Science.gov

Sample records for tio2 photocatalysts synthesis

  1. [Preparation of weak light driven TiO2 multi composite photocatalysts via adsorption phase synthesis].

    PubMed

    Wang, Ting; Zhu, Yi-Chen; Sun, Zhi-Xuan; Wu, Li-Guang

    2015-02-01

    Photodegradation of pollutions by TiO2 under irradiation of weak UV and visible lights was one of the key points to expand the application of heterogeneous photocatalysis. Based on the adsorption phase synthesis, N doping and co-doping with N and Fe2O3 were employed to prepare TiO2 multi composite photocatalysts. The activity of these photocatalyts was evaluated by photodegradation of methyl-orange illuminated under weak UV and visible lights. Via UV-Vis diffuse reflectance spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy and photoluminescence spectra, the effects on the light absorption and visible response expansion of catalysts caused by different conditions were explored, such as sintering temperature, doping content of N and co-doping. Followed that, the changes in the photocatalytic activities were studied under the irradiation of weak light. The results showed that, N doping could enhance the light absorption of the catalysts, thus significantly enhanced their photocatalytic activity illuminated under UV weak light. All N-doped photocatalysts had a higher activity than the commercial available P25 photocatalyst. The visible response of catalysts was expanded little caused by N doping, thereby most catalysts doped by single N element had no activity illuminated by weak visible light. Only the catalyst doped with 5% of N element showed a weak activity after calcined at 900 degrees C . Due to the synergy effects between N doping and Fe2O3 coupling, co-doping did not only enhance the light absorption of the catalysts, but also significantly expanded the visible response of catalysts. So, co-doped catalysts showed a good catalytic activity when excited by weak visible light. PMID:26031083

  2. [Characterization and photocatalytic activity of Ni-doped tiO2 nano photocatalysts prepared by low temperature combustion synthesis].

    PubMed

    Liu, Chao; Tang, Xin-Hu; Mo, Ce-Hui; Wang, Jun

    2006-11-01

    Ni-doped TiO2 photocatalysts were prepared by low temperature combustion synthesis and some properties, such as optical absorption, crystal type, grain size distribution and chemistry transformation during temperature rising were characterized by UV-Vis DRS, X-ray diffraction (XRD), laser light dispersion grain size measurement machine and TG-DSC respectively. The photocatalytic activities of the prepared photocatalysts under visible light irradiation were evaluated by monitoring the degradation of methylene blue dye, a probe pollutant. The results indicate that the Ni-doped TiO2 photocatalysts prepared by low temperature combustion synthesis shift the optical absorption threshold to visible light, the band gap of 0.4 Ni-TiO2 (atomic ratio) is 2.3 eV, which corresponds to a 564 nm threshold in the visible light range. The crystal type of photocatalyst is anatase TiO2 and the content of NiTiO3 rise with the increase of Ni dopant. The grain size of photocatalyst distributes from 50 to 150nm, which account for 96.9% of entire quantity. During temperature rising, the TiO2 phase in photocatalyst transforms from amorphous structure to anatase and NiTiO3 crystallites appear at 445.2 degrees C. After 150 min visible light irradiation, 93.9% of methylene blue dye are degraded over 0.4 Ni-TiO2 photocatalyst. The photocatalytic activity of Ni doped TiO2 is higher than that of P25 under identical conditions. PMID:17326417

  3. Synthesis of rare earth doped TiO2 nanorods as photocatalysts for lignin degradation

    NASA Astrophysics Data System (ADS)

    Song, Liang; Zhao, Xueyuan; Cao, Lixin; Moon, Ji-Won; Gu, Baohua; Wang, Wei

    2015-10-01

    A two-step process is developed to synthesize rare earth doped titania nanorods (RE-TiO2 NRs) as photocatalysts for efficient degradation of lignin under simulated sunlight irradiation. In this approach, protonated titanate nanotubes with layered structures were first prepared by a hydrothermal approach, and rare earth metal ions were subsequently bound to the negatively charged surface of the synthesized titanate via electrostatic incorporation. The as-synthesized RE-TiO2 NRs after calcination generally showed much higher photocatalytic efficiencies than those of undoped TiO2 NRs or the commercial P25 TiO2 photocatalyst. Using methyl orange (MO) as a probing molecule, we demonstrate that Eu-TiO2 NRs are among the best for degrading MO, with an observed rate constant of 4.2 × 10-3 s-1. The La3+, Sm3+, Eu3+ and Er3+ doped TiO2 NRs also showed higher photocatalytic efficiencies in degrading MO than the commercial P25 TiO2. We further demonstrate that lignin can be photodegraded effectively and rapidly at room temperature under simulated sunlight through two reaction routes, which could be important in controlling ways of lignin depolymerization or the formation of reaction products.A two-step process is developed to synthesize rare earth doped titania nanorods (RE-TiO2 NRs) as photocatalysts for efficient degradation of lignin under simulated sunlight irradiation. In this approach, protonated titanate nanotubes with layered structures were first prepared by a hydrothermal approach, and rare earth metal ions were subsequently bound to the negatively charged surface of the synthesized titanate via electrostatic incorporation. The as-synthesized RE-TiO2 NRs after calcination generally showed much higher photocatalytic efficiencies than those of undoped TiO2 NRs or the commercial P25 TiO2 photocatalyst. Using methyl orange (MO) as a probing molecule, we demonstrate that Eu-TiO2 NRs are among the best for degrading MO, with an observed rate constant of 4.2 × 10-3 s-1. The La3+, Sm3+, Eu3+ and Er3+ doped TiO2 NRs also showed higher photocatalytic efficiencies in degrading MO than the commercial P25 TiO2. We further demonstrate that lignin can be photodegraded effectively and rapidly at room temperature under simulated sunlight through two reaction routes, which could be important in controlling ways of lignin depolymerization or the formation of reaction products. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03537f

  4. Synthesis of rare earth doped TiO2 nanorods as photocatalysts for lignin degradation.

    PubMed

    Song, Liang; Zhao, Xueyuan; Cao, Lixin; Moon, Ji-Won; Gu, Baohua; Wang, Wei

    2015-10-28

    A two-step process is developed to synthesize rare earth doped titania nanorods (RE-TiO2 NRs) as photocatalysts for efficient degradation of lignin under simulated sunlight irradiation. In this approach, protonated titanate nanotubes with layered structures were first prepared by a hydrothermal approach, and rare earth metal ions were subsequently bound to the negatively charged surface of the synthesized titanate via electrostatic incorporation. The as-synthesized RE-TiO2 NRs after calcination generally showed much higher photocatalytic efficiencies than those of undoped TiO2 NRs or the commercial P25 TiO2 photocatalyst. Using methyl orange (MO) as a probing molecule, we demonstrate that Eu-TiO2 NRs are among the best for degrading MO, with an observed rate constant of 4.2 × 10(-3) s(-1). The La(3+), Sm(3+), Eu(3+) and Er(3+) doped TiO2 NRs also showed higher photocatalytic efficiencies in degrading MO than the commercial P25 TiO2. We further demonstrate that lignin can be photodegraded effectively and rapidly at room temperature under simulated sunlight through two reaction routes, which could be important in controlling ways of lignin depolymerization or the formation of reaction products. PMID:26400095

  5. Synthesis and characterization of N-doped TiO2 photocatalysts with tunable response to solar radiation

    NASA Astrophysics Data System (ADS)

    Petala, Athanasia; Tsikritzis, Dimitris; Kollia, Mary; Ladas, Spyridon; Kennou, Stella; Kondarides, Dimitris I.

    2014-06-01

    Modification of the electronic structure of wide band gap semiconductors by anion doping is an effective strategy for the development of photocatalytic materials operating under solar light irradiation. In the present work, nitrogen-doped TiO2 photocatalysts of variable dopant content were synthesized by annealing a sol-gel derived TiO2 powder under flowing ammonia at temperatures in the range of 450-800 °C, and their physicochemical and optical properties were compared to those of undoped TiO2 samples calcined in air. Results show that materials synthesized at T = 450-600 °C contain relatively small amounts of dopant atoms and their colour varies from pale yellow to dark green due to the creation of localized states above the valence band of TiO2 and the formation of oxygen vacancies. Treatment with NH3 at T > 600 °C results in phase transformation of anatase to rutile, in a significant decrease of the specific surface area and in formation of TiN at the surface of the TiO2 particles. The resulting dark grey (T = 700 °C) and black (T = 800 °C) materials display strong absorption in both the visible and NIR regions, originating from partial reduction of TiO2 and formation of Ti3+ defect states. The present synthesis method enables tailoring of the electronic structure of the semiconductor and could be used for the development of solar light-responsive photocatalysts for photo(electro)chemical applications.

  6. Novel TiO2/C nanocomposites: synthesis, characterization, and application as a photocatalyst for the degradation of organic pollutants.

    PubMed

    da Costa, Elias; Zamora, Patricio P; Zarbin, Aldo J G

    2012-02-15

    Novel TiO(2)/carbon nanocomposites were prepared through the pyrolysis of TiO(2)/poly(furfuryl alcohol) hybrid materials, which were obtained by the sol-gel method, starting from titanium tetraisopropoxide (TTIP) and furfuryl alcohol (FA) precursors. Six different TiO(2)/C samples were prepared based on different TiO(2) nanoparticle sizes and TiO(2)/FA ratios. All of the samples were characterized using X-ray diffraction, infrared, and Raman spectroscopy. The results indicated effective FA polymerization onto the TiO(2) (anatase) nanoparticles, polymer conversion to disordered carbon following the pyrolysis, and a simultaneous TiO(2) anatase-rutile phase transition. The resulting TiO(2)/carbon composites were used as photocatalysts in the advanced oxidative process (AOP) for the degradation of reactive organic dyes in aqueous solution. The results indicate excellent photocatalytic performance (degradation of 99% of the dye after 60 min) with several advantages over traditional TiO(2)-based photocatalysts. PMID:22056275

  7. Synthesis of N-doped TiO2 Using Guanidine Nitrate: An Excellent Visible Light Photocatalyst

    EPA Science Inventory

    An excellent visible light active nitrogen-rich TiO2 photocatalyst have been synthesized by using guanidine nitrate as the doping material. The catalytic efficiency of the catalyst has been demonstrated by the decomposition of the dye, methyl orange (MO), and the pollutant, 2,4 d...

  8. Synthesis of nanostructured TiO2/SiO2 as an effective photocatalyst for degradation of acid orange

    NASA Astrophysics Data System (ADS)

    Cetinkaya, Tugrul; Neuwirthová, Lucie; Kutláková, Kateřina M.; Tomášek, Vladimír; Akbulut, Hatem

    2013-08-01

    TiO2/SiO2 composites were produced as photocatalysts both by hydrolysis of TiCl4 and from TiO2 suspension prepared by hydrolysis of TiCl4. TiO2/SiO2 composites were dried at 70 °C and calcinated at 400 °C and 600 °C to investigate the effect of calcination temperature on the phase transformation of TiO2 structure. Photocatalytic effects of produced TiO2/SiO2 composites were measured against degradation of acid orange 7 (AO7) by UV-vis spectroscopy. The chemical compositions of produced samples were studied by X-ray fluorescence (XRF) technique. The composite structures were analyzed by X-ray diffraction (XRD) pattern and scanning electron microscopy (SEM) facilities to reveal the surface morphology and their phase structures. Energy dispersive X-ray spectroscopy (EDS) was conducted to understand the elemental surface composition of composites. Photocatalytic activity of composites normalized with surface area, and TiO2/SiO2 composite produced by TiO2 suspension prepared by hydrolysis of TiCl4 and calcinated at 600 °C indicated 40% photocatalytic degradation of AO7 after 2 h under UV radiation.

  9. Hydrothermal synthesis of Fe-doped TiO2 nanostructure photocatalyst

    NASA Astrophysics Data System (ADS)

    Nghia Nguyen, Van; Khoa Truong Nguyen, Ngoc; Nguyen, Phi Hung

    2011-09-01

    Fe-doped TiO2 catalyst was prepared by the hydrothermal method. The resulting nanopowders were characterized by x-ray diffraction, transmission electron microscopy and Raman and UV-visible spectroscopies. The photocatalytic activity of the Fe-doped TiO2 was tested by decomposition of methylene orange with a concentration of 10 mg l‑1 in aqueous solution. The obtained results showed that methylene orange was significantly degraded after irradiation for 90 min under a halogen lamp and sunlight. The doping effect on the photocatalytic activity of the iron-doped catalyst samples are discussed.

  10. Synthesis of molecularly imprinted photocatalysts containing low TiO2 loading: Evaluation for the degradation of pharmaceuticals.

    PubMed

    de Escobar, Cícero Coelho; Lansarin, Marla Azário; Zimnoch Dos Santos, João Henrique

    2016-04-01

    A molecularly imprinted (MI) photocatalyst containing a low TiO2 loading (7.00-16.60mgL(-1) of TiO2) was prepared via an acid-catalyzed sol-gel route using different classes of pharmaceutical compounds (i.e., Atorvastatin, Diclofenac, Ibuprofen, Tioconazole, Valsartan, Ketoconazole and Gentamicine) as the template. Herein, our main goal was to test the hypothesis that photocatalysts based on molecular imprinting may improve the degradation performance of pharmaceutical compounds compared to that of a commercial sample (Degussa P25) due to presence of specific cavities in the silica domain. To elucidate certain trends between the performance of photocatalysts and their structural and textural properties, as well the effect of the structure of the drugs on molecular imprinting, the data were analyzed in terms of pore diameter, pore volume, surface area, zeta potential and six-membered ring percentage of silica. In comparison to the commercial sample (P25), we have shown that adsorption and degradation were enhanced from 48 to 752% and from 5 to 427%, respectively. A comparison with the control system (non-imprinted) indicates that the increased performance of the MI systems was due to the presence of specific cavities on the silica domain, and the textural and structural aspects also support this conclusion. The MI photocatalyst was reusable for seven cycles of reuse in which approximately 60% of its photocatalytic efficiency was preserved for the system containing Diclofenac as the template. PMID:26800507

  11. Synthesis and characterization of Fe-doped TiO2 photocatalyst by the sol-gel method

    NASA Astrophysics Data System (ADS)

    Loc Luu, Cam; Nguyen, Quoc Tuan; Thoang Ho, Si

    2010-03-01

    Thin layers of pure TiO2 and TiO2 doped by different amounts of Fe2O3 have been prepared by the sol-gel method with tetraisopropyl orthotitanate and Fe(NO3)3. Physico-chemical properties of catalysts were characterized by BET Adsorption, x-ray Diffraction (XRD), FE-SEM, as well as Raman and UV-Vis spectroscopy. The photocatalytic activity of the obtained materials was investigated in the reaction of complete oxidation of p-xylene in gas phase under the radiation of UV (?=365?nm) and LED (?=470?nm) lamps. It has been found that the particle size of all samples was distributed in the range 20-30?nm. The content of the rutile phase in Fe-doped TiO2 samples varied in the range 6.8 to 41.8% depending on the Fe content. Iron oxide doped into TiO2 enables the photon absorbing zone of TiO2 to extend from UV towards visible waves as well as to reduce its band gap energy from 3.2 to 2.67?eV. Photocatalytic activities of the TiO2 samples modified by Fe3+ have been found to be higher than those of pure TiO2 by about 2.5 times.

  12. Synthesis of C-N-Y tri-doped TiO2 photo-catalyst for MO degradation and characterization

    NASA Astrophysics Data System (ADS)

    Hoseinian-Maleki, F.; Nemati, A.; Joya, Yasir F.

    2015-10-01

    In this research C-N-Y tri-doped TiO2 nanopowders were synthesized by the sol-gel method. The C-N-Y TiO2 photo-catalyst was prepared using hexamine and yttrium nitrate Hexahydrate as the dopant precursors. Methyl-orange (MO) was used to study the photocatalytic performance of the doped TiO2 under UV irradiation. The synthesized samples were characterized by x-ray diffraction, x-ray photoelectron spectroscopy, UV-vis diffuse reflectance spectroscopy, Fourier transform infrared spectroscopy, Transmission electron microscopy, Photoluminescence and Field emission scanning electron microscopy. The tri-doped sample with 8% N, 0.4% Y and 1.5% C exhibited enhanced photocatalytic efficiencies. After 100 min of irradiation with UV light, 87% of MO was decomposed by C-N-Y tri-doped TiO2 sample. It is suggested that the co-activity of C and N could make the intra-gap localized states above the valence band of TiO2, and carbon in TiO2 structure causes carbonate species to appear. These carbonate species acted as photosensitizer on the TiO2 surface to promote photo-catalytic activity of the as synthesized sample.

  13. SURFACTANT TEMPLATED SOL-GEL SYNTHESIS OF MESOPOROUS TIO2 PHOTOCATALYSTS AND THEIR APPLICATION IN THE DESTRUCTION OF CYANOBACTERIAL TOXINS

    EPA Science Inventory

    In the symposium, we will present the synthesis and properties of the mesoporous TIO2 films and membranes and fundamental and systematic study on the decomposition pathway of such biological toxins.

  14. Structure, synthesis, and applications of TiO2 nanobelts.

    PubMed

    Zhao, Zhenhuan; Tian, Jian; Sang, Yuanhua; Cabot, Andreu; Liu, Hong

    2015-04-24

    TiO2 semiconductor nanobelts have unique structural and functional properties, which lead to great potential in many fields, including photovoltaics, photocatalysis, energy storage, gas sensors, biosensors, and even biomaterials. A review of synthetic methods, properties, surface modification, and applications of TiO2 nanobelts is presented here. The structural features and basic properties of TiO2 nanobelts are systematically discussed, with the many applications of TiO2 nanobelts in the fields of photocatalysis, solar cells, gas sensors, biosensors, and lithium-ion batteries then introduced. Research efforts that aim to overcome the intrinsic drawbacks of TiO2 nanobelts are also highlighted. These efforts are focused on the rational design and modification of TiO2 nanobelts by doping with heteroatoms and/or forming surface heterostructures, to improve their desirable properties. Subsequently, the various types of surface heterostructures obtained by coupling TiO2 nanobelts with metal and metal oxide nanoparticles, chalcogenides, and conducting polymers are described. Further, the charge separation and electron transfer at the interfaces of these heterostructures are also discussed. These properties are related to improved sensitivity and selectivity for specific gases and biomolecules, as well as enhanced UV and visible light photocatalytic properties. The progress in developments of near-infrared-active photocatalysts based on TiO2 nanobelts is also highlighted. Finally, an outline of important directions of future research into the synthesis, modification, and applications of this unique material is given. PMID:25800706

  15. Synthesis of mesoporous TiO2/SiO2 hybrid films as an efficient photocatalyst by polymeric micelle assembly.

    PubMed

    Li, Yunqi; Bastakoti, Bishnu Prasad; Imura, Masataka; Hwang, Soo Min; Sun, Ziqi; Kim, Jung Ho; Dou, Shi Xue; Yamauchi, Yusuke

    2014-05-12

    Thermally stable mesoporous TiO2/SiO2 hybrid films with pore size of 50 nm have been synthesized by adopting the polymeric micelle-assembly method. A triblock copolymer, poly(styrene-b-2-vinyl pyridine-b-ethylene oxide), which serves as a template for the mesopores, was utilized to form polymeric micelles. The effective interaction of titanium tetraisopropoxide (TTIP) and tetraethyl orthosilicate (TEOS) with the polymeric micelles enabled us to fabricate stable mesoporous films. By changing the molar ratio of TEOS and TTIP, several mesoporous TiO2/SiO2 hybrid films with different compositions can be synthesized. The presence of amorphous SiO2 phase effectively retards the growth of anatase TiO2 crystal in the pore walls and retains the original mesoporous structure, even at higher temperature (650 °C). These TiO2/SiO2 hybrid films are of very high quality, without any cracks or voids. The addition of SiO2 phase to mesoporous TiO2 films not only adsorbs more organic dyes, but also significantly enhances the photocatalytic activity compared to mesoporous pure TiO2 film without SiO2 phase. PMID:24710980

  16. Study of gamma irradiation effect on commercial TiO2 photocatalyst.

    PubMed

    Bello Lamo, M P; Williams, P; Reece, P; Lumpkin, G R; Sheppard, L R

    2014-07-01

    The aim of this work is to understand the effect of gamma irradiation on commercial TiO2 photocatalyst for water treatment applications. Previous studies concluded that gamma-irradiation is able to modify the electronic properties of TiO2 based photocatalysts and consequently their photocatalytic performance. However, there are some discrepancies in the literature where on one hand a significant enhancement of the material properties is reported and on the other hand only a weak effect is observed. In this study a surface effect on TiO2 is confirmed by using low and medium gamma irradiation doses. PMID:24576993

  17. TiO2 Nanotubes/MWCNTs Nanocomposite Photocatalysts: Synthesis, Characterization and Photocatalytic Hydrogen Evolution Under UV-Vis Light Illumination

    SciTech Connect

    Li, Hao-Peng; Zhang, Xiao-Yan; Cui, Xiao-Li; Lin, Yuehe

    2012-03-01

    Nanocomposite of TiO2 nanotubes (TiO2NTs) and multiwalled carbon nanotubes (MWCNTs) has been synthesized by a hydrothermal method and firstly used in photocatalytic hydrogen production. The obtained TiO2 NTs/MWCNTs composites were characterized by X-ray diffraction, transmission electron microscopy, Raman spectrum and ultraviolet-visible diffuse reflectance spectroscopy. The experimental results revealed that the MWCNTs were decorated with well dispersed anatase TiO2 nanotubes with a diameter of 8-15 nm. A slight blue shift and weak symmetry was observed for the strongest Raman peak which resulted from strain gradients originating from interface integration between TiO2 nanotubes and MWCNTs. The photocatalytic activity of the as-prepared samples was evaluated by hydrogen evolution from water splitting using Na2S and Na2SO3 as sacrificial reagents under UV-vis light irradiation. Enhanced photocatalytic activity compared with P25 has been observed for the resulted samples. The nanocomposite with optimized MWCNTs content of 1% displayed a hydrogen production rate of 161 u mol/h/g. Good photocatalytic stability of the as-synthesized samples was observed as well.

  18. Controllable Synthesis and Tunable Photocatalytic Properties of Ti(3+)-doped TiO2.

    PubMed

    Ren, Ren; Wen, Zhenhai; Cui, Shumao; Hou, Yang; Guo, Xiaoru; Chen, Junhong

    2015-01-01

    Photocatalysts show great potential in environmental remediation and water splitting using either artificial or natural light. Titanium dioxide (TiO2)-based photocatalysts are studied most frequently because they are stable, non-toxic, readily available, and highly efficient. However, the relatively wide band gap of TiO2 significantly limits its use under visible light or solar light. We herein report a facile route for controllable synthesis of Ti(3+)-doped TiO2 with tunable photocatalytic properties using a hydrothermal method with varying amounts of reductant, i.e., sodium borohydride (NaBH4). The resulting TiO2 showed color changes from light yellow, light grey, to dark grey with the increasing amount of NaBH4. The present method can controllably and effectively reduce Ti(4+) on the surface of TiO2 and induce partial transformation of anatase TiO2 to rutile TiO2, with the evolution of nanoparticles into hierarchical structures attributable to a high pressure and strong alkali environment in the synthesis atmosphere; in this way, the photocatalytic activity of Ti(3+)-doped TiO2 under visible-light can be tuned. The as-developed strategy may open up a new avenue for designing and functionalizing TiO2 materials for enhancing visible light absorption, narrowing band gap, and improving photocatalytic activity. PMID:26044406

  19. Controllable Synthesis and Tunable Photocatalytic Properties of Ti3+-doped TiO2

    PubMed Central

    Ren, Ren; Wen, Zhenhai; Cui, Shumao; Hou, Yang; Guo, Xiaoru; Chen, Junhong

    2015-01-01

    Photocatalysts show great potential in environmental remediation and water splitting using either artificial or natural light. Titanium dioxide (TiO2)-based photocatalysts are studied most frequently because they are stable, non-toxic, readily available, and highly efficient. However, the relatively wide band gap of TiO2 significantly limits its use under visible light or solar light. We herein report a facile route for controllable synthesis of Ti3+-doped TiO2 with tunable photocatalytic properties using a hydrothermal method with varying amounts of reductant, i.e., sodium borohydride (NaBH4). The resulting TiO2 showed color changes from light yellow, light grey, to dark grey with the increasing amount of NaBH4. The present method can controllably and effectively reduce Ti4+ on the surface of TiO2 and induce partial transformation of anatase TiO2 to rutile TiO2, with the evolution of nanoparticles into hierarchical structures attributable to a high pressure and strong alkali environment in the synthesis atmosphere; in this way, the photocatalytic activity of Ti3+-doped TiO2 under visible-light can be tuned. The as-developed strategy may open up a new avenue for designing and functionalizing TiO2 materials for enhancing visible light absorption, narrowing band gap, and improving photocatalytic activity. PMID:26044406

  20. Solvothermal synthesis of stable nanoporous polymeric bases-crystalline TiO2 nanocomposites: visible light active and efficient photocatalysts for water treatment

    NASA Astrophysics Data System (ADS)

    Liu, Fujian; Kong, Weiping; Wang, Liang; Noshadi, Iman; Zhang, Zhonghua; Qi, Chenze

    2015-02-01

    Visible light active and stable nanoporous polymeric base-crystalline TiO2 nanocomposites were solvothermally synthesized from in situ copolymerization of divinylbenzene (DVB) with 1-vinylimidazolate (VI) or 4-vinylpyridine (Py) in the presence of tetrabutyl titanate without the use of any other additives (PDVB-VI-TiO2-x, PDVB-Py-TiO2-x, where x stands for the molar ratio of TiO2 to VI or Py), which showed excellent activity with respect to catalyzing the degradation of organic pollutants of p-nitrophenol (PNP) and rhodamine-B (RhB). TEM and SEM images show that PDVB-VI-TiO2-x and PDVB-Py-TiO2-x have abundant nanopores, and TiO2 nanocrystals with a high degree of crystallinity were homogeneously embedded in the PDVB-VI-TiO2-x and PDVB-Py-TiO2-x, forming a stable brick-and-mortar nanostructure. PDVB-VI and PDVB-Py supports act as the glue linking TiO2 nanocrystals to form nanopores and constraining the agglomeration of TiO2 nanocrystals. XPS spectra show evidence of unique interactions between TiO2 and basic sites in these samples. UV diffuse reflectance shows that PDVB-VI-TiO2-x and PDVB-Py-TiO2-x exhibit a unique response to visible light. Catalytic tests show that the PDVB-VI-TiO2-x and PDVB-Py-TiO2-x were active in catalyzing the degradation of PNP and RhB organic pollutants under visible light irradiation. The enhanced activities of the PDVB-VI-TiO2-x and PDVB-Py-TiO2-x were ascribed to synergistic effects between abundant nanopores and the unique optical adsorption of visible light in the samples.

  1. Solvothermal synthesis of stable nanoporous polymeric bases-crystalline TiO2 nanocomposites: visible light active and efficient photocatalysts for water treatment.

    PubMed

    Liu, Fujian; Kong, Weiping; Wang, Liang; Noshadi, Iman; Zhang, Zhonghua; Qi, Chenze

    2015-02-27

    Visible light active and stable nanoporous polymeric base-crystalline TiO2 nanocomposites were solvothermally synthesized from in situ copolymerization of divinylbenzene (DVB) with 1-vinylimidazolate (VI) or 4-vinylpyridine (Py) in the presence of tetrabutyl titanate without the use of any other additives (PDVB-VI-TiO2-x, PDVB-Py-TiO2-x, where x stands for the molar ratio of TiO2 to VI or Py), which showed excellent activity with respect to catalyzing the degradation of organic pollutants of p-nitrophenol (PNP) and rhodamine-B (RhB). TEM and SEM images show that PDVB-VI-TiO2-x and PDVB-Py-TiO2-x have abundant nanopores, and TiO2 nanocrystals with a high degree of crystallinity were homogeneously embedded in the PDVB-VI-TiO2-x and PDVB-Py-TiO2-x, forming a stable 'brick-and-mortar' nanostructure. PDVB-VI and PDVB-Py supports act as the glue linking TiO2 nanocrystals to form nanopores and constraining the agglomeration of TiO2 nanocrystals. XPS spectra show evidence of unique interactions between TiO2 and basic sites in these samples. UV diffuse reflectance shows that PDVB-VI-TiO2-x and PDVB-Py-TiO2-x exhibit a unique response to visible light. Catalytic tests show that the PDVB-VI-TiO2-x and PDVB-Py-TiO2-x were active in catalyzing the degradation of PNP and RhB organic pollutants under visible light irradiation. The enhanced activities of the PDVB-VI-TiO2-x and PDVB-Py-TiO2-x were ascribed to synergistic effects between abundant nanopores and the unique optical adsorption of visible light in the samples. PMID:25656872

  2. Synthesis and characterization of Fe3O4/TiO2 magnetic and photocatalyst bifunctional core-shell with superparamagnetic performance

    NASA Astrophysics Data System (ADS)

    Behrad, F.; Helmi Rashid Farimani, M.; Shahtahmasebi, N.; Rezaee Roknabadi, M.; Karimipour, M.

    2015-07-01

    In this research a simple method has been presented to coat magnetic nanoparticles with TiO2. Firstly, Fe3O4 nanoparticles have been prepared using a co-precipitation method. Thereafter, in order to achieve particles with better dispersibility, the surface of Fe3O4 nanoparticles has been modified with the help of trisodium citrate as stabilizer. Afterward, Fe3O4 / TiO2 core-shell nanocomposites were synthesized by the Stöber method. The prepared samples were characterized by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, energy dispersive X-ray spectroscopy (EDS) analysis and vibrating sample magnetometer (VSM). XRD results show the formation of two compounds of crystalline magnetite and brookite-type TiO2 . TEM images confirmed the formation of their core-shell structure. The surface modification of magnetite nanoparticles using trisodium citrate was confirmed by FTIR analysis. Magnetic studies also indicated that prepared core-shells exhibit superparamagnetic behavior at room temperature. Combining this property with the photocatalytic ability of TiO2 could result in a synthesized nanocomposite with different medical and environmental applications.

  3. Stable semiconductor black phosphorus (BP)@titanium dioxide (TiO2) hybrid photocatalysts.

    PubMed

    Lee, Hyun Uk; Lee, Soon Chang; Won, Jonghan; Son, Byung-Chul; Choi, Saehae; Kim, Yooseok; Park, So Young; Kim, Hee-Sik; Lee, Young-Chul; Lee, Jouhahn

    2015-01-01

    Over the past few decades, two-dimensional (2D) and layered materials have emerged as new fields. Due to the zero-band-gap nature of graphene and the low photocatalytic performance of MoS2, more advanced semiconducting 2D materials have been prompted. As a result, semiconductor black phosphorus (BP) is a derived cutting-edge post-graphene contender for nanoelectrical application, because of its direct-band-gap nature. For the first time, we report on robust BP@TiO2 hybrid photocatalysts offering enhanced photocatalytic performance under light irradiation in environmental and biomedical fields, with negligible affected on temperature and pH conditions, as compared with MoS2@TiO2 prepared by the identical synthesis method. Remarkably, in contrast to pure few layered BP, which, due to its intrinsic sensitivity to oxygen and humidity was readily dissolved after just several uses, the BP@TiO2 hybrid photocatalysts showed a ~92% photocatalytic activity after 15 runs. Thus, metal-oxide-stabilized BP photocatalysts can be practically applied as a promising alternative to graphene and MoS2. PMID:25732720

  4. Stable semiconductor black phosphorus (BP)@titanium dioxide (TiO2) hybrid photocatalysts

    PubMed Central

    Uk Lee, Hyun; Lee, Soon Chang; Won, Jonghan; Son, Byung-Chul; Choi, Saehae; Kim, Yooseok; Park, So Young; Kim, Hee-Sik; Lee, Young-Chul; Lee, Jouhahn

    2015-01-01

    Over the past few decades, two-dimensional (2D) and layered materials have emerged as new fields. Due to the zero-band-gap nature of graphene and the low photocatalytic performance of MoS2, more advanced semiconducting 2D materials have been prompted. As a result, semiconductor black phosphorus (BP) is a derived cutting-edge post-graphene contender for nanoelectrical application, because of its direct-band-gap nature. For the first time, we report on robust BP@TiO2 hybrid photocatalysts offering enhanced photocatalytic performance under light irradiation in environmental and biomedical fields, with negligible affected on temperature and pH conditions, as compared with MoS2@TiO2 prepared by the identical synthesis method. Remarkably, in contrast to pure few layered BP, which, due to its intrinsic sensitivity to oxygen and humidity was readily dissolved after just several uses, the BP@TiO2 hybrid photocatalysts showed a ~92% photocatalytic activity after 15 runs. Thus, metal-oxide-stabilized BP photocatalysts can be practically applied as a promising alternative to graphene and MoS2. PMID:25732720

  5. Reduced TiO2-Graphene Oxide Heterostructure As Broad Spectrum-Driven Efficient Water-Splitting Photocatalysts.

    PubMed

    Li, Lihua; Yu, Lili; Lin, Zhaoyong; Yang, Guowei

    2016-04-01

    The reduced TiO2-graphene oxide heterostructure as an alternative broad spectrum-driven efficient water splitting photocatalyst has become a really interesting topic, however, its syntheses has many flaws, e.g., tedious experimental steps, time-consuming, small scale production, and requirement of various additives, for example, hydrazine hydrate is widely used as reductant to the reduction of graphene oxide, which is high toxicity and easy to cause the second pollution. For these issues, herein, we reported the synthesis of the reduced TiO2-graphene oxide heterostructure by a facile chemical reduction agent-free one-step laser ablation in liquid (LAL) method, which achieves extended optical response range from ultraviolet to visible and composites TiO2-x (reduced TiO2) nanoparticle and graphene oxide for promoting charge conducting. 30.64% Ti(3+) content in the reduced TiO2 nanoparticles induces the electronic reconstruction of TiO2, which results in 0.87 eV decrease of the band gap for the visible light absorption. TiO2-x-graphene oxide heterostructure achieved drastically increased photocatalytic H2 production rate, up to 23 times with respect to the blank experiment. Furthermore, a maximum H2 production rate was measured to be 16 mmol/h/g using Pt as a cocatalyst under the simulated sunlight irradiation (AM 1.5G, 135 mW/cm(2)), the quantum efficiencies were measured to be 5.15% for wavelength λ = 365 ± 10 nm and 1.84% for λ = 405 ± 10 nm, and overall solar energy conversion efficiency was measured to be 14.3%. These findings provided new insights into the broad applicability of this methodology for accessing fascinate photocatalysts. PMID:26986700

  6. Layered silicate as an excellent partner of a TiO2 photocatalyst for efficient and selective green fine-chemical synthesis.

    PubMed

    Ide, Yusuke; Torii, Masato; Sano, Tsuneji

    2013-08-14

    When the partial oxidation of benzene to phenol, which is one of the most important reactions in chemical industry, was conducted using TiO2 in the presence of a phenol-philic adsorbent derived from a layered silicate, phenol was recovered in unprecedentedly high yield and purity. This resulted from the fact that the adsorbent captured the generated phenol promptly, selectively, and effectively to prevent the overoxidation, after which the captured phenol could be easily eluted. PMID:23902420

  7. Hydrogenated TiO2 nanobelts as highly efficient photocatalytic organic dye degradation and hydrogen evolution photocatalyst.

    PubMed

    Tian, Jian; Leng, Yanhua; Cui, Hongzhi; Liu, Hong

    2015-12-15

    TiO2 nanobelts have gained increasing interest because of its outstanding properties and promising applications in a wide range of fields. Here we report the facile synthesis of hydrogenated TiO2 (H-TiO2) nanobelts, which exhibit excellent UV and visible photocatalytic decomposing of methyl orange (MO) and water splitting for hydrogen production. The improved photocatalytic property can be attributed to the Ti(3+) ions and oxygen vacancies in TiO2 nanobelts created by hydrogenation. Ti(3+) ions and oxygen vacancies can enhance visible light absorption, promote charge carrier trapping, and hinder the photogenerated electron-hole recombination. This work offers a simple strategy for the fabrication of a wide solar spectrum of active photocatalysts, which possesses significant potential for more efficient photodegradation, photocatalytic water splitting, and enhanced solar cells using sunlight as light source. PMID:26118828

  8. Synergetic effects in novel hydrogenated F-doped TiO2 photocatalysts

    NASA Astrophysics Data System (ADS)

    Samsudin, Emy Marlina; Abd Hamid, Sharifah Bee; Juan, Joon Ching; Basirun, Wan Jefrey; Centi, Gabriele

    2016-05-01

    The synergistic effect between fluorine and hydrogen in hydrogenated F-doped TiO2 photocatalysts is evaluated for the photocatalytic degradation of atrazine. The interaction between fluorine and hydrogen species in hydrogenated F-doped TiO2 overcomes the limitations of individual F-doped TiO2 and hydrogenated TiO2 photocatalyst properties. Hydrogenated F-doped TiO2 is photo-active under UV, visible and infrared light illumination with efficient electrons and holes separations. The optimized concentration of surface vacancies and Ti3+ centers coupled with enhanced surface hydrophilicity facilitates the production of surface-bound and free hydroxyl radicals. The surface of the catalyst contains dbnd Tisbnd F, dbnd Tisbnd OH, dbnd Tisbnd Ovacancy and dbnd Tisbnd H bonds as evidenced by XPS, Raman, FTIR and HR-TEM analysis. This combination also triggers the formation of new Ti3+ occupied states under the conduction band of hydrogenated F-doped TiO2. Moreover, the change in the pore structure from cylindrical to slits and larger surface area facilitates surface charge interactions. The thermal stability is also enhanced and a single anatase phase is obtained. The size of the particles of hydrogenated F-doped TiO2 is also uniform with defined and homogeneous crystal structure. This synergetic effect between fluorine and hydrogen opens up new alternatives in improving the properties of TiO2 and its photocatalytic activity.

  9. One-pot approach for synthesis of N-doped TiO2/ZnFe2O4 hybrid as an efficient photocatalyst for degradation of aqueous organic pollutants.

    PubMed

    Yao, Yunjin; Qin, Jiacheng; Chen, Hao; Wei, Fengyu; Liu, Xueting; Wang, Jianlong; Wang, Shaobin

    2015-06-30

    N-doped TiO2/ZnFe2O4 catalysts were successfully prepared by coupling nitrogen modified TiO2 with ZnFe2O4 via a one-pot vapor-thermal method. The physicochemical properties of the as-prepared catalysts have been characterized using various spectroscopic and microscopic techniques. The UV-vis-light-driven photocatalytic activities of the hybrids were evaluated and the effects of the amount of photocatalyst, different types of dyes, catalyst stability on photodegradation of organic dyes were investigated. Moreover, degradation kinetics and mechanism as well as the roles of N doping, ZnFe2O4 and TiO2 have been analyzed. It was revealed that N-doped TiO2/ZnFe2O4 exhibited an improved performance compared with TiO2/ZnFe2O4 or ZnFe2O4 because of the formation of a heterostructure at the interface as well as the introduction of N species. Active species such as holes, electrons, hydroxyl radicals, and superoxide radicals involved in the photodegradation process were detected by using different types of scavengers. Because of ZnFe2O4 in the hybrid, the catalyst shows ferromagnetism, and thus, the hybrid catalyst is easily isolated from the reaction mixture after the photocatalytic experiments. This work not only offers a simple method for the fabrication of N doped TiO2/ZnFe2O4 hybrids, but also provides an effective and conveniently recyclable photocatalyst for the purification of water. PMID:25748999

  10. Characterization of nitrogen ion implanted TiO2 photocatalysts by XAFS and XPS

    NASA Astrophysics Data System (ADS)

    Yoshida, Tomoko; Niimi, Satoshi; Yamamoto, Muneaki; Ogawa, Satoshi; Nomoto, Toyokazu; Yagi, Shinya

    2015-12-01

    A nitrogen doped TiO2 as a visible-light response photocatalyst was prepared by N+ implantation technique. N+-implanted TiO2 samples promoted the photocatalytic activity for degradation of methylene blue under visible-light irradiation. XANES and XPS analyses indicated two types of chemical state of nitrogen, one photo-catalytically active N substituting the O sites and the other inactive NOx (1 ⩽ x ⩽ 2) species. In the valence band XPS spectrum of the high activity sample, the additional electronic states were observed just above the valence band edge of a TiO2. The electronic state would be originated from the substitutional nitrogen and be responsible for the band gap narrowing, i.e., visible light response of TiO2 photocatalysts.

  11. Photooxidative desulfurization for diesel using Fe / N - TiO2 photocatalyst

    NASA Astrophysics Data System (ADS)

    Khan, Muhammad Saqib; Kait, Chong Fai; Mutalib, Mohd Ibrahim Abdul

    2014-10-01

    A series of N - TiO2 with different mol% N was synthesized via sol-gel method and characterized using thermal gravimetric analyzer and raman spectroscopy. 0.2 wt% Fe was incorporated onto the calcined (200°C) N - TiO2 followed by calcination at 200°C, 250°C and 300°C. Photooxidative desulfurization was conducted in the presence of 0.2wt% Fe / N - TiO2 with different mol% N with and without oxidant (H2O2). Oxidative desulfurization was only achieved when H2O2 was used while without H2O2 no major effect on the sulfur removal. 0.2Fe -30N - H2O2 photocatalysts showed best performance at all calcination temperatures as compared to other mol% N - H2O2 photocatalysts. 16.45% sulfur removal was achieved using photocatalysts calcined at 300 °C.

  12. Favorable recycling photocatalyst TiO 2/CFA: Effects of loading percent of TiO 2 on the structural property and photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Shi, Jian-wen; Chen, Shao-hua; Ye, Zhi-long; Wang, Shu-mei; Wu, Peng

    2010-11-01

    A series of photocatalysts TiO 2/CFA were prepared using coal fly ash (CFA), waste discharged from coal-fired power plant, as substrate, and then these photocatalysts were characterized by scanning electron microscope, X-ray diffraction analysis, nitrogen adsorption test and ultraviolet-visible absorption analysis. The effects of loading percent of TiO 2 on the photocatalytic activity and re-use property of TiO 2/CFA were evaluated by the photocatalytic decoloration and mineralization of methyl orange solution. The results show that the pore volume and the specific surface area of the TiO 2/CFA both increased with the increase in the loading percent of TiO 2, which improved the photocatalytic activity of TiO 2/CFA. However, when the loading percent of TiO 2 was too high (up to 54.51%), superfluous TiO 2 was easy to break away from CFA in the course of water treatment, which was disadvantaged to the recycling property of TiO 2/CFA. In this study, the optimal loading percent of TiO 2 was 49.97%, and the efficiencies of photocatalytic decoloration and mineralization could be maintained above 99% and 90%, respectively, when the photocatalyst was used repeatedly, without any decline, even at the sixth cycle.

  13. Dramatic activity of mixed-phase TiO2 photocatalyst synthesized by hydrothermal method

    NASA Astrophysics Data System (ADS)

    Li, Huiquan; Xu, Bolian; Fan, Yining

    2013-02-01

    The mixed-phase TiO2 photocatalysts with different anatase/rutile/brookite ratios and high specific surface area (157-218 m2/g) were prepared by hydrothermal method at 100 °C and the effect of rutile content in TiO2 on the BET surface area, light absorption and separation efficiency of photogenerated charge carriers was studied and correlated to the photocatalytic activity of TiO2. Rutile content increased from 0% to 100% by increasing the amount of TiCl4 in aqueous phase and the initial pH value of reaction solution played an important role in the phase composition of TiO2. The photocatalytic mechanism of mixed-phase TiO2 was discussed.

  14. TiO2 /Cu2 O Core/Ultrathin Shell Nanorods as Efficient and Stable Photocatalysts for Water Reduction.

    PubMed

    Liu, Yuanxu; Zhang, Bingsen; Luo, Liangfeng; Chen, Xuanye; Wang, Zhonglei; Wu, Erlong; Su, Dangsheng; Huang, Weixin

    2015-12-01

    P-type Cu2 O has been long considered as an attractive photocatalyst for photocatalytic water reduction, but few successful examples has been reported. Here, we report the synthesis of TiO2 (core)/Cu2 O (ultrathin film shell) nanorods by a redox reaction between Cu(2+) and in-situ generated Ti(3+) when Cu(2+) -exchanged H-titanate nanotubes are calcined in air. Owing to the strong TiO2 -Cu2 O interfacial interaction, TiO2 (core)/Cu2 O (ultrathin film shell) nanorods are highly active and stable in photocatalytic water reduction. The TiO2 core and Cu2 O ultrathin film shell respectively act as the photosensitizer and cocatalyst, and both the photoexcited electrons in the conduction band and the holes in the valence band of TiO2 respectively transfer to the conduction band and valence band of the Cu2 O ultrathin film shell. Our results unambiguously show that Cu2 O itself can act as the highly active and stable cocatalyst for photocatalytic water reduction. PMID:26555557

  15. TiO2 impregnated graphene nanostructures: An effectual photocatalysts for water remediation application

    NASA Astrophysics Data System (ADS)

    Rakkesh, R. Ajay; Durgalakshmi, D.; Balakumar, S.

    2015-06-01

    In this work, we describe the fabrication of nanohybrid TiO2 impregnated Graphene nanostructures by modified Hummer's method. The chemically impregnated TiO2-Graphene hybrid nanostructures drastically enhanced their photodegradation activity of methylene blue (MB) dye in an aqueous medium compare to pure TiO2 nanoparticles. The enhancement in the photocatalytic activity was ascribed by a heterojunction between TiO2-Graphene interfaces. It remarkably decreased the recombination rate and likewise increased the number of holes participating in the photodegradation process, confirmed by XPS analysis. This study can provide a new insight for constructing the hybrid photocatalysts, which can be used in environmental pollution and water treatment applications.

  16. Fabrication of TiO2/MoS2@zeolite photocatalyst and its photocatalytic activity for degradation of methyl orange under visible light

    NASA Astrophysics Data System (ADS)

    Zhang, Weiping; Xiao, Xinyan; Zheng, Lili; Wan, Caixia

    2015-12-01

    TiO2/MoS2@zeolite composite photocatalysts with visible-light activity were fabricated via a simple ultrasonic-hydrothermal synthesis method, using TiCl4 as Ti source, MoS2 as a direct sensitizer, glycerol water solution with certain dispersion agent as hydrolytic agent, and zeolite as carrier. The structure, morphology, composition, optical properties, and specific surface area of the as-prepared photocatalysts were characterized by using XRD, FTIR, SEM-EDS, TEM, XPS, UV-vis, PL and BET analyzer, respectively. And the photocatalytic degradation of methyl orange (MO) in aqueous suspension has been employed to evaluate the photocatalytic activity and degradation kinetics of as-prepared photocatalysts with xenon lamp as irradiation source. The results indicate that: (1) TiO2/MoS2@zeolite composite photocatalysts exhibit enhanced photocatalytic activities for methyl orange (MO) degradation compared to Degussa P25; (2) photocatalytic degradation of MO obeys Langmuir-Hinshelwood kinetic model (pseudo-first order reaction), and its degradation rate constant (kapp) (2.304 h-1) is higher than that of Degussa P25 (0.768 h-1); (3) the heterostructure consisted of zeolite, MoS2 and TiO2 nanostructure could provide synergistic effect for degradation of MO due to the efficient electron transfer process and better absorption property of TiO2/MoS2@zeolite composite photocatalyst.

  17. Controlled synthesis of hierarchical TiO2 nanoparticles on glass fibres and their photocatalytic performance.

    PubMed

    Chen, Lin; Yang, Sudong; Mäder, Edith; Ma, Peng-Cheng

    2014-09-01

    This paper reports the synthesis of novel photocatalysts consisting of TiO2 nanoparticles and glass fibres (GF) using a two-step process. The method involves the hydrolysis of titanium tetrachloride in the presence of GF and a following hydrothermal process under alkaline conditions. Various techniques are employed to characterize the morphology, structure and crystallinity of TiO2 on the fibre surface. The results show that depending on the experiment setups, TiO2 nanoparticles exhibit spherical or flake-like morphology, forming characteristic hierarchical structures along with flexible GF. Flake-like TiO2/GF exhibits much enhanced photocatalytic activity thanks to the large surface area and the hetero-junction of anatase and TiO2-B phases observed in its structure. An interesting observation is that the alkali treatment of GF leads to the formation of porous structures on the fibre surface, facilitating the adsorption-concentration-promoted photocatalytic process. The removal ratio of the organic dye by employing TiO2/GF remains more than 80% after six cyclic runs, showing the reusability of photocatalysts in real application. The novelty of this work lies in the synergy arising from materials with unique morphologies, structures and availabilities as well as capabilities in separating photogenerated electron-hole pairs, which have not been specifically considered previously in photocatalytic semiconductors. PMID:25011616

  18. Metal oxide nanocluster-modified TiO2 as solar activated photocatalyst materials.

    PubMed

    Fronzi, Marco; Iwaszuk, Anna; Lucid, Aoife; Nolan, Michael

    2016-02-24

    In this review we describe our work on new TiO2 based photocatalysts. The key concept in our work is to form new composite structures by the modification of rutile and anatase TiO2 with nanoclusters of metal oxides and our density functional theory (DFT) level simulations are validated by experimental work synthesizing and characterizing surface-modified TiO2. We use DFT to show that nanoclusters of different metal oxides, TiO2, SnO/SnO2, PbO/PbO2, NiO and CuO can be adsorbed at rutile and anatase surfaces and can induce red shifts in the absorption edge to enable visible light absorption which is the first key requirement for a practical photocatalyst. We furthermore determine the origin of the red shift and discuss the factors influencing this shift and the fate of excited electrons and holes. For p-block metal oxides we show how the oxidation state of Sn and Pb can be used to tune both the magnitude of the red shift and also its mechanism. Finally, aiming to make our models more realistic, we present some new results on the stability of water at rutile and anatase surfaces and the effect of water on oxygen vacancy formation and on nanocluster modification. These nanocluster-modified TiO2 structures form the basis of a new class of photocatalysts which will be useful in oxidation reactions and with the suitable choice of nanocluster modifier can be applied to CO2 reduction. PMID:26808905

  19. Metal oxide nanocluster-modified TiO2 as solar activated photocatalyst materials

    NASA Astrophysics Data System (ADS)

    Fronzi, Marco; Iwaszuk, Anna; Lucid, Aoife; Nolan, Michael

    2016-02-01

    In this review we describe our work on new TiO2 based photocatalysts. The key concept in our work is to form new composite structures by the modification of rutile and anatase TiO2 with nanoclusters of metal oxides and our density functional theory (DFT) level simulations are validated by experimental work synthesizing and characterizing surface-modified TiO2. We use DFT to show that nanoclusters of different metal oxides, TiO2, SnO/SnO2, PbO/PbO2, NiO and CuO can be adsorbed at rutile and anatase surfaces and can induce red shifts in the absorption edge to enable visible light absorption which is the first key requirement for a practical photocatalyst. We furthermore determine the origin of the red shift and discuss the factors influencing this shift and the fate of excited electrons and holes. For p-block metal oxides we show how the oxidation state of Sn and Pb can be used to tune both the magnitude of the red shift and also its mechanism. Finally, aiming to make our models more realistic, we present some new results on the stability of water at rutile and anatase surfaces and the effect of water on oxygen vacancy formation and on nanocluster modification. These nanocluster-modified TiO2 structures form the basis of a new class of photocatalysts which will be useful in oxidation reactions and with the suitable choice of nanocluster modifier can be applied to CO2 reduction.

  20. Combined modification of a TiO2 photocatalyst with two different carbon forms

    NASA Astrophysics Data System (ADS)

    Ansón-Casaos, Alejandro; Tacchini, Ignacio; Unzue, Andrea; Martínez, M. Teresa

    2013-04-01

    Hydrothermally synthesized titanate nanotubes were carbon-doped through a thermal treatment in the presence of glucose followed by blending with single-walled carbon nanotubes (SWCNTs). A series of TiO2-based materials was prepared with various initial glucose contents and two SWCNT types, resulting in total carbon contents from 0.3 wt.% to nearly 26 wt.%. Electron microscopy observations indicated that titanate nanotubes were converted into nanorods during the thermal treatment, and X-ray diffraction patterns confirmed that all the treated materials mostly consisted of anatase TiO2. Glucose pyrolysis caused changes in the infrared and X-ray photoelectron spectra of the titania material, indicating an interaction between the inserted carbon atoms and titanium atoms. Raman spectra of SWCNT/C/TiO2 hybrids showed characteristic bands of both the SWCNT and anatase TiO2 phases. SWCNT/C/TiO2 multicomponent materials demonstrated substantially better photocatalytic activities than P25 TiO2 for methylene blue degradation under visible light irradiation. Independently from its origin, the presence of carbon caused a strong increase in the TiO2 visible light absorption. However, the results obtained with the C/TiO2 and SWCNT/C/TiO2 photocatalysts clearly showed different photocatalysis mechanisms depending on the carbon form.

  1. Comparative study of (N, Fe) doped TiO2 photocatalysts

    NASA Astrophysics Data System (ADS)

    Larumbe, S.; Monge, M.; Gómez-Polo, C.

    2015-02-01

    The effect of N and Fe doping on the structural, optical, photocatalytic and magnetic properties of TiO2 nanoparticles is analyzed. Undoped, N and Fe doped TiO2 nanoparticles were synthesized by sol-gel method. Titanium tetraisopropoxide (TTIP) was used as the alkoxyde precursor and iron (III) nitrate and urea were the employed precursors to obtain Fe and N doped TiO2 nanoparticles, respectively. Differential Scanning Calorimetry (DSC) and Thermogravimetrical Analysis (TGA) enabled the analysis of the thermal decomposition process and the final calcination temperature. X-Ray Diffraction patterns of the calcined nanoparticles displayed a monophasic anatase structure in all the samples with mean crystallite diameter around 4-6 nm. The introduction of Fe or N induced a red-shift in the absorption spectra. Such a red-shift is characterized by a decrease in the band-gap energy and the occurrence of an absorption (Urbach) tail in the visible region. Finally, the photocatalytic efficiency was evaluated under UV and Visible light, obtaining an improvement of the kinetic constants in the nitrogen doped TiO2 nanoparticles with respect to undoped and Fe doped TiO2. The differences in the photocatalytic response under Fe and N doping are also analyzed in terms of the magnetic response of the analyzed photocatalysts.

  2. Efficient visible light-sensitive photocatalysts: Grafting Cu(II) ions onto TiO 2 and WO 3 photocatalysts

    NASA Astrophysics Data System (ADS)

    Irie, Hiroshi; Miura, Shuhei; Kamiya, Kazuhide; Hashimoto, Kazuhito

    2008-05-01

    We have designed and fabricated efficient photocatalysts sensitive to visible light, Cu(II)-grafted TiO 2 (Cu(II)/TiO 2) and WO 3 (Cu(II)/WO 3), after the suggestions made in the literature as to the photo-induced interfacial charge transfer from a semiconductor to an adsorbed molecular species and the catalytic multi-electron reduction of oxygen by Cu(I) ions. In fact, Cu(II)/TiO 2 and Cu(II)/WO 3 photocatalysts decomposed 2-propanol to CO 2 via acetone under visible light (>400 nm) with quantum efficiencies of 8.8% and 17%, respectively. The turnover numbers of this reaction exceeded 4.1 for Cu(II)/TiO 2 and 51 for Cu(II)/WO 3, indicating that both function catalytically.

  3. Quick and Facile Preparation of Visible light-Driven TiO2 Photocatalyst with High Absorption and Photocatalytic Activity

    PubMed Central

    Yang, Yucheng; Zhang, Ting; Le, Ling; Ruan, Xuefeng; Fang, Pengfei; Pan, Chunxu; Xiong, Rui; Shi, Jing; Wei, Jianhong

    2014-01-01

    Self-doping TiO2 has recently attracted considerable attention for its high photocatalytic activity under visible-light irradiation. However, the literature reported synthetic methods until now were very time-consuming. In this study, we establish a quick and facile method for obtaining self-doping TiO2 with the use of directly treated commercial P25 at a desired temperature for only 5 min through spark plasma sintering technology. With the using of this method, the modified P25 samples exhibit significantly high photoelectric and photocatalytic performance. Furthermore, the sample prepared at 600°C exhibits the optimum catalytic activity. The photodegradation and H2 evolution rates of this samples are significantly higher than those of unmodified P25 sample under visible-light irradiation. The physical origin of the visible-light absorption for the modified P25 samples is investigated in detail according to their structural, optical, and electronic properties. This work will provide a quick and facile method for the large-scale synthesis of visible-light driven photocatalyst for practical applications. PMID:25391987

  4. Influence of Ag-Au microstructure on the photoelectrocatalytic performance of TiO2 nanotube array photocatalysts.

    PubMed

    Wang, Qingyao; Wang, Xiaotong; Zhang, Miao; Li, Guihua; Gao, Shanmin; Li, Mingyang; Zhang, Yiqing

    2016-02-01

    In this work, vertically-aligned TiO2 nanotube arrays (TiO2 NTs) were grown on Ti substrates via a facile electrochemical anodization method followed by calcinations. Then, Ag-Au alloy nanoparticles and Ag@Au core-shell nanoparticles were deposited on the obtained TiO2 NTs via UV reduction and displacement reaction, respectively. X-ray diffraction, scanning electron microscopy and transmission electron microscopy indicated that Ag-Au alloy nanoparticles and Ag@Au core-shell nanoparticles grew uniformly on the walls of TiO2 NTs. Investigation results from removal of methyl orange (MO) and Cr(IV) ions indicated that the as-prepared bimetal plasmonic photocatalysts exhibited excellent photoelectrocatalytic (PEC) activities. The influences of Ag-Au alloy and core-shell microstructures on PEC properties of TiO2 NTs were investigated and the TiO2 NTs/Ag@Au photocatalyst showed more outstanding PEC removal efficiency than that of TiO2 NTs/Ag-Au due to the regular core-shell microstructure and low recombination of photogenerated electrons and holes. PMID:26555961

  5. Preparation and characterization of CuCrO2/TiO2 heterostructure photocatalyst with enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Xiong, Dehua; Chang, Haimei; Zhang, Qingqing; Tian, Shouqin; Liu, Baoshun; Zhao, Xiujian

    2015-08-01

    A series of novel p-type CuCrO2/n-type TiO2 heterostructure photocatalysts were fabricated for the first time by depositing CuCrO2 nanoparticles on TiO2 nanorod-array film through a facile spin-coating method. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and photocurrent response were employed to characterize the as-synthesized composites. The photocatalytic activity of CuCrO2/TiO2 for degradation of methylene blue (MB) aqueous solution was much higher than pure TiO2, which could be ascribed to the formation of p-n heterojunctions between CuCrO2 nanoparticles and TiO2 nanorods. In particular, the best degradation efficiency of CuCrO2/TiO2 heterojunction was 85.3%, about 1.14 times higher than pure TiO2 (74.6%), which could be attributed to their high separation efficiency of photogenerated electrons and holes. It is expected this strategy of p-n junction for enhancing photocatalytic activity can have considerable impact to promote the development of high efficient photocatalyst and industrial application for degrading pollutant, treating waste water and other environmental protection fields.

  6. TiO2-V2O5 nanocomposites as alternative energy storage substances for photocatalysts.

    PubMed

    Ngaotrakanwiwat, Pailin; Meeyoo, Vissanu

    2012-01-01

    TiO2-V2O5 was prepared and evaluated as an energy storage material for photocatalysts with high capacity and initial charging rate. The compound was successfully obtained by sol-gel technique and effects of compound composition and calcination temperature on the energy storage ability were investigated. The synthesized compounds were characterized by means of X-ray powder diffraction (XRD), scanning electron microscopy equipped with energy-dispersive X-ray analysis (SEM-EDX) and transmission electron microscopy (TEM). The results reveals that the compound of Ti:V molar ratio equal to 1:0.11 calcined at 550 degrees C exhibited superior energy storage ability than parent substances and 1.7-times higher capacity and 2.3-times higher initial charging rate compared to WO3, indicating that the compound is a remarkable alternative to conventional energy storage substances. PMID:22524065

  7. Plasmonic TiO2/AgBr/Ag ternary composite nanosphere with heterojunction structure for advanced visible light photocatalyst

    NASA Astrophysics Data System (ADS)

    Dai, Kai; Li, Dongpei; Lu, Luhua; Liu, Qi; Liang, Changhao; Lv, Jiali; Zhu, Guangping

    2014-09-01

    In this work, TiO2/AgBr/Ag ternary composite nanosphere photocatalyst has been synthesized by in situ deposition of AgBr onto hollow spherical TiO2 template and followed by sun light reduction of AgBr into AgBr/Ag. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images have shown that the diameter of hollow TiO2 nanospheres is 250-350 nm and AgBr/Ag nanoparticles are well dispersed on the outer surface of TiO2 nanosphere. UV-vis spectrum analysis has shown largely improved visible light absorption of this ternary composite, in comparison to pure TiO2 and AgBr. The building-in AgBr/Ag, TiO2/AgBr and TiO2/Ag junctions within the ternary composite enhanced the visible light absorption because of plasmonic resonance and narrow bandgap. The pseudo-first-order rate constant kapp of the TiO2/AgBr/Ag ternary composite for methylene blue photodegradation displays 24.5 times and 3.3 times than the pure TiO2 nanosphere and AgBr/Ag nanoparticles, respectively. Furthermore, the stability of TiO2/AgBr/Ag ternary composite is characterized through cyclic photocatalytic test. Results indicate that 92.7% of photocatalytic degradation can be achieved by TiO2/AgBr/Ag ternary composite even after five recycles.

  8. An effective method for the preparation of high temperature stable anatase TiO2 photocatalysts

    NASA Astrophysics Data System (ADS)

    Fagan, Rachel; Synnott, Damian W.; McCormack, Declan E.; Pillai, Suresh C.

    2016-05-01

    An efficient, rapid and straightforward method for the preparation of nitrogen and fluorine (N, F) codoped high temperature stable anatase using a microwave pre-treatment is reported. Using a single source, ammonium fluoride (NH4F) for both nitrogen and fluorine, effective doping of the precursor titanium isopropoxide (TTIP) was possible. These samples were characterised for their structural and optical properties using X-ray diffraction (XRD), Fourier Transform IR (FTIR), Raman spectroscopy and UV-vis spectroscopy. In terms of the anatase to rutile transition enhancement using a novel microwave assisted technique, the sample prepared in a composition of 1:8 TiO2: NH4F at 1200 °C was seen to be most effective, having stable anatase present at 57.1% compared to undoped TiO2 being 100% rutile from 900 °C. This method involves the production of ammonium oxofluorotitanates (NH4TiOF3) at low temperatures. The inclusion of these intermediates greatly reduces the particle size growth and delays the anatase to rutile transition. The photocatalytic activity of these materials was studied by analysing the degradation of an organic dye, rhodamine 6G as a model system and the rate constant was calculated by pseudo-first-order kinetics. These results showed that the doped sample (0.0225 min-1) was three times more active than the undoped sample (0.0076 min-1) and over seven times faster than the commercial TiO2 photocatalyst standard Degussa P-25 calcined at 1200 °C (0.0030 min-1). The formation of intermediate compounds, oxofluorotitanates, was identified as the major reason for a delay in the anatase to rutile transition.

