafast optical spectroscopic studies and quantum computations have suggested the presence of additional excited singlet states in the vicinity of S1 (2(1)Ag-) and S2 (1(1)Bu+). One of these is denoted S* and has been suggested in previous work to be associated with a twisted molecular conformation of the molecule in the S1 (2(1)Ag-) state. In this work, we present the results of a spectroscopic investigation of three major xanthophylls from higher plants: violaxanthin, lutein, and zeaxanthin. These molecules have systematically increasing extents of pi-electron conjugation from nine to eleven conjugated carbon-carbon double bonds. All-trans isomers of the molecules were purified by high-performance liquid chromatography (HPLC) and studied by steady-state and ultrafast time-resolved optical spectroscopy at 77 K. Analysis of the data using global fitting techniques has revealed the inherent spectral properties and ultrafast dynamics of the excited singlet states of each of the molecules. Five different global fitting models were tested, and it was found that the data are best explained using a kinetic model whereby photoexcitation results in the promotion of the molecule into the S2 (1(1)Bu+) state that subsequently undergoes decay to a vibrationally hot S1 (1(1)Ag-) state and with the exception of violaxanthin also to the S* state. The vibrationally hot S1 (1(1)Ag-) state then cools to a vibrationally relaxed S1 (2(1)Ag-) state in less than a picosecond. It was also found that a portion

  2. Photobleaching of arterial fluorescent compounds: characterization of elastin, collagen and cholesterol time-resolved spectra during prolonged ultraviolet irradiation.

    PubMed

    Marcu, L; Grundfest, W S; Maarek, J M

    1999-06-01

    To study the photobleaching of the main fluorescent compounds of the arterial wall, we repeatedly measured the time-resolved fluorescence of elastin, collagen and cholesterol during 560 s of excitation with nitrogen laser pulses. Three fluence rate levels were used: 0.72, 7.25 and 21.75 microW/mm2. The irradiation-related changes of the fluorescence intensity and of the time-resolved fluorescence decay constants were characterized for the emission at 390, 430 and 470 nm. The fluorescence intensity at 390 nm decreased by 25-35% when the fluence delivered was 4 mJ/mm2, a common value in fluorescence studies of the arterial wall. Cholesterol fluorescence photobleached the most, and elastin fluorescence photobleached the least. Photobleaching was most intense at 390 nm and least intense at 470 nm such that the emission spectra of the three compounds were markedly distorted by photobleaching. The time-resolved decay constants and the fluorescence lifetime were not altered by irradiation when the fluence was below 4 mJ/mm2. The spectral distortions associated with photobleaching complicate the interpretation of arterial wall fluorescence in terms of tissue content in elastin, collagen and cholesterol. Use of the time-dependent features of the emission that are not altered by photobleaching should increase the accuracy of arterial wall analysis by fluorescence spectroscopy. PMID:10378012

  3. Energy dissipation in matrix-isolated silver atoms: A time-resolved fluorescence study

    NASA Astrophysics Data System (ADS)

    Wiggenhauser, H.; Schroeder, W.; Kolb, D. M.

    1988-03-01

    The fluorescence from optically excited Ag atoms in Ar, Kr, and Xe matrices has been investigated in a time-resolved synchrotron-radiation study. A detailed energy dissipation model could be established from a systematic analysis of rise and decay times of all the observed fluorescence bands after pulsed excitation into the Ag (4d105p)2P1/2,3/2 levels, and by setting time windows between the excitation pulses in emission and emission-yield spectroscopy. Although the overall wavelength dependence of the decay time follows the λ3 law, the decay time is independent of λ within a given emission band. Finally, the role of energy transfer between Ag atoms and dimers for the evaluation of decay times is briefly addressed.

  4. Time-resolved fluorescence spectroscopic investigation of cationic polymer/DNA complex formation

    NASA Astrophysics Data System (ADS)

    D'Andrea, Cosimo; Bassi, Andrea; Taroni, Paola; Pezzoli, Daniele; Volonterio, Alessandro; Candiani, Gabriele

    2011-07-01

    Since DNA is not internalized efficiently by cells, the success of gene therapy depends on the availability of carriers to efficiently deliver genetic material into target cells. Gene delivery vectors can be broadly categorized into viral and non-viral ones. Non-viral gene delivery systems are represented by cationic lipids and polymers rely on the basics of supramolecular chemistry termed "self-assembling": at physiological pH, they are cations and spontaneously form lipoplexes (for lipids) and polyplexes (for polymers) complexing nucleic acids. In this scenario, cationic polymers are commonly used as non-viral vehicles. Their effectiveness is strongly related to key parameters including DNA binding ability and stability in different environments. Time-resolved fluorescence spectroscopy of SYBR Green I (DNA dye) was carried out to characterize cationic polymer/DNA complex (polyplex) formation dispersed in aqueous solution. Both fluorescence amplitude and lifetime proved to be very sensitive to the polymer/DNA ratio (N/P ratio, +/-).

  5. Glucose sensing by time-resolved fluorescence of sol-gel immobilized glucose oxidase.

    PubMed

    Esposito, Rosario; Della Ventura, Bartolomeo; De Nicola, Sergio; Altucci, Carlo; Velotta, Raffaele; Mita, Damiano Gustavo; Lepore, Maria

    2011-01-01

    A monolithic silica gel matrix with entrapped glucose oxidase (GOD) was constructed as a bioactive element in an optical biosensor for glucose determination. Intrinsic fluorescence of free and immobilised GOD was investigated in the visible range in presence of different glucose concentrations by time-resolved spectroscopy with time-correlated single-photon counting detector. A three-exponential model was used for analysing the fluorescence transients. Fractional intensities and mean lifetime were shown to be sensitive to the enzymatic reaction and were used for obtaining calibration curve for glucose concentration determination. The sensing system proposed achieved high resolution (up to 0.17 mM) glucose determination with a detection range from 0.4 mM to 5 mM. PMID:22163807

  6. Monitoring tissue metabolism via time-resolved laser fluorescence

    NASA Astrophysics Data System (ADS)

    Maerz, Holger K.; Buchholz, Rainer; Emmrich, Frank; Fink, Frank; Geddes, Clive L.; Pfeifer, Lutz; Raabe, Ferdinand; Marx, Uwe

    1999-05-01

    Most assays for drug screening are monitoring the metabolism of cells by detecting the NADH content, which symbolize its metabolic activity, indirectly. Nowadays, the performance of a LASER enables us to monitor the metabolic state of mammalian cells directly and on-line by using time-resolved autofluorescence detection. Therefore, we developed in combination with tissue engineering, an assay for monitoring minor toxic effects of volatile organic compounds (VOC), which are accused of inducing Sick Building Syndrome (SBS). Furthermore, we used the Laserfluoroscope (LF) for pharmacological studies on human bone marrow in vitro with special interest in chemotherapy simulation. In cancer research and therapy, the effect of chemostatica in vitro in the so-called oncobiogram is being tested; up to now without great success. However, it showed among other things that tissue structure plays a vital role. Consequently, we succeeded in simulating a chemotherapy in vitro on human bone marrow. Furthermore, after tumor ektomy we were able to distinguish between tumoric and its surrounding healthy tissue by using the LF. With its sensitive detection of metabolic changes in tissues the LF enables a wide range of applications in biotechnology, e.g. for quality control in artificial organ engineering or biocompatability testing.

  7. The excited-state chemistry of protochlorophyllide a: a time-resolved fluorescence study.

    PubMed

    Dietzek, Benjamin; Kiefer, Wolfgang; Yartsev, Arkady; Sundström, Villy; Schellenberg, Peter; Grigaravicius, Paulius; Hermann, Gudrun; Popp, Jürgen; Schmitt, Michael

    2006-08-11

    The excited-state processes of protochlorophyllide a, the precursor of chlorophyll a in chlorophyll biosynthesis, are studied using picosecond time-resolved fluorescence spectroscopy. Following excitation into the Soret band, two distinct fluorescence components, with emission maxima at 640 and 647 nm, are observed. The 640 nm emitting component appears within the time resolution of the experiment and then decays with a time constant of 27 ps. In contrast, the 647 nm emitting component is built up with a 3.5 ps rise time and undergoes a subsequent decay with a time constant of 3.5 ns. The 3.5 ps rise kinetics are attributed to relaxations in the electronically excited state preceding the nanosecond fluorescence, which is ascribed to emission out of the thermally equilibrated S(1) state. The 27 ps fluorescence, which appears within the experimental response of the streak camera, is suggested to originate from a second minimum on the excited-state potential-energy surface. The population of the secondary excited state is suggested to reflect a very fast motion out of the Franck-Condon region along a reaction coordinate different from the one connecting the Franck-Condon region with the S(1) potential-energy minimum. The 27 ps-component is an emissive intermediate on the reactive excited-state pathway, as its decay yields the intermediate photoproduct, which has been identified previously (J. Phys. Chem. B 2006, 110, 4399-4406). No emission of the photoproduct is observed. The results of the time-resolved fluorescence study allow a detailed spectral characterization of the emission of the excited states in protochlorophyllide a, and the refinement of the kinetic model deduced from ultrafast absorption measurements. PMID:16841352

  8. Ultrafast time-resolved spectroscopy of lead halide perovskite films

    NASA Astrophysics Data System (ADS)

    Idowu, Mopelola A.; Yau, Sung H.; Varnavski, Oleg; Goodson, Theodore

    2015-09-01

    Recently, lead halide perovskites which are organic-inorganic hybrid structures, have been discovered to be highly efficient as light absorbers. Herein, we show the investigation of the excited state dynamics and emission properties of non-stoichiometric precursor formed lead halide perovskites grown by interdiffusion method using steady-state and time-resolved spectroscopic measurements. The influence of the different ratios of the non-stoichiometric precursor solution was examined. The observed photoluminescence properties were correlated with the femtosecond transient absorption measurements.

  9. Steady-State and Time-Resolved Studies into the Origin of the Intrinsic Fluorescence of G-Quadruplexes.

    PubMed

    Sherlock, Madeline E; Rumble, Christopher A; Kwok, Chun Kit; Breffke, Jens; Maroncelli, Mark; Bevilacqua, Philip C

    2016-06-16

    Stretches of guanines in DNA and RNA can fold into guanine quadruplex structures (GQSs). These structures protect telomeres in DNA and regulate gene expression in RNA. GQSs have an intrinsic fluorescence that is sensitive to different parameters, including loop sequence and length. However, the dependence of GQS fluorescence on solution and sequence parameters and the origin of this fluorescence are poorly understood. Herein we examine effects of dangling nucleotides and cosolute conditions on GQS fluorescence using both steady-state and time-resolved fluorescence spectroscopy. The quantum yield of dGGGTGGGTGGGTGGG, termed "dG3T", is found to be modest at ∼2 × 10(-3). Nevertheless, dG3T and its variants are significantly brighter than the common nucleic acid fluorophore 2-aminopurine (2AP) largely due to their sizable extinction coefficients. Dangling 5'-end nucleotides generally reduce emission and blue-shift the resultant spectrum, whereas dangling 3'-end nucleotides slightly enhance fluorescence, particularly on the red side of the emission band. Time-resolved fluorescence decays are broadly distributed in time and require three exponential components for accurate fits. Time-resolved emission spectra suggest the presence of two emitting populations centered at ∼330 and ∼390 nm, with the redder component being a well-defined long-lived (∼1 ns) entity. Insights into GQS fluorescence obtained here should be useful in designing brighter intrinsic RNA and DNA quadruplexes for use in label-free biotechnological applications. PMID:27267433

  10. Integrated multimodal microscopy, time-resolved fluorescence, and optical-trap rheometry: toward single molecule mechanobiology

    PubMed Central

    Gullapalli, Ramachandra R.; Tabouillot, Tristan; Mathura, Rishi; Dangaria, Jhanvi H.; Butler, Peter J.

    2011-01-01

    Cells respond to forces through coordinated biochemical signaling cascades that originate from changes in single-molecule structure and dynamics and proceed to large-scale changes in cellular morphology and protein expression. To enable experiments that determine the molecular basis of mechanotransduction over these large time and length scales, we construct a confocal molecular dynamics microscope (CMDM). This system integrates total-internal-reflection fluorescence (TIRF), epifluorescence, differential interference contrast (DIC), and 3-D deconvolution imaging modalities with time-correlated single-photon counting (TCSPC) instrumentation and an optical trap. Some of the structures hypothesized to be involved in mechanotransduction are the glycocalyx, plasma membrane, actin cytoskeleton, focal adhesions, and cell-cell junctions. Through analysis of fluorescence fluctuations, single-molecule spectroscopic measurements [e.g., fluorescence correlation spectroscopy (FCS) and time-resolved fluorescence] can be correlated with these subcellular structures in adherent endothelial cells subjected to well-defined forces. We describe the construction of our multimodal microscope in detail and the calibrations necessary to define molecular dynamics in cell and model membranes. Finally, we discuss the potential applications of the system and its implications for the field of mechanotransduction. PMID:17343487

  11. Time-resolved spectroscopy of low-dimensional semiconductor structures

    NASA Astrophysics Data System (ADS)

    Murphy, Joseph R.

    This dissertation is a survey of ultrafast time-resolved optical measurements conducted on a variety of low-dimensional semiconductor systems to further the understanding of the dynamic behavior in the following systems: ZnMnTe/ZnSe quantum dots, ZnTe/ZnMnSe quantum dots, InGaAs quantum wells, CdMnSe colloidal quantum dots, multi-shell CdSe/CdMnS/CdS colloidal nanoplatelets, and graphene and graphene-related solutions and films. Using time-resolved photoluminescence to study epitaxially-grown ZnTe and ZnMnTe quantum dots in corresponding ZnMnSe and ZnSe matrices, the location dependence of manganese ions in respect to magnetic polaron formation is shown. The structure with manganese ions located in the matrix exhibited magnetic polaron behavior consistent with previous literature, whereas the structure with the magnetic ions located within the quantum dots exhibited unconventional magnetic polaron properties. These properties, including temperature and magnetic field insensitivity, were explained through the use of a model that predicted an increased internal magnetic field due to a decreased effective volume of the magnetic polaron and a higher effective temperature due to laser heating. Magneto-time-resolved photoluminescence measurements on a system of colloidal CdMnSe quantum dots show that the magnetic polaron properties differ significantly from the epitaxially grown quantum dots. First the timescales at which the magnetic polaron forms and the polarization saturates are different by more than an order of magnitude, and second, the magnetic polaron energy exhibited step-like behavior as the strength of the externally applied magnetic field is increased. The field dependent MP formation energy that is observed experimentally is explained as due to the breaking of the antiferromagnetic coupling of Mn dimers within the QDs. This model is further verified by the observation of quantized behavior in the Zeeman energy splitting. Through the use of magneto

  12. Time-resolved air monitoring using Fourier absorption spectroscopy

    SciTech Connect

    Biermann, H.W.

    1995-12-31

    Two categories where spectroscopic techniques excel are the capabilities to perform air analyses in situ and to obtain data at very high time resolutions. Because of these features, the Department of Pesticide Regulation augmented its extensive air monitoring capabilities with a Fourier transform infrared (FTIR) spectrometer using open-path optical systems for time resolved ambient air monitoring. A description of the instrumentation and the data analysis procedures will be presented based on two data sets obtained with this FTIR system. In one case, a 100 m folded optical path was used to measure methyl bromide concentrations after fumigation in a warehouse with a time resolution of 15 min and a detection limit of 0.2 ppm. And trying to assess the capability of this FTIR spectrometer to determine flux, water vapor concentrations were measured with a four-meter path length at a time resolution of 0.6 seconds.

  13. Time-resolved phase-sensitive second harmonic generation spectroscopy

    NASA Astrophysics Data System (ADS)

    Nowakowski, Paweł J.; Woods, David A.; Bain, Colin D.; Verlet, Jan R. R.

    2015-02-01

    A methodology based on time-resolved, phase-sensitive second harmonic generation (SHG) for probing the excited state dynamics of species at interfaces is presented. It is based on an interference measurement between the SHG from the sample and a local oscillator generated at a reference together with a lock-in measurement to remove the large constant offset from the interference. The technique is characterized by measuring the phase and excited state dynamics of the dye malachite green at the water/air interface. The key attributes of the technique are that the observed signal is directly proportional to sample concentration, in contrast to the quadratic dependence from non-phase sensitive SHG, and that the real and imaginary parts of the 2nd order non-linear susceptibility can be determined independently. We show that the method is highly sensitive and can provide high quality excited state dynamics in short data acquisition times.

  14. Time-resolved fluorescence spectroscopic study of flavin fluorescence in purified enzymes of bioluminescent bacteria

    NASA Astrophysics Data System (ADS)

    Vetrova, Elena; Kudryasheva, N.; Cheng, K.

    2006-10-01

    Time-resolved fluorescence intensity and anisotropy decay measurements have been used to study the environment and rotational mobility of endogenous flavin in two purified enzymes of bioluminescent bacteria, Luciferase from Photobacterium leiognathi and NAD(P)H:FMN-oxidoreductase from Vibrio fischeri. We compared the time-resolved fluorescence parameters, intensity decay lifetimes, rotational correlation times, and their fractional contribution, of the endogeneous flavin fluorescence in each of the two enzymes in the presence or absence of quinones of different structures and redox potentials. The endogeneous flavin exhibited multi-exponential decay characteristics as compared to a single decay lifetime of around 5 ns for free flavin, suggesting a complex and heterogeneous environment of flavin bound to the enzyme. In addition, a significant increase in the rotational correlation time and a certain degree of ordering of the molecule were observed for endogenous flavin when compared to a single and fast rotational correlation time of 150 ps of free flavin. Quinone significantly altered both the lifetime and rotational characteristics of endogenous flavin suggesting specific interactions of quinones to the endogeneous flavin in the bacterial enzyme.

  15. Studies of Minerals, Organic and Biogenic Materials through Time-Resolved Raman Spectroscopy

    NASA Technical Reports Server (NTRS)

    Garcia, Christopher S.; Abedin, M. Nurul; Ismail, Syed; Sharma, Shiv K.; Misra, Anupam K.; Nyugen, Trac; Elsayed-Ali, hani

    2009-01-01

    A compact remote Raman spectroscopy system was developed at NASA Langley Research center and was previously demonstrated for its ability to identify chemical composition of various rocks and minerals. In this study, the Raman sensor was utilized to perform time-resolved Raman studies of various samples such as minerals and rocks, Azalea leaves and a few fossil samples. The Raman sensor utilizes a pulsed 532 nm Nd:YAG laser as excitation source, a 4-inch telescope to collect the Raman-scattered signal from a sample several meters away, a spectrograph equipped with a holographic grating, and a gated intensified CCD (ICCD) camera system. Time resolved Raman measurements were carried out by varying the gate delay with fixed short gate width of the ICCD camera, allowing measurement of both Raman signals and fluorescence signals. Rocks and mineral samples were characterized including marble, which contain CaCO3. Analysis of the results reveals the short (approx.10-13 s) lifetime of the Raman process, and shows that Raman spectra of some mineral samples contain fluorescence emission due to organic impurities. Also analyzed were a green (pristine) and a yellow (decayed) sample of Gardenia leaves. It was observed that the fluorescence signals from the green and yellow leaf samples showed stronger signals compared to the Raman lines. Moreover, it was also observed that the fluorescence of the green leaf was more intense and had a shorter lifetime than that of the yellow leaf. For the fossil samples, Raman shifted lines could not be observed due the presence of very strong short-lived fluorescence.

  16. Time-resolved fluorescence and photon migration studies in biomedical and model random media

    NASA Astrophysics Data System (ADS)

    Das, B. B.; Liu, Feng; Alfano, R. R.

    1997-02-01

    This review highlights time-resolved fluorescence kinetics and photon transport in tissues and other biomedical media with a special emphasis on ultrafast measurements of key optical parameters. Measurements of fluorescence decay lifetimes from human breast and atherosclerotic artery tissues in the uv and visible region are described after a brief description of fundamentals of fluorescence kinetics. A time-dependent diffusion model for photon migration and various ultrafast methods for time-resolved light scattering measurements to obtain key optical parameters of tissues and other model turbid media are presented. The usefulness of optical parameters as markers in optical diagnostics and imaging is considered. Time-gated measurements of ballistic and snake photons to obtain shadowgrams and an inverse numerical reconstruction of the interior map of a turbid medium from time-resolved data in the context of optical tomography are presented.

  17. Time-resolved laser-induced fluorescence study on dyes used in DNA sequencing

    SciTech Connect

    Chang, Kaisyang; Force, R.K. )

    1993-01-01

    Research on the time-resolved fluorescence of fluorescein isothiocyanate, NBD, tetramethylrhodamine isothiocyanate, and Texas Red - the dyes used for fluorescence-based DNA sequencing - is described. Mean fluorescence lifetiems in both aqueous buffer solution and 5.3%T, 4.8%C polyacrylamide gel were determined as a function of excitation wave-lengths at 337, 470, and 550 nm and were found to be 3.5, 1.1, 2.5, and 4.3 ns; the detection limits are 10, 200, 200 and 200 amol for FITC, NBD, TEMR, and T. Red, respectively. Comparisons of fluorescence parameters between the conjugated dyes and the free dyes are also reported. Results on the optimization of the excitation source wavelengths to improve sensitivity and reduce background scattering in polyacrylamide gel are also reported. Time-resolved fluorescence was successfully applied to resolve spectral overlapping of emissions in both solution and in polyacrylamide gel. 12 refs., 6 figs., 1 tab.

  18. Binding of 7-methoxy-4-(aminomethyl)-coumarin to wild-type and W128F mutant cytochrome P450 2D6 studied by time-resolved fluorescence spectroscopy

    PubMed Central

    Stortelder, Aike; Keizers, Peter H. J.; Oostenbrink, Chris; De Graaf, Chris; De Kruijf, Petra; Vermeulen, Nico P. E.; Gooijer, Cees; Commandeur, Jan N. M.; Van Der Zwan, Gert

    2005-01-01

    Enzyme structure and dynamics may play a main role in substrate binding and the subsequent steps in the CYP (cytochrome P450) catalytic cycle. In the present study, changes in the structure of human CYP2D6 upon binding of the substrate are studied using steady-state and time-resolved fluorescence methods, focusing not only on the emission of the tryptophan residues, but also on emission of the substrate. As a substrate, MAMC [7-methoxy-4-(aminomethyl)-coumarin] was selected, a compound exhibiting native fluorescence. As well as the wild-type, the W128F (Trp128→Phe) mutant of CYP2D6 was studied. After binding, a variety of energy transfer possibilities exist, and molecular dynamics simulations were performed to calculate distances and relative orientations of donors and acceptors. Energy transfer from Trp128 to haem appeared to be important; its emission was related to the shortest of the three average tryptophan fluorescence lifetimes observed for CYP2D6. MAMC to haem energy transfer was very efficient as well: when bound in the active site, the emission of MAMC was fully quenched. Steady-state anisotropy revealed that besides the MAMC in the active site, another 2.4% of MAMC was bound outside of the active site to wild-type CYP2D6. The tryptophan residues in CYP2D6 appeared to be less accessible for the external quenchers iodide and acrylamide in presence of MAMC, indicating a tightening of the enzyme structure upon substrate binding. However, the changes in the overall enzyme structure were not very large, since the emission characteristics of the enzyme were not very different in the presence of MAMC. PMID:16190863

  19. Time-resolved photoelectron spectroscopy using synchrotron radiation time structure.

    PubMed

    Bergeard, N; Silly, M G; Krizmancic, D; Chauvet, C; Guzzo, M; Ricaud, J P; Izquierdo, M; Stebel, L; Pittana, P; Sergo, R; Cautero, G; Dufour, G; Rochet, F; Sirotti, F

    2011-03-01

    Synchrotron radiation time structure is becoming a common tool for studying dynamic properties of materials. The main limitation is often the wide time domain the user would like to access with pump-probe experiments. In order to perform photoelectron spectroscopy experiments over time scales from milliseconds to picoseconds it is mandatory to measure the time at which each measured photoelectron was created. For this reason the usual CCD camera-based two-dimensional detection of electron energy analyzers has been replaced by a new delay-line detector adapted to the time structure of the SOLEIL synchrotron radiation source. The new two-dimensional delay-line detector has a time resolution of 5 ns and was installed on a Scienta SES 2002 electron energy analyzer. The first application has been to characterize the time of flight of the photoemitted electrons as a function of their kinetic energy and the selected pass energy. By repeating the experiment as a function of the available pass energy and of the kinetic energy, a complete characterization of the analyzer behaviour in the time domain has been obtained. Even for kinetic energies as low as 10 eV at 2 eV pass energy, the time spread of the detected electrons is lower than 140 ns. These results and the time structure of the SOLEIL filling modes assure the possibility of performing pump-probe photoelectron spectroscopy experiments with the time resolution given by the SOLEIL pulse width, the best performance of the beamline and of the experimental station. PMID:21335912

  20. Time-resolved fluorescence of the single tryptophan of Bacillus stearothermophilus phosphofructokinase.

    PubMed Central

    Kim, S J; Chowdhury, F N; Stryjewski, W; Younathan, E S; Russo, P S; Barkley, M D

    1993-01-01

    The fluorescence of the single tryptophan in Bacillus stearothermophilus phosphofructokinase was characterized by steady-state and time-resolved techniques. The enzyme is a tetramer of identical subunits, which undergo a concerted allosteric transition. Time-resolved emission spectral data were fitted to discrete and distributed lifetime models. The fluorescence decay is a double exponential with lifetimes of 1.6 and 4.4 ns and relative amplitudes of 40 and 60%. The emission spectra of both components are identical with maxima at 327 nm. The quantum yield is 0.31 +/- 0.01. The shorter lifetime is independent of temperature; the longer lifetime has weak temperature dependence with activation energy of 1 kcal/mol. The fluorescence intensity and decay are the same in H2O and D2O solutions, indicating that the indole ring is not accessible to bulk aqueous solution. The fluorescence is not quenched significantly by iodide, but it is quenched by acrylamide with bimolecular rate constant of 5 x 10(8) M-1 s-1. Static and dynamic light scattering measurements show that the enzyme is a tetramer in solution with hydrodynamic radius of 40 A. Steady-state and time-resolved fluorescence anisotropies indicate that the tryptophan is immobile. The allosteric transition has little effect on the fluorescence properties. The fluorescence results are related to the x-ray structure. PMID:8369432

  1. Ultrafast time-resolved spectroscopy of the light-harvesting complex 2 (LH2) from the photosynthetic bacterium Thermochromatium tepidum

    SciTech Connect

    Niedzwiedzki, Dariusz M.; Fuciman, Marcel; Kobayashi, Masayuki; Frank, Harry A.; Blankenship, Robert E.

    2011-10-08

    The light-harvesting complex 2 from the thermophilic purple bacterium Thermochromatium tepidum was purified and studied by steady-state absorption and fluorescence, sub-nanosecond-time-resolved fluorescence and femtosecond time-resolved transient absorption spectroscopy. The measurements were performed at room temperature and at 10 K. The combination of both ultrafast and steady-state optical spectroscopy methods at ambient and cryogenic temperatures allowed the detailed study of carotenoid (Car)-to-bacteriochlorophyll (BChl) as well BChl-to-BChl excitation energy transfer in the complex. The studies show that the dominant Cars rhodopin (N = 11) and spirilloxanthin (N = 13) do not play a significant role as supportive energy donors for BChl a. This is related with their photophysical properties regulated by long π-electron conjugation. On the other hand, such properties favor some of the Cars, particularly spirilloxanthin (N = 13) to play the role of the direct quencher of the excited singlet state of BChl.

  2. Time-resolved spectroscopy and near infrared imaging enhanced by receptor-targeted contrast agents for prostate cancer detection

    NASA Astrophysics Data System (ADS)

    Pu, Y.; Wang, W. B.; Tang, G. C.; Achilefu, S.; Alfano, R. R.

    2011-03-01

    Time-resolved spectroscopy and near infrared imaging enhanced by receptor-targeted contrast agents for prostate cancer detection will be presented. Two contrast agents, Cybesin and Cytate, were investigated using time-resolved spectroscopy in aqueous solution and cancerous and normal prostate tissues. The time evolution of the fluorescent dipole in solution was studied using a system of first-order linear differential equations containing two main parameters: the decay rate of emission and the rate of one orthogonal emission component transferring to another. An analytical polarization model was developed and used to extract rotational times and fluorescence anisotropies of the contrast agents in prostate tissues. The differences of rotational times and polarization anisotropies were observed for Cybesin (Cytate) in cancerous and normal prostate tissue, which reflect preferred bond of contrast agents and cancerous tissue cells. The conjugation of Cybesin (Cytate) to prostate cancerous cells offers high contrast between normal and cancerous tissues.

  3. Use of Time-Resolved Fluorescence to Monitor Bioactive Compounds in Plant Based Foodstuffs

    PubMed Central

    Lemos, M. Adília; Sárniková, Katarína; Bot, Francesca; Anese, Monica; Hungerford, Graham

    2015-01-01

    The study of compounds that exhibit antioxidant activity has recently received much interest in the food industry because of their potential health benefits. Most of these compounds are plant based, such as polyphenolics and carotenoids, and there is a need to monitor them from the field through processing and into the body. Ideally, a monitoring technique should be non-invasive with the potential for remote capabilities. The application of the phenomenon of fluorescence has proved to be well suited, as many plant associated compounds exhibit fluorescence. The photophysical behaviour of fluorescent molecules is also highly dependent on their microenvironment, making them suitable probes to monitor changes in pH, viscosity and polarity, for example. Time-resolved fluorescence techniques have recently come to the fore, as they offer the ability to obtain more information, coupled with the fact that the fluorescence lifetime is an absolute measure, while steady state just provides relative and average information. In this work, we will present illustrative time-resolved measurements, rather than a comprehensive review, to show the potential of time-resolved fluorescence applied to the study of bioactive substances. The aim is to help assess if any changes occur in their form, going from extraction via storage and cooking to the interaction with serum albumin, a principal blood transport protein. PMID:26132136

  4. Use of Time-Resolved Fluorescence to Monitor Bioactive Compounds in Plant Based Foodstuffs.

    PubMed

    Lemos, M Adília; Sárniková, Katarína; Bot, Francesca; Anese, Monica; Hungerford, Graham

    2015-01-01

    The study of compounds that exhibit antioxidant activity has recently received much interest in the food industry because of their potential health benefits. Most of these compounds are plant based, such as polyphenolics and carotenoids, and there is a need to monitor them from the field through processing and into the body. Ideally, a monitoring technique should be non-invasive with the potential for remote capabilities. The application of the phenomenon of fluorescence has proved to be well suited, as many plant associated compounds exhibit fluorescence. The photophysical behaviour of fluorescent molecules is also highly dependent on their microenvironment, making them suitable probes to monitor changes in pH, viscosity and polarity, for example. Time-resolved fluorescence techniques have recently come to the fore, as they offer the ability to obtain more information, coupled with the fact that the fluorescence lifetime is an absolute measure, while steady state just provides relative and average information. In this work, we will present illustrative time-resolved measurements, rather than a comprehensive review, to show the potential of time-resolved fluorescence applied to the study of bioactive substances. The aim is to help assess if any changes occur in their form, going from extraction via storage and cooking to the interaction with serum albumin, a principal blood transport protein. PMID:26132136

  5. A time-resolved fluorescence study of matrix-isolated Ag 2

    NASA Astrophysics Data System (ADS)

    Hebert, T.; Kolb, D. M.; Rotermund, H. H.; Schriever, U.; Wiggenhauser, H.

    1990-02-01

    The nanosecond lifetimes of the A, B and C states of Ag 2 in Ar, Kr and Xe matrices were determined by time-resolved emission spectroscopy. From an analysis of the rise and decay times after pulsed optical excitation, the non-radiative relaxation channel between the B and A states was quantitatively established.

  6. Frame-Transfer Gating Raman Spectroscopy for Time-Resolved Multiscalar Combustion Diagnostics

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet; Fischer, David G.; Kojima, Jun

    2011-01-01

    Accurate experimental measurement of spatially and temporally resolved variations in chemical composition (species concentrations) and temperature in turbulent flames is vital for characterizing the complex phenomena occurring in most practical combustion systems. These diagnostic measurements are called multiscalar because they are capable of acquiring multiple scalar quantities simultaneously. Multiscalar diagnostics also play a critical role in the area of computational code validation. In order to improve the design of combustion devices, computational codes for modeling turbulent combustion are often used to speed up and optimize the development process. The experimental validation of these codes is a critical step in accepting their predictions for engine performance in the absence of cost-prohibitive testing. One of the most critical aspects of setting up a time-resolved stimulated Raman scattering (SRS) diagnostic system is the temporal optical gating scheme. A short optical gate is necessary in order for weak SRS signals to be detected with a good signal- to-noise ratio (SNR) in the presence of strong background optical emissions. This time-synchronized optical gating is a classical problem even to other spectroscopic techniques such as laser-induced fluorescence (LIF) or laser-induced breakdown spectroscopy (LIBS). Traditionally, experimenters have had basically two options for gating: (1) an electronic means of gating using an image intensifier before the charge-coupled-device (CCD), or (2) a mechanical optical shutter (a rotary chopper/mechanical shutter combination). A new diagnostic technology has been developed at the NASA Glenn Research Center that utilizes a frame-transfer CCD sensor, in conjunction with a pulsed laser and multiplex optical fiber collection, to realize time-resolved Raman spectroscopy of turbulent flames that is free from optical background noise (interference). The technology permits not only shorter temporal optical gating (down

  7. Fluorescence lifetime heterogeneity in aggregates of LHCII revealed by time-resolved microscopy.

    PubMed Central

    Barzda, V; de Grauw, C J; Vroom, J; Kleima, F J; van Grondelle, R; van Amerongen, H; Gerritsen, H C

    2001-01-01

    Two-photon excitation, time-resolved fluorescence microscopy was used to investigate the fluorescence quenching mechanisms in aggregates of light-harvesting chlorophyll a/b pigment protein complexes of photosystem II from green plants (LHCII). Time-gated microscopy images show the presence of large heterogeneity in fluorescence lifetimes not only for different LHCII aggregates, but also within a single aggregate. Thus, the fluorescence decay traces obtained from macroscopic measurements reflect an average over a large distribution of local fluorescence kinetics. This opens the possibility to resolve spatially different structural/functional units in chloroplasts and other heterogeneous photosynthetic systems in vivo, and gives the opportunity to investigate individually the excited states dynamics of each unit. We show that the lifetime distribution is sensitive to the concentration of quenchers contained in the system. Triplets, which are generated at high pulse repetition rates of excitation (>1 MHz), preferentially quench domains with initially shorter fluorescence lifetimes. This proves our previous prediction from singlet-singlet annihilation investigations (Barzda, V., V. Gulbinas, R. Kananavicius, V. Cervinskas, H. van Amerongen, R. van Grondelle, and L. Valkunas. 2001. Biophys. J. 80:2409-2421) that shorter fluorescence lifetimes originate from larger domains in LHCII aggregates. We found that singlet-singlet annihilation has a strong effect in time-resolved fluorescence microscopy of connective systems and has to be taken into consideration. Despite that, clear differences in fluorescence decays can be detected that can also qualitatively be understood. PMID:11423435

  8. A fluorescence LIDAR sensor for hyper-spectral time-resolved remote sensing and mapping.

    PubMed

    Palombi, Lorenzo; Alderighi, Daniele; Cecchi, Giovanna; Raimondi, Valentina; Toci, Guido; Lognoli, David

    2013-06-17

    In this work we present a LIDAR sensor devised for the acquisition of time resolved laser induced fluorescence spectra. The gating time for the acquisition of the fluorescence spectra can be sequentially delayed in order to achieve fluorescence data that are resolved both in the spectral and temporal domains. The sensor can provide sub-nanometric spectral resolution and nanosecond time resolution. The sensor has also imaging capabilities by means of a computer-controlled motorized steering mirror featuring a biaxial angular scanning with 200 μradiant angular resolution. The measurement can be repeated for each point of a geometric grid in order to collect a hyper-spectral time-resolved map of an extended target. PMID:23787661

  9. Halide (Cl(super -)) Quenching of Quinine Sulfate Fluorescence: A Time-Resolved Fluorescence Experiment for Physical Chemistry

    ERIC Educational Resources Information Center

    Gutow, Jonathan H.

    2005-01-01

    The time-resolved fluorescence experiment investigating the halide quenching of fluorescence from quinine sulfate in water is described. The objectives of the experiment include reinforcing student understanding of the kinetics of competing pathways, making connections with microscopic theories of kinetics through comparison of experimental and…

  10. CMOS Time-Resolved, Contact, and Multispectral Fluorescence Imaging for DNA Molecular Diagnostics

    PubMed Central

    Guo, Nan; Cheung, Ka Wai; Wong, Hiu Tung; Ho, Derek

    2014-01-01

    Instrumental limitations such as bulkiness and high cost prevent the fluorescence technique from becoming ubiquitous for point-of-care deoxyribonucleic acid (DNA) detection and other in-field molecular diagnostics applications. The complimentary metal-oxide-semiconductor (CMOS) technology, as benefited from process scaling, provides several advanced capabilities such as high integration density, high-resolution signal processing, and low power consumption, enabling sensitive, integrated, and low-cost fluorescence analytical platforms. In this paper, CMOS time-resolved, contact, and multispectral imaging are reviewed. Recently reported CMOS fluorescence analysis microsystem prototypes are surveyed to highlight the present state of the art. PMID:25365460

  11. Optical characterization of Pseudomonas fluorescens on meat surfaces using time-resolved fluorescence

    NASA Astrophysics Data System (ADS)

    Bouchard, Alain; Frechette, Julie; Vernon, Marcia L.; Cormier, Jean-François; Beaulieu, Rene M.; Vallée, Réal; Mafu, Akier A.

    2006-01-01

    A scanning optical system for the detection of bacteria on meat surfaces based on fluorescence lifetime and intensity measurements is described. The system detects autofluorescent light emitted by naturally occurring fluorophores in bacteria. The technique only requires minimal sample preparation and handling, thus the chemical properties of the specimen are preserved. This work presents the preliminary results obtained from a time-resolved fluorescence imaging system for the characterization of a nonpathogenic gram-negative bacteria, Pseudomonas fluorescens. Initial results indicate that the combination of fluorescence lifetime and intensity measurements provides a means for characterizing biological media and for detecting microorganisms on surfaces.

  12. An inexpensive technique for the time resolved laser induced plasma spectroscopy

    NASA Astrophysics Data System (ADS)

    Ahmed, Rizwan; Ahmed, Nasar; Iqbal, J.; Aslam Baig, M.

    2016-08-01

    We present an efficient and inexpensive method for calculating the time resolved emission spectrum from the time integrated spectrum by monitoring the time evolution of neutral and singly ionized species in the laser produced plasma. To validate our assertion of extracting time resolved information from the time integrated spectrum, the time evolution data of the Cu II line at 481.29 nm and the molecular bands of AlO in the wavelength region (450-550 nm) have been studied. The plasma parameters were also estimated from the time resolved and time integrated spectra. A comparison of the results clearly reveals that the time resolved information about the plasma parameters can be extracted from the spectra registered with a time integrated spectrograph. Our proposed method will make the laser induced plasma spectroscopy robust and a low cost technique which is attractive for industry and environmental monitoring.

  13. Feasibility analysis of an epidermal glucose sensor based on time-resolved fluorescence

    NASA Astrophysics Data System (ADS)

    Katika, Kamal M.; Pilon, Laurent

    2007-06-01

    The goal of this study is to test the feasibility of using an embedded time-resolved fluorescence sensor for monitoring glucose concentration. Skin is modeled as a multilayer medium with each layer having its own optical properties and fluorophore absorption coefficients, lifetimes, and quantum yields obtained from the literature. It is assumed that the two main fluorophores contributing to the fluorescence at these excitation and emission wavelengths are nicotinamide adenine dinucleotide (NAD)H and collagen. The intensity distributions of excitation and fluorescent light in skin are determined by solving the transient radiative transfer equation by using the modified method of characteristics. The fluorophore lifetimes are then recovered from the simulated fluorescence decays and compared with the actual lifetimes used in the simulations. Furthermore, the effect of adding Poissonian noise to the simulated decays on recovering the lifetimes was studied. For all cases, it was found that the fluorescence lifetime of NADH could not be recovered because of its negligible contribution to the overall fluorescence signal. The other lifetimes could be recovered to within 1.3% of input values. Finally, the glucose concentrations within the skin were recovered to within 13.5% of their actual values, indicating a possibility of measuring glucose concentrations by using a time-resolved fluorescence sensor.

  14. Time-Resolved Fluorescence in Lipid Bilayers: Selected Applications and Advantages over Steady State

    PubMed Central

    Amaro, Mariana; Šachl, Radek; Jurkiewicz, Piotr; Coutinho, Ana; Prieto, Manuel; Hof, Martin

    2014-01-01

    Fluorescence methods are versatile tools for obtaining dynamic and topological information about biomembranes because the molecular interactions taking place in lipid membranes frequently occur on the same timescale as fluorescence emission. The fluorescence intensity decay, in particular, is a powerful reporter of the molecular environment of a fluorophore. The fluorescence lifetime can be sensitive to the local polarity, hydration, viscosity, and/or presence of fluorescence quenchers/energy acceptors within several nanometers of the vicinity of a fluorophore. Illustrative examples of how time-resolved fluorescence measurements can provide more valuable and detailed information about a system than the time-integrated (steady-state) approach will be presented in this review: 1), determination of membrane polarity and mobility using time-dependent spectral shifts; 2), identification of submicroscopic domains by fluorescence lifetime imaging microscopy; 3), elucidation of membrane leakage mechanisms from dye self-quenching assays; and 4), evaluation of nanodomain sizes by time-resolved Förster resonance energy transfer measurements. PMID:25517142

  15. Time-resolved fluorescence microscopy of gunshot residue: an application to forensic science.

    PubMed

    Bird, Damian K; Agg, Kent M; Barnett, Neil W; Smith, Trevor A

    2007-04-01

    Time-resolved fluorescence microscopy has rapidly emerged as the technique of choice for many researchers aiming to gain specific insights into the dynamics of intricate biological systems. Although the unique advantages the technique provides over other methods have proven to be particularly useful in the biosciences, to date they have been largely unexploited by other research disciplines. In this paper, we demonstrate the capacity of time-resolved fluorescence microscopy as a practical analytical tool in the forensic sciences via the imaging of gunshot residues that are expelled when a firearm is discharged. This information may prove to be useful for determination of the true sequence of events that took place in a firearm related crime. PMID:17381705

  16. BHHST: An improved lanthanide chelate for time-resolved fluorescence applications

    NASA Astrophysics Data System (ADS)

    Connally, Russell; Jin, Dayong; Piper, James

    2005-04-01

    The detection of the waterborne pathogens Giardia lamblia and Cryptosporidium parvum in environmental water bodies requires concentration of large volumes of water due to the low dose required for infection. The highly concentrated (10,000-fold) water sample is often rich in strongly autofluorescent algae, organic debris and mineral particles that can obscure immunofluorescently labeled (oo)cysts during analysis. Time-resolved fluorescence techniques exploit the long fluorescence lifetimes of lanthanide chelates (ms) to differentiate target fluorescence from background autofluorescence (ns). Relatively simple instrumentation can be used to enhance the signal-to-noise ratio (S/N) of labelled target. Time-resolved fluorescence techniques exploit the large difference in lifetime by briefly exciting fluorescence from the sample using a pulsed excitation source. Capture of the resulting fluorescence emission is delayed until the more rapidly decaying autofluorescence has faded beyond detection, whereon the much stronger and slower fading emission from labelled target is collected. BHHCT is a tetradentate beta-diketone chelate that is activated to bind with protein (antibody) as the chlorosulfonate. The high activity of this residue makes conjugations difficult to control and can lead to the formation of unstable immunoconjugates. To overcome these limitations a 5-atom hydrophylic molecular tether was attached to BHHCT via the chlorosulfonate and the BHHCT derivative was then activated to bind to proteins as the succinimide. The new compound (BHHST) could be prepared in high purity and was far more stable than the chlorosulfonate on storage. A high activity immunocojugate was prepared against Cryptosporidium that yielded an 8-fold increase in SNR using a lab-built time-resolved fluorescence microscope.

  17. Computational modeling of time-resolved fluorescence transport in turbid media for non-invasive clinical diagnostics

    NASA Astrophysics Data System (ADS)

    Vishwanath, Karthik

    Fluorescence spectroscopy and imaging methods, including fluorescence lifetime sensing, are being developed for a variety of non-invasive clinical diagnostic procedures, including applications to early cancer diagnosis. Here, both the theoretical developments and experimental validations of a versatile, numerical Monte Carlo code that models photon migration in turbid media to include simulations of time-resolved fluorescence transport are presented. The developed numerical model was used to study, for the first time, the dependence of time-resolved fluorescence signals emanating from turbid media on the optical transport coefficients, fluorophore properties and source-detector configurations in single-layered turbid media as well as more complex multi-layered turbid media. The numerical codes presented here can be adapted to model a wide range of experimental techniques measuring the optical responses of biological tissues to laser irradiation and are demonstrated here for two specific applications (a) to model time-resolved fluorescence dynamics in human colon tissues and (b) to extract the frequency-dependent optical responses of a model adult human head to an incident laser-source whose intensity was harmonically modulated i.e. simulating frequency-domain measurements. Specifically, measurements of time-resolved fluorescence decays from a previous clinical study aimed toward detecting differences in tissue pathologies in patients undergoing gastro-intestinal endoscopy were simulated using the Monte Carlo model and results demonstrated that variations in tissue optical transport coefficients (absorption and scattering) alone could not account for the fluorescence decay differences detected between tissue pathologies in vivo. However, variations in fluorescence decay time as large as those detected clinically between normal and pre-malignant tissues (of 2 ns) could be accounted for by simulated variations in tissue morphology or biochemistry while intrinsic

  18. Time-resolvable fluorescent conjugates for the detection of pathogens in environmental samples containing autofluorescent material

    NASA Astrophysics Data System (ADS)

    Connally, Russell; Veal, Duncan; Piper, James A.

    2003-07-01

    Water is routinely monitored for environmental pathogens such a Cryptosporidium and Giardia using immunofluorescence microscopy (IFM). Autofluorescence can greatly diminish an operators capacity to resolve labeled pathogens from non-specific background. Naturally fluorescing components (autofluorophores) encountered in biological samples typically have fluorescent lifetimes (τ) of less than 100 nanoseconds and their emissions may be excluded through use of time-resolved fluorescence microscopy (TRFM). TRFM relies on the large differences in τ between autofluorescent molecules and long-lived lanthanide chelates. In TRFM, targets labeled with a time-resolvable fluorescent immunoconjugate are excited by an intense (UV) light pulse. A short delay is imposed to permit the decay of autofluorescence before capture of luminescence from the excited chelate using an image intensified CCD camera. In our experience, autofluorescence can be reduced to insignificant levels with a consequent 30-fold increase in target visibility using TRFM techniques. We report conjugation of a novel europium chelate to a monoclonal antibody specific for Giardia lamblia and use of the immunoconjugate for TRFM studies. Initial attempts to conjugate the same chelate to a monoclonal antibody directed against Cryptosporidium parvum led to poorly fluorescent constructs that were prone to denature and precipitate. We successfully conjugated BHHCT to anti-mouse polyvalent immunoglobulin and used this construct to overcome the difficulties in direct labeling of the anti-Cryptosporidium antibody. Both Giardia and Cryptosporidium were labeled using the anti-mouse protocol with a subsequent 20-fold and 6.6-fold suppression of autofluorescence respectively. A rapid protocol for conjugating and purifying the immunoconjugate was found and methods of quantifying the fluorescence to protein ratio determined. Performance of our TRFM was dependent on the quality and brightness of the immunoconjugate and

  19. Molecular diffusivity measurement through an alumina membrane using time-resolved fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Kennard, Raymond; DeSisto, William J.; Mason, Michael D.

    2010-11-01

    We present a simple fluorescence imaging method for measuring the time-resolved concentration of a fluorescent molecule diffusing through an anodic alumina membrane with a pore diameter of 20 nm. From the concentration breakthrough curve, the molecular diffusivity of the fluorophore was extracted. The experimentally determined diffusivity was three orders of magnitude lower than reported bulk values. Due to the relative simplicity and ease of use, this method can be applied to provide fundamental information for biomolecular separations applications. One feature of this method is the high sensitivity at intercellular volumes broadening its application to drug delivery and controlled cell growth.

  20. Standoff Time-Resolved Laser-Based Spectroscopy Tools for Sample Characterization and Biosignature Detection

    NASA Astrophysics Data System (ADS)

    Gasda, P. J.; Acosta-Maeda, T.; Lucey, P. G.; Misra, A. K.; Sharma, S. K.; Taylor, J.

    2014-12-01

    The NASA Mars2020 rover will be searching for signs of past habitability and past life on Mars. Additionally, the rover mission will prepare a cache of highly significant samples for a future sample return mission. NASA requires these samples to be well characterized; the instruments on the rover must be capable of fine-scale in situ mineralogical or elemental analysis with emphasis on biosignature detection or characterization. We have been developing multiple standoff laser-based instruments at the University of Hawaii, Manoa that are capable of fine-scale in situ chemical analysis and biosignatures detection. By employing a time-resolved spectroscopy, we can perform elemental analysis with Laser-Induced Breakdown Spectroscopy (LIBS), mineral and organic analysis with Raman spectroscopy, and biosignature detection with Laser-Induced Fluorescence (LIF). Each of these techniques share the same optics and detection equipment, allowing us to integrate them into a single, compact instrument. High time-resolution (~100 ns/pulse) is the key to this instrument; with it, the detector only records data when the signal is the brightest. Spectra can be taken during the day, LIBS can be measured without a plasma light background, and the Raman signal can be separated from the mineral fluorescence signal. Since bio-organics have very short fluorescence lifetimes, the new instrument can be used to unambiguously detect bio-organics. The prototype uses a low power (0.5 mJ/pulse) 532 nm laser with a detection limit of < 30 ppm of organics in a sample of Antarctica Dry Valley soil measured from 8 m. Another LIF instrument under development in our lab, called the Biofinder, takes advantage of the extremely intense fluorescence signal produced by organics by using a wide laser spot and a camera to produce LIF images of wide area (25 cm area from 2 m distance with 2 mm/pixel resolution). The Biofinder can quickly assess the area around the rover (at 10 frames/s) by imaging sample

  1. Time-resolved diffuse spectroscopy measurements using a hybrid Green's function for the radiative transfer equation

    NASA Astrophysics Data System (ADS)

    Simon, Emanuel; Foschum, Florian; Kienle, Alwin

    2013-06-01

    Time-resolved diffuse optical spectroscopy measurements of phantoms at small source-detector separations yield good results for the retrieved coefficients of reduced scattering and absorption when a hybrid Green's function of the radiative transfer equation for semi-infinite media is used.

  2. Time-resolved optical spectroscopy of the chest: is it possible to probe the lung?

    NASA Astrophysics Data System (ADS)

    Quarto, G.; Farina, A.; Pifferi, A.; Taroni, P.; Miniati, M.

    2013-06-01

    Monte Carlo simulations and preliminary time-resolved spectroscopy measurements were performed to investigate the feasibility of the in vivo optical diagnostics of lung conditions and diseases. Absorption and reduced scattering properties of the chest, arising from in vivo spectral measurements on volunteers are presented.

  3. Exciplex liquid-phase thermometer using time-resolved laser-induced fluorescence.

    PubMed

    Parigger, C; Plemmons, D H; Litchford, R J; Jeng, S M

    1998-01-01

    Pulsed photoexcitation of hydrocarbon fuels doped with organic molecules exhibits a temperature-dependent fluorescence spectrum that is used as the basis for a weakly intrusive optical thermometer. By use of pulsed excitation from a 308-nm 8-ns XeCl excimer laser with gated detection of the fluorescence emissions from doped n -heptane, we demonstrate that time-resolved measurement of the excited monomer and the redshifted excited-state complex (exciplex) fluorescence emissions can yield sub-1 degrees accuracy for temperatures ranging from 440 K to the vicinity of the critical temperature (540 K). The experiments also show that the exciplex fluorescence spectrum is pressure independent below and above supercritical pressure. PMID:18084417

  4. Time-resolved fluorescence monitoring of cholesterol in peripheral blood mononuclear cells

    NASA Astrophysics Data System (ADS)

    Martinakova, Z.; Horilova, J.; Lajdova, I.; Marcek Chorvatova, A.

    2014-12-01

    Precise evaluation of intracellular cholesterol distribution is crucial for improving diagnostics of diseased states associated with cholesterol alteration. Time-resolved fluorescence techniques are tested for non-invasive investigation of cholesterol in living cells. Fluorescent probe NBD attached to cholesterol was employed to evaluate cholesterol distribution in peripheral blood mononuclear cells (PBMC) isolated from the human blood. Fluorescence Lifetime Imaging Microscopy (FLIM) was successfully applied to simultaneously monitor the spatial distribution and the timeresolved characteristics of the NBD-cholesterol fluorescence in PBMC. Gathered data are the first step in the development of a new perspective non-invasive diagnostic method for evaluation of cholesterol modifications in diseases associated with disorders of lipid metabolism.

  5. Host Sensitized Luminescence and Time-Resolved Spectroscopy of YVO4: Ho3+ Nanocrystals

    NASA Astrophysics Data System (ADS)

    Mahata, Manoj Kumar; Koppe, Tristan; Hofsäss, Hans; Kumar, Kaushal; Vetter, Ulrich

    Rare earth doped phosphors have attracted much interest because of their high chemical durability and wide range of attractive applications. In this work, Ho3+ doped tetragonal YVO4 nanocrystals have been synthesized via a facile co-precipitation method. The phosphor was characterized by various methods including X-ray diffraction, photoluminescence, cathodoluminescence, time-resolved spectroscopy measurements. The frequency upconversion emission in the synthesized phosphor has been investigated under 800 nm laser excitation. UV-excited photoluminescence (PL) and cathodoluminescence (CL) measurements were performed at room temperature (300 K). A broad band which arises at ∼ 370-600 nm is attributed to the relaxation of VO43- groups from conduction band to valence band. Under UV-excitation, the presence of a sharp band at 550 nm due to the intra-4f transitions of the trivalent holmium ions suggests energy transfer from YVO4 host to RE ions. Luminescence measurements show that this material is suitable for field emission displays (FED) and fluorescent lamps. Also the conversion of UV radiation as well as IR radiation into the visible region suggests the application of this material for photon harvesting in solar cells.

  6. Simulation modelling of a micro-system for time-resolved fluorescence measurements

    NASA Astrophysics Data System (ADS)

    Repich, Marina; Stoppa, David; Rae, Bruce R.; Henderson, Robert K.; Dalla Betta, Gian-Franco

    2010-04-01

    This paper presents the simulation modelling of a typical experimental setup for time-resolved fluorescence measurement. The developed model takes into account the setup geometry, characteristics of light source, detector and fluorescent sample as well as the adopted measurement technique. A qualitative verification of the model has been reported before. In this paper, we present a quantitative analysis and verification of the system versatility. For this we conducted time-resolved fluorescence measurements using a two-chip based micro-system, including a blue micro-LED array as a light source and a CMOS SPAD array as a detector. The sample of interest (CdSe/ZnS quantum dots in toluene) in a micro-cavity slide and an excitation filter were placed in the gap between the excitation and detection planes. A time-correlated single photon counting module was used to build fluorescence decay curves. A range of experiments with different excitation light pulse widths and using several setups have been performed. The simulated data are in good agreement with measured results and the model proves to be flexible enough to simulate different light sources and detector quenching/recharging circuits. This model can be used to predict qualitative and quantitative results for specific experimental setups, supporting the explanations of observed effects and allowing the realisation of virtual experiments.

  7. Intracellular Monitoring of AS1411 Aptamer by Time-Resolved Microspectrofluorimetry and Fluorescence Imaging.

    PubMed

    Kočišová, Eva; Praus, Petr; Bok, Jiří; Bonneau, Stéphanie; Sureau, Franck

    2015-09-01

    Time-resolved microspectrofluorimetry and fluorescence microscopy imaging-two complementary fluorescence techniques-provide important information about the intracellular distribution, level of uptake and binding/interactions inside living cell of the labeled molecule of interest. They were employed to monitor the "fate" of AS1411 aptamer labeled by ATTO 425 in human living cells. Confocal microspectrofluorimeter adapted for time-resolved intracellular fluorescence measurements by using a phase-modulation principle with homodyne data acquisition was employed to obtain emission spectra and to determine fluorescence lifetimes in U-87 MG tumor brain cells and Hs68 non-tumor foreskin cells. Acquired spectra from both the intracellular space and the reference solutions were treated to observe the aptamer localization and its interaction with biological structures inside the living cell. The emission spectra and the maximum emission wavelengths coming from the cells are practically identical, however significant lifetime lengthening was observed for tumor cell line in comparison to non-tumor one. PMID:26179074

  8. Time-resolved spectroscopy of endogenous NAD(P)H in Gluconobacter oxydans

    NASA Astrophysics Data System (ADS)

    Horilova, J.; Kromkova, K.; Bucko, M.; Illesova, A.; Vikartovska, A.; Stefuca, V.; Mateasik, A.; Chorvat, D.; Chorvatova, A.

    2013-02-01

    The genus Gluconobacter is frequently used for biotechnological and/or nanotechnological applications. We studied endogenous fluorescence of nicotinamide adenine dinucleotide (phosphate) (NAD(P)H), indicator of the oxidative metabolic state in mammalian cells, in Gluconobacter oxydans (G. oxydans). Time-resolved measurements (excitation by 375nm pulsed diode laser) were employed to record the bacterial fluorescence intensity, as well as its modifications by metabolic modulation. Results were gathered on fresh bacteria, on de-frozen ones, as well as on bacteria encapsulated in alginate beads. NAD(P)H fluorescence increased linearly with the concentration of bacteria. Freezing, which has little effect on the viability of bacteria or the concentration-dependent fluorescence rise, affected the temperature-dependence of NAD(P)H fluorescence. Sodium cyanide (10 mM) provoked significant rise in the NAD(P)H fluorescence, while dinitrophenol (200 μM) induced its decrease, confirming the bacterial NAD(P)H fluorescence sensitivity to modulators of electron transport chain. Gathered results demonstrate that endogenous NAD(P)H fluorescence can be successfully recorded in the bacterial strain G. oxydans using time-resolved measurements.

  9. Time-resolved tryptophan fluorescence in photosynthetic reaction centers from Rhodobacter sphaeroides

    NASA Technical Reports Server (NTRS)

    Godik, V. I.; Blankenship, R. E.; Causgrove, T. P.; Woodbury, N.

    1993-01-01

    Tryptophan fluorescence of reaction centers isolated from Rhodobacter sphaeroides, both stationary and time-resolved, was studied. Fluorescence kinetics were found to fit best a sum of four discrete exponential components. Half of the initial amplitude was due to a component with a lifetime of congruent to 60 ps, belonging to Trp residues, capable of efficient transfer of excitation energy to bacteriochlorophyll molecules of the reaction center. The three other components seem to be emitted by Trp ground-state conformers, unable to participate in such a transfer. Under the influence of intense actinic light, photooxidizing the reaction centers, the yield of stationary fluorescence diminished by congruent to 1.5 times, while the number of the kinetic components and their life times remained practically unchanged. Possible implications of the observed effects for the primary photosynthesis events are considered.

  10. Efficient signal processing for time-resolved fluorescence detection of nitrogen-vacancy spins in diamond

    NASA Astrophysics Data System (ADS)

    Gupta, A.; Hacquebard, L.; Childress, L.

    2016-03-01

    Room-temperature fluorescence detection of the nitrogen-vacancy center electronic spin typically has low signal to noise, requiring long experiments to reveal an averaged signal. Here, we present a simple approach to analysis of time-resolved fluorescence data that permits an improvement in measurement precision through signal processing alone. Applying our technique to experimental data reveals an improvement in signal to noise equivalent to a 14% increase in photon collection efficiency. We further explore the dependence of the signal to noise ratio on excitation power, and analyze our results using a rate equation model. Our results provide a rubric for optimizing fluorescence spin detection, which has direct implications for improving precision of nitrogen-vacancy-based sensors.

  11. Advanced Time-Resolved Fluorescence Microscopy Techniques for the Investigation of Peptide Self-Assembly

    NASA Astrophysics Data System (ADS)

    Anthony, Neil R.

    The ubiquitous cross beta sheet peptide motif is implicated in numerous neurodegenerative diseases while at the same time offers remarkable potential for constructing isomorphic high-performance bionanomaterials. Despite an emerging understanding of the complex folding landscape of cross beta structures in determining disease etiology and final structure, we lack knowledge of the critical initial stages of nucleation and growth. In this dissertation, I advance our understanding of these key stages in the cross-beta nucleation and growth pathways using cutting-edge microscopy techniques. In addition, I present a new combined time-resolved fluorescence analysis technique with the potential to advance our current understanding of subtle molecular level interactions that play a pivotal role in peptide self-assembly. Using the central nucleating core of Alzheimer's Amyloid-beta protein, Abeta(16 22), as a model system, utilizing electron, time-resolved, and non-linear microscopy, I capture the initial and transient nucleation stages of peptide assembly into the cross beta motif. In addition, I have characterized the nucleation pathway, from monomer to paracrystalline nanotubes in terms of morphology and fluorescence lifetime, corroborating the predicted desolvation process that occurs prior to cross-beta nucleation. Concurrently, I have identified unique heterogeneous cross beta domains contained within individual nanotube structures, which have potential bionanomaterials applications. Finally, I describe a combined fluorescence theory and analysis technique that dramatically increases the sensitivity of current time-resolved techniques. Together these studies demonstrate the potential for advanced microscopy techniques in the identification and characterization of the cross-beta folding pathway, which will further our understanding of both amyloidogenesis and bionanomaterials.

  12. High-performance time-resolved fluorescence by direct waveform recording

    NASA Astrophysics Data System (ADS)

    Muretta, Joseph M.; Kyrychenko, Alexander; Ladokhin, Alexey S.; Kast, David J.; Gillispie, Gregory D.; Thomas, David D.

    2010-10-01

    We describe a high-performance time-resolved fluorescence (HPTRF) spectrometer that dramatically increases the rate at which precise and accurate subnanosecond-resolved fluorescence emission waveforms can be acquired in response to pulsed excitation. The key features of this instrument are an intense (1 μJ/pulse), high-repetition rate (10 kHz), and short (1 ns full width at half maximum) laser excitation source and a transient digitizer (0.125 ns per time point) that records a complete and accurate fluorescence decay curve for every laser pulse. For a typical fluorescent sample containing a few nanomoles of dye, a waveform with a signal/noise of about 100 can be acquired in response to a single laser pulse every 0.1 ms, at least 105 times faster than the conventional method of time-correlated single photon counting, with equal accuracy and precision in lifetime determination for lifetimes as short as 100 ps. Using standard single-lifetime samples, the detected signals are extremely reproducible, with waveform precision and linearity to within 1% error for single-pulse experiments. Waveforms acquired in 0.1 s (1000 pulses) with the HPTRF instrument were of sufficient precision to analyze two samples having different lifetimes, resolving minor components with high accuracy with respect to both lifetime and mole fraction. The instrument makes possible a new class of high-throughput time-resolved fluorescence experiments that should be especially powerful for biological applications, including transient kinetics, multidimensional fluorescence, and microplate formats.

