Science.gov

Sample records for tio2 photocatalysts synthesis

  1. Facile synthesis of porous TiO2 photocatalysts using waste sludge as the template

    NASA Astrophysics Data System (ADS)

    Wang, Xiaopeng; Huang, Shouqiang; Zhu, Nanwen; Lou, Ziyang; Yuan, Haiping

    2015-12-01

    A resource utilization method of waste sludge is present by the synthesis of waste sludge templated TiO2 photocatalysts. The organic materials in waste sludge are used as the pore-forming agents, and the transition metals included in the remaining waste sludge through calcination (WSC) can serve as the dopants for the WSC-TiO2 (WSCT) photocatalyst. The visible and UV-visible light driven photocatalytic activities of WSCT are much better compared to those of pure TiO2 and WSC, and it is originated from the higher light absorption property and the efficient electron-hole pair separation provided by waste sludge.

  2. [Preparation of weak light driven TiO2 multi composite photocatalysts via adsorption phase synthesis].

    PubMed

    Wang, Ting; Zhu, Yi-Chen; Sun, Zhi-Xuan; Wu, Li-Guang

    2015-02-01

    Photodegradation of pollutions by TiO2 under irradiation of weak UV and visible lights was one of the key points to expand the application of heterogeneous photocatalysis. Based on the adsorption phase synthesis, N doping and co-doping with N and Fe2O3 were employed to prepare TiO2 multi composite photocatalysts. The activity of these photocatalyts was evaluated by photodegradation of methyl-orange illuminated under weak UV and visible lights. Via UV-Vis diffuse reflectance spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy and photoluminescence spectra, the effects on the light absorption and visible response expansion of catalysts caused by different conditions were explored, such as sintering temperature, doping content of N and co-doping. Followed that, the changes in the photocatalytic activities were studied under the irradiation of weak light. The results showed that, N doping could enhance the light absorption of the catalysts, thus significantly enhanced their photocatalytic activity illuminated under UV weak light. All N-doped photocatalysts had a higher activity than the commercial available P25 photocatalyst. The visible response of catalysts was expanded little caused by N doping, thereby most catalysts doped by single N element had no activity illuminated by weak visible light. Only the catalyst doped with 5% of N element showed a weak activity after calcined at 900 degrees C . Due to the synergy effects between N doping and Fe2O3 coupling, co-doping did not only enhance the light absorption of the catalysts, but also significantly expanded the visible response of catalysts. So, co-doped catalysts showed a good catalytic activity when excited by weak visible light. PMID:26031083

  3. [Characterization and photocatalytic activity of Ni-doped tiO2 nano photocatalysts prepared by low temperature combustion synthesis].

    PubMed

    Liu, Chao; Tang, Xin-Hu; Mo, Ce-Hui; Wang, Jun

    2006-11-01

    Ni-doped TiO2 photocatalysts were prepared by low temperature combustion synthesis and some properties, such as optical absorption, crystal type, grain size distribution and chemistry transformation during temperature rising were characterized by UV-Vis DRS, X-ray diffraction (XRD), laser light dispersion grain size measurement machine and TG-DSC respectively. The photocatalytic activities of the prepared photocatalysts under visible light irradiation were evaluated by monitoring the degradation of methylene blue dye, a probe pollutant. The results indicate that the Ni-doped TiO2 photocatalysts prepared by low temperature combustion synthesis shift the optical absorption threshold to visible light, the band gap of 0.4 Ni-TiO2 (atomic ratio) is 2.3 eV, which corresponds to a 564 nm threshold in the visible light range. The crystal type of photocatalyst is anatase TiO2 and the content of NiTiO3 rise with the increase of Ni dopant. The grain size of photocatalyst distributes from 50 to 150nm, which account for 96.9% of entire quantity. During temperature rising, the TiO2 phase in photocatalyst transforms from amorphous structure to anatase and NiTiO3 crystallites appear at 445.2 degrees C. After 150 min visible light irradiation, 93.9% of methylene blue dye are degraded over 0.4 Ni-TiO2 photocatalyst. The photocatalytic activity of Ni doped TiO2 is higher than that of P25 under identical conditions. PMID:17326417

  4. Synthesis of rare earth doped TiO2 nanorods as photocatalysts for lignin degradation

    NASA Astrophysics Data System (ADS)

    Song, Liang; Zhao, Xueyuan; Cao, Lixin; Moon, Ji-Won; Gu, Baohua; Wang, Wei

    2015-10-01

    A two-step process is developed to synthesize rare earth doped titania nanorods (RE-TiO2 NRs) as photocatalysts for efficient degradation of lignin under simulated sunlight irradiation. In this approach, protonated titanate nanotubes with layered structures were first prepared by a hydrothermal approach, and rare earth metal ions were subsequently bound to the negatively charged surface of the synthesized titanate via electrostatic incorporation. The as-synthesized RE-TiO2 NRs after calcination generally showed much higher photocatalytic efficiencies than those of undoped TiO2 NRs or the commercial P25 TiO2 photocatalyst. Using methyl orange (MO) as a probing molecule, we demonstrate that Eu-TiO2 NRs are among the best for degrading MO, with an observed rate constant of 4.2 × 10-3 s-1. The La3+, Sm3+, Eu3+ and Er3+ doped TiO2 NRs also showed higher photocatalytic efficiencies in degrading MO than the commercial P25 TiO2. We further demonstrate that lignin can be photodegraded effectively and rapidly at room temperature under simulated sunlight through two reaction routes, which could be important in controlling ways of lignin depolymerization or the formation of reaction products.A two-step process is developed to synthesize rare earth doped titania nanorods (RE-TiO2 NRs) as photocatalysts for efficient degradation of lignin under simulated sunlight irradiation. In this approach, protonated titanate nanotubes with layered structures were first prepared by a hydrothermal approach, and rare earth metal ions were subsequently bound to the negatively charged surface of the synthesized titanate via electrostatic incorporation. The as-synthesized RE-TiO2 NRs after calcination generally showed much higher photocatalytic efficiencies than those of undoped TiO2 NRs or the commercial P25 TiO2 photocatalyst. Using methyl orange (MO) as a probing molecule, we demonstrate that Eu-TiO2 NRs are among the best for degrading MO, with an observed rate constant of 4.2 × 10-3 s-1. The La3+, Sm3+, Eu3+ and Er3+ doped TiO2 NRs also showed higher photocatalytic efficiencies in degrading MO than the commercial P25 TiO2. We further demonstrate that lignin can be photodegraded effectively and rapidly at room temperature under simulated sunlight through two reaction routes, which could be important in controlling ways of lignin depolymerization or the formation of reaction products. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03537f

  5. Synthesis of rare earth doped TiO2 nanorods as photocatalysts for lignin degradation.

    PubMed

    Song, Liang; Zhao, Xueyuan; Cao, Lixin; Moon, Ji-Won; Gu, Baohua; Wang, Wei

    2015-10-28

    A two-step process is developed to synthesize rare earth doped titania nanorods (RE-TiO2 NRs) as photocatalysts for efficient degradation of lignin under simulated sunlight irradiation. In this approach, protonated titanate nanotubes with layered structures were first prepared by a hydrothermal approach, and rare earth metal ions were subsequently bound to the negatively charged surface of the synthesized titanate via electrostatic incorporation. The as-synthesized RE-TiO2 NRs after calcination generally showed much higher photocatalytic efficiencies than those of undoped TiO2 NRs or the commercial P25 TiO2 photocatalyst. Using methyl orange (MO) as a probing molecule, we demonstrate that Eu-TiO2 NRs are among the best for degrading MO, with an observed rate constant of 4.2 × 10(-3) s(-1). The La(3+), Sm(3+), Eu(3+) and Er(3+) doped TiO2 NRs also showed higher photocatalytic efficiencies in degrading MO than the commercial P25 TiO2. We further demonstrate that lignin can be photodegraded effectively and rapidly at room temperature under simulated sunlight through two reaction routes, which could be important in controlling ways of lignin depolymerization or the formation of reaction products. PMID:26400095

  6. Synthesis and characterization of N-doped TiO2 photocatalysts with tunable response to solar radiation

    NASA Astrophysics Data System (ADS)

    Petala, Athanasia; Tsikritzis, Dimitris; Kollia, Mary; Ladas, Spyridon; Kennou, Stella; Kondarides, Dimitris I.

    2014-06-01

    Modification of the electronic structure of wide band gap semiconductors by anion doping is an effective strategy for the development of photocatalytic materials operating under solar light irradiation. In the present work, nitrogen-doped TiO2 photocatalysts of variable dopant content were synthesized by annealing a sol-gel derived TiO2 powder under flowing ammonia at temperatures in the range of 450-800 °C, and their physicochemical and optical properties were compared to those of undoped TiO2 samples calcined in air. Results show that materials synthesized at T = 450-600 °C contain relatively small amounts of dopant atoms and their colour varies from pale yellow to dark green due to the creation of localized states above the valence band of TiO2 and the formation of oxygen vacancies. Treatment with NH3 at T > 600 °C results in phase transformation of anatase to rutile, in a significant decrease of the specific surface area and in formation of TiN at the surface of the TiO2 particles. The resulting dark grey (T = 700 °C) and black (T = 800 °C) materials display strong absorption in both the visible and NIR regions, originating from partial reduction of TiO2 and formation of Ti3+ defect states. The present synthesis method enables tailoring of the electronic structure of the semiconductor and could be used for the development of solar light-responsive photocatalysts for photo(electro)chemical applications.

  7. Synthesis, photoelectric properties and photocatalytic activity of the Fe2O3/TiO2 heterogeneous photocatalysts.

    PubMed

    Peng, Linlin; Xie, Tengfeng; Lu, Yongchun; Fan, Haimei; Wang, Dejun

    2010-07-28

    Fe(2)O(3)/TiO(2) heterogeneous photocatalysts with different mass ratios of Fe(2)O(3)vs. TiO(2) were synthesized by impregnation of Fe(3+) on the surface of TiO(2) microrods and calcination at 300 degrees C. Scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), photoluminescence spectra and X-ray diffraction (XRD) have been used to characterize the samples. The photocatalytic activities of Fe(2)O(3)/TiO(2) heterocomposites, pure Fe(2)O(3) and pure TiO(2) were evaluated by the photodegrading efficiency of Orange II under visible light (lambda > 420 nm). The experiments demonstrated that Orange II in aqueous solution was more efficiently photodegraded using Fe(2)O(3)/TiO(2) heterogeneous photocatalysts than either pure Fe(2)O(3) or TiO(2) under visible light irradiation. With an optimal mass ratio of 7:3 in Fe(2)O(3)/TiO(2) the highest rate of Orange II photodegradation was achieved under the experimental conditions. We have also compared the photoelectric properties of Fe(2)O(3)/TiO(2) heterogeneous photocatalysts with that of pure Fe(2)O(3) by surface photovoltage (SPV) and transient photovoltage (TPV) techniques. Based on the photovoltage responses, we discussed the influence of the hetero-interface between Fe(2)O(3) and TiO(2) on transfer characteristics of photogenerated charge carriers. We demonstrated that the formation of heterojunctions between Fe(2)O(3) and TiO(2) for Fe(2)O(3)/TiO(2) composites was pivotal for improving the separation and thus restraining the recombination of photogenerated electrons and holes, which accounts for the enhancement of photocatalytic activity. PMID:20523943

  8. Novel TiO2/C nanocomposites: synthesis, characterization, and application as a photocatalyst for the degradation of organic pollutants.

    PubMed

    da Costa, Elias; Zamora, Patricio P; Zarbin, Aldo J G

    2012-02-15

    Novel TiO(2)/carbon nanocomposites were prepared through the pyrolysis of TiO(2)/poly(furfuryl alcohol) hybrid materials, which were obtained by the sol-gel method, starting from titanium tetraisopropoxide (TTIP) and furfuryl alcohol (FA) precursors. Six different TiO(2)/C samples were prepared based on different TiO(2) nanoparticle sizes and TiO(2)/FA ratios. All of the samples were characterized using X-ray diffraction, infrared, and Raman spectroscopy. The results indicated effective FA polymerization onto the TiO(2) (anatase) nanoparticles, polymer conversion to disordered carbon following the pyrolysis, and a simultaneous TiO(2) anatase-rutile phase transition. The resulting TiO(2)/carbon composites were used as photocatalysts in the advanced oxidative process (AOP) for the degradation of reactive organic dyes in aqueous solution. The results indicate excellent photocatalytic performance (degradation of 99% of the dye after 60 min) with several advantages over traditional TiO(2)-based photocatalysts. PMID:22056275

  9. Synthesis of N-doped TiO2 Using Guanidine Nitrate: An Excellent Visible Light Photocatalyst

    EPA Science Inventory

    An excellent visible light active nitrogen-rich TiO2 photocatalyst have been synthesized by using guanidine nitrate as the doping material. The catalytic efficiency of the catalyst has been demonstrated by the decomposition of the dye, methyl orange (MO), and the pollutant, 2,4 d...

  10. Synthesis and characterization of Fe-doped TiO2 photocatalyst by the sol-gel method

    NASA Astrophysics Data System (ADS)

    Loc Luu, Cam; Nguyen, Quoc Tuan; Thoang Ho, Si

    2010-03-01

    Thin layers of pure TiO2 and TiO2 doped by different amounts of Fe2O3 have been prepared by the sol-gel method with tetraisopropyl orthotitanate and Fe(NO3)3. Physico-chemical properties of catalysts were characterized by BET Adsorption, x-ray Diffraction (XRD), FE-SEM, as well as Raman and UV-Vis spectroscopy. The photocatalytic activity of the obtained materials was investigated in the reaction of complete oxidation of p-xylene in gas phase under the radiation of UV (?=365?nm) and LED (?=470?nm) lamps. It has been found that the particle size of all samples was distributed in the range 20-30?nm. The content of the rutile phase in Fe-doped TiO2 samples varied in the range 6.8 to 41.8% depending on the Fe content. Iron oxide doped into TiO2 enables the photon absorbing zone of TiO2 to extend from UV towards visible waves as well as to reduce its band gap energy from 3.2 to 2.67?eV. Photocatalytic activities of the TiO2 samples modified by Fe3+ have been found to be higher than those of pure TiO2 by about 2.5 times.

  11. Synthesis of CNY tri-doped TiO2 photo-catalyst for MO degradation and characterization

    NASA Astrophysics Data System (ADS)

    Hoseinian-Maleki, F.; Nemati, A.; Joya, Yasir F.

    2015-10-01

    In this research CNY tri-doped TiO2 nanopowders were synthesized by the solgel method. The CNY TiO2 photo-catalyst was prepared using hexamine and yttrium nitrate Hexahydrate as the dopant precursors. Methyl-orange (MO) was used to study the photocatalytic performance of the doped TiO2 under UV irradiation. The synthesized samples were characterized by x-ray diffraction, x-ray photoelectron spectroscopy, UVvis diffuse reflectance spectroscopy, Fourier transform infrared spectroscopy, Transmission electron microscopy, Photoluminescence and Field emission scanning electron microscopy. The tri-doped sample with 8% N, 0.4% Y and 1.5% C exhibited enhanced photocatalytic efficiencies. After 100 min of irradiation with UV light, 87% of MO was decomposed by CNY tri-doped TiO2 sample. It is suggested that the co-activity of C and N could make the intra-gap localized states above the valence band of TiO2, and carbon in TiO2 structure causes carbonate species to appear. These carbonate species acted as photosensitizer on the TiO2 surface to promote photo-catalytic activity of the as synthesized sample.

  12. SURFACTANT TEMPLATED SOL-GEL SYNTHESIS OF MESOPOROUS TIO2 PHOTOCATALYSTS AND THEIR APPLICATION IN THE DESTRUCTION OF CYANOBACTERIAL TOXINS

    EPA Science Inventory

    In the symposium, we will present the synthesis and properties of the mesoporous TIO2 films and membranes and fundamental and systematic study on the decomposition pathway of such biological toxins.

  13. Structure, synthesis, and applications of TiO2 nanobelts.

    PubMed

    Zhao, Zhenhuan; Tian, Jian; Sang, Yuanhua; Cabot, Andreu; Liu, Hong

    2015-04-24

    TiO2 semiconductor nanobelts have unique structural and functional properties, which lead to great potential in many fields, including photovoltaics, photocatalysis, energy storage, gas sensors, biosensors, and even biomaterials. A review of synthetic methods, properties, surface modification, and applications of TiO2 nanobelts is presented here. The structural features and basic properties of TiO2 nanobelts are systematically discussed, with the many applications of TiO2 nanobelts in the fields of photocatalysis, solar cells, gas sensors, biosensors, and lithium-ion batteries then introduced. Research efforts that aim to overcome the intrinsic drawbacks of TiO2 nanobelts are also highlighted. These efforts are focused on the rational design and modification of TiO2 nanobelts by doping with heteroatoms and/or forming surface heterostructures, to improve their desirable properties. Subsequently, the various types of surface heterostructures obtained by coupling TiO2 nanobelts with metal and metal oxide nanoparticles, chalcogenides, and conducting polymers are described. Further, the charge separation and electron transfer at the interfaces of these heterostructures are also discussed. These properties are related to improved sensitivity and selectivity for specific gases and biomolecules, as well as enhanced UV and visible light photocatalytic properties. The progress in developments of near-infrared-active photocatalysts based on TiO2 nanobelts is also highlighted. Finally, an outline of important directions of future research into the synthesis, modification, and applications of this unique material is given. PMID:25800706

  14. Photocatalytic oxidation of diethyl sulfide vapor over TiO2-based composite photocatalysts.

    PubMed

    Selishchev, Dmitry; Kozlov, Denis

    2014-01-01

    Composite TiO2/activated carbon (TiO2/AC) and TiO2/SiO2 photocatalysts with TiO2 contents in the 10 to 80 wt. % range were synthesized by the TiOSO4 thermal hydrolysis method and characterized by AES, BET, X-ray diffraction and FT-IR ATR methods. All TiO2 samples were in the anatase form, with a primary crystallite size of about 11 nm. The photocatalytic activities of the TiO2/AC and TiO2/SiO2 samples were tested in the gas-phase photocatalytic oxidation (PCO) reaction of diethyl sulfide (DES) vapor in a static reactor by the FT-IR in situ method. Acetaldehyde, formic acid, ethylene and SO2 were registered as the intermediate products which finally were completely oxidized to the final oxidation products - H2O, CO2, CO and SO42- ions. The influence of the support on the kinetics of DES PCO and on the TiO2/AC and TiO2/SiO2 samples' stability during three long-term DES PCO cycles was investigated. The highest PCO rate was observed for TiO2/SiO2 photocatalysts. To evaluate the activity of photocatalysts the turnover frequency values (TOF) were calculated for three photocatalysts (TiO2, TiO2/AC and TiO2/SiO2) for the same amount of mineralized DES. It was demonstrated that the TOF value for composite TiO2/SiO2 photocatalysts was 3.5 times higher than for pure TiO2. PMID:25532841

  15. XAFS Study on TiO2 Photocatalyst Loaded on Zeolite Synthesized from Steel Slag

    SciTech Connect

    Kuwahara, Yasutaka; Ohmichi, Tetsutaro; Mori, Kosuke; Katayama, Iwao; Yamashita, Hiromi

    2007-02-02

    The convenient route for the synthesis of Y-zeolites by utilizing steel slag as a material source was developed. Through hydrothermal treatment, well-crystallized Y-zeolite was obtained. We also synthesized TiO2-loaded Y-zeolites by an impregnation method. The structure of titanium oxide species highly dispersed on the zeolite, which couldn't be detected by XRD patterns, was investigated by XAFS analysis. Photocatalytic activity for decomposition of 2-propanol in liquid phase was found to be enhanced by the hydrophobic surface property of zeolite. It has been demonstrated that the zeolite synthesized from steel slag would be applicable as a promising support of TiO2 photocatalyst.

  16. One-dimensional mesoporous Fe2O3@TiO2 core-shell nanocomposites: Rational design, synthesis and application as high-performance photocatalyst in visible and UV light region

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao; Xie, Yaping; Chen, Haoxin; Guo, Jinxue; Meng, Alan; Li, Chunfang

    2014-10-01

    An ideal photocatalyst for degradation of organic pollutants should combine the features of efficient visible light response, fast electron transport, high electron-hole separation efficiency, and large specific surface area. However, these requirements usually cannot be achieved simultaneously in the present state-of-the-art research. In this work, we develop a rational synthesis strategy for the preparation of one-dimensional (1D) mesoporous Fe2O3@TiO2 core-shell composites. In this strategy, FeOOH nanorods are firstly coated by TiO2 shell, followed by a calcination process. The as-prepared composites are thoroughly investigated with X-ray powder diffraction, scanning electron microscope, energy dispersive spectroscopy, transmission electron microscope, N2 adsorption-desorption isotherms, UV-visible diffuse-reflectance spectra, and photoluminescence spectra. Endowed with the advantages of its composition and specific structural features, the presented sample possesses the combined advantages mentioned above, thus delivering evidently enhanced photocatalytic activity for the degradation of methyl orange under UV light irradiation and Rhodamine B under visible light irradiation. And the possible mechanism of the enhanced photocatalytic performance is proposed.

  17. Synthesis of mesoporous TiO2/SiO2 hybrid films as an efficient photocatalyst by polymeric micelle assembly.

    PubMed

    Li, Yunqi; Bastakoti, Bishnu Prasad; Imura, Masataka; Hwang, Soo Min; Sun, Ziqi; Kim, Jung Ho; Dou, Shi Xue; Yamauchi, Yusuke

    2014-05-12

    Thermally stable mesoporous TiO2/SiO2 hybrid films with pore size of 50?nm have been synthesized by adopting the polymeric micelle-assembly method. A triblock copolymer, poly(styrene-b-2-vinyl pyridine-b-ethylene oxide), which serves as a template for the mesopores, was utilized to form polymeric micelles. The effective interaction of titanium tetraisopropoxide (TTIP) and tetraethyl orthosilicate (TEOS) with the polymeric micelles enabled us to fabricate stable mesoporous films. By changing the molar ratio of TEOS and TTIP, several mesoporous TiO2/SiO2 hybrid films with different compositions can be synthesized. The presence of amorphous SiO2 phase effectively retards the growth of anatase TiO2 crystal in the pore walls and retains the original mesoporous structure, even at higher temperature (650?C). These TiO2/SiO2 hybrid films are of very high quality, without any cracks or voids. The addition of SiO2 phase to mesoporous TiO2 films not only adsorbs more organic dyes, but also significantly enhances the photocatalytic activity compared to mesoporous pure TiO2 film without SiO2 phase. PMID:24710980

  18. Controllable Synthesis and Tunable Photocatalytic Properties of Ti(3+)-doped TiO2.

    PubMed

    Ren, Ren; Wen, Zhenhai; Cui, Shumao; Hou, Yang; Guo, Xiaoru; Chen, Junhong

    2015-01-01

    Photocatalysts show great potential in environmental remediation and water splitting using either artificial or natural light. Titanium dioxide (TiO2)-based photocatalysts are studied most frequently because they are stable, non-toxic, readily available, and highly efficient. However, the relatively wide band gap of TiO2 significantly limits its use under visible light or solar light. We herein report a facile route for controllable synthesis of Ti(3+)-doped TiO2 with tunable photocatalytic properties using a hydrothermal method with varying amounts of reductant, i.e., sodium borohydride (NaBH4). The resulting TiO2 showed color changes from light yellow, light grey, to dark grey with the increasing amount of NaBH4. The present method can controllably and effectively reduce Ti(4+) on the surface of TiO2 and induce partial transformation of anatase TiO2 to rutile TiO2, with the evolution of nanoparticles into hierarchical structures attributable to a high pressure and strong alkali environment in the synthesis atmosphere; in this way, the photocatalytic activity of Ti(3+)-doped TiO2 under visible-light can be tuned. The as-developed strategy may open up a new avenue for designing and functionalizing TiO2 materials for enhancing visible light absorption, narrowing band gap, and improving photocatalytic activity. PMID:26044406

  19. Controllable Synthesis and Tunable Photocatalytic Properties of Ti3+-doped TiO2

    PubMed Central

    Ren, Ren; Wen, Zhenhai; Cui, Shumao; Hou, Yang; Guo, Xiaoru; Chen, Junhong

    2015-01-01

    Photocatalysts show great potential in environmental remediation and water splitting using either artificial or natural light. Titanium dioxide (TiO2)-based photocatalysts are studied most frequently because they are stable, non-toxic, readily available, and highly efficient. However, the relatively wide band gap of TiO2 significantly limits its use under visible light or solar light. We herein report a facile route for controllable synthesis of Ti3+-doped TiO2 with tunable photocatalytic properties using a hydrothermal method with varying amounts of reductant, i.e., sodium borohydride (NaBH4). The resulting TiO2 showed color changes from light yellow, light grey, to dark grey with the increasing amount of NaBH4. The present method can controllably and effectively reduce Ti4+ on the surface of TiO2 and induce partial transformation of anatase TiO2 to rutile TiO2, with the evolution of nanoparticles into hierarchical structures attributable to a high pressure and strong alkali environment in the synthesis atmosphere; in this way, the photocatalytic activity of Ti3+-doped TiO2 under visible-light can be tuned. The as-developed strategy may open up a new avenue for designing and functionalizing TiO2 materials for enhancing visible light absorption, narrowing band gap, and improving photocatalytic activity. PMID:26044406

  20. Solvothermal synthesis of stable nanoporous polymeric bases-crystalline TiO2 nanocomposites: visible light active and efficient photocatalysts for water treatment

    NASA Astrophysics Data System (ADS)

    Liu, Fujian; Kong, Weiping; Wang, Liang; Noshadi, Iman; Zhang, Zhonghua; Qi, Chenze

    2015-02-01

    Visible light active and stable nanoporous polymeric base-crystalline TiO2 nanocomposites were solvothermally synthesized from in situ copolymerization of divinylbenzene (DVB) with 1-vinylimidazolate (VI) or 4-vinylpyridine (Py) in the presence of tetrabutyl titanate without the use of any other additives (PDVB-VI-TiO2-x, PDVB-Py-TiO2-x, where x stands for the molar ratio of TiO2 to VI or Py), which showed excellent activity with respect to catalyzing the degradation of organic pollutants of p-nitrophenol (PNP) and rhodamine-B (RhB). TEM and SEM images show that PDVB-VI-TiO2-x and PDVB-Py-TiO2-x have abundant nanopores, and TiO2 nanocrystals with a high degree of crystallinity were homogeneously embedded in the PDVB-VI-TiO2-x and PDVB-Py-TiO2-x, forming a stable brick-and-mortar nanostructure. PDVB-VI and PDVB-Py supports act as the glue linking TiO2 nanocrystals to form nanopores and constraining the agglomeration of TiO2 nanocrystals. XPS spectra show evidence of unique interactions between TiO2 and basic sites in these samples. UV diffuse reflectance shows that PDVB-VI-TiO2-x and PDVB-Py-TiO2-x exhibit a unique response to visible light. Catalytic tests show that the PDVB-VI-TiO2-x and PDVB-Py-TiO2-x were active in catalyzing the degradation of PNP and RhB organic pollutants under visible light irradiation. The enhanced activities of the PDVB-VI-TiO2-x and PDVB-Py-TiO2-x were ascribed to synergistic effects between abundant nanopores and the unique optical adsorption of visible light in the samples.

  1. Self-cleaning properties of cement plates loaded with N,C-modified TiO2 photocatalysts

    NASA Astrophysics Data System (ADS)

    Janus, Magdalena; Zatorska, Justyna; Czy?ewski, Adam; Bubacz, Kamila; Kusiak-Nejman, Ewelina; Morawski, Antoni W.

    2015-03-01

    The photocatalytic activity of cement pastes containing nitrogen and carbon co-modified TiO2 photocatalysts (TiO2-N,C) were evaluated trough the degradation of model organic water contaminate (Reactive Red 198) under UV-vis light source. It was found that cement plates containing TiO2-N,C photocatalysts exhibited higher photocatalytic efficiency than those containing unmodified TiO2.

  2. Synthesis and characterization of Fe3O4/TiO2 magnetic and photocatalyst bifunctional core-shell with superparamagnetic performance

    NASA Astrophysics Data System (ADS)

    Behrad, F.; Helmi Rashid Farimani, M.; Shahtahmasebi, N.; Rezaee Roknabadi, M.; Karimipour, M.

    2015-07-01

    In this research a simple method has been presented to coat magnetic nanoparticles with TiO2. Firstly, Fe3O4 nanoparticles have been prepared using a co-precipitation method. Thereafter, in order to achieve particles with better dispersibility, the surface of Fe3O4 nanoparticles has been modified with the help of trisodium citrate as stabilizer. Afterward, Fe3O4 / TiO2 core-shell nanocomposites were synthesized by the Stber method. The prepared samples were characterized by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, energy dispersive X-ray spectroscopy (EDS) analysis and vibrating sample magnetometer (VSM). XRD results show the formation of two compounds of crystalline magnetite and brookite-type TiO2 . TEM images confirmed the formation of their core-shell structure. The surface modification of magnetite nanoparticles using trisodium citrate was confirmed by FTIR analysis. Magnetic studies also indicated that prepared core-shells exhibit superparamagnetic behavior at room temperature. Combining this property with the photocatalytic ability of TiO2 could result in a synthesized nanocomposite with different medical and environmental applications.

  3. Stable semiconductor black phosphorus (BP)@titanium dioxide (TiO2) hybrid photocatalysts

    PubMed Central

    Uk Lee, Hyun; Lee, Soon Chang; Won, Jonghan; Son, Byung-Chul; Choi, Saehae; Kim, Yooseok; Park, So Young; Kim, Hee-Sik; Lee, Young-Chul; Lee, Jouhahn

    2015-01-01

    Over the past few decades, two-dimensional (2D) and layered materials have emerged as new fields. Due to the zero-band-gap nature of graphene and the low photocatalytic performance of MoS2, more advanced semiconducting 2D materials have been prompted. As a result, semiconductor black phosphorus (BP) is a derived cutting-edge post-graphene contender for nanoelectrical application, because of its direct-band-gap nature. For the first time, we report on robust BP@TiO2 hybrid photocatalysts offering enhanced photocatalytic performance under light irradiation in environmental and biomedical fields, with negligible affected on temperature and pH conditions, as compared with MoS2@TiO2 prepared by the identical synthesis method. Remarkably, in contrast to pure few layered BP, which, due to its intrinsic sensitivity to oxygen and humidity was readily dissolved after just several uses, the BP@TiO2 hybrid photocatalysts showed a ~92% photocatalytic activity after 15 runs. Thus, metal-oxide-stabilized BP photocatalysts can be practically applied as a promising alternative to graphene and MoS2. PMID:25732720

  4. Stable semiconductor black phosphorus (BP)@titanium dioxide (TiO2) hybrid photocatalysts.

    PubMed

    Lee, Hyun Uk; Lee, Soon Chang; Won, Jonghan; Son, Byung-Chul; Choi, Saehae; Kim, Yooseok; Park, So Young; Kim, Hee-Sik; Lee, Young-Chul; Lee, Jouhahn

    2015-01-01

    Over the past few decades, two-dimensional (2D) and layered materials have emerged as new fields. Due to the zero-band-gap nature of graphene and the low photocatalytic performance of MoS2, more advanced semiconducting 2D materials have been prompted. As a result, semiconductor black phosphorus (BP) is a derived cutting-edge post-graphene contender for nanoelectrical application, because of its direct-band-gap nature. For the first time, we report on robust BP@TiO2 hybrid photocatalysts offering enhanced photocatalytic performance under light irradiation in environmental and biomedical fields, with negligible affected on temperature and pH conditions, as compared with MoS2@TiO2 prepared by the identical synthesis method. Remarkably, in contrast to pure few layered BP, which, due to its intrinsic sensitivity to oxygen and humidity was readily dissolved after just several uses, the BP@TiO2 hybrid photocatalysts showed a ~92% photocatalytic activity after 15 runs. Thus, metal-oxide-stabilized BP photocatalysts can be practically applied as a promising alternative to graphene and MoS2. PMID:25732720

  5. Hydrogenated TiO2 nanobelts as highly efficient photocatalytic organic dye degradation and hydrogen evolution photocatalyst.

    PubMed

    Tian, Jian; Leng, Yanhua; Cui, Hongzhi; Liu, Hong

    2015-12-15

    TiO2 nanobelts have gained increasing interest because of its outstanding properties and promising applications in a wide range of fields. Here we report the facile synthesis of hydrogenated TiO2 (H-TiO2) nanobelts, which exhibit excellent UV and visible photocatalytic decomposing of methyl orange (MO) and water splitting for hydrogen production. The improved photocatalytic property can be attributed to the Ti(3+) ions and oxygen vacancies in TiO2 nanobelts created by hydrogenation. Ti(3+) ions and oxygen vacancies can enhance visible light absorption, promote charge carrier trapping, and hinder the photogenerated electron-hole recombination. This work offers a simple strategy for the fabrication of a wide solar spectrum of active photocatalysts, which possesses significant potential for more efficient photodegradation, photocatalytic water splitting, and enhanced solar cells using sunlight as light source. PMID:26118828

  6. A high-stability silica-clay composite: synthesis, characterization and combination with TiO2 as a novel photocatalyst for Azo dye.

    PubMed

    Li, Fangfei; Jiang, Yinshan; Xia, Maosheng; Sun, Mengmeng; Xue, Bing; Ren, Xuehong

    2009-06-15

    A novel micro-mesopores composite material has successfully been synthesized at basic hydrothermal conditions using natural mineral montmorillonite (MMT) and tetraethoxysilane (TEOS). Two surfactants, cetyltrimethyl ammonium bromide (CTAB) and polyethylene glycol (PEG), have been employed in order to shape the pores in the composite. The resultant silica-clay has large surface area (472m(2)/g) and high hydrothermal stability, which makes it a potentially host-material for catalyst. The molecular size of different surfactant leads to the multi-peak distribution of pore size, and the surfactant of larger size (PEG) corresponds to the formation of larger pores. Moreover, the photocatalytic results show that, comparing with pure TiO(2) particles, the loaded TiO(2) on such silica-clay shows higher photodegradation rate of methyl orange (MO) in aqueous. And another porous aluminosilicate host, zeolite, was also discussed for comparison. PMID:19036502

  7. Layered silicate as an excellent partner of a TiO2 photocatalyst for efficient and selective green fine-chemical synthesis.

    PubMed

    Ide, Yusuke; Torii, Masato; Sano, Tsuneji

    2013-08-14

    When the partial oxidation of benzene to phenol, which is one of the most important reactions in chemical industry, was conducted using TiO2 in the presence of a phenol-philic adsorbent derived from a layered silicate, phenol was recovered in unprecedentedly high yield and purity. This resulted from the fact that the adsorbent captured the generated phenol promptly, selectively, and effectively to prevent the overoxidation, after which the captured phenol could be easily eluted. PMID:23902420

  8. Characterization of nitrogen ion implanted TiO2 photocatalysts by XAFS and XPS

    NASA Astrophysics Data System (ADS)

    Yoshida, Tomoko; Niimi, Satoshi; Yamamoto, Muneaki; Ogawa, Satoshi; Nomoto, Toyokazu; Yagi, Shinya

    2015-12-01

    A nitrogen doped TiO2 as a visible-light response photocatalyst was prepared by N+ implantation technique. N+-implanted TiO2 samples promoted the photocatalytic activity for degradation of methylene blue under visible-light irradiation. XANES and XPS analyses indicated two types of chemical state of nitrogen, one photo-catalytically active N substituting the O sites and the other inactive NOx (1 ⩽ x ⩽ 2) species. In the valence band XPS spectrum of the high activity sample, the additional electronic states were observed just above the valence band edge of a TiO2. The electronic state would be originated from the substitutional nitrogen and be responsible for the band gap narrowing, i.e., visible light response of TiO2 photocatalysts.

  9. One-pot approach for synthesis of N-doped TiO2/ZnFe2O4 hybrid as an efficient photocatalyst for degradation of aqueous organic pollutants.

    PubMed

    Yao, Yunjin; Qin, Jiacheng; Chen, Hao; Wei, Fengyu; Liu, Xueting; Wang, Jianlong; Wang, Shaobin

    2015-06-30

    N-doped TiO2/ZnFe2O4 catalysts were successfully prepared by coupling nitrogen modified TiO2 with ZnFe2O4 via a one-pot vapor-thermal method. The physicochemical properties of the as-prepared catalysts have been characterized using various spectroscopic and microscopic techniques. The UV-vis-light-driven photocatalytic activities of the hybrids were evaluated and the effects of the amount of photocatalyst, different types of dyes, catalyst stability on photodegradation of organic dyes were investigated. Moreover, degradation kinetics and mechanism as well as the roles of N doping, ZnFe2O4 and TiO2 have been analyzed. It was revealed that N-doped TiO2/ZnFe2O4 exhibited an improved performance compared with TiO2/ZnFe2O4 or ZnFe2O4 because of the formation of a heterostructure at the interface as well as the introduction of N species. Active species such as holes, electrons, hydroxyl radicals, and superoxide radicals involved in the photodegradation process were detected by using different types of scavengers. Because of ZnFe2O4 in the hybrid, the catalyst shows ferromagnetism, and thus, the hybrid catalyst is easily isolated from the reaction mixture after the photocatalytic experiments. This work not only offers a simple method for the fabrication of N doped TiO2/ZnFe2O4 hybrids, but also provides an effective and conveniently recyclable photocatalyst for the purification of water. PMID:25748999

  10. Photooxidative desulfurization for diesel using Fe / N - TiO2 photocatalyst

    NASA Astrophysics Data System (ADS)

    Khan, Muhammad Saqib; Kait, Chong Fai; Mutalib, Mohd Ibrahim Abdul

    2014-10-01

    A series of N - TiO2 with different mol% N was synthesized via sol-gel method and characterized using thermal gravimetric analyzer and raman spectroscopy. 0.2 wt% Fe was incorporated onto the calcined (200C) N - TiO2 followed by calcination at 200C, 250C and 300C. Photooxidative desulfurization was conducted in the presence of 0.2wt% Fe / N - TiO2 with different mol% N with and without oxidant (H2O2). Oxidative desulfurization was only achieved when H2O2 was used while without H2O2 no major effect on the sulfur removal. 0.2Fe -30N - H2O2 photocatalysts showed best performance at all calcination temperatures as compared to other mol% N - H2O2 photocatalysts. 16.45% sulfur removal was achieved using photocatalysts calcined at 300 C.

  11. Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review.

    PubMed

    Akpan, U G; Hameed, B H

    2009-10-30

    This paper presents the review of the effects of operating parameters on the photocatalytic degradation of textile dyes using TiO2-based photocatalysts. It further examines various methods used in the preparations of the considered photocatalysts. The findings revealed that various parameters, such as the initial pH of the solution to be degraded, oxidizing agents, temperature at which the catalysts must be calcined, dopant(s) content and catalyst loading exert their individual influence on the photocatalytic degradation of any dye in wastewaters. It was also found out that sol-gel method is widely used in the production of TiO2-based photocatalysts because of the advantage derived from its ability to synthesize nanosized crystallized powder of the photocatalysts of high purity at relatively low temperature. PMID:19505759

  12. TiO2 /Cu2 O Core/Ultrathin Shell Nanorods as Efficient and Stable Photocatalysts for Water Reduction.

    PubMed

    Liu, Yuanxu; Zhang, Bingsen; Luo, Liangfeng; Chen, Xuanye; Wang, Zhonglei; Wu, Erlong; Su, Dangsheng; Huang, Weixin

    2015-12-01

    P-type Cu2 O has been long considered as an attractive photocatalyst for photocatalytic water reduction, but few successful examples has been reported. Here, we report the synthesis of TiO2 (core)/Cu2 O (ultrathin film shell) nanorods by a redox reaction between Cu(2+) and in-situ generated Ti(3+) when Cu(2+) -exchanged H-titanate nanotubes are calcined in air. Owing to the strong TiO2 -Cu2 O interfacial interaction, TiO2 (core)/Cu2 O (ultrathin film shell) nanorods are highly active and stable in photocatalytic water reduction. The TiO2 core and Cu2 O ultrathin film shell respectively act as the photosensitizer and cocatalyst, and both the photoexcited electrons in the conduction band and the holes in the valence band of TiO2 respectively transfer to the conduction band and valence band of the Cu2 O ultrathin film shell. Our results unambiguously show that Cu2 O itself can act as the highly active and stable cocatalyst for photocatalytic water reduction. PMID:26555557

  13. Nanostructured TiO2 photocatalysts for the determination of organic pollutants.

    PubMed

    Qiu, Jingxia; Zhang, Shanqing; Zhao, Huijun

    2012-04-15

    Owing to the inherent advantages of nanostructured TiO(2) photocatalysts, including high photocatalytic activity, strong oxidation power, low cost, environmental benignity and excellent stability, TiO(2) photocatalyts have recently attracted extensive attention from scientific researchers, technology developers and investors for use in sensing applications. The TiO(2) sensors can be used for lab-based analyses, on-line and on-site determination of organic pollutants in wastewater. This work reviews the application of TiO(2) nanomaterials in photocatalytic and photoelectrocatalytic monitoring of aggregative organic parameters such as total organic carbon (TOC) and chemical oxygen demand (COD), as well as individual organic compounds in aqueous solution. PMID:22133353

  14. TiO2 impregnated graphene nanostructures: An effectual photocatalysts for water remediation application

    NASA Astrophysics Data System (ADS)

    Rakkesh, R. Ajay; Durgalakshmi, D.; Balakumar, S.

    2015-06-01

    In this work, we describe the fabrication of nanohybrid TiO2 impregnated Graphene nanostructures by modified Hummer's method. The chemically impregnated TiO2-Graphene hybrid nanostructures drastically enhanced their photodegradation activity of methylene blue (MB) dye in an aqueous medium compare to pure TiO2 nanoparticles. The enhancement in the photocatalytic activity was ascribed by a heterojunction between TiO2-Graphene interfaces. It remarkably decreased the recombination rate and likewise increased the number of holes participating in the photodegradation process, confirmed by XPS analysis. This study can provide a new insight for constructing the hybrid photocatalysts, which can be used in environmental pollution and water treatment applications.

  15. Fabrication of TiO2/MoS2@zeolite photocatalyst and its photocatalytic activity for degradation of methyl orange under visible light

    NASA Astrophysics Data System (ADS)

    Zhang, Weiping; Xiao, Xinyan; Zheng, Lili; Wan, Caixia

    2015-12-01

    TiO2/MoS2@zeolite composite photocatalysts with visible-light activity were fabricated via a simple ultrasonic-hydrothermal synthesis method, using TiCl4 as Ti source, MoS2 as a direct sensitizer, glycerol water solution with certain dispersion agent as hydrolytic agent, and zeolite as carrier. The structure, morphology, composition, optical properties, and specific surface area of the as-prepared photocatalysts were characterized by using XRD, FTIR, SEM-EDS, TEM, XPS, UV-vis, PL and BET analyzer, respectively. And the photocatalytic degradation of methyl orange (MO) in aqueous suspension has been employed to evaluate the photocatalytic activity and degradation kinetics of as-prepared photocatalysts with xenon lamp as irradiation source. The results indicate that: (1) TiO2/MoS2@zeolite composite photocatalysts exhibit enhanced photocatalytic activities for methyl orange (MO) degradation compared to Degussa P25; (2) photocatalytic degradation of MO obeys Langmuir-Hinshelwood kinetic model (pseudo-first order reaction), and its degradation rate constant (kapp) (2.304 h-1) is higher than that of Degussa P25 (0.768 h-1); (3) the heterostructure consisted of zeolite, MoS2 and TiO2 nanostructure could provide synergistic effect for degradation of MO due to the efficient electron transfer process and better absorption property of TiO2/MoS2@zeolite composite photocatalyst.

  16. Metal oxide nanocluster-modified TiO2 as solar activated photocatalyst materials

    NASA Astrophysics Data System (ADS)

    Fronzi, Marco; Iwaszuk, Anna; Lucid, Aoife; Nolan, Michael

    2016-02-01

    In this review we describe our work on new TiO2 based photocatalysts. The key concept in our work is to form new composite structures by the modification of rutile and anatase TiO2 with nanoclusters of metal oxides and our density functional theory (DFT) level simulations are validated by experimental work synthesizing and characterizing surface-modified TiO2. We use DFT to show that nanoclusters of different metal oxides, TiO2, SnO/SnO2, PbO/PbO2, NiO and CuO can be adsorbed at rutile and anatase surfaces and can induce red shifts in the absorption edge to enable visible light absorption which is the first key requirement for a practical photocatalyst. We furthermore determine the origin of the red shift and discuss the factors influencing this shift and the fate of excited electrons and holes. For p-block metal oxides we show how the oxidation state of Sn and Pb can be used to tune both the magnitude of the red shift and also its mechanism. Finally, aiming to make our models more realistic, we present some new results on the stability of water at rutile and anatase surfaces and the effect of water on oxygen vacancy formation and on nanocluster modification. These nanocluster-modified TiO2 structures form the basis of a new class of photocatalysts which will be useful in oxidation reactions and with the suitable choice of nanocluster modifier can be applied to CO2 reduction.

  17. Metal oxide nanocluster-modified TiO2 as solar activated photocatalyst materials.

    PubMed

    Fronzi, Marco; Iwaszuk, Anna; Lucid, Aoife; Nolan, Michael

    2016-02-24

    In this review we describe our work on new TiO2 based photocatalysts. The key concept in our work is to form new composite structures by the modification of rutile and anatase TiO2 with nanoclusters of metal oxides and our density functional theory (DFT) level simulations are validated by experimental work synthesizing and characterizing surface-modified TiO2. We use DFT to show that nanoclusters of different metal oxides, TiO2, SnO/SnO2, PbO/PbO2, NiO and CuO can be adsorbed at rutile and anatase surfaces and can induce red shifts in the absorption edge to enable visible light absorption which is the first key requirement for a practical photocatalyst. We furthermore determine the origin of the red shift and discuss the factors influencing this shift and the fate of excited electrons and holes. For p-block metal oxides we show how the oxidation state of Sn and Pb can be used to tune both the magnitude of the red shift and also its mechanism. Finally, aiming to make our models more realistic, we present some new results on the stability of water at rutile and anatase surfaces and the effect of water on oxygen vacancy formation and on nanocluster modification. These nanocluster-modified TiO2 structures form the basis of a new class of photocatalysts which will be useful in oxidation reactions and with the suitable choice of nanocluster modifier can be applied to CO2 reduction. PMID:26808905

  18. Comparative study of (N, Fe) doped TiO2 photocatalysts

    NASA Astrophysics Data System (ADS)

    Larumbe, S.; Monge, M.; Gmez-Polo, C.

    2015-02-01

    The effect of N and Fe doping on the structural, optical, photocatalytic and magnetic properties of TiO2 nanoparticles is analyzed. Undoped, N and Fe doped TiO2 nanoparticles were synthesized by sol-gel method. Titanium tetraisopropoxide (TTIP) was used as the alkoxyde precursor and iron (III) nitrate and urea were the employed precursors to obtain Fe and N doped TiO2 nanoparticles, respectively. Differential Scanning Calorimetry (DSC) and Thermogravimetrical Analysis (TGA) enabled the analysis of the thermal decomposition process and the final calcination temperature. X-Ray Diffraction patterns of the calcined nanoparticles displayed a monophasic anatase structure in all the samples with mean crystallite diameter around 4-6 nm. The introduction of Fe or N induced a red-shift in the absorption spectra. Such a red-shift is characterized by a decrease in the band-gap energy and the occurrence of an absorption (Urbach) tail in the visible region. Finally, the photocatalytic efficiency was evaluated under UV and Visible light, obtaining an improvement of the kinetic constants in the nitrogen doped TiO2 nanoparticles with respect to undoped and Fe doped TiO2. The differences in the photocatalytic response under Fe and N doping are also analyzed in terms of the magnetic response of the analyzed photocatalysts.

  19. TiO2@Carbon Photocatalysts: The Effect of Carbon Thickness on Catalysis.

    PubMed

    Zhang, Jianming; Vasei, Mitra; Sang, Yuanhua; Liu, Hong; Claverie, Jerome P

    2016-01-27

    Nanocomposites composed of TiO2 and carbon materials (C) are widely popular photocatalysts because they combine the advantages of TiO2 (good UV photocatalytic activity, low cost, and stability) to the enhanced charge carrier separation and lower charge transfer resistance brought by carbon. However, the presence of carbon can also be detrimental to the photocatalytic performance as it can block the passage of light and prevent the reactant from accessing the TiO2 surface. Here using a novel interfacial in situ polymer encapsulation-graphitization method, where a glucose-containing polymer was grown directly on the surface of the TiO2, we have prepared uniform TiO2@C core-shell structures. The thickness of the carbon shell can be precisely and easily tuned between 0.5 and 8 nm by simply programming the polymer growth on TiO2. The resulting core@shell TiO2@C nanostructures are not black and they possess the highest activity for the photodegradation of organic compounds when the carbon shell thickness is 1-2 nm, corresponding to ?3-5 graphene layers. Photoluminescence and photocurrent generation tests further confirm the crucial contribution of the carbon shell on charge carrier separation and transport. This in situ polymeric encapsulation approach allows for the careful tuning of the thickness of graphite-like carbon, and it potentially constitutes a general and efficient route to prepare other oxide@C catalysts, which can therefore largely expand the applications of nanomaterials in catalysis. PMID:26716463

  20. Fabrication of visible-light-driven N-doped ordered mesoporous TiO2 photocatalysts and their photocatalytic applications.

    PubMed

    Anandan, S; Rao, T N; Gopalan, R; Ikuma, Y

    2014-04-01

    Herein we report a facile method for the synthesis of N-doped crystalline mesoporous titanium dioxide (NMT) with ordered structure. Structural characterization and HR-TEM studies revealed that NMT exhibits pure anatase phase with highly crystalline ordered mesoporous structure in NMT. The N2 isotherms are of type IV with an H1 hysteresis loop and a pronounced capillary condensation step at high relative pressure for NMT, suggesting the presence of well-ordered mesoporous structure. The reflectance spectrum of NMT shows stronger absorption in the visible region above 400 nm, owing to the substitution of the lattice oxygen by nitrogen. XPS results proved the doping of nitrogen in to oxygen in TiO2 lattice, which confirmed by the presence of peak at 401 eV for N1s. The efficiency of photocatalyst was evaluated by the degradation of Rhodamine-B and antibacterial activity against E. coli under visible-light irradiation. N-doped mesoporous TiO2 shows superior photocatalytic and anti-bacterial activity compared to pure TiO2 under visible-light irradiation. The enhanced photocatalytic activity of NMT is attributed to synergistic effect of NMT that is N-doping and well ordered crystalline mesoporous structure with high surface area of NMT. These findings suggest that N-doped mesoporous TiO2 has potential application in many areas such as degradation of hazardous pollutants, anti-bacterial agents, fuel cells, battery electrode, sensors, opto electronic devices, photo active self-cleaning surfaces. PMID:24734752

  1. Preparation and Performances of RuO2/TiO2 Films Photocatalyst Supported on Float Pearls

    NASA Astrophysics Data System (ADS)

    Yao, Bing-hua; Wang, Li-ming; Wang, Cheng; Wang, Yi-xun; Zhao, Gao-yang

    2007-12-01

    RuO2/TiO2 films were deposited on float pearls (FP) by the sol-gel-dipping method. The substrates were coated with RuO2/TiO2 precursor sol, air-dried at 120C and further heated at 500C to obtain the coupled photocatalyst of RuO2/TiO2 films supported on FP (RuO2/TiO2/FP). The structure of coupled photocatalyst was characterized by SEM, XRD, and FT-IR technique, respectively. The results showed TiO2 has anatase structure and doped RuO2 was highly dispersed on the surface of TiO2 particles as amorphous. The average thickness of RuO2/TiO2 films (3 layers) on FP was determined to be about 1 ?m. This study was carried out under the following conditions: volume 60 mL, initial concentration of beta-cypermethrin (BEC) 45 mg/L, pH 6.5, amount of RuO2/TiO2/PF 5 g/L, air flow rate 200 mL/min, reaction time 60 min. The degradation rates of BEC are 88.1% (125 W Hg lamp), 82.8% (8 W UV lamp), and 75.1% (8 W solar lamp), respectively. The photocatalytic degradation of BEC was experimentally demonstrated to follow the Langmuir-Hinshelwood kinetic model, and the reaction rate constant (17.5 mg/(L min)) and the adsorption constant (3.486 L/g) were determined, respectively. It was also found that the RuO2/TiO2/FP photocatalyst has significantly the visible light photoactivity for degradation of BEC.

  2. Quick and Facile Preparation of Visible light-Driven TiO2 Photocatalyst with High Absorption and Photocatalytic Activity

    PubMed Central

    Yang, Yucheng; Zhang, Ting; Le, Ling; Ruan, Xuefeng; Fang, Pengfei; Pan, Chunxu; Xiong, Rui; Shi, Jing; Wei, Jianhong

    2014-01-01

    Self-doping TiO2 has recently attracted considerable attention for its high photocatalytic activity under visible-light irradiation. However, the literature reported synthetic methods until now were very time-consuming. In this study, we establish a quick and facile method for obtaining self-doping TiO2 with the use of directly treated commercial P25 at a desired temperature for only 5?min through spark plasma sintering technology. With the using of this method, the modified P25 samples exhibit significantly high photoelectric and photocatalytic performance. Furthermore, the sample prepared at 600C exhibits the optimum catalytic activity. The photodegradation and H2 evolution rates of this samples are significantly higher than those of unmodified P25 sample under visible-light irradiation. The physical origin of the visible-light absorption for the modified P25 samples is investigated in detail according to their structural, optical, and electronic properties. This work will provide a quick and facile method for the large-scale synthesis of visible-light driven photocatalyst for practical applications. PMID:25391987

  3. Influence of Ag-Au microstructure on the photoelectrocatalytic performance of TiO2 nanotube array photocatalysts.

    PubMed

    Wang, Qingyao; Wang, Xiaotong; Zhang, Miao; Li, Guihua; Gao, Shanmin; Li, Mingyang; Zhang, Yiqing

    2016-02-01

    In this work, vertically-aligned TiO2 nanotube arrays (TiO2 NTs) were grown on Ti substrates via a facile electrochemical anodization method followed by calcinations. Then, Ag-Au alloy nanoparticles and Ag@Au core-shell nanoparticles were deposited on the obtained TiO2 NTs via UV reduction and displacement reaction, respectively. X-ray diffraction, scanning electron microscopy and transmission electron microscopy indicated that Ag-Au alloy nanoparticles and Ag@Au core-shell nanoparticles grew uniformly on the walls of TiO2 NTs. Investigation results from removal of methyl orange (MO) and Cr(IV) ions indicated that the as-prepared bimetal plasmonic photocatalysts exhibited excellent photoelectrocatalytic (PEC) activities. The influences of Ag-Au alloy and core-shell microstructures on PEC properties of TiO2 NTs were investigated and the TiO2 NTs/Ag@Au photocatalyst showed more outstanding PEC removal efficiency than that of TiO2 NTs/Ag-Au due to the regular core-shell microstructure and low recombination of photogenerated electrons and holes. PMID:26555961

  4. Preparation and characterization of visible-light-driven TiO2 photocatalyst Co-doped with nitrogen and erbium.

    PubMed

    Chen, Guihua; Wang, Yong; Zhang, Juihui; Wu, Chenglin; Liang, Huading; Yang, Hui

    2012-05-01

    A series of nitrogen and erbium co-doped TiO2 photocatalyst was prepared by sol-hydrothermal method. The structure and properties of the photocatalyst were characterized by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) method, X-ray photoelectron spectroscopy (XPS), and UV-vis diffuse reflectance spectra (DRS). The XRD and BET results showed that co-doping inhibited the increase of crystallite size and enlarged specific surface areas. XPS spectroscopy indicated nitrogen atoms were incorporated into TiO2 lattice, and erbium atoms mostly existed in the forms of Er2O3. A shift of the absorption edge to the lower energy and four absorption bands located at 654, 544, 524 and 489 nm attributed to the 4f transitions of 4I15/2 --> 4F2/9, 4I15/2 --> 4S3/2, 4I15/2 --> 2H11/2, 4I15/2 --> 4F7/2 of Er3+ were observed using DRS spectroscopy. The catalytic efficency was evaluated by the photocatalytic degradation of methyl orange (MO) under visible light irradiation. The results showed that the photocatalytic performance of the co-doped TiO2 was related with the hydrothermal temperature and the molar ratio of N/Ti, and they showed higher acitivites than pure TiO2. Results determined by fluorescence technique revealed that irradiation (lambda > 400 nm) of TiO2 photocatalyst dispersed in MO solution induces the generation of the highly active hydroxyl radicals (OH). It indicated the photocatalytic activities of TiO2 photocatalyst were correlation with the formation rate of hydroxyl radicals (OH) and other active oxygen species. PMID:22852309

  5. A visible-light-driven composite photocatalyst of TiO2 nanotube arrays and graphene quantum dots

    PubMed Central

    Chan, Donald K L; Cheung, Po Ling

    2014-01-01

    Summary TiO2 nanotube arrays are well-known efficient UV-driven photocatalysts. The incorporation of graphene quantum dots could extend the photo-response of the nanotubes to the visible-light range. Graphene quantum dot-sensitized TiO2 nanotube arrays were synthesized by covalently coupling these two materials. The product was characterized by Fourier-transform infrared spectrometry (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA) and UVvis absorption spectroscopy. The product exhibited high photocatalytic performance in the photodegradation of methylene blue and enhanced photocurrent under visible light irradiation. PMID:24991506

  6. A visible-light-driven composite photocatalyst of TiO2 nanotube arrays and graphene quantum dots.

    PubMed

    Chan, Donald K L; Cheung, Po Ling; Yu, Jimmy C

    2014-01-01

    TiO2 nanotube arrays are well-known efficient UV-driven photocatalysts. The incorporation of graphene quantum dots could extend the photo-response of the nanotubes to the visible-light range. Graphene quantum dot-sensitized TiO2 nanotube arrays were synthesized by covalently coupling these two materials. The product was characterized by Fourier-transform infrared spectrometry (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA) and UV-vis absorption spectroscopy. The product exhibited high photocatalytic performance in the photodegradation of methylene blue and enhanced photocurrent under visible light irradiation. PMID:24991506

  7. Preparation and photocatalytic activity of B, Ce Co-doped TiO2 hollow fibers photocatalyst

    NASA Astrophysics Data System (ADS)

    Qiu, Jingping; Sun, Xiaogang; Xing, Jun; Liu, Xiaobo

    2014-07-01

    A series of B, Ce co-doped TiO2 (B, Ce-TiO2) photocatalytic materials with a hollow fiber structure were successfully prepared by template method using boric acid, ammonium ceric nitrate and tetrabutyltitanate as precursors and cotton fibers as template, followed by calcination at 500°C in an N2 atmosphere for 2 h. Scanning electron microscopy (SEM), X-ray diffraction (XRD), nitrogen adsorption-desorption measurements, and UV-visible spectroscopy (UV-Vis) were employed to characterize the morphology, crystal structure, surface structure, and optical absorption properties of the samples. The photocatalytic performance of the samples was studied by photodegradation phenol in water under UV light irradiation. The results showed that the TiO2 fiber materials have hollow structures, and the fiber structure materials showed better photocatalytic properties for the degradation of phenol than pure TiO2 under UV light. In the experiment condition, the photocatalytic activity of B, Ce co-doped TiO2 fibers was optimal of all the prepared samples. In addition, the possibility of cyclic usage of B, Ce co-doped TiO2 fiber photocatalyst was also confirmed, the photocatalytic activity of TiO2 fibers remained above 90% of that of the fresh sample after being used four times. The material was easily removed by centrifugal separation from the medium. It can therefore be potentially applied for the treatment of water contaminated by organic pollutants.

  8. A highly efficient TiO2@ZnO n-p-n heterojunction nanorod photocatalyst

    NASA Astrophysics Data System (ADS)

    Lin, Lin; Yang, Yingchao; Men, Long; Wang, Xin; He, Dannong; Chai, Yuchao; Zhao, Bin; Ghoshroy, Soumitra; Tang, Qunwei

    2012-12-01

    Shell@core-nanostructured TiO2@ZnO n-p-n heterojunction nanorods with diameter of 30 nm were successfully fabricated via a hydrothermal method. The photodegradation rate of the TiO2@ZnO n-p-n nanorods evaluated by photodegrading methyl orange has been demonstrated to increase three times compared to that of wurtzite hexagonal ZnO. Anatase TiO2 and Ti2O3 grow along ZnO crystal lattices, which forms p-type Zn2+ doped Ti2O3 in the interface of TiO2/ZnO and therefore numerous n-p-n heterojunctions owing to the substitution of Ti3+ by Zn2+. Under the drive of inner electric field, the photogenerated electrons are both injected to the conduction band of Zn2+ doped Ti2O3 from conduction bands of ZnO and TiO2, which efficiently enhances the separation of photogenerated electron-hole pairs and accelerates the transport of charges. The results suggest that TiO2@ZnO n-p-n heterojunction nanorods are very promising for enhancing the photocatalytic activity of photocatalysts.

  9. Preparation and caracterization of TiO{2} powder photocatalysts. Comparative studies of photocatalytic activity in the degradation of ?-naphthol

    NASA Astrophysics Data System (ADS)

    Qourzal, S.; Tamimi, M.; Assabbane, A.; Nounah, A.; Maroufi, N.; Bouamrane, A.; Ichou, Y. Ait

    2005-03-01

    Titanium dioxide TiO{2} powder photocatalysts were prepared at the laboratory by two methods: hydrolysis of titanium tetraisopropoxide (TTIP) and the precipitation of a precursor starting from titanium tetrachloride TiCl{4} in basic medium. The products obtained are calcined at temperatures around 800 C. Their characterization was carried out by both diffraction X-ray (XRD) and thermogravimetric analysis (TGA). The photocatalytic activity of the elaborate solids (TiO{2}) is evaluated. It is compared with that given for commercial TiO{2} Degussa P-25 in the degradation of ?-naphthol chosen as an model molecule in aqueous suspension. These reactions are done at room temperature in a photochemical reactor.

  10. Effect of sulfate ions on the crystallization and photocatalytic activity of TiO2/diatomite composite photocatalyst

    NASA Astrophysics Data System (ADS)

    Zhang, Jinjun; Wang, Xiaoyan; Wang, Jimei; Wang, Jing; Ji, Zhijiang

    2016-01-01

    TiO2 nanoparticles were immobilized on diatomite by hydrolysis-deposition method using titanium tetrachloride as precursor. The effect of sulfate ions on the crystallization and photocatalytic activity of TiO2/diatomite composite photocatalyst was characterized by TG-DSC, XRD, BET surface area, SEM, FT-IR spectroscopy, XPS and UV-vis diffuse reflectance spectra. The results indicate that addition of a small amount of sulfate ions promotes the formation of anatase phase and inhibits the transformation from anatase to rutile. On the other hand, sulfate ions immobilized on the surface of TiO2/diatomite have strong affinity for electrons, capturing the photo-generated electrons, which hinders the recombination of electrons and holes.

  11. Rapid destruction of the rhodamine B using TiO2 photocatalyst in the liquid phase plasma

    PubMed Central

    2013-01-01

    Background Rhodamine B (RhB) is widely used as a colorant in textiles and food stuffs, and is also a well-known water tracer fluorescent. It is harmful to human beings and animals, and causes irritation of the skin, eyes and respiratory tract. The carcinogenicity, reproductive and developmental toxicity, neurotoxicity and chronic toxicity toward humans and animals have been experimentally proven. RhB cannot be effectively removed by biological treatment due to the slow kinetics. Therefore, RhB is chosen as a model pollutant for liquid phase plasma (LPP) treatment in the present investigation. Results This paper presents experimental results for the bleaching of RhB from aqueous solutions in the presence of TiO2 photocatalyst with LPP system. Properties of generated plasma were investigated by optical emission spectroscopy methods. The results of electrical-discharge degradation of RhB showed that the decomposition rate increased with the applied voltage, pulse width, and frequency. The oxygen gas addition to reactant solution increases the degradation rate by active oxygen species. The RhB decomposition rate was shown to increase with the TiO2 particle dosage. Conclusion This work presents the conclusions on the photocatalytic oxidation of RhB, as a function of plasma conditions, oxygen gas bubbling as well as TiO2 particle dosage. We knew that using the liquid phase plasma system with TiO2 photocatalyst at high speed we could remove the organic matter in the water. PMID:24041151

  12. Reduced graphene oxide and Ag wrapped TiO2 photocatalyst for enhanced visible light photocatalysis

    NASA Astrophysics Data System (ADS)

    Leong, Kah Hon; Sim, Lan Ching; Bahnemann, Detlef; Jang, Min; Ibrahim, Shaliza; Saravanan, Pichiah

    2015-10-01

    A well-organised reduced graphene oxide (RGO) and silver (Ag) wrapped TiO2 nano-hybrid was successfully achieved through a facile and easy route. The inherent characteristics of the synthesized RGO-Ag/TiO2 were revealed through crystalline phase, morphology, chemical composition, Raman scattering, UV-visible absorption, and photoluminescence analyses. The adopted synthesis route significantly controlled the uniform formation of silver nanoparticles and contributed for the absorption of light in the visible spectrum through localized surface plasmon resonance effects. The wrapped RGO nanosheets triggered the electron mobility and promoted visible light shift towards red spectrum. The accomplishment of synergised effect of RGO and Ag well degraded Bisphenol A under visible light irradiation with a removal efficiency of 61.9%.

  13. Investigation of TiO2 photocatalyst performance for decolorization in the presence of hydrodynamic cavitation as hybrid AOP.

    PubMed

    Bethi, Bhaskar; Sonawane, S H; Rohit, G S; Holkar, C R; Pinjari, D V; Bhanvase, B A; Pandit, A B

    2016-01-01

    In this article, an acoustic cavitation engineered novel approach for the synthesis of TiO2, cerium and Fe doped TiO2 nanophotocatalysts is reported. The prepared TiO2, cerium and Fe doped TiO2 nanophotocatalysts were characterized by XRD and TEM analysis to evaluate its structure and morphology. Photo catalytic performance of undoped TiO2 catalyst was investigated for the decolorization of crystal violet dye in aqueous solution at pH of 6.5 in the presence of hydro dynamic cavitation. Effect of catalyst doping with Fe and Ce was also studied for the decolorization of crystal violet dye. The results shows that, 0.8% of Fe-doped TiO2 exhibits maximum photocatalytic activity in the decolorization study of crystal violet dye due to the presence of Fe in the TiO2 and it may acts as a fenton reagent. Kinetic studies have also been reported for the hybrid AOP (HAOP) that followed the pseudo first-order reaction kinetics. PMID:26384894

  14. Ease synthesis of mesoporous WO3-TiO2 nanocomposites with enhanced photocatalytic performance for photodegradation of herbicide imazapyr under visible light and UV illumination.

    PubMed

    Ismail, Adel A; Abdelfattah, Ibrahim; Helal, Ahmed; Al-Sayari, S A; Robben, L; Bahnemann, D W

    2016-04-15

    Herein, we report the ease synthesis of mesoporous WO3-TiO2 nanocomposites at different WO3 contents (0-5wt%) together with their photocatalytic performance for the degradation of the imazapyr herbicide under visible light and UV illumination. XRD and Raman spectra indicated that the highly crystalline anatase TiO2 phase and monoclinic and triclinic of WO3 were formed. The mesoporous TiO2 exhibits large pore volumes of 0.267cm(3)g-1 and high surface areas of 180m(2)g(-1) but they become reduced to 0.221cm(3)g(-1) and 113m(2)g(-1), respectively upon WO3 incorporation, with tunable mesopore diameter in the range of 5-6.5nm. TEM images show WO3-TiO2 nanocomposites are quite uniform with 10-15nm of TiO2 and 5-10nm of WO3 sizes. Under UV illumination, the overall photocatalytic efficiency of the 3% WO3-TiO2 nanocomposite is 3.5 and 6.6 times higher than that of mesoporous TiO2 and commercial UV-100 photocatalyst, respectively. The 3% WO3-TiO2 nanocomposite is considered to be the optimum photocatalyst which is able to degrade completely (100% conversion) of imazapyr herbicide along 120min with high photonic efficiency ∼8%. While under visible light illumination, the 0.5% WO3-TiO2 nanocomposite is the optimum photocatalyst which achieves 46% photocatalytic efficiency. PMID:26775101

  15. Density functional theory calculations of dense TiO2 polymorphs: implication for visible-light-responsive photocatalysts.

    PubMed

    Kuo, Ming-Yu; Chen, Cheng-Lung; Hua, Chih-Yu; Yang, Hsiao-Ching; Shen, Pouyan

    2005-05-12

    Structural parameters and electronic band gaps of dense TiO(2) polymorphs, i.e., alpha-PbO(2), baddeleyite, fluorite, and cotunnite types of structures, were calculated using a first-principles density functional method with local-density approximation. The ambient phases, i.e., rutile and anatase, with known theoretical and experimental data were used to ensure the validity of the calculations. The fluorite-type TiO(2) turned out to have the narrowest band gap, 1.08 or 2.18 eV after applying a very approximate band gap correction, due to highly symmetrical TiO(8) polyhedra with Ti(3d) and O(2p) orbitals in the most mixed state. Ti with eight coordinated oxygens, as feasible under high pressure or residual stress, may have potential applications as a visible-light-responsive photocatalyst. PMID:16852029

  16. Enhanced sunlight photocatalytic activity of Ag3PO4 decorated novel combustion synthesis derived TiO2 nanobelts for dye and bacterial degradation.

    PubMed

    Eswar, Neerugatti KrishnaRao; Ramamurthy, Praveen Chandrashekarapura; Madras, Giridhar

    2015-07-01

    This study demonstrates the synthesis of TiO2 nanobelts using solution combustion derived TiO2 with enhanced photocatalytic activity for dye degradation and bacterial inactivation. Hydrothermal treatment of combustion synthesized TiO2 resulted in unique partially etched TiO2 nanobelts and Ag3PO4 was decorated using the co-precipitation method. The catalyst particles were characterized using X-ray diffraction analysis, BET surface area analysis, diffuse reflectance and electron microscopy. The photocatalytic properties of the composites of Ag3PO4 with pristine combustion synthesized TiO2 and commercial TiO2 under sunlight were compared. Therefore the studies conducted proved that the novel Ag3PO4/unique combustion synthesis derived TiO2 nanobelt composites exhibited extended light absorption, better charge transfer mechanism and higher generation of hydroxyl and hole radicals. These properties resulted in enhanced photodegradation of dyes and bacteria when compared to the commercial TiO2 nanocomposite. These findings have important implications in designing new photocatalysts for water purification. PMID:26056065

  17. Feasibility of Silver Doped TiO2/Glass Fiber Photocatalyst under Visible Irradiation as an Indoor Air Germicide

    PubMed Central

    Pham, Thanh-Dong; Lee, Byeong-Kyu

    2014-01-01

    This study investigated the feasibility of using Ag-TiO2 photocatalyst supported on glass fiber (Ag-TiO2/GF) prepared by a sol-gel method as an indoor air germicide. An experimental model was designed to investigate the bacterial disinfection efficiency of Staphylococcus (Staph), the most popular bacterium in hospitals in Korea, by the Ag-TiO2/GF photocatalyst. The silver content in Ag/TiO2 was altered from 1 to 10% to investigate the optimal ratio of Ag doped on TiO2/glass fiber (TiO2/GF) for photocatalytic disinfection of Staph. This study confirmed that Ag in Ag-TiO2/GF could work as an electron sink or donor to increase photocatalytic activity and promote the charge separation of electron-hole pairs generated from TiO2 after photon absorption. Ag also acts as an intermediate agent for the transfer of photo-generated electrons from the valence band of TiO2 to an acceptor (O2 gas) to promote photo-oxidation processes. The photocatalytic disinfection activity of Ag-TiO2/GF under visible light increased with the increase in silver content up to 7.5% and then slightly decreased with further increasing silver content. The highest disinfection efficiency and disinfection capacity of Staph using 7.5% Ag-TiO2/GF were 75.23% and 20 (CFU∙s−1∙cm−2) respectively. The medium level of humidity of 60% ± 5% showed better photocatalytic disinfection than the lower (40% ± 5%) or higher (80% ± 5%) levels. PMID:24658408

  18. TiO2/carboxylate-rich porous carbon: A highly efficient visible-light-driven photocatalyst based on the ligand-to-metal charge transfer (LMCT) process

    NASA Astrophysics Data System (ADS)

    Qu, Lingling; Huang, Dongliang; Shi, Hefei; Gu, Mengbin; Li, Jilei; Dong, Fei; Luo, Zhijun

    2015-10-01

    A novel visible-light-driven photocatalyst based on TiO2/carboxylate-rich porous carbon composite (TiO2/CRPC) was successfully synthesized by low temperature carbonization process in air. Sodium gluconate plays a crucial role in the formation of TiO2/CRPC. Different functional groups of sodium gluconate play synergetic roles in the formation of TiO2/CRPC. XRD and Raman spectra studies indicated that there are two different TiO2 crystalline phases existing in TiO2/CRPC, which are anatase and brookite, and the CRPC is amorphous. Via FT-IR and XPS spectra investigations, it was demonstrated that carboxylate group, the ligand-to-metal charge transfer (LMCT) forming functional group, was solidified into the CRPC and form the LMCT complex on TiO2 surface through the fabrication of TiO2/CRPC. Compared with the pure TiO2, TiO2/CRPC exhibit enhanced absorption in the UV and visible light region around 260-600 nm. The strong absorption in the visible light region gives TiO2/CRPC advantages over pure TiO2 for the degradation of organic pollutants. TiO2/CRPC can activate O2 in air under mild conditions and exhibit excellent visible-light-driven photocatalytic activities. However, TiO2/C composite obtained by using glucose instead of sodium gluconate exhibits poor photocatalytic activity, which demonstrated that carboxylate-TiO2 complexes are responsible for the prominent photocatalytic properties of TiO2/CRPC under visible light irradiation.

  19. Photocatalytic degradation of sulfamethoxazole in aqueous solution using a floating TiO2-expanded perlite photocatalyst.

    PubMed

    Długosz, Maciej; Żmudzki, Paweł; Kwiecień, Anna; Szczubiałka, Krzysztof; Krzek, Jan; Nowakowska, Maria

    2015-11-15

    Photocatalytic degradation of an antibiotic, sulfamethoxazole (SMX), in aqueous solution using a novel floating TiO2-expanded perlite photocatalyst (EP-TiO2-773) and radiation from the near UV spectral range was studied. The process is important considering that SMX is known to be a widespread and highly persistent pollutant of water resources. SMX degradation was described using a pseudo-first-order kinetic equation according to the Langmuir-Hinshelwood model. The products of the SMX photocatalytic degradation were identified. The effect of pH on the kinetics and mechanism of SMX photocatalytic degradation was explained. PMID:26024615

  20. Low temperature synthesis of polyaniline-crystalline TiO2-halloysite composite nanotubes with enhanced visible light photocatalytic activity.

    PubMed

    Li, Cuiping; Wang, Jie; Guo, Hong; Ding, Shujiang

    2015-11-15

    A series of one-dimensional polyaniline-crystalline TiO2-halloysite composite nanotubes with different mass ratio of polyaniline to TiO2 are facilely prepared by employing the low-temperature synthesis of crystalline TiO2 on halloysite nanotubes. The halloysite nanotubes can adsorb TiO2/polyaniline precursors and induce TiO2 nanocrystals/polyaniline to grow on the support in situ simultaneously. By simply adjusting the acidity of reaction system, PANI-crystalline TiO2-HA composite nanotubes composed of anatase, a mixed phase TiO2 and different PANI redox state are obtained. The XRD and UV-vis results show that the surface polyaniline sensitization has no effect on the crystalline structure of halloysite and TiO2 and the light response of TiO2 is extended to visible-light regions. Photocatalysis test results reveal the photocatalytic activity will be affected by the pH value and the volume ratio of ANI to TTIP. The highest photocatalytic activity is achieved with the composite photocatalysts prepared at pH 0.5 and 1% volume ratio of ANI and TTIP owing to the sensitizing effect of polyaniline and the charge transfer from the photoexcited PANI sensitizer to TiO2. Moreover, the PANI-TiO2-HA composite nanotubes synthesized by one-step at pH 0.5 with 1% volume ratio of ANI to TTIP exhibit higher visible light photocatalytic activity than those synthesized by the two-step. Heterogeneous PANI-TiO2-HA composite nanotubes prepared at pH 0.5 exhibit a higher degradation activity than that prepared at pH 1.5. The redoped experiment proves that the PANI redox state plays the main contribution to the enhanced visible light catalytic degradation efficiency of PANI-TiO2-HA prepared at pH 0.5. Furthermore, the heterogeneous PANI-crystalline TiO2-HA nanotubes have good photocatalytic stability and can be reused four times with only gradual loss of activity under visible light irradiation. PMID:26197106

  1. Fullerene C70 decorated TiO2 nanowires for visible-light-responsive photocatalyst

    NASA Astrophysics Data System (ADS)

    Cho, Er-Chieh; Ciou, Jing-Hao; Zheng, Jia-Huei; Pan, Job; Hsiao, Yu-Sheng; Lee, Kuen-Chan; Huang, Jen-Hsien

    2015-11-01

    In this study, we have synthesized C60 and C70-modified TiO2 nanowire (NW) through interfacial chemical bonding. The results indicate that the fullerenes (C60 and C70 derivatives) can act as sinks for photogenerated electrons in TiO2, while the fullerene/TiO2 is illuminated under ultraviolet (UV) light. Therefore, in comparison to the pure TiO2 NWs, the modified TiO2 NWs display a higher photocatalytic activity under UV irradiation. Moreover, the fullerenes also can function as a sensitizer to TiO2 which expand the utilization of solar light from UV to visible light. The results reveal that the C70/TiO2 NWs show a significant photocatalytic activity for degradation of methylene blue (MB) in visible light region. To better understand the mechanism responsible for the effect of fullerenes on the photocatalytic properties of TiO2, the electron only devices and photoelectrochemical cells based on fullerenes/TiO2 are also fabricated and evaluated.

  2. OXYGENATION OF HYDROCARBONS USING NANOSTRUCTURED TIO2 AS A PHOTOCATALYST: A GREEN ALTERNATIVE

    EPA Science Inventory

    High-value organic compounds have been synthesized successfully from linear and cyclic saturated hydrocarbons by a photocatalytic oxidation process using a semiconductor material, titanium dioxide (TiO2). Various hydrocarbons were partially oxygenated in both aqueous and gaseous...

  3. Highly efficient and recyclable triple-shelled Ag@Fe3O4@SiO2@TiO2 photocatalysts for degradation of organic pollutants and reduction of hexavalent chromium ions

    NASA Astrophysics Data System (ADS)

    Su, Jianwei; Zhang, Yunxia; Xu, Sichao; Wang, Shuan; Ding, Hualin; Pan, Shusheng; Wang, Guozhong; Li, Guanghai; Zhao, Huijun

    2014-04-01

    Herein, we demonstrate the design and fabrication of the well-defined triple-shelled Ag@Fe3O4@SiO2@TiO2 nanospheres with burr-shaped hierarchical structures, in which the multiple distinct functional components are integrated wonderfully into a single nanostructure. In comparison with commercial TiO2 (P25), pure TiO2 microspheres, Fe3O4@SiO2@TiO2 and annealed Ag@Fe3O4@SiO2@TiO2 nanocomposites, the as-obtained amorphous triple-shelled Ag@Fe3O4@SiO2@TiO2 hierarchical nanospheres exhibit a markedly enhanced visible light or sunlight photocatalytic activity towards the photodegradation of methylene blue and photoreduction of hexavalent chromium ions in wastewater. The outstanding photocatalytic activities of the plasmonic photocatalyst are mainly due to the enhanced light harvesting, reduced transport paths for both mass and charge transport, reduced recombination probability of photogenerated electrons/holes, near field electromagnetic enhancement and efficient scattering from the plasmonic nanostructure, increased surface-to-volume ratio and active sites in three dimensional (3D) hierarchical porous nanostructures, and improved photo/chemical stability. More importantly, the hierarchical nanostructured Ag@Fe3O4@SiO2@TiO2 photocatalysts could be easily collected and separated by applying an external magnetic field and reused at least five times without any appreciable reduction in photocatalytic efficiency. The enhanced photocatalytic activity and excellent chemical stability, in combination with the magnetic recyclability, make these multifunctional nanostructures promising candidates to remediate aquatic contaminants and meet the demands of future environmental issues.Herein, we demonstrate the design and fabrication of the well-defined triple-shelled Ag@Fe3O4@SiO2@TiO2 nanospheres with burr-shaped hierarchical structures, in which the multiple distinct functional components are integrated wonderfully into a single nanostructure. In comparison with commercial TiO2 (P25), pure TiO2 microspheres, Fe3O4@SiO2@TiO2 and annealed Ag@Fe3O4@SiO2@TiO2 nanocomposites, the as-obtained amorphous triple-shelled Ag@Fe3O4@SiO2@TiO2 hierarchical nanospheres exhibit a markedly enhanced visible light or sunlight photocatalytic activity towards the photodegradation of methylene blue and photoreduction of hexavalent chromium ions in wastewater. The outstanding photocatalytic activities of the plasmonic photocatalyst are mainly due to the enhanced light harvesting, reduced transport paths for both mass and charge transport, reduced recombination probability of photogenerated electrons/holes, near field electromagnetic enhancement and efficient scattering from the plasmonic nanostructure, increased surface-to-volume ratio and active sites in three dimensional (3D) hierarchical porous nanostructures, and improved photo/chemical stability. More importantly, the hierarchical nanostructured Ag@Fe3O4@SiO2@TiO2 photocatalysts could be easily collected and separated by applying an external magnetic field and reused at least five times without any appreciable reduction in photocatalytic efficiency. The enhanced photocatalytic activity and excellent chemical stability, in combination with the magnetic recyclability, make these multifunctional nanostructures promising candidates to remediate aquatic contaminants and meet the demands of future environmental issues. Electronic supplementary information (ESI) available: Synthesis of TiO2 microspheres; synthesis of Fe3O4@SiO2@TiO2 nanospheres; synthesis of Ag@Fe3O4@TiO2 nanospheres; SEM images of the as-prepared products: (a) Ag@Fe3O4, (b) Ag@Fe3O4@SiO2 and (c) Ag@Fe3O4@SiO2@TiO2 (Fig. S1); TEM images of the Ag@Fe3O4@SiO2 synthesized with adding different amount of TEOS (Fig. S2); SEM, TEM and EDS spectrum of Fe3O4@SiO2@TiO2 NPs (Fig. S3); SEM and TEM images of as-prepared TiO2 microspheres (Fig. S4); nitrogen adsorption-desorption isotherm and pore size distribution plot for as-prepared Fe3O4@SiO2@TiO2 and TiO2 microspheres (Fig. S5); adsorption rate curve of MB in dark for Ag@Fe3O4@SiO2@TiO2 samples (Fig. S6); photocatalytic degradation of MB over unannealed Ag@Fe3O4@SiO2@TiO2 (3 mg) and P25 (10 mg) under Xe lamp illumination (Fig. S7). See DOI: 10.1039/c4nr00534a

  4. TiO2 Nanotubes with Open Channels as Deactivation-Resistant Photocatalyst for the Degradation of Volatile Organic Compounds.