  9. Polyaniline nanotubes coated with TiO2&γ-Fe2O3@graphene oxide as a novel and effective visible light photocatalyst for removal of rhodamine B from water

    NASA Astrophysics Data System (ADS)

    Ghavami, Monireh; Kassaee, Mohammad Zaman; Mohammadi, Reza; Koohi, Maryam; Haerizadeh, Bibi Narjes

    2014-12-01

    Synthesis of polyaniline-nanotubes (PANI-NT), in the presence of TiO2 and γ-Fe2O3 functionalized graphene oxide (GO), gives a green and magnetically recyclable photocatalyst, TiO2&γ-Fe2O3@GO/PANI-NT. The later orchestrates 94% photocatalytic efficiency in removal of rhodamine B (RB) from water, under simulated solar light irradiation. This is far higher than the 36% observed in the presence of TiO2&γ-Fe2O3@GO alone, where PANI-NT is excluded from the structure. Morphology, composition, and structural properties of our economically sound photocatalyst are characterized by X-ray diffraction, energy-dispersive X-ray spectroscopy, thermo-gravimetric, transmission electron microscopy, inductively coupled plasma, RAMAN and Fourier-transform infrared spectroscopy.

  10. Preparation and photocatalytic activity of B, Ce Co-doped TiO2 hollow fibers photocatalyst

    NASA Astrophysics Data System (ADS)

    Qiu, Jingping; Sun, Xiaogang; Xing, Jun; Liu, Xiaobo

    2014-07-01

    A series of B, Ce co-doped TiO2 (B, Ce-TiO2) photocatalytic materials with a hollow fiber structure were successfully prepared by template method using boric acid, ammonium ceric nitrate and tetrabutyltitanate as precursors and cotton fibers as template, followed by calcination at 500°C in an N2 atmosphere for 2 h. Scanning electron microscopy (SEM), X-ray diffraction (XRD), nitrogen adsorption-desorption measurements, and UV-visible spectroscopy (UV-Vis) were employed to characterize the morphology, crystal structure, surface structure, and optical absorption properties of the samples. The photocatalytic performance of the samples was studied by photodegradation phenol in water under UV light irradiation. The results showed that the TiO2 fiber materials have hollow structures, and the fiber structure materials showed better photocatalytic properties for the degradation of phenol than pure TiO2 under UV light. In the experiment condition, the photocatalytic activity of B, Ce co-doped TiO2 fibers was optimal of all the prepared samples. In addition, the possibility of cyclic usage of B, Ce co-doped TiO2 fiber photocatalyst was also confirmed, the photocatalytic activity of TiO2 fibers remained above 90% of that of the fresh sample after being used four times. The material was easily removed by centrifugal separation from the medium. It can therefore be potentially applied for the treatment of water contaminated by organic pollutants.

  11. Defective, Porous TiO2 Nanosheets with Pt Decoration as an Efficient Photocatalyst for Ethylene Oxidation Synthesized by a C3N4 Templating Method.

    PubMed

    Pan, Xiaoyang; Chen, Xuxing; Yi, Zhiguo

    2016-04-27

    We report herein a C3N4 templating method for successfully synthesizing defective, porous TiO2 nanosheets with Pt decoration as an efficient photocatalyst for C2H4 oxidation. During the synthetic procedure, C3N4 not only acts as a 2D template to direct synthesize porous TiO2 nanosheets (TiO2-NS) but also facilitates oxygen vacancy formation on TiO2. The resultant TiO2-NS shows enhanced UV and visible-light photoactivities toward C2H4 oxidation as compared to blank TiO2 (TiO2-B) prepared without C3N4 template. Subsquently, Pt nanoparticles are homogeneously decorated onto the surface of TiO2-NS. The as-obtained Pt-TiO2-NS exhibits efficient photocatalytic activity and stability toward ethylene oxidation. PMID:27070854

  12. Effect of sulfate ions on the crystallization and photocatalytic activity of TiO2/diatomite composite photocatalyst

    NASA Astrophysics Data System (ADS)

    Zhang, Jinjun; Wang, Xiaoyan; Wang, Jimei; Wang, Jing; Ji, Zhijiang

    2016-01-01

    TiO2 nanoparticles were immobilized on diatomite by hydrolysis-deposition method using titanium tetrachloride as precursor. The effect of sulfate ions on the crystallization and photocatalytic activity of TiO2/diatomite composite photocatalyst was characterized by TG-DSC, XRD, BET surface area, SEM, FT-IR spectroscopy, XPS and UV-vis diffuse reflectance spectra. The results indicate that addition of a small amount of sulfate ions promotes the formation of anatase phase and inhibits the transformation from anatase to rutile. On the other hand, sulfate ions immobilized on the surface of TiO2/diatomite have strong affinity for electrons, capturing the photo-generated electrons, which hinders the recombination of electrons and holes.

  13. Rapid destruction of the rhodamine B using TiO2 photocatalyst in the liquid phase plasma

    PubMed Central

    2013-01-01

    Background Rhodamine B (RhB) is widely used as a colorant in textiles and food stuffs, and is also a well-known water tracer fluorescent. It is harmful to human beings and animals, and causes irritation of the skin, eyes and respiratory tract. The carcinogenicity, reproductive and developmental toxicity, neurotoxicity and chronic toxicity toward humans and animals have been experimentally proven. RhB cannot be effectively removed by biological treatment due to the slow kinetics. Therefore, RhB is chosen as a model pollutant for liquid phase plasma (LPP) treatment in the present investigation. Results This paper presents experimental results for the bleaching of RhB from aqueous solutions in the presence of TiO2 photocatalyst with LPP system. Properties of generated plasma were investigated by optical emission spectroscopy methods. The results of electrical-discharge degradation of RhB showed that the decomposition rate increased with the applied voltage, pulse width, and frequency. The oxygen gas addition to reactant solution increases the degradation rate by active oxygen species. The RhB decomposition rate was shown to increase with the TiO2 particle dosage. Conclusion This work presents the conclusions on the photocatalytic oxidation of RhB, as a function of plasma conditions, oxygen gas bubbling as well as TiO2 particle dosage. We knew that using the liquid phase plasma system with TiO2 photocatalyst at high speed we could remove the organic matter in the water. PMID:24041151

  14. Reduced graphene oxide and Ag wrapped TiO2 photocatalyst for enhanced visible light photocatalysis

    NASA Astrophysics Data System (ADS)

    Leong, Kah Hon; Sim, Lan Ching; Bahnemann, Detlef; Jang, Min; Ibrahim, Shaliza; Saravanan, Pichiah

    2015-10-01

    A well-organised reduced graphene oxide (RGO) and silver (Ag) wrapped TiO2 nano-hybrid was successfully achieved through a facile and easy route. The inherent characteristics of the synthesized RGO-Ag/TiO2 were revealed through crystalline phase, morphology, chemical composition, Raman scattering, UV-visible absorption, and photoluminescence analyses. The adopted synthesis route significantly controlled the uniform formation of silver nanoparticles and contributed for the absorption of light in the visible spectrum through localized surface plasmon resonance effects. The wrapped RGO nanosheets triggered the electron mobility and promoted visible light shift towards red spectrum. The accomplishment of synergised effect of RGO and Ag well degraded Bisphenol A under visible light irradiation with a removal efficiency of 61.9%.

  15. High-performance photodetectors and enhanced photocatalysts of two-dimensional TiO2 nanosheets under UV light excitation

    NASA Astrophysics Data System (ADS)

    Yang, Jiao; Jiang, Yi-Lin; Li, Lin-Jie; Muhire, Elisée; Gao, Mei-Zhen

    2016-04-01

    Due to the large surface area-to-volume ratio and rapid electron transfer, two-dimensional (2D) TiO2 nanosheets with ultrathin thicknesses are synthesized by using a bottom-up strategy and these self-assembled nanosheet (NS)-based photocatalysts and photodetectors were explored for the first time. The influence of calcination temperature on microstructures and photocatalytic activity of TiO2 nanosheets were discovered and presented. The as-obtained TiO2 nanosheets were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET) analysis, Fourier transform infrared (FTIR) spectroscopy, UV-vis spectrophotometry, and X-ray photoelectron spectroscopy (XPS). The following heat treatment process induced phase evolution from rutile to anatase. The TiO2 nanosheets calcined at 500 °C exhibited the best activity for photo-degradation of organic dyes under UV light irradiation. The obtained photodetector exhibits excellent performance with a high photocurrent to dark current ratio and fast response and recovery times. Additionally, we demonstrated that the device may have potential applications in the future low-power optoelectronics system.Due to the large surface area-to-volume ratio and rapid electron transfer, two-dimensional (2D) TiO2 nanosheets with ultrathin thicknesses are synthesized by using a bottom-up strategy and these self-assembled nanosheet (NS)-based photocatalysts and photodetectors were explored for the first time. The influence of calcination temperature on microstructures and photocatalytic activity of TiO2 nanosheets were discovered and presented. The as-obtained TiO2 nanosheets were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET) analysis, Fourier transform infrared (FTIR) spectroscopy, UV-vis spectrophotometry, and X-ray photoelectron spectroscopy (XPS). The following heat treatment process induced phase evolution from rutile to anatase. The TiO2 nanosheets calcined at 500 °C exhibited the best activity for photo-degradation of organic dyes under UV light irradiation. The obtained photodetector exhibits excellent performance with a high photocurrent to dark current ratio and fast response and recovery times. Additionally, we demonstrated that the device may have potential applications in the future low-power optoelectronics system. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr09248e

  16. Investigation of TiO2 photocatalyst performance for decolorization in the presence of hydrodynamic cavitation as hybrid AOP.

    PubMed

    Bethi, Bhaskar; Sonawane, S H; Rohit, G S; Holkar, C R; Pinjari, D V; Bhanvase, B A; Pandit, A B

    2016-01-01

    In this article, an acoustic cavitation engineered novel approach for the synthesis of TiO2, cerium and Fe doped TiO2 nanophotocatalysts is reported. The prepared TiO2, cerium and Fe doped TiO2 nanophotocatalysts were characterized by XRD and TEM analysis to evaluate its structure and morphology. Photo catalytic performance of undoped TiO2 catalyst was investigated for the decolorization of crystal violet dye in aqueous solution at pH of 6.5 in the presence of hydro dynamic cavitation. Effect of catalyst doping with Fe and Ce was also studied for the decolorization of crystal violet dye. The results shows that, 0.8% of Fe-doped TiO2 exhibits maximum photocatalytic activity in the decolorization study of crystal violet dye due to the presence of Fe in the TiO2 and it may acts as a fenton reagent. Kinetic studies have also been reported for the hybrid AOP (HAOP) that followed the pseudo first-order reaction kinetics. PMID:26384894

  17. Synthetic trends for BiVO4 photocatalysts: Molybdenum substitution vs. TiO2 and SnO2 heterojunctions

    NASA Astrophysics Data System (ADS)

    Kontic, Roman; Patzke, Greta R.

    2012-05-01

    The influence of hydrothermal synthesis, thermal post-treatment at 500 °C and Mo content on a series of Bi1-x/3V1-xMoxO4 (0.02photocatalysts was investigated for methylene blue (MB) degradation and O2 evolution. Mo incorporation stabilizes the tetragonal scheelite phase of BiVO4, thereby inducing a small blue shift of the band gap. This adverse effect can be partially compensated by incorporation of lower Mo amounts (up to ca. 4%), which stabilizes the particle morphology upon calcination. Both BiVO4@TiO2 and BiVO4:Mo@TiO2 heterojunction composites with TiO2 particle coatings in the 10 nm range were newly synthesized and displayed promising photocatalytic performance in MB degradation. Comparative studies with SnO2 heterojunctions revealed a superior influence of TiO2 deposition over SnO2 coating on both BiVO4 and Bi1-x/3V1-xMoxO4 oxide substrates. Different synthetic guidelines for BiVO4-based solid solutions and heterojunctions in photocatalytic wastewater treatment and water oxidation are discussed.

  18. Ease synthesis of mesoporous WO3-TiO2 nanocomposites with enhanced photocatalytic performance for photodegradation of herbicide imazapyr under visible light and UV illumination.

    PubMed

    Ismail, Adel A; Abdelfattah, Ibrahim; Helal, Ahmed; Al-Sayari, S A; Robben, L; Bahnemann, D W

    2016-04-15

    Herein, we report the ease synthesis of mesoporous WO3-TiO2 nanocomposites at different WO3 contents (0-5wt%) together with their photocatalytic performance for the degradation of the imazapyr herbicide under visible light and UV illumination. XRD and Raman spectra indicated that the highly crystalline anatase TiO2 phase and monoclinic and triclinic of WO3 were formed. The mesoporous TiO2 exhibits large pore volumes of 0.267cm(3)g-1 and high surface areas of 180m(2)g(-1) but they become reduced to 0.221cm(3)g(-1) and 113m(2)g(-1), respectively upon WO3 incorporation, with tunable mesopore diameter in the range of 5-6.5nm. TEM images show WO3-TiO2 nanocomposites are quite uniform with 10-15nm of TiO2 and 5-10nm of WO3 sizes. Under UV illumination, the overall photocatalytic efficiency of the 3% WO3-TiO2 nanocomposite is 3.5 and 6.6 times higher than that of mesoporous TiO2 and commercial UV-100 photocatalyst, respectively. The 3% WO3-TiO2 nanocomposite is considered to be the optimum photocatalyst which is able to degrade completely (100% conversion) of imazapyr herbicide along 120min with high photonic efficiency ∼8%. While under visible light illumination, the 0.5% WO3-TiO2 nanocomposite is the optimum photocatalyst which achieves 46% photocatalytic efficiency. PMID:26775101

  19. High-performance photodetectors and enhanced photocatalysts of two-dimensional TiO2 nanosheets under UV light excitation.

    PubMed

    Yang, Jiao; Jiang, Yi-Lin; Li, Lin-Jie; Muhire, Elisée; Gao, Mei-Zhen

    2016-04-14

    Due to the large surface area-to-volume ratio and rapid electron transfer, two-dimensional (2D) TiO2 nanosheets with ultrathin thicknesses are synthesized by using a bottom-up strategy and these self-assembled nanosheet (NS)-based photocatalysts and photodetectors were explored for the first time. The influence of calcination temperature on microstructures and photocatalytic activity of TiO2 nanosheets were discovered and presented. The as-obtained TiO2 nanosheets were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET) analysis, Fourier transform infrared (FTIR) spectroscopy, UV-vis spectrophotometry, and X-ray photoelectron spectroscopy (XPS). The following heat treatment process induced phase evolution from rutile to anatase. The TiO2 nanosheets calcined at 500 °C exhibited the best activity for photo-degradation of organic dyes under UV light irradiation. The obtained photodetector exhibits excellent performance with a high photocurrent to dark current ratio and fast response and recovery times. Additionally, we demonstrated that the device may have potential applications in the future low-power optoelectronics system. PMID:27030475

  20. Enhanced sunlight photocatalytic activity of Ag3PO4 decorated novel combustion synthesis derived TiO2 nanobelts for dye and bacterial degradation.

    PubMed

    Eswar, Neerugatti KrishnaRao; Ramamurthy, Praveen Chandrashekarapura; Madras, Giridhar

    2015-07-01

    This study demonstrates the synthesis of TiO2 nanobelts using solution combustion derived TiO2 with enhanced photocatalytic activity for dye degradation and bacterial inactivation. Hydrothermal treatment of combustion synthesized TiO2 resulted in unique partially etched TiO2 nanobelts and Ag3PO4 was decorated using the co-precipitation method. The catalyst particles were characterized using X-ray diffraction analysis, BET surface area analysis, diffuse reflectance and electron microscopy. The photocatalytic properties of the composites of Ag3PO4 with pristine combustion synthesized TiO2 and commercial TiO2 under sunlight were compared. Therefore the studies conducted proved that the novel Ag3PO4/unique combustion synthesis derived TiO2 nanobelt composites exhibited extended light absorption, better charge transfer mechanism and higher generation of hydroxyl and hole radicals. These properties resulted in enhanced photodegradation of dyes and bacteria when compared to the commercial TiO2 nanocomposite. These findings have important implications in designing new photocatalysts for water purification. PMID:26056065

  1. Feasibility of Silver Doped TiO2/Glass Fiber Photocatalyst under Visible Irradiation as an Indoor Air Germicide

    PubMed Central

    Pham, Thanh-Dong; Lee, Byeong-Kyu

    2014-01-01

    This study investigated the feasibility of using Ag-TiO2 photocatalyst supported on glass fiber (Ag-TiO2/GF) prepared by a sol-gel method as an indoor air germicide. An experimental model was designed to investigate the bacterial disinfection efficiency of Staphylococcus (Staph), the most popular bacterium in hospitals in Korea, by the Ag-TiO2/GF photocatalyst. The silver content in Ag/TiO2 was altered from 1 to 10% to investigate the optimal ratio of Ag doped on TiO2/glass fiber (TiO2/GF) for photocatalytic disinfection of Staph. This study confirmed that Ag in Ag-TiO2/GF could work as an electron sink or donor to increase photocatalytic activity and promote the charge separation of electron-hole pairs generated from TiO2 after photon absorption. Ag also acts as an intermediate agent for the transfer of photo-generated electrons from the valence band of TiO2 to an acceptor (O2 gas) to promote photo-oxidation processes. The photocatalytic disinfection activity of Ag-TiO2/GF under visible light increased with the increase in silver content up to 7.5% and then slightly decreased with further increasing silver content. The highest disinfection efficiency and disinfection capacity of Staph using 7.5% Ag-TiO2/GF were 75.23% and 20 (CFU∙s−1∙cm−2) respectively. The medium level of humidity of 60% ± 5% showed better photocatalytic disinfection than the lower (40% ± 5%) or higher (80% ± 5%) levels. PMID:24658408

  2. TiO2/carboxylate-rich porous carbon: A highly efficient visible-light-driven photocatalyst based on the ligand-to-metal charge transfer (LMCT) process

    NASA Astrophysics Data System (ADS)

    Qu, Lingling; Huang, Dongliang; Shi, Hefei; Gu, Mengbin; Li, Jilei; Dong, Fei; Luo, Zhijun

    2015-10-01

    A novel visible-light-driven photocatalyst based on TiO2/carboxylate-rich porous carbon composite (TiO2/CRPC) was successfully synthesized by low temperature carbonization process in air. Sodium gluconate plays a crucial role in the formation of TiO2/CRPC. Different functional groups of sodium gluconate play synergetic roles in the formation of TiO2/CRPC. XRD and Raman spectra studies indicated that there are two different TiO2 crystalline phases existing in TiO2/CRPC, which are anatase and brookite, and the CRPC is amorphous. Via FT-IR and XPS spectra investigations, it was demonstrated that carboxylate group, the ligand-to-metal charge transfer (LMCT) forming functional group, was solidified into the CRPC and form the LMCT complex on TiO2 surface through the fabrication of TiO2/CRPC. Compared with the pure TiO2, TiO2/CRPC exhibit enhanced absorption in the UV and visible light region around 260-600 nm. The strong absorption in the visible light region gives TiO2/CRPC advantages over pure TiO2 for the degradation of organic pollutants. TiO2/CRPC can activate O2 in air under mild conditions and exhibit excellent visible-light-driven photocatalytic activities. However, TiO2/C composite obtained by using glucose instead of sodium gluconate exhibits poor photocatalytic activity, which demonstrated that carboxylate-TiO2 complexes are responsible for the prominent photocatalytic properties of TiO2/CRPC under visible light irradiation.

  3. Photocatalytic degradation of sulfamethoxazole in aqueous solution using a floating TiO2-expanded perlite photocatalyst.

    PubMed

    Długosz, Maciej; Żmudzki, Paweł; Kwiecień, Anna; Szczubiałka, Krzysztof; Krzek, Jan; Nowakowska, Maria

    2015-11-15

    Photocatalytic degradation of an antibiotic, sulfamethoxazole (SMX), in aqueous solution using a novel floating TiO2-expanded perlite photocatalyst (EP-TiO2-773) and radiation from the near UV spectral range was studied. The process is important considering that SMX is known to be a widespread and highly persistent pollutant of water resources. SMX degradation was described using a pseudo-first-order kinetic equation according to the Langmuir-Hinshelwood model. The products of the SMX photocatalytic degradation were identified. The effect of pH on the kinetics and mechanism of SMX photocatalytic degradation was explained. PMID:26024615

  4. Low temperature synthesis of polyaniline-crystalline TiO2-halloysite composite nanotubes with enhanced visible light photocatalytic activity.

    PubMed

    Li, Cuiping; Wang, Jie; Guo, Hong; Ding, Shujiang

    2015-11-15

    A series of one-dimensional polyaniline-crystalline TiO2-halloysite composite nanotubes with different mass ratio of polyaniline to TiO2 are facilely prepared by employing the low-temperature synthesis of crystalline TiO2 on halloysite nanotubes. The halloysite nanotubes can adsorb TiO2/polyaniline precursors and induce TiO2 nanocrystals/polyaniline to grow on the support in situ simultaneously. By simply adjusting the acidity of reaction system, PANI-crystalline TiO2-HA composite nanotubes composed of anatase, a mixed phase TiO2 and different PANI redox state are obtained. The XRD and UV-vis results show that the surface polyaniline sensitization has no effect on the crystalline structure of halloysite and TiO2 and the light response of TiO2 is extended to visible-light regions. Photocatalysis test results reveal the photocatalytic activity will be affected by the pH value and the volume ratio of ANI to TTIP. The highest photocatalytic activity is achieved with the composite photocatalysts prepared at pH 0.5 and 1% volume ratio of ANI and TTIP owing to the sensitizing effect of polyaniline and the charge transfer from the photoexcited PANI sensitizer to TiO2. Moreover, the PANI-TiO2-HA composite nanotubes synthesized by one-step at pH 0.5 with 1% volume ratio of ANI to TTIP exhibit higher visible light photocatalytic activity than those synthesized by the two-step. Heterogeneous PANI-TiO2-HA composite nanotubes prepared at pH 0.5 exhibit a higher degradation activity than that prepared at pH 1.5. The redoped experiment proves that the PANI redox state plays the main contribution to the enhanced visible light catalytic degradation efficiency of PANI-TiO2-HA prepared at pH 0.5. Furthermore, the heterogeneous PANI-crystalline TiO2-HA nanotubes have good photocatalytic stability and can be reused four times with only gradual loss of activity under visible light irradiation. PMID:26197106

  5. Fullerene C70 decorated TiO2 nanowires for visible-light-responsive photocatalyst

    NASA Astrophysics Data System (ADS)

    Cho, Er-Chieh; Ciou, Jing-Hao; Zheng, Jia-Huei; Pan, Job; Hsiao, Yu-Sheng; Lee, Kuen-Chan; Huang, Jen-Hsien

    2015-11-01

    In this study, we have synthesized C60 and C70-modified TiO2 nanowire (NW) through interfacial chemical bonding. The results indicate that the fullerenes (C60 and C70 derivatives) can act as sinks for photogenerated electrons in TiO2, while the fullerene/TiO2 is illuminated under ultraviolet (UV) light. Therefore, in comparison to the pure TiO2 NWs, the modified TiO2 NWs display a higher photocatalytic activity under UV irradiation. Moreover, the fullerenes also can function as a sensitizer to TiO2 which expand the utilization of solar light from UV to visible light. The results reveal that the C70/TiO2 NWs show a significant photocatalytic activity for degradation of methylene blue (MB) in visible light region. To better understand the mechanism responsible for the effect of fullerenes on the photocatalytic properties of TiO2, the electron only devices and photoelectrochemical cells based on fullerenes/TiO2 are also fabricated and evaluated.

  6. OXYGENATION OF HYDROCARBONS USING NANOSTRUCTURED TIO2 AS A PHOTOCATALYST: A GREEN ALTERNATIVE

    EPA Science Inventory

    High-value organic compounds have been synthesized successfully from linear and cyclic saturated hydrocarbons by a photocatalytic oxidation process using a semiconductor material, titanium dioxide (TiO2). Various hydrocarbons were partially oxygenated in both aqueous and gaseous...

  7. Highly efficient and recyclable triple-shelled Ag@Fe3O4@SiO2@TiO2 photocatalysts for degradation of organic pollutants and reduction of hexavalent chromium ions

    NASA Astrophysics Data System (ADS)

    Su, Jianwei; Zhang, Yunxia; Xu, Sichao; Wang, Shuan; Ding, Hualin; Pan, Shusheng; Wang, Guozhong; Li, Guanghai; Zhao, Huijun

    2014-04-01

    Herein, we demonstrate the design and fabrication of the well-defined triple-shelled Ag@Fe3O4@SiO2@TiO2 nanospheres with burr-shaped hierarchical structures, in which the multiple distinct functional components are integrated wonderfully into a single nanostructure. In comparison with commercial TiO2 (P25), pure TiO2 microspheres, Fe3O4@SiO2@TiO2 and annealed Ag@Fe3O4@SiO2@TiO2 nanocomposites, the as-obtained amorphous triple-shelled Ag@Fe3O4@SiO2@TiO2 hierarchical nanospheres exhibit a markedly enhanced visible light or sunlight photocatalytic activity towards the photodegradation of methylene blue and photoreduction of hexavalent chromium ions in wastewater. The outstanding photocatalytic activities of the plasmonic photocatalyst are mainly due to the enhanced light harvesting, reduced transport paths for both mass and charge transport, reduced recombination probability of photogenerated electrons/holes, near field electromagnetic enhancement and efficient scattering from the plasmonic nanostructure, increased surface-to-volume ratio and active sites in three dimensional (3D) hierarchical porous nanostructures, and improved photo/chemical stability. More importantly, the hierarchical nanostructured Ag@Fe3O4@SiO2@TiO2 photocatalysts could be easily collected and separated by applying an external magnetic field and reused at least five times without any appreciable reduction in photocatalytic efficiency. The enhanced photocatalytic activity and excellent chemical stability, in combination with the magnetic recyclability, make these multifunctional nanostructures promising candidates to remediate aquatic contaminants and meet the demands of future environmental issues.Herein, we demonstrate the design and fabrication of the well-defined triple-shelled Ag@Fe3O4@SiO2@TiO2 nanospheres with burr-shaped hierarchical structures, in which the multiple distinct functional components are integrated wonderfully into a single nanostructure. In comparison with commercial TiO2 (P25), pure TiO2 microspheres, Fe3O4@SiO2@TiO2 and annealed Ag@Fe3O4@SiO2@TiO2 nanocomposites, the as-obtained amorphous triple-shelled Ag@Fe3O4@SiO2@TiO2 hierarchical nanospheres exhibit a markedly enhanced visible light or sunlight photocatalytic activity towards the photodegradation of methylene blue and photoreduction of hexavalent chromium ions in wastewater. The outstanding photocatalytic activities of the plasmonic photocatalyst are mainly due to the enhanced light harvesting, reduced transport paths for both mass and charge transport, reduced recombination probability of photogenerated electrons/holes, near field electromagnetic enhancement and efficient scattering from the plasmonic nanostructure, increased surface-to-volume ratio and active sites in three dimensional (3D) hierarchical porous nanostructures, and improved photo/chemical stability. More importantly, the hierarchical nanostructured Ag@Fe3O4@SiO2@TiO2 photocatalysts could be easily collected and separated by applying an external magnetic field and reused at least five times without any appreciable reduction in photocatalytic efficiency. The enhanced photocatalytic activity and excellent chemical stability, in combination with the magnetic recyclability, make these multifunctional nanostructures promising candidates to remediate aquatic contaminants and meet the demands of future environmental issues. Electronic supplementary information (ESI) available: Synthesis of TiO2 microspheres; synthesis of Fe3O4@SiO2@TiO2 nanospheres; synthesis of Ag@Fe3O4@TiO2 nanospheres; SEM images of the as-prepared products: (a) Ag@Fe3O4, (b) Ag@Fe3O4@SiO2 and (c) Ag@Fe3O4@SiO2@TiO2 (Fig. S1); TEM images of the Ag@Fe3O4@SiO2 synthesized with adding different amount of TEOS (Fig. S2); SEM, TEM and EDS spectrum of Fe3O4@SiO2@TiO2 NPs (Fig. S3); SEM and TEM images of as-prepared TiO2 microspheres (Fig. S4); nitrogen adsorption-desorption isotherm and pore size distribution plot for as-prepared Fe3O4@SiO2@TiO2 and TiO2 microspheres (Fig. S5); adsorption rate curve of MB in dark for Ag@Fe3O4@SiO2@TiO2 samples (Fig. S6); photocatalytic degradation of MB over unannealed Ag@Fe3O4@SiO2@TiO2 (3 mg) and P25 (10 mg) under Xe lamp illumination (Fig. S7). See DOI: 10.1039/c4nr00534a

  8. Photocatalytic oxidation of methyl orange in water phase by immobilized TiO2-carbon nanotube nanocomposite photocatalyst

    NASA Astrophysics Data System (ADS)

    Dong, Yinmao; Tang, Dongyan; Li, Chensha

    2014-03-01

    We developed an immobilized carbon nanotube (CNT)-titanium dioxide (TiO2) heterostructure material for the photocatalytic oxidation of methyl orange in aqueous phase. The catalyst material was prepared via sol-gel method using multi-walled CNTs grown on graphite substrate as carriers. The multi-walled CNTs were synthesized from thermal decomposing of hydrocarbon gas directly on thin graphite plate, forming immobilized 3-dimensional network of CNTs. The nanophase TiO2 was synthesized coating on CNTs to form "coral"-shaped nanocomposite 3-dimensional network on graphite substrate, thus bringing effective porous structure and high specific surface area, and possessing the merit of dispersive powder photocatalysts, which is the fully available surface area, while adapting the requirement for clean and convenient manipulation as an immobilized photocatalyst. Moreover, the CNT-TiO2 heterostructure reduced the electron-hole pair recombination rate and enhanced the photoabsorption and the adsorption ability, resulting in elevating the photocatalysis efficiency. These synergistic effects due to the hybrid nature of the materials and interphase interaction greatly improved the catalytic activity, and demonstrated superior photocatalytic performances. Our work can be a significant inspiration for developing hybrid nano-phase materials to realize sophisticated functions, and bear tremendous significance for the development and applications of semiconductor nano-materials.

  9. TiO2 Nanotubes with Open Channels as Deactivation-Resistant Photocatalyst for the Degradation of Volatile Organic Compounds.

    PubMed

    Weon, Seunghyun; Choi, Wonyong

    2016-03-01

    We synthesized ordered TiO2 nanotubes (TNT) and compared their photocatalytic activity with that of TiO2 nanoparticles (TNP) film during the repeated cycles of photocatalytic degradation of gaseous toluene and acetaldehyde to test the durability of TNT as an air-purifying photocatalyst. The photocatalytic activity of TNT showed only moderate reduction after the five cycles of toluene degradation, whereas TNP underwent rapid deactivation as the photocatalysis cycles were repeated. Dynamic SIMS analysis showed that carbonaceous deposits were formed on the surface of TNP during the photocatalytic degradation of toluene, which implies that the photocatalyst deactivation should be ascribed to the accumulation of recalcitrant degradation intermediates (carbonaceous residues). In more oxidizing atmosphere (100% O2 under which less carbonaceous residues should form), the photocatalytic activity of TNP still decreased with repeating cycles of toluene degradation, whereas TNT showed no sign of deactivation. Because TNT has a highly ordered open channel structure, O2 molecules can be more easily supplied to the active sites with less mass transfer limitation, which subsequently hinders the accumulation of carbonaceous residues on TNT surface. Contrary to the case of toluene degradation, both TNT and TNP did not exhibit any significant deactivation during the photocatalytic degradation of acetaldehyde, because the generation of recalcitrant intermediates from acetaldehyde degradation is insignificant. The structural characteristics of TNT is highly advantageous in preventing the catalyst deactivation during the photocatalytic degradation of aromatic compounds. PMID:26854616

  10. The Role of the Relative Dye/Photocatalyst Concentration in TiO2 Assisted Photodegradation Process.

    PubMed

    de Mendonça, Vagner R; Mourão, Henrique A J L; Malagutti, Andréa R; Ribeiro, C

    2013-09-24

    Despite photocatalytic degradation is studied generally focusing the catalyst, its interaction with the contaminant molecule plays a fundamental role in the efficiency of that process. Then, we proposed a comparative study about the photodegradation of two well-known dyes, with different acidity/basicity - Methylene Blue (MB) and Rhodamine B (RhB), catalyzed by TiO2 nanoparticles, varying both dye and photocatalyst concentrations. The results showed that the amphoteric character of MB molecules, even in a range of concentration of 5.0-10.0 mg L(-1) , did not imply in pH variation in solution. Therefore, it did not affect the colloidal behavior of TiO2 nanoparticles, independent of the relative dye/catalyst concentration. The acid-base character of RhB influenced the resultant pH of the solution, implicating in different colloidal behavior of the nanoparticles and consequently, in different degradation conditions according to dye concentration. As the isoelectric point of TiO2 is between the pH range of the RhB solutions used in this study, from 1.0 to 7.5 mg L(-1) , the resultant pH was the key factor for degradation conditions, from a well dispersed to an agglomerated suspension. PMID:24107092

  11. Synthesis and Photocatalytic Activity of Anatase TiO2 Nanoparticles-coated Carbon Nanotubes.

    PubMed

    Xie, Yi; Heo, Sunghwan; Yoo, Seunghwa; Ali, Ghafar; Cho, Sungoh

    2009-01-01

    A simple and straightforward approach to prepare TiO2-coated carbon nanotubes (CNTs) is presented. Anatase TiO2 nanoparticles (NPs) with the average size ~8 nm were coated on CNTs from peroxo titanic acid (PTA) precursor even at low temperature of 100 °C. We demonstrate the effects of CNTs/TiO2 molar ratio on the adsorption capability and photocatalytic efficiency under UV-visible irradiation. The samples showed not only good optical absorption in visible range, but also great adsorption capacity for methyl orange (MO) dye molecules. These properties facilitated the great enhancement of photocatalytic activity of TiO2 NPs-coated CNTs photocatalysts. The TiO2 NPs-coated CNTs exhibited 2.45 times higher photocatalytic activity for MO degradation than that of pure TiO2. PMID:20671780

  12. Synthesis and Photocatalytic Activity of Anatase TiO2 Nanoparticles-coated Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Xie, Yi; Heo, Sung Hwan; Yoo, Seung Hwa; Ali, Ghafar; Cho, Sung Oh

    2010-03-01

    A simple and straightforward approach to prepare TiO2-coated carbon nanotubes (CNTs) is presented. Anatase TiO2 nanoparticles (NPs) with the average size ~8 nm were coated on CNTs from peroxo titanic acid (PTA) precursor even at low temperature of 100 °C. We demonstrate the effects of CNTs/TiO2 molar ratio on the adsorption capability and photocatalytic efficiency under UV-visible irradiation. The samples showed not only good optical absorption in visible range, but also great adsorption capacity for methyl orange (MO) dye molecules. These properties facilitated the great enhancement of photocatalytic activity of TiO2 NPs-coated CNTs photocatalysts. The TiO2 NPs-coated CNTs exhibited 2.45 times higher photocatalytic activity for MO degradation than that of pure TiO2.

  13. Plasmon-enhanced water splitting on TiO2-passivated GaP photocatalysts.

    PubMed

    Qiu, Jing; Zeng, Guangtong; Pavaskar, Prathamesh; Li, Zhen; Cronin, Stephen B

    2014-02-21

    Integrating plasmon resonant nanostructures with photocatalytic semiconductors shows great promise for high efficiency photocatalytic water splitting. However, the electrochemical instability of most III-V semiconductors severely limits their applicability in photocatalysis. In this work, we passivate p-type GaP with a thin layer of n-type TiO2 using atomic layer deposition. The TiO2 passivation layer prevents corrosion of the GaP, as evidenced by atomic force microscopy and photoelectrochemical measurements. In addition, the TiO2 passivation layer provides an enhancement in photoconversion efficiency through the formation of a charge separating pn-region. Plasmonic Au nanoparticles deposited on top of the TiO2-passivated GaP further increases the photoconversion efficiency through local field enhancement. These two enhancement mechanisms are separated by systematically varying the thickness of the TiO2 layer. Because of the tradeoff between the quickly decaying plasmonic fields and the formation of the pn-charge separation region, an optimum performance is achieved for a TiO2 thickness of 0.5 nm. Finite difference time domain (FDTD) simulations of the electric field profiles in this photocatalytic heterostructure corroborate these results. The effects of plasmonic enhancement are distinguished from the natural catalytic properties of Au by evaluating similar photocatalytic TiO2/GaP structures with catalytic, non-plasmonic metals (i.e., Pt) instead of Au. This general approach of passivating narrower band gap semiconductors enables a wider range of materials to be considered for plasmon-enhanced photocatalysis for high efficiency water splitting. PMID:24401904

  14. TiO2 synthesis inspired by biomineralization: control of morphology, crystal phase, and light-use efficiency in a single process.

    PubMed

    Nonoyama, Takayuki; Kinoshita, Takatoshi; Higuchi, Masahiro; Nagata, Kenji; Tanaka, Masayoshi; Sato, Kimiyasu; Kato, Katsuya

    2012-05-30

    Hydroxyapatite is mineralized along the long axis of collagen fiber during osteogenesis. Mimicking such biomineralization has great potential to control inorganic structures and is fast becoming an important next-generation inorganic synthesis method. Inorganic matter synthesized by biomineralization can have beautiful and functional structures that cannot be created artificially. In this study, we applied biomineralization to the synthesis of the only photocatalyst in practical use today, titanium dioxide (TiO(2)). The photocatalytic activity of TiO(2) mainly relates to three properties: morphology, crystal phase, and light-use efficiency. To optimize TiO(2) morphology, we used a simple sequential peptide as an organic template. TiO(2) mineralized by a β-sheet peptide nanofiber template forms fiber-like shapes that are not observed for mineralization by peptides in the shape of random coils. To optimize TiO(2) crystal phase, we mineralized TiO(2) with the template at 400 °C to transform it into the rutile phase and at 700 °C to transform it into a mixed phase of anatase and rutile. To optimize light-use efficiency, we introduced nitrogen atoms of the peptide into the TiO(2) structure as doped elemental material during sintering. Thus, this biomineralization method enables control of inorganic morphology, crystal phase, and light-use efficiency in a single process. PMID:22578231

  15. Au-loaded TiO2 and Ag-loaded TiO2 synthesized by modified sol-gel/impregnation method as photocatalysts

    NASA Astrophysics Data System (ADS)

    Ninsonti, Hathaithip; Sriwichai, Saengrawee; Wetchakun, Natda; Kangwansupamonkon, Wiyong; Phanichphant, Sukon

    2016-02-01

    In this work, Au-loaded TiO2 and Ag-loaded TiO2 nanoparticles were synthesized by modified sol-gel method together with impregnation method. The samples were characterized by their physicochemical properties using X-ray diffraction (XRD) and X-ray photoelectron spectroscopy in order to obtain the correlation between structure and photocatalytic properties. XRD results indicated unloaded TiO2, Au-loaded TiO2 and Ag-loaded TiO2 nanoparticles were all in the anatase phase with average crystallite size in the range of 10-13 nm. In addition, XPS analysis confirmed the presence of Au and Ag elements in Au-loaded TiO2 and Ag-loaded TiO2 nanoparticles, respectively. The photocatalytic activities of TiO2, Au-loaded TiO2 and Ag-loaded TiO2 nanoparticles were evaluated through the mineralization of formic acid under UV-light illumination. The results showed that Au-loading and Ag-loading could effectively improve the photocatalytic activities of TiO2. Furthermore, Au-loaded TiO2 exhibited a higher photocatalytic activity than Ag-loaded TiO2.

  16. Solvothermal fabrication of activated semi-coke supported TiO2-rGO nanocomposite photocatalysts and application for NO removal under visible light

    NASA Astrophysics Data System (ADS)

    Yang, Weiwei; Li, Chunhu; Wang, Liang; Sun, ShengNan; Yan, Xin

    2015-10-01

    The photocatalysts of activated semi-coke supported TiO2-rGO nanocomposite (TiO2-rGO/ASC) with different contents of reduced graphene oxide were fabricated by one-step solvothermal method for NO removal under visible light irradiation. It was confirmed that 8% content of reduced graphene oxide presented the best NO photooxidation performance under visible light irradiation at 70 °C with 350-400 mg/m3 NO,5% O2 and 5% relative humidity. The reasons for improved activity were discussed, alloyed with the mechanism of producing CO. Detailed structural information of TiO2-rGO/ASC photocatalysts was characterized by scanning electron microscope (SEM), energy dispersive X-ray Spectroscopy (EDX), X-ray diffraction analysis (XRD), UV-Vis diffuse reflectance spectra (UV-Vis DRS) and photoluminescence (PL), which indicated that the introduction of rGO was responsible for well dispersion, smaller crystalline size, red shift of absorption band and suppressing quick photo-induced charges recombination of TiO2-rGO/ASC photocatalysts. Optimization of operational parameters with 70 °C, 8% O2 and 8% relative humidity were also obtained. Deactivation of TiO2-rGO/ASC photocatalysts for NO removal was investigated by Fourier-transform infrared (FTIR) analysis. Regeneration experiments showed that thermal vapor regeneration would be optimal method owing to excellent regenerative capacity and inexpensive procedure.

  17. BiFeO3/TiO2 core-shell structured nanocomposites as visible-active photocatalysts and their optical response mechanism

    NASA Astrophysics Data System (ADS)

    Li, Shun; Lin, Yuan-Hua; Zhang, Bo-Ping; Li, Jing-Feng; Nan, Ce-Wen

    2009-03-01

    Anatase titania-coated bismuth ferrite nanocomposites (BiFeO3/TiO2) have been fabricated via a hydrothermal approach combined with a hydrolysis precipitation processing. Analysis of the microstructure and phase composition reveals that a core-shell BiFeO3/TiO2 structure can be formed, which results in a significant redshift in the UV-vis absorption spectra as compared to a simple mechanical mixture of BiFeO3-TiO2 nanopowders. The core-shell structured BiFeO3/TiO2 nanocomposites exhibit higher photocatalytic activity for photodegradation of Congo red under visible-light (λ >400 nm) irradiation, which should be attributed to the enhancement of the quantum efficiency by separating the electrons and holes effectively. The obtained BiFeO3/TiO2 nanocomposites can be used as potential visible-light driven photocatalysts.

  18. Preparation and characterization of SeO2/TiO2 composite photocatalyst with excellent performance for sunset yellow azo dye degradation under natural sunlight illumination

    NASA Astrophysics Data System (ADS)

    Rajamanickam, D.; Dhatshanamurthi, P.; Shanthi, M.

    2015-03-01

    To improve the solar light induced photocatalytic application performances of TiO2, in this study, the SeO2 modified TiO2 composite photocatalysts with various ratios of SeO2 to TiO2 were prepared by sol-gel method. The catalyst was characterized by X-ray diffraction (XRD), high resolution scanning electron microscope (HR-SEM), energy dispersive spectra (EDS), diffuse reflectance spectra (DRS), photoluminescence spectra (PL), X-ray photoelectron spectroscopy (XPS) and Brunauer-Emmett-Teller (BET) surface area measurement methods. The photocatalytic activity of SeO2/TiO2 was investigated for the degradation of sunset yellow (SY) in aqueous solution using solar light. The SeO2/TiO2 is found to be more efficient than prepared TiO2 and TiO2-P25 at pH 7 for the mineralization of SY. The effects of operational parameters such as the amount of photocatalyst, dye concentration and initial pH on photo mineralization of SY have been analyzed. The degradation was strongly enhanced in the presence of electron acceptors such as oxone, KIO4 and KBrO3. The kinetics of SY photodegradation was found to follow the pseudo-first order rate law and could be described in terms of Langmuir-Hinshelwood model. The mineralization of SY has been confirmed by COD measurements. The catalyst is found to be reusable.

  19. Preparation and characterization of SeO2/TiO2 composite photocatalyst with excellent performance for sunset yellow azo dye degradation under natural sunlight illumination.

    PubMed

    Rajamanickam, D; Dhatshanamurthi, P; Shanthi, M

    2015-03-01

    To improve the solar light induced photocatalytic application performances of TiO2, in this study, the SeO2 modified TiO2 composite photocatalysts with various ratios of SeO2 to TiO2 were prepared by sol-gel method. The catalyst was characterized by X-ray diffraction (XRD), high resolution scanning electron microscope (HR-SEM), energy dispersive spectra (EDS), diffuse reflectance spectra (DRS), photoluminescence spectra (PL), X-ray photoelectron spectroscopy (XPS) and Brunauer-Emmett-Teller (BET) surface area measurement methods. The photocatalytic activity of SeO2/TiO2 was investigated for the degradation of sunset yellow (SY) in aqueous solution using solar light. The SeO2/TiO2 is found to be more efficient than prepared TiO2 and TiO2-P25 at pH 7 for the mineralization of SY. The effects of operational parameters such as the amount of photocatalyst, dye concentration and initial pH on photo mineralization of SY have been analyzed. The degradation was strongly enhanced in the presence of electron acceptors such as oxone, KIO4 and KBrO3. The kinetics of SY photodegradation was found to follow the pseudo-first order rate law and could be described in terms of Langmuir-Hinshelwood model. The mineralization of SY has been confirmed by COD measurements. The catalyst is found to be reusable. PMID:25528508

  20. Constructing inverse V-type TiO2-based photocatalyst via bio-template approach to enhance the photosynthetic water oxidation

    NASA Astrophysics Data System (ADS)

    Jiang, Jinghui; Zhou, Han; Ding, Jian; Zhang, Fan; Fan, Tongxiang; Zhang, Di

    2015-08-01

    Bio-template approach was employed to construct inverse V-type TiO2-based photocatalyst with well distributed AgBr in TiO2 matrix by making dead Troides Helena wings with inverse V-type scales as the template. A cross-linked titanium precursor with homogenous hydrolytic rate, good liquidity, and low viscosity was employed to facilitate a perfect duplication of the template and the dispersion of AgBr based on appropriate pretreatment of the template by alkali and acid. The as-synthesized inverse V-type TiO2/AgBr can be turned into inverse V-type TiO2/Ag0 from AgBr photolysis during photocatalysis to achieve in situ deposition of Ag0 in TiO2 matrix, by this approach, to avoid the deformation of surface microstructure inherited from the template. The result showed that the cooperation of perfect inverse V-type structure and the well distributed TiO2/Ag0 microstructures can efficiently boost the photosynthetic water oxidation compared to non-inverse V-type TiO2/Ag0 and TiO2/Ag0 without using template. The anti-reflection function of inverse V-type structure and the plasmatic effect of Ag0 might be able to account for the enhanced photon capture and efficient photoelectric conversion.

  1. Preparation and properties of vanadium-doped TiO2 photocatalysts

    NASA Astrophysics Data System (ADS)

    Zhou, Wenfang; Liu, Qingju; Zhu, Zhongqi; Zhang, Ji

    2010-01-01

    The vanadium-doped TiO2 nanoparticles were prepared by a sol-gel method with Ti(OBu)4 as a precursor. The powders were characterized by XRD, FT-IR, TEM, XPS and UV-Vis absorption spectrum. The photocatalytic activity of the powders for methyl orange degradation was investigated under a fluorescent lamp. The results show that the doping V presents mainly in the form of V5+, and vanadium doping can restrain the crystal growth and promote the phase transfer from anatase to rutile. Vanadium doping can widen the light absorption range of TiO2, and the absorption threshold wavelength is red shifted from 380 nm to about 650 nm. As a result, the photocatalytic activity of the V-TiO2 nanoparticles is higher than that of P25 under the fluorescent lamp.

  2. Synthesis and photocatalytic activity of TiO2 nanoparticles prepared by chemical vapor condensation method with different precursor concentration and residence time.

    PubMed

    Chin, Sungmin; Park, Eunseuk; Kim, Minsu; Bae, Gwi-Nam; Jurng, Jongsoo

    2011-10-15

    Nanosized TiO(2) photocatalysts were synthesized using a chemical vapor condensation method under a range of synthesis conditions (precursor vapor concentration and residence time in a tubular electric furnace). X-ray diffraction showed that the prepared TiO(2) powders consisted mainly of anatase (>94%) with a small amount of rutile. The mean particle diameter from the Brunauer-Emmett-Teller surface area and transmission electron microscopy measurements ranged from 9.4 to 16.6 nm. The specific surface area (92.5-163.5 m(2) g(-1)) of the prepared TiO(2) powders was found to be dependent on the synthesis conditions. The content of hydroxyl groups on the surface of the prepared TiO(2) sample was higher than those on commercial TiO(2), resulting in increased photocatalytic oxidation. The photocatalytic activity of the TiO(2) samples prepared in a methylene blue solution was strongly dependent on the crystallinity and specific surface area, which were affected by the TTIP vapor concentration and residence time. PMID:21802692

  3. Hydrothermal synthesis of flower-like TiO2 nanocrystals/graphene oxide nanocomposites

    NASA Astrophysics Data System (ADS)

    Jia, Xiao-Hua; Song, Hao-Jie; Min, Chun-Ying

    2013-06-01

    A facile hydrothermal method has been developed to be capable of decorating graphene oxide (GO) with flower-like TiO2 nanocrystals without using any bridging species. The flower-like TiO2 nanocrystals were uniformly self-assembled on the surface of GO nanosheets. The photocatalytic activity experiment indicated that the prepared TiO2/GO nanocomposites exhibited a higher photocatalytic activity for the photocatalytic degradation of rhodamine B (RB) aqueous solution under the UV illumination, this methodology made the synthesis of TiO2/GO nanocomposites possible and may be further extended to prepare more complicated nanocomposites based on GO for technological applications.

  4. Environment-friendly biomimetic synthesis of TiO2 nanomaterials for photocatalytic application

    NASA Astrophysics Data System (ADS)

    Bao, Shu-Juan; Lei, Chao; Xu, Mao-Wen; Cai, Chang-Jun; Jia, Dian-Zeng

    2012-05-01

    We have demonstrated an environment-friendly biomimetic synthesis method for the preparation of TiO2 nanomaterials with different crystal phases and morphologies. This is the first time that it has been found that the crystal phase of TiO2 can be controlled just by using different biotemplates, and cannot be changed by calcination up to 750 °C. In our experiment, anatase TiO2 was obtained by using yeast and albumen templates, while rutile TiO2 was formed by using dandelion pollen as the template.

  5. Highly efficient visible light TiO2 photocatalyst prepared by sol-gel method at temperatures lower than 300°C.

    PubMed

    Wang, Desong; Xiao, Libin; Luo, Qingzhi; Li, Xueyan; An, Jing; Duan, Yandong

    2011-08-15

    Highly efficient visible light TiO(2) photocatalyst was prepared by the sol-gel method at lower temperature (≤ 300°C), and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), UV-vis diffuse reflectance spectroscopy (UV-vis DRS), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and differential scanning calorimetry-thermogravimetric analysis (DSC-TGA). The effects of the heat treatment temperature and time of the as-prepared TiO(2) on its visible light photocatalytic activity were investigated by monitoring the degradation of methyl orange solution under visible light irradiation (wavelength ≥ 400 nm). Results show that the as-prepared TiO(2) nanoparticles possess an anatase phase and mesoporous structure with carbon self-doping and visible photosensitive organic groups. The visible light photocatalytic activity of the as-prepared TiO(2) is greatly higher than those of the commercial TiO(2) (P-25) and other visible photocatalysts reported in literature (such as PPy/TiO(2), P3HT/TiO(2), PANI/TiO(2), N-TiO(2) and Fe(3+)-TiO(2)) and its photocatalytic stability is excellent. The reasons for improving the visible light photocatalytic activity of the as-prepared TiO(2) can be explained by carbon self-doping and a large amount of visible photosensitive groups existing in the as-prepared TiO(2). The apparent optical thickness (τ(app)), local volumetric rate of photo absorption (LVRPA) and kinetic constant (k(T)) of the photodegradation system were calculated. PMID:21616590

  6. Visible-light-induced photocatalytic reduction of Cr(VI) with coupled Bi2O3/TiO2 photocatalyst and the synergistic bisphenol A oxidation.

    PubMed

    Yang, Juan; Dai, Jun; Li, Jiantong

    2013-04-01

    Coupled Bi2O3/TiO2 photocatalysts were fabricated by sol-gel and hydrothermal methods and characterized using various spectroscopy techniques. Photocatalytic reduction of Cr(VI) in aqueous solution, together with the synergistic effect of photodegradation of bisphenol A (BPA), was investigated using these coupled Bi2O3/TiO2 under visible-light irradiation. Coupling of Bi2O3 inhibited the phase transformation from anatase to rutile and extended absorption region to visible light. Bi ions did not enter TiO2 lattice and were more likely to bond with oxygen atoms to form Bi2O3 on the surface of TiO2. Photovoltage signals in visible range revealed the effective interfacial charge transfer between Bi2O3 and TiO2. Two percent Bi2O3/TiO2 exhibited the highest photocatalytic activity of visible-light-induced reduction of Cr(VI). The addition of BPA effectively increased the photocatalytic reduction of Cr(VI). Simultaneously, the presence of Cr(VI) promoted the degradation of BPA, which was demonstrated by the investigation of TOC removal yield and generated intermediates. A possible mechanism of photocatalytic reduction of Cr(VI) and degradation of BPA in Bi2O3/TiO2 system was proposed. The synergistic effect, observed between reduction of Cr(VI) and degradation of BPA, provides beneficial method for environmental remediation and purification of the complex wastewater. PMID:22935862

  7. Nanostructured anatase TiO2 densified at high pressure as advanced visible light photocatalysts.

    PubMed

    Carini, Giovanni; Parrino, Francesco; Palmisano, Giovanni; Scandura, Gabriele; Citro, Ilaria; Calogero, Giuseppe; Bartolotta, Antonino; Di Marco, Gaetano

    2015-09-26

    This study reports on characterization and photoactivity of nanostructured TiO2 samples, which have been permanently densified under high pressures, up to 2.1 GPa. Commercial Mirkat 211 anatase has been used as a benchmark sample, in order to investigate the effect of unidirectional high pressure on structural, optical and photocatalytic properties of TiO2. Vibrational Raman spectroscopy shows that the treatment does not cause transitions among the different crystalline phases of titanium dioxide. UV-vis diffuse reflectance spectra reveal that increasing pressure gives rise to a shift of the absorption onset towards higher wavelength enhancing the photoactivity under visible radiation. Samples are also photo-electrochemically characterized and tested in the gas phase with partial oxidation of ethanol to acetaldehyde under visible irradiation. Compaction up to 0.8 GPa depresses both the alcohol conversion and the aldehyde yield, while samples treated under higher pressures show enhanced characteristics of conversion compared to the pristine material. Moreover, promising results in the reduction of CO2 are also obtained under UV-visible radiation. PMID:26153460

  8. Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications

    NASA Astrophysics Data System (ADS)

    Pan, Xiaoyang; Yang, Min-Quan; Fu, Xianzhi; Zhang, Nan; Xu, Yi-Jun

    2013-04-01

    Titanium dioxide (TiO2), as an important semiconductor metal oxide, has been widely investigated in the field of photocatalysis. The properties of TiO2, including its light absorption, charge transport and surface adsorption, are closely related to its defect disorder, which in turn plays a significant role in the photocatalytic performance of TiO2. Among all the defects identified in TiO2, oxygen vacancy is one of the most important and is supposed to be the prevalent defect in many metal oxides, which has been widely investigated both by theoretical calculations and experimental characterizations. Here, we give a short review on the existing strategies for the synthesis of defective TiO2 with oxygen vacancies, and the defect related properties of TiO2 including structural, electronic, optical, dissociative adsorption and reductive properties, which are intimately related to the photocatalytic performance of TiO2. In particular, photocatalytic applications with regard to defective TiO2 are outlined. In addition, we offer some perspectives on the challenge and new direction for future research in this field. We hope that this tutorial minireview would provide some useful contribution to the future design and fabrication of defective semiconductor-based nanomaterials for diverse photocatalytic applications.Titanium dioxide (TiO2), as an important semiconductor metal oxide, has been widely investigated in the field of photocatalysis. The properties of TiO2, including its light absorption, charge transport and surface adsorption, are closely related to its defect disorder, which in turn plays a significant role in the photocatalytic performance of TiO2. Among all the defects identified in TiO2, oxygen vacancy is one of the most important and is supposed to be the prevalent defect in many metal oxides, which has been widely investigated both by theoretical calculations and experimental characterizations. Here, we give a short review on the existing strategies for the synthesis of defective TiO2 with oxygen vacancies, and the defect related properties of TiO2 including structural, electronic, optical, dissociative adsorption and reductive properties, which are intimately related to the photocatalytic performance of TiO2. In particular, photocatalytic applications with regard to defective TiO2 are outlined. In addition, we offer some perspectives on the challenge and new direction for future research in this field. We hope that this tutorial minireview would provide some useful contribution to the future design and fabrication of defective semiconductor-based nanomaterials for diverse photocatalytic applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr00476g

  9. On sol-gel derived Au-enriched TiO2 and TiO2-ZrO2 photocatalysts and their investigation in photocatalytic reduction of carbon dioxide

    NASA Astrophysics Data System (ADS)

    Matějová, Lenka; Kočí, Kamila; Reli, Martin; Čapek, Libor; Matějka, Vlastimil; Šolcová, Olga; Obalová, Lucie

    2013-11-01

    Gold-enriched TiO2 and TiO2-ZrO2 and their parent counterparts were prepared by using the sol-gel process controlled within the reverse micelles environment, followed by impregnation in AuCl3 solution. Catalysts were characterized by organic elementary analysis (OEA), inductively coupled plasma mass spectrometry (ICP MS), N2 physisorption, powder X-ray diffraction (XRD), transmission electron microscopy (TEM) combined with electron diffraction, UV-vis spectroscopy, and tested in CO2 photocatalytic reduction. The performance of photocatalysts iluminated by UV-lamp with the wavelenght maximum at 254 nm was decreasing in the order TiO2-ZrO2 > Au/TiO2-ZrO2 > TiO2 > Au/TiO2 > TiO2 Evonic P25. The photocatalytic performance decrease over Au/TiO2-ZrO2 and Au/TiO2, compared to their parent counterparts, can be explained by the presence of too large Au particles, which block the oxide surface and either reduce the light absorption capability of the catalysts, or serve as the recombination centres. Higher photocatalytic performance of the amorphous TiO2-ZrO2 than of the nanocrystalline TiO2 can be ascribed to the enlarged surface area and higher photoactivity of titania-zirconia oxide mixture under the UV lamp with the wavelenght maximum at 254 nm. With regard to crystalline materials the appropriate anatase crystallite-size plays a key role in performance of CO2 photocatalytic reduction. Moreover, correlation between the adsorption edge and the anatase crystallite-size was revealed.

  10. Design of H3PW12O40/TiO2 nano-photocatalyst for efficient photocatalysis under simulated sunlight irradiation

    NASA Astrophysics Data System (ADS)

    Zhao, Kun; Lu, Ying; Lu, Nan; Zhao, Yahui; Yuan, Xing; Zhang, Hao; Teng, Lianghui; Li, Fu

    2013-11-01

    H3PW12O40/TiO2 (PW12/TiO2) nano-photocatalyst was successfully synthesized through a modified sol-gel-hydrothermal method. The X-ray diffraction (XRD) patterns, Fourier transform infrared (FT-IR) spectra, UV-vis diffuse reflectance spectrum (UV-vis DRS), and N2 adsorption-desorption isotherms were characterized respectively to investigate the physical and chemical properties of prepared catalysts. Under simulated sunlight (320 nm < λ < 780 nm) irradiation, the degradation of fuchsin acid, malachite green and p-nitrophenol (PNP) were carried out to evaluate the photocatalytic activity of PW12/TiO2. The results showed that the pollutants degradation followed first-order kinetics, and the kinetic constants of photocatalytic degradation of fuchsin acid, malachite green and PNP were 2.82, 4.66, and 3.48 times as great as that using pristine TiO2, respectively. The high pollutants degradation efficiency was ascribed to the synergistic effect between H3PW12O40 and TiO2, which resulted in enhanced quantum efficiency and high light harvesting efficiency. We believe this work could provide new insights into the fabrication of photocatalyst with high photocatalytic performance and facilitate their practical application in environmental issues.

  11. In situ plasmonic Ag nanoparticle anchored TiO2 nanotube arrays as visible-light-driven photocatalysts for enhanced water splitting.

    PubMed

    Ge, Ming-Zheng; Cao, Chun-Yan; Li, Shu-Hui; Tang, Yu-Xin; Wang, Lu-Ning; Qi, Ning; Huang, Jian-Ying; Zhang, Ke-Qin; Al-Deyab, S S; Lai, Yue-Kun

    2016-02-25

    An ultrasonication-assisted in situ deposition strategy was utilised to uniformly decorate plasmonic Ag nanoparticles on vertically aligned TiO2 nanotube arrays (NTAs) to construct a Ag@TiO2 NTA composite. The Ag nanoparticles act as efficient surface plasmon resonance (SPR) photosensitizers to drive photocatalytic water splitting under visible light irradiation. The Ag nanoparticles were uniformly deposited on the surface and inside the highly oriented TiO2 nanotubes. The visible-light-driven hydrogen production activities of silver nanoparticle anchored TiO2 nanotube array photocatalysts were evaluated using methanol as a sacrificial reagent in water under a 500 W Xe lamp with a UV light cutoff filter (λ ≥ 420 nm). It was found that the hydrogen production rate of the Ag@TiO2 NTAs prepared with ultrasonication-assisted deposition for 5 min was approximately 15 times higher than that of its pristine TiO2 NTAs counterpart. The highly efficient photocatalytic hydrogen evolution is attributed to the SPR effect of Ag for enhanced visible light absorption and boosting the photogenerated electron-hole separation/transfer. This strategy is promising for the design and construction of high efficiency TiO2 based photocatalysts for solar energy conversion. PMID:26878901

  12. Carbon-deposited TiO2 3D inverse opal photocatalysts: visible-light photocatalytic activity and enhanced activity in a viscous solution.

    PubMed

    Lee, Sunbok; Lee, Youngshin; Kim, Dong Ha; Moon, Jun Hyuk

    2013-12-11

    We for the first time demonstrated carbon-deposited TiO2 inverse opal (C-TiO2 IO) structures as highly efficient visible photocatalysts. The carbon deposition proceeded via high-temperature pyrolysis of phloroglucinol/formaldehyde resol, which had been coated onto the TiO2 IO structures. Carbon deposition formed a carbon layer and doped the TiO2 interface, which synergistically enhanced visible-light absorption. We directly measured the visible-light photocatalytic activity by constructing solar cells comprising the C-TiO2 IO electrode. Photocatalytic degradation of organic dyes in a solution was also evaluated. Photocatalytic dye degradation under visible light was only observed in the presence of the C-TiO2 IO sample and was increased with the content of carbon deposition. The IO structures could be readily decorated with TiO2 nanoparticles to increase the surface area and enhance the photocatalytic activity. Notably, the photocatalytic reaction was found to proceed in a viscous polymeric solution. A comparison of the mesoporous TiO2 structure and the IO TiO2 structure revealed that the latter performed better as the solution viscosity increased. This result was attributed to facile diffusion into the fully connected and low-tortuosity macropore network of the IO structure. PMID:24266769

  13. Synthesis of anatase and rutile TiO2 nanostructures from natural ilmenite

    NASA Astrophysics Data System (ADS)

    Wahyuingsih, Sayekti; Ramelan, Ari Handono; Pramono, Edi; Sulistya, Ariantama Djati; Argawan, Panji Rofa; Dharmawan, Frenandha Dwi; Rinawati, Ludfiaastu; Hanif, Qonita Awliya; Sulistiyono, Eko; Firdiyono, Florentinus

    2016-02-01

    Nanostructure anatase and rutile type TiO2 were synthesized from dissolution roasted ilmenite from natural ilmenite sand as the starting materials. Anatase TiO2 and rutile TiO2 (high crystallinity) with the diameters of 20-100 nm were obtained by calcined soluble ilmenite sand produced by leaching process. Calcinations of the xerogel TiO2 from liquor products were conducted for 4 hours at temperature of 450 °C. The samples were characterized by XRD (X-ray diffraction), STA (simultant thermal analysis), TEM (Transmission Electron Microscopy), and BET surface area. Titania Anatase-Rutile form as a mixture were produced by titania slag with the hydrolysis product. While, in another route, complete titania anatase phase was produced through hydrolysis and condensation steps of leach liquors. This synthesis methods provide a simple route to fabricate nanostructure TiO2 from low cost material.