  13. Time-resolved imaging of fluorescent inclusions in optically turbid medium — phantom study

    NASA Astrophysics Data System (ADS)

    Kacprzak, M.; Liebert, A.; Sawosz, P.; Żołek, N.; Milej, D.; Maniewski, R.

    2010-03-01

    We present results of application of a time-resolved optical system for imaging of fluorescence excited in an inclusion containing indocyanine green (ICG), and located in optically turbid medium. The developed imaging system enabled simultaneous acquisition of fluorescence and diffusive reflectance. Eight independent time-resolved measurement channels based on time-correlated single photon counting technique were applied. In four of these channels, used for the fluorescence detection, sets of filters were applied in order to block the excitation light. Fast optomechanical switches allowed us to illuminate sequentially nine different spots on the surface of the studied object and finally 4×4 pixels maps at excitation and emission wavelengths were obtained. A liquid phantom used in this study consists of the fish tank filed with a solution ofmilk and water with black ink added to obtain optical properties in the range of the optical properties typical for the living tissue. A gel ball of a diameter of 5 mm with precisely controlled concentration of ICG was immersed in the liquid. The measurements were performed for inclusion located at different depths and for various ICG concentrations in the gel ball and in the surrounding liquid. The recorded distributions of times of arrival (DTA) of fluorescence photons and times of flight (DTOF) of diffusely reflected photons were analyzed by calculation of their statistical moments. We observed specific changes in moments of the measured DTAs as a function of depth of immersion of the fluorescent inclusion in the medium. We noted also that the changes of moments depend significantly on concentration of the dye in the fluorescence inclusion as well as in the surrounding liquid.

  14. [Characterization of Time-Resolved Laser-Induced Fluorescence from Crude Oil Samples].

    PubMed

    Liu, De-qing; Luan, Xiao-ning; Han, Xiao-shuang; Guo, Jin-jia; An, Ju-bai; Zheng, Rong-er

    2015-06-01

    To evaluate the feasibility of laser induced time-resolved fluorescence technique for in-situ detection of underwater suspended oil spill, extensive investigations have been carried out with different densities of crude oil samples from six different wells of Shengli Oilfield in this work. It was found that the fluorescence emission durations of these crude oil samples were almost the same, the Gate Pulse Delay of DDG (Digital Delay Generator) in the ICCD started at 52ns and ended at 82ns with a width (FWHM) of 10 ns. It appears that the peak location and lifetime of fluorescence for different crude oil samples varied with their densities, and those with similar densities shared a similar lifespan with the closer peak locations of fluorescence. It is also observed that the peak of fluorescence remained the same location before reaching the maximum intensity, subsequently shift to longer wavelength as fluorescence attenuated from maximum intensity with a red shift among 17-30 nm varied with samples. This demonstrated that the decay rate of fluorescent components in the crude oils was different, and energy transfer between these components might exist. It is hoped that those obtained results and characteristics could be the useful information for identification of suspended spilled-oil underwater. PMID:26601371

  15. Interfacing a transient digitizer to a step-scan Fourier transform spectrometer for nanosecond time resolved spectroscopy

    SciTech Connect

    Letendre, L.T.; Dai, H.; McLaren, I.A.; Johnson, T.J.

    1999-01-01

    A new signal processing and data acquisition system has been developed that allows a Fourier transform spectrometer to be interfaced to external transient digitizers for time-resolved spectroscopy. Time resolution is limited only by the transient digitizer and detection system response time. For the present system it is about 1 ns. The capabilities of this system are demonstrated with visible Fourier transform spectra of both scattered laser light and fluorescence from electronically excited NO{sub 2} gas. {copyright} {ital 1999 American Institute of Physics.}

  16. Following [FeFe] Hydrogenase Active Site Intermediates by Time-Resolved Mid-IR Spectroscopy.

    PubMed

    Mirmohades, Mohammad; Adamska-Venkatesh, Agnieszka; Sommer, Constanze; Reijerse, Edward; Lomoth, Reiner; Lubitz, Wolfgang; Hammarström, Leif

    2016-08-18

    Time-resolved nanosecond mid-infrared spectroscopy is for the first time employed to study the [FeFe] hydrogenase from Chlamydomonas reinhardtii and to investigate relevant intermediates of the enzyme active site. An actinic 355 nm, 10 ns laser flash triggered photodissociation of a carbonyl group from the CO-inhibited state Hox-CO to form the state Hox, which is an intermediate of the catalytic proton reduction cycle. Time-resolved infrared spectroscopy allowed us to directly follow the subsequent rebinding of the carbonyl, re-forming Hox-CO, and determine the reaction half-life to be t1/2 ≈ 13 ± 5 ms at room temperature. This gives direct information on the dynamics of CO inhibition of the enzyme. PMID:27494400

  17. Miniaturizable homogenous time-resolved fluorescence assay for carboxypeptidase B activity.

    PubMed

    Ferrer, Marc; Zuck, Paul; Kolodin, Garrett; Mao, Shi Shan; Peltier, Richard R; Bailey, Carolyn; Gardell, Stephen J; Strulovici, Berta; Inglese, James

    2003-06-01

    An epitope-unmasking, homogeneous time-resolved fluorescence (HTRF) assay has been developed for measuring carboxypeptidase B (CPB) activity in a miniaturized high-throughput screening format. The enzyme substrate (biotin-RYRGLMVGGVVR-OH) is cleaved by CPB at the C terminus, causing release of the C-terminal Arg residue. The product (biotin-RYRGLMVGGVV-OH) is recognized specifically by a monoclonal antibody (G2-10) which is labeled with Eu(3+)-cryptate ([Eu(3+)]G2-10 mAb), and the complex is detected by fluorescence resonance energy transfer using streptavidin labeled with allophycocyanin ([XL665]SA). The CPB HTRF assay is readily adapted from 96- to 1536-well format as a robust (Z(')>0.5) assay for high-throughput screening. PMID:12729605

  18. Multimodal imaging of vascular grafts using time-resolved fluorescence and ultrasound

    NASA Astrophysics Data System (ADS)

    Fatakdawala, Hussain; Griffiths, Leigh G.; Wong, Maelene L.; Humphrey, Sterling; Marcu, Laura

    2015-02-01

    The translation of engineered tissues into clinic requires robust monitoring of tissue development, both in vitro and in vivo. Traditional methods for the same are destructive, inefficient in time and cost and do not allow time-lapse measurements from the same sample or animal. This study reports on the ability of time-resolved fluorescence and ultrasound measurements for non-destructive characterization of explanted tissue engineered vascular grafts. Results show that TRFS and FLIm are able to assess alterations in luminal composition namely elastin, collagen and cellular (hyperplasia) content via changes in fluorescence lifetime values between normal and grafted tissue. These observations are complemented by structural changes observed in UBM pertaining to graft integration and intimal thickness over the grafted region. These results encourage the future application of a catheter-based technique that combines these imaging modalities for non-destructive characterization of vascular grafts in vivo.

  19. Communication: Broadband and ultrasensitive femtosecond time-resolved circular dichroism spectroscopy.

    PubMed

    Hiramatsu, Kotaro; Nagata, Takashi

    2015-09-28

    We report the development of broadband and sensitive time-resolved circular dichroism (TRCD) spectroscopy by exploiting optical heterodyne detection. Using this method, transient CD signals of submillidegree level can be detected over the spectral range of 415-730 nm. We also demonstrate that the broadband measurement with the aid of singular value decomposition enables the discrimination of genuine TRCD signals from artificial optical-anisotropy, such as linear birefringence and linear dichroism, induced by photoexcitation. PMID:26428989

  20. Time-resolved emission spectroscopy of gadolinium vanadate ceramics (GdVO4:Bi3+)

    NASA Astrophysics Data System (ADS)

    Leppert, J.; Peudenier, S.; Bayer, E.; Grabmaier, B. C.; Blasse, G.

    1994-07-01

    The preparation of GdVO4:Bi3+ ceramics is indicated. Bismuth shows a strong tendency to evaporate during the sintering process. Time-resolved emission spectroscopy shows for sufficiently low Bi3+ concentrations subsequently: blue VO{4/3-}emission with a decay time corresponding to the transfer rate (106 s-1), yellow VO{4/3-}-Bi3+ emission, rare-earth impurity emission and VO{4/3-}-Bi3+ afterglow.

  1. A Novel Europium Chelate Coated Nanosphere for Time-Resolved Fluorescence Immunoassay

    PubMed Central

    Shen, Yifeng; Xu, Shaohan; He, Donghua

    2015-01-01

    A novel europium ligand 2, 2’, 2’’, 2’’’-(4, 7-diphenyl-1, 10-phenanthroline-2, 9-diyl) bis (methylene) bis (azanetriyl) tetra acetic acid (BC-EDTA) was synthesized and characterized. It shows an emission spectrum peak at 610 nm when it is excited at 360 nm, with a large Stock shift (250 nm). It is covalently coated on the surface of a bare silica nanosphere containi free amino groups, using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride and N-Hydroxysuccinimide. We also observed an interesting phenomenon that when BC-EDTA is labeled with a silica nanosphere, the chelate shows different excitation spectrum peaks of about 295 nm. We speculate that the carboxyl has a significant influence on its excitation spectrum. The BC-EDTA/Eu3+coated nanosphere could be used as a fluorescent probe for time-resolved fluorescence immunoassay. We labeled the antibody with the fluorescent nanosphere to develop a nanosphere based hepatitis B surface antigen as a time-resolved fluorescence immunoassay reagent, which is very easy to operate and eliminates potential contamination of Eu3+ contained in the environment. The analytical and functional sensitivities are 0.0037 μg/L and 0.08 μg/L (S/N≥2.0) respectively. The detection range is 0.08-166.67 μg/L, which is much wider than that of ELISA (0.2-5μg/L). It is comparable to the commercial dissociation-enhanced lanthanide fluoro-immunoassay system (DELFIA) reagents (0.2-145μg/L). We propose that it can fulfill clinical applications. PMID:26056826

  2. Time-resolved magnetic circular dichroism spectroscopy of photolyzed carbonmonoxy cytochrome c oxidase (cytochrome aa3).

    PubMed Central

    Goldbeck, R A; Dawes, T D; Einarsdóttir, O; Woodruff, W H; Kliger, D S

    1991-01-01

    Nanosecond time-resolved magnetic circular dichroism (TRMCD) and time-resolved natural circular dichroism (TRCD) measurements of photolysis products of the CO complex of eukaryotic cytochrome c oxidase (CcO-CO) are presented. TRMCD spectra obtained at 100 ns and 10 microseconds after photolysis are diagnostic of pentacoordinate cytochrome a3Fe2+, as would be expected for simple photodissociation. Other time-resolved spectroscopies (UV-visible and resonance Raman), however, show evidence for unusual Fea3(2+) coordination after CO photolysis (Woodruff, W. H., O. Einarsdóttir, R. B. Dyer, K. A. Bagley, G. Palmer, S. J. Atherton, R. A. Goldbeck, T. D. Dawes, and D. S. Kliger. 1991. Proc. Nat. Acad. Sci. U.S.A. 88:2588-2592). Furthermore, time-resolved IR experiments have shown that photodissociated CO binds to CuB+ prior to recombining with Fea3(2+) (Dyer, R. B., O. Einarsdóttir, P. M. Killough, J. J. López-Garriga, and W. H. Woodruff. 1989. J. Am. Chem. Soc. 111:7657-7659). A model of the CcO-CO photolysis cycle which is consistent with all of the spectroscopic results is presented. A novel feature of this model is the coordination of a ligand endogenous to the protein to the Fe axial site vacated by the photolyzed CO and the simultaneous breaking of the Fe-imidazole(histidine) bond. PMID:1653049

  3. Probing interfacial electron dynamics with time-resolved X-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Neppl, Stefan

    2015-05-01

    Time-resolved core-level spectroscopy techniques using laser pulses to initiate and short X-ray pulses to probe photo-induced processes have the potential to provide electronic state- and atomic site-specific insight into fundamental electron dynamics at complex interfaces. We describe the implementation of femto- and picosecond time-resolved photoelectron spectroscopy at the Linac Coherent Light Source (LCLS) and at the Advanced Light Source (ALS) in order to follow light-driven electron dynamics at dye-semiconductor interfaces on femto- to nanosecond timescales, and from the perspective of individual atomic sites. A distinct transient binding-energy shift of the Ru3d photoemission lines originating from the metal centers of N3 dye-molecules adsorbed on nanoporous ZnO is observed 500 fs after resonant HOMO-LUMO excitation with a visible laser pulse. This dynamical chemical shift is accompanied by a characteristic surface photo-voltage response of the semiconductor substrate. The two phenomena and their correlation will be discussed in the context of electronic bottlenecks for efficient interfacial charge-transfer and possible charge recombination and relaxation pathways leading to the neutralization of the transiently oxidized dye following ultrafast electron injection. First steps towards in operando time-resolved X-ray absorption spectroscopy techniques to monitor interfacial chemical dynamics will be presented.

  4. Comparison of the rate constants for energy transfer in the light-harvesting protein, C-phycocyanin, calculated from Foerster`s theory and experimentally measured by time-resolved fluorescence spectroscopy

    SciTech Connect

    Debreczeny, M.P.

    1994-05-01

    We have measured and assigned rate constants for energy transfer between chromophores in the light-harvesting protein C-phycocyanin (PC), in the monomeric and trimeric aggregation states, isolated from Synechococcus sp. PCC 7002. In order to compare the measured rate constants with those predicted by Fdrster`s theory of inductive resonance in the weak coupling limit, we have experimentally resolved several properties of the three chromophore types ({beta}{sub 155} {alpha}{sub 84}, {beta}{sub 84}) found in PC monomers, including absorption and fluorescence spectra, extinction coefficients, fluorescence quantum yields, and fluorescence lifetimes. The cpcB/C155S mutant, whose PC is missing the {beta}{sub 155} chromophore, was, useful in effecting the resolution of the chromophore properties and in assigning the experimentally observed rate constants for energy transfer to specific pathways.

  5. Energy transfer in Anabaena variabilis filaments under nitrogen depletion, studied by time-resolved fluorescence.

    PubMed

    Onishi, Aya; Aikawa, Shimpei; Kondo, Akihiko; Akimoto, Seiji

    2015-08-01

    Some filamentous cyanobacteria (including Anabaena) differentiate into heterocysts under nitrogen-depleted conditions. During differentiation, the phycobiliproteins and photosystem II in the heterocysts are gradually degraded. Nitrogen depletion induces changes in the pigment composition of both vegetative cells and heterocysts, which affect the excitation energy transfer processes. To investigate the changes in excitation energy transfer processes of Anabaena variabilis filaments grown in standard medium (BG11) and a nitrogen-free medium (BG110), we measured their steady-state absorption spectra, steady-state fluorescence spectra, and time-resolved fluorescence spectra (TRFS) at 77 K. TRFS were measured with a picosecond time-correlated single photon counting system. The pigment compositions of the filaments grown in BG110 changed throughout the growth period; the relative phycocyanin levels monotonically decreased, whereas the relative carotenoid (Car) levels decreased and then recovered to their initial value (at day 0), with formation of lower-energy Cars. Nitrogen starvation also altered the fluorescence kinetics of PSI; the fluorescence maximum of TRFS immediately after excitation occurred at 735, 740, and 730 nm after 4, 8, and 15 days growth in BG110, respectively. Based on these results, we discuss the excitation energy transfer dynamics of A. variabilis filaments under the nitrogen-depleted condition throughout the growth period. PMID:25596847

  6. A Vertically Integrated CMOS Microsystem for Time-Resolved Fluorescence Analysis.

    PubMed

    Rae, Bruce R; Jingbin Yang; McKendry, Jonathan; Zheng Gong; Renshaw, David; Girkin, John M; Erdan Gu; Dawson, Martin D; Henderson, R K

    2010-12-01

    We describe a two-chip micro-scale time-resolved fluorescence analyzer integrating excitation, detection, and filtering. A new 8×8 array of drivers realized in standard low-voltage 0.35-μm complementary metal-oxide semiconductor is bump-bonded to AlInGaN blue micro-pixellated light-emitting diodes (micro-LEDs). The array is capable of producing sample excitation pulses with a width of 777 ps (FWHM), enabling short lifetime fluorophores to be investigated. The fluorescence emission is detected by a second, vertically-opposed 16 × 4 array of single-photon avalanche diodes (SPADs) fabricated in 0.35-μm high-voltage CMOS technology with in-pixel time-gated photon counting circuitry. Captured chip data are transferred to a PC for further processing, including histogramming, lifetime extraction, calibration and background/noise compensation. This constitutes the smallest reported solid-state microsystem for fluorescence decay analysis, replacing lasers, photomultiplier tubes, bulk optics, and discrete electronics. The system is demonstrated with measurements of fluorescent colloidal quantum dot and Rhodamine samples. PMID:23853381

  7. Capturing molecular structural dynamics by 100 ps time-resolved X-ray absorption spectroscopy.

    PubMed

    Sato, Tokushi; Nozawa, Shunsuke; Ichiyanagi, Kohei; Tomita, Ayana; Chollet, Matthieu; Ichikawa, Hirohiko; Fujii, Hiroshi; Adachi, Shin Ichi; Koshihara, Shin Ya

    2009-01-01

    An experimental set-up for time-resolved X-ray absorption spectroscopy with 100 ps time resolution at beamline NW14A at the Photon Factory Advanced Ring is presented. The X-ray positional active feedback to crystals in a monochromator combined with a figure-of-merit scan of the laser beam position has been utilized as an essential tool to stabilize the spatial overlap of the X-ray and laser beams at the sample position. As a typical example, a time-resolved XAFS measurement of a photo-induced spin crossover reaction of the tris(1,10-phenanthrorine)iron(II) complex in water is presented. PMID:19096182

  8. New time-resolved micro-photoluminescence spectroscopy of natural and synthetic analogue minerals

    NASA Astrophysics Data System (ADS)

    Panczer, G.; Ollier, N.; Champagnon, B.; Gaft, M.

    2003-04-01

    Minerals as well as geomaterials often present light emissions under UV or visible excitations. This property called photoluminescence is due to low concentration impurities such as the rare earths, the transition elements and the lanthanides. The induced color is used for ore prospection but only spectroscopic analyses indicate the nature of the emitted centers. However natural samples contained numerous luminescent centers simultaneously and with regular steady-state measurements (such as in cathodoluminescence) all the emissions are often over lapping. In order to record the contributions of each separate center, it is possible to use time-resolved measurements based on the decay time of the emissions and using pulsed laser excitation. Some characteristic examples will be presented on apatites, zircons as well as gemstones. Geomaterials present as well micro scale heterogeneities (growth zoning, inclusions, devitrification, microphases...). Precise identification and optical effects of such heterogeneities have to be taken into account. To reach the microscale using photo luminescence studies, a microscope has be modified to allowed pulsed laser injection (from UV to visible), beam focus with micro scale resolution on the sample (<10 μm), as well as time resolved collection of micro fluorescence. Such equipment allows now undertaking time-resolved measurements of microphases. Applications on geomaterials will be presented.

  9. Time-Resolved Fluorescence Depolarization Study Of Lamellar To Inverted Cylindrical Micellar Phase

    NASA Astrophysics Data System (ADS)

    Cheng, Kwan H.

    1989-05-01

    The orientational order and rotational dynamics of 2-(3-(diphenyl-hexatrienyl) propanoy11-3-palmitoyl-L-a-phosphatidylcholine (DPH-PC) embedded in dioleoplphosphatidylethanolamine (DOPE) were studied by time-resolved fluorescence depolarization technique. Upon increasing the temperature, the wobbling diffusion constant D⊥ of DPH-PC was found to decrease at the lamellar (Lα) to inverted cylindrical (HII) phase transition (12°C). The calculated ratio of order parameter in the La phase to that in the HII phase was close to the theoretical value of 2.0 as predicted from the change in packing symmetry. The effects of butylated hydroxytoluene, cholesterol and phosphatidylchollne on this phase transition were also examined.

  10. A CMOS Time-Resolved Fluorescence Lifetime Analysis Micro-System.

    PubMed

    Rae, Bruce R; Muir, Keith R; Gong, Zheng; McKendry, Jonathan; Girkin, John M; Gu, Erdan; Renshaw, David; Dawson, Martin D; Henderson, Robert K

    2009-01-01

    We describe a CMOS-based micro-system for time-resolved fluorescence lifetime analysis. It comprises a 16 × 4 array of single-photon avalanche diodes (SPADs) fabricated in 0.35 μm high-voltage CMOS technology with in-pixel time-gated photon counting circuitry and a second device incorporating an 8 × 8 AlInGaN blue micro-pixellated light-emitting diode (micro-LED) array bump-bonded to an equivalent array of LED drivers realized in a standard low-voltage 0.35 μm CMOS technology, capable of producing excitation pulses with a width of 777 ps (FWHM). This system replaces instrumentation based on lasers, photomultiplier tubes, bulk optics and discrete electronics with a PC-based micro-system. Demonstrator lifetime measurements of colloidal quantum dot and Rhodamine samples are presented. PMID:22291564

  11. Development of a Rapid Insulin Assay by Homogenous Time-Resolved Fluorescence.

    PubMed

    Farino, Zachary J; Morgenstern, Travis J; Vallaghe, Julie; Gregor, Nathalie; Donthamsetti, Prashant; Harris, Paul E; Pierre, Nicolas; Freyberg, Robin; Charrier-Savournin, Fabienne; Javitch, Jonathan A; Freyberg, Zachary

    2016-01-01

    Direct measurement of insulin is critical for basic and clinical studies of insulin secretion. However, current methods are expensive and time-consuming. We developed an insulin assay based on homogenous time-resolved fluorescence that is significantly more rapid and cost-effective than current commonly used approaches. This assay was applied effectively to an insulin secreting cell line, INS-1E cells, as well as pancreatic islets, allowing us to validate the assay by elucidating mechanisms by which dopamine regulates insulin release. We found that dopamine functioned as a significant negative modulator of glucose-stimulated insulin secretion. Further, we showed that bromocriptine, a known dopamine D2/D3 receptor agonist and newly approved drug used for treatment of type II diabetes mellitus, also decreased glucose-stimulated insulin secretion in islets to levels comparable to those caused by dopamine treatment. PMID:26849707

  12. A CMOS Time-Resolved Fluorescence Lifetime Analysis Micro-System

    PubMed Central

    Rae, Bruce R.; Muir, Keith R.; Gong, Zheng; McKendry, Jonathan; Girkin, John M.; Gu, Erdan; Renshaw, David; Dawson, Martin D.; Henderson, Robert K.

    2009-01-01

    We describe a CMOS-based micro-system for time-resolved fluorescence lifetime analysis. It comprises a 16 × 4 array of single-photon avalanche diodes (SPADs) fabricated in 0.35 μm high-voltage CMOS technology with in-pixel time-gated photon counting circuitry and a second device incorporating an 8 × 8 AlInGaN blue micro-pixellated light-emitting diode (micro-LED) array bump-bonded to an equivalent array of LED drivers realized in a standard low-voltage 0.35 μm CMOS technology, capable of producing excitation pulses with a width of 777 ps (FWHM). This system replaces instrumentation based on lasers, photomultiplier tubes, bulk optics and discrete electronics with a PC-based micro-system. Demonstrator lifetime measurements of colloidal quantum dot and Rhodamine samples are presented. PMID:22291564

  13. Development of a Rapid Insulin Assay by Homogenous Time-Resolved Fluorescence

    PubMed Central

    Vallaghe, Julie; Gregor, Nathalie; Donthamsetti, Prashant; Harris, Paul E.; Pierre, Nicolas; Freyberg, Robin; Charrier-Savournin, Fabienne; Javitch, Jonathan A.; Freyberg, Zachary

    2016-01-01

    Direct measurement of insulin is critical for basic and clinical studies of insulin secretion. However, current methods are expensive and time-consuming. We developed an insulin assay based on homogenous time-resolved fluorescence that is significantly more rapid and cost-effective than current commonly used approaches. This assay was applied effectively to an insulin secreting cell line, INS-1E cells, as well as pancreatic islets, allowing us to validate the assay by elucidating mechanisms by which dopamine regulates insulin release. We found that dopamine functioned as a significant negative modulator of glucose-stimulated insulin secretion. Further, we showed that bromocriptine, a known dopamine D2/D3 receptor agonist and newly approved drug used for treatment of type II diabetes mellitus, also decreased glucose-stimulated insulin secretion in islets to levels comparable to those caused by dopamine treatment. PMID:26849707

  14. Estimation of crude oil grade using time-resolved fluorescence spectra.

    PubMed

    Hegazi, E; Hamdan, A

    2002-04-01

    Time-resolved fluorescence (TRF) spectra of six crude oils from the eastern province of Saudi Arabia were excited using a pulsed laser radiation at 250 nm and measured at specific time gates (TG) within the leading and trailing edges of the laser temporal pulse. The spectra showed the presence of a shoulder near 380 nm that systematically decreased in intensity from high-grade to low-grade crudes, and also from earlier to later TGs. The intensities of these shoulders are shown to be useful in estimating the grades of crude oils, particularly when the TRF spectra are measured at TGs within the leading edge of the laser temporal pulse. Contour diagrams depicting the shapes of the TRF spectra as function of TG (within the leading and trailing edges) are also presented to serve as true fingerprints of the crudes. PMID:18968578

  15. Non-contact characterization of bacteria by time-resolved fluorescence

    NASA Astrophysics Data System (ADS)

    Bouchard, Alain; Frechette, Julie; Long, William F.; Vernon, Marcia; Cormier, Jean-Francois; Vallee, Real; Mafu, Akier A.; Lemay, Marie-Josee

    2004-07-01

    Accurate real-time methods for the detection of pathogenic microorganisms in the agri-food industry would represent an improvement over standard methods of analysis. We are currently developing a non-contact, scanning optical system for the detection of bacteria on meat surfaces based on fluorescence lifetime and intensity measurements. The system detects autofluorescent light emitted by the naturally occurring fluorophores in bacteria. Potential expected advantages of this system include accurate and efficient 2D real-time mapping of bacterial contamination of surfaces, and elimination of sample-to-sample cross-contamination. Furthermore, as the technique only requires minimal sample preparation and handling, the chemical properties of the specimen are preserved. This article presents the preliminary results obtained from a time-resolved fluorescence imaging system for the characterization of a non-pathogenic gram-negative bacteria, Pseudomonas fluorescens. Additionally we present a particular application of the system of interest to the agri-food industry, demonstrating its potential as a real-time macroscopic imaging system for mapping bacterial contamination on meat surfaces. Initial results indicate that the combination of fluorescence lifetime and intensity measurements provides a means for characterizing biological media and for detecting microorganisms on surfaces.

  16. Disentangling Multichannel Photodissociation Dynamics in Acetone by Time-Resolved Photoelectron-Photoion Coincidence Spectroscopy.

    PubMed

    Maierhofer, Paul; Bainschab, Markus; Thaler, Bernhard; Heim, Pascal; Ernst, Wolfgang E; Koch, Markus

    2016-08-18

    For the investigation of photoinduced dynamics in molecules with time-resolved pump-probe photoionization spectroscopy, it is essential to obtain unequivocal information about the fragmentation behavior induced by the laser pulses. We present time-resolved photoelectron-photoion coincidence (PEPICO) experiments to investigate the excited-state dynamics of isolated acetone molecules triggered by two-photon (269 nm) excitation. In the complex situation of different relaxation pathways, we unambiguously identify three distinct pump-probe ionization channels. The high selectivity of PEPICO detection allows us to observe the fragmentation behavior and to follow the time evolution of each channel separately. For channels leading to fragment ions, we quantitatively obtain the fragment-to-parent branching ratio and are able to determine experimentally whether dissociation occurs in the neutral molecule or in the parent ion. These results highlight the importance of coincidence detection for the interpretation of time-resolved photochemical relaxation and dissociation studies if multiple pathways are present. PMID:27459051

  17. Time-resolved spectroscopy using a chopper wheel as a fast shutter

    NASA Astrophysics Data System (ADS)

    Wang, Shicong; Wendt, Amy E.; Boffard, John B.; Lin, Chun C.

    2015-01-01

    Widely available, small form-factor, fiber-coupled spectrometers typically have a minimum exposure time measured in milliseconds, and thus cannot be used directly for time-resolved measurements at the microsecond level. Spectroscopy at these faster time scales is typically done with an intensified charge coupled device (CCD) system where the image intensifier acts as a "fast" electronic shutter for the slower CCD array. In this paper, we describe simple modifications to a commercially available chopper wheel system to allow it to be used as a "fast" mechanical shutter for gating a fiber-coupled spectrometer to achieve microsecond-scale time-resolved optical measurements of a periodically pulsed light source. With the chopper wheel synchronized to the pulsing of the light source, the time resolution can be set to a small fraction of the pulse period by using a chopper wheel with narrow slots separated by wide spokes. Different methods of synchronizing the chopper wheel and pulsing of the light sources are explored. The capability of the chopper wheel system is illustrated with time-resolved measurements of pulsed plasmas.

  18. Time-resolved spectroscopy using a chopper wheel as a fast shutter

    SciTech Connect

    Wang, Shicong; Wendt, Amy E.; Boffard, John B.; Lin, Chun C.

    2015-01-15

    Widely available, small form-factor, fiber-coupled spectrometers typically have a minimum exposure time measured in milliseconds, and thus cannot be used directly for time-resolved measurements at the microsecond level. Spectroscopy at these faster time scales is typically done with an intensified charge coupled device (CCD) system where the image intensifier acts as a “fast” electronic shutter for the slower CCD array. In this paper, we describe simple modifications to a commercially available chopper wheel system to allow it to be used as a “fast” mechanical shutter for gating a fiber-coupled spectrometer to achieve microsecond-scale time-resolved optical measurements of a periodically pulsed light source. With the chopper wheel synchronized to the pulsing of the light source, the time resolution can be set to a small fraction of the pulse period by using a chopper wheel with narrow slots separated by wide spokes. Different methods of synchronizing the chopper wheel and pulsing of the light sources are explored. The capability of the chopper wheel system is illustrated with time-resolved measurements of pulsed plasmas.

  19. A multi-analytical investigation of semi-conductor pigments with time-resolved spectroscopy and imaging

    NASA Astrophysics Data System (ADS)

    Nevin, A.; Cesaratto, A.; D'Andrea, C.; Valentini, Gianluca; Comelli, D.

    2013-05-01

    We present the non-invasive study of historical and modern Zn- and Cd-based pigments with time-resolved fluorescence spectroscopy, fluorescence multispectral imaging and fluorescence lifetime imaging (FLIM). Zinc oxide and Zinc sulphide are semiconductors which have been used as white pigments in paintings, and the luminescence of these pigments from trapped states is strongly dependent on the presence of impurities and crystal defects. Cadmium sulphoselenide pigments vary in hue from yellow to deep red based on their composition, and are another class of semiconductor pigments which emit both in the visible and the near infrared. The Fluorescence lifetime of historical and modern pigments has been measured using both an Optical Multichannel Analyser (OMA) coupled with a Nd:YAG nslaser, and a streak camera coupled with a ps-laser for spectrally-resolved fluorescence lifetime measurements. For Znbased pigments we have also employed Fluorescence Lifetime Imaging (FLIM) for the measurement of luminescence. A case study of FLIM applied to the analysis of the painting by Vincent Van Gogh on paper - "Les Bretonnes et le pardon de Pont-Aven" (1888) is presented. Through the integration of complementary, portable and non-invasive spectroscopic techniques, new insights into the optical properties of Zn- and Cd-based pigments have been gained which will inform future analysis of late 19th] and early 20th C. paintings.

  20. Photodissociation of thioglycolic acid studied by femtosecond time-resolved transient absorption spectroscopy

    SciTech Connect

    Attar, Andrew R.; Blumling, Daniel E.; Knappenberger, Kenneth L. Jr.

    2011-01-14

    Steady-state and time-resolved spectroscopies were employed to study the photodissociation of both the neutral (HS-CH{sub 2}-COOH) and doubly deprotonated ({sup -}S-CH{sub 2}-COO{sup -}) forms of thioglycolic acid (TGA), a common surface-passivating ligand used in the aqueous synthesis and organization of semiconducting nanostructures. Room temperature UV-Vis absorption spectroscopy indicated strong absorption by the S{sub 1} and S{sub 2} excited states at 250 nm and 185 nm, respectively. The spectrum also contained a weaker absorption band that extended to approximately 550 nm, which was assigned to the {pi}{sub CO}{sup *}(leftarrow)n{sub O} transition. Femtosecond time-resolved transient absorption spectroscopy was performed on TGA using 400 nm excitation and a white-light continuum probe to provide the temporally and spectrally resolved data. Both forms of TGA underwent a photoinduced dissociation from the excited state to form an {alpha}-thiol-substituted acyl radical ({alpha}-TAR, S-CH{sub 2}-CO). For the acidic form of TGA, radical formation occurred with an apparent time constant of 60 {+-} 5 fs; subsequent unimolecular decay took 400 {+-} 60 fs. Similar kinetics were observed for the deprotonated form of TGA (70 {+-} 10 fs radical formation; 420 {+-} 40 fs decay). The production of the {alpha}-TAR was corroborated by the observation of its characteristic optical absorption. Time-resolved data indicated that the photoinduced dissociation of TGA via cleavage of the C-OH bond occurred rapidly ({<=}100 fs). The prevalence of TGA in aqueous semiconducting nanoparticles makes its absorption in the visible spectral region and subsequent dissociation key to understanding the behavior of nanoscale systems.

  1. Polarization and time-resolved photoluminescence spectroscopy of excitons in MoSe2 monolayers

    NASA Astrophysics Data System (ADS)

    Wang, G.; Palleau, E.; Amand, T.; Tongay, S.; Marie, X.; Urbaszek, B.

    2015-03-01

    We investigate valley exciton dynamics in MoSe2 monolayers in polarization- and time-resolved photoluminescence (PL) spectroscopy at 4 K. Following circularly polarized laser excitation, we record a low circular polarization degree of the PL of typically ≤5%. This is about 10 times lower than the polarization induced under comparable conditions in MoS2 and WSe2 monolayers. The evolution of the exciton polarization as a function of excitation laser energy and power is monitored in PL excitation experiments. Fast PL emission times are recorded for both the neutral exciton of ≤3 ps and for the charged exciton (trion) of 12 ps.

  2. A CAMAC system controlled by an IBM AT computer for time-resolved spectroscopy

    SciTech Connect

    Lindquist, L.O.; Moss, C.E.

    1987-01-01

    An IBM AT computer interfaced to a small CAMAC system offers considerable power without the complexity and expense of a large general-purpose system. Our system for time-resolved spectroscopy features menu-driven FORTRAN-based software; high-resolution and high-speed (8K channels, 5-..mu..s fixed dead time) ADCs; segmentable histogram memories (24-bit counts) with large memory space for many histogram segments; independently variable separate histogram dwell times; remote control via a CAMAC serial highway; and ground isolation between the data acquisition equipment and control computer by means of fiber optics.

  3. Application of time-resolved resonance Raman spectroscopy to intramolecular electron transfer

    SciTech Connect

    Schoonover, J.R.; Strouse, G.F.; Chen, P.; Bates, D.; Meyer, T.J. )

    1993-06-09

    Time-resolved resonance Raman spectroscopy has been applied for the first time to the study of intramolecular electron transfer in a chromophore-quencher complex, based on a metal-to-ligand charge-transfer (MLCT) excited state. These measurements allow for (1) the identification of redox sites that are reached following excitation and (2) the inferring of structural information in short-lived intermediates. This technique is a more sensitive probe than transient absorption as shown by its application to the redox-separated complex shown below involving a pyridinium acceptor and a phenothiazine donor.

  4. Absorption spectroscopy of powdered materials using time-resolved diffuse optical methods.

    PubMed

    D'Andrea, Cosimo; Obraztsova, Ekaterina A; Farina, Andrea; Taroni, Paola; Lanzani, Guglielmo; Pifferi, Antonio

    2012-11-10

    In this paper a novel method, based on time-resolved diffuse optical spectroscopy, is proposed to measure the absorption of small amounts of nanostructured powder materials independent of scattering. Experimental validation, in the visible and near-infrared spectral range, has been carried out on India Inkparticles. The effectiveness of the technique to measure scattering-free absorption is demonstrated on carbon nanotubes. The comparison between the absorption spectra acquired by the proposed method and conventional measurements performed with a commercial spectrophotometer is discussed. PMID:23142900

  5. Comparison of organic phantom recipes and characterization by time-resolved diffuse optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Quarto, G.; Pifferi, A.; Bargigia, I.; Farina, A.; Cubeddu, R.; Taroni, P.

    2013-06-01

    Three recipes for tissue constituent-equivalent phantoms of water and lipids are presented. Nature phantoms are made using no emulsifying agent, but just a professional disperser, instead Agar and Triton phantoms are made using agar or Triton X-100, respectively, as agents to emulsify water and lipids. Different water-to-lipid ratios ranging from 30 to 70 percent by mass are proposed and tested. Optical characterization by time-resolved spectroscopy was performed in terms of optical properties, homogeneity, reproducibility and composition retrieval.

  6. A CAMAC system controlled by an IBM AT computer for time-resolved spectroscopy

    SciTech Connect

    Lindquist, L.O.; Moss, C.E.

    1987-08-01

    An IBM AT computer interfaced to a small CAMAC system offers considerable power without the complexity and expense of a large general-purpose system. The authors' system for time-resolved spectroscopy features menu-driven FORTRAN-based software; high-resolution and high-speed 98K channels, 5-..mu..s fixed dead time) ADCs; segmentable histogram memories (24-bit counts) with large memory space for many histogram segments; independently variable separate histogram dwell times; remote control via a CAMAC serial highway; and ground isolation between the data acquisition equipment and control computer by means of fiber optics.

  7. Nonlinear Raman Techniques in Femtosecond Time Resolved Spectroscopy for the Analysis and Control of Molecular Dynamics

    SciTech Connect

    Materny, Arnulf; Konradi, Jakow; Namboodiri, Vinu; Namboodiri, Mahesh; Scaria, Abraham

    2008-11-14

    The use of four-wave mixing techniques in femtosecond time-resolved spectroscopy has considerable advantages. Due to the many degrees of freedom offered e.g. by coherent anti-Stokes Raman scattering (CARS), the dynamics even of complex systems can be analyzed in detail. Using pulse shaping techniques in combination with a self-learning loop approach, molecular mode excitation can be controlled very efficiently in a multi-photon excitation process. Results obtained from the optimal control of CARS on {beta}-carotene are discussed.

  8. Conventional and Time-Resolved Infrared Spectroscopy of La-1111 Thin Films

    NASA Astrophysics Data System (ADS)

    Xi, Xiaoxiang; Dai, Y.; Homes, C.; Kidszun, M.; Haindl, S.; Carr, G.

    2013-03-01

    We have performed both conventional as well as time-resolved far-infrared spectroscopy on LaFeAsO1-xFx pnictide thin films. The conventional spectroscopy results can be fit using a simple gapped superconductor + normal conductor two-component model. Absorption by quasiparticles in a gap system with nodes is a plausible explanation for the normal component [Lobo et al. Phys. Rev. B 82, 100506(R) (2010)]. The time-resolved study is performed by laser-pump, far-IR probe spectroscopy using synchrotron radiation at NSLS beamline U4IR. A laser pulse breaks superconducting pairs and the synchrotron probe is used to sense the recombination process. In contrast to the picosecond response observed for cuprate superconductors, we observe a nanosecond response typical of a fully gapped superconductor where phonon-bottleneck effects slow the effective recombination rate. This result suggests the presence of a full isotropic gap, as might exist at lower energies due to electronic scattering [Carbotte et al. Phys. Rev. B 81, 104510 (2010)]. Supported by the U.S. Dep't. of Energy under contract DE-AC02-98CH10886 at Brookhaven Nat'l Lab.

  9. A versatile and reconfigurable setup for all-terahertz time-resolved pump-probe spectroscopy

    NASA Astrophysics Data System (ADS)

    Elezzabi, A. Y.; Maraghechi, P.

    2012-05-01

    A versatile optical setup for all-terahertz (THz) time resolved pump-probe spectroscopy was designed and tested. By utilizing a dual THz pulse generator emitter module, independent and synchronized THz radiation pump and probe pulses were produced, thus eliminating the need for THz beam splitters and the limitations associated with their implementation. The current THz setup allows for precise control of the electric fields splitting ratio between the THz radiation pump and probe pulses, as well as in-phase, out-of-phase, and polarization dependent pump-probe spectroscopy. Since the present THz pump-probe setup does not require specialized THz radiation optical components, such as phase shifters, polarization rotators, or wide bandwidth beam splitters, it can be easily implemented with minimal alterations to a conventional THz time domain spectroscopy system. The present setup is valuable for studying the time dynamics of THz coherent phenomena in solid-state, chemical, and biological systems.

  10. The singlet-oxygen-sensitized delayed fluorescence in mammalian cells: a time-resolved microscopy approach.

    PubMed

    Scholz, Marek; Biehl, Anna-Louisa; Dědic, Roman; Hála, Jan

    2015-04-01

    The present work provides a proof-of-concept that the singlet oxygen-sensitized delayed fluorescence (SOSDF) can be detected from individual living mammalian cells in a time-resolved microscopy experiment. To this end, 3T3 mouse fibroblasts incubated with 100 μM TPPS4 or TMPyP were used and the microsecond kinetics of the delayed fluorescence (DF) were recorded. The analysis revealed that SOSDF is the major component of the overall DF signal. The microscopy approach enables precise control of experimental conditions - the DF kinetics are clearly influenced by the presence of the (1)O2 quencher (sodium azide), H2O/D2O exchange, and the oxygen concentration. Analysis of SOSDF kinetics, which was reconstructed as a difference DF kinetics between the unquenched and the NaN3-quenched samples, provides a cellular (1)O2 lifetime of τΔ = 1-2 μs and a TPPS4 triplet lifetime of τT = 22 ± 5 μs in agreement with previously published values. The short SOSDF acquisition times, typically in the range of tens of seconds, enable us to study the dynamic cellular processes. It is shown that SOSDF lifetimes increase during PDT-like treatment, which may provide valuable information about changes of the intracellular microenvironment. SOSDF is proposed and evaluated as an alternative tool for (1)O2 detection in biological systems. PMID:25591544

  11. A homogeneous time-resolved fluorescence resonance energy transfer assay for phosphatidylserine exposure on apoptotic cells.

    PubMed

    Gasser, Jean-Philippe; Hehl, Michaela; Millward, Thomas A

    2009-01-01

    A simple, "mix-and-measure" microplate assay for phosphatidylserine (PtdSer) exposure on the surface of apoptotic cells is described. The assay exploits the fact that annexin V, a protein with high affinity and specificity for PtdSer, forms trimers and higher order oligomers on binding to membranes containing PtdSer. The transition from soluble monomer to cell-bound oligomer is detected using time-resolved fluorescence resonance energy transfer from europium chelate-labeled annexin V to Cy5-labeled annexin V. PtdSer detection is achieved by a single addition of a reagent mix containing labeled annexins and calcium ions directly to cell cultures in a 96-well plate, followed by a brief incubation before fluorescence measurement. The assay can be used to quantify PtdSer exposure on both suspension cells and adherent cells in situ. This method is simpler and faster than existing annexin V binding assays based on flow cytometry or microscopy, and it yields precise data with Z' values of 0.6-0.7. PMID:18835236

  12. The use of time-resolved fluorescence in gel-based proteomics for improved biomarker discovery

    NASA Astrophysics Data System (ADS)

    Sandberg, AnnSofi; Buschmann, Volker; Kapusta, Peter; Erdmann, Rainer; Wheelock, Åsa M.

    2010-02-01

    This paper describes a new platform for quantitative intact proteomics, entitled Cumulative Time-resolved Emission 2-Dimensional Gel Electrophoresis (CuTEDGE). The CuTEDGE technology utilizes differences in fluorescent lifetimes to subtract the confounding background fluorescence during in-gel detection and quantification of proteins, resulting in a drastic improvement in both sensitivity and dynamic range compared to existing technology. The platform is primarily designed for image acquisition in 2-dimensional gel electrophoresis (2-DE), but is also applicable to 1-dimensional gel electrophoresis (1-DE), and proteins electroblotted to membranes. In a set of proof-of-principle measurements, we have evaluated the performance of the novel technology using the MicroTime 100 instrument (PicoQuant GmbH) in conjunction with the CyDye minimal labeling fluorochromes (GE Healthcare, Uppsala, Sweden) to perform differential gel electrophoresis (DIGE) analyses. The results indicate that the CuTEDGE technology provides an improvement in the dynamic range and sensitivity of detection of 3 orders of magnitude as compared to current state-of-the-art image acquisition instrumentation available for 2-DE (Typhoon 9410, GE Healthcare). Given the potential dynamic range of 7-8 orders of magnitude and sensitivities in the attomol range, the described invention represents a technological leap in detection of low abundance cellular proteins, which is desperately needed in the field of biomarker discovery.

  13. Time-resolved spectroscopy of the Mercury 6 3P1 state

    NASA Technical Reports Server (NTRS)

    Halstead, J. A.; Reeves, R. R.

    1981-01-01

    The time-resolved fluorescence was observed from the Hg 6 3P1 state under the influence of the earth's magnetic field and with applied fields of up to 14 G. Modulation of the fluorescence decay signal was observed as a function of both time and space and can be interpreted in terms of a classical precession of the excited atom about the magnetic field or as quantum beats resulting from interference between coherently populated Zeeman sublevels. This modulation was studied for each of the five resolvable components of the hyperfine structure separately. The fluorescence from the even isotopes was determined to be almost completely modulated while the fluorescence from the odd isotopes was only partially modulated. The frequency of modulation of the fluorescence from the mercury-202 isotope was observed as a function of the applied magnetic field and a value for the Lande factor of 1.46 + or - 0.03 was obtained. This is within experimental error of the accepted value of 1.486. In addition, the frequency of modulation as a function of applied magnetic field was determined for each of the three resolvable components with more than one contributing isotopic hyperfine line. An investigation of the effect of radiation trapping on the degree modulation was also made.

  14. ULTRAFAST CHEMISTRY: Using Time-Resolved Vibrational Spectroscopy for Interrogation of Structural Dynamics

    NASA Astrophysics Data System (ADS)

    Nibbering, Erik T. J.; Fidder, Henk; Pines, Ehud

    2005-05-01

    Time-resolved infrared (IR) and Raman spectroscopy elucidates molecular structure evolution during ultrafast chemical reactions. Following vibrational marker modes in real time provides direct insight into the structural dynamics, as is evidenced in studies on intramolecular hydrogen transfer, bimolecular proton transfer, electron transfer, hydrogen bonding during solvation dynamics, bond fission in organometallic compounds and heme proteins, cis-trans isomerization in retinal proteins, and transformations in photochromic switch pairs. Femtosecond IR spectroscopy monitors the site-specific interactions in hydrogen bonds. Conversion between excited electronic states can be followed for intramolecular electron transfer by inspection of the fingerprint IR- or Raman-active vibrations in conjunction with quantum chemical calculations. Excess internal vibrational energy, generated either by optical excitation or by internal conversion from the electronic excited state to the ground state, is observable through transient frequency shifts of IR-active vibrations and through nonequilibrium populations as deduced by Raman resonances.

  15. Time-Resolved Vibrational and Electronic Spectroscopy in Shocked Ammonium Perchlorate Single Crystals

    NASA Astrophysics Data System (ADS)

    Gruzdkov, Yuri; Winey, Michael; Feng, Ruqiang

    1997-07-01

    Experimental methods to obtain time-resolved Raman and absorption spectroscopy data on shocked ammonium perchlorate (AP) single crystals were developed. These included: (a) target designs for thin sample shock wave reverberation experiments; (b) techniques to perform Raman measurements with non-transparent flyers; and (c) adaptation of a high-velocity, 20 mm powder gun for optical spectroscopy. Good quality Raman and absorption spectra, with 50 ns resolution, have been obtained for shock compression along the [210] and [001] directions. Results for peak pressures up to 18 GPa and calculated temperatures up to 600 K are presented. Pressure/temperature-induced frequency hardening and broadening of the different AP Raman modes is observed. Evidence for shock-induced chemical decomposition is discussed.

  16. Uranium and nitrate remote sensing in the nuclear fuel cycle by time-resolved laser-induced fluorescence

    NASA Astrophysics Data System (ADS)

    Moulin, Christophe; Couston, Laurent; Decambox, Pierre; Mauchien, Patrick; Pouyat, Dominique

    1994-12-01

    Time-Resolved Laser-Induced Fluorescence has been used for uranium and nitrate remote sensing in the nuclear fuel cycle. Advantages of this technique are aside sensitivity and selectivity, its ability to perform remote measurements via fiber optics and optode. Uranium is usually determined by the standard addition method but by applying a fluorescence model taking into account complexation and absorption phenomena, it is possible to directly determine uranium concentration. Nitrate concentration is determined after spectral deconvolution of the uranium fluorescence spectrum.

  17. Time-Resolved Photoluminescence Spectroscopy and Imaging: New Approaches to the Analysis of Cultural Heritage and Its Degradation

    PubMed Central

    Nevin, Austin; Cesaratto, Anna; Bellei, Sara; D'Andrea, Cosimo; Toniolo, Lucia; Valentini, Gianluca; Comelli, Daniela

    2014-01-01

    Applications of time-resolved photoluminescence spectroscopy (TRPL) and fluorescence lifetime imaging (FLIM) to the analysis of cultural heritage are presented. Examples range from historic wall paintings and stone sculptures to 20th century iconic design objects. A detailed description of the instrumentation developed and employed for analysis in the laboratory or in situ is given. Both instruments rely on a pulsed laser source coupled to a gated detection system, but differ in the type of information they provide. Applications of FLIM to the analysis of model samples and for the in-situ monitoring of works of art range from the analysis of organic materials and pigments in wall paintings, the detection of trace organic substances on stone sculptures, to the mapping of luminescence in late 19th century paintings. TRPL and FLIM are employed as sensors for the detection of the degradation of design objects made in plastic. Applications and avenues for future research are suggested. PMID:24699285

  18. Wide-field time-resolved luminescence imaging and spectroscopy to decipher obliterated documents in forensic science

    NASA Astrophysics Data System (ADS)

    Suzuki, Mototsugu; Akiba, Norimitsu; Kurosawa, Kenji; Kuroki, Kenro; Akao, Yoshinori; Higashikawa, Yoshiyasu

    2016-01-01

    We applied a wide-field time-resolved luminescence (TRL) method with a pulsed laser and a gated intensified charge coupled device (ICCD) for deciphering obliterated documents for use in forensic science. The TRL method can nondestructively measure the dynamics of luminescence, including fluorescence and phosphorescence lifetimes, which prove to be useful parameters for image detection. First, we measured the TRL spectra of four brands of black porous-tip pen inks on paper to estimate their luminescence lifetimes. Next, we acquired the TRL images of 12 obliterated documents at various delay times and gate times of the ICCD. The obliterated contents were revealed in the TRL images because of the difference in the luminescence lifetimes of the inks. This method requires no pretreatment, is nondestructive, and has the advantage of wide-field imaging, which makes it is easy to control the gate timing. This demonstration proves that TRL imaging and spectroscopy are powerful tools for forensic document examination.

  19. Radiative lifetime measurements of some Tm I and Tm II levels by time-resolved laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Tian, Yanshan; Wang, Xinghao; Yu, Qi; Li, Yongfan; Gao, Yang; Dai, Zhenwen

    2016-04-01

    Radiative lifetimes of 88 levels of Tm I in the energy range 22 791.176-48 547.98 cm-1 and 29 levels of Tm II in the range 27 294.79-65 612.85 cm-1 were measured by time-resolved laser-induced fluorescence spectroscopy in laser-ablation plasma. The lifetime values obtained are in the range from 15.4 to 7900 ns for Tm I and from 36.5 to 1000 ns for Tm II. To the best of our knowledge, 77 lifetimes of Tm I and 22 lifetimes of Tm II are reported for the first time. Good agreements between the present results and the previous experimental values were achieved for both Tm I and Tm II.

  20. Time-resolved excitation density dependent fluorescence of R-phycoerythrin single crystal

    NASA Astrophysics Data System (ADS)

    Wang, H. Z.; Zheng, X. G.; Zhao, F. L.; Gao, Z. L.; Yu, Z. X.; Zhu, J. C.; Jiang, L. J.; Zhang, J. P.; Liang, D. C.

    1994-05-01

    The fluorescence kinetics of a new single crystal, R-phycoerythrin (R-PE), has been studied by picosecond laser spectroscopy. An excitonic band, which is much more narrow than that of the molecular fluorescnece, is observed. At high pump density, superradiance of excitons in the bulk pure single crystal is recorded. The experimental results of fluorescence kinetics and exciton superradiance of R-PE crystal demonstrate that exciton energy transfer is natural, effective and rapid. It is concluded that excitons play an important role in energy transfer in the antennae of photosynthetic systems.

  1. Simultaneous detection of sulfamethazine and sulfaquinoxaline using a dual-label time-resolved fluorescence immunoassay.

    PubMed

    Le, Tao; Yan, Peifeng; Liu, Jin; Wei, Shu

    2013-01-01

    A dual-label time-resolved fluoroimmunoassay (TRFIA) was introduced for the simultaneous quantification of sulfamethazine (SM2) and sulfaquinoxaline (SQX). Lanthanide (Eu(3+) and Sm(3+))-labelled antibodies were used because lanthanides have higher stabilities and narrower emission spectra than most fluorescent dyes. The sensitivity of the TRFIA for SM2 was 0.02 ng ml(-1), and the average recoveries and the intra- and inter-assay CVs were 77.2-107.6%, 5.4-10.5%, and 6.0-11.2%, respectively. The sensitivity of the TRFIA for SQX was 0.04 ng ml(-1); and the average recoveries and the intra- and inter-assay CVs were 74.1-102.8%, 4.6-10.9%, and 8.7-11.2%, respectively. The method was used to analyse chicken tissue and egg samples, and the results agreed well with the results of HPLC and enzyme-linked immunosorbent assay (ELISA) analyses, with correlation coefficients (R(2)) of 0.9415-0.9724. The TRFIA developed is a simple, fast and sensitive method for the high-throughput simultaneous screening of SM2 and SQX in edible animal tissues. PMID:23782396

  2. A homogeneous time-resolved fluorescence assay to identify inhibitors of HIV-1 fusion.

    PubMed

    Smeulders, Liesbet; Bunkens, Lieve; Vereycken, Inge; Van Acker, Koen; Holemans, Pascale; Gustin, Emmanuel; Van Loock, Marnix; Dams, Géry

    2013-01-01

    The human immunodeficiency virus type 1 (HIV-1) initiates infection through sequential interactions with CD4 and chemokine coreceptors unmasking the gp41 subunit of the viral envelope protein. Consequently, the N-terminal heptad repeats of gp41 form a trimeric coiled-coil groove in which the C-terminal heptad repeats collapse, generating a stable six-helix bundle. This brings the viral and cell membrane in close proximity enabling fusion and the release of viral genome in the cytosol of the host cell. In this chapter, we describe a homogeneous time-resolved fluorescence assay to identify inhibitors of HIV-1 fusion, based on the ability of soluble peptides, derived from the N- and C-terminal domains of gp41, to form a stable six-helix bundle in vitro. Labeling of the peptides with allophycocyanin and the lanthanide europium results in a Föster resonance energy transfer (FRET) signal upon formation of the six-helix bundle. Compounds interfering with the six-helix bundle formation inhibit the HIV-1 fusion process and suppress the FRET signal. PMID:23821256

  3. Full time-resolved diffuse fluorescence tomography accelerated with parallelized Fourier-series truncated diffusion approximation

    NASA Astrophysics Data System (ADS)

    Yi, Xi; Wang, Bingyuan; Wan, Wenbo; Wang, Yihan; Zhang, Yanqi; Zhao, Huijuan; Gao, Feng

    2015-05-01

    Of the three measurement schemes established for diffuse fluorescence tomography (DFT), the time-domain scheme is well known to provide the richest information about the distribution of the targeting fluorophore in living tissues. However, the explicit use of the full time-resolved data usually leads to a considerably lengthy time for image reconstruction, limiting its applications to three-dimensional or small-volume imaging. To cope with the adversity, we propose herein a computationally efficient scheme for DFT image reconstruction where the time-dependent photon density is expanded to a Fourier-series and calculated by solving the independent frequency-domain diffusion equations at multiple sampling frequencies with the support of a combined multicore CPU-based coarse-grain and multithread GPU-based fine-grain parallelization strategy. With such a parallelized Fourier-series truncated diffusion approximation, both the time- and frequency-domain inversion procedures are developed and validated for their effectiveness and accuracy using simulative and phantom experiments. The results show that the proposed method can generate reconstructions comparable to the explicit time-domain scheme, with significantly reduced computational time.

  4. Validation and evaluation of a novel time-resolved laser-induced fluorescence technique

    NASA Astrophysics Data System (ADS)

    Durot, C. J.; Gallimore, A. D.; Smith, T. B.

    2014-01-01

    We present a novel technique to measure time-resolved laser-induced fluorescence signals in plasma sources that have a relatively constant Fourier spectrum of oscillations in steady-state operation, but are not periodically pulsed, e.g., Hall thrusters. The technique uses laser modulation of the order of MHz and recovers signal via a combination of band-pass filtering, phase-sensitive detection, and averaging over estimated transfer functions calculated for many different cycles of the oscillation. Periodic discharge current oscillations were imposed on a hollow cathode. Measurements were validated by comparison with independent measurements from a lock-in amplifier and by comparing the results of the transfer function average to an independent analysis technique triggering averaging over many oscillation cycles in the time domain. The performance of the new technique is analyzed and compared to prior techniques, and it is shown that this new technique has a niche in measurements where the analog photomultiplier signal has a nonwhite noise spectral density and cycles of oscillation are not sufficiently repeatable to allow for reliable triggering or a meaningful average waveform in the time domain.

  5. Validation and evaluation of a novel time-resolved laser-induced fluorescence technique.

    PubMed

    Durot, C J; Gallimore, A D; Smith, T B

    2014-01-01

    We present a novel technique to measure time-resolved laser-induced fluorescence signals in plasma sources that have a relatively constant Fourier spectrum of oscillations in steady-state operation, but are not periodically pulsed, e.g., Hall thrusters. The technique uses laser modulation of the order of MHz and recovers signal via a combination of band-pass filtering, phase-sensitive detection, and averaging over estimated transfer functions calculated for many different cycles of the oscillation. Periodic discharge current oscillations were imposed on a hollow cathode. Measurements were validated by comparison with independent measurements from a lock-in amplifier and by comparing the results of the transfer function average to an independent analysis technique triggering averaging over many oscillation cycles in the time domain. The performance of the new technique is analyzed and compared to prior techniques, and it is shown that this new technique has a niche in measurements where the analog photomultiplier signal has a nonwhite noise spectral density and cycles of oscillation are not sufficiently repeatable to allow for reliable triggering or a meaningful average waveform in the time domain. PMID:24517766

  6. Time resolved optical biopsy spectroscopy of normal, benign and malignant tissues from NADH and FAD changes

    NASA Astrophysics Data System (ADS)

    Masilamani, V.; Das, B. B.; Secor, J.; AlSalhi, M.; Amer, S. B.; Farhat, K.; Rabah, D.; Alfano, R. R.

    2012-01-01

    Histo pathological examination is the gold standard to discriminate between benign and malignant growth of tissue. But this is invasive and stressful. Hence many non invasive imaging techniques, such as CT, MRI, PET, etc are employed, each having certain advantages and disadvantages. In this context optical biopsy is a newly emerging technique, since it employs non-ionizing radiation like light or laser, which could be shined directly or launched through optical fiber to reach any part of the body. This paper reports results of time resolved emission spectra of 24 excised tissue sample (normal control=12; benign=4; malignant=8) of breast and prostate, employing a 390nm, 100 fs, Ti-Sapphire laser pulses. The fluorescence decay times were measured using streak camera and fitted for single and bi- exponential decays with reliability of 97%. Our results show the distinct difference between normal, benign and malignant tissues attributed changes of NADH and FAD levels.

  7. Capturing interfacial photoelectrochemical dynamics with picosecond time-resolved X-ray photoelectron spectroscopy.

    PubMed

    Neppl, Stefan; Shavorskiy, Andrey; Zegkinoglou, Ioannis; Fraund, Matthew; Slaughter, Daniel S; Troy, Tyler; Ziemkiewicz, Michael P; Ahmed, Musahid; Gul, Sheraz; Rude, Bruce; Zhang, Jin Z; Tremsin, Anton S; Glans, Per-Anders; Liu, Yi-Sheng; Wu, Cheng Hao; Guo, Jinghua; Salmeron, Miquel; Bluhm, Hendrik; Gessner, Oliver

    2014-01-01

    Time-resolved core-level spectroscopy using laser pulses to initiate and short X-ray pulses to trace photoinduced processes has the unique potential to provide electronic state- and atomic site-specific insight into fundamental electron dynamics in complex systems. Time-domain studies using transient X-ray absorption and emission techniques have proven extremely valuable to investigate electronic and structural dynamics in isolated and solvated molecules. Here, we describe the implementation of a picosecond time-resolved X-ray photoelectron spectroscopy (TRXPS) technique at the Advanced Light Source (ALS) and its application to monitor photoinduced electron dynamics at the technologically pertinent interface formed by N3 dye molecules anchored to nanoporous ZnO. Indications for a dynamical chemical shift of the Ru3d photoemission line originating from the N3 metal centre are observed ∼30 ps after resonant HOMO-LUMO excitation with a visible laser pump pulse. The transient changes in the TRXPS spectra are accompanied by a characteristic surface photovoltage (SPV) response of the ZnO substrate on a pico- to nanosecond time scale. The interplay between the two phenomena is discussed in the context of possible electronic relaxation and recombination pathways that lead to the neutralisation of the transiently oxidised dye after ultrafast electron injection. A detailed account of the experimental technique is given including an analysis of the chemical modification of the nano-structured ZnO substrate during extended periods of solution-based dye sensitisation and its relevance for studies using surface-sensitive spectroscopy techniques. PMID:25415599

  8. Microcontroller based resonance tracking unit for time resolved continuous wave cavity-ringdown spectroscopy measurements

    NASA Astrophysics Data System (ADS)

    Votava, Ondrej; Mašát, Milan; Parker, Alexander E.; Jain, Chaithania; Fittschen, Christa

    2012-04-01

    We present in this work a new tracking servoloop electronics for continuous wave cavity-ringdown absorption spectroscopy (cw-CRDS) and its application to time resolved cw-CRDS measurements by coupling the system with a pulsed laser photolysis set-up. The tracking unit significantly increases the repetition rate of the CRDS events and thus improves effective time resolution (and/or the signal-to-noise ratio) in kinetics studies with cw-CRDS in given data acquisition time. The tracking servoloop uses novel strategy to track the cavity resonances that result in a fast relocking (few ms) after the loss of tracking due to an external disturbance. The microcontroller based design is highly flexible and thus advanced tracking strategies are easy to implement by the firmware modification without the need to modify the hardware. We believe that the performance of many existing cw-CRDS experiments, not only time-resolved, can be improved with such tracking unit without any additional modification to the experiment.