    PubMed

    Weon, Seunghyun; Choi, Wonyong

    2016-03-01

    We synthesized ordered TiO2 nanotubes (TNT) and compared their photocatalytic activity with that of TiO2 nanoparticles (TNP) film during the repeated cycles of photocatalytic degradation of gaseous toluene and acetaldehyde to test the durability of TNT as an air-purifying photocatalyst. The photocatalytic activity of TNT showed only moderate reduction after the five cycles of toluene degradation, whereas TNP underwent rapid deactivation as the photocatalysis cycles were repeated. Dynamic SIMS analysis showed that carbonaceous deposits were formed on the surface of TNP during the photocatalytic degradation of toluene, which implies that the photocatalyst deactivation should be ascribed to the accumulation of recalcitrant degradation intermediates (carbonaceous residues). In more oxidizing atmosphere (100% O2 under which less carbonaceous residues should form), the photocatalytic activity of TNP still decreased with repeating cycles of toluene degradation, whereas TNT showed no sign of deactivation. Because TNT has a highly ordered open channel structure, O2 molecules can be more easily supplied to the active sites with less mass transfer limitation, which subsequently hinders the accumulation of carbonaceous residues on TNT surface. Contrary to the case of toluene degradation, both TNT and TNP did not exhibit any significant deactivation during the photocatalytic degradation of acetaldehyde, because the generation of recalcitrant intermediates from acetaldehyde degradation is insignificant. The structural characteristics of TNT is highly advantageous in preventing the catalyst deactivation during the photocatalytic degradation of aromatic compounds. PMID:26854616

  5. Photocatalytic oxidation of methyl orange in water phase by immobilized TiO2-carbon nanotube nanocomposite photocatalyst

    NASA Astrophysics Data System (ADS)

    Dong, Yinmao; Tang, Dongyan; Li, Chensha

    2014-03-01

    We developed an immobilized carbon nanotube (CNT)-titanium dioxide (TiO2) heterostructure material for the photocatalytic oxidation of methyl orange in aqueous phase. The catalyst material was prepared via sol-gel method using multi-walled CNTs grown on graphite substrate as carriers. The multi-walled CNTs were synthesized from thermal decomposing of hydrocarbon gas directly on thin graphite plate, forming immobilized 3-dimensional network of CNTs. The nanophase TiO2 was synthesized coating on CNTs to form "coral"-shaped nanocomposite 3-dimensional network on graphite substrate, thus bringing effective porous structure and high specific surface area, and possessing the merit of dispersive powder photocatalysts, which is the fully available surface area, while adapting the requirement for clean and convenient manipulation as an immobilized photocatalyst. Moreover, the CNT-TiO2 heterostructure reduced the electron-hole pair recombination rate and enhanced the photoabsorption and the adsorption ability, resulting in elevating the photocatalysis efficiency. These synergistic effects due to the hybrid nature of the materials and interphase interaction greatly improved the catalytic activity, and demonstrated superior photocatalytic performances. Our work can be a significant inspiration for developing hybrid nano-phase materials to realize sophisticated functions, and bear tremendous significance for the development and applications of semiconductor nano-materials.

  6. Why is anatase a better photocatalyst than rutile? - Model studies on epitaxial TiO2 films

    PubMed Central

    Luttrell, Tim; Halpegamage, Sandamali; Tao, Junguang; Kramer, Alan; Sutter, Eli; Batzill, Matthias

    2014-01-01

    The prototypical photocatalyst TiO2 exists in different polymorphs, the most common forms are the anatase- and rutile-crystal structures. Generally, anatase is more active than rutile, but no consensus exists to explain this difference. Here we demonstrate that it is the bulk transport of excitons to the surface that contributes to the difference. Utilizing high quality epitaxial TiO2 films of the two polymorphs we evaluate the photocatalytic activity as a function of TiO2-film thickness. For anatase the activity increases for films up to ~5?nm thick, while rutile films reach their maximum activity for ~2.5?nm films already. This shows that charge carriers excited deeper in the bulk contribute to surface reactions in anatase than in rutile. Furthermore, we measure surface orientation dependent activity on rutile single crystals. The pronounced orientation-dependent activity can also be correlated to anisotropic bulk charge carrier mobility, suggesting general importance of bulk charge diffusion for explaining photocatalytic anisotropies. PMID:24509651

  7. Plasmon-enhanced water splitting on TiO2-passivated GaP photocatalysts.

    PubMed

    Qiu, Jing; Zeng, Guangtong; Pavaskar, Prathamesh; Li, Zhen; Cronin, Stephen B

    2014-02-21

    Integrating plasmon resonant nanostructures with photocatalytic semiconductors shows great promise for high efficiency photocatalytic water splitting. However, the electrochemical instability of most III-V semiconductors severely limits their applicability in photocatalysis. In this work, we passivate p-type GaP with a thin layer of n-type TiO2 using atomic layer deposition. The TiO2 passivation layer prevents corrosion of the GaP, as evidenced by atomic force microscopy and photoelectrochemical measurements. In addition, the TiO2 passivation layer provides an enhancement in photoconversion efficiency through the formation of a charge separating pn-region. Plasmonic Au nanoparticles deposited on top of the TiO2-passivated GaP further increases the photoconversion efficiency through local field enhancement. These two enhancement mechanisms are separated by systematically varying the thickness of the TiO2 layer. Because of the tradeoff between the quickly decaying plasmonic fields and the formation of the pn-charge separation region, an optimum performance is achieved for a TiO2 thickness of 0.5 nm. Finite difference time domain (FDTD) simulations of the electric field profiles in this photocatalytic heterostructure corroborate these results. The effects of plasmonic enhancement are distinguished from the natural catalytic properties of Au by evaluating similar photocatalytic TiO2/GaP structures with catalytic, non-plasmonic metals (i.e., Pt) instead of Au. This general approach of passivating narrower band gap semiconductors enables a wider range of materials to be considered for plasmon-enhanced photocatalysis for high efficiency water splitting. PMID:24401904

  8. Au-loaded TiO2 and Ag-loaded TiO2 synthesized by modified sol–gel/impregnation method as photocatalysts

    NASA Astrophysics Data System (ADS)

    Ninsonti, Hathaithip; Sriwichai, Saengrawee; Wetchakun, Natda; Kangwansupamonkon, Wiyong; Phanichphant, Sukon

    2016-02-01

    In this work, Au-loaded TiO2 and Ag-loaded TiO2 nanoparticles were synthesized by modified sol–gel method together with impregnation method. The samples were characterized by their physicochemical properties using X-ray diffraction (XRD) and X-ray photoelectron spectroscopy in order to obtain the correlation between structure and photocatalytic properties. XRD results indicated unloaded TiO2, Au-loaded TiO2 and Ag-loaded TiO2 nanoparticles were all in the anatase phase with average crystallite size in the range of 10–13 nm. In addition, XPS analysis confirmed the presence of Au and Ag elements in Au-loaded TiO2 and Ag-loaded TiO2 nanoparticles, respectively. The photocatalytic activities of TiO2, Au-loaded TiO2 and Ag-loaded TiO2 nanoparticles were evaluated through the mineralization of formic acid under UV-light illumination. The results showed that Au-loading and Ag-loading could effectively improve the photocatalytic activities of TiO2. Furthermore, Au-loaded TiO2 exhibited a higher photocatalytic activity than Ag-loaded TiO2.

  9. Sandwich SrTiO3/TiO2/H-Titanate nanofiber composite photocatalysts for efficient photocatalytic hydrogen evolution

    NASA Astrophysics Data System (ADS)

    Liu, Yuanxu; Wang, Zhonglei; Wang, Wendong; An, Xiaoqiang; Mi, Shiyang; Tang, Junwang; Huang, Weixin

    2014-10-01

    SrTiO3/TiO2/H-Titanate nanofiber composites were synthesized through facile thermal treatment of Sr(OH)2 and H-titanate nanofibers in an ethanol/water solution and their photocatalytic activities for H2 evolution from a methanol/water solution under simulated solar irradiation were evaluated. TiO2/H-titanate nanofiber composites were acquired without Sr(OH)2 addition. At low Sr/Ti molar ratios, SrTiO3/TiO2/H-titanate nanofiber composites form. SrTiO3 nanoparticles were found to selectively grow on the surface of TiO2 nanoparticles, forming a unique SrTiO3-TiO2-H-titanate sandwich heterojunction. Upon increasing the Sr/Ti molar ratio, the fraction of TiO2 in the resultant composites decreases and eventually SrTiO3/H-titanate nanofiber composites form. SrTiO3/TiO2/H-titanate nanofiber composites are significantly more photocatalytically active than SrTiO3/H-titanate nanofiber and TiO2/H-titanate nanofiber composites due to the mitigated charge recombination and the accumulation of photo-excited electrons on the photocatalytically active TiO2 component. These results demonstrate an effective strategy of multi-heterojunctions with both appropriately-aligned band structures and appropriately-arranged composite structures to fabricate efficient composite photocatalysts.

  10. Green microwave switching from oxygen rich yellow anatase to oxygen vacancy rich black anatase TiO2 solar photocatalyst using Mn(ii) as 'anatase phase purifier'.

    PubMed

    Ullattil, Sanjay Gopal; Periyat, Pradeepan

    2015-12-01

    Green and rapid microwave syntheses of 'yellow oxygen rich' (YAT-150) and 'black oxygen vacancy rich' (BAT-150) anatase TiO2 nanoparticles are reported for the first time. YAT-150 was synthesized using only titanium(iv) butoxide and water as precursors. The in situ precursor modification by Mn(ii) acetate switched anatase TiO2 from YAT-150 to BAT-150. The entry of Mn(2+) into the crystal lattice of anatase TiO2 paved the way for peak texturing in the existing peak orientations along with the origin of three new anatase TiO2 peaks in the (103), (213) and (105) directions. The as synthesized ultra-small (?5 nm) yellow and black anatase TiO2 nanoparticles were found to be two fold and four fold more photoactive than the commercially available photocatalyst Degussa-P25 under sunlight illumination. PMID:26523536

  11. BiFeO3/TiO2 core-shell structured nanocomposites as visible-active photocatalysts and their optical response mechanism

    NASA Astrophysics Data System (ADS)

    Li, Shun; Lin, Yuan-Hua; Zhang, Bo-Ping; Li, Jing-Feng; Nan, Ce-Wen

    2009-03-01

    Anatase titania-coated bismuth ferrite nanocomposites (BiFeO3/TiO2) have been fabricated via a hydrothermal approach combined with a hydrolysis precipitation processing. Analysis of the microstructure and phase composition reveals that a core-shell BiFeO3/TiO2 structure can be formed, which results in a significant redshift in the UV-vis absorption spectra as compared to a simple mechanical mixture of BiFeO3-TiO2 nanopowders. The core-shell structured BiFeO3/TiO2 nanocomposites exhibit higher photocatalytic activity for photodegradation of Congo red under visible-light (λ >400 nm) irradiation, which should be attributed to the enhancement of the quantum efficiency by separating the electrons and holes effectively. The obtained BiFeO3/TiO2 nanocomposites can be used as potential visible-light driven photocatalysts.

  12. Preparation and characterization of SeO2/TiO2 composite photocatalyst with excellent performance for sunset yellow azo dye degradation under natural sunlight illumination.

    PubMed

    Rajamanickam, D; Dhatshanamurthi, P; Shanthi, M

    2015-03-01

    To improve the solar light induced photocatalytic application performances of TiO2, in this study, the SeO2 modified TiO2 composite photocatalysts with various ratios of SeO2 to TiO2 were prepared by sol-gel method. The catalyst was characterized by X-ray diffraction (XRD), high resolution scanning electron microscope (HR-SEM), energy dispersive spectra (EDS), diffuse reflectance spectra (DRS), photoluminescence spectra (PL), X-ray photoelectron spectroscopy (XPS) and Brunauer-Emmett-Teller (BET) surface area measurement methods. The photocatalytic activity of SeO2/TiO2 was investigated for the degradation of sunset yellow (SY) in aqueous solution using solar light. The SeO2/TiO2 is found to be more efficient than prepared TiO2 and TiO2-P25 at pH 7 for the mineralization of SY. The effects of operational parameters such as the amount of photocatalyst, dye concentration and initial pH on photo mineralization of SY have been analyzed. The degradation was strongly enhanced in the presence of electron acceptors such as oxone, KIO4 and KBrO3. The kinetics of SY photodegradation was found to follow the pseudo-first order rate law and could be described in terms of Langmuir-Hinshelwood model. The mineralization of SY has been confirmed by COD measurements. The catalyst is found to be reusable. PMID:25528508

  13. Preparation and characterization of SeO2/TiO2 composite photocatalyst with excellent performance for sunset yellow azo dye degradation under natural sunlight illumination

    NASA Astrophysics Data System (ADS)

    Rajamanickam, D.; Dhatshanamurthi, P.; Shanthi, M.

    2015-03-01

    To improve the solar light induced photocatalytic application performances of TiO2, in this study, the SeO2 modified TiO2 composite photocatalysts with various ratios of SeO2 to TiO2 were prepared by sol-gel method. The catalyst was characterized by X-ray diffraction (XRD), high resolution scanning electron microscope (HR-SEM), energy dispersive spectra (EDS), diffuse reflectance spectra (DRS), photoluminescence spectra (PL), X-ray photoelectron spectroscopy (XPS) and Brunauer-Emmett-Teller (BET) surface area measurement methods. The photocatalytic activity of SeO2/TiO2 was investigated for the degradation of sunset yellow (SY) in aqueous solution using solar light. The SeO2/TiO2 is found to be more efficient than prepared TiO2 and TiO2-P25 at pH 7 for the mineralization of SY. The effects of operational parameters such as the amount of photocatalyst, dye concentration and initial pH on photo mineralization of SY have been analyzed. The degradation was strongly enhanced in the presence of electron acceptors such as oxone, KIO4 and KBrO3. The kinetics of SY photodegradation was found to follow the pseudo-first order rate law and could be described in terms of Langmuir-Hinshelwood model. The mineralization of SY has been confirmed by COD measurements. The catalyst is found to be reusable.

  14. Large-scale synthesis of TiO2 microspheres with hierarchical nanostructure for highly efficient photodriven reduction of CO2 to CH4.

    PubMed

    Fang, Baizeng; Bonakdarpour, Arman; Reilly, Kevin; Xing, Yalan; Taghipour, Fariborz; Wilkinson, David P

    2014-09-10

    In this study, a simple and reproducible synthesis strategy was employed to fabricate TiO2 microspheres with hierarchical nanostructure. The microspheres are macroscopic in the bulk particle size (several hundreds to more than 1000 ?m), but they are actually composed of P25 nanoparticles as the building units. Although it is simple in the assembly of P25 nanoparticles, the structure of the as-prepared TiO2 microspheres becomes unique because a hierarchical porosity composed of macropores, larger mesopores (ca. 12.4 nm), and smaller mesopores (ca. 2.3 nm) has been developed. The interconnected macropores and larger mesopores can be utilized as fast paths for mass transport. In addition, this hierarchical nanostructure may also contribute to some extent to the enhanced photocatalytic activity due to increased multilight reflection/scattering. Compared with the state-of-the-art photocatalyst, commercial Degussa P25 TiO2, the as-prepared TiO2 microsphere catalyst has demonstrated significant enhancement in photodriven conversion of CO2 into the end product CH4. Further enhancement in photodriven conversion of CO2 into CH4 can be easily achieved by the incorporation of metals such as Pt. The preliminary experiments with Pt loading reveal that there is still much potential for considerable improvement in TiO2 microsphere based photocatalysts. Most interestingly and significantly, the synthesis strategy is simple and large quantity of TiO2 microspheres (i.e., several hundred grams) can be easily prepared at one time in the lab, which makes large-scale industrial synthesis of TiO2 microspheres feasible and less expensive. PMID:25140917

  15. Constructing inverse V-type TiO2-based photocatalyst via bio-template approach to enhance the photosynthetic water oxidation

    NASA Astrophysics Data System (ADS)

    Jiang, Jinghui; Zhou, Han; Ding, Jian; Zhang, Fan; Fan, Tongxiang; Zhang, Di

    2015-08-01

    Bio-template approach was employed to construct inverse V-type TiO2-based photocatalyst with well distributed AgBr in TiO2 matrix by making dead Troides Helena wings with inverse V-type scales as the template. A cross-linked titanium precursor with homogenous hydrolytic rate, good liquidity, and low viscosity was employed to facilitate a perfect duplication of the template and the dispersion of AgBr based on appropriate pretreatment of the template by alkali and acid. The as-synthesized inverse V-type TiO2/AgBr can be turned into inverse V-type TiO2/Ag0 from AgBr photolysis during photocatalysis to achieve in situ deposition of Ag0 in TiO2 matrix, by this approach, to avoid the deformation of surface microstructure inherited from the template. The result showed that the cooperation of perfect inverse V-type structure and the well distributed TiO2/Ag0 microstructures can efficiently boost the photosynthetic water oxidation compared to non-inverse V-type TiO2/Ag0 and TiO2/Ag0 without using template. The anti-reflection function of inverse V-type structure and the plasmatic effect of Ag0 might be able to account for the enhanced photon capture and efficient photoelectric conversion.

  16. Synthesis and photocatalytic activity of TiO2 nanoparticles prepared by chemical vapor condensation method with different precursor concentration and residence time.

    PubMed

    Chin, Sungmin; Park, Eunseuk; Kim, Minsu; Bae, Gwi-Nam; Jurng, Jongsoo

    2011-10-15

    Nanosized TiO(2) photocatalysts were synthesized using a chemical vapor condensation method under a range of synthesis conditions (precursor vapor concentration and residence time in a tubular electric furnace). X-ray diffraction showed that the prepared TiO(2) powders consisted mainly of anatase (>94%) with a small amount of rutile. The mean particle diameter from the Brunauer-Emmett-Teller surface area and transmission electron microscopy measurements ranged from 9.4 to 16.6 nm. The specific surface area (92.5-163.5 m(2) g(-1)) of the prepared TiO(2) powders was found to be dependent on the synthesis conditions. The content of hydroxyl groups on the surface of the prepared TiO(2) sample was higher than those on commercial TiO(2), resulting in increased photocatalytic oxidation. The photocatalytic activity of the TiO(2) samples prepared in a methylene blue solution was strongly dependent on the crystallinity and specific surface area, which were affected by the TTIP vapor concentration and residence time. PMID:21802692

  17. Environment-friendly biomimetic synthesis of TiO2 nanomaterials for photocatalytic application

    NASA Astrophysics Data System (ADS)

    Bao, Shu-Juan; Lei, Chao; Xu, Mao-Wen; Cai, Chang-Jun; Jia, Dian-Zeng

    2012-05-01

    We have demonstrated an environment-friendly biomimetic synthesis method for the preparation of TiO2 nanomaterials with different crystal phases and morphologies. This is the first time that it has been found that the crystal phase of TiO2 can be controlled just by using different biotemplates, and cannot be changed by calcination up to 750?C. In our experiment, anatase TiO2 was obtained by using yeast and albumen templates, while rutile TiO2 was formed by using dandelion pollen as the template.

  18. Highly efficient visible light TiO2 photocatalyst prepared by sol-gel method at temperatures lower than 300°C.

    PubMed

    Wang, Desong; Xiao, Libin; Luo, Qingzhi; Li, Xueyan; An, Jing; Duan, Yandong

    2011-08-15

    Highly efficient visible light TiO(2) photocatalyst was prepared by the sol-gel method at lower temperature (≤ 300°C), and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), UV-vis diffuse reflectance spectroscopy (UV-vis DRS), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and differential scanning calorimetry-thermogravimetric analysis (DSC-TGA). The effects of the heat treatment temperature and time of the as-prepared TiO(2) on its visible light photocatalytic activity were investigated by monitoring the degradation of methyl orange solution under visible light irradiation (wavelength ≥ 400 nm). Results show that the as-prepared TiO(2) nanoparticles possess an anatase phase and mesoporous structure with carbon self-doping and visible photosensitive organic groups. The visible light photocatalytic activity of the as-prepared TiO(2) is greatly higher than those of the commercial TiO(2) (P-25) and other visible photocatalysts reported in literature (such as PPy/TiO(2), P3HT/TiO(2), PANI/TiO(2), N-TiO(2) and Fe(3+)-TiO(2)) and its photocatalytic stability is excellent. The reasons for improving the visible light photocatalytic activity of the as-prepared TiO(2) can be explained by carbon self-doping and a large amount of visible photosensitive groups existing in the as-prepared TiO(2). The apparent optical thickness (τ(app)), local volumetric rate of photo absorption (LVRPA) and kinetic constant (k(T)) of the photodegradation system were calculated. PMID:21616590

  19. Nanostructured anatase TiO2 densified at high pressure as advanced visible light photocatalysts.

    PubMed

    Carini, Giovanni; Parrino, Francesco; Palmisano, Giovanni; Scandura, Gabriele; Citro, Ilaria; Calogero, Giuseppe; Bartolotta, Antonino; Di Marco, Gaetano

    2015-09-26

    This study reports on characterization and photoactivity of nanostructured TiO2 samples, which have been permanently densified under high pressures, up to 2.1 GPa. Commercial Mirkat 211 anatase has been used as a benchmark sample, in order to investigate the effect of unidirectional high pressure on structural, optical and photocatalytic properties of TiO2. Vibrational Raman spectroscopy shows that the treatment does not cause transitions among the different crystalline phases of titanium dioxide. UV-vis diffuse reflectance spectra reveal that increasing pressure gives rise to a shift of the absorption onset towards higher wavelength enhancing the photoactivity under visible radiation. Samples are also photo-electrochemically characterized and tested in the gas phase with partial oxidation of ethanol to acetaldehyde under visible irradiation. Compaction up to 0.8 GPa depresses both the alcohol conversion and the aldehyde yield, while samples treated under higher pressures show enhanced characteristics of conversion compared to the pristine material. Moreover, promising results in the reduction of CO2 are also obtained under UV-visible radiation. PMID:26153460

  20. In situ plasmonic Ag nanoparticle anchored TiO2 nanotube arrays as visible-light-driven photocatalysts for enhanced water splitting.

    PubMed

    Ge, Ming-Zheng; Cao, Chun-Yan; Li, Shu-Hui; Tang, Yu-Xin; Wang, Lu-Ning; Qi, Ning; Huang, Jian-Ying; Zhang, Ke-Qin; Al-Deyab, S S; Lai, Yue-Kun

    2016-02-25

    An ultrasonication-assisted in situ deposition strategy was utilised to uniformly decorate plasmonic Ag nanoparticles on vertically aligned TiO2 nanotube arrays (NTAs) to construct a Ag@TiO2 NTA composite. The Ag nanoparticles act as efficient surface plasmon resonance (SPR) photosensitizers to drive photocatalytic water splitting under visible light irradiation. The Ag nanoparticles were uniformly deposited on the surface and inside the highly oriented TiO2 nanotubes. The visible-light-driven hydrogen production activities of silver nanoparticle anchored TiO2 nanotube array photocatalysts were evaluated using methanol as a sacrificial reagent in water under a 500 W Xe lamp with a UV light cutoff filter (λ ≥ 420 nm). It was found that the hydrogen production rate of the Ag@TiO2 NTAs prepared with ultrasonication-assisted deposition for 5 min was approximately 15 times higher than that of its pristine TiO2 NTAs counterpart. The highly efficient photocatalytic hydrogen evolution is attributed to the SPR effect of Ag for enhanced visible light absorption and boosting the photogenerated electron-hole separation/transfer. This strategy is promising for the design and construction of high efficiency TiO2 based photocatalysts for solar energy conversion. PMID:26878901

  1. Design of H3PW12O40/TiO2 nano-photocatalyst for efficient photocatalysis under simulated sunlight irradiation

    NASA Astrophysics Data System (ADS)

    Zhao, Kun; Lu, Ying; Lu, Nan; Zhao, Yahui; Yuan, Xing; Zhang, Hao; Teng, Lianghui; Li, Fu

    2013-11-01

    H3PW12O40/TiO2 (PW12/TiO2) nano-photocatalyst was successfully synthesized through a modified sol-gel-hydrothermal method. The X-ray diffraction (XRD) patterns, Fourier transform infrared (FT-IR) spectra, UV-vis diffuse reflectance spectrum (UV-vis DRS), and N2 adsorption-desorption isotherms were characterized respectively to investigate the physical and chemical properties of prepared catalysts. Under simulated sunlight (320 nm < λ < 780 nm) irradiation, the degradation of fuchsin acid, malachite green and p-nitrophenol (PNP) were carried out to evaluate the photocatalytic activity of PW12/TiO2. The results showed that the pollutants degradation followed first-order kinetics, and the kinetic constants of photocatalytic degradation of fuchsin acid, malachite green and PNP were 2.82, 4.66, and 3.48 times as great as that using pristine TiO2, respectively. The high pollutants degradation efficiency was ascribed to the synergistic effect between H3PW12O40 and TiO2, which resulted in enhanced quantum efficiency and high light harvesting efficiency. We believe this work could provide new insights into the fabrication of photocatalyst with high photocatalytic performance and facilitate their practical application in environmental issues.

  2. Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications

    NASA Astrophysics Data System (ADS)

    Pan, Xiaoyang; Yang, Min-Quan; Fu, Xianzhi; Zhang, Nan; Xu, Yi-Jun

    2013-04-01

    Titanium dioxide (TiO2), as an important semiconductor metal oxide, has been widely investigated in the field of photocatalysis. The properties of TiO2, including its light absorption, charge transport and surface adsorption, are closely related to its defect disorder, which in turn plays a significant role in the photocatalytic performance of TiO2. Among all the defects identified in TiO2, oxygen vacancy is one of the most important and is supposed to be the prevalent defect in many metal oxides, which has been widely investigated both by theoretical calculations and experimental characterizations. Here, we give a short review on the existing strategies for the synthesis of defective TiO2 with oxygen vacancies, and the defect related properties of TiO2 including structural, electronic, optical, dissociative adsorption and reductive properties, which are intimately related to the photocatalytic performance of TiO2. In particular, photocatalytic applications with regard to defective TiO2 are outlined. In addition, we offer some perspectives on the challenge and new direction for future research in this field. We hope that this tutorial minireview would provide some useful contribution to the future design and fabrication of defective semiconductor-based nanomaterials for diverse photocatalytic applications.Titanium dioxide (TiO2), as an important semiconductor metal oxide, has been widely investigated in the field of photocatalysis. The properties of TiO2, including its light absorption, charge transport and surface adsorption, are closely related to its defect disorder, which in turn plays a significant role in the photocatalytic performance of TiO2. Among all the defects identified in TiO2, oxygen vacancy is one of the most important and is supposed to be the prevalent defect in many metal oxides, which has been widely investigated both by theoretical calculations and experimental characterizations. Here, we give a short review on the existing strategies for the synthesis of defective TiO2 with oxygen vacancies, and the defect related properties of TiO2 including structural, electronic, optical, dissociative adsorption and reductive properties, which are intimately related to the photocatalytic performance of TiO2. In particular, photocatalytic applications with regard to defective TiO2 are outlined. In addition, we offer some perspectives on the challenge and new direction for future research in this field. We hope that this tutorial minireview would provide some useful contribution to the future design and fabrication of defective semiconductor-based nanomaterials for diverse photocatalytic applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr00476g

  3. Carbon-deposited TiO2 3D inverse opal photocatalysts: visible-light photocatalytic activity and enhanced activity in a viscous solution.

    PubMed

    Lee, Sunbok; Lee, Youngshin; Kim, Dong Ha; Moon, Jun Hyuk

    2013-12-11

    We for the first time demonstrated carbon-deposited TiO2 inverse opal (C-TiO2 IO) structures as highly efficient visible photocatalysts. The carbon deposition proceeded via high-temperature pyrolysis of phloroglucinol/formaldehyde resol, which had been coated onto the TiO2 IO structures. Carbon deposition formed a carbon layer and doped the TiO2 interface, which synergistically enhanced visible-light absorption. We directly measured the visible-light photocatalytic activity by constructing solar cells comprising the C-TiO2 IO electrode. Photocatalytic degradation of organic dyes in a solution was also evaluated. Photocatalytic dye degradation under visible light was only observed in the presence of the C-TiO2 IO sample and was increased with the content of carbon deposition. The IO structures could be readily decorated with TiO2 nanoparticles to increase the surface area and enhance the photocatalytic activity. Notably, the photocatalytic reaction was found to proceed in a viscous polymeric solution. A comparison of the mesoporous TiO2 structure and the IO TiO2 structure revealed that the latter performed better as the solution viscosity increased. This result was attributed to facile diffusion into the fully connected and low-tortuosity macropore network of the IO structure. PMID:24266769

  4. Photocatalytic Hydrogen Formation from Ammonia in an Aqueous Solution Over Pt-Enriched TiO2-ZrO2 Photocatalyst.

    PubMed

    Sihor, Marcel; Ko?, Kamila; Mat?jov, Lenka; Reli, Martin; Ambroov, Nela; Pavlovsk, Ji?; Capek, Libor; Obalov, Lucie

    2015-09-01

    The aim of this study was to remove ammonia from an aqueous solution by its decomposition to valuable products such as H2 and harmless N2 under UV light. The decomposition of ammonia by photocatalytic process represents an emerging and interesting way of its removal since beside the need of its reduction from the drinking and wastewaters with the respect to its negative impact on human and mammals health, it can lead to generation of hydrogen as an alternative fuel. A laboratory-synthesized Pt/TiO2-ZrO2 photocatalyst was studied and its photocatalytic activity was compared with the activity of commercial TiO2 Evonik P25. The Pt/TiO2-ZrO2 photocatalyst was prepared by combining a sol-gel process controlled within reverse micelles of nonionic surfactant Triton X-114 in cyclohexane, impregnation under vacuum and calcination. Explored photocatalysts were characterized by organic elementary analysis, nitrogen physisorption, XRD, FESEM and UV-Vis spectroscopy. The real platinum content in the Pt/TiO2-ZrO2 photocatalyst was determined by ICP-MS. The photocatalytic decomposition of ammonia was investigated in the time range of 0-12 h. During the first two hours the generation of hydrogen was almost negligible. The generation of hydrogen increased after 4 h of irradiation. Based on time dependences of ammonia decomposition the kinetic rate constants for Pt/TiO2-ZrO2 and TiO2 Evonik P25 photocatalysts were calculated. The ammonia photocatalytic decomposition was described well by the first order kinetic equation. The photocatalytic ammonia decomposition over the platinized TiO2-ZrO2 photocatalyst was proving 2 times higher photocatalytic performance than Evonik P25 (1241 ?mol/g(cat) and 665 ?mol/g(cat), respectively). PMID:26716252

  5. Green microwave switching from oxygen rich yellow anatase to oxygen vacancy rich black anatase TiO2 solar photocatalyst using Mn(ii) as `anatase phase purifier'

    NASA Astrophysics Data System (ADS)

    Ullattil, Sanjay Gopal; Periyat, Pradeepan

    2015-11-01

    Green and rapid microwave syntheses of `yellow oxygen rich' (YAT-150) and `black oxygen vacancy rich' (BAT-150) anatase TiO2 nanoparticles are reported for the first time. YAT-150 was synthesized using only titanium(iv) butoxide and water as precursors. The in situ precursor modification by Mn(ii) acetate switched anatase TiO2 from YAT-150 to BAT-150. The entry of Mn2+ into the crystal lattice of anatase TiO2 paved the way for peak texturing in the existing peak orientations along with the origin of three new anatase TiO2 peaks in the (103), (213) and (105) directions. The as synthesized ultra-small (~5 nm) yellow and black anatase TiO2 nanoparticles were found to be two fold and four fold more photoactive than the commercially available photocatalyst Degussa-P25 under sunlight illumination.Green and rapid microwave syntheses of `yellow oxygen rich' (YAT-150) and `black oxygen vacancy rich' (BAT-150) anatase TiO2 nanoparticles are reported for the first time. YAT-150 was synthesized using only titanium(iv) butoxide and water as precursors. The in situ precursor modification by Mn(ii) acetate switched anatase TiO2 from YAT-150 to BAT-150. The entry of Mn2+ into the crystal lattice of anatase TiO2 paved the way for peak texturing in the existing peak orientations along with the origin of three new anatase TiO2 peaks in the (103), (213) and (105) directions. The as synthesized ultra-small (~5 nm) yellow and black anatase TiO2 nanoparticles were found to be two fold and four fold more photoactive than the commercially available photocatalyst Degussa-P25 under sunlight illumination. Electronic supplementary information (ESI) available: Photographs of YAT-150 and BAT-150, wide range XPS and SEM images, EDX and UV-Visible absorption spectra of the degradation of methylene blue using as synthesized samples and Degussa-P25 are included. See DOI: 10.1039/c5nr05975e

  6. Synthesis of anatase and rutile TiO2 nanostructures from natural ilmenite

    NASA Astrophysics Data System (ADS)

    Wahyuingsih, Sayekti; Ramelan, Ari Handono; Pramono, Edi; Sulistya, Ariantama Djati; Argawan, Panji Rofa; Dharmawan, Frenandha Dwi; Rinawati, Ludfiaastu; Hanif, Qonita Awliya; Sulistiyono, Eko; Firdiyono, Florentinus

    2016-02-01

    Nanostructure anatase and rutile type TiO2 were synthesized from dissolution roasted ilmenite from natural ilmenite sand as the starting materials. Anatase TiO2 and rutile TiO2 (high crystallinity) with the diameters of 20-100 nm were obtained by calcined soluble ilmenite sand produced by leaching process. Calcinations of the xerogel TiO2 from liquor products were conducted for 4 hours at temperature of 450 °C. The samples were characterized by XRD (X-ray diffraction), STA (simultant thermal analysis), TEM (Transmission Electron Microscopy), and BET surface area. Titania Anatase-Rutile form as a mixture were produced by titania slag with the hydrolysis product. While, in another route, complete titania anatase phase was produced through hydrolysis and condensation steps of leach liquors. This synthesis methods provide a simple route to fabricate nanostructure TiO2 from low cost material.

  7. Advanced Oxidation Processes in Triton X-100 and Wash-up Liquid Removal from Wastewater Using Modified TiO(2)/Al(2)O(3) Photocatalysts.

    PubMed

    Czech, Bo?ena; Cwik?a-Bundyra, Wies?awa

    2012-09-01

    Photocatalytic methods were applied to remove the recalcitrant or toxic pollutants from the water. The two models of wastewater containing either non-ionic surfactant Triton X-100 or commercially available wash-up liquid were tested in a self-constructed band reactor during the laboratory studies. The photocatalyst, being typed TiO(2), was supported by porous Al(2)O(3) and modified by the addition of Cu, Fe, Zn, Ni, Mo or Co. The photocatalysts were characterised by N(2) adsorption-desorption, XRF, XRD, SEM-EDX, Raman and UV-Vis spectroscopy. All catalysts were efficient in the photocatalytic oxidation of surfactants, and they enabled at least 85% COD reduction. TiO(2)/Al(2)O(3) photocatalysts modified by the transition metals were efficient only for more complicated compositions of surfactants. The effect of H(2)O(2) (0.01vol.%) addition was also examined and compared with a type of compound and catalyst used-in this case a positive effect for Triton X-100 was only observed over the photocatalyst modified by Ni. When it comes to the wash-up liquid photoremoval, all studied photocatalysts seem to be slightly influenced by H(2)O(2) addition. It was also observed that it is not economically justified to conduct such treatment for more than 2h. PMID:23002310

  8. Production of renewable fuels by the photohydrogenation of CO2: effect of the Cu species loaded onto TiO2 photocatalysts.

    PubMed

    Chen, Bo-Ren; Nguyen, Van-Huy; Wu, Jeffrey C S; Martin, Reli; Kočí, Kamila

    2016-02-01

    The efficient gas phase photocatalytic hydrogenation of CO2 into a desirable renewable fuel was achieved using a Cu-loaded TiO2 photocatalyst system. Enhancing the amount of Ti(3+) relative to Ti(4+) in a Cu-loaded TiO2 photocatalyst provided an excellent opportunity to promote the photohydrogenation of CO2. The coexistence of Cu and Cu(+) species during the photoreaction was shown to efficiently enhance the photocatalytic activity by prolonging the lifetime of the electrons. To achieve the best photoactivity, the Cu species must be maintained at an appropriately low concentration (≤1 wt%). The highest CH4 yield obtained was 28.72 μmol g(-1). This approach opens a feasible route not only to store hydrogen by converting it into a desirable renewable fuel, but also to reduce the amount of the greenhouse gas CO2 in the atmosphere. PMID:26807649

  9. Facile Scalable Synthesis of TiO2/Carbon Nanohybrids with Ultrasmall TiO2 Nanoparticles Homogeneously Embedded in Carbon Matrix.

    PubMed

    Wang, Xiaoyan; Meng, Jian-Qiang; Wang, Meimei; Xiao, Ying; Liu, Rui; Xia, Yonggao; Yao, Yuan; Metwalli, Ezzeldin; Zhang, Qian; Qiu, Bao; Liu, Zhaoping; Pan, Jing; Sun, Ling-Dong; Yan, Chun-Hua; Mller-Buschbaum, Peter; Cheng, Ya-Jun

    2015-11-01

    A facile scalable synthesis of TiO2/C nanohybrids inspired by polymeric dental restorative materials has been developed, which creates ultrasmall TiO2 nanoparticles homogeneously embedded in the carbon matrix. The average size of the nanoparticles is tuned between about 1 and 5 nm with the carbon content systematically increased from 0% to 65%. Imaging analysis and a scattering technique have been applied to investigate the morphology of the TiO2 nanoparticles. The composition, nature of carbon matrix, crystallinity, and tap density of the TiO2/C nanohybrids have been studied. The application of the TiO2/C nanohybrids as lithium-ion battery anode is demonstrated. Unusual discharge/charge profiles have been exhibited, where characteristic discharge/charge plateaus of crystalline TiO2 are significantly diminished. The tap density, cyclic capacities, and rate performance at high current densities (10 C, 20 C) of the TiO2/C nanohybrid anodes have been effectively improved compared to the bare carbon anode and the TiO2/C nanohybrids with larger particle size. PMID:26465800

  10. Synthesis and characterization of sulfated TiO2 nanorods and ZrO2/TiO2 nanocomposites for the esterification of biobased organic acid.

    PubMed

    Li, Zhonglai; Wnetrzak, Renata; Kwapinski, Witold; Leahy, James J

    2012-09-26

    TiO(2) nanorods and ZrO(2)-modified TiO(2) nanocomposites have been prepared by hydrothermal synthesis and the deposition-precipitation method. Their sulfated products were tested as solid superacid catalysts for the esterification of levulinic acid which was used as a model bio-oil molecule. SEM and TEM characterization showed that TiO(2) nanorods with diameters ranging from 20 to 200 nm and with lengths of up to 5 ?m were synthesized by a hydrothermal method at 180 C. ZrO(2) nanoparticles with the diameters ranging from 10 to 20 nm were evenly deposited on TiO(2) nanorods. IR and XPS results suggested that sulfated ZrO(2)/TiO(2) nanocomposite has higher content of sulfate groups on the surface with a S/(Zr+Ti) ratio of 13.6% than sulfated TiO(2) nanorods with a S/Ti ratio of 4.9%. The HPLC results showed that sulfated ZrO(2)/TiO(2) nanocomposite have enhanced catalytic activity for esterification reaction between levulinic acid and ethanol compared to sulfated TiO(2) nanorods. The conversion of levulinic acid to ethyl levulinate can reach to 90.4% at the reaction temperature of 105 C after 180 min. PMID:22891691

  11. One pot synthesis of nanosized anion doped TiO2: Effect of irradiation of sound waves on surface morphology and optical properties

    NASA Astrophysics Data System (ADS)

    Sharotri, Nidhi; Sud, Dhiraj

    2015-08-01

    Commercialization of AOP's for remediation of pollutants from environmental matrix required the process to be operated by solar light. Semiconductor TiO2 has emerged as an effective and preferred photocatalyst in the field of environmental photocatalysis due to its; (i) biological and chemical inertness (ii) resistance to chemical and photo corrosion, (iii) can absorb natural UV light due to appropriate energetic separation between its valence and conduction band. However, unfortunately the optical band gap of TiO2 (3.0-3.23 eV) with absorption cut off 380 nm, enables it to harness only a small fraction ( 5%) of the entire solar spectrum. One of the current areas of research is modification of TiO2 photocatalyst. In present paper one pot greener synthesis from titanium isopropoxide and hydroxylamine hydrochloride has been used as titanium and nitrogen precursor under ultrasonic waves. The as synthesized TiO2 nanomaterials were dried at 100C and further calcinated at different temperatures. The effect of reaction parameters such as ultrasonication time on the yield, surface morphology, spectroscopic data and optical properties was also investigated. The results confirm that the anatase phase is a main phase with a crystallite size of 35-77 nm and the calculated band gap of nanomaterials varies from 2.10-3.1 eV.

  12. In situ plasmonic Ag nanoparticle anchored TiO2 nanotube arrays as visible-light-driven photocatalysts for enhanced water splitting

    NASA Astrophysics Data System (ADS)

    Ge, Ming-Zheng; Cao, Chun-Yan; Li, Shu-Hui; Tang, Yu-Xin; Wang, Lu-Ning; Qi, Ning; Huang, Jian-Ying; Zhang, Ke-Qin; Al-Deyab, S. S.; Lai, Yue-Kun

    2016-02-01

    An ultrasonication-assisted in situ deposition strategy was utilised to uniformly decorate plasmonic Ag nanoparticles on vertically aligned TiO2 nanotube arrays (NTAs) to construct a Ag@TiO2 NTA composite. The Ag nanoparticles act as efficient surface plasmon resonance (SPR) photosensitizers to drive photocatalytic water splitting under visible light irradiation. The Ag nanoparticles were uniformly deposited on the surface and inside the highly oriented TiO2 nanotubes. The visible-light-driven hydrogen production activities of silver nanoparticle anchored TiO2 nanotube array photocatalysts were evaluated using methanol as a sacrificial reagent in water under a 500 W Xe lamp with a UV light cutoff filter (λ >= 420 nm). It was found that the hydrogen production rate of the Ag@TiO2 NTAs prepared with ultrasonication-assisted deposition for 5 min was approximately 15 times higher than that of its pristine TiO2 NTAs counterpart. The highly efficient photocatalytic hydrogen evolution is attributed to the SPR effect of Ag for enhanced visible light absorption and boosting the photogenerated electron-hole separation/transfer. This strategy is promising for the design and construction of high efficiency TiO2 based photocatalysts for solar energy conversion.An ultrasonication-assisted in situ deposition strategy was utilised to uniformly decorate plasmonic Ag nanoparticles on vertically aligned TiO2 nanotube arrays (NTAs) to construct a Ag@TiO2 NTA composite. The Ag nanoparticles act as efficient surface plasmon resonance (SPR) photosensitizers to drive photocatalytic water splitting under visible light irradiation. The Ag nanoparticles were uniformly deposited on the surface and inside the highly oriented TiO2 nanotubes. The visible-light-driven hydrogen production activities of silver nanoparticle anchored TiO2 nanotube array photocatalysts were evaluated using methanol as a sacrificial reagent in water under a 500 W Xe lamp with a UV light cutoff filter (λ >= 420 nm). It was found that the hydrogen production rate of the Ag@TiO2 NTAs prepared with ultrasonication-assisted deposition for 5 min was approximately 15 times higher than that of its pristine TiO2 NTAs counterpart. The highly efficient photocatalytic hydrogen evolution is attributed to the SPR effect of Ag for enhanced visible light absorption and boosting the photogenerated electron-hole separation/transfer. This strategy is promising for the design and construction of high efficiency TiO2 based photocatalysts for solar energy conversion. Electronic supplementary information (ESI) available: EDS and mapping spectra of Ag@TiO2 NTAs with an ultrasonication-assisted deposition time of 5 min, the size distribution of Ag nanoparticles of Ag@TiO2 NTAs with different deposition times, SEM images and EDS spectra of TiO2 NTAs with an ultrasonication-assisted deposition time of 5 min with 5, 20, and 40 mM AgNO3, photocurrent responses and hydrogen production rate of as-prepared pure TiO2 NTAs and Ag@TiO2 NTAs with an ultrasonication-assisted deposition time of 5 min with different concentrations of AgNO3. See DOI: 10.1039/c5nr08341a

  13. Effects of SO2 on selective catalytic reduction of NO with NH3 over a TiO2 photocatalyst

    NASA Astrophysics Data System (ADS)

    Yamamoto, Akira; Teramura, Kentaro; Hosokawa, Saburo; Tanaka, Tsunehiro

    2015-04-01

    The effect of SO2 gas was investigated on the activity of the photo-assisted selective catalytic reduction of nitrogen monoxide (NO) with ammonia (NH3) over a TiO2 photocatalyst in the presence of excess oxygen (photo-SCR). The introduction of SO2 (300 ppm) greatly decreased the activity of the photo-SCR at 373 K. The increment of the reaction temperature enhanced the resistance to SO2 gas, and at 553 K the conversion of NO was stable for at least 300 min of the reaction. X-ray diffraction, FTIR spectroscopy, thermogravimetry and differential thermal analysis, x-ray photoelectron spectroscopy (XPS), elemental analysis and N2 adsorption measurement revealed that the ammonium sulfate species were generated after the reaction. There was a strong negative correlation between the deposition amount of the ammonium sulfate species and the specific surface area. Based on the above relationship, we concluded that the deposition of the ammonium sulfate species decreased the specific surface area by plugging the pore structure of the catalyst, and the decrease of the specific surface area resulted in the deactivation of the catalyst.

  14. Graphene and TiO2 co-modified flower-like Bi2O2CO3: A novel multi-heterojunction photocatalyst with enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Ao, Yanhui; Xu, Liya; Wang, Peifang; Wang, Chao; Hou, Jun; Qian, Jin; Li, Yi

    2015-11-01

    In this paper, graphene (GR) and titania co-modified flower-like Bi2O2CO3 multi-heterojunction composite photocatalysts were prepared by a simple and feasible two step hydrothermal process. The prepared samples were analyzed by X-ray diffraction (XRD) and scanning electron microscope (SEM), transmission electron microscopy (TEM), UV-vis diffuse reflectance spectrometry (DRS), photoluminescence (PL), N2 adsorption-desorption isotherm, and photo-induced current. The photocatalytic activity was investigated by the degradation of MO under UV light irradiation. The as prepared multi-heterojunction GR/Bi2O2CO3/TiO2 composites exhibited much higher photocatalytic activity than pure Bi2O2CO3, TiO2 and GR-Bi2O2CO3. The higher performance of GR/Bi2O2CO3/TiO2 can be ascribed to the formation of multi-heterojunctions, which promote the effective separation of photo-induced electron-hole pairs. Moreover, the higher photocatalytic activity can also be ascribed to the high surface area of GR and TiO2, which offers more active sites for the photodegradation reaction. Furthermore, the photocatalytic activity of GR/Bi2O2CO3/TiO2 remained without striking decrease after five cycles, which indicates the excellent stability of GR/Bi2O2CO3/TiO2 composites. This work would pave a way to the design of high efficient multi-heterojunction photocatalysts.

  15. N-doped TiO 2 photo-catalyst for the degradation of 1,2-dichloroethane under fluorescent light

    NASA Astrophysics Data System (ADS)

    Lin, Yi-Hsing; Chiu, Tang-Chun; Hsueh, Hsin-Ta; Chu, Hsin

    2011-12-01

    The photo-catalytic degradation of 1,2-dichloroethane (1, 2-DCE) using nitrogen-doped TiO2 photo-catalysts under fluorescent light irradiation was investigated. Highly pure TiO2 and nitrogen-doped TiO2 were prepared by a sol-gel method and characterized by thermo-gravimetric/differential-thermal analysis (TG/DTA), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared (FTIR) spectroscopy. The results indicate that the photo-catalysts were mainly nano-size with an anatase-phase structure. The degradation reaction of 1,2-DCE was operated under visible-light irradiation, and the photo-catalytic oxidation was conducted in a batch photo-reactor with various nitrogen doping ratios (N/Ti = 0-25 mol%). The relative humidity (RH) was controlled at 0-20% and the oxygen concentration was controlled at 0-21%. The photo-degradation with nitrogen-doped TiO2 showed superior photo-catalytic activity compared to that for pure TiO2. TiO2 doped with 15 mol% nitrogen exhibited the best photo-catalytic efficiency under the tested conditions. The products from the 1,2-DCE photo-catalytic oxidation were CO2 and water; the by-products included dichloromethane, methyl chloride, ethyl chloride, carbon monoxide, and hydrogen chloride. The reaction pathway of 1,2-DCE indicates that oxygen molecules are the major factor that causes the degradation of 1,2-DCE in the gas phase.

  16. Efficient photocatalytic degradation of organic pollutants by magnetically recoverable nitrogen-doped TiO2 nanocomposite photocatalysts under visible light irradiation.

    PubMed

    Hamzezadeh-Nakhjavani, Sahar; Tavakoli, Omid; Akhlaghi, Seyed Parham; Salehi, Zeinab; Esmailnejad-Ahranjani, Parvaneh; Arpanaei, Ayyoob

    2015-12-01

    Preparation of novel nanocomposite particles (NCPs) with high visible-light-driven photocatalytic activity and possessing recovery potential after advanced oxidation process (AOP) is much desired. In this study, pure anatase phase titania (TiO2) nanoparticles (NPs) as well as three types of NCPs including nitrogen-doped titania (TiO2-N), titania-coated magnetic silica (Fe3O4 cluster@SiO2@TiO2 (FST)), and a novel magnetically recoverable TiO2 nanocomposite photocatalyst containing nitrogen element (Fe3O4 cluster@SiO2@TiO2-N (FST-N)) were successfully synthesized via a sol-gel process. The photocatalysts were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, field emission scanning electron microscopy (FE-SEM) with an energy-dispersive X-ray (EDX) spectroscopy analysis, X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (DRS), and vibrating sample magnetometer (VSM). The photocatalytic activity of as-prepared samples was further investigated and compared with each other by degradation of phenol, as a model for the organic pollutants, in deionized (DI) water under visible light irradiation. The TiO2-N (55??1.5%) and FST-N (46??1.5%) samples exhibited efficient photocatalytic activity in terms of phenol degradation under visible light irradiation, while undoped samples were almost inactive under same operating conditions. Moreover, the effects of key operational parameters, the optimum sample calcination temperature, and reusability of FST-N NCPs were evaluated. Under optimum conditions (calcination temperature of 400C and near-neutral reaction medium), the obtained results revealed efficient degradation of phenol for FST-N NCPs under visible light irradiation (46??1.5%), high yield magnetic separation and efficient reusability of FST-N NCPs (88.88% of its initial value) over 10 times reuse. PMID:26206125

  17. Fe doped TiO2-graphene nanostructures: synthesis, DFT modeling and photocatalysis

    NASA Astrophysics Data System (ADS)

    Farhangi, Nasrin; Ayissi, Serge; Charpentier, Paul A.

    2014-08-01

    In this work, Fe-doped TiO2 nanoparticles ranging from a 0.2 to 1 weight % were grown from the surface of graphene sheet templates containing -COOH functionalities using sol-gel chemistry in a green solvent, a mixture of water/ethanol. The assemblies were characterized by a variety of analytical techniques, with the coordination mechanism examined theoretically using the density functional theory (DFT). Scanning electron microscopy and transmission electron microscopy images showed excellent decoration of the Fe-doped TiO2 nanoparticles on the surface of the graphene sheets >5 nm in diameter. The surface area and optical properties of the Fe-doped photocatalysts were measured by BET, UV and PL spectrometry and compared to non-graphene and pure TiO2 analogs, showing a plateau at 0.6% Fe. Interactions between graphene and Fe-doped anatase TiO2 were also studied theoretically using the Vienna ab initio Simulation Package based on DFT. Our first-principles theoretical investigations validated the experimental findings, showing the strength in the physical and chemical adsorption between the graphene and Fe-doped TiO2. The resulting assemblies were tested for photodegradation under visible light using 17?-estradiol (E2) as a model compound, with all investigated catalysts showing significant enhancements in photocatalytic activity in the degradation of E2.

  18. TiO2 Fibers Supported ?-FeOOH Nanostructures as Efficient Visible Light Photocatalyst and Room Temperature Sensor.

    PubMed

    Zhu, Ting; Li Ong, Wei; Zhu, Liangliang; Wei Ho, Ghim

    2015-01-01

    Hierarchical heterostructures of beta-iron oxyhydroxide (?-FeOOH) nanostructures on electrospun TiO2 nanofibers were synthesized by a facile hydrothermal method. This synthesis method proves to be versatile to tailoring of ?-FeOOH structural design that cuts across zero-dimensional particles (TF-P), one-dimensional needles (TF-N) to two-dimensional flakes (TF-F). In addition, synthesizing such oxyhyroxide nanostructures presents the advantage of exhibiting similar functional performances to its oxides counterpart however, without the need to undergo any annealing step which leads to undesirable structural collapse or sintering. The as-prepared hierarchical heterostructures possess high surface area for dye adsorptivity, efficient charge separation and visible photocatalytic activity. Also, for the first time, hydrogen gas sensing has been demonstrated on ?-FeOOH nanostructures at room temperature. The reported hierarchical heterostructures of ?-FeOOH on TiO2 nanofibers afford multiple functions of photocatalysis and sensing which are highly promising for environment monitoring and clean up applications. PMID:26030002

  19. TiO2 Fibers Supported β-FeOOH Nanostructures as Efficient Visible Light Photocatalyst and Room Temperature Sensor

    PubMed Central

    Zhu, Ting; Li Ong, Wei; Zhu, Liangliang; Wei Ho, Ghim

    2015-01-01

    Hierarchical heterostructures of beta-iron oxyhydroxide (β-FeOOH) nanostructures on electrospun TiO2 nanofibers were synthesized by a facile hydrothermal method. This synthesis method proves to be versatile to tailoring of β-FeOOH structural design that cuts across zero-dimensional particles (TF-P), one-dimensional needles (TF-N) to two-dimensional flakes (TF-F). In addition, synthesizing such oxyhyroxide nanostructures presents the advantage of exhibiting similar functional performances to its oxides counterpart however, without the need to undergo any annealing step which leads to undesirable structural collapse or sintering. The as-prepared hierarchical heterostructures possess high surface area for dye adsorptivity, efficient charge separation and visible photocatalytic activity. Also, for the first time, hydrogen gas sensing has been demonstrated on β-FeOOH nanostructures at room temperature. The reported hierarchical heterostructures of β-FeOOH on TiO2 nanofibers afford multiple functions of photocatalysis and sensing which are highly promising for environment monitoring and clean up applications. PMID:26030002

  20. Synthesis and characterization of anionic/nonionic surfactant-interceded iron-doped TiO2 to enhance sorbent/photo-catalytic properties

    NASA Astrophysics Data System (ADS)

    Sharma, Ajit; Lee, Byeong-Kyu

    2015-09-01

    We investigated the synthesis, characterization, and application of surfactant-interceded Fe nanoparticle-doped TiO2 (TiO2/Fe-S1 and TiO2/Fe-S2) that were used as adsorbents and photo-catalysts for the removal of As(V) ions from aqueous media. Two types of surfactant (anionic (sodium dodecyl sulfate), S1 and non-ionic (Triton X-100), S2) were used to obtain the separation and mono-dispersion of Fe(III) ions in the reaction solution. The nanocomposites were characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), UV-vis, scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDX) and elemental mapping analysis before and after As(V) removal. The Langmuir capacities (qe, mg/g) of the sodium dodecyl sulfate (SDS) and Triton X-100 interceded nanocomposites (TiO2/Fe-S1 and TiO2/Fe-S2, respectively) for arsenic removal were determined to be 65.79 and 50.76 mg/g, respectively, in aqueous media with As(V) concentration ranges of 0-10 mg/L at pH 6.5.

  1. Novel high potential visible-light-active photocatalyst of CNT/Mo, S-codoped TiO2 hetero-nanostructure

    NASA Astrophysics Data System (ADS)

    Hamadanian, M.; Shamshiri, M.; Jabbari, V.

    2014-10-01

    The current study deals with synthesize of novel nanophotocatalysts of CNT/Mo,S-codoped TiO2 by reacting between titanium isopropoxide (Ti(OC3H7)4) and CNT in aqueous ammonia and subsequent calcining of hydrolysis of the products. The prepared catalysts were characterized by N2 adsorption-desorption measurements, XRD, SEM, TEM, EDX, FT-IR, and UV-vis DRS spectroscopy. SEM and TEM images exhibited uniform coverage of CNT with anatase TiO2 nanoclusters. It was also demonstrated that the presence of S and Mo within the TiO2 acts as electrons traps and prevents the charge recombination and also enables the TiO2 photocatalyst to be active in visible-light region. Moreover, the CNT/Mo,S-doped TiO2 nanohybrids has been proven to has a excellent photocatalytic performance in photodecomposition of Congored (CR), at which the rate of decomposition reaches 100% in only 20 and 30 min under UV and visible-light irradiation, respectively. The enhanced photocatalytic activity was ascribed to the synergetic effects of excellent electrical property of CNT and metal-non-metal codoping. Finally, which to best of our knowledge is done for the first time, we have demonstrated that Mo- and S-doped TiO2 decorated over CNT, or CNT/Mo,S-codoped TiO2, may have high potential applications in photocatalysis and environmental protection with superior catalytic activity under visible-light illumination.

  2. Eco-friendly synthesis of TiO2, Au and Pt doped TiO2 nanoparticles for dye sensitized solar cell applications and evaluation of toxicity

    NASA Astrophysics Data System (ADS)

    Gopinath, K.; Kumaraguru, S.; Bhakyaraj, K.; Thirumal, S.; Arumugam, A.

    2016-04-01

    Driven by the demand of pure TiO2, Au and Pt doped TiO2 NPs were successfully synthesized using Terminalia arjuna bark extract. The eco-friendly synthesized NPs were characterized by UV-Vis-DRS, ATR-FT-IR, PL, XRD, Raman, SEM with EDX and TEM analysis. The synthesized NPs were investigation for dye sensitized solar cell applications. UV-Vis-Diffused Reflectance Spectra clearly showed that the expected TiO2 inter band absorption below 306 nm, incorporation of gold shows surface plasma resonant (SPR) near 555 nm and platinum incorporated TiO2 NPs shows absorbance at 460 nm. The energy conversion efficiency for Au doped TiO2 NPs when compared to pure and Pt doped TiO2 NPs. In addition to that, Au noble metal present TiO2 matrix and an improve open-circuit voltage (Voc) of DSSC. Synthesized NPs was evaluated into antibacterial and antifungal activities by disk diffusion method. It is observed that NPs have not shown any activities in all tested bacterial and fungal strains. In this eco-friendly synthesis method to provide non toxic and environmental friendly nanomaterials can be used for solar energy device application.

  3. Sol-gel synthesis of mesoporous anatase-brookite and anatase-brookite-rutile TiO2 nanoparticles and their photocatalytic properties.

    PubMed

    Mutuma, Bridget K; Shao, Godlisten N; Kim, Won Duck; Kim, Hee Taik

    2015-03-15

    TiO2 photocatalysts with a mixture of different TiO2 crystal polymorphs have customarily been synthesized hydrothermally at high temperatures using complicated and expensive equipment. In this study TiO2 nanoparticles with a mixture of TiO2 crystals were synthesized using a modified sol-gel method at low temperature. In order to form nanoparticles with different polymorphs a series of samples were obtained at pH 2, 4, 7 and 9. Raw samples were calcined at different temperatures ranging from 200 to 800C to evaluate the effect of the calcination temperature on the physico-chemical properties of the samples. XRD results revealed that a mixture of anatase and brookite can be obtained in the as-synthesized samples and in those calcined up to 800C depending on the pH used to obtain the final product. Indeed, a mixture of anatase brookite and rutile; or a sample with only rutile phase can be yielded through further calcination of the as-prepared samples at temperatures ?600C due to phase transformation. The photocatalytic performance of the samples with a mixture of anatase-brookite; anatase-brookite-rutile; and anatase-rutile (Degussa P25 TiO2) was exquisitely investigated in the degradation of methylene blue solutions. The samples obtained at pH 2 and calcined at 200C possessed the highest activity of all due to its superior properties. This study elucidates a facile method suitable for the synthesis of TiO2 with different mixtures of TiO2 polymorphs with desirable properties for various applications. PMID:25514642

  4. Mussel-Directed Synthesis of Nitrogen-Doped Anatase TiO2.

    PubMed

    Xie, Jingjing; Xie, Hao; Su, Bao-Lian; Cheng, Yi-Bing; Du, Xiaodong; Zeng, Hui; Wang, Menghu; Wang, Weimin; Wang, Hao; Fu, Zhengyi

    2016-02-01

    Structure-forming processes leading to biominerals are well worth learning in pursuit of new synthetic techniques. Strategies that attempt to mimic nature in vitro cannot replace an entire complex natural organism, requiring ingenuity beyond chemists' hands. A "bioprocess-inspired synthesis" is demonstrated for fabrication of N-doped TiO2 materials at ambient temperature by direct implantation of precursor into living mussels. The amorphous precursor transforms into N-doped anatase TiO2 with a hierarchical nanostructure. Synthetic TiO2 exhibits high phase stability and enhanced visible-light photocatalytic activity as a result of modifications to its band gap during in vivo mineralization. Intracellular proteins were found to be involved in TiO2 mineralization. Our findings may inspire material production by new synthetic techniques, especially under environmentally benign conditions. PMID:26822893

  5. Nanostructured AgBr loaded TiO2: An efficient sunlight active photocatalyst for degradation of Reactive Red 120

    PubMed Central

    2011-01-01

    The AgBr loaded TiO2 catalyst was prepared by a feasible approach with AgBr and tetraisopropyl orthotitanate and characterized by BET surface area measurement, diffuse reflectance spectra (DRS), scanning electron microscope (SEM), energy dispersive spectra (EDS), X-ray diffraction (XRD), transmission electron microscope (TEM) and atomic force microscope (AFM) analysis. The results of characterization reveal that AgBr loaded TiO2 has a nanostructure. Formation of the nanostructure in AgBr loaded TiO2 results in substantial shifting of the absorption edge of TiO2 to red and enhancement of visible light absorption. Electrochemical impedance spectroscopy measurements reveal that AgBr loaded TiO2 has a higher photoconductivity than prepared TiO2 due to higher separation efficiency of electron-hole pairs. Cyclic voltammetric studies reveal enhanced conductivity in AgBr loaded TiO2, which causes an increase in its photocatalytic activity. AgBr loaded TiO2 exhibited a higher photocatalytic activity than TiO2-P25 and prepared TiO2 in the photodegradation of Reactive Red 120 (RR 120). PMID:21801445

  6. Gold and gold-palladium alloy nanoparticles on heterostructured TiO2 nanobelts as plasmonic photocatalysts for benzyl alcohol oxidation

    NASA Astrophysics Data System (ADS)

    Jiang, Tongtong; Jia, Chuancheng; Zhang, Lanchun; He, Shuren; Sang, Yuanhua; Li, Haidong; Li, Yanqing; Xu, Xiaohong; Liu, Hong

    2014-11-01

    Plasmonic photocatalysts composed of Au and bimetallic Au-Pd alloy nanoparticles (NPs) on one-dimensional TiO2 nanobelts (TiO2-NBs) were used for the aerobic oxidation of benzyl alcohol under visible light irradiation. Remarkable light-promoted activity was observed for the as-synthesized M/TiO2-NB (M = Au, Au-Pd) nanostructures based on the TiO2(B)/anatase heterostructured nanobelt. The difference in band structure and the well matched interface between the TiO2(B) and anatase phases, coupled with the one-dimensional nanostructure, enable an enhanced charge transfer within the heterostructured nanobelt. This inter-phase charge transfer greatly facilitates the flow of hot electrons from the metal NPs to TiO2 and promotes benzyl alcohol oxidation. This efficient electron transfer was identified by the much higher photocurrent response measured for the Au/TiO2-NB nanostructure with the TiO2(B)/anatase heterojunction than those with either of the single phases under visible light irradiation. Alloying Au with Pd in Au-Pd/TiO2-NB results in a significant improvement in the visible light-promoted activity compared to the monometallic Au/TiO2-NB sample. It is supposed that the plasmon-mediated charge distribution within the alloy NPs is mainly responsible for the enhanced photocatalytic activity of the bimetallic nanostructures.Plasmonic photocatalysts composed of Au and bimetallic Au-Pd alloy nanoparticles (NPs) on one-dimensional TiO2 nanobelts (TiO2-NBs) were used for the aerobic oxidation of benzyl alcohol under visible light irradiation. Remarkable light-promoted activity was observed for the as-synthesized M/TiO2-NB (M = Au, Au-Pd) nanostructures based on the TiO2(B)/anatase heterostructured nanobelt. The difference in band structure and the well matched interface between the TiO2(B) and anatase phases, coupled with the one-dimensional nanostructure, enable an enhanced charge transfer within the heterostructured nanobelt. This inter-phase charge transfer greatly facilitates the flow of hot electrons from the metal NPs to TiO2 and promotes benzyl alcohol oxidation. This efficient electron transfer was identified by the much higher photocurrent response measured for the Au/TiO2-NB nanostructure with the TiO2(B)/anatase heterojunction than those with either of the single phases under visible light irradiation. Alloying Au with Pd in Au-Pd/TiO2-NB results in a significant improvement in the visible light-promoted activity compared to the monometallic Au/TiO2-NB sample. It is supposed that the plasmon-mediated charge distribution within the alloy NPs is mainly responsible for the enhanced photocatalytic activity of the bimetallic nanostructures. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr05905k

  7. Degradation of microcystin-LR by highly efficient AgBr/Ag3PO4/TiO2 heterojunction photocatalyst under simulated solar light irradiation

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Utsumi, Motoo; Yang, Yingnan; Li, Dawei; Zhao, Yingxin; Zhang, Zhenya; Feng, Chuanping; Sugiura, Norio; Cheng, Jay Jiayang

    2015-01-01

    A novel photocatalyst AgBr/Ag3PO4/TiO2 was developed by a simple facile in situ deposition method and used for degradation of mirocystin-LR. TiO2 (P25) as a cost effective chemical was used to improve the stability of AgBr/Ag3PO4 under simulated solar light irradiation. The photocatalytic activity tests for this heterojunction were conducted under simulated solar light irradiation using methyl orange as targeted pollutant. The results indicated that the optimal Ag to Ti molar ratio for the photocatalytic activity of the resulting heterojunction AgBr/Ag3PO4/TiO2 was 1.5 (named as 1.5 BrPTi), which possessed higher photocatalytic capacity than AgBr/Ag3PO4. The 1.5 BrPTi heterojunction was also more stable than AgBr/Ag3PO4 in photocatalysis. This highly efficient and relatively stable photocatalyst was further tested for degradation of the hepatotoxin microcystin-LR (MC-LR). The results suggested that MC-LR was much more easily degraded by 1.5 BrPTi than by AgBr/Ag3PO4. The quenching effects of different scavengers proved that reactive h+ and OH played important roles for MC-LR degradation.

  8. Highly efficient and stable Au/CeO2-TiO2 photocatalyst for nitric oxide abatement: potential application in flue gas treatment.

    PubMed

    Zhu, Wei; Xiao, Shuning; Zhang, Dieqing; Liu, Peijue; Zhou, Hongjun; Dai, Wenrui; Liu, Fanfan; Li, Hexing

    2015-10-01

    In the present work, highly efficient and stable Au/CeO2-TiO2 photocatalysts were prepared by a microwave-assisted solution approach. The Au/CeO2-TiO2 composites with optimal molar ratio of Au/Ce/Ti of 0.004:0.1:1 delivered a remarkably high and stable NO conversion rate of 85% in a continuous flow reactor system under simulated solar light irradiation, which far exceeded the rate of 48% over pure TiO2. The tiny Au nanocrystals (∼1.1 nm) were well stabilized by CeO2 via strong metal-support bonding even it was subjected to calcinations at 550 °C for 6 h. These Au nanocrystals served as the very active sites for activating the molecule of nitric oxide and reducing the transmission time of the photogenerated electrons to accelerate O2 transforming to reactive oxygen species. Moreover, the Au-Ce(3+) interface formed and served as an anchoring site of O2 molecule. Then more adsorbed oxygen could react with photogenerated electrons on TiO2 surfaces to produce more superoxide radicals for NO oxidation, resulting in the improved efficiency. Meanwhile, O2 was also captured at the Au/TiO2 perimeter site and the NO molecules on TiO2 sites were initially delivered to the active perimeter site via diffusion on the TiO2 surface, where they assisted O-O bond dissociation and reacted with oxygen at these perimeter sites. Therefore, these finite Au nanocrystals can consecutively expose active sites for oxidizing NO. These synergistic effects created an efficient and stable system for breaking down NO pollutants. Furthermore, the excellent antisintering property of the catalyst will allow them for the potential application in photocatalytic treatment of high-temperature flue gas from power plant. PMID:26390086

  9. Enhanced photocatalytic activities of the heterostructured upconversion photocatalysts with cotton mediated on TiO2/ZnWO4:Yb3+,Tm3.

    PubMed

    Feng, Kaili; Huang, Shouqiang; Lou, Ziyang; Zhu, Nanwen; Yuan, Haiping

    2015-08-14

    To improve the photocatalytic efficiency and make full use of solar energy, ZnWO(4):Yb(3+),Tm(3+) (ZYT) was introduced as the upconversion luminescence agent on TiO(2) with a cotton template, and novel upconversion photocatalysts of TiO(2)/ZnWO(4):Yb(3+),Tm(3+) (TZYT-C) were synthesized and optimized with 5%-30% of ZYT. The heterostructure between ZYT and TiO(2) was formed in the TZYT-C composites with the presence of tube-like morphologies due to the addition of the cotton template. UV (364 nm) and blue (484 nm) light was emitted from ZYT upon 980 nm NIR irradiation. The BET specific surface areas of all the TZYT-C composites increased from 37 m(2) g(-1) (TiO(2)-C) to the maximum value of 75 m(2) g(-1) on 5%TZYT-C. The photocatalytic activities of the TZYT-C composites were tested using the degradation process of methyl orange (MO). 5%TZYT-C showed the highest degradation efficiency, with a value of 55.6% under sun-like irradiation for 210 min. The same performance was observed on 5%TZYT-C under NIR (? ? 780 nm) irradiation, with a maximum removal rate of 9.02%, since 5%TZYT-C showed the most efficient electron-hole (e(-)/h(+)) pair separation, compared to ZYT and other TZYT-C composites. PMID:26150279

  10. SiH/TiO2 and GeH/TiO2 Heterojunctions: Promising TiO2-based Photocatalysts under Visible Light

    PubMed Central

    Niu, Mang; Cheng, Daojian; Cao, Dapeng

    2014-01-01

    We use hybrid density functional calculations to find that the monolayer silicane (SiH) and the anatase TiO2(101) composite (i.e. the SiH/TiO2 heterojunction) is a promising TiO2-based photocatalyst under visible light. The band gap of the SiH/TiO2(101) heterojunction is 2.082?eV, which is an ideal material for the visible-light photoexcitation of electron-hole pairs. Furthermore, the SiH/TiO2(101) heterojunction has a favorable type-II band alignment and thus the photoexcited electron can be injected to the conduction band of anatase TiO2 from that of silicane. Finally, the proper interface charge distribution facilitates the carrier separation in the SiH/TiO2(101) interface region. The electron injection and carrier separation can prevent the recombination of electron-hole pairs. Our calculation results suggest that such electronic structure of SiH/TiO2(101) heterojunction has significant advantages over these of doped TiO2 systems for visible-light photocatalysis. PMID:24787027

  11. Design of composite photocatalyst of TiO2 and Y-zeolite for degradation of 2-propanol in the gas phase under UV and visible light irradiation.

    PubMed

    Kamegawa, Takashi; Ishiguro, Yasushi; Kido, Ryota; Yamashita, Hiromi

    2014-01-01

    Hydrophobic Y-zeolite (SiO2/Al2O3 = 810) and TiO2 composite photocatalysts were designed by using two different types of TiO2 precursors, i.e., titanium ammonium oxalate and ammonium hexafluorotitanate. The porous structure, surface property and state of TiO2 were investigated by various characterization techniques. By using an ammonium hexafluorotitanate as a precursor, hydrophobic modification of the Y-zeolite surface and realizing visible light sensitivity was successfully achieved at the same time after calcination at 773 K in the air. The prepared sample still maintained the porous structure of Y-zeolite and a large surface area. Highly crystalline anatase TiO2 was also formed on the Y-zeolite surface by the role of fluorine in the precursor. The usages of ammonium hexafluorotitanate were effective for the improvement of the photocatalytic performance of the composite in the degradation of 2-propanol in the gas phase under UV and visible light (? > 420 nm) irradiation. PMID:25314607

  12. Hydrothermal synthesis spherical TiO2 and its photo-degradation property on salicylic acid

    NASA Astrophysics Data System (ADS)

    Guo, Wenlu; Liu, Xiaolin; Huo, Pengwei; Gao, Xun; Wu, Di; Lu, Ziyang; Yan, Yongsheng

    2012-07-01

    Anatase TiO2 spheres have been prepared using hydrothermal synthesis. The prepared spheres were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and UV-vis diffuse reflectance spectra (UV-vis DRS). The TiO2 consisted of well-defined spheres with size of 3-5 ?m. The photocatalytic activity of spherical TiO2 was determined by degradation of salicylic acid under visible light irradiation. It was revealed that the degradation rate of the spherical TiO2 which was processed at 150 C for 48 h could reach 81.758%. And the kinetics of photocatalytic degradation obeyed first-order kinetic, which the rate constant value was 0.01716 S-1 of the salicylic acid onto TiO2 (temperature: 150, time: 48 h). The kinetics of adsorption followed the pseudo-second-order model and the rate constant was 1.2695 g mg-1 of the salicylic acid onto TiO2 (temperature: 150, time: 48 h).

  13. TiO2 doped with nitrogen: synthesis and characterization.

    PubMed

    Abazovi?, Nadica D; Montone, Amelia; Mirenghi, Luciana; Jankovi?, Ivana A; Comor, Mirjana I

    2008-02-01

    In this study, nitrogen-doped titanium dioxide (TiO2) powders were synthesized in two ways: by heating of titanium hydroxide with urea and by direct hydrolysis of titanium tetraisopropoxide (TTIP) with ammonium hydroxide. The samples were characterized by structural (XRD), analytical (XPS), optical (UV/Vis absorption/reflection and Raman spectroscopy) and morphological (SEM, TEM) techniques. The characterization suggested that the doped materials have anatase crystalline form without any detectable peaks that correspond to dopants. The absorption threshold of titanium dioxide was moved in the visible range of optical spectrum from 3.2 eV to 2.20 eV. Particle sizes of synthesized powders were obtained from XRD measurements and from TEM data ranging from 6-20 nm. XPS and Raman spectroscopy were used for detection of nitrogen in doped samples. PMID:18464379

  14. Synthesis and characterization of TiO2 loaded cashew nut shell activated carbon and photocatalytic activity on BG and MB dyes under sunlight radiation.

    PubMed

    Ragupathy, S; Raghu, K; Prabu, P

    2015-03-01

    Synthesis of titanium dioxide (TiO2) nanoparticles and TiO2 loaded cashew nut shell activated carbon (TiO2/CNSAC) had been undertaken using sol-gel method and their application in BG and MB dyes removal under sunlight radiation has been investigated. The synthesized photocatalysts were characterized by X-ray diffraction analysis (XRD), Fourier infra-red spectroscopy (FT-IR), UV-Vis-diffuse reflectance spectroscopy (DRS) and scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDX). The various experimental parameters like amount of catalyst, contact time for efficient dyes degradation of BG and MB were concerned in this study. Activity measurements performed under solar irradiation has shown good results for the photodegradation of BG and MB in aqueous solution. It was concluded that the higher photocatalytic activity in TiO2/CNSAC was due to parameters like band-gap, number of hydroxyl groups, surface area and porosity of the catalyst. The kinetic data were also described by the pseudo-first-order and pseudo-second-order kinetic models. PMID:25506648

  15. Synthesis and characterization of TiO2 loaded cashew nut shell activated carbon and photocatalytic activity on BG and MB dyes under sunlight radiation

    NASA Astrophysics Data System (ADS)

    Ragupathy, S.; Raghu, K.; Prabu, P.

    2015-03-01

    Synthesis of titanium dioxide (TiO2) nanoparticles and TiO2 loaded cashew nut shell activated carbon (TiO2/CNSAC) had been undertaken using sol-gel method and their application in BG and MB dyes removal under sunlight radiation has been investigated. The synthesized photocatalysts were characterized by X-ray diffraction analysis (XRD), Fourier infra-red spectroscopy (FT-IR), UV-Vis-diffuse reflectance spectroscopy (DRS) and scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDX). The various experimental parameters like amount of catalyst, contact time for efficient dyes degradation of BG and MB were concerned in this study. Activity measurements performed under solar irradiation has shown good results for the photodegradation of BG and MB in aqueous solution. It was concluded that the higher photocatalytic activity in TiO2/CNSAC was due to parameters like band-gap, number of hydroxyl groups, surface area and porosity of the catalyst. The kinetic data were also described by the pseudo-first-order and pseudo-second-order kinetic models.

  16. Controlled synthesis and photocatalysis of sea urchin-like Fe3O4@TiO2@Ag nanocomposites

    NASA Astrophysics Data System (ADS)

    Zhao, Yilin; Tao, Chengran; Xiao, Gang; Wei, Guipeng; Li, Linghui; Liu, Changxia; Su, Haijia

    2016-02-01

    Based on the synergistic photocatalytic activities of nano-sized TiO2 and Ag, as well as the magnetic properties of Fe3O4, a sea urchin-like Fe3O4@TiO2@Ag nanocomposite (Fe3O4@TiO2@Ag NCs) is controllably synthesized with tunable cavity size, adjustable shell layer of TiO2 nanofiber, higher structural stability and larger specific surface area. Here, Fe3O4@TiO2@Ag NCs are obtained with Fe3O4 as the core and nanofiber TiO2/Fe3O4/Ag nanoheterojunctions as the shell; and Ag nanoparticles with diameter of approximately 4 nm are loaded both on TiO2 nanofibers and inside the cavities of sea urchin-like Fe3O4@TiO2 nanocomposites uniformly. Ag nanoparticles lead to the production of more photogenerated charges in the TiO2/Fe3O4/Ag heterojunction via LSPR absorption, and enhance the band-gap absorption of TiO2, while the Fe3O4 cocatalyst provides the active sites for oxygen reduction by the effective transfer of photogenerated electrons to oxygen. So the photocatalytic performance is improved due to the synergistic effect of TiO2/Fe3O4/Ag nanoheterojunctions. As photocatalysts under UV and visible irradiation, the as-synthesized nanocomposites display enhanced photocatalytic and recycling properties for the degradation of ampicillin. Moreover, they present better broad-spectrum antibiosis under visible irradiation. The enhanced photocatalytic activity and excellent chemical stability, in combination with the magnetic recyclability, makes this multifunctional nanostructure a promising candidate for antibiosis and remediation in aquatic environmental contamination in the future.Based on the synergistic photocatalytic activities of nano-sized TiO2 and Ag, as well as the magnetic properties of Fe3O4, a sea urchin-like Fe3O4@TiO2@Ag nanocomposite (Fe3O4@TiO2@Ag NCs) is controllably synthesized with tunable cavity size, adjustable shell layer of TiO2 nanofiber, higher structural stability and larger specific surface area. Here, Fe3O4@TiO2@Ag NCs are obtained with Fe3O4 as the core and nanofiber TiO2/Fe3O4/Ag nanoheterojunctions as the shell; and Ag nanoparticles with diameter of approximately 4 nm are loaded both on TiO2 nanofibers and inside the cavities of sea urchin-like Fe3O4@TiO2 nanocomposites uniformly. Ag nanoparticles lead to the production of more photogenerated charges in the TiO2/Fe3O4/Ag heterojunction via LSPR absorption, and enhance the band-gap absorption of TiO2, while the Fe3O4 cocatalyst provides the active sites for oxygen reduction by the effective transfer of photogenerated electrons to oxygen. So the photocatalytic performance is improved due to the synergistic effect of TiO2/Fe3O4/Ag nanoheterojunctions. As photocatalysts under UV and visible irradiation, the as-synthesized nanocomposites display enhanced photocatalytic and recycling properties for the degradation of ampicillin. Moreover, they present better broad-spectrum antibiosis under visible irradiation. The enhanced photocatalytic activity and excellent chemical stability, in combination with the magnetic recyclability, makes this multifunctional nanostructure a promising candidate for antibiosis and remediation in aquatic environmental contamination in the future. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08624h

  17. Controlled synthesis and photocatalysis of sea urchin-like Fe3O4@TiO2@Ag nanocomposites.

    PubMed

    Zhao, Yilin; Tao, Chengran; Xiao, Gang; Wei, Guipeng; Li, Linghui; Liu, Changxia; Su, Haijia

    2016-02-25

    Based on the synergistic photocatalytic activities of nano-sized TiO2 and Ag, as well as the magnetic properties of Fe3O4, a sea urchin-like Fe3O4@TiO2@Ag nanocomposite (Fe3O4@TiO2@Ag NCs) is controllably synthesized with tunable cavity size, adjustable shell layer of TiO2 nanofiber, higher structural stability and larger specific surface area. Here, Fe3O4@TiO2@Ag NCs are obtained with Fe3O4 as the core and nanofiber TiO2/Fe3O4/Ag nanoheterojunctions as the shell; and Ag nanoparticles with diameter of approximately 4 nm are loaded both on TiO2 nanofibers and inside the cavities of sea urchin-like Fe3O4@TiO2 nanocomposites uniformly. Ag nanoparticles lead to the production of more photogenerated charges in the TiO2/Fe3O4/Ag heterojunction via LSPR absorption, and enhance the band-gap absorption of TiO2, while the Fe3O4 cocatalyst provides the active sites for oxygen reduction by the effective transfer of photogenerated electrons to oxygen. So the photocatalytic performance is improved due to the synergistic effect of TiO2/Fe3O4/Ag nanoheterojunctions. As photocatalysts under UV and visible irradiation, the as-synthesized nanocomposites display enhanced photocatalytic and recycling properties for the degradation of ampicillin. Moreover, they present better broad-spectrum antibiosis under visible irradiation. The enhanced photocatalytic activity and excellent chemical stability, in combination with the magnetic recyclability, makes this multifunctional nanostructure a promising candidate for antibiosis and remediation in aquatic environmental contamination in the future. PMID:26884248

  18. Investigation of the antibacterial effects of silver-modified TiO2 and ZnO plasmonic photocatalysts embedded in polymer thin films.