  14. Green microwave switching from oxygen rich yellow anatase to oxygen vacancy rich black anatase TiO2 solar photocatalyst using Mn(ii) as `anatase phase purifier'

    NASA Astrophysics Data System (ADS)

    Ullattil, Sanjay Gopal; Periyat, Pradeepan

    2015-11-01

    Green and rapid microwave syntheses of `yellow oxygen rich' (YAT-150) and `black oxygen vacancy rich' (BAT-150) anatase TiO2 nanoparticles are reported for the first time. YAT-150 was synthesized using only titanium(iv) butoxide and water as precursors. The in situ precursor modification by Mn(ii) acetate switched anatase TiO2 from YAT-150 to BAT-150. The entry of Mn2+ into the crystal lattice of anatase TiO2 paved the way for peak texturing in the existing peak orientations along with the origin of three new anatase TiO2 peaks in the (103), (213) and (105) directions. The as synthesized ultra-small (~5 nm) yellow and black anatase TiO2 nanoparticles were found to be two fold and four fold more photoactive than the commercially available photocatalyst Degussa-P25 under sunlight illumination.Green and rapid microwave syntheses of `yellow oxygen rich' (YAT-150) and `black oxygen vacancy rich' (BAT-150) anatase TiO2 nanoparticles are reported for the first time. YAT-150 was synthesized using only titanium(iv) butoxide and water as precursors. The in situ precursor modification by Mn(ii) acetate switched anatase TiO2 from YAT-150 to BAT-150. The entry of Mn2+ into the crystal lattice of anatase TiO2 paved the way for peak texturing in the existing peak orientations along with the origin of three new anatase TiO2 peaks in the (103), (213) and (105) directions. The as synthesized ultra-small (~5 nm) yellow and black anatase TiO2 nanoparticles were found to be two fold and four fold more photoactive than the commercially available photocatalyst Degussa-P25 under sunlight illumination. Electronic supplementary information (ESI) available: Photographs of YAT-150 and BAT-150, wide range XPS and SEM images, EDX and UV-Visible absorption spectra of the degradation of methylene blue using as synthesized samples and Degussa-P25 are included. See DOI: 10.1039/c5nr05975e

  15. Facile Scalable Synthesis of TiO2/Carbon Nanohybrids with Ultrasmall TiO2 Nanoparticles Homogeneously Embedded in Carbon Matrix.

    PubMed

    Wang, Xiaoyan; Meng, Jian-Qiang; Wang, Meimei; Xiao, Ying; Liu, Rui; Xia, Yonggao; Yao, Yuan; Metwalli, Ezzeldin; Zhang, Qian; Qiu, Bao; Liu, Zhaoping; Pan, Jing; Sun, Ling-Dong; Yan, Chun-Hua; Müller-Buschbaum, Peter; Cheng, Ya-Jun

    2015-11-01

    A facile scalable synthesis of TiO2/C nanohybrids inspired by polymeric dental restorative materials has been developed, which creates ultrasmall TiO2 nanoparticles homogeneously embedded in the carbon matrix. The average size of the nanoparticles is tuned between about 1 and 5 nm with the carbon content systematically increased from 0% to 65%. Imaging analysis and a scattering technique have been applied to investigate the morphology of the TiO2 nanoparticles. The composition, nature of carbon matrix, crystallinity, and tap density of the TiO2/C nanohybrids have been studied. The application of the TiO2/C nanohybrids as lithium-ion battery anode is demonstrated. Unusual discharge/charge profiles have been exhibited, where characteristic discharge/charge plateaus of crystalline TiO2 are significantly diminished. The tap density, cyclic capacities, and rate performance at high current densities (10 C, 20 C) of the TiO2/C nanohybrid anodes have been effectively improved compared to the bare carbon anode and the TiO2/C nanohybrids with larger particle size. PMID:26465800

  16. One pot synthesis of nanosized anion doped TiO2: Effect of irradiation of sound waves on surface morphology and optical properties

    NASA Astrophysics Data System (ADS)

    Sharotri, Nidhi; Sud, Dhiraj

    2015-08-01

    Commercialization of AOP's for remediation of pollutants from environmental matrix required the process to be operated by solar light. Semiconductor TiO2 has emerged as an effective and preferred photocatalyst in the field of environmental photocatalysis due to its; (i) biological and chemical inertness (ii) resistance to chemical and photo corrosion, (iii) can absorb natural UV light due to appropriate energetic separation between its valence and conduction band. However, unfortunately the optical band gap of TiO2 (3.0-3.23 eV) with absorption cut off ˜ 380 nm, enables it to harness only a small fraction (˜ 5%) of the entire solar spectrum. One of the current areas of research is modification of TiO2 photocatalyst. In present paper one pot greener synthesis from titanium isopropoxide and hydroxylamine hydrochloride has been used as titanium and nitrogen precursor under ultrasonic waves. The as synthesized TiO2 nanomaterials were dried at 100°C and further calcinated at different temperatures. The effect of reaction parameters such as ultrasonication time on the yield, surface morphology, spectroscopic data and optical properties was also investigated. The results confirm that the anatase phase is a main phase with a crystallite size of 35-77 nm and the calculated band gap of nanomaterials varies from 2.10-3.1 eV.

  17. Production of renewable fuels by the photohydrogenation of CO2: effect of the Cu species loaded onto TiO2 photocatalysts.

    PubMed

    Chen, Bo-Ren; Nguyen, Van-Huy; Wu, Jeffrey C S; Martin, Reli; Kočí, Kamila

    2016-02-01

    The efficient gas phase photocatalytic hydrogenation of CO2 into a desirable renewable fuel was achieved using a Cu-loaded TiO2 photocatalyst system. Enhancing the amount of Ti(3+) relative to Ti(4+) in a Cu-loaded TiO2 photocatalyst provided an excellent opportunity to promote the photohydrogenation of CO2. The coexistence of Cu and Cu(+) species during the photoreaction was shown to efficiently enhance the photocatalytic activity by prolonging the lifetime of the electrons. To achieve the best photoactivity, the Cu species must be maintained at an appropriately low concentration (≤1 wt%). The highest CH4 yield obtained was 28.72 μmol g(-1). This approach opens a feasible route not only to store hydrogen by converting it into a desirable renewable fuel, but also to reduce the amount of the greenhouse gas CO2 in the atmosphere. PMID:26807649

  18. In situ plasmonic Ag nanoparticle anchored TiO2 nanotube arrays as visible-light-driven photocatalysts for enhanced water splitting

    NASA Astrophysics Data System (ADS)

    Ge, Ming-Zheng; Cao, Chun-Yan; Li, Shu-Hui; Tang, Yu-Xin; Wang, Lu-Ning; Qi, Ning; Huang, Jian-Ying; Zhang, Ke-Qin; Al-Deyab, S. S.; Lai, Yue-Kun

    2016-02-01

    An ultrasonication-assisted in situ deposition strategy was utilised to uniformly decorate plasmonic Ag nanoparticles on vertically aligned TiO2 nanotube arrays (NTAs) to construct a Ag@TiO2 NTA composite. The Ag nanoparticles act as efficient surface plasmon resonance (SPR) photosensitizers to drive photocatalytic water splitting under visible light irradiation. The Ag nanoparticles were uniformly deposited on the surface and inside the highly oriented TiO2 nanotubes. The visible-light-driven hydrogen production activities of silver nanoparticle anchored TiO2 nanotube array photocatalysts were evaluated using methanol as a sacrificial reagent in water under a 500 W Xe lamp with a UV light cutoff filter (λ >= 420 nm). It was found that the hydrogen production rate of the Ag@TiO2 NTAs prepared with ultrasonication-assisted deposition for 5 min was approximately 15 times higher than that of its pristine TiO2 NTAs counterpart. The highly efficient photocatalytic hydrogen evolution is attributed to the SPR effect of Ag for enhanced visible light absorption and boosting the photogenerated electron-hole separation/transfer. This strategy is promising for the design and construction of high efficiency TiO2 based photocatalysts for solar energy conversion.An ultrasonication-assisted in situ deposition strategy was utilised to uniformly decorate plasmonic Ag nanoparticles on vertically aligned TiO2 nanotube arrays (NTAs) to construct a Ag@TiO2 NTA composite. The Ag nanoparticles act as efficient surface plasmon resonance (SPR) photosensitizers to drive photocatalytic water splitting under visible light irradiation. The Ag nanoparticles were uniformly deposited on the surface and inside the highly oriented TiO2 nanotubes. The visible-light-driven hydrogen production activities of silver nanoparticle anchored TiO2 nanotube array photocatalysts were evaluated using methanol as a sacrificial reagent in water under a 500 W Xe lamp with a UV light cutoff filter (λ >= 420 nm). It was found that the hydrogen production rate of the Ag@TiO2 NTAs prepared with ultrasonication-assisted deposition for 5 min was approximately 15 times higher than that of its pristine TiO2 NTAs counterpart. The highly efficient photocatalytic hydrogen evolution is attributed to the SPR effect of Ag for enhanced visible light absorption and boosting the photogenerated electron-hole separation/transfer. This strategy is promising for the design and construction of high efficiency TiO2 based photocatalysts for solar energy conversion. Electronic supplementary information (ESI) available: EDS and mapping spectra of Ag@TiO2 NTAs with an ultrasonication-assisted deposition time of 5 min, the size distribution of Ag nanoparticles of Ag@TiO2 NTAs with different deposition times, SEM images and EDS spectra of TiO2 NTAs with an ultrasonication-assisted deposition time of 5 min with 5, 20, and 40 mM AgNO3, photocurrent responses and hydrogen production rate of as-prepared pure TiO2 NTAs and Ag@TiO2 NTAs with an ultrasonication-assisted deposition time of 5 min with different concentrations of AgNO3. See DOI: 10.1039/c5nr08341a

  19. Preparation and caracterization of TiO{2} powder photocatalysts. Comparative studies of photocatalytic activity in the degradation of β-naphthol

    NASA Astrophysics Data System (ADS)

    Qourzal, S.; Tamimi, M.; Assabbane, A.; Nounah, A.; Maroufi, N.; Bouamrane, A.; Ichou, Y. Ait

    2005-03-01

    Titanium dioxide TiO{2} powder photocatalysts were prepared at the laboratory by two methods: hydrolysis of titanium tetraisopropoxide (TTIP) and the precipitation of a precursor starting from titanium tetrachloride TiCl{4} in basic medium. The products obtained are calcined at temperatures around 800° C. Their characterization was carried out by both diffraction X-ray (XRD) and thermogravimetric analysis (TGA). The photocatalytic activity of the elaborate solids (TiO{2}) is evaluated. It is compared with that given for commercial TiO{2} “Degussa P-25” in the degradation of β-naphthol chosen as an model molecule in aqueous suspension. These reactions are done at room temperature in a photochemical reactor.

  20. N-doped TiO 2 photo-catalyst for the degradation of 1,2-dichloroethane under fluorescent light

    NASA Astrophysics Data System (ADS)

    Lin, Yi-Hsing; Chiu, Tang-Chun; Hsueh, Hsin-Ta; Chu, Hsin

    2011-12-01

    The photo-catalytic degradation of 1,2-dichloroethane (1, 2-DCE) using nitrogen-doped TiO2 photo-catalysts under fluorescent light irradiation was investigated. Highly pure TiO2 and nitrogen-doped TiO2 were prepared by a sol-gel method and characterized by thermo-gravimetric/differential-thermal analysis (TG/DTA), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared (FTIR) spectroscopy. The results indicate that the photo-catalysts were mainly nano-size with an anatase-phase structure. The degradation reaction of 1,2-DCE was operated under visible-light irradiation, and the photo-catalytic oxidation was conducted in a batch photo-reactor with various nitrogen doping ratios (N/Ti = 0-25 mol%). The relative humidity (RH) was controlled at 0-20% and the oxygen concentration was controlled at 0-21%. The photo-degradation with nitrogen-doped TiO2 showed superior photo-catalytic activity compared to that for pure TiO2. TiO2 doped with 15 mol% nitrogen exhibited the best photo-catalytic efficiency under the tested conditions. The products from the 1,2-DCE photo-catalytic oxidation were CO2 and water; the by-products included dichloromethane, methyl chloride, ethyl chloride, carbon monoxide, and hydrogen chloride. The reaction pathway of 1,2-DCE indicates that oxygen molecules are the major factor that causes the degradation of 1,2-DCE in the gas phase.

  1. Graphene and TiO2 co-modified flower-like Bi2O2CO3: A novel multi-heterojunction photocatalyst with enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Ao, Yanhui; Xu, Liya; Wang, Peifang; Wang, Chao; Hou, Jun; Qian, Jin; Li, Yi

    2015-11-01

    In this paper, graphene (GR) and titania co-modified flower-like Bi2O2CO3 multi-heterojunction composite photocatalysts were prepared by a simple and feasible two step hydrothermal process. The prepared samples were analyzed by X-ray diffraction (XRD) and scanning electron microscope (SEM), transmission electron microscopy (TEM), UV-vis diffuse reflectance spectrometry (DRS), photoluminescence (PL), N2 adsorption-desorption isotherm, and photo-induced current. The photocatalytic activity was investigated by the degradation of MO under UV light irradiation. The as prepared multi-heterojunction GR/Bi2O2CO3/TiO2 composites exhibited much higher photocatalytic activity than pure Bi2O2CO3, TiO2 and GR-Bi2O2CO3. The higher performance of GR/Bi2O2CO3/TiO2 can be ascribed to the formation of multi-heterojunctions, which promote the effective separation of photo-induced electron-hole pairs. Moreover, the higher photocatalytic activity can also be ascribed to the high surface area of GR and TiO2, which offers more active sites for the photodegradation reaction. Furthermore, the photocatalytic activity of GR/Bi2O2CO3/TiO2 remained without striking decrease after five cycles, which indicates the excellent stability of GR/Bi2O2CO3/TiO2 composites. This work would pave a way to the design of high efficient multi-heterojunction photocatalysts.

  2. TiO2 Fibers Supported ?-FeOOH Nanostructures as Efficient Visible Light Photocatalyst and Room Temperature Sensor.

    PubMed

    Zhu, Ting; Li Ong, Wei; Zhu, Liangliang; Wei Ho, Ghim

    2015-01-01

    Hierarchical heterostructures of beta-iron oxyhydroxide (?-FeOOH) nanostructures on electrospun TiO2 nanofibers were synthesized by a facile hydrothermal method. This synthesis method proves to be versatile to tailoring of ?-FeOOH structural design that cuts across zero-dimensional particles (TF-P), one-dimensional needles (TF-N) to two-dimensional flakes (TF-F). In addition, synthesizing such oxyhyroxide nanostructures presents the advantage of exhibiting similar functional performances to its oxides counterpart however, without the need to undergo any annealing step which leads to undesirable structural collapse or sintering. The as-prepared hierarchical heterostructures possess high surface area for dye adsorptivity, efficient charge separation and visible photocatalytic activity. Also, for the first time, hydrogen gas sensing has been demonstrated on ?-FeOOH nanostructures at room temperature. The reported hierarchical heterostructures of ?-FeOOH on TiO2 nanofibers afford multiple functions of photocatalysis and sensing which are highly promising for environment monitoring and clean up applications. PMID:26030002

  3. TiO2 Fibers Supported β-FeOOH Nanostructures as Efficient Visible Light Photocatalyst and Room Temperature Sensor

    PubMed Central

    Zhu, Ting; Li Ong, Wei; Zhu, Liangliang; Wei Ho, Ghim

    2015-01-01

    Hierarchical heterostructures of beta-iron oxyhydroxide (β-FeOOH) nanostructures on electrospun TiO2 nanofibers were synthesized by a facile hydrothermal method. This synthesis method proves to be versatile to tailoring of β-FeOOH structural design that cuts across zero-dimensional particles (TF-P), one-dimensional needles (TF-N) to two-dimensional flakes (TF-F). In addition, synthesizing such oxyhyroxide nanostructures presents the advantage of exhibiting similar functional performances to its oxides counterpart however, without the need to undergo any annealing step which leads to undesirable structural collapse or sintering. The as-prepared hierarchical heterostructures possess high surface area for dye adsorptivity, efficient charge separation and visible photocatalytic activity. Also, for the first time, hydrogen gas sensing has been demonstrated on β-FeOOH nanostructures at room temperature. The reported hierarchical heterostructures of β-FeOOH on TiO2 nanofibers afford multiple functions of photocatalysis and sensing which are highly promising for environment monitoring and clean up applications. PMID:26030002

  4. Synthesis and characterization of anionic/nonionic surfactant-interceded iron-doped TiO2 to enhance sorbent/photo-catalytic properties

    NASA Astrophysics Data System (ADS)

    Sharma, Ajit; Lee, Byeong-Kyu

    2015-09-01

    We investigated the synthesis, characterization, and application of surfactant-interceded Fe nanoparticle-doped TiO2 (TiO2/Fe-S1 and TiO2/Fe-S2) that were used as adsorbents and photo-catalysts for the removal of As(V) ions from aqueous media. Two types of surfactant (anionic (sodium dodecyl sulfate), S1 and non-ionic (Triton X-100), S2) were used to obtain the separation and mono-dispersion of Fe(III) ions in the reaction solution. The nanocomposites were characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), UV-vis, scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDX) and elemental mapping analysis before and after As(V) removal. The Langmuir capacities (qe, mg/g) of the sodium dodecyl sulfate (SDS) and Triton X-100 interceded nanocomposites (TiO2/Fe-S1 and TiO2/Fe-S2, respectively) for arsenic removal were determined to be 65.79 and 50.76 mg/g, respectively, in aqueous media with As(V) concentration ranges of 0-10 mg/L at pH 6.5.

  5. Mesoporous yolk-shell SnS2-TiO2 visible photocatalysts with enhanced activity and durability in Cr(VI) reduction.

    PubMed

    Wang, Jinguo; Li, Xinru; Li, Xi; Zhu, Jian; Li, Hexing

    2013-03-01

    A novel mesoporous yolk-shell SnS(2)-TiO(2) visible photocatalyst (ST-is) was synthesized by in situ doping TiO(2) with SnO(2) through solvothermal alcoholysis, followed by sulfurization under hydrothermal conditions. The ST-is displayed higher activity in photocatalytic reduction of Cr(VI) owing to the strong photosensitizing effect of SnS(2) in uniform nanoparticles and the enhanced light harvesting via multiple reflections in yolk-shell chambers. Meanwhile, the strong SnS(2)-TiO(2) interaction could generate more heterojunctions which facilitated photoelectron transfer from SnS(2) to TiO(2), leading to the enhanced activity by inhibiting photoelectron-hole recombination. Moreover, the ST-is displayed strong durability owing to the strong SnS(2)-TiO(2) interaction and the encapsulation of SnS(2) nanoparticles in the yolk-shell chamber, which could inhibit SnS(2) leaching. Furthermore, because of the electronegative surface and high surface area, the ST-is could thoroughly purify wastewater by completely adsorbing Cr(3+) resulting from Cr(VI) reduction. In addition, the presence of photocatalytic degradation of organic compounds promoted Cr(VI) reduction owing to inhibition of photoelectron-hole recombination by consuming holes. PMID:23348602

  6. Eco-friendly synthesis of TiO2, Au and Pt doped TiO2 nanoparticles for dye sensitized solar cell applications and evaluation of toxicity

    NASA Astrophysics Data System (ADS)

    Gopinath, K.; Kumaraguru, S.; Bhakyaraj, K.; Thirumal, S.; Arumugam, A.

    2016-04-01

    Driven by the demand of pure TiO2, Au and Pt doped TiO2 NPs were successfully synthesized using Terminalia arjuna bark extract. The eco-friendly synthesized NPs were characterized by UV-Vis-DRS, ATR-FT-IR, PL, XRD, Raman, SEM with EDX and TEM analysis. The synthesized NPs were investigation for dye sensitized solar cell applications. UV-Vis-Diffused Reflectance Spectra clearly showed that the expected TiO2 inter band absorption below 306 nm, incorporation of gold shows surface plasma resonant (SPR) near 555 nm and platinum incorporated TiO2 NPs shows absorbance at 460 nm. The energy conversion efficiency for Au doped TiO2 NPs when compared to pure and Pt doped TiO2 NPs. In addition to that, Au noble metal present TiO2 matrix and an improve open-circuit voltage (Voc) of DSSC. Synthesized NPs was evaluated into antibacterial and antifungal activities by disk diffusion method. It is observed that NPs have not shown any activities in all tested bacterial and fungal strains. In this eco-friendly synthesis method to provide non toxic and environmental friendly nanomaterials can be used for solar energy device application.

  7. Novel high potential visible-light-active photocatalyst of CNT/Mo, S-codoped TiO2 hetero-nanostructure

    NASA Astrophysics Data System (ADS)

    Hamadanian, M.; Shamshiri, M.; Jabbari, V.

    2014-10-01

    The current study deals with synthesize of novel nanophotocatalysts of CNT/Mo,S-codoped TiO2 by reacting between titanium isopropoxide (Ti(OC3H7)4) and CNT in aqueous ammonia and subsequent calcining of hydrolysis of the products. The prepared catalysts were characterized by N2 adsorption-desorption measurements, XRD, SEM, TEM, EDX, FT-IR, and UV-vis DRS spectroscopy. SEM and TEM images exhibited uniform coverage of CNT with anatase TiO2 nanoclusters. It was also demonstrated that the presence of S and Mo within the TiO2 acts as electrons traps and prevents the charge recombination and also enables the TiO2 photocatalyst to be active in visible-light region. Moreover, the CNT/Mo,S-doped TiO2 nanohybrids has been proven to has a excellent photocatalytic performance in photodecomposition of Congored (CR), at which the rate of decomposition reaches 100% in only 20 and 30 min under UV and visible-light irradiation, respectively. The enhanced photocatalytic activity was ascribed to the synergetic effects of excellent electrical property of CNT and metal-non-metal codoping. Finally, which to best of our knowledge is done for the first time, we have demonstrated that Mo- and S-doped TiO2 decorated over CNT, or CNT/Mo,S-codoped TiO2, may have high potential applications in photocatalysis and environmental protection with superior catalytic activity under visible-light illumination.

  8. Synthesis of TiO 2 rutile nanoparticles by PLA in solution

    NASA Astrophysics Data System (ADS)

    Caratto, V.; Ferretti, M.; Setti, L.

    2012-01-01

    This paper describes the synthesis of TiO2 nanoparticles by laser ablation in solution synthesis (Lasis). The laser excimer beam passes through a focusing lens and it is sent to the reaction chamber. The frequency used during the synthesis was 20 Hz, intensity 26 kV The metal ablated by the laser beam undergoes an oxidation process resulting from the reaction with water. We obtain TiO2 nanoparticles with average size of 6.5 nm, crystallized in the rutile structure. The crystallographic and morphological structure was studied by transmission electron microscopy.

  9. Mussel-Directed Synthesis of Nitrogen-Doped Anatase TiO2.

    PubMed

    Xie, Jingjing; Xie, Hao; Su, Bao-Lian; Cheng, Yi-Bing; Du, Xiaodong; Zeng, Hui; Wang, Menghu; Wang, Weimin; Wang, Hao; Fu, Zhengyi

    2016-02-01

    Structure-forming processes leading to biominerals are well worth learning in pursuit of new synthetic techniques. Strategies that attempt to mimic nature in vitro cannot replace an entire complex natural organism, requiring ingenuity beyond chemists' hands. A "bioprocess-inspired synthesis" is demonstrated for fabrication of N-doped TiO2 materials at ambient temperature by direct implantation of precursor into living mussels. The amorphous precursor transforms into N-doped anatase TiO2 with a hierarchical nanostructure. Synthetic TiO2 exhibits high phase stability and enhanced visible-light photocatalytic activity as a result of modifications to its band gap during in vivo mineralization. Intracellular proteins were found to be involved in TiO2 mineralization. Our findings may inspire material production by new synthetic techniques, especially under environmentally benign conditions. PMID:26822893

  10. Mesoporous yolk-shell SnS2-TiO2 visible photocatalysts with enhanced activity and durability in Cr(vi) reduction

    NASA Astrophysics Data System (ADS)

    Wang, Jinguo; Li, Xinru; Li, Xi; Zhu, Jian; Li, Hexing

    2013-02-01

    A novel mesoporous yolk-shell SnS2-TiO2 visible photocatalyst (ST-is) was synthesized by in situ doping TiO2 with SnO2 through solvothermal alcoholysis, followed by sulfurization under hydrothermal conditions. The ST-is displayed higher activity in photocatalytic reduction of Cr(vi) owing to the strong photosensitizing effect of SnS2 in uniform nanoparticles and the enhanced light harvesting via multiple reflections in yolk-shell chambers. Meanwhile, the strong SnS2-TiO2 interaction could generate more heterojunctions which facilitated photoelectron transfer from SnS2 to TiO2, leading to the enhanced activity by inhibiting photoelectron-hole recombination. Moreover, the ST-is displayed strong durability owing to the strong SnS2-TiO2 interaction and the encapsulation of SnS2 nanoparticles in the yolk-shell chamber, which could inhibit SnS2 leaching. Furthermore, because of the electronegative surface and high surface area, the ST-is could thoroughly purify wastewater by completely adsorbing Cr3+ resulting from Cr(vi) reduction. In addition, the presence of photocatalytic degradation of organic compounds promoted Cr(vi) reduction owing to inhibition of photoelectron-hole recombination by consuming holes.A novel mesoporous yolk-shell SnS2-TiO2 visible photocatalyst (ST-is) was synthesized by in situ doping TiO2 with SnO2 through solvothermal alcoholysis, followed by sulfurization under hydrothermal conditions. The ST-is displayed higher activity in photocatalytic reduction of Cr(vi) owing to the strong photosensitizing effect of SnS2 in uniform nanoparticles and the enhanced light harvesting via multiple reflections in yolk-shell chambers. Meanwhile, the strong SnS2-TiO2 interaction could generate more heterojunctions which facilitated photoelectron transfer from SnS2 to TiO2, leading to the enhanced activity by inhibiting photoelectron-hole recombination. Moreover, the ST-is displayed strong durability owing to the strong SnS2-TiO2 interaction and the encapsulation of SnS2 nanoparticles in the yolk-shell chamber, which could inhibit SnS2 leaching. Furthermore, because of the electronegative surface and high surface area, the ST-is could thoroughly purify wastewater by completely adsorbing Cr3+ resulting from Cr(vi) reduction. In addition, the presence of photocatalytic degradation of organic compounds promoted Cr(vi) reduction owing to inhibition of photoelectron-hole recombination by consuming holes. Electronic supplementary information (ESI) available: Details of the FESEM images, TEM images, N2 adsorption-desorption isotherms, FTIR spectra, XRD patterns, XPS spectra, zeta-potential test, Mott-Schottky plots, and the schematic illustration of the charge separation in SnS2-TiO2 photocatalysts under visible light irradiation. See DOI: 10.1039/c2nr33755j

  11. Nanostructured AgBr loaded TiO2: An efficient sunlight active photocatalyst for degradation of Reactive Red 120

    PubMed Central

    2011-01-01

    The AgBr loaded TiO2 catalyst was prepared by a feasible approach with AgBr and tetraisopropyl orthotitanate and characterized by BET surface area measurement, diffuse reflectance spectra (DRS), scanning electron microscope (SEM), energy dispersive spectra (EDS), X-ray diffraction (XRD), transmission electron microscope (TEM) and atomic force microscope (AFM) analysis. The results of characterization reveal that AgBr loaded TiO2 has a nanostructure. Formation of the nanostructure in AgBr loaded TiO2 results in substantial shifting of the absorption edge of TiO2 to red and enhancement of visible light absorption. Electrochemical impedance spectroscopy measurements reveal that AgBr loaded TiO2 has a higher photoconductivity than prepared TiO2 due to higher separation efficiency of electron-hole pairs. Cyclic voltammetric studies reveal enhanced conductivity in AgBr loaded TiO2, which causes an increase in its photocatalytic activity. AgBr loaded TiO2 exhibited a higher photocatalytic activity than TiO2-P25 and prepared TiO2 in the photodegradation of Reactive Red 120 (RR 120). PMID:21801445

  12. Gold and gold-palladium alloy nanoparticles on heterostructured TiO2 nanobelts as plasmonic photocatalysts for benzyl alcohol oxidation

    NASA Astrophysics Data System (ADS)

    Jiang, Tongtong; Jia, Chuancheng; Zhang, Lanchun; He, Shuren; Sang, Yuanhua; Li, Haidong; Li, Yanqing; Xu, Xiaohong; Liu, Hong

    2014-11-01

    Plasmonic photocatalysts composed of Au and bimetallic Au-Pd alloy nanoparticles (NPs) on one-dimensional TiO2 nanobelts (TiO2-NBs) were used for the aerobic oxidation of benzyl alcohol under visible light irradiation. Remarkable light-promoted activity was observed for the as-synthesized M/TiO2-NB (M = Au, Au-Pd) nanostructures based on the TiO2(B)/anatase heterostructured nanobelt. The difference in band structure and the well matched interface between the TiO2(B) and anatase phases, coupled with the one-dimensional nanostructure, enable an enhanced charge transfer within the heterostructured nanobelt. This inter-phase charge transfer greatly facilitates the flow of hot electrons from the metal NPs to TiO2 and promotes benzyl alcohol oxidation. This efficient electron transfer was identified by the much higher photocurrent response measured for the Au/TiO2-NB nanostructure with the TiO2(B)/anatase heterojunction than those with either of the single phases under visible light irradiation. Alloying Au with Pd in Au-Pd/TiO2-NB results in a significant improvement in the visible light-promoted activity compared to the monometallic Au/TiO2-NB sample. It is supposed that the plasmon-mediated charge distribution within the alloy NPs is mainly responsible for the enhanced photocatalytic activity of the bimetallic nanostructures.Plasmonic photocatalysts composed of Au and bimetallic Au-Pd alloy nanoparticles (NPs) on one-dimensional TiO2 nanobelts (TiO2-NBs) were used for the aerobic oxidation of benzyl alcohol under visible light irradiation. Remarkable light-promoted activity was observed for the as-synthesized M/TiO2-NB (M = Au, Au-Pd) nanostructures based on the TiO2(B)/anatase heterostructured nanobelt. The difference in band structure and the well matched interface between the TiO2(B) and anatase phases, coupled with the one-dimensional nanostructure, enable an enhanced charge transfer within the heterostructured nanobelt. This inter-phase charge transfer greatly facilitates the flow of hot electrons from the metal NPs to TiO2 and promotes benzyl alcohol oxidation. This efficient electron transfer was identified by the much higher photocurrent response measured for the Au/TiO2-NB nanostructure with the TiO2(B)/anatase heterojunction than those with either of the single phases under visible light irradiation. Alloying Au with Pd in Au-Pd/TiO2-NB results in a significant improvement in the visible light-promoted activity compared to the monometallic Au/TiO2-NB sample. It is supposed that the plasmon-mediated charge distribution within the alloy NPs is mainly responsible for the enhanced photocatalytic activity of the bimetallic nanostructures. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr05905k

  13. Preparation of nanostructured TiO2-based photocatalyst by controlling the calcining temperature and pH

    NASA Astrophysics Data System (ADS)

    Uddin, Mohammed Jasim; Islam, Md Akhtarul; Haque, Sheikh Ariful; Hasan, Saidul; Amin, Mohammad Shaiful Alam; Rahman, Mohammed Mastabur

    2012-08-01

    Nanostructured TiO2 has been synthesized using one-step sol-gel method and characterized by different characterization techniques (SEM, EDS, XRD, and UV-vis spectroscopy). The photocatalytic degradation of methylene blue (MB) and Congo red (CR) is studied with the synthesized TiO2. The photocatalytic degradation data has been validated using several kinetic models. The TiO2 showed efficient photocatalytic degradation performance on MB and CR. In addition to this, the effect of pH on the photocatalytic degradation has been investigated. The TiO2 showed enhanced photocatalytic performance in basic media than that in neutral or acidic ones.

  14. Highly efficient and stable Au/CeO2-TiO2 photocatalyst for nitric oxide abatement: potential application in flue gas treatment.

    PubMed

    Zhu, Wei; Xiao, Shuning; Zhang, Dieqing; Liu, Peijue; Zhou, Hongjun; Dai, Wenrui; Liu, Fanfan; Li, Hexing

    2015-10-01

    In the present work, highly efficient and stable Au/CeO2-TiO2 photocatalysts were prepared by a microwave-assisted solution approach. The Au/CeO2-TiO2 composites with optimal molar ratio of Au/Ce/Ti of 0.004:0.1:1 delivered a remarkably high and stable NO conversion rate of 85% in a continuous flow reactor system under simulated solar light irradiation, which far exceeded the rate of 48% over pure TiO2. The tiny Au nanocrystals (∼1.1 nm) were well stabilized by CeO2 via strong metal-support bonding even it was subjected to calcinations at 550 °C for 6 h. These Au nanocrystals served as the very active sites for activating the molecule of nitric oxide and reducing the transmission time of the photogenerated electrons to accelerate O2 transforming to reactive oxygen species. Moreover, the Au-Ce(3+) interface formed and served as an anchoring site of O2 molecule. Then more adsorbed oxygen could react with photogenerated electrons on TiO2 surfaces to produce more superoxide radicals for NO oxidation, resulting in the improved efficiency. Meanwhile, O2 was also captured at the Au/TiO2 perimeter site and the NO molecules on TiO2 sites were initially delivered to the active perimeter site via diffusion on the TiO2 surface, where they assisted O-O bond dissociation and reacted with oxygen at these perimeter sites. Therefore, these finite Au nanocrystals can consecutively expose active sites for oxidizing NO. These synergistic effects created an efficient and stable system for breaking down NO pollutants. Furthermore, the excellent antisintering property of the catalyst will allow them for the potential application in photocatalytic treatment of high-temperature flue gas from power plant. PMID:26390086

  15. Hydrothermal synthesis spherical TiO2 and its photo-degradation property on salicylic acid

    NASA Astrophysics Data System (ADS)

    Guo, Wenlu; Liu, Xiaolin; Huo, Pengwei; Gao, Xun; Wu, Di; Lu, Ziyang; Yan, Yongsheng

    2012-07-01

    Anatase TiO2 spheres have been prepared using hydrothermal synthesis. The prepared spheres were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and UV-vis diffuse reflectance spectra (UV-vis DRS). The TiO2 consisted of well-defined spheres with size of 3-5 ?m. The photocatalytic activity of spherical TiO2 was determined by degradation of salicylic acid under visible light irradiation. It was revealed that the degradation rate of the spherical TiO2 which was processed at 150 C for 48 h could reach 81.758%. And the kinetics of photocatalytic degradation obeyed first-order kinetic, which the rate constant value was 0.01716 S-1 of the salicylic acid onto TiO2 (temperature: 150, time: 48 h). The kinetics of adsorption followed the pseudo-second-order model and the rate constant was 1.2695 g mg-1 of the salicylic acid onto TiO2 (temperature: 150, time: 48 h).

  16. Surface chemical analysis on the carbon-doped mesoporous TiO2 photocatalysts after post-thermal treatment: XPS and FTIR characterization

    NASA Astrophysics Data System (ADS)

    He, Zuoli; Que, Wenxiu; Chen, Jing; He, Yucheng; Wang, Gangfeng

    2013-07-01

    Mesoporous carbon-doped TiO2 nanoparticle was prepared by combining a hydrothermal process with a post-thermal treatment, where glucose was used as a carbon-doping source. Physicochemical properties of the carbon-doped TiO2 nanoparticle were characterized by X-ray diffraction, Scanning electron microscopy, Transmission electron microscopy, X-ray photoelectron spectroscopy, Fourier transform-infrared spectroscopy, and N2 adsorption/desorption. Results indicate that post-thermal treatment of the carbon-doped TiO2 has not only little influence on the crystal size but also can increase the specific surface area and the pore volume slightly, Also a slightly increase of the specific surface area and the pore volume of the sample was due to the removing of carbonaceous organic materials during post-thermal process. And the post-thermal treatment is an effective and facile method to change the surface chemical structure of the carbon-doped TiO2 for using as photocatalysts.

  17. Enhanced photocatalytic activities of the heterostructured upconversion photocatalysts with cotton mediated on TiO2/ZnWO4:Yb3+,Tm3.

    PubMed

    Feng, Kaili; Huang, Shouqiang; Lou, Ziyang; Zhu, Nanwen; Yuan, Haiping

    2015-08-14

    To improve the photocatalytic efficiency and make full use of solar energy, ZnWO(4):Yb(3+),Tm(3+) (ZYT) was introduced as the upconversion luminescence agent on TiO(2) with a cotton template, and novel upconversion photocatalysts of TiO(2)/ZnWO(4):Yb(3+),Tm(3+) (TZYT-C) were synthesized and optimized with 5%-30% of ZYT. The heterostructure between ZYT and TiO(2) was formed in the TZYT-C composites with the presence of tube-like morphologies due to the addition of the cotton template. UV (364 nm) and blue (484 nm) light was emitted from ZYT upon 980 nm NIR irradiation. The BET specific surface areas of all the TZYT-C composites increased from 37 m(2) g(-1) (TiO(2)-C) to the maximum value of 75 m(2) g(-1) on 5%TZYT-C. The photocatalytic activities of the TZYT-C composites were tested using the degradation process of methyl orange (MO). 5%TZYT-C showed the highest degradation efficiency, with a value of 55.6% under sun-like irradiation for 210 min. The same performance was observed on 5%TZYT-C under NIR (λ ≥ 780 nm) irradiation, with a maximum removal rate of 9.02%, since 5%TZYT-C showed the most efficient electron-hole (e(-)/h(+)) pair separation, compared to ZYT and other TZYT-C composites. PMID:26150279

  18. Preparation and characterization of Zr-N-codoped TiO2 nano-photocatalyst and its activity enhanced-mechanism.

    PubMed

    Du, Fengwei; Yu, Shuyu

    2014-09-01

    Zr-N-codoped TiO2 nano-photocatalyst was prepared through sol-gel method using ammonia water and zirconium nitrate as the source of N and Zr, respectively. The resulting materials were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and ultraviolet-visible diffuse reflectance spectroscopy (UV-vis DRS). XRD results showed that codoping with Zr and N elements could greatly inhibit the phase transformation of TiO2 from anatase to rutile. XPS analysis indicated that Zr4+ was incorporated into the lattice of TiO2 through substituting titanium atoms. Meanwhile, N was also incorporated into the lattice of TiO2 through substituting oxygen atoms and existed in the form of N-Ti-O. DRS revealed that the light absorption edge of Zr-N-TiO2 was significantly red-shifted to visible region, leading to a narrower band gap and higher visible photocatalytic activity. The enhanced visible activity was attributed to the well anatase crystallite, intense light absorbance in visible region and narrow band gap. PMID:25924356

  19. SiH/TiO2 and GeH/TiO2 Heterojunctions: Promising TiO2-based Photocatalysts under Visible Light

    NASA Astrophysics Data System (ADS)

    Niu, Mang; Cheng, Daojian; Cao, Dapeng

    2014-05-01

    We use hybrid density functional calculations to find that the monolayer silicane (SiH) and the anatase TiO2(101) composite (i.e. the SiH/TiO2 heterojunction) is a promising TiO2-based photocatalyst under visible light. The band gap of the SiH/TiO2(101) heterojunction is 2.082 eV, which is an ideal material for the visible-light photoexcitation of electron-hole pairs. Furthermore, the SiH/TiO2(101) heterojunction has a favorable type-II band alignment and thus the photoexcited electron can be injected to the conduction band of anatase TiO2 from that of silicane. Finally, the proper interface charge distribution facilitates the carrier separation in the SiH/TiO2(101) interface region. The electron injection and carrier separation can prevent the recombination of electron-hole pairs. Our calculation results suggest that such electronic structure of SiH/TiO2(101) heterojunction has significant advantages over these of doped TiO2 systems for visible-light photocatalysis.

  20. SiH/TiO2 and GeH/TiO2 Heterojunctions: Promising TiO2-based Photocatalysts under Visible Light

    PubMed Central

    Niu, Mang; Cheng, Daojian; Cao, Dapeng

    2014-01-01

    We use hybrid density functional calculations to find that the monolayer silicane (SiH) and the anatase TiO2(101) composite (i.e. the SiH/TiO2 heterojunction) is a promising TiO2-based photocatalyst under visible light. The band gap of the SiH/TiO2(101) heterojunction is 2.082?eV, which is an ideal material for the visible-light photoexcitation of electron-hole pairs. Furthermore, the SiH/TiO2(101) heterojunction has a favorable type-II band alignment and thus the photoexcited electron can be injected to the conduction band of anatase TiO2 from that of silicane. Finally, the proper interface charge distribution facilitates the carrier separation in the SiH/TiO2(101) interface region. The electron injection and carrier separation can prevent the recombination of electron-hole pairs. Our calculation results suggest that such electronic structure of SiH/TiO2(101) heterojunction has significant advantages over these of doped TiO2 systems for visible-light photocatalysis. PMID:24787027

  1. Simple preparation of Mn-N-codoped TiO2 photocatalyst and the enhanced photocatalytic activity under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Quan, Feng; Hu, Yun; Zhang, Xia; Wei, Chaohai

    2014-11-01

    Mn-N-codoped TiO2 nanocrystal photocatalysts responsive to visible light were synthesized by a simple sol-gel method and calcined at different temperatures. The catalysts with different Mn contents were characterized by XRD, BET, UV-vis DRS, XPS and ESR analyses and their photocatalytic activities for Rhodamine B degradation were studied under visible light irradiation. The results showed that the codoping of Mn and N ions inhibited the growth of crystalline size and the transformation from anatase to rutile phase. The XPS results showed that the introduction of a small amount of Mn facilitated further N uptake. Mn-TiO2 and Mn-N-TiO2 exhibited strong visible light absorptions at 400-650 nm. Mn-TiO2 showed significant photocatalytic activity under visible light irradiation compared to pure TiO2, and the activity was further enhanced by codoping Mn and N into TiO2. The highest photocatalytic activity was achieved on 0.25%Mn-N-TiO2 calcined at 400 °C. The synergistic effect of Mn and N ions narrowed the band gap of TiO2 and inhibited the recombination of the photogenerated electrons and holes, leading to a great improvement in the photocatalytic activity in the visible light region.

  2. Pulsed-laser-deposited TiO2 nanocrystalline films supporting Au nanoparticles for visible-light-operating plasmonic photocatalysts

    NASA Astrophysics Data System (ADS)

    Yoshida, Takehito; Watanabe, Tei; Kikuchi, Fumito; Tabuchi, Takeru; Umezu, Ikurou; Haraguchi, Masanobu

    2016-05-01

    We have synthesized pulsed-laser-deposited (PLD) TiO2 nanocrystalline films supporting Au nanoparticles. Au films were deposited on the PLD TiO2 nanocrystalline films with the mass thickness of 4 nm. The as-deposited Au films had island structures. After furnace annealing at 300 °C for 180 min in air, the as-deposited island-structured Au films were balled with the mean diameter of 19 nm on the PLD TiO2 nanocrystalline films. We confirmed that the balled Au nanoparticles had the localized surface plasmonic resonance absorption band in the range of 510-600 nm. Photocatalytic activities of the Au-supporting TiO2 nanocrystalline films were evaluated by a methylene blue decomposition method. We clarified that the Au-supporting TiO2 nanocrystalline films demonstrated visible-light-driven photocatalytic activities, under the filtered (490-500 nm) Xe arc lamp irradiation.

  3. TiO2 doped with nitrogen: synthesis and characterization.

    PubMed

    Abazović, Nadica D; Montone, Amelia; Mirenghi, Luciana; Janković, Ivana A; Comor, Mirjana I

    2008-02-01

    In this study, nitrogen-doped titanium dioxide (TiO2) powders were synthesized in two ways: by heating of titanium hydroxide with urea and by direct hydrolysis of titanium tetraisopropoxide (TTIP) with ammonium hydroxide. The samples were characterized by structural (XRD), analytical (XPS), optical (UV/Vis absorption/reflection and Raman spectroscopy) and morphological (SEM, TEM) techniques. The characterization suggested that the doped materials have anatase crystalline form without any detectable peaks that correspond to dopants. The absorption threshold of titanium dioxide was moved in the visible range of optical spectrum from 3.2 eV to 2.20 eV. Particle sizes of synthesized powders were obtained from XRD measurements and from TEM data ranging from 6-20 nm. XPS and Raman spectroscopy were used for detection of nitrogen in doped samples. PMID:18464379

  4. A novel route for the production of TiO2 photocatalysts with low energy gap, via Triton-X and oleic acid surfactants

    NASA Astrophysics Data System (ADS)

    Athanasiou, A.; Mitsionis, A.; Vaimakis, T.; Pomonis, P.; Petrakis, D.; Loukatzikou, L.; Todorova, N.; Trapalis, C.; Ladas, S.

    2014-11-01

    Mesoporous anatase TiO2 photocatalysts with high specific surface area between 70 and 110 m2/g were prepared via a novel sol-gel technique using surfactants oleic acid and Triton-X in the presence or absence of diethanolamine. Titania materials showed increased photocatalytic performance in UV light. The production of active species seem to be high enough to perform the degradation of methylene blue dye solution in low catalyst concentration; and a relatively high efficiency in NO oxidation in gaseous phase. All materials prepared showed high photocatalytic activity and degradation efficiency similar or higher compared to commercial Degussa P25 material.

  5. Synthesis and characterization of TiO2 loaded cashew nut shell activated carbon and photocatalytic activity on BG and MB dyes under sunlight radiation.

    PubMed

    Ragupathy, S; Raghu, K; Prabu, P

    2015-03-01

    Synthesis of titanium dioxide (TiO2) nanoparticles and TiO2 loaded cashew nut shell activated carbon (TiO2/CNSAC) had been undertaken using sol-gel method and their application in BG and MB dyes removal under sunlight radiation has been investigated. The synthesized photocatalysts were characterized by X-ray diffraction analysis (XRD), Fourier infra-red spectroscopy (FT-IR), UV-Vis-diffuse reflectance spectroscopy (DRS) and scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDX). The various experimental parameters like amount of catalyst, contact time for efficient dyes degradation of BG and MB were concerned in this study. Activity measurements performed under solar irradiation has shown good results for the photodegradation of BG and MB in aqueous solution. It was concluded that the higher photocatalytic activity in TiO2/CNSAC was due to parameters like band-gap, number of hydroxyl groups, surface area and porosity of the catalyst. The kinetic data were also described by the pseudo-first-order and pseudo-second-order kinetic models. PMID:25506648

  6. Synthesis and characterization of TiO2 loaded cashew nut shell activated carbon and photocatalytic activity on BG and MB dyes under sunlight radiation

    NASA Astrophysics Data System (ADS)

    Ragupathy, S.; Raghu, K.; Prabu, P.

    2015-03-01

    Synthesis of titanium dioxide (TiO2) nanoparticles and TiO2 loaded cashew nut shell activated carbon (TiO2/CNSAC) had been undertaken using sol-gel method and their application in BG and MB dyes removal under sunlight radiation has been investigated. The synthesized photocatalysts were characterized by X-ray diffraction analysis (XRD), Fourier infra-red spectroscopy (FT-IR), UV-Vis-diffuse reflectance spectroscopy (DRS) and scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDX). The various experimental parameters like amount of catalyst, contact time for efficient dyes degradation of BG and MB were concerned in this study. Activity measurements performed under solar irradiation has shown good results for the photodegradation of BG and MB in aqueous solution. It was concluded that the higher photocatalytic activity in TiO2/CNSAC was due to parameters like band-gap, number of hydroxyl groups, surface area and porosity of the catalyst. The kinetic data were also described by the pseudo-first-order and pseudo-second-order kinetic models.

  7. Efficient photocatalytic degradation of organic pollutants by magnetically recoverable nitrogen-doped TiO2 nanocomposite photocatalysts under visible light irradiation.

    PubMed

    Hamzezadeh-Nakhjavani, Sahar; Tavakoli, Omid; Akhlaghi, Seyed Parham; Salehi, Zeinab; Esmailnejad-Ahranjani, Parvaneh; Arpanaei, Ayyoob

    2015-12-01

    Preparation of novel nanocomposite particles (NCPs) with high visible-light-driven photocatalytic activity and possessing recovery potential after advanced oxidation process (AOP) is much desired. In this study, pure anatase phase titania (TiO2) nanoparticles (NPs) as well as three types of NCPs including nitrogen-doped titania (TiO2-N), titania-coated magnetic silica (Fe3O4 cluster@SiO2@TiO2 (FST)), and a novel magnetically recoverable TiO2 nanocomposite photocatalyst containing nitrogen element (Fe3O4 cluster@SiO2@TiO2-N (FST-N)) were successfully synthesized via a sol-gel process. The photocatalysts were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, field emission scanning electron microscopy (FE-SEM) with an energy-dispersive X-ray (EDX) spectroscopy analysis, X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (DRS), and vibrating sample magnetometer (VSM). The photocatalytic activity of as-prepared samples was further investigated and compared with each other by degradation of phenol, as a model for the organic pollutants, in deionized (DI) water under visible light irradiation. The TiO2-N (55 ± 1.5%) and FST-N (46 ± 1.5%) samples exhibited efficient photocatalytic activity in terms of phenol degradation under visible light irradiation, while undoped samples were almost inactive under same operating conditions. Moreover, the effects of key operational parameters, the optimum sample calcination temperature, and reusability of FST-N NCPs were evaluated. Under optimum conditions (calcination temperature of 400 °C and near-neutral reaction medium), the obtained results revealed efficient degradation of phenol for FST-N NCPs under visible light irradiation (46 ± 1.5%), high yield magnetic separation and efficient reusability of FST-N NCPs (88.88% of its initial value) over 10 times reuse. PMID:26206125

  8. Controlled synthesis and photocatalysis of sea urchin-like Fe3O4@TiO2@Ag nanocomposites

    NASA Astrophysics Data System (ADS)

    Zhao, Yilin; Tao, Chengran; Xiao, Gang; Wei, Guipeng; Li, Linghui; Liu, Changxia; Su, Haijia

    2016-02-01

    Based on the synergistic photocatalytic activities of nano-sized TiO2 and Ag, as well as the magnetic properties of Fe3O4, a sea urchin-like Fe3O4@TiO2@Ag nanocomposite (Fe3O4@TiO2@Ag NCs) is controllably synthesized with tunable cavity size, adjustable shell layer of TiO2 nanofiber, higher structural stability and larger specific surface area. Here, Fe3O4@TiO2@Ag NCs are obtained with Fe3O4 as the core and nanofiber TiO2/Fe3O4/Ag nanoheterojunctions as the shell; and Ag nanoparticles with diameter of approximately 4 nm are loaded both on TiO2 nanofibers and inside the cavities of sea urchin-like Fe3O4@TiO2 nanocomposites uniformly. Ag nanoparticles lead to the production of more photogenerated charges in the TiO2/Fe3O4/Ag heterojunction via LSPR absorption, and enhance the band-gap absorption of TiO2, while the Fe3O4 cocatalyst provides the active sites for oxygen reduction by the effective transfer of photogenerated electrons to oxygen. So the photocatalytic performance is improved due to the synergistic effect of TiO2/Fe3O4/Ag nanoheterojunctions. As photocatalysts under UV and visible irradiation, the as-synthesized nanocomposites display enhanced photocatalytic and recycling properties for the degradation of ampicillin. Moreover, they present better broad-spectrum antibiosis under visible irradiation. The enhanced photocatalytic activity and excellent chemical stability, in combination with the magnetic recyclability, makes this multifunctional nanostructure a promising candidate for antibiosis and remediation in aquatic environmental contamination in the future.Based on the synergistic photocatalytic activities of nano-sized TiO2 and Ag, as well as the magnetic properties of Fe3O4, a sea urchin-like Fe3O4@TiO2@Ag nanocomposite (Fe3O4@TiO2@Ag NCs) is controllably synthesized with tunable cavity size, adjustable shell layer of TiO2 nanofiber, higher structural stability and larger specific surface area. Here, Fe3O4@TiO2@Ag NCs are obtained with Fe3O4 as the core and nanofiber TiO2/Fe3O4/Ag nanoheterojunctions as the shell; and Ag nanoparticles with diameter of approximately 4 nm are loaded both on TiO2 nanofibers and inside the cavities of sea urchin-like Fe3O4@TiO2 nanocomposites uniformly. Ag nanoparticles lead to the production of more photogenerated charges in the TiO2/Fe3O4/Ag heterojunction via LSPR absorption, and enhance the band-gap absorption of TiO2, while the Fe3O4 cocatalyst provides the active sites for oxygen reduction by the effective transfer of photogenerated electrons to oxygen. So the photocatalytic performance is improved due to the synergistic effect of TiO2/Fe3O4/Ag nanoheterojunctions. As photocatalysts under UV and visible irradiation, the as-synthesized nanocomposites display enhanced photocatalytic and recycling properties for the degradation of ampicillin. Moreover, they present better broad-spectrum antibiosis under visible irradiation. The enhanced photocatalytic activity and excellent chemical stability, in combination with the magnetic recyclability, makes this multifunctional nanostructure a promising candidate for antibiosis and remediation in aquatic environmental contamination in the future. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08624h

  9. Controlled synthesis and photocatalysis of sea urchin-like Fe3O4@TiO2@Ag nanocomposites.

    PubMed

    Zhao, Yilin; Tao, Chengran; Xiao, Gang; Wei, Guipeng; Li, Linghui; Liu, Changxia; Su, Haijia

    2016-02-25

    Based on the synergistic photocatalytic activities of nano-sized TiO2 and Ag, as well as the magnetic properties of Fe3O4, a sea urchin-like Fe3O4@TiO2@Ag nanocomposite (Fe3O4@TiO2@Ag NCs) is controllably synthesized with tunable cavity size, adjustable shell layer of TiO2 nanofiber, higher structural stability and larger specific surface area. Here, Fe3O4@TiO2@Ag NCs are obtained with Fe3O4 as the core and nanofiber TiO2/Fe3O4/Ag nanoheterojunctions as the shell; and Ag nanoparticles with diameter of approximately 4 nm are loaded both on TiO2 nanofibers and inside the cavities of sea urchin-like Fe3O4@TiO2 nanocomposites uniformly. Ag nanoparticles lead to the production of more photogenerated charges in the TiO2/Fe3O4/Ag heterojunction via LSPR absorption, and enhance the band-gap absorption of TiO2, while the Fe3O4 cocatalyst provides the active sites for oxygen reduction by the effective transfer of photogenerated electrons to oxygen. So the photocatalytic performance is improved due to the synergistic effect of TiO2/Fe3O4/Ag nanoheterojunctions. As photocatalysts under UV and visible irradiation, the as-synthesized nanocomposites display enhanced photocatalytic and recycling properties for the degradation of ampicillin. Moreover, they present better broad-spectrum antibiosis under visible irradiation. The enhanced photocatalytic activity and excellent chemical stability, in combination with the magnetic recyclability, makes this multifunctional nanostructure a promising candidate for antibiosis and remediation in aquatic environmental contamination in the future. PMID:26884248

  10. Synthesis of Ultrafine and Crystallized TiO2 by Alkoxide Free Polymerizable Precursor Method

    NASA Astrophysics Data System (ADS)

    Vijayakumar, M.; Crosnier-Lopez, M.-P.; Bohnke, Claude; Bohnke, Odile

    2006-06-01

    The fine powder of TiO2 has been synthesized by totally alkoxide free sol gel method. The ammonium citratoperoxotitanate (IV) has been synthesized and used as molecular precursor which is highly stable in air. This starting precursor allows us to avoid the use of titanium alkoxide or titanium tetrachloride, which are extensively reported in literature. The synthesis has been carried out in ambient atmospheric conditions. The modified polymerizable precursor method has been adopted for the sol gel chemistry of TiO2. The final powder precursor has been analysed by thermal analysis (TG and DTA) to explore the thermal kinetics. The X-ray diffraction analysis through Rietvield method confirms that the final product is highly pure rutile TiO2 powder. The laser granulometry and SEM analysis show the agglomeration of fine particles with size in the order of 200 nm.

  11. Synthesis and Characterization of Photocatalytic TiO 2 -ZnFe 2 O 4 Nanoparticles

    DOE PAGESBeta

    Srinivasan, Sesha S.; Wade, Jeremy; Stefanakos, Elias K.

    2006-01-01

    A new coprecipimore » tation/hydrolysis synthesis route is used to create a TiO 2 -ZnFe 2 O 4 nanocomposite that is directed towards extending the photoresponse of TiO 2 from UV to visible wavelengths ( > 400   nm ). The effect of TiO 2 's accelerated anatase-rutile phase transformation due to the presence of the coupled ZnFe 2 O 4 narrow-bandgap semiconductor is evaluated. The transformation's dependence on pH, calcinations temperature, particle size, and ZnFe 2 O 4 concentration has been analyzed using XRD, SEM, and UV-visible spectrometry. The requirements for retaining the highly photoactive anatase phase present in a ZnFe 2 O 4 nanocomposite are outlined. The visible-light-activated photocatalytic activity of the TiO 2 -ZnFe 2 O 4 nanocomposites has been compared to an Aldrich TiO 2 reference catalyst, using a solar-simulated photoreactor for the degradation of phenol.« less

  12. Effect of the Method of Synthesis in the Photoactivity of TiO2-Co and TiO2-CoCe Materials.

    PubMed

    Mantilla, Angeles; Valverde-Aguilar, Guadalupe; Suarez, Víctor; Navarro-Cerón, Elizabeth; Rodríguez, Rodrigo; Tzompantzi, Francisco; Morales-Mendoza, Getsemaní

    2015-09-01

    Cobalt modified TiO2 and cobalt-cerium modified TiO2 were synthesized by sol gel technique using two different routes. In the first case the material was prepared by adding directly the precursor of metal (Co) during the sol-gel synthesis (In situ). The second one consisted in the impregnation of the supports of TiO2 and Ce-TiO2 prepared by sol-gel with a cobalt solution (Impregnated). The materials obtained were characterized by XRD and their textural properties were determined. The effect of the technique of synthesis as well as the presence of cerium in the photocatalytic properties of the material was evaluated in the photodegradation of phenol in aqueous phase. According to the results obtained in this study, it can be concluded that both, the integration of the metals during the sol-gel synthesis and the presence of cerium significantly improves the photocatalytic activity of TiO2. PMID:26716322

  13. Synthesis and hydrophilic properties of Mo doped TiO2 thin films

    NASA Astrophysics Data System (ADS)

    Mardare, Diana; Cornei, Nicoleta; Luca, Dumitru; Dobromir, Marius; Irimiciuc, Ştefan A.; Pungǎ, Luciana; Pui, Aurel; AdomniÅ£ei, Cǎtǎlin

    2014-06-01

    Amorphous undoped TiO2 and Mo-doped TiO2 thin films were obtained by spray pyrolysis. By heat treatment, they became polycrystalline consisting in anatase, or mixed anatase/rutile phases, if deposited on glass or silicon, respectively. Mo enters in the TiO2 matrix as Mo5+, determining a slight red shift of the absorption edge. Based on Fourier transmission infrared analysis, performed on the studied films, before and after irradiation, providing information on the relationship between hydrophilicity and the amount of the adsorbed hydroxyl groups, we certify once again that the anatase phase (present in proportion of 100% in the films deposited on glass) is superior concerning the hydrophilic properties. Mo enhances wettability for the films deposited on silicon, compared to the undoped one, even if determines a rise in the rutile weight percentage, as a combined effect with the substrate nature. The decomposition of the oleic acid confirms that titania films with higher hydrophilic performances are also good photocatalysts, confirming in fact that investigating the hydrophilic properties of these films constitutes a much simpler way to obtain information on their photocatalytic activity.

  14. Investigation of the antibacterial effects of silver-modified TiO2 and ZnO plasmonic photocatalysts embedded in polymer thin films.

    PubMed

    Tallósy, Szabolcs Péter; Janovák, László; Ménesi, Judit; Nagy, Elisabeth; Juhász, Ádám; Balázs, László; Deme, István; Buzás, Norbert; Dékány, Imre

    2014-10-01

    Nanosilver-modified TiO2 and ZnO photocatalysts were studied against methicillin-resistant Staphylococcus aureus on the surface and against naturally occurring airborne microorganisms. The photocatalysts/polymer nanohybrid films were prepared by spray coating technique on the surface of glass plates and on the inner surface of the reactive light source. The photoreactive surfaces were activated with visible light emitting LED light at λ = 405 nm. The optical properties of the prepared photocatalyst/polymer nanohybrid films were characterized by diffuse reflectance measurements. The photocatalytic properties were verified with the degradation of ethanol by gas chromatography measurements. The destruction of the bacterial cell wall component was examined with transmission electron microscope. The antibacterial effect of the photocatalyst/polymer nanohybrid films was tested with different methods and with the associated standard ISO 27447:2009. With the photoreactive coatings, an extensive disinfectant film was developed and successfully prepared. The cell wall component of S. aureus was degraded after 1 h of illumination. The antibacterial effect of the nanohybrid films has been proven by measuring the decrease of the number of methicillin-resistant S. aureus on the surface and in the air as the function of illumination time. The photocatalyst/polymer nanohybrid films could inactivate 99.9 % of the investigated bacteria on different thin films after 2 h of illumination with visible light source. The reactive light source with the inner-coated photocatalyst could kill 96 % of naturally occurring airborne microorganisms after 48 h of visible light illumination in indoor air sample. The TEM results and the microbiological measurements were completed with toxicity tests carried out with Vibrio fischeri bioluminescence bacterium. PMID:24497305

  15. TiO2 supported over porous silica photocatalysts for pesticide degradation using solar light: Part 2. Silica prepared using acrylic acid emulsion.

    PubMed

    Sharma, Mangalampalli V Phanikrishna; Kumari, Valluri Durga; Subrahmanyam, Machiraju

    2010-03-15

    An acrylic acid emulsion mixture is used for synthesis of novel porous silica (E-Si) material. The photocatalytic activity of TiO2 under solar light irradiation for isoproturon (herbicide) degradation is drastically increased when dispersed over E-Si support using solid state dispersion (SSD) technique. The composite material is characterized by XRD, nitrogen adsorption-desorption isotherms, UV-vis DRS, SEM and TEM measurements. The photocatalytic activities of the composite catalysts are evaluated for different parameters. The 5 wt% TiO2/E-Si is found to be highly active for isoproturon degradation. PMID:19962829

  16. A study of parameter setting and characterization of visible-light driven nitrogen-modified commercial TiO2 photocatalysts.