  9. Modelling Time-Resolved Two-Dimensional Electronic Spectroscopy of the Primary Photoisomerization Event in Rhodopsin

    PubMed Central

    2015-01-01

    Time-resolved two-dimensional (2D) electronic spectra (ES) tracking the evolution of the excited state manifolds of the retinal chromophore have been simulated along the photoisomerization pathway in bovine rhodopsin, using a state-of-the-art hybrid QM/MM approach based on multiconfigurational methods. Simulations of broadband 2D spectra provide a useful picture of the overall detectable 2D signals from the near-infrared (NIR) to the near-ultraviolet (UV). Evolution of the stimulated emission (SE) and excited state absorption (ESA) 2D signals indicates that the S1 → SN (with N ≥ 2) ESAs feature a substantial blue-shift only after bond inversion and partial rotation along the cis → trans isomerization angle, while the SE rapidly red-shifts during the photoinduced skeletal relaxation of the polyene chain. Different combinations of pulse frequencies are proposed in order to follow the evolution of specific ESA signals. These include a two-color 2DVis/NIR setup especially suited for tracking the evolution of the S1 → S2 transitions that can be used to discriminate between different photochemical mechanisms of retinal photoisomerization as a function of the environment. The reported results are consistent with the available time-resolved pump–probe experimental data, and may be used for the design of more elaborate transient 2D electronic spectroscopy techniques. PMID:24794143

  10. Simple photomultiplier tube internal-gating method for use in subnanosecond time-resolved spectroscopy.

    PubMed

    Iwata, Tetsuo; Takasu, Tsuyoshi; Araki, Tsutomu

    2003-09-01

    We propose a simple photomultiplier tube (PMT) internal-gating method for use in the field of subnanosecond time-resolved spectroscopy. In the proposed method, we control two dynodes in the PMT by applying a gate signal whose pulse width is Tg. When controlling the mth and the n(> m)th dynodes, a resolution time delta t is approximately given by delta t = Tg-(n-m) tau, where tau is a transit time of a lump of secondary electrons traveling between the two dynodes in the PMT. In principle, the resolution time delta t shorter than the pulse width Tg of the gate signal can be easily obtained. From a fundamental performance test, we found that a subnanosecond resolution time delta t = 0.31 ns was obtained for the case of m = 2 and n = 5. To demonstrate the effectiveness of the proposed method, we carried out a time-resolved spectroscopic measurement of emission obtained from a white-light-emitting diode (LED) driven by a nanosecond current pulse. PMID:14611045

  11. Time-resolved Fourier transform infrared spectroscopy: Application to pulsed discharges

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Kentarou; Hama, Yoichi; Nishida, Shigeki

    2005-07-01

    Time-resolved Fourier transform spectroscopy (TR-FTS) is reviewed, with emphasis on synchronous FTS using continuously scanning interferometers. By using a high-resolution Bruker IFS 120 HR, a TR-FTS method has been developed with the help of a microcontroller SX, where a maximum of 64 time-resolved data are recorded with a preset time interval in a single scan of the interferometer. The time resolution is 1 μs, limited by the response time of the detector system used. This method has been applied to a pulsed discharge in an Ar and H 2 mixture to observe time profiles of ArH + and ArH emission spectra. Electronic transitions of He 2 have been observed in the infrared region with this method, and from the time profiles, He 2 in Rydberg states with higher energy than the b3Π state is found to be produced efficiently in afterglow plasma. Fifteen bands in the 2300-8000 cm -1 region have been assigned by using previously reported data from the optical region. A new band from the 5 f state has been assigned for the first time through the 5 f-4 d band in the 2600 cm -1 region.

  12. Isotope effect on hydrated electron relaxation dynamics studied with time-resolved liquid jet photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Elkins, Madeline H.; Williams, Holly L.; Neumark, Daniel M.

    2016-05-01

    The excited state relaxation dynamics of the solvated electron in H2O and D2O are investigated using time-resolved photoelectron spectroscopy in a liquid microjet. The data show that the initial excited state decays on a time scale of 75 ± 12 fs in H2O and 102 ± 8 fs in D2O, followed by slower relaxation on time scales of 400 ± 70 fs and 390 ± 70 fs that are isotopically invariant within the precision of our measurements. Based on the time evolution of the transient signals, the faster and slower time constants are assigned to p → s internal conversion (IC) of the hydrated electron and relaxation on the ground electronic state, respectively. This assignment is consistent with the non-adiabatic mechanism for relaxation of the hydrated electron and yields an isotope effect of 1.4 ± 0.2 for IC of the hydrated electron.

  13. Time-resolved spectroscopy of spin-current emission from a magnetic insulator

    NASA Astrophysics Data System (ADS)

    Tateno, Yuma; Fukami, Masaya; Tashiro, Takaharu; Ando, Kazuya

    2016-05-01

    We demonstrate time-resolved spectroscopy of spin-current emission from a magnetic insulator using the inverse spin Hall effect (ISHE). We measured magnetic field dependence of the spin-current emission in the time domain and found that the spectral shape of the ISHE voltage changes with time. The change in the spectral shape is due to field and power dependent temporal oscillation of the spin pumping driven by parametric magnons. The observed oscillating spin-current emission driven by dipole-exchange magnons is well reproduced by a model calculation based on the S theory. In contrast, the spin-current emission driven by short-wavelength exchange magnons cannot be reproduced with this model, illustrating an important role of higher-order nonlinear effects in the spin-current emission.

  14. Time-resolved luminescence spectroscopy of structurally disordered K3WO3F3 crystals

    NASA Astrophysics Data System (ADS)

    Omelkov, S. I.; Spassky, D. A.; Pustovarov, V. A.; Kozlov, A. V.; Isaenko, L. I.

    2016-08-01

    Three emission centers of exciton-like origin, with distinct relaxation time, emission and excitation spectra were revealed in K3WO3F3 and described taking into account its structural disordering. Low-temperature monoclinic phase of K3WO3F3 features few anion sites with mixed oxygen/fluorine occupancy per [WO3F3] octahedron. Therefore, different kinds of distorted octahedra form, providing different luminescence centers. The time-resolved luminescence spectroscopy technique was applied to distinguish these centers. The simultaneous thermal quenching of them above ∼200 K was qualitatively explained involving dynamic structural disorder of the compound. The energy transfer mechanism between centers was found and tentatively described by the diffusion of excitons. Apart from intrinsic luminescence, the PL of defect-related centers was discovered and the role of shallow charge carrier traps in the low-temperature persistent luminescence was revealed.

  15. Femtosecond time-resolved impulsive stimulated Raman spectroscopy using sub-7-fs pulses: Apparatus and applications

    NASA Astrophysics Data System (ADS)

    Kuramochi, Hikaru; Takeuchi, Satoshi; Tahara, Tahei

    2016-04-01

    We describe details of the setup for time-resolved impulsive stimulated Raman spectroscopy (TR-ISRS). In this method, snapshot molecular vibrational spectra of the photoreaction transients are captured via time-domain Raman probing using ultrashort pulses. Our instrument features transform-limited sub-7-fs pulses to impulsively excite and probe coherent nuclear wavepacket motions, allowing us to observe vibrational fingerprints of transient species from the terahertz to 3000-cm-1 region with high sensitivity. Key optical components for the best spectroscopic performance are discussed. The TR-ISRS measurements for the excited states of diphenylacetylene in cyclohexane are demonstrated, highlighting the capability of our setup to track femtosecond dynamics of all the Raman-active fundamental molecular vibrations.

  16. Raman spectroscopy and time-resolved photoluminescence of BN and BxCyNz nanotubes

    SciTech Connect

    Wu, J.; Han, Wei-Qiang; Walukiewicz, W.; Ager III, J.W.; Shan, W.; Haller,E.E.; Zettl, A.

    2004-01-21

    We report Raman and time-resolved photoluminescence spectroscopic studies of multiwalled BN and B{sub x}C{sub y}N{sub z} nanotubes. The Raman spectroscopy shows that the as-grown B{sub x}C{sub y}N{sub z} charge recombination, respectively. Comparison of the photoluminescence of BN nanotubes to that decay process is characterized by two time constants that are attributed to intra- and inter-BN sheet nanotubes as predicted by theory. nanotubes are radially phase separated into BN shells and carbon shells. The photoluminescence of hexagonal BN is consistent with the existence of a spatially indirect band gap in multi-walled BN.

  17. Time-resolved broadband cavity-enhanced absorption spectroscopy for chemical kinetics.

    SciTech Connect

    Sheps, Leonid; Chandler, David W.

    2013-04-01

    Experimental measurements of elementary reaction rate coefficients and product branching ratios are essential to our understanding of many fundamentally important processes in Combustion Chemistry. However, such measurements are often impossible because of a lack of adequate detection techniques. Some of the largest gaps in our knowledge concern some of the most important radical species, because their short lifetimes and low steady-state concentrations make them particularly difficult to detect. To address this challenge, we propose a novel general detection method for gas-phase chemical kinetics: time-resolved broadband cavity-enhanced absorption spectroscopy (TR-BB-CEAS). This all-optical, non-intrusive, multiplexed method enables sensitive direct probing of transient reaction intermediates in a simple, inexpensive, and robust experimental package.

  18. Bayesian Comparison of Fit Parameters: An Application to Time-Resolved X-Ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Kashyap, V.

    Analysis of X-ray data of the stars AD Leo and Wolf 630, obtained with ROSAT provide important clues to the structure of the coronae on these low-mass, main-sequence stars. In particular, time-resolved X-ray spectroscopy of these stars allow us to derive estimates for the low- and high-temperature components of the plasma emission measures. Using Bayes' theorem, we show that the high-temperature components are correlated with the X-ray light-curves of the stars, while the low-temperature components are steady. Thus we are able to model the low-temperature emission as relatively compact, quiescent, static coronal loops, and the high-temperature emission as unstable flaring components.

  19. Time-resolved spectroscopy of mitochondria, cells, and rat tissues under normal and pathological conditions

    NASA Astrophysics Data System (ADS)

    Beauvoit, Bertrand; Kitai, Toshiyuki; Liu, Hanli; Chance, Britton

    1995-01-01

    In this study, the detailed dependence of the light scattering on the tissue architecture and intracellular composition was investigated. The reduced scattering coefficient ((mu) s') of isolated rat liver mitochondria, isolated liver cells and various rat tissues was measured at 780 nm by using time-resolved spectroscopy and a sample-substitution protocol. In a first part, extrapolations of the in vitro data to the in vivo situation showed that the mitochondrial compartment contributes for 73% of the scattering of the hepatocytes and about 100% of that of the whole liver. Finally, by analyzing different normal rat tissues and tumors, we have shown that the tissue (mu) s' is independent on the cell concentration in the tissue but is roughly proportional to the tissue mitochondrial content.

  20. Label-Free Toxin Detection by Means of Time-Resolved Electrochemical Impedance Spectroscopy

    PubMed Central

    Chai, Changhoon; Takhistov, Paul

    2010-01-01

    The real-time detection of trace concentrations of biological toxins requires significant improvement of the detection methods from those reported in the literature. To develop a highly sensitive and selective detection device it is necessary to determine the optimal measuring conditions for the electrochemical sensor in three domains: time, frequency and polarization potential. In this work we utilized a time-resolved electrochemical impedance spectroscopy for the detection of trace concentrations of Staphylococcus enterotoxin B (SEB). An anti-SEB antibody has been attached to the nano-porous aluminum surface using 3-aminopropyltriethoxysilane/glutaraldehyde coupling system. This immobilization method allows fabrication of a highly reproducible and stable sensing device. Using developed immobilization procedure and optimized detection regime, it is possible to determine the presence of SEB at the levels as low as 10 pg/mL in 15 minutes. PMID:22315560

  1. Time-Resolved Fluorescent Immunochromatography of Aflatoxin B1 in Soybean Sauce: A Rapid and Sensitive Quantitative Analysis

    PubMed Central

    Wang, Du; Zhang, Zhaowei; Li, Peiwu; Zhang, Qi; Zhang, Wen

    2016-01-01

    Rapid and quantitative sensing of aflatoxin B1 with high sensitivity and specificity has drawn increased attention of studies investigating soybean sauce. A sensitive and rapid quantitative immunochromatographic sensing method was developed for the detection of aflatoxin B1 based on time-resolved fluorescence. It combines the advantages of time-resolved fluorescent sensing and immunochromatography. The dynamic range of a competitive and portable immunoassay was 0.3–10.0 µg·kg−1, with a limit of detection (LOD) of 0.1 µg·kg−1 and recoveries of 87.2%–114.3%, within 10 min. The results showed good correlation (R2 > 0.99) between time-resolved fluorescent immunochromatographic strip test and high performance liquid chromatography (HPLC). Soybean sauce samples analyzed using time-resolved fluorescent immunochromatographic strip test revealed that 64.2% of samples contained aflatoxin B1 at levels ranging from 0.31 to 12.5 µg·kg−1. The strip test is a rapid, sensitive, quantitative, and cost-effective on-site screening technique in food safety analysis. PMID:27428975

  2. Time-Resolved Fluorescent Immunochromatography of Aflatoxin B1 in Soybean Sauce: A Rapid and Sensitive Quantitative Analysis.

    PubMed

    Wang, Du; Zhang, Zhaowei; Li, Peiwu; Zhang, Qi; Zhang, Wen

    2016-01-01

    Rapid and quantitative sensing of aflatoxin B1 with high sensitivity and specificity has drawn increased attention of studies investigating soybean sauce. A sensitive and rapid quantitative immunochromatographic sensing method was developed for the detection of aflatoxin B1 based on time-resolved fluorescence. It combines the advantages of time-resolved fluorescent sensing and immunochromatography. The dynamic range of a competitive and portable immunoassay was 0.3-10.0 µg·kg(-1), with a limit of detection (LOD) of 0.1 µg·kg(-1) and recoveries of 87.2%-114.3%, within 10 min. The results showed good correlation (R² > 0.99) between time-resolved fluorescent immunochromatographic strip test and high performance liquid chromatography (HPLC). Soybean sauce samples analyzed using time-resolved fluorescent immunochromatographic strip test revealed that 64.2% of samples contained aflatoxin B1 at levels ranging from 0.31 to 12.5 µg·kg(-1). The strip test is a rapid, sensitive, quantitative, and cost-effective on-site screening technique in food safety analysis. PMID:27428975

  3. Picosecond time-resolved absorption and fluorescence dynamics in the artificial bacteriorhodopsin pigment BR6.11.

    PubMed Central

    Brack, T. L.; Delaney, J. K.; Atkinson, G. H.; Albeck, A.; Sheves, M.; Ottolenghi, M.

    1993-01-01

    The picosecond molecular dynamics in an artificial bacteriorhodopsin (BR) pigment containing a structurally modified all-trans retinal chromphore with a six-membered ring bridging the C11=C12-C13 positions (BR6.11) are measured by picosecond transient absorption and picosecond time-resolved fluorescence spectroscopy. Time-dependent intensity and spectral changes in absorption in the 570-650-nm region are monitored for delays as long as 5 ns after the 7-ps, 573-nm excitation of BR6.11. Two intermediates, J6.11 and K6.11/1, both with enhanced absorption to the red (> 600 nm) of the BR6.11 spectrum are observed within approximately 50 ps. The J6.11 intermediate decays with a time constant of 12 +/- 3 ps to form K6.11/1. The K6.11/1 intermediate decays with an approximately 100-ps time constant to form a third intermediate, K6.11/2, which is observed through diminished 650-nm absorption (relative to that of K6.11/1). No other transient absorption changes are found during the remainder of the initial 5-ns period of the BR6.11 photoreaction. Fluorescence in the 650-900-nm region is observed from BR6.11, K6.11/1, and K6.11/2, but no emission assignable to J6.11 is found. The BR6.11 fluroescence spectrum has a approximately 725-nm maximum which is blue-shifted by approximately 15 nm relative to that of native BR-570 and is 4.2 +/- 1.5 times larger in intensity (same sample optical density). No differences in the profile of the fluorescence spectra of BR6.11 and the intermediates K6.11/1 and K6.11/2 are observed. Following ground-state depletion of the BR6.11 population, the time-resolved fluroescence intensity monitored at 725 nm increases with two time constants, 12 +/- 3 and approximately 100 ps, both of which correlate well with changes in the picosecond transient absorption data. The resonance Raman spectrum of ground-state BR6.11, measured with low-energy, 560-nm excitation, is significantly different from the spectrum of native BR-570, thus confirming that the

  4. Cy3 in AOT reverse micelles I. Dimer formation revealed through steady-state and time-resolved spectroscopy.

    PubMed

    McPhee, Jeffrey T; Scott, Eric; Levinger, Nancy E; Van Orden, Alan

    2011-08-11

    Cyanine-3 (Cy3) fluorescent dye molecules confined in sodium di-2-ethylhexyl sulfosuccinate (AOT) reverse micelles were examined using steady-state absorption and emission as well as time-resolved fluorescence spectroscopy to understand the effect of confinement on the spectroscopic properties of the dye. This study explored a wide range of reverse micelle sizes, with hydrodynamic radii ranging from ∼1.7 to ∼5 nm. The relative concentrations of Cy3 and AOT reverse micelles were such that, on average, one dye molecule was present for every 2 × 10(4) to 9 × 10(5) reverse micelles. In the smallest reverse micelles examined, observed changes in the absorption and emission spectra and fluorescence lifetime of the dye molecules indicated H-aggregation of Cy3 into side-by-side dimers. It is hypothesized that this dimerization is governed by the high local concentrations that result from the confinement of the Cy3 in the reverse micelles. What is notable about this study is that this dimer occurs even at overall dye concentrations in the nanomolar range. Such concentrations are too low for aggregation to occur in bulk solution. Hence, the reverse micelles serve as nanocatalysts for this aggregation process. PMID:21761942

  5. Time-resolved EUV spectroscopy in the early stage of laser ablation of carbon

    NASA Astrophysics Data System (ADS)

    Loiseleur, Pierre; Hansen, Tue N.; Larour, Jean; Lunney, James G.

    2002-09-01

    In the early stages of laser ablation the combination of high density and optical opacity makes it difficult to use visible spectroscopy for plasma diagnosis. However, these problems can be overcome by working at shorter wavelengths in the EUV. We have used time-resolved EUV emission spectroscopy to study the early stages (1-30 ns) of plasma development in the laser ablation of carbon at an irradiance of 5 GW cm -2. The ablation was done using a 6 ns Nd:YAG laser at 1.06 μm. The spectra were recorded using a grazing incidence spectrometer with a 5 ns-gated micro-channel plate (MCP) detector. An ion probe operating in the time-of-flight mode was used to measure the ion velocity distribution of the plasma outflow. In the 10-35 nm region the predominant line emission was due to Li-like carbon. The temporal variation of the electron density and temperature was deduced by fitting the observed spectrum to a synthetic spectrum calculated using the FLY numerical model of the plasma ionisation and excitation. The temperature deduced from spectroscopy was in good agreement with the estimation from the measured ion velocity distribution in the plasma outflow.

  6. Highly sensitive detection of human papillomavirus type 16 DNA using time-resolved fluorescence microscopy and long lifetime probes

    NASA Astrophysics Data System (ADS)

    Wang, Xue F.; Periasamy, Ammasi; Wodnicki, Pawel; Siadat-Pajouh, M.; Herman, Brian

    1995-04-01

    We have been interested in the role of Human Papillomavirus (HPV) in cervical cancer and its diagnosis; to that end we have been developing microscopic imaging and fluorescent in situ hybridization (FISH) techniques to genotype and quantitate the amount of HPV present at a single cell level in cervical PAP smears. However, we have found that low levels of HPV DNA are difficult to detect accurately because theoretically obtainable sensitivity is never achieved due to nonspecific autofluorescence, fixative induced fluorescence of cells and tissues, and autofluorescence of the optical components in the microscopic system. In addition, the absorption stains used for PAP smears are intensely autofluorescent. Autofluorescence is a rapidly decaying process with lifetimes in the range of 1-100 nsec, whereas phosphorescence and delayed fluorescence have lifetimes in the range of 1 microsecond(s) ec-10 msec. The ability to discriminate between specific fluorescence and autofluorescence in the time-domain has improved the sensitivity of diagnostic test such that they perform comparably to, or even more sensitive than radioisotopic assays. We have developed a novel time-resolved fluorescence microscope to improve the sensitivity of detection of specific molecules of interest in slide based specimens. This time-resolved fluorescence microscope is based on our recently developed fluorescence lifetime imaging microscopy (FILM) in conjunction with the use of long lifetime fluorescent labels. By using fluorescence in situ hybridization and the long lifetime probe (europium), we have demonstrated the utility of this technique for detection of HPV DNA in cervicovaginal cells. Our results indicate that the use of time-resolved fluorescence microscopy and long lifetime probes increases the sensitivity of detection by removing autofluorescence and will thus lead to improved early diagnosis of cervical cancer. Since the highly sensitive detection of DNA in clinical samples using

  7. Time-resolved X-ray spectroscopies of chemical systems: New perspectives

    PubMed Central

    Chergui, Majed

    2016-01-01

    The past 3–5 years have witnessed a dramatic increase in the number of time-resolved X-ray spectroscopic studies, mainly driven by novel technical and methodological developments. The latter include (i) the high repetition rate optical pump/X-ray probe studies, which have greatly boosted the signal-to-noise ratio for picosecond (ps) X-ray absorption spectroscopy studies, while enabling ps X-ray emission spectroscopy (XES) at synchrotrons; (ii) the X-ray free electron lasers (XFELs) are a game changer and have allowed the first femtosecond (fs) XES and resonant inelastic X-ray scattering experiments to be carried out; (iii) XFELs are also opening the road to the development of non-linear X-ray methods. In this perspective, I will mainly focus on the most recent technical developments and briefly address some examples of scientific questions that have been addressed thanks to them. I will look at the novel opportunities in the horizon. PMID:27376102

  8. Time-resolved reflectance spectroscopy for nondestructive assessment of fruit and vegetable quality

    NASA Astrophysics Data System (ADS)

    Torricelli, Alessandro; Spinelli, Lorenzo; Vanoli, Maristella; Rizzolo, Anna; Eccher Zerbini, Paola

    2007-09-01

    In the majority of food and feed, due to the microscopic spatial changes in the refractive index, visible (VIS) and near infrared (NIR) light undergoes multiple scattering events and the overall light distribution is determined more by scattering rather than absorption. Conventional steady state VIS/NIR reflectance spectroscopy can provide information on light attenuation, which depends both on light absorption and light scattering, but cannot discriminate these two effects. On the contrary, time-resolved reflectance spectroscopy (TRS) provides a complete optical characterisation of diffusive media in terms of their absorption coefficient and reduced scattering coefficient. From the assessment of the absorption and reduced scattering coefficients, information can then be derived on the composition and internal structure of the medium. Main advantages of the technique are the absolute non-invasiveness, the potentiality for non-contact measurements, and the capacity to probe internal properties with no influence from the skin. In this work we review the physical and technical issues related to the use of TRS for nondestructive quality assessment of fruit and vegetable. A laboratory system for broadband TRS, based on tunable mode-locked lasers and fast microchannel plate photomultiplier, and a portable setup for TRS measurements, based on pulsed diode lasers and compact metal-channel photomultiplier, will be described. Results on broadband optical characterisation of fruits and applications of TRS to the detection of internal defects in pears and to maturity assessment in nectarines will be presented.

  9. Cyclohexene Photo-oxidation over Vanadia Catalyst Analyzed by Time Resolved ATR-FT-IR Spectroscopy

    SciTech Connect

    Frei, Heinz; Mul, Guido; Wasylenko, Walter; Hamdy, M. Sameh; Frei, Heinz

    2008-06-04

    Vanadia was incorporated in the 3-dimensional mesoporous material TUD-1 with a loading of 2percent w/w vanadia. The performance in the selective photo-oxidation of liquid cyclohexene was investigated using ATR-FT-IR spectroscopy. Under continuous illumination at 458 nm a significant amount of product, i.e. cyclohexenone, was identified. This demonstrates for the first time that hydroxylated vanadia centers in mesoporous materials can be activated by visible light to induce oxidation reactions. Using the rapid scan method, a strong perturbation of the vanadyl environment could be observed in the selective oxidation process induced by a 458 nm laser pulse of 480 ms duration. This is proposed to be caused by interaction of the catalytic centre with a cyclohexenyl hydroperoxide intermediate. The restoration of the vanadyl environment could be kinetically correlated to the rate of formation of cyclohexenone, and is explained by molecular rearrangement and dissociation of the peroxide to ketone and water. The ketone diffuses away from the active center and ATR infrared probing zone, resulting in a decreasing ketone signal on the tens of seconds time scale after initiation of the photoreaction. This study demonstrates the high potential of time resolved ATR FT-IR spectroscopy for mechanistic studies of liquid phase reactions by monitoring not only intermediates and products, but by correlating the temporal behavior of these species to molecular changes of the vanadyl catalytic site.

  10. Time-resolved X-ray spectroscopies of chemical systems: New perspectives.

    PubMed

    Chergui, Majed

    2016-05-01

    The past 3-5 years have witnessed a dramatic increase in the number of time-resolved X-ray spectroscopic studies, mainly driven by novel technical and methodological developments. The latter include (i) the high repetition rate optical pump/X-ray probe studies, which have greatly boosted the signal-to-noise ratio for picosecond (ps) X-ray absorption spectroscopy studies, while enabling ps X-ray emission spectroscopy (XES) at synchrotrons; (ii) the X-ray free electron lasers (XFELs) are a game changer and have allowed the first femtosecond (fs) XES and resonant inelastic X-ray scattering experiments to be carried out; (iii) XFELs are also opening the road to the development of non-linear X-ray methods. In this perspective, I will mainly focus on the most recent technical developments and briefly address some examples of scientific questions that have been addressed thanks to them. I will look at the novel opportunities in the horizon. PMID:27376102

  11. Time-Resolved Spectroscopy and Near Infrared Imaging for Prostate Cancer Detection: Receptor-targeted and Native Biomarker

    NASA Astrophysics Data System (ADS)

    Pu, Yang

    Optical spectroscopy and imaging using near-infrared (NIR) light provides powerful tools for non-invasive detection of cancer in tissue. Optical techniques are capable of quantitative reconstructions maps of tissue absorption and scattering properties, thus can map in vivo the differences in the content of certain marker chromophores and/or fluorophores in normal and cancerous tissues (for example: water, tryptophan, collagen and NADH contents). Potential clinical applications of optical spectroscopy and imaging include functional tumor detection and photothermal therapeutics. Optical spectroscopy and imaging apply contrasts from intrinsic tissue chromophores such as water, collagen and NADH, and extrinsic optical contrast agents such as Indocyanine Green (ICG) to distinguish disease tissue from the normal one. Fluorescence spectroscopy and imaging also gives high sensitivity and specificity for biomedical diagnosis. Recent developments on specific-targeting fluorophores such as small receptor-targeted dye-peptide conjugate contrast agent offer high contrast between normal and cancerous tissues hence provide promising future for early tumour detection. This thesis focus on a study to distinguish the cancerous prostate tissue from the normal prostate tissues with enhancement of specific receptor-targeted prostate cancer contrast agents using optical spectroscopy and imaging techniques. The scattering and absorption coefficients, and anisotropy factor of cancerous and normal prostate tissues were investigated first as the basis for the biomedical diagnostic and optical imaging. Understanding the receptors over-expressed prostate cancer cells and molecular target mechanism of ligand, two small ICG-derivative dye-peptides, namely Cypate-Bombesin Peptide Analogue Conjugate (Cybesin) and Cypate-Octreotate Peptide Conjugate (Cytate), were applied to study their clinical potential for human prostate cancer detection. In this work, the steady-state and time-resolved

  12. Characterization of energetic and thermalized sputtered atoms in pulsed plasma using time-resolved tunable diode-laser induced fluorescence

    SciTech Connect

    Desecures, M.; Poucques, L. de; Easwarakhanthan, T.; Bougdira, J.

    2014-11-03

    In this work, a time-resolved tunable diode-laser (DL) induced fluorescence (TR-TDLIF) method calibrated by absorption spectroscopy has been developed in order to determine atom and flux velocity distribution functions (AVDF and FVDF) of the energetic and the thermalized atoms in pulsed plasmas. The experimental set-up includes a low-frequency (∼3 Hz) and high spectral-resolution DL (∼0.005 pm), a fast rise-time pulse generator, and a high power impulse magnetron sputtering (HiPIMS) system. The induced TR-TDLIF signal is recorded every 0.5 μs with a digital oscilloscope of a second-long trace. The technique is illustrated with determining the AVDF and the FVDF of a metastable state of the sputtered neutral tungsten atoms in the HiPIMS post-discharge. Gaussian functions describing the population of the four W isotopes were used to fit the measured TR-TDLIF signal. These distribution functions provide insight into transition from the energetic to thermalized regimes from the discharge onset. This technique may be extended with appropriate DLs to probe any species with rapidly changing AVDF and FVDF in pulsed and strongly oscillating plasmas.

  13. Time-resolved fluorescence studies of a transmembrane peptide sequence of the dopamine D2 receptor

    NASA Astrophysics Data System (ADS)

    Williams, Valerie L.; Courtney, Scott H.; Schuster, David I.; Murphy, Randall B.

    1994-08-01

    Highly hydrophobic peptides in small unilamellar vesicles can be used to model membrane-embedded proteins such as the dopamine D2 receptor. The transmembrane domains of the dopamine D2 receptor are known to contain residues corresponding to the binding sites for natural receptor ligands. We have developed a model system consisting of a peptide whose sequence was taken from the transmembrane region of the dopamine D2 receptor and incorporated it into phospholipid bilayers. This polypeptide sequence, NH2-D-V-L-Y-S-A-F-T-W-L-G-Y-V-N-S-A-V-N-P-I-I-Y-T- T-F-N-V-CO2H, contains a single tryptophan residue, whose fluorescence properties provides an intrinsic probe of the microenvironment of the peptide within the bilayer. Purification of this highly hydrophobic peptide required the development of a novel alcohol-based reversed-phase HPLC solvent system. The vesicles were produces by cosonication of the peptide with dimyristoylphosphatidylcholine lipid and were characterized by electron microscopy and fluorescence spectroscopy. Time- correlated single photon counting was sued to measure the fluorescence anisotropy of the system as a function of temperature across the lipid phase transition range and as a function of the peptide/lipid ratio.

  14. Time-resolved fluorescence anisotropy and fluctuation correlation analysis of major histocompatibility complex class I proteins in fibroblast cells.

    PubMed

    Heikal, Ahmed A

    2014-03-15

    Major histocompatibility complex class I proteins, MHC(I), are expressed in almost all nucleated cells and synthesized in the endoplasmic reticulum (ER). The orientation and mobility of these complexes are crucial in their biological function in the immune system, i.e., the cytosolic pathogen peptides loading and their presentation to T-cell receptors at the plasma membrane, where cell destruction is triggered. Here, we investigate the structural flexibility and associations of GFP-encoded MHC(I) alleles (H2L(d)), namely H2L(d)GFPin and H2L(d)GFPout, in cultured mouse fibroblast cells. Time-resolved fluorescence anisotropy of H2L(d)GFPin in the ER indicates a dominant overall tumbling motion of 56±7 ns (ER), with a fast conformational flexibility, as compared with a restricted rotation of H2L(d)GFPout. At the single-molecule level, the diffusion coefficient of H2L(d)GFPin and H2L(d)GFPout in the ER is (1.8±0.5)×10(-9) and (2.1±0.6)×10(-9) cm(2)/s, respectively, as revealed by fluorescence correlation spectroscopy. A complementary immunoblotting of H2L(d)GFP constructs, isolated from mouse fibroblast cells, reveals band at 75 kDa as compared with 29 kDa of the free EGFP. These real-time dynamics provide new insights into the structural flexibility and intracellular associations of GFP-labeled MHC(I) alleles (H2L(d)) in living cells. PMID:23811298

  15. A field programmable gate array-based time-resolved scaler for collinear laser spectroscopy with bunched radioactive potassium beams

    SciTech Connect

    Rossi, D. M. Davis, M.; Ringle, R.; Rodriguez, J. A.; Ryder, C. A.; Schwarz, S.; Sumithrarachchi, C.; Zhao, S.; Minamisono, K. Barquest, B. R.; Bollen, G.; Hughes, M.; Strum, R.; Tarazona, D.; Cooper, K.; Hammerton, K.; Mantica, P. F.; Morrissey, D. J.

    2014-09-15

    A new data acquisition system including a Field Programmable Gate Array (FPGA) based time-resolved scaler was developed for laser-induced fluorescence and beam bunch coincidence measurements. The FPGA scaler was tested in a collinear laser-spectroscopy experiment on radioactive {sup 37}K at the BEam COoler and LAser spectroscopy (BECOLA) facility at the National Superconducting Cyclotron Laboratory at Michigan State University. A 1.29 μs bunch width from the buncher and a bunch repetition rate of 2.5 Hz led to a background suppression factor of 3.1 × 10{sup 5} in resonant photon detection measurements. The hyperfine structure of {sup 37}K and its isotope shift relative to the stable {sup 39}K were determined using 5 × 10{sup 4} s{sup −1} {sup 37}K ions injected into the BECOLA beam line. The obtained hyperfine coupling constants A({sup 2}S{sub 1/2}) = 120.3(1.4) MHz, A({sup 2}P{sub 1/2}) = 15.2(1.1) MHz, and A({sup 2}P{sub 3/2}) = 1.4(8) MHz, and the isotope shift δν{sup 39,} {sup 37} = −264(3) MHz are consistent with the previously determined values, where available.

  16. Ultrafast protein dynamics of hemoglobin as studied by picosecond time-resolved resonance Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Mizutani, Yasuhisa; Nagai, Masako

    2012-03-01

    Time-resolved resonance Raman spectroscopy on human adult hemoglobin (HbA) following ligand photolysis revealed that the frequency of the iron-histidine stretching [ν(Fe-His)] mode exhibited a 2-cm-1 downshift with a time constant of about 300 ps, suggesting a structural change in the heme pocket following the ligand photolysis. Low-frequency heme modes suggested that the primary metastable form of HbA has a more disordered orientation of propionates and a less strained environment than the deoxy form. The latter fact is consistent with the experimental observation that the ν(Fe-His) frequency of the metastable form is higher than the deoxy form. The present study shows that HbA adopts a metastable structure within the instrument response time and remains little changed in the subnanosecond to nanosecond time regime. Characteristics of the primary protein response of HbA based on the comparison of the results of HbA with those of the isolated chains and myoglobin are discussed.

  17. Time-resolved spectroscopy of mitochondria, cells and tissues under normal and pathological conditions.

    PubMed

    Beauvoit, B; Chance, B

    1998-07-01

    In this study, the detailed dependence of light scattering on tissue architecture and intracellular composition has been investigated. Firstly, we simulated the reduced scattering coefficient (mu(s)') of the rat liver using the Mie theory, the Rayleigh-Debye-Gans approximation and electron microscopy data. Then, the reduced scattering coefficient of isolated rat liver mitochondria, isolated hepatocytes and various rat tissues (i.e. perfused liver, brain, muscle, tumors) was measured at 780 nm by using time-resolved spectroscopy and a sample-substitution protocol. The comparison of the isolated mitochondria data with the isolated hepatocyte and whole liver measurements suggests that the mitochondrial compartment is the primary factor for light propagation in hepatic tissue, thus strengthening the relevance of the preliminary theoretical study. Nevertheless, the possibility that other intracellular components, such as peroxisomes and lysosomes, interfere with light propagation in rat liver is discussed. Finally, we demonstrate that light scattering in normal rat tissues and tumors is roughly proportional to the mitochondrial content, according to estimates of the mitochondrial protein content of the tissues. PMID:9746339

  18. Quantification of ischemic muscle deoxygenation by near infrared time-resolved spectroscopy

    NASA Astrophysics Data System (ADS)

    Hamaoka, Takatumi; Katsumura, Toshihito; Murase, Norio; Nishio, Shinya; Osada, Takuya; Sako, Takayuki; Higuchi, Hiroyuki; Kurosawa, Yuko; Shimomitsu, Teruichi; Miwa, Mitsuharu; Chance, Britton

    2000-01-01

    The purpose of this study was to quantify muscle deoxygenation in human skeletal muscles using near infrared time-resolved spectroscopy (NIRTRS) and compare NIRTRS indicators and blood saturation. The forearm muscles of five healthy males (aged 27 - 32 yrs.) were monitored for changes in hemoglobin saturation (SO2) during 12 min of arterial occlusion and recovery. SO2 was determined by measuring the temporal profile of photon diffusion at 780 and 830 nm using NIRTRS, and was defined as SO2-TRS. Venous blood samples were also obtained for measurements of SvO2, and PvO2. Interstitial PO2(PintO2) was monitored by placing an O2 electrode directly into the muscle tissue. Upon the initiation of occlusion, all parameters fell progressively until reaching a plateau in the latter half of occlusion. It was observed at the end of occlusion that SO2-TRS (24.1 +/- 5.6%) agreed with SvO2 (26.2 +/- 6.4) and that PintO2 (14.7 +/- 1.0 Torr) agreed with PvO2 (17.3 +/- 2.2 Torr). The resting O2 store (oxygenated hemoglobin) and O2 consumption rate were 290 (mu) M and 0.82 (mu) Ms-1, respectively, values which reasonably agree with the reported results. These results indicate that there was no O2 gradient between vessels and interstisium at the end of occlusion.

  19. Time-resolved four-wave-mixing spectroscopy for inner-valence transitions.

    PubMed

    Ding, Thomas; Ott, Christian; Kaldun, Andreas; Blättermann, Alexander; Meyer, Kristina; Stooss, Veit; Rebholz, Marc; Birk, Paul; Hartmann, Maximilian; Brown, Andrew; Van Der Hart, Hugo; Pfeifer, Thomas

    2016-02-15

    Noncollinear four-wave-mixing (FWM) techniques at near-infrared (NIR), visible, and ultraviolet frequencies have been widely used to map vibrational and electronic couplings, typically in complex molecules. However, correlations between spatially localized inner-valence transitions among different sites of a molecule in the extreme ultraviolet (XUV) spectral range have not been observed yet. As an experimental step toward this goal, we perform time-resolved FWM spectroscopy with femtosecond NIR and attosecond XUV pulses. The first two pulses (XUV-NIR) coincide in time and act as coherent excitation fields, while the third pulse (NIR) acts as a probe. As a first application, we show how coupling dynamics between odd- and even-parity, inner-valence excited states of neon can be revealed using a two-dimensional spectral representation. Experimentally obtained results are found to be in good agreement with ab initio time-dependent R-matrix calculations providing the full description of multielectron interactions, as well as few-level model simulations. Future applications of this method also include site-specific probing of electronic processes in molecules. PMID:26872169

  20. [Photodissociation of Acetylene and Acetone using Step-Scan Time-Resolved FTIR Emission Spectroscopy

    NASA Technical Reports Server (NTRS)

    McLaren, Ian A.; Wrobel, Jacek D.

    1997-01-01

    The photodissociation of acetylene and acetone was investigated as a function of added quenching gas pressures using step-scan time-resolved FTIR emission spectroscopy. Its main components consist of Bruker IFS88, step-scan Fourier Transform Infrared (FTIR) spectrometer coupled to a flow cell equipped with Welsh collection optics. Vibrationally excited C2H radicals were produced from the photodissociation of acetylene in the unfocused experiments. The infrared (IR) emission from these excited C2H radicals was investigated as a function of added argon pressure. Argon quenching rate constants for all C2H emission bands are of the order of 10(exp -13)cc/molecule.sec. Quenching of these radicals by acetylene is efficient, with a rate constant in the range of 10(exp -11) cc/molecule.sec. The relative intensity of the different C2H emission bands did not change with the increasing argon or acetylene pressure. However, the overall IR emission intensity decreased, for example, by more than 50% when the argon partial pressure was raised from 0.2 to 2 Torr at fixed precursor pressure of 160mTorr. These observations provide evidence for the formation of a metastable C2H2 species, which are collisionally quenched by argon or acetylene. Problems encountered in the course of the experimental work are also described.

  1. Optical analysis of cirrhotic liver by near infrared time resolved spectroscopy

    NASA Astrophysics Data System (ADS)

    Nishio, Toshihiro; Kitai, Toshiyuki; Miwa, Mitsuharu; Takahashi, Rei; Yamaoka, Yoshio

    1999-10-01

    The severity of liver cirrhosis was related with the optical properties of liver tissue. Various grades of liver cirrhosis were produced in rats by intraperitoneal injection of thioacetamide (TAA) for different periods: 4 weeks, 8 weeks, 12 weeks, and 16 weeks. Optical properties of the liver, absorption, coefficient ((mu) a) and scattering coefficient (microsecond(s) '), were measured by near-infrared time- resolved spectroscopy. Histological examination confirmed cirrhotic changes in the liver, which were more severe in rats with TAA administration for longer periods. The (mu) a increased in 4- and 8-week rats, and then decreased in 12- and 16-week rats. The (mu) a of blood-free liver decreased as liver cirrhosis progressed. The hemoglobin content in the liver calculated from the (mu) a values increased in 4- and 8-week rats and decreased in 12- and 16-week rats. The microsecond(s) ' decreased in the cirrhotic liver, probably reflecting the decrease in the mitochondria content. It was shown that (mu) a and microsecond(s) ' determination is useful to assess the severity of liver cirrhosis.

  2. Time-resolved X-ray Absorption Spectroscopy for Electron Transport Study in Warm Dense Gold

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Won; Bae, Leejin; Engelhorn, Kyle; Heimann, Philip; Ping, Yuan; Barbrel, Ben; Fernandez, Amalia; Beckwith, Martha Anne; Cho, Byoung-Ick; GIST Team; IBS Team; LBNL Collaboration; SLAC Collaboration; LLNL Collaboration

    2015-11-01

    The warm dense Matter represents states of which the temperature is comparable to Fermi energy and ions are strongly coupled. One of the experimental techniques to create such state in the laboratory condition is the isochoric heating of thin metal foil with femtosecond laser pulses. This concept largely relies on the ballistic transport of electrons near the Fermi-level, which were mainly studied for the metals in ambient conditions. However, they were barely investigated in warm dense conditions. We present a time-resolved x-ray absorption spectroscopy measured for the Au/Cu dual layered sample. The front Au layer was isochorically heated with a femtosecond laser pulse, and the x-ray absorption changes around L-edge of Cu, which was attached on the backside of Au, was measured with a picosecond resolution. Time delays between the heating of the `front surface' of Au layer and the alternation of x-ray spectrum of Cu attached on the `rear surface' of Au indicate the energetic electron transport mechanism through Au in the warm dense conditions. IBS (IBS-R012-D1) and the NRF (No. 2013R1A1A1007084) of Korea.

  3. Time-Resolved Photoelectron Spectroscopy of Dissociating 1,2-Butadiene Molecules by High Harmonic Pulses.

    PubMed

    Iikubo, Ryo; Fujiwara, Takehisa; Sekikawa, Taro; Harabuchi, Yu; Satoh, Sota; Taketsugu, Tetsuya; Kayanuma, Yosuke

    2015-07-01

    Using 42 nm high harmonic pulses, the dissociation dynamics of 1,2-butadiene was investigated by time-resolved photoelectron spectroscopy (TRPES), enabling us to observe dynamical changes of multiple molecular orbitals (MOs) with higher temporal resolution than conventional light sources. Because each lower-lying occupied MO has particular spatial electron distribution, the structural dynamics of photochemical reaction can be revealed. On the femtosecond time scale, a short-lived excited state with a lifetime of 37 ± 15 fs and the coherent oscillation of the photoelectron yield stimulated by Hertzberg-Teller coupling were observed. Ab initio molecular dynamics simulations in the electronically excited state find three relaxation pathways from the vertically excited structure in S1 to the ground state, and one of them is the dominant relaxation pathway, observed as the short-lived excited state. On the picosecond time scale, the photoelectron yields related to the C-C bond decreased upon photoexcitation, indicating C-C bond cleavage. PMID:26266720

  4. Reactivity of Binuclear Tantalum Clusters on Silica: Characterization by Transient Time-Resolved Spectroscopy

    SciTech Connect

    Nemana, Sailendra; Sun, Junming; Gates, Bruce C.

    2008-05-08

    Binuclear tantalum clusters were synthesized from Ta(CH{sub 2}Ph){sub 5} (Ph is phenyl) on the surface of nonporous SiO{sub 2} (Aerosil), and their reactions with H{sub 2}, D{sub 2}, and ethylene were characterized by time-resolved infrared (IR), extended X-ray absorption fine structure (EXAFS), and X-ray absorption near edge spectroscopies. The EXAFS data indicate the formation in H{sub 2} of clusters with a Ta-Ta coordination number of approximately 1 and a bonding distance of 2.74 {angstrom}. Reactions of the supported clusters with D{sub 2} and H{sub 2} facilitate the interconversion of O-H and O-D groups on the SiO{sub 2} surface. Reaction of these clusters with ethylene led to their rapid fragmentation to give mononuclear tantalum complexes, as the tantalum was oxidized and new ligands formed, suggested by IR spectra to be ethyl. The results demonstrate a rough analogy between the chemistry of tantalum clusters on the SiO{sub 2} surface and their chemistry in solution. Because alkenes are suggested intermediates in the catalytic disproportionation of alkanes on supported tantalum, our results indicate how these intermediates might influence the nature of the catalytically active species.

  5. A compact time-resolved system for near infrared spectroscopy based on wavelength space multiplexing

    NASA Astrophysics Data System (ADS)

    Re, Rebecca; Contini, Davide; Caffini, Matteo; Cubeddu, Rinaldo; Spinelli, Lorenzo; Torricelli, Alessandro

    2010-11-01

    We designed and developed a compact dual-wavelength and dual-channel time-resolved system for near-infrared spectroscopy studies of muscle and brain. The system employs pulsed diode lasers as sources, compact photomultipliers, and time-correlated single photon counting boards for detection. To exploit the full temporal and dynamic range of the acquisition technique, we implemented an approach based on wavelength space multiplexing: laser pulses at the two wavelengths are alternatively injected into the two channels by means of an optical 2×2 switch. In each detection line (i.e., in each temporal window), the distribution of photon time-of-flights at one wavelength is acquired. The proposed approach increases the signal-to-noise ratio and avoids wavelength cross-talk with respect to the typical approach based on time multiplexing. The instrument was characterized on tissue phantoms to assess its properties in terms of linearity, stability, noise, and reproducibility. Finally, it was successfully tested in preliminary in vivo measurements on muscle during standard cuff occlusion and on the brain during a motor cortex response due to hand movements.

  6. Time-Resolved Ultraviolet Spectroscopy of the Missing Link Pulsar/LMXB PSR J1023

    NASA Astrophysics Data System (ADS)

    Knigge, Christian

    2013-10-01

    PSR J1023 is one of only three known ''missing link'' binary pulsars. These systems have been observed to switch at least once between a milli-second pulsar {MSP} state and a low-mass X-ray binary {LMXB} state. PSR J1023, in particular, was originally classified as an LMXB, but later {re-}discovered as a diskless 1.7 ms MSP. In June 2013, the system transitioned back to its X-ray- and optically bright LMXB state. There is an ongoing extensive X-ray, radio and optical monitoring campaign, but the critical ultraviolet {UV} waveband has so far remained largely unexplored. Since the system could return to a long-lasting low state at any time, and since the UV capability offered by HST may not be available for much longer, we here request DD time to obtain time-resolved UV spectroscopy of this system before it fades into the MSP state again. These observations will allow us to: {i} measure the spectral energy distribution of the accretion disk; {ii} search for evidence of an accretion disk wind; {iii} search for UV variability, including UV pulsations on the neutron star spin period; {iv} determine the reddening and extinction towards the system, and hence its luminosity and mass accretion rate.

  7. Noninvasive detection of concealed explosives: depth profiling through opaque plastics by time-resolved Raman spectroscopy.

    PubMed

    Petterson, Ingeborg E Iping; López-López, María; García-Ruiz, Carmen; Gooijer, Cees; Buijs, Joost B; Ariese, Freek

    2011-11-15

    The detection of explosives concealed behind opaque, diffusely scattering materials is a challenge that requires noninvasive analytical techniques for identification without having to manipulate the package. In this context, this study focuses on the application of time-resolved Raman spectroscopy (TRRS) with a picosecond pulsed laser and an intensified charge-coupled device (ICCD) detector for the noninvasive identification of explosive materials through several millimeters of opaque polymers or plastic packaging materials. By means of a short (250 ps) gate which can be delayed several hundred picoseconds after the laser pulse, the ICCD detector allows for the temporal discrimination between photons from the surface of a sample and those from deeper layers. TRRS was applied for the detection of the two main isomers of dinitrotoluene, 2,4-dinitrotoluene, and 2,6-dinitrotoluene as well as for various other components of explosive mixtures, including akardite II, diphenylamine, and ethyl centralite. Spectra were obtained through different diffuse scattering white polymer materials: polytetrafluoroethylene (PTFE), polyoxymethylene (POM), and polyethylene (PE). Common packaging materials of various thicknesses were also selected, including polystyrene (PS) and polyvinyl chloride (PVC). With the demonstration of the ability to detect concealed, explosives-related compounds through an opaque first layer, this study may have important applications in the security and forensic fields. PMID:21967622

  8. Electronic structure dynamics in a low bandgap polymer studied by time-resolved photoelectron spectroscopy.

    PubMed

    Cappel, Ute B; Plogmaker, Stefan; Terschlüsen, Joachim A; Leitner, Torsten; Johansson, Erik M J; Edvinsson, Tomas; Sandell, Anders; Karis, Olof; Siegbahn, Hans; Svensson, Svante; Mårtensson, Nils; Rensmo, Håkan; Söderström, Johan

    2016-08-01

    Means to measure the temporal evolution following a photo-excitation in conjugated polymers are a key for the understanding and optimization of their function in applications such as organic solar cells. In this paper we study the electronic structure dynamics by direct pump-probe measurements of the excited electrons in such materials. Specifically, we carried out a time-resolved photoelectron spectroscopy (TRPES) study of the polymer PCPDTBT by combining an extreme ultraviolet (XUV) high harmonic generation source with a time-of-flight spectrometer. After excitation to either the 1st excited state or to a higher excited state, we follow how the electronic structure develops and relaxes on the electron binding energy scale. Specifically, we follow a less than 50 fs relaxation of the higher exited state and a 10 times slower relaxation of the 1st excited state. We corroborate the results using DFT calculations. Our study demonstrates the power of TRPES for studying photo-excited electron energetics and dynamics of solar cell materials. PMID:27440450

  9. The vinyl + NO reaction : determining the products with time-resolved Fourier transform spectroscopy.

    SciTech Connect

    Osborn, David L; Zou, Peng; Klippenstein, Stephen J.

    2005-01-01

    We have studied the vinyl + NO reaction using time-resolved Fourier transform emission spectroscopy, complemented by electronic structure and microcanonical RRKM rate coefficient calculations. To unambiguously determine the reaction products, three precursors are used to produce the vinyl radical by laser photolysis: vinyl bromide, methyl vinyl ketone, and vinyl iodide. The emission spectra and theoretical calculations indicate that HCN + CH{sub 2}O is the only significant product channel for the C{sub 2}H{sub 3} + NO reaction near room temperature, in contradiction to several reports in the literature. Although CO emission is observed when vinyl bromide is used as the precursor, it arises from the reaction of NO with photofragments other than vinyl. This conclusion is supported by the absence of CO emission when vinyl iodide or methyl vinyl ketone is used. Prompt emission from vibrationally excited NO is evidence of the competition between back dissociation and isomerization of the initially formed nitrosoethylene adduct, consistent with previous work on the pressure dependence of this reaction. Our calculations indicate that production of products is dominated by the low energy portion of the energy distribution. The calculation also predicts an upper bound of 0.19% for the branching ratio of the H{sub 2}CNH + CO channel, which is consistent with our experimental results.

  10. Nonadiabatic Dynamics May Be Probed through Electronic Coherence in Time-Resolved Photoelectron Spectroscopy.

    PubMed

    Bennett, Kochise; Kowalewski, Markus; Mukamel, Shaul

    2016-02-01

    We present a hierarchy of Fermi golden rules (FGRs) that incorporate strongly coupled electronic/nuclear dynamics in time-resolved photoelectron spectroscopy (TRPES) signals at different levels of theory. Expansion in the joint electronic and nuclear eigenbasis yields the numerically most challenging exact FGR (eFGR). The quasistatic Fermi Golden Rule (qsFGR) neglects nuclear motion during the photoionization process but takes into account electronic coherences as well as populations initially present in the pumped matter as well as those generated internally by coupling between electronic surfaces. The standard semiclassical Fermi Golden Rule (scFGR) neglects the electronic coherences and the nuclear kinetic energy during the ionizing pulse altogether, yielding the classical Condon approximation. The coherence contributions depend on the phase-profile of the ionizing field, allowing coherent control of TRPES signals. The photoelectron spectrum from model systems is simulated using these three levels of theory. The eFGR and the qsFGR show temporal oscillations originating from the electronic or vibrational coherences generated as the nuclear wave packet traverses a conical intersection. These oscillations, which are missed by the scFGR, directly reveal the time-evolving splitting between electronic states of the neutral molecule in the curve-crossing regime. PMID:26691822

  11. Time-resolved spectroscopy of LiF:Mg,Cu,P.

    PubMed

    Mathur, V K; Barkyoumb, J H; Jarrett, Andrew

    2006-01-01

    Time-resolved spectroscopy measurements of LiF:Mg,Cu,P luminescence are presented to obtain a better understanding of the emission characteristics of this material. The intensities and decay of the emission bands were studied as a function of annealing temperature and ionising radiation (gamma) dose. Two peaks in the emission were observed at 367 and 466 nm when excited by the 266 nm laser radiation. The luminescence spectrum under band-to-band X-ray excitation shows a dominant emission approximately 390-400 nm, which resembles the reported thermoluminescence emission and is clearly different from the spectrum obtained using the 266 nm pulsed laser excitation. Annealing of the material to 300 degrees C increases the intensity of the 367 and 466 nm emission bands by an order of magnitude as well as changes the relative intensity of the bands. Additional emission bands, which are not evident in the thermoluminescence emission spectra, are seen at longer wavelengths that also increase with dose. Possible explanations for the observed emission spectra are discussed in this paper. PMID:16644981

  12. Nanosecond Time-Resolved Polarization Spectroscopies: Tools for Probing Protein Reaction Mechanisms

    PubMed Central

    Chen, Eefei; Goldbeck, Robert A.; Kliger, David S.

    2010-01-01

    Polarization methods, introduced in the 1800’s, offered one of the earliest ways to examine protein structure. Since then, many other structure-sensitive probes have been developed, but circular dichroism (CD) remains a powerful technique because of its versatility and the specificity of protein structural information that can be explored. With improvements in time-resolution, from millisecond to picosecond CD measurements, it has proven to be an important tool for studying the mechanism of folding and function in many biomolecules. For example, nanosecond time-resolved CD (TRCD) studies of the sub-microsecond events of reduced cytochrome c folding have provided direct experimental evidence of kinetic heterogeneity, which is an inherent property of the diffusional nature of early folding dynamics on the energy landscape. In addition, TRCD has been applied to the study of many biochemical processes, such as ligand rebinding in hemoglobin and myoglobin and signaling state formation in photoactive yellow protein and prototropin 1 LOV2. The basic approach to TRCD has also been extended to include a repertoire of nanosecond polarization spectroscopies: optical rotatory dispersion (ORD), magnetic CD and ORD, and linear dichroism. This article will discuss the details of the polarization methods used in this laboratory, as well as the coupling of timeresolved ORD with the temperature-jump trigger so that protein folding can be studied in a larger number of proteins. PMID:20438842

  13. Probing Kinetic Mechanisms of Protein Function and Folding with Time-Resolved Natural and Magnetic Chiroptical Spectroscopies

    PubMed Central

    Kliger, David S.; Chen, Eefei; Goldbeck, Robert A.

    2012-01-01

    Recent and ongoing developments in time-resolved spectroscopy have made it possible to monitor circular dichroism, magnetic circular dichroism, optical rotatory dispersion, and magnetic optical rotatory dispersion with nanosecond time resolution. These techniques have been applied to determine structural changes associated with the function of several proteins as well as to determine the nature of early events in protein folding. These studies have required new approaches in triggering protein reactions as well as the development of time-resolved techniques for polarization spectroscopies with sufficient time resolution and sensitivity to probe protein structural changes. PMID:22312279

  14. Time-resolved fluorescence and fluorescence anisotropy of fluorescein-labeled poly(N-isopropylacrylamide) incorporated in polymersomes.

    PubMed

    Lee, Jung Seok; Koehorst, Rob B M; van Amerongen, Herbert; Feijen, Jan

    2011-11-17

    The phase behavior of fluorescein isothiocyanate (FITC) labeled poly(N-isopropylacrylamide) (PNIPAAm) incorporated in polymersomes (Ps) was studied by monitoring the fluorescence lifetime (FL) and the time-resolved fluorescence anisotropy (TRFA) as a function of temperature at pH 7.4. Ps containing FITC-labeled PNIPAAm with a diameter less than 200 nm were prepared by injecting a THF solution of poly(ethylene glycol)-b-poly(d,l-lactide) (mPEG-PDLLA) and FITC tagged PNIPAAm (FITC-N) into phosphate buffered saline (PBS, pH 7.4). Solutions of free FITC (2 μM) and FITC-N (2 μM) in PBS were used as controls. The polarized fluorescence decay curves of FITC were fitted with one rotational correlation time (θ(1)) and the corresponding amplitude (β(1)), while those for FITC-N were fitted with two rotational correlation times (θ(1,2)) and their corresponding amplitudes (β(1,2)). Short rotational correlation times, θ(1), correspond with the rotation of the FITC molecule itself, whereas θ(2) corresponds to FITC-segmental rotation. FITC-N encapsulated in Ps (FITC-N/Ps) showed a decrease of the rotational motion upon increasing the temperature. The long rotational correlation time (θ(2)) of FITC-N increased 3 fold, going from 15 to 40 °C, reflecting a reduced rotational mobility. The residual anisotropy (β(∞)) of FITC-N/Ps at pH 7.4 showed a gradual increase, going from 15 to 25 °C followed by a gradual decrease at higher temperatures. These results are explained by a transition from coil to globule, a gradual increase of intermolecular aggregation, and possibly phase separation and hydrogel formation. PMID:21995555

  15. A Vinblastine Fluorescent Probe for Pregnane X Receptor in a Time-Resolved Fluorescence Resonance Energy Transfer Assay

    PubMed Central

    Lin, Wenwei; Chen, Taosheng

    2013-01-01

    The pregnane X receptor (PXR) regulates the metabolism and excretion of xenobiotics and endobiotics by regulating the expression of drug-metabolizing enzymes and transporters. The unique structure of PXR allows the binding of many drugs and drug leads to it, possibly causing undesired drug-drug interactions. Therefore, it is crucial to evaluate whether lead compounds bind to PXR. Fluorescence-based assays are preferred because of their sensitivity and non-radioactive nature. One fluorescent PXR probe is currently commercially available; however, because its chemical structure is not publicly disclosed, it is not optimal for studying ligand-PXR interactions. Here we report the characterization of BODIPY FL Vinblastine, generated by labeling vinblastine with the fluorophore 4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene (BODIPY FL), as a high-affinity ligand for human PXR with a Kd value of 673 nM. We provide evidence that BODIPY FL Vinblastine is a unique chemical entity different from either vinblastine or the fluorophore 4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene in its function as a high-affinity human PXR ligand. We describe a BODIPY FL Vinblastine-based human PXR Time-Resolved Fluorescence Resonance Energy Transfer assay, which was used to successfully test a panel of human PXR ligands. The BODIPY FL Vinblastine–based biochemical assay is suitable for high-throughput screening to evaluate whether lead compounds bind to PXR. PMID:24044991

  16. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy.

    PubMed

    Miaja-Avila, L; O'Neil, G C; Uhlig, J; Cromer, C L; Dowell, M L; Jimenez, R; Hoover, A S; Silverman, K L; Ullom, J N

    2015-03-01

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ∼10(6) photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >10(7) laser pulses, we also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments. PMID:26798792

  17. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    PubMed Central

    Miaja-Avila, L.; O'Neil, G. C.; Uhlig, J.; Cromer, C. L.; Dowell, M. L.; Jimenez, R.; Hoover, A. S.; Silverman, K. L.; Ullom, J. N.

    2015-01-01

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ∼106 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >107 laser pulses, we also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments. PMID:26798792

  18. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    DOE PAGESBeta

    Miaja-Avila, L.; O'Neil, G. C.; Uhlig, J.; Cromer, C. L.; Dowell, M. L.; Jimenez, R.; Hoover, A. S.; Silverman, K. L.; Ullom, J. N.

    2015-03-02

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ~106 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >107 laser pulses, we also presentmore » data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.« less

  19. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    SciTech Connect

    Miaja-Avila, L.; O'Neil, G. C.; Uhlig, J.; Cromer, C. L.; Dowell, M. L.; Jimenez, R.; Hoover, A. S.; Silverman, K. L.; Ullom, J. N.

    2015-03-02

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ~106 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >107 laser pulses, we also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.

  20. Manganese-doped ZnSe quantum dots as a probe for time-resolved fluorescence detection of 5-fluorouracil.

    PubMed

    Zhu, Dong; Chen, Yun; Jiang, Liping; Geng, Jun; Zhang, Jianrong; Zhu, Jun-Jie

    2011-12-01

    Quantum dots (QDs) are generally used for the conventional fluorescence detection. However, it is difficult for the QDs to be applied in time-resolved fluorometry due to their short-lived emission. In this paper, high-quality Mn-doped ZnSe QDs with long-lived emission were prepared using a green and rapid microwave-assisted synthetic approach in aqueous solution. Fluorescence lifetime of the Mn-doped ZnSe QDs was extended as long as 400 μs, which was 10,000 times higher than that of conventional QDs such as CdS, CdSe, and CdTe. The QDs exhibited an excellent photostability over 35 h under continuous irradiation at 260 nm. Capped with mercaptopropionic acid (MPA), the Mn-doped ZnSe QDs were used for the time-resolved fluorescence detection of 5-fluorouracil (5-FU) with the detection limit of 128 nM. The relative standard deviation for seven independent measurements of 1.5 μM 5-FU was 3.8%, and the recovery ranged from 93% to 106%. The results revealed that the Mn-doped ZnSe QDs could be a good candidate as a luminescence probe for highly sensitive time-resolved fluorometry. PMID:22026809

  1. Measurements of hydroxyl concentrations and lifetimes in laminar flames using picosecond time-resolved laser-induced fluorescence.

    PubMed

    Reichardt, T A; Klassen, M S; King, G B; Laurendeau, N M

    1996-04-20

    Picosecond time-resolved laser-induced fluorescence (PITLIF) can potentially be used to obtain measurements of minor species concentrations in rapidly fluctuating flames. Previous studies demonstrated this potential for atomic sodium by monitoring the temporal fluorescence signal with both an equivalent-time and a real-time sampling method. In this developmental study, PITLIF is used to determine hydroxyl concentrations in laminar CH(4)-O(2)-N(2) flames by the measurement of both the integrated fluorescence signal and the fluorescence lifetime. The quenching environment can be monitored with real-time sampling, and thus the necessary quenching rate coefficient is obtained in 348 us, which is fast enough for use in many turbulent flows. Fluorescence lifetimes of OH are also measured at different equivalence ratios in laminar flames by the use of the equivalent-time sampling technique. These results compare favorably with predicted lifetimes based on relevant quenching cross sections and calculated species concentrations. PMID:21085341

  2. High Resolution Time-resolved UCLES Spectroscopy of AE Aqr: I. The Secondary Star Revealed

    NASA Astrophysics Data System (ADS)

    Echevarria, J.; Diego, F.; Mills, D.; Connon Smith, R.