    PubMed

    Tallsy, Szabolcs Pter; Janovk, Lszl; Mnesi, Judit; Nagy, Elisabeth; Juhsz, dm; Balzs, Lszl; Deme, Istvn; Buzs, Norbert; Dkny, Imre

    2014-10-01

    Nanosilver-modified TiO2 and ZnO photocatalysts were studied against methicillin-resistant Staphylococcus aureus on the surface and against naturally occurring airborne microorganisms. The photocatalysts/polymer nanohybrid films were prepared by spray coating technique on the surface of glass plates and on the inner surface of the reactive light source. The photoreactive surfaces were activated with visible light emitting LED light at ? = 405 nm. The optical properties of the prepared photocatalyst/polymer nanohybrid films were characterized by diffuse reflectance measurements. The photocatalytic properties were verified with the degradation of ethanol by gas chromatography measurements. The destruction of the bacterial cell wall component was examined with transmission electron microscope. The antibacterial effect of the photocatalyst/polymer nanohybrid films was tested with different methods and with the associated standard ISO 27447:2009. With the photoreactive coatings, an extensive disinfectant film was developed and successfully prepared. The cell wall component of S. aureus was degraded after 1 h of illumination. The antibacterial effect of the nanohybrid films has been proven by measuring the decrease of the number of methicillin-resistant S. aureus on the surface and in the air as the function of illumination time. The photocatalyst/polymer nanohybrid films could inactivate 99.9 % of the investigated bacteria on different thin films after 2 h of illumination with visible light source. The reactive light source with the inner-coated photocatalyst could kill 96 % of naturally occurring airborne microorganisms after 48 h of visible light illumination in indoor air sample. The TEM results and the microbiological measurements were completed with toxicity tests carried out with Vibrio fischeri bioluminescence bacterium. PMID:24497305

  19. Synthesis and Characterization of Photocatalytic TiO 2 -ZnFe 2 O 4 Nanoparticles

    DOE PAGESBeta

    Srinivasan, Sesha S.; Wade, Jeremy; Stefanakos, Elias K.

    2006-01-01

    A new coprecipimore » tation/hydrolysis synthesis route is used to create a TiO 2 -ZnFe 2 O 4 nanocomposite that is directed towards extending the photoresponse of TiO 2 from UV to visible wavelengths ( > 400   nm ). The effect of TiO 2 's accelerated anatase-rutile phase transformation due to the presence of the coupled ZnFe 2 O 4 narrow-bandgap semiconductor is evaluated. The transformation's dependence on pH, calcinations temperature, particle size, and ZnFe 2 O 4 concentration has been analyzed using XRD, SEM, and UV-visible spectrometry. The requirements for retaining the highly photoactive anatase phase present in a ZnFe 2 O 4 nanocomposite are outlined. The visible-light-activated photocatalytic activity of the TiO 2 -ZnFe 2 O 4 nanocomposites has been compared to an Aldrich TiO 2 reference catalyst, using a solar-simulated photoreactor for the degradation of phenol.« less

  20. Controlled synthesis and facets-dependent photocatalysis of TiO2 nanocrystals

    NASA Astrophysics Data System (ADS)

    Roy, Nitish; Park, Yohan; Sohn, Youngku; Pradhan, Debabrata

    2015-04-01

    Titanium dioxide (TiO2) is a wide band gap semiconductor that has been extensively used in several environmental applications including degradation of organic hazardous chemicals, water splitting to generate hydrogen, dye sensitized solar cells, self cleaning agents, and pigments. Herein we demonstrate the synthesis of TiO2 nanocrystals (NCs) with the shapes of ellipsoids, rods, cuboids, and sheets with different exposed facets using a noncorrosive and nontoxic chemical (i.e. diethanolamine) as the shape controlling agent, unlike hydrofluoric acid commonly used. The TiO2 NCs of diverse shapes with different exposed facets were tested for photocatalytic hydroxyl radical (OH) formation, which determines their photocatalytic behavior and the results were compared with the standard P-25 Degussa. The formation rate of OH per specific surface area was found to be >6 fold higher for rod-shaped TiO2 NCs than that of commercial Degussa P25 catalyst. The highest photocatalytic activity of rod-shaped TiO2 NCs is ascribed to the unique chemical environment of {010} exposed facets which facilitates the electron/hole separation in presence of {101} facets.

  1. TiO2 supported over porous silica photocatalysts for pesticide degradation using solar light: Part 2. Silica prepared using acrylic acid emulsion.

    PubMed

    Sharma, Mangalampalli V Phanikrishna; Kumari, Valluri Durga; Subrahmanyam, Machiraju

    2010-03-15

    An acrylic acid emulsion mixture is used for synthesis of novel porous silica (E-Si) material. The photocatalytic activity of TiO2 under solar light irradiation for isoproturon (herbicide) degradation is drastically increased when dispersed over E-Si support using solid state dispersion (SSD) technique. The composite material is characterized by XRD, nitrogen adsorption-desorption isotherms, UV-vis DRS, SEM and TEM measurements. The photocatalytic activities of the composite catalysts are evaluated for different parameters. The 5 wt% TiO2/E-Si is found to be highly active for isoproturon degradation. PMID:19962829

  2. A study of parameter setting and characterization of visible-light driven nitrogen-modified commercial TiO2 photocatalysts.

    PubMed

    Kuo, Yu-Lin; Su, Te-Li; Kung, Fu-Chen; Wu, Tsai-Jung

    2011-06-15

    An optimal condition applied to the Taguchi method with an L(9) orthogonal array for preparing a visible-light driven nitrogen-modified TiO(2) (N-TiO(2)) photocatalyst by a simple hydrolysis method has been examined for material characteristics and a photodecolorization test of methyl blue (MB) under various visible light source (fluorescent and blue LED lamps) irradiations. Results of the material characterization showed that the absorption of prepared N-TiO(2) powder exhibited a significant extension into visible light regimes with an optical bandgap (Eg) of around 2.96 eV, which subsequently improved the visible-light photocatalytic activity of N-TiO(2) samples. The superior photocatalytic properties, the pseudo first-order reaction rate constants (k) and photodecolorization efficiency (?%) of a N-TiO(2) photocatalyst during the photodecolorization test of methyl blue (MB) under two different visible light irradiations were very evident compared to those for pure TiO(2). For photodecolorization of practical dyeing from the waste water from the dyeing and finishing industry, a higher photodecolorization efficiency of N-TiO(2) powder toward Direct blue-86 (DB-86) (Direct Fast Turquoise Blue GL) dye was also achieved. PMID:21555185

  3. Incorporation of N-doped TiO2 nanorods in regenerated cellulose thin films fabricated from recycled newspaper as a green portable photocatalyst.

    PubMed

    Mohamed, Mohamad Azuwa; Salleh, W N W; Jaafar, Juhana; Ismail, A F; Abd Mutalib, Muhazri; Jamil, Siti Munira

    2015-11-20

    In this work, an environmental friendly RC/N-TiO2 nanocomposite thin film was designed as a green portable photocatalyst by utilizing recycled newspaper as sustainable cellulose resource. Investigations on the influence of N-doped TiO2 nanorods incorporation on the structural and morphological properties of RC/N-TiO2 nanocomposite thin film are presented. The resulting nanocomposite thin film was characterized by FESEM, AFM, FTIR, UV-vis-NIR spectroscopy, and XPS analysis. The results suggested that there was a remarkable compatibility between cellulose and N-doped TiO2 nanorods anchored onto the surface of the RC/N-TiO2 nanocomposite thin film. Under UV and visible irradiation, the RC/N-TiO2 nanocomposite thin film showed remarkable photocatalytic activity for the degradation of methylene blue solution with degradation percentage of 96% and 78.8%, respectively. It is crucial to note that the resulting portable photocatalyst produced via an environmental and green technique in its fabrication process has good potential in the field of water and wastewater treatment application. PMID:26344299

  4. Synthesize and characterize of Ag3VO4/TiO2 nanorods photocatalysts and its photocatalytic activity under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Zou, Xuejun; Dong, Yuying; Zhang, Xiaodong; Cui, Yubo

    2016-03-01

    In this paper, in order to expand the light response range of TiO2, Ag3VO4/TiO2 nanorods photocatalysts were fabricated by a simple sol-gel method with microwave and hydrothermal method. The as-prepared samples were characterized by XRD, SEM, DRS, XPS and N2 adsorption-desorption. Meanwhile, their photocatalytic properties were investigated by the degradation of toluene under visible light irradiation. The degradation conversation of toluene had gotten to about 70% in 1% Ag3VO4/TiO2 nanorods after reaction 4 h. The predominant photocatalytic activity can be attributed to its strong absorption in visible light region and excellent charge separation characteristics. By using in situ FTIR, benzyl alcohol and benzaldehyde species could be observed during the reaction and the formed intermediates would be partially oxidized into CO2 and H2O. Electron spin resonance confirmed that OHrad and O2rad - were involved in the photocatalytic degradation of toluene.

  5. A Designed TiO2 /Carbon Nanocomposite as a High-Efficiency Lithium-Ion Battery Anode and Photocatalyst.

    PubMed

    Peng, Liang; Zhang, Huijuan; Bai, Yuanjuan; Feng, Yangyang; Wang, Yu

    2015-10-12

    Herein, a peapod-like TiO2 /carbon nanocomposite has successfully been synthesized by a rational method for the first time. The novel nanostructure exhibits a distinct feature of TiO2 nanoparticles encapsulated inside and the carbon fiber coating outside. In the synthetic process, H2 Ti3 O7 nanotubes serve as precursors and templates, and glucose molecules act as the green carbon source. With the alliciency of hydrogen bonding between H2 Ti3 O7 and glucose, a thin polymer layer is hydrothermally assembled and subsequently converted into carbon fibers through calcinations under an inert atmosphere. Meanwhile, the precursors of H2 Ti3 O7 nanotubes are transformed into the TiO2 nanoparticles encapsulated in carbon fibers. The achieved unique nanocomposites can be used as excellent anode materials in lithium-ion batteries (LIBs) and photocatalytic reagents in the degradation of rhodamine B. Due to the synergistic effect derived from TiO2 nanoparticles and carbon fibers, the obtained peapod-like TiO2 /carbon cannot only deliver a high specific capacity of 160 mAh g(-1) over 500 cycles in LIBs, but also perform a much faster photodegradation rate than bare TiO2 and P25. Furthermore, owing to the low cost, environmental friendliness as well as abundant source, this novel TiO2 /carbon nanocomposite will have a great potential to be extended to other application fields, such as specific catalysis, gas sensing, and photovoltaics. PMID:26310518

  6. Synthesis and optical properties of TiO2-based magnetic nanocomposites

    NASA Astrophysics Data System (ADS)

    Scarisoreanu, M.; Morjan, I.; Fleaca, C.-T.; Morjan, I. P.; Niculescu, A.-M.; Dutu, E.; Badoi, A.; Birjega, R.; Luculescu, C.; Vasile, E.; Danciu, V.; Filoti, G.

    2015-05-01

    Magnetic titania nanoparticles covered/embedded in SiO2 shell/matrix were simultaneously manufactured by the single-step laser pyrolysis. The present study is a continuation of our previous investigations on the TiO2/Fe and TiO2/HMDSO (hexamethyldisiloxane) derived-systems. The aim of this work is to study the synthesis by IR (Infrared) laser pyrolysis of magnetic TiO2 based nanocomposites which implies many concurrent processes induced in the gas phase by the laser radiation. The dependence between characteristic properties and the synthesis parameters was determined by many analytical and complementary methods: XRD (X-ray diffraction) structural analysis, UV-vis (ultraviolet-visible) and EDAX (energy-dispersive X-ray) spectroscopy, TEM and HRTEM (transmission electron microscopy at low and high resolution) analysis and magnetic measurements. The results of analysis indicate the presence of disordered silica, Fe, α-Fe2O3 and mixtures of anatase and rutile phases with mean crystallite dimensions (in the 14-34 nm range) with typical character of diluted magnetic oxide systems and a lower bandgap energy (Eg = 1.85 eV) as compared with TiO2 P25 Degussa sample.

  7. Effect of preparation conditions on the characteristics and photocatalytic activity of TiO2/purified diatomite composite photocatalysts

    NASA Astrophysics Data System (ADS)

    Sun, Zhiming; Hu, Zhibo; Yan, Yang; Zheng, Shuilin

    2014-09-01

    TiO2/purified diatomite composite materials were prepared through a modified hydrolysis-deposition method under low temperature using titanium tetrachloride as precursor combined with a calcination crystallization process. The microstructure and crystalline phases of the obtained composites prepared under different preparation conditions were characterized by high resolution scanning electron microscope (SEM) and X-ray diffraction (XRD), respectively. The photocatalytic performance of TiO2/purified diatomite composites was evaluated by Rhodamine B as the target pollutant under UV irradiation, and the optimum preparation conditions of composites were obtained. The TiO2 crystal form in composites prepared under optimum conditions was anatase, the grain size of which was 34.12 nm. The relationships between structure and property of composite materials were analyzed and discussed. It is indicated that the TiO2 nanoparticles uniformly dispersed on the surface of diatoms, and the photocatalytic performance of the composite materials was mainly determined by the dispersity and grain size of loaded TiO2 nanoparticles.

  8. Study the structure and performance of thermal/plasma modified Au nanoparticle-doped TiO2 photocatalyst

    NASA Astrophysics Data System (ADS)

    Mahmood, Asif; Ramay, Shahid M.; Al-Zaghayer, Yousef S.; Atiq, Shahid; Ahmad, Iftikhar; Shar, Muhammad Ali; Khan, Salah Din

    2014-10-01

    This study describes the influence of thermal/plasma treatments on the structure and photocatalytic performance of the Au-doped TiO2 catalyst. Au (gold) nanoparticles were attached on TiO2 (Titania) nanoparticle surfaces by conventional deposition precipitation technique and the resulting catalysts were subsequently modified with thermal (at 450C under vacuum) and plasma (at an ambient temperature under Argon atmosphere for 20 min) treatments. Structural characterization of the modified catalysts was performed by diverse analytical techniques and the photocatalytic activity was evaluated by assessing the degradation of the methylene blue (MB) in water under UV (ultra-violet) irradiations. Results showed that the thermal/plasma treatment significantly influenced the structural features of Au-doped TiO2 catalyst by altering the morphology, increasing the Au nanoparticles population, improving the Au/TiO2 catalytic activity, changing the textural properties and reducing the band gap energies thus tuned Au-doped TiO2 catalyst to higher efficiency. Thermal/plasma treated Au-doped TiO2 was found to exhibit higher photocatalytic activity than the as-synthesized (pristine sample). This improvement in photocatalytic activity might be due to the cathodic influence of gold in suppressing the electron-hole recombination during the reaction.

  9. Preparation of visible-light-responsive TiO2-xNx photocatalyst by a sol-gel method: analysis of the active center on TiO2 that reacts with NH3.

    PubMed

    Kuroda, Yasushige; Mori, Toshinori; Yagi, Kazunori; Makihata, Naoko; Kawahara, Yoichiro; Nagao, Mahiko; Kittaka, Shigeharu

    2005-08-16

    Active reaction centers for ammonia on titanium oxyhydroxide were explored to direct the search for an efficient sol-gel method for the synthesis of a titanium oxynitride (TiO2-xNx) sample with an efficient responsiveness to the visible light constituting a main part of the solar spectrum. The results lead to the conclusion that the site giving IR bands at around 2195 cm(-1) for the adsorbed CO molecules at 300 K is a reactive site and behaves as Lewis acid site in the coordination environment of distorted five-coordinate Ti4+ ions. Ammonia molecules are adsorbed on such a site to form -NH2 and -OH species during the heat treatments at a temperature above 373 K, and they are ultimately incorporated into the TiO2 lattice as nitride through the dehydration at higher temperatures of up to 723 K, resulting in the formation of an anatase type of TiO2-xNx. PMID:16089416

  10. Synthesis, Characterization, and Photocatalytic Properties of Sulfur- and Carbon-Codoped TiO2 Nanoparticles.

    PubMed

    Ivanov, S; Barylyak, A; Besaha, K; Bund, A; Bobitski, Y; Wojnarowska-Nowak, R; Yaremchuk, I; Kus-Liśkiewicz, M

    2016-12-01

    One-step TiO2 nanoparticle synthesis based on the interaction between thiourea and metatitanic acid is applied for sulfur and carbon anatase codoping. The synthesis of the doped TiO2 has been monitored by means of differential thermal analysis and thermogravimetric analysis (DTA-TG), which allows determining the optimal thermal conditions for the process. Electron microscopy showed micrometer-sized (5-15 μm) randomly distributed crystal aggregates, consisting of many 15-40-nm TiO2 nanoparticles. The obtained phase composition and chemical states of the doping elements are analyzed by means of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), infrared (IR) and Raman spectroscopies, and electron paramagnetic resonance (EPR). XRD displays in both samples (doped and pristine) the existence of only one crystalline phase-the tetragonal modification of TiO2-anatase. Further data assessment by means of Rietveld refinement allowed detection of a slight c lattice parameter and volume increase related to incorporation of the doping elements. XPS demonstrated the presence of carbon and sulfur as doping elements in the material. It was confirmed that carbon is in elemental form and also present in oxygen-containing compounds, which are adsorbed on the particle surface. The binding energy for sulfur electron core shell corresponds to the established data for sulfate compounds, where sulfur is in 6+ oxidation state. The synthesized S- and C-codoped TiO2 showed excellent photocatalytic performance during the degradation of organic dyes (rhodamine B, methylene blue), gas-phase oxidation of ethanol under visible light, and photocatalytic hydrogen generation from ethanol under ultraviolet light. PMID:26969593

  11. TiO2 as a photocatalyst for control of the aquatic invasive alga, Cladophora, under natural and artificial light

    USGS Publications Warehouse

    Peller, J.R.; Whitman, R.L.; Griffith, S.; Harris, P.; Peller, C.; Scalzitti, J.

    2007-01-01

    Cladophora, a nuisance and invasive, filamentous algae (Chlorophyta), massively accumulates along the shores of the lower Great Lakes each summer causing great economic damage and compromising recreational opportunity and perhaps public health. In vitro experiments showed that Cladophora samples were physically and biologically degraded when subjected to TiO2-mediated photocatalysis. For the most successful photocatalytic process, TiO2 was immobilized on a glass surface and used in combination with either sunlight or artificial UV light. The loss of vital algal pigments was monitored using UV-vis spectrophotometry, and cell structural changes were determined by microscopic observation. Cladophora, in the presence of TiO2-covered glass beads, experienced a loss of chloroplast pigments after 2 h of UV lamp light irradiation. In a separate experiment, sunlight exposure over 4 days (???24 h) resulted in the complete oxidative degradation of the green chloroplast pigments, verified by the UV spectra of the algal extracts. These results suggest that TiO2, mobilized on sunlit silicates may be useful in controlling growth and survival of this alga in the Great Lakes, thus mitigating many of the economic, aesthetic ecological impacts of this invasive alga. ?? 2006 Elsevier B.V. All rights reserved.

  12. The hybrid photocatalyst of TiO2-SiO2 thin film prepared from rice husk silica

    NASA Astrophysics Data System (ADS)

    Klankaw, P.; Chawengkijwanich, C.; Grisdanurak, N.; Chiarakorn, Siriluk

    2012-03-01

    The TiO2-SiO2 thin film was prepared by self-assembly method by mixing SiO2 precursor with titanium precursor solution and aged to obtain a co-precipitation of silica and titanium crystals. Dip coating method was applied for thin film preparation on glass slide. The X-ray diffraction (XRD) of the self-assembly thin film had no characteristic property of SiO2 and even anatase TiO2 but indicated new crystal structure which was determined from the Fourier Transform Infrared Spectrophotometer (FTIR) as a hybridized Ti-O-Si bonding. The surface area and surface volume of the self-assembly sample were increased when SiO2 was incorporated into the film. The self-assembly TiO2-SiO2 thin film exhibited the enhanced photocatalytic decolorization of methylene blue (MB) dye. The advantages of SiO2 are; (1) to increase the adsorbability of the film and (2) to provide the hydroxyl radical to promote the photocatalytic reaction. The self-assembly thin film with the optimum molar ratio (SiO2:TiO2) as 20:80 gave the best performance for photocatalytic decolorization of MB dye with the overall efficiency of 81%.

  13. Preparation, characterization and visible-light-driven photocatalytic activity of Fe-incorporated TiO2 microspheres photocatalysts

    NASA Astrophysics Data System (ADS)

    Li, Jun-Qi; Wang, De-Fang; Guo, Zhan-Yun; Zhu, Zhen-Feng

    2012-12-01

    Fe incorporated TiO2 microspheres (Fe-TiO2) were prepared by integrating the sol-gel method and impregnating-calcination method. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and UV-vis diffuse reflectance spectroscopy indicated that ?-Fe2O3 nanoparticles were deposited onto the TiO2 microspheres, and in the mean time, some Fe3+ ions were doped into TiO2 lattice. The absorption of Fe-TiO2 microspheres in the visible light region increased with the increasing of Fe content. Photoluminescence (PL) analyses further confirmed that Fe-incorporation effectively promoted the separation and transfer of photogenerated charge carriers, which can improve the photocatalytic activity of the samples. The photocatalytic activity of Fe-TiO2 microspheres was evaluated by the degradation of methylene blue aqueous solution under visible light irradiation. The results demonstrated that the Fe-TiO2 microspheres exhibited significantly enhanced photocatalytic activity compared with pure TiO2 microspheres. What is more, the charge-transfer processes in Fe-TiO2 were also discussed.

  14. Synthesis of green TiO2/ZnO/CdS hybrid nano-catalyst for efficient light harvesting using an elegant pulsed laser ablation in liquids method

    NASA Astrophysics Data System (ADS)

    Gondal, M. A.; Ilyas, A. M.; Fasasi, T. A.; Dastageer, M. A.; Seddigi, Z. S.; Qahtan, T. F.; Faiz, M.; Khattak, G. D.

    2015-12-01

    The main limitation on the applications of TiO2 as a photocatalyst is its large band gap (3.2 eV) which limits its absorption only to the ultraviolet region of the solar spectrum. To overcome this problem, a facile strategy for clean synthesis of a nanocomposite green catalyst of zinc oxide (ZnO), titanium dioxide (TiO2) and cadmium sulphide (CdS) was developed using pulsed laser ablation in liquids (PLAL) technique for the first time to the best of our knowledge. The main aim of addition of ZnO is to reduce the electron-hole recombination in the TiO2 while CdS is used to increase the light harvesting efficiency of TiO2 in the visible spectral region. The absorption spectrum of the TiO2/ZnO/CdS composite obtained from the UV-vis spectrophotometer exhibits strong absorption in the visible region as compared to the pure TiO2 whose absorption band lies around 380 nm which is in the UV-region. The morphology of the composite quantum dots was also investigated using high resolution TEM technique which shows that the synthesized composite size ranges between 10 and 40 nm. These nanocomposites have demosntarted noticible improvement in the carriers transport in the visible region which could enhance its efficiency for many applications in the visible region especially for energy harvesting using solar radiations.

  15. TiO2 nanotubes: recent advances in synthesis and gas sensing properties.

    PubMed

    Galstyan, Vardan; Comini, Elisabetta; Faglia, Guido; Sberveglieri, Giorgio

    2013-01-01

    Synthesis--particularly by electrochemical anodization-, growth mechanism and chemical sensing properties of pure, doped and mixed titania tubular arrays are reviewed. The first part deals on how anodization parameters affect the size, shape and morphology of titania nanotubes. In the second part fabrication of sensing devices based on titania nanotubes is presented, together with their most notable gas sensing performances. Doping largely improves conductivity and enhances gas sensing performances of TiO2 nanotubes. PMID:24184919

  16. Formation of TiO2 nanotubes via anodization and potential applications for photocatalysts, biomedical materials, and photoelectrochemical cell

    NASA Astrophysics Data System (ADS)

    Sreekantan, Srimala; Arifah Saharudin, Khairul; Wei, Lai Chin

    2011-03-01

    One-dimensional nanotube systems with high surface-to-volume ratios possess unique properties and are thus utilized in various applications. In this study, self-organized TiO2 nanotubes were prepared by anodization of a Ti foil in glycerol containing 5 wt% ammonium fluoride (NH4F) and 6 wt% ethylene glycol (EG). The surface morphology, average inner diameter, and average length of the nanotubes varied with the electrochemical anodization parameters. Nanotubes with uniform surface morphologies, an average diameter of 85 nm, and an average length of 1.1 ?m were obtained at 30 V for 1 h The as-prepared nanotubes were amorphous but they crystallized in the anatase phase after heating at about 400 C for 2 h in an argon atmosphere. The photocatalytic activity of the TiO2 nanotubes was evaluated through the degradation of methyl orange (MO) and by investigating their bactericidal effect. Optimum photocatalysis of MO was achieved at a kinetic rate constant of 10-3 min-1. Furthermore, cell viability rapidly decreased on UV illumination and complete killing was achieved at 60 min in the presence of TiO2 nanotubes. For biomedical applications, the cellular activity on TiO2 nanotubes was determined using PA6 cells. Higher cellular activities were achieved using the anatase phase of 85-nm-diameter nanotubes than the amorphous phase. Photoelectrochemical hydrogen generation was investigated using nanotube photoanodes in 1 M potassium hydroxide (KOH) containing 1 wt% EG and xenon lamp. The maximum photocurrent density was 0.55 mA/cm2. These findings demonstrate that TiO2 nanotubes are promising for use in multifunctional applications.

  17. Synthesis of highly-ordered TiO2 nanotube arrays with tunable sizes

    NASA Astrophysics Data System (ADS)

    Wang, Xian; Zha, Chenyang; Ji, Cheng; Zhang, Xiaoyan; Shen, Liming; Wang, Yifeng; Gupta, Arunava; Yoriya, Sorachon; Bao, Ningzhong

    2014-09-01

    Vertically-oriented one-dimensional TiO2 nanotube (TNT) arrays have been fabricated by anodic oxidation using different electrolyte solvents, including ethylene glycol (EG), diethylene glycol (DEG), and dimethyl sulfoxide (DMSO), in the presence of hydrofluoric acid (HF) or ammonium fluoride (NH4F). The influence of synthetic conditions, including the nature of the electrolyte and anodization voltage, on nanotube microstructure has been systematically investigated. Highly-ordered TNTs with tube length of 0.5-26.7 ?m, inner diameter of 13-201 nm, and outer diameter of 28-250 nm have been obtained. The conversion of as-prepared TNT arrays from amorphous phase to crystalline structure has been achieved by a post-synthetic annealing at 500 C for 3 h in oxygen ambient. The TNT arrays with tunable sizes and structures are attractive for use as electrode materials in fabrication of thin film solar cells and highly active photocatalysts.

  18. Facile synthesis of TiO2/trititanate heterostructure with enhanced photoelectric efficiency for an improved photocatalysis

    NASA Astrophysics Data System (ADS)

    Chen, Feitai; Li, Youji; Liu, Zhi; Fang, Pengfei

    2015-06-01

    TiO2/trititanate photocatalyst was prepared by alkaline hydrothermal treatment of TiO2, and characterized by transmission electron microscopy, X-ray diffraction, and Raman etc. The photocatalytic activities of catalysts were evaluated by the photocatalytic degradation of rhodamine B (RhB). It is found that the heterostructure can be directly formed via the conversion of surface TiO2 into trititanate. The coupled nanostructure possesses enhanced adsorption ability for RhB as compared with the raw TiO2, owing to the formation of an increased amount of hydroxyl groups on the prepared catalyst surface. Besides, the generated trititanate can successfully introduce a shallow energy level in the coupled composite, which results in the improvement of separation efficiency of photoinduced electron-hole pairs. In the degradation experiments, TiO2/trititanate exhibits much higher photocatalytic activity than the bare TiO2. These advantages of the coupled nanostructure in adsorption capacity and photoelectric efficiency may make it a wider application for the removal of organic pollutants.

  19. Influence of the pH of the synthesis using sol-gel method on the structural and optical properties of TiO2

    NASA Astrophysics Data System (ADS)

    Jaramillo, J.; Garzón, B. A.; Tirado Mejía, L.

    2016-02-01

    The photocatalysis process using semiconductor materials, in particular TiO2, is one of the most attractive treatment for polluted waters decontamination because of its advantages over other oxidation processes [1-6]. In this study the effect on the physical properties of TiO2 due to the pH used during the manufacturing of the semiconductor is studied. Different samples were synthesized using ammonium hydroxide (NH4OH) and nitric acid (HNO3) as catalysts to provide basic and acid pH environments, respectively. Changes in composition, structure and morphology of the samples were studied and its dependence with the pH of the synthesis is discussed. Results indicate that the base catalysis favours the formation of anatase TiO2 crystalline phase with crystallite size ∼ 26nm obtained by Rietveld refinement; the spherical particles formed agglomerates of ∼100nm the average pore size is in the range of mesopores and the surface area increases with the amount of NH4OH added in the process. On the other hand, with acid catalysis, a mixture of two crystalline phases, anatase and rutile, was obtained with crystallite sizes around 26 and 49nm, respectively. The grain size is several orders of magnitude higher than those obtained by basic catalysis. The photocatalytic activity was measured using methylene blue solutions to determine their degradation with radiation. Greater efficiency was observed in the photocatalysts synthesized with NH4OH.

  20. Highly reactive {001} facets of TiO2-based composites: synthesis, formation mechanism and characterization

    NASA Astrophysics Data System (ADS)

    Ong, Wee-Jun; Tan, Lling-Lling; Chai, Siang-Piao; Yong, Siek-Ting; Mohamed, Abdul Rahman

    2014-01-01

    Titanium dioxide (TiO2) is one of the most widely investigated metal oxides due to its extraordinary surface, electronic and catalytic properties. However, the large band gap of TiO2 and massive recombination of photogenerated electron-hole pairs limit its photocatalytic and photovoltaic efficiency. Therefore, increasing research attention is now being directed towards engineering the surface structure of TiO2 at the most fundamental and atomic level namely morphological control of {001} facets in the range of microscale and nanoscale to fine-tune its physicochemical properties, which could ultimately lead to the optimization of its selectivity and reactivity. The synthesis of {001}-faceted TiO2 is currently one of the most active interdisciplinary research areas and demonstrations of catalytic enhancement are abundant. Modifications such as metal and non-metal doping have also been extensively studied to extend its band gap to the visible light region. This steady progress has demonstrated that TiO2-based composites with {001} facets are playing and will continue to play an indispensable role in the environmental remediation and in the search for clean and renewable energy technologies. This review encompasses the state-of-the-art research activities and latest advancements in the design of highly reactive {001} facet-dominated TiO2via various strategies, including hydrothermal/solvothermal, high temperature gas phase reactions and non-hydrolytic alcoholysis methods. The stabilization of {001} facets using fluorine-containing species and fluorine-free capping agents is also critically discussed in this review. To overcome the large band gap of TiO2 and rapid recombination of photogenerated charge carriers, modifications are carried out to manipulate its electronic band structure, including transition metal doping, noble metal doping, non-metal doping and incorporating graphene as a two-dimensional (2D) catalyst support. The advancements made in these aspects are thoroughly examined, with additional insights related to the charge transfer events for each strategy of the modified-TiO2 composites. Finally, we offer a summary and some invigorating perspectives on the major challenges and new research directions for future exploitation in this emerging frontier, which we hope will advance us to rationally harness the outstanding structural and electronic properties of {001} facets for various environmental and energy-related applications.

  1. Highly reactive {001} facets of TiO2-based composites: synthesis, formation mechanism and characterization.

    PubMed

    Ong, Wee-Jun; Tan, Lling-Lling; Chai, Siang-Piao; Yong, Siek-Ting; Mohamed, Abdul Rahman

    2014-02-21

    Titanium dioxide (TiO2) is one of the most widely investigated metal oxides due to its extraordinary surface, electronic and catalytic properties. However, the large band gap of TiO2 and massive recombination of photogenerated electron-hole pairs limit its photocatalytic and photovoltaic efficiency. Therefore, increasing research attention is now being directed towards engineering the surface structure of TiO2 at the most fundamental and atomic level namely morphological control of {001} facets in the range of microscale and nanoscale to fine-tune its physicochemical properties, which could ultimately lead to the optimization of its selectivity and reactivity. The synthesis of {001}-faceted TiO2 is currently one of the most active interdisciplinary research areas and demonstrations of catalytic enhancement are abundant. Modifications such as metal and non-metal doping have also been extensively studied to extend its band gap to the visible light region. This steady progress has demonstrated that TiO2-based composites with {001} facets are playing and will continue to play an indispensable role in the environmental remediation and in the search for clean and renewable energy technologies. This review encompasses the state-of-the-art research activities and latest advancements in the design of highly reactive {001} facet-dominated TiO2via various strategies, including hydrothermal/solvothermal, high temperature gas phase reactions and non-hydrolytic alcoholysis methods. The stabilization of {001} facets using fluorine-containing species and fluorine-free capping agents is also critically discussed in this review. To overcome the large band gap of TiO2 and rapid recombination of photogenerated charge carriers, modifications are carried out to manipulate its electronic band structure, including transition metal doping, noble metal doping, non-metal doping and incorporating graphene as a two-dimensional (2D) catalyst support. The advancements made in these aspects are thoroughly examined, with additional insights related to the charge transfer events for each strategy of the modified-TiO2 composites. Finally, we offer a summary and some invigorating perspectives on the major challenges and new research directions for future exploitation in this emerging frontier, which we hope will advance us to rationally harness the outstanding structural and electronic properties of {001} facets for various environmental and energy-related applications. PMID:24384624

  2. Heterogeneous photocatalysts in organic synthesis

    NASA Astrophysics Data System (ADS)

    Cherevatskaya, M.; König, B.

    2014-03-01

    The review deals with the application of inorganic semiconductors in organic synthesis. Although the majority of reported reactions still aim at the photocatalytic decomposition of organic compounds, the number of examples in synthetic applications is growing. The principal mechanisms of heterogeneous semiconductor photocatalysis are considered and examples illustrating the use of inorganic semiconductors in organic synthesis are given. The discussion is arranged according to the required excitation wavelength (UV or visible light) and to the new bond that is formed (carbon-carbon or carbon-heteroatom bond). The bibliography includes 47 references.

  3. TiO 2/carbon nanotube hybrid nanostructures: Solvothermal synthesis and their visible light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Tian, Lihong; Ye, Liqun; Deng, Kejian; Zan, Ling

    2011-06-01

    MWCNT/TiO 2 hybrid nanostructures were prepared via solvothermal synthesis and sol-gel method with benzyl alcohol as a surfactant. As-prepared hybrid materials were characterized by X-ray diffraction, transmission electron microscopy, UV-vis diffuse reflectance spectra and X-ray photoelectron spectroscopy. The results showed that MWCNTs were uniformly decorated with anatase nanocrystals in solvothermal condition, but MWCNTs were embedded in a majority of TiO 2 nanoparticles by sol-gel method. When the weight ratio of MWCNTs to TiO 2 was 20%, MWCNT/TiO 2 hybrid nanostructures prepared by solvothermal synthesis exhibited higher visible-light-driven photocatalytic activity than that prepared by sol-gel method. Post-annealing of MWCNT/TiO 2 nanostructures at 400 C resulted in the formation of the carbonaceous Ti-C bonds on the interface between TiO 2 and MWCNTs, which enhanced the photoabsorbance of the hybrid materials in the visible light region and improved the visible-light degradation efficiency of methylene blue.

  4. Hydrothermal synthesis of TiO2-ZnO-graphene nanocomposite towards photocatalytic and photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Gayathri, S.; Jayabal, P.; Ramakrishnan, V.

    2015-06-01

    Titanium dioxide (TiO2) - Zinc oxide (ZnO) - Graphene (G) nanocomposite was successfully synthesized through facile hydrothermal method. The X-ray diffraction (XRD) pattern and the micro-Raman spectroscopic technique revealed the formation of TiO2-ZnO-Graphene (TZG) nanocomposite. The ZnO and TiO2 nanoparticles decorated graphene sheets were clearly noticeable in the Field Emission Scanning Electron Micrograph (FE-SEM). The UV-Visible absorption spectra clearly indicated that the formation of TZG nanocomposite enriched the absorption in the visible region. Hence, the prepared nanocomposite can be used as photocatalyst to remove organic dyes from water and as photoanode in the fabrication of dye sensitized solar cells (DSSCs).

  5. A rapid method for the synthesis of nitrogen doped TiO2 nanoparticles for photocatalytic hydrogen generation.

    PubMed

    Jayakumar, Onattu Damodaran; Sasikala, Rajamma; Betty, Chirayath Antony; Tyagi, Avesh Kumar; Bharadwaj, Shyamala Rajkumar; Gautam, Ujjal Kumar; Srinivasu, Pavuluri; Vinu, Ajayan

    2009-08-01

    A facile, fast, and economic method of doping TiO2, synthesized by conventional precipitation route with N has been developed. By this method, stable N doped TiO2 can be prepared within a short duration of time. The method adopted was to treat the TiO2 powder synthesized by simple precipitation with trioctyl amine (TOA) at 320 degrees C for 2 hours followed by calcination at 400 degrees C for 2 hours to obtain the N-doped TiO2. The sample along with NiO as co-catalyst showed significant photocatalytic activity for hydrogen generation from aqueous methanol solution under sunlight type irradiation. This synthesis method opens up a fast and easy route for doping the existing TiO2 or other wide band gap oxide semiconductors with nitrogen so that they can exhibit enhanced photocatalytic activity under solar irradiation. PMID:19928131

  6. Ultrasound with low intensity assisted the synthesis of nanocrystalline TiO2 without calcination.

    PubMed

    Ghows, Narjes; Entezari, Mohamad H

    2010-06-01

    A novel method has been developed for the preparation of nano-sized TiO(2) with anatase phase. Nanoparticles with diameter about 6 nm were prepared at a relatively low temperature (75 degrees C) and short time. The synthesis was carried out by the hydrolysis of titanium tetra-isopropoxide (TTIP) in the presence of water, ethanol, and dispersant under ultrasonic irradiation (500 kHz) at low intensity. The results show that variables such as water/ethanol ratio, irradiation time, and temperature have a great influence on the particle size and crystalline phases of TiO(2) nanoparticles. Characterization of the product was carried out by different techniques such as powder X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM) and UV-vis spectroscopy. PMID:20382553

  7. Solvothermal synthesis of carbon coated N-doped TiO2 nanostructures with enhanced visible light catalytic activity

    NASA Astrophysics Data System (ADS)

    Yan, Xue-Min; Kang, Jialing; Gao, Lin; Xiong, Lin; Mei, Ping

    2013-01-01

    Visible light-active carbon coated N-doped TiO2 nanostructures(CTS-TiO2) were prepared by a facile one-step solvothermal method with chitosan as carbon and nitrogen resource at 180 C. The as-prepared samples were characterized by transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), N2 adsorption-desorption analysis, X-ray photoelectron spectroscopy (XPS), and ultraviolet-visible (UV-vis) diffuse reflectance spectroscopy. The CTS-TiO2 nanocomposites possess anatase phase of nanocrystalline structure with average particle size of about 5-7 nm. A wormhole mesostructure can be observed in the CTS-TiO2 nanocomposites due to the constituent agglomerated of nanoparticles. It has been evidenced that the nitrogen was doped into the anatase titania lattice and the carbon species were modified on the surface of TiO2. The photocatalytic activities of the as-prepared photocatalysts were measured by the degradation of methylene blue (MB) under visible light irradiation at ? ? 400 nm. The results show that CTS-TiO2 nanostructures display a higher visible light photocatalytic activity than pure TiO2, commercial P25 and C-coated TiO2 (C-TiO2) photocatalysts. The higher photocatalytic activity could be attributed to the band-gap narrowed by N-doping and the accelerated separation of the photo-generated electrons and holes by carbon modification.

  8. Amorphous TiO2 nanotube-derived synthesis of highly ordered anatase TiO2 nanorod arrays

    NASA Astrophysics Data System (ADS)

    Zhao, Cong; Zhu, Dachuan; Cao, Shixiu

    2016-02-01

    A facile method by combining anodic oxidation and hydrothermal method was developed to construct highly ordered anatase TiO2 nanorods (TNRs) and nanotubes (TNTs). In this method, the anodic oxidation was used for preparing highly ordered amorphous TNTs, which subsequently served as highly ordered template for next reaction process. Upon hydrothermal treatment, the as-anodized amorphous template got converted to highly ordered anatase TNTs (blank sample) in without cobalt nitrate solution and TNRs (doped sample) in cobalt nitrate solution, respectively. To our best knowledge, this is first successful attempt to prepare highly ordered anatase TNRs based on the above amorphous template. The scanning electron microscope (SEM) and transmission electron microscope (TEM) observations indicate that the as-prepared anatase TNRs are composed by a large number of anatase TiO2 nanoparticles (TNPs) and the morphology at top of TNRs is different from that of its trunk. Details of the morphology, phase transformation, and growth mechanism of the obtained TNRs are discussed. In addition, the role of Co2+ in the crystallization process had been also discussed.

  9. Facile synthesis of the Ti3+ self-doped TiO2-graphene nanosheet composites with enhanced photocatalysis

    NASA Astrophysics Data System (ADS)

    Qiu, Bocheng; Zhou, Yi; Ma, Yunfei; Yang, Xiaolong; Sheng, Weiqin; Xing, Mingyang; Zhang, Jinlong

    2015-02-01

    This study developed a facile approach for preparing Ti3+ self-doped TiO2-graphene photocatalyst by a one-step vacuum activation technology involved a relative lower temperature, which could be activated by the visible light owing to the synergistic effect among Ti3+ doping, some new intersurface bonds generation and graphene oxide reduction. Compared with the traditional methods, the vacuum activation involves a low temperature and low-costing, which can achieve the reduction of GO, the self doping of Ti3+ in TiO2 and the loading of TiO2 nanoparticles on GR surface at the same time. These resulting TiO2-graphene composites show the high photodegradation rate of MO, high hydrogen evolution activity and excellent IPCE in the visible light irradiation. The facile vacuum activation method can provide an effective and practical approach to improve the performance of TiO2-graphene and other metal oxides-graphene towards their practical photocatalytic applications.

  10. Facile synthesis of the Ti3+ self-doped TiO2-graphene nanosheet composites with enhanced photocatalysis

    PubMed Central

    Qiu, Bocheng; Zhou, Yi; Ma, Yunfei; Yang, Xiaolong; Sheng, Weiqin; Xing, Mingyang; Zhang, Jinlong

    2015-01-01

    This study developed a facile approach for preparing Ti3+ self-doped TiO2-graphene photocatalyst by a one-step vacuum activation technology involved a relative lower temperature, which could be activated by the visible light owing to the synergistic effect among Ti3+ doping, some new intersurface bonds generation and graphene oxide reduction. Compared with the traditional methods, the vacuum activation involves a low temperature and low-costing, which can achieve the reduction of GO, the self doping of Ti3+ in TiO2 and the loading of TiO2 nanoparticles on GR surface at the same time. These resulting TiO2-graphene composites show the high photodegradation rate of MO, high hydrogen evolution activity and excellent IPCE in the visible light irradiation. The facile vacuum activation method can provide an effective and practical approach to improve the performance of TiO2-graphene and other metal oxides-graphene towards their practical photocatalytic applications. PMID:25716132

  11. Simultaneous amination of TiO2 nanoparticles in the gas phase synthesis for bio-medical applications

    NASA Astrophysics Data System (ADS)

    Lee, Kyoung-No; Kim, Yangeon; Lee, Chang-Woo; Lee, Jai-Sung

    2011-10-01

    A simultaneous synthesis and surface amination method to effectively modify the surface of inorganic nanoparticles is discussed in this study. As a target material system and surface functional group, TiO2 nanoparticles and amine were selected. APTES (3-aminopropyltriethoxysilane), the source of amine group, was mixed with TTIP (titanium tetraisopropoxide) and used for the synthesis of aminated TiO2 nanoparticles. XRD (X-ray diffractometry) results showed TiO2 nanoparticles of pure anatase phase, 15 nm in crystallite size, were successfully synthesized at 700C and 50 mbar. Fourier transformation infrared (FT-IR) spectroscopy measurement and confocal microscopy study using fluoresceine isothiocyanate (FITC) confirmed that amine groups were successfully deposited and activated on the surface of TiO2 nanoparticles.

  12. A novel synthesis method for TiO2 particles with magnetic Fe3O4 cores.

    PubMed

    Dong, Qi; Zhang, Keqiang; An, Yi

    2014-01-01

    TiO2@(AC/Fe3O4) (AC is activated carbon) was prepared by using AC and Fe3O4 as joint support. The morphological features, crystal structure, and magnetism of the final product were characterized. The results indicate that TiO2 particles formed on the surface of AC and Fe3O4; the sizes of TiO2 and Fe3O4 were 0.5 and 0.7 μm respectively, and that of AC fell within a wide range. The highly crystalline cubic structures of the TiO2 particles was in accord with the standard X-ray diffractometry spectrum of magnetite and anatase. The maximum saturation magnetization of TiO2@(AC/Fe3O4) was 75 emu g(-1), which was enough to support magnetic recovery. The rate of methylene blue (MB) removal photocatalyzed by TiO2@(AC/Fe3O4) was higher by 50% than that achieved with AC/Fe3O4 photocatalysis, and similar to that achieved with TiO2@AC. The removal rate (kobs) decreased drastically from 1.77 × 10(-2) to 9.36 × 10(-3)min(-1) when the initial concentration of MB solution increased from 2.0 to 5.0 mg L(-1). The kobs value increased from 9.41 × 10(-3) to 1.34 × 10(-2)min(-1) with increasing photocatalyst dosage from 0.2 to 1.0 g, then slightly decreased to 1.33 × 10(-2)min(-1) at 2.0 g dosage. PMID:24845326

  13. A facile one-step solvothermal synthesis of graphene/rod-shaped TiO2 nanocomposite and its improved photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Dong, Pengyu; Wang, Yuhua; Guo, Linna; Liu, Bin; Xin, Shuangyu; Zhang, Jia; Shi, Yurong; Zeng, Wei; Yin, Shu

    2012-07-01

    Graphene sheets were obtained through solvothermal reduction of colloidal dispersion of graphene oxide in benzyl alcohol. The graphene/rod-shaped TiO2 nanocomposite was synthesized by this novel and facile solvothermal method. During the solvothermal reaction, both the reduction of graphene oxide and the growth of rod-shaped TiO2 nanocrystals as well as its deposition on graphene occur simultaneously. The photocatalytic activity of graphene/rod-shaped TiO2 and graphene/spherical TiO2 nanocomposites was compared. In the photocatalytic degradation of methyl orange (MO), the graphene/rod-shaped TiO2 nanocomposite with the optimized graphene content of 0.48 wt% shows good stability and exhibits a significant enhancement of photocatalytic activity compared to the bare commercial TiO2 (P25) and graphene/spherical TiO2 nanocomposite with the same graphene content. Photocurrent experiments were performed, which demonstrate that the photocurrent of the graphene/rod-shaped TiO2 nanocomposite electrode is about 1.2 times as high as that of the graphene/spherical TiO2 nanocomposite electrode. The photocatalytic mechanism of graphene/rod-shaped TiO2 nanocomposite was also discussed on the basis of the experimental results. This work is anticipated to open a possibility in the integration of graphene and TiO2 with various morphologies for obtaining high-performance photocatalysts in addressing environmental protection issues.Graphene sheets were obtained through solvothermal reduction of colloidal dispersion of graphene oxide in benzyl alcohol. The graphene/rod-shaped TiO2 nanocomposite was synthesized by this novel and facile solvothermal method. During the solvothermal reaction, both the reduction of graphene oxide and the growth of rod-shaped TiO2 nanocrystals as well as its deposition on graphene occur simultaneously. The photocatalytic activity of graphene/rod-shaped TiO2 and graphene/spherical TiO2 nanocomposites was compared. In the photocatalytic degradation of methyl orange (MO), the graphene/rod-shaped TiO2 nanocomposite with the optimized graphene content of 0.48 wt% shows good stability and exhibits a significant enhancement of photocatalytic activity compared to the bare commercial TiO2 (P25) and graphene/spherical TiO2 nanocomposite with the same graphene content. Photocurrent experiments were performed, which demonstrate that the photocurrent of the graphene/rod-shaped TiO2 nanocomposite electrode is about 1.2 times as high as that of the graphene/spherical TiO2 nanocomposite electrode. The photocatalytic mechanism of graphene/rod-shaped TiO2 nanocomposite was also discussed on the basis of the experimental results. This work is anticipated to open a possibility in the integration of graphene and TiO2 with various morphologies for obtaining high-performance photocatalysts in addressing environmental protection issues. Electronic supplementary information (ESI) available: The TEM images of as-prepared pure rod-shaped TiO2 nanocrystals and the other graphene/rod-shaped TiO2 nanocomposites, the MO adsorption isotherms, the XRD pattern, TEM image and UV-vis diffuse reflectance spectrum of graphene/spherical TiO2 nanocomposite with the graphene content of 0.48 wt%, photocatalytic degradation of MO solution over graphene/spherical TiO2 nanocomposites, and plots of ln(C0/C) versus irradiation time for graphene/rod-shaped TiO2 and graphene/spherical TiO2 nanocomposites. See DOI: 10.1039/c2nr31231j

  14. Recent advances in visible-light-responsive photocatalysts for hydrogen production and solar energy conversion--from semiconducting TiO2 to MOF/PCP photocatalysts.

    PubMed

    Horiuchi, Yu; Toyao, Takashi; Takeuchi, Masato; Matsuoka, Masaya; Anpo, Masakazu

    2013-08-28

    The present perspective describes recent advances in visible-light-responsive photocatalysts intended to develop novel and efficient solar energy conversion technologies, including water splitting and photofuel cells. Water splitting is recognized as one of the most promising techniques to convert solar energy as a clean and abundant energy resource into chemical energy in the form of hydrogen. In recent years, increasing concern is directed to not only the development of new photocatalytic materials but also the importance of technologies to produce hydrogen and oxygen separately. Photofuel cells can convert solar energy into electrical energy by decomposing bio-related compounds and livestock waste as fuels. The advances of photocatalysts enabling these solar energy conversion technologies have been going on since the discovery of semiconducting titanium dioxide materials and have extended to organic-inorganic hybrid materials, such as metal-organic frameworks and porous coordination polymers (MOF/PCP). PMID:23760469

  15. Green synthesis of anatase TiO(2) nanocrystals with diverse shapes and their exposed facets-dependent photoredox activity.

    PubMed

    Roy, Nitish; Park, Yohan; Sohn, Youngku; Leung, Kam Tong; Pradhan, Debabrata

    2014-10-01

    The exposed facets of a crystal are known to be one of the key factors to its physical, chemical and electronic properties. Herein, we demonstrate the role of amines on the controlled synthesis of TiO2 nanocrystals (NCs) with diverse shapes and different exposed facets. The chemical, physical and electronic properties of the as-synthesized TiO2 NCs were evaluated and their photoredox activity was tested. It was found that the intrinsic photoredox activity of TiO2 NCs can be enhanced by controlling the chemical environment of the surface, i.e.; through morphology evolution. In particular, the rod shape TiO2 NCs with ?25% of {101} and ?75% of {100}/{010} exposed facets show 3.7 and 3.1 times higher photocatalytic activity than that of commercial Degussa P25 TiO2 toward the degradation of methyl orange and methylene blue, respectively. The higher activity of the rod shape TiO2 NCs is ascribed to the facetsphilic nature of the photogenerated carriers within the NCs. The photocatalytic activity of TiO2 NCs are found to be in the order of {101}+{100}/{010} (nanorods) > {101}+{001}+{100}/{010} (nanocuboids and nanocapsules) > {101} (nanoellipsoids) > {001} (nanosheets) providing the direct evidence of exposed facets-depended photocatalytic activity. PMID:25188808

  16. Efficient phyto-synthesis and structural characterization of rutile TiO2 nanoparticles using Annona squamosa peel extract.

    PubMed

    Roopan, Selvaraj Mohana; Bharathi, A; Prabhakarn, A; Rahuman, A Abdul; Velayutham, K; Rajakumar, G; Padmaja, R D; Lekshmi, Mohan; Madhumitha, G

    2012-12-01

    In the present study, the biosynthesis of rutile TiO(2) nanoparticles (TiO(2) NPs) was achieved by a novel, biodegradable and convenient procedure using fruit peel Annona squamosa aqueous extract. This is the first report on the new, simple, rapid, eco-friendly and cheaper methods for the synthesis of rutile TiO(2) NPs at lower temperature using agricultural waste. Rutile TiO(2) NPs were characterized by UV, XRD, SEM, TEM and EDS studies. The UV-Vis spectrophotometer results were promising and showed a rapid production of TiO(2) NPs with a surface plasmon resonance occurring at 284 nm. The formation of the TiO(2) NPs as observed from the XRD spectrum is confirmed to be TiO(2) particles in the rutile form as evidenced by the peaks at 2?=27.42, 36.10, 41.30 and 54.33 when compared with the literature. The TEM images showed polydisperse nanoparticles with spherical shapes and size 232 nm ranges. PMID:22983203

  17. Efficient phyto-synthesis and structural characterization of rutile TiO2 nanoparticles using Annona squamosa peel extract

    NASA Astrophysics Data System (ADS)

    Roopan, Selvaraj Mohana; Bharathi, A.; Prabhakarn, A.; Abdul Rahuman, A.; Velayutham, K.; Rajakumar, G.; Padmaja, R. D.; Lekshmi, Mohan; Madhumitha, G.

    2012-12-01

    In the present study, the biosynthesis of rutile TiO2 nanoparticles (TiO2 NPs) was achieved by a novel, biodegradable and convenient procedure using fruit peel Annona squamosa aqueous extract. This is the first report on the new, simple, rapid, eco-friendly and cheaper methods for the synthesis of rutile TiO2 NPs at lower temperature using agricultural waste. Rutile TiO2 NPs were characterized by UV, XRD, SEM, TEM and EDS studies. The UV-Vis spectrophotometer results were promising and showed a rapid production of TiO2 NPs with a surface plasmon resonance occurring at 284 nm. The formation of the TiO2 NPs as observed from the XRD spectrum is confirmed to be TiO2 particles in the rutile form as evidenced by the peaks at 2θ = 27.42°, 36.10°, 41.30° and 54.33° when compared with the literature. The TEM images showed polydisperse nanoparticles with spherical shapes and size 23 ± 2 nm ranges.

  18. Highly efficient and recyclable triple-shelled Ag@Fe3O4@SiO2@TiO2 photocatalysts for degradation of organic pollutants and reduction of hexavalent chromium ions.

    PubMed

    Su, Jianwei; Zhang, Yunxia; Xu, Sichao; Wang, Shuan; Ding, Hualin; Pan, Shusheng; Wang, Guozhong; Li, Guanghai; Zhao, Huijun

    2014-05-21

    Herein, we demonstrate the design and fabrication of the well-defined triple-shelled Ag@Fe3O4@SiO2@TiO2 nanospheres with burr-shaped hierarchical structures, in which the multiple distinct functional components are integrated wonderfully into a single nanostructure. In comparison with commercial TiO2 (P25), pure TiO2 microspheres, Fe3O4@SiO2@TiO2 and annealed Ag@Fe3O4@SiO2@TiO2 nanocomposites, the as-obtained amorphous triple-shelled Ag@Fe3O4@SiO2@TiO2 hierarchical nanospheres exhibit a markedly enhanced visible light or sunlight photocatalytic activity towards the photodegradation of methylene blue and photoreduction of hexavalent chromium ions in wastewater. The outstanding photocatalytic activities of the plasmonic photocatalyst are mainly due to the enhanced light harvesting, reduced transport paths for both mass and charge transport, reduced recombination probability of photogenerated electrons/holes, near field electromagnetic enhancement and efficient scattering from the plasmonic nanostructure, increased surface-to-volume ratio and active sites in three dimensional (3D) hierarchical porous nanostructures, and improved photo/chemical stability. More importantly, the hierarchical nanostructured Ag@Fe3O4@SiO2@TiO2 photocatalysts could be easily collected and separated by applying an external magnetic field and reused at least five times without any appreciable reduction in photocatalytic efficiency. The enhanced photocatalytic activity and excellent chemical stability, in combination with the magnetic recyclability, make these multifunctional nanostructures promising candidates to remediate aquatic contaminants and meet the demands of future environmental issues. PMID:24710730

  19. Mechanism and experimental study on the photocatalytic performance of Ag/AgCl @ chiral TiO2 nanofibers photocatalyst: the impact of wastewater components.

    PubMed

    Wang, Dawei; Li, Yi; Li Puma, Gianluca; Wang, Chao; Wang, Peifang; Zhang, Wenlong; Wang, Qing

    2015-03-21

    The effect of the water matrix components of a secondary effluent of a urban wastewater treatment plant on the photocatalytic activity of Ag/AgCl @ chiral TiO2 nanofibers and the undergoing reaction mechanisms were investigated. These effects were evaluated through the water components-induced changes on the net rate of hydroxyl radical (?OH) generation and modeled using a relative rate technique. Dissolved organic matter DOM (k=-2.810(8) M(-1) s(-1)) scavenged reactive oxygen species, Cl(-) (k=-5.310(8) M(-1) s(-1)) accelerated the transformation from Ag to AgCl (which is not photocatalytically active under visible-light irradiation), while Ca(2+) at concentrations higher than 50 mM (k=-1.310(9) M(-1) s(-1)) induced aggregation of Ag/AgCl and thus all of them revealed inhibitory effects. In contrast, NO3(-) (k=6.910(8) M(-1) s(-1)) and CO3(2-) (k=3.710(8) M(-1) s(-1)) improved the photocatalytic activity of Ag/AgCl slightly by improving the rate of HO? generation. Other ubiquitous secondary effluent components including SO4(2-) (k=3.910(5) M(-1) s(-1)), NH3(+) (k=3.510(5) M(-1) s(-1)) and Na(+) (k=2.610(4) M(-1) s(-1)) had negligible effects. 90% of 17-?-ethynylestradiol (EE2) spiked in the secondary effluent was removed within 12 min, while the structure and size of Ag/AgCl @ chiral TiO2 nanofibers remained stable. This work may be helpful not only to uncover the photocatalytic mechanism of Ag/AgCl based photocatalyst but also to elucidate the transformation and transportation of Ag and AgCl in natural water. PMID:25524623

  20. Synthesis and characterization of Fe-doped TiO2 films by electrophoretic method and its photocatalytic activity toward methyl orange

    NASA Astrophysics Data System (ADS)

    Zhang, Yanrong; Li, Qian

    2013-02-01

    In this study the cathodic electrophoretic deposition method has been developed and used to prepare Fe-doped TiO2 films to enhance the photocatalytic activity. X-ray diffraction (XRD) showed that the photocatalysts were predominantly in well-crystallized anatase phase, scanning electron microscope (SEM) and transmission electron microscopy (TEM) showed that the photocatalysts were in nanometer size with the diameter about 20 nm. We discussed the effects of electrophoretic voltage and the optimum content of Fe on the activity of photocatalyst. Compared to the calcined Fe-doped TiO2 film, the non-calcined Fe-doped TiO2 film showed higher photocatalytic decolorization toward methyl orange (MO). The photocatalytic degradation of MO could be described as pseudo-first order reactions.

  1. One-step synthesis of hierarchically porous hybrid TiO2 hollow spheres with high photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Liu, Ruiping; Ren, Feng; Yang, Jinlin; Su, Weiming; Sun, Zhiming; Zhang, Lei; Wang, Chang-an

    2015-12-01

    Hierarchically porous hybrid TiO2 hollow spheres were solvothermally synthesized successfully by using tetrabutyl titanate as titanium precursor and hydrated metal sulfates as soft templates. The as-prepared TiO2 spheres with hierarchically pore structures and high specific surface area and pore volume consisted of highly crystallized anatase TiO2 nanocrystals hybridized with a small amount of metal oxide from the hydrated sulfate. The proposed hydrated-sulfate assisted solvothermal (HAS) synthesis strategy was demonstrated to be widely applicable to various systems. Evaluation of the hybrid TiO2 hollow spheres for the photo-decomposition of methyl orange (MO) under visible-light irradiation revealed that they exhibited excellent photocatalytic activity and durability.

  2. One-step synthesis of hierarchically porous hybrid TiO2 hollow spheres with high photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Liu, Ruiping; Ren, Feng; Yang, Jinlin; Su, Weiming; Sun, Zhiming; Zhang, Lei; Wang, Chang-an

    2016-03-01

    Hierarchically porous hybrid TiO2 hollow spheres were solvothermally synthesized successfully by using tetrabutyl titanate as titanium precursor and hydrated metal sulfates as soft templates. The as-prepared TiO2 spheres with hierarchically pore structures and high specific surface area and pore volume consisted of highly crystallized anatase TiO2 nanocrystals hybridized with a small amount of metal oxide from the hydrated sulfate. The proposed hydrated-sulfate assisted solvothermal (HAS) synthesis strategy was demonstrated to be widely applicable to various systems. Evaluation of the hybrid TiO2 hollow spheres for the photo-decomposition of methyl orange (MO) under visible-light irradiation revealed that they exhibited excellent photocatalytic activity and durability.

  3. Synthesis of TiO 2 nanostructured reservoir with temozolomide: Structural evolution of the occluded drug

    NASA Astrophysics Data System (ADS)

    Lpez, T.; Sotelo, J.; Navarrete, J.; Ascencio, J. A.

    2006-10-01

    Sol-gel synthesized nanostructured TiO 2 matrix were produced with different channel sizes, where drug are immersed, producing a reservoir with Temozolomide (TMZ). This drug is particularly important for the treatment of cancer tumors, which are fundamentally a consequence of the uncontrolled reproduction of human cell. In this way the chemotherapy plays an important role in the treatment of both recurrent and newly diagnosed patients. In the handling of brain tumors TMZ has been discovered as a recent and efficient second generation drug employed in the control of advanced brain gliomas, and it is a welcome addition. Its active component binds to the cancerous DNA cells, thus preventing their disordered growth, destroying them. In this work, we report the synthesis of TiO 2 nanostructured reservoir with TMZ, focusing the effort to the understanding of structural effects on the TMZ configuration by using nuclear magnetic resonance, Raman and IR spectroscopy methods. Our results establish that TMZ molecules are quite sensible to chemical processes and it produces the activation of the molecule, which is followed and understood with help of quantum molecular simulation methods. The study of the molecules allows determining the conditions that produce the activation and chemical selectivity of the molecules, which determines the conditions of synthesis. This information gives parameters for the reservoir structural and chemical optimization.

  4. Directed synthesis of mesoporous TiO2 microspheres: catalysts and their photocatalysis for bisphenol A degradation.

    PubMed

    Guo, Changsheng; Ge, Ming; Liu, Lu; Gao, Guandao; Feng, Yinchang; Wang, Yuqiu

    2010-01-01

    This paper describes the fabrication of two different 3D mesoporous TiO2 microspheres via one-step solvothermal process without templates using different titanium sources. The resulting materials were characterized by XRD, FESEM, TEM, and nitrogen adsorption techniques. Their photodegradation of bisphenol A [2,2-bis(4-hydroxyphenyl)propane, BPA] in aqueous suspension was investigated under UV irradiation. The experimental results revealed that the photocatalytic effect of the two 3D mesoporous TiO2 microspheres was superior to the commercial P25 TiO2, and as-prepared samples as catalysts demonstrated that the smaller pore size it is, the higher the effective degradation for BPA is. Particular attention was paid to the identification of intermediates and analysis of photocatalytic degradation mechanism of BPA by HPLC-MS and HPLC-MS-MS. Five main intermediates were formed during photocatalytic degradation, and their evolution was discussed. On the basis of the evidence of oxidative intermediate formation, a detailed degradation pathway of BPA degradation by two mesoporous TiO2 microspheres photocatalysts are proposed. PMID:19928897

  5. TiO2/vanadate (Sr10V6O25, Ni3V2O8, Zn2V2O7) heterostructured photocatalysts with enhanced photocatalytic activity for photoreduction of CO2 into CH4.

    PubMed

    Yan, Yabin; Yu, Yanlong; Wu, Di; Yang, Yajun; Cao, Yaan

    2015-12-23

    A series of TiO2/vanadate (Sr10V6O25, Ni3V2O8, Zn2V2O7) heterostructured photocatalysts were prepared by a simple sol-gel method. The theoretical calculations imply the possible energy band match between TiO2 and vanadates. Characterized by XRD, Raman, TEM, EDX, XPS, absorption spectra, PL and time-resolved PL decay curves, it is revealed that the vanadates, which exist on the surface of TiO2, could suppress the recombination of charge carriers, prolong the life-time of photogenerated electrons and provide surface reactive hole sites, improving the photocatalytic activity for photo-reduction of CO2 into CH4. PMID:26662343

  6. Development of solar-driven electrochemical and photocatalytic water treatment system using a boron-doped diamond electrode and TiO2 photocatalyst.

    PubMed

    Ochiai, Tsuyoshi; Nakata, Kazuya; Murakami, Taketoshi; Fujishima, Akira; Yao, Yanyan; Tryk, Donald A; Kubota, Yoshinobu

    2010-02-01

    A high-performance, environmentally friendly water treatment system was developed. The system consists mainly of an electrochemical and a photocatalytic oxidation unit, with a boron-doped diamond (BDD) electrode and TiO(2) photocatalyst, respectively. All electric power for the mechanical systems and the electrolysis was able to be provided by photovoltaic cells. Thus, this system is totally driven by solar energy. The treatment ability of the electrolysis and photocatalysis units was investigated by phenol degradation kinetics. An observed rate constant of 5.1 x 10(-3)dm(3)cm(-2)h(-1) was calculated by pseudo-first-order kinetic analysis for the electrolysis, and a Langmuir-Hinshelwood rate constant of 5.6 microM(-1)min(-1) was calculated by kinetic analysis of the photocatalysis. According to previous reports, these values are sufficient for the mineralization of phenol. In a treatment test of river water samples, large amounts of chemical and biological contaminants were totally wet-incinerated by the system. This system could provide 12L/day of drinking water from the Tama River using only solar energy. Therefore, this system may be useful for supplying drinking water during a disaster. PMID:19863989

  7. TiO2/vanadate (Sr10V6O25, Ni3V2O8, Zn2V2O7) heterostructured photocatalysts with enhanced photocatalytic activity for photoreduction of CO2 into CH4

    NASA Astrophysics Data System (ADS)

    Yan, Yabin; Yu, Yanlong; Wu, Di; Yang, Yajun; Cao, Yaan

    2015-12-01

    A series of TiO2/vanadate (Sr10V6O25, Ni3V2O8, Zn2V2O7) heterostructured photocatalysts were prepared by a simple sol-gel method. The theoretical calculations imply the possible energy band match between TiO2 and vanadates. Characterized by XRD, Raman, TEM, EDX, XPS, absorption spectra, PL and time-resolved PL decay curves, it is revealed that the vanadates, which exist on the surface of TiO2, could suppress the recombination of charge carriers, prolong the life-time of photogenerated electrons and provide surface reactive hole sites, improving the photocatalytic activity for photo-reduction of CO2 into CH4.A series of TiO2/vanadate (Sr10V6O25, Ni3V2O8, Zn2V2O7) heterostructured photocatalysts were prepared by a simple sol-gel method. The theoretical calculations imply the possible energy band match between TiO2 and vanadates. Characterized by XRD, Raman, TEM, EDX, XPS, absorption spectra, PL and time-resolved PL decay curves, it is revealed that the vanadates, which exist on the surface of TiO2, could suppress the recombination of charge carriers, prolong the life-time of photogenerated electrons and provide surface reactive hole sites, improving the photocatalytic activity for photo-reduction of CO2 into CH4. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05332c

  8. Solvothermal synthesis of TiO2/CNT composites and its physical and chemical properties

    NASA Astrophysics Data System (ADS)

    Venkatraman, M. R.; Muthukumarasamy, N.; Balasundaraprabhu, R.; Agilan, S.; Velauthapillai, Dhayalan

    2015-06-01

    Anatase TiO2/CNT composites of different CNT ratio were prepared by solvothermal method. The X-ray diffraction analysis result showed that the sample has characteristic peaks of anatase TiO2. CNT incorporated TiO2 showed less peak intensity when compared to bare TiO2. The grain size was calculated using the Scherrer equation and it is found to be 2.38 and 2.46 nm for pure TiO2 and 5% CNT/TiO2 composites respectively. Optical properties were studied using UV-visible diffuse reflectance analysis and photo luminescence analysis respectively. UV analysis reveals the shift in absorption peaks towards the visible region for composites when compared to bare TiO2 powder. Raman spectroscopy studies show the presence of characteristic peaks corresponding to anatase TiO2, CNT. Morphological nature of the compounds was studied using High Resolution Transmission Electron Microscopy analysis respectively.

  9. Microwave-assisted synthesis and photocatalytic properties of sulphur and platinum modified TiO2 nanofibers

    NASA Astrophysics Data System (ADS)

    Drunka, R.; Grabis, J.; Jankovica, Dz; Krumina, A.; Rasmane, Dz

    2015-03-01

    In the present work formation of active TiO2 nanofibers in microwave synthesis and their modification with platinum were studied. Mixture of anatase and rutile nanopowder and 10M KOH solution were used as raw materials. Microwave assisted synthesis method permitted to obtain TiO2 nanofibres with a diameter of 10nm and a specific surface area up to 40.2 m2/g. In order to modify TiO2 nanofibers with platinum it was stirred in H2PtCl6 solution and illuminated with UV irradiation or reduced with sodium boronhydride. To modify titania with sulphur and prepare co-doped nanofibers platinum doped samples were extra treated in hydrogen sulphide atmosphere. Photocatalytic activity was determined by degradation of the methylene blue (MB) solution under UV and visible light irradiation. The obtained samples showed higher photocatalytic activity with respect to pure TiO2 nanofibers. The doped TiO2 nanofibers were appropriate for degradation of harmful organic compounds.

  10. Enhanced visible-light-driven photocatalytic inactivation of Escherichia coli using g-C3N4/TiO2 hybrid photocatalyst synthesized using a hydrothermal-calcination approach.

    PubMed

    Li, Guiying; Nie, Xin; Chen, Jiangyao; Jiang, Qi; An, Taicheng; Wong, Po Keung; Zhang, Haimin; Zhao, Huijun; Yamashita, Hiromi

    2015-12-01

    Biohazards are widely present in wastewater, and contaminated water can arouse various waterborne diseases. Therefore, effectively removing biohazards from water is a worldwide need. In this study, a novel visible-light-driven (VLD) graphitic carbon nitride (g-C3N4)/TiO2 hybrid photocatalyst with high photocatalytic bacterial inactivation activity was successfully synthesized using a facile hydrothermal-calcination approach. The optimum synthesized hybrid photocatalyst is composed of micron-sized TiO2 spheres (average diameter: ca. 2 μm) and wrapped with lamellar g-C3N4 (thickness: ca. 2 nm), with narrowing bandgap (ca. 2.48 eV), leading to a significant improvement of visible light (VL) absorption and effective separation of photo-generated electron-hole pairs. This greatly enhances VL photocatalytic inactivation activity towards bacteria in water. Using this hybrid photocatalyst, 10(7) cfu mL(-1) of Escherichia coli K-12 could be completely inactivated within 180 min under VL irradiation. SEM images indicate that bacterial cells were greatly damaged, leading to a severe leakage of intracellular components during photocatalytic inactivation processes. The study concludes that bacterial cell destruction and water disinfection can be achieved using this newly fabricated VLD hybrid photocatalyst. PMID:26084941

  11. Nanomaterial synthesis and characterization for toxicological studies: TiO2 case study

    USGS Publications Warehouse

    Valsami-Jones, E.; Berhanu, D.; Dybowska, A.; Misra, S.; Boccaccini, A.R.; Tetley, T.D.; Luoma, S.N.; Plant, J.A.

    2008-01-01

    In recent years it has become apparent that the novel properties of nanomaterials may predispose them to a hitherto unknown potential for toxicity. A number of recent toxicological studies of nanomaterials exist, but these appear to be fragmented and often contradictory. Such discrepancies may be, at least in part, due to poor description of the nanomaterial or incomplete characterization, including failure to recognise impurities, surface modifications or other important physicochemical aspects of the nanomaterial. Here we make a case for the importance of good quality, well-characterized nanomaterials for future toxicological studies, combined with reliable synthesis protocols, and we present our efforts to generate such materials. The model system for which we present results is TiO2 nanoparticles, currently used in a variety of commercial products. ?? 2008 The Mineralogical Society.

  12. Nonaqueous synthesis of TiO2 nanocrystals using TiF4 to engineer morphology, oxygen vacancy concentration, and photocatalytic activity.

    PubMed

    Gordon, Thomas R; Cargnello, Matteo; Paik, Taejong; Mangolini, Filippo; Weber, Ralph T; Fornasiero, Paolo; Murray, Christopher B

    2012-04-18

    Control over faceting in nanocrystals (NCs) is pivotal for many applications, but most notably when investigating catalytic reactions which occur on the surfaces of nanostructures. Anatase titanium dioxide (TiO(2)) is one of the most studied photocatalysts, but the shape dependence of its activity has not yet been satisfactorily investigated and many questions still remain unanswered. We report the nonaqueous surfactant-assisted synthesis of highly uniform anatase TiO(2) NCs with tailorable morphology in the 10-100 nm size regime, prepared through a seeded growth technique. Introduction of titanium(IV) fluoride (TiF(4)) preferentially exposes the {001} facet of anatase through in situ release of hydrofluoric acid (HF), allowing for the formation of uniform anatase NCs based on the truncated tetragonal bipyramidal geometry. A method is described to engineer the percentage of {001} and {101} facets through the choice of cosurfactant and titanium precursor. X-ray diffraction studies are performed in conjunction with simulation to determine an average NC dimension which correlates with results obtained using electron microscopy. In addition to altering the particle shape, the introduction of TiF(4) into the synthesis results in TiO(2) NCs that are blue in color and display a broad visible/NIR absorbance which peaks in the infrared (?(max) ? 3400 nm). The blue color results from oxygen vacancies formed in the presence of fluorine, as indicated by electron paramagnetic resonance (EPR) and X-ray photoelectron spectroscopy (XPS) studies. The surfactants on the surface of the NCs are removed through a simple ligand exchange procedure, allowing the shape dependence of photocatalytic hydrogen evolution to be studied using monodisperse TiO(2) NCs. Preliminary experiments on the photoreforming of methanol, employed as a model sacrificial agent, on platinized samples resulted in high volumes of evolved hydrogen (up to 2.1 mmol h(-1) g(-1)) under simulated solar illumination. Remarkably, the data suggest that, under our experimental conditions, the {101} facets of anatase are more active than the {001}. PMID:22444667

  13. THERMALLY STABLE NANOCRYSTALLINE TIO2 PHOTOCATALYSTS SYNTHESIZED VIA SOL-GEL METHODS MODIFIED WITH IONIC LIQUID AND SURFACTANT MOLECULES

    EPA Science Inventory

    Recently, sol-gel methods employing ionic liquids (ILs) have shown significant implications for the synthesis of well-defined nanostructured inorganic materials. Herein, we synthesized nanocrystalline TiO2 particles via an alkoxide sol-gel method employing a water-immi...

  14. Controlled synthesis and electrical conduction properties of anatase TiO2 nanoparticles via the polyol method

    NASA Astrophysics Data System (ADS)

    Bargougui, R.; Bouazizi, N.; Ben Soltan, W.; Gadri, A.; Azzouz, A.; Ammar, S.

    2016-04-01

    This paper reports the preparation and characterization of titanium dioxide nanoparticles (TiO2-NPs) with pure anatase phases using polyol synthesis process. The preparation state and the particle size are controlled by varying the synthesis parameters such as the precursor concentration, hydrolysis rate and the synthesis time. Nanoparticles were characterized by X-ray diffractometry, TEM, FT-IR spectroscopy and the measure of the complex impedance spectroscopy. Their physicochemical properties were investigated to optimize the synthesis conditions. FT-IR spectra exhibit broad peaks where anatase phases of TiO2 demonstrate very sharp peaks. The structural characterization by XRD confirms that there is a formation of anatase TiO2-NPs phases at 550 °C and the crystalline size is in the range of 19-25 nm. The crystallite size of the TiO2 core decreases with the concentration of titanium tetrachloride TiCl4 precursor. Electrical properties and relaxation phenomenon of the material were studied at several temperatures.

  15. Facile synthesis of TiO2/microcrystalline cellulose nanocomposites: photocatalytically active material under visible light irradiation

    EPA Science Inventory

    Doped TiO2 nanocomposites were prepared in situ by a facile and simple synthesis utilizing benign and renewable precursors such as microcrystalline cellulose (MC) and TiCl4 through hydrolysis in alkaline medium without the addition of organic solvents. The as-prepared nanocompos...

  16. Green synthesis of highly crystalline and visible-light sensitive C-, N- and S- codoped with Ag TiO2 nanocatalyst

    EPA Science Inventory

    Titanium dioxide (TiO2) has been a focus of attention as chemically stable, relatively nontoxic, inexpensive and highly efficient photocatalyst applicable for a wide array of uses. However, main disadvantage that severely limits its wider use is the large band gap, 3.0 eV and 3.2...

  17. Synthesis of polycarbonate-r-polyethylene glycol copolymer for templated synthesis of mesoporous TiO2 films.

    PubMed

    Patel, Rajkumar; Kim, Jinkyu; Lee, Chang Soo; Kim, Jong Hak

    2014-12-01

    We synthesized a novel polycarbonate Z-r-polyethylene glycol (PCZ-r-PEG) copolymer by solution polycondensation. Successful synthesis of PCZ-r-PEG copolymer was confirmed by Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (1H-NMR), gel permeation chromatography (GPC), and transmission electron microscopy (TEM). PCZ-r-PEG copolymer was used as a structure-directing agent for fabrication of mesoporous thin film containing a titanium dioxide (TiO2) layer. To control the porosity of the resultant inorganic layer, the ratio of titanium(IV) isopropoxide (TTIP) to PCZ-r-PEG copolymer was varied. The structure and porosity of the resulting mesoporous films were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses. Mesoporous TiO2 films fabricated on an F-doped tin oxide (FTO) surface were used as photoanodes for quasi-solid-state dye-sensitized solar cells (qssDSSCs). The highest efficiency achieved was 3.3% at 100 mW/cm2 for a film thickness of 750 nm, which is high considering the thickness of TiO2 film, indicating the importance of the structure-directing agent. PMID:25971065

  18. Hydrothermal synthesis of Mo-doped VO2/TiO2 composite nanocrystals with enhanced thermochromic performance.

    PubMed

    Li, Dengbing; Li, Ming; Pan, Jing; Luo, Yuanyuan; Wu, Hao; Zhang, Yunxia; Li, Guanghai

    2014-05-14

    This paper reports a one-step TiO2 seed-assistant hydrothermal synthesis of Mo-doped VO2(M)/TiO2 composite nanocrystals. It was found that excess Mo doping can promote formation of the VO2(M) phase, and rutile TiO2 seed is beneficial to morphology control, size reduction, and infrared modulation of Mo-doped VO2(M) nanocrystals. The Mo-doped VO2 nanocrystals epitaxially grow on TiO2 seeds and have a quasi-spherical shape with size down to 20 nm and a nearly 35% infrared modulation near room temperature. The findings of this work demonstrate important progress in the near-room-temperature thermochromic performance of VO2(M) nanomaterials, which will find potential application in constructing VO2(M) nanocrystal-based smart window coatings. PMID:24734771

  19. Photovoltaic performance of dye-sensitized solar cells using TiO2 nanotubes aggregates produced by hydrothermal synthesis

    NASA Astrophysics Data System (ADS)

    Chen, Qiufan; Sun, Xiaonan; Liu, Anping; Zhang, Qifeng; Cao, Guozhong; Zhou, Xiaoyuan

    2015-09-01

    This paper reports the synthesis, detailed structural characterization of aggregated TiO2 nanotubes and the application of such aggregated TiO2 nanotubes as photoelectrodes in solar cells (dye sensitized DSCs). A maximum overall conversion efficiency of 7.9% has been achieved, which use conventional dyes without any additional chemical treatments under circumstances of an open-circuit voltage of 710 mV, a short-circuit current density of 16.8mA/cm2, and a fill factor of 66%. This impressive performance is believed to attribute to the micron-sized aggregate structure which may be favorable for light harvesting, the desired high specific surface area and pure anatase phase for dye absorption. This significant improvement in the conversion efficiency indicates that DSCs based on aggregated TiO2 nanotubes are a promising alternative to semiconductor-based solar cells.

  20. Synthesis, characterization and photocatalytic activity of 1D TiO2 nanostructures.

    PubMed

    Cabrera, Julieta; Alarcn, Hugo; Lpez, Alcides; Candal, Roberto; Acosta, Dwight; Rodriguez, Juan

    2014-01-01

    Nanowire/nanorod TiO(2) structures of approximately 8 nm in diameter and around 1,000 nm long were synthesized by alkaline hydrothermal treatment of two different TiO(2) nanopowders. The first precursor was TiO(2) obtained by the sol-gel process (SG-TiO(2)); the second was the well-known commercial TiO(2) P-25 (P25-TiO(2)). Anatase-like 1D TiO(2) nanostructures were obtained in both cases. The one-dimensional (1D) nanostructures synthesized from SG-TiO(2) powders turned into rod-like nanostructures after annealing at 400 C for 2 h. Conversely, the nanostructures synthesized from P25-TiO(2) preserved the tubular structure after annealing, displaying a higher Brunauer-Emmett-Teller surface area than the first system (279 and 97 m/g, respectively). Despite the higher surface area shown by the 1D nanostructures, in both cases the photocatalytic activity was lower than for the P25-TiO(2) powder. However, the rod-like nanostructures obtained from SG-TiO(2) displayed slightly higher efficiency than the sol-gel prepared powders. The lower photocatalytic activity of the nanostructures with respect to P-25 can be associated with the lower crystallinity of 1D TiO(2) in both materials. PMID:25259484

  1. Characterization of the thin layer photocatalysts TiO2 and V2O5- and Fe2O3- doped TiO2 prepared by the sol-gel method

    NASA Astrophysics Data System (ADS)

    Loc Luu, Cam; Nguyen, Quoc Tuan; Thoang Ho, Si; Nguyen, Tri

    2013-09-01

    The catalysts TiO2 and TiO2 doped with Fe and V were prepared using the sol-gel method. TiO2-modified samples were obtained in the form of a thick film on pyrex glass sticks and tubes and were used as catalysts in the gas phase photo-oxidation of p-xylene. The physico-chemical characteristics of the catalysts were determined using the methods of Brunauer-Emmett-Teller adsorption, x-ray diffraction, and infrared, ultraviolet and visible and Raman spectroscopies. The experimental results show that the introduction of V did not expand the region of light absorption, but slightly reduced the size of the TiO2 particles, and reduced the number of OH-groups, which should decrease the photocatalytic activity and efficiency of the obtained catalysts compared to those of pure TiO2. The Fe-doped TiO2 samples, in contrast, are characterized by an extension of the spectrum of photon absorption to the visible region with wavenumbers ? up to 464 nm and the values of their band gap energy decreased to lower quantities (up to 2.67 eV), therefore they should have higher catalytic activity and conversion efficiency of p-xylene in the visible region than the original sample. For these catalysts, a combined utilization of radiation by ultraviolet (? = 365 nm) and visible (? = 470 nm) light increased the activity and the yield in p-xylene conversion by a factor of around 2-3, as well as making these quantities more stable in comparison with those of TiO2-P25 Degussa.