    PubMed

    Kuo, Yu-Lin; Su, Te-Li; Kung, Fu-Chen; Wu, Tsai-Jung

    2011-06-15

    An optimal condition applied to the Taguchi method with an L(9) orthogonal array for preparing a visible-light driven nitrogen-modified TiO(2) (N-TiO(2)) photocatalyst by a simple hydrolysis method has been examined for material characteristics and a photodecolorization test of methyl blue (MB) under various visible light source (fluorescent and blue LED lamps) irradiations. Results of the material characterization showed that the absorption of prepared N-TiO(2) powder exhibited a significant extension into visible light regimes with an optical bandgap (Eg) of around 2.96 eV, which subsequently improved the visible-light photocatalytic activity of N-TiO(2) samples. The superior photocatalytic properties, the pseudo first-order reaction rate constants (k) and photodecolorization efficiency (η%) of a N-TiO(2) photocatalyst during the photodecolorization test of methyl blue (MB) under two different visible light irradiations were very evident compared to those for pure TiO(2). For photodecolorization of practical dyeing from the waste water from the dyeing and finishing industry, a higher photodecolorization efficiency of N-TiO(2) powder toward Direct blue-86 (DB-86) (Direct Fast Turquoise Blue GL) dye was also achieved. PMID:21555185

  17. Incorporation of N-doped TiO2 nanorods in regenerated cellulose thin films fabricated from recycled newspaper as a green portable photocatalyst.

    PubMed

    Mohamed, Mohamad Azuwa; Salleh, W N W; Jaafar, Juhana; Ismail, A F; Abd Mutalib, Muhazri; Jamil, Siti Munira

    2015-11-20

    In this work, an environmental friendly RC/N-TiO2 nanocomposite thin film was designed as a green portable photocatalyst by utilizing recycled newspaper as sustainable cellulose resource. Investigations on the influence of N-doped TiO2 nanorods incorporation on the structural and morphological properties of RC/N-TiO2 nanocomposite thin film are presented. The resulting nanocomposite thin film was characterized by FESEM, AFM, FTIR, UV-vis-NIR spectroscopy, and XPS analysis. The results suggested that there was a remarkable compatibility between cellulose and N-doped TiO2 nanorods anchored onto the surface of the RC/N-TiO2 nanocomposite thin film. Under UV and visible irradiation, the RC/N-TiO2 nanocomposite thin film showed remarkable photocatalytic activity for the degradation of methylene blue solution with degradation percentage of 96% and 78.8%, respectively. It is crucial to note that the resulting portable photocatalyst produced via an environmental and green technique in its fabrication process has good potential in the field of water and wastewater treatment application. PMID:26344299

  18. Bio-inspired artificial functional photocatalyst: biomimetic enzyme-like TiO2/reduced graphene oxide nanocomposite with excellent molecular recognition ability

    NASA Astrophysics Data System (ADS)

    Li, Wentao; Pei, Xule; Deng, Fang; Luo, Xubiao; Li, Fengcong; Xiao, Yong

    2015-05-01

    An enzyme-like TiO2/reduced graphene oxide (enzyme-TiO2/rGO) nanocomposite with molecular recognition ability was fabricated by biomimicking the geometrical and chemical complementation of the enzyme and substrate. The anatase TiO2 nanocrystals were densely dispersed on rGO nanosheets with close interfacial contacts. With geometrical and chemical matching of target molecules and memorized cavities, the adsorption capacity of enzyme-TiO2/rGO nanocomposites for 4-nitrophenol (4.71 mg g-1) is about six times that of control TiO2/rGO without the enzyme-like feature (0.79 mg g-1), and the enzyme-TiO2/rGO shows a relative selectivity coefficient of 7.24. Moreover, enzyme-TiO2/rGO exhibits molecular recognitive photocatalytic degradation for a particular contaminant. The results demonstrate that enzyme-substrate recognition provides a convenient and powerful basis on which to biomimic and construct efficient photocatalysts with high selectivity.

  19. Synthesize and characterize of Ag3VO4/TiO2 nanorods photocatalysts and its photocatalytic activity under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Zou, Xuejun; Dong, Yuying; Zhang, Xiaodong; Cui, Yubo

    2016-03-01

    In this paper, in order to expand the light response range of TiO2, Ag3VO4/TiO2 nanorods photocatalysts were fabricated by a simple sol-gel method with microwave and hydrothermal method. The as-prepared samples were characterized by XRD, SEM, DRS, XPS and N2 adsorption-desorption. Meanwhile, their photocatalytic properties were investigated by the degradation of toluene under visible light irradiation. The degradation conversation of toluene had gotten to about 70% in 1% Ag3VO4/TiO2 nanorods after reaction 4 h. The predominant photocatalytic activity can be attributed to its strong absorption in visible light region and excellent charge separation characteristics. By using in situ FTIR, benzyl alcohol and benzaldehyde species could be observed during the reaction and the formed intermediates would be partially oxidized into CO2 and H2O. Electron spin resonance confirmed that OHrad and O2rad - were involved in the photocatalytic degradation of toluene.

  20. Degradations of acetaminophen via a K2S2O8-doped TiO2 photocatalyst under visible light irradiation.

    PubMed

    Lin, Justin Chun-Te; de Luna, Mark Daniel G; Aranzamendez, Graziel L; Lu, Ming-Chun

    2016-07-01

    Acetaminophen (ACT) is a mild analgesic commonly used for relief of fever, headache and some minor pains. It had been detected in both fixed factory-discharged wastewaters, and diverse sources, e.g. surface waters during festival events. Degradation of such trace emergent pollutants by titanium dioxide (TiO2) photocatalysts is a common approach; however, the band gap that can be utilized in the UV range is limited. In order to extend downward the energy required to excite the photocatalytic material, doping with potassium peroxodisulfate (K2S2O8) by a sol-gel method was done in this work. The visible-light active photocatalyst was tested on the degradation of ACT under four parameters including: initial ACT concentration, catalyst dose, initial pH, and system temperature. Optimal conditions, which achieved 100% ACT degradation, were obtained by using 0.1 mM ACT initial concentration, catalyst dose of 1 g L(-1), initial pH of 9.0 and system temperature of 22 °C at the end of 9-h irradiation. Meanwhile, three types of degradation kinetic models (i.e. zero, pseudo first and second order) were tested. The feasible model followed a pseudo-first order model with the computed constant (kapp) of 7.29 × 10(-3) min(-1). The present study provides a better photocatalytic degradation route by K2S2O8-modified TiO2 in comparison with pristine TiO2, in wastewater treatment dealing with ACT and other persistent organic pollutants. PMID:27135700

  1. A Designed TiO2 /Carbon Nanocomposite as a High-Efficiency Lithium-Ion Battery Anode and Photocatalyst.

    PubMed

    Peng, Liang; Zhang, Huijuan; Bai, Yuanjuan; Feng, Yangyang; Wang, Yu

    2015-10-12

    Herein, a peapod-like TiO2 /carbon nanocomposite has successfully been synthesized by a rational method for the first time. The novel nanostructure exhibits a distinct feature of TiO2 nanoparticles encapsulated inside and the carbon fiber coating outside. In the synthetic process, H2 Ti3 O7 nanotubes serve as precursors and templates, and glucose molecules act as the green carbon source. With the alliciency of hydrogen bonding between H2 Ti3 O7 and glucose, a thin polymer layer is hydrothermally assembled and subsequently converted into carbon fibers through calcinations under an inert atmosphere. Meanwhile, the precursors of H2 Ti3 O7 nanotubes are transformed into the TiO2 nanoparticles encapsulated in carbon fibers. The achieved unique nanocomposites can be used as excellent anode materials in lithium-ion batteries (LIBs) and photocatalytic reagents in the degradation of rhodamine B. Due to the synergistic effect derived from TiO2 nanoparticles and carbon fibers, the obtained peapod-like TiO2 /carbon cannot only deliver a high specific capacity of 160 mAh g(-1) over 500 cycles in LIBs, but also perform a much faster photodegradation rate than bare TiO2 and P25. Furthermore, owing to the low cost, environmental friendliness as well as abundant source, this novel TiO2 /carbon nanocomposite will have a great potential to be extended to other application fields, such as specific catalysis, gas sensing, and photovoltaics. PMID:26310518

  2. Synthesis and optical properties of TiO2-based magnetic nanocomposites

    NASA Astrophysics Data System (ADS)

    Scarisoreanu, M.; Morjan, I.; Fleaca, C.-T.; Morjan, I. P.; Niculescu, A.-M.; Dutu, E.; Badoi, A.; Birjega, R.; Luculescu, C.; Vasile, E.; Danciu, V.; Filoti, G.

    2015-05-01

    Magnetic titania nanoparticles covered/embedded in SiO2 shell/matrix were simultaneously manufactured by the single-step laser pyrolysis. The present study is a continuation of our previous investigations on the TiO2/Fe and TiO2/HMDSO (hexamethyldisiloxane) derived-systems. The aim of this work is to study the synthesis by IR (Infrared) laser pyrolysis of magnetic TiO2 based nanocomposites which implies many concurrent processes induced in the gas phase by the laser radiation. The dependence between characteristic properties and the synthesis parameters was determined by many analytical and complementary methods: XRD (X-ray diffraction) structural analysis, UV-vis (ultraviolet-visible) and EDAX (energy-dispersive X-ray) spectroscopy, TEM and HRTEM (transmission electron microscopy at low and high resolution) analysis and magnetic measurements. The results of analysis indicate the presence of disordered silica, Fe, α-Fe2O3 and mixtures of anatase and rutile phases with mean crystallite dimensions (in the 14-34 nm range) with typical character of diluted magnetic oxide systems and a lower bandgap energy (Eg = 1.85 eV) as compared with TiO2 P25 Degussa sample.

  3. Development of high efficient visible light-driven N, S-codoped TiO2 nanowires photocatalysts

    NASA Astrophysics Data System (ADS)

    Zhang, Yanlin; Liu, Peihong; Wu, Honghai

    2015-02-01

    One-dimensional (1D) nanowire material (especially nonmetal doped 1D nanowires) synthesized by a facile way is of great significance and greatly desired as it has higher charge carrier mobility and lower carrier recombination rate. N, S-codoped TiO2 nanowires were synthesized using titanium sulfate as a precursor and isopropanol as a protective capping agent by a hydrothermal route. The obtained doped nanowires were characterized by XRD, SEM, HRTEM, SAED, XPS, BET and UV-vis absorption spectrum. The incorporation of N and S into TiO2 NWs can lead to the expansion of its lattice and remarkably lower its electron-transfer resistance. Photocatalytic activity measurement showed that the N, S-codoped TiO2 nanowires with high quantum efficiency revealed the best photocatalytic performance for atrazine degradation under visible light irradiation compared to N, S-codoped TiO2 nanoparticles and S-doped TiO2 nanowires, which was attributed to (i) the synergistic effect of N and S doping in narrowing the band gap, separating electron-hole pairs and increasing the photoinduced electrons, and (ii) extending the anatase-to-rutile transformation temperature above 600 °C.

  4. Effect of preparation conditions on the characteristics and photocatalytic activity of TiO2/purified diatomite composite photocatalysts

    NASA Astrophysics Data System (ADS)

    Sun, Zhiming; Hu, Zhibo; Yan, Yang; Zheng, Shuilin

    2014-09-01

    TiO2/purified diatomite composite materials were prepared through a modified hydrolysis-deposition method under low temperature using titanium tetrachloride as precursor combined with a calcination crystallization process. The microstructure and crystalline phases of the obtained composites prepared under different preparation conditions were characterized by high resolution scanning electron microscope (SEM) and X-ray diffraction (XRD), respectively. The photocatalytic performance of TiO2/purified diatomite composites was evaluated by Rhodamine B as the target pollutant under UV irradiation, and the optimum preparation conditions of composites were obtained. The TiO2 crystal form in composites prepared under optimum conditions was anatase, the grain size of which was 34.12 nm. The relationships between structure and property of composite materials were analyzed and discussed. It is indicated that the TiO2 nanoparticles uniformly dispersed on the surface of diatoms, and the photocatalytic performance of the composite materials was mainly determined by the dispersity and grain size of loaded TiO2 nanoparticles.

  5. Synthesis, Characterization, and Photocatalytic Properties of Sulfur- and Carbon-Codoped TiO2 Nanoparticles.

    PubMed

    Ivanov, S; Barylyak, A; Besaha, K; Bund, A; Bobitski, Y; Wojnarowska-Nowak, R; Yaremchuk, I; Kus-Liśkiewicz, M

    2016-12-01

    One-step TiO2 nanoparticle synthesis based on the interaction between thiourea and metatitanic acid is applied for sulfur and carbon anatase codoping. The synthesis of the doped TiO2 has been monitored by means of differential thermal analysis and thermogravimetric analysis (DTA-TG), which allows determining the optimal thermal conditions for the process. Electron microscopy showed micrometer-sized (5-15 μm) randomly distributed crystal aggregates, consisting of many 15-40-nm TiO2 nanoparticles. The obtained phase composition and chemical states of the doping elements are analyzed by means of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), infrared (IR) and Raman spectroscopies, and electron paramagnetic resonance (EPR). XRD displays in both samples (doped and pristine) the existence of only one crystalline phase-the tetragonal modification of TiO2-anatase. Further data assessment by means of Rietveld refinement allowed detection of a slight c lattice parameter and volume increase related to incorporation of the doping elements. XPS demonstrated the presence of carbon and sulfur as doping elements in the material. It was confirmed that carbon is in elemental form and also present in oxygen-containing compounds, which are adsorbed on the particle surface. The binding energy for sulfur electron core shell corresponds to the established data for sulfate compounds, where sulfur is in 6+ oxidation state. The synthesized S- and C-codoped TiO2 showed excellent photocatalytic performance during the degradation of organic dyes (rhodamine B, methylene blue), gas-phase oxidation of ethanol under visible light, and photocatalytic hydrogen generation from ethanol under ultraviolet light. PMID:26969593

  6. Synthesis, Characterization, and Photocatalytic Properties of Sulfur- and Carbon-Codoped TiO2 Nanoparticles

    NASA Astrophysics Data System (ADS)

    Ivanov, S.; Barylyak, A.; Besaha, K.; Bund, A.; Bobitski, Y.; Wojnarowska-Nowak, R.; Yaremchuk, I.; Kus-Liśkiewicz, M.

    2016-03-01

    One-step TiO2 nanoparticle synthesis based on the interaction between thiourea and metatitanic acid is applied for sulfur and carbon anatase codoping. The synthesis of the doped TiO2 has been monitored by means of differential thermal analysis and thermogravimetric analysis (DTA-TG), which allows determining the optimal thermal conditions for the process. Electron microscopy showed micrometer-sized (5-15 μm) randomly distributed crystal aggregates, consisting of many 15-40-nm TiO2 nanoparticles. The obtained phase composition and chemical states of the doping elements are analyzed by means of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), infrared (IR) and Raman spectroscopies, and electron paramagnetic resonance (EPR). XRD displays in both samples (doped and pristine) the existence of only one crystalline phase—the tetragonal modification of TiO2—anatase. Further data assessment by means of Rietveld refinement allowed detection of a slight c lattice parameter and volume increase related to incorporation of the doping elements. XPS demonstrated the presence of carbon and sulfur as doping elements in the material. It was confirmed that carbon is in elemental form and also present in oxygen-containing compounds, which are adsorbed on the particle surface. The binding energy for sulfur electron core shell corresponds to the established data for sulfate compounds, where sulfur is in 6+ oxidation state. The synthesized S- and C-codoped TiO2 showed excellent photocatalytic performance during the degradation of organic dyes (rhodamine B, methylene blue), gas-phase oxidation of ethanol under visible light, and photocatalytic hydrogen generation from ethanol under ultraviolet light.

  7. TiO2 nanotubes: recent advances in synthesis and gas sensing properties.

    PubMed

    Galstyan, Vardan; Comini, Elisabetta; Faglia, Guido; Sberveglieri, Giorgio

    2013-01-01

    Synthesis--particularly by electrochemical anodization-, growth mechanism and chemical sensing properties of pure, doped and mixed titania tubular arrays are reviewed. The first part deals on how anodization parameters affect the size, shape and morphology of titania nanotubes. In the second part fabrication of sensing devices based on titania nanotubes is presented, together with their most notable gas sensing performances. Doping largely improves conductivity and enhances gas sensing performances of TiO2 nanotubes. PMID:24184919

  8. TiO2 as a photocatalyst for control of the aquatic invasive alga, Cladophora, under natural and artificial light

    USGS Publications Warehouse

    Peller, J.R.; Whitman, R.L.; Griffith, S.; Harris, P.; Peller, C.; Scalzitti, J.

    2007-01-01

    Cladophora, a nuisance and invasive, filamentous algae (Chlorophyta), massively accumulates along the shores of the lower Great Lakes each summer causing great economic damage and compromising recreational opportunity and perhaps public health. In vitro experiments showed that Cladophora samples were physically and biologically degraded when subjected to TiO2-mediated photocatalysis. For the most successful photocatalytic process, TiO2 was immobilized on a glass surface and used in combination with either sunlight or artificial UV light. The loss of vital algal pigments was monitored using UV–vis spectrophotometry, and cell structural changes were determined by microscopic observation. Cladophora, in the presence of TiO2-covered glass beads, experienced a loss of chloroplast pigments after 2 h of UV lamp light irradiation. In a separate experiment, sunlight exposure over 4 days (∼24 h) resulted in the complete oxidative degradation of the green chloroplast pigments, verified by the UV spectra of the algal extracts. These results suggest that TiO2, mobilized on sunlit silicates may be useful in controlling growth and survival of this alga in the Great Lakes, thus mitigating many of the economic, aesthetic ecological impacts of this invasive alga.

  9. Synthesis of green TiO2/ZnO/CdS hybrid nano-catalyst for efficient light harvesting using an elegant pulsed laser ablation in liquids method

    NASA Astrophysics Data System (ADS)

    Gondal, M. A.; Ilyas, A. M.; Fasasi, T. A.; Dastageer, M. A.; Seddigi, Z. S.; Qahtan, T. F.; Faiz, M.; Khattak, G. D.

    2015-12-01

    The main limitation on the applications of TiO2 as a photocatalyst is its large band gap (3.2 eV) which limits its absorption only to the ultraviolet region of the solar spectrum. To overcome this problem, a facile strategy for clean synthesis of a nanocomposite green catalyst of zinc oxide (ZnO), titanium dioxide (TiO2) and cadmium sulphide (CdS) was developed using pulsed laser ablation in liquids (PLAL) technique for the first time to the best of our knowledge. The main aim of addition of ZnO is to reduce the electron-hole recombination in the TiO2 while CdS is used to increase the light harvesting efficiency of TiO2 in the visible spectral region. The absorption spectrum of the TiO2/ZnO/CdS composite obtained from the UV-vis spectrophotometer exhibits strong absorption in the visible region as compared to the pure TiO2 whose absorption band lies around 380 nm which is in the UV-region. The morphology of the composite quantum dots was also investigated using high resolution TEM technique which shows that the synthesized composite size ranges between 10 and 40 nm. These nanocomposites have demosntarted noticible improvement in the carriers transport in the visible region which could enhance its efficiency for many applications in the visible region especially for energy harvesting using solar radiations.

  10. Nitrogen-doping of bulk and nanotubular TiO2 photocatalysts by plasma-assisted atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Creatore, Mariadriana; Ma, Quan-Bao; El Boukili, Aishah; Gao, Lu; Verheijen, Marcel A.; Verhoeven, M. W. G. M. (Tiny); Hensen, Emiel. J. M.

    2015-03-01

    Plasma-assisted atomic layer deposition (PA-ALD) was adopted to deposit TiO2-xNx ultrathin layers on Si wafers, calcined Ti foils and nanotubular TiO2 arrays. A range of N content and chemical bond configurations were obtained by varying the background gas (O2 or N2) during the Ti precursor exposure, while the N2/H2-fed inductively coupled plasma exposure time was varied between 2 and 20 s. On calcined Ti foils, a positive effect from N doping on photocurrent density was observed when O2 was the background gas with a short plasma exposure time (5 and 10 s). This correlates with the presence of interstitial N states in the TiO2 with a binding energy of 400 eV (Ninterst) as measured by X-ray photoelectron spectroscopy. A longer plasma time or the use of N2 as background gas results in formation of N state with a binding energy of 396 eV (Nsubst) and very low photocurrents. These Nsubst are linked to the presence of Ti3+, which act as detrimental recombination center for photo-generated electron-hole pairs. On contrary, PA-ALD treated nanotubular TiO2 arrays show no variation of photocurrent density (with respect to the pristine nanotubes) upon different plasma exposure times and when the O2 recipe was adopted. This is attributed to constant N content in the PA-ALD TiO2-xNx, regardless of the adopted recipe.

  11. Heterogeneous photocatalysts in organic synthesis

    NASA Astrophysics Data System (ADS)

    Cherevatskaya, M.; König, B.

    2014-03-01

    The review deals with the application of inorganic semiconductors in organic synthesis. Although the majority of reported reactions still aim at the photocatalytic decomposition of organic compounds, the number of examples in synthetic applications is growing. The principal mechanisms of heterogeneous semiconductor photocatalysis are considered and examples illustrating the use of inorganic semiconductors in organic synthesis are given. The discussion is arranged according to the required excitation wavelength (UV or visible light) and to the new bond that is formed (carbon-carbon or carbon-heteroatom bond). The bibliography includes 47 references.

  12. Facile synthesis of TiO2/trititanate heterostructure with enhanced photoelectric efficiency for an improved photocatalysis

    NASA Astrophysics Data System (ADS)

    Chen, Feitai; Li, Youji; Liu, Zhi; Fang, Pengfei

    2015-06-01

    TiO2/trititanate photocatalyst was prepared by alkaline hydrothermal treatment of TiO2, and characterized by transmission electron microscopy, X-ray diffraction, and Raman etc. The photocatalytic activities of catalysts were evaluated by the photocatalytic degradation of rhodamine B (RhB). It is found that the heterostructure can be directly formed via the conversion of surface TiO2 into trititanate. The coupled nanostructure possesses enhanced adsorption ability for RhB as compared with the raw TiO2, owing to the formation of an increased amount of hydroxyl groups on the prepared catalyst surface. Besides, the generated trititanate can successfully introduce a shallow energy level in the coupled composite, which results in the improvement of separation efficiency of photoinduced electron-hole pairs. In the degradation experiments, TiO2/trititanate exhibits much higher photocatalytic activity than the bare TiO2. These advantages of the coupled nanostructure in adsorption capacity and photoelectric efficiency may make it a wider application for the removal of organic pollutants.

  13. Influence of the pH of the synthesis using sol-gel method on the structural and optical properties of TiO2

    NASA Astrophysics Data System (ADS)

    Jaramillo, J.; Garzón, B. A.; Tirado Mejía, L.

    2016-02-01

    The photocatalysis process using semiconductor materials, in particular TiO2, is one of the most attractive treatment for polluted waters decontamination because of its advantages over other oxidation processes [1-6]. In this study the effect on the physical properties of TiO2 due to the pH used during the manufacturing of the semiconductor is studied. Different samples were synthesized using ammonium hydroxide (NH4OH) and nitric acid (HNO3) as catalysts to provide basic and acid pH environments, respectively. Changes in composition, structure and morphology of the samples were studied and its dependence with the pH of the synthesis is discussed. Results indicate that the base catalysis favours the formation of anatase TiO2 crystalline phase with crystallite size ∼ 26nm obtained by Rietveld refinement; the spherical particles formed agglomerates of ∼100nm the average pore size is in the range of mesopores and the surface area increases with the amount of NH4OH added in the process. On the other hand, with acid catalysis, a mixture of two crystalline phases, anatase and rutile, was obtained with crystallite sizes around 26 and 49nm, respectively. The grain size is several orders of magnitude higher than those obtained by basic catalysis. The photocatalytic activity was measured using methylene blue solutions to determine their degradation with radiation. Greater efficiency was observed in the photocatalysts synthesized with NH4OH.

  14. Highly reactive {001} facets of TiO2-based composites: synthesis, formation mechanism and characterization

    NASA Astrophysics Data System (ADS)

    Ong, Wee-Jun; Tan, Lling-Lling; Chai, Siang-Piao; Yong, Siek-Ting; Mohamed, Abdul Rahman

    2014-01-01

    Titanium dioxide (TiO2) is one of the most widely investigated metal oxides due to its extraordinary surface, electronic and catalytic properties. However, the large band gap of TiO2 and massive recombination of photogenerated electron-hole pairs limit its photocatalytic and photovoltaic efficiency. Therefore, increasing research attention is now being directed towards engineering the surface structure of TiO2 at the most fundamental and atomic level namely morphological control of {001} facets in the range of microscale and nanoscale to fine-tune its physicochemical properties, which could ultimately lead to the optimization of its selectivity and reactivity. The synthesis of {001}-faceted TiO2 is currently one of the most active interdisciplinary research areas and demonstrations of catalytic enhancement are abundant. Modifications such as metal and non-metal doping have also been extensively studied to extend its band gap to the visible light region. This steady progress has demonstrated that TiO2-based composites with {001} facets are playing and will continue to play an indispensable role in the environmental remediation and in the search for clean and renewable energy technologies. This review encompasses the state-of-the-art research activities and latest advancements in the design of highly reactive {001} facet-dominated TiO2via various strategies, including hydrothermal/solvothermal, high temperature gas phase reactions and non-hydrolytic alcoholysis methods. The stabilization of {001} facets using fluorine-containing species and fluorine-free capping agents is also critically discussed in this review. To overcome the large band gap of TiO2 and rapid recombination of photogenerated charge carriers, modifications are carried out to manipulate its electronic band structure, including transition metal doping, noble metal doping, non-metal doping and incorporating graphene as a two-dimensional (2D) catalyst support. The advancements made in these aspects are thoroughly examined, with additional insights related to the charge transfer events for each strategy of the modified-TiO2 composites. Finally, we offer a summary and some invigorating perspectives on the major challenges and new research directions for future exploitation in this emerging frontier, which we hope will advance us to rationally harness the outstanding structural and electronic properties of {001} facets for various environmental and energy-related applications.

  15. Highly reactive {001} facets of TiO2-based composites: synthesis, formation mechanism and characterization.

    PubMed

    Ong, Wee-Jun; Tan, Lling-Lling; Chai, Siang-Piao; Yong, Siek-Ting; Mohamed, Abdul Rahman

    2014-02-21

    Titanium dioxide (TiO2) is one of the most widely investigated metal oxides due to its extraordinary surface, electronic and catalytic properties. However, the large band gap of TiO2 and massive recombination of photogenerated electron-hole pairs limit its photocatalytic and photovoltaic efficiency. Therefore, increasing research attention is now being directed towards engineering the surface structure of TiO2 at the most fundamental and atomic level namely morphological control of {001} facets in the range of microscale and nanoscale to fine-tune its physicochemical properties, which could ultimately lead to the optimization of its selectivity and reactivity. The synthesis of {001}-faceted TiO2 is currently one of the most active interdisciplinary research areas and demonstrations of catalytic enhancement are abundant. Modifications such as metal and non-metal doping have also been extensively studied to extend its band gap to the visible light region. This steady progress has demonstrated that TiO2-based composites with {001} facets are playing and will continue to play an indispensable role in the environmental remediation and in the search for clean and renewable energy technologies. This review encompasses the state-of-the-art research activities and latest advancements in the design of highly reactive {001} facet-dominated TiO2via various strategies, including hydrothermal/solvothermal, high temperature gas phase reactions and non-hydrolytic alcoholysis methods. The stabilization of {001} facets using fluorine-containing species and fluorine-free capping agents is also critically discussed in this review. To overcome the large band gap of TiO2 and rapid recombination of photogenerated charge carriers, modifications are carried out to manipulate its electronic band structure, including transition metal doping, noble metal doping, non-metal doping and incorporating graphene as a two-dimensional (2D) catalyst support. The advancements made in these aspects are thoroughly examined, with additional insights related to the charge transfer events for each strategy of the modified-TiO2 composites. Finally, we offer a summary and some invigorating perspectives on the major challenges and new research directions for future exploitation in this emerging frontier, which we hope will advance us to rationally harness the outstanding structural and electronic properties of {001} facets for various environmental and energy-related applications. PMID:24384624

  16. Ultrasound with low intensity assisted the synthesis of nanocrystalline TiO2 without calcination.

    PubMed

    Ghows, Narjes; Entezari, Mohamad H

    2010-06-01

    A novel method has been developed for the preparation of nano-sized TiO(2) with anatase phase. Nanoparticles with diameter about 6 nm were prepared at a relatively low temperature (75 degrees C) and short time. The synthesis was carried out by the hydrolysis of titanium tetra-isopropoxide (TTIP) in the presence of water, ethanol, and dispersant under ultrasonic irradiation (500 kHz) at low intensity. The results show that variables such as water/ethanol ratio, irradiation time, and temperature have a great influence on the particle size and crystalline phases of TiO(2) nanoparticles. Characterization of the product was carried out by different techniques such as powder X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM) and UV-vis spectroscopy. PMID:20382553

  17. Hydrothermal synthesis of TiO2-ZnO-graphene nanocomposite towards photocatalytic and photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Gayathri, S.; Jayabal, P.; Ramakrishnan, V.

    2015-06-01

    Titanium dioxide (TiO2) - Zinc oxide (ZnO) - Graphene (G) nanocomposite was successfully synthesized through facile hydrothermal method. The X-ray diffraction (XRD) pattern and the micro-Raman spectroscopic technique revealed the formation of TiO2-ZnO-Graphene (TZG) nanocomposite. The ZnO and TiO2 nanoparticles decorated graphene sheets were clearly noticeable in the Field Emission Scanning Electron Micrograph (FE-SEM). The UV-Visible absorption spectra clearly indicated that the formation of TZG nanocomposite enriched the absorption in the visible region. Hence, the prepared nanocomposite can be used as photocatalyst to remove organic dyes from water and as photoanode in the fabrication of dye sensitized solar cells (DSSCs).

  18. Recent progress in design, synthesis, and applications of one-dimensional TiO2 nanostructured surface heterostructures: a review.

    PubMed

    Tian, Jian; Zhao, Zhenhuan; Kumar, Anil; Boughton, Robert I; Liu, Hong

    2014-01-01

    One-dimensional TiO2 nanostructured surface heterostructures (1D TiO2NSHs) have been comprehensively studied during the past two decades because of the possible practical applications in various fields, including photocatalysis, dye-sensitized solar cells, sensors, lithium batteries, biomedicine, catalysis, and supercapacitors. Combining extensive advancements in materials science and nanotechnology, a 1D TiO2NSH material with well-controlled size, morphology, and composition has been designed and synthesized. More importantly, its superior properties, including a high aspect ratio structure, chemical stability, large specific surface area, excellent electronic or ionic charge transfer, and a specific interface effect, have attracted a great deal of interest in improving current performance and exploring new applications. In this tutorial review, we introduce the characteristics of 1D TiO2 nanostructures, the design principles for the fabrication of 1D TiO2NSHs, and we also summarize the recent progress in developing synthesis methods and applications of 1D TiO2NSHs in different fields. The relationship between the secondary phase and the 1D TiO2 nanostructure and between the performance in applications and the excellent physical properties of 1D TiO2NSHs are also discussed. PMID:25014328

  19. Amorphous TiO2 nanotube-derived synthesis of highly ordered anatase TiO2 nanorod arrays

    NASA Astrophysics Data System (ADS)

    Zhao, Cong; Zhu, Dachuan; Cao, Shixiu

    2016-02-01

    A facile method by combining anodic oxidation and hydrothermal method was developed to construct highly ordered anatase TiO2 nanorods (TNRs) and nanotubes (TNTs). In this method, the anodic oxidation was used for preparing highly ordered amorphous TNTs, which subsequently served as highly ordered template for next reaction process. Upon hydrothermal treatment, the as-anodized amorphous template got converted to highly ordered anatase TNTs (blank sample) in without cobalt nitrate solution and TNRs (doped sample) in cobalt nitrate solution, respectively. To our best knowledge, this is first successful attempt to prepare highly ordered anatase TNRs based on the above amorphous template. The scanning electron microscope (SEM) and transmission electron microscope (TEM) observations indicate that the as-prepared anatase TNRs are composed by a large number of anatase TiO2 nanoparticles (TNPs) and the morphology at top of TNRs is different from that of its trunk. Details of the morphology, phase transformation, and growth mechanism of the obtained TNRs are discussed. In addition, the role of Co2+ in the crystallization process had been also discussed.

  20. Synthesis of Nanoscale TiO2 and Study of the Effect of Their Crystal Structure on Single Cell Response

    PubMed Central

    Ismagilov, Z. R.; Shikina, N. V.; Mazurkova, N. A.; Tsikoza, L. T.; Tuzikov, F. V.; Ushakov, V. A.; Ishchenko, A. V.; Rudina, N. A.; Korneev, D. V.; Ryabchikova, E. I.

    2012-01-01

    To study the effect of nanoscale titanium dioxide (TiO2) on cell responses, we synthesized four modifications of the TiO2 (amorphous, anatase, brookite, and rutile) capable of keeping their physicochemical characteristics in a cell culture medium. The modifications of nanoscale TiO2 were obtained by hydrolysis of TiCl4 and Ti(i-OC3H7)4 (TIP) upon variation of the synthesis conditions; their textural, morphological, structural, and dispersion characteristics were examined by a set of physicochemical methods: XRD, BET, SAXS, DLS, AFM, SEM, and HR-TEM. The effect of synthesis conditions (nature of precursor, pH, temperature, and addition of a complexing agent) on the structural-dispersion properties of TiO2 nanoparticles was studied. The hydrolysis methods providing the preparation of amorphous, anatase, brookite, and rutile modifications of TiO2 nanoparticles 3–5 nm in size were selected. Examination of different forms of TiO2 nanoparticles interaction with MDCK cells by transmission electron microscopy of ultrathin sections revealed different cell responses after treatment with different crystalline modifications and amorphous form of TiO2. The obtained results allowed us to conclude that direct contact of the nanoparticles with cell plasma membrane is the primary and critical step of their interaction and defines a subsequent response of the cell. PMID:22623903

  1. Facile synthesis of the Ti3+ self-doped TiO2-graphene nanosheet composites with enhanced photocatalysis

    NASA Astrophysics Data System (ADS)

    Qiu, Bocheng; Zhou, Yi; Ma, Yunfei; Yang, Xiaolong; Sheng, Weiqin; Xing, Mingyang; Zhang, Jinlong

    2015-02-01

    This study developed a facile approach for preparing Ti3+ self-doped TiO2-graphene photocatalyst by a one-step vacuum activation technology involved a relative lower temperature, which could be activated by the visible light owing to the synergistic effect among Ti3+ doping, some new intersurface bonds generation and graphene oxide reduction. Compared with the traditional methods, the vacuum activation involves a low temperature and low-costing, which can achieve the reduction of GO, the self doping of Ti3+ in TiO2 and the loading of TiO2 nanoparticles on GR surface at the same time. These resulting TiO2-graphene composites show the high photodegradation rate of MO, high hydrogen evolution activity and excellent IPCE in the visible light irradiation. The facile vacuum activation method can provide an effective and practical approach to improve the performance of TiO2-graphene and other metal oxides-graphene towards their practical photocatalytic applications.

  2. Facile synthesis of the Ti3+ self-doped TiO2-graphene nanosheet composites with enhanced photocatalysis

    PubMed Central

    Qiu, Bocheng; Zhou, Yi; Ma, Yunfei; Yang, Xiaolong; Sheng, Weiqin; Xing, Mingyang; Zhang, Jinlong

    2015-01-01

    This study developed a facile approach for preparing Ti3+ self-doped TiO2-graphene photocatalyst by a one-step vacuum activation technology involved a relative lower temperature, which could be activated by the visible light owing to the synergistic effect among Ti3+ doping, some new intersurface bonds generation and graphene oxide reduction. Compared with the traditional methods, the vacuum activation involves a low temperature and low-costing, which can achieve the reduction of GO, the self doping of Ti3+ in TiO2 and the loading of TiO2 nanoparticles on GR surface at the same time. These resulting TiO2-graphene composites show the high photodegradation rate of MO, high hydrogen evolution activity and excellent IPCE in the visible light irradiation. The facile vacuum activation method can provide an effective and practical approach to improve the performance of TiO2-graphene and other metal oxides-graphene towards their practical photocatalytic applications. PMID:25716132

  3. Low-temperature solvothermal synthesis of visible-light-responsive S-doped TiO2 nanocrystal

    NASA Astrophysics Data System (ADS)

    Yang, Guidong; Yan, Zifeng; Xiao, Tiancun

    2012-02-01

    In this work, a low-temperature solvothermal method has been developed to synthesize visible-light-responsive S-doped TiO2 nanocrystal photocatalyst, using thiourea as the sulfur source to enhance sulfur incorporation into TiO2 lattice. The effects of different S:Ti molar ratio on the crystal structure, chemical composition, surface property and catalytic performance have been studied. X-ray photoelectron spectroscopy (XPS) analysis and Fourier transform infrared (FT-IR) spectra displayed that the TiO2 was modified by the S element incorporated into the TiO2 network to form Tisbnd Osbnd S bond, which therefore led to the formation of intermediate energy level just above the O 2p valance band, and caused the absorption edge of TiO2 to shift into the visible light region up to 500 nm. Characterization results show that the pure nanocrystal anatase structure, with both the degree of S doping and oxygen vacancies makes contribution to the exceptional photocatalytic activity of TONS in visible-light degradation of Methylene Blue (MB) and phenol molecules.

  4. Simultaneous amination of TiO2 nanoparticles in the gas phase synthesis for bio-medical applications

    NASA Astrophysics Data System (ADS)

    Lee, Kyoung-No; Kim, Yangeon; Lee, Chang-Woo; Lee, Jai-Sung

    2011-10-01

    A simultaneous synthesis and surface amination method to effectively modify the surface of inorganic nanoparticles is discussed in this study. As a target material system and surface functional group, TiO2 nanoparticles and amine were selected. APTES (3-aminopropyltriethoxysilane), the source of amine group, was mixed with TTIP (titanium tetraisopropoxide) and used for the synthesis of aminated TiO2 nanoparticles. XRD (X-ray diffractometry) results showed TiO2 nanoparticles of pure anatase phase, 15 nm in crystallite size, were successfully synthesized at 700°C and 50 mbar. Fourier transformation infrared (FT-IR) spectroscopy measurement and confocal microscopy study using fluoresceine isothiocyanate (FITC) confirmed that amine groups were successfully deposited and activated on the surface of TiO2 nanoparticles.

  5. A novel synthesis method for TiO2 particles with magnetic Fe3O4 cores.

    PubMed

    Dong, Qi; Zhang, Keqiang; An, Yi

    2014-01-01

    TiO2@(AC/Fe3O4) (AC is activated carbon) was prepared by using AC and Fe3O4 as joint support. The morphological features, crystal structure, and magnetism of the final product were characterized. The results indicate that TiO2 particles formed on the surface of AC and Fe3O4; the sizes of TiO2 and Fe3O4 were 0.5 and 0.7 μm respectively, and that of AC fell within a wide range. The highly crystalline cubic structures of the TiO2 particles was in accord with the standard X-ray diffractometry spectrum of magnetite and anatase. The maximum saturation magnetization of TiO2@(AC/Fe3O4) was 75 emu g(-1), which was enough to support magnetic recovery. The rate of methylene blue (MB) removal photocatalyzed by TiO2@(AC/Fe3O4) was higher by 50% than that achieved with AC/Fe3O4 photocatalysis, and similar to that achieved with TiO2@AC. The removal rate (kobs) decreased drastically from 1.77 × 10(-2) to 9.36 × 10(-3)min(-1) when the initial concentration of MB solution increased from 2.0 to 5.0 mg L(-1). The kobs value increased from 9.41 × 10(-3) to 1.34 × 10(-2)min(-1) with increasing photocatalyst dosage from 0.2 to 1.0 g, then slightly decreased to 1.33 × 10(-2)min(-1) at 2.0 g dosage. PMID:24845326

  6. Electronic basis of visible region activity in high area Sn-doped rutile TiO2 photocatalysts.

    PubMed

    Oropeza, Freddy E; Davies, Bethan; Palgrave, Robert G; Egdell, Russell G

    2011-05-01

    The influence of Sn doping on the anatase-to-rutile phase transition has been investigated in high area powders prepared by a sol-gel route involving alkoxide precursors. Sn doping facilitates conversion of anatase to rutile at lower temperatures than observed for undoped material. At the same time Sn-doping inhibits sintering as gauged by line widths in X-ray diffraction and gas-adsorption surface area measurements. These observations are linked to the finding of pronounced segregation of Sn to the surface of rutile TiO(2) observed in X-ray photoemission spectra. Sn-doped TiO(2) is found to exhibit enhanced visible region photocatalytic activity as compared with undoped material in dye degradation experiments. This is attributed to narrowing of the bulk bandgap at low doping levels coupled with the introduction of surface states associated with segregated Sn ions in the divalent state. The Sn(II) surface states lie above the top of the main valence band and can therefore act as trapping sites for holes produced under photoexcitation. PMID:21445426

  7. Recent advances in visible-light-responsive photocatalysts for hydrogen production and solar energy conversion--from semiconducting TiO2 to MOF/PCP photocatalysts.

    PubMed

    Horiuchi, Yu; Toyao, Takashi; Takeuchi, Masato; Matsuoka, Masaya; Anpo, Masakazu

    2013-08-28

    The present perspective describes recent advances in visible-light-responsive photocatalysts intended to develop novel and efficient solar energy conversion technologies, including water splitting and photofuel cells. Water splitting is recognized as one of the most promising techniques to convert solar energy as a clean and abundant energy resource into chemical energy in the form of hydrogen. In recent years, increasing concern is directed to not only the development of new photocatalytic materials but also the importance of technologies to produce hydrogen and oxygen separately. Photofuel cells can convert solar energy into electrical energy by decomposing bio-related compounds and livestock waste as fuels. The advances of photocatalysts enabling these solar energy conversion technologies have been going on since the discovery of semiconducting titanium dioxide materials and have extended to organic-inorganic hybrid materials, such as metal-organic frameworks and porous coordination polymers (MOF/PCP). PMID:23760469

  8. Efficient phyto-synthesis and structural characterization of rutile TiO2 nanoparticles using Annona squamosa peel extract.

    PubMed

    Roopan, Selvaraj Mohana; Bharathi, A; Prabhakarn, A; Rahuman, A Abdul; Velayutham, K; Rajakumar, G; Padmaja, R D; Lekshmi, Mohan; Madhumitha, G

    2012-12-01

    In the present study, the biosynthesis of rutile TiO(2) nanoparticles (TiO(2) NPs) was achieved by a novel, biodegradable and convenient procedure using fruit peel Annona squamosa aqueous extract. This is the first report on the new, simple, rapid, eco-friendly and cheaper methods for the synthesis of rutile TiO(2) NPs at lower temperature using agricultural waste. Rutile TiO(2) NPs were characterized by UV, XRD, SEM, TEM and EDS studies. The UV-Vis spectrophotometer results were promising and showed a rapid production of TiO(2) NPs with a surface plasmon resonance occurring at 284 nm. The formation of the TiO(2) NPs as observed from the XRD spectrum is confirmed to be TiO(2) particles in the rutile form as evidenced by the peaks at 2?=27.42, 36.10, 41.30 and 54.33 when compared with the literature. The TEM images showed polydisperse nanoparticles with spherical shapes and size 232 nm ranges. PMID:22983203

  9. Green synthesis of anatase TiO(2) nanocrystals with diverse shapes and their exposed facets-dependent photoredox activity.

    PubMed

    Roy, Nitish; Park, Yohan; Sohn, Youngku; Leung, Kam Tong; Pradhan, Debabrata

    2014-10-01

    The exposed facets of a crystal are known to be one of the key factors to its physical, chemical and electronic properties. Herein, we demonstrate the role of amines on the controlled synthesis of TiO2 nanocrystals (NCs) with diverse shapes and different exposed facets. The chemical, physical and electronic properties of the as-synthesized TiO2 NCs were evaluated and their photoredox activity was tested. It was found that the intrinsic photoredox activity of TiO2 NCs can be enhanced by controlling the chemical environment of the surface, i.e.; through morphology evolution. In particular, the rod shape TiO2 NCs with ∼25% of {101} and ∼75% of {100}/{010} exposed facets show 3.7 and 3.1 times higher photocatalytic activity than that of commercial Degussa P25 TiO2 toward the degradation of methyl orange and methylene blue, respectively. The higher activity of the rod shape TiO2 NCs is ascribed to the facetsphilic nature of the photogenerated carriers within the NCs. The photocatalytic activity of TiO2 NCs are found to be in the order of {101}+{100}/{010} (nanorods) > {101}+{001}+{100}/{010} (nanocuboids and nanocapsules) > {101} (nanoellipsoids) > {001} (nanosheets) providing the direct evidence of exposed facets-depended photocatalytic activity. PMID:25188808

  10. Efficient phyto-synthesis and structural characterization of rutile TiO2 nanoparticles using Annona squamosa peel extract

    NASA Astrophysics Data System (ADS)

    Roopan, Selvaraj Mohana; Bharathi, A.; Prabhakarn, A.; Abdul Rahuman, A.; Velayutham, K.; Rajakumar, G.; Padmaja, R. D.; Lekshmi, Mohan; Madhumitha, G.

    2012-12-01

    In the present study, the biosynthesis of rutile TiO2 nanoparticles (TiO2 NPs) was achieved by a novel, biodegradable and convenient procedure using fruit peel Annona squamosa aqueous extract. This is the first report on the new, simple, rapid, eco-friendly and cheaper methods for the synthesis of rutile TiO2 NPs at lower temperature using agricultural waste. Rutile TiO2 NPs were characterized by UV, XRD, SEM, TEM and EDS studies. The UV-Vis spectrophotometer results were promising and showed a rapid production of TiO2 NPs with a surface plasmon resonance occurring at 284 nm. The formation of the TiO2 NPs as observed from the XRD spectrum is confirmed to be TiO2 particles in the rutile form as evidenced by the peaks at 2θ = 27.42°, 36.10°, 41.30° and 54.33° when compared with the literature. The TEM images showed polydisperse nanoparticles with spherical shapes and size 23 ± 2 nm ranges.

  11. Hydrothermal synthesis of rutile-anatase TiO2 nanobranched arrays for efficient dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Kwon, Soon Jin; Im, Hyo Been; Nam, Jung Eun; Kang, Jin Kyu; Hwang, Taek Sung; Yi, Kwang Bok

    2014-11-01

    Rutile-anatase TiO2 nanobranched arrays were prepared in two sequential hydrothermal-synthesis steps. The morphologies and crystalline nanostructures of the samples were investigated by controlling growth time and the concentration of the titanium precursor. All samples were characterized by field-emission scanning electron microscopy and X-ray diffraction analysis. It was found that treating the surfaces of rutile TiO2 nanorods with aqueous TiCl4 solutions allows the anatase TiO2 nanobranches to grow perpendicular to the main rutile TiO2 nanorods attached to the FTO glass. Irregularly shaped, dense TiO2 structures formed in the absence of TiCl4 treatment. A light-to-electricity conversion efficiency of 3.45% was achieved using 2.3 μm tall TiO2 nanobranched arrays in a dye-sensitized solar cell. This value is significantly higher than that observed for pure rutile TiO2 nanorods.

  12. Synthesis Of Silver Sulfide Stratified Photocatalyst

    SciTech Connect

    Baba, Y.; Yokoyama, S.; Takahashi, H.; Tohji, K.

    2008-02-25

    In this report, silver sulfide (Ag{sub 2}S) was selected as a new H{sub 2}S splitting photocatalyst material, and considered the synthesis method of Ag{sub 2}S photocatalyst particles with stratified structure. Previous stratified particles were synthesized by using metal oxide (hydroxide) as the precursor. Ag{sub 2}O particles as the precursor of Ag{sub 2}S were synthesized by mixing AgNO{sub 3} solution and NaOH, and their particle sizes could be controlled by the solutions' concentration. Then, Ag{sub 2}S particles were obtained by adding Na{sub 2}S solution into suspending solution of Ag{sub 2}O particles with optimum sizes. Particle sizes of Ag{sub 2}S were changed by Na{sub 2}S concentration control, and remaining Ag{sub 2}O precursor could be dissolved by adding NH{sub 3} solution. The photocatalytic H{sub 2}S splitting could be realized by UV-light irradiation on the Ag{sub 2}S particles without co-catalyst like Pt.

  13. Electronic properties of F/Zr co-doped anatase TiO 2 photocatalysts from GGA + U calculations

    NASA Astrophysics Data System (ADS)

    Long, Run; English, Niall J.

    2010-10-01

    The energetic and electronic properties of F and/or Zr-doped anatase TiO 2 are investigated by first-principles calculations. For F-doping, reduced Ti 3+ ions are formed and Ti orbitals lie slightly below the conduction band, leading to band gap narrowing. For Zr-doping, Zr 4d orbitals reside well into the conduction band, with essentially no band gap change. For F/Zr-codoping, the electronic structure is similar to that for F-monodoping, where Ti 3+ gap states are induced by both the oxygen vacancy and F dopant. The influence of oxygen vacancies indicates that interplay between dopants and oxygen vacancies is key for improvement of photocatalytic activity. The theoretical findings present a reasonable explanation of recent experimental results.

  14. Synthesis and characterization of Fe-doped TiO2 films by electrophoretic method and its photocatalytic activity toward methyl orange

    NASA Astrophysics Data System (ADS)

    Zhang, Yanrong; Li, Qian

    2013-02-01

    In this study the cathodic electrophoretic deposition method has been developed and used to prepare Fe-doped TiO2 films to enhance the photocatalytic activity. X-ray diffraction (XRD) showed that the photocatalysts were predominantly in well-crystallized anatase phase, scanning electron microscope (SEM) and transmission electron microscopy (TEM) showed that the photocatalysts were in nanometer size with the diameter about 20 nm. We discussed the effects of electrophoretic voltage and the optimum content of Fe on the activity of photocatalyst. Compared to the calcined Fe-doped TiO2 film, the non-calcined Fe-doped TiO2 film showed higher photocatalytic decolorization toward methyl orange (MO). The photocatalytic degradation of MO could be described as pseudo-first order reactions.

  15. One-step synthesis of hierarchically porous hybrid TiO2 hollow spheres with high photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Liu, Ruiping; Ren, Feng; Yang, Jinlin; Su, Weiming; Sun, Zhiming; Zhang, Lei; Wang, Chang-an

    2016-03-01

    Hierarchically porous hybrid TiO2 hollow spheres were solvothermally synthesized successfully by using tetrabutyl titanate as titanium precursor and hydrated metal sulfates as soft templates. The as-prepared TiO2 spheres with hierarchically pore structures and high specific surface area and pore volume consisted of highly crystallized anatase TiO2 nanocrystals hybridized with a small amount of metal oxide from the hydrated sulfate. The proposed hydrated-sulfate assisted solvothermal (HAS) synthesis strategy was demonstrated to be widely applicable to various systems. Evaluation of the hybrid TiO2 hollow spheres for the photo-decomposition of methyl orange (MO) under visible-light irradiation revealed that they exhibited excellent photocatalytic activity and durability.

  16. Synthesis of TiO 2 nanostructured reservoir with temozolomide: Structural evolution of the occluded drug

    NASA Astrophysics Data System (ADS)

    López, T.; Sotelo, J.; Navarrete, J.; Ascencio, J. A.

    2006-10-01

    Sol-gel synthesized nanostructured TiO 2 matrix were produced with different channel sizes, where drug are immersed, producing a reservoir with Temozolomide (TMZ). This drug is particularly important for the treatment of cancer tumors, which are fundamentally a consequence of the uncontrolled reproduction of human cell. In this way the chemotherapy plays an important role in the treatment of both recurrent and newly diagnosed patients. In the handling of brain tumors TMZ has been discovered as a recent and efficient second generation drug employed in the control of advanced brain gliomas, and it is a welcome addition. Its active component binds to the cancerous DNA cells, thus preventing their disordered growth, destroying them. In this work, we report the synthesis of TiO 2 nanostructured reservoir with TMZ, focusing the effort to the understanding of structural effects on the TMZ configuration by using nuclear magnetic resonance, Raman and IR spectroscopy methods. Our results establish that TMZ molecules are quite sensible to chemical processes and it produces the activation of the molecule, which is followed and understood with help of quantum molecular simulation methods. The study of the molecules allows determining the conditions that produce the activation and chemical selectivity of the molecules, which determines the conditions of synthesis. This information gives parameters for the reservoir structural and chemical optimization.

  17. Two-Dimensional Hollow TiO2 Nanoplates with Enhanced Photocatalytic Activity.

    PubMed

    Song, Chuang; Wang, Lanfang; Gao, Feng; Lu, Qingyi

    2016-04-25

    Two-dimensional anatase TiO2 hollow nanoplates were firstly synthesized through a facile synthesis route by using α-Fe2 O3 nanoplates as removable templates. Two-dimensional hollow TiO2 nanoplates with different ratios of anatase and rutile phases were obtained by adjusting the calcining temperature. The average diameters were around 600 nm, and the shell thickness was approximately 30 nm. The photocatalytic performance of TiO2 was investigated by decomposing rhodamine B under simulated sunlight. Among the TiO2 samples, the anatase TiO2 hollow nanoplates manifested a significant enhancement in the photocatalytic performances. The excellent catalytic performance can be attributed to the unique structure of the two-dimensional anatase TiO2 hollow nanoplates, including a large surface area and increased dye-photocatalyst contact areas as well as more active sites for photodegradation. PMID:26996999

  18. Development of solar-driven electrochemical and photocatalytic water treatment system using a boron-doped diamond electrode and TiO2 photocatalyst.

    PubMed

    Ochiai, Tsuyoshi; Nakata, Kazuya; Murakami, Taketoshi; Fujishima, Akira; Yao, Yanyan; Tryk, Donald A; Kubota, Yoshinobu

    2010-02-01

    A high-performance, environmentally friendly water treatment system was developed. The system consists mainly of an electrochemical and a photocatalytic oxidation unit, with a boron-doped diamond (BDD) electrode and TiO(2) photocatalyst, respectively. All electric power for the mechanical systems and the electrolysis was able to be provided by photovoltaic cells. Thus, this system is totally driven by solar energy. The treatment ability of the electrolysis and photocatalysis units was investigated by phenol degradation kinetics. An observed rate constant of 5.1 x 10(-3)dm(3)cm(-2)h(-1) was calculated by pseudo-first-order kinetic analysis for the electrolysis, and a Langmuir-Hinshelwood rate constant of 5.6 microM(-1)min(-1) was calculated by kinetic analysis of the photocatalysis. According to previous reports, these values are sufficient for the mineralization of phenol. In a treatment test of river water samples, large amounts of chemical and biological contaminants were totally wet-incinerated by the system. This system could provide 12L/day of drinking water from the Tama River using only solar energy. Therefore, this system may be useful for supplying drinking water during a disaster. PMID:19863989

  19. TiO2/vanadate (Sr10V6O25, Ni3V2O8, Zn2V2O7) heterostructured photocatalysts with enhanced photocatalytic activity for photoreduction of CO2 into CH4

    NASA Astrophysics Data System (ADS)

    Yan, Yabin; Yu, Yanlong; Wu, Di; Yang, Yajun; Cao, Yaan

    2015-12-01

    A series of TiO2/vanadate (Sr10V6O25, Ni3V2O8, Zn2V2O7) heterostructured photocatalysts were prepared by a simple sol-gel method. The theoretical calculations imply the possible energy band match between TiO2 and vanadates. Characterized by XRD, Raman, TEM, EDX, XPS, absorption spectra, PL and time-resolved PL decay curves, it is revealed that the vanadates, which exist on the surface of TiO2, could suppress the recombination of charge carriers, prolong the life-time of photogenerated electrons and provide surface reactive hole sites, improving the photocatalytic activity for photo-reduction of CO2 into CH4.A series of TiO2/vanadate (Sr10V6O25, Ni3V2O8, Zn2V2O7) heterostructured photocatalysts were prepared by a simple sol-gel method. The theoretical calculations imply the possible energy band match between TiO2 and vanadates. Characterized by XRD, Raman, TEM, EDX, XPS, absorption spectra, PL and time-resolved PL decay curves, it is revealed that the vanadates, which exist on the surface of TiO2, could suppress the recombination of charge carriers, prolong the life-time of photogenerated electrons and provide surface reactive hole sites, improving the photocatalytic activity for photo-reduction of CO2 into CH4. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05332c

  20. Microwave-assisted synthesis and photocatalytic properties of sulphur and platinum modified TiO2 nanofibers

    NASA Astrophysics Data System (ADS)

    Drunka, R.; Grabis, J.; Jankovica, Dz; Krumina, A.; Rasmane, Dz

    2015-03-01

    In the present work formation of active TiO2 nanofibers in microwave synthesis and their modification with platinum were studied. Mixture of anatase and rutile nanopowder and 10M KOH solution were used as raw materials. Microwave assisted synthesis method permitted to obtain TiO2 nanofibres with a diameter of 10nm and a specific surface area up to 40.2 m2/g. In order to modify TiO2 nanofibers with platinum it was stirred in H2PtCl6 solution and illuminated with UV irradiation or reduced with sodium boronhydride. To modify titania with sulphur and prepare co-doped nanofibers platinum doped samples were extra treated in hydrogen sulphide atmosphere. Photocatalytic activity was determined by degradation of the methylene blue (MB) solution under UV and visible light irradiation. The obtained samples showed higher photocatalytic activity with respect to pure TiO2 nanofibers. The doped TiO2 nanofibers were appropriate for degradation of harmful organic compounds.

  1. Synthesis and enhanced visible-light responsive of C,N,S-tridoped TiO2 hollow spheres.

    PubMed

    Lin, Xiaoxia; Fu, Degang; Hao, Lingyun; Ding, Zhen

    2013-10-01

    C,N,S-tridoped TiO2 hollow spheres (labeled as C,N,S-THs) were synthesized using carbon spheres as template and C,N,S-tridoped TiO2 nanoparticles as building blocks. The structure and physicochemical properties of the catalysts were characterized by Xray diffraction (XRD), scanning electron microscopy (SEM), UV-Vis diffuse reflectance spectrum (DRS), N2 adsorption-desorption isotherms, X-ray photoelectron spectroscopy (XPS) and Photoluminescence emission spectroscopy (PL). The results showed that the hollow spheres had average diameter of about 200 nm and the shell thickness was about 20 nm. The tridoped TiO2 hollow spheres exhibited strong absorption in the visible-light region. C,N,S-tridoped could narrow the band gap of the THs by mixing the orbit O 2p with C 2p, N 2p and S 3p orbits and shift its optical response from ultraviolet (UV) to the visible-light region. PL analysis indicated that the electron-hole recombination rate of TiO2 hollow spheres had been effectively inhibited when doped with C, N and S elements. The photocatalytic activities of the samples were evaluated for the degradation of X-3B (Reactive Brilliant Red dye, C.I. Reactive Red 2) aqueous solution under visible-light (lambda > 420 nm) irradiation. It was found that the C,N,S-tridoped TiO2 hollow spheres indicated higher photocatalytic activity than commercial P25 and the undoped counterpart photocatalyst. PMID:24494503

  2. Nanomaterial synthesis and characterization for toxicological studies: TiO2 case study

    USGS Publications Warehouse

    Valsami-Jones, E.; Berhanu, D.; Dybowska, A.; Misra, S.; Boccaccini, A.R.; Tetley, T.D.; Luoma, S.N.; Plant, J.A.

    2008-01-01

    In recent years it has become apparent that the novel properties of nanomaterials may predispose them to a hitherto unknown potential for toxicity. A number of recent toxicological studies of nanomaterials exist, but these appear to be fragmented and often contradictory. Such discrepancies may be, at least in part, due to poor description of the nanomaterial or incomplete characterization, including failure to recognise impurities, surface modifications or other important physicochemical aspects of the nanomaterial. Here we make a case for the importance of good quality, well-characterized nanomaterials for future toxicological studies, combined with reliable synthesis protocols, and we present our efforts to generate such materials. The model system for which we present results is TiO2 nanoparticles, currently used in a variety of commercial products. ?? 2008 The Mineralogical Society.

  3. Enhanced visible-light-driven photocatalytic inactivation of Escherichia coli using g-C3N4/TiO2 hybrid photocatalyst synthesized using a hydrothermal-calcination approach.

    PubMed

    Li, Guiying; Nie, Xin; Chen, Jiangyao; Jiang, Qi; An, Taicheng; Wong, Po Keung; Zhang, Haimin; Zhao, Huijun; Yamashita, Hiromi

    2015-12-01

    Biohazards are widely present in wastewater, and contaminated water can arouse various waterborne diseases. Therefore, effectively removing biohazards from water is a worldwide need. In this study, a novel visible-light-driven (VLD) graphitic carbon nitride (g-C3N4)/TiO2 hybrid photocatalyst with high photocatalytic bacterial inactivation activity was successfully synthesized using a facile hydrothermal-calcination approach. The optimum synthesized hybrid photocatalyst is composed of micron-sized TiO2 spheres (average diameter: ca. 2 μm) and wrapped with lamellar g-C3N4 (thickness: ca. 2 nm), with narrowing bandgap (ca. 2.48 eV), leading to a significant improvement of visible light (VL) absorption and effective separation of photo-generated electron-hole pairs. This greatly enhances VL photocatalytic inactivation activity towards bacteria in water. Using this hybrid photocatalyst, 10(7) cfu mL(-1) of Escherichia coli K-12 could be completely inactivated within 180 min under VL irradiation. SEM images indicate that bacterial cells were greatly damaged, leading to a severe leakage of intracellular components during photocatalytic inactivation processes. The study concludes that bacterial cell destruction and water disinfection can be achieved using this newly fabricated VLD hybrid photocatalyst. PMID:26084941

  4. Facile synthesis of TiO2/microcrystalline cellulose nanocomposites: photocatalytically active material under visible light irradiation

    EPA Science Inventory

    Doped TiO2 nanocomposites were prepared in situ by a facile and simple synthesis utilizing benign and renewable precursors such as microcrystalline cellulose (MC) and TiCl4 through hydrolysis in alkaline medium without the addition of organic solvents. The as-prepared nanocompos...

  5. Controlled synthesis and electrical conduction properties of anatase TiO2 nanoparticles via the polyol method

    NASA Astrophysics Data System (ADS)

    Bargougui, R.; Bouazizi, N.; Ben Soltan, W.; Gadri, A.; Azzouz, A.; Ammar, S.

    2016-04-01

    This paper reports the preparation and characterization of titanium dioxide nanoparticles (TiO2-NPs) with pure anatase phases using polyol synthesis process. The preparation state and the particle size are controlled by varying the synthesis parameters such as the precursor concentration, hydrolysis rate and the synthesis time. Nanoparticles were characterized by X-ray diffractometry, TEM, FT-IR spectroscopy and the measure of the complex impedance spectroscopy. Their physicochemical properties were investigated to optimize the synthesis conditions. FT-IR spectra exhibit broad peaks where anatase phases of TiO2 demonstrate very sharp peaks. The structural characterization by XRD confirms that there is a formation of anatase TiO2-NPs phases at 550 °C and the crystalline size is in the range of 19-25 nm. The crystallite size of the TiO2 core decreases with the concentration of titanium tetrachloride TiCl4 precursor. Electrical properties and relaxation phenomenon of the material were studied at several temperatures.