    2006-06-01

    High-dispersion time-resolved spectroscopy of the cataclysmic variable AE Aqr has been obtained. The emission lines have a complex structure that make difficult to measure the motion of the white dwarf. The cross correlation for the absorption lines shows a clear asymmetric profile as expected from a heated side of the red star. The spectral type for the secondary star varies from K2 to K5; there are clear indications that the temperature varies as a function of star longitude. The radial velocity analysis yield Kab = 165.2 ± 0.6 Km s-1 for the cross-correlated secondary star. The rotational velocity of the red star has been measured as a function of orbital period. It shows ellipsoidal variations with a period half the orbital period. The rotational velocities vary within the range Vrot sin i = 105 ± 3 Km s-1 and Vrot sin i = 130 ± 3 Km s-1. The former can be used to constrain the white dwarf semi-amplitude value to yield Kem = 139 ± 4 Km s-1 consistent with derived values from published radial velocity measurements. From a variation in the absorption line strength of 30%, we constrain the inclination angle to i = 58° ± 3. The estimated masses of the binary are: Mw = 1.07 ± 0.07 M? and Mr = 0.90 ± 0.05 M?. If this is correct we should expect a spectral type of G5 if the secondary star is a main sequence star. We suggest that the discrepancy is explained if the star has a radius 40% greater than a main sequence star for a mass of 0.90 M?.

  3. Probing Reaction Dynamics of Transition-Metal Complexes in Solution via Time-Resolved Soft X-ray Spectroscopy

    SciTech Connect

    Huse, Nils; Kim, Tae Kyu; Khalil, Munira; Jamula, Lindsey; McCusker, James K.; Schoenlein, Robert W.

    2010-05-02

    We report the first time-resolved soft x-ray measurements of solvated transition-metal complexes. L-edge spectroscopy directly probes dynamic changes in ligand-field splitting of 3d orbitals associated with the spin transition, and mediated by changes in ligand-bonding.

  4. Persistent luminescence nanoprobe for biosensing and lifetime imaging of cell apoptosis via time-resolved fluorescence resonance energy transfer.

    PubMed

    Zhang, Lei; Lei, Jianping; Liu, Jintong; Ma, Fengjiao; Ju, Huangxian

    2015-10-01

    Time-resolved fluorescence technique can reduce the short-lived background luminescence and auto-fluorescence interference from cells and tissues by exerting the delay time between pulsed excitation light and signal acquisition. Here, we prepared persistent luminescence nanoparticles (PLNPs) to design a universal time-resolved fluorescence resonance energy transfer (TR-FRET) platform for biosensing, lifetime imaging of cell apoptosis and in situ lifetime quantification of intracellular caspase-3. Three kinds of PLNPs-based nanoprobes are assembled by covalently binding dye-labeled peptides or DNA to carboxyl-functionalized PLNPs for the efficient detection of caspase-3, microRNA and protein. The peptides-functionalized nanoprobe is also employed for fluorescence lifetime imaging to monitor cell apoptosis, which shows a dependence of cellular fluorescence lifetime on caspase-3 activity and thus leads to an in situ quantification method. This work provides a proof-of-concept for PLNPs-based TR-FRET analysis and demonstrates its potential in exploring dynamical information of life process. PMID:26232881

  5. Time-resolved fluorescence of thioredoxin single-tryptophan mutants: modeling experimental results with minimum perturbation mapping

    NASA Astrophysics Data System (ADS)

    Silva, Norberto D., Jr.; Haydock, Christopher; Prendergast, Franklyn G.

    1994-08-01

    The time-resolved fluorescence decay of single tryptophan (Trp) proteins is typically described using either a distribution of lifetimes or a sum of two or more exponential terms. A possible interpretation for this fluorescence decay heterogeneity is the existence of different isomeric conformations of Trp about its (chi) +1) and (chi) +2) dihedral angles. Are multiple Trp conformations compatible with the remainder of the protein in its crystallographic configuration or do they require repacking of neighbor side chains? It is conceivable that isomers of the neighbor side chains interconvert slowly on the fluorescence timescale and contribute additional lifetime components to the fluorescence intensity. We have explored this possibility by performing minimum perturbation mapping simulations of Trp 28 and Trp 31 in thioredoxin (TRX) using CHARMm 22. Mappings of Trp 29 and Trp 31 give the TRX Trp residue energy landscape as a function of (chi) +1) and (chi) +2) dihedral angles. Time-resolved fluorescence intensity and anisotropy decay of mutant TRX (W28F and W31F) are measured and interpreted in light of the above simulations. Relevant observables, like order parameters and isomerization rates, can be derived from the minimum perturbation maps and compared with experiment.

  6. Multispectral fluorescence lifetime imaging of feces-contaminated apples by time-resolved laser-induced fluorescence imaging system with tunable excitation wavelengths

    NASA Astrophysics Data System (ADS)

    Kim, Moon S.; Cho, Byoung-Kwan; Lefcourt, Alan M.; Chen, Yud-Ren; Kang, Sukwon

    2008-04-01

    We recently developed a time-resolved multispectral laser-induced fluorescence (LIF) imaging system capable of tunable wavelengths in the visible region for sample excitation and nanosecond-scale characterizations of fluorescence responses (lifetime imaging). Time-dependent fluorescence decay characteristics and fluorescence lifetime imaging of apples artificially contaminated with a range of diluted cow feces were investigated at 670 and 685 nm emission bands obtained by 418, 530, and 630 nm excitations. The results demonstrated that a 670 nm emission with a 418 nm excitation provided the greatest difference in time-dependent fluorescence responses between the apples and feces-treated spots. The versatilities of the time-resolved LIF imaging system, including fluorescence lifetime imaging of a relatively large biological object in a multispectral excitation-emission wavelength domain, were demonstrated.

  7. Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence

    PubMed Central

    Guanter, Luis; Zhang, Yongguang; Jung, Martin; Joiner, Joanna; Voigt, Maximilian; Berry, Joseph A.; Frankenberg, Christian; Huete, Alfredo R.; Zarco-Tejada, Pablo; Lee, Jung-Eun; Moran, M. Susan; Ponce-Campos, Guillermo; Beer, Christian; Camps-Valls, Gustavo; Buchmann, Nina; Gianelle, Damiano; Klumpp, Katja; Cescatti, Alessandro; Baker, John M.; Griffis, Timothy J.

    2014-01-01

    Photosynthesis is the process by which plants harvest sunlight to produce sugars from carbon dioxide and water. It is the primary source of energy for all life on Earth; hence it is important to understand how this process responds to climate change and human impact. However, model-based estimates of gross primary production (GPP, output from photosynthesis) are highly uncertain, in particular over heavily managed agricultural areas. Recent advances in spectroscopy enable the space-based monitoring of sun-induced chlorophyll fluorescence (SIF) from terrestrial plants. Here we demonstrate that spaceborne SIF retrievals provide a direct measure of the GPP of cropland and grassland ecosystems. Such a strong link with crop photosynthesis is not evident for traditional remotely sensed vegetation indices, nor for more complex carbon cycle models. We use SIF observations to provide a global perspective on agricultural productivity. Our SIF-based crop GPP estimates are 50–75% higher than results from state-of-the-art carbon cycle models over, for example, the US Corn Belt and the Indo-Gangetic Plain, implying that current models severely underestimate the role of management. Our results indicate that SIF data can help us improve our global models for more accurate projections of agricultural productivity and climate impact on crop yields. Extension of our approach to other ecosystems, along with increased observational capabilities for SIF in the near future, holds the prospect of reducing uncertainties in the modeling of the current and future carbon cycle. PMID:24706867

  8. Global and Time-Resolved Monitoring of Crop Photosynthesis with Chlorophyll Fluorescence

    NASA Technical Reports Server (NTRS)

    Guanter, Luis; Zhang, Yongguang; Jung, Martin; Joiner, Joanna; Voigt, Maximilian; Berry, Joseph A.; Frankenberg, Christian; Huete, Alfredo R.; Zarco-Tejada, Pablo; Lee, Jung-Eun; Moran, M. Susan; Ponce-Campos, Guillermo; Beer, Christian; Camps-Valls, Gustavo; Buchmann, Nina; Gianelle, Damiano; Klumpp, Katja; Cescatti, Alessandro; Baker, John M.; Griffis, Timothy J.

    2014-01-01

    Photosynthesis is the process by which plants harvest sunlight to produce sugars from carbon dioxide and water. It is the primary source of energy for all life on Earth; hence it is important to understand how this process responds to climate change and human impact. However, model-based estimates of gross primary production (GPP, output from photosynthesis) are highly uncertain, in particular over heavily managed agricultural areas. Recent advances in spectroscopy enable the space-based monitoring of sun-induced chlorophyll fluorescence (SIF) from terrestrial plants. Here we demonstrate that spaceborne SIF retrievals provide a direct measure of the GPP of cropland and grassland ecosystems. Such a strong link with crop photosynthesis is not evident for traditional remotely sensed vegetation indices, nor for more complex carbon cycle models. We use SIF observations to provide a global perspective on agricultural productivity. Our SIF-based crop GPP estimates are 50-75% higher than results from state-of-the-art carbon cycle models over, for example, the US Corn Belt and the Indo-Gangetic Plain, implying that current models severely underestimate the role of management. Our results indicate that SIF data can help us improve our global models for more accurate projections of agricultural productivity and climate impact on crop yields. Extension of our approach to other ecosystems, along with increased observational capabilities for SIF in the near future, holds the prospect of reducing uncertainties in the modeling of the current and future carbon cycle.

  9. Evaluating steady-state and time-resolved fluorescence as a tool to study the behavior of asphaltene in toluene.

    PubMed

    Zhang, Hui Ting; Li, Rui; Yang, Zixin; Yin, Cindy-Xing; Gray, Murray R; Bohne, Cornelia

    2014-06-01

    A combination of steady-state fluorescence, fluorescence lifetime measurements and the determination of time-resolved emission spectra were employed to characterize asphaltene toluene solutions. Lifetime measurements were shown to be insensitive to the source of asphaltene or the alkane solvent from which asphaltene was precipitated. This insensitivity suggests that either the composition of Athabasca and Cold Lake asphaltene is very similar or that the fluorescence behavior is dominated by the same sub-set of fluorophores for the different samples. These results highlight the limitations in using fluorescence to characterize asphaltene solutions. Different dependencies were observed for the average lifetimes with the asphaltene concentration when measured at two different emission wavelengths (420 nm and 520 nm). This result suggests that different fluorophores underwent diverse interactions with other asphaltene molecules as the asphaltene concentration was raised, suggesting that models for asphaltene aggregation need to include molecular diversity. PMID:24722727

  10. Time-resolved fluorescence for breast cancer detection using an octreotate-indocyanine green derivative dye conjugate

    NASA Astrophysics Data System (ADS)

    Sordillo, Laura A.; Das, B. B.; Pu, Yang; Liang, Kexian; Milione, Giovanni; Sordillo, Peter P.; Achilefu, Sam; Alfano, R. R.

    2013-03-01

    Time-resolved fluorescence was used to investigate malignant and normal adjacent breast tissues stained with a conjugate of indocyanine green and octreotate. A marked increase in fluorescence lifetime intensity was seen in the breast cancer sample compared to the normal sample. The fluorescent lifetimes were also investigated and showed similar fluorescence decay curves in stained malignant and normal breast tissue. These results confirm that somatostatin receptors occur on human breast carcinomas, suggest that the presence of somatostatin receptors should be investigated as a marker of breast cancer aggressiveness, and suggest that this conjugate might be used to detect the presence of residual breast cancer after surgery, allowing better assessment of tumor margins and reducing the need for second or repeat biopsies in selected patients. These results may also provide clues for designing future treatment options for breast cancer patients.

  11. Vacuum ultraviolet luminescence of wide band-gap solids studied using time-resolved spectroscopy with synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Makhov, V. N.

    2014-04-01

    Some highlights of the time-resolved vacuum ultraviolet (VUV) luminescence spectroscopy of solids using synchrotron radiation (SR) are outlined, including studies of the unique phenomenon crossluminescence (CL) and the contribution of time-resolved VUV spectroscopy to the understanding of 5d-4f transitions of rare earth ions in solids. The main properties of CL studied at different SR sources are described and some unclear aspects of CL are pointed out. The results of recent studies of some CL-active nanosize materials are presented. We describe the time-resolved experiments which led to the discovery of 5d-4f luminescence in the deep VUV region (near 10 eV) of Gd3+ and Lu3+ ions incorporated into some wide band-gap fluoride hosts. The results of high-resolution (Δλ ˜ 0.5 Å) studies of 5d-4f emission and 4f-5d excitation spectra of Gd3+ and Lu3+, which allowed the detailed analysis of electron-lattice coupling in these systems, are presented. Possible new developments in the femtosecond time-resolved spectroscopy of solids with a free electron laser are discussed.

  12. Time-resolved resonance Raman spectroscopy of radiation-chemical processes. [Pulsed irradiation

    SciTech Connect

    Tripathi, G.N.R.

    1983-01-01

    A tunable pulsed laser Raman spectrometer for time resolved Raman studies of radiation-chemical processes is described. This apparatus utilizes the state of art optical multichannel detection and analysis techniques for data acquisition and electron pulse radiolysis for initiating the reactions. By using this technique the resonance Raman spectra of intermediates with absorption spectra in the 248-900 nm region, and mean lifetimes > 30 ns can be examined. This apparatus can be used to time resolve the vibrational spectral overlap between transients absorbing in the same region, and to follow their decay kinetics by monitoring the well resolved Raman peaks. For kinetic measurements at millisecond time scale, the Raman technique is preferable over optical absorption method where low frequency noise is quite bothersome. A time resolved Raman study of the pulse radiolytic oxidation of aqueous tetrafluorohydroquinone and p-methoxyphenol is briefly discussed. 15 references, 5 figures.

  13. Time-resolved spectroscopy of nucleic acid systems using synchrotron radiation from 230 nm to 354 nm

    NASA Astrophysics Data System (ADS)

    Daniels, Malcolm; Ballini, Jean-Pierre; Vigny, Paul

    1992-07-01

    The excited states of nucleic acids are complex, both at the individual chromophore level and because of the effect of stacking interactions on the electronic states. Considerable progress has been made recently by studying the lifetimes of the stacked states and by utilizing the technique of time-resolved spectroscopy. Experimental results obtained using the ACO synchrotron at LURE, Orsay, will be presented. Resolution of the decay data gives a model-based estimate of the number of emitting species and their lifetimes, and this information is then used to deconvolate experimental time-windowed spectra (time-delayed spectra) to give true time-resolved spectra. It is a unique feature of the synchrotron, compared with the laser, that the combination of delayed detection (photon counting) with the continuous wavelength distribution of the synchrotron allows the acquisition of excitation spectra by uninterrupted repetitive scanning over a wide range of UV exciting wavelengths, in the present work from 230 nm to 354 nm. Such time-delayed excitation spectra can also be deconvoluted into components corresponding to the various time-resolved emission spectra. In this way we are able to demonstrate for the first time that ground state stacking interactions are directly responsible for excimer-like emissions. Time-resolved emission spectra and time-resolved excitation spectra will be presented for the dinucleoside phosphate d(CG) and the synthetic alternating polynucleotide poly d(GC), a `B-type' DNA structure.

  14. Proton uptake mechanism of bacteriorhodopsin as determined by time-resolved stroboscopic-FTIR-spectroscopy.

    PubMed

    Souvignier, G; Gerwert, K

    1992-11-01

    Bacteriorhodopsin's proton uptake reaction mechanism in the M to BR reaction pathway was investigated by time-resolved FTIR spectroscopy under physiological conditions (293 K, pH 6.5, 1 M KCl). The time resolution of a conventional fast-scan FTIR spectrometer was improved from 10 ms to 100 mus, using the stroboscopic FTIR technique. Simultaneously, absorbance changes at 11 wavelengths in the visible between 410 and 680 nm were recorded. Global fit analysis with sums of exponentials of both the infrared and visible absorbance changes yields four apparent rate constants, k(7) = 0.3 ms, k(4) = 2.3 ms, k(3) = 6.9 ms, k(6) = 30 ms, for the M to BR reaction pathway. Although the rise of the N and O intermediates is dominated by the same apparent rate constant (k(4)), protein reactions can be attributed to either the N or the O intermediate by comparison of data sets taken at 273 and 293 K. Conceptionally, the Schiff base has to be oriented in its deprotonated state from the proton donor (asp 85) to the proton acceptor (asp 96) in the M(1) to M(2) transition. However, experimentally two different M intermediates are not resolved, and M(2) and N are merged. From the results the following conclusions are drawn: (a) the main structural change of the protein backbone, indicated by amide I, amide II difference bands, takes place in the M to N (conceptionally M(2)) transition. This reaction is proposed to be involved in the "reset switch" of the pump, (b) In the M to N (conceptionally M(2)) transition, most likely, asp-85's carbonyl frequency shifts from 1,762 to 1,753 cm(-1) and persists in O. Protonation of asp-85 explains the red-shift of the absorbance maximum in O. (c) The catalytic proton uptake binding site asp-96 is deprotonated in the M to N transition and is reprotonated in O. PMID:19431858

  15. Real-time TDDFT simulations of time-resolved core-level spectroscopies in solid state systems

    NASA Astrophysics Data System (ADS)

    Pemmaraju, Sri Chaitanya Das; Prendergast, David; Theory of Nanostructured Materials Facility Team

    The advent of sub-femtosecond time-resolved core-level spectroscopies based on high harmonic generated XUV pulses has enabled the study of electron dyanamics on characteristic femtosecond time-scales. Unambiguous interpretation of these powerful yet complex spectroscopies however requires the development of theoretical algorithms capable of modeling light-matter interaction across a wide energy range spanning both valence and core orbitals. In this context we present a recent implementation of the velocity-gauge formalism of real-time TDDFT within a linear combination of atomic orbital (LCAO) framework, which facilitates efficient numerical treatment of localized semi-core orbitals. Dynamics and spectra obtained from LCAO based simulations are compared to those from a real-space grid implementation. Potential applications are also illustrated by applying the method towards interpreting recent atto-second time-resolved IR-pump XUV-probe spectroscopies investigating sub-cycle excitation dynamics in bulk silicon.

  16. Time-resolved multi-channel optical system for assessment of brain oxygenation and perfusion by monitoring of diffuse reflectance and fluorescence

    NASA Astrophysics Data System (ADS)

    Milej, D.; Gerega, A.; Kacprzak, M.; Sawosz, P.; Weigl, W.; Maniewski, R.; Liebert, A.

    2014-03-01

    Time-resolved near-infrared spectroscopy is an optical technique which can be applied in tissue oxygenation assessment. In the last decade this method is extensively tested as a potential clinical tool for noninvasive human brain function monitoring and imaging. In the present paper we show construction of an instrument which allows for: (i) estimation of changes in brain tissue oxygenation using two-wavelength spectroscopy approach and (ii) brain perfusion assessment with the use of single-wavelength reflectometry or fluorescence measurements combined with ICG-bolus tracking. A signal processing algorithm based on statistical moments of measured distributions of times of flight of photons is implemented. This data analysis method allows for separation of signals originating from extra- and intracerebral tissue compartments. In this paper we present compact and easily reconfigurable system which can be applied in different types of time-resolved experiments: two-wavelength measurements at 687 and 832 nm, single wavelength reflectance measurements at 760 nm (which is at maximum of ICG absorption spectrum) or fluorescence measurements with excitation at 760 nm. Details of the instrument construction and results of its technical tests are shown. Furthermore, results of in-vivo measurements obtained for various modes of operation of the system are presented.

  17. Time-Resolved Photoelectron Spectroscopy of Coupled Nuclear-Electronic Dynamics

    NASA Astrophysics Data System (ADS)

    Falge, M.; Engel, V.; Gräfe, S.

    2013-03-01

    We study the effect of nuclear-electron coupling on time-resolved photo-electron spectra, employing a model system which allows to directly comparing spectra resulting from the adiabatic approximation with those obtained within a non-Born-Oppenheimer description.

  18. Time-resolved multicolor two-photon excitation fluorescence microscopy of cells and tissues

    NASA Astrophysics Data System (ADS)

    Zheng, Wei

    2014-11-01

    Multilabeling which maps the distribution of different targets is an indispensable technique in many biochemical and biophysical studies. Two-photon excitation fluorescence (TPEF) microscopy of endogenous fluorophores combining with conventional fluorescence labeling techniques such as genetically encoded fluorescent protein (FP) and fluorescent dyes staining could be a powerful tool for imaging living cells. However, the challenge is that the excitation and emission wavelength of these endogenous fluorophores and fluorescent labels are very different. A multi-color ultrafast source is required for the excitation of multiple fluorescence molecules. In this study, we developed a two-photon imaging system with excitations from the pump femtosecond laser and the selected supercontinuum generated from a photonic crystal fiber (PCF). Multiple endogenous fluorophores, fluorescent proteins and fluorescent dyes were excited in their optimal wavelengths simultaneously. A time- and spectral-resolved detection system was used to record the TPEF signals. This detection technique separated the TPEF signals from multiple sources in time and wavelength domains. Cellular organelles such as nucleus, mitochondria, microtubule and endoplasmic reticulum, were clearly revealed in the TPEF images. The simultaneous imaging of multiple fluorophores of cells will greatly aid the study of sub-cellular compartments and protein localization.

  19. Understanding THz and IR signals beneath time-resolved fluorescence from excited-state ab initio dynamics.

    PubMed

    Petrone, Alessio; Donati, Greta; Caruso, Pasquale; Rega, Nadia

    2014-10-22

    The detailed interpretation of time-resolved spectroscopic signals in terms of the molecular rearrangement during a photoreaction or a photophysical event is one of the most important challenges of both experimental and theoretical chemistry. Here we simulate a time-resolved fluorescence spectrum of a dye in aqueous solution, the N-methyl-6-oxyquinolinium betaine, and analyze it in terms of far IR and THz frequency contributions, providing a direct connection to specific molecular motions. To obtain this result, we build up an innovative and general approach based on excited state ab-initio molecular dynamics and a wavelet-based time-dependent frequency analysis of nonstationary signals. We obtain a nice agreement with key parameters of the solvent dynamics, such as the total Stokes shift and the Stokes shift relaxation times. As an important finding, we observe a strong change of specific solute-solvent interactions upon the electronic excitation, with the migration of about 1.5 water molecules from the first solvation shell toward the bulk. In spite of this event, the Stokes shift dynamics is ruled by collective solvent motions in the THz and far IR, which guide and modulate the strong rearrangement of the dye microsolvation. By the relaxation of THz and IR contributions to the emission signal, we can follow and understand in detail the molecularity of the process. The protocol presented here is, in principle, transferable to other time-resolved spectroscopic techniques. PMID:25243826

  20. Transient Absorption and Time-Resolved Fluorescence Studies of Solvated Ruthenium Di-Bipyridine Pseudo-Halide Complexes

    NASA Astrophysics Data System (ADS)

    Compton, R.; Weidinger, D.; Owrutsky, J. C.

    2012-06-01

    Time-resolved IR and fluorescence measurements were performed to probe the vibrational and electronic properties, respectively, of ruthenium di-bipyridine pseudo-halide (Ru(Bpy){_2}(X){_2} (where X = CN, N{_3} or NCS)) complexes. Vibrational energy relaxation (VER) times were determined for the complexes dissolved in dimethyl sulfoxide (DMSO) with a trend in VER time of NCS > CN > N{_3}. A similar trend and comparable absolute rates for NCS- and N3- were previously observed by our group and others for simple inorganic anions in solution, suggesting a minimal contribution due to complexation. Measurements of the VER time of the CN complex in various solvents provide VER times in ethanol (42.3 ps) and DMSO (53.3 ps), which shows that protic solvents promote the relaxation. Time-resolved fluorescence measurements indicate a strong ligand dependence, with a factor of five decrease in the excited electronic state decay time from the CN (215 ns) to the NCS (39 ns) complex. A solvent dependence of the CN complex reveals a nearly 3-fold increase in the fluorescence decay time from acetonitrile (70 ns) to DMSO (215 ns).

  1. Picosecond-nanosecond time-resolved fluorescence of weak EDA systems of TCNB-mesitylene (toluene) under restricted diffusion conditions

    NASA Astrophysics Data System (ADS)

    Kojer, R.; Dresner, J.; Prochorow, J.; Deperasińska, I.

    1996-04-01

    In this paper the results of studies of the time-resolved fluorescence spectra of a weak electron-donor-acceptor systems of tetracyanobenzene with mesitylene (and toluene) are presented. A strong dependence of observed spectra at room and low temperature (under restricted diffusion conditions) and the lack of interrelation between decay parameters determined for different spectral regions are discussed in terms of existence of this EDA systems in a number of different orientational isomers. The results of computations of potential energy surfaces of the ground and excited state for TCNB-mesitylene system are supporting this hypothesis.

  2. LDS-750 as a probe of solvation dynamics: a femtosecond time-resolved fluorescence study in liquid aniline

    NASA Astrophysics Data System (ADS)

    Smith, Neil A.; Meech, Stephen R.; Rubtsov, Igor V.; Yoshihara, Keitaro

    1999-04-01

    The dynamics of the fluorescence Stokes shift of the styryl dye LDS-750 have been measured in liquid aniline with sub-100 fs time resolution. The shape of the time-resolved spectra are time dependent, which is not consistent with the predictions of a solvation dynamics mechanism. However, the measured spectral shift correlation function is reasonably well described by the dynamical mean spherical approximation model of solvation dynamics. It is suggested that these observations are consistent if solvent dynamics is the rate controlling process in both solvation of the increased dipole moment of the excited state of LDS-750 and the stabilisation of a distribution of solute conformers in the excited state.

  3. Steady-state and time-resolved fluorescence studies of stripped Borage oil.

    PubMed

    Smyk, Bogdan; Amarowicz, Ryszard; Szabelski, Mariusz; Gryczynski, Ignacy; Gryczynski, Zygmunt

    2009-07-30

    In this study we explored the spectroscopic properties of Borage oil, particularly the use of fluorescence techniques to investigate the presence of conjugated fatty acids (CFAs). This research has important health and dietary applications. The absorption and fluorescence spectra of different CFAs and Borage oil in ethanol were measured. Time-domain fluorescence was employed to establish the life times of the samples. We found that Borage oil contains 1.2x10(-3) mol L(-1) of alpha-eleostearic acid or its isomer (i.e., a conjugated triene), 1.6x10(-4) mol L(-1) of cis-parinaric acid (i.e., a conjugated tetraene) and 1.1x10(-5) mol L(-1) of c-COPA (i.e., a conjugated pentaene). Because of the three-exponential fluorescence intensity decay for Borage oil, other fatty acids with a four conjugated double bond system could not be excluded. PMID:19523559

  4. Ultrafast solvent dynamics: Connection between time resolved fluorescence and optical Kerr measurements

    NASA Astrophysics Data System (ADS)

    Cho, Minhaeng; Rosenthal, Sandra J.; Scherer, Norbert F.; Ziegler, Lawrence D.; Fleming, Graham R.

    1992-04-01

    The vibrational characteristics of liquid dynamics are used to describe the ultrafast relaxations observed in time-dependent fluorescence Stokes shift [J. Chem. Phys. 95, 4715 (1991)] and heterodyne detected optical Kerr effect measurements on acetonitrile, via a Brownian oscillator model. Introducing a frequency distribution of vibrational modes makes it possible to compare the two experiments. The ultrafast decays observed in the fluorescence Stokes shift and optical Kerr signals are produced by destructive superposition of the high frequency, underdamped modes.

  5. Luminescence of the Cr3+ ion in sodium β- and β''-alumina: Site selection by time-resolved fluorescence line narrowing

    NASA Astrophysics Data System (ADS)

    Rossi, F.; Mariotto, G.; Montagna, M.; Ferrari, M.

    1994-03-01

    Fluorescence of Cr3+ ions in the two different octahedral sites of the spinel block of β- and β''-alumina have been measured by time-resolved fluorescence line-narrowing spectroscopy. For the excitation either a pulsed or a chopped cw-dye laser was used. Lifetimes and splittings of the ground state (4A2) and of the 2E state have been measured by tuning the excitation energy within the inhomogeneous profile of the R1 and R2 lines of the split 2E-4A2 transition. In sodium β''-alumina, we have isolated several inequivalent emitting centers, which are related to different configurations of the stabilizing Mg2+ ions.

  6. ANG-2 for quantitative Na(+) determination in living cells by time-resolved fluorescence microscopy.

    PubMed

    Roder, Phillip; Hille, Carsten

    2014-12-01

    Sodium ions (Na(+)) play an important role in a plethora of cellular processes, which are complex and partly still unexplored. For the investigation of these processes and quantification of intracellular Na(+) concentrations ([Na(+)]i), two-photon coupled fluorescence lifetime imaging microscopy (2P-FLIM) was performed in the salivary glands of the cockroach Periplaneta americana. For this, the novel Na(+)-sensitive fluorescent dye Asante NaTRIUM Green-2 (ANG-2) was evaluated, both in vitro and in situ. In this context, absorption coefficients, fluorescence quantum yields and 2P action cross-sections were determined for the first time. ANG-2 was 2P-excitable over a broad spectral range and displayed fluorescence in the visible spectral range. Although the fluorescence decay behaviour of ANG-2 was triexponential in vitro, its analysis indicates a Na(+)-sensitivity appropriate for recordings in living cells. The Na(+)-sensitivity was reduced in situ, but the biexponential fluorescence decay behaviour could be successfully analysed in terms of quantitative [Na(+)]i recordings. Thus, physiological 2P-FLIM measurements revealed a dopamine-induced [Na(+)]i rise in cockroach salivary gland cells, which was dependent on a Na(+)-K(+)-2Cl(-) cotransporter (NKCC) activity. It was concluded that ANG-2 is a promising new sodium indicator applicable for diverse biological systems. PMID:25311309

  7. Cyclodextrin supramolecular inclusion-enhanced pyrene excimer switching for time-resolved fluorescence detection of biothiols in serum.

    PubMed

    Zhang, Qier; Deng, Ting; Li, Jishan; Xu, Weijian; Shen, Guoli; Yu, Ruqin

    2015-06-15

    We report here an efficient pyrene excimer signaling-based time-resolved fluorescent sensor for the measurement of biothiols (cysteine (Cys), homocysteine (Hcy), glutathione (GSH)) in human serum based on thymine-Hg(2+)-thymine (T-Hg(2+)-T) coordination chemistry and the inclusion interaction of cyclodextrin. The sensing mechanism of the approach is based on the competitive ligation of Hg(2+) ions by Hcy/Cys/GSH and T-T mismatches in a bis-pyrene-labeled DNA strand with the self-complementary 5' and 3' ends. The introduction of γ-cyclodextrin can provide cooperation for the molecular level space proximity of the two labeled pyrene molecules, moreover the hydrophobic cavity of γ-cyclodextrin can also offer protection for the pyrene dimer's emission from the quenching effect of environmental conditions and enhance the fluorescence intensity of the pyrene excimer. When the biothiols are not presented, the sensing ensemble is in the "off" state due to the long distance between the two labeled pyrene molecules resulted from the formation of a more stable T-Hg(2+)-T structure. While in the presence of biothiols, Hg(2+) interacts very strongly with thiol groups and the T-Hg(2+)-T structure is dehybridized, and then the pyrene excimer will be formed due to the self-complementary 5' and 3' ends of the DNA probe and the cooperation interaction of γ-cyclodextrin to pyrene dimer, thus resulting in switching the sensing ensemble to the "on" state. In the optimum conditions described, the linear concentration range of 1.0-100 μM with the limit of detection (LOD) of 0.36 μM for GSH was obtained. Moreover, due to the much longer lifetime of the pyrene excimer fluorescence than those of the ubiquitous endogenous fluorescent components, the time-resolved fluorescence technique has been successfully used for application in complicated biological samples. PMID:25590970

  8. Charge carrier mobility in poly[methyl(phenyl)silylene] studied by time-resolved terahertz spectroscopy and molecular modelling.

    PubMed

    Němec, Hynek; Kratochvílová, Irena; Kužel, Petr; Šebera, Jakub; Kochalska, Anna; Nožár, Juraj; Nešpůrek, Stanislav

    2011-02-21

    Time-resolved terahertz spectroscopy and combination of quantum chemistry modeling and molecular dynamics simulations were used for the determination of charge carrier mobility in poly[methyl(phenyl)silylene]. Using time-resolved THz spectroscopy we established the on-chain charge carrier drift mobility in PMPSi as 0.02 cm(2) V(-1) s(-1). This value is low due to the formation of polarons: the hole is self-trapped in a potential formed by local chain distortion and the transient THz conductivity spectra show signatures of its oscillations within this potential well. This view is supported by the agreement between experimental and calculated values of the on-chain charge carrier mobility. PMID:21305068

  9. Time-resolved fluorescence spectroscopic study of crude petroleum oils: influence of chemical composition.

    PubMed

    Ryder, Alan G

    2004-05-01

    The fluorescence of crude petroleum oils is sensitive to changes in chemical composition and many different fluorescence methods have been used to characterize crude oils. The use of fluorescence lifetimes to quantitatively characterize oil composition has practical advantages over steady-state measurements, but there have been comparatively few studies in which the lifetime behavior is correlated with gross chemical compositional data. In this study, the fluorescence lifetimes for a series of 23 crude petroleum oils with American Petroleum Institute (API) gravities of between 10 and 50 were measured at several emission wavelengths (450-785 nm) using a 380 nm light emitting diode (LED) excitation source. It was found that the intensity average fluorescence lifetime (tau) at any emission wave-length does not correlate well with either API gravity or aromatic concentration. However, it was found that tau is strongly negatively correlated with both the polar and sulfur concentrations and positively correlated with the corrected alkane concentration. This indicates that the fluorescence behavior of crude petroleum oils is governed primarily by the concentration of quenching species. All the strong lifetime-concentration correlations are nonlinear and show a high degree of scatter, especially for medium to light oils with API gravities of between 25 and 40. The degree of scatter is greatest for oils where the concentrations (wt %) of the polar fraction is approximately 10 +/- 4%, the asphaltene component is approximately 1 +/- 0.5%, and sulfur is 0.5 +/- 0.4%. This large degree of scatter precludes the use of average fluorescence lifetime data obtained with 380 nm excitation for the accurate prediction of the common chemical compositional parameters of crude petroleum oils. PMID:15165340

  10. Novel flashlamp-based time-resolved fluorescence microscope reduces autofluorescence for 30-fold contrast enhancement in environmental samples

    NASA Astrophysics Data System (ADS)

    Connally, Russell; Veal, Duncan; Piper, James A.

    2003-07-01

    The abundance of naturally fluorescing components (autofluorophors) encountered in environmentally sourced samples can greatly hinder the detection and identification of fluorescently labeled target using fluorescence microscopy. Time-resolved fluorescence microscopy (TRFM) is a technique that reduces the effects of autofluorescence through precisely controlled time delays. Lanthanide chelates have fluorescence lifetimes many orders of magnitude greater than typical autofluorophors, and persist in their luminescence long after autofluorescence has ceased. An intense short pulse of (UV) light is used to excite fluorescence in the sample and after a short delay period the longer persisting fluorescence from the chelate is captured with an image-intensified CCD camera. The choice of pulsed excitation source for TRFM has a large impact on the price and performance of the instrument. A flashlamp with a short pulse duration was selected for our instrument because of the high spectral energy in the UV region and short pulse length. However, flash output decays with an approximate lifetime of 18μs and the TRFM requires a long-lived chelate to ensure probe fluorescence is still visible after decay of the flash plasma. We synthesized a recently reported fluorescent chelate (BHHCT) and conjugated it to a monoclonal antibody directed against the water-borne parasite Giardia lamblia. Fluorescence lifetime of the construct was determined to be 339μs +/- 14μs and provided a 45-fold enhancement of labeled Giardia over background using a gate delay of 100μs. Despite the sub-optimal decay characteristics of the light pulse, flashlamps have many advantages compared to optical chopper wheels and modulated lasers. Their low cost, lack of vibration, ease of interface and small footprint are important factors to consider in TRFM design.

  11. Quantification of joint inflammation in rheumatoid arthritis by time-resolved diffuse optical spectroscopy and tracer kinetic modeling

    NASA Astrophysics Data System (ADS)

    Ioussoufovitch, Seva; Morrison, Laura B.; Lee, Ting-Yim; St. Lawrence, Keith; Diop, Mamadou

    2015-03-01

    Rheumatoid arthritis (RA) is characterized by chronic synovial inflammation, which can cause progressive joint damage and disability. Diffuse optical spectroscopy (DOS) and imaging have the potential to become potent monitoring tools for RA. We devised a method that combined time-resolved DOS and tracer kinetics modeling to rapidly and reliably quantify blood flow in the joint. Preliminary results obtained from two animals show that the technique can detect joint inflammation as early as 5 days after onset.

  12. Hot photocarrier dynamics in organic solar cells measured by transient absorption and time-resolved terahertz spectroscopy

    NASA Astrophysics Data System (ADS)

    Lane, Paul A.; Cunningham, Paul D.; Melinger, Joseph S.; Heilweil, Edwin J.

    2014-10-01

    We present a study of charge transfer and carrier dynamics in films of zinc phthalocyanine (ZnPc) and buckmisnsterfullerene (C60) by investigated by time-resolved terahertz spectroscopy (TRTS). We compare terahertz photoconductivity dynamics in composite and multi-layered films of C60 and ZnPc. The few picosecond terahertz photoconductivity dynamics arise from autoionization and recombination between C60 molecules and cooling of hot photocarriers following from charge transfer between C60 and ZnPc.

  13. Quantifying the cerebral metabolic rate of oxygen by combining diffuse correlation spectroscopy and time-resolved near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Verdecchia, Kyle; Diop, Mamadou; Lee, Ting-Yim; St. Lawrence, Keith

    2013-02-01

    Preterm infants are highly susceptible to ischemic brain injury; consequently, continuous bedside monitoring to detect ischemia before irreversible damage occurs would improve patient outcome. In addition to monitoring cerebral blood flow (CBF), assessing the cerebral metabolic rate of oxygen (CMRO2) would be beneficial considering that metabolic thresholds can be used to evaluate tissue viability. The purpose of this study was to demonstrate that changes in absolute CMRO2 could be measured by combining diffuse correlation spectroscopy (DCS) with time-resolved near-infrared spectroscopy (TR-NIRS). Absolute CBF was determined using bolus-tracking TR-NIRS to calibrate the DCS measurements. Cerebral venous blood oxygenation (SvO2) was determined by multiwavelength TR-NIRS measurements, the accuracy of which was assessed by directly measuring the oxygenation of sagittal sinus blood. In eight newborn piglets, CMRO2 was manipulated by varying the anesthetics and by injecting sodium cyanide. No significant differences were found between the two sets of SvO2 measurements obtained by TR-NIRS or sagittal sinus blood samples and the corresponding CMRO2 measurements. Bland-Altman analysis showed a mean CMRO2 difference of 0.0268±0.8340 mL O2/100 g/min between the two techniques over a range from 0.3 to 4 mL O2/100 g/min.

  14. A time-resolved fluorescence immunoassay for insulin in rodent plasma.

    PubMed

    Daijo, J E; Sportsman, J R

    1999-03-01

    We describe a time-resolved fluoroimmunoassay (TR-FIA) for quantification of insulin in rodent serum and plasma in the picomolar levels typical of these samples. The method is a solid-phase, sequential saturation assay based on competition of unlabeled insulin and biotinamidocaproyl-labeled insulin for anti-insulin antibody. Europium-labeled streptavidin allows the DELFIA system (Wallac) to be used for detection. The assay is sensitive (0.1 fmol detection limit, EC50 = 58 +/- 3 pM), accurate ( > 95% recovery of 88-880 pM insulin added to the samples), and simple enough to be automated in a 96-well microtiter plate format. Blood samples of 5 microl can be quickly processed and analyzed within a working concentration range of 40-200 pM, allowing direct measurement of insulin levels in rodents from a tail bleed. We used the TR-FIA to assess insulin levels in mouse and rat samples. In studies of streptozotocin-induced diabetes, as well as glucose load experiments, the assay gave results consistent with known literature. The measured insulin levels correlated significantly with values obtained by radioimmunoassay (R2 = 0.996). The intra-assay and inter-assay coefficients of variation were 2.3% and 15%, respectively. We compared results of this assay with an enzyme-linked immunosorbent assay (ELISA) method. The TR-FIA method was comparable to the ELISA but had higher sensitivity and required only one-tenth as much sample. The assay can be performed using commercially available reagents that allow for high sensitivity and practicability. PMID:10704099

  15. Interaction between certain porphyrins and CdS colloids: A steady state and time resolved fluorescence quenching study

    NASA Astrophysics Data System (ADS)

    Jhonsi, M. Asha; Kathiravan, A.; Renganathan, R.

    2008-12-01

    The interaction between porphyrins namely, meso-tetrakis (4-methoxyphenyl)porphyrin (TMeOPP), protoporphyrin IX (PPIX) and Zinc(II) meso-tetraphenylporphyrin (ZnTPP) with colloidal CdS has been studied by using steady state and time resolved fluorescence quenching measurements. The porphyrins adsorbed on the surface of colloidal CdS due to electrostatic interaction. This adsorption leads to changes in the absorption spectra related to the complex formation. The apparent association constant ( Kapp) was in the order of 4.34-5.58 × 10 5 M -1 from the effect of colloidal CdS on the absorption spectra and 0.64-1.6 × 10 5 M -1 from fluorescence quenching data. Quenching is attributable mainly to static mechanism through ground state complex formation as confirmed by lifetime measurements.

  16. Time-resolved fluorescence imaging (TRFI) for direct immunofluorescence of PSA and alpha-1-antichymotrypsin in prostatic tissue sections.

    PubMed

    Bjartell, A; Siivola, P; Hulkko, S; Pettersson, K; Rundt, K; Lilja, H; Lövgren, T

    1999-05-01

    We have developed a direct immunofluorescence technique utilising chelates of the lanthanide ions europium and terbium conjugated to monoclonal IgGs (Mabs) against prostate-specific antigen (PSA) and alpha-1-antichymotrypsin (ACT) for the detection and quantification on the same tissue section. Strong signals without disturbance from tissue autofluorescence were demonstrated in paraffin sections of ten benign and six malignant prostate tissue specimens. The signal intensity increased linearly with the amount of labelled Mab until epitope saturation began. The highest concentrations of bound IgG in tissue sections were 27.3 fmol/pixel for ACT and 7.2 for PSA. Time-resolved fluorescence imaging (TRFI) offers an attractive method for histochemical studies based on specific and quantitative detection of fluorescent lanthanide chelates. PMID:12496823

  17. Conformational heterogeneity of the copper binding site in azurin. A time-resolved fluorescence study.

    PubMed Central

    Szabo, A G; Stepanik, T M; Wayner, D M; Young, N M

    1983-01-01

    Comparison of the fluorescence spectra and the effect of temperature on the quantum yields of fluorescence of Azurin (from Pseudomonas fluorescens ATCC-13525-2) and 3-methylindole (in methylcyclohexane solution) provides substantive evidence that the tryptophan residue in azurin is completely inaccessible to solvent molecules. The quantum yields of azurin (CuII), azurin (CuI), and apoazurin (lambda ex = 291 nm) were 0.052, 0.054, and 0.31, respectively. Other evidence indicates that there is no energy transfer from tyrosine to tryptophan in any of these proteins. The fluorescence decay behavior of each of the azurin samples was found to be invariant with emission wavelength. The fluorescences of azurin (CuII) and azurin (CuI) decay with dual exponential kinetics (tau 1 = 4.80 ns, tau 2 = 0.18 ns) while that of apoazurin obeys single exponential decay kinetics (tau = 4.90). The ratio of pre-exponentials of azurin (CuII), alpha 1/alpha 2, is found to be 0.25, and this ratio increases to 0.36 on reduction to azurin (CuI). The results are interpreted as originating from different interactions of the tryptophan with two conformers of the copper-ligand complex in azurin. PMID:6404322

  18. Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Global monitoring of agricultural productivity is critical in a world under a continuous increase of food demand. Here we have used new spaceborne retrievals of chlorophyll fluorescence, an emission quantity intrinsically linked to photosynthesis, to derive spatially explicit photosynthetic uptake r...

  19. A dissociative fluorescence enhancement technique for one-step time-resolved immunoassays

    PubMed Central

    Mukkala, Veli-Matti; Hakala, Harri H. O.; Mäkinen, Pauliina H.; Suonpää, Mikko U.; Hemmilä, Ilkka A.

    2010-01-01

    The limitation of current dissociative fluorescence enhancement techniques is that the lanthanide chelate structures used as molecular probes are not stable enough in one-step assays with high concentrations of complexones or metal ions in the reaction mixture since these substances interfere with lanthanide chelate conjugated to the detector molecule. Lanthanide chelates of diethylenetriaminepentaacetic acid (DTPA) are extremely stable, and we used EuDTPA derivatives conjugated to antibodies as tracers in one-step immunoassays containing high concentrations of complexones or metal ions. Enhancement solutions based on different β-diketones were developed and tested for their fluorescence-enhancing capability in immunoassays with EuDTPA-labelled antibodies. Characteristics tested were fluorescence intensity, analytical sensitivity, kinetics of complex formation and signal stability. Formation of fluorescent complexes is fast (5 min) in the presented enhancement solution with EuDTPA probes withstanding strong complexones (ethylenediaminetetra acetate (EDTA) up to 100 mM) or metal ions (up to 200 μM) in the reaction mixture, the signal is intensive, stable for 4 h and the analytical sensitivity with Eu is 40 fmol/L, Tb 130 fmol/L, Sm 2.1 pmol/L and Dy 8.5 pmol/L. With the improved fluorescence enhancement technique, EDTA and citrate plasma samples as well as samples containing relatively high concentrations of metal ions can be analysed using a one-step immunoassay format also at elevated temperatures. It facilitates four-plexing, is based on one chelate structure for detector molecule labelling and is suitable for immunoassays due to the wide dynamic range and the analytical sensitivity. Figure   PMID:21161513

  20. Characterization of the Dynamics of an Essential Helix in the U1A Protein by Time-Resolved Fluorescence Measurements†

    PubMed Central

    Anunciado, Divina; Agumeh, Michael; Kormos, Bethany L.; Beveridge, David L.; Knee, Joseph L.; Baranger, Anne M.

    2008-01-01

    The RNA recognition motif (RRM), one of the most common RNA-binding domains, recognizes single-stranded RNA. A C-terminal helix that undergoes conformational changes upon binding is often an important contributor to RNA recognition. The N-terminal RRM of the U1A protein contains a C-terminal helix (helix C) that interacts with the RNA-binding surface of a β-sheet in the free protein (closed conformation), but is directed away from this β-sheet in the complex with RNA (open conformation). The dynamics of helix C in the free protein have been proposed to contribute to binding affinity and specificity. We report here a direct investigation of the dynamics of helix C in the free U1A protein on the nanosecond time scale using time-resolved fluorescence anisotropy. The results indicate that helix C is dynamic on a 2–3 ns time scale within a 20° range of motion. Steady-state fluorescence experiments and molecular dynamics simulations suggest that the dynamical motion of helix C occurs within the closed conformation. Mutation of a residue on the β-sheet that contacts helix C in the closed conformation dramatically destabilizes the complex (Phe56Ala) and alters the steady-state fluorescence, but not the time-resolved fluorescence anisotropy, of a Trp in helix C. Mutation of Asp90 in the hinge region between helix C and the remainder of the protein to Ala or Gly subtly alters the dynamics of the U1A protein and destabilizes the complex. Together these results show that helix C maintains a dynamic closed conformation that is stable to these targeted protein modifications and does not equilibrate with the open conformation on the nanosecond time scale. PMID:18293956

  1. Time-resolved experimental and computational study of two-photon laser-induced fluorescence in a hydrogen plasma

    PubMed

    van Der Heijden HW; Boogaarts; Mazouffre; van Der Mullen JA; Schram

    2000-04-01

    The time profile of the fluorescence light emission of atomic hydrogen in an expanding plasma beam after pulsed excitation with a nanosecond laser is studied, both experimentally and computationally. Ground state H atoms in an expanding Ar-H cascaded arc plasma are excited to the p=3 level using two-photon laser excitation at 205 nm. The resulting fluorescence is resolved in time with a fast photomultiplier tube to investigate the occurrence of quenching. A fluorescence decay time of (10+/-0.5) ns is measured under all circumstances, indicating that there is a complete l mixing of the p=3 sublevels. A time-resolved collisional radiative model is developed to model pulsed laser induced fluorescence for a large range of plasma parameters. The model calculations agree well with the experimental results over the entire range of conditions and indicate that two-photon LIF can strongly influence the local electron and ion densities, resulting in a "self-quenching" of the laser-induced H fluorescence. PMID:11088238

  2. Characterization of hydroxyapatite by time-resolved luminescence and FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Grigorjeva, L.; Millers, D.; Smits, K.; Jankovica, Dz; Pukina, L.

    2013-12-01

    Time-resolved luminescence and FTIR absorption spectra of undoped and Eu and Ce doped hydroxyapatite nanocrystalline powders prepared by sol-gel method were studied. The luminescence band at 350-400 nm was detected and two decay times (11 ns and 38 ns) was determinated for Ce doped samples. The luminescence spectra and decay kinetics were analized for Eu doped nanopowders. The Eu3+ ion was incorporated in different Ca sites. The process of energy transfer to Eu3+ excited state (5D0) was detected from luminescence decay kinetics.

  3. Time-resolved nonlinear polarization spectroscopy for measuring transient absorption and refraction in isotropic materials

    NASA Astrophysics Data System (ADS)

    Taranenko, Victor B.; Bazhenov, Vladimir Y.; Kulikovskaya, Olga A.

    1995-11-01

    A novel time-resolved nonlinear spectroscopic technique is described, which is based on stroboscopic registration of optical polarization transformation taking place at a vector incoherent two-wave mixing interaction in a modified Mach-Zehnder interferometer. It allows an accurate measuring of the dynamics of excitation and relaxation for real and imaginary parts of complex nonlinearity tensor components. The technique is demonstrated for measuring the light-induced change of transient absorption (delta) (alpha) e(t), (delta) (alpha) o(t) and refraction (delta) ne(t), (delta) no(t) for bacteriorhodopsin- based film pumped by linearly polarized laser pulses.

  4. Development of time resolved x-ray spectroscopy in high intensity laser-plasma interactions

    SciTech Connect

    Notley, M. M.; Weber, R. L.; Fell, B.; Jeffries, J.; Freeman, R. R.; Mackinnon, A. J.; Dickson, R.; Hey, D.; Khattak, F.; Saiz, E. Garcia; Gregori, G.

    2006-10-15

    This article discusses the design of a novel time resolved von Hamos Bragg spectrometer to provide spectra in the region around the titanium K-{alpha} and He-{alpha} lines. The instrument consists of a highly oriented pyrolitic graphite mosaic crystal coupled to a picosecond x-ray streak camera. Measurements of the time dependent behavior from Ti foils illuminated with intense laser pulses can be used to improve the understanding of recombination dynamics, electron transport, and phase transitions in strongly coupled dense plasma. This is important for the modeling of the compression phase in inertial confinement fusion research and the study of astrophysical environments.

  5. Application of time-resolved fluorescence to the determination of metabolites

    NASA Astrophysics Data System (ADS)

    Murillo Pulgarín, J. A.; Alañón Molina, A.; Martínez Ferreras, F.

    2014-07-01

    A simple fluorescent methodology for the simultaneous determination of two major metabolites of acetylsalicylic acid - salicylic and gentisic acids - in pharmaceutical preparations and human urine is proposed. Due to the overlapping between the fluorescence spectra of both analytes, the use of the more selective fluorescence decay curves is proposed. Values of dependent instrumental variables affecting the signal-to-noise ratio were fixed with a simplex optimization procedure. A calibration matrix of thirteen standards plus two blank samples was processed using a partial least-squares (PLS) analysis. To assess the goodness of the proposed method, a prediction set of nine synthetic samples was analyzed, obtaining recovery percentages between 95% and 106%. Limits of detection, calculated by means of a new criterion, were 3.49 μg L-1 and 1.66 μg L-1 for salicylic and gentisic acids, respectively. The method was also tested in three pharmaceutical preparations containing salicylic acid, obtaining recovery percentages close to 100%. Finally, the simultaneous determination of both analytes in human urine samples was successfully carried out by the PLS-analysis of a matrix of thirteen standards plus five analyte blanks. Although spectra of analytes and urine overlap strongly, no extraction method neither prior separation of the analytes were needed.

  6. Time-resolved imaging system for fluorescence-guided surgery with lifetime imaging capability

    NASA Astrophysics Data System (ADS)

    Powolny, F.; Homicsko, K.; Sinisi, R.; Bruschini, Claudio E.; Grigoriev, E.; Homulle, H.; Prior, John O.; Hanahan, D.; Dubikovskaya, E.; Charbon, E.

    2014-05-01

    We present a single-photon camera for fluorescence imaging, with a time resolution better than 100ps, capable of providing both intensity and lifetime images. the camera was fabricated in standard CMOS technology. With this FluoCam we show the possibility to study sub-nanosecond fluorescence mechanisms. The FluoCam was used to characterize a near-infrared probe, indocyanine green, conjugated with multimeric cyclic pentapeptide (cRGD). The fluorescent probe-conjugated was used to target and mark tumors with better specificity, in particular aiming at targeting the integrins αvβ3 and αvβ5. As a first step towards clinical studies, preliminary results obtained in-vivo are presented. The first envisioned clinical application would be image-guided surgical oncology to help the surgeon to remove tumor tissue by a better discrimination from normal tissues and also to improve the detection of metastatic lymph nodes. A further application could be the in-vivo determination of the αvβ3 and αvβ5 targets to select patients for therapy with RGD chemotherapy conjugates.

  7. Application of time-resolved fluorescence to the determination of metabolites.

    PubMed

    Murillo Pulgarín, J A; Alañón Molina, A; Martínez Ferreras, F

    2014-07-15

    A simple fluorescent methodology for the simultaneous determination of two major metabolites of acetylsalicylic acid--salicylic and gentisic acids--in pharmaceutical preparations and human urine is proposed. Due to the overlapping between the fluorescence spectra of both analytes, the use of the more selective fluorescence decay curves is proposed. Values of dependent instrumental variables affecting the signal-to-noise ratio were fixed with a simplex optimization procedure. A calibration matrix of thirteen standards plus two blank samples was processed using a partial least-squares (PLS) analysis. To assess the goodness of the proposed method, a prediction set of nine synthetic samples was analyzed, obtaining recovery percentages between 95% and 106%. Limits of detection, calculated by means of a new criterion, were 3.49 μg L(-1) and 1.66 μg L(-1) for salicylic and gentisic acids, respectively. The method was also tested in three pharmaceutical preparations containing salicylic acid, obtaining recovery percentages close to 100%. Finally, the simultaneous determination of both analytes in human urine samples was successfully carried out by the PLS-analysis of a matrix of thirteen standards plus five analyte blanks. Although spectra of analytes and urine overlap strongly, no extraction method neither prior separation of the analytes were needed. PMID:24662756

  8. Experimental station for laser-based picosecond time-resolved x-ray absorption near-edge spectroscopy

    SciTech Connect

    Dorchies, F. Fedorov, N.; Lecherbourg, L.

    2015-07-15

    We present an experimental station designed for time-resolved X-ray Absorption Near-Edge Spectroscopy (XANES). It is based on ultrashort laser-plasma x-ray pulses generated from a table-top 100 mJ-class laser at 10 Hz repetition rate. A high transmission (10%–20%) x-ray beam line transport using polycapillary optics allows us to set the sample in an independent vacuum chamber, providing high flexibility over a wide spectral range from 0.5 up to 4 keV. Some XANES spectra are presented, demonstrating 1% noise level in only ∼1 mn and ∼100 cumulated laser shots. Time-resolved measurements are reported, indicating that the time resolution of the entire experimental station is 3.3 ± 0.6 ps rms.

  9. Experimental station for laser-based picosecond time-resolved x-ray absorption near-edge spectroscopy

    NASA Astrophysics Data System (ADS)

    Dorchies, F.; Fedorov, N.; Lecherbourg, L.

    2015-07-01

    We present an experimental station designed for time-resolved X-ray Absorption Near-Edge Spectroscopy (XANES). It is based on ultrashort laser-plasma x-ray pulses generated from a table-top 100 mJ-class laser at 10 Hz repetition rate. A high transmission (10%-20%) x-ray beam line transport using polycapillary optics allows us to set the sample in an independent vacuum chamber, providing high flexibility over a wide spectral range from 0.5 up to 4 keV. Some XANES spectra are presented, demonstrating 1% noise level in only ˜1 mn and ˜100 cumulated laser shots. Time-resolved measurements are reported, indicating that the time resolution of the entire experimental station is 3.3 ± 0.6 ps rms.

  10. Time-Resolved Ultraviolet Spectroscopy of The M-Dwarf GJ 876 Exoplanetary System

    NASA Technical Reports Server (NTRS)

    France, Kevin; Linsky, Jeffrey L.; Tian, Feng; Froning, Cynthia S.; Roberge, Aki

    2012-01-01

    Extrasolar planets orbiting M-stars may represent our best chance to discover habitable worlds in the coming decade. The ultraviolet spectrum incident upon both Earth-like and Jovian planets is critically important for proper modeling of their atmospheric heating and chemistry. In order to provide more realistic inputs for atmospheric models of planets orbiting low-mass stars, we present new near- and far-ultraviolet (NUV and FUV) spectroscopy of the M-dwarf exoplanet host GJ 876 (M4V). Using the COS and STIS spectrographs on board the Hubble Space Telescope, we have measured the 1150-3140 A spectrum of GJ 876. We have reconstructed the stellar H1 Ly alpha emission line profile, and find that the integrated Ly alpha flux is roughly equal to the rest of the integrated flux (1150-1210 A + 1220-3140 A) in the entire ultraviolet bandpass (F(Ly alpha)/F(FUV+NUV) equals approximately 0.7). This ratio is approximately 2500x greater than the solar value. We describe the ultraviolet line spectrum and report surprisingly strong fluorescent emission from hot H2 (T(H2) greater than 2000 K). We show the light curve of a chromospheric + transition region flare observed in several far-UV emission lines, with flare/quiescent flux ratios greater than or equal to 10. The strong FUV radiation field of an M-star (and specifically Ly alpha) is important for determining the abundance of O2--and the formation of biomarkers-in the lower atmospheres of Earth-like planets in the habitable zones of low-mass stars.

  11. TIME-RESOLVED ULTRAVIOLET SPECTROSCOPY OF THE M-DWARF GJ 876 EXOPLANETARY SYSTEM

    SciTech Connect

    France, Kevin; Froning, Cynthia S.; Linsky, Jeffrey L.; Tian, Feng; Roberge, Aki

    2012-05-10

    Extrasolar planets orbiting M-stars may represent our best chance to discover habitable worlds in the coming decade. The ultraviolet spectrum incident upon both Earth-like and Jovian planets is critically important for proper modeling of their atmospheric heating and chemistry. In order to provide more realistic inputs for atmospheric models of planets orbiting low-mass stars, we present new near- and far-ultraviolet (NUV and FUV) spectroscopy of the M-dwarf exoplanet host GJ 876 (M4V). Using the COS and STIS spectrographs on board the Hubble Space Telescope, we have measured the 1150-3140 A spectrum of GJ 876. We have reconstructed the stellar H I Ly{alpha} emission line profile, and find that the integrated Ly{alpha} flux is roughly equal to the rest of the integrated flux (1150-1210 A + 1220-3140 A) in the entire ultraviolet bandpass (F(Ly{alpha})/F(FUV+NUV) Almost-Equal-To 0.7). This ratio is {approx}2500 Multiplication-Sign greater than the solar value. We describe the ultraviolet line spectrum and report surprisingly strong fluorescent emission from hot H{sub 2} (T(H{sub 2}) > 2000 K). We show the light curve of a chromospheric + transition region flare observed in several far-UV emission lines, with flare/quiescent flux ratios {>=}10. The strong FUV radiation field of an M-star (and specifically Ly{alpha}) is important for determining the abundance of O{sub 2}-and the formation of biomarkers-in the lower atmospheres of Earth-like planets in the habitable zones of low-mass stars.

  12. Time-resolved fluorescence of 2-aminopurine as a probe of base flipping in M.HhaI–DNA complexes

    PubMed Central

    Neely, Robert K.; Daujotyte, Dalia; Grazulis, Saulius; Magennis, Steven W.; Dryden, David T. F.; Klimašauskas, Saulius; Jones, Anita C.

    2005-01-01

    DNA base flipping is an important mechanism in molecular enzymology, but its study is limited by the lack of an accessible and reliable diagnostic technique. A series of crystalline complexes of a DNA methyltransferase, M.HhaI, and its cognate DNA, in which a fluorescent nucleobase analogue, 2-aminopurine (AP), occupies defined positions with respect the target flipped base, have been prepared and their structures determined at higher than 2 Å resolution. From time-resolved fluorescence measurements of these single crystals, we have established that the fluorescence decay function of AP shows a pronounced, characteristic response to base flipping: the loss of the very short (∼100 ps) decay component and the large increase in the amplitude of the long (∼10 ns) component. When AP is positioned at sites other than the target site, this response is not seen. Most significantly, we have shown that the same clear response is apparent when M.HhaI complexes with DNA in solution, giving an unambiguous signal of base flipping. Analysis of the AP fluorescence decay function reveals conformational heterogeneity in the DNA–enzyme complexes that cannot be discerned from the present X-ray structures. PMID:16340006

  13. Correlation of conformational heterogeneity of the tryptophyl side chain and time-resolved fluorescence intensity decay kinetics

    NASA Astrophysics Data System (ADS)

    Laws, William R.; Ross, J. B. Alexander

    1992-04-01

    The time-resolved fluorescence properties of a tryptophan residue should be useful for probing protein structure, function, and dynamics. To date, however, the non-single exponential fluorescence intensity decay kinetics for numerous peptides and proteins having a single tryptophan residue have not been adequately explained. Many possibilities have been considered and include: (1) contributions from the 1La and 1Lb states of indole; (2) excited-state hydrogen exchange; and (3) environmental heterogeneity from (chi) 1 and (chi) 2 rotamers. In addition, it has been suggested that generally many factors contribute to the decay and a distribution of probabilities may be more appropriate. Two recent results support multiple species due to conformational heterogeneity as the major contributor to complex kinetics. First, a rotationally constrained tryptophan analogue has fluorescence intensity decay kinetics that can be described by the sum of two exponentials with amplitudes comparable to the relative populations of the two rotational isomers. Second, the multiple exponentials observed for tyrosine-containing model compounds and peptides correlate with the (chi) 1 rotamer populations independently determined by 1H NMR. We now report similar correlations between rotamer populations and fluorescence intensity decay kinetics for a tryptophan analogue of oxytocin. It appears for this compound that either (chi) 2 rotations do not appreciably alter the indole environment, (chi) 2 rotations are rapid enough to average the observed dependence, or only one of two possible (chi) 2 populations is associated with each (chi) 1 rotamer.

  14. A novel luminescent terbium-3-carboxycoumarin probe for time-resolved fluorescence sensing of pesticides methomyl, aldicarb and prometryne

    NASA Astrophysics Data System (ADS)

    Azab, Hassan A.; Duerkop, Axel; Saad, E. M.; Awad, F. K.; Abd El Aal, R. M.; Kamel, Rasha M.