  2. The design, fabrication, and photocatalytic utility of nanostructured semiconductors: focus on TiO2-based nanostructures

    PubMed Central

    Banerjee, Arghya Narayan

    2011-01-01

    Recent advances in basic fabrication techniques of TiO2-based nanomaterials such as nanoparticles, nanowires, nanoplatelets, and both physical- and solution-based techniques have been adopted by various research groups around the world. Our research focus has been mainly on various deposition parameters used for fabricating nanostructured materials, including TiO2-organic/inorganic nanocomposite materials. Technically, TiO2 shows relatively high reactivity under ultraviolet light, the energy of which exceeds the band gap of TiO2. The development of photocatalysts exhibiting high reactivity under visible light allows the main part of the solar spectrum to be used. Visible light-activated TiO2 could be prepared by doping or sensitizing. As far as doping of TiO2 is concerned, in obtaining tailored material with improved properties, metal and nonmetal doping has been performed in the context of improved photoactivity. Nonmetal doping seems to be more promising than metal doping. TiO2 represents an effective photocatalyst for water and air purification and for self-cleaning surfaces. Additionally, it can be used as an antibacterial agent because of its strong oxidation activity and superhydrophilicity. Therefore, applications of TiO2 in terms of photocatalytic activities are discussed here. The basic mechanisms of the photoactivities of TiO2 and nanostructures are considered alongside band structure engineering and surface modification in nanostructured TiO2 in the context of doping. The article reviews the basic structural, optical, and electrical properties of TiO2, followed by detailed fabrication techniques of 0-, 1-, and quasi-2-dimensional TiO2 nanomaterials. Applications and future directions of nanostructured TiO2 are considered in the context of various photoinduced phenomena such as hydrogen production, electricity generation via dye-sensitized solar cells, photokilling and self-cleaning effect, photo-oxidation of organic pollutant, wastewater management, and organic synthesis. PMID:24198485

  3. Synthesis of Ni nanoparticles decorated SiO2/TiO2 magnetic spheres for enhanced photocatalytic activity towards the degradation of azo dye

    NASA Astrophysics Data System (ADS)

    Mahesh, K. P. O.; Kuo, Dong-Hau

    2015-12-01

    Highly photocatalytic active Ni magnetic nanoparticles-decorated SiO2 core/TiO2 shell (Ni-SiO2/TiO2) particles have been prepared by the simultaneous hydrolysis and condensation of titanium tetra-isopropoxide on SiO2 sphere of ∼300 nm in size followed by the reduction of nickel chloride using hydrazine hydrate as a reducing agent. The crystalline nature, surface morphology, electrochemical impedance spectra and UV-vis diffuse reflectance spectra of the Ni-SiO2/TiO2 magnetic spheres were characterized by PXRD, FE-SEM, TEM, EIS and UV-vis DRS. The Ni-SiO2/TiO2 magnetic photocatalyst was used for the degradation of Acid Black 1 (AB 1) dye under UV irradiation. The effects of different concentrations of the Ni nanoparticles deposited on the SiO2/TiO2 composite spheres for the photo-mineralization of AB 1 dye were analyzed. The results showed the Ni-SiO2/TiO2 magnetic photocatalyst to be efficient and reusable.

  4. Facile electrochemical synthesis of antimicrobial TiO2 nanotube arrays

    PubMed Central

    Zhao, Yu; Xing, Qi; Janjanam, Jagadeesh; He, Kun; Long, Fei; Low, Ke-Bin; Tiwari, Ashutosh; Zhao, Feng; Shahbazian-Yassar, Reza; Friedrich, Craig; Shokuhfar, Tolou

    2014-01-01

    Infection-related complications have been a critical issue for the application of titanium orthopedic implants. The use of Ag nanoparticles offers a potential approach to incorporate antimicrobial properties into the titanium implants. In this work, a novel and simple method was developed for synthesis of Ag (II) oxide deposited TiO2 nanotubes (TiNTs) using electrochemical anodization followed by Ag electroplating processes in the same electrolyte. The quantities of AgO nanoparticles deposited in TiNT were controlled by selecting different electroplating times and voltages. It was shown that AgO nanoparticles were crystalline and distributed throughout the length of the nanotubes. Inductively coupled plasma mass spectrometry tests showed that the quantities of released Ag were less than 7 mg/L after 30 days at 37°C. Antimicrobial assay results show that the AgO-deposited TiNTs can effectively kill the Escherichia coli bacteria. Although the AgO-deposited TiNTs showed some cytotoxicity, it should be controllable by optimization of the electroplating parameters and incorporation of cell growth factor. The results of this study indicated that antimicrobial properties could be added to nanotextured medical implants through a simple and cost effective method. PMID:25429214

  5. Hydrothermal synthesis of TiO2 nanostructure films and their photoelectrochemical properties

    NASA Astrophysics Data System (ADS)

    Miao, Hui; Hu, Xiaoyun; Fan, Jun; Li, Chaoben; Sun, Qian; Hao, Yuanyuan; Zhang, Guowei; Bai, Jintao; Hou, Xun

    2015-12-01

    In this study, anatase TiO2 nanostructured films were successfully prepared via Ti foil-assisted hydrothermal synthesis method without any surfactants. With the increase of hydrothermal time from 3 to 12 h, the surface morphologies of the films changed from nanotubes to nanoflowers and the thickness of the films increased from 2.5 to 4.2 ?m. The nanoflowers were seated on a layer of oriented nanotubes and consisted of nanosheets. Both nanotubes and nanosheets were multi-walled, comprising interconnected [TiO6] octahedra. Ti foil and acid-treated Ti foil both formed pieces of thin films on the surface with nanotubes and nanoflowers, respectively. Photoelectrochemistry tests showed that the photocurrent response of the nanotube film was nearly 13.8 ?A/cm2, which was approximately three times higher than that of nanoflowers film. This indicates that the nanotubes more successfully transferred electrons to the surface of the film as a result of nanotubes providing direct pathways for electrons from the point of injection to the Ti foil electrode. The ultraviolet (UV)-visible-near infrared (NIR) absorption spectra indicated that the nanotube film had a narrower band gap as compared to the nanoflower film. In other words, a relatively low hydrothermal treatment temperature or relatively short hydrothermal treatment time is better for preparing excellent photocurrent response films.

  6. Template-free synthesis of hierarchical TiO2 structures and their application in dye-sensitized solar cells.

    PubMed

    Shao, Fang; Sun, Jing; Gao, Lian; Yang, Songwang; Luo, Jianqiang

    2011-06-01

    We demonstrate here the synthesis of a hierarchical TiO(2) architecture without any surfactants or templates. Two kinds of structure existed simultaneously, the ordered nanoarrays at bottom provided direct conduction pathway for photo generated electrons, while the upper micro-flowers consisted of nanobelt as building units increased the light harvesting ability as the scattering part. The formation mechanism of the hierarchical architecture has been proposed by studying the morphology evolution processes upon reaction time. The performance of dye-sensitized solar cells based on the obtained hierarchical anatase TiO(2) has been also studied, giving a J(SC) = 12.44 mA cm(-2), V(OC) = 0.64 V, FF = 69.05%, and ? = 5.53%, which is superior than commercial TiO(2) (P25). The UV-vis results prove that the obtained morphology is beneficial to light-scattering and thus increases the light harvesting ability. This hierarchical TiO(2) structure offers great potential for the development of high-efficiency DSSCs. PMID:21557615

  7. Silicon carbide coated with TiO2 with enhanced cobalt active phase dispersion for Fischer-Tropsch synthesis.

    PubMed

    Liu, Yuefeng; Florea, Ileana; Ersen, Ovidiu; Pham-Huu, Cuong; Meny, Christian

    2015-01-01

    The introduction of a thin layer of TiO2 on β-SiC allows a significant improvement of the cobalt dispersion. This catalyst exhibits an excellent and stable catalytic activity for the Fischer-Tropsch synthesis (FTS) with high C5+ selectivity, which contributes to the development of a new active catalyst family in the gas-to-liquid process. PMID:25387082

  8. Fabrication, characterization and application of a reusable immobilized TiO2-PANI photocatalyst plate for the removal of reactive red 4 dye

    NASA Astrophysics Data System (ADS)

    Razak, S.; Nawi, M. A.; Haitham, K.

    2014-11-01

    A method for immobilizing TiO2-PANI composite using ENR and PVC as adhesives was successfully developed. The immobilized system known as TiO2/PANI/ENR/PVC plate was characterized by FTIR, Raman, diffuse reflectance UV-vis, photo luminescence spectroscopy and HRTEM. The optimum weight ratio for the TiO2:PANI composite was 1:0.0035. The band gap energy of the optimum immobilized composite TiO2/PANI/ENR/PVC (1:0035) was 2.86 eV where polyaniline (PANI) formed a core-shell coating of about 0.9 nm with a strong TiO2-PANI interaction. Photo-etching of the immobilized TiO2/PANI/ENR/PVC (1:0.0035) composite for 7 h increased its surface area and improved its photocatalytic activity. TiO2/PANI/ENR/PVC (1:0.0035)-7 h was visible light sensitive where 85% of 30 mg L-1 reactive red 4 (RR4) dye was decolorized after 60 min of irradiation. The immobilized TiO2/PANI/ENR/PVC (1:0.0035)-7 h was reusable and its photocatalytic activity was sustainable with an average pseudo first order rate constant value of 0.103 0.002 min-1. Adding PANI to the immobilized P25 TiO2 has enhanced its photocatalytic activity throughout the entire ten recycled applications due to the increased BET surface area and lower ecb and h+ recombination.

  9. Microwave-assisted synthesis of nanocrystalline TiO2 for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Kuo, Ta-Chuan; Guo, Tzung-Fang; Chen, Peter

    2012-09-01

    The main purposes of this study are replacing conventional hydro-thermal method by microwave heating using water as reaction medium to rapidly synthesize TiO2.Titanium tetraisopropoxide (TTIP) was hydrolyzed in water. The solution is subsequently processed with microwave heating for crystal growth. The reaction time could be shortened into few minutes. Then we chose different acids as dispersion agents to prepare TiO2 paste for investigating the effects of dispersion on the power conversion efficiency of dye-sensitized solar cells (DSCs). The photovoltaic performance of the microwave-assisted synthesized TiO2 achieved power conversion efficiency of 6.31% under AM 1.5 G condition (100 mW/cm2). This PCE value is compatible with that of the devices made from commercial TiO2.

  10. Facile synthesis of porous TiO2 nanospheres and their photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Huang, Jiarui; Ren, Haibo; Liu, Xiaosi; Li, Xuexue; Shim, Jae-Jin

    2015-05-01

    Uniform and monodisperse porous TiO2 nanospheres were synthesized by a hydrothermal method. Techniques of X-ray diffraction, scanning electron microscopy, Brunauer-Emmett-Teller (BET) nitrogen adsorption-desorption, UV-vis absorption spectroscopy, and transmission electron microscopy were used to characterize the structure and morphology of the products. The BET surface area of the porous TiO2 nanospheres was calculated to be 26.1 cm2 g-1. In addition, the obtained porous TiO2 nanospheres were used as catalyst to photodegrade methylene blue, Rhodamine B, methyl orange, p-nitrophenol, and eosin B. Compared to commercial TiO2 powder, the as-prepared porous TiO2 nanospheres exhibited higher catalytic activities due to their large surface areas and porous nanostructures. The photocatalytic reaction rate constant of the porous TiO2 nanospheres in photocatalytic decomposition of methylene blue and Rhodamine B under simulated solar light were calculated as 0.0545 min-1 and 0.0579 min-1, respectively. Moreover, the catalyst was demonstrated to have good stability and reusability.

  11. Self-induced synthesis of phase-junction TiO2 with a tailored rutile to anatase ratio below phase transition temperature

    PubMed Central

    Wang, Wei-Kang; Chen, Jie-Jie; Zhang, Xing; Huang, Yu-Xi; Li, Wen-Wei; Yu, Han-Qing

    2016-01-01

    The surface phase junction of nanocrystalline TiO2 plays an essential role in governing its photocatalytic activity. Thus, facile and simple methods for preparing phase-junction TiO2 photocatalysts are highly desired. In this work, we show that phase-junction TiO2 is directly synthesized from Ti foil by using a simple calcination method with hydrothermal solution as the precursor below the phase transition temperature. Moreover, the ratio of rutile to anatase in the TiO2 samples could be readily tuned by changing the ratio of weight of Ti foil to HCl, which is used as the hydrothermal precursor, as confirmed by the X-ray diffraction analysis. In the photocatalytic reaction by the TiO2 nanocomposite, a synergistic effect between the two phases within a certain range of the ratio is clearly observed. The results suggest that an appropriate ratio of anatase to rutile in the TiO2 nanocomposite can create more efficient solid-solid interfaces upon calcination, thereby facilitating interparticle charge transfer in the photocatalysis. PMID:26864501

  12. Low temperature synthesis of iodine-doped TiO 2 nanocrystallites with enhanced visible-induced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Ma, Yi; Fu, Ji-Wen; Tao, Xia; Li, Xin; Chen, Jian-Feng

    2011-03-01

    Iodine-doped TiO 2 nanocrystallites (denoted as I-TNCs) were prepared via a newly developed triblock copolymer-mediated sol-gel method at a temperature of 393 K. I-doping, crystallization and the formation of porous structure have been simultaneously achieved. The obtained particles were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and UV-vis spectrophotometer. The results indicated that the as-prepared I-TNCs possessed a diameter of ca. 5 nm with anatase crystalline structure and a specific surface area of over 200 m 2 g -1. The presence of iodine expanded the photoresponse in visible light range, and led to enrich in surface hydroxyl group on the TiO 2 surface. Compared with the commercial photocatalyst P25, the I-TNCs significantly enhanced the photocatalytic efficiency in the degradation of rhodamine B and 2,4-dichlorophenol, and the I-TNCs with 2.5 mol% doping ratio exhibited the best photocatalytic activity.

  13. Bio-mediated synthesis of TiO2 nanoparticles and its photocatalytic effect on aquatic biofilm.

    PubMed

    Dhandapani, Perumal; Maruthamuthu, Sundram; Rajagopal, Gopalakrishnan

    2012-05-01

    The nano-TiO(2) was synthesized biologically employing Bacillus subtilis (FJ460362). These nanoparticles were characterized by FTIR, TGA-DTA, UV-Visible spectroscopy, XRD and TEM. FTIR and TGA results confirm that the organic impurities were completely removed while calcinating the resultant products. Band gap value was estimated from the UV-Visible spectrum and anatase crystal phase was confirmed by XRD. TEM images reveal that these particles were agglomerated; mostly spherical in shape with an average particle size of 10-30nm. The synthesized nano-TiO(2) particles were coated on glass slides, biofilm were grown and subjected to irradiation of polychromatic light to understand photocatalytic activity in controlling the aquatic biofilm. The bacterial killing process was established by Epi-fluorescence microscopy. The results reveal that biogenic TiO(2) nanomaterial acts as good photocatalyst by the generation of H(2)O(2) in the vicinity of the TiO(2)-biofilm interfaces to suppress the growth of the aquatic biofilm. PMID:22483978

  14. A novel fractional crystallization route to porous TiO2-Fe2O3 composites: large scale preparation and high performances as a photocatalyst and Li-ion battery anode.

    PubMed

    Li, Li; Zhang, Jianbo; Zhu, Qingshan

    2016-02-21

    Meso/macroporous TiO2-Fe2O3 composite particles are prepared using naturally abundant ilmenite via a novel heat treatment induced fractional crystallization strategy in a fluidized bed. Fluid-bed roasting in oxidizing and reducing environments is carried out in order to realize the fractional crystallization of ilmenite. Subsequently, acid leaching is employed to remove most of the ferrous phase and form porous TiO2-Fe2O3 composites. The influences of the reaction parameters on the composition, structure and properties of the products are studied. It is found that the pore structure and composition of the porous TiO2-Fe2O3 composite particles can be controlled simply by controlling some parameters, such as the roasting time, temperature, precursor particle size, and post-roasting treatment. Photocatalytic and electrochemical cycling measurements show that the synergism of porous structures and the controlled doping of ?-Fe2O3 endow the as-obtained products with excellent visible light photocatalytic activity and provide enhanced performance in lithium ion batteries. The composite porous particles thus obtained may have some promising applications in the fields of photocatalysts, electrode materials, absorbers, pigments etc. This work opens a new avenue for reasonable combination of cost-effective raw materials, a large scale fabricating process and fine control over the structure and composition in the design and preparation of functional materials. PMID:26743456

  15. Facile Synthesis of Robust Free-Standing TiO2 Nanotubular Membranes for Biofiltration Applications

    PubMed Central

    Schweicher, Julien; Desai, Tejal A.

    2014-01-01

    Robust monodisperse nanoporous membranes have a wide range of biotechnological applications, but are often difficult or costly to fabricate. Here, a simple technique is reported to produce free-standing TiO2 nanotubular membranes with through-hole morphology. It consists in a 3-step anodization procedure carried out at room temperature on a Ti foil. The first anodization (1 h at 80 V) is used to pattern the surface of the metallic foil. Then, the second anodization (24 h at 80 V) produces the array of TiO2 nanotubes that will constitute the final membrane. A higher voltage anodization (3-5 minutes at 180 V) is finally applied to detach the TiO2 nanotubular layer from the underlying Ti foil. In order to completely remove the barrier layer that obstructs some pores of the membrane, the latter is etched 2 minutes in a buffered oxide etch solution. The overall process produces 60 ?m-thick TiO2 nanotubular membranes with tube openings of 110 nm on one side and 73 nm on the other side. The through-hole morphology of these membranes has been verified by performing diffusion experiments with glucose, insulin and immunoglobulin G where in differences in diffusion rate are observed based on molecular weight. Such biocompatible TiO2 nanotubular membranes, with controlled pore size and morphology, have broad biotechnological and biomedical applications. PMID:24634542

  16. Facile Synthesis of Robust Free-Standing TiO2 Nanotubular Membranes for Biofiltration Applications.

    PubMed

    Schweicher, Julien; Desai, Tejal A

    2014-03-01

    Robust monodisperse nanoporous membranes have a wide range of biotechnological applications, but are often difficult or costly to fabricate. Here, a simple technique is reported to produce free-standing TiO2 nanotubular membranes with through-hole morphology. It consists in a 3-step anodization procedure carried out at room temperature on a Ti foil. The first anodization (1 h at 80 V) is used to pattern the surface of the metallic foil. Then, the second anodization (24 h at 80 V) produces the array of TiO2 nanotubes that will constitute the final membrane. A higher voltage anodization (3-5 minutes at 180 V) is finally applied to detach the TiO2 nanotubular layer from the underlying Ti foil. In order to completely remove the barrier layer that obstructs some pores of the membrane, the latter is etched 2 minutes in a buffered oxide etch solution. The overall process produces 60 ?m-thick TiO2 nanotubular membranes with tube openings of 110 nm on one side and 73 nm on the other side. The through-hole morphology of these membranes has been verified by performing diffusion experiments with glucose, insulin and immunoglobulin G where in differences in diffusion rate are observed based on molecular weight. Such biocompatible TiO2 nanotubular membranes, with controlled pore size and morphology, have broad biotechnological and biomedical applications. PMID:24634542

  17. Synthesis and photocatalytic properties of Palladium-loaded three dimensional flower-like anatase TiO2 with dominant {001} facets.

    PubMed

    Bai, Xue; Lv, Lingling; Zhang, Xiaoyuan; Hua, Zulin

    2016-04-01

    Palladium-loaded (Pd-loaded) anatase TiO2 with dominant {001} facets used as photocatalysts was prepared by a two-step process. Three dimensional flower-like structures of anatase TiO2 with exposed {001} facets were synthesized by solvothermal method, and then Pd nanoparticles were photodeposited onto the {101} surface of TiO2 by UV reduction. The resulting Pd/TiO2 was characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and UV-vis diffuse reflectance spectra. Characterization results indicated that the flower-like structures of anatase TiO2 were assembled by two dimensional nanosheets with a thickness of approximately 10nm and a length of approximately 1.0?m. The Pd/TiO2 nanocomposites with improved visible-light-harvesting capability, high charge-hole mobility, and low electron-hole recombination exhibited improved photocatalytic performance in degrading bisphenol A. This study provided new insights into the fabrication and practical application of high-performance photocatalysts in degrading organic pollutants. PMID:26771748

  18. Radiation-induced synthesis of Fe-doped TiO 2: Characterization and catalytic properties

    NASA Astrophysics Data System (ADS)

    Bzdon, Sylwia; Gralski, Jacek; Maniukiewicz, Waldemar; Perkowski, Jan; Rogowski, Jacek; Szadkowska-Nicze, Magdalena

    2012-03-01

    Fe-doped TiO 2 catalyst was prepared by wet impregnation, using TiO 2 P25 Degussa as a precursor and Fe(NO 3) 3 as a dopant, followed by irradiation with an electron beam or ?-rays. Surface properties of Fe/TiO 2 samples were examined by BET, XRD, ToF-SIMS, and TPR methods. The photocatalytic activity towards destruction of the anionic surfactant, sodium dodecylbenzenesulfonate (SDBS), in aqueous solutions was higher for the irradiated Fe/TiO 2 catalysts than for bare TiO 2 P25 or that calcined at 500 C. The results show that irradiated catalysts exhibit a more uniform texture with high dispersion of iron species. An enhancement of the activity of irradiated Fe/TiO 2 systems can be attributed to the synergetic effects of small crystallite size and homogenous distribution of iron species including FeTiO 3 phase.

  19. Synthesis, characterization and photocatalytic behavior of Ag doped TiO2 thin film

    NASA Astrophysics Data System (ADS)

    Bensouici, F.; Souier, T.; Dakhel, A. A.; Iratni, A.; Tala-Ighil, R.; Bououdina, M.

    2015-09-01

    In this study, structure, microstructure, optical properties and photocatalytic degradation of Rhodamine B (RhB) have been investigated in an aqueous heterogeneous media containing pure and Ag doped TiO2 nanostructures thin films which were prepared by a simple sol-gel route. Thermal analysis demonstrated that Ag content decreased the temperature of anatase-to-rutile phase transformation. X-ray diffraction analysis confirmed that the prepared nanostructures crystallize within anatase-type structure and that the dopant Ag ions were not fully incorporated within TiO2 host lattice, meanwhile both the refractive index and optical band gap were affected by Ag concentration. The photodegradation of Rhodamine B under UV-C radiation by using pure and Ag-doped TiO2 nanostructures showed that Ag played an important role in a significant improvement of the photodegradation efficiency and that the optimum content of Ag ions was found to be 0.5% molar ratio.

  20. Synthesis of uniform TiO2 nanoparticles with egg albumen proteins as novel biotemplate.

    PubMed

    Yan, Jingjing; Wu, Guangjun; Li, Landong; Yu, Aimin; Sun, Xiaohong; Guan, Naijia

    2010-09-01

    A novel bio-templated route was reported for the fabrication of uniform and well dispersed TiO, nanoparticles using denatured egg albumen (EA) proteins network as template. Anatase TiO2 nanoparticles of ca. 9 nm with narrow size distribution were obtained under employed reaction conditions, as proved by the XRD and TEM results. The as-prepared TiO2 nanoparticles were further characterized by means of XPS, FTIR, TG-DTA and UV-Vis. Based on the characterization results, a possible process of heat-induced denatured protein network as template matrix to fabricate TiO2 nanoparticles was carefully proposed. The method with egg albumen as bio-template provides us a cheap, green and repeatable route for the fabrication of nanoparticles under mild conditions. PMID:21133103

  1. Enhanced catalytic activity of the surface modified TiO2-MWCNT nanocomposites under visible light.

    PubMed

    Božič, Mojca; Vivod, Vera; Vogrinčič, Robert; Ban, Irena; Jakša, Gregor; Hribernik, Silvo; Fakin, Darinka; Kokol, Vanja

    2016-03-01

    Fusing multiwall carbon nanotubes (MWCNTs) with TiO2 at the nano-scale level promotes the separation of those electron-hole charges generated upon UV and daylight irradiation. In this study, we investigated facile sonochemical synthesis, combined with the calcination process for the preparations of TiO2-MWCNT composites with different mole ratios of titanium and carbon. In order to produce stable nano dispersions we exploited an innovative biotechnology-based approach for the covalent functionalizations of TiO2-MWCNTs with in-situ synthesized soluble phenoxazine dye molecules. The none and functionalized TiO2-MWCNTs composites were analyzed by a range of analytical techniques including XRD, Raman, XPS, SEM and UV-vis diffuse reflectance spectroscopy (DRS), and dynamic light scattering (DLS). The photocatalytic activity was evaluated toward the liquid-phase degradation of MB in aqueous solution under both UV and visible light irradiation. TiO2-MWCNTs with optimized mole ratio exhibit much higher photocatalytic activity and stability than bare TiO2. The as-prepared TiO2-MWCNTs photocatalyst possessed good adsorptivity of dyes, extended light absorption range and efficient charge separation properties simultaneously. The results indicated that the soluble phenoxazine dyes and amino-benzenesulfonic acid monomers were covalently grafted on to the surfaces of TiO2-MCNTs, which promoted good aquatic dispersibility and extended light absorption, resulting in increased photocatalytic efficiency. PMID:26669495

  2. Enhanced photocatalytic performance of Hemin (chloro(protoporhyinato)iron(III)) anchored TiO2 photocatalyst for methyl orange degradation: A surface modification method

    NASA Astrophysics Data System (ADS)

    Devi, L. Gomathi; ArunaKumari, M. L.

    2013-07-01

    TiO2 was prepared by sol-gel method through the hydrolysis of TiCl4 and its surface derivatization was carried out with molecular catalyst like Hemin (chloro(protoporhyinato)iron(III)). Catalyst was characterized by various analytical techniques like UV-vis spectroscopy, FT-IR, FE-SEM and XRD. The anchoring of Hemin on titania surface is confirmed by FT-IR spectra through the linkage of Odbnd Csbnd Osbnd Ti bond and also by TGA-DSC and elemental analysis. The photocatalytic activity of the surface modified catalyst is tested for the degradation of methyl orange (MO) as a model compound under UV light. The Hemin impregnated TiO2 (H-TiO2) in presence of H2O2 shows an excellent photocatalytic activity compared to pristine TiO2, Hemin, H2O2, TiO2/H2O2, and Hemin/H2O2 systems. The enhancement in the photocatalytic activity is attributed to the presence of iron (III) porphyrin ring on the TiO2 surface, which reduces the electron-hole recombination rate and also by acting as a mediator for continuous production of enriched concentration of hydroxyl radicals along with various other reactive free radicals.

  3. Photocatalytic properties of Au-deposited mesoporous SiO2-TiO2 photocatalyst under simultaneous irradiation of UV and visible light

    NASA Astrophysics Data System (ADS)

    Okuno, T.; Kawamura, G.; Muto, H.; Matsuda, A.

    2016-03-01

    Mesoporous SiO2 templates deposited TiO2 nanocrystals are synthesized via a sol-gel route, and Au nanoparticles (NPs) are deposited in the tubular mesopores of the templates by a photodeposition method (Au/SiO2-TiO2). The photocatalytic characteristics of Au/SiO2-TiO2 are discussed with the action spectra of photoreactions of 2-propanol and methylene blue. Photocatalytic activities of SiO2-TiO2 under individual ultraviolet (UV) and visible (Vis) light illumination are enhanced by deposition of Au NPs. Furthermore, Au/SiO2-TiO2 shows higher photocatalytic activities under simultaneous irradiation of UV and Vis light compared to the activity under individual UV and Vis light irradiation. Since the photocatalytic activity under simultaneous irradiation is almost the same as the total activities under individual UV and Vis light irradiation, it is concluded that the electrons and the holes generated by lights of different wavelengths are efficiently used for photocatalysis without carrier recombination.

  4. Efficient charge separation based on type-II g-C3N4/TiO2-B nanowire/tube heterostructure photocatalysts.

    PubMed

    Chen, Hongmei; Xie, Yinghao; Sun, Xiaoqin; Lv, Meilin; Wu, Fangfang; Zhang, Lei; Li, Li; Xu, Xiaoxiang

    2015-08-01

    Separation of photo-generated charges has played a crucial role in controlling the actual performance of a photocatalytic system. Here we have successfully fabricated g-C3N4/TiO2-B nanowire/tube heterostructures through facile urea degradation reactions. Owing to the effective separation of photo-generated charges associated with the type-II band alignment and intimate interfacial contacts between g-C3N4 and TiO2-B nanowires/tubes, such heterostructures demonstrate an improved photocatalytic activity over individual moieties. Synthetic conditions such as hydrothermal temperatures for the preparation of TiO2-B and the weight ratio of TiO2-B to urea were systematically investigated. A high crystallinity of TiO2-B as well as the proper growth of g-C3N4 on its surface are critical factors for a better performance. Our simple synthetic method and the prolonged lifetime of photo-generated charges signify the importance of type-II heterostructures in the photocatalytic applications. PMID:26102218

  5. Photo and Chemical Reduction of Copper onto Anatase-Type TiO2 Nanoparticles with Enhanced Surface Hydroxyl Groups as Efficient Visible Light Photocatalysts.

    PubMed

    Eskandarloo, Hamed; Badiei, Alireza; Behnajady, Mohammad A; Mohammadi Ziarani, Ghodsi

    2015-01-01

    In this study, the photocatalytic efficiency of anatase-type TiO2 nanoparticles synthesized using the sol-gel low-temperature method, were enhanced by a combined process of copper reduction and surface hydroxyl groups enhancement. UV-light-assisted photo and NaBH4 -assisted chemical reduction methods were used for deposition of copper onto TiO2. The surface hydroxyl groups of TiO2 were enhanced with the assistance of NaOH modification. The prepared catalysts were immobilized on glass plates and used as the fixed-bed systems for the removal of phenazopyridine as a model drug contaminant under visible light irradiation. NaOH-modified Cu/TiO2 nanoparticles demonstrated higher photocatalytic efficiency than that of pure TiO2 due to the extending of the charge carriers lifetime and enhancement of the adsorption capacity of TiO2 toward phenazopyridine. The relationship of structure and performance of prepared nanoparticles has been established by using various techniques, such as XRD, XPS, TEM, EDX, XRF, TGA, DRS and PL. The effects of preparation variables, including copper content, reducing agents rate (NaBH4 concentration and UV light intensity) and NaOH concentration were investigated on the photocatalytic efficiency of NaOH-modified Cu/TiO2 nanoparticles. PMID:25809844

  6. TiO2 anatase nanoparticle networks: synthesis, structure, and electrochemical performance.

    PubMed

    Kubiak, Pierre; Frschl, Thomas; Hsing, Nicola; Hrmann, Ute; Kaiser, Ute; Schiller, Renate; Weiss, Clemens K; Landfester, Katharina; Wohlfahrt-Mehrens, Margret

    2011-06-20

    Nanocrystalline anatase TiO(2) materials with different specific surface areas and pore size distributions are prepared via sol-gel and miniemulsion routes in the presence of surfactants. The samples are characterized by X-ray diffraction, nitrogen sorption, transmission electron microscopy, and electrochemical measurements. The materials show a pure anatase phase with average crystallite size of about 10 nm. The nitrogen sorption analysis reveals specific surface areas ranging from 25 to 150 m(2) g(-1) . It is demonstrated that the electrochemical performance of this material strongly depends on morphology. The mesoporous TiO(2) samples exhibit excellent high rate capabilities and good cycling stability. PMID:21538989

  7. Direct synthesis of a mesoporous TiO2-RuO2 composite through evaporation-induced polymeric micelle assembly.

    PubMed

    Bastakoti, Bishnu Prasad; Salunkhe, Rahul R; Ye, Jinhua; Yamauchi, Yusuke

    2014-06-14

    Here we report a direct synthesis of a mesoporous TiO2-RuO2 composite. Titanium tetraisopropoxide (TTIP) and RuCl3 are used as inorganic precursors for TiO2 and RuO2, respectively. Evaporation-induced assembly of spherical micelles made of an asymmetric poly(styrene-b-2-vinyl pyridine-b-ethylene oxide) triblock copolymer enables the fabrication of a mesoporous TiO2-RuO2 composite with a uniform pore size of 30 nm. PMID:24760227

  8. Impact of growth kinetics on morphology and pore structure of TiO2-one-pot synthesis of macroporous TiO2 microspheres.

    PubMed

    Zhong, Ziyi; Chen, Fengxi; Ang, Thiam-Peng; Han, Yifan; Lim, Weiqiang; Gedanken, Aharon

    2006-06-12

    Titanium dioxide was synthesized by the hydrolysis of titanium tetraisopropoxide (TTIP) in the presence of acetic acid, 2-propanol, and organic amines (octylamine, aniline, and isobutylamine). H2O was supplied by an esterification reaction between acetic acid and 2-propanol (denoted as H2Oe), and/or by intentionally adding it (denoted as H2Oa). It was found that the quantity of H2Oa plays a crucial role in the morphology and porous structure of the final TiO2 product. Without the addition of H2Oa, 1D and porous TiO2 was synthesized. With the addition of H2Oa, and when the H2Oa:TiO2 molar ratio was in the range of 1:1 to 60:1, macroporous TiO2 microspheres possessing a large surface area and high thermal stability were obtained. When the H2Oa:TiO2 molar ratio exceeded 60:1, porous TiO2 with an irregular shape was formed. The variation in the morphology and porous structure is attributed to the manipulation of the growth kinetics by the addition of water. PMID:16749824

  9. Doping of TiO2-GO and TiO2-rGO with noble metals: synthesis, characterization and photocatalytic performance for azo dye discoloration.

    PubMed

    Stengl, Václav; Henych, Jiří; Vomáčka, Petr; Slušná, Michaela

    2013-01-01

    The nanocomposites of titania coupled with graphene oxide (GO) and reduced graphene oxide (rGO), respectively, were prepared by homogeneous hydrolysis with urea. Graphene was obtained by effect of high-intensity cavitation field on natural graphite in the presence of strong aprotic solvents in pressurized ultrasonic reactor. The morphology of TiO2-GO and TiO2-rGO composites was assessed by scanning electron microscopy and atomic force microscopy. The nitrogen adsorption-desorption was used for determination of surface area (BET) and porosity. Raman and IR spectroscopy were used for qualitative analysis and diffuse reflectance spectroscopy was employed to estimate band-gap energies. Further enhancement of the photocatalytic activity was attained by codoping of composites with noble metals--Au, Pd and Pt. The photocatalytic activity of TiO2-GO and TiO2-rGO were assessed by photocatalytic decomposition of Orange II dye in an aqueous slurry under UV and visible light irradiation. The photocatalytic activity of noble metals codoped samples was determined with decomposition of Reactive Black 5 azo dye. PMID:23848058

  10. Synthesis of Pt-Loaded Self-Interspersed Anatase TiO2 with a Large Fraction of (001) Facets for Efficient Photocatalytic Nitrobenzene Degradation.

    PubMed

    Wang, Wei-Kang; Chen, Jie-Jie; Li, Wen-Wei; Pei, Dan-Ni; Zhang, Xing; Yu, Han-Qing

    2015-09-16

    TiO2 is capable of directly utilizing solar energy for sustainable energy harvest and water purification. Facet-dependent performance of TiO2 has attracted enormous interests due to its tunable photocatalytic activity toward photoredox transformations, but information about the noble-metal-loaded TiO2 for its facet-dependent photocatalytic performance, especially in pollutant degradation systems, is limited. In this work, inspired by our previous theoretical calculations about the roles of the crystal surface in Pt-loaded TiO2 in its enhanced photocatalytic capacity, TiO2 nanocrystals with interspersed polyhedron nanostructures and coexposed (001) and (101) surfaces as a support of Pt nanoparticles are prepared in a simple and relatively green route. Also, their performance for photocatalytic degradation of nitrobenzene (NB), a model organic pollutant, is explored. The experimental results demonstrate that the NB photodegradation and photoconversion efficiencies are significantly enhanced by uniformly loading Pt nanoparticles on the crystal surfaces, but the Pt nanoparticles deposited on only the (101) surface have no contribution to the improved NB photodegradation. Furthermore, the liquid chromatography mass spectrometry results also show that NB photodegradation tends to proceed on the (001) surface of Pt/TiO2 for the generation of nitrophenol intermediates through the photooxidation pathway. This work provides a new route to design and construct advanced photocatalysts toward pollutant photoredox conversions and deepens our fundamental understanding about crystal surface engineering. PMID:26308282

  11. Visible Light-Driven Photocatalytic Activity of Oleic Acid-Coated TiO2 Nanoparticles Synthesized from Absolute Ethanol Solution

    NASA Astrophysics Data System (ADS)

    Li, Huihui; Liu, Bin; Yin, Shu; Sato, Tsugio; Wang, Yuhua

    2015-10-01

    The one-step synthesis of oleic acid-coated TiO2 nanoparticles with visible light-driven photocatalytic activity was reported by this manuscript, using oleic acid-ethanol as crucial starting materials. The photocatalytic degradation of nitrogen monoxide (deNOx) in the gas phase was investigated in a continuous reactor using a series of TiO2 semiconductors, prepared from oleic acid- or acetic acid-ethanol solution. The surface modification on TiO2 by organic fatty acid, oleic acid, could reinvest TiO2 photocatalyst with the excellent visible light response. The deNOx ability is almost as high as 30 % destruction in the visible light region ( λ > 510 nm) which is similar to the nitrogen-doped TiO2. Meanwhile, acetic acid, a monobasic acid, has a weaker ability on visible light modification of TiO2.

  12. Visible Light-Driven Photocatalytic Activity of Oleic Acid-Coated TiO2 Nanoparticles Synthesized from Absolute Ethanol Solution.

    PubMed

    Li, Huihui; Liu, Bin; Yin, Shu; Sato, Tsugio; Wang, Yuhua

    2015-12-01

    The one-step synthesis of oleic acid-coated TiO2 nanoparticles with visible light-driven photocatalytic activity was reported by this manuscript, using oleic acid-ethanol as crucial starting materials. The photocatalytic degradation of nitrogen monoxide (deNOx) in the gas phase was investigated in a continuous reactor using a series of TiO2 semiconductors, prepared from oleic acid- or acetic acid-ethanol solution. The surface modification on TiO2 by organic fatty acid, oleic acid, could reinvest TiO2 photocatalyst with the excellent visible light response. The deNOx ability is almost as high as 30% destruction in the visible light region (??>?510nm) which is similar to the nitrogen-doped TiO2. Meanwhile, acetic acid, a monobasic acid, has a weaker ability on visible light modification of TiO2. PMID:26494237

  13. In situ synthesis of TiO2/polyethylene terephthalate hybrid nanocomposites at low temperature

    NASA Astrophysics Data System (ADS)

    Peng, Xinyan; Ding, Enyong; Xue, Feng

    2012-06-01

    TiO2 nanoflowers were in situ grown on polyethylene terephthalate (PET) non-woven fabric by hydrolysis of TiCl4 in aqueous solution in the presence of nanocrystal cellulose grafted PET fabric (NCC-g-PET) at a low temperature of 70 C. Nanocrystal cellulose (NCC) pre-grafted on PET fabric acted as hydrophilic substrate and morphology inducing agent to promote the nucleation and crystal growth of TiO2. Detailed information on the synthetic process was presented. The resulting samples were characterized using FE-SEM, EDS, ATR-IR, Raman microscopy, XRD and TG analysis. The photocatalytic activity of the samples was evaluated by the degradation of orange methyl under solar light. Characteristic results indicate that rutile TiO2 nanoflowers have grown abundantly on PET non-woven fabric, and the established hydrogen bonding strengthens the interfacial interaction between the inorganic particles and the polymeric substrates. The methyl orange decoloration test under natural solar light demonstrates that this TiO2/PET hybrid nanocomposites exhibit excellent self-cleaning performance which is expected to have a good potential for commercialization.

  14. Glycothermal Synthesis and Photocatalytic Properties of Highly Crystallized Anatase TiO2 Nanoparticles.

    PubMed

    Kil, Hyun-Sig; Jung, Yong-Jin; Moon, Jung-In; Song, Jeong-Hwan; Lim, Dae-Young; Cho, Seung-Beom

    2015-08-01

    Highly crystallized anatase TiO2 nanoparticles were synthesized at a temperature as low as 120 C through a glycothermal reaction using amorphous titanium hydrous gel as precursor and 1,4-butanediol and water as solvent. X-ray diffraction (XRD) and transmission electron microscopy (TEM) data support that the glycothermal processing method provides a simple low-temperature route for producing highly crystallized anatase TiO2 nanoparticles without pH adjustment. It is demonstrated that the shape and dispersability of TiO2 nanoparticles can be controlled by the reaction conditions, such as the reaction temperature and variation of the volume ratio of 1,4- butanediol/water (B/W). It was observed that TiO2 samples glycothermally prepared at 220 C and the B/W ratio of 8/0 showed excellent photocatalytic behavior. The high activity is attributed to the high crystallinity and bipyramidal shape of the particles, which have fewer defects and more active {101} surfaces. PMID:26369224

  15. Synthesis and characterization of TiO2-pillared Romanian clay and their application for azoic dyes photodegradation.

    PubMed

    Dvininov, E; Popovici, E; Pode, R; Cocheci, L; Barvinschi, P; Nica, V

    2009-08-15

    The synthesis and properties of metal oxide pillared cationic clays (PILCs) has been subject to numerous studies in the last decades. In order to obtain TiO(2)-pillared type materials, sodium montmorillonite from Romania-areal of Valea Chioarului, having the following composition (% wt): SiO(2)-72.87; Al(2)O(3)-14.5; MgO-2.15; Fe(2)O(3)-1.13; Na(2)O-0.60; K(2)O-0.60; CaO-0.90; PC-5.70 and cation exchange capacity, determined by ammonium acetate method, of 82 meq/100g, as matrix, was used. Sodium form of the clay was modified, primarily, by intercalation of cetyl-trimethylammonium cations between negatively charged layers which will lead to the expansion of the interlayer space. For the preparation of the TiO(2)-pillared clay, the alkoxide molecules, as titania precursor, were adsorbed onto/into clay samples (1 mmol Ti/g clay), in hydrochloric acid environment, the resulted species being converted into TiO(2) pillars by calcination. The as-prepared materials have been used as catalysts for Congo Red dye photodegradation, under UV. The photocatalytic activity of the pillared clays is a function of TiO(2) pillars size, their increase leading to the enhancement of the contact areas between dye solution and photoactive species present in the interlayer space. The structural characteristics and properties of the obtained materials were investigated by X-ray Diffraction, Thermogravimetry Analysis, UV-vis Diffuse Reflectance, Transmission Electron Microscopy and Energy Dispersive X-ray Analysis. PMID:19250741

  16. Synthesis and photocatalytic properties of Fe3O4@TiO2 core-shell for degradation of Rhodamine B

    NASA Astrophysics Data System (ADS)

    Mufti, Nandang; Munfarriha, Ulfatien; Fuad, Abdulloh; Diantoro, Markus

    2016-02-01

    The aim of this research is to synthesis Fe3O4@TiO2 core-shell and used it as photocatalytic for degradation of Rhodamine B. The Fe3O4 nanoparticle core was synthesized by coprecipitation method from the iron sand. The TiO2 shell synthesized using coprecipitation method to capsulated Fe3O4 nanoparticle with vary of Fe3O4 mass. The Fe3O4@TiO2 core-shells were characterized using SEM-EDX, XRD. Photocatalytic activity of Rhodamine B degradation was performed under UV irradiation with variation of time exposure. The efficiency of photodegradation is measured by UV-Vis spectrophotometer. The XRD result showed that Fe3O4 nanoparticle is single phase with crystal size of 15.5 nm. The existence of Fe3O4 and anatase of TiO2 phases in the XRD pattern shows that The Fe3O4@TiO2 core-shells are successfully synthesized. While, the TiO2 shell is confirmed by thermal test up to 550 OC for two hours to the samples. Based on SEM characterization, The Fe3O4@TiO2 core-shells are agglomerated with averages diameter sizes of particles between 38.5 nm to 72.8 nm. The concentration of TiO2 decrease with increasing Fe3O4 mass with atomic composition of Fe/Ti elements in Fe3O4@TiO2 core-shells are 0.083, 1.12, and 1.48. Based on photo degradation test of Rhodamine B under UV irradiation, we conclude that the degradation of Rhodamin B is caused by absorbsion and photocatalytic mechanism. For photocatalytic mechanism the efficiency of photodegradation of Rhodamin B increases by increasing TiO2 concentration.

  17. A revised algorithm for calculating TiO2 from Clementine UVVIS data: A synthesis of rock, soil, and remotely sensed TiO2 concentrations

    NASA Astrophysics Data System (ADS)

    Gillis, Jeffrey J.; Jolliff, Bradley L.; Elphic, Rick C.

    2003-02-01

    Investigating mare basalt compositions, at both the sample and remote-sensing level for the Apollo and Luna mare sites, reveals the need for a more complex regression procedure than previously proposed in order to extract accurate TiO2 concentrations from Clementine spectral reflectance (CSR) data. The TiO2 algorithm of Lucey and coworkers is modified by using two different sets of regression parameters to relate measured regolith compositions from sampling locations to the CSR properties of these sites. One regression trend fits the majority of Apollo data, and the second regression is a fit to the Apollo 11, Luna 16, and Luna 24 data, which were considered to be anomalous in previous TiO2 calibrations. These three sites have unusually low albedo compared to other mare landing sites, and some 32% of nearside mare regions appear to share this characteristic. Possible reasons for these differences related to proximity of the other sites to mare-highland boundaries are discussed. Using the dual-regression method, we find (1) that TiO2 concentrations calculated for the basaltic landing sites faithfully reproduce a bimodal distribution as seen in the sample data, (2) that when coupled with the effects of other thermal neutron absorbers, Ti concentrations are more consistent with observed epithermal-to-thermal neutron-flux ratios than are previous Clementine-based derivations of TiO2 for basaltic regions, and (3) that basalts of intermediate-TiO2 concentrations occur most frequently in the Oceanus Procellarum region and that these intermediate concentrations appear to be inherent to the flows underlying the regolith and presumably to the basalt source regions.

  18. Synthesis and formation mechanism of TiO2/Al2O3 nanobelts by electrospinning

    NASA Astrophysics Data System (ADS)

    Song, Chao; Dong, Xiangting

    2013-09-01

    Poly(vinyl pyrrolidone) (PVP)/[Ti(SO4)2 + Al(NO3)3] composite nanobelts were prepared via electrospinning technology, and TiO2/Al2O3 nanobelts were fabricated by calcination of the prepared composite nanobelts. The samples were characterized by thermogravimetric-differential thermal analysis (TG-DTA), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Scanning electron microscopy (SEM). XRD results show that the composite nanobelts were amorphous in structure, and pure phase TiO2/Al2O3 nanobelts were obtained by calcination of the relevant composite nanobelts at 950C for 8 h. SEM analysis indicates that the surface of as-prepared composite nanobelts was smooth, the widths of the composite fibers were in narrow range, and the mean width was ca. 8.9 2.1 ?m, thickness was about 255 nm, and there is no cross-linking among nanobelts. The width of TiO2/Al2O3 nanobelts was ca. 1.3 0.1 ?m and the thickness was about 105 nm. TG-DTA analysis reveals that the N,N-dimethylformamide (DMF), organic compounds and inorganic salts in the composite nanobelts were decomposed and volatilized totally, and the weight of the sample kept constant when sintering temperature was above 900C, and the total weight loss percentage was 81%. FTIR analysis manifests that crystalline TiO2/Al2O3 nanobelts were formed at 950C. The possible formation mechanism of the TiO2/Al2O3 nanobelts was preliminarily discussed.

  19. Low-Temperature Synthesis of a TiO2/Si Heterojunction.

    PubMed

    Sahasrabudhe, Girija; Rupich, Sara M; Jhaveri, Janam; Berg, Alexander H; Nagamatsu, Ken A; Man, Gabriel; Chabal, Yves J; Kahn, Antoine; Wagner, Sigurd; Sturm, James C; Schwartz, Jeffrey

    2015-12-01

    The classical SiO2/Si interface, which is the basis of integrated circuit technology, is prepared by thermal oxidation followed by high temperature (>800 C) annealing. Here we show that an interface synthesized between titanium dioxide (TiO2) and hydrogen-terminated silicon (H:Si) is a highly efficient solar cell heterojunction that can be prepared under typical laboratory conditions from a simple organometallic precursor. A thin film of TiO2 is grown on the surface of H:Si through a sequence of vapor deposition of titanium tetra(tert-butoxide) (1) and heating to 100 C. The TiO2 film serves as a hole-blocking layer in a TiO2/Si heterojunction solar cell. Further heating to 250 C and then treating with a dilute solution of 1 yields a hole surface recombination velocity of 16 cm/s, which is comparable to the best values reported for the classical SiO2/Si interface. The outstanding performance of this heterojunction is attributed to Si-O-Ti bonding at the TiO2/Si interface, which was probed by angle-resolved X-ray photoelectron spectroscopy. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) showed that Si-H bonds remain even after annealing at 250 C. The ease and scalability of the synthetic route employed and the quality of the interface it provides suggest that this surface chemistry has the potential to enable fundamentally new, efficient silicon solar cell devices. PMID:26579554

  20. Photodeposition-assisted synthesis of novel nanoparticulate In, S-codoped TiO2 powders with high visible light-driven photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Hamadanian, M.; Reisi-Vanani, A.; Razi, P.; Hoseinifard, S.; Jabbari, V.

    2013-11-01

    In order to search for an efficient photocatalysts working under visible light illumination, we have investigated the effect of metal and nonmetal ions (In, S) codoping on the photocatalytic activity of TiO2 nanoparticles (TiO2 NPs) prepared by combining of sol-gel (SG) and photodeposition (PD) methods using titanium tetra isopropoxide (TTIP), indium nitrate (In(NO3)3) and thiourea as precursors. In this regard, at first three different percentage of S (0.05, 0.2 and 0.5) doped into the TiO2 by SG method, and then different amount of In(III) loaded on the surface of the prepared samples by PD technique. The results showed that the In, S-codoped TiO2 (In, S-TiO2) with a spheroidal shape demonstrates a smaller grain size than the pure TiO2. Meanwhile, the UV-vis DRS of In, S-TiO2 showed a considerable red shift to the visible region. Finally, the photocatalytic activity of In, S-TiO2 photocatalysts were evaluated by photooxidative degradation of methyl orange (MO) solution under UV and visible light illumination. As a result, it was found that 0.05%S-0.5%In/TiO2, 0.2%S-1.5%In/TiO2 and 0.5%S-0.5%In/TiO2 had the highest catalytic activity under visible light in each group and among these samples 0.2%S-1.5%In/TiO2 showed the best photocatalytic performance under visible light and decomposes more than 95% MO in only 90 min.

  1. Uniform TiO2-SiO2 hollow nanospheres: Synthesis, characterization and enhanced adsorption-photodegradation of azo dyes and phenol

    NASA Astrophysics Data System (ADS)

    Guo, Na; Liang, Yimai; Lan, Shi; Liu, Lu; Ji, Guijuan; Gan, Shucai; Zou, Haifeng; Xu, Xuechun

    2014-06-01

    TiO2-SiO2 hollow nanospheres with remarkable enhanced photocatalytic performance have been fabricated by sol-gel method. The hollow sphere possesses both high phototcatalytic activity and adsorption capability. The as-prepared samples were characterized by XRD, SEM, TEM, FTIR, XPS, BJH and TGA/DSC. The experiment results show that, the photocatalyst calcined at 500 C with Ti/Si ratio of 5:1 (denoted as 5T/S-500) displayed superiorities in both textural and functional properties with the enhanced degradation efficiency on azo dyes (methylene blue, methyl orange) and phenol. The high adsorption capability of organic poisonous contaminants onto 5T/S-500 in aqueous solution demonstrated that the photocatalyst can remove the contaminants from water effectively even without illumination. The TEM and SEM morphologies demonstrated unique hollow and coarse structure of 5T/S-500. Structural analysis showed that Si was doped into the lattice of TiO2 and SiO2 nanoparticles can work as a surface modifier on TiO2. The surface area of 5T/S-500 is 1105 m2/g, 14.5 times as great as that of the pure hollow TiO2 nanosphere, confirms the effect of SiO2 on the improvement of specific surface area. The high photocatalytic activities and high adsorption ability for organic poisonous contaminants demonstrate that the nanocomposite of TiO2-SiO2 is a promising candidate material for future treatment of contaminated water.

  2. Microwave-Assisted Synthesis of Carbon-Based (N, Fe)-Codoped TiO2 for the Photocatalytic Degradation of Formaldehyde.

    PubMed

    Tian, Fei; Wu, Zhansheng; Tong, Yanbin; Wu, Zhilin; Cravotto, Giancarlo

    2015-12-01

    A microwave-assisted sol-gel method was used to synthesize (N, Fe)-codoped activated carbon (AC)/TiO2 photocatalyst for enhanced optical absorption in the visible light region. The prepared samples were characterized via X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, Brunauer-Emmett-Teller analysis, ultraviolet-visible light spectroscopy, X-ray photoelectron spectroscopy, and photoluminescence spectroscopy. The results showed no significant difference in the surface area of AC/TiO2 (approximately 500m(2)/g) after doping. TiO2 was uniformly distributed on the surface of AC, which exhibited coexisting anatase and rutile structures with a mean crystallite diameter of approximately 20nm. N and Fe monodoping on AC/TiO2 reduced the energy band gap of TiO2 to 2.81 and 2.79eV, respectively, which mainly attributed to the impurity energy formed in the energy gap of TiO2. In (N, Fe)-codoped AC/TiO2, N and Fe are incorporated into the TiO2 framework and narrow the band gap of TiO2 to 2.58eV, thereby causing a large redshift. Codoping of N and Fe enhanced the production of hydroxyl radicals (?OH) and improved the photocatalytic activity of the resultant AC/TiO2 compared with those of undoped and N- or Fe-monodoped AC/TiO2. N-Fe-AC/TiO2 degraded 93% of the formaldehyde under Xe-lamp irradiation. Moreover, the photocatalyst was easily recyclable. In summary, a novel and efficient method to mineralize low concentrations of HCHO in wastewater was discovered. PMID:26377213

  3. Microwave-Assisted Synthesis of Carbon-Based (N, Fe)-Codoped TiO2 for the Photocatalytic Degradation of Formaldehyde

    NASA Astrophysics Data System (ADS)

    Tian, Fei; Wu, Zhansheng; Tong, Yanbin; Wu, Zhilin; Cravotto, Giancarlo

    2015-09-01

    A microwave-assisted sol-gel method was used to synthesize (N, Fe)-codoped activated carbon (AC)/TiO2 photocatalyst for enhanced optical absorption in the visible light region. The prepared samples were characterized via X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, Brunauer-Emmett-Teller analysis, ultraviolet-visible light spectroscopy, X-ray photoelectron spectroscopy, and photoluminescence spectroscopy. The results showed no significant difference in the surface area of AC/TiO2 (approximately 500 m2/g) after doping. TiO2 was uniformly distributed on the surface of AC, which exhibited coexisting anatase and rutile structures with a mean crystallite diameter of approximately 20 nm. N and Fe monodoping on AC/TiO2 reduced the energy band gap of TiO2 to 2.81 and 2.79 eV, respectively, which mainly attributed to the impurity energy formed in the energy gap of TiO2. In (N, Fe)-codoped AC/TiO2, N and Fe are incorporated into the TiO2 framework and narrow the band gap of TiO2 to 2.58 eV, thereby causing a large redshift. Codoping of N and Fe enhanced the production of hydroxyl radicals (ṡOH) and improved the photocatalytic activity of the resultant AC/TiO2 compared with those of undoped and N- or Fe-monodoped AC/TiO2. N-Fe-AC/TiO2 degraded 93 % of the formaldehyde under Xe-lamp irradiation. Moreover, the photocatalyst was easily recyclable. In summary, a novel and efficient method to mineralize low concentrations of HCHO in wastewater was discovered.

  4. Non-solvolytic synthesis of aqueous soluble TiO2 nanoparticles and real-time dynamic measurements of the nanoparticle formation

    PubMed Central

    2012-01-01

    Highly aqueously dispersible (soluble) TiO2 nanoparticles are usually synthesized by a solution-based solgel (solvolysis/condensation) process, and no direct precipitation of titania has been reported. This paper proposes a new approach to synthesize stable TiO2 nanoparticles by a non-solvolytic method - direct liquid phase precipitation at room temperature. Ligand-capped TiO2 nanoparticles are more readily solubilized compared to uncapped TiO2 nanoparticles, and these capped materials show distinct optical absorbance/emission behaviors. The influence of ligands, way of reactant feeding, and post-treatment on the shape, size, crystalline structure, and surface chemistry of the TiO2 nanoparticles has been thoroughly investigated by the combined use of X-ray diffraction, transmission electron microscopy, UV-visible (UVvis) spectroscopy, and photoluminescence (PL). It is found that all above variables have significant effects on the size, shape, and dispersivity of the final TiO2 nanoparticles. For the first time, real-time UVvis spectroscopy and PL are used to dynamically detect the formation and growth of TiO2 nanoparticles in solution. These real-time measurements show that the precipitation process begins to nucleate after an initial inhibition period of about 1?h, thereafter a particle growth occurs and reaches the maximum point after 2?h. The synthesis reaction is essentially completed after 4?h. PMID:22676412

  5. Size controlled synthesis and photocatalytic activity of anatase TiO2 hollow microspheres

    NASA Astrophysics Data System (ADS)

    Dwivedi, Charu; Dutta, V.

    2012-10-01

    Titanium oxide hollow microspheres were synthesized from organic precursor titanium tetraisopropoxide (TTIP) using continuous spray pyrolysis reactor. Effects of precursor concentration, applied voltage and annealing have been investigated. It was observed that the annealing of the as-synthesized TiO2 hollow microspheres at 250 C, which had an average external diameter of 200 nm, leads to an increase in the size and also more spherical shape. The precursor concentration and applied voltage were found to have a direct impact on the size of the microspheres, which is also evident in the absorption spectrum. The as-prepared TiO2 hollow microspheres exhibited good photocatalytic activity for the degradation of MO.

  6. TiO2 Nanotubes: Recent Advances in Synthesis and Gas Sensing Properties

    PubMed Central

    Galstyan, Vardan; Comini, Elisabetta; Faglia, Guido; Sberveglieri, Giorgio

    2013-01-01

    Synthesis—particularly by electrochemical anodization-, growth mechanism and chemical sensing properties of pure, doped and mixed titania tubular arrays are reviewed. The first part deals on how anodization parameters affect the size, shape and morphology of titania nanotubes. In the second part fabrication of sensing devices based on titania nanotubes is presented, together with their most notable gas sensing performances. Doping largely improves conductivity and enhances gas sensing performances of TiO2 nanotubes. PMID:24184919

  7. Plasma-spraying synthesis of high-performance photocatalytic TiO2 coatings

    NASA Astrophysics Data System (ADS)

    Takahashi, Yasuo; Shibata, Yoshitaka; Maeda, Masakatsu; Miyano, Yasuyuki; Murai, Kensuke; Ohmori, Akira

    2014-08-01

    Anatase (A-) TiO2 is a photocatalytic material that can decompose air-pollutants, acetaldehyde, bacteria, and so on. In this study, three kinds of powder (A-TiO2 without HAp, TiO2 + 10mass%HAp, and TiO2+30mass%HAp, where HAp is hydroxyapatite and PBS is polybutylene succinate) were plasma sprayed on biodegradable PBS substrates. HAp powder was mixed with A-TiO2 powder by spray granulation in order to facilitate adsorption of acetaldehyde and bacteria. The crystal structure was almost completely maintained during the plasma spray process. HAp enhanced the decomposition of acetaldehyde and bacteria by promoting adsorption. A 10mass% HAp content was the most effective for decomposing acetaldehyde when plasma preheating of the PBS was not carried out before the plasma spraying. The plasma preheating of PBS increased the yield rate of the spray process and facilitated the decomposition of acetaldehyde by A-TiO2 coatings without HAp. HAp addition improved photocatalytic sterilization when plasma preheating of the PBS was performed.

  8. Synthesis of iron-doped TiO2 for degradation of reactive Orange16

    PubMed Central

    2014-01-01

    In this study the optimum conditions for preparing the iron-doped TiO2 nanoparticles were investigated. Samples were synthesized by solgel impregnation method. Three effective parameters were optimized using Taguchi method, consisted of: (i) atomic ratios of Fe to Ti; (ii) sintering temperature; (iii) sintering time. The characterization of samples was determined using X-ray diffraction, BET- specific surface area, UV- Vis reflectance spectra (DRS) and scanning electron microscope (SEM). The XRD patterns of the samples indicated the existence of anatase crystal phase in structure. UV- Vis reflectance spectra showed an enhancement in light absorbance in the visible region (wavelength?>?400nm) for iron-doped samples. The photocatalytic activity of samples was investigated by the degradation of RO 16 (RO 16) dye under UV irradiation. The results illustrated that the photocatalytic activity of iron-doped TiO2 was more than pure TiO2, because of the smaller crystal size, grater BET surface area and higher light absorption ability. PMID:24405975

  9. Synthesis and photocatalytic performances of the TiO2 pillared montmorillonite.

    PubMed

    Chen, Daimei; Zhu, Qian; Zhou, Fengsan; Deng, Xutao; Li, Fatang

    2012-10-15

    TiO(2) pillared clay materials were prepared by montmorillonite (Mt) and acidic solutions of hydrolyzed Ti alkoxides in the presence of high-molecular-weight polyoxypropylene (POP)-backboned di-quaternary salts (POP). The as-prepared materials were characterized by means of XRD, FTIR, TG-DTA, XRF, specific surface area and porosity determinations, TEM and SEM, respectively. The experiments showed that the resulting material was a porous delaminated structure containing pillared fragments and nano-scaled TiO(2) particles well dispersed among each other. Introducing polymer surfactant POP as an expanding agent of Mt cannot only promote the formation of the delaminated structure, but significantly improve the porosity and surface area of the composites. The resulting TiO(2) pillared Mt exhibited a good thermal stability as indicated by its surface area after calcination at 800 C. No phase transformation from anatase to rutile was observed even under calcination at 900 C. The grain size of anatase in as-prepared sample decreased with the increase of the POP concentration, but increased with the increment of calcination temperature. The photocatalytic performances of these new porous materials were evaluated by using methylene blue degradation. The composite solid exhibited superior photocatalyic property and the maximum removal efficiency was up to 98% within 90 min. PMID:22884731

  10. Advances in photocatalytic disinfection of bacteria: Development of photocatalysts and mechanisms.

    PubMed

    Wang, Wanjun; Huang, Guocheng; Yu, Jimmy C; Wong, Po Keung

    2015-08-01

    Photocatalysis has attracted worldwide attention due to its potential in solar energy conversion. As a "green" advanced oxidation technology, it has been extensively used for water disinfection and wastewater treatment. This article provides a review of the recent progress in solar energy-induced photocatalytic disinfection of bacteria, focusing on the development of highly efficient photocatalysts and their underlying mechanisms in bacterial inactivation. The photocatalysts are classified into TiO2-based and non-TiO2-based systems, as TiO2 is the most investigated photocatalyst. The synthesis methods, modification strategies, bacterial disinfection activities and mechanisms of different types of photocatalysts are reviewed in detail. Emphasis is given to the modified TiO2, including noble metal deposition, non-metal doping, dye sensitization and composite TiO2, along with typical non-TiO2-based photocatalysts for bacterial disinfection, including metal oxides, sulfides, bismuth metallates, graphene-based photocatalysts, carbon nitride-based photocatalysts and natural photocatalysts. A simple and versatile methodology by using a partition system combined with scavenging study is introduced to study the photocatalytic disinfection mechanisms in different photocatalytic systems. This review summarizes the current state of the work on photocatalytic disinfection of bacteria, and is expected to offer useful insights for the future development in the field. PMID:26257366

  11. Synthesis and characterization of carbon modified TiO2 nanotube and photocatalytic activity on methylene blue under sunlight

    NASA Astrophysics Data System (ADS)

    Li, Yinchang; Wang, Yongqian; Kong, Junhan; Jia, Hanxiang; Wang, Zhengshu

    2015-07-01

    Carbon modified TiO2 nanotube was successfully synthesized via anodic oxidation method and its photocatalytic activity was evaluated by photodegrading methylene blue. The full width at half maximum of carbon modified TiO2 nanotube is smaller than that of pristine TiO2 nanotube, indicating the fact that carbon modifying leads to the increase of TiO2 crystallinity. TiO2 nanotube modified by carbon has a great enhancement on visible light absorption while contrasting with the pristine TiO2 nanotube. A tentative mechanism for the enhancement of sunlight absorption is proposed.

  12. Synthesis of TiO2 by electrochemical method from TiCl4 solution as anode material for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Nur, Adrian; Purwanto, Agus; Jumari, Arif; Dyartanti, Endah R.; Sari, Sifa Dian Permata; Hanifah, Ita Nur

    2016-02-01

    Metal oxide combined with graphite becomes interesting composition. TiO2 is a good candidate for Li ion battery anode because of cost, availability of sufficient materials, and environmentally friendly. TiO2 gravimetric capacity varied within a fairly wide range. TiO2 crystals form highly depends on the synthesis method used. The electrochemical method is beginning to emerge as a valuable option for preparing TiO2 powders. Using the electrochemical method, the particle can easily be controlled by simply adjusting the imposed current or potential to the system. In this work, the effects of some key parameters of the electrosynthesis on the formation of TiO2 have been investigated. The combination of graphite and TiO2 particle has also been studied for lithium-ion batteries. The homogeneous solution for the electrosynthesis of TiO2 powders was TiCl4 in ethanol solution. The electrolysis was carried out in an electrochemical cell consisting of two carbon electrodes with dimensions of (5 × 2) cm. The electrodes were set parallel with a distance of 2.6 cm between the electrodes and immersed in the electrolytic solution at a depth of 2 cm. The electrodes were connected to the positive and negative terminals of a DC power supply. The electrosynthesis was performed galvanostatically at 0.5 to 2.5 hours and voltages were varied from 8 to 12 V under constant stirring at room temperature. The resulted suspension was aged at 48 hrs, filtered, dried directly in an oven at 150°C for 2 hrs, washed 2 times, and dried again 60 °C for 6 hrs. The particle product has been used to lithium-ion battery as anode. Synthesis of TiO2 particle by electrochemical method at 10 V for 1 to 2.5 hrs resulted anatase and rutile phase.

  13. The Comparative Photodegradation Activities of Pentachlorophenol (PCP) and Polychlorinated Biphenyls (PCBs) Using UV Alone and TiO2-Derived Photocatalysts in Methanol Soil Washing Solution

    PubMed Central

    Zhou, Zeyu; Zhang, Yaxin; Wang, Hongtao; Chen, Tan; Lu, Wenjing

    2014-01-01

    Photochemical treatment is increasingly being applied to remedy environmental problems. TiO2-derived catalysts are efficiently and widely used in photodegradation applications. The efficiency of various photochemical treatments, namely, the use of UV irradiation without catalyst or with TiO2/graphene-TiO2 photodegradation methods was determined by comparing the photodegadation of two main types of hydrophobic chlorinated aromatic pollutants, namely, pentachlorophenol (PCP) and polychlorinated biphenyls (PCBs). Results show that photodegradation in methanol solution under pure UV irradiation was more efficient than that with either one of the catalysts tested, contrary to previous results in which photodegradation rates were enhanced using TiO2-derived catalysts. The effects of various factors, such as UV light illumination, addition of methanol to the solution, catalyst dosage, and the pH of the reaction mixture, were examined. The degradation pathway was deduced. The photochemical treatment in methanol soil washing solution did not benefit from the use of the catalysts tested. Pure UV irradiation was sufficient for the dechlorination and degradation of the PCP and PCBs. PMID:25254664

  14. First-principles study on the synergistic effects of codoped anatase TiO2 photocatalysts codoped with N/V or C/Cr

    NASA Astrophysics Data System (ADS)

    Wenhui, Xu; Xinguo, Ma; Tong, Wu; Zhiqi, He; Huihu, Wang; Chuyun, Huang

    2014-10-01

    An effective compensated codoping approach is described to modify the photoelectrochemical properties of anatase TiO2 by doping with nonmetals (N or C) and transition metals (V or Cr) impurities. Here, compensated codoped TiO2 systems are constructed with different dopant species and sources, and then their dopant formation energies and electronic structures are performed to study the stability and visible-light photoactivity by first-principles plane-wave ultrasoft pseudopotential calculations, respectively. The calculated results demonstrate that the codoping with transition metals facilitates the enhancement of the concentration of p-type dopants (N and C) in a host lattice. Especially, compensated codoping not only reduces the energy gap, to enhance the optical absorption, and eliminate the local trapping, to improve carrier mobility and conversion efficiency, but it also keeps the oxidation-reduction potential of the conduction band edge. These results are conducive to the understanding of the synergistic mechanism of the photocatalytic activity of TiO2 that is enhanced by codoping.

  15. The comparative photodegradation activities of pentachlorophenol (PCP) and polychlorinated biphenyls (PCBs) using UV alone and TiO2-derived photocatalysts in methanol soil washing solution.

    PubMed

    Zhou, Zeyu; Zhang, Yaxin; Wang, Hongtao; Chen, Tan; Lu, Wenjing

    2014-01-01

    Photochemical treatment is increasingly being applied to remedy environmental problems. TiO2-derived catalysts are efficiently and widely used in photodegradation applications. The efficiency of various photochemical treatments, namely, the use of UV irradiation without catalyst or with TiO2/graphene-TiO2 photodegradation methods was determined by comparing the photodegadation of two main types of hydrophobic chlorinated aromatic pollutants, namely, pentachlorophenol (PCP) and polychlorinated biphenyls (PCBs). Results show that photodegradation in methanol solution under pure UV irradiation was more efficient than that with either one of the catalysts tested, contrary to previous results in which photodegradation rates were enhanced using TiO2-derived catalysts. The effects of various factors, such as UV light illumination, addition of methanol to the solution, catalyst dosage, and the pH of the reaction mixture, were examined. The degradation pathway was deduced. The photochemical treatment in methanol soil washing solution did not benefit from the use of the catalysts tested. Pure UV irradiation was sufficient for the dechlorination and degradation of the PCP and PCBs. PMID:25254664

  16. A systematic study on visible-light N-doped TiO2 photocatalyst obtained from ethylenediamine by sol-gel method

    NASA Astrophysics Data System (ADS)

    Li, Hui; Hao, Yubao; Lu, Haiqiang; Liang, Liping; Wang, Yuanyang; Qiu, Jianhao; Shi, Xianchao; Wang, Ying; Yao, Jianfeng

    2015-07-01

    N-doped titania is prepared using ethylenediamine as the nitrogen source by a sol-gel method. The preparation conditions, such as the volume ratio of ethylenediamine to sol, and the heat temperature on the nitrogen doping are systematically examined. UV results indicate the N-doped TiO2 catalysts have enhanced absorption in the visible light region, and exhibit high activities on the visible light photocatalytic reactions to the hydrogen production and methyl orange degradation. X-ray diffraction (XRD) and FT-IR results reveal that N species have been incorporated into the TiO2 lattice at a high N-doping level. N-doped titania prepared with an ethylenediamine to sol volume ratio of 1:1 and sintering temperature of 500 C performed the highest hydrogen production rate (2.98 mmol g-1 h-1) and best methyl orange degradation performance. A conceivable structure change of N-doped TiO2 sintered at different temperature was proposed.

  17. The Effect of Fuel to Oxygen Ratios on the Properties of High Velocity Oxy-Fuel TiO2 Nano-Photocatalyst Coatings

    NASA Astrophysics Data System (ADS)

    Bozorgtabar, Maryamossadat; Salehi, Mehdi; Rahimipour, Mohammadreza; Jafarpour, Mohammadreza

    A liquid fuel high velocity oxy-fuel (HVOF) thermal spray process has been used to deposit TiO2 photocatalytic coatings utilizing a commercially available anatase/rutile nano-powder as the feedstock. The coatings were characterized in terms of the phases present, its crystallite size and coating morphology by means of X-ray diffraction analysis, scanning electron microscopy and transmission electron microscopy, respectively. The results indicate that the sprayed TiO2 coatings were composed of both TiO2 phases, namely anatase and rutile with different phase content and crystallite size. A high anatase content of 80% by volume was achieved at 0.00015 fuel to oxygen ratio with nanostructure coating by grain size smaller than feedstock powder. It is found that fuel to oxygen ratio strongly influenced on temperature and velocity of particles in stream jet consequently on phase transformation of anatase to rutile and their crystallite size and by optimizing the ratio which can promote structural transformation and grain coarsening in coating.

  18. Synthesis and Characterization of Rutile TiO2Nanopowders Doped with Iron Ions

    PubMed Central

    2009-01-01

    Titanium dioxide nanopowders doped with different amounts of Fe ions were prepared by coprecipitation method. Obtained materials were characterized by structural (XRD), morphological (TEM and SEM), optical (UV/vis reflection and photoluminescence, and Raman), and analytical techniques (XPS and ICP-OES). XRD analysis revealed rutile crystalline phase for doped and undoped titanium dioxide obtained in the same manner. Diameter of the particles was 57 nm. The presence of iron ions was confirmed by XPS and ICP-OES. Doping process moved absorption threshold of TiO2into visible spectrum range. Photocatalytic activity was also checked. Doped nanopowders showed normal and up-converted photoluminescence. PMID:20596442

  19. Synthesis, characterization and photocatalytic activity of fluorine doped TiO2 nanoflakes synthesized using solid state reaction method.

    PubMed

    Umadevi, M; Parimaladevi, R; Sangari, M

    2014-01-01

    Fluorine doped TiO2 were synthesized by solid state reaction method. Optical and structural properties of fluorine doped TiO2 were investigated by X-ray diffraction, Fourier transform infrared spectroscopy, UV-vis diffusion reflectance spectroscopy and scanning electron microscopic techniques. The prepared fluorine doped TiO2 was smaller in size with respect to pure TiO2 and it is tetragonal in crystalline structure. Nanoflakes like structure of pure and fluorine doped TiO2 was confirmed from SEM image. Fluorine doped TiO2 shows smaller band gap, high strain and dislocation density when compared to pure TiO2. It also has higher photocatalytic activity with respect to pure TiO2. PMID:24200650

  20. Branch density-controlled synthesis of hierarchical TiO2 nanobelt and tunable three-step electron transfer for enhanced photocatalytic property.

    PubMed

    Sarkar, Debabrata; Chattopadhyay, Kalyan Kumar

    2014-07-01

    The successful adjustment of phase composition and morphology of hierarchical TiO2 nanobelts, which feature homoepitaxial nanobranches, has been developed via the hydrothermal method and chemical bath deposition technique. Effects of hydrothermal reaction time, titanium butoxide treatment in chemical bath deposition, and calcination temperature are systematically investigated. For the first time, three-step ultrafast electron transfers between the band edges of the engaged phases are realized through the enhanced photocatalytic activity results. Growth mechanism related to branch density control on nanobelt surface under such soft chemical process is discussed in detail on the basis of classical nucleation theory. The current work might provide new insights into the fabrication of one-dimensional homoepitaxial branched TiO2 nanostructures as high performance photocatalysts and facilitate their application in environmental cleanup. PMID:24857888

  1. Bamboo leaf-assisted formation of carbon/nitrogen co-doped anatase TiO2 modified with silver and graphitic carbon nitride: novel and green synthesis and cooperative photocatalytic activity.

    PubMed

    Jiang, Zhifeng; Liu, Dong; Jiang, Deli; Wei, Wei; Qian, Kun; Chen, Min; Xie, Jimin

    2014-09-28

    We report a novel synthesis approach employing bamboo leaves as sources of both the C/N dopant and reductant to the formation of C/N co-doped TiO2 modified with Ag and g-C3N4 (Ag/CN-TiO2@g-C3N4). In this case, the ternary composite has a hierarchical structure and a large surface area, which increases the contact area of reactants. Degradation of rhodamine B (RhB) and hydrogen generation were carried out to evaluate the photocatalytic activity of as-prepared samples under visible light irradiation. It is found that with respect to single and binary catalysts, the Ag/CN-TiO2@g-C3N4 ternary composite shows the highest photocatalytic activity (degradation of RhB, H2 evolution from water splitting) as a result of the fast generation, separation and transportation of the photogenerated carriers, which was evidenced by photoluminescence measurements and free radical/hole scavenging experiments. At last, a possible photocatalytic mechanism under visible light irradiation was proposed. The novel and green synergistic approach presented here could provide a facile yet effective method for designing other visible light active non-metal co-doped TiO2 based photocatalysts with enhanced activity and high chemical stability. PMID:25102976

  2. Visible-light-driven g-C3N4/Ti3+-TiO2 photocatalyst co-exposed {0 0 1} and {1 0 1} facets and its enhanced photocatalytic activities for organic pollutant degradation and Cr(VI) reduction

    NASA Astrophysics Data System (ADS)

    Lu, Dan; Zhang, Gaoke; Wan, Zhen

    2015-12-01

    Novel g-C3N4/Ti3+-TiO2 photocatalyst co-exposed {0 0 1} and {1 0 1} facets of TiO2 was synthesized via a hydrothermal-sonication assisted strategy. The photocatalytic activities of the as-obtained photocatalyst were evaluated by the degradation of rhodamine B (RhB) and the reduction of Cr(VI) under visible-light irradiation. It was found that the g-C3N4/Ti3+-TiO2 composites with 6 wt% g-C3N4 exhibited the highest visible-light photocatalytic efficiency, which is also higher than the pure g-C3N4 and Ti3+-TiO2. A possible photocatalytic mechanism was discussed on the basis of the theoretical analyses and scavenger experiments. Results show that holes (h+) and superoxide anions (rad O2-) reactive species participated in the degradation of RhB solution over the g-C3N4/Ti3+-TiO2 composites. The enhanced photocatalytic activities of g-C3N4/Ti3+-TiO2 composites can be attributed to the wide optical adsorption of g-C3N4 and Ti3+ as well as the effectively separation and transportation of photo-generated electrons and holes pairs, which was resulted from the surface heterojunction between the g-C3N4 and Ti3+-TiO2 nanosheets co-exposed {1 0 1} and {0 0 1} facets of anatase TiO2.

  3. AAO-assisted synthesis of highly ordered, large-scale TiO2 nanowire arrays via sputtering and atomic layer deposition.

    PubMed

    Yao, Zhao; Wang, Cong; Li, Yang; Kim, Nam-Young

    2015-01-01

    Highly ordered nanoporous anodic aluminum oxide (AAO) thin films were fabricated in oxalic acid under a constant voltage via a two-step anodization process. To investigate the high-aspect-ratio (7.5:1) filling process, both sputtering and atomic layer deposition (ALD) were used to form TiO2 nanowires. Field emission scanning electron microscopy and high-resolution transmission electron microscopy images indicated that mushroom-like TiO2 structures were sputtered onto the AAO template surface, and the ALD-coated TiO2 exhibited fine filling results and clear crystal grain boundaries. Large-scale and free-standing TiO2 nanowire arrays were liberated by selectively removing the aluminum substrate and AAO template via a wet etching process with no collapsing or agglomeration after the drying process. ALD-deposited TiO2 nanowire arrays that were 67nm in diameter and 400nm high were transferred from the AAO template. The ALD process enabled the rapid, simple synthesis of highly ordered TiO2 nanowire arrays with desired parameters such as diameter, density, and thickness determined using diverse AAO templates. PMID:25897309

  4. AAO-assisted synthesis of highly ordered, large-scale TiO2 nanowire arrays via sputtering and atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Yao, Zhao; Wang, Cong; Li, Yang; Kim, Nam-Young

    2015-04-01

    Highly ordered nanoporous anodic aluminum oxide (AAO) thin films were fabricated in oxalic acid under a constant voltage via a two-step anodization process. To investigate the high-aspect-ratio (7.5:1) filling process, both sputtering and atomic layer deposition (ALD) were used to form TiO2 nanowires. Field emission scanning electron microscopy and high-resolution transmission electron microscopy images indicated that mushroom-like TiO2 structures were sputtered onto the AAO template surface, and the ALD-coated TiO2 exhibited fine filling results and clear crystal grain boundaries. Large-scale and free-standing TiO2 nanowire arrays were liberated by selectively removing the aluminum substrate and AAO template via a wet etching process with no collapsing or agglomeration after the drying process. ALD-deposited TiO2 nanowire arrays that were 67 nm in diameter and 400 nm high were transferred from the AAO template. The ALD process enabled the rapid, simple synthesis of highly ordered TiO2 nanowire arrays with desired parameters such as diameter, density, and thickness determined using diverse AAO templates.

  5. Synthesis of TiO2 Nanofluids by Wet Mechanochemical Process

    NASA Astrophysics Data System (ADS)

    Harjanto, S.; Sutanto, H.; Setiaji, R.; Yuwono, A. H.; Ferdian, D.

    2011-12-01

    Nanofluids have been developed in a search of new coolants with higher thermal conductivity compared to the conventional coolants, such as water or ethylene glycol. This research is conducted to observe the main characteristics, such as particle size, suspension stability, and thermal conductivity, of nanofluids produced from wet mechanochemical process with the addition of 0.02 vol% oleic acid. Milling process was conducted in conventional planetary ball mill for 15 hours. The results showed that nanoparticle was formed from micron size raw materials and dan dispersed simultaneously in water. Particle size distribution of particles which are less than 100 nm size were in the range of 51-100%. The ratio of thermal conductivity enhancement of the 1% vol TiO2 nanofluids compared with water without surfactant is 1.1. The ratio of thermal conductivity of TiO2 nanofluids increases in higher concentration of nanofluids. Oleic acid addition increases the particle stability of nanofluids and its ratio of thermal conductivity.

  6. Synthesis and performance of novel magnetically separable nanospheres of titanium dioxide photocatalyst with egg-like structure

    NASA Astrophysics Data System (ADS)

    Xu, Shihong; Shangguan, Wenfeng; Yuan, Jian; Chen, Mingxia; Shi, Jianwei; Jiang, Zhi

    2008-03-01

    A magnetically separable photocatalyst TiO2/SiO2/NiFe2O4 (TSN) nanosphere with egg-like structure was prepared by a unique process that combined a liquid catalytic phase transformation method, reverse micelle technique and chemical precipitation means. The prepared photocatalyst shows high photocatalytic activity for the degradation of methyl orange in water. The magnetic property measurements indicate that the photocatalyst possesses a superparamagnetic nature. It can be separated from water when an external magnetic field is added and redispersed into water solution after the external magnetic field is eliminated. It is one of the promising photocatalysts for wastewater treatment. A transmission electron microscope (TEM) and an x-ray diffractometer (XRD) were used to characterize the structure of the TSN photocatalyst. The results indicate that nickel ferrite core nanoparticles were completely encapsulated into monodisperse silica nanospheres as carrier, and titania nanoparticle aggregates were coated onto the surface of SN nanospheres, forming an imperfect TiO2 shell for photocatalysis. The SiO2 layer between the NiFe2O4 core and the TiO2 shell effectively prevents the injection of charges from TiO2 particles to NiFe2O4, which gives rise to an increase in photocatalytic activity. Moreover, the recycled TSN exhibits good repeatability of the photocatalytic activity.

  7. Synthesis and performance of novel magnetically separable nanospheres of titanium dioxide photocatalyst with egg-like structure.

    PubMed

    Xu, Shihong; Shangguan, Wenfeng; Yuan, Jian; Chen, Mingxia; Shi, Jianwei; Jiang, Zhi

    2008-03-01

    A magnetically separable photocatalyst TiO(2)/SiO(2)/NiFe(2)O(4) (TSN) nanosphere with egg-like structure was prepared by a unique process that combined a liquid catalytic phase transformation method, reverse micelle technique and chemical precipitation means. The prepared photocatalyst shows high photocatalytic activity for the degradation of methyl orange in water. The magnetic property measurements indicate that the photocatalyst possesses a superparamagnetic nature. It can be separated from water when an external magnetic field is added and redispersed into water solution after the external magnetic field is eliminated. It is one of the promising photocatalysts for wastewater treatment. A transmission electron microscope (TEM) and an x-ray diffractometer (XRD) were used to characterize the structure of the TSN photocatalyst. The results indicate that nickel ferrite core nanoparticles were completely encapsulated into monodisperse silica nanospheres as carrier, and titania nanoparticle aggregates were coated onto the surface of SN nanospheres, forming an imperfect TiO(2) shell for photocatalysis. The SiO(2) layer between the NiFe(2)O(4) core and the TiO(2) shell effectively prevents the injection of charges from TiO(2) particles to NiFe(2)O(4), which gives rise to an increase in photocatalytic activity. Moreover, the recycled TSN exhibits good repeatability of the photocatalytic activity. PMID:21817681

  8. Directed synthesis of hierarchical nanostructured TiO2 catalysts and their morphology-dependent photocatalysis for phenol degradation.