  6. THERMALLY STABLE NANOCRYSTALLINE TIO2 PHOTOCATALYSTS SYNTHESIZED VIA SOL-GEL METHODS MODIFIED WITH IONIC LIQUID AND SURFACTANT MOLECULES

    EPA Science Inventory

    Recently, sol-gel methods employing ionic liquids (ILs) have shown significant implications for the synthesis of well-defined nanostructured inorganic materials. Herein, we synthesized nanocrystalline TiO2 particles via an alkoxide sol-gel method employing a water-immi...

  7. Synthesis of polycarbonate-r-polyethylene glycol copolymer for templated synthesis of mesoporous TiO2 films.

    PubMed

    Patel, Rajkumar; Kim, Jinkyu; Lee, Chang Soo; Kim, Jong Hak

    2014-12-01

    We synthesized a novel polycarbonate Z-r-polyethylene glycol (PCZ-r-PEG) copolymer by solution polycondensation. Successful synthesis of PCZ-r-PEG copolymer was confirmed by Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (1H-NMR), gel permeation chromatography (GPC), and transmission electron microscopy (TEM). PCZ-r-PEG copolymer was used as a structure-directing agent for fabrication of mesoporous thin film containing a titanium dioxide (TiO2) layer. To control the porosity of the resultant inorganic layer, the ratio of titanium(IV) isopropoxide (TTIP) to PCZ-r-PEG copolymer was varied. The structure and porosity of the resulting mesoporous films were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses. Mesoporous TiO2 films fabricated on an F-doped tin oxide (FTO) surface were used as photoanodes for quasi-solid-state dye-sensitized solar cells (qssDSSCs). The highest efficiency achieved was 3.3% at 100 mW/cm2 for a film thickness of 750 nm, which is high considering the thickness of TiO2 film, indicating the importance of the structure-directing agent. PMID:25971065

  8. Green synthesis of highly crystalline and visible-light sensitive C-, N- and S- codoped with Ag TiO2 nanocatalyst

    EPA Science Inventory

    Titanium dioxide (TiO2) has been a focus of attention as chemically stable, relatively nontoxic, inexpensive and highly efficient photocatalyst applicable for a wide array of uses. However, main disadvantage that severely limits its wider use is the large band gap, 3.0 eV and 3.2...

  9. Synthesis and photocatalytic activity of co-doped mesoporous TiO 2 on Brij98/CTAB composite surfactant template

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaotong; Zhou, Guowei; Xu, Jing; Bai, Guangwei; Wang, Lei

    2010-06-01

    Using composite surfactant templates, polyoxyethylene (20) oleyl ether (Brij98) and cetyl trimethyl ammonium bromide (CTAB), as structure-directing agents, N and La co-doped mesoporous TiO 2 complex photocatalysts were synthesized successfully. The micromorphology of co-doped mesoporous TiO 2 samples was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transformed infrared spectroscopy (FT-IR), energy-dispersive X-ray spectrometer (EDS) and N 2 adsorption-desorption measurements. The results indicated that the complex photocatalyst prepared with a molar ratio of Brij98:CTAB=1:1 showed a uniform pore size of ca. 7 nm and a high specific surface area ( SBET) of 279.0 m 2 g -1, and exhibited the highest photocatalytic activity for degradation of papermaking wastewater under ultra-violet light irradiation. The chemical oxygen demand (CODc r) percent degradation was about 73% in 12 h and chroma percent degradation was 100% in 8 h.

  10. Synthesis and characterization of TiO2 and Ag/TiO2 nanostructure

    NASA Astrophysics Data System (ADS)

    Gahlot, Swati; Thakur, Amit Kumar; Kulshrestha, Vaibhav; Shahi, V. K.

    2013-02-01

    Single phase anatase TiO2 nanoparticles were prepared using Titanium tertachloride (TiCl4) as precursor through an inexpensive method. Well dispersed nanocomposites of silver at TiO2 were synthesized successfully by photochemical route. Both TiO2 and Ag/TiO2 were characterized using X-Ray Diffraction (XRD) and transmission electron microscopy (TEM). The particle size of TiO2 is found to be ˜ 11 nm and ˜ 22 nm for Ag/TiO2, by XRD and confirmed by TEM. TEM micrographs also show the single phase crystal of TiO2 and confirm the deposition of silver among TiO2.

  11. Hydrothermal synthesis of Mo-doped VO2/TiO2 composite nanocrystals with enhanced thermochromic performance.

    PubMed

    Li, Dengbing; Li, Ming; Pan, Jing; Luo, Yuanyuan; Wu, Hao; Zhang, Yunxia; Li, Guanghai

    2014-05-14

    This paper reports a one-step TiO2 seed-assistant hydrothermal synthesis of Mo-doped VO2(M)/TiO2 composite nanocrystals. It was found that excess Mo doping can promote formation of the VO2(M) phase, and rutile TiO2 seed is beneficial to morphology control, size reduction, and infrared modulation of Mo-doped VO2(M) nanocrystals. The Mo-doped VO2 nanocrystals epitaxially grow on TiO2 seeds and have a quasi-spherical shape with size down to 20 nm and a nearly 35% infrared modulation near room temperature. The findings of this work demonstrate important progress in the near-room-temperature thermochromic performance of VO2(M) nanomaterials, which will find potential application in constructing VO2(M) nanocrystal-based smart window coatings. PMID:24734771

  12. Photovoltaic performance of dye-sensitized solar cells using TiO2 nanotubes aggregates produced by hydrothermal synthesis

    NASA Astrophysics Data System (ADS)

    Chen, Qiufan; Sun, Xiaonan; Liu, Anping; Zhang, Qifeng; Cao, Guozhong; Zhou, Xiaoyuan

    2015-09-01

    This paper reports the synthesis, detailed structural characterization of aggregated TiO2 nanotubes and the application of such aggregated TiO2 nanotubes as photoelectrodes in solar cells (dye sensitized DSCs). A maximum overall conversion efficiency of 7.9% has been achieved, which use conventional dyes without any additional chemical treatments under circumstances of an open-circuit voltage of 710 mV, a short-circuit current density of 16.8mA/cm2, and a fill factor of 66%. This impressive performance is believed to attribute to the micron-sized aggregate structure which may be favorable for light harvesting, the desired high specific surface area and pure anatase phase for dye absorption. This significant improvement in the conversion efficiency indicates that DSCs based on aggregated TiO2 nanotubes are a promising alternative to semiconductor-based solar cells.

  13. Stereospecific growth of densely populated rutile mesoporous TiO2 nanoplate films: a facile low temperature chemical synthesis approach.

    PubMed

    Lee, Go-Woon; Ambade, Swapnil B; Cho, Young-Jin; Mane, Rajaram S; Shashikala, V; Yadav, Jyotiprakash; Gaikwad, Rajendra S; Lee, Soo-Hyoung; Jung, Kwang-Deog; Han, Sung-Hwan; Joo, Oh-Shim

    2010-03-12

    We report for the first time, using a simple and environmentally benign chemical method, the low temperature synthesis of densely populated upright-standing rutile TiO(2) nanoplate films onto a glass substrate from a mixture of titanium trichloride, hydrogen peroxide and thiourea in triply distilled water. The rutile TiO(2) nanoplate films (the phase is confirmed from x-ray diffraction analysis, selected area electron diffraction, energy-dispersive x-ray analysis, and Raman shift) are 20-35 nm wide and 100-120 nm long. The chemical reaction kinetics for the growth of these upright-standing TiO(2) nanoplate films is also interpreted. Films of TiO(2) nanoplates are optically transparent in the visible region with a sharp absorption edge close to 350 nm, confirming an indirect band gap energy of 3.12 eV. The Brunauer-Emmet-Teller surface area, Barret-Joyner-Halenda pore volume and pore diameter, obtained from N(2) physisorption studies, are 82 m(2) g(-1), 0.0964 cm(3) g(-1) and 3.5 nm, respectively, confirming the mesoporosity of scratched rutile TiO(2) nanoplate powder that would be ideal for the direct fabrication of nanoscaled devices including upcoming dye-sensitized solar cells and gas sensors. PMID:20160342

  14. Photochemical synthesis, characterization and enhanced visible light induced photocatalysis of Ag modified TiO2 nanocatalyst.

    PubMed

    Ko, Seonghyuk

    2014-09-01

    Nanocomposite of titania (TiO2) and silver (Ag) has been synthesized by a photochemical deposition method. We investigated the simultaneous enhancement of visible light sensitivity and photocatalytic activities of as-prepared Ag-TiO2 nanocomposite photocatalyst. The resulting Ag-TiO2 nanomaterials were characterized by various analytical techniques including X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), UV-Vis diffuse reflectance spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS) and photoluminescence (PL). Photocatalytic activity was evaluated by decomposition of methylene blue (MB) dye solution under simulated visible light irradiation. Ag nanoparticles were well dispersed on the surface of TiO2 and composite nanoparticles were effectively enhanced in visible light-induced photocatalytic activity compared to that of Ag free TiO2. It was found that the enhanced activity is result from simultaneous effects of nano-Ag deposits by increasing the absorption capacity in visible region and by acting as electron trappers to promote charge separation of photoinduced electrons (e-) and holes (h+). The effect of the amount of Ag nanoparticles on its photoactivity under simulated visible light was also investigated. PMID:25924350

  15. The Effect of Synthesis Conditions on Mesoporous Structure and the Photocatalytic Activity of TiO2 Nanoparticles.

    PubMed

    Myilsamy, M; Murugesan, V; Mahalakshmi, M

    2015-06-01

    Mesoporous TiO2 nanoparticles have been synthesized by sol-gel method in different preparation conditions to investigate the effect of triblock copolymer, acetic acid and water on mesoporous structure and the photocatalytic activity. The synthesized photocatalysts were characterized by means of X-ray powder diffraction, Nitrogen adsorption/desorption studies, High resolution transmission electron microscopy, Scanning electron microscopy, Diffuse reflectance UV-Vis spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy and thermogravimetric analysis. Among the various synthesized materials, mesoporous TiO2 synthesized using triblock copolymer as a structure directing template in acetic acid medium with high water ratio calcined at 400 degrees C was found to have the highest photocatalytic activity due to the enhanced band gap energy, high specific surface area and high average pore size. The large mesopores provide more pathways for the reactants to enter and products to escape and enhances the adsorption of methylene blue. The photocatalytic activity decreases with increase of solution pH. The rate of *OH formation is high at lower pH, which enhances the photocatalytic activity was revealed by photoluminescence technique. In addition, the adsorbed hydroxyl groups on the surface of mesoporous TiO2 particles can interact with photogenerated holes to produce more *OH radicals, which enhances charge transfer efficiency and enhances the rate of *OH formation. PMID:26369095

  16. The synthesis of aqueous-dispersible anatase TiO2 nanoplatelets

    NASA Astrophysics Data System (ADS)

    Shan, Guo-Bin; Demopoulos, George P.

    2010-01-01

    Aqueous well-dispersed and phase-pure anatase TiO2 truncated octahedron nanoplatelets (NPLs) were prepared via controlled hydrolysis of titanium tetrachloride (TiCl4) in ethylene glycol at 240 °C. Two shapes, square and hexagon, were observed by microscopy, exactly corresponding to the truncated octahedron NPLs. Ethylene glycol was found to produce water in situ that reacts with TiCl4 to produce TiO2 and HCl—the latter promoting TiO2 colloid peptization. TiO2 truncated octahedron NPLs are formed under the stabilizing action of ethylene glycol thermolysis derivatives, such as aldehydes. Crystal growth of the TiO2 NPLs was affected by the reaction temperature that determines the water production rate and HCl-assisted peptization. TGA and FT-IR results showed ~1.2% ethylene glycol thermolysis derivatives are attached to the surface of the TiO2 NPLs, which prevents their agglomeration, hence making them easily dispersible in aqueous media. HR-TEM and SAED results showed that the TiO2 NPLs are well crystallized and that the SAED patterns of the single TiO2 NPL changes with its size and shape. XRD patterns showed that the TiO2 NPLs are phase-pure anatase and the percentage of the {101} plane in the TiO2 NPLs to be only 18%—a structural feature that renders the TiO2 NPLs with enhanced UV absorption and reactivity properties.

  17. The synthesis of aqueous-dispersible anatase TiO2 nanoplatelets.

    PubMed

    Shan, Guo-Bin; Demopoulos, George P

    2010-01-15

    Aqueous well-dispersed and phase-pure anatase TiO(2) truncated octahedron nanoplatelets (NPLs) were prepared via controlled hydrolysis of titanium tetrachloride (TiCl(4)) in ethylene glycol at 240 degrees C. Two shapes, square and hexagon, were observed by microscopy, exactly corresponding to the truncated octahedron NPLs. Ethylene glycol was found to produce water in situ that reacts with TiCl(4) to produce TiO(2) and HCl-the latter promoting TiO(2) colloid peptization. TiO(2) truncated octahedron NPLs are formed under the stabilizing action of ethylene glycol thermolysis derivatives, such as aldehydes. Crystal growth of the TiO(2) NPLs was affected by the reaction temperature that determines the water production rate and HCl-assisted peptization. TGA and FT-IR results showed approximately 1.2% ethylene glycol thermolysis derivatives are attached to the surface of the TiO(2) NPLs, which prevents their agglomeration, hence making them easily dispersible in aqueous media. HR-TEM and SAED results showed that the TiO(2) NPLs are well crystallized and that the SAED patterns of the single TiO(2) NPL changes with its size and shape. XRD patterns showed that the TiO(2) NPLs are phase-pure anatase and the percentage of the [101] plane in the TiO(2) NPLs to be only 18%-a structural feature that renders the TiO(2) NPLs with enhanced UV absorption and reactivity properties. PMID:19955613

  18. Characterization of the thin layer photocatalysts TiO2 and V2O5- and Fe2O3- doped TiO2 prepared by the sol-gel method

    NASA Astrophysics Data System (ADS)

    Loc Luu, Cam; Nguyen, Quoc Tuan; Thoang Ho, Si; Nguyen, Tri

    2013-09-01

    The catalysts TiO2 and TiO2 doped with Fe and V were prepared using the sol-gel method. TiO2-modified samples were obtained in the form of a thick film on pyrex glass sticks and tubes and were used as catalysts in the gas phase photo-oxidation of p-xylene. The physico-chemical characteristics of the catalysts were determined using the methods of Brunauer-Emmett-Teller adsorption, x-ray diffraction, and infrared, ultraviolet and visible and Raman spectroscopies. The experimental results show that the introduction of V did not expand the region of light absorption, but slightly reduced the size of the TiO2 particles, and reduced the number of OH-groups, which should decrease the photocatalytic activity and efficiency of the obtained catalysts compared to those of pure TiO2. The Fe-doped TiO2 samples, in contrast, are characterized by an extension of the spectrum of photon absorption to the visible region with wavenumbers ? up to 464 nm and the values of their band gap energy decreased to lower quantities (up to 2.67 eV), therefore they should have higher catalytic activity and conversion efficiency of p-xylene in the visible region than the original sample. For these catalysts, a combined utilization of radiation by ultraviolet (? = 365 nm) and visible (? = 470 nm) light increased the activity and the yield in p-xylene conversion by a factor of around 2-3, as well as making these quantities more stable in comparison with those of TiO2-P25 Degussa.

  19. Synthesis of hierarchical TiO2 nanowires with densely-packed and omnidirectional branches

    NASA Astrophysics Data System (ADS)

    Lee, Daeho; Rho, Yoonsoo; Allen, Frances I.; Minor, Andrew M.; Ko, Seung Hwan; Grigoropoulos, Costas P.

    2013-10-01

    In this study, a hierarchical TiO2 nanostructure with densely-packed and omnidirectional branches grown by a hydrothermal method is introduced. This morphology is achieved via high-concentration TiCl4 treatment of upright backbone nanowires (NWs) followed by hydrothermal growth. Secondary nanobranches grow in all directions from densely distributed, needle-like seeds on the jagged round surface of the backbone NWs. In addition, hierarchical, flower-like branches grow on the top surface of each NW, greatly increasing the surface area. For dye-sensitized solar cell (DSSC) applications, the TiO2 nanostructure demonstrated a photoconversion efficiency of up to 6.2%. A parametric study of the DSSC efficiency showed that branched TiO2 DSSCs can achieve nearly four times the efficiency of non-branched TiO2 nanowire DSSCs, and up to 170% the efficiency of previously-reported sparsely-branched TiO2 NW DSSCs.

  20. The design, fabrication, and photocatalytic utility of nanostructured semiconductors: focus on TiO2-based nanostructures

    PubMed Central

    Banerjee, Arghya Narayan

    2011-01-01

    Recent advances in basic fabrication techniques of TiO2-based nanomaterials such as nanoparticles, nanowires, nanoplatelets, and both physical- and solution-based techniques have been adopted by various research groups around the world. Our research focus has been mainly on various deposition parameters used for fabricating nanostructured materials, including TiO2-organic/inorganic nanocomposite materials. Technically, TiO2 shows relatively high reactivity under ultraviolet light, the energy of which exceeds the band gap of TiO2. The development of photocatalysts exhibiting high reactivity under visible light allows the main part of the solar spectrum to be used. Visible light-activated TiO2 could be prepared by doping or sensitizing. As far as doping of TiO2 is concerned, in obtaining tailored material with improved properties, metal and nonmetal doping has been performed in the context of improved photoactivity. Nonmetal doping seems to be more promising than metal doping. TiO2 represents an effective photocatalyst for water and air purification and for self-cleaning surfaces. Additionally, it can be used as an antibacterial agent because of its strong oxidation activity and superhydrophilicity. Therefore, applications of TiO2 in terms of photocatalytic activities are discussed here. The basic mechanisms of the photoactivities of TiO2 and nanostructures are considered alongside band structure engineering and surface modification in nanostructured TiO2 in the context of doping. The article reviews the basic structural, optical, and electrical properties of TiO2, followed by detailed fabrication techniques of 0-, 1-, and quasi-2-dimensional TiO2 nanomaterials. Applications and future directions of nanostructured TiO2 are considered in the context of various photoinduced phenomena such as hydrogen production, electricity generation via dye-sensitized solar cells, photokilling and self-cleaning effect, photo-oxidation of organic pollutant, wastewater management, and organic synthesis. PMID:24198485

  1. Synthesis of Ni nanoparticles decorated SiO2/TiO2 magnetic spheres for enhanced photocatalytic activity towards the degradation of azo dye

    NASA Astrophysics Data System (ADS)

    Mahesh, K. P. O.; Kuo, Dong-Hau

    2015-12-01

    Highly photocatalytic active Ni magnetic nanoparticles-decorated SiO2 core/TiO2 shell (Ni-SiO2/TiO2) particles have been prepared by the simultaneous hydrolysis and condensation of titanium tetra-isopropoxide on SiO2 sphere of ∼300 nm in size followed by the reduction of nickel chloride using hydrazine hydrate as a reducing agent. The crystalline nature, surface morphology, electrochemical impedance spectra and UV-vis diffuse reflectance spectra of the Ni-SiO2/TiO2 magnetic spheres were characterized by PXRD, FE-SEM, TEM, EIS and UV-vis DRS. The Ni-SiO2/TiO2 magnetic photocatalyst was used for the degradation of Acid Black 1 (AB 1) dye under UV irradiation. The effects of different concentrations of the Ni nanoparticles deposited on the SiO2/TiO2 composite spheres for the photo-mineralization of AB 1 dye were analyzed. The results showed the Ni-SiO2/TiO2 magnetic photocatalyst to be efficient and reusable.

  2. Solvothermal synthesis of TiO2/CNT composites and its physical and chemical properties

    NASA Astrophysics Data System (ADS)

    Venkatraman, M. R.; Muthukumarasamy, N.; Balasundaraprabhu, R.; Agilan, S.; Velauthapillai, Dhayalan

    2015-06-01

    Anatase TiO2/CNT composites of different CNT ratio were prepared by solvothermal method. The X-ray diffraction analysis result showed that the sample has characteristic peaks of anatase TiO2. CNT incorporated TiO2 showed less peak intensity when compared to bare TiO2. The grain size was calculated using the Scherrer equation and it is found to be ˜ 2.38 and 2.46 nm for pure TiO2 and 5% CNT/TiO2 composites respectively. Optical properties were studied using UV-visible diffuse reflectance analysis and photo luminescence analysis respectively. UV analysis reveals the shift in absorption peaks towards the visible region for composites when compared to bare TiO2 powder. Raman spectroscopy studies show the presence of characteristic peaks corresponding to anatase TiO2, CNT. Morphological nature of the compounds was studied using High Resolution Transmission Electron Microscopy analysis respectively.

  3. Hydrothermal synthesis of TiO2 nanostructure films and their photoelectrochemical properties

    NASA Astrophysics Data System (ADS)

    Miao, Hui; Hu, Xiaoyun; Fan, Jun; Li, Chaoben; Sun, Qian; Hao, Yuanyuan; Zhang, Guowei; Bai, Jintao; Hou, Xun

    2015-12-01

    In this study, anatase TiO2 nanostructured films were successfully prepared via Ti foil-assisted hydrothermal synthesis method without any surfactants. With the increase of hydrothermal time from 3 to 12 h, the surface morphologies of the films changed from nanotubes to nanoflowers and the thickness of the films increased from 2.5 to 4.2 ?m. The nanoflowers were seated on a layer of oriented nanotubes and consisted of nanosheets. Both nanotubes and nanosheets were multi-walled, comprising interconnected [TiO6] octahedra. Ti foil and acid-treated Ti foil both formed pieces of thin films on the surface with nanotubes and nanoflowers, respectively. Photoelectrochemistry tests showed that the photocurrent response of the nanotube film was nearly 13.8 ?A/cm2, which was approximately three times higher than that of nanoflowers film. This indicates that the nanotubes more successfully transferred electrons to the surface of the film as a result of nanotubes providing direct pathways for electrons from the point of injection to the Ti foil electrode. The ultraviolet (UV)-visible-near infrared (NIR) absorption spectra indicated that the nanotube film had a narrower band gap as compared to the nanoflower film. In other words, a relatively low hydrothermal treatment temperature or relatively short hydrothermal treatment time is better for preparing excellent photocurrent response films.

  4. Facile electrochemical synthesis of antimicrobial TiO2 nanotube arrays

    PubMed Central

    Zhao, Yu; Xing, Qi; Janjanam, Jagadeesh; He, Kun; Long, Fei; Low, Ke-Bin; Tiwari, Ashutosh; Zhao, Feng; Shahbazian-Yassar, Reza; Friedrich, Craig; Shokuhfar, Tolou

    2014-01-01

    Infection-related complications have been a critical issue for the application of titanium orthopedic implants. The use of Ag nanoparticles offers a potential approach to incorporate antimicrobial properties into the titanium implants. In this work, a novel and simple method was developed for synthesis of Ag (II) oxide deposited TiO2 nanotubes (TiNTs) using electrochemical anodization followed by Ag electroplating processes in the same electrolyte. The quantities of AgO nanoparticles deposited in TiNT were controlled by selecting different electroplating times and voltages. It was shown that AgO nanoparticles were crystalline and distributed throughout the length of the nanotubes. Inductively coupled plasma mass spectrometry tests showed that the quantities of released Ag were less than 7 mg/L after 30 days at 37°C. Antimicrobial assay results show that the AgO-deposited TiNTs can effectively kill the Escherichia coli bacteria. Although the AgO-deposited TiNTs showed some cytotoxicity, it should be controllable by optimization of the electroplating parameters and incorporation of cell growth factor. The results of this study indicated that antimicrobial properties could be added to nanotextured medical implants through a simple and cost effective method. PMID:25429214

  5. Synthesis and characterization of TiO2 nanostructure thin films grown by thermal CVD

    NASA Astrophysics Data System (ADS)

    Rizal, Umesh; Das, Soham; Kumar, Dhruva; Swain, Bhabani S.; Swain, Bibhu P.

    2016-04-01

    Thermal Chemical Vapor Deposition (CVD) deposited Titanium dioxide nanostructures (TiO2-NSs) were grown by using Ti powder and O2 precursors on Si/SiO2 (100) substrate. The microstructure and vibration properties of TiO2-NSs were characterized by Fourier transform infrared (FTIR), SEM, and photoluminescence (PL) spectroscopy. The role of O2 flow rate on TiO2-NSs revealed decreased deposition rate, however, surface roughness has been increased resulted into formation of nanostructure thin films.

  6. Single step synthesis of rutile TiO2 nanoflower array film by chemical bath deposition method

    NASA Astrophysics Data System (ADS)

    Dhandayuthapani, T.; Sivakumar, R.; Ilangovan, R.

    2016-05-01

    Titanium oxide (TiO2) nanostructures such as nanorod arrays, nanotube arrays and nanoflower arrays have been extensively investigated by the researchers. Among them nanoflower arrays has shown superior performance than other nanostructures in Dye sensitized solar cell, photocatalysis and energy storage applications. Herein, a single step synthesis for rutile TiO2 nanoflower array films suitable for device applications has been reported. Rutile TiO2 nanoflower thin film was synthesized by chemical bath deposition method using NaCl as an additive. Bath temperature induced evolution of nanoflower thin film arrays was observed from the morphological study. X-ray diffraction study confirmed the presence of rutile phase polycrystalline TiO2. Micro-Raman study revealed the presence of surface phonon mode at 105 cm-1 due to the phonon confinement effect (finite size effect), in addition with the rutile Raman active modes of B1g (143 cm-1), Eg (442 cm-1) and A1g (607 cm-1). Further, the FTIR spectrum confirmed the presence of Ti-O-Ti bonding vibration. The Tauc plot showed the direct energy band gap nature of the film with the value of 2.9 eV.

  7. Silicon carbide coated with TiO2 with enhanced cobalt active phase dispersion for Fischer-Tropsch synthesis.

    PubMed

    Liu, Yuefeng; Florea, Ileana; Ersen, Ovidiu; Pham-Huu, Cuong; Meny, Christian

    2015-01-01

    The introduction of a thin layer of TiO2 on β-SiC allows a significant improvement of the cobalt dispersion. This catalyst exhibits an excellent and stable catalytic activity for the Fischer-Tropsch synthesis (FTS) with high C5+ selectivity, which contributes to the development of a new active catalyst family in the gas-to-liquid process. PMID:25387082

  8. Microwave-assisted synthesis of nanocrystalline TiO2 for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Kuo, Ta-Chuan; Guo, Tzung-Fang; Chen, Peter

    2012-09-01

    The main purposes of this study are replacing conventional hydro-thermal method by microwave heating using water as reaction medium to rapidly synthesize TiO2.Titanium tetraisopropoxide (TTIP) was hydrolyzed in water. The solution is subsequently processed with microwave heating for crystal growth. The reaction time could be shortened into few minutes. Then we chose different acids as dispersion agents to prepare TiO2 paste for investigating the effects of dispersion on the power conversion efficiency of dye-sensitized solar cells (DSCs). The photovoltaic performance of the microwave-assisted synthesized TiO2 achieved power conversion efficiency of 6.31% under AM 1.5 G condition (100 mW/cm2). This PCE value is compatible with that of the devices made from commercial TiO2.

  9. Fabrication, characterization and application of a reusable immobilized TiO2-PANI photocatalyst plate for the removal of reactive red 4 dye

    NASA Astrophysics Data System (ADS)

    Razak, S.; Nawi, M. A.; Haitham, K.

    2014-11-01

    A method for immobilizing TiO2-PANI composite using ENR and PVC as adhesives was successfully developed. The immobilized system known as TiO2/PANI/ENR/PVC plate was characterized by FTIR, Raman, diffuse reflectance UV-vis, photo luminescence spectroscopy and HRTEM. The optimum weight ratio for the TiO2:PANI composite was 1:0.0035. The band gap energy of the optimum immobilized composite TiO2/PANI/ENR/PVC (1:0035) was 2.86 eV where polyaniline (PANI) formed a core-shell coating of about 0.9 nm with a strong TiO2-PANI interaction. Photo-etching of the immobilized TiO2/PANI/ENR/PVC (1:0.0035) composite for 7 h increased its surface area and improved its photocatalytic activity. TiO2/PANI/ENR/PVC (1:0.0035)-7 h was visible light sensitive where 85% of 30 mg L-1 reactive red 4 (RR4) dye was decolorized after 60 min of irradiation. The immobilized TiO2/PANI/ENR/PVC (1:0.0035)-7 h was reusable and its photocatalytic activity was sustainable with an average pseudo first order rate constant value of 0.103 0.002 min-1. Adding PANI to the immobilized P25 TiO2 has enhanced its photocatalytic activity throughout the entire ten recycled applications due to the increased BET surface area and lower ecb and h+ recombination.

  10. Green synthesis of nickel species in situ modified hollow microsphere TiO2 with enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Qin, Zenan; Chen, Jie; Ren, Baosheng; Chen, Qifeng; Guo, Yanchuan; Cao, Xiaofeng

    2016-02-01

    A green template-free solvothermal approach was developed to synthesize hollow microsphere TiO2-modified in situ with nickel species (Ni2+/Ni3+). Oxalic acid played a pivotal role in the formation of hollow architecture, acting as chelating agent, structure-directing reagent, and acidity-modulation reagent, while isopropyl alcohol ensured the formation of spherical structure. The microstructure and composition of the products were characterized with various techniques, and the results showed that the products exhibited not only highly crystallized anatase phase, large specific surface areas, and the mesoporous shell and hollow architecture, but also the coexistence of Ni2+/Ni3+. The unique structure and composition of the photocatalysts resulted in improved UV and visible photocatalytic activity for degradation of Rhodamine-B and 2,4-dichlorophenol.

  11. ARTICLES: Synthesis and Characterization of TiO2 Doped ZnO Microtubes

    NASA Astrophysics Data System (ADS)

    Li, Yan

    2010-06-01

    The TiO2-doped ZnO microtubes have been successfully fabricated via a wet chemical method, using zinc chloride and titanium sulphate as the starting materials. The assynthesized products were characterized by X-ray diffraction, field emission scanning electron microscopy and room temperature photoluminescence measurement. The photocatalytic activity in degrading methyl orange was measured with a UV-Vis spectrophotometer. The pure ZnO microtubes exhibit an exact hexangular hollow structure with a diameter of about 700 nm, a length of 3 μm and a wall thickness of about 40 nm. The TiO2-doped ZnO microtubes with TiO2/ZnO ratio less than 5% have the same dimension with the pure ZnO microtubes, a smooth column shape, not a hexangular structure. The growth of ZnO may be inhibited by the more Ti4+ doped into ZnO structure to achieve a small dimension or a multiphase. The crystallinity of ZnO microtubes decreases with increasing TiO2 content, and then a multiphase containing ZnO, Ti3O5 and TiO occur when the TiO2/ZnO ratio is more than 5%. The UV emission intensity of the TiO2-doped ZnO obviously increases and then tends to decrease with TiO2/ZnO ratio increasing. The photocatalytic properties of the TiO2-doped ZnO microtubes are very efficient in degrading organic dyes of methyl orange and are well identical with its PL properties and the crystallinity.

  12. CdS-sensitized TiO2 nanocorals: hydrothermal synthesis, characterization, application.

    PubMed

    Mali, S S; Desai, S K; Dalavi, D S; Betty, C A; Bhosale, P N; Patil, P S

    2011-10-01

    Cadmium sulfide (CdS) nanoparticle-sensitized titanium oxide nanocorals (TNC) were synthesized using a two-step deposition process. The TiO(2) nanocorals were grown on the conducting glass substrates (FTO) using A hydrothermal process and CdS nanoparticles were loaded on TNC using successive ionic layer adsorption and reaction (SILAR) method. The TiO(2), CdS and TiO(2)-CdS samples were characterized by optical absorption, X-ray diffraction (XRD), FT-Raman, FT-IR, scanning electron microscopy (SEM) and contact angle. Further, their photoelectrochemical (PEC) performance was tested in NaOH, Na(2)S-NaOH-S and Na(2)S electrolytes, respectively. When CdS nanoparticles are coated on TNCs, the optical absorption is found to be enhanced and band edge is red-shifted towards visible region. The TiO(2)-CdS sample exhibits improved photoelectrochemical (PEC) performance with maximum short circuit current of (J(sc)) 1.04 mA cm(-2). After applying these TiO(2)-CdS electrodes in photovoltaic cells, the photocurrent was found to be enhanced by 2.7 and 32.5 times, as compared with those of bare CdS and TiO(2) nanocorals films electrodes respectively. Also, the power conversion efficiency of TiO(2)-CdS electrodes is 0.72%, which is enhanced by about 16 and 29 times for TiO(2), CdS samples. PMID:21799995

  13. Facile synthesis of porous TiO2 nanospheres and their photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Huang, Jiarui; Ren, Haibo; Liu, Xiaosi; Li, Xuexue; Shim, Jae-Jin

    2015-05-01

    Uniform and monodisperse porous TiO2 nanospheres were synthesized by a hydrothermal method. Techniques of X-ray diffraction, scanning electron microscopy, Brunauer-Emmett-Teller (BET) nitrogen adsorption-desorption, UV-vis absorption spectroscopy, and transmission electron microscopy were used to characterize the structure and morphology of the products. The BET surface area of the porous TiO2 nanospheres was calculated to be 26.1 cm2 g-1. In addition, the obtained porous TiO2 nanospheres were used as catalyst to photodegrade methylene blue, Rhodamine B, methyl orange, p-nitrophenol, and eosin B. Compared to commercial TiO2 powder, the as-prepared porous TiO2 nanospheres exhibited higher catalytic activities due to their large surface areas and porous nanostructures. The photocatalytic reaction rate constant of the porous TiO2 nanospheres in photocatalytic decomposition of methylene blue and Rhodamine B under simulated solar light were calculated as 0.0545 min-1 and 0.0579 min-1, respectively. Moreover, the catalyst was demonstrated to have good stability and reusability.

  14. The result of synthesis analysis of the powder TiO2/ZnO as a layer of electrodes for dye sensitized solar cell applications

    NASA Astrophysics Data System (ADS)

    Retnaningsih, Lilis; Muliani, Lia

    2016-04-01

    This study has been conducted synthesis of TiO2 nanoparticle powders and ZnO nanoparticle powder into a paste to be in this research, dye-sensitive solar cells (DSSC) was produced by TiO2 nanopowder and ZnO nanopowder synthesis to make paste that is applied as electrode. This electrode works based on photon absorbed by dye and transferred to different composition of TiO2/ ZnO particle. Properties of DSSC are affected by fabrication method, parameter and dimension of TiO2 / ZnO nanoparticles, technique and composition of TiO2 / ZnO paste preparation is important to get the higher performance of DSSC. Doctor blade is a method for electrode coating on glass substrate. The electrode was immersed into dye solution of Z907 and ethanol. From the experiment, the effect of TiO2 and ZnO nanopowder mixture for electrode was investigated. XRD characterization show anatase and rutile phase, which sintered TiO2/ZnO has intensity more than 11,000. SEM characterization shows the composition of 20% TiO2 / 80% ZnO has better porosity. Higher efficiency that is investigated by I-V measurement using Sun Simulator.

  15. Self-induced synthesis of phase-junction TiO2 with a tailored rutile to anatase ratio below phase transition temperature

    NASA Astrophysics Data System (ADS)

    Wang, Wei-Kang; Chen, Jie-Jie; Zhang, Xing; Huang, Yu-Xi; Li, Wen-Wei; Yu, Han-Qing

    2016-02-01

    The surface phase junction of nanocrystalline TiO2 plays an essential role in governing its photocatalytic activity. Thus, facile and simple methods for preparing phase-junction TiO2 photocatalysts are highly desired. In this work, we show that phase-junction TiO2 is directly synthesized from Ti foil by using a simple calcination method with hydrothermal solution as the precursor below the phase transition temperature. Moreover, the ratio of rutile to anatase in the TiO2 samples could be readily tuned by changing the ratio of weight of Ti foil to HCl, which is used as the hydrothermal precursor, as confirmed by the X-ray diffraction analysis. In the photocatalytic reaction by the TiO2 nanocomposite, a synergistic effect between the two phases within a certain range of the ratio is clearly observed. The results suggest that an appropriate ratio of anatase to rutile in the TiO2 nanocomposite can create more efficient solid-solid interfaces upon calcination, thereby facilitating interparticle charge transfer in the photocatalysis.

  16. Self-induced synthesis of phase-junction TiO2 with a tailored rutile to anatase ratio below phase transition temperature

    PubMed Central

    Wang, Wei-Kang; Chen, Jie-Jie; Zhang, Xing; Huang, Yu-Xi; Li, Wen-Wei; Yu, Han-Qing

    2016-01-01

    The surface phase junction of nanocrystalline TiO2 plays an essential role in governing its photocatalytic activity. Thus, facile and simple methods for preparing phase-junction TiO2 photocatalysts are highly desired. In this work, we show that phase-junction TiO2 is directly synthesized from Ti foil by using a simple calcination method with hydrothermal solution as the precursor below the phase transition temperature. Moreover, the ratio of rutile to anatase in the TiO2 samples could be readily tuned by changing the ratio of weight of Ti foil to HCl, which is used as the hydrothermal precursor, as confirmed by the X-ray diffraction analysis. In the photocatalytic reaction by the TiO2 nanocomposite, a synergistic effect between the two phases within a certain range of the ratio is clearly observed. The results suggest that an appropriate ratio of anatase to rutile in the TiO2 nanocomposite can create more efficient solid-solid interfaces upon calcination, thereby facilitating interparticle charge transfer in the photocatalysis. PMID:26864501

  17. Low temperature synthesis of iodine-doped TiO 2 nanocrystallites with enhanced visible-induced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Ma, Yi; Fu, Ji-Wen; Tao, Xia; Li, Xin; Chen, Jian-Feng

    2011-03-01

    Iodine-doped TiO 2 nanocrystallites (denoted as I-TNCs) were prepared via a newly developed triblock copolymer-mediated sol-gel method at a temperature of 393 K. I-doping, crystallization and the formation of porous structure have been simultaneously achieved. The obtained particles were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and UV-vis spectrophotometer. The results indicated that the as-prepared I-TNCs possessed a diameter of ca. 5 nm with anatase crystalline structure and a specific surface area of over 200 m 2 g -1. The presence of iodine expanded the photoresponse in visible light range, and led to enrich in surface hydroxyl group on the TiO 2 surface. Compared with the commercial photocatalyst P25, the I-TNCs significantly enhanced the photocatalytic efficiency in the degradation of rhodamine B and 2,4-dichlorophenol, and the I-TNCs with 2.5 mol% doping ratio exhibited the best photocatalytic activity.

  18. Self-doped Ti3+-TiO2 as a photocatalyst for the reduction of CO2 into a hydrocarbon fuel under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Sasan, Koroush; Zuo, Fan; Wang, Yuan; Feng, Pingyun

    2015-08-01

    Self-doped TiO2 shows visible light photocatalytic activity, while commercial TiO2 (P25) is only UV responsive. The incorporation of Ti3+ into TiO2 structures narrows the band gap (2.90 eV), leading to significantly increased photocatalytic activity for the reduction of CO2 into a renewable hydrocarbon fuel (CH4) in the presence of water vapour under visible light irradiation.Self-doped TiO2 shows visible light photocatalytic activity, while commercial TiO2 (P25) is only UV responsive. The incorporation of Ti3+ into TiO2 structures narrows the band gap (2.90 eV), leading to significantly increased photocatalytic activity for the reduction of CO2 into a renewable hydrocarbon fuel (CH4) in the presence of water vapour under visible light irradiation. Electronic supplementary information (ESI) available: Experimental details, XPS, XRD and SEM images. See DOI: 10.1039/c5nr02974k

  19. A novel and efficient surfactant-free synthesis of Rutile TiO2 microflowers with enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Nair, Radhika V.; Jijith, M.; Gummaluri, Venkata Siva; Vijayan, C.

    2016-05-01

    Rutile TiO2 microflowers with three-dimensional spiky flower like architecture at the nanometer level are obtained by a fast single step surfactant free ethylene glycol based solvothermal scheme of synthesis. These structures are characterized by X-ray Diffraction (XRD), Field emission scanning electron microscopy (FESEM), Transmission electron microscopy (TEM) and Raman spectroscopy. These measurements confirm Rutile phase of TiO2 flowers with very high crystallinity. Photodegradation of Rhodamine B with UV exposure is investigated by UV-Visible spectroscopy measurements in the presence of these samples. They are shown to have high photocatalytic activity due to the large surface area contributed by the highly dense spiky nanostructures. The plasmonic (Au) loading in these structures are shown to significantly enhance the photocatalytic activity.

  20. Synthesis and photocatalytic activities of Nd-doped TiO2 mesoporous microspheres

    NASA Astrophysics Data System (ADS)

    Liu, Xijian; Sun, Yangang; Wang, Yeying; Zhang, Lijuan; Lu, Jie

    2016-11-01

    Nd-doped TiO2 mesoporous microspheres with possessing regular micro/nanostructure were synthesized by a simple and facile method. The structure and optical properties of the samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 adsorption-desorption isotherms and UV-Visible absorbance spectroscopy. It was revealed that Nd-doped TiO2 mesoporous microspheres are composed of primary nanoparticles with a particle size of ˜25nm. The photocatalytic activities of all the samples were evaluated by degradation methyl orange (MO) in aqueous solution as a model reaction under xenon lamp light irradiation. The results showed that the doped samples demonstrated a higher photocatalytic activity than TiO2 mesoporous microspheres, and the MO of 10mg/mL almost could be completely degraded by the Nd-doped TiO2 mesoporous sample (the dosage of Nd salt to TiO2 is 6%) under xenon lamp light irradiation within 1h.

  1. Facile Synthesis of Robust Free-Standing TiO2 Nanotubular Membranes for Biofiltration Applications

    PubMed Central

    Schweicher, Julien; Desai, Tejal A.

    2014-01-01

    Robust monodisperse nanoporous membranes have a wide range of biotechnological applications, but are often difficult or costly to fabricate. Here, a simple technique is reported to produce free-standing TiO2 nanotubular membranes with through-hole morphology. It consists in a 3-step anodization procedure carried out at room temperature on a Ti foil. The first anodization (1 h at 80 V) is used to pattern the surface of the metallic foil. Then, the second anodization (24 h at 80 V) produces the array of TiO2 nanotubes that will constitute the final membrane. A higher voltage anodization (3-5 minutes at 180 V) is finally applied to detach the TiO2 nanotubular layer from the underlying Ti foil. In order to completely remove the barrier layer that obstructs some pores of the membrane, the latter is etched 2 minutes in a buffered oxide etch solution. The overall process produces 60 μm-thick TiO2 nanotubular membranes with tube openings of 110 nm on one side and 73 nm on the other side. The through-hole morphology of these membranes has been verified by performing diffusion experiments with glucose, insulin and immunoglobulin G where in differences in diffusion rate are observed based on molecular weight. Such biocompatible TiO2 nanotubular membranes, with controlled pore size and morphology, have broad biotechnological and biomedical applications. PMID:24634542

  2. Synthesis of hierarchical TiO2 nanowires with densely-packed and omnidirectional branches.

    PubMed

    Lee, Daeho; Rho, Yoonsoo; Allen, Frances I; Minor, Andrew M; Ko, Seung Hwan; Grigoropoulos, Costas P

    2013-11-21

    In this study, a hierarchical TiO2 nanostructure with densely-packed and omnidirectional branches grown by a hydrothermal method is introduced. This morphology is achieved via high-concentration TiCl4 treatment of upright backbone nanowires (NWs) followed by hydrothermal growth. Secondary nanobranches grow in all directions from densely distributed, needle-like seeds on the jagged round surface of the backbone NWs. In addition, hierarchical, flower-like branches grow on the top surface of each NW, greatly increasing the surface area. For dye-sensitized solar cell (DSSC) applications, the TiO2 nanostructure demonstrated a photoconversion efficiency of up to 6.2%. A parametric study of the DSSC efficiency showed that branched TiO2 DSSCs can achieve nearly four times the efficiency of non-branched TiO2 nanowire DSSCs, and up to 170% the efficiency of previously-reported sparsely-branched TiO2 NW DSSCs. PMID:24071926

  3. A novel fractional crystallization route to porous TiO2-Fe2O3 composites: large scale preparation and high performances as a photocatalyst and Li-ion battery anode.

    PubMed

    Li, Li; Zhang, Jianbo; Zhu, Qingshan

    2016-02-21

    Meso/macroporous TiO2-Fe2O3 composite particles are prepared using naturally abundant ilmenite via a novel heat treatment induced fractional crystallization strategy in a fluidized bed. Fluid-bed roasting in oxidizing and reducing environments is carried out in order to realize the fractional crystallization of ilmenite. Subsequently, acid leaching is employed to remove most of the ferrous phase and form porous TiO2-Fe2O3 composites. The influences of the reaction parameters on the composition, structure and properties of the products are studied. It is found that the pore structure and composition of the porous TiO2-Fe2O3 composite particles can be controlled simply by controlling some parameters, such as the roasting time, temperature, precursor particle size, and post-roasting treatment. Photocatalytic and electrochemical cycling measurements show that the synergism of porous structures and the controlled doping of α-Fe2O3 endow the as-obtained products with excellent visible light photocatalytic activity and provide enhanced performance in lithium ion batteries. The composite porous particles thus obtained may have some promising applications in the fields of photocatalysts, electrode materials, absorbers, pigments etc. This work opens a new avenue for reasonable combination of cost-effective raw materials, a large scale fabricating process and fine control over the structure and composition in the design and preparation of functional materials. PMID:26743456

  4. Synthesis and photocatalytic properties of Palladium-loaded three dimensional flower-like anatase TiO2 with dominant {001} facets.

    PubMed

    Bai, Xue; Lv, Lingling; Zhang, Xiaoyuan; Hua, Zulin

    2016-04-01

    Palladium-loaded (Pd-loaded) anatase TiO2 with dominant {001} facets used as photocatalysts was prepared by a two-step process. Three dimensional flower-like structures of anatase TiO2 with exposed {001} facets were synthesized by solvothermal method, and then Pd nanoparticles were photodeposited onto the {101} surface of TiO2 by UV reduction. The resulting Pd/TiO2 was characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and UV-vis diffuse reflectance spectra. Characterization results indicated that the flower-like structures of anatase TiO2 were assembled by two dimensional nanosheets with a thickness of approximately 10nm and a length of approximately 1.0μm. The Pd/TiO2 nanocomposites with improved visible-light-harvesting capability, high charge-hole mobility, and low electron-hole recombination exhibited improved photocatalytic performance in degrading bisphenol A. This study provided new insights into the fabrication and practical application of high-performance photocatalysts in degrading organic pollutants. PMID:26771748

  5. Synthesis, characterization and enhanced photocatalytic CO2 reduction activity of graphene supported TiO2 nanocrystals with coexposed {001} and {101} facets.

    PubMed

    Xiong, Zhuo; Luo, Ying; Zhao, Yongchun; Zhang, Junying; Zheng, Chuguang; Wu, Jeffrey C S

    2016-05-11

    It is known that the combination of TiO2 and graphene and the control of TiO2 crystal facets are both effective routes to improve the photocatalytic performance of TiO2. Here, we report the synthesis and the photocatalytic CO2 reduction performance of graphene supported TiO2 nanocrystals with coexposed {001} and {101} facets (G/TiO2-001/101). The combination of TiO2 and graphene enhanced the crystallinity of TiO2 single nanocrystals and obviously improved their dispersion on graphene. The "surface heterojunction" formed by the coexposed {001} and {101} facets can promote the spatial separation of photogenerated electrons and holes toward different facets and the supports of graphene can further enhance the separation through accelerated electron migration from TiO2 to graphene. The G/TiO2-001/101 exhibited high photocatalytic CO2-reduction activity with a maximum CO yield reaching 70.8 μmol g(-1) h(-1). The enhanced photocatalytic activity of the composites can be attributed to their high surface area, good dispersion of TiO2 nanoparticles, and effective separation of excited charges due to the synergy of graphene supports and the co-exposure of {001} and {101} facets. PMID:26852874

  6. One step synthesis of rutile TiO2 nanoparticles at low temperature.

    PubMed

    Anwar, M S; Kumar, Shalendra; Ahmed, Faheem; Arshi, Nishat; Lee, Chan Gyu; Koo, Bon Heun

    2012-02-01

    Sphere-like rutile TiO2 nanocrystals have been synthesized by sol-gel method followed by hydrolysis of titanium tetrachloride in deionized water in the presence of ammonium hydroxide as hydrolysis catalyst. The as-prepared TiO2 nanoparticles have single rutile phase with average diameter approximately 26.4 nm. The results show that the temperature has a great influence on the particle size distribution and also crystalline phase (rutile) of TiO2 nanoparticles is consistent with the temperature. Characterization of the as-prepared nanocrystalline powder was carried out by different techniques such as powder X-ray diffraction (XRD), field emission transmission electron microscopy (FE-TEM) and Raman spectroscopy. PMID:22629999

  7. Synthesis, characterization and photocatalytic behavior of Ag doped TiO2 thin film

    NASA Astrophysics Data System (ADS)

    Bensouici, F.; Souier, T.; Dakhel, A. A.; Iratni, A.; Tala-Ighil, R.; Bououdina, M.

    2015-09-01

    In this study, structure, microstructure, optical properties and photocatalytic degradation of Rhodamine B (RhB) have been investigated in an aqueous heterogeneous media containing pure and Ag doped TiO2 nanostructures thin films which were prepared by a simple sol-gel route. Thermal analysis demonstrated that Ag content decreased the temperature of anatase-to-rutile phase transformation. X-ray diffraction analysis confirmed that the prepared nanostructures crystallize within anatase-type structure and that the dopant Ag ions were not fully incorporated within TiO2 host lattice, meanwhile both the refractive index and optical band gap were affected by Ag concentration. The photodegradation of Rhodamine B under UV-C radiation by using pure and Ag-doped TiO2 nanostructures showed that Ag played an important role in a significant improvement of the photodegradation efficiency and that the optimum content of Ag ions was found to be 0.5% molar ratio.

  8. Photocatalytic properties of Au-deposited mesoporous SiO2-TiO2 photocatalyst under simultaneous irradiation of UV and visible light

    NASA Astrophysics Data System (ADS)

    Okuno, T.; Kawamura, G.; Muto, H.; Matsuda, A.

    2016-03-01

    Mesoporous SiO2 templates deposited TiO2 nanocrystals are synthesized via a sol-gel route, and Au nanoparticles (NPs) are deposited in the tubular mesopores of the templates by a photodeposition method (Au/SiO2-TiO2). The photocatalytic characteristics of Au/SiO2-TiO2 are discussed with the action spectra of photoreactions of 2-propanol and methylene blue. Photocatalytic activities of SiO2-TiO2 under individual ultraviolet (UV) and visible (Vis) light illumination are enhanced by deposition of Au NPs. Furthermore, Au/SiO2-TiO2 shows higher photocatalytic activities under simultaneous irradiation of UV and Vis light compared to the activity under individual UV and Vis light irradiation. Since the photocatalytic activity under simultaneous irradiation is almost the same as the total activities under individual UV and Vis light irradiation, it is concluded that the electrons and the holes generated by lights of different wavelengths are efficiently used for photocatalysis without carrier recombination.

  9. Enhanced photocatalytic performance of Hemin (chloro(protoporhyinato)iron(III)) anchored TiO2 photocatalyst for methyl orange degradation: A surface modification method

    NASA Astrophysics Data System (ADS)

    Devi, L. Gomathi; ArunaKumari, M. L.

    2013-07-01

    TiO2 was prepared by sol-gel method through the hydrolysis of TiCl4 and its surface derivatization was carried out with molecular catalyst like Hemin (chloro(protoporhyinato)iron(III)). Catalyst was characterized by various analytical techniques like UV-vis spectroscopy, FT-IR, FE-SEM and XRD. The anchoring of Hemin on titania surface is confirmed by FT-IR spectra through the linkage of Odbnd Csbnd Osbnd Ti bond and also by TGA-DSC and elemental analysis. The photocatalytic activity of the surface modified catalyst is tested for the degradation of methyl orange (MO) as a model compound under UV light. The Hemin impregnated TiO2 (H-TiO2) in presence of H2O2 shows an excellent photocatalytic activity compared to pristine TiO2, Hemin, H2O2, TiO2/H2O2, and Hemin/H2O2 systems. The enhancement in the photocatalytic activity is attributed to the presence of iron (III) porphyrin ring on the TiO2 surface, which reduces the electron-hole recombination rate and also by acting as a mediator for continuous production of enriched concentration of hydroxyl radicals along with various other reactive free radicals.

  10. Efficient charge separation based on type-II g-C3N4/TiO2-B nanowire/tube heterostructure photocatalysts.

    PubMed

    Chen, Hongmei; Xie, Yinghao; Sun, Xiaoqin; Lv, Meilin; Wu, Fangfang; Zhang, Lei; Li, Li; Xu, Xiaoxiang

    2015-08-01

    Separation of photo-generated charges has played a crucial role in controlling the actual performance of a photocatalytic system. Here we have successfully fabricated g-C3N4/TiO2-B nanowire/tube heterostructures through facile urea degradation reactions. Owing to the effective separation of photo-generated charges associated with the type-II band alignment and intimate interfacial contacts between g-C3N4 and TiO2-B nanowires/tubes, such heterostructures demonstrate an improved photocatalytic activity over individual moieties. Synthetic conditions such as hydrothermal temperatures for the preparation of TiO2-B and the weight ratio of TiO2-B to urea were systematically investigated. A high crystallinity of TiO2-B as well as the proper growth of g-C3N4 on its surface are critical factors for a better performance. Our simple synthetic method and the prolonged lifetime of photo-generated charges signify the importance of type-II heterostructures in the photocatalytic applications. PMID:26102218

  11. Enhanced catalytic activity of the surface modified TiO2-MWCNT nanocomposites under visible light.

    PubMed

    Božič, Mojca; Vivod, Vera; Vogrinčič, Robert; Ban, Irena; Jakša, Gregor; Hribernik, Silvo; Fakin, Darinka; Kokol, Vanja

    2016-03-01

    Fusing multiwall carbon nanotubes (MWCNTs) with TiO2 at the nano-scale level promotes the separation of those electron-hole charges generated upon UV and daylight irradiation. In this study, we investigated facile sonochemical synthesis, combined with the calcination process for the preparations of TiO2-MWCNT composites with different mole ratios of titanium and carbon. In order to produce stable nano dispersions we exploited an innovative biotechnology-based approach for the covalent functionalizations of TiO2-MWCNTs with in-situ synthesized soluble phenoxazine dye molecules. The none and functionalized TiO2-MWCNTs composites were analyzed by a range of analytical techniques including XRD, Raman, XPS, SEM and UV-vis diffuse reflectance spectroscopy (DRS), and dynamic light scattering (DLS). The photocatalytic activity was evaluated toward the liquid-phase degradation of MB in aqueous solution under both UV and visible light irradiation. TiO2-MWCNTs with optimized mole ratio exhibit much higher photocatalytic activity and stability than bare TiO2. The as-prepared TiO2-MWCNTs photocatalyst possessed good adsorptivity of dyes, extended light absorption range and efficient charge separation properties simultaneously. The results indicated that the soluble phenoxazine dyes and amino-benzenesulfonic acid monomers were covalently grafted on to the surfaces of TiO2-MCNTs, which promoted good aquatic dispersibility and extended light absorption, resulting in increased photocatalytic efficiency. PMID:26669495

  12. Synthesis of metabolites of paracetamol and cocaine via photooxidation on TiO2 catalyzed by UV light.

    PubMed

    Raoof, Hana; Mielczarek, Przemyslaw; Michalow, Katarzyna A; Rekas, Mieczyslaw; Silberring, Jerzy

    2013-01-01

    Prediction and synthesis of drug metabolites generated by photodegradation using TiO(2)/UV system in aqueous solution was performed to monitor illicit drugs and to support legal actions against drug dealers. Metabolism of paracetamol and cocaine applied as exemplary compounds was monitored by liquid chromatography mass spectrometry (LC-MS/MS) and direct analysis by electrospray ionization mass spectrometry (ESI-MS/MS). The experiments proved that simulated metabolic pathways of the drug samples are efficient and lead to the formation of products that are observed using living organisms or hepatocyte microsomal preparations. Routinely, TiO(2) nanopowders are used for complete degradation of unwanted waste to protect environment. We applied such system for prediction of potential metabolites of harmful substances, such as cocaine. The results demonstrate that TiO(2)/UV oxidative system can be an efficient, complementary method to the in vivo approaches to obtain important metabolites for further studies. Investigations using such methodology may be helpful for toxicologists providing a vital knowledge on metabolites derived from e.g. newly introduced cognitive enhancers (designer drugs), and home-made substances prepared from the over-the-counter tablets (legal highs). PMID:23245731

  13. Direct synthesis of a mesoporous TiO2-RuO2 composite through evaporation-induced polymeric micelle assembly.

    PubMed

    Bastakoti, Bishnu Prasad; Salunkhe, Rahul R; Ye, Jinhua; Yamauchi, Yusuke

    2014-06-14

    Here we report a direct synthesis of a mesoporous TiO2-RuO2 composite. Titanium tetraisopropoxide (TTIP) and RuCl3 are used as inorganic precursors for TiO2 and RuO2, respectively. Evaporation-induced assembly of spherical micelles made of an asymmetric poly(styrene-b-2-vinyl pyridine-b-ethylene oxide) triblock copolymer enables the fabrication of a mesoporous TiO2-RuO2 composite with a uniform pore size of 30 nm. PMID:24760227

  14. Doping of TiO2-GO and TiO2-rGO with noble metals: synthesis, characterization and photocatalytic performance for azo dye discoloration.

    PubMed

    Stengl, Václav; Henych, Jiří; Vomáčka, Petr; Slušná, Michaela

    2013-01-01

    The nanocomposites of titania coupled with graphene oxide (GO) and reduced graphene oxide (rGO), respectively, were prepared by homogeneous hydrolysis with urea. Graphene was obtained by effect of high-intensity cavitation field on natural graphite in the presence of strong aprotic solvents in pressurized ultrasonic reactor. The morphology of TiO2-GO and TiO2-rGO composites was assessed by scanning electron microscopy and atomic force microscopy. The nitrogen adsorption-desorption was used for determination of surface area (BET) and porosity. Raman and IR spectroscopy were used for qualitative analysis and diffuse reflectance spectroscopy was employed to estimate band-gap energies. Further enhancement of the photocatalytic activity was attained by codoping of composites with noble metals--Au, Pd and Pt. The photocatalytic activity of TiO2-GO and TiO2-rGO were assessed by photocatalytic decomposition of Orange II dye in an aqueous slurry under UV and visible light irradiation. The photocatalytic activity of noble metals codoped samples was determined with decomposition of Reactive Black 5 azo dye. PMID:23848058

  15. Impact of growth kinetics on morphology and pore structure of TiO2-one-pot synthesis of macroporous TiO2 microspheres.

    PubMed

    Zhong, Ziyi; Chen, Fengxi; Ang, Thiam-Peng; Han, Yifan; Lim, Weiqiang; Gedanken, Aharon

    2006-06-12

    Titanium dioxide was synthesized by the hydrolysis of titanium tetraisopropoxide (TTIP) in the presence of acetic acid, 2-propanol, and organic amines (octylamine, aniline, and isobutylamine). H2O was supplied by an esterification reaction between acetic acid and 2-propanol (denoted as H2Oe), and/or by intentionally adding it (denoted as H2Oa). It was found that the quantity of H2Oa plays a crucial role in the morphology and porous structure of the final TiO2 product. Without the addition of H2Oa, 1D and porous TiO2 was synthesized. With the addition of H2Oa, and when the H2Oa:TiO2 molar ratio was in the range of 1:1 to 60:1, macroporous TiO2 microspheres possessing a large surface area and high thermal stability were obtained. When the H2Oa:TiO2 molar ratio exceeded 60:1, porous TiO2 with an irregular shape was formed. The variation in the morphology and porous structure is attributed to the manipulation of the growth kinetics by the addition of water. PMID:16749824

  16. Glycothermal Synthesis and Photocatalytic Properties of Highly Crystallized Anatase TiO2 Nanoparticles.

    PubMed

    Kil, Hyun-Sig; Jung, Yong-Jin; Moon, Jung-In; Song, Jeong-Hwan; Lim, Dae-Young; Cho, Seung-Beom

    2015-08-01

    Highly crystallized anatase TiO2 nanoparticles were synthesized at a temperature as low as 120 °C through a glycothermal reaction using amorphous titanium hydrous gel as precursor and 1,4-butanediol and water as solvent. X-ray diffraction (XRD) and transmission electron microscopy (TEM) data support that the glycothermal processing method provides a simple low-temperature route for producing highly crystallized anatase TiO2 nanoparticles without pH adjustment. It is demonstrated that the shape and dispersability of TiO2 nanoparticles can be controlled by the reaction conditions, such as the reaction temperature and variation of the volume ratio of 1,4- butanediol/water (B/W). It was observed that TiO2 samples glycothermally prepared at 220 °C and the B/W ratio of 8/0 showed excellent photocatalytic behavior. The high activity is attributed to the high crystallinity and bipyramidal shape of the particles, which have fewer defects and more active {101} surfaces. PMID:26369224

  17. In situ synthesis of TiO2/polyethylene terephthalate hybrid nanocomposites at low temperature

    NASA Astrophysics Data System (ADS)

    Peng, Xinyan; Ding, Enyong; Xue, Feng

    2012-06-01

    TiO2 nanoflowers were in situ grown on polyethylene terephthalate (PET) non-woven fabric by hydrolysis of TiCl4 in aqueous solution in the presence of nanocrystal cellulose grafted PET fabric (NCC-g-PET) at a low temperature of 70 °C. Nanocrystal cellulose (NCC) pre-grafted on PET fabric acted as hydrophilic substrate and morphology inducing agent to promote the nucleation and crystal growth of TiO2. Detailed information on the synthetic process was presented. The resulting samples were characterized using FE-SEM, EDS, ATR-IR, Raman microscopy, XRD and TG analysis. The photocatalytic activity of the samples was evaluated by the degradation of orange methyl under solar light. Characteristic results indicate that rutile TiO2 nanoflowers have grown abundantly on PET non-woven fabric, and the established hydrogen bonding strengthens the interfacial interaction between the inorganic particles and the polymeric substrates. The methyl orange decoloration test under natural solar light demonstrates that this TiO2/PET hybrid nanocomposites exhibit excellent self-cleaning performance which is expected to have a good potential for commercialization.