    2012-11-01

    The luminescence arising from lanthanide cations offers several advantages over organic fluorescent molecules: sharp, distinctive emission bands allow for easy resolution between multiple lanthanide signals; long emission lifetimes (μs-ms) make them excellent candidates for time-resolved measurements; and high resistance to photo bleaching allow for long or repeated experiments. A time-resolved (gated) luminescence-based method for determination of pesticides methomyl, aldicarb and prometryne in microtiterplate format using the long-lived terbium-3-carboxycoumarin in 1:3 metal:ligand ratio has been developed. The limit of detection is 1.20 × 106, 5.19 × 105 and 2.74 × 106 ng L-1 for methomyl, prometryne and aldicarb, respectively. The quantum yield (QY = 0.08) of Tb(III)-3-carboxycoumarin was determined using 3-(2-benzothiazolyl)-7-diethylamino-coumarin (coumarin 6). Stern-volmer studies at different temperatures indicate that collisional quenching dominates for methomyl, aldicarb and prometryne. Binding constants were determined at 303, 308 and 313 K by using Lineweaver-Burk equation. A thermodynamic analysis showed that the reaction is spontaneous with negative ΔG. Effect of some relevant interferents on the detection of pesticides has been investigated.

  15. Cellular Oxygen and Nutrient Sensing in Microgravity Using Time-Resolved Fluorescence Microscopy

    NASA Technical Reports Server (NTRS)

    Szmacinski, Henryk

    2003-01-01

    Oxygen and nutrient sensing is fundamental to the understanding of cell growth and metabolism. This requires identification of optical probes and suitable detection technology without complex calibration procedures. Under this project Microcosm developed an experimental technique that allows for simultaneous imaging of intra- and inter-cellular events. The technique consists of frequency-domain Fluorescence Lifetime Imaging Microscopy (FLIM), a set of identified oxygen and pH probes, and methods for fabrication of microsensors. Specifications for electronic and optical components of FLIM instrumentation are provided. Hardware and software were developed for data acquisition and analysis. Principles, procedures, and representative images are demonstrated. Suitable lifetime sensitive oxygen, pH, and glucose probes for intra- and extra-cellular measurements of analyte concentrations have been identified and tested. Lifetime sensing and imaging have been performed using PBS buffer, culture media, and yeast cells as a model systems. Spectral specifications, calibration curves, and probes availability are also provided in the report.

  16. Architecture of polyglutamine-containing fibrils from time-resolved fluorescence decay.

    PubMed

    Röthlein, Christoph; Miettinen, Markus S; Borwankar, Tejas; Bürger, Jörg; Mielke, Thorsten; Kumke, Michael U; Ignatova, Zoya

    2014-09-26

    The disease risk and age of onset of Huntington disease (HD) and nine other repeat disorders strongly depend on the expansion of CAG repeats encoding consecutive polyglutamines (polyQ) in the corresponding disease protein. PolyQ length-dependent misfolding and aggregation are the hallmarks of CAG pathologies. Despite intense effort, the overall structure of these aggregates remains poorly understood. Here, we used sensitive time-dependent fluorescent decay measurements to assess the architecture of mature fibrils of huntingtin (Htt) exon 1 implicated in HD pathology. Varying the position of the fluorescent labels in the Htt monomer with expanded 51Q (Htt51Q) and using structural models of putative fibril structures, we generated distance distributions between donors and acceptors covering all possible distances between the monomers or monomer dimensions within the polyQ amyloid fibril. Using Monte Carlo simulations, we systematically scanned all possible monomer conformations that fit the experimentally measured decay times. Monomers with four-stranded 51Q stretches organized into five-layered β-sheets with alternating N termini of the monomers perpendicular to the fibril axis gave the best fit to our data. Alternatively, the core structure of the polyQ fibrils might also be a zipper layer with antiparallel four-stranded stretches as this structure showed the next best fit. All other remaining arrangements are clearly excluded by the data. Furthermore, the assessed dimensions of the polyQ stretch of each monomer provide structural evidence for the observed polyQ length threshold in HD pathology. Our approach can be used to validate the effect of pharmacological substances that inhibit or alter amyloid growth and structure. PMID:25092288

  17. Architecture of Polyglutamine-containing Fibrils from Time-resolved Fluorescence Decay

    PubMed Central

    Röthlein, Christoph; Miettinen, Markus S.; Borwankar, Tejas; Bürger, Jörg; Mielke, Thorsten; Kumke, Michael U.; Ignatova, Zoya

    2014-01-01

    The disease risk and age of onset of Huntington disease (HD) and nine other repeat disorders strongly depend on the expansion of CAG repeats encoding consecutive polyglutamines (polyQ) in the corresponding disease protein. PolyQ length-dependent misfolding and aggregation are the hallmarks of CAG pathologies. Despite intense effort, the overall structure of these aggregates remains poorly understood. Here, we used sensitive time-dependent fluorescent decay measurements to assess the architecture of mature fibrils of huntingtin (Htt) exon 1 implicated in HD pathology. Varying the position of the fluorescent labels in the Htt monomer with expanded 51Q (Htt51Q) and using structural models of putative fibril structures, we generated distance distributions between donors and acceptors covering all possible distances between the monomers or monomer dimensions within the polyQ amyloid fibril. Using Monte Carlo simulations, we systematically scanned all possible monomer conformations that fit the experimentally measured decay times. Monomers with four-stranded 51Q stretches organized into five-layered β-sheets with alternating N termini of the monomers perpendicular to the fibril axis gave the best fit to our data. Alternatively, the core structure of the polyQ fibrils might also be a zipper layer with antiparallel four-stranded stretches as this structure showed the next best fit. All other remaining arrangements are clearly excluded by the data. Furthermore, the assessed dimensions of the polyQ stretch of each monomer provide structural evidence for the observed polyQ length threshold in HD pathology. Our approach can be used to validate the effect of pharmacological substances that inhibit or alter amyloid growth and structure. PMID:25092288

  18. Time-resolved spectroscopy of self-assembly of CCMV protein capsids

    NASA Astrophysics Data System (ADS)

    Moore, Jelyn; Aronzon, Dina; Manoharan, V. N.

    2008-10-01

    In order to gain a deeper understanding of the process a virus undergoes to assemble; the purpose of this study to time resolve the self-assembly of a virus. Cowpea Chlorotic Mottle virus (CCMV), an icosahedral type virus, can assemble without its genetic code (RNA) depending on its chemical and physical surroundings. The surface plasmon resonance (SPR) of colloidal gold particles is known to display a shift when the gold interacts with the proteins of a virus. Surface plasmon resonance is the free electron oscillation occurring at the surface of the gold particle resulting in a characteristic peak location at maximal absorbance and peak width. The shift results from the change in the refractive index of the particles as induced by the presence of the proteins. We hope to detect this shift through total internal reflection microscopy (TIRM). The accomplishments of this research are the completion of the TIR setup and the purification of the virus and its proteins.

  19. Time-resolved positron annihilation spectroscopy study of relaxation dynamics of ion damage in fused quartz

    NASA Astrophysics Data System (ADS)

    Tsuchida, Hidetsugu; Mizuno, Shohei; Tsutsumi, Hironori; Kinomura, Atsushi; Suzuki, Ryoichi; Itoh, Akio

    2016-05-01

    Relaxation dynamics of ion damage in fused quartz is investigated by our newly developed pump–probe technique combining energetic ions (pump) with slow positrons (probe). This method enables determination of time-resolved positron lifetime. We study the time-dependent relaxation of ion damage, by analyzing the intensity variation in the ortho-positronium lifetime component associated with irradiation damage. For irradiation with 160 keV He ions in the temperature range of 300–573 K, the positron annihilation lifetime spectra are obtained as a function of time after ion irradiation. We observe that the relaxation time of ion damage is strongly influenced by specimen temperatures; the relaxation time constant is approximately 400 ms at room temperature (300 K) and becomes smaller with an increasing temperature. Analysis for the effect of temperature on damage accumulation reveals that the activation energy for thermal annealing of the observed damage is approximately 0.1 eV.

  20. Time-resolved spectroscopy of Bi3+ centers in Y4Al2O9

    NASA Astrophysics Data System (ADS)

    Babin, V.; Lipińska, L.; Mihokova, E.; Nikl, M.; Shalapska, T.; Suchocki, A.; Zazubovich, S.; Zhydachevskii, Ya

    2015-08-01

    Steady-state and time-resolved emission and excitation spectra as well as luminescence decay kinetics are studied at 4.2-400 K under excitation in the 3-6 eV energy range for Bi3+ ions substituting for Y3+ ions in four inequivalent crystal lattice sites of Y4Al2O9:Bi ceramics. Luminescence characteristics of Bi3+ centers of all the four types are identified and are shown to arise from the radiative decay of the triplet relaxed excited state (RES) of Bi3+ ions. The parameters of the triplet RES, namely, probabilities of the radiative and nonradiative transitions from the metastable and emitting levels as well as the energy distance between these levels, are determined. The influence of the nearest surroundings of Bi3+ ions on the luminescence characteristics and the parameters of the triplet RES of Bi3+ centers is discussed.

  1. Cerebral and Muscle Tissue Oxygenation During Incremental Cycling in Male Adolescents Measured by Time-Resolved Near-Infrared Spectroscopy.

    PubMed

    Ganesan, Goutham; Leu, Szu-Yun; Cerussi, Albert; Tromberg, Bruce; Cooper, Dan M; Galassetti, Pietro

    2016-05-01

    Near-infrared spectroscopy has long been used to measure tissue-specific O2 dynamics in exercise, but most published data have used continuous wave devices incapable of quantifying absolute Hemoglobin (Hb) concentrations. We used time-resolved near-infrared spectroscopy to study exercising muscle (Vastus Lateralis, VL) and prefrontal cortex (PFC) Hb oxygenation in 11 young males (15.3 ± 2.1 yrs) performing incremental cycling until exhaustion (peak VO2 = 42.7 ± 6.1 ml/min/kg, mean peak power = 181 ± 38 W). Time-resolved near-infrared spectroscopy measurements of reduced scattering (μs´) and absorption (μa) at three wavelengths (759, 796, and 833 nm) were used to calculate concentrations of oxyHb ([HbO2]), deoxy Hb ([HbR]), total Hb ([THb]), and O2 saturation (stO2). In PFC, significant increases were observed in both [HbO2] and [HbR] during intense exercise. PFC stO2% remained stable until 80% of total exercise time, then dropped (-2.95%, p = .0064). In VL, stO2% decreased until peak time (-6.8%, p = .01). Segmented linear regression identified thresholds for PFC [HbO2], [HbR], VL [THb]. There was a strong correlation between timing of second ventilatory threshold and decline in PFC [HbO2] (r = .84). These findings show that time-resolved near-infrared spectroscopy can be used to study physiological threshold phenomena in children during maximal exercise, providing insight into tissue specific hemodynamics and metabolism. PMID:26451845

  2. Use of Time-Resolved Fluorescence To Improve Sensitivity and Dynamic Range of Gel-Based Proteomics.

    PubMed

    Sandberg, AnnSofi; Buschmann, Volker; Kapusta, Peter; Erdmann, Rainer; Wheelock, Åsa M

    2016-03-15

    Limitations in the sensitivity and dynamic range of two-dimensional gel electrophoresis (2-DE) are currently hampering its utility in global proteomics and biomarker discovery applications. In the current study, we present proof-of-concept analyses showing that introducing time-resolved fluorescence in the image acquisition step of in-gel protein quantification provides a sensitive and accurate method for subtracting confounding background fluorescence at the photon level. In-gel protein detection using the minimal difference gel electrophoresis workflow showed improvements in lowest limit of quantification in terms of CyDye molecules per pixel of 330-fold in the blue-green region (Cy2) and 8000-fold in the red region (Cy5) over conventional state-of-the-art image acquisition instrumentation, here represented by the Typhoon 9400 instrument. These improvements make possible the detection of low-abundance proteins present at sub-attomolar levels, thereby representing a quantum leap for the use of gel-based proteomics in biomarker discovery. These improvements were achieved using significantly lower laser powers and overall excitation times, thereby drastically decreasing photobleaching during repeated scanning. The single-fluorochrome detection limits achieved by the cumulative time-resolved emission two-dimensional electrophoresis (CuTEDGE) technology facilitates in-depth proteomics characterization of very scarce samples, for example, primary human tissue materials collected in clinical studies. The unique information provided by high-sensitivity 2-DE, including positional shifts due to post-translational modifications, may increase the chance to detect biomarker signatures of relevance for identification of disease subphenotypes. PMID:26854653

  3. On the possibility of ephedrine detection: time-resolved fluorescence resonance energy transfer (FRET)-based approach.

    PubMed

    Varriale, Antonio; Marzullo, Vincenzo Manuel; Di Giovanni, Stefano; Scala, Andrea; Capo, Alessandro; Majoli, Adelia; Pennacchio, Angela; Staiano, Maria; D'Auria, Sabato

    2016-09-01

    Ephedrine is one of the main precursor compounds used in the illegal production of amphetamines and related drugs. Actually, conventional analytical methods such as high-performance liquid chromatography (HPLC), capillary electrophoresis (CE), and gas chromatography-mass spectrometry (GC-MS) are used for the detection of ephedrine; sadly, these methods require qualified personnel and are time-consuming and expensive. In order to overcome these problems, in recent years, different methods have been developed based on the surface plasmon resonance (SPR) and electrochemical method. In this work, we present a simple, rapid, and effective method to detect the presence of ephedrine in solution, based on competitive fluorescence resonance energy transfer (FRET) assay. The antibody anti-ephedrine and ephedrine derivative were produced and labeled respectively, with two different fluorescent probes (donor and acceptor). The change in FRET signal intensity between donor and acceptor ephedrine compounds gives the possibility of detecting ephedrine traces of at least 0.81 ± 0.04 ppm (LOD). Graphical abstract A new Time-resolved Fluorescence Resonance Energy Transfer (FRET) assay for ephedrine detection. PMID:27395357

  4. Full Genotyping of a Highly Polymorphic Human Gene Trait by Time-Resolved Fluorescence Resonance Energy Transfer

    PubMed Central

    Totè, Edoardo; Lamperti, Marco; Bondani, Maria; Salerno, Domenico; Cassina, Valeria; Nardo, Luca

    2014-01-01

    The ability of detecting the subtle variations occurring, among different individuals, within specific DNA sequences encompassed in highly polymorphic genes discloses new applications in genomics and diagnostics. DQB1 is a gene of the HLA-II DQ locus of the Human Leukocyte Antigens (HLA) system. The polymorphisms of the trait of the DQB1 gene including codons 52–57 modulate the susceptibility to a number of severe pathologies. Moreover, the donor-receiver tissue compatibility in bone marrow transplantations is routinely assessed through crossed genotyping of DQB and DQA. For the above reasons, the development of rapid, reliable and cost-effective typing technologies of DQB1 in general, and more specifically of the codons 52–57, is a relevant although challenging task. Quantitative assessment of the fluorescence resonance energy transfer (FRET) efficiency between chromophores labelling the opposite ends of gene-specific oligonucleotide probes has proven to be a powerful tool to type DNA polymorphisms with single-nucleotide resolution. The FRET efficiency can be most conveniently quantified by applying a time-resolved fluorescence analysis methodology, i.e. time-correlated single-photon counting, which allows working on very diluted template specimens and in the presence of fluorescent contaminants. Here we present a full in-vitro characterization of the fluorescence responses of two probes when hybridized to oligonucleotide mixtures mimicking all the possible genotypes of the codons 52–57 trait of DQB1 (8 homozygous and 28 heterozygous). We show that each genotype can be effectively tagged by the combination of the fluorescence decay constants extrapolated from the data obtained with such probes. PMID:25215592

  5. Time-resolved infrared spectroscopy of the lowest triplet state of thymine and thymidine

    NASA Astrophysics Data System (ADS)

    Hare, Patrick M.; Middleton, Chris T.; Mertel, Kristin I.; Herbert, John M.; Kohler, Bern

    2008-05-01

    Vibrational spectra of the lowest energy triplet states of thymine and its 2'-deoxyribonucleoside, thymidine, are reported for the first time. Time-resolved infrared (TRIR) difference spectra were recorded over seven decades of time from 300 fs to 3 μs using femtosecond and nanosecond pump-probe techniques. The carbonyl stretch bands in the triplet state are seen at 1603 and ˜1700 cm -1 in room-temperature acetonitrile- d3 solution. These bands and additional ones observed between 1300 and 1450 cm -1 are quenched by dissolved oxygen on a nanosecond time scale. Density-functional calculations accurately predict the difference spectrum between triplet and singlet IR absorption cross sections, confirming the peak assignments and elucidating the nature of the vibrational modes. In the triplet state, the C4 dbnd O carbonyl exhibits substantial single-bond character, explaining the large (˜70 cm -1) red shift in this vibration, relative to the singlet ground state. Femtosecond TRIR measurements unambiguously demonstrate that the triplet state is fully formed within the first 10 ps after excitation, ruling out a relaxed 1nπ ∗ state as the triplet precursor.

  6. Time resolved laser absorption spectroscopy in a self-pulsed microplasma.

    NASA Astrophysics Data System (ADS)

    Aubert, X.; Rousseau, A.; Lagrange, J. F.; Sadeghi, N.

    2006-10-01

    It was recently shown that microplasmas of the microhollow cathode type geometry may operate in a self-pulsing regime for intermediate current (0.1-1 mA) [1]. At lower current (< 0.1 mA) the plasma is stable and located inside the hole; at higher current (> 1 mA) , the plasma is also stable but expands outside the hole on the cathode backside region. The self pulsing was attributed to the breakdown of the gas, outside the micro-hole, on the cathode backside. However, the mechanisms of the plasma ignition on the cathode backside are not understood and metastable atoms may play a major role. In the present work, time resolved diode laser absorption measurements have been performed through the micro-hole in the self-pulsing regime; the plasma hole ranges is in the range of 100 μm and the gas pressure ranges from 50 to 300 Torr; the feed gas is argon and the transition studied is 772.376 nm (Paschen notation 1s5-2p7). The objective is i) to measure the time evolution of the 1s5 metastable density, ii) deduce the gas temperature and plasma density from the absorption line profile. Similar results are performed in 3 electrodes configuration [1] A. Rousseau and X. Aubert J. Phys.D : Appl. Phys. 39 (2006) 1619--1622.

  7. Time-resolved spectroscopy and photometry of the eclipsing AM Herculis binary EXO 033319 - 2554. 2

    SciTech Connect

    Allen, R.G.; Berriman, G.; Smith, P.S.; Schmidt, G.D. )

    1989-12-01

    Time-resolved optical observations of the eclipsing AM Herculis binary EXO 033319 - 2554.2 are presented. High-speed photometry of an eclipse is presented and used to derive a new ephemeris for the system and to estimate the size of the region responsible for the cyclotron emission. Optical spectra that span the orbital cycle are presented, the cyclotron emission in these spectra is discussed, and the flux and radial velocity variations of H-beta, H-gamma, and He II 4686 A are examined. Models of the flux and radial velocity variations of the emission lines indicate that about half the line emission comes from low-velocity material that is about 1.4 x 10 to the 10th cm from the white dwarf. The rest comes from high-velocity material that is about 10 to the 10th cm from the white dwarf and is moving toward it at about 600 km/s. 13 refs.

  8. Diffusion optical spectroscopy of cancerous and normal prostate tissues in time-resolved and frequency domain

    NASA Astrophysics Data System (ADS)

    Zhou, Kenneth J.; Pu, Yang; Chen, Jun

    2014-03-01

    It is well-known that light transport can be well described using Maxwell's electromagnetic theory. In biological tissue, the scattering particles cause the interaction of scattered waves from neighboring particles. Since such interaction cannot be ignored, multiple scattering occurs. The theoretical solution of multiple scattering is complicated. A suitable description is that the wavelike behavior of light is ignored and the transport of an individual photon is considered to be absorbed or scattered. This is known as the Radiative Transfer Equation (RTE) theory. Analytical solutions to the RTE that explicitly describes photon migration can be obtained by introducing some proper approximations. One of the most popular models used in the field of tissue optics is the Diffusion Approximation (DA). In this study, we report on the results of our initial study of optical properties of ex vivo normal and cancerous prostate tissues and how tissue parameters affect the near infrared light transporting in the two types of tissues. The time-resolved transport of light is simulated as an impulse isotropic point source of energy within a homogeneous unbounded medium with different absorption and scattering properties of cancerous and normal prostate tissues. Light source is also modulated sinusoidally to yield a varied fluence rate in frequency domain at a distant observation point within the cancerous and normal prostate tissues. Due to difference of the absorption and scattering coefficients between cancerous and normal tissues, the expansion of light pulse, intensity, phase are found to be different.

  9. Multiplexed measurements by time resolved spectroscopy using colloidal CdSe/ZnS quantum dots

    NASA Astrophysics Data System (ADS)

    Kaiser, U.; Jimenez de Aberasturi, D.; Malinowski, R.; Amin, F.; Parak, W. J.; Heimbrodt, W.

    2014-01-01

    Multiplexed measurements of analytes in parallel is a topical demand in bioanalysis and bioimaging. An interesting alternative to commonly performed spectral multiplexing is lifetime multiplexing. In this Letter, we present a proof of principle of single-color lifetime multiplexing by coupling the same fluorophore to different nanoparticles. The effective lifetime of the fluorophores can be tuned by more than one order of magnitude due to resonance energy transfer from donor states. Measurements have been done on a model systems consisting of ATTO-590 dye molecules linked to either gold particles or to CdSe/ZnS core shell quantum dots. Both systems show the same luminescence spectrum of ATTO-590 dye emission in continuous wave excitation, but can be distinguished by means of time resolved measurements. The dye molecules bound to gold particles exhibit a mono-exponential decay with a lifetime of 4.5 ns, whereas the dye molecules bound to CdSe/ZnS dots show a nonexponential decay with a slow component of about 135 ns due to the energy transfer from the quantum dots. We demonstrate the fundamental possibility to determine the mixing ratio for dyes with equal luminescence spectra but very different transients. This opens up a pathway independent of the standard optical multiplexing with many different fluorophores emitting from the near ultraviolet to the near infrared spectral region.

  10. Multiplexed measurements by time resolved spectroscopy using colloidal CdSe/ZnS quantum dots

    SciTech Connect

    Kaiser, U.; Jimenez de Aberasturi, D.; Malinowski, R.; Amin, F.; Parak, W. J.; Heimbrodt, W.

    2014-01-27

    Multiplexed measurements of analytes in parallel is a topical demand in bioanalysis and bioimaging. An interesting alternative to commonly performed spectral multiplexing is lifetime multiplexing. In this Letter, we present a proof of principle of single-color lifetime multiplexing by coupling the same fluorophore to different nanoparticles. The effective lifetime of the fluorophores can be tuned by more than one order of magnitude due to resonance energy transfer from donor states. Measurements have been done on a model systems consisting of ATTO-590 dye molecules linked to either gold particles or to CdSe/ZnS core shell quantum dots. Both systems show the same luminescence spectrum of ATTO-590 dye emission in continuous wave excitation, but can be distinguished by means of time resolved measurements. The dye molecules bound to gold particles exhibit a mono-exponential decay with a lifetime of 4.5 ns, whereas the dye molecules bound to CdSe/ZnS dots show a nonexponential decay with a slow component of about 135 ns due to the energy transfer from the quantum dots. We demonstrate the fundamental possibility to determine the mixing ratio for dyes with equal luminescence spectra but very different transients. This opens up a pathway independent of the standard optical multiplexing with many different fluorophores emitting from the near ultraviolet to the near infrared spectral region.

  11. Determination of Iron in Water Solution by Time-Resolved Femtosecond Laser-Induced Breakdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sergey, S. Golik; Alexey, A. Ilyin; Michael, Yu. Babiy; Yulia, S. Biryukova; Vladimir, V. Lisitsa; Oleg, A. Bukin

    2015-11-01

    The influence of the energy of femtosecond laser pulses on the intensity of Fe I (371.99 nm) emission line and the continuous spectrum of the plasma generated on the surface of Fe3+ water solution by a Ti: sapphire laser radiation with pulse duration < 45 fs and energies up to 7 mJ is determined. A calibration curve was obtained for Fe3+ concentration range from 0.5 g/L to the limit of detection in water solution, and its saturation was detected for concentrations above 0.25 g/L, which is ascribed to self-absorption. The 3σ- limit of detection obtained for Fe in water solution is 2.6 mg/L in the case of 7 mJ laser pulse energy. It is found that an increase of laser pulse energy insignificantly affects on LOD in the time-resolved LIBS and leads to a slight improvement of the limit of detection. supported by the Russian Science Foundation (agreement #14-50-00034) (measurements of limit of detection), Russian Foundation for Basic Research (NK 15-32-20878/15) obtained in the frame of “Organization of Scientific Research” in the Far Eastern Federal University supported by Ministry of Education and Science of Russian Federation

  12. Fluorescence lifetime spectroscopy of glioblastoma multiforme.

    PubMed

    Marcu, Laura; Jo, Javier A; Butte, Pramod V; Yong, William H; Pikul, Brian K; Black, Keith L; Thompson, Reid C

    2004-01-01

    Fluorescence spectroscopy of the endogenous emission of brain tumors has been researched as a potentially important method for the intraoperative localization of brain tumor margins. We investigated the use of time-resolved, laser-induced fluorescence spectroscopy for demarcation of primary brain tumors by studying the time-resolved spectra of gliomas. The fluorescence of human brain samples (glioblastoma multiforme, cortex and white matter: six patients, 23 sites) was induced ex vivo with a pulsed nitrogen laser (337 nm, 3 ns). The time-resolved spectra were detected in a 360-550 nm wavelength range using a fast digitizer and gated detection. Parameters derived from both the spectral- (intensities from narrow spectral bands) and the time domain (average lifetime) measured at 390 and 460 nm were used for tissue characterization. We determined that high-grade gliomas are characterized by fluorescence lifetimes that varied with the emission wavelength (>3 ns at 390 nm, <1 ns at 460 nm) and their emission is overall longer than that of normal brain tissue. Our study demonstrates that the use of fluorescence lifetime not only improves the specificity of fluorescence measurements but also allows a more robust evaluation of data collected from brain tissue. Combined information from both the spectral- and the time domain can enhance the ability of fluorescence-based techniques to diagnose and detect brain tumor margins intraoperatively. PMID:15339216

  13. TIME-RESOLVED SPECTROSCOPY OF THE POLAR EU CANCRI IN THE OPEN CLUSTER MESSIER 67

    SciTech Connect

    Williams, Kurtis A.; Howell, Steve B.; Bellini, Andrea; Rubin, Kate H. R.; Bolte, Michael E-mail: steve.b.howell@nasa.gov E-mail: psmith@as.arizona.edu E-mail: rubin@mpia.de

    2013-05-15

    We present time-resolved spectroscopic and polarimetric observations of the AM Her system EU Cnc. EU Cnc is located near the core of the old open cluster Messier 67; new proper motion measurements indicate that EU Cnc is indeed a member of the star cluster, and this system therefore is useful to constrain the formation and evolution of magnetic cataclysmic variables. The spectra exhibit two-component emission features with independent radial velocity variations as well as time-variable cyclotron emission indicating a magnetic field strength of 41 MG. The period of the radial velocity and cyclotron hump variations are consistent with the previously known photometric period, and the spectroscopic flux variations are consistent in amplitude with previous photometric amplitude measurements. The secondary star is also detected in the spectrum. We also present polarimetric imaging measurements of EU Cnc that show a clear detection of polarization, and the degree of polarization drops below our detection threshold at phases when the cyclotron emission features are fading or not evident. The combined data are all consistent with the interpretation that EU Cnc is a low-state polar in the cluster Messier 67. The mass function of the system gives an estimate of the accretor mass of M{sub WD} {>=} 0.68 M{sub Sun} with M{sub WD} Almost-Equal-To 0.83 M{sub Sun} for an average inclination. We are thus able to place a lower limit on the progenitor mass of the accreting white dwarf of {>=}1.43 M{sub Sun }.

  14. Time-Resolved Spectroscopy With A Narrow-Band Pulsed Dye Laser At High Irradiances

    NASA Astrophysics Data System (ADS)

    van Bergen, A. R.; Hollander, Tj.; Alkemade, C. T.

    1985-03-01

    We measured the fluorescence spectrum of the Na-D lines in a sodium vapour cell filled with Ar gas, excited by an intense, nearly monochromatic laser near resonance. In this case the theory (dressed-atom model) predicts a line splitting dependent on the laser intensity.

  15. Effects of ligand binding on the conformation and internal dynamics in specific regions of porcine pancreatic phospholipase A2 with tryptophan as a probe: a study combining time-resolved fluorescence spectroscopy and site-directed mutagenesis (same as p. 100)

    NASA Astrophysics Data System (ADS)

    Kuipers, Oscar; Vincent, Michel; Brochon, Jean-Claude; Verheij, Bert; de Haas, Gerard; Gallay, Jacques

    1990-05-01

    Exploration of the effect of ligand-protein interactions on conformational substates and internal dynamics in different regions of phospholipase A2 from porcine pancreas (PLA2), was performed by combining site-directed mutagenesis and time-resolved fluorescence measurements. The single tryptophan residue (Trp-3) in the wild type protein was replaced by a phenylalanine residue, whereafter Trp was substituted either for leucine-31 ,located in the calcium binding loop, or for phenylalanine-94, located at the "back side" of the enzyme, in a-helix E (Dijkstra et al., J. Mol. Biol., 147, 97-123, 1981). Analyses by the Maximum Entropy Method (MIEM) of the total fluorescence intensity decays, provide in each case a distribution of separate lifetime classes, which can be interpreted as reflecting the existence of discrete conformational substates in slow exchange with respect to the time-scale of the decay kinetics. The fluorescence decay of the W94 mutant is dominated by an extremely short excited state lifetime of ~60 ps, probably arising from the presence of two proximate disulfide bridges. Time-resolved fluorescence anisotropy studies show that the Trp residue near the NH2 terminus (Trp-3) undergoes a more limited rotational motion than the Trp-3 1 located in the calcium binding loop. The widest angular rotation is observed at position 94, in a-helix E. Calcium binding displays the strongest influence on the lifetime distribution of Trp-31: a major local conformation corresponding to a lifetime class with a barycenter value of ~5.5 ns and contributing to ~50% of the decay is selected. The conformations giving rise to the short lifetimes ((tau)1 and (tau)2 lifetime classes) become less important. The contribution of the third lifetime class (c3) stays at a constant value of 30%. In the presence of calcium, the amplitude of motion is wider than without the ion. There is virtually no effect of calcium binding on the lifetime distribution of the Trp residue at the 3 or the

  16. Effects of ligand binding on the conformation and internal dynamics in specific regions of porcine pancreatic phospholipase A2 with tryptophan as a probe: a study combinging time-resolved fluorescence spectroscopy and site-directed mutagenesis (same as p. 628)

    NASA Astrophysics Data System (ADS)

    Kuipers, Oscar; Vincent, Michel; Brochon, Jean-Claude; Verheij, Bert; de Haas, Gerard; Gallay, Jacques

    1990-05-01

    Exploration of the effect of ligand-protein interactions on conformational substates and internal dynamics in different regions of phospholipase A2 from porcine pancreas (PLA2), was performed by combining site-directed mutagenesis and time-resolved fluorescence measurements. The single tryptophan residue (Trp-3) in the wild type protein was replaced by a phenylalanine residue, whereafter Tip was substituted either for leucine-3 1 ,located in the calcium binding ioop, or for phenylalanine-94, located at the "back side" of the enzyme, in a-helix E (Dijkstra et al., J. Mol. Biol., 147, 97-123, 1981). Analyses by the Maximum Entropy Method (MEM) of the total fluorescence intensity decays, provide in each case a distribution of separate lifetime classes, which can be interpreted as reflecting the existence of discrete conformational substates in slow exchange with respect to the time-scale of the decay kinetics. The fluorescence decay of the W94 mutant is. dominated by an extremely short excited state lifetime of ~60 ps, probably arising from the presence of two proximate disulfide bridges. Time-resolved fluorescence anisotropy studies show that the Trp residue near the NH2 terminus (Trp-3) undergoes a more limited rotational motion than the Trp-3 1 located in the calcium binding loop. The widest angular rotation is observed at position 94, in a-helix E. Calcium binding displays the strongest influence on the lifetime distribution of Trp-3 1: a major local conformation corresponding to a lifetime class with a barycenter value of -5.5 ns and contributing to ~50% of the decay is selected. The conformations giving rise to the short lifetimes (τ1 and τ2 lifetime classes) become less important. The contribution of the third lifetime class (c3) stays at a constant value of 30%. In the presence of calcium, the amplitude of motion is wider than without the ion. There is virtually no effect of calcium binding on the lifetime distribution of the Trp residue at the 3 or the 94

  17. Identifiability analysis of rotational diffusion tensor and electronic transition moments measured in time-resolved fluorescence depolarization experiment

    SciTech Connect

    Szubiakowski, Jacek P.

    2014-06-14

    The subject of this paper is studies of the deterministic identifiability of molecular parameters, such as rotational diffusion tensor components and orientation of electronic transition moments, resulting from the time-resolved fluorescence anisotropy experiment. In the most general case considered, a pair of perpendicularly polarized emissions enables the unique determination of all the rotational diffusion tensor's principal components. The influence of the tensor's symmetry and the associated degeneration of its eigenvalues on the identifiability of the electronic transitions moments is systematically investigated. The analysis reveals that independently of the rotational diffusion tensor's symmetry, the transition moments involved in photoselection and emission processes cannot be uniquely identified without a priori information about their mutual orientation or their orientation with respect to the principal axes of the tensor. Moreover, it is shown that increasing the symmetry of the rotational diffusion tensor deteriorates the degree of the transition moments identifiability. To obtain these results analytically, a novel approach to solve bilinear system of equations for Markov parameters is applied. The effect of the additional information, obtained from fluorescence measurements for different molecular mobilities, to improve the identifiability at various levels of analysis is shown. The effectiveness and reliability of the target analysis method for experimental determination of the molecular parameters is also discussed.

  18. A time-resolved fluorescence immunoassay for the ultrasensitive determination of diethylstilbestrol based on the double-codified gold nanoparticles.

    PubMed

    Wang, Longjun; Zhang, Yuanfu; Liu, Guofu; Zhang, Chunyan; Wang, Shuhao

    2014-11-01

    An ultrasensitive and selective method is presented for the determination of diethylstilbestrol (DES) using time-resolved fluorescence immunoassay (TRFIA) based on double-codified gold nanoparticles (DC-AuNPs). In this system, the DC-AuNPs, that are gold nanoparticles (AuNPs) modified with anti-DES antibody and SH-dsDNA-biotin, was regarded as signal amplifier. A competitive immunoreaction was performed on polystyrene microtitration plates, where the DES compete with the immobilized DES-ovalbumin on polystyrene microtitration plates to bind to anti-DES antibodies on DC-AuNPs, and the europium(III)-labeled streptavidin was added to link to the SH-dsDNA-biotin as a tracer. Fluorescence signal was amplified via the AuNPs and the biotin-streptavidin double amplification systems. Under the optimized condition, DES can be quantified by TRFIA. The linear range and the limit of detection of DES were 1.0×10(-6)-10ngmL(-1) and 0.4fgmL(-1), respectively. This method was applied to determine DES in beef sample, with the recoveries ranging from 88% to 105%. PMID:25091151

  19. Limitations of Time-Resolved Fluorescence Suggested by Molecular Simulations: Assessing the Dynamics of T cell Receptor Binding Loops

    PubMed Central

    Scott, Daniel R.; Vardeman, Charles F.; Corcelli, Steven A.; Baker, Brian M.

    2012-01-01

    Time-resolved fluorescence anisotropy (TRFA) has a rich history in evaluating protein dynamics. Yet as often employed, TRFA assumes that the motional properties of a covalently tethered fluorescent probe accurately portray the motional properties of the protein backbone at the probe attachment site. In an extensive survey using TRFA to study the dynamics of the binding loops of a αβ T cell receptor, we observed multiple discrepancies between the TRFA data and previously published results that led us to question this assumption. We thus simulated several of the experimentally probed systems using a protocol that permitted accurate determination of probe and protein time correlation functions. We found excellent agreement in the decays of the experimental and simulated correlation functions. However, the motional properties of the probe were poorly correlated with those of the backbone of both the labeled and unlabeled protein. Our results warrant caution in the interpretation of TRFA data and suggest further studies to ascertain the extent to which probe dynamics reflect those of the protein backbone. Meanwhile, the agreement between experiment and computation validates the use of molecular dynamics simulations as an accurate tool for exploring the molecular motion of T cell receptors and their binding loops. PMID:23260055

  20. Quantitative measurement of optical parameters in normal breasts using time-resolved spectroscopy: in vivo results of 30 Japanese women

    NASA Astrophysics Data System (ADS)

    Suzuki, Kazunori; Yamashita, Yutaka; Ohta, Kazuyoshi; Kaneko, Masao; Yoshida, Masayuki; Chance, Britton

    1996-07-01

    Previous investigation has proved time-resolved spectroscopy to be applicable to measurement of optical parameters in the human breast. To increase knowledge of these properties in vivo, the optical parameters of healthy breasts were measured using time-resolved reflectance spectroscopy. A time-correlated single-photon counting method was used to obtain time-response curves for the breasts of 30 Japanese women. Values of (mu) a and (mu) s$' were analyzed by fitting the curves to the diffusion equation. The relationships of optical parameters to age, body mass index, thickness of the breast, number of pregnancies, and menstrual status were examined. The (mu) a and (mu) s' ranged from 0.0024 to 0.0078/mm and from 0.63 to 1.08/mm, respectively. The values of (mu) a and (mu) s' showed a high correlation with properties may be strongly influenced by changes in tissue components related to aging, menstrual status, and so on. This optical information will contribute to the investigation of photon migration in the human breast.

  1. Rate constant of exciton quenching of Ir(ppy)3 with hole measured by time-resolved luminescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Oyama, Shiho; Sakai, Heisuke; Murata, Hideyuki

    2016-03-01

    We observed the quenching of tris(2-phenylpyridinato)iridium(III) [Ir(ppy)3] excitons by polarons (holes or electrons) by time-resolved photoluminescence (PL) spectroscopy to clarify the dynamics of the triplet-polaron quenching of excitons. We employed a hole-only device (HOD) and an electron-only device (EOD), where the emitting layer consists of Ir(ppy)3 doped in 4,4‧-bis(carbazol-9-yl)biphenyl. Time-resolved PL spectroscopy of the EOD and HOD were measured under a constant current density. The results showed that the excitons of Ir(ppy)3 were significantly quenched only by holes. The PL decay curves of HOD were well fitted by the biexponential function, where lifetimes (τ1 and τ2) remain unchanged but the coefficient of each exponential term depends on hole current density. From the results, we proposed a model of exciton quenching where the exciton-hole quenching area expands with increasing hole current density. On the basis of the model, the triplet-polaron quenching rate constant Kq was determined.

  2. Probing reaction dynamics of transition-metal complexes in solution via time-resolved soft x-ray spectroscopy

    SciTech Connect

    Huse, N.; Kim, T.-K.; Khalil, M.; Jamula, L.; McCusker, J.K.; Schoenlein, R.W.

    2008-08-01

    We report the first time-resolved soft x-ray measurements of solvated transition-metal complexes. L-edge spectroscopy directly probes dynamic changes in ligand-field splitting of 3d orbitals associated with the spin transition, and mediated by changes in ligand-bonding. We report the first time-resolved soft x-ray spectroscopy of solution-phase molecular dynamics. Changes in ligand-field splitting and spin-state populations in 3d orbitals of the Fe{sup II} complex are directly probed via transient absorption changes of the Fe L{sub 2} and L{sub 3} edges following photo-induced metal-to-ligand charge transfer. With the emergence of high-flux ultrafast soft x-ray sources, details on interplay between atomic structure, electronic states, and spin contributions will be revealed. Our experimental approach opens the door to femtosecond soft x-ray investigations of liquid phase chemistry that have previously been inaccessible.

  3. Temperature measurements in reacting flows by time-resolved femtosecond coherent anti-Stokes Raman scattering (fs-CARS) spectroscopy

    NASA Astrophysics Data System (ADS)

    Roy, Sukesh; Kinnius, Paul J.; Lucht, Robert P.; Gord, James R.

    2008-01-01

    Time-resolved femtosecond coherent anti-Stokes Raman scattering (fs-CARS) spectroscopy of the nitrogen molecule is used for the measurement of temperature in atmospheric-pressure, near-adiabatic, hydrogen-air diffusion flames. The initial frequency-spread dephasing rate of the Raman coherence induced by the ultrafast (∼85 fs) Stokes and pump beams is used as a measure of gas-phase temperature. This initial frequency-spread dephasing rate of the Raman coherence is completely independent of collisions and depends only on the frequency spread of the Raman transitions at different temperatures. A simple theoretical model based on the assumption of impulsive excitation of Raman coherence is used to extract temperatures from time-resolved fs-CARS experimental signals. The extracted temperatures from fs-CARS signals are in excellent agreement with the theoretical temperatures calculated from an adiabatic equilibrium calculation. The estimated absolute accuracy and the precision of the measurement technique are found to be ±40 K and ±50 K, respectively, over the temperature range 1500-2500 K.

  4. The H + OCS hot atom reaction - CO state distributions and translational energy from time-resolved infrared absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Nickolaisen, Scott L.; Cartland, Harry E.

    1993-01-01

    Time-resolved infrared diode laser spectroscopy has been used to probe CO internal and translational excitation from the reaction of hot H atoms with OCS. Product distributions should be strongly biased toward the maximum 1.4 eV collision energy obtained from 278 nm pulsed photolysis of HI. Rotations and vibrations are both colder than predicted by statistical density of states theory, as evidenced by large positive surprisal parameters. The bias against rotation is stronger than that against vibration, with measurable population as high as v = 4. The average CO internal excitation is 1920/cm, accounting for only 13 percent of the available energy. Of the energy balance, time-resolved sub-Doppler line shape measurements show that more than 38 percent appears as relative translation of the separating CO and SH fragments. Studies of the relaxation kinetics indicate that some rotational energy transfer occurs on the time scale of our measurements, but the distributions do not relax sufficiently to alter our conclusions. Vibrational distributions are nascent, though vibrational relaxation of excited CO is unusually fast in the OCS bath, with rates approaching 3 percent of gas kinetic for v = 1.

  5. Monitoring the folding kinetics of a β-hairpin by time-resolved IR spectroscopy in silico.

    PubMed

    Daidone, Isabella; Thukral, Lipi; Smith, Jeremy C; Amadei, Andrea

    2015-04-01

    Protein folding is one of the most fundamental problems in modern biochemistry. Time-resolved infrared (IR) spectroscopy in the amide I region is commonly used to monitor folding kinetics. However, associated atomic detail information on the folding mechanism requires simulations. In atomistic simulations structural order parameters are typically used to follow the folding process along the simulated trajectories. However, a rigorous test of the reliability of the mechanisms found in the simulations requires calculation of the time-dependent experimental observable, i.e., in the present case the IR signal in the amide I region. Here, we combine molecular dynamics simulation with a mixed quantum mechanics/molecular mechanics theoretical methodology, the Perturbed Matrix Method, in order to characterize the folding of a β-hairpin peptide, through modeling the time-dependence of the amide I IR signal. The kinetic and thermodynamic data (folding and unfolding rate constants, and equilibrium folded- and unfolded-state probabilities) obtained from the fit of the calculated signal are in good agreement with the available experimental data [Xu et al. J. Am. Chem. Soc. 2003, 125, 15388-15394]. To the best of our knowledge, this is the first report of the simulation of the time-resolved IR signal of a complex process occurring on a long (microsecond) time scale. PMID:25777154

  6. Time-resolved Fourier transform infrared spectroscopy of chemical reactions in solution using a focal plane array detector.

    PubMed

    Kaun, N; Vellekoop, M J; Lendl, B

    2006-11-01

    A Fourier transform infrared (FT-IR) microscope equipped with a single as well as a 64 x 64 element focal plane array MCT detector was used to measure chemical reaction taking place in a microstructured flow cell designed for time-resolved FT-IR spectroscopy. The flow cell allows transmission measurements through aqueous solutions and incorporates a microstructured mixing unit. This unit achieves lamination of the two input streams with a cross-section of 300 x 5 microm each, resulting in fast diffusion-controlled mixing of the two input streams. Microscopic measurement at defined positions along the outlet channel allows time-resolved information of the reaction taking place in the flow cell to be obtained. In this paper we show experimental results on the model reaction between formaldehyde and sulfite. Using the single-point MCT detector, high-quality FT-IR spectra could be obtained from a spot size of 80 x 200 microm whereas the FPA detector allowed recording light from an area of 260 x 260 microm focused on its 64 x 64 detector elements. Therefore, more closely spaced features could be discerned at the expense of a significantly lower signal-to-noise (S/N) ratio per spectrum. Multivariate curve resolution-alternating least squares was used to extract concentration profiles of the reacting species along the outlet channel axis. PMID:17132444

  7. Time-Resolved Laser-Induced Fluorescence Measurements of the Ion Velocity Distribution in the H6 Hall Thruster Plume

    NASA Astrophysics Data System (ADS)

    Durot, Christopher; Gallimore, Alec

    2013-10-01

    We developed a technique to recover time-resolved laser-induced fluorescence signals from strong background emission in plasma sources that have a relatively constant spectrum of oscillations in steady-state operation but are not periodically pulsed, such as Hall thrusters. The system was previously validated using a hollow cathode plasma source with forced discharge current oscillations. We present the first results using the new technique to capture oscillations in a Hall thruster. The ion velocity distribution function in the plume of the H6 Hall thruster is interrogated during breathing mode oscillations, which are characterized by an oscillating depletion and replenishment of neutrals at a frequency of 10-25 kHz. We use laser modulation on the order of megahertz, well above the time scale of interest (about 0.1 ms). A combination of band-pass filtering, phase-sensitive detection (with a time constant on the order of microseconds), and averaging over transfer functions is used to recover the signal. This technique has advantages such as a shorter dwell time than other techniques and the lack of a need for triggering averaging in the time domain. The ultimate bandwidth of the system that we implemented is approximately 1 MHz, limited by the speed of the AOM and signal photon rate collected. This work was supported by AFOSR and AFRL through the MACEEP center of excellence grant number FA9550-09-1-0695.

  8. Europium Nanospheres-Based Time-Resolved Fluorescence for Rapid and Ultrasensitive Determination of Total Aflatoxin in Feed.

    PubMed

    Wang, Du; Zhang, Zhaowei; Li, Peiwu; Zhang, Qi; Ding, Xiaoxia; Zhang, Wen

    2015-12-01

    Immunochromatographic (IC) assays are considered suitable diagnostic tools for the determination of mycotoxins. A europium nanospheres-based time-resolved fluorescence immunoassay (Eu-Nano-TRFIA), based on a monoclonal antibody and a portable TRFIA reader, was developed to determine total aflatoxin (including aflatoxins B1, B2, G1, and G2) levels in feed samples. Under optimized conditions, the Eu-Nano-TRFIA method detected total aflatoxin within 12 min. It showed good linearity (R(2) > 0.985), LOD of 0.16 μg/kg, a wide dynamic range of 0.48-30.0 μg/kg, recovery rates of 83.9-113.9%, and coefficients of variation (CVs) of 3.5-8.8%. In the 397 samples from company and livestock farms throughout China, the detection rate was 78.3%, concentrations were 0.50-145.30 μg/kg, the highest total aflatoxin content was found in cottonseed meal, and corn was found to be the most commonly contaminated feed. This method could be a powerful alternative for the rapid and ultrasensitive determination of total aflatoxin in quality control and meet the required Chinese maximum residue limits. PMID:26565941

  9. A multicolor time-resolved fluorescence aptasensor for the simultaneous detection of multiplex Staphylococcus aureus enterotoxins in the milk.

    PubMed

    Huang, Yukun; Zhang, Hui; Chen, Xiujuan; Wang, Xiaole; Duan, Nuo; Wu, Shijia; Xu, Baocai; Wang, Zhouping

    2015-12-15

    Food safety is one of the most important public health issues worldwide. Foodborne illnesses caused by Staphylococcus aureus enterotoxins (SEs) commonly occur, affecting both developing and developed countries. In this study, multicolor lanthanide-doped time-resolved fluorescence nanoparticles labeled with aptamers were used as bioprobes, and graphene oxide (GO) was employed as a resonance energy acceptor. Based on the "turn down" strategy, the simultaneous detection of multiplex SEs was realized in a homogeneous solution. Under the optimal conditions, the developed method exhibited high sensitivity and selectivity to three serological types of enterotoxins, including type A, B, C1, with limits of detection below 1 ng mL(-1). The application of this bioassay in milk analysis with no sample dilution was also investigated, and the results of recovery rates covered from 92.76% to 114.58%, revealing that the developed method was accurate. Therefore, this detection aptasnesor can be a good candidate for multiplex analysis and screening with simple and effective operations. PMID:26141103

  10. Quantitative Time-Resolved Fluorescence Imaging of Androgen Receptor and Prostate-Specific Antigen in Prostate Tissue Sections.

    PubMed

    Krzyzanowska, Agnieszka; Lippolis, Giuseppe; Helczynski, Leszek; Anand, Aseem; Peltola, Mari; Pettersson, Kim; Lilja, Hans; Bjartell, Anders

    2016-05-01

    Androgen receptor (AR) and prostate-specific antigen (PSA) are expressed in the prostate and are involved in prostate cancer (PCa). The aim of this study was to develop reliable protocols for reproducible quantification of AR and PSA in benign and malignant prostate tissue using time-resolved fluorescence (TRF) imaging techniques. AR and PSA were detected with TRF in tissue microarrays from 91 PCa patients. p63/ alpha-methylacyl-CoA racemase (AMACR) staining on consecutive sections was used to categorize tissue areas as benign or cancerous. Automated image analysis was used to quantify staining intensity. AR intensity was significantly higher in AMACR+ and lower in AMACR- cancer areas as compared with benign epithelium. The PSA intensity was significantly lower in cancer areas, particularly in AMACR- glands. The AR/PSA ratio varied significantly in the AMACR+ tumor cells as compared with benign glands. There was a trend of more rapid disease progression in patients with higher AR/PSA ratios in the AMACR- areas. This study demonstrates the feasibility of developing reproducible protocols for TRF imaging and automated image analysis to study the expression of AR and PSA in benign and malignant prostate. It also highlighted the differences in AR and PSA protein expression within AMACR- and AMACR+ cancer regions. PMID:27026295

  11. Real-Time Probing of Electron Dynamics Using Attosecond Time-Resolved Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ramasesha, Krupa; Leone, Stephen R.; Neumark, Daniel M.

    2016-05-01

    Attosecond science has paved the way for direct probing of electron dynamics in gases and solids. This review provides an overview of recent attosecond measurements, focusing on the wealth of knowledge obtained by the application of isolated attosecond pulses in studying dynamics in gases and solid-state systems. Attosecond photoelectron and photoion measurements in atoms reveal strong-field tunneling ionization and a delay in the photoemission from different electronic states. These measurements applied to molecules have shed light on ultrafast intramolecular charge migration. Similar approaches are used to understand photoemission processes from core and delocalized electronic states in metal surfaces. Attosecond transient absorption spectroscopy is used to follow the real-time motion of valence electrons and to measure the lifetimes of autoionizing channels in atoms. In solids, it provides the first measurements of bulk electron dynamics, revealing important phenomena such as the timescales governing the switching from an insulator to a metallic state and carrier-carrier interactions.

  12. Picosecond time-resolved X-ray absorption spectroscopy of ultrafast aluminum plasmas.

    PubMed

    Audebert, P; Renaudin, P; Bastiani-Ceccotti, S; Geindre, J-P; Chenais-Popovics, C; Tzortzakis, S; Nagels-Silvert, V; Shepherd, R; Matsushima, I; Gary, S; Girard, F; Peyrusse, O; Gauthier, J-C

    2005-01-21

    We have used point-projection K-shell absorption spectroscopy to infer the ionization and recombination dynamics of transient aluminum plasmas. Two femtosecond beams of the 100 TW laser at the LULI facility were used to produce an aluminum plasma on a thin aluminum foil (83 or 50 nm), and a picosecond x-ray backlighter source. The short-pulse backlighter probed the aluminum plasma at different times by adjusting the delay between the two femtosecond driving beams. Absorption x-ray spectra at early times are characteristic of a dense and rather homogeneous plasma. Collisional-radiative atomic physics coupled with hydrodynamic simulations reproduce fairly well the measured average ionization as a function of time. PMID:15698184

  13. Time-resolved spectroscopy measurements of hydrogen-alpha, -beta, and -gamma emissions

    SciTech Connect

    Parigger, Christian G.; Dackman, Matthew; Hornkohl, James O

    2008-11-01

    Hydrogen emission spectroscopy results are reported following laser-induced optical breakdown with infrared Nd:YAG laser radiation focused into a pulsed methane flow. Measurements of Stark-broadened atomic hydrogen-alpha, -beta, and -gamma lines show electron number densities of 0.3 to 4x10{sup 17} cm{sup -3} for time delays of 2.1 to 0.4 {mu}s after laser-induced optical breakdown. In methane flow, recombination molecular spectra of the {delta}{nu}=+2 progression of the C2 Swan system are discernable in the H{beta} and H{gamma} plasma emissions within the first few microseconds. The recorded atomic spectra indicate the occurrence of hydrogen self-absorption for pulsed CH4 flow pressures of 2.7x10{sup 5} Pa (25 psig) and 6.5x10{sup 5} Pa (80 psig)

  14. Complete momentum and energy resolved TOF electron spectrometerfor time-resolved photoemission spectroscopy

    SciTech Connect

    Hussain, Zahid; Lebedev, G.; Tremsin, A.; Siegmund, O.; Chen, Y.; Shen, Z.X.; Hussain, Z.

    2007-08-12

    Over the last decade, high-resolution Angle-Resolved Photoemission Spectroscopy (ARPES) has emerged as a tool of choice for studying the electronic structure of solids, in particular, strongly correlated complex materials such as cuprate superconductors. In this paper we present the design of a novel time-of-flight based electron analyzer with capability of 2D in momentum space (kx and ky) and all energies (calculated from time of flight) in the third dimension. This analyzer will utilize an improved version of a 2D delay linedetector capable of imaging with<35 mm (700x700 pixels) spatial resolution and better than 120 ps FWHM timing resolution. Electron optics concepts and optimization procedure are considered for achieving an energy resolution less than 1 meV and an angular resolution better than 0.11.

  15. Real-Time Probing of Electron Dynamics Using Attosecond Time-Resolved Spectroscopy.

    PubMed

    Ramasesha, Krupa; Leone, Stephen R; Neumark, Daniel M

    2016-05-27

    Attosecond science has paved the way for direct probing of electron dynamics in gases and solids. This review provides an overview of recent attosecond measurements, focusing on the wealth of knowledge obtained by the application of isolated attosecond pulses in studying dynamics in gases and solid-state systems. Attosecond photoelectron and photoion measurements in atoms reveal strong-field tunneling ionization and a delay in the photoemission from different electronic states. These measurements applied to molecules have shed light on ultrafast intramolecular charge migration. Similar approaches are used to understand photoemission processes from core and delocalized electronic states in metal surfaces. Attosecond transient absorption spectroscopy is used to follow the real-time motion of valence electrons and to measure the lifetimes of autoionizing channels in atoms. In solids, it provides the first measurements of bulk electron dynamics, revealing important phenomena such as the timescales governing the switching from an insulator to a metallic state and carrier-carrier interactions. PMID:26980312

  16. Time-resolved spectroscopy measurements of hydrogen-alpha, -beta, and -gamma emissions.

    PubMed

    Parigger, Christian G; Dackman, Matthew; Hornkohl, James O

    2008-11-01

    Hydrogen emission spectroscopy results are reported following laser-induced optical breakdown with infrared Nd:YAG laser radiation focused into a pulsed methane flow. Measurements of Stark-broadened atomic hydrogen-alpha, -beta, and -gamma lines show electron number densities of 0.3 to 4x10(17) cm(-3) for time delays of 2.1 to 0.4 micros after laser-induced optical breakdown. In methane flow, recombination molecular spectra of the Delta nu = +2 progression of the C(2) Swan system are discernable in the H(beta) and H(gamma) plasma emissions within the first few microseconds. The recorded atomic spectra indicate the occurrence of hydrogen self-absorption for pulsed CH(4) flow pressures of 2.7x10(5) Pa (25 psig) and 6.5x10(5) Pa (80 psig). PMID:19122690

  17. Development of Multi-Color Time-Resolved Spectroscopy Methods for Investigating Molecular Systems

    NASA Astrophysics Data System (ADS)

    Larsen, Kirk; Champenois, Elio; Wright, Travis; Cryan, James; Shivaram, Niranjan; Ray, Dipanwita; Troy, Tyler; Bandyopadhyay, Biswajit; Kostko, Oleg; Rude, Bruce; Ahmed, Musa; Belkacem, Ali; Slaughter, Dan

    2016-05-01

    Ultrafast transient absorption spectroscopy facilitates the study of a system's electronic excited state dynamics. Employing a multi-color technique, the time evolution of excited states of a given target can be investigated in great detail. We have developed methods for performing multi-color experiments using a femtosecond UV (266nm) pulse obtained from a frequency tripled IR (800nm) pulse, in conjunction with soft x-rays from the synchrotron at the Advanced Light Source (ALS). We are additionally working towards developing similar techniques with multi-color, multi-pulse schemes using extreme ultraviolet light from a high harmonic generation (HHG) source as a probe. We also present reflectivity measurements of different mirror coatings, that allow us to select relevant energies from the HHG source. Work supported by Chemical Sciences, Geosciences and Biosciences division of BES/DOE.

  18. Identification of Pregnane X Receptor Ligands Using Time-Resolved Fluorescence Resonance Energy Transfer and Quantitative High-Throughput Screening

    PubMed Central

    Shukla, Sunita J.; Nguyen, Dac-Trung; MacArthur, Ryan; Simeonov, Anton; Frazee, William J.; Hallis, Tina M.; Marks, Bryan D.; Singh, Upinder; Eliason, Hildegard C.; Printen, John; Austin, Christopher P.; Inglese, James

    2009-01-01

    Abstract The human pregnane X nuclear receptor (PXR) is a xenobiotic-regulated receptor that is activated by a range of diverse chemicals, including antibiotics, antifungals, glucocorticoids, and herbal extracts. PXR has been characterized as an important receptor in the metabolism of xenobiotics due to induction of cytochrome P450 isozymes and activation by a large number of prescribed medications. Developing methodologies that can efficiently detect PXR ligands will be clinically beneficial to avoid potential drug–drug interactions. To facilitate the identification of PXR ligands, a time-resolved fluorescence resonance energy transfer (TR-FRET) assay was miniaturized to a 1,536-well microtiter plate format to employ quantitative high-throughput screening (qHTS). The optimized 1,536-well TR-FRET assay showed Z′-factors of ≥0.5. Seven- to 15-point concentration–response curves (CRCs) were generated for 8,280 compounds using both terbium and fluorescein emission data, resulting in the generation of 241,664 data points. The qHTS method allowed us to retrospectively examine single concentration screening datasets to assess the sensitivity and selectivity of the PXR assay at different compound screening concentrations. Furthermore, nonspecific assay artifacts such as concentration-based quenching of the terbium signal and compound fluorescence were identified through the examination of CRCs for specific emission channels. The CRC information was also used to define chemotypes associated with PXR ligands. This study demonstrates the feasibility of profiling thousands of compounds against PXR using the TR-FRET assay in a high-throughput format. PMID:19505231

  19. Ultrafast XUV Pulses at High Repetition Rate for Time Resolved Photoelectron Spectroscopy of Surface Dynamics

    NASA Astrophysics Data System (ADS)

    Corder, Christopher; Zhao, Peng; Li, Xinlong; Muraca, Amanda R.; Kershis, Matthew D.; White, Michael G.; Allison, Thomas K.

    2016-05-01

    Ultrafast photoelectron studies of surface dynamics are often limited by low repetition rates. At Stony Brook we have built a cavity-enhanced high-harmonic generation XUV source that delivers ultrafast pulses to a surface science apparatus for photoelectron spectroscopy. We begin with a Ytterbium fiber laser at a repetition rate of 78 MHz and up to 90 W of average power. After compression the pulses have μJ's of energy with < 180 fs pulse width. We then use an enhancement cavity with a finesse of a few hundred to build up to the peak intensity required for high harmonic generation. The enhancement cavity is a six mirror double folded bow-tie geometry with a focus of 15 μm at a Krypton gas jet, followed by a Sapphire crystal at Brewster's angle for the fundamental to allow outcoupling of the harmonics. A single harmonic is selected using a time-preserving monochromator to maintain the short pulses, and is sent to an ultra high vacuum chamber with sample preparation and diagnostic tools as well as an electron energy spectrometer. This allows us to study the electronic dynamics of semiconductor surfaces and their interfaces with adsorbed molecules which enable various charge transfer effects. Supported by AFOSR.

  20. Structural dynamics of membrane proteins - time-resolved and surface-enhanced IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Heberle, Joachim

    2013-03-01

    Membrane proteins are the target of more than 50% of all drugs and are encoded by about 30% of the human genome. Electrophysiological techniques, like patch-clamp, unravelled many functional aspects of membrane proteins but suffer from structural sensitivity. We have developed Surface Enhanced Infrared Difference Absorption Spectroscopy (SEIDAS) to probe potential-induced structural changes of a protein on the level of a monolayer. A novel concept is introduced to incorporate membrane proteins into solid supported lipid bilayers in an orientated manner via the affinity of the His-tag to the Ni-NTA terminated gold surface. General applicability of the methodological approach is shown by tethering photosystem II to the gold surface. In conjunction with hydrogenase, the basis is set towards a biomimetic system for hydrogen production. Recently, we succeeded to record IR difference spectra of a monolayer of sensory rhodopsin II under voltage-clamp conditions. This approach opens an avenue towards mechanistic studies of voltage-gated ion channels with unprecedented structural and temporal sensitivity. Initial vibrational studies on the novel light-gated channelrhodopsin-2 (ChR2) will be presented. ChR2 represents a versatile tool in the new field of optogenetics where physiological reactions are controlled by light.

  1. Revealing the ultrafast charge carrier dynamics in organo metal halide perovskite solar cell materials using time resolved THz spectroscopy

    NASA Astrophysics Data System (ADS)

    Ponseca, C. S., Jr.; Sundström, V.

    2016-03-01

    Ultrafast charge carrier dynamics in organo metal halide perovskite has been probed using time resolved terahertz (THz) spectroscopy (TRTS). Current literature on its early time characteristics is unanimous: sub-ps charge carrier generation, highly mobile charges and very slow recombination rationalizing the exceptionally high power conversion efficiency for a solution processed solar cell material. Electron injection from MAPbI3 to nanoparticles (NP) of TiO2 is found to be sub-ps while Al2O3 NPs do not alter charge dynamics. Charge transfer to organic electrodes, Spiro-OMeTAD and PCBM, is sub-ps and few hundreds of ps respectively, which is influenced by the alignment of energy bands. It is surmised that minimizing defects/trap states is key in optimizing charge carrier extraction from these materials.