    PubMed

    Liu, Lu; Liu, Huajie; Zhao, Ya-Ping; Wang, Yuqiu; Duan, Yueqin; Gao, Guandao; Ge, Ming; Chen, Wei

    2008-04-01

    Nanostructured TiO2 with different hierarchical morphologies were synthesized via a warmly hydrothermal route. The properties of the products were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, N2 adsorption, UV-vis spectroscopy, etc. Two of the products, TiO2 1D nanorods (one-dimensional rutile TiO2 nanorods) and TiO2 3D0D microspheres (three-dimensional anatase TiO2 nanoparticle-assembled microspheres) exhibited superior photocatalytic effects on phenol degradation under UV illumination, compared with TiO2 3D1D microspheres (three-dimensional rutile TiO2 nanorods-assembled microspheres). Moreover, TiO2 3D0D was superior to TiO2 1D, as indicated by a 30% higher mineralization of dissolved phenol. Dihydroxybenze, 4,4'-dihydroxybiphenyl, benzoquinone, maleic anhydride, etc. were identified as the degradation intermediates. The excellent catalytic effect was attributed to the structural features of TiO2 1D nanorods and TiO2 3D0D microspheres, that is, a larger amount of surface active sites and a higher band gap energy resulted in more efficient decomposition of organic contaminants. PMID:18504963

  9. Synthesis and characterization of porous TiO2 with wormhole-like framework structure

    SciTech Connect

    Narayanaswamy, A.; McBride, J.; Swafford, L.A.; Dhar, S.; Budai, John D; Feldman, Leonard C.; Rosenthal, Sandra

    2008-01-01

    A fast and reliable synthetic route for preparing contaminant-free porous TiO2 with a wormhole-like framework and close packed macropores is demonstrated based on a sol-gel process involving acid hydrolysis of an alkoxide in the presence of a cationic surfactant. Powder X-ray diffraction (XRD) and transmission electron microscopy (TEM) measurements have been used to characterize the porous structure and the crystallinity. The XRD patterns, TEM and scanning electron microscopy (SEM) images confirm that these materials have disordered wormhole-like topology with close-packed nearly hexagonal macropores. The mesopore diameters and surface area of titanium dioxide, evaluated from the N2-sorption isotherms, indicate average pore diameters of about 7 and 6 nm and surface areas of about 100 and 335 m2/g, for as-prepared and calcined samples at 400 C.

  10. Synthesis and characterization of a POM-based nanocomposite as a novel magnetic photocatalyst

    NASA Astrophysics Data System (ADS)

    Shi, Yan-Li; Qiu, Wei; Zheng, Ying

    2006-11-01

    A novel magnetic photocatalyst, prepared by grafting polyoxometalates (POM) anions PW12O403- onto Fe3O4 nanoparticles via a layer of Ag, was synthesized and characterized. The coated Ag layer was used as an intermediate bond for anchoring POM anions onto the magnetite cores. Resulting materials have been characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), nitrogen adsorption desorption isotherm, magnetization, and inductively coupled plasma (ICP). The activity of the photocatalyst was tested by the photocatalytic degradation of Rhodamine B. It was found that, compared to pure POM, the decolorization fraction of Rhodamine B in 2 h operation was 2.8 3.4 times higher by using the POM-based nanocomposite. ICP analysis of the concentration of Fe, W and P in treated water showed that photodissolution was minimal. In addition, as the synthesized composite possesses a magnetite core, it is possible to retrieve the photocatalyst by exerting an external magnetic field, which is easier than the recovery of conventional TiO2 fine particles and homogeneous POM photocatalysts. The exhibited photocatalytic activity and magnetization of the novel photocatalyst provide a promising solution for the degradation of water contaminants and photocatalyst recovery.

  11. Sol-gel low-temperature synthesis of stable anatase-type TiO2 nanoparticles under different conditions and its photocatalytic activity.

    PubMed

    Behnajady, Mohammad A; Eskandarloo, Hamed; Modirshahla, Nasser; Shokri, Mohammad

    2011-01-01

    In this work, TiO(2) nanoparticles in anatase phase was prepared by sol-gel low temperature method from titanium tetra-isopropoxide (TTIP) as titanium precursor in the presence of acetic acid (AcOH). The effects of synthesis parameters such as AcOH and water ratios, sol formation time, synthesis and calcination temperature on the photocatalytic activity of TiO(2) nanoparticles were evaluated. The resulting nanoparticles were characterized by X-ray diffraction, UV-Vis reflectance spectroscopy, transmission electron microscopy and Brunauer-Emmett-Teller techniques. Photocatalytic activity of anatase TiO(2) nanoparticles determined in the removal of C. I. Acid Red 27 (AR27) under UV light irradiation. Results indicate that with increasing AcOH/TTIP molar ratio from 1 to 10, sol formation time from 1 to 3 h and synthesis temperature from 0 to 25C, increases crystallite size of synthesized nanoparticles. It was found that optimal conditions for low temperature preparation of anatase-type TiO(2) nanoparticles with high photocatalytic activity were as follows: TTIP:AcOH:water molar ratio 1:1:200, sol formation time 1 h, synthesis temperature 0C and calcination temperature 450C. PMID:21668867

  12. Synthesis and anti-staphylococcal activity of TiO2 nanoparticles and nanowires in ex vivo porcine skin model.

    PubMed

    Nataraj, Namrata; Anjusree, G S; Madhavan, Asha Anish; Priyanka, P; Sankar, Deepthi; Nisha, N; Lakshmi, S V; Jayakumar, R; Balakrishnan, Avinash; Biswas, Raja

    2014-05-01

    Staphylococcus aureus is one of the major causes of skin and soft tissue infections. In this study we compared the antimicrobial activity of two different TiO2 nanoformulations against Staphylococcus aureus. We synthesized TiO2 nanoparticles of approximately 80 nm diameter and TiO2 nanowires of approximately 100 nm diameter. Both nanoformulations possess anti-microbial activity; were non-hemolytic and cytocompatible. However, the anti-staphylococcal activity of TiO2 nanowires was better than the nanoparticles. In broth culture, growth of S. aureus was only partially inhibited by 2% and 4 wt% TiO2 nanoparticles and completely inhibited by TiO2 nanowires till 24 h. TiO2 nanowires treated S. aureus cells exhibits diminished membrane potential than nanoparticle treated cells. The anti-microbial properties of both TiO2 nanoformulations were validated using ex vivo porcine skin model which supplements the in vitro assays. Anti-bacterial activity of the TiO2 nanowires were also validated against multi drug resistant pathogenic strains of S. aureus, showing the clinical potency of the TiO2 nanowires compared to its nanoparticles. PMID:24734539

  13. A direct synthesis of B-doped TiO2 and its photocatalytic performance on degradation of RhB

    NASA Astrophysics Data System (ADS)

    Li, Liang; Yang, Yulin; Liu, Xinrong; Fan, Ruiqing; Shi, Yan; Li, Shuo; Zhang, Lingyun; Fan, Xiao; Tang, Pengxiao; Xu, Rui; Zhang, Wenzhi; Wang, Yazhen; Ma, Liqun

    2013-01-01

    B-doped TiO2 was synthesized by a direct hydrolyzation of n-tetrabutyl titanate in a solution of boric acid, and was treated by hydro-thermal synthesis. The powder was characterized by X-ray diffraction (XRD), FT-IR, scanning and transmission electron microscopy (SEM and TEM), surface photoviolet spectra, UV-visible absorption spectra and X-ray photoelectron spectroscopy (XPS). Rhodamine B (RhB) degradation was used as a probe reaction to evaluate the photocatalytic activity of B-doped TiO2 under simulate sunlight, and excellent photocatalytic performance was achieved.

  14. Synthesis, characterization and degradation of Bisphenol A using Pr, N co-doped TiO 2 with highly visible light activity

    NASA Astrophysics Data System (ADS)

    Yang, Juan; Dai, Jun; Li, Jiantong

    2011-08-01

    Praseodymium and nitrogen co-doped titania (Pr/N-TiO 2) photocatalysts, which could degrade Bisphenol A (BPA) under visible light irradiation, were prepared by the modified sol-gel process. Tetrabutyl titanate, urea and praseodymium nitrate were used as the sources of titanium, nitrogen and praseodymium, respectively. The resulting materials were investigated by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), UV-vis absorbance spectroscopy, X-ray photoelectron spectroscopy (XPS), N 2 adsorption-desorption isotherm and Fourier transform infrared spectra (FTIR). It was found that Pr doping inhibited the growth of crystalline size and the transformation from anatase to rutile. The degradation of BPA under visible light illumination was taken as probe reaction to evaluate the photo-activity of the co-doped photocatalyst. In our experiments, the optimal dopant amount of Pr was 1.2 mol% and the calcination temperature was 500 C for the best photocatalytic activity. Pr/N-TiO 2 samples exhibited enhanced visible-light photocatalytic activity compared to N-TiO 2, undoped TiO 2 and commercial P25. The nitrogen atoms were incorporated into the crystal of titania and could narrow the band gap energy. Pr doping could slow the radiative recombination of photogenerated electrons and holes in TiO 2. The improvement of photocatalytic activity was ascribed to the synergistic effects of nitrogen and Pr co-doping.

  15. Synthesis, features and solar-light-driven photocatalytic activity of TiO2 nanotube arrays loaded with SnO2.

    PubMed

    Sim, Lan Ching; Ng, Kai Wern; Ibrahim, Shaliza; Saravanan, Pichiah

    2014-09-01

    In the present study TiO2 nanotube arrays (TNTs) were loaded with a post-transition metal oxide particles namely SnO2 via incipient wet impregnation method by varying its concentration (1.59 wt%, 2.25 wt% and 2.84 wt%). The photocatalytic activity of the prepared photocatalyst was evaluated for the degradation of methylene blue (MB) in presence of natural solar light irradiation. The morphological analyses revealed that the prepared TNTs had average inner diameter of 109 nm, wall thickness of 15 nm and tube length of 7-10 ?m, respectively, while the crystalline phase and Raman spectra confirmed the 100% anatase mineral form of TiO2. Further, the presence of SnO2 in TNTs was confirmed by high resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy (XPS). The visible light absorption properties of TNTs improved drastically with increasing SnO2 loadings. The coupling effect of SnO2 and TiO2 significantly enhanced degradation efficiency of MB. An 84% degradation of MB was achieved in 6 h of irradiation under clear sky condition. PMID:25924362

  16. Ultrasonic-assisted sol-gel synthesis of samarium, cerium co-doped TiO2 nanoparticles with enhanced sonocatalytic efficiency.

    PubMed

    Eskandarloo, Hamed; Badiei, Alireza; Behnajady, Mohammad A; Ziarani, Ghodsi Mohammadi

    2015-09-01

    In this work, pure TiO2 and samarium, cerium mono-doped and co-doped TiO2 catalysts were synthesized by an ultrasonic-assisted sol-gel method and their sonocatalytic efficiency studied toward removal of Methyl Orange as a model organic pollutant from the textile industry. The relationship of structure and sonocatalytic performance of catalysts was established by using various techniques, such as XRD, TEM, SEM, EDX, DRS, and PL. A comparison on the removal efficiency of sonolysis alone and sonocatalytic processes was performed. The results showed that the samarium, cerium co-doped TiO2 catalyst with narrower band gap energy and smaller particle size leads to a rapid removal of pollutant. It was believed that Sm(3+) and Ce(4+) ions can serve as superficial trapping for electrons at conduction band of TiO2 and prolonged the lifetime of electron-hole pairs. Finally, the effect of synthesis and operational variables on the sonocatalytic activity of co-doped TiO2 catalyst was studied and optimized using response surface methodology as a statistical technique. The results showed that the maximum removal efficiency (96.33%) was achieved at the optimum conditions: samarium content of 0.6 wt%, cerium content of 0.82 wt%, initial pollutant concentration of 4.31 mg L(-1), catalyst dosage of 0.84 mg L(-1), ultrasonic irradiation power of 700 W, and irradiation time of 50 min. PMID:25682738

  17. Hydrothermal synthesis of core-shell TiO2 to enhance the photocatalytic hydrogen evolution

    NASA Astrophysics Data System (ADS)

    Jiang, Jinghui; Zhou, Han; Zhang, Fan; Fan, Tongxiang; Zhang, Di

    2016-04-01

    A hydrothermal approach was designed to synthesize core-shell TiO2 with interior cavity by making sodium dodecyl sulfonate (SDS) as the surfactant and the mixture of water and ethanol as the solvent. The control experiment of solvent reveals ethanol and water are responsible for the formation of sphere and interior cavity, respectively. Besides, SDS can assist the growth of core-shell structure, and the sizes of sphere and interior cavity can be tuned by regulating the reaction time or temperature. UV-vis absorption proves core-shell structure with interior cavity can increase the absorption of incident light to enhance the optical activity of final product. The calculated bandgap and photoluminescence (PL) analyses reveal the coexistence of rutile in final product can optimize the bandgap to 3.03 eV and delay the charge recombination. As a result, an effective photocatalytic hydrogen evolution under full spectrum irradiation can be harvested by the as-synthesized core-shell spheres to reach a quantum yield, approximately 9.57% at 340 nm wavelength.

  18. Synthesis of TiO2 nanoparticles utilizing hydrated reverse micelles in CO2.

    PubMed

    Lim, Kwon Taek; Hwang, Ha Soo; Ryoo, Won; Johnston, Keith P

    2004-03-16

    Titanium dioxide nanoparticles were produced by the controlled hydrolysis of titanium tetraisopropoxide (TTIP) in the presence of reverse micelles formed in CO2 with the surfactants ammonium carboxylate perfluoropolyether (PFPECOO-+NH4) (Mw = 587) and poly(dimethyl amino ethyl methacrylate-block-1H,1H,2H,2H-perfluorooctyl methacrylate) (PDMAEMA-b-PFOMA). Based on dynamic light scattering measurements, the amorphous TiO2 particles formed by injection of TTIP are larger than the reverse micelles, indicating surfactant reorganization. The size of the particles and the stability of dispersions in CO2 were affected by the molar ratio of water to surfactant headgroup (w(o)), precursor concentration, and injection rate. The amorphous particle size did not change upon depressurization and redispersion in CO2. PDMAEMA-b-PFOMA provided greater stability against particle aggregation at higher reactant concentration compared with PFPECOO-+NH4. The crystallite size after calcination, which was examined by X-ray diffraction and transmission electron microscopy, increased with w(o). PMID:15835711

  19. Catalytic and photocatalytic behavior of TiO2 based nanoparticles—their use in the synthesis of a novel TICT probe

    NASA Astrophysics Data System (ADS)

    Biswas, Abhijit; Prasad Mandal, Ranju; Dutta, Saheb; Nandi, Nilashis; De, Swati

    2015-06-01

    Biologically inspired synthesis of titanium dioxide (TiO2) nanoparticles (NPs) and Au/TiO2 nanocomposites (NCs) using L-tryptophan is reported. Highly crystalline composite NPs are obtained by this totally ‘clean’ synthesis. The TiO2 NPs and Au/TiO2 NCs cause efficient photocatalytic degradation of the well-known dye pollutant malachite green. The surface area, pore volume and probability of dye reduction by photogenerated electrons and holes are important considerations for the photodegradation efficiency. Contrary to popular belief, the Au/TiO2 NCs show decreased photocatalytic efficiency. The TiO2 NPs and Au/TiO2 NCs also function as very efficient catalysts in a novel multi component reaction (MCR). In contrast to photocatalysis, Au/TiO2 NCs shows better catalytic efficiency. A comparison is made of the difference in photocatalytic and catalytic behaviors of the NPs. This is the first report of the catalysis of an MCR by TiO2-based NPs. The product of the MCR is a novel fluorescent probe which shows evidence for the existence of a twisted intramolecular charge transfer state. Thus this work shows promise for the development of new catalysts for synthesis of novel fluorescent probes.

  20. Effects of various TiO2 nanostructures and graphene oxide on photocatalytic activity of TiO2.

    PubMed

    Gao, Peng; Li, Anran; Sun, Darren Delai; Ng, Wun Jern

    2014-08-30

    The nanostructures of TiO2 significantly affect its photocatalytic activity. In this work, various TiO2 nanostructures have been successfully synthesized, including one-dimensional (1D) TiO2 nanotube, 1D TiO2 nanowire, three-dimensional (3D) TiO2 sphere assembled by nanoparticles (TiO2 sphere-P) and 3D TiO2 sphere assembled by nanosheets (TiO2 sphere-S). The results of photodegradation activity towards acid orange 7 (AO7) indicate that the photodegradation efficiency of TiO2 sphere-S is the highest among the investigated TiO2 nanostructures, even though the specific surface area of TiO2 sphere-S is lower than that of TiO2 nanotube. The best photodegradation activity of TiO2 sphere-S can be attributed to the highest light harvesting capacity resulted from multiple reflections of light, and hierarchical mesoporous structure. In addition, the combination of TiO2 sphere-S with graphene oxide (GO) sheets can further enhance the photodegradation efficiency of AO7 and disinfection activity of Escherichia coli (E. coli) under solar light, which is more energy efficient. The promising photocatalytic activity of GO-TiO2 composites is originated from the enhanced light absorption and efficient charge separation. Hence, this study paves a way for improving the performance of other photocatalysts. PMID:25038577

  1. Synthesis of Highly Photocatalytic TiO2 Microflowers Based on Solvothermal Approach Using N,N-Dimethylformamide.

    PubMed

    Bastakoti, Bishnu Prasad; Sakka, Yoshio; Wu, Kevin C W; Yamauchi, Yusuke

    2015-06-01

    Crystallized anatase TiO2 microflowers with high surface area are synthesized by a simple template-free solvothermal method using N,N-dimethylformamide (DMF). Titanium sources undergo well-organized assembly in DMF to form flower-shaped TiO2 particles. After the calcination, the anatase frameworks are highly crystallized, and the surface area is increased up to 256 m2 x g(-1). The calcined TiO2 microflowers show superior photocatalytic performance over the commercially available TiO2 product (P25) in the degradation of methylene blue. PMID:26369107

  2. Synthesis, characterization and application of TiO2 nanopowders as special paper coating pigment

    NASA Astrophysics Data System (ADS)

    El-Sherbiny, Samya; Morsy, Fatma; Samir, Marwa; Fouad, Osama A.

    2014-03-01

    TiO2 nanopigments in two pure crystallographic forms (anatase and rutile) have been synthesized successfully by two methods; hydrothermal and hydrolysis. The produced pigments from the two methods were investigated physicochemically by several analyses tools. Then they were applied in paper coating mixtures and their influence on coated paper properties was systematically investigated. XRD and FTIR investigations showed that the prepared pigments using hydrothermal method at 100 and 120 C were a mixture of anatase and brookite and pure anatase, respectively, whereas hydrolysis method produced pure rutile phase pigment. TEM investigation showed that the crystallite size of anatase, mixture of anatase and brookite and rutile samples are 6.2, 11.7, and 9.2 nm, respectively. BET studies proved that anatase pigment has 140.74 m2/g, 0.237 cc/g and 18.33 , whereas rutile has 60.621 m2/g, 0.122 cc/g and 14.669 , surface area, pore volume and pore diameter, respectively. UV-Vis absorption and PL emission characteristics of the prepared pigments showed that the energy gaps for anatase, mixture of anatase and brookite and rutile are 3.36, 3.30 and 3.37 eV, respectively. The addition of the prepared nanopigments in conjugation with clay in coating mixture increased both brightness and opacity of the coated papers. The greatest effect was obtained upon using rutile nanopigment. Also there was a significant decrease in coated paper roughness while the air permeance started to decrease then increased at 50 % addition levels. In all coated paper, rutile pigment showed the highest enhancement effect on coated paper properties.

  3. Facile synthesis of hierarchical porous TiO(2) ceramics with enhanced photocatalytic performance for micropolluted pesticide degradation.

    PubMed

    Xing, Zipeng; Zhou, Wei; Du, Fan; Zhang, Linlin; Li, Zhenzi; Zhang, Hang; Li, Wei

    2014-10-01

    In this research, hierarchical porous TiO2 ceramics were successfully synthesized through a camphene-based freeze-drying route. The well-dispersed TiO2 slurries were first frozen and dried at room temperature, followed by high-temperature sintering. The ceramics were analyzed by X-ray diffraction, Raman spectroscopy, scanning electron microscopy, and transmission electron microscopy. Results indicated that the obtained TiO2 ceramics could inhibit undesirable anatase-to-rutile phase transformation and grain growth even at temperatures as high as 800 C. In this experiment, optimal compressive strength and porosity of the TiO2 ceramics were produced with the initial TiO2 slurry content of ?15 wt %. The resultant TiO2 ceramics performed excellently in the photodegradation of atrazine and thiobencarb, and the total organic carbon removal efficiency was up to 95.7% and 96.7%, respectively. More importantly, the TiO2 ceramics were easily recyclable. No obvious changes of the photocatalytic performance were observed after six cycles. Furthermore, the ceramics also effectively degraded other pesticides such as dimethoate, lindane, dipterex, malathion, and bentazone. These hierarchical porous TiO2 ceramics have potential applications in environmental cleanup. PMID:25198508

  4. Green synthesis of shape-defined anatase TiO2 nanocrystals wholly exposed with {001} and {100} facets.

    PubMed

    Wang, Lan; Zang, Ling; Zhao, Jincai; Wang, Chuanyi

    2012-12-14

    Anatase TiO(2) nanocuboids wholly exposed with high-energy {001} and {100} facets were successfully synthesized by a novel, environmentally benign synthetic strategy using acid-delaminated vermiculite (DVMT) and tetramethylammonium hydroxide as synergistic morphology-controlling reagents, where the DVMT layers act as effective hard template selectively stabilizing the {001} facets of TiO(2). PMID:23041712

  5. Synthesis and Characterization of Hollow TiO2 Particles Coated with Polyimide Brushes by Click Chemistry.

    PubMed

    Sun, Na; Zhao, Xiang; Xiao, Zhenggang

    2015-06-01

    In order to improve the compatibility between nanoparticles and polymer matrix, a feasible processing way for grafting polyimides (PI) on the surface of hollow TiO2 particles was developed. Hollow TiO2 spheres were prepared by using polystyrene-methyl acrylic acid latex as a template starting from tetrabutyl titanate. Surface graft of azide-decorated hollow TiO2 spheres with well-defined alkyne-terminated PI were achieved by "click" chemistry in three steps: (1) choloromethylation and azidization of hollow TiO2, (2) preparation of alkyne-terminated PI by polycondensation, (3) click coupling between the azidized hollow TiO2 and the alkyne-terminated PI under the catalysis of CuSO4/sodium ascorbate. Fourier transform infrared (FTIR) and Nuclear Magnetic Resonance (1HNMR) spectra were used to illustrate quantitative transformation of the PI brushes on hollow TiO2 particles into the desired functional group. The morphology of hollow TiO2-PI composite particles was characterized by transmission electron microscopy (TEM) which showed the irregular hollow structure. The results indicate that the grafting of polymer chains with thermostability and flame retardance on the surface of hollow TiO2 sphere is successful. PMID:26369096

  6. Single-Step Synthesis of Al-Doped TiO2 Nanoparticles Using Non-Transferred Thermal Plasma Torch

    NASA Astrophysics Data System (ADS)

    Tsai, Cheng-Yen; Hsi, Hsing-Cheng; Bai, Hsunling; Fan, Kuo-Shuh; Sun, Hung-Dar

    2012-01-01

    Al-doped TiO2 nanoparticles possessing visible-light photocatalytic activity were fabricated with an atmospheric-pressure thermal plasma system via a single-step direct combination of vaporized Ti, Al, and O2. Pure Ti and Al2O3 powders and ultrahigh-purity O2 were used as the precursors. The experimental results showed that the size of synthesized TiO2 was between 10 and 105 nm. Nevertheless, the nanoparticles with sizes smaller than 50 nm accounted for approximately 80% of the total number. The observed size reduction appeared to be the suppression on particle growth due to the introduction of Al species into TiO2 crystal. The largest specific surface area of the Al-doped TiO2 was 44 m2·g-1. The anatase phase was noticeably decreased with increasing the Al2O3 addition. The absorption spectra of Al-doped TiO2 shifted from UV to visible-light region with respect to an increase in Al2O3 addition. Oxygen in the formed TiO2 was found to be in TiO2 crystal lattice and in surface hydroxyl groups. Both Ti4+ and Ti3+ existed in the formed TiO2. However, the Ti3+ amount significantly increased with increasing Al2O3 addition due to Al/Ti substitution and the resulted oxygen vacancy.

  7. Controlled hydrolysis synthesis and luminescence properties of uniform TiO2 spheres with different titanium alkoxides.

    PubMed

    Zhang, Cuimiao; Huo, Shuying; Shen, Shigang; Jia, Guang; Sun, Jing

    2013-06-01

    A series of uniform and well-dispersed TiO2 spheres have been successfully synthesized through a controlled hydrolysis route by using different titanium alkoxides as reactants. The types of titanium alkoxides and stirring time have an effect on the uniformity and dispersion of the TiO2 spherical particles. The addition of a small amount of salt also plays a crucial role for the formation of the monodisperse TiO2 spheres. Under ultraviolet excitation, the as-obtained Eu(3+)-doped TiO2 spheres exhibit red emission corresponding to the electric-dipole allowed 5D0-7F2 transition of Eu3+ ions, which is induced by the lack of inversion symmetry at the Eu3+ ions site. The Eu(3+)-doped TiO2 phosphors might find potential applications in the fields such as optical displays, photoelectric devices, and light-emitting diodes (LEDs). PMID:23862520

  8. Enhanced photo-catalytic activity of Sr and Ag co-doped TiO2 nanoparticles for the degradation of Direct Green-6 and Reactive Blue-160 under UV & visible light.

    PubMed

    Naraginti, Saraschandra; Thejaswini, T V L; Prabhakaran, D; Sivakumar, A; Satyanarayana, V S V; Arun Prasad, A S

    2015-10-01

    This work is focused on sol-gel synthesis of silver and strontium co-doped TiO2 nanoparticles and their utilization as photo-catalysts in degradation of two textile dyes. Effect of pH, intensity of light, amount of photo-catalyst, concentration of dye, sensitizers, etc., were studied to optimize conditions for obtaining enhanced photo-catalytic activity of synthesized nanoparticles. XRD, BET, HR-TEM, EDAX and UV-Vis (diffused reflectance mode) techniques were used to characterize the nanoparticles. Interestingly, band gap of Sr and Ag co-doped TiO2 nanoparticles showed considerable narrowing (2.6 eV) when compared to Ag doped TiO2 (2.7 eV) and undoped TiO2 (3.17 eV) nanoparticles. Incorporation of Ag and Sr in the lattice of TiO2 could bring isolated energy levels near conduction and valence bands thus narrowing band gap. The XRD analysis shows that both Ag and Sr nanoparticles are finely dispersed on the surface of titania framework, without disturbing its crystalline structure. TEM images indicate that representative grain sizes of Ag-doped TiO2 & Sr and Ag co-doped TiO2 nanoparticles are in the range of 8-20 nm and 11-25 nm, respectively. Effective degradation of Direct Green-6 (DG-6) and Reactive Blue-160 (RB-160) under UV and visible light has been achieved using the photo-catalysts. Sr and Ag co-doped TiO2 photo-catalysts showed higher catalytic activity during degradation process in visible region when compared to Ag-doped and undoped TiO2 nanoparticles which could be attributed to the interactive effect caused by band gap narrowing and enhancement in charge separation. For confirming degradation of the dyes, total organic carbon (TOC) content was monitored periodically. PMID:25983059

  9. TiO2-graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: is TiO2-graphene truly different from other TiO2-carbon composite materials?

    PubMed

    Zhang, Yanhui; Tang, Zi-Rong; Fu, Xianzhi; Xu, Yi-Jun

    2010-12-28

    The nanocomposites of TiO(2)-graphene (TiO(2)-GR) have been prepared via a facile hydrothermal reaction of graphene oxide and TiO(2) in an ethanol-water solvent. We show that such a TiO(2)-GR nanocomposite exhibits much higher photocatalytic activity and stability than bare TiO(2) toward the gas-phase degradation of benzene, a volatile aromatic pollutant in air. By investigating the effect of different addition ratios of graphene on the photocatalytic activity of TiO(2)-GR systematically, we find that the higher weight ratio in TiO(2)-GR will decrease the photocatalytic activity. Analogous phenomenon is also observed for the liquid-phase degradation of dyes over TiO(2)-GR. In addition, the key features for TiO(2)-GR including enhancement of adsorptivity of pollutants, light absorption intensity, electron-hole pairs lifetime, and extended light absorption range have also been found in the composite of TiO(2) and carbon nanotubes (TiO(2)-CNT). These strongly manifest that TiO(2)-GR is in essence the same as other TiO(2)-carbon (carbon nanotubes, fullerenes, and activated carbon) composite materials on enhancement of photocatalytic activity of TiO(2), although graphene by itself has unique structural and electronic properties. Notably, this key fundamental question remains completely unaddressed in a recent report ( ACS Nano 2010 , 4 , 380 ) regarding liquid-phase degradation of dyes over the TiO(2)-GR photocatalyst. Thus, we propose that TiO(2)-GR cannot provide truly new insights into the fabrication of TiO(2)-carbon composite as high-performance photocatalysts. It is hoped that our work could avert the misleading message to the readership, hence offering a valuable source of reference on fabricating TiO(2)-carbon composites for their application as a photocatalyst in the environment cleanup. PMID:21117654

  10. Visible-Light Nanostructured Photocatalysts--A Review.

    PubMed

    Liu, Bo; Fang, Yongling; Li, Zhongyu; Xu, Song

    2015-02-01

    This paper reviews the recent research and development of novel visible-light induced photocatalysts with nanostructures. In recent years, Ag3PO4-based and BiVO4-based nanomaterials have drawn wide attention due to their narrow band gap and excellent photocatalytic performance. The development of the new material covers the synthesis condition, unique morphology, further modification which focused on the Ag3PO4 and BiVO4, respectively. Meanwhile, titanium dioxide has already become one of the classical photocatalyst. However, the band gap of TiO2 (3.2 eV) limits its efficient utilization of solar energy, two categories novel modification methods of TiO2 are proposed to make them active under visible light illumination. Using polymers and dye to modify TiO2 is a wonderful approach to achieve excellent electronic and optical properties mainly in aspect of photocatalytic application. Therefore, the paper summarizes novel nanosized photocatalysts with visible-light response including Ag3PO4-based, BiVO4-based and TiO2-based materials, and suggests the further research prospect for the visible-light induced photocatalysts. PMID:26353598

  11. Graphene oxide based Pt-TiO2 photocatalyst: ultrasound assisted synthesis, characterization and catalytic efficiency.

    PubMed

    Neppolian, Bernaurdshaw; Bruno, Andrea; Bianchi, Claudia L; Ashokkumar, Muthupandian

    2012-01-01

    An ultrasound-assisted method was used for synthesizing nanosized Pt-graphene oxide (GO)-TiO2 photocatalyst. The Pt-GO-TiO2 nanoparticles were characterized by diffused reflectance spectroscopy, X-ray diffraction, N2 BET adsorption-desorption measurements, atomic force microscopy and transmission electron microscopy. The photocatalytic and sonophotocatalytic degradation of a commonly used anionic surfactant, dodecylbenzenesulfonate (DBS), in aqueous solution was carried out using Pt-GO-TiO2 nanoparticles in order to evaluate the photocatalytic efficiency. For comparison purpose, sonolytic degradation of DBS was carried out. The Pt-GO-TiO2 catalyst degraded DBS at a higher rate than P-25 (TiO2), prepared TiO2 or GO-TiO2 photocatalysts. The mineralization of DBS was enhanced by a factor of 3 using Pt-GO-TiO2 compared to the P-25 (TiO2). In the presence of GO, an enhanced rate of DBS oxidation was observed and, when doped with platinum, mineralization of DBS was further enhanced. The Pt-GO-TiO2 catalyst also showed a considerable amount of degradation of DBS under visible light irradiation. The initial solution pH had an effect on the rate of photocatalytic oxidation of DBS, whereas no such effect of initial pH was observed in the sonochemical or sonophotocatalytic oxidation of DBS. The intermediate products formed during the degradation of DBS were monitored using electrospray mass spectrometry. The ability of GO to serve as a solid support to anchor platinum particles on GO-TiO2 is useful in developing new photocatalysts. PMID:21684791

  12. Effects of water parameters on the degradation of microcystin-LR under visible light-activated TiO2 photocatalyst.

    PubMed

    Pelaez, Miguel; de la Cruz, Armah A; O'Shea, Kevin; Falaras, Polycarpos; Dionysiou, Dionysios D

    2011-06-01

    A study was performed to determine the effect of pH, alkalinity, natural organic matter (NOM) and dissolved oxygen in the performance of nitrogen and fluorine doped TiO(2) (NF-TiO(2)) for the degradation of hepatotoxin microcystin-LR (MC-LR) in synthetic and natural water under visible light irradiation. The initial degradation rate of MC-LR was fastest under acidic conditions (3.500.02נ10(-3)?Mmin(-1) at pH 3.0) and decreased to 2.290.07נ10(-3) and 0.540.02נ10(-3)?Mmin(-1) at pH 5.7 and 7.1, respectively. Attractive forces between the opposite charged MC-LR and NF-TiO(2) are likely responsible for the enhancement in the photocatalytic decomposition of MC-LR resulting from increased interfacial adsorption. For carbonate buffered solutions, the photocatalytic activity of NF-TiO(2) was reduced when increasing the carbonate concentration up to 150mg CaCO(3)L(-1). The scavenging of radical species by the bicarbonate ion at pH 7.1 is discussed. In the presence of NOM, the degradation rates decreased as pH and initial concentration of the NOM increased. The inhibition was higher with fulvic acid than humic acid under alkaline conditions. Oxygenated solution yields higher NF-TiO(2) photocatalytic degradation of MC-LR compared to nitrogen sparged solution at pH 5.7. The involvement of specific reactive oxygen species implicated in the photodegradation is proposed. Finally, no significant degradation is observed with various natural waters spiked with MC-LR under visible light (?>420nm) but high removal was achieved with simulated solar light. This study provides a better understanding of the interactions and photocatalytic processes initiated by NF-TiO(2) under visible and solar light. The results indicate solar photocatalytic oxidation is a promising technology for the treatment of water contaminated with cyanotoxins. PMID:21575981

  13. Modeling Geometric Arrangements of TiO2-Based Catalyst Substrates and Isotropic Light Sources to Enhance the Efficiency of a Photocatalystic Oxidation (PCO) Reactor

    NASA Technical Reports Server (NTRS)

    Richards, Jeffrey T.; Levine, Lanfang H.; Husk, Geoffrey K.

    2011-01-01

    The closed confined environments of the ISS, as well as in future spacecraft for exploration beyond LEO, provide many challenges to crew health. One such challenge is the availability of a robust, energy efficient, and re-generable air revitalization system that controls trace volatile organic contaminants (VOCs) to levels below a specified spacecraft maximum allowable concentration (SMAC). Photocatalytic oxidation (PCO), which is capable of mineralizing VOCs at room temperature and of accommodating a high volumetric flow, is being evaluated as an alternative trace contaminant control technology. In an architecture of a combined air and water management system, placing a PCO unit before a condensing heat exchanger for humidity control will greatly reduce the organic load into the humidity condensate loop ofthe water processing assembly (WPA) thereby enhancing the life cycle economics ofthe WPA. This targeted application dictates a single pass efficiency of greater than 90% for polar VOCs. Although this target was met in laboratory bench-scaled reactors, no commercial or SBIR-developed prototype PCO units examined to date have achieved this goal. Furthermore, the formation of partial oxidation products (e.g., acetaldehyde) was not eliminated. It is known that single pass efficiency and partial oxidation are strongly dependent upon the contact time and catalyst illumination, hence the requirement for an efficient reactor design. The objective of this study is to maximize the apparent contact time and illuminated catalyst surface area at a given reactor volume and volumetric flow. In this study, a Ti02-based photocatalyst is assumed to be immobilized on porous substrate panels and illumination derived from linear isotropic light sources. Mathematical modeling using computational fluid dynamics (CFD) analyses were performed to investigate the effect of: 1) the geometry and configuration of catalyst-coated substrate panels, 2) porosity of the supporting substrate, and 3) varying the light source and spacing on contact time and illuminated catalyst area.

  14. Synthesis and Properties of Cellulose-Functionalized POSS-SiO2/TiO2 Hybrid Composites.

    PubMed

    Hong, Gwang-Wook; Ramesh, Sivalingam; Kim, Joo-Hyung; Kim, Hyeon-Ju; Lee, Ho-Saeng

    2015-10-01

    The mechanical, thermal, optical, electrical and morphological properties of cellulose, an excellent natural biomaterial, can be improved by organic-inorganic hybrid composite methods. Based on the pristine properties of cellulose, the preparation of cellulose-metal oxide hybrid nanocomposites using a dispersion process of nanoparticles into the cellulose host matrix by traditional methods, has limitations. Recently, the functionalized cellulose-polymer-based materials were considered to be an important class of high-performance materials, providing the synthesis of various functional hybrid nanocomposites using a sol-gel method. Transparent cellulose-POSS-amine-silica/titania hybrids were prepared by an in-situ sol-gel process in the presence of γ-aminopropyltrimethoxylsilane (γ-APTES). The methodology involves the formation of covalent bonding between the cellulose-POSS amine and SiO2/TiO2 hybrid nanocomposite material. An analysis of the synthesized hybrid material by Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, differential thermal calorimetry, scanning electron microscopy, and transmission electron microscopy indicated that the silica/titania nanoparticles were bonded covalently and dispersed uniformly into the cellulose-POSS amine matrix. In addition, biological properties of the cellulose-POSS-silica/titania hybrid material were examined using an antimicrobial test against pathogenic bacteria, such as Bacillus cereus (F481072) and E. coli (ATCC35150) for the bacterial effect. PMID:26726461

  15. Anionic ligand assisted synthesis of 3-D hollow TiO2 architecture with enhanced photoelectrochemical performance.

    PubMed

    Shin, Seong Sik; Kim, Dong Wook; Park, Jong Hoon; Kim, Dong Hoe; Kim, Ju Seong; Hong, Kug Sun; Cho, In Sun

    2014-12-30

    Hollow structured materials have shown great advantages for use in photoelectrochemical devices. However, their poor charge transport limits overall device performance. Here, we report a unique 3-D hollow architecture of TiO2 that greatly improves charge transport properties. We found that citric acid (CA) plays crucial roles in the formation of the 3-D hollow architecture. First, CA controls the hydrolysis rate of Ti ions and facilitates surface hydrolysis on templates during hydrothermal synthesis. Second, CA suppresses the growth of the carbon template at the initial reaction stage, resulting in the formation of comparatively small hollow fibers. More importantly, a prolonged hydrothermal reaction with CA enables a hollow sphere to grow into entangled hollow fibers via biomimetic swallowing growth. To demonstrate advantages of the 3-D hollow architecture for photoelectrochemical devices, we evaluated its photoelectrochemical performance, specifically the electrolyte diffusion and electron dynamics, by employing dye-sensitized solar cells as a model device. A systemic analysis reveals that the 3-D hollow architecture greatly improves both the electrolyte diffusion and electron transport compared to those of the nanoparticle and hollow sphere due to the elongated porous hollow morphology as well as the densely interconnected nanoparticles at the wall layer. PMID:25470414

  16. Synthesis of biomorphological mesoporous TiO2 templated by mimicking bamboo membrane in supercritical CO2.

    PubMed

    Li, Jinhong; Shi, Xiaoying; Wang, Lijuan; Liu, Fei

    2007-11-01

    A new approach is presented for preparing biomorphological mesoporous TiO2 templated by mimicking bamboo inner shell membrane via supercritical CO2 (SCCO2) transportation through titanium tetrabutyloxide (TTBO). The analysis of wide-angle X-ray powder diffraction (XRD) showed the prepared TiO2 in phase of anatase, and the small-angle XRD revealed the presence of mesopores without periodicity. The product exhibited the shape of crinkled films and extended in two dimensions up to centimeters. The electron microscopic observation showed that the TiO2 films were around 200 nm in thickness, and across the films there were numerous round or ellipse-shaped mesopores, being 10-50 nm in diameter, which were formed by the close packing of TiO2 particles. High-resolution transmission electron microscope (HRTEM) displayed that the single TiO2 particle size was about 12.5 nm. The UV-vis absorption spectrum was transparent in the wavelength of 320-350 nm for suspensions of the prepared mesoporous TiO2 in ethanol at the concentration of 5.0 mg/l. The mesoporous TiO2 prepared with the aid of SCCO2 exhibited an obvious blue shift compared with the TiO2 prepared by sol-gel infiltration. The possible mechanism for the formation of the mesoporous TiO2 is summarized into a biomimetic mineralization pathway. First, TTBO was transported to the membrane surface via SCCO2, and then condensed. Hydrolysis reactions between the functional groups of organic membrane and TTBO took place to form the nuclear TiO2, and the TiO2 seeds grew around the organic membrane into TiO2 mesoporous materials. The approach provides a low-cost and efficient route for the production of ceramics nanomaterials with unique structural features, which may have potential application in designing UV-selective shielding devices [S. Zhao, X.H. Wang, S.B. Xin, Q. Jiang, X.P. Liang, Rare Metal Mater. Eng. 35 (2006) 508-510]. PMID:17689547

  17. Synthesis and field emission properties of rutile TiO2 nanowires arrays grown directly on a Ti metal self-source substrate.

    PubMed

    Huo, Kaifu; Zhang, Xuming; Fu, Jijiang; Qian, Guixiang; Xin, Yunchang; Zhu, Boquan; Ni, Hongwei; Chu, Paul K

    2009-05-01

    Large-area and uniform quasi-aligned titanium oxide (TiO2) nanowire arrays have been produced in situ on a titanium (Ti) foil by a simple high-temperature oxidation process with acetone as the oxidant. The products are characterized by X-ray diffraction, electron microscopy, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy. The TiO2 nanowires have a rutile single-crystalline structure. The typical diameters range from 20 to 50 nm and lengths are up to a few micrometers. Since the Ti foil serves as both the source of Ti and substrate, direct synthesis and assembly of TiO2 nanowire arrays on a conductive Ti substrate is accomplished in a single step. Consequently, good intrinsic adhesion and electrical contact are achieved naturally between the nanowires and metal substrate. Such TiO2 nanowire arrays exhibit good field emission properties with a low turn-on field of 4.1 V/microm boding well for applications in vacuum microelectronics. PMID:19453013

  18. Green synthesis of Pt-doped TiO2 nanocrystals with exposed (001) facets and mesoscopic void space for photo-splitting of water under solar irradiation.

    PubMed

    Banerjee, Biplab; Amoli, Vipin; Maurya, Abhayankar; Sinha, Anil Kumar; Bhaumik, Asim

    2015-06-21

    We report a non-trivial facile chemical approach using ionic liquid ([bmim][Cl]) as a porogen for the synthesis of (001) faceted TiO2 nanocrystals having mesoscopic void space. This faceted TiO2 nanomaterial has been doped with Pt nanoclusters through chemical impregnation. The resulting Pt-doped TiO2 nanomaterials are thoroughly characterized by powder X-ray diffraction (PXRD), Raman spectroscopy, field emission scanning electron microscopy (FE-SEM), ultra high resolution transmission electron microscopy (UHR-TEM), energy dispersive X-ray spectrometry (EDX), UV-vis diffuse reflection spectroscopy (DRS) and N2 sorption studies. These Pt/TiO2 nanocrystals with (001) exposed facets are employed as efficient and benign catalysts for hydrogen production from pure water and methanol-water systems under one AM 1.5G sunlight illumination. The effect of platinum loading and methanol-water ratio on the photocatalytic activity of the faceted TiO2 nanocrystals are investigated and it is found that hydrogen evolution rates have been enhanced significantly upon Pt loading. Under optimized reaction conditions the highest photocatalytic activity of 11.2 mmol h(-1) g(-1) has been achieved over ca. 1.0 wt% Pt loaded Pt/TiO2 nanocrystals with (001) exposed facets, which is one of the highest hydrogen evolution rates over the noble metal/TiO2 system reported to date in the literature. PMID:26008203

  19. Self-cleaning properties of TiO2/palygorskite and TiO2/halloysite nanocomposite coatings

    NASA Astrophysics Data System (ADS)

    Panagiotaras, Dionisios; Kaplani, Eleni; Stathatos, Elias; Papoulis, Dimitrios

    2014-10-01

    Tubular halloysite and microfibrous palygorskite clay mineral combined with nanocrystalline TiO2 are involved in the preparation of nanocomposite films on glass substrates via sol-gel route at 450°C. The synthesis employing nonionic surfactant molecule as pore directing agent along with the acetic acid-based sol-gel route without addition of water molecules. Drying and thermal treatment of composite films ensure elimination of organic material lead to the formation of TiO2 nanoparticles homogeneously distributed on the palygorskite and halloysite surfaces. Nanocomposite films without cracks of active anatase crystal phase on palygorskite and halloysite surfaces are characterized by microscopy techniques, UV-Vis spectroscopy, and porosimetry methods in order to examine their structural properties. The composite palygorskite-TiO2 and halloysite/TiO2 films with variable quantities of palygorskite and halloysite were tested as photocatalysts in the photo-oxidation of Basic Blue 41 azo dye in water. These nanocomposite films proved to be most promising photocatalysts and highly effective to dye's decoloration in spite of small amount of palygorskite/TiO2 or halloysite/TiO2 catalyst immobilized onto glass substrates.

  20. Synthesis and photocatalytic activity of N-doped TiO2 produced in a solid phase reaction

    NASA Astrophysics Data System (ADS)

    Xin, Gang; Pan, Hongfei; Chen, Dan; Zhang, Zhihua; Wen, Bin

    2013-02-01

    N-doped TiO2 was synthesized by calcining a mixture of titanic acid and graphitic carbon nitride (g-C3N4) at temperatures above 500 C. The final samples were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), electron energy loss spectroscopy (EELS), and UV-vis diffuse reflectance spectra. The photocatalytic activity of N-doped TiO2 was studied by assessing the degradation of methylene blue in an aqueous solution, under visible light and UV light irradiation. It was found that the N-doped TiO2 displayed higher photocatalytic activity than pure TiO2, under both visible and UV light.

  1. Sonochemical synthesis and photocatalytic activity of meso- and macro-porous TiO(2) for oxidation of toluene.

    PubMed

    Liu, Yang; Li, Yan; Wang, Yuntao; Xie, Lei; Zheng, Jie; Li, Xingguo

    2008-01-15

    Meso-and macro-porous TiO(2) were synthesized by ultrasonic induced solvothermal method. Octadecylamine as a soft template was used to direct the formation of porous structure. The as-prepared porous TiO(2) was characterized by low angle and wide angle X-ray diffraction, N(2) adsorption-desorption isotherms and BET surface area. The energy influence of ultrasound and heat and concentration of nitric acid for post extraction on formation of porous structure were investigated. The photocatalytic activities of TiO(2) were investigated by degrading toluene gas under UV light. The results revealed that proper energy facilitates the formation of porous structure and too low concentration of nitric acid cannot extract template from pores. The photocatalytic activities of TiO(2) with porous structure are higher than those of nonporous ones. PMID:17560714

  2. In situ synthesis of TiO2(B) nanotube/nanoparticle composite anode materials for lithium ion batteries.

    PubMed

    Liu, Xiang; Sun, Qian; Ng, Alan M C; Djurii?, Aleksandra B; Xie, Maohai; Liao, Changzhong; Shih, Kaimin; Vranje, Mila; Nedeljkovi?, Jovan M; Deng, Zhaofeng

    2015-10-23

    Titania nanotubes were prepared by a simple hydrothermal route. Their electrochemical performance has been examined in detail and compared to TiO2(B) nanoparticles, TiO2 anatase and P25 titania nanoparticles. The cycling and rate performance of TiO2 nanotubes is superior to both types of nanoparticles, and it can be further improved by an in situ titanium precursor treatment, which results in the formation of TiO2 nanoparticles on/between the nanotubes. The obtained specific capacity after 200 cycles at 0.2 A g(-1) charge/discharge rate remained above 130 mAh g(-1). The enhanced lithium storage properties of these samples can be attributed to their unique morphology and crystal structure. PMID:26421360

  3. In situ synthesis of TiO2(B) nanotube/nanoparticle composite anode materials for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Liu, Xiang; Sun, Qian; Ng, Alan M. C.; Djurii?, Aleksandra B.; Xie, Maohai; Liao, Changzhong; Shih, Kaimin; Vranje, Mila; Nedeljkovi?, Jovan M.; Deng, Zhaofeng

    2015-10-01

    Titania nanotubes were prepared by a simple hydrothermal route. Their electrochemical performance has been examined in detail and compared to TiO2(B) nanoparticles, TiO2 anatase and P25 titania nanoparticles. The cycling and rate performance of TiO2 nanotubes is superior to both types of nanoparticles, and it can be further improved by an in situ titanium precursor treatment, which results in the formation of TiO2 nanoparticles on/between the nanotubes. The obtained specific capacity after 200 cycles at 0.2 A g-1 charge/discharge rate remained above 130 mAh g-1. The enhanced lithium storage properties of these samples can be attributed to their unique morphology and crystal structure.

  4. Synthesis of CdSe-TiO2 nanocomposites and their applications to TiO2 sensitized solar cells.

    PubMed

    Kim, Jinyoung; Choi, Sungbum; Noh, Junhong; Yoon, Sunghun; Lee, Sangwook; Noh, Taehoon; Frank, Arthur J; Hong, Kugsun

    2009-05-01

    CdSe-TiO(2) nanocomposites were synthesized via aminolysis of Ti-oleate complexes in the presence of CdSe nanocrystals, and their application as sensitizers for TiO(2) solar cells was investigated. The formation of CdSe-TiO(2) nanocomposites was confirmed using transmission electron microscopy and Raman spectroscopy. The emission spectrum of CdSe-TiO(2) nanocomposites revealed photoinduced charge separation at the CdSe-TiO(2) interface of the composite. The photocurrent-voltage properties of CdSe-TiO(2)-sensitized TiO(2) particle films compared favorably with those of CdSe-sensitized TiO(2) films. Evidence was also found indicating that the TiO(2) component of the composite protects CdSe against degradation during film annealing. PMID:19249822

  5. Synthesis and characterization of TiO2/SiO2 nano composites for solar cell applications

    NASA Astrophysics Data System (ADS)

    Arun Kumar, D.; Merline Shyla, J.; Xavier, Francis P.

    2012-12-01

    The use of titania-silica in photocatalytic process has been proposed as an alternative to the conventional TiO2 catalysts. Mesoporous materials have been of great interest as catalysts because of their unique textural and structural properties. Mesoporous TiO2, SiO2 nanoparticles and TiO2/SiO2 nanocomposites were successfully synthesized by sol-gel method using titanium (IV) isopropoxide, tetra-ethylorthosilicate as starting materials. The synthesized samples are characterized by X-ray diffraction, UV-Vis spectroscopy, Fourier transform infrared spectroscopy, Brunauett-Emmett-Teller and field-dependent photoconductivity. The UV-Vis spectrum of as-synthesized samples shows similar absorption in the visible range. The crystallite size of the as-synthesized samples was calculated by Scherrer's formula. The BET surface area for TiO2/SiO2 nanocomposite is found to be 303 m2/g and pore size distribution has average pore diameter about 10 nm. It also confirms the absence of macropores and the presence of micro and mesopores. The field-dependent photoconductivity of TiO2/SiO2 nanocomposite shows nearly 300 folds more than that of TiO2 nanoparticle for a field of 800 V/cm.

  6. Solvothermal synthesis and enhanced photocatalytic activity of flowerlike nanoarchitectures assembled from anatase TiO2 nanoflakes

    NASA Astrophysics Data System (ADS)

    Cui, Meng; Tian, Sha; Zhao, Hua; Jin, Rong; Chen, Yan; Liu, Bin; Yang, Heqing

    2012-07-01

    TiO2 nanoflakes assembled flowerlike nanoarchitectures with diameters of 1.70-2.20 ?m were synthesized by a solvothermal reaction of butyl titanate with isopropyl alcohol, HF and H2O at 180 C for 12 h. The constituent nanoflakes have perfect rectangular shapes with the typical widths of 0.81-0.95 ?m, lengths of 1.04-1.20 ?m and thicknesses of 0.10-0.12 ?m. The constituent nanoflakes are formed due to the selective adsorption of isopropyl alcohol on (0 1 0) surface of anatase TiO2. These anatase TiO2 nanoflakes assemble into flowerlike structures driven by the electrostatic attraction. The as-prepared TiO2 flowerlike nanoarchitectures exhibit enhanced photocatalytic ability to degrade methyl orange dye in comparison with commercial TiO2 powders. The photodegradation of methyl orange dye catalyzed by the anatase TiO2 nanoflake assembled flowerlike nanostructures fits a pseudo first-order reaction.

  7. Synthesis of GO supported Fe2O3-TiO2 nanocomposites for enhanced visible-light photocatalytic applications.

    PubMed

    Jo, Wan-Kuen; Selvam, N Clament Sagaya

    2015-09-28

    This article reports novel ternary composites consisting of Fe2O3 nanorods, TiO2 nanoparticles, and graphene oxide (GO) flakes that provide enhanced photocatalytic performance and stability. Fe2O3 nanorods grow evenly and embed themselves on the agglomerated TiO2/GO surface, which facilitate the formation of heterojunctions for effective migration of charge carriers at the interface of Fe2O3/TiO2 in the ternary composites. The formation of heterostructured Fe2O3-TiO2/GO composites and the effect of GO addition on the photophysical properties of the composites were systematically investigated using various spectroscopic techniques. The photocatalytic performance of Fe2O3 was improved by coupling with TiO2 in the presence of GO, suggesting uncommon electron transfer from the conduction band of Fe2O3 to that of TiO2via GO under visible-light irradiation. An improved charge separation in the composite materials compared with that in bare Fe2O3 was confirmed by drastic fluorescence quenching and stronger absorption in the visible range. The optimum content of GO in the ternary composite was 1.0 wt%, which exhibited enhanced photocatalytic activity. The synergistic effect, heterostructured composite and role of GO, as an electron transporter, in the ternary composites account for the enhanced photocatalytic activity. PMID:26286295

  8. A Simple Method for the Preparation of TiO2 /Ag-AgCl@Polypyrrole Composite and Its Enhanced Visible-Light Photocatalytic Activity.

    PubMed

    Yao, Tongjie; Shi, Lei; Wang, Hao; Wang, Fangxiao; Wu, Jie; Zhang, Xiao; Sun, Jianmin; Cui, Tieyu

    2016-01-01

    A novel and facile method was developed to prepare a visible-light driven TiO2 /Ag-AgCl@polypyrrole (PPy) photocatalyst with Ag-AgCl nanoparticles supported on TiO2 nanofibers and covered by a thin PPy shell. During the synthesis, the PPy shell and Ag-AgCl nanoparticles were prepared simultaneously onto TiO2 nanofibers, which simplified the preparation procedure. In addition, because Ag-AgCl aggregates were fabricated via partly etching the Ag nanoparticles, their size was well controlled at the nanoscale, which was beneficial for improvement of the contact surface area. Compared with reference photocatalysts, the TiO2 /Ag-AgCl@PPy composite exhibited an enhanced photodegradation activity towards rhodamine B under visible-light irradiation. The superior photocatalytic property originated from synergistic effects between TiO2 nanofibers, Ag-AgCl nanoparticles and the PPy shell. Furthermore, the TiO2 /Ag-AgCl@PPy composite could be easily separated and recycled without obvious reduction in activity. PMID:26415627

  9. Fe2 O3 -TiO2 nanocomposites for enhanced charge separation and photocatalytic activity.

    PubMed

    Moniz, Savio J A; Shevlin, Stephen A; An, Xiaoqiang; Guo, Zheng-Xiao; Tang, Junwang

    2014-11-17

    Photocatalysis provides a cost effective method for both renewable energy synthesis and environmental purification. Photocatalytic activity is dominated by the material design strategy and synthesis methods. Here, for the first time, we report very mild and effective photo-deposition procedures for the synthesis of novel Fe2 O3 -TiO2 nanocomposites. Their photocatalytic activities have been found to be dramatically enhanced for both contaminant decomposition and photoelectrochemical water splitting. When used to decompose a model contaminant herbicide, 2,4-dichlorophenoxyacetic acid (2,4-D), monitored by both UV/Vis and total organic carbon (TOC) analysis, 10% Fe-TiO2 -H2 O displayed a remarkable enhancement of more than 200?% in the kinetics of complete mineralisation in comparison to the commercial material P25 TiO2 photocatalyst. Furthermore, the photocurrent is nearly double that of P25. The mechanism for this improvement in activity was determined using density functional theory (DFT) and photoluminescence. These approaches ultimately reveal that the photoelectron transfer is from TiO2 to Fe2 O3 . This favours O2 reduction which is the rate-determining step in photocatalytic environmental purification. This in situ charge separation also allows for facile migration of holes from the valence band of TiO2 to the surface for the expected oxidation reactions, leading to higher photocurrent and better photocatalytic activity. PMID:25280047

  10. Synthesis, characterization and photoactivity of bi-crystalline mesoporous TiO2

    NASA Astrophysics Data System (ADS)

    Nguyen, Dongthanh; Wang, Wei; Long, Haibo; Ru, Hongqiang

    2016-03-01

    Mesoporous titania (meso-TiO2) has received extensive attention owing to its versatile potential applications. This paper reports a low-temperature templating approach for the fabrication of meso-TiO2 using the peroxo titanic acid (PTA) sol as precursor and Pluronic P123 as nonionic template. The TGA, XRD, N2 sorption, FE-SEM and HRTEM were used to characterize the obtained samples. The results showed that meso-TiO2 with high surface area up to 163 m2·g-1 and large pore volume of 0.65 cm3·g-1 can be obtained. The mesopore sizes can be varied between 13 and 20 nm via this synthesis approach. The amount of P123 and the calcination conditions were found to have great influence on the mesoporous and crystalline structures of meso-TiO2. The photocatalytic activity testing clearly shows that the high surface area and bi-crystallinity phases of meso-TiO2 play important roles in enhancing photocatalytic properties of meso-TiO2 in photo-decomposing Rhodamine B in water.

  11. Thermal conduction effects impacting morphology during synthesis of columnar nanostructured TiO2 thin films

    SciTech Connect

    An, Woo-Jin; Jiang, David D.; Matthews, James R.; Borrelli, Nicholas F.; Biswas, Pratim

    2011-01-01

    The aerosol chemical vapor deposition (ACVD) process allows for the synthesis of nanostructured films with well tuned morphologies that can be controlled based on the desired functionality and application. A robust understanding of the process parameters that result in desired features of the film is elucidated. One dimensional TiO₂ nanostructured columns that have superior properties for solar energy harvesting and conversion applications were deposited on tin doped indium oxide (ITO) substrates. The sintering of the deposited particles was a key factor in the growth of the 1D structure with desired crystal planes. By ensuring that the sintering rate is faster than the arrival rate of deposited particles; a 1D columnar structure could be obtained. The sintering rate was controlled by the temperature and depositing particle size. As the columns grew in length, the increased thermal conduction resistance resulted in a drop in temperature and subsequently a slowing of the sintering process in upper regions of the film. This led to growth of branched structures rather than continued growth in a preferred direction. The growth of the branched structure could be overcome by enhancing the sintering rate by increasing the substrate temperature or reducing the depositing particle size (by lowering the feed rate of the precursor). The phenomenon was also confirmed by using different deposition substrates, such as FTO and glass. Dye sensitized solar cell performance efficiencies with different column lengths of 2 and 7 µm were determined to be 1.8 and 2.7% respectively.

  12. Confined-space synthesis of single crystal TiO2 nanowires in atmospheric vessel at low temperature: a generalized approach

    PubMed Central

    Wang, Xiaoyue; Wang, Hai; Zhou, Yu; Liu, Yong; Li, Baojun; Zhou, Xiang; Shen, Hui

    2015-01-01

    Extensive efforts have been devoted to develop innovative synthesis strategies for nanomaterials in order to exploit the true potential of nanotechnology. However, most approaches require high temperature or high pressure to favor crystallization. Here we highlight an unconventional approach for the confined-space synthesis of the single crystal TiO2 nanowires in the atmospheric vessel at low temperature by cleverly manipulating the unique physical properties of straight-chain saturated fatty acids. Our method also applys to icosane due to its straight-chain saturated hydrocarbon structure and similar physical properties to the saturated fatty acids. Interestingly, we also found that the unsaturated fatty acids can facilitate the crystal growth, but their bent chains lead to the formation of TiO2 particle aggregates. In addition, we demonstrate the growth of TiO2 nanowires on arbitrary substrates, which are of great importance for their wider applications. We thus anticipate our presented method to be a possible starting point for non-classical crystallization strategies and be easily adapted for the fabrication of all other inorganic materials. PMID:25634804

  13. TiO2 Nanoparticles Are Phototoxic to Marine Phytoplankton

    PubMed Central

    Miller, Robert J.; Bennett, Samuel; Keller, Arturo A.; Pease, Scott; Lenihan, Hunter S.

    2012-01-01

    Nanoparticulate titanium dioxide (TiO2) is highly photoactive, and its function as a photocatalyst drives much of the application demand for TiO2. Because TiO2 generates reactive oxygen species (ROS) when exposed to ultraviolet radiation (UVR), nanoparticulate TiO2 has been used in antibacterial coatings and wastewater disinfection, and has been investigated as an anti-cancer agent. Oxidative stress mediated by photoactive TiO2 is the likely mechanism of its toxicity, and experiments demonstrating cytotoxicity of TiO2 have used exposure to strong artificial sources of ultraviolet radiation (UVR). In vivo tests of TiO2 toxicity with aquatic organisms have typically shown low toxicity, and results across studies have been variable. No work has demonstrated that photoactivity causes environmental toxicity of TiO2 under natural levels of UVR. Here we show that relatively low levels of ultraviolet light, consistent with those found in nature, can induce toxicity of TiO2 nanoparticles to marine phytoplankton, the most important primary producers on Earth. No effect of TiO2 on phytoplankton was found in treatments where UV light was blocked. Under low intensity UVR, ROS in seawater increased with increasing nano-TiO2 concentration. These increases may lead to increased overall oxidative stress in seawater contaminated by TiO2, and cause decreased resiliency of marine ecosystems. Phototoxicity must be considered when evaluating environmental impacts of nanomaterials, many of which are photoactive. PMID:22276179

  14. Effect of post-synthesis acid activation of TiO2 nanofilms on the photocatalytic efficiency under visible light

    NASA Astrophysics Data System (ADS)

    Stambolova, I.; Blaskov, V.; Shipochka, M.; Eliyas, A.; Vassilev, S.

    2014-12-01

    Nanosized TiO2 films were deposited by spray pyrolysis and thermally treated at 400oC. Then the films were dipped in 1M aqueous solution of HCl. The activated samples were divided into two parts - one part was dried (A) and another was annealed (AT) in air. The photocatalytic degradation of Reactive Black (RB5) textile dye under visible light was tested. The following instrumental methods: X-ray diffraction (XRD), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) were applied for the phase and surface characterization of obtained samples. According to Raman and XRD analyses all films are anatase. The XRD showed that activated films are better crystallized than non activated TiO2 film. The presence of chlorine at 200.3 eV was registered for acid activated samples by X-Ray photoelectron spectroscopy. The acidic activated films exhibited higher rate of dye photodegradation than that of the reference TiO2 sample. The photocatalytic efficiency decreases in the order A > AT> non activated TiO2 films. The degradation rate constant for acid activated films is two times higher than those of the reference film. The hydroxyl content in TiO2 acidic activated films is greater than that of the non- activated films, which results in significant increase in the photocatalytic activity. In addition, the presence of chlorine may also lead to enhancement in efficiency.

  15. The Synthesis and Photocatalytic Properties of TiO2 Nanotube Array by Starch-Modified Anodic Oxidation.

    PubMed

    Zhang, Fengjun; Liu, Zijian; Lu, Wei; Lyu, Cong; Lyu, Chuan; Wang, Xiansheng

    2015-11-01

    In this study, the characterization and photocatalytic activity of TiO2 nanotube arrays prepared by anodization process with starch addition were investigated in detail. The results suggested that the optimum mass fraction of starch added in anodization process was 0.1%, with which TiO2 nanotube arrays owning good tubular structure were synthesized. The tube length and average inner diameter of nanotubes were approximately 4?m and 30nm, respectively. Through the characterization of TiO2 nanotube arrays by energy dispersive spectrometer, scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Fourier Transform Infrared (FTIR) spectroscopy, it was found that the as-prepared nanotubes possessed well uniformed and higher photodegradation responsive than the pure TiO2 . Moreover, it was expected that the as-prepared nanotubes exhibited good photocatalytic activity for the degradation of RhB under UV-light irradiation, which could be ascribed to their good morphology, enhanced UV-light absorption property and electron transmission ability during the photocatalytic reaction. In addition, the nanotubes were not significantly regenerated during the cycling runs experiment. Overall, this study could provide a principle method to synthesize TiO2 nanotube arrays with enhanced photocatalytic activity by anodization process with starch addition for environmental purification. PMID:26010757

  16. Low temperature synthesis and visible light driven photocatalytic activity of highly crystalline mesoporous TiO2 particles.

    PubMed

    Gujar, Tanaji P; Anand, Chokkalingam; Shinde, Vaishali R; Ye, Jinhua; Ariga, Katsuhiko; Vinu, Ajayan

    2010-12-01

    Mesoporous TiO2 powder materials with a high crystallinity have been prepared by evaporation induced self assembly (EISA) process using titanium tetraisopropoxide (TTIP) and pluronic P123 surfactant (EO20PO70EO20) as titanium source and structure-directing reagent, respectively. The prepared materials were characterized by low and wide-angle X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), optical absorption, and N2 adsorption-desorption experiments. The crystallinity of the materials was controlled by varying the calcination temperature. The resulting TiO2 materials showed highly crystalline structure with uniform particle size which increases from 11.8 to 23.8 nm with increasing the calcination temperature from 400 to 600 degrees C, respectively, whereas the specific surface area decreases from 125 to 40 m2/g. TEM and XRD results revealed that the calcination temperature of 600 degrees C is the best condition to obtain highly crystalline mesoporous TiO2. The photocatalytic activity of the TiO2 mesoporous materials with different crystallinity and textural parameters has been studied in the decomposition of methylene blue (MB) dye molecules under visible light irradiation. Among the mesoporous TiO2 materials studied, the material with the highest crystallinity, prepared at 600 degrees C, showed the best photocatalytic performance in the decomposition of MB under visible light in a short time. PMID:21121305

  17. Low-Temperature Synthesis of Anatase TiO2 Nanoparticles with Tunable Surface Charges for Enhancing Photocatalytic Activity

    PubMed Central

    Li, Ye; Qin, Zhenping; Guo, Hongxia; Yang, Hanxiao; Zhang, Guojun; Ji, Shulan; Zeng, Tingying

    2014-01-01

    In this work, the positively or negatively charged anatase TiO2 nanoparticles were synthesized via a low temperature precipitation-peptization process (LTPPP) in the presence of poly(ethyleneimine) (PEI) and poly(sodium4- styrenesulfonate) (PSS). X-ray diffraction (XRD) pattern and high-resolution transmission electron microscope (HRTEM) confirmed the anatase crystalline phase. The charges of the prepared TiO2, PEI-TiO2 and PSS-TiO2 nanoparticles were investigated by zeta potentials. The results showed that the zeta potentials of PEI-TiO2 nanoparticles can be tuned from +39.47 mV to +95.46 mV, and that of PSS-TiO2 nanoparticles can be adjusted from −56.63 mV to −119.32 mV. In comparison with TiO2, PSS-TiO2 exhibited dramatic adsorption and degradation of dye molecules, while the PEI modified TiO2 nanoparticles showed lower photocatalytic activity. The photocatalytic performances of these charged nanoparticles were elucidated by the results of UV-vis diffuse reflectance spectra (DRS) and the photoluminescence (PL) spectra, which indicated that the PSS-TiO2 nanoparticles showed a lower recombination rate of electron-hole pairs than TiO2 and PEI-TiO2. PMID:25506839

  18. Synthesis of amorphous TiO2 modified ZnO nanorod film with enhanced photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Xiao, Shanshan; Zhao, Lei; Leng, Xuning; Lang, Xingyou; Lian, Jianshe

    2014-04-01

    Amorphous TiO2 modified ZnO nanorod films were synthesized via multi-step processes: ZnO nanorod films were prepared by a wet chemical method. Amorphous TiO2 was then anchored on the tops and sides of the nanorods through immersion in tetrabutyltitanate solution for hydrolysis. The as-prepared samples were characterized for the phase structure, chemical state and surface morphology as well as optical absorption using X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and ultraviolet-visible (UV-vis) spectrophotometer. The results showed that the nanorod films were covered by amorphous TiO2 layers, and their visible light absorption ability was strengthened. The photocatalytic studies revealed that TiO2 modified films exhibited enhanced photocatalytic efficiency for decomposition of methyl orange under ultraviolet-visible excitation, which might be attributed to the increased UV-vis light absorption and the separation of the charge carrier and prolonged electron lifetime due to the interface between TiO2 and ZnO.

  19. Synthesis of heteroarchitectures of PbS nanostructures well-erected on electrospun TiO2 nanofibers.

    PubMed

    Su, Chunyan; Shao, Changlu; Liu, Yichun

    2010-06-15

    In this paper, we have successfully fabricated TiO(2)/PbS heteroarchitectures with high-quality single-crystalline PbS nanostructures well-erected on electrospun TiO(2) nanofibers matrices via hydro(solvo)thermal method using L-cysteine as the sulfur donor and chelating reagent. The experiment results showed that the morphology and size of secondary PbS nanostructures grown on TiO(2) nanofibers can be changed significantly by utilizing two kinds of different reaction solvents (water and acetylacetone, respectively). In case of water serving as solvent, the superb cube-shaped PbS nanocrystals with the edge length ranging from 150 to 300 nm were prepared. While acetylacetone acting as solvent, the high-density PbS nanoparticles with 10-30 nm in length were obtained. And, it is interesting that PbS nanostructures were not only uniformly monodispersed but also closely attached to TiO(2) nanofibers surface. What is more, the further studies suggested that the formation of TiO(2)/PbS heteroarchitectures might take on chelation-anchoring-nucleation-directional growth strategy. PMID:20207362

  20. Modified microwave method for the synthesis of visible light-responsive TiO2/MWCNTs nanocatalysts

    PubMed Central

    2013-01-01

    Recently, TiO2/multi-walled carbon nanotube (MWCNT) hybrid nanocatalysts have been a subject of high interest due to their excellent structures, large surface areas and peculiar optical properties, which enhance their photocatalytic performance. In this work, a modified microwave technique was used to rapidly synthesise a TiO2/MWCNT nanocatalyst with a large surface area. X-ray powder diffraction, field-emission scanning electron microscopy, transmission electron microscopy and Brunauer-Emmett-Teller measurements were used to characterise the structure, morphology and the surface area of the sample. The photocatalytic activity of the hybrid nanocatalysts was evaluated through a comparison of the degradation of methylene blue dye under irradiation with ultraviolet and visible light. The results showed that the TiO2/MWCNT hybrid nanocatalysts degraded 34.9% of the methylene blue (MB) under irradiation with ultraviolet light, whereas 96.3% of the MB was degraded under irradiation with visible light. PMID:23919496

  1. Modification of dense TiO2 particles using polyethylene glycol template: Synthesis, characterization, and photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Dostanić, J.; Lončarević, D.; Radosavljević-Mihajlović, A.; Jovanović, D. M.

    2015-12-01

    In this study, an effort has been made to prepare TiO2 materials by sol-gel technique using polyethylene glycol (PEG) as pore directing agent. Different PEG amounts were used during samples preparation in order to investigate the change in intrinsic material properties. The photocatalytic activity of prepared catalysts was estimated by measuring the decomposition of arylazo pyridone dye. The optimum template amount was determined, resulting in catalyst with enhanced textural properties, optimal anatase/rutile ratio and hence improved photocatalytic properties. Specific surface area and anatase/rutile ratio were found to be the main contributing factors to the catalyst activity. A synergistic effect between anatase and rutile TiO2 has been observed, since the presence of relatively inactive rutile phase enhanced the photoactivity of mixed TiO2.

  2. Green synthesis of Pt-doped TiO2 nanocrystals with exposed (001) facets and mesoscopic void space for photo-splitting of water under solar irradiation

    NASA Astrophysics Data System (ADS)

    Banerjee, Biplab; Amoli, Vipin; Maurya, Abhayankar; Sinha, Anil Kumar; Bhaumik, Asim

    2015-06-01

    We report a non-trivial facile chemical approach using ionic liquid ([bmim][Cl]) as a porogen for the synthesis of (001) faceted TiO2 nanocrystals having mesoscopic void space. This faceted TiO2 nanomaterial has been doped with Pt nanoclusters through chemical impregnation. The resulting Pt-doped TiO2 nanomaterials are thoroughly characterized by powder X-ray diffraction (PXRD), Raman spectroscopy, field emission scanning electron microscopy (FE-SEM), ultra high resolution transmission electron microscopy (UHR-TEM), energy dispersive X-ray spectrometry (EDX), UV-vis diffuse reflection spectroscopy (DRS) and N2 sorption studies. These Pt/TiO2 nanocrystals with (001) exposed facets are employed as efficient and benign catalysts for hydrogen production from pure water and methanol-water systems under one AM 1.5G sunlight illumination. The effect of platinum loading and methanol-water ratio on the photocatalytic activity of the faceted TiO2 nanocrystals are investigated and it is found that hydrogen evolution rates have been enhanced significantly upon Pt loading. Under optimized reaction conditions the highest photocatalytic activity of 11.2 mmol h-1 g-1 has been achieved over ca. 1.0 wt% Pt loaded Pt/TiO2 nanocrystals with (001) exposed facets, which is one of the highest hydrogen evolution rates over the noble metal/TiO2 system reported to date in the literature.We report a non-trivial facile chemical approach using ionic liquid ([bmim][Cl]) as a porogen for the synthesis of (001) faceted TiO2 nanocrystals having mesoscopic void space. This faceted TiO2 nanomaterial has been doped with Pt nanoclusters through chemical impregnation. The resulting Pt-doped TiO2 nanomaterials are thoroughly characterized by powder X-ray diffraction (PXRD), Raman spectroscopy, field emission scanning electron microscopy (FE-SEM), ultra high resolution transmission electron microscopy (UHR-TEM), energy dispersive X-ray spectrometry (EDX), UV-vis diffuse reflection spectroscopy (DRS) and N2 sorption studies. These Pt/TiO2 nanocrystals with (001) exposed facets are employed as efficient and benign catalysts for hydrogen production from pure water and methanol-water systems under one AM 1.5G sunlight illumination. The effect of platinum loading and methanol-water ratio on the photocatalytic activity of the faceted TiO2 nanocrystals are investigated and it is found that hydrogen evolution rates have been enhanced significantly upon Pt loading. Under optimized reaction conditions the highest photocatalytic activity of 11.2 mmol h-1 g-1 has been achieved over ca. 1.0 wt% Pt loaded Pt/TiO2 nanocrystals with (001) exposed facets, which is one of the highest hydrogen evolution rates over the noble metal/TiO2 system reported to date in the literature. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02097b

  3. Choline Chloride Assisted Synthesis of N and Metal Codoped TiO2 and their Photocatalytic Activity under Visible Light.

    PubMed

    Kaur, Navneet; Shahi, Satwant Kaur; Singh, Vasundhara

    2016-01-01

    A few nanocrystalline N,metal codoped TiO2 (metal = Cr, Mn, Fe, Co, Ni, Cu and Zn) have been synthesized by a simple sol-gel method using choline chloride which is biodegradable, low cost, nontoxic ionic salt both as a structure directing agent and source of nitrogen. The prepared samples were well characterized by XRD, HRTEM, FTIR, DRS, EDX, XPS and BET techniques. The photocatalytic activity of all synthesized N, metal codoped TiO2 has been carried out for the degradation of Reactive Black 5 dye under visible light irradiation and among them, N, Fe codoped TiO2 was found to be the best for the degradation of Reactive Black 5 dye. The effect of incorporated metals on the photocatalytic activity of the various modified TiO2 has been discussed in detail based on the mechanism involved in the degradation of dye and their physico-chemical properties which includes surface area, particle size, defect sites, phase, band gap and electron-hole recombination effect. PMID:26436709

  4. Synthesis and characterization of undoped and cobalt-doped TiO2 nanoparticles via sol-gel technique

    NASA Astrophysics Data System (ADS)

    Mugundan, S.; Rajamannan, B.; Viruthagiri, G.; Shanmugam, N.; Gobi, R.; Praveen, P.

    2015-04-01

    TiO2 nanoparticles doped with different concentrations of cobalt (4, 8, 12 and 16 %) were synthesized by sol-gel method at room temperature with appropriate reactants. In general, TiO2 can exist in anatase, rutile, and brookite phases. In this present study, we used titanium tetra iso propoxide and 2-propanol as a common starting materials and the obtained products were calcined at 500 C and 800 C to get anatase and rutile phases, respectively. The crystalline sizes of the doped and undoped TiO2 nanoparticles were observed with X-ray diffraction (XRD) analysis. The functional groups of the samples were identified by Fourier transform infrared spectroscopy (FTIR). From UV-VIS diffuse reflectance spectra (DRS), the band gap energy and excitation wavelength of doped and undoped TiO2 nanoparticles were identified. The defect oriented emissions were seen from photoluminescence (PL) study. The spherical uniform size distribution of particles and elements present in the samples was determined using two different techniques viz., scanning electron microscopy (SEM) with energy-dispersive spectrometer (EDX) and transmission electron microscope (TEM) with selected area electron diffraction (SAED) pattern. The second harmonic generation (SHG) efficiency was also found and the obtained result was compared with potassium di hydrogen phosphate (KDP).

  5. Novel Fe doped mesoporous TiO 2 microspheres: Ultrasonic-hydrothermal synthesis, characterization, and photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Li, Haibin; Liu, Guocong; Chen, Shuguang; Liu, Qicheng

    2010-04-01

    Novel Fe doped mesoporous TiO 2 microspheres were fabricated by an ultrasonic-hydrothermal method when tetrabutyl titanate was used as a precursor and octadecylamine was used as a structure-directing agent. The mesoporous materials were characterized by XRD, SEM, TEM, N 2 adsorption-desorption measurements, XPS, FL, and UV-vis. The results suggest that both ultrasonic treatment and hydrothermal procedure are critical for the fabrication of Fe doped mesoporous TiO 2 microspheres with a combination of regular morphology, large specific surface area, high crystallinity, and high thermal stability. Low-angle XRD and TEM images indicate that the disordered wormhole-like mesostructure of Fe doped TiO 2 microspheres with diameters of about 300-400 nm is actually formed by the agglomerization of nanoparticles with an average size of about 10 nm. The photocatalytic activity of Fe doped mesoporous TiO 2 microspheres was evaluated by the photodegradation of methyl orange. A small amount of Fe 3+ can obviously enhance their photocatalytic activity. The optimal atomic ratio of Fe to Ti for photocatalytic activity is about 0.5 at%.

  6. Synthesis of hybrid cellulose nanocomposite bonded with dopamine SiO2/TiO2 and its antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Ramesh, Sivalingam; Kim, Gwang-Hoon; Kim, Jaehwan; Kim, Joo-Hyung

    2015-04-01

    Organic-inorganic hybrid material based cellulose was synthesized by the sol-gel approach. The explosion of activity in this area in the past decade has made tremendous progress in industry or academic both fundamental understanding of sol-gel process and applications of new functionalized hybrid materials. In this present research work, we focused on cellulose-dopamine functionalized SiO2/TiO2 hybrid nanocomposite by sol-gel process. The cellulose-dopamine hybrid nanocomposite was synthesized via γ-aminopropyltriethoxysilane (γ-APTES) coupling agent by in-situ sol-gel process. The chemical structure of cellulose-amine functionalized dopamine bonding to cellulose structure with covalent cross linking hybrids was confirmed by FTIR spectral analysis. The morphological analysis of cellulose-dopamine nanoSiO2/TiO2 hybrid nanocomposite materials was characterized by XRD, SEM and TEM. From this different analysis results indicate that the optical transparency, thermal stability, control morphology of cellulose-dopamine-SiO2/TiO2 hybrid nanocomposite. Furthermore cellulose-dopamine-SiO2/TiO2 hybrid nanocomposite was tested against pathogenic bacteria for antimicrobial activity.

  7. Synthesis and visible light photoactivity of anatase Ag, and garlic loaded TiO2 nanocrystalline catalyst

    EPA Science Inventory

    An excellent visible light activated Ag and S doped TiO2 nanocatalyst was prepared by using AgNO3 and garlic (Allium sativum) as Ag+ and sulfur sources, respectively. The catalyst resisted the change from anatase to rutile phase even at calcination at 700 oC. The photocatalytic e...