  18. Synthesis of scaly Sn3O4/TiO2 nanobelt heterostructures for enhanced UV-visible light photocatalytic activity.

    PubMed

    Chen, Guohui; Ji, Shaozheng; Sang, Yuanhua; Chang, Sujie; Wang, Yana; Hao, Pin; Claverie, Jerome; Liu, Hong; Yu, Guangwei

    2015-02-21

    A novel scaly Sn3O4/TiO2 nanobelt heterostructured photocatalyst was fabricated via a facile hydrothermal route. The scaly Sn3O4 nanoflakes can be synthesized in situ and assembled on surface coarsened TiO2 nanobelts through a hydrothermal process. The morphology and distribution of Sn3O4 nanoflakes can be well-controlled by simply tuning the Sn/Ti molar ratio of the reactants. Compared with single phase nanostructures of Sn3O4 and TiO2, the scaly hybrid nanobelts exhibited markedly enhanced photoelectrochemical (PEC) response, which caused higher photocatalytic hydrogen evolution even without the assistance of Pt as a co-catalyst, and enhanced the degradation ability of organic pollutants under both UV and visible light irradiation. In addition to the increased exposure of active facets and broad light absorption, the outstanding performance is ascribed to the matching energy band structure between Sn3O4 and TiO2 at the two sides of the heterostructure, which efficiently reduces the recombination of photo-excited electron-hole pairs and prolongs the lifetime of charge carriers. Both photocatalytic assessment and PEC tests revealed that Sn3O4/TiO2 heterostructures with a molar ratio of Sn/Ti of 2/1 exhibited the highest photocatalytic activity. This study provides a facile and low-cost method for the large scale production of Sn3O4 based materials in various applications. PMID:25611372

  19. Influence of the oxygen concentration on the formation of crystalline phases of TiO2 during the low-pressure arc-discharge plasma synthesis

    NASA Astrophysics Data System (ADS)

    Ushakov, A. V.; Karpov, I. V.; Lepeshev, A. A.

    2016-02-01

    The synthesis of titanium dioxide (TiO2) nanoparticles with different percentage of anatase and rutile phases is investigated. The synthesis is performed by controlling the oxygen percentage in the gas mixture in the plasmachemical evaporation-condensation process employing a low-pressure arc discharge. In all our experiments, the pressure in the plasmachemical reactor and the average size of particles remain constant and are 60 Pa and 6 nm, respectively. The crystal structure of synthesized TiO2 is studied using X-ray diffraction; the morphology of the particles is analyzed employing transmission electron microscopy. Using X-ray phase analysis, it is established that the concentration of the TiO2 anatase phase decreases upon a decrease in the oxygen concentration in the gas mixture. It is shown that the TiO2 anatase phase is more efficient for photocatalytic decomposition of methylene blue than the rutile phase.

  20. A revised algorithm for calculating TiO2 from Clementine UVVIS data: A synthesis of rock, soil, and remotely sensed TiO2 concentrations

    NASA Astrophysics Data System (ADS)

    Gillis, Jeffrey J.; Jolliff, Bradley L.; Elphic, Rick C.

    2003-02-01

    Investigating mare basalt compositions, at both the sample and remote-sensing level for the Apollo and Luna mare sites, reveals the need for a more complex regression procedure than previously proposed in order to extract accurate TiO2 concentrations from Clementine spectral reflectance (CSR) data. The TiO2 algorithm of Lucey and coworkers is modified by using two different sets of regression parameters to relate measured regolith compositions from sampling locations to the CSR properties of these sites. One regression trend fits the majority of Apollo data, and the second regression is a fit to the Apollo 11, Luna 16, and Luna 24 data, which were considered to be anomalous in previous TiO2 calibrations. These three sites have unusually low albedo compared to other mare landing sites, and some 32% of nearside mare regions appear to share this characteristic. Possible reasons for these differences related to proximity of the other sites to mare-highland boundaries are discussed. Using the dual-regression method, we find (1) that TiO2 concentrations calculated for the basaltic landing sites faithfully reproduce a bimodal distribution as seen in the sample data, (2) that when coupled with the effects of other thermal neutron absorbers, Ti concentrations are more consistent with observed epithermal-to-thermal neutron-flux ratios than are previous Clementine-based derivations of TiO2 for basaltic regions, and (3) that basalts of intermediate-TiO2 concentrations occur most frequently in the Oceanus Procellarum region and that these intermediate concentrations appear to be inherent to the flows underlying the regolith and presumably to the basalt source regions.

  1. Synthesis and photocatalytic properties of Fe3O4@TiO2 core-shell for degradation of Rhodamine B

    NASA Astrophysics Data System (ADS)

    Mufti, Nandang; Munfarriha, Ulfatien; Fuad, Abdulloh; Diantoro, Markus

    2016-02-01

    The aim of this research is to synthesis Fe3O4@TiO2 core-shell and used it as photocatalytic for degradation of Rhodamine B. The Fe3O4 nanoparticle core was synthesized by coprecipitation method from the iron sand. The TiO2 shell synthesized using coprecipitation method to capsulated Fe3O4 nanoparticle with vary of Fe3O4 mass. The Fe3O4@TiO2 core-shells were characterized using SEM-EDX, XRD. Photocatalytic activity of Rhodamine B degradation was performed under UV irradiation with variation of time exposure. The efficiency of photodegradation is measured by UV-Vis spectrophotometer. The XRD result showed that Fe3O4 nanoparticle is single phase with crystal size of 15.5 nm. The existence of Fe3O4 and anatase of TiO2 phases in the XRD pattern shows that The Fe3O4@TiO2 core-shells are successfully synthesized. While, the TiO2 shell is confirmed by thermal test up to 550 OC for two hours to the samples. Based on SEM characterization, The Fe3O4@TiO2 core-shells are agglomerated with averages diameter sizes of particles between 38.5 nm to 72.8 nm. The concentration of TiO2 decrease with increasing Fe3O4 mass with atomic composition of Fe/Ti elements in Fe3O4@TiO2 core-shells are 0.083, 1.12, and 1.48. Based on photo degradation test of Rhodamine B under UV irradiation, we conclude that the degradation of Rhodamin B is caused by absorbsion and photocatalytic mechanism. For photocatalytic mechanism the efficiency of photodegradation of Rhodamin B increases by increasing TiO2 concentration.

  2. Low-Temperature Synthesis of a TiO2/Si Heterojunction.

    PubMed

    Sahasrabudhe, Girija; Rupich, Sara M; Jhaveri, Janam; Berg, Alexander H; Nagamatsu, Ken A; Man, Gabriel; Chabal, Yves J; Kahn, Antoine; Wagner, Sigurd; Sturm, James C; Schwartz, Jeffrey

    2015-12-01

    The classical SiO2/Si interface, which is the basis of integrated circuit technology, is prepared by thermal oxidation followed by high temperature (>800 °C) annealing. Here we show that an interface synthesized between titanium dioxide (TiO2) and hydrogen-terminated silicon (H:Si) is a highly efficient solar cell heterojunction that can be prepared under typical laboratory conditions from a simple organometallic precursor. A thin film of TiO2 is grown on the surface of H:Si through a sequence of vapor deposition of titanium tetra(tert-butoxide) (1) and heating to 100 °C. The TiO2 film serves as a hole-blocking layer in a TiO2/Si heterojunction solar cell. Further heating to 250 °C and then treating with a dilute solution of 1 yields a hole surface recombination velocity of 16 cm/s, which is comparable to the best values reported for the classical SiO2/Si interface. The outstanding performance of this heterojunction is attributed to Si-O-Ti bonding at the TiO2/Si interface, which was probed by angle-resolved X-ray photoelectron spectroscopy. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) showed that Si-H bonds remain even after annealing at 250 °C. The ease and scalability of the synthetic route employed and the quality of the interface it provides suggest that this surface chemistry has the potential to enable fundamentally new, efficient silicon solar cell devices. PMID:26579554

  3. Low-temperature synthesis and characterization of anatase TiO(2) powders from inorganic precursors.

    PubMed

    Tasbihi, Minoo; Stangar, Urska Lavrencic; Cernigoj, Urh; Kogej, Ksenija

    2009-05-01

    Nowadays, it is a great challenge to synthesize crystalline TiO(2) using low-temperature methods without a calcination step. In our study, the anatase TiO(2) powders were synthesized using titanium tetrachloride (TiCl(4)) as a precursor via the sol-gel method at low-temperature preparation conditions. Perchloric acid and nitric acid were used as peptizing mediators. The powders were obtained with consequent drying of the sols via evaporation of the solvent. The remaining acid in the powders prevented the aggregation of particles in the aqueous solution. The as-prepared catalysts were characterized by X-ray diffraction, thermal analysis, UV-Vis spectroscopy, BET surface area. The aggregate size of TiO(2) in the colloidal suspension solution was measured by dynamic light scattering. Material characteristics were correlated with photocatalytic activities of the prepared samples towards degradation of aqueous phenol solution under UVA radiation. Using HClO(4) instead of HNO(3) resulted in smaller colloidal particles of TiO(2) in the sol and in higher surface area of the powder, while the primary crystallite sizes for both types of powder were similar. The HClO(4)-based TiO(2) had approximately a 1.5 times higher catalytic activity than similar catalysts prepared by using HNO(3). Smaller aggregated colloidal particles, and consequently a larger surface area in HClO(4)-based powder, demonstrate the main reason for better photocatalytic activity compared to the HNO(3)-based powder. PMID:19424548

  4. Visible Light-Driven Photocatalytic Activity of Oleic Acid-Coated TiO2 Nanoparticles Synthesized from Absolute Ethanol Solution

    NASA Astrophysics Data System (ADS)

    Li, Huihui; Liu, Bin; Yin, Shu; Sato, Tsugio; Wang, Yuhua

    2015-10-01

    The one-step synthesis of oleic acid-coated TiO2 nanoparticles with visible light-driven photocatalytic activity was reported by this manuscript, using oleic acid-ethanol as crucial starting materials. The photocatalytic degradation of nitrogen monoxide (deNOx) in the gas phase was investigated in a continuous reactor using a series of TiO2 semiconductors, prepared from oleic acid- or acetic acid-ethanol solution. The surface modification on TiO2 by organic fatty acid, oleic acid, could reinvest TiO2 photocatalyst with the excellent visible light response. The deNOx ability is almost as high as 30 % destruction in the visible light region ( λ > 510 nm) which is similar to the nitrogen-doped TiO2. Meanwhile, acetic acid, a monobasic acid, has a weaker ability on visible light modification of TiO2.

  5. Microwave-Assisted Synthesis of Carbon-Based (N, Fe)-Codoped TiO2 for the Photocatalytic Degradation of Formaldehyde.

    PubMed

    Tian, Fei; Wu, Zhansheng; Tong, Yanbin; Wu, Zhilin; Cravotto, Giancarlo

    2015-12-01

    A microwave-assisted sol-gel method was used to synthesize (N, Fe)-codoped activated carbon (AC)/TiO2 photocatalyst for enhanced optical absorption in the visible light region. The prepared samples were characterized via X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, Brunauer-Emmett-Teller analysis, ultraviolet-visible light spectroscopy, X-ray photoelectron spectroscopy, and photoluminescence spectroscopy. The results showed no significant difference in the surface area of AC/TiO2 (approximately 500 m(2)/g) after doping. TiO2 was uniformly distributed on the surface of AC, which exhibited coexisting anatase and rutile structures with a mean crystallite diameter of approximately 20 nm. N and Fe monodoping on AC/TiO2 reduced the energy band gap of TiO2 to 2.81 and 2.79 eV, respectively, which mainly attributed to the impurity energy formed in the energy gap of TiO2. In (N, Fe)-codoped AC/TiO2, N and Fe are incorporated into the TiO2 framework and narrow the band gap of TiO2 to 2.58 eV, thereby causing a large redshift. Codoping of N and Fe enhanced the production of hydroxyl radicals (⋅OH) and improved the photocatalytic activity of the resultant AC/TiO2 compared with those of undoped and N- or Fe-monodoped AC/TiO2. N-Fe-AC/TiO2 degraded 93 % of the formaldehyde under Xe-lamp irradiation. Moreover, the photocatalyst was easily recyclable. In summary, a novel and efficient method to mineralize low concentrations of HCHO in wastewater was discovered. PMID:26377213

  6. Uniform TiO2-SiO2 hollow nanospheres: Synthesis, characterization and enhanced adsorption-photodegradation of azo dyes and phenol

    NASA Astrophysics Data System (ADS)

    Guo, Na; Liang, Yimai; Lan, Shi; Liu, Lu; Ji, Guijuan; Gan, Shucai; Zou, Haifeng; Xu, Xuechun

    2014-06-01

    TiO2-SiO2 hollow nanospheres with remarkable enhanced photocatalytic performance have been fabricated by sol-gel method. The hollow sphere possesses both high phototcatalytic activity and adsorption capability. The as-prepared samples were characterized by XRD, SEM, TEM, FTIR, XPS, BJH and TGA/DSC. The experiment results show that, the photocatalyst calcined at 500 °C with Ti/Si ratio of 5:1 (denoted as 5T/S-500) displayed superiorities in both textural and functional properties with the enhanced degradation efficiency on azo dyes (methylene blue, methyl orange) and phenol. The high adsorption capability of organic poisonous contaminants onto 5T/S-500 in aqueous solution demonstrated that the photocatalyst can remove the contaminants from water effectively even without illumination. The TEM and SEM morphologies demonstrated unique hollow and coarse structure of 5T/S-500. Structural analysis showed that Si was doped into the lattice of TiO2 and SiO2 nanoparticles can work as a surface modifier on TiO2. The surface area of 5T/S-500 is 1105 m2/g, 14.5 times as great as that of the pure hollow TiO2 nanosphere, confirms the effect of SiO2 on the improvement of specific surface area. The high photocatalytic activities and high adsorption ability for organic poisonous contaminants demonstrate that the nanocomposite of TiO2-SiO2 is a promising candidate material for future treatment of contaminated water.

  7. Microwave-Assisted Synthesis of Carbon-Based (N, Fe)-Codoped TiO2 for the Photocatalytic Degradation of Formaldehyde

    NASA Astrophysics Data System (ADS)

    Tian, Fei; Wu, Zhansheng; Tong, Yanbin; Wu, Zhilin; Cravotto, Giancarlo

    2015-09-01

    A microwave-assisted sol-gel method was used to synthesize (N, Fe)-codoped activated carbon (AC)/TiO2 photocatalyst for enhanced optical absorption in the visible light region. The prepared samples were characterized via X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, Brunauer-Emmett-Teller analysis, ultraviolet-visible light spectroscopy, X-ray photoelectron spectroscopy, and photoluminescence spectroscopy. The results showed no significant difference in the surface area of AC/TiO2 (approximately 500 m2/g) after doping. TiO2 was uniformly distributed on the surface of AC, which exhibited coexisting anatase and rutile structures with a mean crystallite diameter of approximately 20 nm. N and Fe monodoping on AC/TiO2 reduced the energy band gap of TiO2 to 2.81 and 2.79 eV, respectively, which mainly attributed to the impurity energy formed in the energy gap of TiO2. In (N, Fe)-codoped AC/TiO2, N and Fe are incorporated into the TiO2 framework and narrow the band gap of TiO2 to 2.58 eV, thereby causing a large redshift. Codoping of N and Fe enhanced the production of hydroxyl radicals (ṡOH) and improved the photocatalytic activity of the resultant AC/TiO2 compared with those of undoped and N- or Fe-monodoped AC/TiO2. N-Fe-AC/TiO2 degraded 93 % of the formaldehyde under Xe-lamp irradiation. Moreover, the photocatalyst was easily recyclable. In summary, a novel and efficient method to mineralize low concentrations of HCHO in wastewater was discovered.

  8. Photodeposition-assisted synthesis of novel nanoparticulate In, S-codoped TiO2 powders with high visible light-driven photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Hamadanian, M.; Reisi-Vanani, A.; Razi, P.; Hoseinifard, S.; Jabbari, V.

    2013-11-01

    In order to search for an efficient photocatalysts working under visible light illumination, we have investigated the effect of metal and nonmetal ions (In, S) codoping on the photocatalytic activity of TiO2 nanoparticles (TiO2 NPs) prepared by combining of sol-gel (SG) and photodeposition (PD) methods using titanium tetra isopropoxide (TTIP), indium nitrate (In(NO3)3) and thiourea as precursors. In this regard, at first three different percentage of S (0.05, 0.2 and 0.5) doped into the TiO2 by SG method, and then different amount of In(III) loaded on the surface of the prepared samples by PD technique. The results showed that the In, S-codoped TiO2 (In, S-TiO2) with a spheroidal shape demonstrates a smaller grain size than the pure TiO2. Meanwhile, the UV-vis DRS of In, S-TiO2 showed a considerable red shift to the visible region. Finally, the photocatalytic activity of In, S-TiO2 photocatalysts were evaluated by photooxidative degradation of methyl orange (MO) solution under UV and visible light illumination. As a result, it was found that 0.05%S-0.5%In/TiO2, 0.2%S-1.5%In/TiO2 and 0.5%S-0.5%In/TiO2 had the highest catalytic activity under visible light in each group and among these samples 0.2%S-1.5%In/TiO2 showed the best photocatalytic performance under visible light and decomposes more than 95% MO in only 90 min.

  9. Non-solvolytic synthesis of aqueous soluble TiO2 nanoparticles and real-time dynamic measurements of the nanoparticle formation.

    PubMed

    Chen, Lan; Rahme, Kamil; Holmes, Justin D; Morris, Michael A; Slater, Nigel Kh

    2012-01-01

    Highly aqueously dispersible (soluble) TiO2 nanoparticles are usually synthesized by a solution-based sol-gel (solvolysis/condensation) process, and no direct precipitation of titania has been reported. This paper proposes a new approach to synthesize stable TiO2 nanoparticles by a non-solvolytic method - direct liquid phase precipitation at room temperature. Ligand-capped TiO2 nanoparticles are more readily solubilized compared to uncapped TiO2 nanoparticles, and these capped materials show distinct optical absorbance/emission behaviors. The influence of ligands, way of reactant feeding, and post-treatment on the shape, size, crystalline structure, and surface chemistry of the TiO2 nanoparticles has been thoroughly investigated by the combined use of X-ray diffraction, transmission electron microscopy, UV-visible (UV-vis) spectroscopy, and photoluminescence (PL). It is found that all above variables have significant effects on the size, shape, and dispersivity of the final TiO2 nanoparticles. For the first time, real-time UV-vis spectroscopy and PL are used to dynamically detect the formation and growth of TiO2 nanoparticles in solution. These real-time measurements show that the precipitation process begins to nucleate after an initial inhibition period of about 1 h, thereafter a particle growth occurs and reaches the maximum point after 2 h. The synthesis reaction is essentially completed after 4 h. PMID:22676412

  10. Non-solvolytic synthesis of aqueous soluble TiO2 nanoparticles and real-time dynamic measurements of the nanoparticle formation

    NASA Astrophysics Data System (ADS)

    Chen, Lan; Rahme, Kamil; Holmes, Justin D.; Morris, Michael A.; Slater, Nigel KH

    2012-06-01

    Highly aqueously dispersible (soluble) TiO2 nanoparticles are usually synthesized by a solution-based sol-gel (solvolysis/condensation) process, and no direct precipitation of titania has been reported. This paper proposes a new approach to synthesize stable TiO2 nanoparticles by a non-solvolytic method - direct liquid phase precipitation at room temperature. Ligand-capped TiO2 nanoparticles are more readily solubilized compared to uncapped TiO2 nanoparticles, and these capped materials show distinct optical absorbance/emission behaviors. The influence of ligands, way of reactant feeding, and post-treatment on the shape, size, crystalline structure, and surface chemistry of the TiO2 nanoparticles has been thoroughly investigated by the combined use of X-ray diffraction, transmission electron microscopy, UV-visible (UV-vis) spectroscopy, and photoluminescence (PL). It is found that all above variables have significant effects on the size, shape, and dispersivity of the final TiO2 nanoparticles. For the first time, real-time UV-vis spectroscopy and PL are used to dynamically detect the formation and growth of TiO2 nanoparticles in solution. These real-time measurements show that the precipitation process begins to nucleate after an initial inhibition period of about 1 h, thereafter a particle growth occurs and reaches the maximum point after 2 h. The synthesis reaction is essentially completed after 4 h.

  11. Synthesis and visible-light-induced catalytic activity of Ag2S-coupled TiO2 nanoparticles and nanowires.

    PubMed

    Xie, Yi; Heo, Sung Hwan; Kim, Yong Nam; Yoo, Seung Hwa; Cho, Sung Oh

    2010-01-01

    We present the synthesis and visible-light-induced catalytic activity of Ag(2)S-coupled TiO(2) nanoparticles (NPs) and TiO(2) nanowires (NWs). Through a simple wet chemical process from a mixture of peroxo titanic acid (PTA) solution, thiourea and AgAc, a composite of Ag(2)S NPs and TiO(2) NPs with sizes of less than 7 nm was formed. When the NP composite was further treated with NaOH solution followed by annealing at ambient conditions, a new nanocomposite material comprising Ag(2)S NPs on TiO(2) NWs was created. Due to the coupling with such a low bandgap material as Ag(2)S, the TiO(2) nanocomposites could have a visible-light absorption capability much higher than that of pure TiO(2). As a result, the synthesized Ag(2)S/TiO(2) nanocomposites exhibited much higher catalytic efficiency for the decomposition of methyl orange than commercial TiO(2) (Degussa P25, Germany) under visible light. PMID:19946150

  12. Synthesis and visible-light-induced catalytic activity of Ag2S-coupled TiO2 nanoparticles and nanowires

    NASA Astrophysics Data System (ADS)

    Xie, Yi; Heo, Sung Hwan; Kim, Yong Nam; Yoo, Seung Hwa; Cho, Sung Oh

    2010-01-01

    We present the synthesis and visible-light-induced catalytic activity of Ag2S-coupled TiO2 nanoparticles (NPs) and TiO2 nanowires (NWs). Through a simple wet chemical process from a mixture of peroxo titanic acid (PTA) solution, thiourea and AgAc, a composite of Ag2S NPs and TiO2 NPs with sizes of less than 7 nm was formed. When the NP composite was further treated with NaOH solution followed by annealing at ambient conditions, a new nanocomposite material comprising Ag2S NPs on TiO2 NWs was created. Due to the coupling with such a low bandgap material as Ag2S, the TiO2 nanocomposites could have a visible-light absorption capability much higher than that of pure TiO2. As a result, the synthesized Ag2S/TiO2 nanocomposites exhibited much higher catalytic efficiency for the decomposition of methyl orange than commercial TiO2 (Degussa P25, Germany) under visible light.

  13. Size controlled synthesis and photocatalytic activity of anatase TiO2 hollow microspheres

    NASA Astrophysics Data System (ADS)

    Dwivedi, Charu; Dutta, V.

    2012-10-01

    Titanium oxide hollow microspheres were synthesized from organic precursor titanium tetraisopropoxide (TTIP) using continuous spray pyrolysis reactor. Effects of precursor concentration, applied voltage and annealing have been investigated. It was observed that the annealing of the as-synthesized TiO2 hollow microspheres at 250 °C, which had an average external diameter of 200 nm, leads to an increase in the size and also more spherical shape. The precursor concentration and applied voltage were found to have a direct impact on the size of the microspheres, which is also evident in the absorption spectrum. The as-prepared TiO2 hollow microspheres exhibited good photocatalytic activity for the degradation of MO.

  14. Synthesis and characterization of TiO2 pillared montmorillonites: application for methylene blue degradation.

    PubMed

    Chen, Daimei; Du, Gaoxiang; Zhu, Qian; Zhou, Fengsan

    2013-11-01

    TiO2 pillared clay composites were prepared by modifying of montmorillonite (Mt) with cetyl-trimethyammoniumbromide (CTAB) and then using an acidic solution of hydrolyzed Ti alkoxide to intercalate into the interlayer space of the organic modified Mt. The as-prepared materials were characterized by XRD, FTIR, TEM, SEM TG-DTA, specific surface area and porosity measurements. The composites had a porous delaminated structure with pillared fragments and well dispersed TiO2 nanoparticles. Introduction of CTAB into the synthetic system accelerated the hydrolysis and condensation of the Ti source, which promoted TiO2 formation. In addition, the CTAB also significantly increased the porosity and surface area of the composites. A number of anatase particles, with crystal sizes of 5-10 nm, were homogenously distributed on the surface of the Mt as the result of the templating role of CTAB. The resultant TiO2 pillared Mt exhibited good thermal stability as indicated by its surface area after calcination at 800°C. No phase transformations from anatase to rutile were observed even under calcination at 900°C. The grain size of the anatase in prepared sample increased from 2.67 nm to 13.42 nm as the calcination temperature increased from 300°C to 900°C. The photocatalytic performance of these new porous materials was evaluated by using methylene blue degradation. The composite exhibited better photocatalytic property than P 25. The maximum removal efficiency of this composite was up to 99% within 60 min. PMID:23957927

  15. TiO2 Nanotubes: Recent Advances in Synthesis and Gas Sensing Properties

    PubMed Central

    Galstyan, Vardan; Comini, Elisabetta; Faglia, Guido; Sberveglieri, Giorgio

    2013-01-01

    Synthesis—particularly by electrochemical anodization-, growth mechanism and chemical sensing properties of pure, doped and mixed titania tubular arrays are reviewed. The first part deals on how anodization parameters affect the size, shape and morphology of titania nanotubes. In the second part fabrication of sensing devices based on titania nanotubes is presented, together with their most notable gas sensing performances. Doping largely improves conductivity and enhances gas sensing performances of TiO2 nanotubes. PMID:24184919

  16. Synthesis of iron-doped TiO2 for degradation of reactive Orange16

    PubMed Central

    2014-01-01

    In this study the optimum conditions for preparing the iron-doped TiO2 nanoparticles were investigated. Samples were synthesized by sol–gel impregnation method. Three effective parameters were optimized using Taguchi method, consisted of: (i) atomic ratios of Fe to Ti; (ii) sintering temperature; (iii) sintering time. The characterization of samples was determined using X-ray diffraction, BET- specific surface area, UV- Vis reflectance spectra (DRS) and scanning electron microscope (SEM). The XRD patterns of the samples indicated the existence of anatase crystal phase in structure. UV- Vis reflectance spectra showed an enhancement in light absorbance in the visible region (wavelength > 400 nm) for iron-doped samples. The photocatalytic activity of samples was investigated by the degradation of RO 16 (RO 16) dye under UV irradiation. The results illustrated that the photocatalytic activity of iron-doped TiO2 was more than pure TiO2, because of the smaller crystal size, grater BET surface area and higher light absorption ability. PMID:24405975

  17. Plasma-spraying synthesis of high-performance photocatalytic TiO2 coatings

    NASA Astrophysics Data System (ADS)

    Takahashi, Yasuo; Shibata, Yoshitaka; Maeda, Masakatsu; Miyano, Yasuyuki; Murai, Kensuke; Ohmori, Akira

    2014-08-01

    Anatase (A-) TiO2 is a photocatalytic material that can decompose air-pollutants, acetaldehyde, bacteria, and so on. In this study, three kinds of powder (A-TiO2 without HAp, TiO2 + 10mass%HAp, and TiO2+30mass%HAp, where HAp is hydroxyapatite and PBS is polybutylene succinate) were plasma sprayed on biodegradable PBS substrates. HAp powder was mixed with A-TiO2 powder by spray granulation in order to facilitate adsorption of acetaldehyde and bacteria. The crystal structure was almost completely maintained during the plasma spray process. HAp enhanced the decomposition of acetaldehyde and bacteria by promoting adsorption. A 10mass% HAp content was the most effective for decomposing acetaldehyde when plasma preheating of the PBS was not carried out before the plasma spraying. The plasma preheating of PBS increased the yield rate of the spray process and facilitated the decomposition of acetaldehyde by A-TiO2 coatings without HAp. HAp addition improved photocatalytic sterilization when plasma preheating of the PBS was performed.

  18. TiO2 Hollow Spheres: One-Pot Synthesis and Enhanced Photocatalysis

    NASA Astrophysics Data System (ADS)

    Jia, Changchao; Cao, Yongqiang; Yang, Ping

    2013-06-01

    Hollow TiO2 microspheres were successfully fabricated by metal salts with low solubility in ethanol acting as intelligent templates using a simple one-pot solvothermal method. Hollow spheres with large diameter were obtained using CuSO4ṡ5H2O as templates while small ones were obtained using Sr(NO3)2 as templates. It is found that titanium precursor plays an important role for the morphology of samples. Solid TiO2 microspheres were prepared by using titanium tetrabutoxide (TBT). In contrast, bowl-like hollow microspheres were obtained by using titanium tetrachloride (TiCl4). Furthermore, the amount of H2O can stimulate the hydrolysis rate of TiCl4 to form solid spheres. Compared with solid microspheres, hollow TiO2 microspheres depending on their interior cavity structure exhibited enhanced photocatalysis efficiency for the UV-light photodegradation of methyl orange. Quantificationally, the apparent photocatalytic degradation pseudo-first-rate constant of the hollow microspheres is 1.25 times of that of the solid ones.

  19. Synthesis and spectroscopic characterization of nanoparticles of TiO2 doped with Pt produced via the self-combustion route

    NASA Astrophysics Data System (ADS)

    Lopera, A. A.; Chavarriaga, E. A.; Estupiñan, H. A.; Valencia, I. C.; Paucar, C.; Garcia, C. P.

    2016-05-01

    Titanium oxide (TiO2) is the most important semiconductor used in photocatalysis. For that reason, most recent scientific studies have focused on improving the absorbance of this material in the visible region. In this paper, we report on the production of nanopowders of TiO2 doped with platinum via the solution combustion synthesis method, using glycine as a fuel at concentrations of 0.3, 0.6, 0.9, and 1.2% w/w of Pt with respect to TiO2 (Pt / TiO2), in order to study the influence of the dopant content on the absorbance spectrum in the visible region. The structure of the samples was characterized using x-ray diffraction and Raman spectroscopy, which confirmed the production of a pure anatase phase. VIS diffuse reflectance spectroscopy confirmed that in the visible region the samples doped with Pt absorb within the range of 400 nm to 800 nm. Field emission scanning electron microscopy and transmission electron microscopy showed the formation of TiO2 nanoparticles with an average size of 13 nm and with spherical morphology. Colorimetry (Commission Internationale de l’Eclairage L *, a *, b *) confirmed photocatalytic activity for the degradation of rhodamine B using visible light. It was concluded that the route of synthesis and the Pt content play important roles in the absorbance spectrum and the activation energy of TiO2.

  20. Advances in photocatalytic disinfection of bacteria: Development of photocatalysts and mechanisms.

    PubMed

    Wang, Wanjun; Huang, Guocheng; Yu, Jimmy C; Wong, Po Keung

    2015-08-01

    Photocatalysis has attracted worldwide attention due to its potential in solar energy conversion. As a "green" advanced oxidation technology, it has been extensively used for water disinfection and wastewater treatment. This article provides a review of the recent progress in solar energy-induced photocatalytic disinfection of bacteria, focusing on the development of highly efficient photocatalysts and their underlying mechanisms in bacterial inactivation. The photocatalysts are classified into TiO2-based and non-TiO2-based systems, as TiO2 is the most investigated photocatalyst. The synthesis methods, modification strategies, bacterial disinfection activities and mechanisms of different types of photocatalysts are reviewed in detail. Emphasis is given to the modified TiO2, including noble metal deposition, non-metal doping, dye sensitization and composite TiO2, along with typical non-TiO2-based photocatalysts for bacterial disinfection, including metal oxides, sulfides, bismuth metallates, graphene-based photocatalysts, carbon nitride-based photocatalysts and natural photocatalysts. A simple and versatile methodology by using a partition system combined with scavenging study is introduced to study the photocatalytic disinfection mechanisms in different photocatalytic systems. This review summarizes the current state of the work on photocatalytic disinfection of bacteria, and is expected to offer useful insights for the future development in the field. PMID:26257366

  1. Synthesis of TiO2 by electrochemical method from TiCl4 solution as anode material for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Nur, Adrian; Purwanto, Agus; Jumari, Arif; Dyartanti, Endah R.; Sari, Sifa Dian Permata; Hanifah, Ita Nur

    2016-02-01

    Metal oxide combined with graphite becomes interesting composition. TiO2 is a good candidate for Li ion battery anode because of cost, availability of sufficient materials, and environmentally friendly. TiO2 gravimetric capacity varied within a fairly wide range. TiO2 crystals form highly depends on the synthesis method used. The electrochemical method is beginning to emerge as a valuable option for preparing TiO2 powders. Using the electrochemical method, the particle can easily be controlled by simply adjusting the imposed current or potential to the system. In this work, the effects of some key parameters of the electrosynthesis on the formation of TiO2 have been investigated. The combination of graphite and TiO2 particle has also been studied for lithium-ion batteries. The homogeneous solution for the electrosynthesis of TiO2 powders was TiCl4 in ethanol solution. The electrolysis was carried out in an electrochemical cell consisting of two carbon electrodes with dimensions of (5 × 2) cm. The electrodes were set parallel with a distance of 2.6 cm between the electrodes and immersed in the electrolytic solution at a depth of 2 cm. The electrodes were connected to the positive and negative terminals of a DC power supply. The electrosynthesis was performed galvanostatically at 0.5 to 2.5 hours and voltages were varied from 8 to 12 V under constant stirring at room temperature. The resulted suspension was aged at 48 hrs, filtered, dried directly in an oven at 150°C for 2 hrs, washed 2 times, and dried again 60 °C for 6 hrs. The particle product has been used to lithium-ion battery as anode. Synthesis of TiO2 particle by electrochemical method at 10 V for 1 to 2.5 hrs resulted anatase and rutile phase.

  2. The Effect of Fuel to Oxygen Ratios on the Properties of High Velocity Oxy-Fuel TiO2 Nano-Photocatalyst Coatings

    NASA Astrophysics Data System (ADS)

    Bozorgtabar, Maryamossadat; Salehi, Mehdi; Rahimipour, Mohammadreza; Jafarpour, Mohammadreza

    A liquid fuel high velocity oxy-fuel (HVOF) thermal spray process has been used to deposit TiO2 photocatalytic coatings utilizing a commercially available anatase/rutile nano-powder as the feedstock. The coatings were characterized in terms of the phases present, its crystallite size and coating morphology by means of X-ray diffraction analysis, scanning electron microscopy and transmission electron microscopy, respectively. The results indicate that the sprayed TiO2 coatings were composed of both TiO2 phases, namely anatase and rutile with different phase content and crystallite size. A high anatase content of 80% by volume was achieved at 0.00015 fuel to oxygen ratio with nanostructure coating by grain size smaller than feedstock powder. It is found that fuel to oxygen ratio strongly influenced on temperature and velocity of particles in stream jet consequently on phase transformation of anatase to rutile and their crystallite size and by optimizing the ratio which can promote structural transformation and grain coarsening in coating.

  3. The Comparative Photodegradation Activities of Pentachlorophenol (PCP) and Polychlorinated Biphenyls (PCBs) Using UV Alone and TiO2-Derived Photocatalysts in Methanol Soil Washing Solution

    PubMed Central

    Zhou, Zeyu; Zhang, Yaxin; Wang, Hongtao; Chen, Tan; Lu, Wenjing

    2014-01-01

    Photochemical treatment is increasingly being applied to remedy environmental problems. TiO2-derived catalysts are efficiently and widely used in photodegradation applications. The efficiency of various photochemical treatments, namely, the use of UV irradiation without catalyst or with TiO2/graphene-TiO2 photodegradation methods was determined by comparing the photodegadation of two main types of hydrophobic chlorinated aromatic pollutants, namely, pentachlorophenol (PCP) and polychlorinated biphenyls (PCBs). Results show that photodegradation in methanol solution under pure UV irradiation was more efficient than that with either one of the catalysts tested, contrary to previous results in which photodegradation rates were enhanced using TiO2-derived catalysts. The effects of various factors, such as UV light illumination, addition of methanol to the solution, catalyst dosage, and the pH of the reaction mixture, were examined. The degradation pathway was deduced. The photochemical treatment in methanol soil washing solution did not benefit from the use of the catalysts tested. Pure UV irradiation was sufficient for the dechlorination and degradation of the PCP and PCBs. PMID:25254664

  4. AAO-assisted synthesis of highly ordered, large-scale TiO2 nanowire arrays via sputtering and atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Yao, Zhao; Wang, Cong; Li, Yang; Kim, Nam-Young

    2015-04-01

    Highly ordered nanoporous anodic aluminum oxide (AAO) thin films were fabricated in oxalic acid under a constant voltage via a two-step anodization process. To investigate the high-aspect-ratio (7.5:1) filling process, both sputtering and atomic layer deposition (ALD) were used to form TiO2 nanowires. Field emission scanning electron microscopy and high-resolution transmission electron microscopy images indicated that mushroom-like TiO2 structures were sputtered onto the AAO template surface, and the ALD-coated TiO2 exhibited fine filling results and clear crystal grain boundaries. Large-scale and free-standing TiO2 nanowire arrays were liberated by selectively removing the aluminum substrate and AAO template via a wet etching process with no collapsing or agglomeration after the drying process. ALD-deposited TiO2 nanowire arrays that were 67 nm in diameter and 400 nm high were transferred from the AAO template. The ALD process enabled the rapid, simple synthesis of highly ordered TiO2 nanowire arrays with desired parameters such as diameter, density, and thickness determined using diverse AAO templates.

  5. AAO-assisted synthesis of highly ordered, large-scale TiO2 nanowire arrays via sputtering and atomic layer deposition.

    PubMed

    Yao, Zhao; Wang, Cong; Li, Yang; Kim, Nam-Young

    2015-01-01

    Highly ordered nanoporous anodic aluminum oxide (AAO) thin films were fabricated in oxalic acid under a constant voltage via a two-step anodization process. To investigate the high-aspect-ratio (7.5:1) filling process, both sputtering and atomic layer deposition (ALD) were used to form TiO2 nanowires. Field emission scanning electron microscopy and high-resolution transmission electron microscopy images indicated that mushroom-like TiO2 structures were sputtered onto the AAO template surface, and the ALD-coated TiO2 exhibited fine filling results and clear crystal grain boundaries. Large-scale and free-standing TiO2 nanowire arrays were liberated by selectively removing the aluminum substrate and AAO template via a wet etching process with no collapsing or agglomeration after the drying process. ALD-deposited TiO2 nanowire arrays that were 67 nm in diameter and 400 nm high were transferred from the AAO template. The ALD process enabled the rapid, simple synthesis of highly ordered TiO2 nanowire arrays with desired parameters such as diameter, density, and thickness determined using diverse AAO templates. PMID:25897309

  6. Synthesis, characterization, and photoconductivity studies on nanocrystalline TiO2 films doped with gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Valverde-Aguilar, G.; García-Macedo, J. A.; Galván-Ramírez, P.; Rentería-Tapia, V.

    2009-08-01

    Nanocrystalline TiO2 films doped with gold nanoparticles were synthesized by the sol-gel process at room temperature. The TiO2 films were synthesized by using tetrabutyl orthotitanate as the inorganic precursor. The films were spin-coated on glass wafers. The samples were annealed at 100°C for 30 minutes and sintered at 520°C for 1 hour to generated anatase and rutile phases. The films were characterized using UV-Vis absorption spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy. An absorption peak located at around 651 nm is due to the surface plasmon resonance of the gold nanoparticles. Optical absorption spectrum was fitted by Gans model by using a high refractive index (nlocal = 2.6). This high index is related to the high content of anatase nanoparticles embedded in the film. Photoconductivity studies were performed on nanocrystalline (anatase phase) films. The experimental data were fitted with straight lines at darkness and under illumination at 515 nm and 645 nm. This indicates an ohmic behavior. Transport parameters were calculated. Results are discussed.

  7. Visible-light-driven g-C3N4/Ti3+-TiO2 photocatalyst co-exposed {0 0 1} and {1 0 1} facets and its enhanced photocatalytic activities for organic pollutant degradation and Cr(VI) reduction

    NASA Astrophysics Data System (ADS)

    Lu, Dan; Zhang, Gaoke; Wan, Zhen

    2015-12-01

    Novel g-C3N4/Ti3+-TiO2 photocatalyst co-exposed {0 0 1} and {1 0 1} facets of TiO2 was synthesized via a hydrothermal-sonication assisted strategy. The photocatalytic activities of the as-obtained photocatalyst were evaluated by the degradation of rhodamine B (RhB) and the reduction of Cr(VI) under visible-light irradiation. It was found that the g-C3N4/Ti3+-TiO2 composites with 6 wt% g-C3N4 exhibited the highest visible-light photocatalytic efficiency, which is also higher than the pure g-C3N4 and Ti3+-TiO2. A possible photocatalytic mechanism was discussed on the basis of the theoretical analyses and scavenger experiments. Results show that holes (h+) and superoxide anions (rad O2-) reactive species participated in the degradation of RhB solution over the g-C3N4/Ti3+-TiO2 composites. The enhanced photocatalytic activities of g-C3N4/Ti3+-TiO2 composites can be attributed to the wide optical adsorption of g-C3N4 and Ti3+ as well as the effectively separation and transportation of photo-generated electrons and holes pairs, which was resulted from the surface heterojunction between the g-C3N4 and Ti3+-TiO2 nanosheets co-exposed {1 0 1} and {0 0 1} facets of anatase TiO2.

  8. Synthesis and performance of novel magnetically separable nanospheres of titanium dioxide photocatalyst with egg-like structure.

    PubMed

    Xu, Shihong; Shangguan, Wenfeng; Yuan, Jian; Chen, Mingxia; Shi, Jianwei; Jiang, Zhi

    2008-03-01

    A magnetically separable photocatalyst TiO(2)/SiO(2)/NiFe(2)O(4) (TSN) nanosphere with egg-like structure was prepared by a unique process that combined a liquid catalytic phase transformation method, reverse micelle technique and chemical precipitation means. The prepared photocatalyst shows high photocatalytic activity for the degradation of methyl orange in water. The magnetic property measurements indicate that the photocatalyst possesses a superparamagnetic nature. It can be separated from water when an external magnetic field is added and redispersed into water solution after the external magnetic field is eliminated. It is one of the promising photocatalysts for wastewater treatment. A transmission electron microscope (TEM) and an x-ray diffractometer (XRD) were used to characterize the structure of the TSN photocatalyst. The results indicate that nickel ferrite core nanoparticles were completely encapsulated into monodisperse silica nanospheres as carrier, and titania nanoparticle aggregates were coated onto the surface of SN nanospheres, forming an imperfect TiO(2) shell for photocatalysis. The SiO(2) layer between the NiFe(2)O(4) core and the TiO(2) shell effectively prevents the injection of charges from TiO(2) particles to NiFe(2)O(4), which gives rise to an increase in photocatalytic activity. Moreover, the recycled TSN exhibits good repeatability of the photocatalytic activity. PMID:21817681

  9. Synthesis and performance of novel magnetically separable nanospheres of titanium dioxide photocatalyst with egg-like structure

    NASA Astrophysics Data System (ADS)

    Xu, Shihong; Shangguan, Wenfeng; Yuan, Jian; Chen, Mingxia; Shi, Jianwei; Jiang, Zhi

    2008-03-01

    A magnetically separable photocatalyst TiO2/SiO2/NiFe2O4 (TSN) nanosphere with egg-like structure was prepared by a unique process that combined a liquid catalytic phase transformation method, reverse micelle technique and chemical precipitation means. The prepared photocatalyst shows high photocatalytic activity for the degradation of methyl orange in water. The magnetic property measurements indicate that the photocatalyst possesses a superparamagnetic nature. It can be separated from water when an external magnetic field is added and redispersed into water solution after the external magnetic field is eliminated. It is one of the promising photocatalysts for wastewater treatment. A transmission electron microscope (TEM) and an x-ray diffractometer (XRD) were used to characterize the structure of the TSN photocatalyst. The results indicate that nickel ferrite core nanoparticles were completely encapsulated into monodisperse silica nanospheres as carrier, and titania nanoparticle aggregates were coated onto the surface of SN nanospheres, forming an imperfect TiO2 shell for photocatalysis. The SiO2 layer between the NiFe2O4 core and the TiO2 shell effectively prevents the injection of charges from TiO2 particles to NiFe2O4, which gives rise to an increase in photocatalytic activity. Moreover, the recycled TSN exhibits good repeatability of the photocatalytic activity.

  10. Size-controlled synthesis of anisotropic TiO2 single nanocrystals using microwave irradiation and their application for dye-sensitized solar cells.

    PubMed

    Manseki, Kazuhiro; Kondo, Yosuke; Ban, Takayuki; Sugiura, Takashi; Yoshida, Tsukasa

    2013-03-14

    A microwave hydrothermal reaction of colloidal titanates is presented as a cost-effective synthesis to produce TiO(2) single nanocrystals. The photoelectrode consisting of anisotropic nanorods and V-shaped twins has a significant advantage for achieving an appreciable incident photon-to-current conversion efficiency of 85.6% for the dye-sensitized solar cell. PMID:23307102

  11. Sol-gel low-temperature synthesis of stable anatase-type TiO2 nanoparticles under different conditions and its photocatalytic activity.

    PubMed

    Behnajady, Mohammad A; Eskandarloo, Hamed; Modirshahla, Nasser; Shokri, Mohammad

    2011-01-01

    In this work, TiO(2) nanoparticles in anatase phase was prepared by sol-gel low temperature method from titanium tetra-isopropoxide (TTIP) as titanium precursor in the presence of acetic acid (AcOH). The effects of synthesis parameters such as AcOH and water ratios, sol formation time, synthesis and calcination temperature on the photocatalytic activity of TiO(2) nanoparticles were evaluated. The resulting nanoparticles were characterized by X-ray diffraction, UV-Vis reflectance spectroscopy, transmission electron microscopy and Brunauer-Emmett-Teller techniques. Photocatalytic activity of anatase TiO(2) nanoparticles determined in the removal of C. I. Acid Red 27 (AR27) under UV light irradiation. Results indicate that with increasing AcOH/TTIP molar ratio from 1 to 10, sol formation time from 1 to 3 h and synthesis temperature from 0 to 25°C, increases crystallite size of synthesized nanoparticles. It was found that optimal conditions for low temperature preparation of anatase-type TiO(2) nanoparticles with high photocatalytic activity were as follows: TTIP:AcOH:water molar ratio 1:1:200, sol formation time 1 h, synthesis temperature 0°C and calcination temperature 450°C. PMID:21668867

  12. Synthesis and anti-staphylococcal activity of TiO2 nanoparticles and nanowires in ex vivo porcine skin model.

    PubMed

    Nataraj, Namrata; Anjusree, G S; Madhavan, Asha Anish; Priyanka, P; Sankar, Deepthi; Nisha, N; Lakshmi, S V; Jayakumar, R; Balakrishnan, Avinash; Biswas, Raja

    2014-05-01

    Staphylococcus aureus is one of the major causes of skin and soft tissue infections. In this study we compared the antimicrobial activity of two different TiO2 nanoformulations against Staphylococcus aureus. We synthesized TiO2 nanoparticles of approximately 80 nm diameter and TiO2 nanowires of approximately 100 nm diameter. Both nanoformulations possess anti-microbial activity; were non-hemolytic and cytocompatible. However, the anti-staphylococcal activity of TiO2 nanowires was better than the nanoparticles. In broth culture, growth of S. aureus was only partially inhibited by 2% and 4 wt% TiO2 nanoparticles and completely inhibited by TiO2 nanowires till 24 h. TiO2 nanowires treated S. aureus cells exhibits diminished membrane potential than nanoparticle treated cells. The anti-microbial properties of both TiO2 nanoformulations were validated using ex vivo porcine skin model which supplements the in vitro assays. Anti-bacterial activity of the TiO2 nanowires were also validated against multi drug resistant pathogenic strains of S. aureus, showing the clinical potency of the TiO2 nanowires compared to its nanoparticles. PMID:24734539

  13. A direct synthesis of B-doped TiO2 and its photocatalytic performance on degradation of RhB

    NASA Astrophysics Data System (ADS)

    Li, Liang; Yang, Yulin; Liu, Xinrong; Fan, Ruiqing; Shi, Yan; Li, Shuo; Zhang, Lingyun; Fan, Xiao; Tang, Pengxiao; Xu, Rui; Zhang, Wenzhi; Wang, Yazhen; Ma, Liqun

    2013-01-01

    B-doped TiO2 was synthesized by a direct hydrolyzation of n-tetrabutyl titanate in a solution of boric acid, and was treated by hydro-thermal synthesis. The powder was characterized by X-ray diffraction (XRD), FT-IR, scanning and transmission electron microscopy (SEM and TEM), surface photoviolet spectra, UV-visible absorption spectra and X-ray photoelectron spectroscopy (XPS). Rhodamine B (RhB) degradation was used as a probe reaction to evaluate the photocatalytic activity of B-doped TiO2 under simulate sunlight, and excellent photocatalytic performance was achieved.

  14. Synthesis, characterization and degradation of Bisphenol A using Pr, N co-doped TiO 2 with highly visible light activity

    NASA Astrophysics Data System (ADS)

    Yang, Juan; Dai, Jun; Li, Jiantong

    2011-08-01

    Praseodymium and nitrogen co-doped titania (Pr/N-TiO 2) photocatalysts, which could degrade Bisphenol A (BPA) under visible light irradiation, were prepared by the modified sol-gel process. Tetrabutyl titanate, urea and praseodymium nitrate were used as the sources of titanium, nitrogen and praseodymium, respectively. The resulting materials were investigated by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), UV-vis absorbance spectroscopy, X-ray photoelectron spectroscopy (XPS), N 2 adsorption-desorption isotherm and Fourier transform infrared spectra (FTIR). It was found that Pr doping inhibited the growth of crystalline size and the transformation from anatase to rutile. The degradation of BPA under visible light illumination was taken as probe reaction to evaluate the photo-activity of the co-doped photocatalyst. In our experiments, the optimal dopant amount of Pr was 1.2 mol% and the calcination temperature was 500 °C for the best photocatalytic activity. Pr/N-TiO 2 samples exhibited enhanced visible-light photocatalytic activity compared to N-TiO 2, undoped TiO 2 and commercial P25. The nitrogen atoms were incorporated into the crystal of titania and could narrow the band gap energy. Pr doping could slow the radiative recombination of photogenerated electrons and holes in TiO 2. The improvement of photocatalytic activity was ascribed to the synergistic effects of nitrogen and Pr co-doping.

  15. Hydrothermal synthesis of core-shell TiO2 to enhance the photocatalytic hydrogen evolution

    NASA Astrophysics Data System (ADS)

    Jiang, Jinghui; Zhou, Han; Zhang, Fan; Fan, Tongxiang; Zhang, Di

    2016-04-01

    A hydrothermal approach was designed to synthesize core-shell TiO2 with interior cavity by making sodium dodecyl sulfonate (SDS) as the surfactant and the mixture of water and ethanol as the solvent. The control experiment of solvent reveals ethanol and water are responsible for the formation of sphere and interior cavity, respectively. Besides, SDS can assist the growth of core-shell structure, and the sizes of sphere and interior cavity can be tuned by regulating the reaction time or temperature. UV-vis absorption proves core-shell structure with interior cavity can increase the absorption of incident light to enhance the optical activity of final product. The calculated bandgap and photoluminescence (PL) analyses reveal the coexistence of rutile in final product can optimize the bandgap to 3.03 eV and delay the charge recombination. As a result, an effective photocatalytic hydrogen evolution under full spectrum irradiation can be harvested by the as-synthesized core-shell spheres to reach a quantum yield, approximately 9.57% at 340 nm wavelength.

  16. Synthesis of TiO2 nanoparticles utilizing hydrated reverse micelles in CO2.

    PubMed

    Lim, Kwon Taek; Hwang, Ha Soo; Ryoo, Won; Johnston, Keith P

    2004-03-16

    Titanium dioxide nanoparticles were produced by the controlled hydrolysis of titanium tetraisopropoxide (TTIP) in the presence of reverse micelles formed in CO2 with the surfactants ammonium carboxylate perfluoropolyether (PFPECOO-+NH4) (Mw = 587) and poly(dimethyl amino ethyl methacrylate-block-1H,1H,2H,2H-perfluorooctyl methacrylate) (PDMAEMA-b-PFOMA). Based on dynamic light scattering measurements, the amorphous TiO2 particles formed by injection of TTIP are larger than the reverse micelles, indicating surfactant reorganization. The size of the particles and the stability of dispersions in CO2 were affected by the molar ratio of water to surfactant headgroup (w(o)), precursor concentration, and injection rate. The amorphous particle size did not change upon depressurization and redispersion in CO2. PDMAEMA-b-PFOMA provided greater stability against particle aggregation at higher reactant concentration compared with PFPECOO-+NH4. The crystallite size after calcination, which was examined by X-ray diffraction and transmission electron microscopy, increased with w(o). PMID:15835711

  17. Ultrasonic-assisted sol-gel synthesis of samarium, cerium co-doped TiO2 nanoparticles with enhanced sonocatalytic efficiency.

    PubMed

    Eskandarloo, Hamed; Badiei, Alireza; Behnajady, Mohammad A; Ziarani, Ghodsi Mohammadi

    2015-09-01

    In this work, pure TiO2 and samarium, cerium mono-doped and co-doped TiO2 catalysts were synthesized by an ultrasonic-assisted sol-gel method and their sonocatalytic efficiency studied toward removal of Methyl Orange as a model organic pollutant from the textile industry. The relationship of structure and sonocatalytic performance of catalysts was established by using various techniques, such as XRD, TEM, SEM, EDX, DRS, and PL. A comparison on the removal efficiency of sonolysis alone and sonocatalytic processes was performed. The results showed that the samarium, cerium co-doped TiO2 catalyst with narrower band gap energy and smaller particle size leads to a rapid removal of pollutant. It was believed that Sm(3+) and Ce(4+) ions can serve as superficial trapping for electrons at conduction band of TiO2 and prolonged the lifetime of electron-hole pairs. Finally, the effect of synthesis and operational variables on the sonocatalytic activity of co-doped TiO2 catalyst was studied and optimized using response surface methodology as a statistical technique. The results showed that the maximum removal efficiency (96.33%) was achieved at the optimum conditions: samarium content of 0.6 wt%, cerium content of 0.82 wt%, initial pollutant concentration of 4.31 mg L(-1), catalyst dosage of 0.84 mg L(-1), ultrasonic irradiation power of 700 W, and irradiation time of 50 min. PMID:25682738

  18. Synthesis of capped TiO2 nanocrystals of controlled shape and their use with MEH-PPV conjugated polymer to develop nanocomposite films for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Mighri, F.; Duong, Vu Thi Thuy; On, Do Trong; Ajji, A.

    2014-05-01

    This study presents the synthesis details of titanium dioxide (TiO2) nanoparticles (NPs) of different shapes (nanospheres, nanorods and nanorhombics) using oleic acid (OA) and oleyl amine (OM) as capping agents. In order to develop nanocomposite thin films for photovoltaic cells, these TiO2 NPs were carefully dispersed in 2-methoxy-5-(2'-ethylhexyloxy)-p-phenylene vinylene (MEH-PPV) matrix. The properties of synthesized TiO2 NPs and MEH-PPV/TiO2 nanocomposites were characterized using transmission electron microscopy (TEM), thermogravimetric analysis (TGA), UV-Visible spectroscopy, and Photoluminescence technique. It was found that the shape of NPs and the amount of OA and OM surfactants capped on their surface have an effect on their energy bandgap and also on the dispersion quality of MEH-PPV/TiO2 nanocomposites. Even though there was no evidence of chemical bonding between MEH-PPV matrix and TiO2 dispersed NPs, MEH-PPV/TiO2 nanocomposites showed very promising results for light absorption properties and charge transfer at the interface of the conjugated MEH-PPV matrix and TiO2 dispersed NPs, which are two main characteristics for photovoltaic materials.

  19. Synthesis, features and solar-light-driven photocatalytic activity of TiO2 nanotube arrays loaded with SnO2.

    PubMed

    Sim, Lan Ching; Ng, Kai Wern; Ibrahim, Shaliza; Saravanan, Pichiah

    2014-09-01

    In the present study TiO2 nanotube arrays (TNTs) were loaded with a post-transition metal oxide particles namely SnO2 via incipient wet impregnation method by varying its concentration (1.59 wt%, 2.25 wt% and 2.84 wt%). The photocatalytic activity of the prepared photocatalyst was evaluated for the degradation of methylene blue (MB) in presence of natural solar light irradiation. The morphological analyses revealed that the prepared TNTs had average inner diameter of 109 nm, wall thickness of 15 nm and tube length of 7-10 μm, respectively, while the crystalline phase and Raman spectra confirmed the 100% anatase mineral form of TiO2. Further, the presence of SnO2 in TNTs was confirmed by high resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy (XPS). The visible light absorption properties of TNTs improved drastically with increasing SnO2 loadings. The coupling effect of SnO2 and TiO2 significantly enhanced degradation efficiency of MB. An 84% degradation of MB was achieved in 6 h of irradiation under clear sky condition. PMID:25924362

  20. Catalytic and photocatalytic behavior of TiO2 based nanoparticles—their use in the synthesis of a novel TICT probe

    NASA Astrophysics Data System (ADS)

    Biswas, Abhijit; Prasad Mandal, Ranju; Dutta, Saheb; Nandi, Nilashis; De, Swati

    2015-06-01

    Biologically inspired synthesis of titanium dioxide (TiO2) nanoparticles (NPs) and Au/TiO2 nanocomposites (NCs) using L-tryptophan is reported. Highly crystalline composite NPs are obtained by this totally ‘clean’ synthesis. The TiO2 NPs and Au/TiO2 NCs cause efficient photocatalytic degradation of the well-known dye pollutant malachite green. The surface area, pore volume and probability of dye reduction by photogenerated electrons and holes are important considerations for the photodegradation efficiency. Contrary to popular belief, the Au/TiO2 NCs show decreased photocatalytic efficiency. The TiO2 NPs and Au/TiO2 NCs also function as very efficient catalysts in a novel multi component reaction (MCR). In contrast to photocatalysis, Au/TiO2 NCs shows better catalytic efficiency. A comparison is made of the difference in photocatalytic and catalytic behaviors of the NPs. This is the first report of the catalysis of an MCR by TiO2-based NPs. The product of the MCR is a novel fluorescent probe which shows evidence for the existence of a twisted intramolecular charge transfer state. Thus this work shows promise for the development of new catalysts for synthesis of novel fluorescent probes.

  1. A facile solvothermal route to photocatalytically active nanocrystalline anatase TiO 2 from peroxide precursors

    NASA Astrophysics Data System (ADS)

    Perera, Sujith; Gillan, Edward G.

    2008-07-01

    This report describes the rapid synthesis of nanocrystalline powders of anatase TiO 2 using exothermic metathesis (exchange) reactions moderated by a high-boiling hexadecane solvent. One reagent, TiBr 4, dissolved in hexadecane interacts with a dispersion of Na 2O 2 at elevated temperatures to produce TiO 2 and NaBr. Reactions occur within a few hours near the reflux point of hexadecane (bp 287 °C). The isolated crystalline TiO 2 powders are either anatase or anatase/brookite mixtures, depending on how quickly the reagents were heated to reflux. Locally exothermic solution-surface events occur and are likely responsible for crystalline TiO 2 formation directly from the solvothermal reaction without need for any post-reaction annealing. Rapidly synthesized nanocrystalline TiO 2 exhibits elongated nanostructural features. Results from variations in reaction conditions and use of other halide and oxygen reagents are also discussed. The isolated TiO 2 powders have organic surface coatings, but brief air calcination yields water-dispersible titania nanoparticulate powders that function as active UV photocatalysts for methylene blue solution oxidation.

  2. Single-Step Synthesis of Al-Doped TiO2 Nanoparticles Using Non-Transferred Thermal Plasma Torch

    NASA Astrophysics Data System (ADS)

    Tsai, Cheng-Yen; Hsi, Hsing-Cheng; Bai, Hsunling; Fan, Kuo-Shuh; Sun, Hung-Dar

    2012-01-01

    Al-doped TiO2 nanoparticles possessing visible-light photocatalytic activity were fabricated with an atmospheric-pressure thermal plasma system via a single-step direct combination of vaporized Ti, Al, and O2. Pure Ti and Al2O3 powders and ultrahigh-purity O2 were used as the precursors. The experimental results showed that the size of synthesized TiO2 was between 10 and 105 nm. Nevertheless, the nanoparticles with sizes smaller than 50 nm accounted for approximately 80% of the total number. The observed size reduction appeared to be the suppression on particle growth due to the introduction of Al species into TiO2 crystal. The largest specific surface area of the Al-doped TiO2 was 44 m2·g-1. The anatase phase was noticeably decreased with increasing the Al2O3 addition. The absorption spectra of Al-doped TiO2 shifted from UV to visible-light region with respect to an increase in Al2O3 addition. Oxygen in the formed TiO2 was found to be in TiO2 crystal lattice and in surface hydroxyl groups. Both Ti4+ and Ti3+ existed in the formed TiO2. However, the Ti3+ amount significantly increased with increasing Al2O3 addition due to Al/Ti substitution and the resulted oxygen vacancy.

  3. Synthesis and Characterization of Hollow TiO2 Particles Coated with Polyimide Brushes by Click Chemistry.

    PubMed

    Sun, Na; Zhao, Xiang; Xiao, Zhenggang

    2015-06-01

    In order to improve the compatibility between nanoparticles and polymer matrix, a feasible processing way for grafting polyimides (PI) on the surface of hollow TiO2 particles was developed. Hollow TiO2 spheres were prepared by using polystyrene-methyl acrylic acid latex as a template starting from tetrabutyl titanate. Surface graft of azide-decorated hollow TiO2 spheres with well-defined alkyne-terminated PI were achieved by "click" chemistry in three steps: (1) choloromethylation and azidization of hollow TiO2, (2) preparation of alkyne-terminated PI by polycondensation, (3) click coupling between the azidized hollow TiO2 and the alkyne-terminated PI under the catalysis of CuSO4/sodium ascorbate. Fourier transform infrared (FTIR) and Nuclear Magnetic Resonance (1HNMR) spectra were used to illustrate quantitative transformation of the PI brushes on hollow TiO2 particles into the desired functional group. The morphology of hollow TiO2-PI composite particles was characterized by transmission electron microscopy (TEM) which showed the irregular hollow structure. The results indicate that the grafting of polymer chains with thermostability and flame retardance on the surface of hollow TiO2 sphere is successful. PMID:26369096

  4. Synthesis, characterization and amoebicidal potential of locally synthesized TiO2 nanoparticles against pathogenic Acanthamoeba trophozoites in vitro.

    PubMed

    Imran, Muhammad; Muazzam, Ambreen Gul; Habib, Amir; Matin, Abdul

    2016-06-01

    Acanthamoeba is an opportunistic protozoan pathogen that plays a pivotal role in the ecosystem. It may cause blinding keratitis and fatal encephalitis involving the central nervous system. Here we synthesized pure and Zn doped TiO2 nanoparticles (~10-30nm) via sol-gel and sol-hydrothermal methods and demonstrated its impact on the biological characteristics of pathogenic Acanthamoeba castellanii. Our results revealed that pure and Zn doped TiO2 nanoparticles synthesized by sol-hydrothermal methods (ranging 5, 10, 25 and 50μg/ml) exhibited amoebicidal effects i.e., >60% of trophozoites executed under normal light at maximum dose (50μg/ml) within 1h incubation. In contrast pure/doped TiO2 obtained via sol gel method showed ~40% amoeba damage. Furthermore, amoebae growth assay demonstrated that Zn doped TiO2 also inhibited Acanthamoeba numbers up to 7days in dose dependent manner. It was interesting to note that all the tested TiO2 nanoparticles have shown maximum amoebicidal effects at pH7 which is quite relevant to amoebic growth favorable conditions. Our results confirmed that TiO2 has inhibitory effects on Acanthamoeba growth and viability. Overall, we reported the amoebicidal and amoebic growth inhibition potential of pure and Zn doped TiO2 nanoparticles against Acanthamoeba due to attached OH(-) groups, reduced size and decreased band gap of sol hydrothermally synthesized TiO2 nanoparticles. PMID:27054875

  5. Synthesis of nanosize MCM-41 loaded with TiO 2 and study of its photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Sadjadi, M. S.; Farhadyar, N.; Zare, K.