  2. Ultrafast terahertz modulation characteristic of tungsten doped vanadium dioxide nanogranular film revealed by time-resolved terahertz spectroscopy

    SciTech Connect

    Xiao, Yang; Zhai, Zhao-Hui; Zhu, Li-Guo E-mail: huangwanxia@scu.edu.cn; Li, Jun; Peng, Qi-Xian; Li, Ze-Ren; Shi, Qi-Wu; Huang, Wan-Xia E-mail: huangwanxia@scu.edu.cn; Yue, Fang; Hu, Yan-Yan

    2015-07-20

    The ultrafast terahertz (THz) modulation characteristic during photo-induced insulator-to-metal transition (IMT) of undoped and tungsten (W)-doped VO{sub 2} film was investigated at picoseconds time scale using time-resolved THz spectroscopy. W-doping slows down the photo-induced IMT dynamic processes (both the fast non-thermal process and the slow metallic phase propagation process) in VO{sub 2} film and also reduces the pump fluence threshold of photo-induced IMT in VO{sub 2} film. Along with the observed broadening of phase transition temperature window of IMT in W-doped VO{sub 2}, we conclude that W-doping prevents metallic phase domains from percolation. By further extracting carrier properties from photo-induced THz conductivity at several phase transition times, we found that the electron-electron correlation during IMT is enhanced in W-doped VO{sub 2}.

  3. Time-resolved detection of temperature, concentration, and pressure in a shock tube by intracavity absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Fjodorow, Peter; Fikri, Mustapha; Schulz, Christof; Hellmig, Ortwin; Baev, Valery M.

    2016-06-01

    In this paper, we demonstrate the first application of intracavity absorption spectroscopy (ICAS) for monitoring species concentration, total pressure, and temperature in shock-tube experiments. ICAS with a broadband Er3+-doped fiber laser is applied to time-resolved measurements of absorption spectra of shock-heated C2H2. The measurements are performed in a spectral range between 6512 and 6542 cm-1, including many absorption lines of C2H2, with a time resolution of 100 µs and an effective absorption path length of 15 m. Up to 18-times increase of the total pressure and a temperature rise of up to 1200 K have been monitored. Due to the ability of simultaneously recording many absorption lines in a broad spectral range, the presented technique can also be applied to multi-component analysis of transient single-shot processes in reactive gas mixtures in shock tubes, pulse detonation engines, or explosions.

  4. Ultrafast terahertz modulation characteristic of tungsten doped vanadium dioxide nanogranular film revealed by time-resolved terahertz spectroscopy

    NASA Astrophysics Data System (ADS)

    Xiao, Yang; Zhai, Zhao-Hui; Shi, Qi-Wu; Zhu, Li-Guo; Li, Jun; Huang, Wan-Xia; Yue, Fang; Hu, Yan-Yan; Peng, Qi-Xian; Li, Ze-Ren

    2015-07-01

    The ultrafast terahertz (THz) modulation characteristic during photo-induced insulator-to-metal transition (IMT) of undoped and tungsten (W)-doped VO2 film was investigated at picoseconds time scale using time-resolved THz spectroscopy. W-doping slows down the photo-induced IMT dynamic processes (both the fast non-thermal process and the slow metallic phase propagation process) in VO2 film and also reduces the pump fluence threshold of photo-induced IMT in VO2 film. Along with the observed broadening of phase transition temperature window of IMT in W-doped VO2, we conclude that W-doping prevents metallic phase domains from percolation. By further extracting carrier properties from photo-induced THz conductivity at several phase transition times, we found that the electron-electron correlation during IMT is enhanced in W-doped VO2.

  5. Time-resolved pump and probe x-ray absorption fine structure spectroscopy at beamline P11 at PETRA III.

    PubMed

    Göries, D; Dicke, B; Roedig, P; Stübe, N; Meyer, J; Galler, A; Gawelda, W; Britz, A; Geßler, P; Sotoudi Namin, H; Beckmann, A; Schlie, M; Warmer, M; Naumova, M; Bressler, C; Rübhausen, M; Weckert, E; Meents, A

    2016-05-01

    We report about the development and implementation of a new setup for time-resolved X-ray absorption fine structure spectroscopy at beamline P11 utilizing the outstanding source properties of the low-emittance PETRA III synchrotron storage ring in Hamburg. Using a high intensity micrometer-sized X-ray beam in combination with two positional feedback systems, measurements were performed on the transition metal complex fac-Tris[2-phenylpyridinato-C2,N]iridium(III) also referred to as fac-Ir(ppy)3. This compound is a representative of the phosphorescent iridium(III) complexes, which play an important role in organic light emitting diode (OLED) technology. The experiment could directly prove the anticipated photoinduced charge transfer reaction. Our results further reveal that the temporal resolution of the experiment is limited by the PETRA III X-ray bunch length of ∼103 ps full width at half maximum (FWHM). PMID:27250401

  6. Characterization of the sorption of europium(III) on calcite by site-selective and time-resolved luminescence spectroscopy

    SciTech Connect

    Piriou, B.; Fedoroff, M.; Jeanjean, J.; Bercis, L.

    1997-10-15

    Sorption of europium(III) on calcite from aqueous solution was investigated by kinetics and sorption isotherms at 323 K and by site-selective and time-resolved luminescence spectroscopy at 15 K. Three sorption sites (A, B, C) were characterized by this last technique. B constitutes a major family which appears in all samples with sorbed Eu and is characterized by an environment involving water or hydroxyl ions. The C family is observed only for the highest Eu concentrations. In these sites, the environment is more hydrated than in sites B. Site A constitutes a minority but appears in all samples. It corresponds to the centrosymmetric structural Ca site of calcite in position 2b, thus demonstrating that sorbed Eu(III) can substitute for Ca in calcite.

  7. Reduced photoconductivity observed by time-resolved terahertz spectroscopy in metal nanofilms with and without adhesion layers

    NASA Astrophysics Data System (ADS)

    Alberding, Brian G.; Kushto, Gary P.; Lane, Paul A.; Heilweil, Edwin J.

    2016-05-01

    Non-contact, optical time-resolved terahertz spectroscopy has been used to study the transient photoconductivity of nanometer-scale metallic films deposited on the fused quartz substrates. Samples of 8 nm thick gold or titanium show an instrument-limited (ca. 0.5 ps) decrease in conductivity following photoexcitation due to electron-phonon coupling and subsequent increased lattice temperatures which increases charge carrier scattering. In contrast, for samples of 8 nm gold with a 4 nm adhesion layer of titanium or chromium, a ca. 70 ps rise time for the lattice temperature increase is observed. These results establish the increased transient terahertz transmission sign change of metallic compared to semiconductor materials. The results also suggest nanoscale gold films that utilize an adhesion material do not consist of distinct layers.

  8. Rotational and translational dynamics of rhodamine 6G in a pyrrolidinium ionic liquid: a combined time-resolved fluorescence anisotropy decay and NMR study.

    PubMed

    Guo, Jianchang; Han, Kee Sung; Mahurin, Shannon M; Baker, Gary A; Hillesheim, Patrick C; Dai, Sheng; Hagaman, Edward W; Shaw, Robert W

    2012-07-12

    NMR spectroscopy and time-resolved fluorescence anisotropy decay (TRFAD) are two of the most commonly used methods to study solute-solvent interactions. However, only a few studies have been reported to date using a combined NMR and TRFAD approach to systematically investigate the overall picture of diffusional and rotational dynamics of both the solute and solvent. In this paper, we combined NMR and TRFAD to probe fluorescent rhodamine dye in a pyrrolidinium-based room temperature ionic liquid (RTIL), an emergent environmentally friendly solvent type used in several energy-related applications. A specific interaction of the R6G cation and [Tf2N] anion was identified, resulting in near-stick boundary condition rotation of R6G in this RTIL. The diffusional rates of the R6G solute and [C4mpyr][Tf2N] solvent derived from (1)H NMR suggest the rates are proportional to their corresponding hydrodynamic radii. The (1)H and (13)C NMR studies of self-rotational dynamics of [C4mpyr][Tf2N] showed that the self-rotational correlation time of [C4mpyr](+) is 47 ± 2 ps at 300 K. At the same temperature, we find that the correlation time for N-CH3 rotation in [C4mpyr](+) is 77 ± 2 ps, comparable to overall molecular reorientation. This slow motion is attributed to properties of the cation structure. PMID:22690897

  9. Rotational and Translational Dynamics of Rhodamine 6G in a Pyrrolidinium Ionic Liquid: A Combined Time-Resolved Fluorescence Anisotropy Decay and NMR Study

    SciTech Connect

    Guo, Jianchang; Han, Kee Sung; Mahurin, Shannon Mark; Baker, Gary A; Hillesheim, Patrick C; Dai, Sheng; Hagaman, Edward {Ed} W; Shaw, Robert W

    2012-01-01

    NMR spectroscopy and time-resolved fluorescence anisotropy decay (TRFAD) are two of the most commonly used methods to study solute-solvent interactions. However, only a few studies have been reported to date using a combined NMR and TRFAD approach to systematically investigate the overall picture of diffusional and rotational dynamics of both the solute and solvent. In this paper, we combined NMR and TRFAD to probe fluorescent rhodamine dyes in a pyrrolidinium-based room temperature ionic liquid (RTIL), an emergent environmentally-friendly solvent type used in several energy-related applications. A specific interaction of the R6G cation and [Tf2N]- anion was identified, resulting in near-stick boundary condition rotation of R6G in this RTIL. The diffusional rates of the R6G solute and [C4mpyr][Tf2N] solvent derived from 1H NMR suggest the rates are proportional to their corresponding hydrodynamic radii. The 1H and 13C NMR studies of self-rotational dynamics of [C4mpyr][Tf2N] showed that the self-rotational correlation time of [C4mpyr]+ is 47 2 ps at 300 K. At the same temperature, we find that the correlation time for N-CH3 rotation in [C4mpyr]+ is 77 2 ps, comparable to overall molecular reorientation. This slow motion is attributed to properties of the cation structure.

  10. Detection of anthrax protective antigen (PA) using europium labeled anti-PA monoclonal antibody and time-resolved fluorescence.

    PubMed

    Stoddard, Robyn A; Quinn, Conrad P; Schiffer, Jarad M; Boyer, Anne E; Goldstein, Jason; Bagarozzi, Dennis A; Soroka, Stephen D; Dauphin, Leslie A; Hoffmaster, Alex R

    2014-06-01

    Inhalation anthrax is a rare but acute infectious disease following adsorption of Bacillus anthracis spores through the lungs. The disease has a high fatality rate if untreated, but early and correct diagnosis has a significant impact on case patient recovery. The early symptoms of inhalation anthrax are, however, non-specific and current anthrax diagnostics are primarily dependent upon culture and confirmatory real-time PCR. Consequently, there may be a significant delay in diagnosis and targeted treatment. Rapid, culture-independent diagnostic tests are therefore needed, particularly in the context of a large scale emergency response. The aim of this study was to evaluate the ability of monoclonal antibodies to detect anthrax toxin proteins that are secreted early in the course of B. anthracis infection using a time-resolved fluorescence (TRF) immunoassay. We selected monoclonal antibodies that could detect protective antigen (PA), as PA83 and also PA63 and LF in the lethal toxin complex. The assay reliable detection limit (RDL) was 6.63×10(-6)μM (0.551ng/ml) for PA83 and 2.51×10(-5)μM (1.58ng/ml) for PA63. Despite variable precision and accuracy of the assay, PA was detected in 9 out of 10 sera samples from anthrax confirmed case patients with cutaneous (n=7), inhalation (n=2), and gastrointestinal (n=1) disease. Anthrax Immune Globulin (AIG), which has been used in treatment of clinical anthrax, interfered with detection of PA. This study demonstrates a culture-independent method of diagnosing anthrax through the use of monoclonal antibodies to detect PA and LF in the lethal toxin complex. PMID:24857756

  11. Quantitative determination of major capsaicinoids in serum by ELISA and time-resolved fluorescent immunoassay based on monoclonal antibodies.

    PubMed

    Yang, Qingqing; Zhu, Jianguo; Ma, Fei; Li, Peiwu; Zhang, Liangxiao; Zhang, Wen; Ding, Xiaoxia; Zhang, Qi

    2016-07-15

    To monitor capsaicinoids in serum on-site, three new monoclonal antibodies (mAbs) were firstly proposed using a conjugate of 4-[(4-hydroxy-3-methoxybenzyl) amino]-4-oxobutanoic acid as the immunogen. Among them, the YQQD8 mAb showed the highest sensitivity and cross-reactivity to major capsaicinoids, such as capsaicin, dihydrocapsaicin and N-vanillylnonanamide. A competitive indirect enzyme-linked immunosorbent assay (icELISA) and a time-resolved fluorescent immunochromatographic assay (TRFICA) were established based on this mAb. The linear range was 1.1-27.0ngmL(-1) for icELISA and 1.9-62.5ngmL(-1) for TRFICA and the limit of detection (LOD) of TRFICA was 1.5ngmL(-1). To decrease the interference of sample components and increase accuracy, serum samples were diluted four times before assays. As a result, the linear range of serum samples was 4.6-107.9ngmL(-1) for icELISA and 7.6-250.0ngmL(-1) for TRFICA. Both icELISA and TRFICA showed good recoveries (91.0-112.8% for icELISA and 87.6-111.5% for TRFICA) and concordant results in spiked experiments. Overall, this is the first report of immunoassay based on the mAbs for quantitative determination of major capsaicinoids, and the results demonstrate that both methods can meet the demands of rapid on-site assay for capsaicinoids in serum samples. PMID:26954788

  12. Excited state non-adiabatic dynamics of pyrrole: A time-resolved photoelectron spectroscopy and quantum dynamics study

    SciTech Connect

    Wu, Guorong; Neville, Simon P.; Worth, Graham A.; Schalk, Oliver; Sekikawa, Taro; Ashfold, Michael N. R.; Stolow, Albert

    2015-02-21

    The dynamics of pyrrole excited at wavelengths in the range 242-217 nm are studied using a combination of time-resolved photoelectron spectroscopy and wavepacket propagations performed using the multi-configurational time-dependent Hartree method. Excitation close to the origin of pyrrole’s electronic spectrum, at 242 and 236 nm, is found to result in an ultrafast decay of the system from the ionization window on a single timescale of less than 20 fs. This behaviour is explained fully by assuming the system to be excited to the A{sub 2}(πσ{sup ∗}) state, in accord with previous experimental and theoretical studies. Excitation at shorter wavelengths has previously been assumed to result predominantly in population of the bright A{sub 1}(ππ{sup ∗}) and B{sub 2}(ππ{sup ∗}) states. We here present time-resolved photoelectron spectra at a pump wavelength of 217 nm alongside detailed quantum dynamics calculations that, together with a recent reinterpretation of pyrrole’s electronic spectrum [S. P. Neville and G. A. Worth, J. Chem. Phys. 140, 034317 (2014)], suggest that population of the B{sub 1}(πσ{sup ∗}) state (hitherto assumed to be optically dark) may occur directly when pyrrole is excited at energies in the near UV part of its electronic spectrum. The B{sub 1}(πσ{sup ∗}) state is found to decay on a timescale of less than 20 fs by both N-H dissociation and internal conversion to the A{sub 2}(πσ{sup ∗}) state.

  13. Nanosecond time-resolved microscopic spectroscopy for diagnostics of an atmospheric-pressure discharge plasma formed in aqueous solution

    NASA Astrophysics Data System (ADS)

    Banno, Motohiro; Kanno, Kenta; Someya, Yuu; Yui, Hiroharu

    2015-06-01

    Glow discharge plasma formed in solution under atmospheric pressure has been expected to provide reaction fields with characteristic physical and chemical properties owing to the frequent collisions and reactions of reactive particles inside and the rapid quenching of the products by the surrounding cold solutions. In particular, when an aqueous solution is utilized as the surrounding solution, the atmospheric-pressure in-solution glow (ASG) plasma contains hydrogen and hydroxyl radicals showing large activities for reduction and oxidation, respectively. In addition, because the ASG plasma is formed under atmospheric pressure, the collision frequencies between the particles contained in the plasma are higher than those in other plasmas ordinarily formed under low pressure. This feature should result in rapid energy redistribution among particles contained in the plasma. In the present study, time-resolved optical emission spectroscopy with nanosecond time resolution was applied for the diagnostics of the ASG plasma with chemical species selectivity. The time-resolved measurements revealed that the temporal evolutions of the temperatures of blackbody, hydrogen radical, and hydroxyl radical contained in the ASG plasma consist of two stages: initial rise within 0.15 µs (rising stage) and fluctuation around certain values for about 1 µs (fluctuating stage). In the time region corresponding to the rising stage, the electron number density is about ten times larger than the value temporally averaged during the plasma emission. The initial rise should result from frequent collisions between charged particles accelerated by the applied voltage and unexcited particles. In the fluctuating stage, the electron number density strongly correlates with the increase in the radical temperatures. It is concluded that the electron number density, rather than the electron temperature, is a key parameter determining the temperatures of reactive species in the ASG plasma.

  14. Conformational dynamics and intersubunit energy transfer in wild-type and mutant lipoamide dehydrogenase from Azotobacter vinelandii. A multidimensional time-resolved polarized fluorescence study.

    PubMed Central

    Bastiaens, P I; van Hoek, A; Benen, J A; Brochon, J C; Visser, A J

    1992-01-01

    Time-resolved fluorescence and fluorescence anisotropy data surfaces of flavin adenine dinucleotide bound to lipoamide dehydrogenase from Azotobacter vinelandii in 80% glycerol have been obtained by variation of excitation energy and temperature between 203 and 303 K. The fluorescence kinetics of a deletion mutant lacking 14 COOH-terminal amino acids were compared with the wild-type enzyme to study a possible interaction of the COOH-terminal tail with the active site of the enzyme. The flavin adenine dinucleotide fluorescence in both proteins exhibits a bimodal lifetime distribution as recovered by the maximum entropy method of data analysis. The difference in standard enthalpy and entropy of associated conformational substates was retrieved from the fractional contributions of the two lifetime classes. Activation energies of thermal quenching were obtained that confirm that the isoalloxazines in the deletion mutant are solvent accessible in contrast to the wild-type enzyme. Red-edge spectroscopy in conjunction with variation of temperature provides the necessary experimental axes to interpret the fluorescence depolarization in terms of intersubunit energy transfer rather than reorientational dynamics of the flavins. The results can be explained by a compartmental model that describes the anisotropy decay of a binary, inhomogeneously broadened, homoenergy transfer system. By using this model in a global analysis of the fluorescence anisotropy decay surface, the distance between and relative orientation of the two isoalloxazine rings are elucidated. For the wild-type enzyme, this geometrical information is in agreement with crystallographic data of the A. vinelandii enzyme, whereas the mutual orientation of the subunits in the deletion mutant is slightly altered. In addition, the ambiguity in the direction of the emission transition moment in the isoalloxazine ring is solved. The anisotropy decay parameters also provide information on electronic and dipolar

  15. Characterization of post mortem arterial tissue using time-resolved photoacoustic spectroscopy at 436, 461 and 532 nm.

    PubMed

    Beard, P C; Mills, T N

    1997-01-01

    Time-resolved photoacoustic spectroscopy has been used to characterize post mortem arterial tissue for the purpose of discriminating between normal and atheromatous areas of tissue. Ultrasonic thermoelastic waves were generated in post mortem human aorta by the absorption of nanosecond laser pulses at 436, 461 and 532 nm produced by a frequency doubled Q-switched Nd:YAG laser in conjunction with a gas filled Raman cell. A PVDF membrane hydrophone was used to detect the thermoelastic waves. At 436 nm, differences in the photoacoustic signatures of normal tissue and atherorma were found to be highly variable. At 461 nm, there was a clear and reproducible difference between the photacoustic response of atheroma and normal tissue as a result of increased optical attenuation in atheroma. At 532 nm, the generation of subsurface thermoelastic waves provided a means of determining the structure and thickness of the tissue sample. It is suggested that pulsed photoacoustic spectroscopy at 461 and 532 nm may find application in characterizing arterial tissue in situ by providing information about both the composition and thickness of the vessel wall. PMID:9015817

  16. Probing the hydrogen-bond network of water via time-resolved soft x-ray spectroscopy

    SciTech Connect

    Huse, Nils; Wen, Haidan; Nordlund, Dennis; Szilagyi, Erzsi; Daranciang, Dan; Miller, Timothy A.; Nilsson, Anders; Schoenlein, Robert W.; Lindenberg, Aaron M.

    2009-04-24

    We report time-resolved studies of hydrogen bonding in liquid H2O, in response to direct excitation of the O-H stretch mode at 3 mu m, probed via soft x-ray absorption spectroscopy at the oxygen K-edge. This approach employs a newly developed nanofluidic cell for transient soft x-ray spectroscopy in liquid phase. Distinct changes in the near-edge spectral region (XANES) are observed, and are indicative of a transient temperature rise of 10K following transient laser excitation and rapid thermalization of vibrational energy. The rapid heating occurs at constant volume and the associated increase in internal pressure, estimated to be 8MPa, is manifest by distinct spectral changes that differ from those induced by temperature alone. We conclude that the near-edge spectral shape of the oxygen K-edge is a sensitive probe of internal pressure, opening new possibilities for testing the validity of water models and providing new insight into the nature of hydrogen bonding in water.

  17. Synthesis and Characterization of Time-resolved Fluorescence Probes for Evaluation of Competitive Binding to Melanocortin Receptors

    PubMed Central

    Alleti, Ramesh; Vagner, Josef; Dehigaspitiya, Dilani Chathurika; Moberg, Valerie E.; Elshan, N. G. R. D.; Tafreshi, Narges K.; Brabez, Nabila; Weber, Craig S.; Lynch, Ronald M.; Hruby, Victor J.; Gillies, Robert J.; Morse, David L.; Mash, Eugene A.

    2013-01-01

    Probes for use in time-resolved fluorescence competitive binding assays at melanocortin receptors based on the parental ligands MSH(4), MSH(7), and NDP-α-MSH were prepared by solid phase synthesis methods, purified, and characterized. The saturation binding of these probes was studied using HEK-293 cells engineered to overexpress the human melanocortin 4 receptor (hMC4R) as well as the human cholecystokinin 2 receptor (hCCK2R). The ratios of non-specific binding to total binding approached unity at high concentrations for each probe. At low probe concentrations, receptor-mediated binding and uptake was discernable, and so probe concentrations were kept as low as possible in determining Kd values. The Eu-DTPA-PEGO-MSH(4) probe exhibited low specific binding relative to non-specific binding, even at low nanomolar concentrations, and was deemed unsuitable for use in competition binding assays. The Eu-DTPA-PEGO probes based on MSH(7) and NDP-α-MSH exhibited Kd values of 27±3.9 nM and 4.2±0.48 nM, respectively, for binding with hMC4R. These probes were employed in competitive binding assays to characterize the interactions of hMC4R with monovalent and divalent MSH(4), MSH(7), and NDP-α-MSH constructs derived from squalene. Results from assays with both probes reflected only statistical enhancements, suggesting improper ligand spacing on the squalene scaffold for the divalent constructs. The Ki values from competitive binding assays that employed the MSH(7)-based probe were generally lower than the Ki values obtained when the probe based on NDP-α-MSH was employed, which is consistent with the greater potency of the latter probe. The probe based on MSH(7) was also competed with monovalent, divalent, and trivalent MSH(4) constructs that previously demonstrated multivalent binding in competitive binding assays against a variant of the probe based on NDP-α-MSH. Results from these assays confirm multivalent binding, but suggest a more modest increase in avidity for

  18. Single water solvation dynamics in the 4-aminobenzonitrile-water cluster cation revealed by picosecond time-resolved infrared spectroscopy.

    PubMed

    Miyazaki, Mitsuhiko; Nakamura, Takashi; Wohlgemuth, Matthias; Mitrić, Roland; Dopfer, Otto; Fujii, Masaaki

    2015-11-28

    The dynamics of a solvent is important for many chemical and biological processes. Here, the migration dynamics of a single water molecule is triggered by the photoionization of the 4-aminobenzonitrile-water (4ABN-W) cluster and monitored in real time by picosecond time-resolved IR (ps TRIR) spectroscopy. In the neutral cluster, water is hydrogen-bonded to the CN group. When this CN-bound cluster is selectively ionized with an excess energy of 1238 cm(-1), water migrates with a lifetime of τ = 17 ps from the CN to the NH2 group, forming a more stable 4ABN(+)-W(NH) isomer with a yield of unity. By decreasing the ionization excess energy, the yield of the CN → NH2 reaction is reduced. The relatively slow migration in comparison to the ionization-induced solvent dynamics in the related acetanilide-water cluster cation (τ = 5 ps) is discussed in terms of the internal excess energy after photoionization and the shape of the potential energy surface. PMID:26490096

  19. Characterization of direct-drive-implosion core conditions on OMEGA with time-resolved Ar K-shell spectroscopy

    NASA Astrophysics Data System (ADS)

    Regan, S. P.; Delettrez, J. A.; Epstein, R.; Jaanimagi, P. A.; Yaakobi, B.; Smalyuk, V. A.; Marshall, F. J.; Meyerhofer, D. D.; Seka, W.; Haynes, D. A.; Golovkin, I. E.; Hooper, C. F.

    2002-04-01

    Direct-drive-implosion core conditions have been characterized on the 60-beam OMEGA [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] laser system with time-resolved Ar K-shell spectroscopy. Plastic shells with an Ar-doped deuterium fill gas were driven with a 23 kJ, 1 ns square laser pulse smoothed with 1 THz smoothing by spectral dispersion (SSD) and polarization smoothing (PS) using birefringent wedges. The targets are predicted to have a convergence ratio of ˜15. The emissivity-averaged core electron temperature (Te) and density (ne) were inferred from the measured time-dependent Ar K-shell spectral line shapes. As the imploding shell decelerates the observed Te and ne increase to 2.0 (±0.2) keV and 2.5 (±0.5)×1024cm-3 at peak neutron production, which is assumed to occur at the time of the peak emissivity-averaged Te. At peak compression the ne increases to 3.1 (±0.6)×1024cm-3 and the Te decreases to 1.7 (±0.17) keV. The observed core conditions are close to those predicted by a one-dimensional hydrodynamics code.

  20. HELIOS—A laboratory based on high-order harmonic generation of extreme ultraviolet photons for time-resolved spectroscopy

    SciTech Connect

    Plogmaker, S. E-mail: Joachim.Terschluesen@physics.uu.se Terschlüsen, J. A. E-mail: Joachim.Terschluesen@physics.uu.se Krebs, N.; Svanqvist, M.; Forsberg, J.; Cappel, U. B.; Rubensson, J.-E.; Siegbahn, H.; Söderström, J. E-mail: Joachim.Terschluesen@physics.uu.se

    2015-12-15

    In this paper, we present the HELIOS (High Energy Laser Induced Overtone Source) laboratory, an in-house high-order harmonic generation facility which generates extreme ultraviolet (XUV) photon pulses in the range of 15-70 eV with monochromatized XUV pulse lengths below 35 fs. HELIOS is a source for time-resolved pump-probe/two-color spectroscopy in the sub-50 fs range, which can be operated at 5 kHz or 10 kHz. An optical parametric amplifier is available for pump-probe experiments with wavelengths ranging from 240 nm to 20 000 nm. The produced XUV radiation is monochromatized by a grating in the so-called off-plane mount. Together with overall design parameters, first monochromatized spectra are shown with an intensity of 2 ⋅ 10{sup 10} photons/s (at 5 kHz) in the 29th harmonic, after the monochromator. The XUV pulse duration is measured to be <25 fs after monochromatization.

  1. Time-resolved X-Ray Absorption Spectroscopy of a Cobalt-Based Hydrogen Evolution System for Artificial Photosynthesis

    NASA Astrophysics Data System (ADS)

    Moonshiram, Dooshaye; Gimbert, Carolina; Lehmann, Carl; Southworth, Stephen; Llobet, Antoni; Argonne National Laboratory Team; Institut Català d'Investigació Química Collaboration

    2015-03-01

    Production of cost-effective hydrogen gas through solar power is an important challenge of the Department of Energy among other global industry initiatives. In natural photosynthesis, the oxygen evolving complex(OEC) can carry out four-electron water splitting to hydrogen with an efficiency of around 60%. Although, much progress has been carried out in determining mechanistic pathways of the OEC, biomimetic approaches have not duplicated Nature's efficiency in function. Over the past years, we have witnessed progress in developments of light harvesting modules, so called chromophore/catalytic assemblies. In spite of reportedly high catalytic activity of these systems, quantum yields of hydrogen production are below 40 % when using monochromatic light. Proper understanding of kinetics and bond making/breaking steps has to be achieved to improve efficiency of hydrogen evolution systems. This project shows the timing implementation of ultrafast X-ray absorption spectroscopy to visualize in ``real time'' the photo-induced kinetics accompanying a sequence of redox reactions in a cobalt-based molecular photocatalytic system. Formation of a Co(I) species followed by a Co(III) hydride species all the way towards hydrogen evolution is shown through time-resolved XANES.

  2. Two-photon resonances in femtosecond time-resolved four-wave mixing spectroscopy: {beta}-carotene

    SciTech Connect

    Namboodiri, V.; Namboodiri, M.; Flachenecker, G.; Materny, A.

    2010-08-07

    Femtosecond time-resolved pump-degenerate four-wave mixing (pump-DFWM) spectroscopy has been used to study the ultrafast dynamics of {beta}-carotene involving several electronic and vibrational states. An initial pump pulse, resonant with the S{sub 0}-to-S{sub 2} transition, excites the molecular system and a DFWM process, resonant with the S{sub 1}-to-S{sub n} transition, is used to probe the relaxation pathways. The transient shows a peculiar decay behavior, which is due to the contributions of resonant DFWM signal of the excited S{sub 1} state, nonresonant DFWM signal of the ground S{sub 0} state and vibrational hot S{sub 0}{sup *} state, and the two-photon resonant DFWM signal of the ground S{sub 0} state. We have used a kinetic model including all the signal contributions to successfully fit the transient. The time constants extracted are in very good agreement with the known values for {beta}-carotene. For comparison, a two-pulse pump-probe experiment was performed measuring the transient absorption at the wavelength of the DFWM experiment.

  3. Communication: Ultrafast time-resolved ion photofragmentation spectroscopy of photoionization-induced proton transfer in phenol-ammonia complex

    SciTech Connect

    Shen, Ching-Chi; Tsai, Tsung-Ting; Ho, Jr-Wei; Chen, Yi-Wei; Cheng, Po-Yuan

    2014-11-07

    Photoionization-induced proton transfer (PT) in phenol-ammonia (PhOH-NH{sub 3}) complex has been studied using ultrafast time-resolved ion photofragmentation spectroscopy. Neutral PhOH-NH{sub 3} complexes prepared in a free jet are photoionized by femtosecond [1+1] resonance-enhanced multiphoton ionization via the S{sub 1} state, and the subsequent dynamics occurring in the cations is probed by delayed pulses that result in ion fragmentation. The observed temporal evolutions of the photofragmentation spectra are consistent with an intracomplex PT reaction. The experiments revealed that PT in [PhOH-NH{sub 3}]{sup +} cation proceeds in two distinct steps: an initial impulsive wave-packet motion in ∼70 fs followed by a slower relaxation of about 1 ps that stabilizes the system into the final PT configuration. These results indicate that for a barrierless PT system, even though the initial PT motions are impulsive and ultrafast, the reaction may take a much longer time scale to complete.

  4. HELIOS--A laboratory based on high-order harmonic generation of extreme ultraviolet photons for time-resolved spectroscopy.

    PubMed

    Plogmaker, S; Terschlüsen, J A; Krebs, N; Svanqvist, M; Forsberg, J; Cappel, U B; Rubensson, J-E; Siegbahn, H; Söderström, J

    2015-12-01

    In this paper, we present the HELIOS (High Energy Laser Induced Overtone Source) laboratory, an in-house high-order harmonic generation facility which generates extreme ultraviolet (XUV) photon pulses in the range of 15-70 eV with monochromatized XUV pulse lengths below 35 fs. HELIOS is a source for time-resolved pump-probe/two-color spectroscopy in the sub-50 fs range, which can be operated at 5 kHz or 10 kHz. An optical parametric amplifier is available for pump-probe experiments with wavelengths ranging from 240 nm to 20,000 nm. The produced XUV radiation is monochromatized by a grating in the so-called off-plane mount. Together with overall design parameters, first monochromatized spectra are shown with an intensity of 2 ⋅ 10(10) photons/s (at 5 kHz) in the 29th harmonic, after the monochromator. The XUV pulse duration is measured to be <25 fs after monochromatization. PMID:26724006

  5. Elucidating low-frequency vibrational dynamics in calcite and water with time-resolved third-harmonic generation spectroscopy.

    PubMed

    Wang, Liang; Liu, Weimin; Fang, Chong

    2015-07-14

    Low-frequency vibrations are foundational for material properties including thermal conductivity and chemical reactivity. To resolve the intrinsic molecular conformational dynamics in condensed phase, we implement time-resolved third-harmonic generation (TRTHG) spectroscopy to unravel collective skeletal motions in calcite, water, and aqueous salt solution in situ. The lifetime of three Raman-active modes in polycrystalline calcite at 155, 282 and 703 cm(-1) is found to be ca. 1.6 ps, 1.3 ps and 250 fs, respectively. The lifetime difference is due to crystallographic defects and anharmonic effects. By incorporating a home-built wire-guided liquid jet, we apply TRTHG to investigate pure water and ZnCl2 aqueous solution, revealing ultrafast dynamics of water intermolecular stretching and librational bands below 500 cm(-1) and a characteristic 280 cm(-1) vibrational mode in the ZnCl4(H2O)2(2-) complex. TRTHG proves to be a compact and versatile technique that directly uses the 800 nm fundamental laser pulse output to capture ultrafast low-frequency vibrational motion snapshots in condensed-phase materials including the omnipresent water, which provides the important time dimension to spectral characterization of molecular structure-function relationships. PMID:26062639

  6. Sub-100ps single photoelectron time resolution of a strip silicon photomultiplier for time-resolved optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Shenyuan; Liu, Rongdan; Liang, Kun; Yang, Ru; Han, Dejun

    2015-10-01

    SiPM with epitaxial quenching resistors developed at NDL (Novel Device Laboratory, Beijing) could alleviate the conflict between large dynamic range and high photon detection efficiency (PDE). It can be used as low light level detector in various applications with excellent single photoelectron time resolution (SPTR) and photon counting capacity. SPTR is mainly determined by the intrinsic structure parameters of the SiPM. However, it is also limited to measurement setup, electronics readout and the ultra-small signal of single photoelectron level. In this work, we designed and fabricated a 1 mm × 1 mm strip SiPM array for possible applications in time-resolved optical spectroscopy. The SiPM array consists of sixteen 50 μm × 1 mm strip SiPM elements. Each element contains five hundred 6.5 μm × 6.5 μm micro avalanche photodiode (APD) cells with 10μm pitch. The strip SiPM demonstrated SPTR of 68 ps (FWHM), peak PDE of 17% around 450 nm and high photon number resolving and photon counting capability.

  7. Effects of Cosmetic Therapy on Cognitive Function in Elderly Women Evaluated by Time-Resolved Spectroscopy Study.

    PubMed

    Machida, A; Shirato, M; Tanida, M; Kanemaru, C; Nagai, S; Sakatani, K

    2016-01-01

    With the rapid increase in dementia in developed countries, it is important to establish methods for maintaining or improving cognitive function in elderly people. To resolve such problems, we have been developing a cosmetic therapy (CT) program for elderly women. However, the mechanism and limitations of CT are not yet clear. In order to clarify these issues, we employed time-resolved spectroscopy (TRS) to evaluate the effect of CT on prefrontal cortex (PFC) activity in elderly females with various levels of cognitive impairment. Based on the Mini-Mental State Examination (MMSE) score, the subjects were classified into mild (mean MMSE score: 24.1±3.8) and moderate (mean MMSE score: 10.3±5.8) cognitive impairment (CI) groups (p<0.0001). The mild CI group exhibited significantly larger baseline concentrations of oxy-Hb and t-Hb than the moderate CI group. CT significantly increased the baseline concentrations of oxy-Hb (p<0.002) and t-Hb (p<0.0013) in the left PFC in the mild CI group. In contrast, CT did not change the concentrations of oxy-Hb and t-Hb in the moderate CI group (p>0.05). These results suggest that CT affects cognitive function by altering PFC activity in elderly women with mild CI, but not moderate CI. PMID:26782224

  8. Relation between the OH stretching frequency and the OO distance in time-resolved infrared spectroscopy of hydrogen bonding

    NASA Astrophysics Data System (ADS)

    Bratos, Savo; Leicknam, Jean-Claude; Pommeret, Stanislas

    2009-05-01

    A non-empirical theory is presented to study the relation between the OH stretching frequency and the OO distance in ultrafast laser spectra of water. Diluted solutions HDO/DO rather than pure HO were considered to switch off resonant vibrational interactions between water molecules; the local structure of water as well as the OO distribution functions remain unchanged in this substitution. Only times superior to 100-200fs are considered to avoid perturbations generated by collisions between water molecules. It is then shown that the Novak-Mikenda type relations between the OH stretching frequency and the OO distance largely survive when going from equilibrium to laser perturbed non-equilibrium systems. It is also shown that temporally varying infrared pump-probe profiles of OH stretching bands in HDO/DO closely parallel the oxygen-oxygen distribution functions of these solutions. Infrared pump-probe spectroscopy can thus replace time-resolved X-ray diffraction in this particular case.

  9. Testing the Physical Mechanisms of Gamma-Ray Bursts with Multi-Instrument Time-Resolved Spectroscopy

    NASA Technical Reports Server (NTRS)

    Briggs, Michael S.; Preece, Robert E.

    2001-01-01

    We have continued the project of time-resolved spectral analyses of gamma-ray bursts observed jointly by the BATSE and the Wide-Field Camera on board BeppoSAX. We are making progress understanding the systematic differences between the two data sets. These data comprise the most important joint analysis set for our project. In several meetings, we have reported on metal efforts to understand the blackbody portion of the time series of spectra from GRB970111. Clearly, a fading thermal component can provide a 'seed' spectrum for Compton upscattering. It is very likely the X-ray excess that has been observed previously in BATSE data alone continues into the X-ray band observed by the WFC. We have also made progress in joint fitting of BATSE Large Area Detector and Spectroscopy Detector data with that of the Total Absorption Scintillation Calorimeter (TASC) of the EGRET experiment on CGRO. The TASC data are important to understanding the high-energy response of the BATSE data. We have produced time-sequences of spectra for two important GRB with data from both instruments. The Summer workshop on GRBs at the Aspen Center for Physics provided an opportunity for in-depth discussion of our on-going work. To aid our effort, we continue to make improvements in our spectral analysis software, RMFIT (rewritten from WINGSPAN).

  10. Study of Heat Transfer Dynamics from Gold Nanorods to the Environment via Time-Resolved Infrared Spectroscopy.

    PubMed

    Nguyen, Son C; Zhang, Qiao; Manthiram, Karthish; Ye, Xingchen; Lomont, Justin P; Harris, Charles B; Weller, Horst; Alivisatos, A Paul

    2016-02-23

    Studying the local solvent surrounding nanoparticles is important to understanding the energy exchange dynamics between the particles and their environment, and there is a need for spectroscopic methods that can dynamically probe the solvent region that is in nearby contact with the nanoparticles. In this work, we demonstrate the use of time-resolved infrared spectroscopy to track changes in a vibrational mode of local water on the time scale of hundreds of picoseconds, revealing the dynamics of heat transfer from gold nanorods to the local water environment. We applied this probe to a prototypical plasmonic photothermal system consisting of organic CTAB bilayer capped gold nanorods, as well as gold nanorods coated with varying thicknesses of inorganic mesoporous-silica. The heat transfer time constant of CTAB capped gold nanorods is about 350 ps and becomes faster with higher laser excitation power, eventually generating bubbles due to superheating in the local solvent. Silica coating of the nanorods slows down the heat transfer and suppresses the formation of superheated bubbles. PMID:26840805

  11. Reaction mechanism of adenylyltransferase DrrA from Legionella pneumophila elucidated by time-resolved fourier transform infrared spectroscopy.

    PubMed

    Gavriljuk, Konstantin; Schartner, Jonas; Itzen, Aymelt; Goody, Roger S; Gerwert, Klaus; Kötting, Carsten

    2014-07-01

    Modulation of the function of small GTPases that regulate vesicular trafficking is a strategy employed by several human pathogens. Legionella pneumophila infects lung macrophages and injects a plethora of different proteins into its host cell. Among these is DrrA/SidM, which catalyzes stable adenylylation of Rab1b, a regulator of endoplasmatic reticulum to Golgi trafficking, and thereby alters the function and interactions of this small GTPase. We employed time-resolved FTIR-spectroscopy to monitor the DrrA-catalyzed AMP-transfer to Tyr77 of Rab1b. A transient complex between DrrA, adenylylated Rab1b, and the pyrophosphate byproduct was resolved, allowing us to analyze the interactions at the active site. Combination of isotopic labeling and site-directed mutagenesis allowed us to derive the catalytic mechanism of DrrA from the FTIR difference spectra. DrrA shares crucial residues in the ATP-binding pocket with similar AMP-transferring enzymes such as glutamine synthetase adenylyltransferase or kanamycin nucleotidyltransferase, but provides the complete active site on a single subunit. We determined that Asp112 of DrrA functions as the catalytic base for deprotonation of Tyr77 of Rab1b to enable nucleophilic attack on the ATP. The study provides detailed understanding of the Legionella pneumophila protein DrrA and of AMP-transfer reactions in general. PMID:24950229

  12. Single-shot Raman spectroscopy and time-resolved reflectivity of a shocked TATB-based explosive

    NASA Astrophysics Data System (ADS)

    Hebert, Philippe; Saint-Amans, Charles; Doucet, Michel; de Resseguier, Thibaut

    2015-06-01

    Single-shot Raman spectroscopy experiments under shockwave loading were performed in order to get information on the initiation mechanisms that can lead to sustained detonation of a TATB-based explosive. Shocks up to 30 GPa were generated using a two-stage laser-driven flyer plate generator. The samples were confined by an optical window and shock pressure was maintained for at least 30 ns. Photon Doppler Velocimetry measurements were performed at the explosive/window interface to determine the shock pressure profile. Raman spectra were recorded as a function of shock pressure and the shifts of the principal modes were compared to static high-pressure measurements performed in a diamond anvil cell. Our shock data indicate the role of temperature effects on the H-bonding network present in TATB. Our Raman spectra also show a progressive extinction of the signal which disappears around 9 GPa. High-speed photography images reveal a simultaneous progressive darkening of the sample surface up to total opacity at 9 GPa. Time-resolved reflectivity measurements under shock compression seem to indicate that this opacity is due to a broadening of the absorption spectrum over the entire visible region.

  13. Progress in (e, 2e) electron momentum spectroscopy: from the static to the time-resolved regime

    NASA Astrophysics Data System (ADS)

    Takahashi, Masahiko

    2015-09-01

    Electron momentum spectroscopy (EMS) is a kinematically-complete electron-impact ionization experiment performed under the high-energy Bethe ridge conditions, where the collision kinematics can be described by electron Compton scattering that most nearly corresponds to the collision of two free electrons with the residual ion acting as a spectator. The remarkable feature of this technique is its ability to measure momentum distributions of each electron bound in matter or to look at molecular orbitals in momentum space. We have been exploring atomic and molecular science using EMS, such as 3D orbital imaging for a stable gaseous molecule [Takahashi et al., PRL 2005], observation of the giant resonance phenomenon in the 2nd order projectile-target interactions [Takahashi et al., PRL 2007], and determination of spatial orientation of the constituent atomic orbitals in molecular orbitals [Watanabe et al., PRL 2012]. Recently, we have started to direct our efforts also towards expanding frontiers of EMS, through development of time-resolved EMS (TR-EMS) that employs ultrashort laser (120 fs) and electron (1 ps) pulses in a pump-probe scheme [Yamazaki et al., RSI 2013]. In spite of the low data statistics as well as of the limited time-resolution due to velocity mismatch, our experimental results on the deuterated acetone molecule in its second excited singlet state with a lifetime of 13.5 ps [Yamazaki et al., PRL 2015] have represented the first time that EMS measurements of short lived transient species are feasible, opening the door to time-resolved orbital imaging in momentum space. With further technical development, TR-EMS could eventually enable one to take a series of snapshots of molecular orbitals changing rapidly during chemical reaction, thereby making it possible to exploit a new area for studies of ultrafast molecular dynamics as well as the nature of molecular excited states; it is electrons that bind atoms into molecules, and chemical reactions are all

  14. Picosecond time-resolved fluorescence studies on excitation energy transfer in a histidine 117 mutant of the D2 protein of photosystem II in Synechocystis 6803.

    PubMed

    Vasil'ev, S; Bruce, D

    2000-11-21

    The role of the peripheral reaction center chlorophyll a molecule associated with His117 of the D2 polypeptide in photosystem II was investigated in Synechocystis sp. PCC 6803 using a combination of steady state, pump-probe, and picosecond time-resolved fluorescence spectroscopy. Data were obtained from intact cells and isolated thylakoid membranes of a control mutant and a D2-H117T mutant, both of which lacked photosystem I. Excitation energy transfer and trapping were investigated by analyzing the data with a kinetic model that used an exact numerical solution of the Pauli master equation, taking into account available photosystem II spectral and structural information. The results of our kinetic analysis revealed the observed difference in excited-state dynamics between the H117T mutant and the control to be consistent with a retardation of the rate of excitation energy transfer from the peripheral chlorophyll of D2 (Chl at His117) to the electron-transfer pigments and an increase of the rate constant for charge recombination in the H117T mutant. The kinetic model was able to account for the experimentally observed changes in absorption cross section and fluorescence decay kinetics between the control and mutant by invoking changes in only these two rate constants. The results rule out quenching of excitation by a chlorophyll cation radical as a mechanism responsible for the lower efficiency of excitation energy utilization in the H117T mutant. Our work also demonstrates the importance of the chlorophyll associated with His117 of the D2 protein for excitation energy transfer to the PSII electron-transfer pigments and for the effective stabilization of the primary radical pair. PMID:11087370

  15. Time-resolved terahertz spectroscopy of electrically conductive metal-organic frameworks doped with redox active species

    NASA Astrophysics Data System (ADS)

    Alberding, Brian G.; Heilweil, Edwin J.

    2015-09-01

    Metal-Organic Frameworks (MOFs) are three-dimensional coordination polymers that are well known for large pore surface area and their ability to adsorb molecules from both the gaseous and solution phases. In general, MOFs are electrically insulating, but promising opportunities for tuning the electronic structure exist because MOFs possess synthetic versatility; the metal and organic ligand subunits can be exchanged or dopant molecules can be introduced into the pore space. Two such MOFs with demonstrated electrical conductivity are Cu3(1,3,5-benzenetricarboxylate)2, a.k.a HKUST-1, and Cu[Ni(pyrazine-2,3-dithiolate)2]. Herein, these two MOFs have been infiltrated with the redox active species 7,7,8,8-tetracyanoquinodimethane (TCNQ) and iodine under solution phase conditions and shown to produce redox products within the MOF pore space. Vibrational bands assignable to TCNQ anion and triiodide anion have been observed in the Mid-IR and Terahertz ranges using FTIR Spectroscopy. The MOF samples have been further investigated by Time-Resolved Terehertz Spectroscopy (TRTS). Using this technique, the charge mobility, separation, and recombination dynamics have been followed on the picosecond time scale following photoexcitation with visible radiation. The preliminary results show that the MOF samples have small inherent photoconductivity with charge separation lifetimes on the order of a few picoseconds. In the case of HKUST-1, the MOF can also be supported by a TiO2 film and initial results show that charge injection into the TiO2 layer occurs with a comparable efficiency to the dye sensitizer N3, [cis-Bis(isothiocyanato)-bis(2,2'-bipyridyl-4,4'-dicarboxylato ruthenium(II)], and therefore this MOF has potential as a new light absorbing and charge conducting material in photovoltaic devices.

  16. Nonlinear spectroscopy in the near-field: time resolved spectroscopy and subwavelength resolution non-invasive imaging

    NASA Astrophysics Data System (ADS)

    Namboodiri, Mahesh; Khan, Tahirzeb; Karki, Khadga; Kazemi, Mehdi Mohammad; Bom, Sidhant; Flachenecker, Günter; Namboodiri, Vinu; Materny, Arnulf

    2014-04-01

    The combination of near-field microscopy along with nonlinear optical spectroscopic techniques is presented here. The scanning near-field imaging technique can be integrated with nonlinear spectroscopic techniques to improve spatial and axial resolution of the images. Additionally, ultrafast dynamics can be probed down to nano-scale dimension. The review shows some examples for this combination, which resulted in an exciton map and vibrational contrast images with sub-wavelength resolution. Results of two-color femtosecond time-resolved pump-probe experiments using scanning near-field optical microscopy (SNOM) on thin films of the organic semiconductor 3,4,9,10 Perylenetetracarboxylic dianhydride (PTCDA) are presented. While nonlinear Raman techniques have been used to obtain highly resolved images in combination with near-field microscopy, the use of femtosecond laser pulses in electronic resonance still constitutes a big challenge. Here, we present our first results on coherent anti-Stokes Raman scattering (fs-CARS) with femtosecond laser pulses detected in the near-field using SNOM. We demonstrate that highly spatially resolved images can be obtained from poly(3-hexylthiophene) (P3HT) nano-structures where the fs-CARS process was in resonance with the P3HT absorption and with characteristic P3HT vibrational modes without destruction of the samples. Sub-diffraction limited lateral resolution is achieved. Especially the height resolution clearly surpasses that obtained with standard microCARS. These results will be the basis for future investigations of mode-selective dynamics in the near-field.

  17. Insight into the factors influencing the backbone dynamics of three homologous proteins, dendrotoxins I and K, and BPTI: FTIR and time-resolved fluorescence investigations.

    PubMed

    Hollecker, Michelle; Vincent, Michel; Gallay, Jacques; Ruysschaert, Jean-Marie; Goormaghtigh, Erik

    2002-12-24

    Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, combined with hydrogen/deuterium exchange technique and time-resolved fluorescence spectroscopy, has been used to investigate the changes in structure and dynamics that underlie the thermodynamic stability differences observed for three closely homologous proteins: dendrotoxins I and K, and bovine pancreatic trypsin inhibitor (BPTI). The experiments were performed on proteins under their native state and a modified form, obtained by selective reduction of a disulfide bond at the surface of the molecule, increasing slightly the backbone flexibility without changing the average structure. The data confirmed the high local as well as global rigidity of BPTI. In protein K, the exchange process was slow during the first 2 h of exchange, presumably reflecting a compact three-dimensional conformation, and then increased rapidly, the internal amide protons of the beta-strands exchanging 10-fold faster than in BPTI or protein I. The most probable destabilizing element was identified as Pro32, in the core of the beta-sheet. Protein I was found to present a 10% more expanded volume than protein K or BPTI, and there is a possible correlation between the resulting increased flexibility of the molecule and the lower thermodynamic stability observed for this protein. Interestingly, the interior amide protons of the beta-sheet structure were found to be as protected against exchange in protein I as in BPTI, suggesting that, although globally more flexible than that of Toxin K or BPTI, the structure of Toxin I could be locally quite rigid. The structural factors suspected to be responsible for the differences in internal flexibility of the two toxins could play a significant role in determining their functional properties. PMID:12484765

  18. Sensing cell metabolism by time-resolved autofluorescence.

    PubMed

    Wu, Yicong; Zheng, Wei; Qu, Jianan Y

    2006-11-01

    We built a time-resolved confocal fluorescence spectroscopy system equipped with the multichannel time-correlated single-photon-counting technique. The instrument provides a unique approach to study the fluorescence sensing of cell metabolism via analysis of the wavelength- and time-resolved intracellular autofluorescence. The experiments on monolayered cell cultures show that with UV excitation at 365 nm the time-resolved autofluorescence decays, dominated by free-bound reduced nicotinamide adenine dinucleotide signals, are sensitive indicators for cell metabolism. However, the sensitivity decreases with the increase of excitation wavelength possibly due to the interference from free-bound flavin adenine dinucleotide fluorescence. The results demonstrate that time-resolved autofluorescence can be potentially used as an important contrast mechanism to detect epithelial precancer. PMID:17041655

  19. Sensing cell metabolism by time-resolved autofluorescence

    NASA Astrophysics Data System (ADS)

    Wu, Yicong; Zheng, Wei; Qu, Jianan Y.

    2006-11-01

    We built a time-resolved confocal fluorescence spectroscopy system equipped with the multichannel time-correlated single-photon-counting technique. The instrument provides a unique approach to study the fluorescence sensing of cell metabolism via analysis of the wavelength- and time-resolved intracellular autofluorescence. The experiments on monolayered cell cultures show that with UV excitation at 365 nm the time-resolved autofluorescence decays, dominated by free-bound reduced nicotinamide adenine dinucleotide signals, are sensitive indicators for cell metabolism. However, the sensitivity decreases with the increase of excitation wavelength possibly due to the interference from free-bound flavin adenine dinucleotide fluorescence. The results demonstrate that time-resolved autofluorescence can be potentially used as an important contrast mechanism to detect epithelial precancer.

  20. Monitoring changes of cellular metabolism and microviscosity in vitro based on time-resolved endogenous fluorescence and its anisotropy decay dynamics

    NASA Astrophysics Data System (ADS)

    Zheng, Wei; Li, Dong; Qu, Jianan Y.

    2010-05-01

    Reduced nicotinamide adenine dinucleotide (NADH) is a well-known metabolic coenzyme and endogenous fluorophore. In this study, we develop a system that simultaneously measures time- and wavelength-resolved fluorescence to extract free and protein-bound NADH signals from total cellular fluorescence. We analyze temporal characteristics of NADH fluorescence in a mixture of NADH and lactate dehydrogenase (LDH) as well as in living cell samples. The results show that in both the NADH/LDH mixture and cell samples, a fraction of free NADH and protein-bound components can be identified. The extracted free and bound NADH signals are confirmed by time-resolved measurement of anisotropy decay of NADH fluorescence, based on the fact that free NADH is a small fluorescent molecule with much shorter rotational diffusion time than bound NADH. The ratio of free NADH signal to bound NADH signal is very different between normal and cancer cervical epithelial cells. In addition, the ratio changes significantly when the cell samples are treated with a mitochondrial inhibitor or uncoupler, demonstrating that the method is sensitive to monitor cellular metabolic activity. Finally, we demonstrate that the microviscosity for relatively small molecules such as NADH in cells could be extracted from wavelength- and time-resolved NADH fluorescence of living cell samples.

  1. Time-Resolved Laser-Induced Fluorescence Measurements of Ion Velocity Distribution in the Plume of a 6 kW Hall Thruster with Unperturbed Discharge Oscillations

    NASA Astrophysics Data System (ADS)

    Durot, Christopher; Gallimore, Alec

    2014-10-01

    We present laser-induced fluorescence (LIF) measurements of the time-resolved ion velocity distribution in the plume of a 6 kW laboratory Hall thruster. To our knowledge, these are the first measurements of time-resolved ion velocity distribution on completely unperturbed Hall thruster operating conditions. To date, time-resolved LIF measurements have been made on Hall thrusters with oscillations driven or perturbed to be amenable to averaging techniques that assume a periodic oscillation. Natural Hall thruster breathing and spoke oscillations, however, are not periodic due to chaotic variations in amplitude and frequency. Although the system averages over many periods of nonperiodic oscillation, it recovers the time-resolved signal in part by assuming that a constant transfer function exists relating discharge current and LIF signal and averaging over the transfer function itself (http://dx.doi.org/10.1063/1.4856635). The assumption of a constant transfer function has been validated for a Hall thruster and the technique is now applied to a Hall thruster for the first time.

  2. Time Resolved Spectroscopy of SGR J1550-5418 Bursts Detected with Fermi/Gamma-Ray Burst Monitor

    NASA Astrophysics Data System (ADS)

    Younes, G.; Kouveliotou, C.; van der Horst, A. J.; Baring, M. G.; Granot, J.; Watts, A. L.; Bhat, P. N.; Collazzi, A.; Gehrels, N.; Gorgone, N.; Göğüş, E.; Gruber, D.; Grunblatt, S.; Huppenkothen, D.; Kaneko, Y.; von Kienlin, A.; van der Klis, M.; Lin, L.; Mcenery, J.; van Putten, T.; Wijers, R. A. M. J.

    2014-04-01

    We report on a time-resolved spectroscopy of the 63 brightest bursts of SGR J1550-5418, detected with the Fermi/Gamma-ray Burst Monitor during its 2008-2009 intense bursting episode. We performed spectral analysis down to 4 ms timescales to characterize the spectral evolution of the bursts. Using a Comptonized model, we find that the peak energy, E peak, anti-correlates with flux, while the low-energy photon index remains constant at ~ - 0.8 up to a flux limit F ≈ 10-5 erg s-1 cm-2. Above this flux value, the E peak-flux correlation changes sign, and the index positively correlates with the flux reaching ~1 at the highest fluxes. Using a two blackbody model, we find that the areas and fluxes of the two emitting regions correlate positively. Further, we study here for the first time the evolution of the temperatures and areas as a function of flux. We find that the area-kT relation follows the lines of constant luminosity at the lowest fluxes, R 2vpropkT -4, with a break at the higher fluxes (F > 10-5.5 erg s-1 cm-2). The area of the high-kT component increases with the flux while its temperature decreases, which we interpret as being due to an adiabatic cooling process. The area of the low-kT component, on the other hand, appears to saturate at the highest fluxes, toward R max ≈ 30 km. Assuming that crust quakes are responsible for soft gamma repeater (SGR) bursts and considering R max as the maximum radius of the emitting photon-pair plasma fireball, we relate this saturation radius to a minimum excitation radius of the magnetosphere, and we put a lower limit on the internal magnetic field of SGR J1550-5418, B int >~ 4.5 × 1015 G.

  3. Ultrafast excited-state dynamics in photochromic N-salicylideneaniline studied by femtosecond time-resolved REMPI spectroscopy

    SciTech Connect

    Okabe, Chie; Nakabayashi, Takakazu; Inokuchi, Yoshiya; Nishi, Nobuyuki; Sekiya, Hiroshi

    2004-11-15

    Ultrafast processes in photoexcited N-salicylideneaniline have been investigated with femtosecond time-resolved resonance-enhanced multiphoton ionization spectroscopy. The ion signals via the S{sub 1}(n,{pi}*) state of the enol form as well as the proton-transferred cis-keto form emerge within a few hundred femtoseconds after photoexcitation to the first S{sub 1}({pi},{pi}*) state of the enol form. This reveals that two ultrafast processes, excited-state intramolecular proton transfer (ESIPT) reaction and an internal conversion (IC) to the S{sub 1}(n,{pi}*) state, occur on a time scale less than a few hundred femtoseconds from the S{sub 1}({pi},{pi}*) state of the enol form. The rise time of the transient corresponding to the production of the proton-transferred cis-keto form is within 750 fs when near the red edge of the absorption is excited, indicating that the ESIPT reaction occurs within 750 fs. The decay time of the S{sub 1}({pi},{pi}*) state of the cis-keto form is 8.9 ps by exciting the enol form at 370 nm, but it dramatically decreases to be 1.5-1.6 ps for the excitation at 365-320 nm. The decrease in the decay time has been attributed to the opening of an efficient nonradiative channel; an IC from S{sub 1}({pi},{pi}*) to S{sub 1}(n,{pi}*) of the cis-keto form promotes the production of the trans-keto form as the final photochromic products. The two IC processes may provide opposite effect on the quantum yield of photochromic products: IC in the enol form may substantially reduce the quantum yield, but IC in the cis-keto form increase it.

  4. Reduction of O2 slow component by priming exercise: novel mechanistic insights from time-resolved near-infrared spectroscopy

    PubMed Central

    Fukuoka, Yoshiyuki; Poole, David C; Barstow, Thomas J; Kondo, Narihiko; Nishiwaki, Masato; Okushima, Dai; Koga, Shunsaku

    2015-01-01

    Novel time-resolved near-infrared spectroscopy (TR-NIRS), with adipose tissue thickness correction, was used to test the hypotheses that heavy priming exercise reduces the V̇O2 slow component (V̇O2SC) (1) by elevating microvascular [Hb] volume at multiple sites within the quadriceps femoris (2) rather than reducing the heterogeneity of muscle deoxygenation kinetics. Twelve subjects completed two 6-min bouts of heavy work rate exercise, separated by 6 min of unloaded cycling. Priming exercise induced faster overall V̇O2 kinetics consequent to a substantial reduction in the V̇O2SC (0.27 ± 0.12 vs. 0.11 ± 0.09 L·min−1, P < 0.05) with an unchanged primary V̇O2 time constant. An increased baseline for the primed bout [total (Hb + Mb)] (197.5 ± 21.6 vs. 210.7 ± 22.5 μmol L−1, P < 0.01), reflecting increased microvascular [Hb] volume, correlated significantly with the V̇O2SC reduction. At multiple sites within the quadriceps femoris, priming exercise reduced the baseline and slowed the increase in [deoxy (Hb + Mb)]. Changes in the intersite coefficient of variation in the time delay and time constant of [deoxy (Hb + Mb)] during the second bout were not correlated with the V̇O2SC reduction. These results support a mechanistic link between priming exercise-induced increase in muscle [Hb] volume and the reduced V̇O2SC that serves to speed overall V̇O2 kinetics. However, reduction in the heterogeneity of muscle deoxygenation kinetics does not appear to be an obligatory feature of the priming response. PMID:26109190

  5. Time-resolved photoelectron spectroscopy of a dinuclear Pt(II) complex: Tunneling autodetachment from both singlet and triplet excited states of a molecular dianion.

    PubMed

    Winghart, Marc-Oliver; Yang, Ji-Ping; Vonderach, Matthias; Unterreiner, Andreas-Neil; Huang, Dao-Ling; Wang, Lai-Sheng; Kruppa, Sebastian; Riehn, Christoph; Kappes, Manfred M

    2016-02-01

    Time-resolved pump-probe photoelectron spectroscopy has been used to study the relaxation dynamics of gaseous [Pt2(μ-P2O5H2)4 + 2H](2-) after population of its first singlet excited state by 388 nm femtosecond laser irradiation. In contrast to the fluorescence and phosphorescence observed in condensed phase, a significant fraction of the photoexcited isolated dianions decays by electron loss to form the corresponding monoanions. Our transient photoelectron data reveal an ultrafast decay of the initially excited singlet (1)A2u state and concomitant rise in population of the triplet (3)A2u state, via sub-picosecond intersystem crossing (ISC). We find that both of the electronically excited states are metastably bound behind a repulsive Coulomb barrier and can decay via delayed autodetachment to yield electrons with characteristic kinetic energies. While excited state tunneling detachment (ESETD) from the singlet (1)A2u state takes only a few picoseconds, ESETD from the triplet (3)A2u state is much slower and proceeds on a time scale of hundreds of nanoseconds. The ISC rate in the gas phase is significantly higher than in solution, which can be rationalized in terms of changes to the energy dissipation mechanism in the absence of solvent molecules. [Pt2(μ-P2O5H2)4 + 2H](2-) is the first example of a photoexcited multianion for which ESETD has been observed following ISC. PMID:26851919

  6. Time-resolved photoelectron spectroscopy of a dinuclear Pt(II) complex: Tunneling autodetachment from both singlet and triplet excited states of a molecular dianion

    NASA Astrophysics Data System (ADS)

    Winghart, Marc-Oliver; Yang, Ji-Ping; Vonderach, Matthias; Unterreiner, Andreas-Neil; Huang, Dao-Ling; Wang, Lai-Sheng; Kruppa, Sebastian; Riehn, Christoph; Kappes, Manfred M.