  8. Synthesis of Ag ion-implanted TiO2 thin films for antibacterial application and photocatalytic performance.

    PubMed

    Hou, Xinggang; Ma, Huiyan; Liu, Feng; Deng, Jianhua; Ai, Yukai; Zhao, Xinlei; Mao, Dong; Li, Dejun; Liao, Bin

    2015-12-15

    TiO2 thin films were deposited by spin coating method. Silver ions were implanted into the films using a Metal Vapor Vacuum Arc implanter. The antibacterial ability of implanted films was tested using Escherichia coli removal under fluorescent irradiation and in the dark. The concentration of E. coli was evaluated by plating technique. The photocatalytic efficiency of the implanted films was studied by degradation of methyl orange under fluorescent illumination. The surface free energy of the implanted TiO2 films was calculated by contact angle testing. Vitamin C was used as radical scavengers to explore the antibacterial mechanism of the films. The results supported the model that both generation of reactive oxygen species and release of silver ions played critical roles in the toxic effect of implanted films against E. coli. XPS experimental results demonstrated that a portion of the Ag(Ag(3+)) ions were doped into the crystalline lattice of TiO2. As demonstrated by density functional theory calculations, the impurity energy level of subtitutional Ag was responsible for enhanced absorption of visible light. Ag ion-implanted TiO2 films with excellent antibacterial efficiency against bacteria and decomposed ability against organic pollutants could be potent bactericidal surface in moist environment. PMID:26093355

  9. Facile Aluminum Reduction Synthesis of Blue TiO2 with Oxygen Deficiency for Lithium-Ion Batteries.

    PubMed

    Zheng, Jing; Ji, Guangbin; Zhang, Peng; Cao, Xingzhong; Wang, Baoyi; Yu, Linhui; Xu, Zhichuan

    2015-12-01

    An ultrafacile aluminum reduction method is reported herein for the preparation of blue TiO2 nanoparticles (donated as Al-TiO2 , anatase phase) with abundant oxygen deficiency for lithium-ion batteries. Under aluminum reduction, the morphology of the TiO2 nanosheets changes from well-defined rectangular into uniform round or oval nanoparticles and the particle size also decreases from 60 to 31?nm, which can aggressively accelerate the lithium-ion diffusion. Electron paramagnetic resonance (EPR) and positron annihilation lifetime spectroscopy (PALS) results reveal that plentiful oxygen deficiencies relative to the Ti(3+) species were generated in blue Al-TiO2 ; this effectively enhances the electron conductivity of the TiO2 . X-ray photoelectron spectrometry (XPS) analysis indicates that a small peak is observed for the Al?O bond, which probably plays a very important role in the stabilization of the oxygen deficiencies/Ti(3+) species. As a result, the blue Al-TiO2 possesses significantly higher capacity, better rate performance, and a longer cycle life than the white pure TiO2 . Such improvements can be attributed to the decreased particle size, as well as the existence of the oxygen deficiencies/Ti(3+) species. PMID:26511473

  10. Controllable synthesis and luminescence properties of TiO2:Eu3+ nanorods, nanoparticles and submicrospheres by hydrothermal method

    NASA Astrophysics Data System (ADS)

    Qi, Xiaofei; Song, Yanhua; Sheng, Ye; Zhang, Hongguang; Zhao, Huan; Shi, Zhan; Zou, Haifeng

    2014-12-01

    Eu3+-doped TiO2 nanocrystals with three kinds of morphologies (nanorods, nanoparticles, and submicrospheres) have been successfully fabricated in cetyltrimethylammonium bromide (CTAB)/water/cyclohexane/n-pentanol reverse micelle by hydrothermal method for the first time and their photoluminescence (PL) properties have also been studied. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), FT-IR, and PL spectra were used to characterize the samples. The acidic and alkaline conditions of the microemulsion play an important role in determining the geometric morphologies of the final products. TiO2:Eu3+ with three different morphologies all exist only in anatase phase and show high luminescence intensity without further calcinations, which show its advantages of energy saving. The shape of emission spectra was independent of the morphologies of the products but the luminescence intensity of the TiO2:Eu3+ materials is strongly dependent on their morphology. The results show that TiO2:Eu3+ nanorods possess the strongest luminescence intensity among the three nanostructured samples.

  11. Photocatalytic degradation of methyl orange over nitrogen-fluorine codoped TiO2 nanobelts prepared by solvothermal synthesis.

    PubMed

    He, Zuoli; Que, Wenxiu; Chen, Jing; Yin, Xingtian; He, Yucheng; Ren, Jiangbo

    2012-12-01

    Anatase type nitrogen-fluorine (N-F) codoped TiO(2) nanobelts were prepared by a solvothermal method in which amorphous titania microspheres were used as the precursors. The as-prepared TiO(2) nanobelts are composed of thin narrow nanobelts and it is noted that there are large amount of wormhole-like mesopores on these narrow nanobelts. Photocatalytic activity of the N-F codoped TiO(2) nanobelts was measured by the reaction of photocatalytic degradation of methyl orange. Results indicate that the photocatalytic activity of the N-F codoped TiO(2) nanobelts is higher than that of P25, which is mainly ascribed to wormhole-like mesopores like prison, larger surface area, and enhanced absorption of light due to N-F codoping. Interestingly, it is also found that the photocatalytic activity can be further enhanced when tested in a new testing method because more photons can be captured by the nanobelts to stimulate the formation of the hole-electron pair. PMID:23148575

  12. Nanostructured nitrogen and carbon codoped TiO2 thin films: Synthesis, structural characterization and optoelectronic properties

    NASA Astrophysics Data System (ADS)

    Ruzybayev, Inci

    TiO2 is widely used in applications like photocatalysis, sensors, solar cells, and memory devices because it is inexpensive, abundant, nontoxic and stable in aqueous solution. Another exciting application where TiO 2 has the potential to be a very useful catalyst is the clean hydrogen generation using solar radiation. Energy consumption is increasing every year and, as a result, renewable and sustainable alternative energy sources are becoming increasingly important. Therefore, clean hydrogen generation research is becoming more and more important. This study aims at the preparation and characterization of nitrogen and carbon (N-C) codoped TiO2 photoanode material that could potentially be used in photoelectrochemical cells for hydrogen generation. The solar spectrum peaks around 500 nm (2.48 eV) which is in the visible part of the spectrum. The photoanode material to be used for solar hydrogen generation should absorb visible light photons to yield high efficiency. The challenge with TiO2 is that the wide band gap (3.00--3.20 eV) absorbs only ultra-violet (UV) photons and only a small percentage of the solar spectrum is in the UV range. There are various ways to overcome the challenge of sensitizing the material to visible light absorption and this study focuses on one of the most promising ways: band modification of TiO2 by N-C codoping. The role of pure oxygen pressure on pulsed laser deposited N-C codoped TiO2 films were investigated. At low pressures rutile phase of TiO2 was dominant and a microstructure with densely packed grains was obtained. However, at high pressures anatase phase became dominant and columnar structure was favored. Therefore, the anatase-rutile phase ratio as well as the microstructure of the films can be controlled by adjusting oxygen pressure and introducing N and C into the TiO2 matrix. Optimized oxygen pressure and higher doping concentrations yielded films with more effective absorption in the visible region. The preparation and characterization of pulsed laser deposited N-C codoped TiO2 thin films were investigated for dopant incorporation using N2 and CH4 gases. Polycrystalline anatase structured films were obtained. A 2 theta shift of the anatase (101) X-ray diffraction main peak towards lower values indicated carbon incorporation into the lattice. N incorporation was confirmed with observed Ti-N bonds using X-ray photoelectron spectroscopy. Optical data showed significant reduction, approximately 1.00 eV, of the band gap. The reduction of the band gap allowed the photons in the visible part of the solar spectrum to be absorbed. Through a collaborative work with scientists at Brookhaven National Laboratory and Yonsei University, precise modeling of the electronic structure of N-C codoped TiO2 films were carried out to reveal the underlying physics of band gap reduction. Experimental results were compared with first-principle density functional theory calculations. Hard X-ray photoelectron spectroscopy showed that O, N and C 2p states overlapped effectively and shifts in the valence band maximum towards the Fermi level were observed. Optical band gap results showed that N-C codoping is an effective route for band gap reduction in TiO2. Comparison of the measured valence band structure with theoretical photoemission density of states further revealed C substitution on the Ti site and N substitution on the O site. Finally, films grown using radio frequency (rf) magnetron sputtering were compared with the pulsed laser deposited films. Sputtered N-C codoped TiO2 films showed phase transformation from anatase to rutile at constant argon pressure with increasing doping concentration. Moreover, with slow-rate N-C codoping of TiO2, a texturing effect was observed in X-ray diffraction scans such that anatase (004) Bragg reflection plane became more favored over anatase (101). Optical band gap was reduced but the reduction was not as significant as in the films prepared with the pulsed laser deposition method. Electrochemical methods were applied in the photoelectrochemical cell and the sample prepared by using TiO2 target with 8% N and C atomic concentrations found to have slightly better photoactivity relative to the other N-C codoped samples. However, due to preferential anatase (004) plane, overall efficiency of N-C codoped films was low. In conclusion, pulsed laser deposition is preferred over rf magnetron deposition for the purpose of band gap reduction of TiO2 by N and C codoping. Pulsed laser deposited films showed continuum in C and N 2 p dopant states within the forbidden region and these states overlapped well with O 2p states. For this reason, optical band gap measurements showed significant reduction. Therefore, pulsed laser deposition of N-C codoped TiO2 films is a possible way of photoanode fabrication for solar hydrogen generation. (Abstract shortened by UMI.).

  13. Synthesis of Au/TiO2 Core-Shell Nanoparticles from Titanium Isopropoxide and Thermal Resistance Effect of TiO2 Shell

    NASA Astrophysics Data System (ADS)

    Kwon, Hyun-Woo; Lim, Young-Min; Tripathy, Suraj Kumar; Kim, Byoung-Gyu; Lee, Min-Sang; Yu, Yeon-Tae

    2007-04-01

    On the synthesis of Au/TiO2 core-shell structure nanoparticles, the effect of the concentration of Ti4+ on the morphology and optical property of Au/TiO2 core-shell nanoparticles was examined. A gold colloid was prepared by mixing HAuCl4\\cdot4H2O and C6H5Na3\\cdot2H2O. Titanium stock solution was prepared by mixing solutions of titanium(IV) isopropoxide (TTIP) and triethanolamine (TEOA). The concentration of the Ti4+ stock solution was adjusted to 0.01-0.3 mM, and then the gold colloid was added to the Ti4+ stock solution. Au/TiO2 core-shell structure nanoparticles could be prepared by the hydrolysis of the Ti4+ stock solution at 80 C. The size of the as-prepared Au nanoparticles was 15 nm. The thickness of the TiO2 shell on the surface of gold particles was about 10 nm. The absorption peak of the Au/TiO2 core-shell nanoparticles shifted towards the red end of the spectrum by about 3 nm because of the formation of the TiO2 shell on the surface of the gold particles. The crystal structure of the TiO2 shell showed an anatase phase. The increase in the Au crystallite size of the Au/TiO2 nanoparticles with increasing heat treatment temperature is smaller than that in the pure Au nanoparticles. This may be due to the encapsulation of Au particles with the TiO2 shell that prevents the growth of the nanoparticle nucleation.

  14. Electrical and electro-optical investigations of liquid crystal cells containing TiO2-V2O5 thin films prepared by sol-gel synthesis

    NASA Astrophysics Data System (ADS)

    Bruno, V.; Cazzanelli, E.; Scaramuzza, N.; Strangi, G.; Ceccato, R.; Carturan, G.

    2002-11-01

    This work is aimed at a deeper understanding of the polarity-sensitive electro-optical response observed in a liquid crystal (LC) cell with asymmetric insertion of thin films of TiO2-V2O5 having a Ti/V atomic ratio of 1/1, prepared by sol-gel synthesis on a transparent indium tin oxide substrate. After preliminary structural characterization of the films, the electro-optical response of the liquid crystal cells containing a TiO2-V2O5 layer has been analyzed. The voltage thresholds of the Freedericksz transition are increased or decreased for anodic or the cathodic polarization, respectively, of the TiO2-V2O5 film. In such a way a polarity-sensitive electro-optical response is generated that has the same frequency as the field applied. Impedance and cyclic voltammetry measurements were performed on liquid crystal cells having TiO2-V2O5 films inserted as the electrode, for as-deposited films as well as for films annealed at 400 degC. The LC cell containing thermally annealed Ti/V 1/1 film showed a rectified square wave response instead of the usual impulsive one, quadratic versus electric field. On the contrary, the LC cell containing as-deposited Ti/V 1/1 film exhibits more complex electro-optical behavior with a weak asymmetric response. All the measurements suggest that charge redistribution of the ions, always present in the films, occurs during the intercalation-deintercalation processes induced by the voltage applied, and this is responsible for changes of the effective electric field that act on the liquid crystal layer.

  15. Photocatalytic degradation of monoethanolamine in wastewater using nanosized TiO2 loaded on clinoptilolite

    NASA Astrophysics Data System (ADS)

    Khodadoust, Saeid; Sheini, Azarmidokht; Armand, Nezam

    2012-06-01

    The use of titanium dioxide (TiO2) as photocatalyst to degrade the organic compounds is an effective method of oxidation process and has been widely studied in environmental engineering. In this investigation photocatalytic degradation of monoethanolamine (MEA) using TiO2 (in form of anatase) loaded on surface of clinoptilolite (CP) (TiO2-CP) in wastewater was studied. The surface interaction between TiO2 and CP was investigated by means of transmission electron microscope (TEM), atom force microscope (AFM), IR and X-ray diffraction (XRD). Then the effects of some parameters such as pH, amount of photocatalyst, and initial concentration of MEA on degradation percentage of MEA were examined. The obtained results show that the TiO2-CP is an active photocatalyst as compared with TiO2 nanopowders. All these results indicated that this proposed method can be useful for the development of wastewater treatment applications.

  16. Synthesis of TiO2 nanotubes with ZnO nanoparticles to achieve antibacterial properties and stem cell compatibility.

    PubMed

    Liu, Wenwen; Su, Penglei; Chen, Su; Wang, Na; Ma, Yuanping; Liu, Yiran; Wang, Jinshu; Zhang, Zhenting; Li, Hongyi; Webster, Thomas J

    2014-08-01

    To endow titanium (Ti) with antibacterial properties, different concentrations of zinc oxide (ZnO) nanoparticles were decorated on anodized titanium dioxide (TiO2) nanotubes by a simple hydrothermal treatment method. The particle sizes of ZnO, which were evenly distributed and tightly adherent to the walls of the Ti nanotubes, ranged from 20-50 nm. Results from this study showed that Zn was released from the TiO2 nanotubes in a constant, slow, and biologically inspired manner. Importantly, the results showed that the ZnO decorated TiO2 nanotubular samples inhibited Streptococcus mutants and Porphyromonas gingivalis growth compared to control unmodified Ti samples. Specifically, S. mutants and P. gingivalis growth were both reduced 45-85% on the ZnO decorated Ti samples compared to Ti controls after 7 days of culture. When examining the mechanism of action, it has been further found for the first time that the ZnO decorated Ti samples inhibited the expression of Streptococcus mutans bacterial adhesion genes. Lastly, the results showed that the same samples which decreased bacterial growth the most (0.015 M precursor Zn(NO3)2 samples) did not inhibit mesenchymal stem cell growth compared to Ti controls for up to 7 days. In summary, results from this study showed that compared to plain TiO2 nanotubes, TiO2 decorated with 0.015 M ZnO provided unprecedented antibacterial properties while maintaining the stem cell proliferation capacity necessary for enhancing the use of Ti in numerous medical applications, particularly in dentistry. PMID:24971593

  17. Synthesis of TiO2 nanotubes with ZnO nanoparticles to achieve antibacterial properties and stem cell compatibility

    NASA Astrophysics Data System (ADS)

    Liu, Wenwen; Su, Penglei; Chen, Su; Wang, Na; Ma, Yuanping; Liu, Yiran; Wang, Jinshu; Zhang, Zhenting; Li, Hongyi; Webster, Thomas J.

    2014-07-01

    To endow titanium (Ti) with antibacterial properties, different concentrations of zinc oxide (ZnO) nanoparticles were decorated on anodized titanium dioxide (TiO2) nanotubes by a simple hydrothermal treatment method. The particle sizes of ZnO, which were evenly distributed and tightly adherent to the walls of the Ti nanotubes, ranged from 20-50 nm. Results from this study showed that Zn was released from the TiO2 nanotubes in a constant, slow, and biologically inspired manner. Importantly, the results showed that the ZnO decorated TiO2 nanotubular samples inhibited Streptococcus mutants and Porphyromonas gingivalis growth compared to control unmodified Ti samples. Specifically, S. mutants and P. gingivalis growth were both reduced 45-85% on the ZnO decorated Ti samples compared to Ti controls after 7 days of culture. When examining the mechanism of action, it has been further found for the first time that the ZnO decorated Ti samples inhibited the expression of Streptococcus mutans bacterial adhesion genes. Lastly, the results showed that the same samples which decreased bacterial growth the most (0.015 M precursor Zn(NO3)2 samples) did not inhibit mesenchymal stem cell growth compared to Ti controls for up to 7 days. In summary, results from this study showed that compared to plain TiO2 nanotubes, TiO2 decorated with 0.015 M ZnO provided unprecedented antibacterial properties while maintaining the stem cell proliferation capacity necessary for enhancing the use of Ti in numerous medical applications, particularly in dentistry.

  18. Instability of Hydrogenated TiO2

    SciTech Connect

    Nandasiri, Manjula I.; Shutthanandan, V.; Manandhar, Sandeep; Schwarz, Ashleigh M.; Oxenford, Lucas S.; Kennedy, John V.; Thevuthasan, Suntharampillai; Henderson, Michael A.

    2015-11-06

    Hydrogenated TiO2 (H-TiO2) is toted as a viable visible light photocatalyst. We report a systematic study on the thermal stability of H-implanted TiO2 using X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), Rutherford backscattering spectrometry (RBS) and nuclear reaction analysis (NRA). Protons (40 keV) implanted at a ~2 atom % level within a ~120 nm wide profile of rutile TiO2(110) were situated ~300 nm below the surface. NRA revealed that this H-profile broadened preferentially toward the surface after annealing at 373 K, dissipated out of the crystal into vacuum at 473 K, and was absent within the beam sampling depth (~800 nm) at 523 K. Photoemission showed that the surface was reduced in concert with these changes. Similar anneals had no effect on pristine TiO2(110). The facile bulk diffusivity of H in rutile, as well as its activity toward interfacial reduction, significantly limits the utilization of H-TiO2 as a photocatalyst. This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. The research was performed using the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory.

  19. Instability of Hydrogenated TiO2.

    PubMed

    Nandasiri, Manjula I; Shutthanandan, Vaithiyalingam; Manandhar, Sandeep; Schwarz, Ashleigh M; Oxenford, Lucas; Kennedy, John V; Thevuthasan, Suntharampillai; Henderson, Michael A

    2015-11-19

    Hydrogenated TiO2 (H-TiO2) is touted as a viable visible light photocatalyst. We report a systematic study on the thermal stability of H-implanted TiO2 using nuclear reaction analysis (NRA), Rutherford backscattering spectrometry, ultraviolet photoelectron spectroscopy, and X-ray photoelectron spectroscopy. Protons (40 keV) implanted at a ?2 atom % level within a ?120 nm wide profile of rutile TiO2(110) were situated ?300 nm below the surface. NRA revealed that this H-profile broadened toward the surface after annealing at 373 K, dissipated out of the crystal into vacuum at 473 K, and was absent within the beam sampling depth (?800 nm) at 523 K. Photoemission showed that the surface was reduced in concert with these changes. Similar anneals had no effect on pristine TiO2(110). The facile bulk diffusivity of H in rutile at low temperatures, as well as its interfacial activity toward reduction, significantly limits the utilization of H-TiO2 as a photocatalyst. PMID:26545303

  20. Low-frequency ultrasound induces oxygen vacancies formation and visible light absorption in TiO2 P-25 nanoparticles.

    PubMed

    Osorio-Vargas, Paula A; Pulgarin, Cesar; Sienkiewicz, Andrzej; Pizzio, Luis R; Blanco, Mirta N; Torres-Palma, Ricardo A; Pétrier, Christian; Rengifo-Herrera, Julián A

    2012-05-01

    Low-frequency ultrasound (LFUS) irradiation induces morphological, optical and surface changes in the commercial nano-TiO(2)-based photocatalyst, Evonik-Degussa P-25. Low-temperature electron spin resonance (ESR) measurements performed on this material provided the first experimental evidence for the formation of oxygen vacancies (V(o)), which were also found responsible for the visible-light absorption. The V(o) surface defects might result from high-speed inter-particle collisions and shock waves generated by LFUS sonication impacting the TiO(2) particles. This is in contrast to a number of well-established technologies, where the formation of oxygen vacancies on the TiO(2) surface often requires harsh technological conditions and complicated procedures, such as annealing at high temperatures, radio-frequency-induced plasma or ion sputtering. Thus, this study reports for the first time the preparation of visible-light responsive TiO(2)-based photocatalysts by using a simple LFUS-based approach to induce oxygen vacancies at the nano-TiO(2) surface. These findings might open new avenues for synthesis of novel nano-TiO(2)-based photocatalysts capable of destroying water or airborne pollutants and microorganisms under visible light illumination. PMID:22192787

  1. A study on the band gap and the doping level of V-doped TiO2 with respect to the visible-light photocatalytic activity.

    PubMed

    Choi, Ah Young; Han, Chul-Hee

    2014-10-01

    The visible-light response is a necessary but not a sufficient condition for semiconductor photocatalyst to function as a visible-light active photocatalyst. To shed more light on the issue of visible-light response of semiconductor photocatalysts, the band-gaps and the doping levels of multivalency vanadium-doped TiO2 were investigated from sonochemically prepared samples. Sonochemical doping, which relies on acoustic cavitation phenomena, is a one step process excluding chemical synthesis, and three types of vanadium doped TiO2 nanopowder were prepared using such vanadium oxides as V2O3, V2O4, and V2O5. The band-gaps of as-prepared samples were obtained from the diffuse reflectance measurement, and the doping levels of vanadium in these samples were measured using electron probe micro analyzer. In addition, X-ray photoelectron spectrometer was introduced to complement electron probe micro analyzer. Furthermore, quantum-chemical calculations on simple cluster models for TiO2 and V-doped TiO2 were performed, and the resulting computational results in conjunction with experimental findings provided valuable information on oxygen vacancy and doping mechanism. PMID:25942925

  2. Photoelectrochemical synthesis, optical properties and plasmon-induced charge separation behaviour of gold nanodumbbells on TiO2

    NASA Astrophysics Data System (ADS)

    Katagi, Yu; KazumaPresent Address: Riken, Hirosawa, Wako, Saitama 351-0198, Japan., Emiko; Tatsuma, Tetsu

    2014-11-01

    Chemically synthesized, commercially available Au nanorods were adsorbed on a TiO2 thin film, and photoelectrochemically transformed to Au nanodumbbells by photoelectrochemical deposition of Au at both ends of the NRs under UV irradiation. The nanodumbbells show about fourfold greater light absorption than the nanorods based on localized surface plasmon resonance (LSPR) in the visible to near infrared region. The absorption intensities and wavelengths of the Au nanodumbbells depend on the size of their spheroidal caps, which can be controlled by UV exposure time. The nanodumbbells can be applied to LSPR sensors, as their absorption peak redshifts with increasing local refractive index near the metal surface. The Au nanodumbbells on TiO2 are also suitable for photofunctional materials and devices based on plasmon-induced charge separation (PICS) at the Au-TiO2 interface, because of their higher photoabsorption intensity, better wavelength tunability and greater PICS efficiency than nanorods.

  3. Synthesis of TiO2 nanotube array thin films and determination of the optical constants using transmittance data

    NASA Astrophysics Data System (ADS)

    Ahmadi, K.; Abdolahzadeh Ziabari, Ali; Mirabbaszadeh, K.; Ahmadi, S.

    2015-01-01

    TiO2 nanotube arrays were grown on glass substrate by ZnO nanorod sol-gel template process. XRD analysis and FESEM microscopy were employed to characterize the structural and morphological properties of the prepared nanotube. EDX and UV-Vis spectroscopy were used to assess the chemical composition and study the optical properties of the film. An optical model has been performed to simulate the optical constants and thicknesses of the films from transmittance data using the Levenberg-Marquardt algorithm via Drude model. The simulated transmittance is in good agreement with the measured spectrum in the whole measurement wavelength range. The refractive index and extinction coefficient, thickness and dielectric function of TiO2 nanotube films were calculated by Drude model. Also, the related absorption coefficient, optical bandgap and porosity were determined.

  4. Large-Scale Synthesis of Transition-Metal-Doped TiO2 Nanowires with Controllable Overpotential

    SciTech Connect

    Liu, Bin; Chen, HaoMing; Liu, Chong; Andrews, Sean; Han, Chris; Yang, Peidong

    2013-03-13

    Practical implementation of one-dimensional semiconductors into devices capable of exploiting their novel properties is often hindered by low product yields, poor material quality, high production cost, or overall lack of synthetic control. Here, we show that a molten-salt flux scheme can be used to synthesize large quantities of high-quality, single-crystalline TiO2 nanowires with controllable dimensions. Furthermore, in situ dopant incorporation of various transition metals allows for the tuning of optical, electrical, and catalytic properties. With this combination of control, robustness, and scalability, the molten-salt flux scheme can provide high-quality TiO2 nanowires to satisfy a broad range of application needs from photovoltaics to photocatalysis.

  5. TiO2-catalyzed synthesis of sugars from formaldehyde in extraterrestrial impacts on the early Earth

    PubMed Central

    Civiš, Svatopluk; Szabla, Rafał; Szyja, Bartłomiej M.; Smykowski, Daniel; Ivanek, Ondřej; Knížek, Antonín; Kubelík, Petr; Šponer, Jiří; Ferus, Martin; Šponer, Judit E.

    2016-01-01

    Recent synthetic efforts aimed at reconstructing the beginning of life on our planet point at the plausibility of scenarios fueled by extraterrestrial energy sources. In the current work we show that beyond nucleobases the sugar components of the first informational polymers can be synthesized in this way. We demonstrate that a laser-induced high-energy chemistry combined with TiO2 catalysis readily produces a mixture of pentoses, among them ribose, arabinose and xylose. This chemistry might be highly relevant to the Late Heavy Bombardment period of Earth’s history about 4–3.85 billion years ago. In addition, we present an in-depth theoretical analysis of the most challenging step of the reaction pathway, i.e., the TiO2-catalyzed dimerization of formaldehyde leading to glycolaldehyde. PMID:26979666

  6. TiO2-catalyzed synthesis of sugars from formaldehyde in extraterrestrial impacts on the early Earth.

    PubMed

    Civiš, Svatopluk; Szabla, Rafał; Szyja, Bartłomiej M; Smykowski, Daniel; Ivanek, Ondřej; Knížek, Antonín; Kubelík, Petr; Šponer, Jiří; Ferus, Martin; Šponer, Judit E

    2016-01-01

    Recent synthetic efforts aimed at reconstructing the beginning of life on our planet point at the plausibility of scenarios fueled by extraterrestrial energy sources. In the current work we show that beyond nucleobases the sugar components of the first informational polymers can be synthesized in this way. We demonstrate that a laser-induced high-energy chemistry combined with TiO2 catalysis readily produces a mixture of pentoses, among them ribose, arabinose and xylose. This chemistry might be highly relevant to the Late Heavy Bombardment period of Earth's history about 4-3.85 billion years ago. In addition, we present an in-depth theoretical analysis of the most challenging step of the reaction pathway, i.e., the TiO2-catalyzed dimerization of formaldehyde leading to glycolaldehyde. PMID:26979666

  7. Sol-gel synthesis and characterization of nanostructured TiO2/gamma-Al2O3 composite membranes.

    PubMed

    Kwon, Hyuk Taek; Kim, Jinsoo

    2011-08-01

    Nanostructured TiO2/gamma-Al2O3 composite membranes with various compositions were prepared by sol-gel method. The structural and textural properties of the composite membranes could be modified by the mixing ratio of boehmite sol and titania sol, and calcination temperature. The existence of alumina in the composite membranes retarded anatase-to-rutile phase transformation, resulting in stabilization of textural properties. Defect-free composite membranes were confirmed by gas permeation test. PMID:22103175

  8. Synthesis, characterization and photocatalytic applications of Zn-doped TiO2 nanoparticles by sol-gel method

    NASA Astrophysics Data System (ADS)

    Aware, Dinkar V.; Jadhav, Shridhar S.

    2015-12-01

    Mesoporous, nanocrystalline, Zinc-doped TiO2 nanoparticles were synthesized by surfactant-assisted sol-gel method. The X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET), and UV-VIS spectrometer techniques were used to characterize the synthesized products. XRD results confirm the formation of the anatase phase for the TiO2 nanoparticles, with crystallite sizes in the range of 12.6-18.1 nm. The small crystallite size and doping with Zinc ion inhibit phase transformation and promote the growth of the TiO2 anatase phase. The SEM and TEM micrographs revealed the spherical-like morphology with average diameter of about 12-18 nm which is in agreement with XRD results. The optical study shows that doping ions lead to an increase in the absorption edge wavelength and a decrease in the band gap energy of titania. Photocatalytic activity of the synthesized nanomaterials was successfully tested for photodegradation of methyl red as model pollutant under UV light. The photocatalytic activity results confirm that the doped nanoparticles show higher activity than undoped titania. The small grain size, high crystallinity, high specific surface area and decrease in the band gap energy of doped titania may be responsible for the high photocatalytic activity.

  9. Biodiesel synthesis by TiO2-ZnO mixed oxide nanocatalyst catalyzed palm oil transesterification process.

    PubMed

    Madhuvilakku, Rajesh; Piraman, Shakkthivel

    2013-12-01

    Biodiesel is a promising alternating environmentally benign fuel to mineral diesel. For the development of easier transesterification process, stable and active heterogeneous mixed metal oxide of TiO2-ZnO and ZnO nanocatalysts were synthesized and exploited for the palm oil transesterification process. The synthesized catalysts were characterized by XRD, FT-IR, and FE-SEM studies for their structural and morphological characteristics. It was found that TiO2-ZnO nanocatalyst exhibits good catalytic activity and the catalytic performance was greatly depends on (i) catalyst concentration (ii) methanol to oil molar ratio (iii) reaction temperature and (iv) reaction time. A highest 98% of conversion was obtained at the optimum reaction parameters with 200 mg of catalyst loading and the biodiesel was analyzed by TLC and (1)H NMR techniques. The TiO2-ZnO nanocatalyst shows good catalytic performance over the ZnO catalyst, which could be a potential candidate for the large-scale biodiesel production from palm oil at the reduced temperature and time. PMID:24148858

  10. Synthesis, characterization and photocatalytic study of graphene oxide and cerium co-doped in TiO2

    NASA Astrophysics Data System (ADS)

    Li, Jia; Zhang, Quan; Zeng, Liping; He, Deliang

    2016-02-01

    The nanocomposite of titanium dioxide (TiO2) combined with graphene oxide (GO) and cerium (Ce) was successfully synthesized via sol-gel method followed by calcining at 300 °C for 2 h. The composite was characterized by X-ray diffraction, ultraviolet-visible diffuse reflectance spectroscopy, scanning electron microscopy (SEM) and Brunauer-Emmett-Teller. The photocatalytic activity was evaluated by photodegradation of methylene blue (MB) under the irradiation of xenon lamp. This study demonstrated that GO and Ce co-doped in TiO2 could broaden absorption edge to the visible light and increase surface area of samples. SEM observation showed that addition of Ce could solve the problem of the agglomeration of GO under the same experimental conditions. Moreover, the MB photocatalytic degradation rate of the composite with GO doped for 0.2 % and Ce doped for 0.6 % (mass ratio) was up to 97.7 %, which was largely attributed to the synergistic effects in the GO, Ce and TiO2 system.

  11. A simple, template-free route for the synthesis of bicrystalline mesoporous TiO2 materials.

    PubMed

    Su, Zhili; Yang, Chun

    2009-11-01

    A simple, low-temperature and green template-free synthetic route has been used to prepare mesoporous TiO2 with anatase and brookite bicrystalline framework. This route combines a quick hydrolysis at ambient temperature and sequent hydrothermal treatment at 80-180 egrees C without further calcination. The resultant materials were characterized by XRD, TEM and nitrogen adsorption. It was found that the wormhole-like mesostructure and the bicrystalline framework could be formed in the hydrothermal treatment, and high surface areas of 160-250 m2 x g(-1) could be obtained due to the avoidance of calcination at high temperature. The effect of hydrothermal temperature on mesoporosity and crystallinity was also investigated and discussed. The as-prepared TiO2 samples exhibited higher photocatalytic activities than pure anatase TiO2 and corresponding calcined samples in the degradation of methyl orange, which can be attributed to the combined effect of composite crystalline phase and high surface area. PMID:19908583

  12. Synthesis, structural and magnetic behavior of undoped and Mn-doped anatase TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Mahmood, Asif; Ramay, Shahid M.; Al-Zaghayer, Yousef S.; Atiq, Shahid; Saleem, Murtaza; Al Masary, Waheed A.; Haider, Sajjad

    2015-02-01

    Ti1-xMnxO2 (x = 0, 0.05) nanoparticles have been synthesized using chemically derived self-propagating combustion reaction method. X-ray diffraction studies demonstrate the formation of anatase phase of TiO2 belonging to 141/amd space group in both samples without the formation of any impurity phase. The incorporation of 5 at.% Mn content does not produce any changes in crystal structure which reveals the exact substitution of Mn atoms at Ti sites. Some change in lattice parameters and crystallite size is observed in Mn-doped composition, attributed to the difference in ionic radii. The size of grains obtained using scanning electron micrographs shows the consistent trend with the crystallite size evaluated from X-ray diffraction analysis. Energy dispersive X-ray analysis confirms the incorporation of Mn content in TiO2 structure. Ferromagnetic behavior detected only in Mn-doped TiO2 composition correspond to the strong Mn d-shell contribution.

  13. OH radical generation in a photocatalytic reactor using TiO2 nanotube plates.

    PubMed

    Lee, Kangpyung; Ku, Haemin; Pak, Daewon

    2016-04-01

    In order to use TiO2 nanotubes grown on a Ti plate as a photocatalyst, self-organized oxide nanotube layers were grown by anodization in a glycerol based electrolyte. The ultimate conditions for the synthesis of the TiO2 nanotube array on the Ti plate were investigated by comparing the morphology, length, and inner diameter of the nanotubes. They were significantly affected by the applied anodic voltage, anodization time, and composition of the electrolyte such as the water and fluoride ion concentration. The crystallographic structures of TiO2 nanotubes before and after annealing were compared. The photocatalytic reactor used in this study consisted of two parallel and closely spaced TiO2 nanotube plates. The plates were squares while a UV lamp was inserted perpendicularly to them. OH radical generation in the photocatalytic reactor was monitored by using a probe compound, parachlorobenzoate (pCBA). The steady state OH radical concentration was compared depending on the length of nanotubes and crystallographic structure. The longer the nanotubes, the higher the steady state OH radical concentration. PMID:26855214

  14. Palladium nanoparticles anchored to anatase TiO2 for enhanced surface plasmon resonance-stimulated, visible-light-driven photocatalytic activity

    PubMed Central

    Leong, Kah Hon; Chu, Hong Ye; Ibrahim, Shaliza

    2015-01-01

    Summary Freely assembled palladium nanoparticles (Pd NPs) on titania (TiO2) nano photocatalysts were successfully synthesized through a photodeposition method using natural sunlight. This synthesized heterogeneous photocatalyst (Pd/TiO2) was characterized through field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), BET surface area, UV–vis diffuse reflectance spectra (UV-DRS), Raman and photoluminescence (PL) analyses. The simple and smart synthesis anchored well the deposition with controlled Pd NPs size ranging between 17 and 29 nm onto the surface of TiO2. Thus, it gives the characteristic for Pd NPs to absorb light in the visible region obtained through localized surface plasmon resonance (LSPRs). Apparently, the photocatalytic activity of the prepared photocatalysts was evaluated by degrading the endocrine disrupting compound (EDC) amoxicillin (AMX) excited under an artificial visible light source. In the preliminary run, almost complete degradation (97.5%) was achieved in 5 h with 0.5 wt % Pd loading and the degradation followed pseudo-first-order kinetics. The reusability trend proved the photostability of the prepared photocatalysts. Hence, the study provides a new insight about the modification of TiO2 with noble metals in order to enhance the absorption in the visible-light region for superior photocatalytic performance. PMID:25821683

  15. Synthesis, characterization and photocatalytic evaluation of visible light activated C-doped TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Liu, Guanglong; Han, Changseok; Pelaez, Miguel; Zhu, Duanwei; Liao, Shuijiao; Likodimos, Vlassis; Ioannidis, Nikolaos; Kontos, Athanassios G.; Falaras, Polycarpos; Dunlop, Patrick S. M.; Byrne, J. Anthony; Dionysiou, Dionysios D.

    2012-07-01

    We have demonstrated heterogeneous photocatalytic degradation of microcystin-LR (MC-LR) by visible light activated carbon doped TiO2 (C-TiO2) nanoparticles, synthesized by a modified sol-gel route based on the self-assembly technique exploiting oleic acid as a pore directing agent and carbon source. The C-TiO2 nanoparticles crystallize in anatase phase despite the low calcination temperature of 350?C and exhibit a highly porous structure that can be optimized by tuning the concentration of the oleic acid surfactant. The carbon modified nanomaterials exhibited enhanced absorption in the broad visible light region together with an apparent red shift in the optical absorption edge by 0.5 eV (2.69 eV), compared to the 3.18 eV of reference anatase TiO2. Carbon species were identified by x-ray photoelectron spectroscopy analysis through the formation of both Ti-C and C-O bonds, indicative of substitution of carbon for oxygen atoms and the formation of carbonates, respectively. Electron paramagnetic resonance spectroscopy revealed the formation of two carbon related paramagnetic centers in C-TiO2, whose intensity was markedly enhanced under visible light illumination, pointing to the formation of localized states within the anatase band gap, following carbon doping. The photocatalytic activity of C-TiO2 nanomaterials was evaluated for the degradation of MC-LR at pH 3.0 under visible light (? > 420 nm) irradiation. The doped materials showed a higher MC-LR degradation rate than reference TiO2, behavior that is attributed to the incorporation of carbon into the titania lattice.

  16. Low-temperature synthesis of soluble and processable organic-capped anatase TiO2 nanorods.

    PubMed

    Cozzoli, P Davide; Kornowski, Andreas; Weller, Horst

    2003-11-26

    We demonstrate the controlled growth of high aspect ratio anatase TiO2 nanorods by hydrolysis of titanium tetraisopropoxide (TTIP) in oleic acid (OLEA) as surfactant at a temperature as low as 80 degrees C. Chemical modification of TTIP by OLEA is proven to be a rational strategy to tune the reactivity of the precursor toward water. The most influential factors in shape control of the nanoparticles are investigated by simply manipulating their growth kinetics. The presence of tertiary amines or quaternary ammonium hydroxides as catalysts is essential to promote fast crystallization under mild conditions. The novelty of the present approach relies on the large-scale production of organic-capped TiO2 nanocrystals to which standard processing of colloidal nanocrystals, such as surface ligand exchange, can be applied for the first time. Concentrated colloidal titania dispersions can be prepared for a number of fundamental studies in homogeneous solutions and represent a new source of easily processable oxide material for many technological applications. PMID:14624603

  17. Synthesis, characterization and binding interactions of amino acids coupled perylene diimides with colloidal doped and undoped TiO2

    NASA Astrophysics Data System (ADS)

    Kavery, E.; Nagarajan, N.; Paramaguru, G.; Renganathan, R.

    2015-07-01

    Two sensitizers based on amino acids coupled with perylene moiety having absorption in the visible region have been designed and their interaction with doped and undoped TiO2 for the application of dye sensitized solar cells (DSSCs) has been studied. The synthesized compounds PDI-PA and PDI-AA were characterized using 1H and 13C NMR, Mass and FT-IR spectroscopic techniques. The optical properties and lifetime measurements of the sensitizers were analyzed using various solvents with different polarity. The solvatochromism effect was studied using Lippert-Mataga plot. The electrochemical studies of both dyes were investigated in DMF with various scan rate ranging from 200 to 1000 mV s-1. Colloidal doped and undoped TiO2 was prepared and characterized by using absorption measurements. Binding ability of the sensitizers with the nanoparticles was studied through absorption, fluorescence quenching, cyclic voltammetry and FT-IR measurements. Results obtained from all the above analysis suggest the mode of quenching may be static. The binding constant values were calculated using Kamat-Fox equation indicates the binding behavior of the sensitizers with the nanoparticles. The fluorescence quenching was mainly attributed to electron transfer from the excited state of PDI's to the conduction band of colloidal semiconductors. The electron transfer mechanism was explained based on the Rehm-Weller equation as well as the energy level diagram.

  18. Electric-field-assisted swirl-flame synthesis of high-porosity nanostructured titania (TiO2) films

    NASA Astrophysics Data System (ADS)

    Kulkarni, Aditi

    Nanostructured mesoporous metal-oxide films can be used in various applications, including dye-sensitized solar cells based on titania. Optimization of the properties of these films is crucial in improving their efficiency. Nanostructured TiO2 films with high uniformity and porosity are grown in a stagnation swirl flame setup under an applied electric field. The effects of external electric-field magnitude and polarity are studied for different substrate temperatures and precursor loading concentrations. The results show considerable differences in film characteristics, for differing electric fields, with more columnar structures and higher porosities under low voltages up to +/-400 V. The films have higher packing density at higher voltages of +/-800 V. At low substrate temperatures, the morphology and structure are more prominent owing to less on-substrate sintering of the nanoparticles. At low voltages, oppositely-charged particles will be attracted to the substrate increasing the electrophoretic velocity but decreasing the in-flame agglomeration; while at high voltages, the particles will be repelled and stay in the flame longer, thus increasing the in-flame agglomeration. A simple model is proposed which predicts the trend for deposition of particles and formation of nanostructured TiO2 films of a given morphology by balancing the effects of thermophoresis, electrophoresis, and Brownian motion of the particles. The model's trend for packing density agrees with the experiments.

  19. One-pot synthesis of Cd1- x In x Te semiconductor as a sensitizer on TiO2 mesoporous for potential solar cell devices

    NASA Astrophysics Data System (ADS)

    Singsa-ngah, Mutika; Tubtimtae, Auttasit

    2015-08-01

    We demonstrated the synthesis of a new ternary semiconductor nanoparticle Cd1- x In x Te, as a sensitizer for solar cell devices via a one-pot mixed precursor solution. The Cd1- x In x Te nanoparticles (NPs) were prepared using the chemical bath deposition process and coated onto a TiO2 photoelectrode. A tetragonal structure of Cd1- x In x Te NPs was constituted on the TiO2 photoelectrode with a diameter range 25-30 nm, and the atomic percentages of the chemical elements showed that the structure could be Cd0.1In0.9Te incorporated with the CdIn2Te4 structure. When the dipping cycle increased, the energy gaps became narrower from 1.2 to 0.6 eV due to the increasing amount and the larger size of nanoparticles. The photovoltaic properties of various cycles were investigated, and the best power conversion efficiency ( ?) of 0.49 % under full 1 sun illumination (100 mW/cm2, AM 1.5G) was obtained for the seven-cycle-Cd1- x In x Te NPs with a current density ( J sc) of 2.64 mA/cm2, an open-circuit voltage ( V oc) of 638 mV, and a fill factor ( FF) of 0.29. The efficiency of this material can be further improved for higher potential solar cell devices.

  20. Preparation of TiO2 Nanoparticle Loaded MCM-41 and Study of Its Photo-Catalytic Activity Towards Decolorization of Methyl Orange.

    PubMed

    Naik, Bhanudas; Hazra, Subhenjit; Dayananda, Desagani; Prasad, V S; Ghosh, Narendra Nath

    2015-09-01

    Here we report the synthesis of TiO2 nanoparticle loaded mesoporous MCM-41 photocatalysts for degradation of methyl orange dye in aqueous medium under sunlight exposure. TiO2 loaded MCM-41 was synthesized by impregnation method. Anatase form of TiO2 nanoparticles were formed in the porous matrix of the silicate MCM-41. The synthesized materials were characterized using powder X-ray diffraction method, surface area and porosimetry analysis; diffuse reflectance analysis, particle size analysis and transmission electron microscopy. The photocatalytic property of the synthesized materials were investigated towards the degradation of methyl orange under sunlight exposure and monitored by UV-visible spectrophotometer. Synthesized catalysts showed high photocatalytic activity for the degradation of methyl orange. PMID:26716226

  1. Hyperbranched anatase TiO2 nanocrystals: nonaqueous synthesis, growth mechanism, and exploitation in dye-sensitized solar cells.

    PubMed

    Buonsanti, Raffaella; Carlino, Elvio; Giannini, Cinzia; Altamura, Davide; De Marco, Luisa; Giannuzzi, Roberto; Manca, Michele; Gigli, Giuseppe; Cozzoli, P Davide

    2011-11-30

    A colloidal crystal-splitting growth regime has been accessed, in which TiO(2) nanocrystals, selectively trapped in the metastable anatase phase, can evolve to anisotropic shapes with tunable hyperbranched topologies over a broad size interval. The synthetic strategy relies on a nonaqueous sol-gel route involving programmed activation of aminolysis and pyrolysis of titanium carboxylate complexes in hot surfactant media via a simple multi-injection reactant delivery technique. Detailed investigations indicate that the branched objects initially formed upon the aminolysis reaction possess a strained monocrystalline skeleton, while their corresponding larger derivatives grown in the subsequent pyrolysis stage accommodate additional arms crystallographically decoupled from the lattice underneath. The complex evolution of the nanoarchitectures is rationalized within the frame of complementary mechanistic arguments. Thermodynamic pathways, determined by the shape-directing effect of the anatase structure and free-energy changes accompanying branching and anisotropic development, are considered to interplay with kinetic processes, related to diffusion-limited, spatially inhomogeneous monomer fluxes, lattice symmetry breaking at transient Ti(5)O(5) domains, and surfactant-induced stabilization. Finally, as a proof of functionality, the fabrication of dye-sensitized solar cells based on thin-film photoelectrodes that incorporate networked branched nanocrystals with intact crystal structure and geometric features is demonstrated. An energy conversion efficiency of 6.2% has been achieved with standard device configuration, which significantly overcomes the best performance ever approached with previously documented prototypes of split TiO(2) nanostructures. Analysis of the relevant photovoltaic parameters reveals that the utilized branched building blocks indeed offer light-harvesting and charge-collecting properties that can overwhelm detrimental electron losses due to recombination and trapping events. PMID:22004553

  2. Characterization and mechanistic analysis of the visible light response of cerium and nitrogen co-doped TiO2 nano-photocatalyst synthesized using a one-step technique.

    PubMed

    Yu, Tao; Tan, Xin; Zhao, Lin

    2010-04-15

    Cerium and nitrogen co-doped anatase TiO(2) nanoparticles were synthesized using a one-step technique via a modified sol-gel process and characterized by XRD, BET, DRS, Raman and XPS. The photocatalytic mechanism of the degradation of methylene blue (MB) under fluorescent light and visible light irradiation was studied. Co-doping cerium and nitrogen in the crystal lattice of TiO(2) narrowed the band gap from 2.40 eV (Ce-doped TiO(2)) to 2.21 eV (Ce/N co-doped TiO(2)). Ce(4+)/Ce(3+) pairs, oxynitride species and Ti-O-N and Ti-O-Ce bonds were determined by XPS. The recombination of photogenerated electron-hole pairs was inhibited due to the synergistic effect of doping with Ce(4+)/Ce(3+) ions and N atoms. The optimal doping ratio was 0.70% Ce and 0.70% N using MB photocatalytic degradation under fluorescent light and visible light irradiation (lambda>420 nm). The enhanced photocatalytic degradation under visible light irradiation was attributed to the increasing number of photogenerated OH radicals. The recombination of photogenerated e(-)-h(+) was attributed to be the key factor for the decrease in the photocatalytic degradation efficiency of MB. PMID:20005630

  3. Synthesis of uniformly dispersed anatase nanoparticles inside mesoporous silica thin films via controlled breakup and crystallization of amorphous TiO2 deposited using atomic layer deposition.

    PubMed

    Sree, Sreeprasanth Pulinthanathu; Dendooven, Jolien; Masschaele, Kasper; Hamed, Heidari M; Deng, Shaoren; Bals, Sara; Detavernier, Christophe; Martens, Johan A

    2013-06-01

    Amorphous titanium dioxide was introduced into the pores of mesoporous silica thin films with 75% porosity and 12 nm average pore diameter via Atomic Layer Deposition (ALD) using alternating pulses of tetrakis(dimethylamino)titanium and water. Calcination provoked fragmentation of the deposited amorphous TiO2 phase and its crystallization into anatase nanoparticles inside the nanoporous film. The narrow particle size distribution of 4 2 nm and the uniform dispersion of the particles over the mesoporous silica support were uniquely revealed using electron tomography. These anatase nanoparticle bearing films showed photocatalytic activity in methylene blue degradation. This new synthesis procedure of the anatase nanophase in mesoporous silica films using ALD is a convenient fabrication method of photocatalytic coatings amenable to application on very small as well as very large surfaces. PMID:23636429

  4. Photocatalytic properties of Small Sized TiO2 Supported on Clays for the Degradation of Indoor Pollutants: Toluene and Limonene.

    NASA Astrophysics Data System (ADS)

    Kibanova, D.; Trejo, M.; Destaillats, H.; Cervini-Silva, J.

    2007-12-01

    Novel materials for the degradation of hydrophobic organic pollutants by photocatalytic oxidation were developed. Intercalation of TiO2 on clays provide favorable properties to the photocatalyst due to the adsorption properties of the clay, its content of mesopores that enables pollutant trapping and its further interaction with TiO2, leading to mineralization. Particularly, we are interested in hydrophobic pollutants for which bare TiO2 had been shown less effective than for polar species. Synthesis was carried out by the sol-gel method using titanium isopropoxide (Ti(OC3H7)4 ) as precursor; the formation of anatase phase was achieved by hydrothermal treatment. Clays used were Hectorite [SHCa-1, Na0.4Mg2.7Li0.3Si4O10(OH)2 ] from San Bernardino Country, California, USA and Kaolinite [KGa-1b, Al2Si2O5(OH)4 ] from Washington Country, Georgia, USA. Samples characterization was conducted using XRD, SEM, XPS, ICP-OES. Our results showed a strong intercalation of TiO2 on hectorite and a poor one on kaolinite. Nanoparticle size obtained on hectorite was of 9.6 nm compared to 17.39 nm of commercial TiO2 (Degussa P25). Photocatalytic experiments were realized by the FTIR-ATR technique monitoring the concentration of the organic compound on the surface of the material. Results were compared with commercial TiO2 (Degussa P25). For limonene bare TiO2 showed better degradation rates, while for toluene, degradation rates using TiO2 supported on clays were higher.

  5. Facile Synthesis of Defective TiO2-x Nanocrystals with High Surface Area and Tailoring Bandgap for Visible-light Photocatalysis.

    PubMed

    Wajid Shah, Muhammad; Zhu, Yunqing; Fan, Xiaoyun; Zhao, Jie; Li, Yingxuan; Asim, Sumreen; Wang, Chuanyi

    2015-01-01

    A facile hydrothermal approach has been developed to prepare defective TiO2-x nanocrystals using Ti(III)-salt as a precursor and L-ascorbic acid as reductant and structure direction agent. The prepared TiO2-x nanocrystals are composed of a highly crystallized TiO2 core and a disordered TiO2-x outer layer, possessing high surface area, controlled oxygen vacancy concentration and tunable bandgap via simply adjusting the amount of added L-ascorbic acid. The defective TiO2-x shows high photocatalytic efficiency in methylene blue and phenol degradation as well as in hydrogen evolution under visible light, underlining the significance of the present strategy for structural and bandgap manipulation in TiO2-based photocatalysis. PMID:26515503

  6. Facile Synthesis of Defective TiO2?x Nanocrystals with High Surface Area and Tailoring Bandgap for Visible-light Photocatalysis

    PubMed Central

    Wajid Shah, Muhammad; Zhu, Yunqing; Fan, Xiaoyun; Zhao, Jie; Li, Yingxuan; Asim, Sumreen; Wang, Chuanyi

    2015-01-01

    A facile hydrothermal approach has been developed to prepare defective TiO2?x nanocrystals using Ti(III)-salt as a precursor and L-ascorbic acid as reductant and structure direction agent. The prepared TiO2?x nanocrystals are composed of a highly crystallized TiO2 core and a disordered TiO2?x outer layer, possessing high surface area, controlled oxygen vacancy concentration and tunable bandgap via simply adjusting the amount of added L-ascorbic acid. The defective TiO2?x shows high photocatalytic efficiency in methylene blue and phenol degradation as well as in hydrogen evolution under visible light, underlining the significance of the present strategy for structural and bandgap manipulation in TiO2-based photocatalysis. PMID:26515503

  7. Facile Synthesis of Defective TiO2‑x Nanocrystals with High Surface Area and Tailoring Bandgap for Visible-light Photocatalysis

    NASA Astrophysics Data System (ADS)

    Wajid Shah, Muhammad; Zhu, Yunqing; Fan, Xiaoyun; Zhao, Jie; Li, Yingxuan; Asim, Sumreen; Wang, Chuanyi

    2015-10-01

    A facile hydrothermal approach has been developed to prepare defective TiO2‑x nanocrystals using Ti(III)-salt as a precursor and L-ascorbic acid as reductant and structure direction agent. The prepared TiO2‑x nanocrystals are composed of a highly crystallized TiO2 core and a disordered TiO2‑x outer layer, possessing high surface area, controlled oxygen vacancy concentration and tunable bandgap via simply adjusting the amount of added L-ascorbic acid. The defective TiO2‑x shows high photocatalytic efficiency in methylene blue and phenol degradation as well as in hydrogen evolution under visible light, underlining the significance of the present strategy for structural and bandgap manipulation in TiO2-based photocatalysis.

  8. High-temperature hydrothermal synthesis of crystalline mesoporous TiO2 with superior photo catalytic activities

    NASA Astrophysics Data System (ADS)

    Liu, Fujian; Liu, Chun-Lin; Hu, Baowei; Kong, Wei-Ping; Qi, Chen-Ze

    2012-07-01

    Mesoporous titanium dioxide with crystalline mesopore walls (M-TiO2-ns) have been successfully synthesized through the self-assembly of poly 4-Vinylpyridine template and tetrabutyl titanate precursor based on their complex bond interaction under high temperature (180 C) hydrothermal conditions. X-ray diffraction shows that M-TiO2-ns have highly crystalline mesopore walls with anatase phase characters; N2 sorption-desorption isotherms, SEM and TEM images show that M-TiO2-ns have high BET surface areas (85 and 120 m2/g, respectively), large pore volumes (0.32 and 0.34 cm3/g, respectively) and crystalline mesopore walls, which exhibit monolithic morphology with crystal sizes around 3-5 ?m. Interestingly, M-TiO2-ns exhibit much higher catalytic activities and good recyclability in both induced reduction of decabromodiphenyl and oxidation of Rhodamine B under UV light than those of nonporous crystalline TiO2 and M-TiO2 templated by hydrocarbon surfactant of F127, which is even comparable with that of commercial P25. Combination of the unique characters such as crystallinity, stable mesostructure, large BET surface areas and superior photo catalytic activities make M-TiO2-ns a kind of potentially important material for removing of organic pollutions in environment through green photo irradiation processes.

  9. Synthesis and characterization of nano TiO2-SiO2: PVA composite - a novel route

    NASA Astrophysics Data System (ADS)

    Venckatesh, Rajendran; Balachandaran, Kartha; Sivaraj, Rajeshwari

    2012-07-01

    A novel, simple, less time consuming and cost-effective sol-gel method has been developed to synthesize nano titania-silica with polyvinyl alcohol (PVA) composite relatively at low temperature in acidic pH. Titania sol is prepared by hydrolysis of titanium tetrachloride and was mixed with silicic acid and tetrahydrofuran mixture. The reaction was carried out under vigorous stirring for 6 h and dried at room temperature with the addition of PVA solution. The resulting powders were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared (FT-IR), UV-visible spectroscopy and thermal techniques. The grain size of the particles was calculated by X-ray diffraction; surface morphology and chemical composition were determined from scanning electron microscopy-energy dispersive spectroscopy; metal oxide stretching was confirmed from FT-IR spectroscopy; bandgap was calculated using UV-visible spectroscopy, and thermal stability of the prepared composite was determined by thermogravimetric/differential thermal analysis. Since TiO2 got agglomerated on the surface of SiO2, effective absorptive sites increase which in turn increase the photocatalytic efficiency of the resulting composite.

  10. Synthesis and characterization of Pt-MoO x -TiO2 electrodes for direct ethanol fuel cells

    NASA Astrophysics Data System (ADS)

    Wang, Xiu-Yu; Zhang, Jing-Chang; Cao, Xu-Dong; Jiang, Yuan-Sheng; Zhu, Hong

    2011-10-01

    To enhance the CO-tolerance performance of anode catalysts for direct ethanol fuel cells, carbon nanotubes were modified by titanium dioxide (donated as CNTs@TiO2) and subsequently served as the support for the preparation of Pt/CNTs@TiO2 and Pt-Mo/CNTs@TiO2 electrocatalysts via a UV-photoreduction method. The physicochemical characterizations of the catalysts were carried out by using X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and infrared spectroscopy of adsorbed probe ammonia molecules. The electrocatalytic properties of the catalysts for methanol oxidation were investigated by the cyclic voltammetry technique. The results show that Pt-Mo/CNTs@TiO2 electrode exhibits the highest performance in all the electrodes. It is explained that, the structure, the oxidation states, and the acid-base properties of the catalysts are influenced due to the strong interaction between Ti and Mo species by adding TiO2 and MoO x to the Pt-based catalysts.

  11. Synthesis and characterization of high photocatalytic activity and stable Ag3PO4/TiO2 fibers for photocatalytic degradation of black liquor

    NASA Astrophysics Data System (ADS)

    Cai, Li; Long, Qiyi; Yin, Chao

    2014-11-01

    The TiO2 fiber was prepared by using cotton fiber as a template, and then Ag3PO4/TiO2 fibers were synthesized via in situ Ag3PO4 particles onto the surface of TiO2 fiber. Their structure and physical properties were characterized by means of scanning electron microscopy (SEM), specific surface analyzer, X-ray diffraction (XRD), UV-vis absorption spectra and photoluminescence spectra (PL). SEM analysis indicated that the well-defined surface morphology of natural cotton fiber was mostly preserved in TiO2 and Ag3PO4/TiO2 fibers. Compared with TiO2 fiber, the absorbance wavelengths of Ag3PO4/TiO2 fibers were apparently red shifted and the PL intensities revealed a significant decrease. By using the photocatalytic degradation of black liquor as a model reaction, the visible light and ultraviolet light catalytic efficiencies of TiO2, Ag3PO4 and Ag3PO4/TiO2 fibers were evaluated. The reaction results showed that Ag3PO4/TiO2 fibers had stronger photocatalytic activity and excellent chemical stability in repeated and long-term applications. Therefore, the prepared Ag3PO4/TiO2 fibers could act as an efficient catalyst for the photocatalytic degradation of black liquor, which suggested their promising applications. It was proposed that the OH radicals played the leading role in the photocatalytic degradation of the black liquor by Ag3PO4/TiO2 fibers system.

  12. Facile synthesis and enhanced visible light photocatalytic activity of N and Zr co-doped TiO2 nanostructures from nanotubular titanic acid precursors

    PubMed Central

    2013-01-01

    Zr/N co-doped TiO2 nanostructures were successfully synthesized using nanotubular titanic acid (NTA) as precursors by a facile wet chemical route and subsequent calcination. These Zr/N-doped TiO2 nanostructures made by NTA precursors show significantly enhanced visible light absorption and much higher photocatalytic performance than the Zr/N-doped P25 TiO2 nanoparticles. Impacts of Zr/N co-doping on the morphologies, optical properties, and photocatalytic activities of the NTA precursor-based TiO2 were thoroughly investigated. The origin of the enhanced visible light photocatalytic activity is discussed in detail. PMID:24369051

  13. Few-layered MoS2 nanosheets wrapped ultrafine TiO2 nanobelts with enhanced photocatalytic property.

    PubMed

    Li, Haidong; Wang, Yana; Chen, Guohui; Sang, Yuanhua; Jiang, Huaidong; He, Jiating; Li, Xu; Liu, Hong

    2016-03-10

    Photocatalytic materials comprised of semiconductor nanostructures have attracted tremendous scientific and technological interest over the last 30 years. This is due to the fact that these photocatalytic materials have unique properties that allow for an effective direct energy transfer from light to highly reactive chemical species which are applicable in the remediation of environmental pollutants and photocatalytic hydrogen generation. Heterostructured photocatalysts are a promising type of photocatalyst which can combine the properties of different components to generate a synergic effect, resulting in a high photocatalytic activity. In this work, a heterostructured photocatalyst comprised of few-layered MoS2 nanosheets coated on a TiO2 nanobelts surface was synthesized through a simple hydrothermal treatment. The hybrid heterostructures with enhanced broad spectrum photocatalytic properties can harness UV and visible light energy to decompose organic contaminants in aqueous solutions as well as split water to hydrogen and oxygen. The mechanism of the enhancement is that the MoS2/TiO2 nanobelts heterostructure can enhance the separation of the photo-induced carriers, which results in a higher photocurrent due to the special electronic characteristics of the graphene-like layered MoS2 nanosheets. This methodology is potentially applicable to the synthesis of a range of hybrid nanostructures with promising applications in photocatalysis and other relevant areas. PMID:26932455

  14. Polyol thermolysis synthesis of TiO2 nanoparticles and its paste formulation to fabricate photoanode for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Pratheep, P.; Vijayakumar, E.; Subramania, A.

    2015-05-01

    Titanium dioxide (TiO2) nanoparticles (NPs) were prepared by a simple polyol thermolysis process using various mole ratios of titanium tetrachloride (TiCl4) and polyvinylpyrrolidone (PVP). The prepared TiO2 NPs were characterized by TG/DTA, XRD, SEM, and BET analysis. The TiO2 NPs obtained using 0.1 M of TiCl4 and 0.02 M of PVP have high surface area with lesser particles size than the same obtained using 0.1 M of TiCl4 with other mole ratios of PVP. The high surface area TiO2 NPs were used to formulate TiO2 paste. The impact of ethyl cellulose, terpineol, and dibutyl phthalate in the formulation of TiO2 paste was optimized with respect to standard TiO2 paste ( Dyesol Ltd.) on the adsorption of dye was studied by UV-Vis spectroscopy. The photovoltaic performance of DSSCs fabricated using the formulated TiO2 paste has achieved 97.83 % of power conversion efficiency (PCE) (η = 4.5 %) with respect to the standard TiO2 paste ( Dyesol Ltd.) and its PCE were found to be 4.6 % (η). This PCE value was nearly closer to that of the same DSSC fabricated using the standard TiO2 paste ( Dyesol Ltd.) and higher than the P25 TiO2 ( Degussa) paste and its achieved PCE were found to be 86.04 %.

  15. Important role of surface fluoride in nitrogen-doped TiO2 nanoparticles with visible light photocatalytic activity.

    PubMed

    Brauer, Jonathan I; Szulczewski, Greg

    2014-12-11

    Nitrogen-doped TiO2 nanoparticles have been synthesized using sol-gel methods and subsequently fluorinated at room temperature by aging in acidic solutions of NaF. The nanoparticles were characterized by X-ray photoelectron spectroscopy, X-ray diffraction, UV-vis, and IR diffuse reflectance spectroscopy. After aging at room temperature in NaF solutions, the Ti-OH groups on the surface of the TiO2 nanoparticles were replaced by Ti-F bonds, which resulted in a decrease of the point of zero charge from pH 5.4 to 2.8. Most importantly, the nitrogen dopants were retained after the fluorination process, and the amorphous nanoparticles were partially converted into the anatase phase. Annealing the photocatalysts resulted in a decrease of both the nitrogen and fluoride atomic concentration. Diffuse reflectance spectra show an increase in absorbance above 400 nm after annealing the F,N-doped TiO2, which suggests the formation of color centers. The photoactivity of the F,N-doped and N-doped TiO2 catalysts were evaluated by monitoring by the decolorization of methylene blue with visible light. Mass spectrometric analysis revealed that methylene blue undergoes successive demethylation, and more importantly, the rate of decolorization depends on the fluoride concentration. These results show the importance of a two-step synthesis method to independently control the nitrogen and fluoride concentration. PMID:25266909

  16. Adsorption properties and photocatalytic activity of TiO2/activated carbon fiber composite

    NASA Astrophysics Data System (ADS)

    Yao, Shuhua; Song, Shuangping; Shi, Zhongliang

    2014-06-01

    Photocatalysts of titanium dioxide (TiO2) and TiO2/activated carbon fiber (TiO2/ACF) composite were prepared by sol-gel method, followed by calcining the pure TiO2 sols and the TiO2/ACF sols at 500C for 2 h in a N2 atmosphere, respectively. These photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and N2 adsorption-desorption isotherms measurement. Batch experiments were conducted to study the adsorption property of TiO2/ACF composite using methylene blue as adsorbate. The adsorption data obtained from different batch experiments were analyzed using pseudo-second-order kinetic model, the experimental data can be adequately described by the pseudo-second-order equation. The photodecomposition behavior of TiO2/ACF was investigated in aqueous solution using methylene blue as target pollutant. It was found that methylene blue could be removed rapidly from water by TiO2/ACF, the photocatalytic decomposition was obviously improved when the photocatalyst was used. Kinetics analysis revealed that the photocatalytic decomposition reaction can be described well by a first-order rate equation.

  17. Hydrothermal Synthesis of TiO2 @SnO2 Hybrid Nanoparticles in a Continuous-Flow Dual-Stage Reactor.

    PubMed

    Hellstern, Henrik L; Bremholm, Martin; Mamakhel, Aref; Becker, Jacob; Iversen, Bo B

    2016-03-01

    TiO2 @SnO2 hybrid nanocomposites were successfully prepared in gram scale using a dual-stage hydrothermal continuous-flow reactor. Temperature and pH in the secondary reactor were found to selectively direct nucleation and growth of the secondary material into either heterogeneous nanocomposites or separate intermixed nanoparticles. At low pH, 2?nm rutile SnO2 nanoparticles were deposited on 9?nm anatase TiO2 particles; the presence of TiO2 was found to suppress formation of larger SnO2 particles. At high pH SnO2 formed separate particles and no deposition on TiO2 was observed. Ball-milling of TiO2 and SnO2 produced no TiO2 @SnO2 composites. This verifies that the composite particles must be formed by nucleation and growth of the secondary precursor on the TiO2 . High concentration of secondary precursor led to formation of TiO2 particles embedded in aggregates of SnO2 nanoparticles. The results demonstrate how nanocomposites may be produced in high yield by green chemistry. PMID:26822385

  18. Low-temperature synthesis of high-ordered anatase TiO2 nanotube array films coated with exposed {001} nanofacets

    NASA Astrophysics Data System (ADS)

    Ding, Jie; Huang, Zhennan; Zhu, Jihao; Kou, Shengzhong; Zhang, Xiaobin; Yang, Hangsheng

    2015-12-01

    High-ordered anatase TiO2 nanotube array films coated with exposed high-reactive {001} nanofacets were fabricated by a modified hydrothermal method using amorphous anodic TiO2 nanotube arrays (ATONAs) as starting materials. It was found that the reaction between gas phase HF and solid ATONAs played a key role in the transformation process from amorphous to anatase TiO2, and the TiO2 tubular structure kept unchanged during the surface modification with an exposed {001} facets up to 76.5%, which could be attributed to the low reaction temperature of 130?C. Our study provided a novel route for the facile preparation of {001} facets exposed anatase TiO2.

  19. Low-temperature synthesis of high-ordered anatase TiO2 nanotube array films coated with exposed {001} nanofacets.

    PubMed

    Ding, Jie; Huang, Zhennan; Zhu, Jihao; Kou, Shengzhong; Zhang, Xiaobin; Yang, Hangsheng

    2015-01-01

    High-ordered anatase TiO2 nanotube array films coated with exposed high-reactive {001} nanofacets were fabricated by a modified hydrothermal method using amorphous anodic TiO2 nanotube arrays (ATONAs) as starting materials. It was found that the reaction between gas phase HF and solid ATONAs played a key role in the transformation process from amorphous to anatase TiO2, and the TiO2 tubular structure kept unchanged during the surface modification with an exposed {001} facets up to 76.5%, which could be attributed to the low reaction temperature of 130?C. Our study provided a novel route for the facile preparation of {001} facets exposed anatase TiO2. PMID:26634815

  20. Low-temperature synthesis of high-ordered anatase TiO2 nanotube array films coated with exposed {001} nanofacets

    PubMed Central

    Ding, Jie; Huang, Zhennan; Zhu, Jihao; Kou, Shengzhong; Zhang, Xiaobin; Yang, Hangsheng

    2015-01-01

    High-ordered anatase TiO2 nanotube array films coated with exposed high-reactive {001} nanofacets were fabricated by a modified hydrothermal method using amorphous anodic TiO2 nanotube arrays (ATONAs) as starting materials. It was found that the reaction between gas phase HF and solid ATONAs played a key role in the transformation process from amorphous to anatase TiO2, and the TiO2 tubular structure kept unchanged during the surface modification with an exposed {001} facets up to 76.5%, which could be attributed to the low reaction temperature of 130?C. Our study provided a novel route for the facile preparation of {001} facets exposed anatase TiO2. PMID:26634815

  1. Au or Ag nanoparticle-decorated 3D urchin-like TiO2 nanostructures: synthesis, characterization, and enhanced photocatalytic activity.

    PubMed

    Xiang, Liqin; Zhao, Xiaopeng; Shang, Chaohong; Yin, Jianbo

    2013-08-01

    The semiconductors decorated with noble metals have attracted increasing attention due to their interesting physical and chemical properties. Here, 3D urchin-like hierarchical TiO2 nanostructures decorated with Au or Ag nanoparticles were prepared by wet-chemical process. The morphology and structure were characterized by different techniques. It shows that Au or Ag nanoparticles with narrow distribution are uniformly loaded on urchin-like TiO2 nanostructures, and the resulted composite nanostructures show distinct surface plasmon absorption band and quenched photoluminence compared to pure TiO2 nanostructures. Photocatalytic tests show both Au-decorated TiO2 and Ag-decorated TiO2 exhibit enhanced photocatalytic activity for photodegradation of methyl blue in water. PMID:23673007

  2. Synthesis of Ag or Pt nanoparticle-deposited TiO2 nanorods for the highly efficient photoreduction of CO2 to CH4

    NASA Astrophysics Data System (ADS)

    Wang, Qingli; Dong, Peimei; Huang, Zhengfeng; Zhang, Xiwen

    2015-10-01

    Ag or Pt-deposited TiO2 nanocomposites were prepared by a simple method, in which oriented TiO2 nanorods were synthesized by a hydrothermal method and a noble metal (Ag or Pt) was deposited on TiO2 by photocatalytic reduction under UV irradiation. The oriented TiO2 nanorods with Ag or Pt nanoparticles (<20 nm) exhibited high CO2 photoreduction efficiency, with CH4 yield rates up to 16.0 ppm/g h and 10.8 ppm/g h, respectively, considerably higher than that of the pure TiO2 nanorods (4.2 ppm/g h). The improvement in the CH4 yield was attributed to the formation of a Schottky barrier and surface plasmon resonance.

  3. Synthesis and characterization of TiO2 on ZnO-nanorod layer for high-efficiency electrochemiluminescence cell application

    NASA Astrophysics Data System (ADS)

    Chansri, Pakpoom; Sung, Youl-Moon

    2016-02-01

    In this research paper, we present the fabrication of an electrochemiluminescence (ECL) cell with TiO2 on ZnO-nanorod electrodes via the dip-coating technique. The TiO2 nanoparticles coated on ZnO nanorods (TiO2-ZNRs) were grown on transparent conductive oxide (TCO) glass by the dip-coating technique. The electrode of TiO2-ZNRs for ECL cells has the structure F-doped SnO2 (FTO) glass/Ru(II) complex [Ru(bpy)32+]/TiO2-ZNRs/FTO glass. The TiO2-ZNRs were coated on FTO glass by spin-coating and dip-coating methods. The X-ray diffraction system, scanning electron microscope, and spectral brightness analyzer were used to confirm the successful formation of the structure and the morphological properties. The threshold voltage at the start of light emission was 2.25 V for TiO2-ZNRs and was lower than 3.25 V for bare FTO. The threshold voltage was l2.5 V for ZNRs. The electrical and optical properties of the TiO2-ZNRs ECL cell were 30.76 cd/m2 light intensity, 0.067 mA output current, 0.268 cd/A (at 9.67 mA/cm2) current efficiency, and 0.068 lm/W ECL efficiency at 5 V and 60 Hz. The peak intensity of the TiO2-ZNRs-based ECL cell at a wavelength of 621 nm exhibited a dark orange color and was independent of the type of electrode used. The use of TiO2-ZNRs could improve the ECL efficiency and long-lifetime stability.

  4. Ultrathin TiO2 layer coated-CdS spheres core-shell nanocomposite with enhanced visible-light photoactivity.

    PubMed

    Chen, Zhang; Xu, Yi-Jun

    2013-12-26

    Development of various strategies for controllable fabrication of core-shell nanocomposites (CSNs) with highly active photocatalytic performance has been attracting ever-increasing research attention. In particular, control of the ultrathin layer TiO2 shell in constructing CSNs in an aqueous phase is a significant but technologically challenging issue. Here, this paper demonstrates the interface assembly synthesis of CdS nanospheres@TiO2 core-shell photocatalyst via the electrostatic interaction of negatively charged water-stable titania precursor with positively charged CdS nanospheres (CdS NSPs), followed by the formation of the ultrathin-layer TiO2 shell through a facile refluxing process in aqueous phase. The as-formed CdS NSPs@TiO2 core-shell nanohybrid exhibits a high visible-light-driven photoactivity for selective transformation and reduction of heavy metal ions. The ultrathin TiO2 layer coated on CdS NSPs results in excellent light transmission property, enhanced adsorption capacity, and improved transfer of charge carriers and lifespan of photoinduced electron-hole pairs, which would prominently contribute to the significant photoactivity enhancement. It is anticipated that this facile aqueous-phase synthesis strategy could be extended to design a variety of more efficient CSN photocatalysts with controllable morphology toward target applications in diverse photoredox processes. PMID:24245797

  5. In situ synthesis and hydrothermal crystallization of nanoanatase TiO2 -SiO2 coating on aramid fabric (HTiSiAF) for UV protection.

    PubMed

    Deng, Hui; Zhang, Hongda

    2015-10-01

    TiO2 -SiO2 thin film was prepared by sol-gel method and coated on the aramid fabric to prepare functional textiles. The aramid fabric was dipped and withdrawn in TiO2 -SiO2 gel and hydrothermal crystallization at 80(°) C, then its UV protection functionality was evaluated. The crystalline phase and the surface morphology of TiO2 -SiO2 thin film were characterized using SEM, XRD, and AFM respectively. SEM showed hydrothermal crystallization led to a homogeneous dispersion of anatase nonocrystal in TiO2 -SiO2 film, and XRD suggested the mean particle size of the formed anatase TiO2 was less than 30 nm. AFM indicated that hydrothermal treatment enhanced the crystallization of TiO2 . UV protection analysis suggested that the hydrothermally treated coated textile had a better screening property in comparison with TiO2 -SiO2 gel and native aramid fabric. PMID:26303384

  6. External-Photocatalyst-Free Visible-Light-Mediated Synthesis of Indolizines.

    PubMed

    Sahoo, Basudev; Hopkinson, Matthew N; Glorius, Frank

    2015-12-14

    A visible-light-mediated synthesis of valuable polycyclic indolizine heterocycles from easily accessed brominated pyridine and enol carbamate derivatives has been developed. This process, which operates at room temperature under irradiation from readily available light sources, does not require the addition of an external photocatalyst. Instead, an investigation into the reaction mechanism indicates that the indolizine products themselves may be in some way involved in mediating and accelerating their own formation. Preliminary studies also show that these simple heterocyclic compounds may be capable of facilitating other visible-light-mediated transformations. PMID:26534837

  7. Enhanced photoelectrochemical and photocatalytic activity of WO3-surface modified TiO2 thin film

    NASA Astrophysics Data System (ADS)

    Qamar, Mohammad; Drmosh, Qasem; Ahmed, Muhammad I.; Qamaruddin, Muhammad; Yamani, Zain H.

    2015-02-01

    Development of nanostructured photocatalysts for harnessing solar energy in energy-efficient and environmentally benign way remains an important area of research. Pure and WO3-surface modified thin films of TiO2 were prepared by magnetron sputtering on indium tin oxide glass, and photoelectrochemical and photocatalytic activities of these films were studied. TiO2 particles were <50 nm, while deposited WO3 particles were <20 nm in size. An enhancement in the photocurrent was observed when the TiO2 surface was modified WO3 nanoparticles. Effect of potential, WO3 amount, and radiations of different wavelengths on the photoelectrochemical activity of TiO2 electrodes was investigated. Photocatalytic activity of TiO2 and WO3-modified TiO2 for the decolorization of methyl orange was tested.

  8. Hydrogen-bonding-mediated synthesis of atomically thin TiO2 films with exposed (001) facets and applications in fast lithium insertion/extraction.

    PubMed

    Zhang, Hongye; Yang, Zhenzhen; Gan, Wei; Zhao, Yanfei; Yu, Bo; Xu, Huanjun; Ma, Zhishuang; Hao, Leiduan; Chen, Dechao; Miao, Shiding; Liu, Zhimin

    2015-10-01

    Ultrathin two-dimensional (2D) crystalline materials show high specific surface area (SA) of high energy (HE) facets, imparting a significant improvement in their performances. Herein we report a novel route to synthesize TiO2 nanofilms (NFs) with atomic thickness (<2.0 nm) through a solvothermal reaction mediated by the hydrogen-bonding networks constructed by hydroquinone (HQ). The resultant TiO2 NFs have nearly 100 % exposed (001) facets and give an extremely high SA up to 487 m(2)  g(-1) . The synergistic effect of HQ and choline chloride plays a vital role in the formation of TiO2 NFs and in the exposure of HE (001) facets. Because of its ultrathin feature and exposed (001) facet, the N2 -annealled TiO2 NFs showed fast kinetics of lithium insertion/extraction, demonstrating foreseeable applications in the energy storage. PMID:26298688

  9. Selective aerobic oxidation mediated by TiO(2) photocatalysis.

    PubMed

    Lang, Xianjun; Ma, Wanhong; Chen, Chuncheng; Ji, Hongwei; Zhao, Jincai

    2014-02-18

    TiO2 is one of the most studied metal oxide photocatalysts and has unparal-leled efficiency and stability. This cheap, abundant, and non-toxic material has the potential to address future environmental and energy concerns. Understanding about the photoinduced interfacial redox events on TiO2 could have profound effect on the degradation of organic pollutants, splitting of H2O into H2 and O2, and selective redox organic transformations. Scientists traditionally accept that for a semiconductor photocatalyst such as TiO2 under the illumination of light with energy larger than its band gap, two photocarriers will be created to carry out their independent reduction and oxidation processes. However, our recent discoveries indicate that it is the concerted rather than independent effect of both photocarriers of valence band hole (hvb(+)) and conduction band electron (ecb(-)) that dictate the product formation during interfacial oxidation event mediated by TiO2 photocatalysis. In this Account, we describe our recent findings on the selective oxidation of organic substrates with O2 mediated by TiO2 photocatalysis. The transfer of O-atoms from O2 to the corresponding products dominates the selective oxidation of alcohols, amines, and alkanes mediated by TiO2 photocatalysis. We ascribe this to the concerted effect of both hvb(+) and ecb(-) of TiO2 in contribution to the oxidation products. These findings imply that O2 plays a unique role in its transfer into the products rather than independent role of ecb(-) scavenger. More importantly, ecb(-) plays a crucial role to ensure the high selectivity for the oxygenation of organic substrates. We can also use the half reactions such as those of the conduction band electron of TiO2 for efficient oxidation reactions with O2. To this end, efficient selective oxidation of organic substrates such as alcohols, amines, and aromatic alkanes with O2 mediated by TiO2 photocatalysis under visible light irradiation has been achieved. In summary, the concerted effect of hvb(+) and ecb(-) to implement one oxidation event could pave the way for selective oxofunctionalization of organic substrates with O2 by metal oxide photocatalysis. Furthermore, it could also deepen our understanding on the role of O2 and the elusive nature of oxygen species at the interface of TiO2, which, in turn, could shed new light on avant-garde photocatalytic selective redox processes in addressing the energy and environmental challenges of the future. PMID:24164388

  10. TiO2/palygorskite composite nanocrystalline films prepared by surfactant templating route: synergistic effect to the photocatalytic degradation of an azo-dye in water.

    PubMed

    Stathatos, E; Papoulis, D; Aggelopoulos, C A; Panagiotaras, D; Nikolopoulou, A

    2012-04-15

    Microfibrous palygorskite clay mineral and nanocrystalline TiO(2) are incorporating in the preparation of nanocomposite films on glass substrates via sol-gel route at 500C. The synthesis involves a simple chemical method employing nonionic surfactant molecule as pore directing agent along with the acetic acid-based sol-gel route without direct addition of water molecules. Drying and thermal treatment of composite films lead to the elimination of organic material while ensure the formation of TiO(2) nanoparticles homogeneously distributed on the surface of the palygorskite microfibers. TiO(2) nanocomposite films without cracks consisted of small crystallites in size (12-16 nm) and anatase crystal phase was found to cover palygorskite microfibers. The composite films were characterized by microscopy techniques, UV-vis, IR spectroscopy, and porosimetry methods in order to examine their structural properties. Palygorskite/TiO(2) composite films with variable quantities of palygorskite (0-2 w/w ratio) were tested as new photocatalysts in the photo-discoloration of Basic Blue 41 azo-dye in water. These nanocomposite films proved to be very promising photocatalysts and highly effective to dye's discoloration in spite of the small amount of immobilized palygorskite/TiO(2) catalyst onto glass substrates. 3:2 palygorskite/TiO(2) weight ratio was finally the most efficient photocatalyst while reproducible discoloration results of the dye were obtained after three cycles with same catalyst. It was also found that palygorskite showed a positive synergistic effect to the TiO(2) photocatalysis. PMID:22177018

  11. Nanocrystalline TiO2 films containing sulfur and gold: Synthesis, characterization and application to immobilize and direct electrochemistry of cytochrome c

    NASA Astrophysics Data System (ADS)

    Rafiee-Pour, Hossain-Ali; Hamadanian, Masood; Koushali, Samaneh Katebi

    2016-02-01

    In this paper, nanoporous titanium dioxide (TiO2) film was used for cytochrome c (cyt c) immobilization as an electrode substrate for electrochemical redox activity of the adsorbed cyt c. The result of cyclic voltammetry exhibited a pair of well-defined and quasi-reversible peaks for direct electron transfer of cyt c (formal potential [E0‧ = (Epa + Epc)/2] of 53 mV versus Ag/AgCl). In addition the effect of metal and nonmetal ions (Au, S) co-doping on the efficiency of TiO2 nanoparticles (prepared by combining sol-gel and photo-deposition methods) on the cyt c immobilization process was investigated. The results exhibited that the Au, S-co-doped TiO2 (Au/S-TiO2) with a spheroidal shape demonstrates a smaller grain size than the pure TiO2. Meanwhile, the UV-vis DRS of Au/S-TiO2 showed a considerable red shift to the visible region. As a result, it was found that 4% Au/0.1% S-TiO2 had the highest efficiency for cytochrome c immobilization. The results showed that the peak currents were higher after the annealing of the TiO2 film. This observation suggests that the use of TiO2 films may be advantageous for the development of nanoporous biosensors employing reductive electrochemistry.