    2009-07-01

    In recent years, nanosized mesoporous materials have received significant attention due to their impact in different processes. Several diverse applications of these materials, e.g. high density magnetic recording, magnetic fluids, magnetic refrigeration as well as in photocatalysis, solar cells, photosensors, have triggered considerable research activities in the area of nanotechnology. In this work, nanosize MCM-41 was synthesized and loaded then with TiO 2 using tetra butoxy titanium (TBT). As prepared TiO 2 loaded materials was investigated by using X-ray diffraction (XRD), Transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR). The photocatalytic activity of the prepared TiO 2 loaded MCM-41 was finally evaluated by the degradation of methyl orange under irradiation of UV light. The result showed that TiO 2 loaded on nanosize MCM-41 has higher photocatalytic activity than that of TiO 2.

  6. Enhanced photo-catalytic activity of Sr and Ag co-doped TiO2 nanoparticles for the degradation of Direct Green-6 and Reactive Blue-160 under UV & visible light.

    PubMed

    Naraginti, Saraschandra; Thejaswini, T V L; Prabhakaran, D; Sivakumar, A; Satyanarayana, V S V; Arun Prasad, A S

    2015-10-01

    This work is focused on sol-gel synthesis of silver and strontium co-doped TiO2 nanoparticles and their utilization as photo-catalysts in degradation of two textile dyes. Effect of pH, intensity of light, amount of photo-catalyst, concentration of dye, sensitizers, etc., were studied to optimize conditions for obtaining enhanced photo-catalytic activity of synthesized nanoparticles. XRD, BET, HR-TEM, EDAX and UV-Vis (diffused reflectance mode) techniques were used to characterize the nanoparticles. Interestingly, band gap of Sr and Ag co-doped TiO2 nanoparticles showed considerable narrowing (2.6 eV) when compared to Ag doped TiO2 (2.7 eV) and undoped TiO2 (3.17 eV) nanoparticles. Incorporation of Ag and Sr in the lattice of TiO2 could bring isolated energy levels near conduction and valence bands thus narrowing band gap. The XRD analysis shows that both Ag and Sr nanoparticles are finely dispersed on the surface of titania framework, without disturbing its crystalline structure. TEM images indicate that representative grain sizes of Ag-doped TiO2 & Sr and Ag co-doped TiO2 nanoparticles are in the range of 8-20 nm and 11-25 nm, respectively. Effective degradation of Direct Green-6 (DG-6) and Reactive Blue-160 (RB-160) under UV and visible light has been achieved using the photo-catalysts. Sr and Ag co-doped TiO2 photo-catalysts showed higher catalytic activity during degradation process in visible region when compared to Ag-doped and undoped TiO2 nanoparticles which could be attributed to the interactive effect caused by band gap narrowing and enhancement in charge separation. For confirming degradation of the dyes, total organic carbon (TOC) content was monitored periodically. PMID:25983059

  7. A facile in-situ hydrothermal synthesis of SrTiO3/TiO2 microsphere composite

    NASA Astrophysics Data System (ADS)

    Wang, Hongxing; Zhao, Wei; Zhang, Yubo; Zhang, Shimeng; Wang, Zihao; Zhao, Dan

    2016-06-01

    TiO2 was successfully used as sacrificed template to synthesise SrTiO3/TiO2 microsphere composite via an in-situ hydrothermal process. The diameter of SrTiO3/TiO2 microsphere was about 700 nm with the same size of the template, and all of the microspheres were in good dispersity. The optimized reaction parameters for the phase and morphology of the as-synthesized samples were investigated. The results showed the SrTiO3/TiO2 microsphere can be synthesized at 170 °C when the concentration of sodium hydroxide was 0.1 M. Lower hydrothermal temperature hampered the formation of the SrTiO3/TiO2 composite, the higher alkali concentration, however, will destroy the morphology of products. The formation mechanism of SrTiO3/TiO2 microsphere composite was proposed and the photocatalytic properties of the samples were characterized using methylene blue solution as the pollutant under the UV light irradiation. The results indicated the proper OH- concentration will provide a channel for Sr2+ to react with Ti4+ located in the template and form the SrTiO3/TiO2 composite, and those with micro-scaled spherical morphology exhibited good photocatalytic activities.

  8. Synthesis and Properties of Cellulose-Functionalized POSS-SiO2/TiO2 Hybrid Composites.

    PubMed

    Hong, Gwang-Wook; Ramesh, Sivalingam; Kim, Joo-Hyung; Kim, Hyeon-Ju; Lee, Ho-Saeng

    2015-10-01

    The mechanical, thermal, optical, electrical and morphological properties of cellulose, an excellent natural biomaterial, can be improved by organic-inorganic hybrid composite methods. Based on the pristine properties of cellulose, the preparation of cellulose-metal oxide hybrid nanocomposites using a dispersion process of nanoparticles into the cellulose host matrix by traditional methods, has limitations. Recently, the functionalized cellulose-polymer-based materials were considered to be an important class of high-performance materials, providing the synthesis of various functional hybrid nanocomposites using a sol-gel method. Transparent cellulose-POSS-amine-silica/titania hybrids were prepared by an in-situ sol-gel process in the presence of γ-aminopropyltrimethoxylsilane (γ-APTES). The methodology involves the formation of covalent bonding between the cellulose-POSS amine and SiO2/TiO2 hybrid nanocomposite material. An analysis of the synthesized hybrid material by Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, differential thermal calorimetry, scanning electron microscopy, and transmission electron microscopy indicated that the silica/titania nanoparticles were bonded covalently and dispersed uniformly into the cellulose-POSS amine matrix. In addition, biological properties of the cellulose-POSS-silica/titania hybrid material were examined using an antimicrobial test against pathogenic bacteria, such as Bacillus cereus (F481072) and E. coli (ATCC35150) for the bacterial effect. PMID:26726461

  9. Modeling Geometric Arrangements of TiO2-Based Catalyst Substrates and Isotropic Light Sources to Enhance the Efficiency of a Photocatalystic Oxidation (PCO) Reactor

    NASA Technical Reports Server (NTRS)

    Richards, Jeffrey T.; Levine, Lanfang H.; Husk, Geoffrey K.

    2011-01-01

    The closed confined environments of the ISS, as well as in future spacecraft for exploration beyond LEO, provide many challenges to crew health. One such challenge is the availability of a robust, energy efficient, and re-generable air revitalization system that controls trace volatile organic contaminants (VOCs) to levels below a specified spacecraft maximum allowable concentration (SMAC). Photocatalytic oxidation (PCO), which is capable of mineralizing VOCs at room temperature and of accommodating a high volumetric flow, is being evaluated as an alternative trace contaminant control technology. In an architecture of a combined air and water management system, placing a PCO unit before a condensing heat exchanger for humidity control will greatly reduce the organic load into the humidity condensate loop ofthe water processing assembly (WPA) thereby enhancing the life cycle economics ofthe WPA. This targeted application dictates a single pass efficiency of greater than 90% for polar VOCs. Although this target was met in laboratory bench-scaled reactors, no commercial or SBIR-developed prototype PCO units examined to date have achieved this goal. Furthermore, the formation of partial oxidation products (e.g., acetaldehyde) was not eliminated. It is known that single pass efficiency and partial oxidation are strongly dependent upon the contact time and catalyst illumination, hence the requirement for an efficient reactor design. The objective of this study is to maximize the apparent contact time and illuminated catalyst surface area at a given reactor volume and volumetric flow. In this study, a Ti02-based photocatalyst is assumed to be immobilized on porous substrate panels and illumination derived from linear isotropic light sources. Mathematical modeling using computational fluid dynamics (CFD) analyses were performed to investigate the effect of: 1) the geometry and configuration of catalyst-coated substrate panels, 2) porosity of the supporting substrate, and 3) varying the light source and spacing on contact time and illuminated catalyst area.

  10. Synthesis and Characterization of TiO2 Nanotubes Sensitized with CdS Quantum Dots Using a One-Step Method

    NASA Astrophysics Data System (ADS)

    Song, Jiahui; Zhang, Xinguo; Zhou, Chunyan; Lan, Yuwei; Pang, Qi; Zhou, Liya

    2015-01-01

    A novel one-step synthesis process was used to assemble CdS quantum dots (QDs) into TiO2 nanotube arrays (TNTAs). The sensitization time of the TiO2 nanotubes can be adjusted by controlling the CdS QD synthesis time. The absorption band of sensitized TNTAs red-shifted and broadened to the visible spectrum. The photoelectric conversion efficiency increased to 0.83%, the open-circuit voltage to 776 mV, and the short-circuit current density ( J SC) to 2.30 mA cm-2 with increased sensitization time. The conversion efficiency with this new sensitization method was five times that of nonsensitized TNTAs, providing novel ideas for study of TNTA solar cells.

  11. Preillumination of TiO2 and Ta2O5 photoactive thin films as a tool to tailor the synthesis of composite materials.

    PubMed

    Sánchez-Valencia, Juan R; Borrás, Ana; Barranco, Angel; Rico, Victor J; Espinós, Juan P; González-Elipe, Agustín R

    2008-09-01

    Illumination of TiO 2 thin films with UV light is known to induce the transformation of the surface of this material from partially hydrophobic into fully hydrophilic. The present work shows that this transformation is accompanied by other effects that may be used to control the synthesis of composite materials. For this purpose, TiO 2 and Ta 2O 5 transparent thin films with a columnar structure and open pores were prepared by electron evaporation at glancing angles. Transparent TiO 2 thin films with micropores (i.e., pores smaller than 2 nm) prepared by plasma enhanced chemical vapor deposition (PECVD) were also used. All these films became hydrophilic upon UV illumination. Rhodamine 6G and Rhodamine 800 dyes were irreversibly adsorbed within the columns of the TiO 2 and Ta 2O 5 thin films by immersion into a water solution of these molecules. Isolated and aggregated molecules of these two dyes were detected by visible absorption spectroscopy. The infiltration adsorption efficiency was directly correlated with the acidity of the medium, increasing at basic pHs as expected from simple considerations based on the concepts of the point of zero charge (PZC) in colloidal oxides. The infiltration experiments were repeated with columnar TiO 2 and Ta 2O 5 thin films that were subjected to preillumination with UV light. It was found that this treatment produced a modification in the type (isolated or aggregated) and amount of dye molecules incorporated into the pores. Moreover, the selective adsorption of a given dye in preilluminated areas of the films permitted the lithographic coloring of the films. Preillumination also controls the UV induced deposition of silver on the surface of the microporous TiO 2 thin films. It was found that the size distribution of the formed silver nanoparticles was dependent on the preillumination treatment and that a well-resolved surface plasmon resonance at around 500 nm was only monitored in the preilluminated films. A model is proposed to account for the effects induced by UV preillumination on the TiO 2 and Ta 2O 5 oxide surfaces. The possibilities of this type of light treatment for the tailored synthesis of nanocomposite thin films (i.e., dye-oxide, metal nanoparticles-oxide) are highlighted. PMID:18642860

  12. Controlled synthesis of nitrogen-doped binary and ternary TiO2 nanostructures with enhanced visible-light catalytic activity

    NASA Astrophysics Data System (ADS)

    Gai, Ligang; Mei, Qinghu; Duan, Xiuquan; Jiang, Haihui; Zhou, Guowei; Tian, Yan; Lu, Xifeng

    2013-03-01

    Nitrogen doping in association with a heterostructure not only modifies the band structure of TiO2 to make it more responsive to visible light, but also suppresses charge recombination and leads TiO2 to have enhanced photoactivity. In this paper, we report on the controlled synthesis of nitrogen doped binary and ternary TiO2 nanostructures through a hydrazine-mediated solvothermal approach. The phase, size, and morphology of the samples can be tuned by simply changing the reaction time. Also, the visible-light photoactivity of the samples was evaluated by decomposing methyl orange and formaldehyde in aqueous solution without any external oxidative or reductive radical-generating sources. The as-prepared catalysts exhibit enhanced photocatalytic activity compared to P25 and the undoped counterpart, and the selected catalyst shows high photostability and photoactivity after reuse four times. This new-type TiO2 nanostructures present a promising candidate for applications in photocatalysis, photochemistry, sensors, and solar cells.

  13. Synthesis and photocatalytic activity of N-doped TiO2 produced in a solid phase reaction

    NASA Astrophysics Data System (ADS)

    Xin, Gang; Pan, Hongfei; Chen, Dan; Zhang, Zhihua; Wen, Bin

    2013-02-01

    N-doped TiO2 was synthesized by calcining a mixture of titanic acid and graphitic carbon nitride (g-C3N4) at temperatures above 500 °C. The final samples were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), electron energy loss spectroscopy (EELS), and UV-vis diffuse reflectance spectra. The photocatalytic activity of N-doped TiO2 was studied by assessing the degradation of methylene blue in an aqueous solution, under visible light and UV light irradiation. It was found that the N-doped TiO2 displayed higher photocatalytic activity than pure TiO2, under both visible and UV light.

  14. In situ synthesis of TiO2(B) nanotube/nanoparticle composite anode materials for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Liu, Xiang; Sun, Qian; Ng, Alan M. C.; Djurii?, Aleksandra B.; Xie, Maohai; Liao, Changzhong; Shih, Kaimin; Vranje, Mila; Nedeljkovi?, Jovan M.; Deng, Zhaofeng

    2015-10-01

    Titania nanotubes were prepared by a simple hydrothermal route. Their electrochemical performance has been examined in detail and compared to TiO2(B) nanoparticles, TiO2 anatase and P25 titania nanoparticles. The cycling and rate performance of TiO2 nanotubes is superior to both types of nanoparticles, and it can be further improved by an in situ titanium precursor treatment, which results in the formation of TiO2 nanoparticles on/between the nanotubes. The obtained specific capacity after 200 cycles at 0.2 A g-1 charge/discharge rate remained above 130 mAh g-1. The enhanced lithium storage properties of these samples can be attributed to their unique morphology and crystal structure.

  15. Synthesis of CdSe-TiO2 nanocomposites and their applications to TiO2 sensitized solar cells.

    PubMed

    Kim, Jinyoung; Choi, Sungbum; Noh, Junhong; Yoon, Sunghun; Lee, Sangwook; Noh, Taehoon; Frank, Arthur J; Hong, Kugsun

    2009-05-01

    CdSe-TiO(2) nanocomposites were synthesized via aminolysis of Ti-oleate complexes in the presence of CdSe nanocrystals, and their application as sensitizers for TiO(2) solar cells was investigated. The formation of CdSe-TiO(2) nanocomposites was confirmed using transmission electron microscopy and Raman spectroscopy. The emission spectrum of CdSe-TiO(2) nanocomposites revealed photoinduced charge separation at the CdSe-TiO(2) interface of the composite. The photocurrent-voltage properties of CdSe-TiO(2)-sensitized TiO(2) particle films compared favorably with those of CdSe-sensitized TiO(2) films. Evidence was also found indicating that the TiO(2) component of the composite protects CdSe against degradation during film annealing. PMID:19249822

  16. Facile and effective synthesis of hierarchical TiO2 spheres for efficient dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Ye, Meidan; Chen, Chang; Lv, Miaoqiang; Zheng, Dajiang; Guo, Wenxi; Lin, Changjian

    2013-06-01

    Three-dimensional (3D) crystalline anatase TiO2 hierarchical spheres were successfully derived from Ti foils via a fast, template-free, low-temperature hydrothermal route followed by a calcination post-treatment. These dandelion-like TiO2 spheres are composed of numerous ultrathin nanoribbons, which were subsequently split into fragile nanoflakes as a result of the decomposition of Ti-complex intermediates to TiO2 and H2O at high temperature. The dye-sensitized solar cells (DSSCs) employing such hierarchically structured TiO2 spheres as the photoanodes exhibited a light-to-electricity conversion efficiency of 8.50%, yielding a 28% enhancement in comparison with that (6.64%) of P25-based DSSCs, which mainly benefited from the enhanced capacity of dye loading in combination with effective light scattering and trapping from hierarchical architecture.Three-dimensional (3D) crystalline anatase TiO2 hierarchical spheres were successfully derived from Ti foils via a fast, template-free, low-temperature hydrothermal route followed by a calcination post-treatment. These dandelion-like TiO2 spheres are composed of numerous ultrathin nanoribbons, which were subsequently split into fragile nanoflakes as a result of the decomposition of Ti-complex intermediates to TiO2 and H2O at high temperature. The dye-sensitized solar cells (DSSCs) employing such hierarchically structured TiO2 spheres as the photoanodes exhibited a light-to-electricity conversion efficiency of 8.50%, yielding a 28% enhancement in comparison with that (6.64%) of P25-based DSSCs, which mainly benefited from the enhanced capacity of dye loading in combination with effective light scattering and trapping from hierarchical architecture. Electronic supplementary information (ESI) available: FESEM images of samples prepared in other control experiments and a cross-sectional view of the three films. See DOI: 10.1039/c3nr01604h

  17. Self-cleaning properties of TiO2/palygorskite and TiO2/halloysite nanocomposite coatings

    NASA Astrophysics Data System (ADS)

    Panagiotaras, Dionisios; Kaplani, Eleni; Stathatos, Elias; Papoulis, Dimitrios

    2014-10-01

    Tubular halloysite and microfibrous palygorskite clay mineral combined with nanocrystalline TiO2 are involved in the preparation of nanocomposite films on glass substrates via sol-gel route at 450°C. The synthesis employing nonionic surfactant molecule as pore directing agent along with the acetic acid-based sol-gel route without addition of water molecules. Drying and thermal treatment of composite films ensure elimination of organic material lead to the formation of TiO2 nanoparticles homogeneously distributed on the palygorskite and halloysite surfaces. Nanocomposite films without cracks of active anatase crystal phase on palygorskite and halloysite surfaces are characterized by microscopy techniques, UV-Vis spectroscopy, and porosimetry methods in order to examine their structural properties. The composite palygorskite-TiO2 and halloysite/TiO2 films with variable quantities of palygorskite and halloysite were tested as photocatalysts in the photo-oxidation of Basic Blue 41 azo dye in water. These nanocomposite films proved to be most promising photocatalysts and highly effective to dye's decoloration in spite of small amount of palygorskite/TiO2 or halloysite/TiO2 catalyst immobilized onto glass substrates.

  18. Synthesis of GO supported Fe2O3-TiO2 nanocomposites for enhanced visible-light photocatalytic applications.

    PubMed

    Jo, Wan-Kuen; Selvam, N Clament Sagaya

    2015-09-28

    This article reports novel ternary composites consisting of Fe2O3 nanorods, TiO2 nanoparticles, and graphene oxide (GO) flakes that provide enhanced photocatalytic performance and stability. Fe2O3 nanorods grow evenly and embed themselves on the agglomerated TiO2/GO surface, which facilitate the formation of heterojunctions for effective migration of charge carriers at the interface of Fe2O3/TiO2 in the ternary composites. The formation of heterostructured Fe2O3-TiO2/GO composites and the effect of GO addition on the photophysical properties of the composites were systematically investigated using various spectroscopic techniques. The photocatalytic performance of Fe2O3 was improved by coupling with TiO2 in the presence of GO, suggesting uncommon electron transfer from the conduction band of Fe2O3 to that of TiO2via GO under visible-light irradiation. An improved charge separation in the composite materials compared with that in bare Fe2O3 was confirmed by drastic fluorescence quenching and stronger absorption in the visible range. The optimum content of GO in the ternary composite was 1.0 wt%, which exhibited enhanced photocatalytic activity. The synergistic effect, heterostructured composite and role of GO, as an electron transporter, in the ternary composites account for the enhanced photocatalytic activity. PMID:26286295

  19. Cluster synthesis of monodisperse rutile-TiO2 nanoparticles and dielectric TiO2-vinylidene fluoride oligomer nanocomposites.

    PubMed

    Balasubramanian, Balamurugan; Kraemer, Kristin L; Valloppilly, Shah R; Ducharme, Stephen; Sellmyer, David J

    2011-10-01

    The embedding of oxide nanoparticles in polymer matrices produces a greatly enhanced dielectric response by combining the high dielectric strength and low loss of suitable host polymers with the high electric polarizability of nanoparticles. The fabrication of oxide-polymer nanocomposites with well-controlled distributions of nanoparticles is, however, challenging due to the thermodynamic and kinetic barriers between the polymer matrix and nanoparticle fillers. In the present study, monodisperse TiO(2) nanoparticles having an average particle size of 14.4 nm and predominant rutile phase were produced using a cluster-deposition technique without high-temperature thermal annealing and subsequently coated with uniform vinylidene fluoride oligomer (VDFO) molecules using a thermal evaporation source, prior to deposition as TiO(2)-VDFO nanocomposite films on suitable substrates. The molecular coatings on TiO(2) nanoparticles serve two purposes, namely to prevent the TiO(2) nanoparticles from contacting each other and to couple the nanoparticle polarization to the matrix. Parallel-plate capacitors made of TiO(2)-VDFO nanocomposite film as the dielectric exhibit minimum dielectric dispersion and low dielectric loss. Dielectric measurements also show an enhanced effective dielectric constant in TiO(2)-VDFO nanocomposites as compared to that of pure VDFO. This study demonstrates for the first time a unique electroactive particle coating in the form of a ferroelectric VDFO that has high-temperature stability as compared to conventionally used polymers for fabricating dielectric oxide-polymer nanocomposites. PMID:21911930

  20. Solvothermal synthesis and enhanced photocatalytic activity of flowerlike nanoarchitectures assembled from anatase TiO2 nanoflakes

    NASA Astrophysics Data System (ADS)

    Cui, Meng; Tian, Sha; Zhao, Hua; Jin, Rong; Chen, Yan; Liu, Bin; Yang, Heqing

    2012-07-01

    TiO2 nanoflakes assembled flowerlike nanoarchitectures with diameters of 1.70-2.20 ?m were synthesized by a solvothermal reaction of butyl titanate with isopropyl alcohol, HF and H2O at 180 C for 12 h. The constituent nanoflakes have perfect rectangular shapes with the typical widths of 0.81-0.95 ?m, lengths of 1.04-1.20 ?m and thicknesses of 0.10-0.12 ?m. The constituent nanoflakes are formed due to the selective adsorption of isopropyl alcohol on (0 1 0) surface of anatase TiO2. These anatase TiO2 nanoflakes assemble into flowerlike structures driven by the electrostatic attraction. The as-prepared TiO2 flowerlike nanoarchitectures exhibit enhanced photocatalytic ability to degrade methyl orange dye in comparison with commercial TiO2 powders. The photodegradation of methyl orange dye catalyzed by the anatase TiO2 nanoflake assembled flowerlike nanostructures fits a pseudo first-order reaction.

  1. Electrochemical synthesis and characterization of TiO2 nanoparticles and their use as a platform for flavin adenine dinucleotide immobilization and efficient electrocatalysis

    NASA Astrophysics Data System (ADS)

    Ashok Kumar, S.; Lo, Po-Hsun; Chen, Shen-Ming

    2008-06-01

    Here, we report the electrochemical synthesis of TiO2 nanoparticles (NPs) using the potentiostat method. Synthesized particles have been characterized by using x-ray diffraction (XRD) studies, atomic force microscopy (AFM) and scanning electron microscopy (SEM). The results revealed that the TiO2 film produced was mainly composed of rutile and that the particles are of a size in the range of 100 ± 50 nm. TiO2 NPs were used for the modification of a screen printed carbon electrode (SPE). The resulting TiO2 film coated SPE was used to immobilize flavin adenine dinucleotide (FAD). The flavin enzyme firmly attached onto the metal oxide surface and this modified electrode showed promising electrocatalytic activities towards the reduction of hydrogen peroxide (H2O2) in physiological conditions. The electrochemistry of FAD confined in the oxide film was investigated. The immobilized FAD displayed a pair of redox peaks with a formal potential of -0.42 V in pH 7.0 oxygen-free phosphate buffers at a scan rate of 50 mV s-1. The FAD in the nanostructured TiO2 film retained its bioactivity and exhibited excellent electrocatalytic response to the reduction of H2O2, based on which a mediated biosensor for H2O2 was achieved. The linear range for the determination of H2O2 was from 0.15 × 10-6 to 3.0 × 10-3 M with the detection limit of 0.1 × 10-6 M at a signal-to-noise ratio of 3. The stability and repeatability of the biosensor is also discussed.

  2. Sol-hydrothermal synthesis of inorganic-framework molecularly imprinted TiO2/SiO2 nanocomposite and its preferential photocatalytic degradation towards target contaminant.

    PubMed

    Deng, Fang; Liu, Yin; Luo, Xubiao; Wu, Shaolin; Luo, Shenglian; Au, Chaktong; Qi, Ruoxi

    2014-08-15

    Inorganic-framework molecularly imprinted TiO2/SiO2 nanocomposite (MIP-TiO2/SiO2) was successfully prepared by sol-hydrothermal method using 4-nitrophenol as template. The morphology, structure, optical property, zeta-potential and photocurrent of MIP-TiO2/SiO2 were characterized. The adsorption performance and photocatalytic selectivity were also studied. MIP-TiO2/SiO2 shows higher adsorption capacity and selectivity than the non-imprinted TiO2/SiO2 (NIP-TiO2/SiO2). Kinetics results show that the adsorption equilibrium of 4-nitrophenol on MIP-TiO2/SiO2 is established within 20 min, and the adsorption process obeys the pseudo-second-order model. Moreover, MIP-TiO2/SiO2 can completely degrade 4-nitrophenol within 30 min, while NIP-TiO2/SiO2 takes 110 min. It was found that the MIP-TiO2/SiO2 photocatalyst shows molecular recognition ability, leading to selective adsorption and molecular recognitive photocatalytic degradation of 4-nitrophenol. Furthermore, because of its inorganic framework, MIP-TiO2/SiO2 shows excellent reusability. PMID:24953942

  3. Thermal conduction effects impacting morphology during synthesis of columnar nanostructured TiO2 thin films

    SciTech Connect

    An, Woo-Jin; Jiang, David D.; Matthews, James R.; Borrelli, Nicholas F.; Biswas, Pratim

    2011-01-01

    The aerosol chemical vapor deposition (ACVD) process allows for the synthesis of nanostructured films with well tuned morphologies that can be controlled based on the desired functionality and application. A robust understanding of the process parameters that result in desired features of the film is elucidated. One dimensional TiO₂ nanostructured columns that have superior properties for solar energy harvesting and conversion applications were deposited on tin doped indium oxide (ITO) substrates. The sintering of the deposited particles was a key factor in the growth of the 1D structure with desired crystal planes. By ensuring that the sintering rate is faster than the arrival rate of deposited particles; a 1D columnar structure could be obtained. The sintering rate was controlled by the temperature and depositing particle size. As the columns grew in length, the increased thermal conduction resistance resulted in a drop in temperature and subsequently a slowing of the sintering process in upper regions of the film. This led to growth of branched structures rather than continued growth in a preferred direction. The growth of the branched structure could be overcome by enhancing the sintering rate by increasing the substrate temperature or reducing the depositing particle size (by lowering the feed rate of the precursor). The phenomenon was also confirmed by using different deposition substrates, such as FTO and glass. Dye sensitized solar cell performance efficiencies with different column lengths of 2 and 7 µm were determined to be 1.8 and 2.7% respectively.

  4. Synthesis, characterization and photoactivity of bi-crystalline mesoporous TiO2

    NASA Astrophysics Data System (ADS)

    Nguyen, Dongthanh; Wang, Wei; Long, Haibo; Ru, Hongqiang

    2016-03-01

    Mesoporous titania (meso-TiO2) has received extensive attention owing to its versatile potential applications. This paper reports a low-temperature templating approach for the fabrication of meso-TiO2 using the peroxo titanic acid (PTA) sol as precursor and Pluronic P123 as nonionic template. The TGA, XRD, N2 sorption, FE-SEM and HRTEM were used to characterize the obtained samples. The results showed that meso-TiO2 with high surface area up to 163 m2·g-1 and large pore volume of 0.65 cm3·g-1 can be obtained. The mesopore sizes can be varied between 13 and 20 nm via this synthesis approach. The amount of P123 and the calcination conditions were found to have great influence on the mesoporous and crystalline structures of meso-TiO2. The photocatalytic activity testing clearly shows that the high surface area and bi-crystallinity phases of meso-TiO2 play important roles in enhancing photocatalytic properties of meso-TiO2 in photo-decomposing Rhodamine B in water.

  5. A Simple Method for the Preparation of TiO2 /Ag-AgCl@Polypyrrole Composite and Its Enhanced Visible-Light Photocatalytic Activity.

    PubMed

    Yao, Tongjie; Shi, Lei; Wang, Hao; Wang, Fangxiao; Wu, Jie; Zhang, Xiao; Sun, Jianmin; Cui, Tieyu

    2016-01-01

    A novel and facile method was developed to prepare a visible-light driven TiO2 /Ag-AgCl@polypyrrole (PPy) photocatalyst with Ag-AgCl nanoparticles supported on TiO2 nanofibers and covered by a thin PPy shell. During the synthesis, the PPy shell and Ag-AgCl nanoparticles were prepared simultaneously onto TiO2 nanofibers, which simplified the preparation procedure. In addition, because Ag-AgCl aggregates were fabricated via partly etching the Ag nanoparticles, their size was well controlled at the nanoscale, which was beneficial for improvement of the contact surface area. Compared with reference photocatalysts, the TiO2 /Ag-AgCl@PPy composite exhibited an enhanced photodegradation activity towards rhodamine B under visible-light irradiation. The superior photocatalytic property originated from synergistic effects between TiO2 nanofibers, Ag-AgCl nanoparticles and the PPy shell. Furthermore, the TiO2 /Ag-AgCl@PPy composite could be easily separated and recycled without obvious reduction in activity. PMID:26415627

  6. Confined-space synthesis of single crystal TiO2 nanowires in atmospheric vessel at low temperature: a generalized approach

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoyue; Wang, Hai; Zhou, Yu; Liu, Yong; Li, Baojun; Zhou, Xiang; Shen, Hui

    2015-01-01

    Extensive efforts have been devoted to develop innovative synthesis strategies for nanomaterials in order to exploit the true potential of nanotechnology. However, most approaches require high temperature or high pressure to favor crystallization. Here we highlight an unconventional approach for the confined-space synthesis of the single crystal TiO2 nanowires in the atmospheric vessel at low temperature by cleverly manipulating the unique physical properties of straight-chain saturated fatty acids. Our method also applys to icosane due to its straight-chain saturated hydrocarbon structure and similar physical properties to the saturated fatty acids. Interestingly, we also found that the unsaturated fatty acids can facilitate the crystal growth, but their bent chains lead to the formation of TiO2 particle aggregates. In addition, we demonstrate the growth of TiO2 nanowires on arbitrary substrates, which are of great importance for their wider applications. We thus anticipate our presented method to be a possible starting point for non-classical crystallization strategies and be easily adapted for the fabrication of all other inorganic materials.

  7. Confined-space synthesis of single crystal TiO2 nanowires in atmospheric vessel at low temperature: a generalized approach

    PubMed Central

    Wang, Xiaoyue; Wang, Hai; Zhou, Yu; Liu, Yong; Li, Baojun; Zhou, Xiang; Shen, Hui

    2015-01-01

    Extensive efforts have been devoted to develop innovative synthesis strategies for nanomaterials in order to exploit the true potential of nanotechnology. However, most approaches require high temperature or high pressure to favor crystallization. Here we highlight an unconventional approach for the confined-space synthesis of the single crystal TiO2 nanowires in the atmospheric vessel at low temperature by cleverly manipulating the unique physical properties of straight-chain saturated fatty acids. Our method also applys to icosane due to its straight-chain saturated hydrocarbon structure and similar physical properties to the saturated fatty acids. Interestingly, we also found that the unsaturated fatty acids can facilitate the crystal growth, but their bent chains lead to the formation of TiO2 particle aggregates. In addition, we demonstrate the growth of TiO2 nanowires on arbitrary substrates, which are of great importance for their wider applications. We thus anticipate our presented method to be a possible starting point for non-classical crystallization strategies and be easily adapted for the fabrication of all other inorganic materials. PMID:25634804

  8. Synthesis of heteroarchitectures of PbS nanostructures well-erected on electrospun TiO2 nanofibers.

    PubMed

    Su, Chunyan; Shao, Changlu; Liu, Yichun

    2010-06-15

    In this paper, we have successfully fabricated TiO(2)/PbS heteroarchitectures with high-quality single-crystalline PbS nanostructures well-erected on electrospun TiO(2) nanofibers matrices via hydro(solvo)thermal method using L-cysteine as the sulfur donor and chelating reagent. The experiment results showed that the morphology and size of secondary PbS nanostructures grown on TiO(2) nanofibers can be changed significantly by utilizing two kinds of different reaction solvents (water and acetylacetone, respectively). In case of water serving as solvent, the superb cube-shaped PbS nanocrystals with the edge length ranging from 150 to 300 nm were prepared. While acetylacetone acting as solvent, the high-density PbS nanoparticles with 10-30 nm in length were obtained. And, it is interesting that PbS nanostructures were not only uniformly monodispersed but also closely attached to TiO(2) nanofibers surface. What is more, the further studies suggested that the formation of TiO(2)/PbS heteroarchitectures might take on chelation-anchoring-nucleation-directional growth strategy. PMID:20207362

  9. Synthesis of amorphous TiO2 modified ZnO nanorod film with enhanced photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Xiao, Shanshan; Zhao, Lei; Leng, Xuning; Lang, Xingyou; Lian, Jianshe

    2014-04-01

    Amorphous TiO2 modified ZnO nanorod films were synthesized via multi-step processes: ZnO nanorod films were prepared by a wet chemical method. Amorphous TiO2 was then anchored on the tops and sides of the nanorods through immersion in tetrabutyltitanate solution for hydrolysis. The as-prepared samples were characterized for the phase structure, chemical state and surface morphology as well as optical absorption using X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and ultraviolet-visible (UV-vis) spectrophotometer. The results showed that the nanorod films were covered by amorphous TiO2 layers, and their visible light absorption ability was strengthened. The photocatalytic studies revealed that TiO2 modified films exhibited enhanced photocatalytic efficiency for decomposition of methyl orange under ultraviolet-visible excitation, which might be attributed to the increased UV-vis light absorption and the separation of the charge carrier and prolonged electron lifetime due to the interface between TiO2 and ZnO.

  10. Low-Temperature Synthesis of Anatase TiO2 Nanoparticles with Tunable Surface Charges for Enhancing Photocatalytic Activity

    PubMed Central

    Li, Ye; Qin, Zhenping; Guo, Hongxia; Yang, Hanxiao; Zhang, Guojun; Ji, Shulan; Zeng, Tingying

    2014-01-01

    In this work, the positively or negatively charged anatase TiO2 nanoparticles were synthesized via a low temperature precipitation-peptization process (LTPPP) in the presence of poly(ethyleneimine) (PEI) and poly(sodium4- styrenesulfonate) (PSS). X-ray diffraction (XRD) pattern and high-resolution transmission electron microscope (HRTEM) confirmed the anatase crystalline phase. The charges of the prepared TiO2, PEI-TiO2 and PSS-TiO2 nanoparticles were investigated by zeta potentials. The results showed that the zeta potentials of PEI-TiO2 nanoparticles can be tuned from +39.47 mV to +95.46 mV, and that of PSS-TiO2 nanoparticles can be adjusted from −56.63 mV to −119.32 mV. In comparison with TiO2, PSS-TiO2 exhibited dramatic adsorption and degradation of dye molecules, while the PEI modified TiO2 nanoparticles showed lower photocatalytic activity. The photocatalytic performances of these charged nanoparticles were elucidated by the results of UV-vis diffuse reflectance spectra (DRS) and the photoluminescence (PL) spectra, which indicated that the PSS-TiO2 nanoparticles showed a lower recombination rate of electron-hole pairs than TiO2 and PEI-TiO2. PMID:25506839

  11. Low temperature synthesis and visible light driven photocatalytic activity of highly crystalline mesoporous TiO2 particles.

    PubMed

    Gujar, Tanaji P; Anand, Chokkalingam; Shinde, Vaishali R; Ye, Jinhua; Ariga, Katsuhiko; Vinu, Ajayan

    2010-12-01

    Mesoporous TiO2 powder materials with a high crystallinity have been prepared by evaporation induced self assembly (EISA) process using titanium tetraisopropoxide (TTIP) and pluronic P123 surfactant (EO20PO70EO20) as titanium source and structure-directing reagent, respectively. The prepared materials were characterized by low and wide-angle X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), optical absorption, and N2 adsorption-desorption experiments. The crystallinity of the materials was controlled by varying the calcination temperature. The resulting TiO2 materials showed highly crystalline structure with uniform particle size which increases from 11.8 to 23.8 nm with increasing the calcination temperature from 400 to 600 degrees C, respectively, whereas the specific surface area decreases from 125 to 40 m2/g. TEM and XRD results revealed that the calcination temperature of 600 degrees C is the best condition to obtain highly crystalline mesoporous TiO2. The photocatalytic activity of the TiO2 mesoporous materials with different crystallinity and textural parameters has been studied in the decomposition of methylene blue (MB) dye molecules under visible light irradiation. Among the mesoporous TiO2 materials studied, the material with the highest crystallinity, prepared at 600 degrees C, showed the best photocatalytic performance in the decomposition of MB under visible light in a short time. PMID:21121305

  12. TiO2 Nanoparticles Are Phototoxic to Marine Phytoplankton

    PubMed Central

    Miller, Robert J.; Bennett, Samuel; Keller, Arturo A.; Pease, Scott; Lenihan, Hunter S.

    2012-01-01

    Nanoparticulate titanium dioxide (TiO2) is highly photoactive, and its function as a photocatalyst drives much of the application demand for TiO2. Because TiO2 generates reactive oxygen species (ROS) when exposed to ultraviolet radiation (UVR), nanoparticulate TiO2 has been used in antibacterial coatings and wastewater disinfection, and has been investigated as an anti-cancer agent. Oxidative stress mediated by photoactive TiO2 is the likely mechanism of its toxicity, and experiments demonstrating cytotoxicity of TiO2 have used exposure to strong artificial sources of ultraviolet radiation (UVR). In vivo tests of TiO2 toxicity with aquatic organisms have typically shown low toxicity, and results across studies have been variable. No work has demonstrated that photoactivity causes environmental toxicity of TiO2 under natural levels of UVR. Here we show that relatively low levels of ultraviolet light, consistent with those found in nature, can induce toxicity of TiO2 nanoparticles to marine phytoplankton, the most important primary producers on Earth. No effect of TiO2 on phytoplankton was found in treatments where UV light was blocked. Under low intensity UVR, ROS in seawater increased with increasing nano-TiO2 concentration. These increases may lead to increased overall oxidative stress in seawater contaminated by TiO2, and cause decreased resiliency of marine ecosystems. Phototoxicity must be considered when evaluating environmental impacts of nanomaterials, many of which are photoactive. PMID:22276179

  13. Synthesis and characterization of pure anatase phase nanocrystalline TiO2 thin film by magnetron sputtering method

    NASA Astrophysics Data System (ADS)

    Pawar, Nimisha; Bhargava, Ankita; Dayal, Saurabh; Kumar, C. Sasi

    2016-05-01

    In present work, our focus is to deposit anatase phase nanocrystalline TiO2 thin films. In order to prepare Titanium oxide films we first deposited Titanium thin films using DC magnetron sputtering and then the substrates were annealed in a muffle furnace at different temperatures. Further the samples were characterized for analysis of phase, morphology and optical properties using XRD, SEM, AFM and photoluminescence spectroscopy respectively. XRD shows the formation of tetragonal phase TiO2 with lattice parameters values a= 3.8 Å and c=9.6 Å. The surface roughness value of the films were found to vary from 1.6 nm to 15.9 nm. The grain size as estimated from AFM varies from 48 nm to 125 nm at different temperatures. Thus, the results revealed the formation of ultra-smooth anatase phase pure nanocrystalline TiO2 spherical particles.

  14. Modified microwave method for the synthesis of visible light-responsive TiO2/MWCNTs nanocatalysts

    PubMed Central

    2013-01-01

    Recently, TiO2/multi-walled carbon nanotube (MWCNT) hybrid nanocatalysts have been a subject of high interest due to their excellent structures, large surface areas and peculiar optical properties, which enhance their photocatalytic performance. In this work, a modified microwave technique was used to rapidly synthesise a TiO2/MWCNT nanocatalyst with a large surface area. X-ray powder diffraction, field-emission scanning electron microscopy, transmission electron microscopy and Brunauer-Emmett-Teller measurements were used to characterise the structure, morphology and the surface area of the sample. The photocatalytic activity of the hybrid nanocatalysts was evaluated through a comparison of the degradation of methylene blue dye under irradiation with ultraviolet and visible light. The results showed that the TiO2/MWCNT hybrid nanocatalysts degraded 34.9% of the methylene blue (MB) under irradiation with ultraviolet light, whereas 96.3% of the MB was degraded under irradiation with visible light. PMID:23919496

  15. Modification of dense TiO2 particles using polyethylene glycol template: Synthesis, characterization, and photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Dostanić, J.; Lončarević, D.; Radosavljević-Mihajlović, A.; Jovanović, D. M.

    2015-12-01

    In this study, an effort has been made to prepare TiO2 materials by sol-gel technique using polyethylene glycol (PEG) as pore directing agent. Different PEG amounts were used during samples preparation in order to investigate the change in intrinsic material properties. The photocatalytic activity of prepared catalysts was estimated by measuring the decomposition of arylazo pyridone dye. The optimum template amount was determined, resulting in catalyst with enhanced textural properties, optimal anatase/rutile ratio and hence improved photocatalytic properties. Specific surface area and anatase/rutile ratio were found to be the main contributing factors to the catalyst activity. A synergistic effect between anatase and rutile TiO2 has been observed, since the presence of relatively inactive rutile phase enhanced the photoactivity of mixed TiO2.

  16. Study on the effect of hydrogen addition on the variation of plasma parameters of argon-oxygen magnetron glow discharge for synthesis of TiO2 films

    NASA Astrophysics Data System (ADS)

    Saikia, Partha; Saikia, Bipul Kumar; Bhuyan, Heman

    2016-04-01

    We report the effect of hydrogen addition on plasma parameters of argon-oxygen magnetron glow discharge plasma in the synthesis of H-doped TiO2 films. The parameters of the hydrogen-added Ar/O2 plasma influence the properties and the structural phases of the deposited TiO2 film. Therefore, the variation of plasma parameters such as electron temperature (Te), electron density (ne), ion density (ni), degree of ionization of Ar and degree of dissociation of H2 as a function of hydrogen content in the discharge is studied. Langmuir probe and Optical emission spectroscopy are used to characterize the plasma. On the basis of the different reactions in the gas phase of the magnetron discharge, the variation of plasma parameters and sputtering rate are explained. It is observed that the electron and heavy ion density decline with gradual addition of hydrogen in the discharge. Hydrogen addition significantly changes the degree of ionization of Ar which influences the structural phases of the TiO2 film.

  17. Green synthesis of Pt-doped TiO2 nanocrystals with exposed (001) facets and mesoscopic void space for photo-splitting of water under solar irradiation

    NASA Astrophysics Data System (ADS)

    Banerjee, Biplab; Amoli, Vipin; Maurya, Abhayankar; Sinha, Anil Kumar; Bhaumik, Asim

    2015-06-01

    We report a non-trivial facile chemical approach using ionic liquid ([bmim][Cl]) as a porogen for the synthesis of (001) faceted TiO2 nanocrystals having mesoscopic void space. This faceted TiO2 nanomaterial has been doped with Pt nanoclusters through chemical impregnation. The resulting Pt-doped TiO2 nanomaterials are thoroughly characterized by powder X-ray diffraction (PXRD), Raman spectroscopy, field emission scanning electron microscopy (FE-SEM), ultra high resolution transmission electron microscopy (UHR-TEM), energy dispersive X-ray spectrometry (EDX), UV-vis diffuse reflection spectroscopy (DRS) and N2 sorption studies. These Pt/TiO2 nanocrystals with (001) exposed facets are employed as efficient and benign catalysts for hydrogen production from pure water and methanol-water systems under one AM 1.5G sunlight illumination. The effect of platinum loading and methanol-water ratio on the photocatalytic activity of the faceted TiO2 nanocrystals are investigated and it is found that hydrogen evolution rates have been enhanced significantly upon Pt loading. Under optimized reaction conditions the highest photocatalytic activity of 11.2 mmol h-1 g-1 has been achieved over ca. 1.0 wt% Pt loaded Pt/TiO2 nanocrystals with (001) exposed facets, which is one of the highest hydrogen evolution rates over the noble metal/TiO2 system reported to date in the literature.We report a non-trivial facile chemical approach using ionic liquid ([bmim][Cl]) as a porogen for the synthesis of (001) faceted TiO2 nanocrystals having mesoscopic void space. This faceted TiO2 nanomaterial has been doped with Pt nanoclusters through chemical impregnation. The resulting Pt-doped TiO2 nanomaterials are thoroughly characterized by powder X-ray diffraction (PXRD), Raman spectroscopy, field emission scanning electron microscopy (FE-SEM), ultra high resolution transmission electron microscopy (UHR-TEM), energy dispersive X-ray spectrometry (EDX), UV-vis diffuse reflection spectroscopy (DRS) and N2 sorption studies. These Pt/TiO2 nanocrystals with (001) exposed facets are employed as efficient and benign catalysts for hydrogen production from pure water and methanol-water systems under one AM 1.5G sunlight illumination. The effect of platinum loading and methanol-water ratio on the photocatalytic activity of the faceted TiO2 nanocrystals are investigated and it is found that hydrogen evolution rates have been enhanced significantly upon Pt loading. Under optimized reaction conditions the highest photocatalytic activity of 11.2 mmol h-1 g-1 has been achieved over ca. 1.0 wt% Pt loaded Pt/TiO2 nanocrystals with (001) exposed facets, which is one of the highest hydrogen evolution rates over the noble metal/TiO2 system reported to date in the literature. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02097b

  18. Facile Aluminum Reduction Synthesis of Blue TiO2 with Oxygen Deficiency for Lithium-Ion Batteries.

    PubMed

    Zheng, Jing; Ji, Guangbin; Zhang, Peng; Cao, Xingzhong; Wang, Baoyi; Yu, Linhui; Xu, Zhichuan

    2015-12-01

    An ultrafacile aluminum reduction method is reported herein for the preparation of blue TiO2 nanoparticles (donated as Al-TiO2 , anatase phase) with abundant oxygen deficiency for lithium-ion batteries. Under aluminum reduction, the morphology of the TiO2 nanosheets changes from well-defined rectangular into uniform round or oval nanoparticles and the particle size also decreases from 60 to 31 nm, which can aggressively accelerate the lithium-ion diffusion. Electron paramagnetic resonance (EPR) and positron annihilation lifetime spectroscopy (PALS) results reveal that plentiful oxygen deficiencies relative to the Ti(3+) species were generated in blue Al-TiO2 ; this effectively enhances the electron conductivity of the TiO2 . X-ray photoelectron spectrometry (XPS) analysis indicates that a small peak is observed for the Al-O bond, which probably plays a very important role in the stabilization of the oxygen deficiencies/Ti(3+) species. As a result, the blue Al-TiO2 possesses significantly higher capacity, better rate performance, and a longer cycle life than the white pure TiO2 . Such improvements can be attributed to the decreased particle size, as well as the existence of the oxygen deficiencies/Ti(3+) species. PMID:26511473

  19. Synthesis of hybrid cellulose nanocomposite bonded with dopamine SiO2/TiO2 and its antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Ramesh, Sivalingam; Kim, Gwang-Hoon; Kim, Jaehwan; Kim, Joo-Hyung

    2015-04-01

    Organic-inorganic hybrid material based cellulose was synthesized by the sol-gel approach. The explosion of activity in this area in the past decade has made tremendous progress in industry or academic both fundamental understanding of sol-gel process and applications of new functionalized hybrid materials. In this present research work, we focused on cellulose-dopamine functionalized SiO2/TiO2 hybrid nanocomposite by sol-gel process. The cellulose-dopamine hybrid nanocomposite was synthesized via γ-aminopropyltriethoxysilane (γ-APTES) coupling agent by in-situ sol-gel process. The chemical structure of cellulose-amine functionalized dopamine bonding to cellulose structure with covalent cross linking hybrids was confirmed by FTIR spectral analysis. The morphological analysis of cellulose-dopamine nanoSiO2/TiO2 hybrid nanocomposite materials was characterized by XRD, SEM and TEM. From this different analysis results indicate that the optical transparency, thermal stability, control morphology of cellulose-dopamine-SiO2/TiO2 hybrid nanocomposite. Furthermore cellulose-dopamine-SiO2/TiO2 hybrid nanocomposite was tested against pathogenic bacteria for antimicrobial activity.

  20. Synthesis and characterization of undoped and cobalt-doped TiO2 nanoparticles via sol-gel technique

    NASA Astrophysics Data System (ADS)

    Mugundan, S.; Rajamannan, B.; Viruthagiri, G.; Shanmugam, N.; Gobi, R.; Praveen, P.

    2015-04-01

    TiO2 nanoparticles doped with different concentrations of cobalt (4, 8, 12 and 16 %) were synthesized by sol-gel method at room temperature with appropriate reactants. In general, TiO2 can exist in anatase, rutile, and brookite phases. In this present study, we used titanium tetra iso propoxide and 2-propanol as a common starting materials and the obtained products were calcined at 500 °C and 800 °C to get anatase and rutile phases, respectively. The crystalline sizes of the doped and undoped TiO2 nanoparticles were observed with X-ray diffraction (XRD) analysis. The functional groups of the samples were identified by Fourier transform infrared spectroscopy (FTIR). From UV-VIS diffuse reflectance spectra (DRS), the band gap energy and excitation wavelength of doped and undoped TiO2 nanoparticles were identified. The defect oriented emissions were seen from photoluminescence (PL) study. The spherical uniform size distribution of particles and elements present in the samples was determined using two different techniques viz., scanning electron microscopy (SEM) with energy-dispersive spectrometer (EDX) and transmission electron microscope (TEM) with selected area electron diffraction (SAED) pattern. The second harmonic generation (SHG) efficiency was also found and the obtained result was compared with potassium di hydrogen phosphate (KDP).

  1. Novel Fe doped mesoporous TiO 2 microspheres: Ultrasonic-hydrothermal synthesis, characterization, and photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Li, Haibin; Liu, Guocong; Chen, Shuguang; Liu, Qicheng

    2010-04-01

    Novel Fe doped mesoporous TiO 2 microspheres were fabricated by an ultrasonic-hydrothermal method when tetrabutyl titanate was used as a precursor and octadecylamine was used as a structure-directing agent. The mesoporous materials were characterized by XRD, SEM, TEM, N 2 adsorption-desorption measurements, XPS, FL, and UV-vis. The results suggest that both ultrasonic treatment and hydrothermal procedure are critical for the fabrication of Fe doped mesoporous TiO 2 microspheres with a combination of regular morphology, large specific surface area, high crystallinity, and high thermal stability. Low-angle XRD and TEM images indicate that the disordered wormhole-like mesostructure of Fe doped TiO 2 microspheres with diameters of about 300-400 nm is actually formed by the agglomerization of nanoparticles with an average size of about 10 nm. The photocatalytic activity of Fe doped mesoporous TiO 2 microspheres was evaluated by the photodegradation of methyl orange. A small amount of Fe 3+ can obviously enhance their photocatalytic activity. The optimal atomic ratio of Fe to Ti for photocatalytic activity is about 0.5 at%.

  2. Facile synthesis, structure and visible light photocatalytic activity of recyclable ZnFe2O4/TiO2

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaodi; Zhang, Fan; Wang, Mengjiao; Ding, Jianjun; Sun, Song; Bao, Jun; Gao, Chen

    2014-11-01

    A kind of sponge-like ZnFe2O4/TiO2 composite was facilely synthesized by a solution combustion method. The physicochemical properties, including the crystalline phase, surface morphology, spectral response, photogenerated charge carriers' separation and transfer efficiency, were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, N2 adsorption/desorption isotherms, X-ray photoelectron spectroscopy, UV-vis absorption spectroscopy and photoluminescence spectroscopy techniques and analyzed to interpret the relationship between the structure and photocatalytic activity. The sponge-like morphology promotes the adsorption of reaction species as well as functions as a good light harvesting structure for the enhancement of spectral utilization. The heterojunction effectively inhibited the recombination of photogenerated charge carriers. With these synergistic effects, the degradation rate of methylene blue on ZnFe2O4/TiO2 was up to 93.2% under visible light irradiation and remained stable even after five consecutive reaction runs. Moreover, owing to the magnetic property, ZnFe2O4/TiO2 can be recycled easily. Additionally, a photocatalytic mechanism of ZnFe2O4/TiO2 was proposed.

  3. Synthesis, phase to phase deposition and characterization of rutile nanocrystalline titanium dioxide (TiO2) thin films

    NASA Astrophysics Data System (ADS)

    Gupta, Sanjeev K.; Singh, Jitendra; Anbalagan, K.; Kothari, Prateek; Bhatia, Ravi Raj; Mishra, Pratima K.; Manjuladevi, V.; Gupta, Raj K.; Akhtar, J.

    2013-01-01

    In this work the preparation, deposition and structural properties of titanium oxide (TiO2) thin films were investigated. The films were deposited by means of the e-beam physical vapor deposition (EBPVD) method in high vacuum (10-7 Torr). A controlled deposition rate in the range of 0.1-0.3 Å/s was monitored in situ employing quartz crystal. The films were deposited on the oxidized Si (1 0 0) wafer, glass micro slides. These films were analyzed using Grazing Angle X-ray diffraction (GA-XRD), Fourier Transform Infrared Spectroscopy (FTIR), Raman Spectroscopy (RAMAN), Atomic Force Microscopy (AFM) and UV-visible Spectroscopy (UV-vis). Structural characterization results showed mainly presence of the crystalline rutile phase, however an interfacial SiO2 layer between TiO2 and the substrate and the minor anatase crystalline phase of TiO2 was also identified in FTIR analysis. Grain size was found to be in the range of 100-125 nm while grain boundary was estimated to be 20 nm. Direct and indirect optical band gap was estimated to be 3.64 and 3.04 eV, respectively. A process induced self annealing of deposited film shows a strong effect on the structural, morphological and optical properties. Furthermore, low deposition rate and high vacuum allows rutile to rutile phase transformation from indigenously prepared TiO2 target to thin film.

  4. Choline Chloride Assisted Synthesis of N and Metal Codoped TiO2 and their Photocatalytic Activity under Visible Light.

    PubMed

    Kaur, Navneet; Shahi, Satwant Kaur; Singh, Vasundhara

    2016-01-01

    A few nanocrystalline N,metal codoped TiO2 (metal = Cr, Mn, Fe, Co, Ni, Cu and Zn) have been synthesized by a simple sol-gel method using choline chloride which is biodegradable, low cost, nontoxic ionic salt both as a structure directing agent and source of nitrogen. The prepared samples were well characterized by XRD, HRTEM, FTIR, DRS, EDX, XPS and BET techniques. The photocatalytic activity of all synthesized N, metal codoped TiO2 has been carried out for the degradation of Reactive Black 5 dye under visible light irradiation and among them, N, Fe codoped TiO2 was found to be the best for the degradation of Reactive Black 5 dye. The effect of incorporated metals on the photocatalytic activity of the various modified TiO2 has been discussed in detail based on the mechanism involved in the degradation of dye and their physico-chemical properties which includes surface area, particle size, defect sites, phase, band gap and electron-hole recombination effect. PMID:26436709

  5. Synthesis and visible light photoactivity of anatase Ag, and garlic loaded TiO2 nanocrystalline catalyst

    EPA Science Inventory

    An excellent visible light activated Ag and S doped TiO2 nanocatalyst was prepared by using AgNO3 and garlic (Allium sativum) as Ag+ and sulfur sources, respectively. The catalyst resisted the change from anatase to rutile phase even at calcination at 700 oC. The photocatalytic e...

  6. Synthesis of Ag ion-implanted TiO2 thin films for antibacterial application and photocatalytic performance.

    PubMed

    Hou, Xinggang; Ma, Huiyan; Liu, Feng; Deng, Jianhua; Ai, Yukai; Zhao, Xinlei; Mao, Dong; Li, Dejun; Liao, Bin

    2015-12-15

    TiO2 thin films were deposited by spin coating method. Silver ions were implanted into the films using a Metal Vapor Vacuum Arc implanter. The antibacterial ability of implanted films was tested using Escherichia coli removal under fluorescent irradiation and in the dark. The concentration of E. coli was evaluated by plating technique. The photocatalytic efficiency of the implanted films was studied by degradation of methyl orange under fluorescent illumination. The surface free energy of the implanted TiO2 films was calculated by contact angle testing. Vitamin C was used as radical scavengers to explore the antibacterial mechanism of the films. The results supported the model that both generation of reactive oxygen species and release of silver ions played critical roles in the toxic effect of implanted films against E. coli. XPS experimental results demonstrated that a portion of the Ag(Ag(3+)) ions were doped into the crystalline lattice of TiO2. As demonstrated by density functional theory calculations, the impurity energy level of subtitutional Ag was responsible for enhanced absorption of visible light. Ag ion-implanted TiO2 films with excellent antibacterial efficiency against bacteria and decomposed ability against organic pollutants could be potent bactericidal surface in moist environment. PMID:26093355

  7. Nanostructured nitrogen and carbon codoped TiO2 thin films: Synthesis, structural characterization and optoelectronic properties

    NASA Astrophysics Data System (ADS)

    Ruzybayev, Inci

    TiO2 is widely used in applications like photocatalysis, sensors, solar cells, and memory devices because it is inexpensive, abundant, nontoxic and stable in aqueous solution. Another exciting application where TiO 2 has the potential to be a very useful catalyst is the clean hydrogen generation using solar radiation. Energy consumption is increasing every year and, as a result, renewable and sustainable alternative energy sources are becoming increasingly important. Therefore, clean hydrogen generation research is becoming more and more important. This study aims at the preparation and characterization of nitrogen and carbon (N-C) codoped TiO2 photoanode material that could potentially be used in photoelectrochemical cells for hydrogen generation. The solar spectrum peaks around 500 nm (2.48 eV) which is in the visible part of the spectrum. The photoanode material to be used for solar hydrogen generation should absorb visible light photons to yield high efficiency. The challenge with TiO2 is that the wide band gap (3.00--3.20 eV) absorbs only ultra-violet (UV) photons and only a small percentage of the solar spectrum is in the UV range. There are various ways to overcome the challenge of sensitizing the material to visible light absorption and this study focuses on one of the most promising ways: band modification of TiO2 by N-C codoping. The role of pure oxygen pressure on pulsed laser deposited N-C codoped TiO2 films were investigated. At low pressures rutile phase of TiO2 was dominant and a microstructure with densely packed grains was obtained. However, at high pressures anatase phase became dominant and columnar structure was favored. Therefore, the anatase-rutile phase ratio as well as the microstructure of the films can be controlled by adjusting oxygen pressure and introducing N and C into the TiO2 matrix. Optimized oxygen pressure and higher doping concentrations yielded films with more effective absorption in the visible region. The preparation and characterization of pulsed laser deposited N-C codoped TiO2 thin films were investigated for dopant incorporation using N2 and CH4 gases. Polycrystalline anatase structured films were obtained. A 2 theta shift of the anatase (101) X-ray diffraction main peak towards lower values indicated carbon incorporation into the lattice. N incorporation was confirmed with observed Ti-N bonds using X-ray photoelectron spectroscopy. Optical data showed significant reduction, approximately 1.00 eV, of the band gap. The reduction of the band gap allowed the photons in the visible part of the solar spectrum to be absorbed. Through a collaborative work with scientists at Brookhaven National Laboratory and Yonsei University, precise modeling of the electronic structure of N-C codoped TiO2 films were carried out to reveal the underlying physics of band gap reduction. Experimental results were compared with first-principle density functional theory calculations. Hard X-ray photoelectron spectroscopy showed that O, N and C 2p states overlapped effectively and shifts in the valence band maximum towards the Fermi level were observed. Optical band gap results showed that N-C codoping is an effective route for band gap reduction in TiO2. Comparison of the measured valence band structure with theoretical photoemission density of states further revealed C substitution on the Ti site and N substitution on the O site. Finally, films grown using radio frequency (rf) magnetron sputtering were compared with the pulsed laser deposited films. Sputtered N-C codoped TiO2 films showed phase transformation from anatase to rutile at constant argon pressure with increasing doping concentration. Moreover, with slow-rate N-C codoping of TiO2, a texturing effect was observed in X-ray diffraction scans such that anatase (004) Bragg reflection plane became more favored over anatase (101). Optical band gap was reduced but the reduction was not as significant as in the films prepared with the pulsed laser deposition method. Electrochemical methods were applied in the photoelectrochemical cell and the sample prepared by using TiO2 target with 8% N and C atomic concentrations found to have slightly better photoactivity relative to the other N-C codoped samples. However, due to preferential anatase (004) plane, overall efficiency of N-C codoped films was low. In conclusion, pulsed laser deposition is preferred over rf magnetron deposition for the purpose of band gap reduction of TiO2 by N and C codoping. Pulsed laser deposited films showed continuum in C and N 2 p dopant states within the forbidden region and these states overlapped well with O 2p states. For this reason, optical band gap measurements showed significant reduction. Therefore, pulsed laser deposition of N-C codoped TiO2 films is a possible way of photoanode fabrication for solar hydrogen generation. (Abstract shortened by UMI.).

  8. Biomimetic layer-by-layer deposition assisted synthesis of Cu, N co-doped TiO2 nanosheets with enhanced visible light photocatalytic performance.

    PubMed

    Wang, Xiaobo; Yan, Yong; Hao, Bo; Chen, Ge

    2014-10-01

    In this paper, a Cu, N co-doped TiO2 nanosheet with increased visible light photocatalytic activity was successfully synthesized using a biomimetic layer-by-layer deposition process. The polymer, branched-polyethyleneimine (b-PEI) was used as an induction agent for the hydrolysis of titanium bis(ammonium lactato)-dihydroxide (Ti-BALDH) as well as for a nitrogen resource, and the graphene oxide (GO) was used as a two-dimensional nano-template. The positively charged b-PEI will bind to the negatively charged GO and titania. In a typical layer-by-layer deposition process, GO nanosheets are exposed in an alternating fashion to aqueous b-PEI, CuCl2 and Ti-BALDH solutions, thus, making the layer-by-layer deposition of a conformal b-PEI/Cu-Ti-O coating on the GO. Subsequent b-PEI and GO pyrolysis at 550 °C under air yielded Cu, N co-doped TiO2 nanosheets. The materials obtained were comprehensively investigated by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, UV-Vis diffuse reflectance spectroscopy, Raman spectra, photoluminescence spectra and electron paramagnetic resonance. The Cu, N co-doped TiO2 nanosheets showed obviously enhanced photocatalytic activity which was evaluated by degradation of methylene blue under visible light irradiation. This research might provide some new insights for the "green synthesis" of the simultaneous doping of two kinds of foreign atoms into TiO2 with controlled morphology and photocatalytic properties. PMID:25158222

  9. Electrical and electro-optical investigations of liquid crystal cells containing TiO2-V2O5 thin films prepared by sol-gel synthesis

    NASA Astrophysics Data System (ADS)

    Bruno, V.; Cazzanelli, E.; Scaramuzza, N.; Strangi, G.; Ceccato, R.; Carturan, G.