    2016-02-01

    Time-resolved pump-probe photoelectron spectroscopy has been used to study the relaxation dynamics of gaseous [Pt2(μ-P2O5H2)4 + 2H]2- after population of its first singlet excited state by 388 nm femtosecond laser irradiation. In contrast to the fluorescence and phosphorescence observed in condensed phase, a significant fraction of the photoexcited isolated dianions decays by electron loss to form the corresponding monoanions. Our transient photoelectron data reveal an ultrafast decay of the initially excited singlet 1A2u state and concomitant rise in population of the triplet 3A2u state, via sub-picosecond intersystem crossing (ISC). We find that both of the electronically excited states are metastably bound behind a repulsive Coulomb barrier and can decay via delayed autodetachment to yield electrons with characteristic kinetic energies. While excited state tunneling detachment (ESETD) from the singlet 1A2u state takes only a few picoseconds, ESETD from the triplet 3A2u state is much slower and proceeds on a time scale of hundreds of nanoseconds. The ISC rate in the gas phase is significantly higher than in solution, which can be rationalized in terms of changes to the energy dissipation mechanism in the absence of solvent molecules. [Pt2(μ-P2O5H2)4 + 2H]2- is the first example of a photoexcited multianion for which ESETD has been observed following ISC.

  7. Electron-hole recombination on ZnO(0001) single-crystal surface studied by time-resolved soft X-ray photoelectron spectroscopy

    SciTech Connect

    Yukawa, R.; Yamamoto, S.; Ogawa, M.; Yamamoto, Sh.; Fujikawa, K.; Hobara, R.; Matsuda, I.; Ozawa, K.; Emori, M.; Sakama, H.; Kitagawa, S.; Daimon, H.

    2014-10-13

    Time-resolved soft X-ray photoelectron spectroscopy (PES) experiments were performed with time scales from picoseconds to nanoseconds to trace relaxation of surface photovoltage on the ZnO(0001) single crystal surface in real time. The band diagram of the surface has been obtained numerically using PES data, showing a depletion layer which extends to 1 μm. Temporal evolution of the photovoltage effect is well explained by a recombination process of a thermionic model, giving the photoexcited carrier lifetime of about 1 ps at the surface under the flat band condition. This lifetime agrees with a temporal range reported by the previous time-resolved optical experiments.

  8. Complexation of polyacrylates by Ca2+ ions. Time-resolved studies using attenuated total reflectance Fourier transform infrared dialysis spectroscopy.

    PubMed

    Fantinel, Fabiana; Rieger, Jens; Molnar, Ferenc; Hübler, Patrick

    2004-03-30

    The attenuated total reflectance Fourier transform infrared dialysis technique is introduced for the time-resolved investigation of the binding processes of Ca2+ to polyacrylates dissolved in water. We observed transient formation of intermediates in water with various types of coordination of the carboxylate group to Ca2+ throughout the complexation steps. Time-resolved changes in the spectra were analyzed with principal component analysis, from which the spectral species were obtained as well as their formation kinetics. We propose a model for the mechanisms of Ca2+ coordination to polyacrylates. The polymer chain length plays an important role in Ca2+ binding. PMID:15835120

  9. A novel cell-based duplex high-throughput screening assay combining fluorescent Ca(2+) measurement with homogeneous time-resolved fluorescence technology.

    PubMed

    Kiss, László; Cselenyák, Attila; Varga, Ágnes; Visegrády, András

    2016-08-15

    Cell-based assays for G-protein-coupled receptor (GPCR) activation applied in high-throughput screening (HTS) monitor various readouts for second messengers or intracellular effectors. Recently, our understanding of diverging signaling pathways downstream of receptor activation and the capability of small molecules to selectively modulate signaling routes has increased substantially, underlining the importance of selecting appropriate readouts in cellular functional screens. To minimize the rate of false negatives in large-scale screening campaigns, it is crucial to maximize the chance of a ligand being detected, and generally applicable methods for detecting multiple analytes from a single well might serve this purpose. The few assays developed so far based on multiplexed GPCR readouts are limited to only certain applications and usually rely on genetic manipulations hindering screening in native or native-like cellular systems. Here we describe a more generally applicable and HTS-compatible homogeneous assay based on the combination of fluorometric detection of [Ca(2+)] with subsequent homogeneous time-resolved fluorescence (HTRF) cAMP readout in the same well. Besides describing development and validation of the assay, using a cell line recombinantly expressing the human PTH1 receptor screening of a small library is also presented, demonstrating the robustness and HTS compatibility of the novel paradigm. PMID:27235172

  10. Picosecond time-resolved fluorescence study on solute-solvent interaction of 2-aminoquinoline in room-temperature ionic liquids: aromaticity of imidazolium-based ionic liquids.

    PubMed

    Iwata, Koichi; Kakita, Minoru; Hamaguchi, Hiro-o

    2007-05-10

    Time-resolved fluorescence spectra and fluorescence anisotropy decay of 2-aminoquinoline (2AQ) have been measured in eight room-temperature ionic liquids, including five imidazolium-based aromatic ionic liquids and three nonaromatic ionic liquids. The same experiments have also been carried out in several ordinary molecular liquids for comparison. The observed time-resolved fluorescence spectra indicate the formation of pi-pi aromatic complexes of 2AQ in some of the aromatic ionic liquids but not in the nonaromatic ionic liquids. The fluorescence anisotropy decay data show unusually slow rotational diffusion of 2AQ in the aromatic ionic liquids, suggesting the formation of solute-solvent complexes. The probe 2AQ molecule is likely to be incorporated in the possible local structure of ionic liquids, and hence the anisotropy decays only through the rotation of the whole local structure, making the apparent rotational diffusion of 2AQ slow. The rotational diffusion time decreases rapidly by adding a small amount of acetonitrile to the solution. This observation is interpreted in terms of the local structure formation in the aromatic ionic liquids and its destruction by acetonitrile. No unusual behavior upon addition of acetonitrile has been found for the nonaromatic ionic liquids. It is argued that the aromaticity of the imidazolium cation plays a key role in the local structure formation in imidazolium-based ionic liquids. PMID:17428083

  11. Time resolved spectroscopy of SGR J1550–5418 bursts detected with Fermi/gamma-ray burst monitor

    SciTech Connect

    Younes, G.; Kouveliotou, C.; Collazzi, A.; Van der Horst, A. J.; Watts, A. L.; Huppenkothen, D.; Van der Klis, M.; Van Putten, T.; Baring, M. G.; Granot, J.; Bhat, P. N.; Gorgone, N.; Gehrels, N.; Mcenery, J.; Göğüş, E.; Kaneko, Y.; Lin, L.; Gruber, D.; Von Kienlin, A.; Grunblatt, S.; and others

    2014-04-10

    We report on a time-resolved spectroscopy of the 63 brightest bursts of SGR J1550–5418, detected with the Fermi/Gamma-ray Burst Monitor during its 2008-2009 intense bursting episode. We performed spectral analysis down to 4 ms timescales to characterize the spectral evolution of the bursts. Using a Comptonized model, we find that the peak energy, E {sub peak}, anti-correlates with flux, while the low-energy photon index remains constant at ∼ – 0.8 up to a flux limit F ≈ 10{sup –5} erg s{sup –1} cm{sup –2}. Above this flux value, the E {sub peak}–flux correlation changes sign, and the index positively correlates with the flux reaching ∼1 at the highest fluxes. Using a two blackbody model, we find that the areas and fluxes of the two emitting regions correlate positively. Further, we study here for the first time the evolution of the temperatures and areas as a function of flux. We find that the area–kT relation follows the lines of constant luminosity at the lowest fluxes, R {sup 2}∝kT {sup –4}, with a break at the higher fluxes (F > 10{sup –5.5} erg s{sup –1} cm{sup –2}). The area of the high-kT component increases with the flux while its temperature decreases, which we interpret as being due to an adiabatic cooling process. The area of the low-kT component, on the other hand, appears to saturate at the highest fluxes, toward R {sub max} ≈ 30 km. Assuming that crust quakes are responsible for soft gamma repeater (SGR) bursts and considering R {sub max} as the maximum radius of the emitting photon-pair plasma fireball, we relate this saturation radius to a minimum excitation radius of the magnetosphere, and we put a lower limit on the internal magnetic field of SGR J1550–5418, B {sub int} ≳ 4.5 × 10{sup 15} G.

  12. Microsecond Time-Resolved Absorption Spectroscopy Used to Study CO Compounds of Cytochrome bd from Escherichia coli

    PubMed Central

    Siletsky, Sergey A.; Zaspa, Andrey A.; Poole, Robert K.; Borisov, Vitaliy B.

    2014-01-01

    Cytochrome bd is a tri-heme (b558, b595, d) respiratory oxygen reductase that is found in many bacteria including pathogenic species. It couples the electron transfer from quinol to O2 with generation of an electrochemical proton gradient. We examined photolysis and subsequent recombination of CO with isolated cytochrome bd from Escherichia coli in one-electron reduced (MV) and fully reduced (R) states by microsecond time-resolved absorption spectroscopy at 532-nm excitation. Both Soret and visible band regions were examined. CO photodissociation from MV enzyme possibly causes fast (τ<1.5 µs) electron transfer from heme d to heme b595 in a small fraction of the protein, not reported earlier. Then the electron migrates to heme b558 (τ∼16 µs). It returns from the b-hemes to heme d with τ∼180 µs. Unlike cytochrome bd in the R state, in MV enzyme the apparent contribution of absorbance changes associated with CO dissociation from heme d is small, if any. Photodissociation of CO from heme d in MV enzyme is suggested to be accompanied by the binding of an internal ligand (L) at the opposite side of the heme. CO recombines with heme d (τ∼16 µs) yielding a transient hexacoordinate state (CO-Fe2+-L). Then the ligand slowly (τ∼30 ms) dissociates from heme d. Recombination of CO with a reduced heme b in a fraction of the MV sample may also contribute to the 30-ms phase. In R enzyme, CO recombines to heme d (τ∼20 µs), some heme b558 (τ∼0.2–3 ms), and finally migrates from heme d to heme b595 (τ∼24 ms) in ∼5% of the enzyme population. Data are consistent with the recent nanosecond study of Rappaport et al. conducted on the membranes at 640-nm excitation but limited to the Soret band. The additional phases were revealed due to differences in excitation and other experimental conditions. PMID:24755641

  13. In-situ analysis of fruit anthocyanins by means of total internal reflectance, continuous wave and time-resolved spectroscopy

    NASA Astrophysics Data System (ADS)

    Zude, Manuela; Spinelli, Lorenzo; Dosche, Carsten; Torricelli, Alessandro

    2009-08-01

    In sweet cherry (Prunus avium), the red pigmentation is correlated with the fruit maturity stage and can be measured by non-invasive spectroscopy. In the present study, the influence of varying fruit scattering coefficients on the fruit remittance spectrum (cw) were corrected with the effective pathlength and refractive index in the fruit tissue obtained with distribution of time-of-flight (DTOF) readings and total internal reflection fluorescence (TIRF) analysis, respectively. The approach was validated on fruits providing variation in the scattering coefficient outside the calibration sample set. In the validation, the measuring uncertainty when non-invasively analyzing fruits with cw method in comparison with combined application of cw, DTOF, and TIRF measurements showed an increase in r2 up to 22.7 % with, however, high errors in all approaches.

  14. Nanosecond fluorescence spectroscopy

    SciTech Connect

    Leskovar, B.

    1985-03-01

    This article is a summary of a short course lecture given in conjunction with the 1984 Nuclear Science Symposium. Measuring systems for nanosecond fluorescence spectroscopy using single-photon counting techniques are presented. These involve systems based on relaxation-type spark gap light pulser and synchronously pumped mode-locked dye lasers. Furthermore, typical characteristics and optimization of operating conditions of the critical components responsible for the system time resolution are discussed. A short comparison of the most important deconvolution methods for numerical analysis of experimental data is given particularly with respect to the signal-to-noise ratio of the fluorescence signal. 22 refs., 8 figs.

  15. Development and demonstration of table-top synchronized fast-scan femtosecond time-resolved spectroscopy system by single-shot scan photo detector array

    NASA Astrophysics Data System (ADS)

    Yabushita, Atsushi; Kao, Chih-Hsien; Lee, Yu-Hsien; Kobayashi, Takayoshi

    2015-07-01

    Ultrafast dynamics is generally studied by pump-probe method with laser pulse, which scans optical delay by motorized stage step by step. Using ultrashort laser pulse shorter than typical molecular vibration periods, the pump-probe measurement can study both of electronic dynamics and vibration dynamics simultaneously. The probe wavelength dependence of the ultrafast electronic and vibration dynamics (UEVD) helps us to distinguish the signal contributions from the dynamics of the electronic ground state and that of the electronic excited states, which elucidates primary reaction mechanism after photoexcitation. Meanwhile, the measurement time of UEVD spectroscopy takes too long time to be used in realistic application. In our previous work, we have developed multi-channel lock-in amplifying (MLA) detectors to study UEVD at all probe wavelengths simultaneously, and synchronized it with laser and fast-scan delay stage to scan the data in five seconds. It enabled us to study UEVD spectroscopy even for photo-fragile materials. However, the home-made MLA detectors required for the measurement is expensive and massive in size and weight, thus not suitable for general researchers in the field of ultrafast time-resolved spectroscopy. In the present work, we have developed a table-top synchronized fast-scan femtosecond time-resolved spectroscopy system using single shot scan line CCD. This system measures time-resolved trace at all probe wavelengths simultaneously in five seconds. The CCD-based fast-scan time-resolved spectroscopy system enables us to study ultrafast dynamics of various materials even biomaterials, which have been thought to be hard or even impossible to be studied in previous methods.

  16. An integrated logic system for time-resolved fluorescent "turn-on" detection of cysteine and histidine base on terbium (III) coordination polymer-copper (II) ensemble.

    PubMed

    Xue, Shi-Fan; Lu, Ling-Fei; Wang, Qi-Xian; Zhang, Shengqiang; Zhang, Min; Shi, Guoyue

    2016-09-01

    Cysteine (Cys) and histidine (His) both play indispensable roles in many important biological activities. An enhanced Cys level can result in Alzheimer's and cardiovascular diseases. Likewise, His plays a significant role in the growth and repair of tissues as well as in controlling the transmission of metal elements in biological bases. Therefore, it is meaningful to detect Cys and His simultaneously. In this work, a novel terbium (III) coordination polymer-Cu (II) ensemble (Tb(3+)/GMP-Cu(2+)) was proposed. Guanosine monophosphate (GMP) can self-assemble with Tb(3+) to form a supramolecular Tb(3+) coordination polymer (Tb(3+)/GMP), which can be suited as a time-resolved probe. The fluorescence of Tb(3+)/GMP would be quenched upon the addition of Cu(2+), and then the fluorescence of the as-prepared Tb(3+)/GMP-Cu(2+) ensemble would be restored again in the presence of Cys or His. By incorporating N-Ethylmaleimide and Ni(2+) as masking agents, Tb(3+)/GMP-Cu(2+) was further exploited as an integrated logic system and a specific time-resolved fluorescent "turn-on" assay for simultaneously sensing His and Cys was designed. Meanwhile it can also be used in plasma samples, showing great potential to meet the need of practical application. PMID:27343597

  17. Fluorescence Spectroscopy of Neoplastic and Non-Neoplastic Tissues

    PubMed Central

    Ramanujam, Nirmala

    2000-01-01

    Abstract Fast and non-invasive, diagnostic techniques based on fluorescence spectroscopy have the potential to link the biochemical and morphologic properties of tissues to individual patient care. One of the most widely explored applications of fluorescence spectroscopy is the detection of endoscopically invisible, early neoplastic growth in epithelial tissue sites. Currently, there are no effective diagnostic techniques for these early tissue transformations. If fluorescence spectroscopy can be applied successfully as a diagnostic technique in this clinical context, it may increase the potential for curative treatment, and thus, reduce complications and health care costs. Steady-state, fluorescence measurements from small tissue regions as well as relatively large tissue fields have been performed. To a much lesser extent, time-resolved, fluorescence measurements have also been explored for tissue characterization. Furthermore, sources of both intrinsic (endogenous fluorophores) and extrinsic fluorescence (exogenous fluorophores) have been considered. The goal of the current report is to provide a comprehensive review on steady-state and time-resolved, fluorescence measurements of neoplastic and non-neoplastic, biologic systems of varying degrees of complexity. First, the principles and methodology of fluorescence spectroscopy are discussed. Next, the endogenous fluorescence properties of cells, frozen tissue sections and excised and intact bulk tissues are presented; fluorescence measurements from both animal and human tissue models are discussed. This is concluded with future perspectives. PMID:10933071

  18. Time-Resolved Down-Conversion of 2-Aminopurine in a DNA Hairpin: Fluorescence Anisotropy and Solvent Effects

    NASA Astrophysics Data System (ADS)

    Tourón Touceda, Patricia; Gelot, Thomas; Crégut, Olivier; Léonard, Jérémie; Haacke, Stefan

    2013-03-01

    Femtosecond fluorescence anisotropy decay measured by type II difference frequency generation provides new insight into the local structural dynamics of ΔP(-)PBS fragments of the HIV- 1 DNA primary binding sequence, labeled with 2-aminopurine.

  19. Picosecond time-resolved fluorescence of ribonuclease T1. A pH and substrate analogue binding study.

    PubMed Central

    Chen, L X; Longworth, J W; Fleming, G R

    1987-01-01

    The tryptophyl fluorescence of ribonuclease T1 decays monoexponentially at pH 5.5, tau = 4.04 ns but on increasing pH, a second short-lived component of 1.5 ns appears with a midpoint between pH 6.5 and 7.0. Both components have the same fluorescence spectrum. Acrylamide quenches both fluorescence components, and the short-lived component is quenched fivefold faster than the predominant long component. Binding of the substrate analogue 2'-guanylic acid at pH 5.5 quenches the fluorescence by 20% and introduces a second decay component, tau = 1.16 ns. Acrylamide quenches both tryptophyl decay components, with similar quenching rates. The fluorescence anisotropy decay of ribonuclease T1 was consistent with a molecule the size of ribonuclease T1 surrounded by a single layer of water at pH 7.4, even though the anisotropy decay at pH 5.5 deviated from Stokes-Einstein behavior. The fluorescence data were interpreted with a model where the tryptophyl residue exists in two conformations, remaining in a hydrophobic pocket. The acrylamide quenching is interpreted with electron transfer theory and suggests that one conformer has the nearest atom approximately 3 A from the protein surface, and the other, approximately 2 A. PMID:3038204

  20. Photoinduced phenoxyl radical formation from ligno- p-cresol as studied by steady-state and time-resolved EPR spectroscopy

    NASA Astrophysics Data System (ADS)

    Tero-Kubota, Shozo; Tachikawa, Takashi; Ito, Fuyuki; Matsui, Mikio; Konishi, Kazuyori

    2003-11-01

    The phenoxyl radical formation mechanism from the UV-photolysis of ligno- p-cresol in organic solvents has been investigated by steady-state and time-resolved EPR spectroscopy. It is suggested that the phenoxyl radical is generated from the o-methoxy phenol moiety in the main chain of the polymer through the dissociative photoionization by the biphotonic process from the excited triplet states.

  1. Femtosecond Time-Resolved Stimulated Raman Spectroscopy: Application to the Ultrafast Internal Conversion in β-Carotene†

    PubMed Central

    McCamant, David W.; Kukura, Philipp; Mathies, Richard A.

    2005-01-01

    We have developed the technique of femtosecond stimulated Raman spectroscopy (FSRS), which allows the rapid collection of high-resolution vibrational spectra on the femtosecond time scale. FSRS combines a sub-50 fs actinic pump pulse with a two-pulse stimulated Raman probe to obtain vibrational spectra whose frequency resolution limits are uncoupled from the time resolution. This allows the acquisition of spectra with <100 fs time resolution and <30 cm−1 frequency resolution. Additionally, FSRS is unaffected by background fluorescence, provides rapid (100 ms) acquisition times, and exhibits traditional spontaneous Raman line shapes. FSRS is used here to study the relaxation dynamics of β-carotene. Following optical excitation to S2 (1Bu+) the molecule relaxes in 160 fs to S1 (2Ag−) and then undergoes two distinct stages of intramolecular vibrational energy redistribution (IVR) with 200 and 450 fs time constants. These processes are attributed to rapid (200 fs) distribution of the internal conversion energy from the S1 C=C modes into a restricted bath of anharmonically coupled modes followed by complete IVR in 450 fs. FSRS is a valuable new technique for studying the vibrational structure of chemical reaction intermediates and transition states. PMID:16710440

  2. Simultaneous determination of nabumetone and its principal metabolite in medicines and human urine by time-resolved fluorescence.

    PubMed

    Murillo Pulgarín, José Antonio; Alañón Molina, Aurelia; Martínez Ferreras, Fernando

    2012-11-01

    A simple fluorescent methodology for the simultaneous determination of nabumetone and its main metabolite, 6-methoxy-2-naphthylacetic acid (6-MNA), in pharmaceutical preparations and human urine is proposed. Due to the strong overlapping between the fluorescence spectra of both analytes, the use of fluorescence decay curves to resolve their mixture is proposed, since these curves are more selective. Values of dependent instrumental variables affecting the signal-to-noise ratio were fixed using a simplex optimization procedure. A factorial design with three levels per factor coupled to a central composite design was selected to obtain a calibration matrix of thirteen standards plus one blank sample that was processed using a partial least-squares (PLS) analysis. In order to assess the goodness of the proposed method, a prediction set of ten synthetic samples was analyzed, obtaining recovery percentages between 97 and 105%. Limits of detection, calculated by means of a new criterion, were 0.96 μg L(-1) and 0.88 μg L(-1) for nabumetone and 6-MNA, respectively. The method was also tested in the pharmaceutical preparation Relif, which contains nabumetone, obtaining recovery percentages close to 100%. Finally, the simultaneous determination of both analytes in human urine samples was successfully carried out by the PLS-analysis of a matrix of fifteen standards plus four analyte blanks and the use of the standard addition technique. Although urine shows native fluorescence, no extraction method or prior separation of the analytes was needed. PMID:22977877

  3. Multichannel, time-resolved picosecond laser ultrasound imaging and spectroscopy with custom complementary metal-oxide-semiconductor detector

    SciTech Connect

    Smith, Richard J.; Light, Roger A.; Johnston, Nicholas S.; Pitter, Mark C.; Somekh, Mike G.; Sharples, Steve D.

    2010-02-15

    This paper presents a multichannel, time-resolved picosecond laser ultrasound system that uses a custom complementary metal-oxide-semiconductor linear array detector. This novel sensor allows parallel phase-sensitive detection of very low contrast modulated signals with performance in each channel comparable to that of a discrete photodiode and a lock-in amplifier. Application of the instrument is demonstrated by parallelizing spatial measurements to produce two-dimensional thickness maps on a layered sample, and spectroscopic parallelization is demonstrated by presenting the measured Brillouin oscillations from a gallium arsenide wafer. This paper demonstrates the significant advantages of our approach to pump probe systems, especially picosecond ultrasonics.

  4. A high-throughput time-resolved mini-silicon photomultiplier with embedded fluorescence lifetime estimation in 0.13 μm CMOS.

    PubMed

    Tyndall, David; Rae, Bruce R; Li, David Day-Uei; Arlt, Jochen; Johnston, Abigail; Richardson, Justin A; Henderson, Robert K

    2012-12-01

    We describe a miniaturized, high-throughput, time-resolved fluorescence lifetime sensor implemented in a 0.13 m CMOS process, combining single photon detection, multiple channel timing and embedded pre-processing of fluorescence lifetime estimations on a single device. Detection is achieved using an array of single photon avalanche diodes (SPADs) arranged in a digital silicon photomultiplier (SiPM) architecture with 400 ps output pulses and a 10% fill-factor. An array of time-to-digital converters (TDCs) with ≈50 ps resolution records up to 8 photon events during each excitation period. Data from the TDC array is then processed using a centre-of-mass method (CMM) pre-calculation to produce fluorescence lifetime estimations in real-time. The sensor is believed to be the first reported implementation of embedded fluorescence lifetime estimation. The system is demonstrated in a practical laboratory environment with measurements of a variety of fluorescent dyes with different single exponential lifetimes, successfully showing the sensor's ability to overcome the classic pile-up limitation of time-correlated single photon counting (TCSPC) by over an order of magnitude. PMID:23853257

  5. Study of the laser-induced decomposition of energetic materials at static high-pressure by time-resolved absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Hebert, Philippe; Saint-Amans, Charles

    2013-06-01

    A detailed description of the reaction rates and mechanisms occurring in shock-induced decomposition of condensed explosives is very important to improve the predictive capabilities of shock-to-detonation transition models. However, direct measurements of such experimental data are difficult to perform during detonation experiments. By coupling pulsed laser ignition of an explosive in a diamond anvil cell (DAC) with time-resolved streak camera recording of transmitted light, it is possible to make direct observations of deflagration phenomena at detonation pressure. We have developed an experimental set-up that allows combustion front propagation rates and time-resolved absorption spectroscopy measurements. The decomposition reactions are initiated using a nanosecond YAG laser and their kinetics is followed by time-resolved absorption spectroscopy. The results obtained for two explosives, nitromethane (NM) and HMX are presented in this paper. For NM, a change in reactivity is clearly seen around 25 GPa. Below this pressure, the reaction products are essentially carbon residues whereas at higher pressure, a transient absorption feature is first observed and is followed by the formation of a white amorphous product. For HMX, the evolution of the absorption as a function of time indicates a multi-step reaction mechanism which is found to depend on both the initial pressure and the laser fluence.

  6. Time-resolved laser-induced fluorescence measurement of ion and neutral dynamics in a Hall thruster during ionization oscillations

    NASA Astrophysics Data System (ADS)

    Lucca Fabris, Andrea; Young, Christopher V.; Cappelli, Mark A.

    2015-12-01

    The paper presents spatially and temporally resolved laser-induced fluorescence (LIF) measurements of the xenon ion and neutral velocity distribution functions in a 400 W Hall thruster during natural ionization oscillations at 23 kHz, the so-called "breathing mode." Strong fluctuations in measured axial ion velocity throughout the discharge current cycle are observed at five spatial locations and the velocity maxima appear in the low current interval. The spatio-temporal evolution of the ion velocity distribution function suggests a propagating acceleration front undergoing periodic motion between the thruster exit plane and ˜1 cm downstream into the plume. The ion LIF signal intensity oscillates almost in phase with the discharge current, while the neutral fluorescence signal appears out of phase, indicating alternating intervals of strong and weak ionization.

  7. Time-resolvedspectroscopy measurements of hot-electron equilibration dynamics in thin-foil solid targets: Collisional and collective effects

    DOE PAGESBeta

    Nilson, P. M.; Solodov, A. A.; Davies, J. R.; Theobald, W.; Mileham, C.; Stoeckl, C.; Begishev, I. A.; Zuegel, J. D.; Froula, D. H.; Betti, R.; et al

    2015-09-25

    Time-resolvedspectroscopy measurements from high-intensity laser interactions with thin-foil solid targets are reviewed. Thin Cu foils were irradiated with 1- to 10-J, 1-ps pulses at focused intensities from 1018 to 1019 W/cm2. The experimental data show Kα-emission pulse widths from 3 to 6 ps, increasing with laser intensity. The time-resolved Kα-emission data are compared to a hot-electron transport and Kα-production model that includes collisional electron-energy coupling, resistive heating, and electromagnetic field effects. The experimental data show good agreement with the model when a reduced ponderomotive scaling is used to describe the initial mean hot-electron energy over the relevant intensitymore » range.« less

  8. Employing time-resolved terahertz spectroscopy to analyze carrier dynamics in thin-film Cu{sub 2}ZnSn(S,Se){sub 4} absorber layers

    SciTech Connect

    Guglietta, Glenn W.; Baxter, Jason B.; Choudhury, Kaushik Roy; Caspar, Jonathan V.

    2014-06-23

    We report the application of time-resolved terahertz spectroscopy (TRTS) to measure photoexcited carrier lifetimes and mobility, and to determine recombination mechanisms in Cu{sub 2}ZnSn(S,Se){sub 4} (CZTSSe) thin films fabricated from nanocrystal inks. Ultrafast time resolution permits tracking the evolution of carrier density to determine recombination rates and mechanisms. The carrier generation profile was manipulated by varying the photoexcitation wavelength and fluence to distinguish between surface, Shockley-Read-Hall (SRH), radiative, and Auger recombination mechanisms and determine rate constants. Surface and SRH recombination are the dominant mechanisms for the air/CZTSSe/SiO{sub 2}/Si film stack. Diffusion to, and then recombination at, the air-CZTSSe interface occurred on the order of 100 picoseconds, while SRH recombination lifetimes were 1–2 nanoseconds. TRTS measurements can provide information that is complementary to conventional time-resolved photoluminescence measurements and can direct the design of efficient thin film photovoltaics.

  9. Time-resolved Kα spectroscopy measurements of hot-electron equilibration dynamics in thin-foil solid targets: Collisional and collective effects

    SciTech Connect

    Nilson, P. M.; Solodov, A. A.; Davies, J. R.; Theobald, W.; Mileham, C.; Stoeckl, C.; Begishev, I. A.; Zuegel, J. D.; Froula, D. H.; Betti, R.; Meyerhofer, D. D.

    2015-09-25

    Time-resolved Kα spectroscopy measurements from high-intensity laser interactions with thin-foil solid targets are reviewed. Thin Cu foils were irradiated with 1- to 10-J, 1-ps pulses at focused intensities from 1018 to 1019 W/cm2. The experimental data show Kα-emission pulse widths from 3 to 6 ps, increasing with laser intensity. The time-resolved Kα-emission data are compared to a hot-electron transport and Kα-production model that includes collisional electron-energy coupling, resistive heating, and electromagnetic field effects. The experimental data show good agreement with the model when a reduced ponderomotive scaling is used to describe the initial mean hot-electron energy over the relevant intensity range.

  10. Photocarrier dynamics in undoped and Na-doped Cu2ZnSnS4 single crystals revealed by ultrafast time-resolved terahertz spectroscopy

    NASA Astrophysics Data System (ADS)

    Quang Phuong, Le; Okano, Makoto; Yamashita, Genki; Nagai, Masaya; Ashida, Masaaki; Nagaoka, Akira; Yoshino, Kenji; Kanemitsu, Yoshihiko

    2015-06-01

    We investigated the effects of sodium doping on the photocarrier dynamics in Cu2ZnSnS4 (CZTS) single crystals using optical pump-THz probe transient reflectivity (THz-TR) and time-resolved photoluminescence (PL) spectroscopy. The THz-TR and PL decay dynamics are influenced by sodium doping, and their sodium-induced changes are consistent with each other. These time-resolved measurements revealed that the lifetime of photocarriers increases with sodium doping. This result indicates that a part of defects is suppressed by doping sodium into CZTS and implies that sodium doping improves the charge transport properties of CZTS, leading to an improvement in the performance of CZTS-based solar cells.

  11. Time-resolved spectroscopic study of photofragment fluorescence in methane/air mixtures and its diagnostic implications

    NASA Astrophysics Data System (ADS)

    Jonsson, Malin; Borggren, Jesper; Aldén, Marcus; Bood, Joakim

    2015-09-01

    In this work 80-picosecond laser pulses of 266-nm wavelength with intensities up to (2.0 ± 0.5) × 1011 W/cm2 were used for fragmentation of methane/air gas mixtures at ambient pressure and temperature. Emission spectra are, for the first time, studied with ultrahigh temporal resolution using a streak camera. Fluorescence spectra from CH(A2Δ-X2Π, B2Σ--X2Π, C2Σ+-X2Π), CN(B2Σ+-X2Σ+, Δ v = 0 and Δ v = ±1), NH(A3Π--X3Σ-), OH(A2Σ+-X2Π) and N2 +(B2Σu + X2Σg + were recorded and analyzed. By fitting simulated spectra to high-resolution experimental spectra, rotational and vibrational temperatures are estimated, showing that CH(C), CN(B), NH(A), and OH(A) are formed in highly excited vibrational and rotational states. The fluorescence signal dependencies on laser intensity and CH4/air equivalence ratio were investigated as well as the fluorescence lifetimes. All fragments observed are formed within 200 ps after the arrival of the laser pulse and their fluorescence lifetimes are shorter than 1 ns, except for CN(B-X) Δ v = 0 whose lifetime is 2.0 ns. The CN(B-X) Δ v = 0 fluorescence was studied temporally under high spectral resolution, and it was found that the vibrational levels are not populated simultaneously, but with a rate that decreases with increasing vibrational quantum number. This observation indicates that the rate of the chemical reaction that forms the CN(B) fragments is decreasing with increasing vibrational state of the product. The results provide vital information for the application of laser diagnostic techniques based on strong UV excitation, as they show that such methods might not be entirely non-intrusive and suffering from spectral interferences, unless the laser intensity is kept sufficiently low. Finally, equivalence ratios were determined from "unknown" spectra using multivariate analysis, showing a good agreement with theoretical compositions with an error of 4 %. The method is expected to be a useful diagnostic tool for

  12. Density relaxation and particle motion characteristics in a non-ionic deep eutectic solvent (acetamide + urea): time-resolved fluorescence measurements and all-atom molecular dynamics simulations.

    PubMed

    Das, Anuradha; Das, Suman; Biswas, Ranjit

    2015-01-21

    Temperature dependent relaxation dynamics, particle motion characteristics, and heterogeneity aspects of deep eutectic solvents (DESs) made of acetamide (CH3CONH2) and urea (NH2CONH2) have been investigated by employing time-resolved fluorescence measurements and all-atom molecular dynamics simulations. Three different compositions (f) for the mixture [fCH3CONH2 + (1 - f)NH2CONH2] have been studied in a temperature range of 328-353 K which is ∼120-145 K above the measured glass transition temperatures (∼207 K) of these DESs but much lower than the individual melting temperature of either of the constituents. Steady state fluorescence emission measurements using probe solutes with sharply different lifetimes do not indicate any dependence on excitation wavelength in these metastable molten systems. Time-resolved fluorescence anisotropy measurements reveal near-hydrodynamic coupling between medium viscosity and rotation of a dissolved dipolar solute. Stokes shift dynamics have been found to be too fast to be detected by the time-resolution (∼70 ps) employed, suggesting extremely rapid medium polarization relaxation. All-atom simulations reveal Gaussian distribution for particle displacements and van Hove correlations, and significant overlap between non-Gaussian (α2) and new non-Gaussian (γ) heterogeneity parameters. In addition, no stretched exponential relaxations have been detected in the simulated wavenumber dependent acetamide dynamic structure factors. All these results are in sharp contrast to earlier observations for ionic deep eutectics with acetamide [Guchhait et al., J. Chem. Phys. 140, 104514 (2014)] and suggest a fundamental difference in interaction and dynamics between ionic and non-ionic deep eutectic solvent systems. PMID:25612718

  13. Density relaxation and particle motion characteristics in a non-ionic deep eutectic solvent (acetamide + urea): Time-resolved fluorescence measurements and all-atom molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Das, Anuradha; Das, Suman; Biswas, Ranjit

    2015-01-01

    Temperature dependent relaxation dynamics, particle motion characteristics, and heterogeneity aspects of deep eutectic solvents (DESs) made of acetamide (CH3CONH2) and urea (NH2CONH2) have been investigated by employing time-resolved fluorescence measurements and all-atom molecular dynamics simulations. Three different compositions (f) for the mixture [fCH3CONH2 + (1 - f)NH2CONH2] have been studied in a temperature range of 328-353 K which is ˜120-145 K above the measured glass transition temperatures (˜207 K) of these DESs but much lower than the individual melting temperature of either of the constituents. Steady state fluorescence emission measurements using probe solutes with sharply different lifetimes do not indicate any dependence on excitation wavelength in these metastable molten systems. Time-resolved fluorescence anisotropy measurements reveal near-hydrodynamic coupling between medium viscosity and rotation of a dissolved dipolar solute. Stokes shift dynamics have been found to be too fast to be detected by the time-resolution (˜70 ps) employed, suggesting extremely rapid medium polarization relaxation. All-atom simulations reveal Gaussian distribution for particle displacements and van Hove correlations, and significant overlap between non-Gaussian (α2) and new non-Gaussian (γ) heterogeneity parameters. In addition, no stretched exponential relaxations have been detected in the simulated wavenumber dependent acetamide dynamic structure factors. All these results are in sharp contrast to earlier observations for ionic deep eutectics with acetamide [Guchhait et al., J. Chem. Phys. 140, 104514 (2014)] and suggest a fundamental difference in interaction and dynamics between ionic and non-ionic deep eutectic solvent systems.

  14. Density relaxation and particle motion characteristics in a non-ionic deep eutectic solvent (acetamide + urea): Time-resolved fluorescence measurements and all-atom molecular dynamics simulations

    SciTech Connect

    Das, Anuradha; Das, Suman; Biswas, Ranjit

    2015-01-21

    Temperature dependent relaxation dynamics, particle motion characteristics, and heterogeneity aspects of deep eutectic solvents (DESs) made of acetamide (CH{sub 3}CONH{sub 2}) and urea (NH{sub 2}CONH{sub 2}) have been investigated by employing time-resolved fluorescence measurements and all-atom molecular dynamics simulations. Three different compositions (f) for the mixture [fCH{sub 3}CONH{sub 2} + (1 − f)NH{sub 2}CONH{sub 2}] have been studied in a temperature range of 328-353 K which is ∼120-145 K above the measured glass transition temperatures (∼207 K) of these DESs but much lower than the individual melting temperature of either of the constituents. Steady state fluorescence emission measurements using probe solutes with sharply different lifetimes do not indicate any dependence on excitation wavelength in these metastable molten systems. Time-resolved fluorescence anisotropy measurements reveal near-hydrodynamic coupling between medium viscosity and rotation of a dissolved dipolar solute. Stokes shift dynamics have been found to be too fast to be detected by the time-resolution (∼70 ps) employed, suggesting extremely rapid medium polarization relaxation. All-atom simulations reveal Gaussian distribution for particle displacements and van Hove correlations, and significant overlap between non-Gaussian (α{sub 2}) and new non-Gaussian (γ) heterogeneity parameters. In addition, no stretched exponential relaxations have been detected in the simulated wavenumber dependent acetamide dynamic structure factors. All these results are in sharp contrast to earlier observations for ionic deep eutectics with acetamide [Guchhait et al., J. Chem. Phys. 140, 104514 (2014)] and suggest a fundamental difference in interaction and dynamics between ionic and non-ionic deep eutectic solvent systems.

  15. Tracking the photodissociation dynamics of liquid nitromethane at 266 nm by femtosecond time-resolved broadband transient grating spectroscopy

    NASA Astrophysics Data System (ADS)

    Wu, Honglin; Song, Yunfei; Yu, Guoyang; Wang, Yang; Wang, Chang; Yang, Yanqiang

    2016-05-01

    Femtosecond time-resolved transient grating (TG) technique was employed to get insight into the photodissociation mechanism of liquid nitromethane (NM). Broadband white-light continuum was introduced as the probe to observe the evolution of electronic excited states of NM molecules and the formation of photodissociation products simultaneously. The reaction channel of liquid NM under 266 nm excitation was obtained that NM molecules in excited state S2 relax through two channels: about 73% relax to low lying S1 state through S2/S1 internal conversion with a time constant of 0.24 ps and then go back to the ground state through S1/S0 internal conversion; the other 27% will dissociate with a time constant of 2.56 ps. NO2 was found to be one of the products from the experimental TG spectra, which confirmed that C-N bond rupture was the primary dissociation channel of liquid NM.

  16. Gauge invariance in the theoretical description of time-resolved angle-resolved pump/probe photoemission spectroscopy

    SciTech Connect

    Freericks, J. K.; Krishnamurthy, H. R.; Sentef, M. A.; Devereaux, T. P.

    2015-10-01

    Nonequilibrium calculations in the presence of an electric field are usually performed in a gauge, and need to be transformed to reveal the gauge-invariant observables. In this work, we discuss the issue of gauge invariance in the context of time-resolved angle-resolved pump/probe photoemission. If the probe is applied while the pump is still on, one must ensure that the calculations of the observed photocurrent are gauge invariant. We also discuss the requirement of the photoemission signal to be positive and the relationship of this constraint to gauge invariance. We end by discussing some technical details related to the perturbative derivation of the photoemission spectra, which involve processes where the pump pulse photoexcites electrons due to nonequilibrium effects.

  17. Femtosecond time-resolved ionization spectroscopy of Na 3(B) and the question of the geometric phase

    NASA Astrophysics Data System (ADS)

    Schön, J.; Köppel, H.

    1994-12-01

    The femtosecond time-resolved ionization spectrum of the B-state of Na 3 has been studied theoretically, taking two nuclear degrees of freedom into account (bending mode and pseudorotation). Special emphasis is put on a comparison between different approaches to the pseudorotational dynamics of Na 3(B) proposed earlier in the literature: a Jahn-Teller treatment invoked in the original work versus a pseudo-Jahn-Teller treatment advanced in later studies. The time-dependent wave-packet dynamics is found to differ drastically in the two cases although it proceeds on (virtually) the same potential energy surface. This is interpreted as a consequence of the geometric phase which is nontrivial only in the Jahn-Teller case. A low-energy peak in the Fourier transform of the pump-probe spectrum of Baumert et al. (Chem. Phys. Letters 209 (1993) 29) is tentatively interpreted as evidence in favour of the pseudo-Jahn-Teller mechanism.

  18. Investigation of verbal and visual working memory by multi-channel time-resolved functional near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Contini, D.; Caffini, M.; Re, R.; Zucchelli, L.; Spinelli, L.; Basso Moro, S.; Bisconti, S.; Ferrari, M.; Quaresima, V.; Cutini, S.; Torricelli, A.

    2013-03-01

    Working memory (WM) is fundamental for a number of cognitive processes, such as comprehension, reasoning and learning. WM allows the short-term maintenance and manipulation of the information selected by attentional processes. The goal of this study was to examine by time-resolved fNIRS neural correlates of the verbal and visual WM during forward and backward digit span (DF and DB, respectively) tasks, and symbol span (SS) task. A neural dissociation was hypothesised between the maintenance and manipulation processes. In particular, a dorsolateral/ventrolateral prefrontal cortex (DLPFC/VLPFC) recruitment was expected during the DB task, whilst a lateralised involvement of Brodmann Area (BA) 10 was expected during the execution of the DF task. Thirteen subjects were monitored by a multi-channel, dual-wavelength (690 and 829 nm) time-resolved fNIRS system during 3 minutes long DF and DB tasks and 4 minutes long SS task. The participants' mean memory span was calculated for each task: DF: 6.46+/-1.05 digits; DB: 5.62+/-1.26 digits; SS: 4.69+/-1.32 symbols. No correlation was found between the span level and the heart rate data (measured by pulse oximeter). As expected, DB elicited a broad activated area, in the bilateral VLPFC and the right DLPFC, whereas a more localised activation was observed over the right hemisphere during either DF (BA 10) or SS (BA 10 and 44). The robust involvement of the DLPFC during DB, compared to DF, is compatible with previous findings and with the key role of the central executive subserving in manipulating processes.

  19. Silver nanoparticles-enhanced time-resolved fluorescence sensor for VEGF(165) based on Mn-doped ZnS quantum dots.

    PubMed

    Zhu, Dong; Li, Wei; Wen, Hong-Mei; Yu, Sheng; Miao, Zhao-Yi; Kang, An; Zhang, Aihua

    2015-12-15

    A silver nanoparticles (AgNPs)-enhanced time-resolved fluorescence (TR-FL) sensor based on long-lived fluorescent Mn-doped ZnS quantum dots (QDs) is developed for the sensitive detection of vascular endothelial growth factor-165 (VEGF165), a predominant cancer biomarker in cancer angiogenesis. The aptamers bond with the Mn-doped ZnS QDs and the BHQ-2 quencher-labelling strands hybridized in duplex are coupled with streptavidin (SA)-functionalized AgNPs to form the AgNPs-enhanced TR-FL sensor, showing lower fluorescence intensity in the duplex state due to the fluorescence resonance energy transfer (FRET) between the Mn-doped ZnS QDs and quenchers. Upon the addition of VEGF165, the BHQ-2 quencher-labelling strands of the duplex are displaced, leading to the disruption of the FRET. As a result, the fluorescence of the Mn-doped QDs within the proximity of the AgNPs is recovered. The FL signal can be measured free of the interference of short-lived background by setting appropriate delay time and gate time, which offers a signal with high signal-to-noise ratio in photoluminescent biodetection. Compared with the bare TR-FL sensor, the AgNPs-based TR-FL sensor showed a huge improvement in fluorescence based on metal-enhanced fluorescence (MEF) effect, and the sensitivity increased 11-fold with the detection limit of 0.08 nM. In addition, the sensor provided a wide range of linear detection from 0.1 nM to 16 nM. PMID:26276542

  20. Identification of two quenching sites active in the regulation of photosynthetic light-harvesting studied by time-resolved fluorescence

    NASA Astrophysics Data System (ADS)

    Holzwarth, Alfred R.; Miloslavina, Yuliya; Nilkens, Manuela; Jahns, Peter

    2009-12-01

    The regulation of light-harvesting (called non-photochemical quenching, NPQ) is an essential photoprotective mechanism active in plants. Total NPQ is dependent on PsbS, a pH-sensing protein, and on the action of the xanthophyll carotenoid zeaxanthin (Zx). Using ultrafast fluorescence on intact leaves we demonstrate two independent NPQ quenching sites in vivo which depend differently on the actions of PsbS and Zx. The first site is formed in the functionally detached major light-harvesting complex of PS II and depends strictly on PsbS. The second site is in the minor antennae of photosystem (PS) II and quenching depends on the presence of Zx.

  1. Steady-state and time-resolved fluorescence studies of reverse micelles in liquids and supercritical solvents

    SciTech Connect

    Zhang, Jing.

    1992-01-01

    The authors investigate the effects of temperature, salt concentration, and water loading on the internal dynamics of AOT Aerosol-OT, sodium bis (2-ethylhexyl sulfosuccinate) micelles in liquid heptane, using ANS-like (anilino-naphthalene sulfate) fluorescent probes. The important results from these experiments are that: (1) the molecular geometry of the probe is the predominant factor controlling partitioning even at high water loadings; (2) the photophysics of ANS is strongly dependent on the water content and temperature and corresponds to changes in local polarity and viscosity; (3) addition of electrolytes changes the dynamic fluorescence which is in turn related to the changes in internal microenvironments; and (4) a nanosecond solvent relaxation process occurs within reverse micelles. It was wondered if the continuous phase (alkane) density could be used to control the internal dynamics within a reverse micelle. To answer this question, research focused on: (1) the effects of water loading, temperature, and fluid density on solute partitioning and determination of the density effects on micellar aggregates; (2) the effects of solute structure on the distribution of probe molecules within reverse micelles; and (3) the effects of fluid density, water concentration, and temperature on the reorganizational dynamics within AOT reverse micelles. Simple thermodynamic measurements and nanosecond solvent relaxation experiments are used to account for this partitioning and water reorganization in AOT reverse micelles, respectively. Results on excited-state deprotonation reactions in AOT reverse micelles maintained in sub-critical propane, provides a useful model for density-controlled deprotonation reactions within reverse micelles. Preliminary work shows that the continuous phase density can be used to control reactions within reverse micelles formed in near- and supercritical alkanes.

  2. Exploration of CdTe quantum dots as mesoscale pressure sensors via time-resolved shock-compression photoluminescent emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Kang, Zhitao; Banishev, Alexandr A.; Lee, Gyuhyon; Scripka, David A.; Breidenich, Jennifer; Xiao, Pan; Christensen, James; Zhou, Min; Summers, Christopher J.; Dlott, Dana D.; Thadhani, Naresh N.

    2016-07-01

    The nanometer size of CdTe quantum dots (QDs) and their unique optical properties, including size-tunable narrow photoluminescent emission, broad absorption, fast photoluminescence decay, and negligible light scattering, are ideal features for spectrally tagging the shock response of localized regions in highly heterogeneous materials such as particulate media. In this work, the time-resolved laser-excited photoluminescence response of QDs to shock-compression was investigated to explore their utilization as mesoscale sensors for pressure measurements and in situ diagnostics during shock loading experiments. Laser-driven shock-compression experiments with steady-state shock pressures ranging from 2.0 to 13 GPa were performed on nanocomposite films of CdTe QDs dispersed in a soft polyvinyl alcohol polymer matrix and in a hard inorganic sodium silicate glass matrix. Time-resolved photoluminescent emission spectroscopy was used to correlate photoluminescence changes with the history of shock pressure and the dynamics of the matrix material surrounding the QDs. The results revealed pressure-induced blueshifts in emitted wavelength, decreases in photoluminescent emission intensity, reductions in peak width, and matrix-dependent response times. Data obtained for these QD response characteristics serve as indicators for their use as possible time-resolved diagnostics of the dynamic shock-compression response of matrix materials in which such QDs are embedded as in situ sensors.

  3. Time-resolved fluorescence sensing of pesticides chlorpyrifos, crotoxyphos and endosulfan by the luminescent Eu(III)-8-allyl-3-carboxycoumarin probe

    NASA Astrophysics Data System (ADS)

    Azab, Hassan A.; Khairy, Gasser M.; Kamel, Rasha M.

    2015-09-01

    This work describes the application of time resolved fluorescence in microtiter plates for investigating the interactions of europium-allyl-3-carboxycoumarin with pesticides chlorpyrifos, endosulfan and crotoxyphos. Stern-Volmer studies at different temperatures for chlorpyrifos and crotoxyphos shows dynamic and static quenching mechanisms respectively. Direct methods for the determination of the pesticides under investigation have been developed using the luminescence variations of the probe in solution. The detection limits are 6.53, 0.004, 3.72 μmol/L for chlorpyrifos, endosulfan, and crotoxyphos, respectively. The binding constants and thermodynamic parameters of the pesticides with probe were evaluated. A thermodynamic analysis showed that the reaction is spontaneous with negative ΔG. Effect of some relevant interferents on the detection of pesticides has been investigated. The new method was applied to the determination of the pesticides in different types of water samples (tap, mineral, and waste water).

  4. Tracking Local Conformational Changes of Ribonuclease A Using Picosecond Time-Resolved Fluorescence of the Six Tyrosine Residues

    PubMed Central

    Noronha, Melinda; Lima, João C.; Paci, Emanuele; Santos, Helena; Maçanita, António L.

    2007-01-01

    The six tyrosine residues of ribonuclease A (RNase A) are used as individual intrinsic probes for tracking local conformational changes during unfolding. The fluorescence decays of RNase A are well described by sums of three exponentials with decay times (τ1 = 1.7 ns, τ2 = 180 ps, and τ3 = 30 ps) and preexponential coefficients (A1 = 1, A2 = 1, and A3 = 4) at pH 7, 25°C. The decay times are controlled by photo-induced electron transfer from individual tyrosine residues to the nearest disulphide (–SS–), bridge, which is distance (R) dependent. We assign τ1 to Tyr-76 (R = 12.8 Å), τ2 to Tyr-115 (R = 6.9 Å), and τ3 to Tyr-25, Tyr-73, Tyr-92, and Tyr-97 (all four at R = 5.5 ± 0.3 Å) at 23°C. On the basis of this assignment, the results show that, upon thermal or chemical unfolding only Tyr-25, Tyr-92, and Tyr-76 undergo significant displacement from their nearest –SS– bridge. Despite reporting on different regions of the protein, the concordance between the transition temperatures, Tm, obtained from Tyr-76 (Tm = 59.2°C) and Tyr-25 and Tyr-92 (Tm = 58.2°C) suggests a single unfolding event in this temperature range that affects all these regions similarly. PMID:17384067

  5. Segmental dynamics of the cytoplasmic domain of erythrocyte band 3 determined by time-resolved fluorescence anisotropy: sensitivity to pH and ligand binding.

    PubMed

    Thevenin, B J; Periasamy, N; Shohet, S B; Verkman, A S

    1994-03-01

    Interactions between the erythrocyte membrane and its skeleton are mediated primarily by binding of cytoskeletal components to a conformationally sensitive structure, the cytoplasmic domain of band 3 (cdb3). To examine the nanosecond segmental motions of cdb3, band 3 was labeled selectively by fluorescein maleimide at Cys-201 near the proposed hinge in cdb3 about which pH-dependent conformational changes occur. Time-resolved anisotropy of labeled cdb3 in isolated form and in stripped erythrocyte membranes was measured by parallel-acquisition frequency-domain microfluorimetry. Samples had a single-component fluorescein lifetime of approximately 4 ns. Multifrequency phase and modulation data (5-200 MHz) fitted well to a segmental motion model containing two correlation times (tau 1c and tau 2c) and two limiting anisotropies (r1infinity and r2infinity). Measurements in protease-cleaved and denatured samples indicated that tau 1c (100-150 ps) corresponded to rapid rotation of bound fluorescein and tau 2c (2-5 ns) corresponded to segmental motion of cdb3. Both motions were hindered as quantified by nonzero r1infinity and r2infinity. The strong pH dependence of segmental motion correlated with that of cdb3 conformation measured by intrinsic tryptophan fluorescence. Significant changes in cdb3 segmental motion occurred upon interactions with the small ligands 2,3-bisphosphoglycerate and calcium and several glycolytic enzymes known to bind to the N terminus of band 3. These time-resolved fluorescence measurements of the nanosecond segmental dynamics of a labeled membrane protein provide evidence for the sensitivity of cdb3 conformation to ligand binding and suggest long-range structural communication through cdb3. PMID:8127875

  6. Characterization of a hybrid diffuse correlation spectroscopy and time-resolved near-infrared spectroscopy system for real-time monitoring of cerebral blood flow and oxygenation

    NASA Astrophysics Data System (ADS)

    Verdecchia, K.; Diop, M.; Lee, A.; St. Lawrence, K.

    2015-03-01

    The combination of near-infrared spectroscopy (NIRS) and diffuse correlation spectroscopy (DCS) offers the ability to provide real-time monitoring of cerebral oxygenation, blood flow and oxygen consumption. However, measuring these parameters accurately requires depth-sensitive techniques that can remove the effects of signal contamination from extracerebral tissues. Towards this goal, we developed and characterized a hybrid DCS/time-resolved (TR)-NIRS system. Both systems acquire data at three source-detector distances (SDD: 7, 20 and 30 mm) to provide depth sensitivity. The TR-NIRS system uses three pulsed lasers (760, 810, and 830 nm) to quantify tissue optical properties, and DCS uses one continuous-wave, long coherence length (>5 m) laser (785 nm) for blood flow monitoring. The stability of the TR-NIRS system was characterized by continuously measuring the instrument response function (IRF) for four hours, and a warmup period of two hours was required to reduce the coefficient of variation of the extracted optical properties to < 2%. The errors in the measured optical properties were <10% at SDDs of 20 and 30 mm; however, the error at 7 mm was greater due to the effects of the IRF. The number of DCS detectors at each SDD and the minimum count-rate (20 kHz per detector resulting in <10% uncertainty in the extracted blood flow index) were optimized using a homogenous phantom. The depth sensitivity was assessed using a two-layer phantom, with the flow rate in the bottom layer altered to mimic cerebral blood flow.

  7. Time-Resolved IR-Absorption Spectroscopy of Hot-Electron Dynamics in Satellite and Upper Conduction Bands in GaP

    NASA Technical Reports Server (NTRS)

    Cavicchia, M. A.; Alfano, R. R.

    1995-01-01

    The relaxation dynamics of hot electrons in the X6 and X7 satellite and upper conduction bands in GaP was directly measured by femtosecond UV-pump-IR-probe absorption spectroscopy. From a fit to the induced IR-absorption spectra the dominant scattering mechanism giving rise to the absorption at early delay times was determined to be intervalley scattering of electrons out of the X7 upper conduction-band valley. For long delay times the dominant scattering mechanism is electron-hole scattering. Electron transport dynamics of the upper conduction band of GaP has been time resolved.

  8. Characterization of the ionization degree evolution of the PF-400J plasma sheath by means of time resolved optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Avaria, G.; Cuadrado, O.; Moreno, J.; Pavez, C.; Soto, L.

    2016-05-01

    Spectral measurements in the visible range of the plasma sheath ionization degree evolution on the plasma focus device PF-400J are presented. The measurements were done with temporal and spatial resolution in a plasma focus device of low stored energy: PF-400J (176-539 J, 880 nF, 20-35 kV, quarter period ∼ 300ns) [1]. An ICCD was attached to a 0.5 m focal length visible spectrometer, which enabled the acquisition of time resolved spectrum with 20 ns integration time throughout the whole current pulse evolution. The spatial resolution was attained using a set of lenses which allowed the focusing of a small volume of the plasma sheath in different positions of the inter-electrode space. Discharges were carried out in mixtures of Hydrogen with gases in different proportions: 5% Neon, 5% Krypton and 2% Nitrogen. Discharges using Neon as an impurity showed no ionization of the gas, just a very low intensity emission of Ne I at times much larger than the maximum current. Nitrogen, on the other hand, showed a high ionization reaching N V (N 4+) at the end of the axial phase, with a distinctive evolution of the ionization degree as the plasma sheath moved towards the end of the electrodes. A mixed result was found when using Krypton, since the ionization degree only reached levels around Kr II/III, even though it has an ionization potential lower than Neon.

  9. Ultrafast nuclear dynamics in halomethanes studied with time-resolved Coulomb explosion imaging and channel-selective Fourier spectroscopy

    NASA Astrophysics Data System (ADS)

    Malakar, Y.; Kaderiya, B.; Pearson, W. L.; Ziaee, F.; Kanaka Raju, P.; Zohrabi, M.; Jensen, K.; Rajput, J.; Ben-Itzhak, I.; Rolles, D.; Rudenko, A.

    2016-05-01

    Halomethanes have recently attracted considerable attention since they often serve as prototype systems for laser-controlled chemistry (e.g., selective bond breaking or concerted elimination reactions), and are important molecules in atmospheric chemistry. Here we combine a femtosecond laser pump-probe setup with coincident 3D ion momentum imaging apparatus to study strong-field induced nuclear dynamics in methane and several of its halogenated derivatives (CH3 I, CH2 I2, CH2 ICl). We apply a time-resolved Coulomb explosion imaging technique to map the nuclear motion on both, bound and continuum potential surfaces, disentangle different fragmentation pathways and, for halogenated molecules, observe clear signatures of vibrational wave packets in neutral or ionized states. Channel-selective and kinetic-energy resolved Fourier analysis of these data allows for unique identification of different electronic states and vibrational modes responsible for a particular structure. Supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U. S. DOE. K. R. P. and W. L. P. supported by NSF Award No. IIA-143049. K.J. supported by the NSF-REU Grant No. PHYS-1461251.

  10. A digital spectrometer approach to obtaining multiple time-resolved gamma-ray spectra for pulsed spectroscopy

    NASA Astrophysics Data System (ADS)

    Tan, H.; Mitra, S.; Fallu-Labruyere, A.; Hennig, W.; Chu, Y. X.; Wielopolski, L.; Warburton, W. K.

    2007-10-01

    Neutron-induced gamma-ray emission and its detection using a pulsed neutron generator system is an established analytical technique for quantitative multi-element analysis. Traditional gamma-ray spectrometers used for this type of analysis are normally operated either in coincidence mode - for counting prompt gamma-rays following inelastic neutron scattering (INS) events when the neutron generator is ON, or in anti-coincidence mode - for counting prompt gamma-rays from thermal neutron capture (TNC) processes when the neutron generator is OFF. We have developed a digital gamma-ray spectrometer for concurrently measuring both the INS and TNC gamma-rays using a 14 MeV pulsed neutron generator. The spectrometer separates the gamma-ray counts into two independent spectra together with two separate sets of counting statistics based on the external gate level. Because the TNC gamma-ray yields are time dependent, additional accuracy in analyzing the data can be obtained by acquiring multiple time-resolved gamma-ray spectra at finer time intervals than simply ON or OFF. For that purpose we are developing a multi-gating system that will allow gamma-ray spectra to be acquired concurrently in real time with up to 16 time slots. The conceptual system design is presented, especially focusing on considerations for tracking counting statistics in multiple time slots and on the placement of pulse heights into multiple spectra in real time.

  11. Steady-state and time-resolved two-photon fluorescence microscopy: a versatile tool for probing cellular environment and function

    NASA Astrophysics Data System (ADS)

    Denicke, Stefan; Ehlers, Jan-Eric; Niesner, Raluca; Quentmeier, Stefan; Gericke, Karl-Heinz

    2007-09-01

    In the last decade, the two-photon fluorescence laser-scanning microscopy (TPLSM) has become an indispensable tool for the bioscientific and biomedical research. TPLSM techniques as well as their applications are currently experiencing a dramatic evolution and represent the focus of many biophysical research projects. In this work, we compare in detail two steady-state TPLSM techniques, i.e. single-beam scanning microscopy combined with point-detection (SB-PMT) and multi-beam scanning microscopy combined with synchronous detection (MB-CCD), as far as their technical characteristics relevant for the bioscientific research are concerned, i.e. optical performance and imaging speed. We demonstrate that the SB-PMT technique is more adequate for deep-tissue imaging (few 100 μm depth) than the MB-CCD technique, whereas only the MB-CCD technique enables high-speed imaging for characterizing the dynamics of fast biological phenomena. Novel applications of these techniques are additionally discussed. Moreover, we employ a time-resolved TPLSM technique, i.e. biexponential fluorescence lifetime imaging based on the cellular fluorescence of the nicotinamide pyridine dinucleotides NADH and NADPH, which allows us to probe for the first time the redox cellular metabolism of MIN6 cells (mutated insulin producing pancreatic β-cells) as well as to show the potential of this method for the specific and dynamic investigation of NADH- and NADPH-dependent cellular processes.

  12. Effect of Ca2+ on the Steady-State and Time-Resolved Emission Properties of the Genetically Encoded Fluorescent Sensor CatchER

    PubMed Central

    2015-01-01

    We previously designed a calcium sensor CatchER (a GFP-based Calcium sensor for detecting high concentrations in the high calcium concentration environment such as ER) with a capability for monitoring calcium ion responses in various types of cells. Calcium binding to CatchER induces the ratiometric changes in the absorption spectra, as well as an increase in fluorescence emission at 510 nm upon excitation at both 395 and 488 nm. Here, we have applied the combination of the steady-state and time-resolved optical methods and Hydrogen/Deuterium isotope exchange to understand the origin of such calcium-induced optical property changes of CatchER. We first demonstrated that calcium binding results in a 44% mean fluorescence lifetime increase of the indirectly excited anionic chromophore. Thus, CatchER is the first protein-based calcium indicator with the single fluorescent moiety to show the direct correlation between the lifetime and calcium binding. Calcium exhibits a strong inhibition on the excited-state proton transfer nonadiabatic geminate recombination in protic (vs deuteric) medium. Analysis of CatchER crystal structures and the MD simulations reveal the proton transfer mechanism in which the disrupted proton migration path in CatchER is rescued by calcium binding. Our finding provides important insights for a strategy to design calcium sensors and suggests that CatchER could be a useful probe for FLIM imaging of calcium in situ. PMID:24836743

  13. Photocycles of bacteriorhodopsin in light- and dark-adapted purple membrane studied by time-resolved absorption spectroscopy.