  12. Rapid flame synthesis of internal Mo6+ doped TiO2 nanocrystals in situ decorated with highly dispersed MoO3 clusters for lithium ion storage

    NASA Astrophysics Data System (ADS)

    Li, Yunfeng; Hu, Yanjie; Shen, Jianhua; Jiang, Haibo; Min, Guoquan; Qiu, Shengjie; Song, Zhitang; Sun, Zhuo; Li, Chunzhong

    2015-11-01

    The rational design of nanoheterostructured materials has attracted much attention because of its importance for developing highly efficient LIBs. Herein, we have demonstrated that internal Mo6+ doped TiO2 nanocrystals in situ decorated with highly dispersed MoO3 clusters have been realized by a facile and rapid flame spray pyrolysis route for electrochemical energy storage. In such intriguing nanostructures, internal Mo6+ doping can improve the conductivity of electrode materials and facilitate rapid Li+ intercalation and ion transport and the heteroassembly of highly dispersed ultrafine MoO3 clusters with excellent electrochemical activity endows the TiO2 with extra Li+ ion storage ability as well as incorporates Mo6+. Thus, the as-prepared nanohybrid electrodes exhibit a high specific capacity and superior rate capability due to the maximum synergetic effect of TiO2, Mo6+ and ultrafine MoO3 clusters. Moreover, the aerosol flame process with a unique temperature gradient opens a new strategy to design novel hybrid materials by the simultaneous doping and heteroassembly engineering for next-generation LIBs.The rational design of nanoheterostructured materials has attracted much attention because of its importance for developing highly efficient LIBs. Herein, we have demonstrated that internal Mo6+ doped TiO2 nanocrystals in situ decorated with highly dispersed MoO3 clusters have been realized by a facile and rapid flame spray pyrolysis route for electrochemical energy storage. In such intriguing nanostructures, internal Mo6+ doping can improve the conductivity of electrode materials and facilitate rapid Li+ intercalation and ion transport and the heteroassembly of highly dispersed ultrafine MoO3 clusters with excellent electrochemical activity endows the TiO2 with extra Li+ ion storage ability as well as incorporates Mo6+. Thus, the as-prepared nanohybrid electrodes exhibit a high specific capacity and superior rate capability due to the maximum synergetic effect of TiO2, Mo6+ and ultrafine MoO3 clusters. Moreover, the aerosol flame process with a unique temperature gradient opens a new strategy to design novel hybrid materials by the simultaneous doping and heteroassembly engineering for next-generation LIBs. Electronic supplementary information (ESI) available: SEM, TEM images, XRD patterns, EDX and the discharge-charge capacity of Mo6+-TiO2/MoO3 NHs, TiO2, and Mo6+-TiO2/MoO3 NHs after sulfuration, and nitrogen adsorption/desorption isotherms of Mo6+-TiO2/MoO3 NHs. See DOI: 10.1039/c5nr05586e

  13. Tuning Phase Composition of TiO2 by Sn(4+) Doping for Efficient Photocatalytic Hydrogen Generation.

    PubMed

    Wang, Fenglong; Ho, Jie Hui; Jiang, Yijiao; Amal, Rose

    2015-11-01

    The anatase-rutile mixed-phase photocatalysts have attracted extensive research interest because of the superior activity compared to their single phase counterparts. In this study, doping of Sn(4+) ions into the lattice of TiO2 facilitates the phase transformation from anatase to rutile at a lower temperature while maintaining the same crystal sizes compared to the conventional annealling approach. The mass ratios between anatase and rutile phases can be easily manipulated by varying the Sn-dopant content. Characterization results reveal that the Sn(4+) ions entered into the lattice of TiO2 by substituting some of the Ti(4+) ions and distributed evenly in the matrix of TiO2. The substitution induced the distortion of the lattice structure, which realized the phase transformation from anatase to rutile at a lower temperature and the close-contact phase junctions were consequently formed between anatase and rutile, accounting for the efficient charge separations. The mixed-phase catalysts prepared by doping Sn(4+) ions into the TiO2 exhibit superior activity for photocatalytic hydrogen generation in the presence of Au nanoparticles, relatively to their counterparts prepared by the conventional annealling at higher temperatures. The band allignment between anatase and rutile phases is established based on the valence band X-ray photoelectron spectra and diffuse reflectance spectra to understand the spatial charge separation process at the heterojunction between the two phases. The study provides a new route for the synthesis of mixed-phase TiO2 catalysts for photocatalytic applications and advances the understanding on the enhanced photocatalytic properties of anatase-rutile mixtures. PMID:26444102

  14. Synthesis of Hierarchical (BiO)2CO3 Nanosheets Microspheres toward Efficient Photocatalystic Reduction of CO2 into CO

    NASA Astrophysics Data System (ADS)

    Yang, Huohai; Bai, Yang; Chen, Ting; Shi, Xian; Zhu, Yu-chuan

    2016-04-01

    In this paper, hierarchical (BiO)2CO3 nanosheets microspheres were synthesized with dry ice as carbon source, and characterized by X-ray diffraction (XRD) patterns, X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), high-resolution transmission electron microscopy (HRTEM) and UV-vis diffuse reflectance spectra (DRS). The photocatalytic results showed that (BiO)2CO3 display much higher photocatalytic activity than BiOCl and TiO2 for photocatalystic reduction of CO2 under UV-visible light. The photocatalytic mechanism study revealled that (BiO)2CO3 display better separation efficiency of photoinduced charge carriers due to the large interlayer spacing (1.3675 nm).

  15. TiO2@C Core-Shell Nanoparticles Formed by Polymeric Nano-Encapsulation

    NASA Astrophysics Data System (ADS)

    Vasei, Mitra; Das, Paramita; Cherfouh, Hayet; Marsan, Benoit; Claverie, Jerome

    2014-07-01

    TiO2 semiconducting nanoparticles are known to be photocatalysts of moderate activity due to their high band-gap and high rate of electron-hole recombination. The formation of a shell of carbon around the core of TiO2, i.e. the formation of TiO2@C nanoparticles, is believed to partly alleviate these problems. It is usually achieved by a hydrothermal treatment in a presence of a sugar derivative. We present here a novel method for the formation of highly uniform C shell around TiO2 nanoparticles. For this purpose, TiO2 nanoparticles were dispersed in water using an oligomeric dispersant prepared by Reversible Addition-Fragmentation chain Transfer (RAFT) polymerization. Then the nanoparticles were engaged into an emulsion polymerization of acrylonitrile, resulting in the formation of a shell of polyacrylonitrile (PAN) around each TiO2 nanoparticles. Upon pyrolisis, the PAN was transformed into carbon, resulting in the formation of TiO2@C nanoparticles. The structure of the resulting particles was elucidated by X-Ray diffraction, FTIR, UV-VIS and Raman spectroscopy as well as TEM microscopy. Preliminary results about the use of the TiO2@C particles as photocatalysts for the splitting of water are presented. They indicate that the presence of the C shell is responsible for a significant enhancement of the photocurrent.

  16. TiO2@C core-shell nanoparticles formed by polymeric nano-encapsulation

    PubMed Central

    Vasei, Mitra; Das, Paramita; Cherfouth, Hayet; Marsan, Benot; Claverie, Jerome P.

    2014-01-01

    TiO2 semiconducting nanoparticles are known to be photocatalysts of moderate activity due to their high band-gap and high rate of electron-hole recombination. The formation of a shell of carbon around the core of TiO2, i.e., the formation of TiO2@C nanoparticles, is believed to partly alleviate these problems. It is usually achieved by a hydrothermal treatment in a presence of a sugar derivative. We present here a novel method for the formation of highly uniform C shell around TiO2 nanoparticles. For this purpose, TiO2 nanoparticles were dispersed in water using an oligomeric dispersant prepared by Reversible Addition-Fragmentation chain Transfer (RAFT) polymerization. Then the nanoparticles were engaged into an emulsion polymerization of acrylonitrile, resulting in the formation of a shell of polyacrylonitrile (PAN) around each TiO2 nanoparticles. Upon pyrolysis, the PAN was transformed into carbon, resulting in the formation of TiO2@C nanoparticles. The structure of the resulting particles was elucidated by X-Ray diffraction, FTIR, UV-VIS and Raman spectroscopy as well as TEM microscopy. Preliminary results about the use of the TiO2@C particles as photocatalysts for the splitting of water are presented. They indicate that the presence of the C shell is responsible for a significant enhancement of the photocurrent. PMID:25072054

  17. Graphene oxide nanosheets as an effective template for the synthesis of porous TiO2 film in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Wang, Ping; He, Fenglong; Wang, Jin; Yu, Huogen; Zhao, Li

    2015-12-01

    Template method by using various organic components as the pore-forming agent is an effective strategy for the preparation of various porous inorganic materials. After high-temperature calcination in air, the organic components can be in situ decomposed into the gaseous CO2, resulting in the formation of porous structures in inorganic materials. In addition to the well-known organic components, it is highly required to develop new and simple carbon-containing template to prepare porous inorganic nanostructures. In this study, graphene oxide (GO) nanosheets were used as a new template for the preparation of porous TiO2 film photoelectrode, which can be applied in dye-sensitized solar cells (DSSCs). The porous TiO2 film was fabricated via a three-step method, including the initially homogeneous grafting of GO nanosheets on the TiO2 surface (TiO2-GO), the preparation of TiO2-GO film using blade method and final formation of porous structure after the in situ removal of GO by high-temperature calcination. The effect of GO content on photoelectric conversion performance of the as-fabricated DSSCs was investigated. It was found that the conversion efficiency of DSSC based on porous TiO2-GO (0.75%) film reached up to a maximum value (4.65%), which was much higher than that of DSSC based on nonporous TiO2 film (4.01%). The enhanced conversion efficiency can be attributed to the formation of more porous structures caused by the GO nanosheets after high-temperature calcination. This work may provide a new insight for preparing other porous structured materials.

  18. In situ synthesis of TiO2/SnO(x)-Au ternary heterostructures effectively promoting visible-light photocatalysis.

    PubMed

    Dong, Zhao; Wu, Minghua; Wu, Jiaying; Ma, Yuanyuan; Ma, Zhenzhen

    2015-07-14

    TiO2/SnOx-Au ternary heterostructures were successfully fabricated via a simple in situ reduction of AuCl4(-) on TiO2 surfaces pre-modified with Sn(2+). The samples were characterized by XRD, TEM, XPS, N2 physical absorption and UV-vis diffuse reflectance spectra. Photocatalytic activity toward degradation of methylene blue (MB) aqueous solution under visible light irradiation was investigated. The results suggested that the highly dispersive and ultrafine Au nanoparticles (NPs) covered with SnOx were deposited onto the surface of TiO2. The heterostructures significantly enhanced the photocatalytic activity compared with the traditional TiO2/Au sample prepared by the impregnation method and also enhanced the activity more than the binary TiO2/SnOx sample. Moreover, the size of the Au NPs could be well controlled by simply tuning the dosage of HAuCl4, and the optimized catalytic activity of the ternary heterostructures was obtained when the dosage of Au was 1% and the Au particle size was ?2.65 nm. The enhancement of photocatalytic performance could be attributed to the surface plasmon resonance effect of the Au NPs and the electron-sink function of the SnOx, which improve the optical absorption properties as well as photoinduced charge carrier separation, synergistically facilitating the photocatalysis. PMID:26061220

  19. Remarkable Charge Separation and Photocatalytic Efficiency Enhancement through Interconnection of TiO2 Nanoparticles by Hydrothermal Treatment.

    PubMed

    Ide, Yusuke; Inami, Nozomu; Hattori, Hideya; Saito, Kanji; Sohmiya, Minoru; Tsunoji, Nao; Komaguchi, Kenji; Sano, Tsuneji; Bando, Yoshio; Golberg, Dmitri; Sugahara, Yoshiyuki

    2016-03-01

    Although tremendous effort has been directed to synthesizing advanced TiO2 , it remains difficult to obtain TiO2 exhibiting a photocatalytic efficiency higher than that of P25, a benchmark photocatalyst. P25 is composed of anatase, rutile, and amorphous TiO2 particles, and photoexcited electron transfer and subsequent charge separation at the anatase-rutile particle interfaces explain its high photocatalytic efficiency. Herein, we report on a facile and rational hydrothermal treatment of P25 to selectively convert the amorphous component into crystalline TiO2 , which is deposited between the original anatase and rutile particles to increase the particle interfaces and thus enhance charge separation. This process produces a new TiO2 exhibiting a considerably enhanced photocatalytic efficiency. This method of synthesizing this TiO2 , inspired by a recently burgeoning zeolite design, promises to make TiO2 applications more feasible and effective. PMID:26891152

  20. Photocatalytic decomposition of bisphenol A in water using composite TiO2-zeolite sheets prepared by a papermaking technique.

    PubMed

    Fukahori, Shuji; Ichiura, Hideaki; Kitaoka, Takuya; Tanaka, Hiroo

    2003-03-01

    Titanium dioxide (TiO2) photocatalyst and zeolite adsorbent were made into a paper-like composite by a papermaking technique using pulp and ceramic fibers as sheet matrix. The photocatalytic performance for the degradation of bisphenol A (BPA) dissolved in water was investigated under UV irradiation. The TiO2 sheet prepared was easier to handle than the original TiO2 powders in aqueous media. The TiO2 sheet could decompose the BPA under UV irradiation, although at a lower degradation efficiency than the TiO2 suspension. The TiO2-free zeolite sheet could not remove the BPA from water completely because of its adsorption equilibrium. Furthermore, the composite TiO2-zeolite sheets exhibited a higher efficiency for BPA removal than the zeolite-free TiO2 sheets, the efficiency of the former being equivalent to that of the TiO2 suspension. The enhancement in removal efficiency was not attributed to the simple adsorption of BPA on zeolite but rather to the synergistic effect obtained through the combined use of TiO2 photocatalyst and zeolite adsorbent in the paper-like composite sheet, which is believed to accelerate the BPA photodegradation in water. PMID:12666940

  1. TiO(2) nanospheres: a facile size-tunable synthesis and effective light-harvesting layer for dye-sensitized solar cells.

    PubMed

    Wang, Shuan; Ding, Yong; Xu, Sichao; Zhang, Yunxia; Li, Guanghai; Hu, Linhua; Dai, Songyuan

    2014-04-22

    A facile route to synthesize amorphous TiO2 nanospheres by a controlled oxidation and hydrolysis process without any structure-directing agents or templates is presented. The size of the amorphous TiO2 nanospheres can be easily turned from 20 to 1500?nm by adjusting either the Ti species or ethanol content in the reaction solution. The phase structure of nanospheres can be controlled by hydrothermal treatment. The TiO2 nanospheres show excellent size-dependent light-scattering effects and can be structured into a light-harvesting layer for dye-sensitized solar cells with a quite high power conversion efficiency of 9.25?%. PMID:24668687

  2. Studies on effect of temperature on synthesis of hierarchical TiO2 nanostructures by surfactant free single step hydrothermal route and its photoelectrochemical characterizations.

    PubMed

    Burungale, V V; Satale, V V; More, A J; Sharma, K K K; Kamble, A S; Kim, J H; Patil, P S

    2016-05-15

    Exotic hierarchical rutile TiO2 nanostructures are synthesized by surfactant free single step hydrothermal route. The effect of reaction temperature, ranging from 140°C to 200°C on the properties of the synthesized rutile-TiO2 is investigated. The synthesized rutile-TiO2 nanostructures are characterized using X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy, UV-vis spectroscopy and scanning electron microscopy techniques. The deposited TiO2 samples are found to be photoelectrochemically active and the best photoelectrochemical performance (0.95±0.05%) is obtained for the sample deposited at 180°C. A possible temperature dependent growth mechanism resulting in photochemically active TiO2 nanostructure thin films is proposed. PMID:26939074

  3. Modelling materials for solar fuel synthesis by artificial photosynthesis; predicting the optical, electronic and redox properties of photocatalysts.

    PubMed

    Guiglion, Pierre; Berardo, Enrico; Butchosa, Cristina; Wobbe, Milena C C; Zwijnenburg, Martijn A

    2016-02-24

    In this mini-review, we discuss what insight computational modelling can provide into the working of photocatalysts for solar fuel synthesis and how calculations can be used to screen for new promising materials for photocatalytic water splitting and carbon dioxide reduction. We will extensively discuss the different relevant (material) properties and the computational approaches (DFT, TD-DFT, GW/BSE) available to model them. We illustrate this with examples from the literature, focussing on polymeric and nanoparticle photocatalysts. We finish with a perspective on the outstanding conceptual and computational challenges. PMID:26808228

  4. Modelling materials for solar fuel synthesis by artificial photosynthesis; predicting the optical, electronic and redox properties of photocatalysts

    NASA Astrophysics Data System (ADS)

    Guiglion, Pierre; Berardo, Enrico; Butchosa, Cristina; Wobbe, Milena C. C.; Zwijnenburg, Martijn A.

    2016-02-01

    In this mini-review, we discuss what insight computational modelling can provide into the working of photocatalysts for solar fuel synthesis and how calculations can be used to screen for new promising materials for photocatalytic water splitting and carbon dioxide reduction. We will extensively discuss the different relevant (material) properties and the computational approaches (DFT, TD-DFT, GW/BSE) available to model them. We illustrate this with examples from the literature, focussing on polymeric and nanoparticle photocatalysts. We finish with a perspective on the outstanding conceptual and computational challenges.

  5. Electron transfers in a TiO2-containing MOR zeolite: synthesis of the nanoassemblies and application using a probe chromophore molecule.

    PubMed

    Legrand, A; Moissette, A; Hureau, M; Casale, S; Massiani, P; Vezin, H; Mamede, A S; Batonneau-Gener, I

    2014-07-14

    New assemblies constituted by a microporous matrix of mordenite (MOR) zeolite on which TiO2 nanoclusters are deposited were synthesized using ionic oxalate complexes and TiCl3 titanium precursors. The samples were used to investigate the transfer of electrons produced by spontaneous or photo-induced ionization of a guest molecule (t-stilbene, t-St) occluded in the porous volume towards the conduction band of a conductive material placed nearby, in the pores or at least close to their entrance. The reaction mechanisms were compared in these Ti-rich solids and in a Ti-free mordenite sample. The characterization by XRD, N2 physisorption, TEM, XPS and DRIFT spectroscopy of the supramolecular TiO2/MOR systems before t-St adsorption showed the preservation of the crystalline structure after Ti addition and thermal activation treatments. They also revealed that titanium is mainly located at the external surface of the zeolite grains, in the form of highly dispersed and/or aggregated anatase. After incorporation of the guest molecule in the new assemblies, diffuse reflectance UV-visible and EPR spectroscopies indicate that the electron transfer processes are similar with and without TiO2 but strongly stabilized t-St?(+) radicals are detected in the TiO2-MOR samples whereas such species were never detected earlier in TiO2-free mordenite using these techniques. The stabilization process is found to be more efficient in the sample prepared with TiCl3 as the precursor than with titanium oxalates. It is proposed that the proximity of TiO2 with the formed t-St?(+) radicals provokes the stabilization of the radical through capture of the ejected electron by the semi-conductor and that confinement effects can also play a role. PMID:24866869

  6. UV-vis light activated Ag decorated monodisperse TiO2 for treatment of pharmaceuticals in water

    EPA Science Inventory

    Recently, many researchers have made a lot of effort to utilize the visible light portion of the solar spectrum to activate TiO2 photocatalyst for environmental applications, such as water, air, and soil remediation. The deposition of noble metals on photocatalysts is of great in...

  7. Photocatalytic synthesis of anilides from nitrobenzenes under visible light irradiation: 2 in 1 reaction.

    PubMed

    Zand, Zahra; Kazemi, Foad; Partovi, Adel

    2015-11-01

    An efficient method has been developed for the synthesis of a series of anilides via a two in one reaction of nitrobenzenes with anhydride in the presence of TiO2 as a nanocatalyst and photocatalyst under sunlight or blue LED irradiation. In this method simultaneously, nitrobenzenes convert to the corresponding anilines via photocatalytic reduction on the TiO2 surface, and a condensation of aniline with the anhydride performed on the Lewis acid site of the TiO2 surface. Interestingly amidation step leads to the promotion of better reaction and good selectivity in reduction of nitrocompounds. This method is simple, rapid, high yield, and green. PMID:25744492

  8. Synthesis of surface plasmon resonance (SPR) triggered Ag/TiO2 photocatalyst for degradation of endocrine disturbing compounds

    NASA Astrophysics Data System (ADS)

    Leong, Kah Hon; Gan, Bee Ling; Ibrahim, Shaliza; Saravanan, Pichiah

    2014-11-01

    Surface deposition of silver nanoparticles (Ag NPs) onto the 100% anatase titania (Ag/TiO2) for evolution of surface plasmon resonance (SPR) was achieved sustainably with the assistance of solar energy. The preparation resulted in Ag/TiO2 photocatalyst with varied Ag depositions (0.5 wt%, 1.0 wt%, 3.0 wt% and 5.0 wt%). All obtained photocatalysts were characterized for the evolution of SPR via crystalline phase analysis, morphology, lattice fringes, surface area and pore size characteristics, chemical composition with chemical and electronic state, Raman scattering, optical and photoluminescence properties. The deposition of synthesized Ag NPs exhibited high uniformity and homogeneity and laid pathway for effective utilization of the visible region of electromagnetic spectrum through SPR. The depositions also lead for suppressing recombination rates of electron-hole. The photocatalytic evaluation was carried out by adopting two different class of endocrine disturbing compound (EDC) i.e., amoxicillin (pharmaceutical) and 2,4-dichlorophenol (pesticide) excited with artificial visible light source. Ag/TiO2 with Ag > 0.5 wt% exhibited significant degradation efficiency for both amoxicillin and 2,4-dichlorophenol. Thus synthesized Ag/TiO2 revealed the implication of plasmonics on TiO2 for the enhanced visible light photocatalytic activity.

  9. Efficient Photocatalytic Activities of TiO2 Hollow Fibers with Mixed Phases and Mesoporous Walls

    PubMed Central

    Hou, Huilin; Shang, Minghui; Wang, Lin; Li, Wenge; Tang, Bin; Yang, Weiyou

    2015-01-01

    Currently, Degussa P25, with the typical mixed phases of anatase and rutile TiO2, is widely applied as the commercial photocatalysts. However, there are still some of obstacles for the P25 nanoparticles with totally high photocatalytic activities, especially for the catalytic stability due to their inevitable aggregation of the nanoparticles when used as the photocatalysts. In the present work, we reported the exploration of a novel TiO2 photocatalyst, which could offer an ideal platform for synergetic combination of the mixed-phase composition, hollow architecture and mesoporous walls for the desired excellent photocatalytic efficiency and robust stability. The mesoporous TiO2 hollow nanofibers were fabricated via a facile single capillary electrospinning technique, in which the foaming agents were used for creating mesopores throughout the walls of the hollow fibers. The obtained hollow fibers exhibit a high purity and possess the mixed phases of 94.6% anatase and 5.4% rutile TiO2. As compared to P25, the as-fabricated mesoporous TiO2 hollow fibers exhibited much higher efficient photocatalytic activities and stabilities toward the hydrogen evolution with a rate of ~499.1 μmol g−1·h−1 and ~99.5% degradation Rhodamine B (RhB) in 60 min, suggesting their promising application in efficient photocatalysts. PMID:26470013

  10. Efficient Photocatalytic Activities of TiO2 Hollow Fibers with Mixed Phases and Mesoporous Walls

    NASA Astrophysics Data System (ADS)

    Hou, Huilin; Shang, Minghui; Wang, Lin; Li, Wenge; Tang, Bin; Yang, Weiyou

    2015-10-01

    Currently, Degussa P25, with the typical mixed phases of anatase and rutile TiO2, is widely applied as the commercial photocatalysts. However, there are still some of obstacles for the P25 nanoparticles with totally high photocatalytic activities, especially for the catalytic stability due to their inevitable aggregation of the nanoparticles when used as the photocatalysts. In the present work, we reported the exploration of a novel TiO2 photocatalyst, which could offer an ideal platform for synergetic combination of the mixed-phase composition, hollow architecture and mesoporous walls for the desired excellent photocatalytic efficiency and robust stability. The mesoporous TiO2 hollow nanofibers were fabricated via a facile single capillary electrospinning technique, in which the foaming agents were used for creating mesopores throughout the walls of the hollow fibers. The obtained hollow fibers exhibit a high purity and possess the mixed phases of 94.6% anatase and 5.4% rutile TiO2. As compared to P25, the as-fabricated mesoporous TiO2 hollow fibers exhibited much higher efficient photocatalytic activities and stabilities toward the hydrogen evolution with a rate of ~499.1??mol g-1h-1 and ~99.5% degradation Rhodamine B (RhB) in 60?min, suggesting their promising application in efficient photocatalysts.

  11. Dependence of nitrogen doping on TiO 2 precursor annealed under NH 3 flow

    NASA Astrophysics Data System (ADS)

    Fang, Xiaoming; Zhang, Zhengguo; Chen, Qinglin; Ji, Hongbing; Gao, Xuenong

    2007-04-01

    N-doped TiO 2 photocatalysts were prepared by annealing two different precursors, P25 and a TiO 2 xerogel powder under NH 3/Ar flow at 500, 550, and 600 °C. The xerogel powder prepared by peptizing Ti(OH) 4 with HNO 3 was composed of nanoparticles and had large specific surface area. During the annealing process, the xerogel powder underwent increase in crystallinity, grain growth and phase transformation, whereas P25 did not show obvious changes. Compared with the N-doped TiO 2 photocatalysts from P25, the N-doped TiO 2 photocatalysts from the xerogel powder possessed higher concentrations of the substitutional nitrogen and exhibited more obvious absorption in the visible light region. The N-doped TiO 2 photocatalysts from the xerogel powder exhibited obvious visible-light activities for photodegrading methylene blue and the sample prepared at 500 °C achieved the best performance with a rate constant ( k) about 0.44 h -1, whereas those from P25 did not exhibit improved visible-light activities.

  12. The effect of TiO2 nanostructures on self-degrading polyurethane foams

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Charpentier, Paul A.

    2014-03-01

    Waste polyurethane foams are becoming a serious environmental problem due to their low degradation rates upon exposure to the environment. By adding TiO2 nanostructures as a photocatalyst, we can simultaneously enhance mechanical properties during use for higher performance applications, while enhancing degradation when exposed to light when placed in landfills. In this work, we integrated anatase TiO2 nanoparticles into polyurethane foams using a unique bifunctional monomer approach and studied the photodegradation ability and mechanism in a weathering chamber simulating natural environmental conditions. We found that the TiO2 nanoparticles increased the degradation rate in a significant manner showing the utility of this approach.

  13. Visible Light-activated TiO2 photocatalytic Films; Synthesis, Characterization and Environmental Application for the Destruction of Microcystin-LR

    EPA Science Inventory

    Titanium dioxide (TiO2) photocatalysis has become one of the most effective advanced oxidation technologies (AOTs) for the treatment of persistent organic contaminants. To generate hydroxyl radicals, a non-selective, reactive oxidizing species and responsible for the oxidation of...

  14. Laser synthesis of hierarchically organized nanostructured TiO2 films on microfibrous carbon paper substrate: Characterization and electrocatalyst supporting properties

    NASA Astrophysics Data System (ADS)

    Wang, Youling; Tabet-Aoul, Amel; Mohamedi, Mohamed

    2015-12-01

    Titanium dioxide is cheap, non-toxic, exhibits a high mechanical resistance, very stable in acidic and oxidative environments is being studied as alternative to carbon as catalyst support in low-temperature fuel cells. Herein, via pulsed laser deposition, various morphologies of TiO2 thin films are synthesized at room temperature onto conductive microfibrous carbon paper substrate, which is the type of substrate, employed in energy storage and conversion devices. TiO2 films deposited under vacuum and in the presence of mild pressure of oxygen are very smooth and dense. Instead, TiO2 films deposited in the presence of helium atmosphere are of porous structures and vertically aligned. An increase in the helium pressure leads to the formation of forest-like vertically aligned nanostructures. Micro-Raman spectroscopy reveals that the films are amorphous and of rutile phase. X-ray photoelectron spectroscopy shows that Ti is in fully oxidized state of Ti4+. The electrocatalytic supporting properties to Pt are investigated in H2SO4 and O2-saturated H2SO4 solution. It is found that regardless of the film morphology, all the synthesized TiO2 films dramatically increase the electroactive surface area of Pt and enhance its electroactivity towards oxygen reduction reaction as compared with bare Pt electrode.

  15. Template-free synthesis of hierarchical TiO2 hollow microspheres as scattering layer for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Rui, Yichuan; Wang, Linlin; Zhao, Jiachang; Wang, Hongzhi; Li, Yaogang; Zhang, Qinghong; Xu, Jingli

    2016-04-01

    Hierarchical TiO2 hollow microspheres were synthesized by a 2-step process consisting of thermal hydrolysis and subsequent solvothermal reaction. Quasi-monodispersed solid TiO2 microspheres aggregated by amorphous particles were firstly obtained by the controlled thermal hydrolysis of titanium sulfate, and then the solid structures transformed to hollow ones and crystallized during the subsequent solvothermal treatment. SEM and TEM images of the samples revealed that the morphological evolution was in perfect accordance with the inside-out Ostwald ripening mechanism. The rich porosity and unique hierarchical hollow structure endow the TiO2 microspheres with a large specific surface area of 108.0 m2 g-1. As an effective anode material for dye-sensitized solar cells, TiO2 hollow microspheres showed good capability of dye adsorption and strong light scattering, leading to a comparable energy conversion efficiency to the commercial 18NR-T transparent titania. Finally, a high efficiency of 7.84% was achieved for the bi-layer DSSC by coating the hollow microspheres on top of the 18NR-T titania as the light scattering layer.

  16. Synthesis and photocatalytic activity of TiO2 nanowires in the degradation of p-aminobenzoic acid: A comparative study with a commercial catalyst.

    PubMed

    Soto-Vzquez, Loraine; Cotto, Mara; Ducong, Jos; Morant, Carmen; Mrquez, Francisco

    2016-02-01

    The photocatalytic degradation of p-aminobenzoic acid was studied using TiO2 nanowires as the catalyst synthesized through a hydrothermal procedure. The as-synthesized TiO2 nanowires were fully characterized by SEM, TEM, XRD and Raman with a very high surface area of 512m(2)g(-1). The photocatalytic degradation of p-aminobenzoic acid was carried out under 180min of constant radiation and the results were compared with P25 as commercial catalyst. Optimal experimental conditions were determined for TiO2 nanowires with a catalyst dosage of 1.0gL(-1) under acidic conditions with a 20?M p-aminobenzoic acid solution obtaining 95% of degradation. Under similar experimental conditions comparative studies were performed obtaining 98% of degradation when P25 is employed. In both systems, a pseudo first order reaction was found to provide the best correlations, with constant rates of 2.0נ10(-2)min(-1) and 2.4נ10(-2)min(-1) for TiO2 nanowires and P25, respectively. PMID:26610195

  17. Low-temperature hydrothermal synthesis of N-doped TiO2 from small-molecule amine systems and their photocatalytic activity.

    PubMed

    Bao, Nan; Niu, Jun-Jian; Li, Yuan; Wu, Guo-Lin; Yu, Xiao-Hong

    2013-01-01

    Nitrogen-doped TiO2 nanopowders have been successfully synthesized by a one-step hydrothennal route under soft-chemistry conditions (150 degrees, 8 h) without high-temperature calcination using seven different types of nitrogen dopants: methylamine, ethylamine, diethylamine, ethylenediamine, triethylamine, triethanolamine and ammonia. X-ray diffraction, transmission electron microscopy, ultraviolet-visible spectroscopy, X-ray photoelectron spectroscopy, N2 adsorption-desorption isothenns and Fourier transform infrared spectroscopy were used to analyse the as-synthesized TiO2 powders. The results indicated that nitrogen was doped effectively and the structure and morphology of the titania samples were strongly influenced by the nitrogen sources. Among the investigated nitrogen sources, the diethylamine system was clearly superior to the other small-molecule amine or ammonia systems due to the broad-spectrum response (between 400 and 700 nm) of the interstitial nitrogen-doped TiO2 nanopowders. The diethylamine N-doped TiO2 had the largest pore volume (0.39 ml x g(-1)) and showed a well-aligned anatase phase. The visible-light photocatalytic degradation of liquid X-3B used as a probe reaction demonstrated that the removal rate over the diethylamine material reached 99.7% in 90 min. PMID:24617053

  18. Synthesis of three-dimensional agaric-like biomorphic TiO2 by a facile method with Coscinodiscus sp. frustule

    NASA Astrophysics Data System (ADS)

    Zhang, Qianqian; Chen, Ran; Li, Ling

    2012-12-01

    The paper aims to expand the application of natural marine algae. Marine diatoms, which have intricate frustule structures, can serve as bio-template for preparing three-dimensional materials. A simple and effective approach to synthesize the corrugated agaric-like biomorphic TiO2 templated with frustule of Coscinodiscus sp. is reported. In the sol-gel preparation process, the titania-coating on the frustule is prepared through the deposition and condensation with the aid of acetylacetone (acac) as a controlling agent to make the precursor Ti(BuO)4 hydrolyze slowly. The as-prepared titania-coated frustule and biomorphic TiO2 is characterized by scanning electron microscopy (SEM) attached with energy dispersive X-ray spectrometer (EMAX) and X-ray diffraction (XRD). The microstructure of the corresponding titania nanoparticles appears to be sphere with the diameters distributed around 10-20 nm. The templating process is repeated for three cycles. Subsequently, the three-dimensional freestanding corrugated agaric-like biomorphic TiO2 structure is obtained by a selective removal in the NaOH solution. As far as we known, the 3D freestanding corrugated agaric-like biomorphic TiO2 with greatly increased surface area is obtained for the first time.

  19. Facile synthesis of hierarchical Ag3PO4/TiO2 nanofiber heterostructures with highly enhanced visible light photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Xie, Jinlei; Yang, Yefeng; He, Haiping; Cheng, Ding; Mao, Minmin; Jiang, Qinxu; Song, Lixin; Xiong, Jie

    2015-11-01

    Heterostructured semiconductor nanostructures have provoked great interest in the areas of energy, environment and catalysis. Herein, we report a novel hierarchical Ag3PO4/TiO2 heterostructure consisting of nearly spherical Ag3PO4 particles firmly coupled on the surface of TiO2 nanofibers (NFs). The construction of Ag3PO4/TiO2 heterostructure with tailored morphologies, compositions and optical properties was simply achieved via a facile and green synthetic strategy involving the electrospinning and solution-based processes. Owing to the synergetic effects of the components, the resulting hybrid heterostructures exhibited much improved visible light photocatalytic performance, which could degrade the RhB dye completely in 7.5 min. In addition, the coupling of Ag3PO4 particles with UV-light-sensitive TiO2 NFs enabled full utilization of solar energy and less consumption of noble metals, significantly appealing for their practical use in new energy sources and environmental issues. The developed synthetic strategy was considered to be applicable for the rational design and construction of other heterostructured catalysts.

  20. Beta zeolite supported sol-gel TiO2 materials for gas phase photocatalytic applications.

    PubMed

    Lafjah, Mama; Djafri, Fatiha; Bengueddach, Abdelkader; Keller, Nicolas; Keller, Valrie

    2011-02-28

    Beta zeolite supported sol-gel TiO(2) photocatalytic materials were prepared according to a sol-gel route in which high specific surface area Beta zeolite powder was incorporated into the titanium isopropoxide sol during the course of the sol-gel process. This led to an intimate contact between the zeolite surface and the TiO(2) precursors, and resulted in the anchorage of large amounts of dispersed TiO(2) nanoparticles and in the stabilization of TiO(2) in its anatase form, even for high TiO(2) wt. contents and high calcination temperatures. Taking the UV-A photocatalytic oxidation of methanol as gas phase target reaction, high methanol conversions were obtained on the Beta zeolite supported TiO(2) photocatalysts when compared to bulk sol-gel TiO(2), despite lower amounts of TiO(2) within the photoactive materials. The methanol conversion was optimum for about 40 wt.% TiO(2) loading and calcination temperatures of 500-600C. PMID:21177024

  1. First-principles study of Cu-doping and oxygen vacancy effects on TiO2 for water splitting

    NASA Astrophysics Data System (ADS)

    Zhang, Huamin; Yu, Xiaohui; McLeod, John A.; Sun, Xuhui

    2014-09-01

    We investigate the electronic structures and optical properties of Cu-doped TiO2-x using density functional theory (DFT) calculations. We find that Cu doping creates an empty impurity band lying above the valence band of TiO2, which bridges most of the gap between the valence band maximum and conduction band minimum in undoped TiO2. The results also show that oxygen vacancies produce a similar effect and that Cu-doping can increase the stability of oxygen vacancies. We propose that Cu-doped TiO2-x improves light harvesting and could be a promising visible-light photocatalyst.

  2. Synthesis of Ag-doped TiO2 nanoparticles by combining laser decomposition of titanium isopropoxide and ablation of Ag for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Al-Kamal, Ahmed Kamal

    Nanostructured powders of TiO2 and Ag-doped TiO2 are synthesized by a novel pulsed-laser process that combines laser ablation of a silver (Ag) disc with laser decomposition of a titanium tetra-isopropoxide (TTIP) solution. Nanoparticles are formed by rapid condensation of vaporized species in the plasma plume generated by the high power laser, resulting in the formation of rapidly quenched Ag-doped TiO2 nanoparticles that have far-from-equilibrium or metastable structures. The uniqueness of the new ablation process is that it is a one-step process, in contrast to the two-step process developed by previous researchers in the field. Moreover, its ability to synthesize an extended-solid solution phase of Ag in TiO 2 may also be unique. The present work implies that other oxide phases, such as Al2O3, MgO and MgAl2O4, can be doped with normally insoluble metals, such as Pt and Ir, thus opening new opportunities for catalytic applications. Again, there is the prospect of being able to synthesize nanopowders of diamond, c-BN, and mixtures thereof, which are of interest for applications in machine tools, rock-drill bits, and lightweight armor. A wet-chemistry method is also investigated, which has much in common with that adopted by previous workers in the field. However, photo-voltaic properties do not measure up to expectations based on published data. A possible explanation is that the selected Ag concentrations are too high, so that recombination of holes and electrons occurs via a quantum-tunneling mechanism reduces photo-activity. Future work, therefore, will investigate lower concentrations of Ag dopant in TiO2, while also examining the effects of metastable states, including extended solid solution, amorphous, and semi-crystalline structures.

  3. Synthesis of Nanostructured and Nanoporous TiO2-AgO Mixed Oxide Derived from a Particulate Sol-Gel Route: Physical and Sensing Characteristics

    NASA Astrophysics Data System (ADS)

    Mohammadi, M. R.; Fray, D. J.

    2011-08-01

    Nanocrystalline TiO2-AgO thin films and powders were prepared by an aqueous particulate sol-gel route at the low temperature of 573 K (300 C). Titanium tetraisopropoxide and silver nitrate were used as precursors, and hydroxypropyl cellulose was used as a polymeric fugitive agent in order to increase the specific surface area. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) revealed that the phase composition of the mixed oxide depends upon the annealing temperature, being a mixture of TiO2 and AgO in the range 573 K to 773 K (300 C to 500 C) and a mixture of TiO2, AgO, and Ag2O at 973 K (700 C). Furthermore, one of the smallest crystallite sizes was obtained for TiO2-AgO mixed oxide, being 4 nm at 773 K (500 C). Field emission-scanning electron microscopic (FE-SEM) and atomic force microscopic (AFM) images revealed that the deposited thin films had nanostructured and nanoporous morphology with columnar topography. Thin films produced under optimized conditions showed excellent microstructural properties for gas sensing applications. They exhibited a remarkable response toward low concentrations of CO gas ( i.e., 25 ppm) at low operating temperature of 473 K (200 C), resulting in an increase of the thermal stability of sensing films as well as a decrease in their power consumption. Furthermore, TiO2-AgO sensors follow the power law for the detection of CO gas.

  4. Hydrothermal synthesis of TiO2 nanocrystals in different basic pHs and their applications in dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Anajafi, Z.; Marandi, M.; Taghavinia, N.

    2015-06-01

    In this research TiO2 nanocrystals with sizes about 11-70 nm were grown by hydrothermal method. The process was performed in basic autoclaving pH in the range of 8.0-12.0. The synthesized anatase phase TiO2 nanocrystals were then applied in the phtoanode of the dye sensitized solar cells. It was shown that the final average size of the nanocrystals was larger when the growth was carried out in higher autoclaving pHs. The photoanodes made of TiO2 nanocrystals prepared in the pHs of 8.0 and 9.0 represented low amounts of dye adsorption and light scattering. The performance of the corresponding dye sensitized solar cells was also not acceptable. Nevertheless, the energy conversion efficiency was better for the state of pH of 9.0. For the photoanodes made of TiO2 nanocrystals prepared at autoclaving pH of 10.0, the dye adsorption and light scattering were quite higher. The photovoltaic characteristics of the best cell in this state were 15.25 mA/cm2, 740 mV, 0.6 and 6.8% for the short-circuit current density, open-circuit voltage, fill factor and efficiency, respectively. The photoanodes composed of TiO2 nanocrystals prepared in autoclaving pHs of 11.0 and 12.0 demonstrated lower amount of dye adsorption and higher light scattering. This was quite considerable for the state of pH of 12.0. The energy conversion efficiencies were consequently decreased compared to that of the pH of 10.0. The optimum situation was finally discussed based on the nanocrystals size and its influence on the sensitization and light harvesting efficiency.

  5. Visible-Light-Driven Oxidation of Primary CH Bonds over CdS with Dual Co-catalysts Graphene and TiO2

    PubMed Central

    Yang, Min-Quan; Zhang, Yanhui; Zhang, Nan; Tang, Zi-Rong; Xu, Yi-Jun

    2013-01-01

    Selective activation of primary CH bonds for fine chemicals synthesis is of crucial importance for the sustainable exploitation of available feedstocks. Here, we report a viable strategy to synthesize ternary GR-CdS-TiO2 composites with an intimate spatial integration and sheet-like structure, which is afforded by assembling two co-catalysts, graphene and TiO2, into the semiconductor CdS matrix with specific morphology as a visible light harvester. The GR-CdS-TiO2 composites are able to serve as a highly selective visible-light-driven photocatalyst for oxidation of saturated primary CH bonds using benign oxygen as oxidant under ambient conditions. This work demonstrates a wide, promising scope of adopting co-catalyst strategy to design more efficient semiconductor-based photocatalyst toward selective activation of CH bonds using solar light and molecular oxygen. PMID:24264835

  6. Visible-light-driven oxidation of primary C-H bonds over CdS with dual co-catalysts graphene and TiO2.

    PubMed

    Yang, Min-Quan; Zhang, Yanhui; Zhang, Nan; Tang, Zi-Rong; Xu, Yi-Jun

    2013-01-01

    Selective activation of primary C-H bonds for fine chemicals synthesis is of crucial importance for the sustainable exploitation of available feedstocks. Here, we report a viable strategy to synthesize ternary GR-CdS-TiO2 composites with an intimate spatial integration and sheet-like structure, which is afforded by assembling two co-catalysts, graphene and TiO2, into the semiconductor CdS matrix with specific morphology as a visible light harvester. The GR-CdS-TiO2 composites are able to serve as a highly selective visible-light-driven photocatalyst for oxidation of saturated primary C-H bonds using benign oxygen as oxidant under ambient conditions. This work demonstrates a wide, promising scope of adopting co-catalyst strategy to design more efficient semiconductor-based photocatalyst toward selective activation of C-H bonds using solar light and molecular oxygen. PMID:24264835

  7. Visible-Light-Driven Oxidation of Primary C-H Bonds over CdS with Dual Co-catalysts Graphene and TiO2

    NASA Astrophysics Data System (ADS)

    Yang, Min-Quan; Zhang, Yanhui; Zhang, Nan; Tang, Zi-Rong; Xu, Yi-Jun

    2013-11-01

    Selective activation of primary C-H bonds for fine chemicals synthesis is of crucial importance for the sustainable exploitation of available feedstocks. Here, we report a viable strategy to synthesize ternary GR-CdS-TiO2 composites with an intimate spatial integration and sheet-like structure, which is afforded by assembling two co-catalysts, graphene and TiO2, into the semiconductor CdS matrix with specific morphology as a visible light harvester. The GR-CdS-TiO2 composites are able to serve as a highly selective visible-light-driven photocatalyst for oxidation of saturated primary C-H bonds using benign oxygen as oxidant under ambient conditions. This work demonstrates a wide, promising scope of adopting co-catalyst strategy to design more efficient semiconductor-based photocatalyst toward selective activation of C-H bonds using solar light and molecular oxygen.

  8. Interface actions between TiO2 and porous diatomite on the structure and photocatalytic activity of TiO2-diatomite

    NASA Astrophysics Data System (ADS)

    Xia, Yue; Li, Fangfei; Jiang, Yinshan; Xia, Maosheng; Xue, Bing; Li, Yanjuan

    2014-06-01

    TiO2-diatomite photocatalysts were prepared by sol-gel process with various pre-modified diatomite. In order to obtain diatomite with different surface characteristics, two modification approaches including calcination and phosphoric acid treatment on the micro-structure of diatomite are introduced. The photocatalysts were characterized by XRD, XPS, nitrogen adsorption-desorption isotherms and micromorphology analysis. The results indicate that, compared with pure TiO2, the anatase-to-rutile phase transition temperature of TiO2 loaded on diatomite carrier is significantly increased to nearly 900 °C, depending on the different pretreatment method of diatomite. The photocatalytic activities of different samples were evaluated by their degradation rate of methyl orange (MO) dye under UV and visible-light irradiation. The samples prepared by phosphoric acid pretreatment method exhibit the highest photocatalytic activity. After 90 min of UV irradiation, about 90% of MO is decomposed by the best effective photocatalyst. And after 8 h visible-light irradiation, nearly 60% of MO is decomposed by the same sample. Further mechanism investigation reveals that the H3PO4 pretreatment process can obviously change the surface features of diatomite carrier, cause the formation of Si-O-Ti bond, increase the binding strength between TiO2 and diatomite, restrain crystal growth of loaded TiO2, and thus form thermal-stable mesoporous structure at the granular spaces. It helps to build micro-, meso- and macro-porous hierarchical porous structure in TiO2-diatomite, and improves the charge and mass transfer efficiency during catalyzing process, resulting in the significantly increased photocatalytic activity of TiO2-diatomite pretreated by phosphoric acid.

  9. Few-layered MoS2 nanosheets wrapped ultrafine TiO2 nanobelts with enhanced photocatalytic property

    NASA Astrophysics Data System (ADS)

    Li, Haidong; Wang, Yana; Chen, Guohui; Sang, Yuanhua; Jiang, Huaidong; He, Jiating; Li, Xu; Liu, Hong

    2016-03-01

    Photocatalytic materials comprised of semiconductor nanostructures have attracted tremendous scientific and technological interest over the last 30 years. This is due to the fact that these photocatalytic materials have unique properties that allow for an effective direct energy transfer from light to highly reactive chemical species which are applicable in the remediation of environmental pollutants and photocatalytic hydrogen generation. Heterostructured photocatalysts are a promising type of photocatalyst which can combine the properties of different components to generate a synergic effect, resulting in a high photocatalytic activity. In this work, a heterostructured photocatalyst comprised of few-layered MoS2 nanosheets coated on a TiO2 nanobelts surface was synthesized through a simple hydrothermal treatment. The hybrid heterostructures with enhanced broad spectrum photocatalytic properties can harness UV and visible light energy to decompose organic contaminants in aqueous solutions as well as split water to hydrogen and oxygen. The mechanism of the enhancement is that the MoS2/TiO2 nanobelts heterostructure can enhance the separation of the photo-induced carriers, which results in a higher photocurrent due to the special electronic characteristics of the graphene-like layered MoS2 nanosheets. This methodology is potentially applicable to the synthesis of a range of hybrid nanostructures with promising applications in photocatalysis and other relevant areas.Photocatalytic materials comprised of semiconductor nanostructures have attracted tremendous scientific and technological interest over the last 30 years. This is due to the fact that these photocatalytic materials have unique properties that allow for an effective direct energy transfer from light to highly reactive chemical species which are applicable in the remediation of environmental pollutants and photocatalytic hydrogen generation. Heterostructured photocatalysts are a promising type of photocatalyst which can combine the properties of different components to generate a synergic effect, resulting in a high photocatalytic activity. In this work, a heterostructured photocatalyst comprised of few-layered MoS2 nanosheets coated on a TiO2 nanobelts surface was synthesized through a simple hydrothermal treatment. The hybrid heterostructures with enhanced broad spectrum photocatalytic properties can harness UV and visible light energy to decompose organic contaminants in aqueous solutions as well as split water to hydrogen and oxygen. The mechanism of the enhancement is that the MoS2/TiO2 nanobelts heterostructure can enhance the separation of the photo-induced carriers, which results in a higher photocurrent due to the special electronic characteristics of the graphene-like layered MoS2 nanosheets. This methodology is potentially applicable to the synthesis of a range of hybrid nanostructures with promising applications in photocatalysis and other relevant areas. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08796a

  10. Characterization and improved solar light activity of vanadium doped TiO2/diatomite hybrid catalysts.

    PubMed

    Wang, Bin; Zhang, Guangxin; Leng, Xue; Sun, Zhiming; Zheng, Shuilin

    2015-03-21

    V-doped TiO2/diatomite composite photocatalysts with different vanadium concentrations were synthesized by a modified sol-gel method. The diatomite was responsible for the well dispersion of TiO2 nanoparticles on the matrix and consequently inhibited the agglomeration. V-TiO2/diatomite hybrids showed red shift in TiO2 absorption edge with enhanced absorption intensity. Most importantly, the dopant energy levels were formed in the TiO2 bandgap due to V(4+) ions substituted to Ti(4+) sites. The 0.5% V-TiO2/diatomite photocatalyst displayed narrower bandgap (2.95 eV) compared to undoped sample (3.13 eV) and other doped samples (3.05 eV) with higher doping concentration. The photocatalytic activities of V doped TiO2/diatomite samples for the degradation of Rhodamine B under stimulated solar light illumination were significantly improved compared with the undoped sample. In our case, V(4+) ions incorporated in TiO2 lattice were responsible for increased visible-light absorption and electron transfer to oxygen molecules adsorbed on the surface of TiO2 to produce superoxide radicals ˙O2(-), while V(5+) species presented on the surface of TiO2 particles in the form of V2O5 contributed to e(-)-h(+) separation. In addition, due to the combination of diatomite as support, this hybrid photocatalyst could be separated from solution quickly by natural settlement and exhibited good reusability. PMID:25497036

  11. Nonaqueous TiO2 nanoparticle synthesis: a versatile basis for the fabrication of self-supporting, transparent, and UV-absorbing composite films.

    PubMed

    Koziej, Dorota; Fischer, Fabian; Krnzlin, Niklaus; Caseri, Walter R; Niederberger, Markus

    2009-05-01

    A successful strategy to obtain self-supporting (100 microm), UV-absorbing, and, in the visible region, highly transparent TiO2-poly(methyl methacrylate) (PMMA) films was developed. The 15 nm large anatase TiO2 nanocrystals were prepared in a nonaqueous sol-gel approach involving the mixing of Ti(O(i)Pr)4 and benzyl alcohol. The surfaces of the resulting particles were modified with minute amounts of organic ligands in order to make the particles easily dispersible in nonpolar media like xylene and dichloromethane and compatible with PMMA, a polymer of high optical transparency and considerable technical importance. The empirical optimization process of composite fabrication was supplemented by fundamental studies of the crystallization and growth mechanism of anatase particles in a nonaqueous medium. After the preparation of corresponding nanocomposites, the materials were investigated with respect to their UV absorption capability, optical transparency in the visible-wavelength region, and photodegradation. PMID:20355897

  12. Graphene Oxide-Assisted Synthesis of Microsized Ultrathin Single-Crystalline Anatase TiO2 Nanosheets and Their Application in Dye-Sensitized Solar Cells.

    PubMed

    Chen, Biao; Sha, Junwei; Li, Wei; He, Fang; Liu, Enzuo; Shi, Chunsheng; He, Chunnian; Li, Jiajun; Zhao, Naiqin

    2016-02-01

    High-quality microsized ultrathin single-crystalline anatase TiO2 nanosheets (MS-TiO2) with exposed {001} facets were synthesized by a facile and low-cost two-step process that combines a graphene oxide (GO)-assisted hydrothermal method with calcination. Both GO and HF play an important role in the formation of well dispersed MS-TiO2. As a novel microsized (1-4 ?m) ultrathin two-dimensional (2D) material, MS-TiO2 possesses much higher lateral size and aspect ratio compared to common 2D nanosized (30-60 nm) ultrathin TiO2 nanosheets (NS-TiO2), resulting in excellent electronic conductivity and superior electron transfer and diffusion properties. Here, we fabricated MS-TiO2 and NS-TiO2, both of which were incorporated with the TiO2 nanoparticles (P25) to constitute the hybrid photoanode of dye-sensitized solar cells (DSSCs), and explored the effect of the lateral size (nano- and micro-) of ultrathin TiO2 nanosheets on their electron transfer and diffusion properties. Benefiting from the faster electron transfer rate and short diffusion path of the MS-TiO2, the MS-TiO2/P25 gains the more superior performance compared to pure P25 and NS-TiO2/P25 in the application of DSSCs. Moreover, it is expected that the novel high aspect ratio MS-TiO2 may be applied in diverse fields including photocatalysis, photodetectors, lithium-ion batteries and others concerning the environment and energy. PMID:26745514

  13. A maskless synthesis of TiO2-nanofiber-based hierarchical structures for solid-state dye-sensitized solar cells with improved performance

    PubMed Central

    2014-01-01

    TiO2 hierarchical nanostructures with secondary growth have been successfully synthesized on electrospun nanofibers via surfactant-free hydrothermal route. The effect of hydrothermal reaction time on the secondary nanostructures has been studied. The synthesized nanostructures comprise electrospun nanofibers which are polycrystalline with anatase phase and have single crystalline, rutile TiO2 nanorod-like structures growing on them. These secondary nanostructures have a preferential growth direction [110]. UVvis spectroscopy measurements point to better dye loading capability and incident photon to current conversion efficiency spectra show enhanced light harvesting of the synthesized hierarchical structures. Concomitantly, the dye molecules act as spacers between the conduction band electrons of TiO2 and holes in the hole transporting medium, i.e., spiro-OMeTAD and thus enhance open circuit voltage. The charge transport and recombination effects are characterized by electrochemical impedance spectroscopy measurements. As a result of improved light harvesting, dye loading, and reduced recombination losses, the hierarchical nanofibers yield 2.14% electrochemical conversion efficiency which is 50% higher than the efficiency obtained by plain nanofibers. PMID:24410851

  14. Synthesis, characterization and photocatalytic activity of noble metal-modified TiO2 nanosheets with exposed {0 0 1} facets

    NASA Astrophysics Data System (ADS)

    Diak, Magdalena; Grabowska, Ewelina; Zaleska, Adriana

    2015-08-01

    Pt, Pd, Ag and Au nanoparticles were photodeposited on the {0 0 1} crystal facets of the TiO2 anatase nanosheets. Morphological and surface characterization of the samples as well as photocatalytic activity were studied. The influence of metal precursor concentration used during photodeposition (0.05-0.5%) on size of formed metal nanoparticles together with UV and vis-mediated activity of Pt, Pd, Ag or Au-TiO2 was investigated. Generally, samples obtained by photodeposition of noble metal nanoparticles using their 0.2% precursor solutions revealed highest activity in phenol degradation reaction under visible light (? > 420 nm). The photoactivity of the as-prepared samples with respect to the modified metal species was ordered Ag?Pd > Au > Pt. TEM analysis showed that photodeposited metal nanoparticles appeared only on {0 0 1} facets of TiO2. The average degradation rate of phenol in the presence of Pd and Ag-TiO2 was 0.5 ?mol dm-3 min-1 after 60 min of irradiation under visible light, and was five times higher than that of pure TiO2 nanosheets.

  15. Hydrothermal Synthesis of TiO2 Porous Hollow Nanospheres for Coating on the Photoelectrode of Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Madhu Mohan, Varishetty; Murakami, Kenji

    2012-02-01

    Various sizes of TiO2 hollow nanosphers were synthesized by a hydrolysis followed by the hydrothermal treatment using different water content and titanium isopropoxide (TTIP) while the remaining components such as methylamine, ethanol and acetonitrile were kept as a constant. We synthesized the various sizes of spheres, 150, 250, 400, 450, and 600 nm in diameter; those are represented as SP150, SP250, SP400, SP450, and SP600. The prepared spheres diameters were confirmed by scanning electron microscopy (SEM). These spheres were coated by using a simple spray technique with the TiO2 colloidal solution as a scattering layer for the TiO2 photoelectrode of dye-sensitized solar cells. Optical absorption measurements did not find a difference in the dye adsorption amount with and without the scattering layer. The scattering effect was observed by incident photon to current conversion efficiency (IPCE) measurements especially in the wavelength region of 550-700 nm. The current-voltage (I-V) measurements show that the scattering layer with 450 nm spheres coated on the photoelectrode gave the improved photovoltaic performances compared to other diameters of the spheres. In the present study, the best energy conversion efficiency of 9.56% was obtained for the photoelectrode with the scattering layer, while the pure photoelectrode without the layer gave 8.4%.

  16. Rapid flame synthesis of internal Mo(6+) doped TiO2 nanocrystals in situ decorated with highly dispersed MoO3 clusters for lithium ion storage.

    PubMed

    Li, Yunfeng; Hu, Yanjie; Shen, Jianhua; Jiang, Haibo; Min, Guoquan; Qiu, Shengjie; Song, Zhitang; Sun, Zhuo; Li, Chunzhong

    2015-11-28

    The rational design of nanoheterostructured materials has attracted much attention because of its importance for developing highly efficient LIBs. Herein, we have demonstrated that internal Mo(6+) doped TiO2 nanocrystals in situ decorated with highly dispersed MoO3 clusters have been realized by a facile and rapid flame spray pyrolysis route for electrochemical energy storage. In such intriguing nanostructures, internal Mo(6+) doping can improve the conductivity of electrode materials and facilitate rapid Li(+) intercalation and ion transport and the heteroassembly of highly dispersed ultrafine MoO3 clusters with excellent electrochemical activity endows the TiO2 with extra Li(+) ion storage ability as well as incorporates Mo(6+). Thus, the as-prepared nanohybrid electrodes exhibit a high specific capacity and superior rate capability due to the maximum synergetic effect of TiO2, Mo(6+) and ultrafine MoO3 clusters. Moreover, the aerosol flame process with a unique temperature gradient opens a new strategy to design novel hybrid materials by the simultaneous doping and heteroassembly engineering for next-generation LIBs. PMID:26490363

  17. Samarium-doped mesoporous TiO2 nanoparticles with improved photocatalytic performance for elimination of gaseous organic pollutants

    NASA Astrophysics Data System (ADS)

    Tang, Jianting; Chen, Xiaomiao; Liu, Yu; Gong, Wei; Peng, Zhenshan; Cai, Tiejun; Luo, Lianjing; Deng, Qian

    2013-01-01

    Mesoporous TiO2 doped with different amounts of Sm were prepared via a sol-gel route with Pluronic P123 as template. The materials were characterized by X-ray diffraction, transmission electron microscopy, and N2 sorption experiments, etc. The photocatalytic activity of the mesoporous TiO2 was tested in elimination of gaseous methanol and acetone. The Sm doped mesoporous TiO2 have higher activity than those of the commercial photocatalyst (Degussa, P25) and Sm doped TiO2 counterparts without mesopore structure under ultraviolet light irradiation. A possible mechanism was proposed to account for the high photocatalytic activity of the Sm doped mesoporous TiO2. The superior activity of the Sm doped mesoporous TiO2 may be attributed to the synergic effect of the high surface area, mesopore structure and doped Sm species.

  18. Synthetic precursor to vertical TiO2 nanowires

    NASA Astrophysics Data System (ADS)

    Mishra, B.; Ghildiyal, P.; Agarkar, S.; Khushalani, D.

    2014-04-01

    An easy protocol for improvement in formation of the photoanode in a dye sensitized solar cell is addressed. Specifically, a novel synthesis for the formation of a TiO2 precursor: titanium butanediolate, is detailed. This precursor is found to have higher thermal and temporal stability than commercially available TiO2 precursors and it has successfully been employed in the one-pot synthesis of rutile nanowires grown directly on a conducting substrate: fluorine doped tin oxide (FTO). This synthesis has been further extended to directly form a mixed phase TiO2 film consisting of rutile nanowires along with anatase spherical particles on FTO and this assembly has been used as the photoanode in a dye-sensitized solar cell. The synergistic effect of the two phases has provided a net DSSC efficiency of 4.61% with FF = 61%.

  19. Improved photocatalytic activity of gold decorated differently doped TiO2 nanoparticles: A comparative study.

    PubMed

    Pal, Nabin Kumar; Kryschi, Carola

    2016-02-01

    In this paper, undoped and several differently doped (with Fe(3+), N(-), and γ-Al2O3) TiO2-nanoparticle-based photocatalysts and those covered with ultrasmall gold nanoparticles (AuNPs) were engineered. Their photocatalytic performance was studied by utilizing them for the liquid-phase decomposition of the model dye methylene blue (MB) under visible-light irradiation. The structural, morphological, physico-chemical, and optical properties of the photocatalysts were investigated using X-ray diffraction, X-ray photoelectron spectroscopy, diffuse-reflectance UV-Vis absorption spectroscopy, Raman spectroscopy and transmission electron microscopy. Photodegradation kinetics of MB was followed by measuring the absorbance of MB at 664 nm at different irradiation times, whereas the mineralization of MB was examined by determining the total organic carbon (TOC) content. The photocatalytic activity of TiO2 nanoparticles was shown to be significantly increased by introducing dopants into the crystal lattice and depositing AuNPs on the surface. Among those, γ-Al2O3 doped TiO2 nanoparticles covered with deposited AuNPs show the best photocatalytic performance. Altogether, the here engineered photocatalysts as consisting of doped TiO2 nanoparticles decorated with AuNPs establish novel three-component nanocomposite systems, where synergetic interactions between surface AuNPs, dopants and TiO2 were shown to significantly enhance the photocatalytic activity. PMID:26519796

  20. Electrochemical and photocatalytic properties of TiO2/WO3 photoelectrodes

    NASA Astrophysics Data System (ADS)

    Oliveira, Haroldo G.; Silva, Erika D.; Longo, Claudia

    2010-08-01

    Porous films of TiO2 and TiO2/WO3 were deposited onto transparent electrodes from aqueous suspensions with polyethylene glycol, TiO2 particles and different amounts of tungistic acid. After annealing, crystalline samples were obtained. The band gap energy, approximately 3.1 eV for TiO2, decreased from 2.9 to 2.7 eV for varying W/Ti molar ratios from 3 to 12 %. The electrochemical properties were investigated in Na2SO4 aqueous solution; for the TiO2 electrode, the open circuit potential changed from 0.18 V in the dark to -0.25 V under irradiation from a solar simulator. For hybrid TiO2/WO3 electrodes, the VOC values were almost independent of the WO3 content and corresponded to 0.3 V in the dark and -0.1 V under irradiation; however, photocurrent and interfacial capacitance increased with a higher WO3 concentration. The electrodes were then used as photocatalysts for 17-?-etinylestradiol removal from water, and the mixed TiO2/WO3 exhibited better performance for photocatalytic oxidation of estradiol than TiO2. Adding WO3 enhances the visible light harvesting and minimizes the charge recombination resulting in higher efficiency for solar energy conversion.

  1. Photochemical activity of TiO2 nanotubes

    NASA Astrophysics Data System (ADS)

    Pfuch, A.; Güell, F.; Toelke, T.; Das, S. K.; Messaoudi, H.; McGlynn, E.; Seeber, W.; Fábrega, C.; Andreu, T.; Morante, J. R.; Grunwald, R.

    2013-03-01

    TiO2 is well known as a low-cost, highly active photocatalyst showing good environmental compatibility. Recently it was found that TiO2 nanotubes promise to enable for high photocatalytic activity (PCA). In our experiments, we studied the PCA and spectroscopic properties of TiO2 nanotube arrays formed by the anodization of Ti. The PCA efficiency related to the decomposition of methylene-blue was measured. To obtain reliable data, the results were calibrated by comparing with standard materials like Pilkington Activ™ which is a commercially available self cleaning glass. The studies included a search strategy for finding optimum conditions for the nanotube formation and the investigation of the relationship between PCA and annealing temperature. TiO2 nanotubes of different shapes and sizes were prepared by an anodization of Ti foil in different electrolytes, at variable applied voltages and concentrations. The photo-dissociation of methylene-blue was detected spectroscopically. For the optimized material, an enhancement factor of 2 in comparison to the standard reference material was found. Furthermore, femtosecond-laser induced photoluminescence and nonlinear absorption of the material were investigated. Possibilities for further enhancements of the PCA are discussed.

  2. TiO2 Photocatalytic Degradation of Phenylarsonic Acid

    PubMed Central

    Zheng, Shan; Cai, Yong; OShea, Kevin E.

    2010-01-01

    Phenyl substituted arsenic compounds are widely used as feed additives in the poultry industry and have become a serious environmental concern. We have demonstrated that phenylarsonic acid (PA) is readily degraded by TiO2 photocatalysis. Application of the LangmuirHinshelwood kinetic model for the initial stages of the TiO2 photocatalysis of PA yields an apparent rate constant (kr) of 2.8 mol/Lmin and the pseudo-equilibrium constant (K) for PA is 34 L/mmol. The pH of the solution influences the adsorption and photocatalytic degradation of PA due to the surface charge of TiO2 photocatalyst and speciation of PA. Phenol, catechol and hydroquinone are observed as the predominant products during the degradation. The roles of reactive oxygen species, OH, 1O2, O2? and hVB+ were probed by adding appropriate scavengers to the reaction medium and the results suggest that OH plays a major role in the degradation of PA. By-products studies indicate the surface of the catalyst plays a key role in the formation of the primary products and the subsequent oxidation pathways leading to the mineralization to inorganic arsenic. TiO2 photocatalysis results in the rapid destruction of PA and may be attractive for the remediation of a variety of organoarsenic compounds. PMID:20473340

  3. Biochemical effects of six TiO2 and four CeO2 nanomaterials in HepG2 cells

    EPA Science Inventory

    Biochemical effects of six TiO2 and four CeO2 nanomaterials in HepG2 cellsBecause of their growing number of uses, nanoparticles composed of CeO2 (cosmetics, polishing materials and automotive fuel additives) and TiO2 (pigments, sunscreens and photocatalysts) are of particular to...

  4. Photocatalytic Destruction of an Organic Dye Using TiO2 and Solar Energy.

    ERIC Educational Resources Information Center

    Giglio, Kimberly D.; And Others

    1995-01-01

    Describes a general chemistry experiment that is carried out in sunlight to illustrate the ability of TiO2 to act as a photocatalyst by mineralizing an organic dye into carbon dioxide. Details about the construction of the reactor system used to perform this experiment are included. (DDR)

  5. Titania-supported silver-based bimetallic nanoparticles as photocatalysts.

    PubMed

    Barakat, M A; Al-Hutailah, R I; Hashim, M H; Qayyum, E; Kuhn, J N

    2013-06-01

    Photocatalytic process has shown recently a great potential as an environmental friendly and clean remediation technology for organic pollutants in wastewater. This work described the synthesis of silver-based bimetallic nanoparticles using colloid chemistry and the subsequent immobilization onto titania to form composite photocatalytic materials (titania-supported Ag-Pt nanoparticles). The photocatalysts were characterized by X-ray diffraction, electron microscopy, and nitrogen physisorption. The catalytic activity of the photocatalysts was evaluated by photocatalytic degradation of phenol and 2-chlorophenol (2-CP) in synthetic wastewater solutions. The photocatalytic processes were conducted in a batch photoreactor containing appropriate solutions of phenol and 2-CP with UV irradiation of 450 W. UV-visible spectrophotometer was used for analyzing the concentration of phenol and 2-CP in solutions. Parameters affecting the photocatalytic process such as the solution pH, phenol and 2-CP concentrations, and catalyst concentration were investigated. The results obtained revealed that TiO(2)-supported Ag/Pt nanoparticles showed a higher activity for UV-photocatalytic degradation of both phenol and 2-CP pollutants in the solution (as compared to the plain rutile TiO(2)). The photodegradation processes were optimized by the 0.5-g/L catalyst with a pollutant concentration of 50 mg/L for all the samples. Complete degradation for both phenol and 2-CP was achieved after 120 min. PMID:23161501

  6. Laser deposition of TiO2 for urethral catheter

    NASA Astrophysics Data System (ADS)

    Jelnek, Miroslav; Remsa, Jan; Zezulov, Markta

    2010-10-01

    Catheters and medicals tubes are widely used to introduce pharmaceuticals and nutrients into arteries and veins, and to drain fluids or urine from urethra or the digestive organs. It is well known that illuminated TiO2 photocatalysts can decompose most noxious or toxic organic compounds. We studied the properties of titanium dioxide layers created by pulsed laser deposition from pure titanium and titanium dioxide targets with the goal to develop urethral catheter using TiO2 coated plastic tube. To reach crystalline structure at low substrate temperatures the radio-frequency discharge between the target and the substrate was implemented. The crystalline structure of layers was determined by X-ray diffraction and Fourier Transform Infrared Spectroscopy. Morphology was studied by atomic force microscopy (AFM). Using RF discharge, mixture of anatase and rutile was found at substrate temperature of 90C (which was reached only by RF discharge).

  7. Effect of void structure of photocatalyst paper on VOC decomposition.

    PubMed

    Fukahori, Shuji; Iguchi, Yumi; Ichiura, Hideaki; Kitaoka, Takuya; Tanaka, Hiroo; Wariishi, Hiroyuki

    2007-02-01

    TiO2 powder-containing paper composites, called TiO2 paper, were prepared by a papermaking technique, and their photocatalytic efficiency was investigated. The TiO2 paper has a porous structure originating from the layered pulp fiber network, with TiO2 powders scattered on the fiber matrix. Under UV irradiation, the TiO2 paper decomposed gaseous acetaldehyde more effectively than powdery TiO2 and a pulp/TiO2 mixture not in paper form. Scanning electron microscopy and mercury intrusion analysis revealed that the TiO2 paper had characteristic unique voids ca. 10 microm in diameter, which might have contributed to the improved photocatalytic performance. TiO2 paper composites having different void structures were prepared by using beaten pulp fibers with different degrees of freeness and/or ceramic fibers. The photodecomposition efficiency was affected by the void structure of the photocatalyst paper, and the initial degradation rate of acetaldehyde increased with an increase in the total pore volume of TiO2 paper. The paper voids presumably provided suitable conditions for TiO2 catalysis, resulting in higher photocatalytic performance by TiO2 paper than by TiO2 powder and a pulp/TiO2 mixture not in paper form. PMID:17166561

  8. Photocatalytic Activity of Immobilized Geometries of TiO2

    NASA Astrophysics Data System (ADS)

    Koohestani, Hassan; Sadrnezhaad, Sayed Khatiboleslam

    2015-07-01

    Photocatalysts that are used for waste water treatment are often suspended in the waste water during processing and then must be removed from the water after treatment. To reduce the post-degradation expenses and time, separation is facilitated by an immobilization process. The effect of immobilized TiO2 geometries on the photocatalytic behavior of the photocatalyst is investigated in this work. Powder, fiber, film, and network-shaped TiO2 nanocatalysts were produced by using different templates. The cellulose fiber and ceramic templates were used as substrates for fiber and film/network geometry production. The products were characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), and Brunauer-Emmett-Teller (BET) surface area measurement. The photocatalytic performance was determined by methyl orange degradation and cyanide photo-oxidation under ultraviolet irradiation. From the SEM images, the size range of the TiO2 particles in the film and in the network geometries were 20-60 nm. The nanoparticles had covered the surface of the substrate, uniformly. Removal of the cellulose substrate by heat treatment yielded hollow TiO2 fibers with diameters of 0.5-1 µm and lengths of 30 µm. The efficiencies of both photocatalytic reactions were obtained in the following order: powder > network > film > fiber geometry. The rate constant of the dye degradation reaction using powder catalyst was 0.0118 min-1. For network catalyst, it was 0.0083 min-1. Corresponding results for cyanide disinfection were 0.0055 and 0.0046 min-1. Although powder samples had higher rate constants, network geometry was preferred due to its higher immobility.

  9. Synthesis of [111]- and {010}-faceted anatase TiO2 nanocrystals from tri-titanate nanosheets and their photocatalytic and DSSC performances

    NASA Astrophysics Data System (ADS)

    Chen, Changdong; Ikeuchi, Yasushi; Xu, Linfeng; Sewvandi, Galhenage A.; Kusunose, Takafumi; Tanaka, Yasuhiro; Nakanishi, Shunsuke; Wen, Puhong; Feng, Qi

    2015-04-01

    [111]- and {010}-faceted anatase nanocrystals with controllable crystal size and morphology were synthesized from tri-titanate H2Ti3O7 nanosheets by hydrothermal reaction. The nanostructures and the formation reaction mechanism of the obtained TiO2 nanocrystals were investigated using XRD, FE-SEM, and TEM. Furthermore, the photocatalytic and dye-sensitized solar cell (DSSC) performances of the synthesized anatase nanocrystals were also characterized. Two types of reactions occur in the formation process of the anatase nanocrystals. One is an in situ topochemical conversion reaction of the layered titanate structure to an anatase structure, and another is the dissolution-deposition reaction on the particle surface, which splits the formed nanosheet-like particles into small TiO2 nanocrystals. The surface photocatalytic activity and the DSSC performance of the anatase nanocrystals are dependent on the crystal facet exposed on the particle surface, which increases in the order of non-facet < [111]-facet < {010}-facet. The increasing order corresponds to the increasing order of the bandgap and energy level of the lowest valence band of the anatase nanocrystals. Furthermore, the facet of the anatase also affects the DSSC performance, which is enhanced in the order of non-facet < [111]-facet < {010}-facet.[111]- and {010}-faceted anatase nanocrystals with controllable crystal size and morphology were synthesized from tri-titanate H2Ti3O7 nanosheets by hydrothermal reaction. The nanostructures and the formation reaction mechanism of the obtained TiO2 nanocrystals were investigated using XRD, FE-SEM, and TEM. Furthermore, the photocatalytic and dye-sensitized solar cell (DSSC) performances of the synthesized anatase nanocrystals were also characterized. Two types of reactions occur in the formation process of the anatase nanocrystals. One is an in situ topochemical conversion reaction of the layered titanate structure to an anatase structure, and another is the dissolution-deposition reaction on the particle surface, which splits the formed nanosheet-like particles into small TiO2 nanocrystals. The surface photocatalytic activity and the DSSC performance of the anatase nanocrystals are dependent on the crystal facet exposed on the particle surface, which increases in the order of non-facet < [111]-facet < {010}-facet. The increasing order corresponds to the increasing order of the bandgap and energy level of the lowest valence band of the anatase nanocrystals. Furthermore, the facet of the anatase also affects the DSSC performance, which is enhanced in the order of non-facet < [111]-facet < {010}-facet. Electronic supplementary information (ESI) available: XRD patterns of the products obtained by hydrothermal treatment in the temperature range of 140-200 °C, the dependency of the (101) peak intensity of anatase on the pH values of nanosheet solution at different temperature, the EDS analysis results of the synthesized TiO2 samples, TEM images and the FFT diffraction pattern of the TMA-150-2.5 sample, I-V characteristics and FE-SEM images in the cross-section of the TiO2-film electrodes of the DSSC cells fabricated using TMA-200-3.6 and P25 samples, TEM images of TMA-200-3.6 anatase nanocrystal samples after the calcination at 480 °C for 1 h. See DOI: 10.1039/c5nr00069f

  10. Synthesis and characterization of C-doped TiO2 thin films for visible-light-induced photocatalytic degradation of methyl orange

    NASA Astrophysics Data System (ADS)

    Hassan, Mohamed Elfatih; Cong, Longchao; Liu, Guanglong; Zhu, Duanwei; Cai, Jianbo

    2014-03-01

    C-TiO2 thin films were synthesized by a modified sol-gel route based on the self-assembly technique exploiting Tween80 (T80) as a pore directing agent and carbon source. The effect of calcination time on the photocatalytic activity of C-doped TiO2 catalyst was studied. The samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transforms infrared (FTIR), UV-vis diffuse reflectance spectroscopy, and photoluminescence spectra (PL). The XRD results showed that C-TiO2 sample calcined at 400 C for various times exhibited anatase phase and no other crystal phase was identified. C-TiO2 exhibited a shift in an absorption edge of samples in the visible region than that of conventional or reference TiO2. The XPS results showed an existence of C in the TiO2 catalysts and C might be existed as COTi group. Moreover, the C-TiO2 thin film calcined at 400 C for 30 min showed the lowest PL intensity due to a decrease in the recombination rate of photogenerated electrons and holes under UV light irradiation. Also the photocatalytic activity of synthesized catalyst was evaluated by decomposition of methyl orange (MO) under visible light irradiation. The results showed that the optimum preparations of C-TiO2 thin films were found to be under calcination temperature of 400, calcination time of 30 min, and with preparation 9 layers film.

  11. Synthesis and characterization of maleimide-functionalized polystyrene-SiO2/TiO2 hybrid nanocomposites by sol-gel process

    NASA Astrophysics Data System (ADS)

    Ramesh, Sivalingam; Sivasamy, Arumugam; Kim, Joo-Hyung

    2012-06-01

    Maleimide-functionalized polystyrene (PSMA-SiO2/TiO2) hybrid nanocomposites were prepared by sol-gel reaction starting from tratraethoxysilane (TEOS) and titanium isopropoxide in the solution of polystyrene maleimide in 1,4-dioxane. The hybrid films were obtained by the hydrolysis and polycondensation of TEOS and titanium isopropoxide in maleimide-functionalized polystyrene solution followed by the Michael addition reaction. The transparency of polymer (PSMA-SiO2/TiO2) hybrid was prepared from polystyrene titanium isopropoxide using the ?-aminopropyltriethoxy silane as crosslinking agent by in situ sol-gel process via covalent bonding between the organic-inorganic hybrid nanocomposites. The maleimide-functionalized polystyrene was synthesized by Friedel-Crafts reaction from N-choloromethyl maleimide. The FTIR spectroscopy data conformed the occurrence of Michael addition reaction between the pendant maleimide moieties of the styrene and ?-aminopropyltriethoxysilane. The chemical structure and morphology of PSMA-SiO2/TiO2 hybrid nanocomposites were characterized by FTIR, nuclear magnetic resonance (NMR), 13 C NMR, SEM, XRD, and TEM analyses. The results also indicate that the inorganic particles are much smaller in the ternary systems than in the binary systems; the shape of the inorganic particles and compatibility for maleimide-functionalized polystrene and inorganic moieties are varied with the ratio of the inorganic moieties in the hybrids. Furthermore, TGA and DSC results indicate that the thermal stability of maleimide-functionalized polystyrene was enhanced through the incorporation of the inorganic moieties in the hybrid materials.

  12. Thermodynamically driven one-dimensional evolution of anatase TiO2 nanorods: one-step hydrothermal synthesis for emerging intrinsic superiority of dimensionality.

    PubMed

    Chen, Jiazang; Yang, Hong Bin; Miao, Jianwei; Wang, Hsin-Yi; Liu, Bin

    2014-10-29

    In photoelectrochemical cells, there exists a competition between transport of electrons through the porous semiconductor electrode toward the conducting substrate and back-reaction of electrons to recombine with oxidized species on the semiconductor-electrolyte interface, which determines the charge collection efficiency and is strongly influenced by the density and distribution of electronic states in band gap and architectures of the semiconductor electrodes. One-dimensional (1D) anatase TiO2 nanostructures are promising to improve charge transport in photoelectrochemical devices. However, the conventional preparation of 1D anatase nanostructures usually steps via a titanic acid intermediate (e.g., H2Ti3O7), which unavoidably introduces electronic defects into the host lattice, resulting in undesired shielding of the intrinsic role of dimensionality. Here, we manage to promote the 1D growth of anatase TiO2 nanostructures by adjusting the growth kinetics, which allows us to grow single-crystalline anatase TiO2 nanorods through a one-step hydrothermal reaction. The synthesized anatase nanorods possess a lower density of trap states and thus can simultaneously facilitate the diffusion-driven charge transport and suppress the electron recombination. Moreover, the electronically boundary free nanostructures significantly enhance the trap-free charge diffusion coefficient of the anatase nanorods, which enables the emergence of the intrinsic superiority of dimensionality. By virtue of these merits, the anatase nanorods synthesized in this work take obvious advantages over the conventional anatase counterparts in photoelectrochemical systems (e.g., dye-sensitized solar cells) by showing more efficient charge transport and collection and higher energy conversion efficiency. PMID:25290360

  13. Effective nitrogen doping into TiO2 (N-TiO2) for visible light response photocatalysis.

    PubMed

    Yoshida, Tomoko; Niimi, Satoshi; Yamamoto, Muneaki; Nomoto, Toyokazu; Yagi, Shinya

    2015-06-01

    The thickness-controlled TiO2 thin films are fabricated by the pulsed laser deposition (PLD) method. These samples function as photocatalysts under UV light irradiation and the reaction rate depends on the TiO2 thickness, i.e., with an increase of thickness, it increases to the maximum, followed by decreasing to be constant. Such variation of the reaction rate is fundamentally explained by the competitive production and annihilation processes of photogenerated electrons and holes in TiO2 films, and the optimum TiO2 thickness is estimated to be ca. 10nm. We also tried to dope nitrogen into the effective depth region (ca. 10nm) of TiO2 by an ion implantation technique. The nitrogen doped TiO2 enhanced photocatalytic activity under visible-light irradiation. XANES and XPS analyses indicated two types of chemical state of nitrogen, one photo-catalytically active N substituting the O sites and the other inactive NOx (1?x?2) species. In the valence band XPS spectrum of the high active sample, the additional electronic states were observed just above the valence band edge of a TiO2. The electronic state would be originated from the substituting nitrogen and be responsible for the band gap narrowing, i.e., visible light response of TiO2 photocatalysts. PMID:25670537

  14. Synthesis and photocatalytic activity of ytterbium-doped titania/diatomite composite photocatalysts

    NASA Astrophysics Data System (ADS)

    Tang, Wenjian; Qiu, Kehui; Zhang, Peicong; Yuan, Xiqiang

    2016-01-01

    Ytterbium-doped titanium dioxide (Yb-TiO2)/diatomite composite materials with different Yb concentrations were prepared by sol-gel method. The phase structure, morphology, and chemical composition of the as-prepared composites were well characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy, Raman spectroscopy, scanning electron microscopy (SEM), and ultraviolet-visible (UV-vis) diffuse reflection spectroscopy. The XRD and Raman spectroscopy analysis indicated that the TiO2 existed in the form of pure anatase in the composites. The SEM images exhibited the well deposition and dispersion of TiO2 nanoparticles with little agglomeration on the surfaces of diatoms. The UV-vis diffuse reflection spectra showed that the band gap of TiO2 could be narrowed by the introduction of Yb species, which was further affected by doping concentration of Yb. The photocatalytic activity of synthesized samples was investigated by the degradation of methylene blue (MB) under UV light irradiation. It was observed that the photocatalytic degradation followed a pseudo-first-order kinetics according to the Langmuir-Hinshelwood model. Compared to TiO2 and TiO2/diatomite, the Yb-TiO2/diatomite composites exhibited higher photocatalytic activity toward degradation of MB using UV light irradiation.

  15. Purification of water by bipolar pulsed discharge plasma combined with TiO2 catalysis

    NASA Astrophysics Data System (ADS)

    Zhang, Yongrui; Zhang, Ruobing; Ma, Wenchang; Zhang, Xian; Wang, Liming; Guan, Zhicheng

    2013-03-01

    In the process of water treatment by bipolar pulsed discharge plasma, there are not only the chemical effects such as the cold plasma, but also the physical effects such as the optical radiation. The energy of the optical radiation can be used by photocatalyst. Therefore, the effect of the photocatalyst to the degradation of the organic pollutant was investigated using a packed bed reactor by bipolar pulsed discharge in the air-liquid-solid mixture. The nanoparticle TiO2 photocatalyst was obtained using the sol-gel method and the typical dye solution Indigo Carmine was chosen as the degradation target to test the catalytic effect of the nanoparticle TiO2 photocatalyst. Experiment results proved that the degradation efficiency of the Indigo Carmine solution was increased by a certain extent with the TiO2 photocatalyst. It was totally decolorized within 3 minutes by bipolar pulsed discharge in the condition that the peak voltage was 30 kV and the air flow was 1.0 m3 h-1.