    PubMed Central

    Hofrichter, J; Henry, E R; Lozier, R H

    1989-01-01

    Nanosecond time-resolved absorption spectra have been measured throughout the photocycle of bacteriorhodopsin in both light-adapted and dark-adapted purple membrane (PM). The data from dark-adapted samples are interpretable as the superposition of two photocycles arising independently from the all-trans and 13-cis retinal isomers that coexist in the dark-adapted state. The presence of a photocycle in dark-adapted PM which is indistinguishable from that observed for light-adapted PM under the same experimental conditions is demonstrated by the observation of the same five relaxation rates associated with essentially identical changes in the photoproduct spectra. This cycle is attributed to the all-trans component. The cycle of the 13-cis component is revealed by scaling the data measured for the light-adapted sample and subtracting it from the data on the dark-adapted mixture. At times less than 1 ms, the resulting difference spectra are nearly time-independent. The peak of the difference spectrum is near 600 nm, although there appears to be a slight (approximately 2 nm) blue-shift in the first few microseconds. Subsequently the amplitude of this spectrum decays and the peak of the difference spectrum shifts in two relaxations. Most of the amplitude of the photoproduct difference spectrum (approximately 80%) decays in a single relaxation having a time constant of approximately 35 ms. The difference spectrum remaining after this relaxation peaks at approximately 590 nm and is indistinguishable from the classical light-dark difference spectrum, which we find, in experiments performed on a much longer time scale, to peak at 588 nm. The decay of this remaining photo-product is not resolvable in the nanosecond kinetic experiments, but dark adaptation of a completely light-adapted sample is found to occur exponentially with a relaxation time of approximately 2,000 s under the conditions of our experiments. PMID:2819234

  14. Mapping of calf muscle oxygenation and haemoglobin content during dynamic plantar flexion exercise by multi-channel time-resolved near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Torricelli, Alessandro; Quaresima, Valentina; Pifferi, Antonio; Biscotti, Giovanni; Spinelli, Lorenzo; Taroni, Paola; Ferrari, Marco; Cubeddu, Rinaldo

    2004-03-01

    A compact and fast multi-channel time-resolved near-infrared spectroscopy system for tissue oximetry was developed. It employs semiconductor laser and fibre optics for delivery of optical signals. Photons are collected by eight 1 mm fibres and detected by a multianode photomultiplier. A time-correlated single photon counting board is used for the parallel acquisition of time-resolved reflectance curves. Estimate of the reduced scattering coefficient is achieved by fitting with a standard model of diffusion theory, while the modified Lambert-Beer law is used to assess the absorption coefficient. In vivo measurements were performed on five healthy volunteers to monitor spatial changes in calf muscle (medial and lateral gastrocnemius; MG, LG) oxygen saturation (SmO2) and total haemoglobin concentration (tHb) during dynamic plantar flexion exercise performed at 50% of the maximal voluntary contraction. At rest SmO2 was 73.0 ± 0.9 and 70.5 ± 1.7% in MG and LG, respectively (P = 0.045). At the end of the exercise, SmO2 decreased (69.1 ± 1.8 and 63.8 ± 2.1% in MG and LG, respectively; P < 0.01). The LG desaturation was greater than the MG desaturation (P < 0.02). These results strengthen the role of time-resolved near-infrared spectroscopy as a powerful tool for investigating the spatial and temporal features of muscle SmO2 and tHb.

  15. Depth profiling for the identification of unknown substances and concealed content at remote distances using time-resolved stand-off Raman spectroscopy.

    PubMed

    Zachhuber, Bernhard; Gasser, Christoph; Ramer, Georg; Chrysostom, Engelene t H; Lendl, Bernhard

    2012-08-01

    Time-resolved stand-off Raman spectroscopy was used to determine both the position and identity of substances relative to each other at remote distances (up to tens of meters). Spectral information of three xylene isomers, toluene, and sodium chlorate was obtained at a distance of 12 m from the setup. Pairs and triplets of these samples were placed at varying distances (10-60 cm) relative to each other. Via the photon time of flight the distance between the individual samples was determined to an accuracy of 7% (corresponding to a few cm) of the physically measured distance. Furthermore, at a distance of 40 m, time-resolved Raman depth profiling was used to detect sodium chlorate in a white plastic container that was non-transparent to the human eye. The combination of the ranging capabilities of Raman LIDAR (sample location usually determined using prior knowledge of the analyte of interest) with stand-off Raman spectroscopy (analyte detection at remote distances) provides the capability for depth profile identification of unknown substances and analysis of concealed content in distant objects. To achieve these results, a 532 nm laser with a pulse length of 4.4 ns was synchronized to an intensified charge-coupled device camera with a minimum gate width of 500 ps. For automated data analysis a multivariate curve resolution algorithm was employed. PMID:22800681

  16. A Q-switched Ho:YAG laser assisted nanosecond time-resolved T-jump transient mid-IR absorbance spectroscopy with high sensitivity

    SciTech Connect

    Li, Deyong; Li, Yunliang; Li, Hao; Weng, Yuxiang; Wu, Xianyou; Yu, Qingxu

    2015-05-15

    Knowledge of dynamical structure of protein is an important clue to understand its biological function in vivo. Temperature-jump (T-jump) time-resolved transient mid-IR absorbance spectroscopy is a powerful tool in elucidating the protein dynamical structures and the folding/unfolding kinetics of proteins in solution. A home-built setup of T-jump time-resolved transient mid-IR absorbance spectroscopy with high sensitivity is developed, which is composed of a Q-switched Cr, Tm, Ho:YAG laser with an output wavelength at 2.09 μm as the T-jump heating source, and a continuous working CO laser tunable from 1580 to 1980 cm{sup −1} as the IR probe. The results demonstrate that this system has a sensitivity of 1 × 10{sup −4} ΔOD for a single wavelength detection, and 2 × 10{sup −4} ΔOD for spectral detection in amide I′ region, as well as a temporal resolution of 20 ns. Moreover, the data quality coming from the CO laser is comparable to the one using the commercial quantum cascade laser.

  17. Development of a rapid Buffer-exchange system for time-resolved ATR-FTIR spectroscopy with the step-scan mode

    PubMed Central

    Furutani, Yuji; Kimura, Tetsunari; Okamoto, Kido

    2013-01-01

    Attenuated total reflectance (ATR)-FTIR spectroscopy has been widely used to probe protein structural changes under various stimuli, such as light absorption, voltage change, and ligand binding, in aqueous conditions. Time-resolved measurements require a trigger, which can be controlled electronically; therefore, light and voltage changes are suitable. Here we developed a novel, rapid buffer-exchange system for time-resolved ATR-FTIR spectroscopy to monitor the ligand- or ion-binding re-action of a protein. By using the step-scan mode (time resolution; 2.5 ms), we confirmed the completion of the buffer-exchange reaction within ∼25 ms; the process was monitored by the infrared absorption change of a nitrate band at 1,350 cm−1. We also demonstrated the anion-binding reaction of a membrane protein, Natronomonas pharaonis halorhodopsin (pHR), which binds a chloride ion in the initial anion-binding site near the retinal chromophore. The formation of chloride- or nitrate-bound pHR was confirmed by an increase of the retinal absorption band at 1,528 cm−1. It also should be noted that low sample consumption (∼1 µg of protein) makes this new method a powerful technique to understand ligand–protein and ion–protein interactions, particularly for membrane proteins. PMID:27493550

  18. Time-resolved x-ray photoelectron spectroscopy techniques for real-time studies of interfacial charge transfer dynamics

    SciTech Connect

    Shavorskiy, Andrey; Hertlein, Marcus; Guo Jinghua; Tyliszczak, Tolek; Cordones, Amy; Vura-Weis, Josh; Siefermann, Katrin; Slaughter, Daniel; Sturm, Felix; Weise, Fabian; Khurmi, Champak; Belkacem, Ali; Weber, Thorsten; Gessner, Oliver; Bluhm, Hendrik; Strader, Matthew; Cho, Hana; Coslovich, Giacomo; Kaindl, Robert A.; Lin, Ming-Fu; and others

    2013-04-19

    X-ray based spectroscopy techniques are particularly well suited to gain access to local oxidation states and electronic dynamics in complex systems with atomic pinpoint accuracy. Traditionally, these techniques are applied in a quasi-static fashion that usually highlights the steady-state properties of a system rather than the fast dynamics that often define the system function on a molecular level. Novel x-ray spectroscopy techniques enabled by free electron lasers (FELs) and synchrotron based pump-probe schemes provide the opportunity to monitor intramolecular and interfacial charge transfer processes in real-time and with element and chemical specificity. Two complementary time-domain xray photoelectron spectroscopy techniques are presented that are applied at the Linac Coherent Light Source (LCLS) and the Advanced Light Source (ALS) to study charge transfer processes in N3 dye-sensitized ZnO semiconductor nanocrystals, which are at the heart of emerging light-harvesting technologies.

  19. Time-Resolved X-Ray Absorption Spectroscopy Data for the Study of Chemical Reaction Intermediate States

    SciTech Connect

    Diaz Moreno, Sofia; Bowron, Daniel T.; Evans, John

    2007-02-02

    Energy-dispersive X-ray absorption Spectroscopy is an increasingly powerful tool for the investigation of kinetic processes in chemical systems as an element-specific local structure and electronic-state probe. In this paper we present a study of the structural evolution of the inner-sphere electron transfer reaction between [IrCl6]2- and [Co(CN)5]3-. The experimental requirements necessary for the extraction of maximal structural and electronic information are discussed.

  20. Time-resolved characterization of a filamentary argon discharge at atmospheric pressure in a capillary using emission and absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Schröter, Sandra; Pothiraja, Ramasamy; Awakowicz, Peter; Bibinov, Nikita; Böke, Marc; Niermann, Benedikt; Winter, Jörg

    2013-11-01

    An argon/nitrogen (0.999/0.001) filamentary pulsed discharge operated at atmospheric pressure in a quartz tube is characterized using voltage-current measurements, microphotography, optical emission spectroscopy (OES) and absorption spectroscopy. Nitrogen is applied as a sensor gas for the purpose of OES diagnostic. The density of argon metastable atoms Ar(3P2) is determined using tunable diode laser absorption spectroscopy (TDLAS). Using a plasma chemical model the measured OES data are applied for the characterization of the plasma conditions. Between intense positive pulses the discharge current oscillates with a damped amplitude. It is established that an electric current flows in this discharge not only through a thin plasma filament that is observed in the discharge image but also through the whole cross section of the quartz tube. A diffuse plasma fills the quartz tube during a time between intense current pulses. Ionization waves are propagating in this plasma between the spike and the grounded area of the tube producing thin plasma channels. The diameter of these channels increases during the pause between the propagation of ionization waves probably because of thermal expansion and diffusion. Inside the channels electron densities of ˜2 × 1013 cm-3, argon metastable densities ˜1014 cm-3 and a reduced electric field about 10 Td are determined.

  1. Lifetime fluorescence spectroscopy for in situ investigation of osteogenic differentiation

    NASA Astrophysics Data System (ADS)

    Marcu, Laura; Elbarbary, Amir; Zuk, Patricia; De Ugarte, Daniel A.; Benhaim, Prosper; Kurt, Hamza; Hedrick, Marc H.; Ashjian, Peter

    2003-07-01

    Time-Resolved Laser-Induced Fluorescence Spectroscopy (TR-LIFS) represents a potential tool for the in-situ characterization of bioengineered tissues. In this study, we evaluate the application of TR-LIFS to non-intrusive monitoring of matrix composition during osteogenetic differentiation. Human adipose-derived stem cells, harvested from 3 patients, were induced in osteogenic media for 3, 5, and 7 weeks. Samples were subsequently collected and probed for time-resolved fluorescence emission with a pulsed nitrogen laser. Fluorescence parameters, derived from both spectral- and time-domain, were used for sample characterization. The samples were further analyzed using Western blot analysis and computer-based densitometry. A significant change in the fluorescence parameters was detected for samples beyond 3 weeks of osteogenic differentiation. The spectroscopic observations: 1) show increase of collagen I when contrasted against the time-resolved fluorescence spectra of commercially available collagens; and 2) are in agreement with Western blot analysis that demonstrated significant increase in collagen I content between 3- vs. 5-weeks and 3- vs. 7-weeks and no changes for collagens III, IV, and V. Our results suggest that TR-LIFS can be used as a non-invasive means for the detection of specific collagens in maturing connective tissues.

  2. Validation of a high-power, time-resolved, near-infrared spectroscopy system for measurement of superficial and deep muscle deoxygenation during exercise.

    PubMed

    Koga, Shunsaku; Barstow, Thomas J; Okushima, Dai; Rossiter, Harry B; Kondo, Narihiko; Ohmae, Etsuko; Poole, David C

    2015-06-01

    Near-infrared assessment of skeletal muscle is restricted to superficial tissues due to power limitations of spectroscopic systems. We reasoned that understanding of muscle deoxygenation may be improved by simultaneously interrogating deeper tissues. To achieve this, we modified a high-power (∼8 mW), time-resolved, near-infrared spectroscopy system to increase depth penetration. Precision was first validated using a homogenous optical phantom over a range of inter-optode spacings (OS). Coefficients of variation from 10 measurements were minimal (0.5-1.9%) for absorption (μa), reduced scattering, simulated total hemoglobin, and simulated O2 saturation. Second, a dual-layer phantom was constructed to assess depth sensitivity, and the thickness of the superficial layer was varied. With a superficial layer thickness of 1, 2, 3, and 4 cm (μa = 0.149 cm(-1)), the proportional contribution of the deep layer (μa = 0.250 cm(-1)) to total μa was 80.1, 26.9, 3.7, and 0.0%, respectively (at 6-cm OS), validating penetration to ∼3 cm. Implementation of an additional superficial phantom to simulate adipose tissue further reduced depth sensitivity. Finally, superficial and deep muscle spectroscopy was performed in six participants during heavy-intensity cycle exercise. Compared with the superficial rectus femoris, peak deoxygenation of the deep rectus femoris (including the superficial intermedius in some) was not significantly different (deoxyhemoglobin and deoxymyoglobin concentration: 81.3 ± 20.8 vs. 78.3 ± 13.6 μM, P > 0.05), but deoxygenation kinetics were significantly slower (mean response time: 37 ± 10 vs. 65 ± 9 s, P ≤ 0.05). These data validate a high-power, time-resolved, near-infrared spectroscopy system with large OS for measuring the deoxygenation of deep tissues and reveal temporal and spatial disparities in muscle deoxygenation responses to exercise. PMID:25840439

  3. Employing Time-Resolved Terahertz Spectroscopy to Analyze Carrier Dynamics in Cu2ZnSn(S,Se)4 Absorber Layers

    NASA Astrophysics Data System (ADS)

    Baxter, Jason; Guglietta, Glenn; Li, Siming; Roy Choudhury, Kaushik; Caspar, Jonathan; Bishop, Douglas; Lloyd, Michael; McCandless, Brian

    We report the application of time-resolved terahertz spectroscopy (TRTS) to measure photoexcited carrier lifetimes and mobility, and to determine recombination mechanisms in Cu2ZnSn(S,Se)4 (CZTSSe) thin films and single crystals. Ultrafast time resolution permits tracking the evolution of carrier density to determine recombination rates and mechanisms. The carrier generation profile was manipulated by varying the photoexcitation wavelength and fluence to distinguish between surface, Shockley-Read-Hall (SRH), radiative, and Auger recombination mechanisms and determine rate constants. Surface and SRH recombination are the dominant mechanisms for the air/CZTSSe/SiO2/Si film stack. Diffusion to, and then recombination at, the air-CZTSSe interface occurred on the order of 100 picoseconds, while SRH recombination lifetimes were 1 - 2 nanoseconds. Analogous measurements on single crystals reveal the effects of eliminating grain boundaries, reducing point defects and secondary phases, and applying surface treatments to reduce surface recombination velocity. TRTS measurements can provide information that is complementary to conventional time-resolved photoluminescence measurements and can direct the design of efficient thin film photovoltaics. Ref: Guglietta et al., APL, 2014. Nsf DMR-1507988.

  4. Partially Hydrated Electrons at the Air/Water Interface Observed by UV-Excited Time-Resolved Heterodyne-Detected Vibrational Sum Frequency Generation Spectroscopy.

    PubMed

    Matsuzaki, Korenobu; Kusaka, Ryoji; Nihonyanagi, Satoshi; Yamaguchi, Shoichi; Nagata, Takashi; Tahara, Tahei

    2016-06-22

    Hydrated electrons are the most fundamental anion species, consisting only of electrons and surrounding water molecules. Although hydrated electrons have been extensively studied in the bulk aqueous solutions, even their existence is still controversial at the water surface. Here, we report the observation and characterization of hydrated electrons at the air/water interface using new time-resolved interface-selective nonlinear vibrational spectroscopy. With the generation of electrons at the air/water interface by ultraviolet photoirradiation, we observed the appearance of a strong transient band in the OH stretch region by heterodyne-detected vibrational sum-frequency generation. Through the comparison with the time-resolved spectra at the air/indole solution interface, the transient band was assigned to the vibration of water molecules that solvate electrons at the interface. The analysis of the frequency and decay of the observed transient band indicated that the electrons are only partially hydrated at the water surface, and that they escape into the bulk within 100 ps. PMID:27281547

  5. Efficient Spectral Diffusion at the Air/Water Interface Revealed by Femtosecond Time-Resolved Heterodyne-Detected Vibrational Sum Frequency Generation Spectroscopy.

    PubMed

    Inoue, Ken-Ichi; Ishiyama, Tatsuya; Nihonyanagi, Satoshi; Yamaguchi, Shoichi; Morita, Akihiro; Tahara, Tahei

    2016-05-19

    Femtosecond vibrational dynamics at the air/water interface is investigated by time-resolved heterodyne-detected vibrational sum frequency generation (TR-HD-VSFG) spectroscopy and molecular dynamics (MD) simulation. The low- and high-frequency sides of the hydrogen-bonded (HB) OH stretch band at the interface are selectively excited with special attention to the bandwidth and energy of the pump pulses. Narrow bleach is observed immediately after excitation of the high-frequency side of the HB OH band at ∼3500 cm(-1), compared to the broad bleach observed with excitation of the low-frequency side at ∼3300 cm(-1). However, the time-resolved spectra observed with the two different excitations become very similar at 0.5 ps and almost indistinguishable by 1.0 ps. This reveals that efficient spectral diffusion occurs regardless of the difference of the pump frequency. The experimental observations are well-reproduced by complementary MD simulation. There is no experimental and theoretical evidence that supports extraordinary slow dynamics in the high-frequency side of the HB OH band, which was reported before. PMID:27120559

  6. Time-resolved visible and infrared absorption spectroscopy data obtained using photosystem I particles with non-native quinones incorporated into the A1 binding site

    PubMed Central

    Makita, Hiroki; Hastings, Gary

    2016-01-01

    Time-resolved visible and infrared absorption difference spectroscopy data at both 298 and 77 K were obtained using cyanobacterial menB− mutant photosystem I particles with several non-native quinones incorporated into the A1 binding site. Data was obtained for photosystem I particles with phylloquinone (2-methyl-3-phytyl-1,4-naphthoquinone), 2-bromo-1,4-naphthoquinone, 2-chloro-1,4-naphthoquinone, 2-methyl-1,4-naphthoquinone, 2,3-dibromo-1,4-naphthoquinone, 2,3-dichloro-1,4-naphthoquinone, and 9,10-anthraquinone incorporated. Transient absorption data were obtained at 487 and 703 nm in the visible spectral range, and 1950–1100 cm−1 in the infrared region. Time constants obtained from fitting the time-resolved infrared and visible data are in good agreement. The measured time constants are crucial for the development of appropriate kinetic models that can describe electron transfer processes in photosystem I, “Modeling Electron Transfer in Photosystem I” Makita and Hastings (2016) [1]. PMID:27182540

  7. Time-resolved visible and infrared absorption spectroscopy data obtained using photosystem I particles with non-native quinones incorporated into the A1 binding site.

    PubMed

    Makita, Hiroki; Hastings, Gary

    2016-06-01

    Time-resolved visible and infrared absorption difference spectroscopy data at both 298 and 77 K were obtained using cyanobacterial menB (-) mutant photosystem I particles with several non-native quinones incorporated into the A1 binding site. Data was obtained for photosystem I particles with phylloquinone (2-methyl-3-phytyl-1,4-naphthoquinone), 2-bromo-1,4-naphthoquinone, 2-chloro-1,4-naphthoquinone, 2-methyl-1,4-naphthoquinone, 2,3-dibromo-1,4-naphthoquinone, 2,3-dichloro-1,4-naphthoquinone, and 9,10-anthraquinone incorporated. Transient absorption data were obtained at 487 and 703 nm in the visible spectral range, and 1950-1100 cm(-1) in the infrared region. Time constants obtained from fitting the time-resolved infrared and visible data are in good agreement. The measured time constants are crucial for the development of appropriate kinetic models that can describe electron transfer processes in photosystem I, "Modeling Electron Transfer in Photosystem I" Makita and Hastings (2016) [1]. PMID:27182540

  8. Photochemistry of a Puckered Ferracyclobutadiene in Liquid Solution Studied by Time-Resolved Fourier-Transform Infrared Spectroscopy.

    PubMed

    Torres-Alacan, Joel; Das, Ujjal; Wezisla, Boris; Straßmann, Martin; Filippou, Alexander C; Vöhringer, Peter

    2015-11-23

    Flash photolysis combined with step-scan and rapid-scan Fourier-transform infrared spectroscopy was carried out to explore the photochemistry of a puckered, quasi-square pyramidal ferracyclobutadiene, [Fe{κ(2) -C3 (NEt2 )3 }(CO)3 ]BF4 ([1]BF4 ), that features three additional carbonyl ligands in the metal coordination sphere. In liquid solution at room temperature, an excitation with λ=355 nm light resulted in the loss of one CO ligand, which is cleaved from a basal metal-coordination site. Within the time resolution of the experiment, a solvent molecule promptly refills the resultant vacancy at the coordinatively unsaturated metal center. In the weakly interacting liquid, dichloromethane, the counterion of the complex is subsequently able to substitute the solvent in the coordination sphere of the iron center, thereby forming as a stable product a neutral dicarbonyl tetrafluoroborato iron(0) species containing a four-membered ferracycle. PMID:26457465

  9. Antenna structure and excitation dynamics in photosystem I. I. Studies of detergent-isolated photosystem I preparations using time-resolved fluorescence analysis.

    PubMed Central

    Owens, T G; Webb, S P; Alberte, R S; Mets, L; Fleming, G R

    1988-01-01

    The temporal and spectral properties of fluorescence decay in isolated photosystem I (PS I) preparations from algae and higher plants were measured using time-correlated single photon counting. Excitations in the PS I core antenna decay with lifetimes of 15-40 ps and 5-6 ns. The fast decay results from efficient photochemical quenching by P700, whereas the slow decay is attributed to core antenna complexes lacking a trap. Samples containing core and peripheral antenna complexes exhibited an additional intermediate lifetime (150-350 ps) decay. The PS I core antenna is composed of several spectral forms of chlorophyll a that are not temporally resolved in the decays. Analysis of the temporal and spectral properties of the decays provides a description of the composition, structure, and dynamics of energy transfer and trapping reactions in PS I. The core antenna size dependence of the spectral properties and the contributions of the spectral forms to the time-resolved decays show that energy is not concentrated in the longest wavelength absorbing pigments but is nearly homogenized among the spectral forms. These data suggest that the "funnel" description of antenna structure and energy transfer (Seely, G. R. 1973. J. Theor. Biol. 40:189-199) may not be applicable to the PS I core antenna. PMID:3134059

  10. Time-resolved, 3D, laser-induced fluorescence measurements of fine-structure passive scalar mixing in a tubular reactor

    NASA Astrophysics Data System (ADS)

    Van Vliet, E.; Van Bergen, S. M.; Derksen, J. J.; Portela, L. M.; Van den Akker, H. E. A.

    A three-dimensional, time-resolved, laser-induced fluorescence (3D-LIF) technique was developed to measure the turbulent (liquid-liquid) mixing of a conserved passive scalar in the wake of an injector inserted perpendicularly into a tubular reactor with Re=4,000. In this technique, a horizontal laser sheet was traversed in its normal direction through the measurement section. Three-dimensional scalar fields were reconstructed from the 2D images captured at consecutive, closely spaced levels by means of a high-speed CCD camera. The ultimate goal of the measurements was to assess the downstream development of the 3D scalar fields (in terms of the full scalar gradient vector field and its associated scalar energy dissipation rate) in an industrial flow with significant advection velocity. As a result of this advection velocity, the measured 3D scalar field is artificially ``skewed'' during a scan period. A method to correct for this skewing was developed, tested and applied. Analysis of the results show consistent physical behaviour.

  11. Homogeneous time-resolved fluorescence assays for the detection of activity and inhibition of phosphatase enzymes employing phosphorescently labeled peptide substrates.

    PubMed

    O'Shea, Desmond J; O'Riordan, Tomás C; O'Sullivan, Paul J; Papkovsky, Dmitri B

    2007-02-01

    A rapid, homogenous, antibody-free assay for phosphatase enzymes was developed using the phosphorescent platinum (II)-coproporphyrin label (PtCP) and time-resolved fluorescent detection. An internally quenched decameric peptide substrate containing a phospho-tyrosine residue, labeled with PtCP-maleimide and dabcyl-NHS at its termini was designed. Phosphatase catalysed dephosphorylation of the substrate resulted in a minor increase in PtCP signal, while subsequent cleavage by chymotrypsin at the dephosphorylated Tyr-Leu site provided a 3.5 fold enhancement of PtCP phosphorescence. This phosphorescence phosphatase enhancement assay was optimized to a 96 well plate format with detection on a commercial TR-F plate reader, and applied to measure the activity and inhibition of alkaline phosphatase, recombinant human CD45, and tyrosine phosphatases in Jurkat cell lysates within 40 min. Parameters of these enzymatic reactions such as Km's, limits of detection (L.O.D's) and IC50 values for the non-specific inhibitor sodium orthovanadate were also determined. PMID:17386566

  12. Antenna structure and excitation dynamics in photosystem I. I. Studies of detergent-isolated photosystem I preparations using time-resolved fluorescence analysis.

    PubMed

    Owens, T G; Webb, S P; Alberte, R S; Mets, L; Fleming, G R

    1988-05-01

    The temporal and spectral properties of fluorescence decay in isolated photosystem I (PS I) preparations from algae and higher plants were measured using time-correlated single photon counting. Excitations in the PS I core antenna decay with lifetimes of 15-40 ps and 5-6 ns. The fast decay results from efficient photochemical quenching by P700, whereas the slow decay is attributed to core antenna complexes lacking a trap. Samples containing core and peripheral antenna complexes exhibited an additional intermediate lifetime (150-350 ps) decay. The PS I core antenna is composed of several spectral forms of chlorophyll a that are not temporally resolved in the decays. Analysis of the temporal and spectral properties of the decays provides a description of the composition, structure, and dynamics of energy transfer and trapping reactions in PS I. The core antenna size dependence of the spectral properties and the contributions of the spectral forms to the time-resolved decays show that energy is not concentrated in the longest wavelength absorbing pigments but is nearly homogenized among the spectral forms. These data suggest that the "funnel" description of antenna structure and energy transfer (Seely, G. R. 1973. J. Theor. Biol. 40:189-199) may not be applicable to the PS I core antenna. PMID:3134059

  13. A high-throughput screening-compatible homogeneous time-resolved fluorescence assay measuring the glycohydrolase activity of human poly(ADP-ribose) glycohydrolase.

    PubMed

    Stowell, Alexandra I J; James, Dominic I; Waddell, Ian D; Bennett, Neil; Truman, Caroline; Hardern, Ian M; Ogilvie, Donald J

    2016-06-15

    Poly(ADP-ribose) (PAR) polymers are transient post-translational modifications, and their formation is catalyzed by poly(ADP-ribose) polymerase (PARP) enzymes. A number of PARP inhibitors are in advanced clinical development for BRCA-mutated breast cancer, and olaparib has recently been approved for BRCA-mutant ovarian cancer; however, there has already been evidence of developed resistance mechanisms. Poly(ADP-ribose) glycohydrolase (PARG) catalyzes the hydrolysis of the endo- and exo-glycosidic bonds within the PAR polymers. As an alternative strategy, PARG is a potentially attractive therapeutic target. There is only one PARG gene, compared with 17 known PARP family members, and therefore a PARG inhibitor may have wider application with fewer compensatory mechanisms. Prior to the initiation of this project, there were no known existing cell-permeable small molecule PARG inhibitors for use as tool compounds to assess these hypotheses and no suitable high-throughput screening (HTS)-compatible biochemical assays available to identify start points for a drug discovery project. The development of this newly described high-throughput homogeneous time-resolved fluorescence (HTRF) assay has allowed HTS to proceed and, from this, the identification and advancement of multiple validated series of tool compounds for PARG inhibition. PMID:27036617

  14. Novel Time-Resolved Fluorescence Europium Nanoparticle Immunoassay for Detection of Human Immunodeficiency Virus-1 Group O Viruses Using Microplate and Microchip Platforms.

    PubMed

    Haleyur Giri Setty, Mohan Kumar; Liu, Jikun; Mahtani, Prerna; Zhang, Panhe; Du, Bingchen; Ragupathy, Viswanath; Devadas, Krishnakumar; Hewlett, Indira K

    2016-06-01

    Accurate detection and quantification of HIV-1 group O viruses have been challenging for currently available HIV assays. We have developed a novel time-resolved fluorescence (TRF) europium nanoparticle immunoassay for HIV-1 group O detection using a conventional microplate enzyme-linked immunosorbent assay (ELISA) and a microchip platform. We screened several antibodies for optimal reactivity with several HIV-1 group O strains and identified antibodies that can detect all the strains of HIV-1 group O that were available for testing. The antibodies were used to develop a conventional ELISA format assay and an in-house developed europium nanoparticle-based assay for sensitivity. The method was evaluated on both microwell plate and microchip platforms. We identified two specific and sensitive antibodies among the six we screened. The antibodies, C65691 and ANT-152, were able to quantify 15 and detect all 17 group O viruses, respectively, as they were broadly cross-reactive with all HIV-1 group O strains and yielded better signals compared with other antibodies. We have developed a sensitive assay that reflects the actual viral load in group O samples by using an appropriate combination of p24 antibodies that enhance group O detection and a highly sensitive TRF-based europium nanoparticle for detection. The combination of ANT-152 and C65690M in the ratio 3:1 was able to give significantly higher signals in our europium-based assay compared with using any single antibody. PMID:26978478

  15. Frequency-domain time-resolved four wave mixing spectroscopy of vibrational coherence transfer with single-color excitation.

    PubMed

    Pakoulev, Andrei V; Rickard, Mark A; Mathew, Nathan A; Kornau, Kathryn M; Wright, John C

    2008-07-17

    Triply vibrationally enhanced four-wave mixing spectroscopy is employed to observe vibrational coherence transfer between the asymmetric and symmetric CO-stretching modes of rhodium(I) dicarbonyl acetylacetonate (RDC). Coherence transfer is a nonradiative transition of a coherent superposition of quantum states to a different coherent superposition due to coupling of the vibrational modes through the bath. All three excitation pulses in the experiment are resonant with a single quantum coherence, but coherence transfer results in new coherences with different frequencies. The new output frequency is observed with a monochromator that resolves it from the stronger peak at the original excitation frequency. This technique spectrally resolves pathways that include coherence transfer, discriminates against spectral features created solely by radiative transitions, and temporally resolves modulations created by interference between different coherence transfer pathways. Redfield theory simulates the temporal modulations in the impulsive limit, but it is also clear that coherence transfer violates the secular approximation invoked in most Redfield theories. Instead, it requires non-Markovian and bath memory effects. RDC may provide a simple model for the development of theories that incorporate these effects. PMID:18572931

  16. Nanosecond time-resolved FTIR emission spectroscopy: Monitoring the energy distribution of highly vibrationally excited molecules during collisional deactivation

    SciTech Connect

    Pibel, C.D.; Sirota, E.; Brenner, J.; Dai, H.

    1998-01-01

    The 10{sup {minus}8} second time resolution in infrared emission spectroscopy has been demonstrated using a Fourier Transform spectrometer paired with a fast HgCdTe detector. The rapid time response of this system has enabled us to measure, with subcollisional period time resolution, the emission spectrum of highly vibrationally excited NO{sub 2} molecules during collisional deactivation by room temperature NO{sub 2}. The greatly improved time resolution of the spectra allows the determination of N(E,t), the instantaneous energy distribution of the ensemble of excited molecules, with virtually no distortion due to collisional averaging. In addition, an improved procedure for extracting optimized N(E,t) from the spectral data makes no prior assumptions about the shape of the energy distribution. It is found that the distribution is well approximated as the sum of a Gaussian function at high vibrational energies and a population at low energies resulting from V{endash}V transfer to bath NO{sub 2} molecules. The observation of a Gaussian-like function for the highly excited molecules is consistent with the widely invoked assumption that the step-size function of energy transfer per collision is exponential. {copyright} {ital 1998 American Institute of Physics.}

  17. Time-resolved soft-x-ray spectroscopy of a magnetic octupole transition in nickel-like xenon, cesium, and barium ions

    SciTech Connect

    Trabert, E; Beiersdorfer, P; Brown, G V; Boyce, K; Kelley, R L; Kilbourne, C A; Porter, F S; Szymkowiak, A

    2005-11-11

    A microcalorimeter with event mode capability for time-resolved soft-x-ray spectroscopy, and a high-resolution flat-field EUV spectrometer have been employed at the Livermore EBIT-I electron beam ion trap for observations and wavelength measurements of M1, E2, and M3 decays of long-lived levels in the Ni-like ions Xe{sup 26+}, Cs{sup 27+}, and Ba{sup 28+}. Of particular interest is the lowest excited level, 3d{sup 9}4s {sup 3}D{sub 3}, which can only decay via a magnetic octupole (M3) transition. For this level in Xe an excitation energy of (590.40 {+-} 0.03eV) and a level lifetime of (11.5 {+-} 0.5 ms) have been determined.

  18. Atomic Resolution Mapping of the Excited-State Electronic Structure of Cu2O with Time-Resolved X-Ray Absorption Spectroscopy

    SciTech Connect

    Hillyard, Patrick B.; Kuchibhatla, Satyanarayana V N T; Glover, T. E.; Hertlein, M. P.; Huse, N.; Nachimuthu, Ponnusamy; Saraf, Laxmikant V.; Thevuthasan, Suntharampillai; Gaffney, Kelly J.

    2009-09-29

    We have used time-resolved soft x-ray spectroscopy to investigate the electronic structure of optically excited cuprous oxide at the O K-edge and the Cu L3-edge. The 400 nm optical excitation shifts the Cu and O absorptions to lower energy, but does not change the integrated x-ray absorption significantly for either edge. The constant integrated x-ray absorption cross-section indicates that that the conduction band and valence band edges have very similar Cu 3d and O 2p orbital contributions. The 2.1 eV optical band gap of Cu2O significantly exceeds the one eV shift in the Cu L3- and O K-edges absorption edges induced by optical excitation, demonstrating the importance of core-hole excitonic effects and valence electron screening in the x-ray absorption process.

  19. A shock pressure induced phase transition from liquid to solid of cyclohexane using time-resolved coherent anti-Stokes Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Oguchi, Shiro; Sato, Akira; Kondo, Ken-Ichi; Nakamura, Kazutaka

    2007-06-01

    The liquid-solid phase transition of cyclohexane has been studied under laser shock compression up to 3.8 GPa by using nanosecond time-resolved Coherent Anti-stokes Raman Spectroscopy (CARS) and laser shock compression. The shock wave is generated by irradiation of 10 ns pulsed laser beam on the plasma confinement target and its pressure is estimated from a particle velocity, which is measured by optically recording velocity interferometer system (ORVIS). Higher frequency shift of the Raman peaks (ring-breathing, C-C stretching, and CH2 twist modes) was observed at high pressure. At 3.8 GPa, splitting of the peak (CH2 twist mode) due to change in symmetry of surrounding molecules, which corresponds to phase transition to solid IV, was observed at delay time of 20 ns. Rapid liquid-solid phase transition has been directly observed to occur within 20 ns.

  20. Europium(III) complexed by HPSEC size-fractions of a vertisol humic acid: small differences evidenced by time-resolved luminescence spectroscopy.

    PubMed

    Reiller, Pascal E; Brevet, Julien; Nebbioso, Antonio; Piccolo, Alessandro

    2011-03-01

    The size fractionation of a humic acid (HA) by high performance size exclusion chromatography (HPSEC) was used as a proxy for the filtration effect during HA transport through a porous medium with minimum specific chemical interactions. The modification of the Eu(III)-HA complexes' formation with the different size-fractions, as compared to the bulk HA, was studied in time-resolved luminescence spectroscopy (TRLS). Clear modifications in Eu(III)-HA complexes' structures were shown and related to the molecular characteristics of the separated size-fractions. The properties of most of size-fractions did not induce a major alteration of the affinity towards Eu(III). Only the most hydrophilic fractions eluted in the tail of the chromatographic peak, representing about 11% of total fractions-weight, gave some significantly different parameters. Using a simplistic complexation model, it was found that the available complexation sites decreased with the size reduction of humic fractions. PMID:21242102

  1. Photodissociation of CH3CHO at 248 nm by time-resolved Fourier-transform infrared emission spectroscopy: Verification of roaming and triple fragmentation

    NASA Astrophysics Data System (ADS)

    Hung, Kai-Chan; Tsai, Po-Yu; Li, Hou-Kuan; Lin, King-Chuen

    2014-02-01

    By using time-resolved Fourier-transform infrared emission spectroscopy, the HCO fragment dissociated from acetaldehyde (CH3CHO) at 248 nm is found to partially decompose to H and CO. The fragment yields are enhanced by the Ar addition that facilitates the collision-induced internal conversion. The channels to CH2CO + H2 and CH3CO + H are not detected significantly. The rotational population distribution of CO, after removing the Ar collision effect, shows a bimodal feature comprising both low- and high-rotational (J) components, sharing a fraction of 19% and 81%, respectively, for the vibrational state v = 1. The low-J component is ascribed to both roaming pathway and triple fragmentation. They are determined to have a branching ratio of <0.13 and >0.06, respectively, relative to the whole v = 1 population. The CO roaming is accompanied by a highly vibrational population of CH4 that yields a vibrational bimodality.

  2. Direct Observation of the Surface Segregation of Cu in Pd by Time-Resolved Positron-Annihilation-Induced Auger Electron Spectroscopy

    SciTech Connect

    Mayer, J.; Hugenschmidt, C.; Schreckenbach, K.

    2010-11-12

    Density functional theory calculations predict the surface segregation of Cu in the second atomic layer of Pd which has not been unambiguously confirmed by experiment so far. We report measurements on Pd surfaces covered with three and six monolayers of Cu using element selective positron-annihilation-induced Auger electron spectroscopy (PAES) which is sensitive to the topmost atomic layer. Moreover, time-resolved PAES, which was applied for the first time, enables the investigation of the dynamics of surface atoms and hence the observation of the segregation process. The time constant for segregation was experimentally determined to {tau}=1.38(0.21) h, and the final segregated configuration was found to be consistent with calculations. Time-dependent PAES is demonstrated to be a novel element selective technique applicable for the investigation of, e.g., heterogeneous catalysis, corrosion, or surface alloying.

  3. Direct measurement of S-branch N2-H2 Raman linewidths using time-resolved pure rotational coherent anti-Stokes Raman spectroscopy.

    PubMed

    Bohlin, A; Nordström, E; Patterson, B D; Bengtsson, P-E; Kliewer, C J

    2012-08-21

    S-branch N(2)-H(2) Raman linewidths have been measured in the temperature region 294-1466 K using time-resolved dual-broadband picosecond pure rotational coherent anti-Stokes Raman spectroscopy (RCARS). Data are extracted by mapping the dephasing rates of the CARS signal temporal decay. The J-dependent coherence decays are detected in the time domain by following the individual spectral lines as a function of probe delay. The linewidth data set was employed in spectral fits of N(2) RCARS spectra recorded in binary mixtures of N(2) and H(2) at calibrated temperature conditions up to 661 K using a standard nanosecond RCARS setup. In this region, the set shows a deviation of less than 2% in comparison with thermocouples. The results provide useful knowledge for the applicability of N(2) CARS thermometry on the fuel-side of H(2) diffusion flames. PMID:22920115

  4. Femtosecond time resolved coherent anti-Stokes Raman spectroscopy of H(2)-N(2) mixtures in the Dicke regime: Experiments and modeling of velocity effects.

    PubMed

    Tran, H; Chaussard, F; Le Cong, N; Lavorel, B; Faucher, O; Joubert, P

    2009-11-01

    In this paper, we present measurements and modeling of femtosecond time resolved coherent anti-Stokes Raman spectroscopy (CARS) signal in H(2)-N(2) mixtures at low densities. Three approaches have been used to model the CARS response. The first is the usual sum of Voigt profiles. In the second approach, the speed dependent Voigt profile is used. In the last approach, a model of the temporal CARS signal is developed, which takes into account the velocity changes induced by collisions and the speed dependence of the collisional parameters. The velocity changes are modeled using the Keilson and Storer memory function; the radiator speed dependences of the collisional parameters are determined from their temperature dependences. The results obtained are consistent with previous studies in the frequency domain, showing that the changes of the velocity have important effects for the H(2)/N(2) system in the Dicke narrowing density regime. PMID:19895015

  5. Femtosecond time resolved coherent anti-Stokes Raman spectroscopy of H2-N2 mixtures in the Dicke regime: Experiments and modeling of velocity effects

    NASA Astrophysics Data System (ADS)

    Tran, H.; Chaussard, F.; Le Cong, N.; Lavorel, B.; Faucher, O.; Joubert, P.

    2009-11-01

    In this paper, we present measurements and modeling of femtosecond time resolved coherent anti-Stokes Raman spectroscopy (CARS) signal in H2-N2 mixtures at low densities. Three approaches have been used to model the CARS response. The first is the usual sum of Voigt profiles. In the second approach, the speed dependent Voigt profile is used. In the last approach, a model of the temporal CARS signal is developed, which takes into account the velocity changes induced by collisions and the speed dependence of the collisional parameters. The velocity changes are modeled using the Keilson and Storer memory function; the radiator speed dependences of the collisional parameters are determined from their temperature dependences. The results obtained are consistent with previous studies in the frequency domain, showing that the changes of the velocity have important effects for the H2/N2 system in the Dicke narrowing density regime.

  6. In situ, time-resolved reflectance spectroscopy in the microsecond domain: oxidation of adsorbed carbon monoxide on polycrystalline pt microelectrodes in aqueous solutions.

    PubMed

    Shi, Ping; Fromondi, Iosif; Scherson, Daniel A

    2006-12-01

    The dynamics of the electrooxidation of adsorbed CO, COads, on polycrystalline Pt microelectrodes has been examined in CO-saturated 0.5 M H2SO4 and 0.5 M HClO4 aqueous solutions, using in situ, time-resolved, normalized differential reflectance spectroscopy lambda = 633 nm). Attention was focused on the unique dependence of COads oxidation on the potential at which the adsorbed full CO monolayer is assembled (i.e., hydrogen adsorption/desorption vs the double-layer region) using both fast linear scan voltammetry and potential step techniques. As evidenced from the data collected, COads oxidation at a fixed potential proceeds at slower rates when the monolayer is formed in the double- layer region compared to when it is formed in the hydrogen adsorption/desorption region. Possible explanations for this effect are discussed. PMID:17129007

  7. Observation of femtosecond-laser-induced ablation plumes of aluminum using space- and time-resolved soft x-ray absorption spectroscopy

    SciTech Connect

    Okano, Yasuaki; Oguri, Katsuya; Nishikawa, Tadashi; Nakano, Hidetoshi

    2006-11-27

    The dynamics of the laser ablation plume expansion of aluminum was investigated by using space- and time-resolved soft x-ray absorption spectroscopy. Blueshifts of the Al L-shell photoabsorption edge indicating the state of aluminum were observed in the plumes, which were generated by irradiating an aluminum target with 120 fs near-infrared pulses at an intensity of 10{sup 14} W/cm{sup 2}. The spatiotemporal evolution of the plumes exhibited a multilayer structure consisting of vaporized aluminum and condensed aluminum particles, following the expansion of plasma, with expansion velocities of 10{sup 4} m/s for the atomic state and 10{sup 3} m/s for the condensed state.

  8. Photoinduced insulator-metal phase transition and the metallic phase propagation in VO2 films investigated by time-resolved terahertz spectroscopy

    NASA Astrophysics Data System (ADS)

    Xue, Xin; Jiang, Meng; Li, Gaofang; Lin, Xian; Ma, Guohong; Jin, Ping

    2013-11-01

    The particle size and film thickness dependence of the photoinduced insulator-metal phase transition in VO2 films has been studied systematically by time-resolved terahertz spectroscopy at room temperature. It is found that the dynamical photoinduced phase transition from insulator to metal consists of two processes: a 1.7 ps fast process and a slow process with a typical time constant of 40 ps. Both of the two processes show particle size independence. The 40 ps slow process is revealed to arise from the longitudinal propagation of the metallic phase from the photoexcited surface to the interior of the VO2 film. A phase boundary propagation speed with a magnitude of ˜2400 m/s is obtained, which is close to the velocity of sound in solid materials and coincides with the prediction of diffusionless phase transformation. Our experimental results clearly establish the entire procedure of photoinduced phase change in the VO2 film.

  9. Atomic resolution mapping of the excited-state electronic structure of Cu2O with time-resolved x-ray absorption spectroscopy

    SciTech Connect

    Hillyard, P. W.; Kuchibhatla, S. V. N. T.; Glover, T. E.; Hertlein, M. P.; Huse, Nils; Nachimuthu, P.; Saraf, L. V.; Thevuthasan, S.; Gaffney, K. J.

    2010-05-02

    We have used time-resolved soft x-ray spectroscopy to investigate the electronic structure of optically excited cuprous oxide at the O K-edge and the Cu L3-edge. The 400 nm optical excitation shifts the Cu and O absorptions to lower energy, but does not change the integrated x-ray absorption significantly for either edge. The constant integrated x-ray absorption cross-section indicates that the conduction-band and valence-band edges have very similar Cu 3d and O 2p orbital contributions. The 2.1 eV optical band gap of Cu2O significantly exceeds the one eV shift in the Cu L3- and O K-edges absorption edges induced by optical excitation, demonstrating the importance of core-hole excitonic effects and valence electron screening in the x-ray absorption process.

  10. Europium(III) complexed by HPSEC size-fractions of a vertisol humic acid: Small differences evidenced by time-resolved luminescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Reiller, Pascal E.; Brevet, Julien; Nebbioso, Antonio; Piccolo, Alessandro

    2011-03-01

    The size fractionation of a humic acid (HA) by high performance size exclusion chromatography (HPSEC) was used as a proxy for the filtration effect during HA transport through a porous medium with minimum specific chemical interactions. The modification of the Eu(III)-HA complexes' formation with the different size-fractions, as compared to the bulk HA, was studied in time-resolved luminescence spectroscopy (TRLS). Clear modifications in Eu(III)-HA complexes' structures were shown and related to the molecular characteristics of the separated size-fractions. The properties of most of size-fractions did not induce a major alteration of the affinity towards Eu(III). Only the most hydrophilic fractions eluted in the tail of the chromatographic peak, representing about 11% of total fractions-weight, gave some significantly different parameters. Using a simplistic complexation model, it was found that the available complexation sites decreased with the size reduction of humic fractions.

  11. Intra-molecular mobility of charge carriers along oligogermane backbones studied by flash photolysis time-resolved microwave conductivity and transient optical spectroscopy techniques

    NASA Astrophysics Data System (ADS)

    Seki, Shu; Saeki, Akinori; Acharya, Anjali; Koizumi, Yoshiko; Tagawa, Seiichi; Mochida, Kunio

    2008-10-01

    Time-resolved microwave conductivity (TRMC) measurement has been performed for fullerene-doped thin films of oligo (dimethylgermane) at different excitation energies to evaluate the intra-molecular mobility of holes along their Ge backbones. Photo-induced electron transfer reaction between oligogermane and fullerene has been observed in the solution with a variety of solvent polarity using transient optical spectroscopy (TOS). The transient spectrum at 391 nm can be attributed to the radical cation of the oligomer under an excitation at 532-nm light, whereas the same spectrum (391 nm) is the overlapping of absorptions of radical cations and neutral radicals of oligogermanes upon exposure of 355-nm light in polar solvent. A combined TRMC and TOS experiments on the solutions of oligomer confirms the conductive transients originate from the radical cations on the backbone chains.

  12. Applications of immunomagnetic capture and time-resolved fluorescence to detect outbreak Escherichia coli O157 and Salmonella in alfalfa sprouts

    NASA Astrophysics Data System (ADS)

    Tu, Shu-I.; Gordon, Marsha; Fett, William F.; Gehring, Andrew G.; Irwin, Peter L.

    2004-03-01

    Commercially available alfalfa seeds were inoculated with low levels (~ 4 CFU/g) of pathogenic bacteria. The inoculated seeds were then allowed to sprout in sterile tap water at 22°C. After 48 hours, the irrigation water and sprouts were separately transferred to bovine heart infusion (BHI) media. The microbes in the BHI samples were allowed to grow for 4 hours at 37°C and 160 rpm. Specific immunomagnetic beads (IMB) were then applied to capture the E.coli O157 and/or Salmonella in the growth media. Separation and concentration of IMB-captured pathogens were achieved using magnetic separators. The captured E. coli O157:H7 and Salmonella spp were further tagged with europium (Eu) labeled anti-E. coli O157 antibodies and samarium (Sm) labeled anti-Salmonella antibodies, respectively. After washing, the lanthanide labels were extracted out from the complexes by specific chelators to form strongly fluorescent chelates. The specific time-resolved fluorescence (TRF) associated with Eu or Sm was measured to estimate the extent of capture of the E. coli O157 and Salmonella, respectively. The results indicated that the approach could detect E. coli O157 and Salmonella enterica from the seeds inoculated with ~ 4 CFU/g of the pathogens. Non-targeted bacteria, e.g., Aeromonas and Citrobacter exhibited essentially no cross reactivity. Since the pathogen detection from the sprouts was achieved within 6 hours, the developed methodology could be use as a rapid, sensitive and specific screening process for E. coli O157 and Salmonella enterica in this popular salad food.

  13. Time-resolved Spectroscopy of the Three Brightest and Hardest Short Gamma-ray Bursts Observed with the Fermi Gamma-ray Burst Monitor

    NASA Astrophysics Data System (ADS)

    Guiriec, Sylvain; Briggs, Michael S.; Connaugthon, Valerie; Kara, Erin; Daigne, Frédéric; Kouveliotou, Chryssa; van der Horst, Alexander J.; Paciesas, William; Meegan, Charles A.; Bhat, P. N.; Foley, Suzanne; Bissaldi, Elisabetta; Burgess, Michael; Chaplin, Vandiver; Diehl, Roland; Fishman, Gerald; Gibby, Melissa; Giles, Misty M.; Goldstein, Adam; Greiner, Jochen; Gruber, David; von Kienlin, Andreas; Kippen, Marc; McBreen, Sheila; Preece, Robert; Rau, Arne; Tierney, Dave; Wilson-Hodge, Colleen

    2010-12-01

    From 2008 July to 2009 October, the Gamma-ray Burst Monitor (GBM) on board the Fermi Gamma-ray Space Telescope has detected 320 gamma-ray bursts (GRBs). About 20% of these events are classified as short based on their T 90 duration below 2 s. We present here for the first time time-resolved spectroscopy at timescales as short as 2 ms for the three brightest short GRBs observed with GBM. The time-integrated spectra of the events deviate from the Band function, indicating the existence of an additional spectral component, which can be fit by a power law with index ~-1.5. The time-integrated E peak values exceed 2 MeV for two of the bursts and are well above the values observed in the brightest long GRBs. Their E peak values and their low-energy power-law indices (α) confirm that short GRBs are harder than long ones. We find that short GRBs are very similar to long ones, but with light curves contracted in time and with harder spectra stretched toward higher energies. In our time-resolved spectroscopy analysis, we find that the E peak values range from a few tens of keV up to more than 6 MeV. In general, the hardness evolutions during the bursts follow their flux/intensity variations, similar to long bursts. However, we do not always see the E peak leading the light-curve rises and confirm the zero/short average light-curve spectral lag below 1 MeV, already established for short GRBs. We also find that the time-resolved low-energy power-law indices of the Band function mostly violate the limits imposed by the synchrotron models for both slow and fast electron cooling and may require additional emission processes to explain the data. Finally, we interpreted these observations in the context of the current existing models and emission mechanisms for the prompt emission of GRBs.

  14. Transmission electron microscopy and time resolved optical spectroscopy study of the electronic and structural interactions of ZnO nanorods with bovine serum albumin.

    PubMed

    Klaumünzer, M; Weichsel, U; Mačković, M; Spiecker, E; Peukert, W; Kryschi, C

    2013-08-22

    The adsorption behavior and electronic interactions of bovine serum albumin (BSA) with ZnO nanorod surfaces were investigated using high-resolution transmission electron microscopy as well as stationary and time-resolved optical spectroscopy techniques. Transmission electron microscopy shows that ZnO nanorod surfaces are surrounded by a homogeneous amorphous BSA film with thicknesses between ~2.5 and 5.0 nm. The electronic structure and adsorption geometry of BSA were examined using high-angle annular dark field scanning transmission electron microscopy combined with electron energy loss spectroscopy. The adsorption process was observed to result into an unfolded conformation of BSA becoming predominantly bound in the side-on orientation at the ZnO surface. This adsorption mode of the BSA molecules allows for a strong interaction with surface states of the ZnO nanorods. This is obvious from its efficient quenching of the defect-center photoluminescence of ZnO. Complementary information of electronic interactions across the ZnO nanorod interface was obtained from femtosecond transient absorption spectroscopy experiments. The rise dynamics of the measured transients revealed altered hole trapping dynamics and, thus, indicated to heterogeneous charge transfer as emerging from adsorbed BSA molecules to defect centers of the ZnO interface. PMID:23889004

  15. FLIMX: A Software Package to Determine and Analyze the Fluorescence Lifetime in Time-Resolved Fluorescence Data from the Human Eye

    PubMed Central

    Klemm, Matthias; Schweitzer, Dietrich; Peters, Sven; Sauer, Lydia; Hammer, Martin; Haueisen, Jens

    2015-01-01

    Fluorescence lifetime imaging ophthalmoscopy (FLIO) is a new technique for measuring the in vivo autofluorescence intensity decays generated by endogenous fluorophores in the ocular fundus. Here, we present a software package called FLIM eXplorer (FLIMX) for analyzing FLIO data. Specifically, we introduce a new adaptive binning approach as an optimal tradeoff between the spatial resolution and the number of photons required per pixel. We also expand existing decay models (multi-exponential, stretched exponential, spectral global analysis, incomplete decay) to account for the layered structure of the eye and present a method to correct for the influence of the crystalline lens fluorescence on the retina fluorescence. Subsequently, the Holm-Bonferroni method is applied to FLIO measurements to allow for group comparisons between patients and controls on the basis of fluorescence lifetime parameters. The performance of the new approaches was evaluated in five experiments. Specifically, we evaluated static and adaptive binning in a diabetes mellitus patient, we compared the different decay models in a healthy volunteer and performed a group comparison between diabetes patients and controls. An overview of the visualization capabilities and a comparison of static and adaptive binning is shown for a patient with macular hole. FLIMX’s applicability to fluorescence lifetime imaging microscopy is shown in the ganglion cell layer of a porcine retina sample, obtained by a laser scanning microscope using two-photon excitation. PMID:26192624

  16. Ultrafast Nonlinear Spectroscopy of Red Fluorescent Proteins

    NASA Astrophysics Data System (ADS)

    Konold, Patrick Eugene

    Red-emitting homologues (RFPs) of the native Green Fluorescent Protein (GFP) with emission wavelengths beyond 650 nm are desirable probes for in vivo imaging experiments. They offer the potential for deeper tissue penetration and lower background scatter given a cleaner spectral window. However, bioimaging applications are hindered by poor photophysics ( e.g. low fluorescence quantum yield, high photobleaching), which limits experimental resolution and represents a significant obstacle towards utilization for low copy-number, long-duration imaging applications. In this thesis, a variety of femtosecond nonlinear electronic spectroscopies were employed jointly with site-directed mutagenesis to investigate the photophysical properties of RFPs. In one study, the molecular mechanism of red emission was pursued in two notable RFPs, mPlum and TagRFP675. Solvation dynamics observed with time-resolved transient grating spectroscopy were interpreted with the aid of molecular dynamics simulations to indicate that their red-emission is correlated with the ability of specific chromophore-sidechain hydrogen-bonding interactions to interconvert between direct and water-mediated states. In a second set of studies, two-dimensional double quantum coherence spectroscopy was used to probe the electronic transitions of mPlum. It was discovered that it displayed a response distinctly different from an organic dye in bulk solvent. Modeling indicate of these spectra indicate the spectral features may be attributed to the existence of multiple high-lying (n>1) excited states. The results provide new insight into the electronic structure of these widely used fluorescent probes.

  17. Homogeneous Time-Resolved Fluorescence-Based Assay to Monitor Extracellular Signal-Regulated Kinase Signaling in a High-Throughput Format

    PubMed Central

    Ayoub, Mohammed Akli; Trebaux, Julien; Vallaghe, Julie; Charrier-Savournin, Fabienne; Al-Hosaini, Khaled; Gonzalez Moya, Arturo; Pin, Jean-Philippe; Pfleger, Kevin D. G.; Trinquet, Eric

    2014-01-01

    The extracellular signal-regulated kinases (ERKs) are key components of multiple important cell signaling pathways regulating diverse biological responses. This signaling is characterized by phosphorylation cascades leading to ERK1/2 activation and promoted by various cell surface receptors including G protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs). We report the development of a new cell-based Phospho-ERK1/2 assay (designated Phospho-ERK), which is a sandwich proximity-based assay using the homogeneous time-resolved fluorescence technology. We have validated the assay on endogenously expressed ERK1/2 activated by the epidermal growth factor as a prototypical RTK, as well as various GPCRs belonging to different classes and coupling to different heterotrimeric G proteins. The assay was successfully miniaturized in 384-well plates using various cell lines endogenously, transiently, or stably expressing the different receptors. The validation was performed for agonists, antagonists, and inhibitors in dose–response as well as kinetic analysis, and the signaling and pharmacological properties of the different receptors were reproduced. Furthermore, the determination of a Z′-factor value of 0.7 indicates the potential of the Phospho-ERK assay for high-throughput screening of compounds that may modulate ERK1/2 signaling. Finally, our study is of great interest in the current context of investigating ERK1/2 signaling with respect to the emerging concepts of biased ligands, G protein-dependent/independent ERK1/2 activation, and functional transactivation between GPCRs and RTKs, illustrating the importance of considering the ERK1/2 pathway in cell signaling PMID:25002860

  18. Development and implementation of a miniaturized high-throughput time-resolved fluorescence energy transfer assay to identify small molecule inhibitors of polo-like kinase 1.

    PubMed

    Sharlow, Elizabeth R; Leimgruber, Stephanie; Shun, Tong Ying; Lazo, John S

    2007-12-01

    Polo-like kinase (Plk) 1 is a key enzyme involved in regulating the mammalian cell cycle that is also a validated anticancer drug target. Nonetheless, there are relatively few readily available potent and selective small molecule inhibitors of Plk1. To increase the availability of pharmacologically valuable Plk1 inhibitors, we describe herein the development, variability assessment, validation, and implementation of a 384-well automated, miniaturized high-throughput time-resolved fluorescence energy transfer screening assay designed to identify Plk1 kinase inhibitors. Using a small molecule library of pharmaceutically active compounds to gauge high-throughput assay robustness and reproducibility, we found nine general kinase inhibitors, including H-89, which was selected as the minimum control. We then interrogated a 97,101 compound library from the National Institutes of Health repository for small molecule inhibitors of Plk1 kinase activity. The initial primary hit rate in a single 10 microM concentration format was 0.21%. Hit compounds were subjected to concentration-response confirmation and interference assays. Identified in the screen were seven compounds with 50% inhibitory concentration (IC50) values below 1 microM, 20 compounds with IC50 values between 1 microM and 5 microM, and eight compounds with IC50 values between 5 and 10 microM, which could be assigned to seven distinct chemotype classes. Hit compounds were also examined for their ability to inhibit other kinases such as protein kinase D, focal adhesion kinase, rho-associated coiled coil protein kinase 2, c-jun NH2-terminal kinase 3, and protein kinase A via experimentation or data-mining. These compounds should be useful as probes for the biological activity of Plk1 and as leads for the development of new selective inhibitors of Plk1. PMID:18181689

  19. Diffusion and molecular interactions in a methanol/polyimide system probed by coupling time-resolved FTIR spectroscopy with gravimetric measurements

    PubMed Central

    Musto, Pellegrino; Galizia, Michele; La Manna, Pietro; Pannico, Marianna; Mensitieri, Giuseppe

    2013-01-01

    In this contribution the diffusion of methanol in a commercial polyimide (PMDA-ODA) is studied by coupling gravimetric measurements with in-situ, time-resolved FTIR spectroscopy. The spectroscopic data have been treated with two complementary techniques, i.e., difference spectroscopy (DS) and least-squares curve fitting (LSCF). These approaches provided information about the overall diffusivity, the nature of the molecular interactions among the system components and the dynamics of the various molecular species. Additional spectroscopic measurements on thin film samples (about 2 μm) allowed us to identify the interaction site on the polymer backbone and to propose likely structures for the H-bonding aggregates. Molar absorptivity values from a previous literature report allowed us to estimate the population of first-shell and second-shell layers of methanol in the polymer matrix. In terms of diffusion kinetics, the gravimetric and spectroscopic estimates of the diffusion coefficients were found to be in good agreement with each other and with previous literature reports. A Fickian behavior was observed throughout, with diffusivity values markedly affected by the total concentration of sorbed methanol. PMID:24809042

  20. An investigation of the sol-gel process in ionic liquid-silica gels by time resolved Raman and 1H NMR spectroscopy.

    PubMed

    Martinelli, Anna; Nordstierna, Lars

    2012-10-14

    We report, by employing time resolved Raman and nuclear magnetic resonance (NMR) spectroscopy, on the gelation process in ionogels. These are prepared from a non-aqueous sol-gel reaction in the ionic liquid 1-hexyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (C(1)C(6)ImTFSI). Raman and NMR spectroscopies are complementarily used to decipher the chemical reactions that occur during synthesis and to clarify the state of the ionic liquid up to, and well beyond, gelation. We find that the ionic liquid concentration affects both the reaction rate and the gelation time (t(gel)). In addition, NMR and Raman data reveal inherently different roles of the cation and the anion in the gelation process. While the oscillating behavior of the TFSI Raman signature at ~740 cm(-1) is mainly an effect of solvation and chemical composition, the evolution of the relative chemical shifts (Δδ) of different hydrogen atoms on the imidazolium correlates with gelation, as does the width of the chemical shift of -OH containing groups (δ(OH)). We also observe that in the confined state the TFSI anion preferably adopts the cisoid conformation and experiences a stronger ion-ion interaction. PMID:22910853