  16. Investigation of photocatalytic degradation of phenol by Fe(III)-doped TiO2 and TiO2 nanoparticles

    PubMed Central

    2014-01-01

    In this study Fe (III)-doped TiO2 nanoparticles were synthesized by solgel method at two atomic ratio of Fe/Ti, 0.006 and 0.034 percent. Then the photoactivity of them was investigated on degradation of phenol under UV (<380nm) irradiation and visible light (>380nm). Results showed that at appropriate atomic ratio of Fe to Ti (% 0.034) photoactivity of Fe(III)doped TiO2 nanoparticles increased. In addition, the effects of various operational parameters on photocatalytic degradation, such as pH, initial concentration of phenol and amount of photocatalyst were examined and optimized. At all different initial concentration, highest degradation efficiency occurred at pH =?3 and 0.5g/L Fe(III)doped TiO2 dosage. With increase in initial concentration of phenol, photocatalytic degradation efficiency decreased. Photoactivity of Fe (III)-doped TiO2 under UV irradiation and visible light at optimal condition (pH =?3 and catalyst dosage =?and 0.5g/L) was compared with P25 TiO2 nanoparticles. Results showed that photoactivity of Fe(III)-doped TiO2 under visible light was more than P25 TiO2 photoactivity, but it was less than P25 TiO2 photoactivity under UV irradiation. Also efficiency of UV irradiation alone and amount of phenol adsorption on Fe(III)-doped TiO2 at dark condition was investigated. PMID:25105016

  17. Synthesis of magnetic mesoporous titania colloidal crystals through evaporation induced self-assembly in emulsion as effective and recyclable photocatalysts.

    PubMed

    Chen, Jeffrey E; Lian, Hong-Yuan; Dutta, Saikat; Alshehri, Saad M; Yamauchi, Yusuke; Nguyen, Mai Thanh; Yonezawa, Tetsu; Wu, Kevin C-W

    2015-11-01

    This study illustrates the directed self-assembly of mesoporous TiO2 with magnetic properties due to its colloidal crystal structure with Fe3O4. The Fe3O4 nanoparticles were synthesized using co-precipitation techniques to a size of 28.2 nm and a magnetic saturation of 66.9 emu g(-1). Meanwhile, mesoporous titania nanoparticles (MTNs) with a particle diameter of 373 nm, a specific surface area of 236.3 m(2) g(-1), and a pore size of 2.8 nm were prepared by controlling the rate of hydrolysis. Magnetic colloidal crystals (a diameter of 10.2 μm) were formed by the aggregation of Fe3O4 and MTNs caused by the interface phenomena during solvent evaporation in emulsion. Even the anatase octahedrite produced from the colloidal crystal after a hydrothermal reaction retained a magnetic saturation of 2.8 emu g(-1). This study also investigates the photodegradation activity of our synthesized material as a photocatalyst, while utilizing its capability for magnetic separation to prove its usefulness in catalyst recycling. PMID:26428279

  18. A simple low pressure method for the synthesis of TiO2 nanotubes and nanofibers and their application in DSSCs

    NASA Astrophysics Data System (ADS)

    Karimipour, Masoud; Mashhoun, Sara; Mollaei, Mohsen; Molaei, Mehdi; Taghavinia, Nima

    2015-07-01

    TiO2 nanotubes were synthesized using a modified autoclave-free thermal method from as-prepared initial powders. The size of initial powders (IP) was found to be critical in determining the morphology and crystal structure of the final product. Oleylamine (OA) was used as the polymer agent in the preparation of initial powders with different mol ratios of OA/Ti: 1, 5, and 10. X-ray diffraction analysis depicted that the increase of mole ratio up to 10 resulted in smaller nanoparticles with the sizes of about 8 nm. It was also deliberated that low temperature thermally treated IP showed the characteristic diffraction pattern of titanate phase of nanotubes. Scanning electron microscope images showed nanorods, short nanotubes, and single-phase long and uniform nanofibers produced from initial powders. SEM cross-section of the anode cell of TiO2 nanofibers demonstrated the presence of uniformly closed net long fibers in the cell. Open circuit voltage measurements of the nanofiber cell demonstrated a several hundreds of seconds in the electron transport decay, which was significantly higher than that of the nanoparticles. IMPS/IMVS measurements of the nanofibers and nanotube solar cells showed electron transport enhancement and long life time compared to their nanoparticle counterparts. [Figure not available: see fulltext.

  19. Biogenic synthesis and photocatalysis of Pd-PdO nanoclusters reinforced hierarchical TiO2 films with interwoven and tubular conformations.

    PubMed

    Su, Huilan; Dong, Qun; Han, Jie; Zhang, Di; Guo, Qixin

    2008-02-01

    Hierarchical nanocomposite films with Pd-PdO nanoparticles anchored uniformly on the inner surface of TiO2 nanotubes were achieved through a stepwise bioredox/artificial oxygenation approach by using the natural eggshell membrane (ESM) as a template. The Pd content ratio of Pd-PdO loading could be arbitrarily varied from 0 to 53 wt %, and the ESM-morphic nanocomposites Pd-PdO/TiO2 exhibited porous and multiphasic features, facilitating light transport and molecule accessibility to the active site during photocatalytic reactions. The photocatalytic activity of target nanocomposites was determined by the degradation of rhodamine B. The composites with a ratio of 10 wt % TiO2 (5 wt % Pd of Pd-PdO loading) presented a high degradation efficiency of 99.3% and showed good stability with a second run of about 95.3% and a third run of 94.6%. These composites with structural particularity and complexity are expected to find potential applications in various fields, such as photovoltaic devices, gas sensors, antistatic coating, dye-sensitized solar cells, etc. PMID:18186610

  20. Synthesis of nanocrystalline TiO2 by a salt-leaching assisted sol-gel method and their photoelectrochemical properties.

    PubMed

    Chen, Da; Wang, Geng; Zhang, Hao; Li, Jinghong

    2009-04-01

    Porosity-controllable TiO2 nanocrystallines with pure anatase phase have been synthesized through a salt-leaching assisted sol-gel method, where glycerol was used as the dispersant to disperse the inorganic precursor (tetrabutyl titanate, TBT) and the chelating ligand to attenuate the hydrolysis/condensation reaction kinetics, while the salts (NaCI) were used as porosity-induced agents to produce pores in the final titania products when the salts leached out. The porosities and surface areas of obtained titania samples could be adjusted by altering the NaCI concentration in the precursor sol, which was examined by experimental techniques such as XRD, TEM and Brunauer-Emmett-Teller (BET) nitrogen adsorption-desorption. In addition, their photocurrent actions and photocatalytic abilities were also investigated so as to address the relationship between the nanostructures and their photoelectrochemical properties. It was demonstrated that the obtained titania samples exhibited different photocurrent actions and photocatalytic activities due to their different morphologies, particle sizes, surface areas as well as pore architectures. Therefore, the salt-leaching assisted sol-gel method described herein offers a new effective and facile strategy for the preparation of pure anatase TiO2 nanocrystallines with adjustable porosity, as well as provides the titania products with specific photoelectrochemical properties for applications in a variety of areas such as photovoltaic cells, photocatalysis and so on. PMID:19437990

  1. Photocatalytic Property of TiO2-Vermiculite Composite Nanofibers via Electrospinning

    NASA Astrophysics Data System (ADS)

    Tang, Chao; Hu, Meiling; Fang, Minghao; Liu, Yangai; Wu, Xiaowen; Liu, Wenjuan; Wang, Meng; Huang, Zhaohui

    2015-07-01

    Titanium dioxide (TiO2) is one of the most common photocatalysts. In this study, TiO2-vermiculite composite nanofibers with a mesh structure and a diameter of approximately 300 nm were prepared via sol-gel approach combined with electrospinning technique. The samples were characterized by X-ray diffraction, scanning electron microscopy, ultraviolet-visible spectroscopy, etc. The photocatalytic property was also evaluated. The TiO2-vermiculite composite nanofibers annealed at 550 C for 3 h exhibited the best absorption and photo-degradation ability for the treatment of methylene blue. The results implied that the combination of mineral vermiculite powders with TiO2 enhanced the absorption-degradation performance of the as-prepared photocatalytic materials, consequently promoting the materials' ability to degrade methylene blue.

  2. Photocatalytic Property of TiO2-Vermiculite Composite Nanofibers via Electrospinning.

    PubMed

    Tang, Chao; Hu, Meiling; Fang, Minghao; Liu, Yangai; Wu, Xiaowen; Liu, Wenjuan; Wang, Meng; Huang, Zhaohui

    2015-12-01

    Titanium dioxide (TiO2) is one of the most common photocatalysts. In this study, TiO2-vermiculite composite nanofibers with a mesh structure and a diameter of approximately 300nm were prepared via sol-gel approach combined with electrospinning technique. The samples were characterized by X-ray diffraction, scanning electron microscopy, ultraviolet-visible spectroscopy, etc. The photocatalytic property was also evaluated. The TiO2-vermiculite composite nanofibers annealed at 550C for 3h exhibited the best absorption and photo-degradation ability for the treatment of methylene blue. The results implied that the combination of mineral vermiculite powders with TiO2 enhanced the absorption-degradation performance of the as-prepared photocatalytic materials, consequently promoting the materials' ability to degrade methylene blue. PMID:26130024

  3. Mesoporous Foam TiO2 Nanomaterials for Effective Hydrogen Production.

    PubMed

    Krishnappa, Manjunath; Souza, Virgnia S; Ganganagappa, Nagaraju; Scholten, Jackson D; Teixeira, Srgio R; Dupont, Jairton; Thippeswamy, Ramakrishnappa

    2015-12-01

    Hydrolysis of TiCl4 in a diether-functionalized imidazolium ionic liquid (IL), namely 1-methyl-3-[2-(2-methoxy(ethoxy)ethyl]imidazolium methane sulfonate (M(MEE)I?CH3 SO3 ), results in a heterostructured organic/inorganic and sponge-like porous TiO2 material. The thermal treatment (300?C) followed by calcination (500?C) affords highly porous TiO2 . The characterization of the obtained samples (with and without IL, before and after calcination) by XRD, SEM, and TEM reveals TiO2 anatase crystalline phases and irregular-shaped particles with different porous structures. These hierarchical-structured mesoporous TiO2 nanomaterials were employed as efficient photocatalysts in the water-splitting process, yielding up to 1304??mol?g(-1) on hydrogen production. PMID:26492871

  4. Structure design and photocatalytic properties of one-dimensional SnO2-TiO2 composites.

    PubMed

    Chen, Yuan; Liu, Bitao; Chen, Junfang; Tian, Liangliang; Huang, Lei; Tu, Mingjing; Tan, Shuai

    2015-01-01

    One-dimensional SnO2-TiO2 composites were prepared via emulsion electrospinning process. The obtained samples were characterized by a series of devices. The results showed that the porous core-shell SnO2-TiO2 photocatalyst exhibited enhanced photocatalytic activity on the degradation of methyl orange (MO). It should be ascribed to the novel structure, which could separate the electrons and holes effectively. PMID:25977670

  5. Structure design and photocatalytic properties of one-dimensional SnO2-TiO2 composites

    NASA Astrophysics Data System (ADS)

    Chen, Yuan; Liu, Bitao; Chen, Junfang; Tian, Liangliang; Huang, Lei; Tu, Mingjing; Tan, Shuai

    2015-04-01

    One-dimensional SnO2-TiO2 composites were prepared via emulsion electrospinning process. The obtained samples were characterized by a series of devices. The results showed that the porous core-shell SnO2-TiO2 photocatalyst exhibited enhanced photocatalytic activity on the degradation of methyl orange (MO). It should be ascribed to the novel structure, which could separate the electrons and holes effectively.

  6. Designing Photocatalysts for Hydrogen Evolution: Are Complex Preparation Strategies Necessary to Produce Active Catalysts?

    PubMed

    Grewe, Tobias; Tysz, Harun

    2015-09-21

    A facile synthetic route for the preparation of highly active photocatalysts was developed. The protocol involves the preparation of a photocatalyst through the direct injection of metal alkoxide precursors into solutions in a photoreactor. As a proof of concept, a tantalum oxide based photocatalyst was chosen as a model system. Tantalum ethoxide [Ta(OEt)5 ] was injected rapidly into a photoreactor filled with a water/methanol mixture, and a TaOx (OH)y composite formed and was able to produce hydrogen under light illumination. Compared to commercial and mesostructured Ta2 O5 and NaTaO3 materials, TaOx (OH)y produced by direct injection shows superior hydrogen production activity. Notably, the samples prepared by direct injection are amorphous; however, their photocatalytic performance is much higher than those of their crystalline equivalents. If Ta(OEt)5 was dispersed in methanol before injection, an amorphous framework with higher surface area and larger pore volume was formed, and the hydrogen production rate increased further. The addition of a sodium precursor during the injection further boosted the photocatalytic activity. Furthermore, this concept has also been applied to a titanium-based photocatalyst, and a much better hydrogen production rate has been obtained in comparison with that of commercial TiO2 (P25-Degussa); therefore, the direct-injection synthesis is a flexible method that opens the door to the facile preparation of highly active nanostructured photocatalysts for hydrogen production. PMID:26261010

  7. N-doped TiO2 Prepared by RF DBD Plasma

    NASA Astrophysics Data System (ADS)

    Sun, Zhi-Guang; Liu, Jing-Lin; Li, Xiao-Song; Zhai, Zhao-Jun; Zhu, Ai-Min; Laboratory of Plasma Physical Chemistry Team

    2014-10-01

    TiO2 is the most promising photocatalyst because of its chemical stable, nontoxic, low cost, high photocatalytic activity and other attractive properties. Anatase has the highest photocatalytic activity among the three crystal form of TiO2. However, the 3.2 eV bandgap of anatase TiO2 makes it can only utilize the ultraviolet part of solar spectrum. Nitrogen doping is an effective method to extend the absorption range of anatase to visible light. N-doped TiO2 preparation methods, such as heat treatment under NH3 flow, the hydrolytic precipitation and the sol-gel process, have been reported. In this work, preparation of N-doped TiO2 was explored by radio-frequency (RF) dielectric barrier discharge (DBD) plasma using Ar as discharge gas. TiCl4, O2 and N2 were used as Ti, O and N precursors, respectively. In addition, H2 was added to the plasma. X-ray photoelectron spectra (XPS) showed nitrogen was successfully doped into the as-prepared TiO2. Further investigations on structure, composition and optical property of the as-prepared TiO2 samples were conducted by X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) and UV-Vis absorption spectra techniques.

  8. Thermal evolution of structure and photocatalytic activity in polymer microsphere templated TiO2 microbowls

    NASA Astrophysics Data System (ADS)

    Erdogan, Deniz Altunoz; Polat, Meryem; Garifullin, Ruslan; Guler, Mustafa O.; Ozensoy, Emrah

    2014-07-01

    Polystyrene cross-linked divinyl benzene (PS-co-DVB) microspheres were used as an organic template in order to synthesize photocatalytic TiO2 microspheres and microbowls. Photocatalytic activity of the microbowl surfaces were demonstrated both in the gas phase via photocatalytic NO(g) oxidation by O2(g) as well as in the liquid phase via Rhodamine B degradation. Thermal degradation mechanism of the polymer template and its direct influence on the TiO2 crystal structure, surface morphology, composition, specific surface area and the gas/liquid phase photocatalytic activity data were discussed in detail. With increasing calcination temperatures, spherical polymer template first undergoes a glass transition, covering the TiO2 film, followed by the complete decomposition of the organic template to yield TiO2 exposed microbowl structures. TiO2 microbowl systems calcined at 600 °C yielded the highest per-site basis photocatalytic activity. Crystallographic and electronic properties of the TiO2 microsphere surfaces as well as their surface area play a crucial role in their ultimate photocatalytic activity. It was demonstrated that the polymer microsphere templated TiO2 photocatalysts presented in the current work offer a promising and a versatile synthetic platform for photocatalytic DeNOx applications for air purification technologies.

  9. Microwave assisted hydrothermal synthesis of Ag/AgCl/WO{sub 3} photocatalyst and its photocatalytic activity under simulated solar light

    SciTech Connect

    Adhikari, Rajesh; Gyawali, Gobinda; Sekino, Tohru; Wohn Lee, Soo

    2013-01-15

    Simulated solar light responsive Ag/AgCl/WO{sub 3} composite photocatalyst was synthesized by microwave assisted hydrothermal process. The synthesized powders were characterized by X-Ray Diffraction (XRD) spectroscopy, X-Ray Photoelectron Spectroscopy (XPS), Transmission Electron Microscopy (TEM), Diffuse Reflectance Spectroscopy (UV-Vis DRS), and BET surface area analyzer to investigate the crystal structure, morphology, chemical composition, optical properties and surface area of the composite photocatalyst. This photocatalyst exhibited higher photocatalytic activity for the degradation of rhodamine B under simulated solar light irradiation. Dye degradation efficiency of composite photocatalyst was found to be increased significantly as compared to that of the commercial WO{sub 3} nanopowder. Increase in photocatalytic activity of the photocatalyst was explained on the basis of surface plasmon resonance (SPR) effect caused by the silver nanoparticles present in the composite photocatalyst. Highlights: Black-Right-Pointing-Pointer Successful synthesis of Ag/AgCl/WO{sub 3} nanocomposite. Black-Right-Pointing-Pointer Photocatalytic experiment was performed under simulated solar light. Black-Right-Pointing-Pointer Nanocomposite photocatalyst was very active as compared to WO{sub 3} commercial powder. Black-Right-Pointing-Pointer SPR effect due to Ag nanoparticles enhanced the photocatalytic activity.

  10. Oxidation of crosslinked chitosan-epichlorohydrine film and its application with TiO2 for phenol removal.

    PubMed

    Jawad, Ali H; Nawi, M A

    2012-09-01

    Photocatalytic oxidation of crosslinked chitosan-epichlorohydrin (CS-ECH) film was successfully achieved via an immobilized TiO2/CS-ECH photocatalyst system on a glass plate. Oxidation process of CS-ECH film was carried out by irradiating the system with a 45-W fluorescent lamp for 10h in ultra-pure water. The results indicate the formation of carbonyl functional groups and partial elimination of amine groups in the molecular structure of the oxidized CS-ECH film. This oxidized CS-ECH film has different optical properties, ionic conductivity, degree of transparency, swelling index and chemical stability than the fresh CS-ECH film. In the environmental applications, the TiO2/oxidized-CS-ECH photocatalyst system can have photodegradation and faster mineralization rate of phenol than both fresh TiO2/CS-ECH and TiO2/oxidized-CS photocatalyst systems. This simple photocatalyst system, therefore can be considered as an environmental friendly method to oxidize synthetic biopolymer and to improve the photocatalytic efficiency of TiO2 to treat wastewater. PMID:24751014

  11. Sono-chemical successive ionic layer adsorption and reaction for the synthesis of CdS quantum dots onto mesoporous TiO2 photoanodes

    NASA Astrophysics Data System (ADS)

    Kim, Jae Ho; Kim, Geon Yang; Sohn, Sang Ho

    2015-07-01

    Aiming at high efficiency of quantum dot-sensitized solar cells (QDSCs) with CdS quantum dots (QDs)/mesoporous TiO2 (mp-TiO2) photoanodes, physical properties of CdS QDs/mp-TiO2 grown by sono-chemical successive ionic layer adsorption and reaction (SC-SILAR) process were studied. It is found that SC-SILAR process has less growth time and larger absorbance of CdS QDs besides a uniform penetration into mp-TiO2 films, compared with the conventional SILAR process. Experimental results show that SC-SILAR is an effective method for growing CdS QDs with high efficiency due to an extra sono-chemical energy of acoustic cavitation.

  12. Direct Synthesis of Carbon-Doped TiO2-Bronze Nanowires as Anode Materials for High Performance Lithium-Ion Batteries.

    PubMed

    Goriparti, Subrahmanyam; Miele, Ermanno; Prato, Mirko; Scarpellini, Alice; Marras, Sergio; Monaco, Simone; Toma, Andrea; Messina, Gabriele C; Alabastri, Alessandro; De Angelis, Francesco; Manna, Liberato; Capiglia, Claudio; Zaccaria, Remo Proietti

    2015-11-18

    Carbon-doped TiO2-bronze nanowires were synthesized via a facile doping mechanism and were exploited as active material for Li-ion batteries. We demonstrate that both the wire geometry and the presence of carbon doping contribute to the high electrochemical performance of these materials. Direct carbon doping for example reduces the Li-ion diffusion length and improves the electrical conductivity of the wires, as demonstrated by cycling experiments, which evidenced remarkably higher capacities and superior rate capability over the undoped nanowires. The as-prepared carbon-doped nanowires, evaluated in lithium half-cells, exhibited lithium storage capacity of ∼306 mA h g(-1) (91% of the theoretical capacity) at the current rate of 0.1C as well as excellent discharge capacity of ∼160 mAh g(-1) even at the current rate of 10 C after 1000 charge/discharge cycles. PMID:26492841

  13. Visible light photocatalytic disinfection of E. coli with TiO2-graphene nanocomposite sensitized with tetrakis(4-carboxyphenyl)porphyrin

    NASA Astrophysics Data System (ADS)

    Rahimi, Rahmatollah; Zargari, Solmaz; Yousefi, Azam; Yaghoubi Berijani, Marzieh; Ghaffarinejad, Ali; Morsali, Ali

    2015-11-01

    The present research deals with the development of a new heterogeneous photocatalysis system for disinfection of bacteria from wastewater by using TiO2-graphene (TG) nanocomposite sensitized with tetrakis(4-carboxyphenyl)porphyrin (TCPP). The disinfection of wastewater using this photocatalyst is not reported in the literature yet. All the synthesized materials were thoroughly characterized by Raman, XRD, DRS, BET, and SEM analysis. The optimum content of graphene in the TiO2-graphene nanocomposite was determined by photocurrent responses of prepared photocatalysts. Subsequently, the photocurrent measurements demonstrate that the TiO2-graphene nanocomposite with 3% graphene content has higher photoactivity. Furthermore, sensitization of the TiO2-graphene nanocomposite with porphyrin (TGP) is successfully capable to develop a new type of photocatalyst system for disinfection of bacteria with moderate to high yields in visible light irradiation.

  14. Facile synthesis of N-F codoped and molecularly imprinted TiO2 for enhancing photocatalytic degradation of target contaminants

    NASA Astrophysics Data System (ADS)

    Wu, Yanyan; Dong, Yuming; Xia, Xiaofeng; Liu, Xiang; Li, Hexing

    2016-02-01

    N-F codoped and molecularly imprinted TiO2 (MIP-NFTs) were successfully prepared by simple ethanol-water solvothermal method using 2-nitrophenol (2NP) and 4-nitrophenol (4NP) as template molecules (target contaminants), respectively. The surface structure and properties of the catalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), nitrogen adsorption/desorption measurements (BET), X-ray photoelectron spectroscopy (XPS) and UV-vis diffuse reflectance spectra (UV-vis DRS). In comparison with non-imprinted N-F codoped TiO2 nanocomposites (NIP-NFTs), MIP-NFTs show a higher adsorption, good selectivity and preferable degradation capacity toward the target contaminants. The adsorption amounts of 2NP and 4NP over the corresponding MIP-NFTs are about 1.78 and 2.21 times of that over NIP-NFTs, respectively. MIP-NFTs show a much higher adsorption capacity and selectivity for target contaminants in the mixed solution. Degradation selectivity experiments demonstrate that the selectivity coefficient (R) of degradation of 2NP relative to 4NP over 2NP/MIP-NFTs and 4NP relative to 2NP over 4NP/MIP-NFTs are 1.93 and 1.61, respectively. The enhancement about adsorption capacity and selectivity can be attributed to the chemical interaction and size matching between target contaminants and imprinted cavities. The apparent rate constants for the photodegradation of 2NP and 4NP over the corresponding MIP-NFTs are 0.05233 min-1 and 0.03734 min-1, being 267% and 198% of that over NIP-NFTs under simulated solar light. Moreover, MIP-NFTs exhibit excellent reusability due to their inorganic framework.

  15. Development of inorganic composite material based TiO2 for environmental application

    NASA Astrophysics Data System (ADS)

    Wahyuningsih, Sayekti; Handono Ramelan, Ari; Pramono, Edi; Purnawan, Candra; Anjani, Velina; Estianingsih, Puji; Rinawati, Ludfiaastu; Fadli, Khusnan

    2016-02-01

    Syntheses of various materials, for green energy nanotechnology applications have special attention to develop emerging areas, such as environmental as well as energy materials. Various approaches for preparing nanostructured photocatalysts, such as titanium dioxide, nickel oxide, lead oxide and their composites, was introduced. The use of nanomaterials as photocatalysts water detoxification by visible light photocatalyst of an inorganic composite as well as dye-sensitized photoreduction was also discussed. The enhancement of selective photocatalyst system was gain by the use of photocatalyst composite materials and applied potential bias on the system. The photoelectrocatalytic degradation of rhodamine B (RB) and Remazol Yellow FG (RY) as water contaminant using the thin film of modified TiO2 as the electrode was investigated via a series of potentials, and various pH. The result showed that the anodic potential bias influenced the degradation rate of water contaminant and exhibited better performance by the positive anodic bias was applied. The pH conditions influence the active dye structure whereas it will interact with inorganic semiconductor photocatalyst. Using dye- sensitized TiO2 system (DSTs), we have applied this system to build water decolorization as a novelty environmental remediation system.

  16. Photocatalytic degradation of L-acid by TiO2 supported on the activated carbon.

    PubMed

    Wang, Yu-Ping; Wang, Lian-Jun; Peng, Pan-Ying

    2006-01-01

    TiO2 sol was prepared by sol-gel technique with tetrabutyl titanate as precursor. Supported TiO2 catalysts on activated carbon were prepared by soak and sintering method. The aggregation of nano-TiO2 particles can be effectively suppressed by added polyethylene glycol (PEG) as a surface modifier. The average particle diameter of TiO2, specific surface area and absorbability of catalyst can be modified. Based on characteristics of the TiO2 photocatalyst with XRD, specific surface area, adsorption valves of methylene blue and the amount of TiO2 supported on the activated carbon, the photocatalytic degradation of L-acid was studied. The effect of the factors, such as pH of the solution, the initial concentration of L-acid on the photocatalytic degradation of L-acid, were studied also. It was found that when the pH of the solution is 1.95, the amount of photocatalyst is 0.5 g, the concentration of the L-acid solution is 1.34 x 10(-3) mol/L and the illumination time is 7 h, the photocatalytic degradation efficiency of L-acid can reach 89.88%. The catalyst was reused 6 times and its degradation efficiency hardly changed. PMID:17294657

  17. [Photocatalytic degradation of formaldehyde and VOCs in air on the porous nickel mesh coated with nanometer TiO2].

    PubMed

    Ding, Zhen; Feng, Xiao-gang; Chen, Xiao-dong; Fu, De-gang; Yuan, Chun-wei

    2006-09-01

    Three different metal ions doped TiO2 photocatalysts, which were prepared by the sol-gel method, were immobilized to porous nickel mesh by coating. The photocatalytic degradation activity of the supported photocatalyst on formaldehyde and volatile organic compounds (VOCs) was investigated. The results show that the nanometer TiO2 has an anatase structure. The photocatalytic degradation rate of formaldehyde and VOCs of 1.5% La3+ doped TiO2 coated on porous nickel mesh at 90 min are: 94% and 87%, higher than undoped TiO2: 83% and 72%, Fe3+ doped TiO2: 62% and 62%, Ag+ doped TiO2: 86% [Chinese character: see text] 81%. The orders of photocatalytic degradation rate on formaldehyde and VOCs with different content of La3+ doped TiO2 are as follows: 1.5% > 1% > 2% > undoped, 1.5% is the optimum La3+ doped content. Decreasing circular wind speed and using 254 nm or 365 nm ultraviolet wavelength will not influence the photocatalytic degradation rate of formaldehyde and VOCs. PMID:17117638

  18. Enhancing selective decomposition of ibuprofen onto porous TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Zakersalehi, Abolfazl

    Advanced oxidation technologies have gained tremendous attention for water treatment purposes after demonstration of insufficient efficiency of conventional systems for removal of many emerging chemicals of concern. Among AOTs, a TiO2-UV system is one of the most promising approaches due to its green properties and its effectiveness in generation of extremely oxidizing species such as hydroxyl radicals. However it has been demonstrated that non-selectivity of HRs in decomposition of organic compounds results in parallel decomposing of naturally abundant organic matter (NOM) along with toxic target contaminant, which significantly decreases the decomposition rate of target contaminants. Despite a great amount of researches conducted on TiO2 photocatalysts, limited success has been achieved in enhancing selectivity of TiO2 photocatalytic oxidation. In this study, a novel approach for suppressing the adverse effect of co-existing organics such as NOM has been proposed. Physical access of competing compounds was restrained through manipulation of the porous structure of TiO2 photocatalysts. An advanced templating method was employed to create a porous structure across TiO2 nanoparticles. In this study Ibuprofen as a target contaminant was decomposed in the presence of humic acid as competing NOM. Porous particles demonstrated significant improvement in selective decomposition of ibuprofen in the presence of humic acid as competing species. In the second phase of the study, a comprehensive study was conducted through changing the porous structure and size of co-existing organics in competing and non-competing conditions. The photocatalytic results, in correlation with material characterization demonstrated beneficial role of the controlled porous structure on adsorption followed by decomposition of organic species onto TiO2 photocatalysts.

  19. Doping of TiO2 for sensitized solar cells.

    PubMed

    Roose, Bart; Pathak, Sandeep; Steiner, Ullrich

    2015-11-21

    This review gives a detailed summary and evaluation of the use of TiO2 doping to improve the performance of dye sensitized solar cells. Doping has a major effect on the band structure and trap states of TiO2, which in turn affect important properties such as the conduction band energy, charge transport, recombination and collection. The defect states of TiO2 are highly dependent on the synthesis method and thus the effect of doping may vary for different synthesis techniques, making it difficult to compare the suitability of different dopants. High-throughput methods may be employed to achieve a rough prediction on the suitability of dopants for a specific synthesis method. It was however found that nearly every employed dopant can be used to increase device performance, indicating that the improvement is not so much caused by the dopant itself, as by the defects it eliminates from TiO2. Furthermore, with the field shifting from dye sensitized solar cells to perovskite solar cells, the role doping can play to further advance this emerging field is also discussed. PMID:26314371

  20. New Paradigms for Active Site Engineering in Titanium Dioxide Photocatalysts

    NASA Astrophysics Data System (ADS)

    Finkelstein Shapiro, Daniel

    The common trends in the synthesis of new TiO2 photocatalysts are based on the premise that increasing the area of high index facets results in higher photocatalytic activity. Nevertheless, there exist a number of catalysts, that, due to their peculiar morphology which does not mirror the crystal symmetry, possess sites or properties which fall outside of the realm of this general paradigm. A new universe of possibilities becomes available by considering structures which have been deposited under conditions very far from equilibrium (i.e. plasmas), or which have received a post-synthesis process that alters the energetics or geometries of the sites. A new framework for understanding these materials and tools to categorize the types of sites they present is not yet in place. In this Thesis we consider three types of systems and with each one introduce a new concept in the synthesis of materials that could open research directions that transcend and complete the limitations of the single-crystal framework. We introduce the concept of parent morphologies for TiO2 nanorods that are produced by collapsing a nanotube structure. We analyze in detail the properties of acetaldehyde adsorption at environmentally relevant pressures setting the stage for practical applications, and use HRTEM to reveal the orientation of the crystallite within the rod. We show that a unique structure results from this procedure yielding (100) rods. We discuss the use of parent structures with different crystal orientations as a viable route to produce highly energetic metastable configurations. Next, we discuss the interaction between crystal domains in TiO2 thin films. We introduce the use of X-ray goniometry to analyze the degree of crystallite orientation in films deposited with magnetron sputtering, constituting the first analysis of crystallite orientation in TiO2 films for photocatalysis. We find the degree of orientation to be an excellent predictor of reactivity. We investigate organic-semiconductor active sites with the third system, TiO2 surfaces functionalized with salicylate derivatives. We analyze the adsorption of CO2 and track the electron dynamics using EPR. We demonstrate that the adsorption of CO2 creates a surface state and postulate its importance in the charge transfer to CO2.

  1. A Novel Method for Synthesis of TiO2 Nanoparticles-coated Plastic Fibers Using a Vibration Method and the Use of Coated Fibers as Photocatalitic Materials for Decomposing of Organic Pollutant in Water under Sunlight Illumination

    NASA Astrophysics Data System (ADS)

    Isnaini, Vandri Ahmad; Amalia, Irma Fitria; Aliah, Hasniah; Arutanti, Osi; Masturi, Nuryadin, Bebeh Wahid; Abdullah, Mikrajuddin; Khairurrijal

    2010-10-01

    Photocatalytic is a catalyst process that requires light energy in process of converting material in a chemical reaction. TiO2 is one of the most suitable materials in photocatalytic process. In this study, TiO2 nanoparticles-coated plastic fibers made by using vibrating method. TiO2 nanoparticles-coated plastic fibers products used for wastewater purification using photocatalytic process. Speed of water purification is influenced by TiO2 nanoparticles-coated plastic fibers position on container. TiO2 nanoparticles-coated plastic fibers with horizontal position on container has a faster photocatalytic process compared to TiO2 nanoparticles-coated plastic fibers with vertical position on container.

  2. Photocatalysis and the origin of life: Synthesis of nucleoside bases from formamide on TiO2(001) single surfaces

    PubMed Central

    Senanayake, S. D.; Idriss, H.

    2006-01-01

    We report the conversion of a large fraction of formamide (NH2CHO) to high-molecular-weight compounds attributed to nucleoside bases on the surface of a TiO2 (001) single crystal in ultra-high vacuum conditions. If true, we present previously unreported evidence for making biologically relevant molecules from a C1 compound on any single crystal surface in high vacuum and in dry conditions. An UV light of 3.2 eV was necessary to make the reaction. This UV light excites the semiconductor surface but not directly the adsorbed formamide molecules or the reaction products. There thus is no need to use high energy in the form of photons or electrical discharge to make the carbon–carbon and carbon–nitrogen bonds necessary for life. Consequently, the reaction products may accumulate with time and may not be subject to decomposition by the excitation source. The formation of these molecules, by surface reaction of formamide, is proof that some minerals in the form of oxide semiconductors are active materials for making high-molecular-weight organic molecules that may have acted as precursors for biological compounds required for life in the universe. PMID:16423899

  3. One-pot synthesis of Mn-doped TiO2 grown on graphene and the mechanism for removal of Cr(VI) and Cr(III).

    PubMed

    Chen, Zengping; Li, Yaru; Guo, Meng; Xu, Fengyun; Wang, Peng; Du, Yu; Na, Ping

    2016-06-01

    Mn-doped TiO2 grown on reduced graphene oxide(rGO) was synthesized by one-pot hydrothermal method and the photocatalytic removal of Cr by the material was investigated under sunlight. The materials were characterized by a combination of scanning electron microscopy, transmission electron microscopy, X-ray diffraction, thermogravimetric analysis, Brunauer-Emmett-Teller method, UV-vis diffuse reflectance spectra, photoluminescence spectra, electrochemical impedance spectroscopy and X-ray photoelectron spectroscopy. Cr(total) removal efficiency of the material is 97.32% in 30min and 99.02% in 60min under sunlight irradiation, as the initial concentration of Cr(VI) is 20mg/L. The high photocatalytic activity under visible light is considered mainly due to the Mn-doping, and rGO plays an important role in the synergetic effect of adsorption and photocatalysis to sustain the high efficient removal of Cr(VI) and Cr(III). Cr(VI) adsorbed on the surface of rGO is reduced to Cr(III) by photo electrons which are transported through rGO, and the reaction product Cr(III) continues to be adsorbed. The process contributes to the release of abundant photocatalytic sites of Mn-TiO2 and improves photocatalytic efficiency. The excellent adsorption and photocatalytic effect with the explanation of the synergetic mechanism are very useful not only for fundamental research but also for the potential practical applications. PMID:26921512

  4. In situ synthesis of carbon incorporated TiO2 with long-term performance as anode for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Ma, Xiaoqing; Cui, Xiaoli; Jiang, Zhiyu

    2016-01-01

    The carbon incorporated titanium dioxide (C-TiO2) has been in-situ synthesized via facile flame-assisted approach using tetrabutyl orthotitanate as a precursor. The as-prepared C-TiO2 samples are characterized by SEM, XRD, XPS, Raman spectroscopy, EDX, TGA and electrochemical measurements. It is found that carbon incorporated TiO2 microspheres can be directly obtained without any post annealing. Enhanced lithium storage performance is observed for the resultant sample after ball milling. The reversible capacity remains 159.8 mAh g-1 at a specific current of 335 mA g-1 even after 960 charge-discharge cycles. The high capacity reversibility and good long-term cycling capability are attributed to the inherently incorporated carbon species, which efficiently improve electronic conductivity. Meanwhile, the intrinsic crystal structure and enlarged contact area between electrode and electrolyte provide abundant channels for Li-ion transport. This work could not only make the prepared C-TiO2 a promising anode candidate, but also present an available strategy for developing other electrode materials.

  5. Synthesis and characterization of cube-like Ag@AgCl-doped TiO2/fly ash cenospheres with enhanced visible-light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Liu, Shaomin; Zhu, Jinglin; Yang, Qing; Xu, Pengpeng; Ge, Jianhua; Guo, Xuetao

    2016-03-01

    A cube-like Ag@AgCl-doped TiO2/fly ash cenosphere composite (denoted Ag@AgCl-TiO2/fly ash cenospheres) was successfully synthesized via a two-step approach. The as-prepared catalysts were characterized by scanning electron microscopy, X-ray diffraction, diffuse reflectance ultraviolet-visible spectroscopy, Brunauer-Emmett-Teller, and X-ray photoelectron spectroscopy. The photocatalytic experiment showed that the rhodamine B degradation rate with Ag@AgCl-TiO2/fly ash cenospheres was 1.56 and 1.33 times higher than that with AgCl-TiO2/fly ash cenospheres and Ag@AgCl, respectively. The degradation ratio of rhodamine B with Ag@AgCl-TiO2/fly ash cenospheres was nearly 100% within 120 min under visible light. Analysis of active species indicated that radO2- and h+ dominated the reaction, and radOH participated in the photocatalytic reactions as an active species. A mechanism for the photocatalytic degradation by the Ag@AgCl-TiO2/fly-ash cenospheres was also proposed based on the experimental results.

  6. TiO2 embedded in carbon submicron-tablets: synthesis from a metal-organic framework precursor and application as a superior anode in lithium-ion batteries.

    PubMed

    Wang, Peiyu; Lang, Junwei; Liu, Dongxia; Yan, Xingbin

    2015-07-21

    Rutile TiO2 embedded in carbon submicron-tablets (TiO2/C) with a "blueberry muffin" morphology was fabricated via a two-step pyrolysis from a metal-organic framework precursor. Such a unique structure of the TiO2/C submicron-tablets provides the ideal anode characteristics (high reversible capacity, superior rate capability and excellent long-term cycling stability) for fast rechargeable lithium ion batteries. PMID:25813272

  7. A comparative study of TiO2 nanoparticles synthesized in premixed and diffusion flames

    NASA Astrophysics Data System (ADS)

    Ma, Hsiao-Kang; Yang, Hsiung-An

    2010-12-01

    Previous studies have been shown that synthesis of titania (TiO2) crystalline phase purity could be effectively controlled by the oxygen concentration through titanium tetra-isopropoxide (TTIP) via premixed flame from a Bunsen burner. In this study, a modified Hencken burner was used to synthesize smaller TiO2 nanoparticles via short diffusion flames. The frequency of collisions among particles would decrease and reduce TiO2 nanoparticle size in a short diffusion flame height. The crystalline structure of the synthesized nanoparticles was characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), Barrett-Joyner-Halenda (BJH) and Brunauer-Emmett-Teller (BET) measurements. The characteristic properties of TiO2 nanoparticles synthesized from a modified Hencken burner were compared with the results from a Bunsen burner and commercial TiO2 (Degussa P25). The results showed that the average particle size of 6.63 nm from BET method was produced by a modified Hencken burner which was smaller than the TiO2 in a Bunsen burner and commercial TiO2. Moreover, the rutile content of TiO2 nanoparticles increased as the particle collecting height increased. Also, the size of TiO2 nanoparticles was highly dependent on the TTIP loading and the collecting height in the flame.

  8. Photodecomposition of volatile organic compounds using TiO2 nanoparticles.

    PubMed

    Jwo, Ching-Song; Chang, Ho; Kao, Mu-Jnug; Lin, Chi-Hsiang

    2007-06-01

    This study examined the photodecomposition of volatile organic compounds (VOCs) using TiO2 catalyst fabricated by the Submerged Arc Nanoparticle Synthesis System (SANSS). TiO2 catalyst was employed to decompose volatile organic compounds and compare with Degussa-P25 TiO2 in terms of decomposition efficiency. In the electric discharge manufacturing process, a Ti bar, applied as the electrode, was melted and vaporized under high temperature. The vaporized Ti powders were then rapidly quenched under low-temperature and low-pressure conditions in deionized water, thus nucleating and forming nanocrystalline powders uniformly dispersed in the base solvent. The average diameter of the TiO2 nanoparticles was 20 nm. X-ray diffraction analysis confirmed that the nanoparticles in the deionized water were Anatase type TiO2. It was found that gaseous toluene exposed to UV irradiation produced intermediates that were even harder to decompose. After 60-min photocomposition, Degussa-P25 TiO2 reduced the concentration of gaseous toluene to 8.18% while the concentration after decomposition by SANSS TiO2 catalyst dropped to 0.35%. Under UV irradiation at 253.7 +/- 184.9 nm, TiO2 prepared by SANSS can produce strong chemical debonding energy, thus showing great efficiency, superior to that of Degussa-P25 TiO2, in decomposing gaseous toluene and its intermediates. PMID:17654970

  9. The effect of TiO2 nanoflowers as a compact layer for CdS quantum-dot sensitized solar cells with improved performance.

    PubMed

    Rao, S Srinivasa; Durga, I Kanaka; Gopi, Chandu V V M; Venkata Tulasivarma, Chebrolu; Kim, Soo-Kyoung; Kim, Hee-Je

    2015-07-28

    Currently, TiO2 on a fluorine-doped tin oxide substrate is the most commonly used type of photoelectrode in high-efficiency quantum dot-sensitized solar cells (QDSSCs). The power conversion efficiency (PCE) of TiO2 photoelectrodes is limited because of higher charge recombination and lower QD loading on the TiO2 film. This article describes the effect of a TiO2 compact layer on a TiO2 film to enhance the performance of QDSSCs. TiO2 nanoparticles were coated on an FTO substrate by the doctor-blade method and then the TiO2 compact layer was successfully fabricated on the surface of the nanoparticles by a simple hydrothermal method. QDSSCs were made using these films as photoelectrodes with NiS counter electrodes. Under one sun illumination (AM 1.5 G, 100 mW cm(-2)), the QDSSCs showed PCEs of 2.19 and 2.93% for TCL1 and TCL2 based photoelectrodes, which are higher than the 1.33% value obtained with bare TiO2. The compact-layer-coated film electrodes provide a lower charge-transfer resistance and higher light harvesting. The compact layer on the TiO2 film is a more efficient photocatalyst than pure TiO2 film and physically separates the injected electrons in the TiO2 from the positively charged CdS QD/electrolyte. PMID:26102365

  10. Synthesis, characterization and activity of an immobilized photocatalyst: natural porous diatomite supported titania nanoparticles.

    PubMed

    Wang, Bin; de Godoi, Fernanda Condi; Sun, Zhiming; Zeng, Qingcong; Zheng, Shuilin; Frost, Ray L

    2015-01-15

    Diatomite, a porous non-metal mineral, was used as support to prepare TiO2/diatomite composites by a modified sol-gel method. The as-prepared composites were calcined at temperatures ranging from 450 to 950 °C. The characterization tests included X-ray powder diffraction (XRD), scanning electron microscopy (SEM) with an energy-dispersive X-ray spectrometer (EDS), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption/desorption measurements. The XRD analysis indicated that the binary mixtures of anatase and rutile exist in the composites. The morphology analysis confirmed the TiO2 particles were uniformly immobilized on the surface of diatom with a strong interfacial anchoring strength, which leads to few drain of photocatalytic components during practical applications. In further XPS studies of hybrid catalyst, we found the evidence of the presence of Ti-O-Si bond and increased percentage of surface hydroxyl. In addition, the adsorption capacity and photocatalytic activity of synthesized TiO2/diatomite composites were evaluated by studying the degradation kinetics of aqueous Rhodamine B under UV-light irradiation. The photocatalytic degradation was found to follow pseudo-first order kinetics according to the Langmuir-Hinshelwood model. The preferable removal efficiency was observed in composites by 750 °C calcination, which is attributed to a relatively appropriate anatase/rutile mixing ratio of 90/10. PMID:25454443

  11. First-principles study on transition metal-doped anatase TiO2

    PubMed Central

    2014-01-01

    The electronic structures, formation energies, and band edge positions of anatase TiO2 doped with transition metals have been analyzed by ab initio band calculations based on the density functional theory with the planewave ultrasoft pseudopotential method. The model structures of transition metal-doped TiO2 were constructed by using the 24-atom 2??1??1 supercell of anatase TiO2 with one Ti atom replaced by a transition metal atom. The results indicate that most transition metal doping can narrow the band gap of TiO2, lead to the improvement in the photoreactivity of TiO2, and simultaneously maintain strong redox potential. Under O-rich growth condition, the preparation of Co-, Cr-, and Ni-doped TiO2 becomes relatively easy in the experiment due to their negative impurity formation energies, which suggests that these doping systems are easy to obtain and with good stability. The theoretical calculations could provide meaningful guides to develop more active photocatalysts with visible light response. PMID:24472374

  12. Highly efficient photoelectrocatalytic removal of RhB and Cr(VI) by Cu nanoparticles sensitized TiO2 nanotube arrays

    NASA Astrophysics Data System (ADS)

    Zhong, J. S.; Wang, Q. Y.; Zhou, J.; Chen, D. Q.; Ji, Z. G.

    2016-03-01

    TiO2 nanotube arrays sensitized by copper nanoparticles (TiO2 NTs/Cu) exhibited highly efficient photoelectrocatalytic removal of RhB and Cr(VI). Vertically grown anatase TiO2 NTs on Ti substrates were prepared by electrochemical anodization followed by calcinations. Subsequently, Cu nanoparticles with uniform spherical structures and size distributions were deposited on TiO2 nanotubes by a modified hydrothermal reaction. By exploiting TiO2 NTs/Cu as both photoelectrodes and photocatalysts, high photocurrent density and photoelectrocatalytic removal efficiencies of RhB and Cr(VI) were achieved under solar light irradiation. The enhancement on the photoelectrochemical performance was explained by the optoelectronic coupling between Cu nanoparticles and TiO2 NTs, which accelerated the transfer rate of electrons, and subsequently decreased the electron/hole pair recombination.

  13. Fabrication of plasmonic AgBr/Ag nanoparticles-sensitized TiO2 nanotube arrays and their enhanced photo-conversion and photoelectrocatalytic properties

    NASA Astrophysics Data System (ADS)

    Wang, Qingyao; Qiao, Jianlei; Jin, Rencheng; Xu, Xiaohui; Gao, Shanmin

    2015-03-01

    Plasmonic photosensitizer AgBr/Ag nanospheres supported on TiO2 nanotube arrays (TiO2 NTs) are prepared by successive ionic layer adsorption and reaction (SILAR) technique followed by photoreduction methods. The structural and surface morphological properties of AgBr/Ag nanoparticles sensitized TiO2 NTs and their photoelectrochemical performance are investigated and discussed. A detailed formation mechanism of the TiO2 NTs/AgBr/Ag is proposed. The TiO2 NTs/AgBr/Ag exhibit excellent photocurrent and photoelectrocatalytic activities under visible light irradiation. Efficient utilization of solar energy to create electron-hole pairs is attributed to the significant visible light response and surface plasmon resonance of Ag nanoparticles. This finding indicates that the high photosensitivity of the TiO2 NTs-based surface plasmon resonance materials could be applied toward the development of new plasmonic visible-light-sensitive photovoltaic fuel cells and photocatalysts.

  14. Enhanced photocatalytic activity of TiO2-impregnated with MgZnAl mixed oxides obtained from layered double hydroxides for phenol degradation

    NASA Astrophysics Data System (ADS)

    de Almeida, Marciano Fabiano; Bellato, Carlos Roberto; Mounteer, Ann Honor; Ferreira, Sukarno Olavo; Milagres, Jaderson Lopes; Miranda, Liany Divina Lima

    2015-12-01

    A series of TiO2/MgZnAl photocatalysts were successfully synthesized from ternary (Mg, Zn and Al) layered double hydroxides impregnated with TiO2 nanoparticles by the co-precipitation method at variable pH with different Zn2+/Mg2+ molar ratios. The composite photocatalysts were calcined at 500 °C resulting in the incorporation of oxide zinc, in the calcined MgZnAl LDH structure. Synergistic effect between ZnO and TiO2 lead to significant enhancement of TiO2/MgZnAl photocatalytic activity. Composite photocatalysts were characterized by ICP-MS, N2 adsorption-desorption, XRD, SEM, EDS, IR and UV-vis DRS. Phenol in aqueous solution (50 mg/L) was used as a model compound for evaluation of UV-vis (filter cut-off for λ > 300 nm) photocatalytic activity. The most efficient photocatalyst composite was obtained at a 5% Zn2+/Mg2+ molar ratio, in the catalyst identified as TiO2/MgZnAl-5. This composite catalyst had high photocatalytic activity, completely destroying phenol and removing 80% of total organic carbon in solution after 360 min. The TiO2/MgZnAl-5 catalyst remained relatively stable, presenting a 15% decrease in phenol degradation efficiency after five consecutive photocatalytic cycles.

  15. Rational Design and Synthesis of Freestanding Photoelectric Nanodevices as Highly Efficient Photocatalysts

    PubMed Central

    Qu, Yongquan; Liao, Lei; Cheng, Rui; Wang, Yue; Lin, Yung-chen; Huang, Yu; Duan, Xiangfeng

    2010-01-01

    Photocatalysts are of significant interest for solar energy harvesting and conversion into chemical energy. However, the photocatalysts available to date are limited by either poor efficiency in the visible light range or insufficient photoelectrochemical stability. Here we report the rational design of a new generation of freestanding photoelectric nanodevices as highly efficient and stable photocatalysts by integrating a nanoscale photodiode with two redox catalysts in a single nanowire heterostructure. We show that a platinum-silicon-silver nanowire heterostructure can be synthesized to integrate a nanoscale metal-semiconductor Schottky diode encased in a protective insulating shell with two exposed metal catalysts. We further demonstrated that the Schottky diodes exhibited pronounced photovoltaic effect with nearly unity internal quantum efficiency, and that the integrated nanowire heterostructures could be used as highly efficient photocatalysts for a wide range of thermodynamically downhill and uphill reactions including photocatalytic degradation of organic dyes, reduction of metal ions and carbon dioxide using visible light. Our studies for the first time demonstrated the integration of multiple distinct functional components into a single nanostructure to form a standalone active nanosystem, and for the first time successfully realized a photoelectric nanodevice that is both highly efficient and highly stable throughout the entire solar spectrum. It thus opens a rational avenue to design and synthesize a new generation of photoelectric nanosystems with unprecedented efficiency and stability, and will impact broadly in areas including environmental remediation and solar fuel production. PMID:20373781

  16. Sonochemical synthesis of solar-light-driven Ag-PbMoO4 photocatalyst.

    PubMed

    Gyawali, Gobinda; Adhikari, Rajesh; Joshi, Bhupendra; Kim, Tae Ho; Rodrguez-Gonzlez, Vicente; Lee, Soo Wohn

    2013-12-15

    Ag-PbMoO4 photocatalysts were synthesized by facile sonochemical method with different mol.% of Ag nanoparticles dispersed on the surface of PbMoO4. The synthesized powders were characterized by X-ray Diffraction (XRD) Spectroscopy, X-Ray Photoelectron Spectroscopy (XPS), Transmission Electron Microscopy (TEM), and Diffuse Reflectance Spectroscopy (UV-vis DRS) to investigate the crystal structure, morphology, chemical composition, and optical properties of the photocatalyst. Photocatalytic activities of the Ag-PbMoO4 samples were evaluated by the degradation of Indigo Carmine (IC) dye under simulated solar light irradiation. It has been observed that the sample containing 0.3 mol.% of Ag showed the best photocatalytic activity as compared to other samples. The results suggest that the dispersion of Ag nanoparticles on the surface of PbMoO4 significantly enhances the photocatalytic activity of PbMoO4. Increase in photocatalytic activity of Ag-PbMoO4 photocatalyst has been explained on the basis of surface plasmon resonance (SPR) effect caused by the silver nanoparticles present in the photocatalyst. PMID:23643197

  17. Mechanistic pathways differences between P25-TiO(2) and Pt-TiO(2) mediated CV photodegradation.

    PubMed

    Fan, Huan-Jung; Lu, Chung-Shin; Lee, Wen-Lian William; Chiou, Mei-Rung; Chen, Chiing-Chang

    2011-01-15

    The Crystal Violet (CV) dye represented one of the major triphenylmethane dyes used in textile-processing and some other industrial processes. Various metals doped titanium dioxide (TiO(2)) photocatalysts have been studied intensively for the photodegradation of dye in wastewater treatment. In order to understand the mechanistic detail of the metal dosage on the activities enhancement of the TiO(2) based photocatalyst, this study investigated the CV photodegradation reactions under UV light irradiation using a Pt modified TiO(2) photocatalyst. The results showed that Pt-TiO(2) with 5.8% (W/W) Pt dosage yielded optimum photocatalytic activity. Also the effect of pH value on the CV degradation was well assessed for their product distributions. The degradation products and intermediates were separated and characterized by HPLC-ESI-MS and GC-MS techniques. The results indicated that both the N-de-methylation reaction and the oxidative cleavage reaction of conjugated chromophore structure occurred, but with significantly different intermediates distribution implying that Pt doped TiO(2) facilitate different degradation pathways compared to the P25-TiO(2) system. PMID:20943313

  18. Fabrication of TiO2 binary inverse opals without overlayers via the sandwich-vacuum infiltration of precursor.

    PubMed

    Cai, Zhongyu; Teng, Jinghua; Xiong, Zhigang; Li, Yanqiang; Li, Qin; Lu, Xianmao; Zhao, X S

    2011-04-19

    A sandwich-vacuum method was demonstrated for the fabrication of titania (TiO(2)) binary inverse opals with an open surface. In this method, a moisture-stable TiO(2) precursor was backfilled into the interstitial spaces of polystyrene binary colloidal crystals (PS bCCs), which served as a template. Removal of the template by calcination yielded TiO(2) binary inverse opals with a 3D-ordered macroporous (3DOM) structure. Optical reflectance spectra revealed the existence of a pseudostop band gap in the 3DOM TiO(2) samples. The position of the pseudostop band gap shifted to the low-wavelength region as the number ratio of small over large PS spheres was increased in the template. The sandwich-vacuum method proved to be simple and rapid for the fabrication of TiO(2) binary inverse opals without overlayers in large domains. The 3DOM TiO(2) materials were used as a photocatalyst for the degradation of benzoic acid. Results showed that in comparison to TiO(2) nanoparticles prepared under the same sintering conditions, the 3DOM TiO(2) materials displayed enhanced photocatalytic activity. PMID:21413750

  19. Preparation and characterization of N-TiO2 photocatalyst with high crystallinity and enhanced photocatalytic inactivation of bacteria

    NASA Astrophysics Data System (ADS)

    Yu, Binyu; Lau, Woon Ming; Yang, Jun

    2013-08-01

    This study reports the synthesis, characterization and environmental applications of nitrogen doped TiO2 photocatalyst in the form of powder and film. N-TiO2 photocatalysts were synthesized via the hydrolysis of titanium tetraisopropoxide using urea as the nitrogen source. The crystalline structure, particle size and specific surface area of the resultant N-TiO2 nanoparticles were investigated by x-ray powder diffraction and the Brunauer-Emmett-Teller method. The results showed that a mixture of anatase and brookite phases was formed at pH 1 after annealing the powder at 450? C for 4 h, in contrast to a pure anatase phase at pH 3. UV-vis spectral characterization showed that the absorption region of the as-prepared N-TiO2 was extended to the visible light region. Stable sols could be achieved by controlling the molar ratio of water-to-titanium precursor and pH of the sols. During the photocatalytic test, in comparison to the standard commercial photocatalyst Evonik-Degussa P25 and home-made bare TiO2 nanoparticles, the N-TiO2 particles exhibited enhanced photocatalytic performance for degradation of methylene blue (MB) dye. The visible light induced photocatalytic inactivation of the obtained nanopowders and nanofilms on bacteria (Escherichia coli) was evaluated. The N-TiO2 nanomaterials showed higher bactericidal activity under visible light irradiation.

  20. CORONA DISCHARGE REACTOR FOR SELECTIVE OXIDATION OF ALCOHOLS AND HYDROCARBONS USING OZONATION AND PHOTOXIDATION OF OVER TIO2

    EPA Science Inventory

    We have developed a process that combines the use of surface corona for the production of ozone by passing air or oxygen through a high voltage electrical discharge and the emitted UV is being used to activate a photocatalyst. A thin film of nanostructured TiO2 with primary part...

  1. The nature of paramagnetic species in nitrogen doped TiO2 active in visible light photocatalysis.

    PubMed

    Livraghi, Stefano; Votta, Annamaria; Paganini, Maria Cristina; Giamello, Elio

    2005-01-28

    Nitrogen doped TiO2, a novel photocatalyst active in the decomposition of organic pollutants using visible light, contains two different types of paramagnetic centres (neutral NO radicals and NO2(2-) type radical ions respectively) which are likely related to specific properties of the solid. PMID:15654382

  2. Synthesis, crystal structure, photodegradation kinetics and photocatalytic activity of novel photocatalyst ZnBiYO4.

    PubMed

    Cui, Yanbing; Luan, Jingfei

    2015-03-01

    ZnBiYO4 was synthesized by a solid-state reaction method for the first time. The structural and photocatalytic properties of ZnBiYO4 were characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and UV-Vis diffuse reflectance. ZnBiYO4 crystallized with a tetragonal spinel structure with space group I41/A. The lattice parameters for ZnBiYO4 were a=b=11.176479Å and c=10.014323Å. The band gap of ZnBiYO4 was estimated to be 1.58eV. The photocatalytic activity of ZnBiYO4 was assessed by photodegradation of methyl orange under visible light irradiation. The results showed that ZnBiYO4 had higher catalytic activity compared with N-doped TiO2 under the same experimental conditions using visible light irradiation. The photocatalytic degradation of methyl orange with ZnBiYO4 or N-doped TiO2 as catalyst followed first-order reaction kinetics, and the first-order rate constant was 0.01575 and 0.00416 min(-1) for ZnBiYO4 and N-doped TiO2, respectively. After visible light irradiation for 220 min with ZnBiYO4 as catalyst, complete removal and mineralization of methyl orange were observed. The reduction of total organic carbon, formation of inorganic products, SO4(2-) and NO3-, and evolution of CO2 revealed the continuous mineralization of methyl orange during the photocatalytic process. The intermediate products were identified using liquid chromatography-mass spectrometry. The ZnBiYO4/(visible light) photocatalysis system was found to be suitable for textile industry wastewater treatment and could be used to solve other environmental chemical pollution problems. PMID:25766013

  3. Photocatalytic reduction of carbon dioxide over ZnFe2O4/TiO2 nanobelts heterostructure in cyclohexanol.

    PubMed

    Song, Guixian; Xin, Feng; Yin, Xiaohong

    2015-03-15

    A series of ZnFe2O4/TiO2 heterostructure photocatalysts with different mass percentages of ZnFe2O4 were synthesized through hydrothermal deposition method. The photocatalysts were characterized by SEM, TEM, XRD, XPS, and UV-vis DRS techniques. It is observed that ZnFe2O4 nanoparticles grew on the TiO2 nanobelts, and the obtained nanocomposites have ordered nanobelt structure with a high crystallinity. The photocatalytic activities of the nanocomposites were tested by photocatalytic reduction of CO2 in cyclohexanol under UV light (main wave length at 360nm) irradiation. The experimental results showed that the main products were cyclohexanone (CH) and cyclohexyl formate (CF). Compared with pure TiO2 and ZnFe2O4 samples, the obtained ZnFe2O4/TiO2 nanocomposites showed much higher photocatalytic performance. The loading amount of ZnFe2O4 was an important factor affecting the generation yields of the products. When the loading amount of ZnFe2O4 reached 9.78%, the ZnFe2O4/TiO2 heterostructure sample displayed the highest activity. The Z-scheme system reaction mechanism was proposed to explain the photocatalytic activity of the ZnFe2O4/TiO2 heterostructure sample. PMID:25514648

  4. TiO2-H2O interactions by fast field cycling (FFC) NMR relaxometry

    NASA Astrophysics Data System (ADS)

    Prusova, Alena; de Pasquale, Claudio; Loddo, Vittorio; Palmisano, Leonardo

    2010-05-01

    Titanium dioxide is a very well known photocatalyst which is widely used for environmental remediation. The interactions between TiO2 surface and organic contaminants are still poorly understood. Conceivably, water is an ubiquitous solvent and most of the TiO2 research deals with H2O. We have considered the possibility to apply FFC-NMR relaxometry for a deep understanding of the interactions between titanium dioxide surface and water molecules. Early results suggested the presence of different surface waters according to the chemical nature of the active sites present in the TiO2 system. Acknowledgements A.P. gratefully acknowledges a bilateral Erasmus project between Brno University of Technology and University of Palermo which provided grant sustainment. This work was partially funded by Ce.R.T.A. s.c.r.l. (Centri Regionali per le Tecnologie Alimentari; http://www.certa.it/default.asp).

  5. TiO2 nanosized powders controlling by ultrasound sol-gel reaction.

    PubMed

    Latt, Kyaing Kyaing; Kobayashi, Takaomi

    2008-04-01

    We studied that anatase-TiO2 powders prepared from sol-gel process of titanium tetra-isopropoxide (TTIP) were developed under ultrasonic irradiation with different frequency of 28, 45 and 100 kHz. The irradiated ultrasound (US) was controlled by using semi-cylindrical reflection plate that was placed onto the vicinity of reaction vessel. The focused US influenced the reduction of particles size and increased the surface area of resultant nanosized TiO2 powders. We also examined photodegradation of rhodamine 640 dye (Rh-640) solution by the resultant TiO2 under UV light exposure. It was observed that low frequency for TiO2 photocatalyst preparation and low calcination temperature were more affected onto the photodegradation of the dye. PMID:17904404

  6. Non-Band-Gap Photoexcitation of Hydroxylated TiO2

    PubMed Central

    2015-01-01

    The photochemistry of TiO2 has been studied intensively since it was discovered that TiO2 can act as a photocatalyst. Nevertheless, it has proven difficult to establish the detailed charge-transfer processes involved, partly because the excited states involved are difficult to study. Here we present evidence of the existence of hydroxyl-induced excited states in the conduction band region. Using two-photon photoemission, we show that stepwise photoexcitation from filled band gap states lying 0.8 eV below the Fermi level of rutile TiO2(110) excites hydroxyl-induced states 2.73 eV above the Fermi level that has an onset energy of ∼3.1 eV. The onset is shifted to lower energy by the coadsorption of molecular water, which suggests a means of tuning the energy of the excited state. PMID:26267712

  7. Fabrication of TiO2 Colloidal Crystal Films and Characterization of Their Photocatalytic Properties

    SciTech Connect

    Huang, Wei; Wang, Feng; Wang, Wei

    2011-01-01

    We have studied hydrolysis of organic alkyltitanate compounds and optimized reaction condition for synthesis of monodisperse titania (TiO2 colloidal particles with controlled size from nanometer to submicron. The synthesized TiO2 colloidal particles were further surface-modified with hydrophobic silane coupling agent. With the monodisperse hydrophobic particles, we fabricated TiO2 colloidal crystal thin films through transferring self-assembled colloidal crystal monolayer from water surface onto solid substrates. The TiO2 colloidal crystal films exhibit enhanced interaction with visible light. Consequently, in comparison with plain TiO2 particle thin film, the thin film with colloidal crystal structure shows enhanced photocatalytic activity, as evaluated through photodegradation of organic dye methyl orange in solution under simulated solar light.

  8. Comparative activity of TiO2 microspheres and P25 powder for organic degradation: Implicative importance of structural defects and organic adsorption

    NASA Astrophysics Data System (ADS)

    Wang, Chuan; Liu, Hong; Liu, Yuan; He, Guang'an; Jiang, Chengchun

    2014-11-01

    TiO2 microspheres have been employed as a promisingly new photocatalyst for water and wastewater treatment. P25 TiO2 is commonly employed and its properties are well established as photocatalyst. In this study, photocatalytic activities of the two TiO2 samples are compared by degrading sulfosalicylic acid (SSA), phenol, and 2,4-Dichlorophenoxyacetic acid (2,4-D) under 365 nm UV illumination in a suspension system at neutral pH and associated optimized TiO2 dosages. The results showed that the three organic compounds unexceptionally degraded more rapidly on P25 than on TiO2 microspheres in terms of the concentration-time curves and total organic carbon removals at 120 min. This might me attributed the presence of oxygen vacancies and Ti(III) defects already present on P25 as determined by electron paramagnetic resonance, implying that the defects played an important role for the enhancement of the charge transfer step as rate-determining step. The degradations of three organic compounds on P25 and TiO2 microspheres could be well described by the first-order rate equation, while the degradation kinetics of SSA on TiO2 microspheres was quite different. The difference was ascribed to the medium adsorption ability of SSA on the TiO2 surface.

  9. Photocatalytic degradation of an azo dye Sunset Yellow under UV-A light using TiO2/CAC composite catalysts.

    PubMed

    Rajamanickam, D; Shanthi, M

    2014-07-15

    The photocatalytic activity and the promoting effect of titania (TiO2) by commercial activated carbon (CAC) for removing the pollutant in wastewater were investigated. The TiO2/CAC composite photocatalysts with various ratios of CAC to TiO2 were prepared by sol-gel method. The catalyst was characterized by X-ray diffraction (XRD), high resolution scanning electron microscope (HR-SEM), energy dispersive spectra (EDS), diffuse reflectance spectra (DRS), photoluminescence spectra (PL), X-ray photoelectron spectroscopy (XPS) and Brunauer-Emmett-Teller (BET) surface area measurement methods. The photocatalytic activity of TiO2/CAC was investigated for the degradation of Sunset Yellow (SY) in aqueous solution using UV-A light. The TiO2/CAC is found to be more efficient than prepared TiO2 and TiO2-P25 at pH 7 for the mineralization of SY. The synergism between TiO2 and CAC may increase the catalytic activity. The effects of operational parameters such as the amount of photocatalyst, dye concentration and initial pH on photo mineralization of SY have been analyzed. The mineralization of SY has been confirmed by COD measurements. The catalyst is found to be reusable. PMID:24662758

  10. Photocatalytic degradation of an azo dye Sunset Yellow under UV-A light using TiO2/CAC composite catalysts

    NASA Astrophysics Data System (ADS)

    Rajamanickam, D.; Shanthi, M.

    2014-07-01

    The photocatalytic activity and the promoting effect of titania (TiO2) by commercial activated carbon (CAC) for removing the pollutant in wastewater were investigated. The TiO2/CAC composite photocatalysts with various ratios of CAC to TiO2 were prepared by sol-gel method. The catalyst was characterized by X-ray diffraction (XRD), high resolution scanning electron microscope (HR-SEM), energy dispersive spectra (EDS), diffuse reflectance spectra (DRS), photoluminescence spectra (PL), X-ray photoelectron spectroscopy (XPS) and Brunauer-Emmett-Teller (BET) surface area measurement methods. The photocatalytic activity of TiO2/CAC was investigated for the degradation of Sunset Yellow (SY) in aqueous solution using UV-A light. The TiO2/CAC is found to be more efficient than prepared TiO2 and TiO2-P25 at pH 7 for the mineralization of SY. The synergism between TiO2 and CAC may increase the catalytic activity. The effects of operational parameters such as the amount of photocatalyst, dye concentration and initial pH on photo mineralization of SY have been analyzed. The mineralization of SY has been confirmed by COD measurements. The catalyst is found to be reusable.

  11. Reprint of: photostability of wool fabrics coated with pure and modified TiO2 colloids.

    PubMed

    Pakdel, Esfandiar; Daoud, Walid A; Sun, Lu; Wang, Xungai

    2015-06-01

    The surface of wool fabrics was coated with TiO2 and TiO2-based nanocomposite colloids and the impact of this coating on the photostability of wool was investigated. TiO2 along with TiO2/Metal and TiO2/Metal/SiO2 sols were synthesized through a low-temperature sol-gel method and applied to fabrics. Composite colloids were synthesized through integrating the silica and three noble metals of silver (Ag), gold (Au) and platinum (Pt) into the synthesis process of sols. Four different molar ratios of Metal to TiO2 (0.01%, 0.1%, 0.5% and 1%) were used to elucidate the role of metal type and amount on the obtained features. Photostability and UV protection features of fabrics were evaluated through measuring the photo-induced chemiluminescence (PICL), photoyellowing rate and ultraviolet protection factor (UPF) of fabrics. PICL and photoyellowing tests were carried out under UVA and UVC light sources, respectively. PICL profiles demonstrated that the presence of pure and modified TiO2 nanoparticles on fabrics reduced the intensity of PICL peak indicating a lower amount of polymer free radicals in coated wool, compared to that of pristine fabric. Moreover, a higher PICL peak intensity as well as photoyellowing rate was observed on fabrics coated with modified colloids in comparison with pure TiO2. The surface morphology of fabrics was further characterized using FESEM images. PMID:25746934

  12. Photostability of wool fabrics coated with pure and modified TiO2 colloids.

    PubMed

    Pakdel, Esfandiar; Daoud, Walid A; Sun, Lu; Wang, Xungai

    2015-02-15

    The surface of wool fabrics was coated with TiO2 and TiO2-based nanocomposite colloids and the impact of this coating on the photostability of wool was investigated. TiO2 along with TiO2/Metal and TiO2/Metal/SiO2 sols were synthesized through a low-temperature sol-gel method and applied to fabrics. Composite colloids were synthesized through integrating the silica and three noble metals of silver (Ag), gold (Au) and platinum (Pt) into the synthesis process of sols. Four different molar ratios of Metal to TiO2 (0.01%, 0.1%, 0.5% and 1%) were used to elucidate the role of metal type and amount on the obtained features. Photostability and UV protection features of fabrics were evaluated through measuring the photo-induced chemiluminescence (PICL), photoyellowing rate and ultraviolet protection factor (UPF) of fabrics. PICL and photoyellowing tests were carried out under UVA and UVC light sources, respectively. PICL profiles demonstrated that the presence of pure and modified TiO2 nanoparticles on fabrics reduced the intensity of PICL peak indicating a lower amount of polymer free radicals in coated wool, compared to that of pristine fabric. Moreover, a higher PICL peak intensity as well as photoyellowing rate was observed on fabrics coated with modified colloids in comparison with pure TiO2. The surface morphology of fabrics was further characterized using FESEM images. PMID:25460718

  13. In-situ aging microwave heating synthesis of LTA zeolite layer on mesoporous TiO2 coated porous alumina support

    NASA Astrophysics Data System (ADS)

    Baig, Mirza A.; Patel, Faheemuddin; Alhooshani, Khalid; Muraza, Oki; Wang, Evelyn N.; Laoui, Tahar

    2015-12-01

    LTA zeolite layer was successfully grown on a superhydrophilic mesoporous titania layer coated onto porous ?-alumina substrate. Mesoporous titania layer was formed as an intermediate bridge in the pore size variation between the macroporous ?-alumina support and micro-porous LTA zeolite layer. In-situ aging microwave heating synthesis method was utilized to deposit the LTA zeolite layer. Mesoporous titania layer was pre-treated with UV photons and this was observed to have played a major role in improving the surface hydrophilicity of the substrate leading to formation of increased number of Ti-OH groups on the surface. This increase in Ti-OH groups enhanced the interaction between the synthesis gel and the substrate leading to strong attachment of the amorphous gel on the substrate, thus enhancing coverage of the LTA zeolite layer to almost the entire surface of the 1-inch (25.4 mm) diameter membrane. LTA zeolite layer was developed via in-situ aged under microwave irradiation to study the effect of synthesis parameters such as in-situ aging time and synthesis time on the formation of the LTA zeolite layer. Optimized process parameters resulted in the formation of crack-free porous zeolite layer yielding a zeolite-titania-alumina multi-layer membrane with a gradient in porosity.

  14. Bactericidal effects and mechanisms of visible light-responsive titanium dioxide photocatalysts on pathogenic bacteria.

    PubMed

    Liou, Je-Wen; Chang, Hsin-Hou

    2012-08-01

    This review focuses on the antibacterial activities of visible light-responsive titanium dioxide (TiO(2)) photocatalysts. These photocatalysts have a range of applications including disinfection, air and water cleaning, deodorization, and pollution and environmental control. Titanium dioxide is a chemically stable and inert material, and can continuously exert antimicrobial effects when illuminated. The energy source could be solar light; therefore, TiO(2) photocatalysts are also useful in remote areas where electricity is insufficient. However, because of its large band gap for excitation, only biohazardous ultraviolet (UV) light irradiation can excite TiO(2), which limits its application in the living environment. To extend its application, impurity doping, through metal coating and controlled calcination, has successfully modified the substrates of TiO(2) to expand its absorption wavelengths to the visible light region. Previous studies have investigated the antibacterial abilities of visible light-responsive photocatalysts using the model bacteria Escherichia coli and human pathogens. The modified TiO(2) photocatalysts significantly reduced the numbers of surviving bacterial cells in response to visible light illumination. They also significantly reduced the activity of bacterial endospores; reducing their toxicity while retaining their germinating abilities. It is suggested that the photocatalytic killing mechanism initially damages the surfaces weak points of the bacterial cells, before totally breakage of the cell membranes. The internal bacterial components then leak from the cells through the damaged sites. Finally, the photocatalytic reaction oxidizes the cell debris. In summary, visible light-responsive TiO(2) photocatalysts are more convenient than the traditional UV light-responsive TiO(2) photocatalysts because they do not require harmful UV light irradiation to function. These photocatalysts, thus, provide a promising and feasible approach for disinfection of pathogenic bacteria; facilitating the prevention of infectious diseases. PMID:22678625

  15. Graphene-based hollow TiO2 composites with enhanced photocatalytic activity for removal of pollutants

    NASA Astrophysics Data System (ADS)

    Zhang, Lixin; Zhang, Jia; Jiu, Hongfang; Ni, Changhui; Zhang, Xia; Xu, Meiling

    2015-11-01

    Catalytically active graphene-based hollow TiO2 composites(TiO2/RGO) were successfully synthesized via the solvothermal method. Hollow TiO2 microspheres are uniformly dispersed on RGO. X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (DRS) and photoluminescence (PL) were used for the characterization of prepared photocatalysts. The mass of GO was optimized in the photocatalytic removal of rhodamine B (RhB) as a model dye pollutants. The results showed that graphene-based hollow TiO2 composites exhibit a significantly enhanced photocatalytic activity in degradation of RhB under either UV or visible light irradiation. The formation of the graphene-based hollow TiO2 composites and the photocatalytic mechanisms under UV and visible light were also discussed.

  16. Characterization of TiO2 and ZnO nanoparticles and their applications in photocatalytic degradation of azodyes.

    PubMed

    Gnanaprakasam, A; Sivakumar, V M; Sivayogavalli, P L; Thirumarimurugan, M

    2015-11-01

    TiO2 nanoparticles have been synthesized from the inorganic precursor Ti [OC3H7]4via sol-gel technique. Similarly, ZnO nanoparticles have also been synthesized from zinc sulfate precursor using precipitation method. The prepared nanoparticles was characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) techniques to study the morphology, structural configuration and its functionality. The average particle size for TiO2 and ZnO nanoparticles was 15.4nm and 17.9nm, respectively. The synthesized TiO2 and ZnO nanoparticles have been used for degradation of acid red 27 and coralene red F3BS dyes under the UV light. The regeneration of TiO2 photocatalyst was also tested. PMID:25937630

  17. Novel hollow mesoporous 1D TiO2 nanofibers as photovoltaic and photocatalytic materials.

    PubMed

    Zhang, Xiang; Thavasi, Velmurugan; Mhaisalkar, S G; Ramakrishna, Seeram

    2012-03-01

    Hollow mesoporous one dimensional (1D) TiO(2) nanofibers are successfully prepared by co-axial electrospinning of a titanium tetraisopropoxide (TTIP) solution with two immiscible polymers; polyethylene oxide (PEO) and polyvinylpyrrolidone (PVP) using a core-shell spinneret, followed by annealing at 450 C. The annealed mesoporous TiO(2) nanofibers are found to having a hollow structure with an average diameter of 130 nm. Measurements using the Brunauer-Emmett-Teller (BET) method reveal that hollow mesoporous TiO(2) nanofibers possess a high surface area of 118 m(2) g(-1) with two types of mesopores; 3.2 nm and 5.4 nm that resulted from gaseous removal of PEO and PVP respectively during annealing. With hollow mesoporous TiO(2) nanofibers as the photoelectrode in dye sensitized solar cells (DSSC), the solar-to-current conversion efficiency (?) and short circuit current (J(sc)) are measured as 5.6% and 10.38 mA cm(-2) respectively, which are higher than those of DSSC made using regular TiO(2) nanofibers under identical conditions (? = 4.2%, J(sc) = 8.99 mA cm(-2)). The improvement in the conversion efficiency is mainly attributed to the higher surface area and mesoporous TiO(2) nanostructure. It facilitates the adsorption of more dye molecules and also promotes the incident photon to electron conversion. Hollow mesoporous TiO(2) nanofibers with close packing of grains and crystals intergrown with each other demonstrate faster electron diffusion, and longer electron recombination time than regular TiO(2) nanofibers as well as P25 nanoparticles. The surface effect of hollow mesoporous TiO(2) nanofibers as a photocatalyst for the degradation of rhodamine dye was also investigated. The kinetic study shows that the hollow mesoporous surface of the TiO(2) nanofibers influenced its interactions with the dye, and resulted in an increased catalytic activity over P25 TiO(2) nanocatalysts. PMID:22315140

  18. Rapid photo-degradation of 2-chlorophenol under visible light irradiation using cobalt oxide-loaded TiO2/reduced graphene oxide nanocomposite from aqueous media.

    PubMed

    Sharma, Ajit; Lee, Byeong-Kyu

    2016-01-01

    The photocatalytic removal of 2-chlorophenol (2-CP) from water environment was investigated by TiO2-RGO-CoO. Cobalt oxide-loaded TiO2 (TiO2-CoO) supported with reduced graphene oxide (RGO) was synthesized using a sol-gel method and then annealed at 500C for 5min. The material characteristics were analyzed by UV-Vis analysis, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy. Incorporation of cobalt oxide and RGO into the TiO2 system (TiO2-RGO-CoO) lowered the band gap energy to 2.83eV, which greatly enhanced the visible light absorption. The TiO2-RGO-CoO photocatalyst showed complete removal of 20mg/L 2-CP within 8h with the addition of 0.01% H2O2 under 100W visible light irradiation. The photo-degradation efficiency of 2-CP (10mg/L) was 35.2, 48.9, 58.9 and 98.2% for TiO2, TiO2-RGO, TiO2-CoO and TiO2-RGO-CoO, respectively, in the presence of visible light irradiation at solution pH of 6.0. The TiO2-RGO-CoO photocatalyst retained its high removal efficiency even after five photocatalytic cycles. PMID:26386660

  19. Effect of fluoride and water content on the growth of TiO2 nanotubes synthesized via ethylene glycol with voltage changes during anodizing process

    NASA Astrophysics Data System (ADS)

    Quiroz, Heiddy P.; Quintero, Francisco; Arias, Pedro J.; Dussan, A.; Zea, Hugo R.

    2015-07-01

    In this work, titanium foils were anodized in ethylene glycol solutions containing different amounts of water and fluoride to determine their effects on the top morphology and crystalline structure of the formed titania nanostructures. Anodizing was performed for 2 h by using titanium foils as both anode and cathode applying a squared-pulse voltage profile composed of one step at 80 V for 3 min followed by another at 20 V for 5 min; constant voltage conditions were also used to study the nanostructure formation on the surface. We found the formation of nanostructured titania on the surface of the anodized foil when small amounts of water and fluoride are present in the anodizing solution. The top of these nanostructures is irregular when no water is added, but is expected to change with different amounts of water and fluoride in the ranges of 1 - 9% and 0.05 - 0.5%, respectively. Synthesis parameters also change nanotube morphology. The morphology and structure properties of the samples were studied by scanning electron microscopy (SEM) and X-ray powder diffraction (XRD). Formation of TiO2 nanotubes by anodization method are strongly correlated to conditions like fluoride concentration and applied voltages. Tube length varying between 2 and 7 ?m, exhibiting different diameters and wall thicknesses were obtained. When an alternate voltage was applied, the wall of the nanotubes presented evenly spaced rings while nanotubes with smooth wall form were observed when constant voltage was applied. Reflection peaks corresponding to Brookite, Anatase, and Rutile of TiO2 phases were observed from XRD measurements. A correlation between the effects of synthesis parameters on nanotube formation and morphological properties is presented. TiO2 nanotubes prepared by electrochemical anodization have excellent performance in various applications such as photocatalysts, solar cells, gas sensors, and biomedical applications.

  20. Ecotoxicity of TiO2 to Daphnia similis under irradiation.

    PubMed

    Marcone, Glauciene P S; Oliveira, Adria C; Almeida, Gilberto; Umbuzeiro, Gisela A; Jardim, Wilson F

    2012-04-15

    Currently, there are a large number of products (sunscreen, pigments, cosmetics, plastics, toothpastes and photocatalysts) that use TiO(2) nanoparticles. Due to this large production, these nanoparticles can be released into the aquatic, terrestrial and aerial environments at relative high concentration. TiO(2) in natural water has the capacity to harm aquatic organisms such as the Daphnia (Cladocera) species, mainly because the photocatalytic properties of this semiconductor. However, very few toxicity tests of TiO(2) nanoparticles have been conducted under irradiation. The aim of this study was to evaluate anatase and rutile TiO(2) toxicity to Daphnia similis exploring their photocatalytic properties by incorporating UV A and visible radiation as a parameter in the assays. Anatase and rutile TiO(2) samples at the highest concentration tested (100 mg L(-1)) were not toxic to D. similis, neither in the dark nor under visible light conditions. The anatase form and a mixture of anatase and rutile, when illuminated by a UV A black light with a peak emission wavelength of 360 nm, presented photo-dependent EC50 values of 56.9-7.8 mg L(-1), which indicates a toxicity mechanism caused by ROS (reactive oxygen species) generation. PMID:22326243