    2002-11-01

    This work is aimed at a deeper understanding of the polarity-sensitive electro-optical response observed in a liquid crystal (LC) cell with asymmetric insertion of thin films of TiO2-V2O5 having a Ti/V atomic ratio of 1/1, prepared by sol-gel synthesis on a transparent indium tin oxide substrate. After preliminary structural characterization of the films, the electro-optical response of the liquid crystal cells containing a TiO2-V2O5 layer has been analyzed. The voltage thresholds of the Freedericksz transition are increased or decreased for anodic or the cathodic polarization, respectively, of the TiO2-V2O5 film. In such a way a polarity-sensitive electro-optical response is generated that has the same frequency as the field applied. Impedance and cyclic voltammetry measurements were performed on liquid crystal cells having TiO2-V2O5 films inserted as the electrode, for as-deposited films as well as for films annealed at 400 degC. The LC cell containing thermally annealed Ti/V 1/1 film showed a rectified square wave response instead of the usual impulsive one, quadratic versus electric field. On the contrary, the LC cell containing as-deposited Ti/V 1/1 film exhibits more complex electro-optical behavior with a weak asymmetric response. All the measurements suggest that charge redistribution of the ions, always present in the films, occurs during the intercalation-deintercalation processes induced by the voltage applied, and this is responsible for changes of the effective electric field that act on the liquid crystal layer.

  10. Synthesis of Au/TiO2 Core-Shell Nanoparticles from Titanium Isopropoxide and Thermal Resistance Effect of TiO2 Shell

    NASA Astrophysics Data System (ADS)

    Kwon, Hyun-Woo; Lim, Young-Min; Tripathy, Suraj Kumar; Kim, Byoung-Gyu; Lee, Min-Sang; Yu, Yeon-Tae

    2007-04-01

    On the synthesis of Au/TiO2 core-shell structure nanoparticles, the effect of the concentration of Ti4+ on the morphology and optical property of Au/TiO2 core-shell nanoparticles was examined. A gold colloid was prepared by mixing HAuCl4\\cdot4H2O and C6H5Na3\\cdot2H2O. Titanium stock solution was prepared by mixing solutions of titanium(IV) isopropoxide (TTIP) and triethanolamine (TEOA). The concentration of the Ti4+ stock solution was adjusted to 0.01-0.3 mM, and then the gold colloid was added to the Ti4+ stock solution. Au/TiO2 core-shell structure nanoparticles could be prepared by the hydrolysis of the Ti4+ stock solution at 80 °C. The size of the as-prepared Au nanoparticles was 15 nm. The thickness of the TiO2 shell on the surface of gold particles was about 10 nm. The absorption peak of the Au/TiO2 core-shell nanoparticles shifted towards the red end of the spectrum by about 3 nm because of the formation of the TiO2 shell on the surface of the gold particles. The crystal structure of the TiO2 shell showed an anatase phase. The increase in the Au crystallite size of the Au/TiO2 nanoparticles with increasing heat treatment temperature is smaller than that in the pure Au nanoparticles. This may be due to the encapsulation of Au particles with the TiO2 shell that prevents the growth of the nanoparticle nucleation.

  11. Synthesis and characterization of a mixed phase of anatase TiO2 and TiO2(B) by low pressure chemical vapour deposition (LPCVD) for high photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Chimupala, Y.; Hyett, G.; Simpson, R.; Brydson, R.

    2014-06-01

    This project is concerned with enhancing photocatalytic activity by preparing a mixed phase of nano-sized TiO2. TiO2 thin films were synthesized by using Low Pressure Chemical Vapour Deposition (LPCVD). Titanium isopropoxide and N2 gas were used as the precursor and carrier gas respectively. The effects of reaction temperature, carrier gas flow rate and deposited area were studied. TiO2 thin films with nano-sized TiO2 particles were obtained under suitable conditions and SEM, TEM, powder XRD and Raman spectroscopy were employed to characterize the phase and physical appearance of synthesized materials. Preliminary results show that a dual phase (TiO2(B) and anatase) thin film nanopowder was successfully prepared by LPCVD with needle- and polygonal plate-shape crystallites respectively. This thin film deposit produced a preferred orientation of TiO2(B) needles in the [001] direction of average crystallite size 50-80 nm in length and 5-10 nm in width, whilst the crystallite size of anatase polygonal-plates was around 200 nm. The optimal LPCVD condition for preparing this mixed phase of TiO2 was 600°C with a 1 mL/s N2 flow rate.

  12. Synthesis of TiO2 nanotubes with ZnO nanoparticles to achieve antibacterial properties and stem cell compatibility

    NASA Astrophysics Data System (ADS)

    Liu, Wenwen; Su, Penglei; Chen, Su; Wang, Na; Ma, Yuanping; Liu, Yiran; Wang, Jinshu; Zhang, Zhenting; Li, Hongyi; Webster, Thomas J.

    2014-07-01

    To endow titanium (Ti) with antibacterial properties, different concentrations of zinc oxide (ZnO) nanoparticles were decorated on anodized titanium dioxide (TiO2) nanotubes by a simple hydrothermal treatment method. The particle sizes of ZnO, which were evenly distributed and tightly adherent to the walls of the Ti nanotubes, ranged from 20-50 nm. Results from this study showed that Zn was released from the TiO2 nanotubes in a constant, slow, and biologically inspired manner. Importantly, the results showed that the ZnO decorated TiO2 nanotubular samples inhibited Streptococcus mutants and Porphyromonas gingivalis growth compared to control unmodified Ti samples. Specifically, S. mutants and P. gingivalis growth were both reduced 45-85% on the ZnO decorated Ti samples compared to Ti controls after 7 days of culture. When examining the mechanism of action, it has been further found for the first time that the ZnO decorated Ti samples inhibited the expression of Streptococcus mutans bacterial adhesion genes. Lastly, the results showed that the same samples which decreased bacterial growth the most (0.015 M precursor Zn(NO3)2 samples) did not inhibit mesenchymal stem cell growth compared to Ti controls for up to 7 days. In summary, results from this study showed that compared to plain TiO2 nanotubes, TiO2 decorated with 0.015 M ZnO provided unprecedented antibacterial properties while maintaining the stem cell proliferation capacity necessary for enhancing the use of Ti in numerous medical applications, particularly in dentistry.

  13. Synthesis of TiO2 nanotubes with ZnO nanoparticles to achieve antibacterial properties and stem cell compatibility.

    PubMed

    Liu, Wenwen; Su, Penglei; Chen, Su; Wang, Na; Ma, Yuanping; Liu, Yiran; Wang, Jinshu; Zhang, Zhenting; Li, Hongyi; Webster, Thomas J

    2014-08-01

    To endow titanium (Ti) with antibacterial properties, different concentrations of zinc oxide (ZnO) nanoparticles were decorated on anodized titanium dioxide (TiO2) nanotubes by a simple hydrothermal treatment method. The particle sizes of ZnO, which were evenly distributed and tightly adherent to the walls of the Ti nanotubes, ranged from 20-50 nm. Results from this study showed that Zn was released from the TiO2 nanotubes in a constant, slow, and biologically inspired manner. Importantly, the results showed that the ZnO decorated TiO2 nanotubular samples inhibited Streptococcus mutants and Porphyromonas gingivalis growth compared to control unmodified Ti samples. Specifically, S. mutants and P. gingivalis growth were both reduced 45-85% on the ZnO decorated Ti samples compared to Ti controls after 7 days of culture. When examining the mechanism of action, it has been further found for the first time that the ZnO decorated Ti samples inhibited the expression of Streptococcus mutans bacterial adhesion genes. Lastly, the results showed that the same samples which decreased bacterial growth the most (0.015 M precursor Zn(NO3)2 samples) did not inhibit mesenchymal stem cell growth compared to Ti controls for up to 7 days. In summary, results from this study showed that compared to plain TiO2 nanotubes, TiO2 decorated with 0.015 M ZnO provided unprecedented antibacterial properties while maintaining the stem cell proliferation capacity necessary for enhancing the use of Ti in numerous medical applications, particularly in dentistry. PMID:24971593

  14. Development of the IR laser pyrolysis for the synthesis of iron-doped TiO 2 nanoparticles: Structural properties and photoactivity

    NASA Astrophysics Data System (ADS)

    Alexandrescu, R.; Morjan, I.; Scarisoreanu, M.; Birjega, R.; Fleaca, C.; Soare, I.; Gavrila, L.; Ciupina, V.; Kylberg, W.; Figgemeier, E.

    2010-03-01

    The preparation of TiO 2-based nanoparticles of closely controlled sizes and purity gives rise to considerable interest in the frame of environmental applications, e.g. in photocatalysis. When nanoparticles instead of their bulk counterpart are used the synthesis method plays a fundamental role in defining specific structural properties. Between the different gas-phase synthesis techniques, the CO 2 laser pyrolysis is a versatile method allowing for the preparation of nanostructures of various chemical compositions. Here we demonstrate that pure and Fe-doped TiO 2 nanoparticles with rather low Fe concentration may be prepared by applying the sensitized IR laser pyrolysis to a gas mixtures containing titanium tetrachloride, air and iron pentacarbonyl (vapors). The structures of TiO 2-based particles were systematically investigated by X-ray diffraction, transmission electron microscopy, high-resolution electron microscopy, selected area electron diffraction and X-ray Photoelectron Spectroscopy. Depending on the synthesis parameters, the nanoparticle system contains mixtures of anatase and rutile, with a preponderance of the anatase phase. Higher rutile proportion was found in the iron-doped samples. Mean particle diameters of around 14 nm and 12 nm were estimated for undoped and doped anatase titania, respectively. From UV-Vis diffuse reflectance spectra, higher absorbance and red shifted absorption were evidenced at higher amount of doped iron. Preliminary evaluation tests of the UV photoactivity of samples were performed by using the scanning electrochemical microscopy for determining the evolution of the oxygen consumption in the presence of IV-chlorophenol. They show that the undoped nano titania samples perform better than the reference P25 Degussa sample. A drop of the nano-titania photoactivity as a consequence of Fe doping was observed. Possible reasons of this effect are tentatively discussed.

  15. Photocatalytic degradation of monoethanolamine in wastewater using nanosized TiO2 loaded on clinoptilolite

    NASA Astrophysics Data System (ADS)

    Khodadoust, Saeid; Sheini, Azarmidokht; Armand, Nezam

    2012-06-01

    The use of titanium dioxide (TiO2) as photocatalyst to degrade the organic compounds is an effective method of oxidation process and has been widely studied in environmental engineering. In this investigation photocatalytic degradation of monoethanolamine (MEA) using TiO2 (in form of anatase) loaded on surface of clinoptilolite (CP) (TiO2-CP) in wastewater was studied. The surface interaction between TiO2 and CP was investigated by means of transmission electron microscope (TEM), atom force microscope (AFM), IR and X-ray diffraction (XRD). Then the effects of some parameters such as pH, amount of photocatalyst, and initial concentration of MEA on degradation percentage of MEA were examined. The obtained results show that the TiO2-CP is an active photocatalyst as compared with TiO2 nanopowders. All these results indicated that this proposed method can be useful for the development of wastewater treatment applications.

  16. Instability of hydrogenated TiO2.

    PubMed

    Nandasiri, Manjula I; Shutthanandan, Vaithiyalingam; Manandhar, Sandeep; Schwarz, Ashleigh M; Oxenford, Lucas; Kennedy, John V; Thevuthasan, Suntharampillai; Henderson, Michael A

    2015-11-19

    Hydrogenated TiO2 (H-TiO2) is touted as a viable visible light photocatalyst. We report a systematic study on the thermal stability of H-implanted TiO2 using nuclear reaction analysis (NRA), Rutherford backscattering spectrometry, ultraviolet photoelectron spectroscopy, and X-ray photoelectron spectroscopy. Protons (40 keV) implanted at a ∼2 atom % level within a ∼120 nm wide profile of rutile TiO2(110) were situated ∼300 nm below the surface. NRA revealed that this H-profile broadened toward the surface after annealing at 373 K, dissipated out of the crystal into vacuum at 473 K, and was absent within the beam sampling depth (∼800 nm) at 523 K. Photoemission showed that the surface was reduced in concert with these changes. Similar anneals had no effect on pristine TiO2(110). The facile bulk diffusivity of H in rutile at low temperatures, as well as its interfacial activity toward reduction, significantly limits the utilization of H-TiO2 as a photocatalyst. PMID:26545303

  17. Instability of Hydrogenated TiO2

    SciTech Connect

    Nandasiri, Manjula I.; Shutthanandan, V.; Manandhar, Sandeep; Schwarz, Ashleigh M.; Oxenford, Lucas S.; Kennedy, John V.; Thevuthasan, Suntharampillai; Henderson, Michael A.

    2015-11-06

    Hydrogenated TiO2 (H-TiO2) is toted as a viable visible light photocatalyst. We report a systematic study on the thermal stability of H-implanted TiO2 using X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), Rutherford backscattering spectrometry (RBS) and nuclear reaction analysis (NRA). Protons (40 keV) implanted at a ~2 atom % level within a ~120 nm wide profile of rutile TiO2(110) were situated ~300 nm below the surface. NRA revealed that this H-profile broadened preferentially toward the surface after annealing at 373 K, dissipated out of the crystal into vacuum at 473 K, and was absent within the beam sampling depth (~800 nm) at 523 K. Photoemission showed that the surface was reduced in concert with these changes. Similar anneals had no effect on pristine TiO2(110). The facile bulk diffusivity of H in rutile, as well as its activity toward interfacial reduction, significantly limits the utilization of H-TiO2 as a photocatalyst. This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. The research was performed using the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory.

  18. Low-frequency ultrasound induces oxygen vacancies formation and visible light absorption in TiO2 P-25 nanoparticles.

    PubMed

    Osorio-Vargas, Paula A; Pulgarin, Cesar; Sienkiewicz, Andrzej; Pizzio, Luis R; Blanco, Mirta N; Torres-Palma, Ricardo A; Pétrier, Christian; Rengifo-Herrera, Julián A

    2012-05-01

    Low-frequency ultrasound (LFUS) irradiation induces morphological, optical and surface changes in the commercial nano-TiO(2)-based photocatalyst, Evonik-Degussa P-25. Low-temperature electron spin resonance (ESR) measurements performed on this material provided the first experimental evidence for the formation of oxygen vacancies (V(o)), which were also found responsible for the visible-light absorption. The V(o) surface defects might result from high-speed inter-particle collisions and shock waves generated by LFUS sonication impacting the TiO(2) particles. This is in contrast to a number of well-established technologies, where the formation of oxygen vacancies on the TiO(2) surface often requires harsh technological conditions and complicated procedures, such as annealing at high temperatures, radio-frequency-induced plasma or ion sputtering. Thus, this study reports for the first time the preparation of visible-light responsive TiO(2)-based photocatalysts by using a simple LFUS-based approach to induce oxygen vacancies at the nano-TiO(2) surface. These findings might open new avenues for synthesis of novel nano-TiO(2)-based photocatalysts capable of destroying water or airborne pollutants and microorganisms under visible light illumination. PMID:22192787

  19. TiO2-catalyzed synthesis of sugars from formaldehyde in extraterrestrial impacts on the early Earth

    PubMed Central

    Civiš, Svatopluk; Szabla, Rafał; Szyja, Bartłomiej M.; Smykowski, Daniel; Ivanek, Ondřej; Knížek, Antonín; Kubelík, Petr; Šponer, Jiří; Ferus, Martin; Šponer, Judit E.

    2016-01-01

    Recent synthetic efforts aimed at reconstructing the beginning of life on our planet point at the plausibility of scenarios fueled by extraterrestrial energy sources. In the current work we show that beyond nucleobases the sugar components of the first informational polymers can be synthesized in this way. We demonstrate that a laser-induced high-energy chemistry combined with TiO2 catalysis readily produces a mixture of pentoses, among them ribose, arabinose and xylose. This chemistry might be highly relevant to the Late Heavy Bombardment period of Earth’s history about 4–3.85 billion years ago. In addition, we present an in-depth theoretical analysis of the most challenging step of the reaction pathway, i.e., the TiO2-catalyzed dimerization of formaldehyde leading to glycolaldehyde. PMID:26979666

  20. TiO2-catalyzed synthesis of sugars from formaldehyde in extraterrestrial impacts on the early Earth

    NASA Astrophysics Data System (ADS)

    Civiš, Svatopluk; Szabla, Rafał; Szyja, Bartłomiej M.; Smykowski, Daniel; Ivanek, Ondřej; Knížek, Antonín; Kubelík, Petr; Šponer, Jiří; Ferus, Martin; Šponer, Judit E.

    2016-03-01

    Recent synthetic efforts aimed at reconstructing the beginning of life on our planet point at the plausibility of scenarios fueled by extraterrestrial energy sources. In the current work we show that beyond nucleobases the sugar components of the first informational polymers can be synthesized in this way. We demonstrate that a laser-induced high-energy chemistry combined with TiO2 catalysis readily produces a mixture of pentoses, among them ribose, arabinose and xylose. This chemistry might be highly relevant to the Late Heavy Bombardment period of Earth’s history about 4–3.85 billion years ago. In addition, we present an in-depth theoretical analysis of the most challenging step of the reaction pathway, i.e., the TiO2-catalyzed dimerization of formaldehyde leading to glycolaldehyde.

  1. TiO2-catalyzed synthesis of sugars from formaldehyde in extraterrestrial impacts on the early Earth.

    PubMed

    Civiš, Svatopluk; Szabla, Rafał; Szyja, Bartłomiej M; Smykowski, Daniel; Ivanek, Ondřej; Knížek, Antonín; Kubelík, Petr; Šponer, Jiří; Ferus, Martin; Šponer, Judit E

    2016-01-01

    Recent synthetic efforts aimed at reconstructing the beginning of life on our planet point at the plausibility of scenarios fueled by extraterrestrial energy sources. In the current work we show that beyond nucleobases the sugar components of the first informational polymers can be synthesized in this way. We demonstrate that a laser-induced high-energy chemistry combined with TiO2 catalysis readily produces a mixture of pentoses, among them ribose, arabinose and xylose. This chemistry might be highly relevant to the Late Heavy Bombardment period of Earth's history about 4-3.85 billion years ago. In addition, we present an in-depth theoretical analysis of the most challenging step of the reaction pathway, i.e., the TiO2-catalyzed dimerization of formaldehyde leading to glycolaldehyde. PMID:26979666

  2. Large-Scale Synthesis of Transition-Metal-Doped TiO2 Nanowires with Controllable Overpotential

    SciTech Connect

    Liu, Bin; Chen, HaoMing; Liu, Chong; Andrews, Sean; Han, Chris; Yang, Peidong

    2013-03-13

    Practical implementation of one-dimensional semiconductors into devices capable of exploiting their novel properties is often hindered by low product yields, poor material quality, high production cost, or overall lack of synthetic control. Here, we show that a molten-salt flux scheme can be used to synthesize large quantities of high-quality, single-crystalline TiO2 nanowires with controllable dimensions. Furthermore, in situ dopant incorporation of various transition metals allows for the tuning of optical, electrical, and catalytic properties. With this combination of control, robustness, and scalability, the molten-salt flux scheme can provide high-quality TiO2 nanowires to satisfy a broad range of application needs from photovoltaics to photocatalysis.

  3. Gas-phase synthesis of nitrogen-doped TiO2 nanorods by microwave plasma torch at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Hong, Yong Cheol; Kim, Jong Hun; Bang, Chan Uk; Uhm, Han Sup

    2005-11-01

    Nitrogen (N)-doped titanium dioxide (TiO2) nanorods were directly synthesized via decomposition of gas-phase titanium tetrachloride (TiCl4) by an atmospheric microwave plasma torch. X-ray diffraction, field-emission scanning electron microscope, field-emission transmission electron microscope, and electron-energy-loss spectroscopy (EELS) have been employed to investigate fraction of the anatase and rutile phases, diameter and length, and chemical composition of the nanorods, respectively. The diameters of the nanorods are approximately 30-80 nm and the length is several micrometers. EELS data show that incorporation of N into the O site of TiO2 nanorods was enhanced in N2 gas by the microwave plasma torch. Also, a growth model of the rods was proposed on the basis of vapor-liquid-solid mechanism.

  4. A study on the band gap and the doping level of V-doped TiO2 with respect to the visible-light photocatalytic activity.

    PubMed

    Choi, Ah Young; Han, Chul-Hee

    2014-10-01

    The visible-light response is a necessary but not a sufficient condition for semiconductor photocatalyst to function as a visible-light active photocatalyst. To shed more light on the issue of visible-light response of semiconductor photocatalysts, the band-gaps and the doping levels of multivalency vanadium-doped TiO2 were investigated from sonochemically prepared samples. Sonochemical doping, which relies on acoustic cavitation phenomena, is a one step process excluding chemical synthesis, and three types of vanadium doped TiO2 nanopowder were prepared using such vanadium oxides as V2O3, V2O4, and V2O5. The band-gaps of as-prepared samples were obtained from the diffuse reflectance measurement, and the doping levels of vanadium in these samples were measured using electron probe micro analyzer. In addition, X-ray photoelectron spectrometer was introduced to complement electron probe micro analyzer. Furthermore, quantum-chemical calculations on simple cluster models for TiO2 and V-doped TiO2 were performed, and the resulting computational results in conjunction with experimental findings provided valuable information on oxygen vacancy and doping mechanism. PMID:25942925

  5. A simple route for the preparation of Eu, N-codoped TiO2 nanoparticles with enhanced visible light-induced photocatalytic activity.

    PubMed

    Xu, Jingjing; Ao, Yanhui; Fu, Degang; Yuan, Chunwei

    2008-12-15

    A simple route has been developed for the synthesis of europium, nitrogen-codoped titania photocatalysts under mild conditions (i.e., low temperature, < or = 348 K, and ambient pressure). The as-prepared photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and diffuse reflectance spectra (DRS) analyses. The results showed that the codoped photocatalyst with a spheroidal shape exhibited a smaller size than the undoped titania. The transformation from anatase to rutile was suppressed by doping with Eu and N atoms. Furthermore, the absorbance spectra of Eu, N-codoped TiO(2) exhibited a significant red shift to the visible region. The photocatalytic activity of Eu, N-codoped TiO(2) was evaluated by photodegradation of the dye reactive brilliant red X-3B under visible light. This codoped sample exhibited enhanced photocatalytic activity compared to N-doped TiO(2), pure TiO(2), and P25. PMID:18840383

  6. Hydrothermal synthesis of a crystalline rutile TiO2 nanorod based network for efficient dye-sensitized solar cells.

    PubMed

    Yu, Hua; Pan, Jian; Bai, Yang; Zong, Xu; Li, Xinyong; Wang, Lianzhou

    2013-09-27

    One-dimensional (1D) TiO2 nanostructures are desirable as photoanodes in dye-sensitized solar cells (DSSCs) due to their superior electron-transport capability. However, making use of the DSSC performance of 1D rutile TiO2 photoanodes remains challenging, mainly due to the small surface area and consequently low dye loading. Herein, a new type of photoanode with a three-dimensional (3D) rutile-nanorod-based network structure directly grown on fluorine-doped tin oxide (FTO) substrates was developed by using a facile two-step hydrothermal process. The resultant photoanode possesses oriented rutile nanorod arrays for fast electron transport as the bottom layer and radially packed rutile head-caps with an improved large surface area for efficient dye adsorption. The diffuse reflectance spectra showed that with the radially packed top layer, the light-harvesting efficiency was increased due to an enhanced light-scattering effect. A combination of electrochemical impedance spectroscopy (EIS), dark current, and open-circuit voltage decay (OCVD) analyses confirmed that the electron-recombiantion rate was reduced on formation of the nanorod-based 3D network for fast electron transport. As a resut, a light-to-electricity conversion efficiency of 6.31% was achieved with this photoanode in DSSCs, which is comparable to the best DSSC efficiencies that have been reported to date for 1D rutile TiO2 . PMID:23939704

  7. Biodiesel synthesis by TiO2-ZnO mixed oxide nanocatalyst catalyzed palm oil transesterification process.

    PubMed

    Madhuvilakku, Rajesh; Piraman, Shakkthivel

    2013-12-01

    Biodiesel is a promising alternating environmentally benign fuel to mineral diesel. For the development of easier transesterification process, stable and active heterogeneous mixed metal oxide of TiO2-ZnO and ZnO nanocatalysts were synthesized and exploited for the palm oil transesterification process. The synthesized catalysts were characterized by XRD, FT-IR, and FE-SEM studies for their structural and morphological characteristics. It was found that TiO2-ZnO nanocatalyst exhibits good catalytic activity and the catalytic performance was greatly depends on (i) catalyst concentration (ii) methanol to oil molar ratio (iii) reaction temperature and (iv) reaction time. A highest 98% of conversion was obtained at the optimum reaction parameters with 200 mg of catalyst loading and the biodiesel was analyzed by TLC and (1)H NMR techniques. The TiO2-ZnO nanocatalyst shows good catalytic performance over the ZnO catalyst, which could be a potential candidate for the large-scale biodiesel production from palm oil at the reduced temperature and time. PMID:24148858

  8. Synthesis, characterization and photocatalytic applications of Zn-doped TiO2 nanoparticles by sol-gel method

    NASA Astrophysics Data System (ADS)

    Aware, Dinkar V.; Jadhav, Shridhar S.

    2015-12-01

    Mesoporous, nanocrystalline, Zinc-doped TiO2 nanoparticles were synthesized by surfactant-assisted sol-gel method. The X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET), and UV-VIS spectrometer techniques were used to characterize the synthesized products. XRD results confirm the formation of the anatase phase for the TiO2 nanoparticles, with crystallite sizes in the range of 12.6-18.1 nm. The small crystallite size and doping with Zinc ion inhibit phase transformation and promote the growth of the TiO2 anatase phase. The SEM and TEM micrographs revealed the spherical-like morphology with average diameter of about 12-18 nm which is in agreement with XRD results. The optical study shows that doping ions lead to an increase in the absorption edge wavelength and a decrease in the band gap energy of titania. Photocatalytic activity of the synthesized nanomaterials was successfully tested for photodegradation of methyl red as model pollutant under UV light. The photocatalytic activity results confirm that the doped nanoparticles show higher activity than undoped titania. The small grain size, high crystallinity, high specific surface area and decrease in the band gap energy of doped titania may be responsible for the high photocatalytic activity.

  9. Synthesis, characterization and photocatalytic study of graphene oxide and cerium co-doped in TiO2

    NASA Astrophysics Data System (ADS)

    Li, Jia; Zhang, Quan; Zeng, Liping; He, Deliang

    2016-02-01

    The nanocomposite of titanium dioxide (TiO2) combined with graphene oxide (GO) and cerium (Ce) was successfully synthesized via sol-gel method followed by calcining at 300 °C for 2 h. The composite was characterized by X-ray diffraction, ultraviolet-visible diffuse reflectance spectroscopy, scanning electron microscopy (SEM) and Brunauer-Emmett-Teller. The photocatalytic activity was evaluated by photodegradation of methylene blue (MB) under the irradiation of xenon lamp. This study demonstrated that GO and Ce co-doped in TiO2 could broaden absorption edge to the visible light and increase surface area of samples. SEM observation showed that addition of Ce could solve the problem of the agglomeration of GO under the same experimental conditions. Moreover, the MB photocatalytic degradation rate of the composite with GO doped for 0.2 % and Ce doped for 0.6 % (mass ratio) was up to 97.7 %, which was largely attributed to the synergistic effects in the GO, Ce and TiO2 system.

  10. Hydrothermal synthesis of fluorinated anatase TiO2/reduced graphene oxide nanocomposites and their photocatalytic degradation of bisphenol A

    NASA Astrophysics Data System (ADS)

    Luo, Lijun; Yang, Ye; Zhang, Ali; Wang, Min; Liu, Yongjun; Bian, Longchun; Jiang, Fengzhi; Pan, Xuejun

    2015-10-01

    The surface fluorinated TiO2/reduced graphene oxide nanocomposites (denoted as F-TiO2-RGO) were synthesized via hydrothermal method. The as-prepared materials were characterized by transmission electron microscopy (TEM), X-ray diffractometer (XRD), Raman spectroscopy, Fourier Transform Infrared spectra (FTIR), X-ray photoelectron spectroscopy (XPS) and X-ray fluorescence (XRF). The results showed that pure anatase TiO2 particles were anchored on the surface of reduced graphene oxide. And the HF added during the preparation process can not only prevent phase transformation from anatase to rutile, but also the F- ion adsorbed on the surface of TiO2-RGO surface can enhance photocatalytic activity of F-TiO2-RGO. The photocatalytic activities of F-TiO2-RGO nanocomposites were evaluated by decomposing bisphenol A under UV light illumination. Under optimal degradation condition, the degradation rate constant of BPA over F-TiO2-10RGO (0.01501 min-1) was 3.41 times than that over P25 (0.00440 min-1). The result indicated that the enhanced photocatalytic activity of F-TiO2-10RGO was ascribed to the adsorbed F ion and RGO in F-TiO2-RGO composite, which can reduce the recombination rate of the photo-generated electrons and holes synergistically.

  11. CuInS2 quantum dot-sensitized TiO2 nanorod array photoelectrodes: synthesis and performance optimization

    PubMed Central

    2012-01-01

    CuInS2 quantum dots (QDs) were deposited onto TiO2 nanorod arrays for different cycles by using successive ionic layer adsorption and reaction (SILAR) method. The effect of SILAR cycles on the light absorption and photoelectrochemical properties of the sensitized photoelectrodes was studied. With optimization of CuInS2 SILAR cycles and introduction of In2S3 buffer layer, quantum dot-sensitized solar cells assembled with 3-μm thick TiO2 nanorod film exhibited a short-circuit current density (Isc) of 4.51 mA cm−2, an open-circuit voltage (Voc) of 0.56 V, a fill factor (FF) of 0.41, and a power conversion efficiency (η) of 1.06%, respectively. This study indicates that SILAR process is a very promising strategy for preparing directly anchored semiconductor QDs on TiO2 nanorod surface in a straightforward but controllable way without any complicated fabrication procedures and introduction of a linker molecule. PMID:23181940

  12. OH radical generation in a photocatalytic reactor using TiO2 nanotube plates.

    PubMed

    Lee, Kangpyung; Ku, Haemin; Pak, Daewon

    2016-04-01

    In order to use TiO2 nanotubes grown on a Ti plate as a photocatalyst, self-organized oxide nanotube layers were grown by anodization in a glycerol based electrolyte. The ultimate conditions for the synthesis of the TiO2 nanotube array on the Ti plate were investigated by comparing the morphology, length, and inner diameter of the nanotubes. They were significantly affected by the applied anodic voltage, anodization time, and composition of the electrolyte such as the water and fluoride ion concentration. The crystallographic structures of TiO2 nanotubes before and after annealing were compared. The photocatalytic reactor used in this study consisted of two parallel and closely spaced TiO2 nanotube plates. The plates were squares while a UV lamp was inserted perpendicularly to them. OH radical generation in the photocatalytic reactor was monitored by using a probe compound, parachlorobenzoate (pCBA). The steady state OH radical concentration was compared depending on the length of nanotubes and crystallographic structure. The longer the nanotubes, the higher the steady state OH radical concentration. PMID:26855214

  13. Palladium nanoparticles anchored to anatase TiO2 for enhanced surface plasmon resonance-stimulated, visible-light-driven photocatalytic activity

    PubMed Central

    Leong, Kah Hon; Chu, Hong Ye; Ibrahim, Shaliza

    2015-01-01

    Summary Freely assembled palladium nanoparticles (Pd NPs) on titania (TiO2) nano photocatalysts were successfully synthesized through a photodeposition method using natural sunlight. This synthesized heterogeneous photocatalyst (Pd/TiO2) was characterized through field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), BET surface area, UV–vis diffuse reflectance spectra (UV-DRS), Raman and photoluminescence (PL) analyses. The simple and smart synthesis anchored well the deposition with controlled Pd NPs size ranging between 17 and 29 nm onto the surface of TiO2. Thus, it gives the characteristic for Pd NPs to absorb light in the visible region obtained through localized surface plasmon resonance (LSPRs). Apparently, the photocatalytic activity of the prepared photocatalysts was evaluated by degrading the endocrine disrupting compound (EDC) amoxicillin (AMX) excited under an artificial visible light source. In the preliminary run, almost complete degradation (97.5%) was achieved in 5 h with 0.5 wt % Pd loading and the degradation followed pseudo-first-order kinetics. The reusability trend proved the photostability of the prepared photocatalysts. Hence, the study provides a new insight about the modification of TiO2 with noble metals in order to enhance the absorption in the visible-light region for superior photocatalytic performance. PMID:25821683

  14. Soft chemical synthesis of carbon-modified Ti3+ self-doped hierarchical porous TiO2 with enhanced photocatalysis

    NASA Astrophysics Data System (ADS)

    Zhao, Chunxia; Wang, Zongsheng; Chen, Wen; Song, Yanbao; Chen, Xuehua; Xie, Tao

    2016-03-01

    Carbon-modified Ti3+ self-doped hierarchical porous titanium dioxides were synthesized by one-step soft chemical method. The contents of carbon and Ti3+ of the catalysts were tuned through a facile heat treatment. The prepared photocatalysts possess well-packed uniform macropores with the size of ˜200nm, mesoporous structure with the pore size of 5.9-6.8nm, and the specific surface area of 50-200m2/g. The results illustrate the carbon combined with TiO2 via the interfacial C‑O‑Ti bonds and the rich existence of Ti3+. The catalyst with 18wt.% carbon content exhibits a degradation ratio of crystal violet up to 97.5%. The enhanced photocatalysis is ascribed to the synergistic effect of carbon and Ti3+. The interfacial C‑O‑Ti bonds act as the pathway to transfer excited electrons and the Ti3+ can trap the electrons to hinder the recombination of electrons and holes.

  15. Synthesis, characterization and photocatalytic evaluation of visible light activated C-doped TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Liu, Guanglong; Han, Changseok; Pelaez, Miguel; Zhu, Duanwei; Liao, Shuijiao; Likodimos, Vlassis; Ioannidis, Nikolaos; Kontos, Athanassios G.; Falaras, Polycarpos; Dunlop, Patrick S. M.; Byrne, J. Anthony; Dionysiou, Dionysios D.

    2012-07-01

    We have demonstrated heterogeneous photocatalytic degradation of microcystin-LR (MC-LR) by visible light activated carbon doped TiO2 (C-TiO2) nanoparticles, synthesized by a modified sol-gel route based on the self-assembly technique exploiting oleic acid as a pore directing agent and carbon source. The C-TiO2 nanoparticles crystallize in anatase phase despite the low calcination temperature of 350?C and exhibit a highly porous structure that can be optimized by tuning the concentration of the oleic acid surfactant. The carbon modified nanomaterials exhibited enhanced absorption in the broad visible light region together with an apparent red shift in the optical absorption edge by 0.5 eV (2.69 eV), compared to the 3.18 eV of reference anatase TiO2. Carbon species were identified by x-ray photoelectron spectroscopy analysis through the formation of both Ti-C and C-O bonds, indicative of substitution of carbon for oxygen atoms and the formation of carbonates, respectively. Electron paramagnetic resonance spectroscopy revealed the formation of two carbon related paramagnetic centers in C-TiO2, whose intensity was markedly enhanced under visible light illumination, pointing to the formation of localized states within the anatase band gap, following carbon doping. The photocatalytic activity of C-TiO2 nanomaterials was evaluated for the degradation of MC-LR at pH 3.0 under visible light (? > 420 nm) irradiation. The doped materials showed a higher MC-LR degradation rate than reference TiO2, behavior that is attributed to the incorporation of carbon into the titania lattice.

  16. Y(IO₃)₃ as a novel photocatalyst: synthesis, characterization, and highly efficient photocatalytic activity.

    PubMed

    Huang, Hongwei; He, Ying; He, Ran; Lin, Zheshuai; Zhang, Yihe; Wang, Shichao

    2014-08-01

    Nonbonding layer-structured Y(IO3)3 was successfully prepared by a simple hydrothermal route and investigated as a novel photocatalyst for the first time. Its crystal structure was characterized by X-ray diffraction, high-resolution transmission electron microscopy, and scanning electron microscopy. The optical absorption edge and band gap of Y(IO3)3 have been determined by UV-vis diffuse reflectance spectra. Theoretical calculations of the electronic structure of Y(IO3)3 confirmed its direct optical transition property near the absorption edge region, and the orbital components of the conduction band and valence band (VB) were also analyzed. The photocatalytic performance of Y(IO3)3 was evaluated by photooxidative decomposition of rhodamine B under ultraviolet light irradiation. It demonstrated that Y(IO3)3 exhibits highly efficient photocatalytic activity, which is much better than those of commercial TiO2 (P25) and important UV photocatalysts BiOCl and BiIO4. The origin of the excellent photocatalytic performance of Y(IO3)3 was investigated by electron spin resonance and terephthalic acid photoluminescence techniques. The results revealed that the highly strong photooxidation ability that resulted from its very positive VB position should be responsible for the excellent photocatalytic performance. PMID:25055874

  17. Electric-field-assisted swirl-flame synthesis of high-porosity nanostructured titania (TiO2) films

    NASA Astrophysics Data System (ADS)

    Kulkarni, Aditi

    Nanostructured mesoporous metal-oxide films can be used in various applications, including dye-sensitized solar cells based on titania. Optimization of the properties of these films is crucial in improving their efficiency. Nanostructured TiO2 films with high uniformity and porosity are grown in a stagnation swirl flame setup under an applied electric field. The effects of external electric-field magnitude and polarity are studied for different substrate temperatures and precursor loading concentrations. The results show considerable differences in film characteristics, for differing electric fields, with more columnar structures and higher porosities under low voltages up to +/-400 V. The films have higher packing density at higher voltages of +/-800 V. At low substrate temperatures, the morphology and structure are more prominent owing to less on-substrate sintering of the nanoparticles. At low voltages, oppositely-charged particles will be attracted to the substrate increasing the electrophoretic velocity but decreasing the in-flame agglomeration; while at high voltages, the particles will be repelled and stay in the flame longer, thus increasing the in-flame agglomeration. A simple model is proposed which predicts the trend for deposition of particles and formation of nanostructured TiO2 films of a given morphology by balancing the effects of thermophoresis, electrophoresis, and Brownian motion of the particles. The model's trend for packing density agrees with the experiments.

  18. Low-temperature synthesis of soluble and processable organic-capped anatase TiO2 nanorods.

    PubMed

    Cozzoli, P Davide; Kornowski, Andreas; Weller, Horst

    2003-11-26

    We demonstrate the controlled growth of high aspect ratio anatase TiO2 nanorods by hydrolysis of titanium tetraisopropoxide (TTIP) in oleic acid (OLEA) as surfactant at a temperature as low as 80 degrees C. Chemical modification of TTIP by OLEA is proven to be a rational strategy to tune the reactivity of the precursor toward water. The most influential factors in shape control of the nanoparticles are investigated by simply manipulating their growth kinetics. The presence of tertiary amines or quaternary ammonium hydroxides as catalysts is essential to promote fast crystallization under mild conditions. The novelty of the present approach relies on the large-scale production of organic-capped TiO2 nanocrystals to which standard processing of colloidal nanocrystals, such as surface ligand exchange, can be applied for the first time. Concentrated colloidal titania dispersions can be prepared for a number of fundamental studies in homogeneous solutions and represent a new source of easily processable oxide material for many technological applications. PMID:14624603

  19. Synthesis, characterization and binding interactions of amino acids coupled perylene diimides with colloidal doped and undoped TiO2

    NASA Astrophysics Data System (ADS)

    Kavery, E.; Nagarajan, N.; Paramaguru, G.; Renganathan, R.

    2015-07-01

    Two sensitizers based on amino acids coupled with perylene moiety having absorption in the visible region have been designed and their interaction with doped and undoped TiO2 for the application of dye sensitized solar cells (DSSCs) has been studied. The synthesized compounds PDI-PA and PDI-AA were characterized using 1H and 13C NMR, Mass and FT-IR spectroscopic techniques. The optical properties and lifetime measurements of the sensitizers were analyzed using various solvents with different polarity. The solvatochromism effect was studied using Lippert-Mataga plot. The electrochemical studies of both dyes were investigated in DMF with various scan rate ranging from 200 to 1000 mV s-1. Colloidal doped and undoped TiO2 was prepared and characterized by using absorption measurements. Binding ability of the sensitizers with the nanoparticles was studied through absorption, fluorescence quenching, cyclic voltammetry and FT-IR measurements. Results obtained from all the above analysis suggest the mode of quenching may be static. The binding constant values were calculated using Kamat-Fox equation indicates the binding behavior of the sensitizers with the nanoparticles. The fluorescence quenching was mainly attributed to electron transfer from the excited state of PDI's to the conduction band of colloidal semiconductors. The electron transfer mechanism was explained based on the Rehm-Weller equation as well as the energy level diagram.

  20. One-pot synthesis of Cd1- x In x Te semiconductor as a sensitizer on TiO2 mesoporous for potential solar cell devices

    NASA Astrophysics Data System (ADS)

    Singsa-ngah, Mutika; Tubtimtae, Auttasit

    2015-08-01

    We demonstrated the synthesis of a new ternary semiconductor nanoparticle Cd1- x In x Te, as a sensitizer for solar cell devices via a one-pot mixed precursor solution. The Cd1- x In x Te nanoparticles (NPs) were prepared using the chemical bath deposition process and coated onto a TiO2 photoelectrode. A tetragonal structure of Cd1- x In x Te NPs was constituted on the TiO2 photoelectrode with a diameter range ˜25-30 nm, and the atomic percentages of the chemical elements showed that the structure could be Cd0.1In0.9Te incorporated with the CdIn2Te4 structure. When the dipping cycle increased, the energy gaps became narrower from 1.2 to 0.6 eV due to the increasing amount and the larger size of nanoparticles. The photovoltaic properties of various cycles were investigated, and the best power conversion efficiency ( η) of 0.49 % under full 1 sun illumination (100 mW/cm2, AM 1.5G) was obtained for the seven-cycle-Cd1- x In x Te NPs with a current density ( J sc) of 2.64 mA/cm2, an open-circuit voltage ( V oc) of 638 mV, and a fill factor ( FF) of 0.29. The efficiency of this material can be further improved for higher potential solar cell devices.

  1. Synthesis of TiO2/WO3 nanoparticles via sonochemical approach for the photocatalytic degradation of methylene blue under visible light illumination.

    PubMed

    Anandan, Sambandam; Sivasankar, Thirugnanasambandam; Lana-Villarreal, Teresa

    2014-11-01

    Through an ultrasound assisted method, TiO2/WO3 nanoparticles were synthesized at room temperature. The XRD pattern of as-prepared TiO2/WO3 nanoparticles matches well with that of pure monoclinic WO3 and rutile TiO2 nanoparticles. TEM images show that the prepared TiO2/WO3 nanoparticles consist of mixed square and hexagonal shape particles about 8-12nm in diameter. The photocatalytic activity of TiO2/WO3 nanoparticles was tested for the degradation of a wastewater containing methylene blue (MB) under visible light illumination. The TiO2/WO3 nanoparticles exhibits a higher degradation rate constant (6.72×10(-4)s(-1)) than bare TiO2 nanoparticles (1.72×10(-4)s(-1)) under similar experimental conditions. PMID:24629580

  2. Synthesis of uniformly dispersed anatase nanoparticles inside mesoporous silica thin films via controlled breakup and crystallization of amorphous TiO2 deposited using atomic layer deposition.

    PubMed

    Sree, Sreeprasanth Pulinthanathu; Dendooven, Jolien; Masschaele, Kasper; Hamed, Heidari M; Deng, Shaoren; Bals, Sara; Detavernier, Christophe; Martens, Johan A

    2013-06-01

    Amorphous titanium dioxide was introduced into the pores of mesoporous silica thin films with 75% porosity and 12 nm average pore diameter via Atomic Layer Deposition (ALD) using alternating pulses of tetrakis(dimethylamino)titanium and water. Calcination provoked fragmentation of the deposited amorphous TiO2 phase and its crystallization into anatase nanoparticles inside the nanoporous film. The narrow particle size distribution of 4 2 nm and the uniform dispersion of the particles over the mesoporous silica support were uniquely revealed using electron tomography. These anatase nanoparticle bearing films showed photocatalytic activity in methylene blue degradation. This new synthesis procedure of the anatase nanophase in mesoporous silica films using ALD is a convenient fabrication method of photocatalytic coatings amenable to application on very small as well as very large surfaces. PMID:23636429

  3. Synthesis of uniformly dispersed anatase nanoparticles inside mesoporous silica thin films via controlled breakup and crystallization of amorphous TiO2 deposited using atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Sree, Sreeprasanth Pulinthanathu; Dendooven, Jolien; Masschaele, Kasper; Hamed, Heidari M.; Deng, Shaoren; Bals, Sara; Detavernier, Christophe; Martens, Johan A.

    2013-05-01

    Amorphous titanium dioxide was introduced into the pores of mesoporous silica thin films with 75% porosity and 12 nm average pore diameter via Atomic Layer Deposition (ALD) using alternating pulses of tetrakis(dimethylamino)titanium and water. Calcination provoked fragmentation of the deposited amorphous TiO2 phase and its crystallization into anatase nanoparticles inside the nanoporous film. The narrow particle size distribution of 4 +/- 2 nm and the uniform dispersion of the particles over the mesoporous silica support were uniquely revealed using electron tomography. These anatase nanoparticle bearing films showed photocatalytic activity in methylene blue degradation. This new synthesis procedure of the anatase nanophase in mesoporous silica films using ALD is a convenient fabrication method of photocatalytic coatings amenable to application on very small as well as very large surfaces.

  4. Autogenic reaction synthesis of photocatalysts for solar fuel generation

    DOEpatents

    Ingram, Brian J.; Pol, Vilas G.; Cronauer, Donald C.; Ramanathan, Muruganathan

    2016-04-19

    In one preferred embodiment, a photocatalyst for conversion of carbon dioxide and water to a hydrocarbon and oxygen comprises at least one nanoparticulate metal or metal oxide material that is substantially free of a carbon coating, prepared by heating a metal-containing precursor compound in a sealed reactor under a pressure autogenically generated by dissociation of the precursor material in the sealed reactor at a temperature of at least about 600.degree. C. to form a nanoparticulate carbon-coated metal or metal oxide material, and subsequently substantially removing the carbon coating. The precursor material comprises a solid, solvent-free salt comprising a metal ion and at least one thermally decomposable carbon- and oxygen-containing counter-ion, and the metal of the salt is selected from the group consisting of Mn, Ti, Sn, V, Fe, Zn, Zr, Mo, Nb, W, Eu, La, Ce, In, and Si.

  5. Facile Synthesis of Defective TiO2−x Nanocrystals with High Surface Area and Tailoring Bandgap for Visible-light Photocatalysis

    PubMed Central

    Wajid Shah, Muhammad; Zhu, Yunqing; Fan, Xiaoyun; Zhao, Jie; Li, Yingxuan; Asim, Sumreen; Wang, Chuanyi

    2015-01-01

    A facile hydrothermal approach has been developed to prepare defective TiO2−x nanocrystals using Ti(III)-salt as a precursor and L-ascorbic acid as reductant and structure direction agent. The prepared TiO2−x nanocrystals are composed of a highly crystallized TiO2 core and a disordered TiO2−x outer layer, possessing high surface area, controlled oxygen vacancy concentration and tunable bandgap via simply adjusting the amount of added L-ascorbic acid. The defective TiO2−x shows high photocatalytic efficiency in methylene blue and phenol degradation as well as in hydrogen evolution under visible light, underlining the significance of the present strategy for structural and bandgap manipulation in TiO2-based photocatalysis. PMID:26515503

  6. Facile Synthesis of Defective TiO2‑x Nanocrystals with High Surface Area and Tailoring Bandgap for Visible-light Photocatalysis

    NASA Astrophysics Data System (ADS)

    Wajid Shah, Muhammad; Zhu, Yunqing; Fan, Xiaoyun; Zhao, Jie; Li, Yingxuan; Asim, Sumreen; Wang, Chuanyi

    2015-10-01

    A facile hydrothermal approach has been developed to prepare defective TiO2‑x nanocrystals using Ti(III)-salt as a precursor and L-ascorbic acid as reductant and structure direction agent. The prepared TiO2‑x nanocrystals are composed of a highly crystallized TiO2 core and a disordered TiO2‑x outer layer, possessing high surface area, controlled oxygen vacancy concentration and tunable bandgap via simply adjusting the amount of added L-ascorbic acid. The defective TiO2‑x shows high photocatalytic efficiency in methylene blue and phenol degradation as well as in hydrogen evolution under visible light, underlining the significance of the present strategy for structural and bandgap manipulation in TiO2-based photocatalysis.

  7. Synthesis and characterization of nano TiO2-SiO2: PVA composite - a novel route

    NASA Astrophysics Data System (ADS)

    Venckatesh, Rajendran; Balachandaran, Kartha; Sivaraj, Rajeshwari

    2012-07-01

    A novel, simple, less time consuming and cost-effective sol-gel method has been developed to synthesize nano titania-silica with polyvinyl alcohol (PVA) composite relatively at low temperature in acidic pH. Titania sol is prepared by hydrolysis of titanium tetrachloride and was mixed with silicic acid and tetrahydrofuran mixture. The reaction was carried out under vigorous stirring for 6 h and dried at room temperature with the addition of PVA solution. The resulting powders were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared (FT-IR), UV-visible spectroscopy and thermal techniques. The grain size of the particles was calculated by X-ray diffraction; surface morphology and chemical composition were determined from scanning electron microscopy-energy dispersive spectroscopy; metal oxide stretching was confirmed from FT-IR spectroscopy; bandgap was calculated using UV-visible spectroscopy, and thermal stability of the prepared composite was determined by thermogravimetric/differential thermal analysis. Since TiO2 got agglomerated on the surface of SiO2, effective absorptive sites increase which in turn increase the photocatalytic efficiency of the resulting composite.

  8. Synthesis and characterization of Pt-MoO x -TiO2 electrodes for direct ethanol fuel cells

    NASA Astrophysics Data System (ADS)

    Wang, Xiu-Yu; Zhang, Jing-Chang; Cao, Xu-Dong; Jiang, Yuan-Sheng; Zhu, Hong

    2011-10-01

    To enhance the CO-tolerance performance of anode catalysts for direct ethanol fuel cells, carbon nanotubes were modified by titanium dioxide (donated as CNTs@TiO2) and subsequently served as the support for the preparation of Pt/CNTs@TiO2 and Pt-Mo/CNTs@TiO2 electrocatalysts via a UV-photoreduction method. The physicochemical characterizations of the catalysts were carried out by using X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and infrared spectroscopy of adsorbed probe ammonia molecules. The electrocatalytic properties of the catalysts for methanol oxidation were investigated by the cyclic voltammetry technique. The results show that Pt-Mo/CNTs@TiO2 electrode exhibits the highest performance in all the electrodes. It is explained that, the structure, the oxidation states, and the acid-base properties of the catalysts are influenced due to the strong interaction between Ti and Mo species by adding TiO2 and MoO x to the Pt-based catalysts.

  9. Synthesis and characterization of high photocatalytic activity and stable Ag3PO4/TiO2 fibers for photocatalytic degradation of black liquor

    NASA Astrophysics Data System (ADS)

    Cai, Li; Long, Qiyi; Yin, Chao

    2014-11-01

    The TiO2 fiber was prepared by using cotton fiber as a template, and then Ag3PO4/TiO2 fibers were synthesized via in situ Ag3PO4 particles onto the surface of TiO2 fiber. Their structure and physical properties were characterized by means of scanning electron microscopy (SEM), specific surface analyzer, X-ray diffraction (XRD), UV-vis absorption spectra and photoluminescence spectra (PL). SEM analysis indicated that the well-defined surface morphology of natural cotton fiber was mostly preserved in TiO2 and Ag3PO4/TiO2 fibers. Compared with TiO2 fiber, the absorbance wavelengths of Ag3PO4/TiO2 fibers were apparently red shifted and the PL intensities revealed a significant decrease. By using the photocatalytic degradation of black liquor as a model reaction, the visible light and ultraviolet light catalytic efficiencies of TiO2, Ag3PO4 and Ag3PO4/TiO2 fibers were evaluated. The reaction results showed that Ag3PO4/TiO2 fibers had stronger photocatalytic activity and excellent chemical stability in repeated and long-term applications. Therefore, the prepared Ag3PO4/TiO2 fibers could act as an efficient catalyst for the photocatalytic degradation of black liquor, which suggested their promising applications. It was proposed that the •OH radicals played the leading role in the photocatalytic degradation of the black liquor by Ag3PO4/TiO2 fibers system.

  10. Facile synthesis and enhanced visible light photocatalytic activity of N and Zr co-doped TiO2 nanostructures from nanotubular titanic acid precursors

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Yu, Xinluan; Lu, Dandan; Yang, Jianjun

    2013-12-01

    Zr/N co-doped TiO2 nanostructures were successfully synthesized using nanotubular titanic acid (NTA) as precursors by a facile wet chemical route and subsequent calcination. These Zr/N-doped TiO2 nanostructures made by NTA precursors show significantly enhanced visible light absorption and much higher photocatalytic performance than the Zr/N-doped P25 TiO2 nanoparticles. Impacts of Zr/N co-doping on the morphologies, optical properties, and photocatalytic activities of the NTA precursor-based TiO2 were thoroughly investigated. The origin of the enhanced visible light photocatalytic activity is discussed in detail.

  11. Synthesis and characterization of ZnS-TiO2 photocatalyst and its excellent sun light driven catalytic activity.

    PubMed

    Dhatshanamurthi, P; Subash, B; Senthilraja, A; Kuzhalosai, V; Krishnakumar, B; Shanthi, M

    2014-07-01

    The different wt% of ZnS loaded TiO2 (ZnS-TiO2) catalysts were successfully synthesized by precipitation cum sol-gel method and used for degradation of phenol dye, Phenol red sodium salt (PRSS) under natural sun light. Highly efficient 10.7 wt% of ZnS-TiO2 was characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive spectrum (EDS), diffuse reflectance spectra (DRS), photoluminescence spectra (PL) and BET surface area measurements. ZnS-TiO2 is found to be more efficient than bare TiO2, TiO2-P25 and ZnS at pH 6.5 for the mineralization of PRSS dye. The effects of operational parameters such as the amount of photocatalyst and dye concentration have been analyzed. The mineralization of PRSS dye has been confirmed by chemical oxygen demand (COD) measurements. A dual mechanism has been proposed for the degradation of PRSS under solar light. This catalyst is found to be reusable. PMID:24757964

  12. Polyol thermolysis synthesis of TiO2 nanoparticles and its paste formulation to fabricate photoanode for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Pratheep, P.; Vijayakumar, E.; Subramania, A.

    2015-05-01

    Titanium dioxide (TiO2) nanoparticles (NPs) were prepared by a simple polyol thermolysis process using various mole ratios of titanium tetrachloride (TiCl4) and polyvinylpyrrolidone (PVP). The prepared TiO2 NPs were characterized by TG/DTA, XRD, SEM, and BET analysis. The TiO2 NPs obtained using 0.1 M of TiCl4 and 0.02 M of PVP have high surface area with lesser particles size than the same obtained using 0.1 M of TiCl4 with other mole ratios of PVP. The high surface area TiO2 NPs were used to formulate TiO2 paste. The impact of ethyl cellulose, terpineol, and dibutyl phthalate in the formulation of TiO2 paste was optimized with respect to standard TiO2 paste ( Dyesol Ltd.) on the adsorption of dye was studied by UV-Vis spectroscopy. The photovoltaic performance of DSSCs fabricated using the formulated TiO2 paste has achieved 97.83 % of power conversion efficiency (PCE) (η = 4.5 %) with respect to the standard TiO2 paste ( Dyesol Ltd.) and its PCE were found to be 4.6 % (η). This PCE value was nearly closer to that of the same DSSC fabricated using the standard TiO2 paste ( Dyesol Ltd.) and higher than the P25 TiO2 ( Degussa) paste and its achieved PCE were found to be 86.04 %.

  13. Few-layered MoS2 nanosheets wrapped ultrafine TiO2 nanobelts with enhanced photocatalytic property.

    PubMed

    Li, Haidong; Wang, Yana; Chen, Guohui; Sang, Yuanhua; Jiang, Huaidong; He, Jiating; Li, Xu; Liu, Hong

    2016-03-10

    Photocatalytic materials comprised of semiconductor nanostructures have attracted tremendous scientific and technological interest over the last 30 years. This is due to the fact that these photocatalytic materials have unique properties that allow for an effective direct energy transfer from light to highly reactive chemical species which are applicable in the remediation of environmental pollutants and photocatalytic hydrogen generation. Heterostructured photocatalysts are a promising type of photocatalyst which can combine the properties of different components to generate a synergic effect, resulting in a high photocatalytic activity. In this work, a heterostructured photocatalyst comprised of few-layered MoS2 nanosheets coated on a TiO2 nanobelts surface was synthesized through a simple hydrothermal treatment. The hybrid heterostructures with enhanced broad spectrum photocatalytic properties can harness UV and visible light energy to decompose organic contaminants in aqueous solutions as well as split water to hydrogen and oxygen. The mechanism of the enhancement is that the MoS2/TiO2 nanobelts heterostructure can enhance the separation of the photo-induced carriers, which results in a higher photocurrent due to the special electronic characteristics of the graphene-like layered MoS2 nanosheets. This methodology is potentially applicable to the synthesis of a range of hybrid nanostructures with promising applications in photocatalysis and other relevant areas. PMID:26932455

  14. Facile in situ synthesis of plasmonic nanoparticles-decorated g-C3N4/TiO2 heterojunction nanofibers and comparison study of their photosynergistic effects for efficient photocatalytic H2 evolution.

    PubMed

    Wei, Xinbo; Shao, Changlu; Li, Xinghua; Lu, Na; Wang, Kexin; Zhang, Zhenyi; Liu, Yichun

    2016-06-01

    Ternary heterostructured nanofibers (NFs) consisting of plasmonic noble metal nanoparticles (Au, Ag, or Pt NPs), graphitic carbon nitride nanosheets (g-C3N4 NSs), and TiO2 NPs were synthesized in situ via a facile electrospinning technique combined with a subsequent thermal oxidation/reduction process. The thermal-reduced plasmonic NPs with sizes from 5 to 10 nm are dispersed uniformly into the heterojunctions of the NFs that are formed by thermal oxidation etching of exfoliated g-C3N4 NSs in the electrospun TiO2 nanofibrous matrix, as evidenced by microscopic and electronic structure analyses. In comparison to single-component photocatalysts, such as g-C3N4 NSs or TiO2 NFs, these ternary heterostructures exhibit significantly high photocatalytic activity for H2 evolution under simulated sunlight irradiation. The enhanced photoactivities are attributed to the strong photosynergistic effect between the surface plasmon resonance (SPR) and the heterojunction interface sensitization, which results in the improvement of charge-carrier generation and separation in the ternary heterostructured NFs. Further investigations indicate that coupling heterojunction sensitization on the g-C3N4/TiO2 interface with Ag SPR effects by plasmonic resonant energy transfer is the optimal strategy for synergistically improving the charge-carrier kinetics to achieve highly efficient photocatalytic H2 evolution. It is believed that our present study offers a promising method for the rational integration of multi-component photocatalytic systems that can realize high photocatalytic performances for use in solar-to-fuel conversion. PMID:27174531

  15. Important role of surface fluoride in nitrogen-doped TiO2 nanoparticles with visible light photocatalytic activity.

    PubMed

    Brauer, Jonathan I; Szulczewski, Greg

    2014-12-11

    Nitrogen-doped TiO2 nanoparticles have been synthesized using sol-gel methods and subsequently fluorinated at room temperature by aging in acidic solutions of NaF. The nanoparticles were characterized by X-ray photoelectron spectroscopy, X-ray diffraction, UV-vis, and IR diffuse reflectance spectroscopy. After aging at room temperature in NaF solutions, the Ti-OH groups on the surface of the TiO2 nanoparticles were replaced by Ti-F bonds, which resulted in a decrease of the point of zero charge from pH 5.4 to 2.8. Most importantly, the nitrogen dopants were retained after the fluorination process, and the amorphous nanoparticles were partially converted into the anatase phase. Annealing the photocatalysts resulted in a decrease of both the nitrogen and fluoride atomic concentration. Diffuse reflectance spectra show an increase in absorbance above 400 nm after annealing the F,N-doped TiO2, which suggests the formation of color centers. The photoactivity of the F,N-doped and N-doped TiO2 catalysts were evaluated by monitoring by the decolorization of methylene blue with visible light. Mass spectrometric analysis revealed that methylene blue undergoes successive demethylation, and more importantly, the rate of decolorization depends on the fluoride concentration. These results show the importance of a two-step synthesis method to independently control the nitrogen and fluoride concentration. PMID:25266909

  16. Hydrothermal Synthesis of TiO2 @SnO2 Hybrid Nanoparticles in a Continuous-Flow Dual-Stage Reactor.

    PubMed

    Hellstern, Henrik L; Bremholm, Martin; Mamakhel, Aref; Becker, Jacob; Iversen, Bo B

    2016-03-01

    TiO2 @SnO2 hybrid nanocomposites were successfully prepared in gram scale using a dual-stage hydrothermal continuous-flow reactor. Temperature and pH in the secondary reactor were found to selectively direct nucleation and growth of the secondary material into either heterogeneous nanocomposites or separate intermixed nanoparticles. At low pH, 2?nm rutile SnO2 nanoparticles were deposited on 9?nm anatase TiO2 particles; the presence of TiO2 was found to suppress formation of larger SnO2 particles. At high pH SnO2 formed separate particles and no deposition on TiO2 was observed. Ball-milling of TiO2 and SnO2 produced no TiO2 @SnO2 composites. This verifies that the composite particles must be formed by nucleation and growth of the secondary precursor on the TiO2 . High concentration of secondary precursor led to formation of TiO2 particles embedded in aggregates of SnO2 nanoparticles. The results demonstrate how nanocomposites may be produced in high yield by green chemistry. PMID:26822385

  17. Hierarchically branched Fe2O3@TiO2 nanorod arrays for photoelectrochemical water splitting: facile synthesis and enhanced photoelectrochemical performance.

    PubMed

    Li, Yuangang; Wei, Xiaoliang; Zhu, Bowen; Wang, Hua; Tang, Yuxin; Sum, Tze Chien; Chen, Xiaodong

    2016-06-01

    Highly photoactive and durable photoanode materials are the key to photoelectrochemical water splitting. In this paper, hierarchically branched Fe2O3@TiO2 nanorod arrays (denoted as Fe2O3@TiO2 BNRs) composed of a long Fe2O3 trunk and numerous short TiO2 nanorod branches were fabricated and used as photoanodes for water splitting. Significant improvement of photoelectrochemical water splitting performance was observed based on Fe2O3@TiO2 BNRs. The photocurrent density of Fe2O3@TiO2 BNRs reaches up to 1.3 mA cm(-2) at 1.23 V versus RHE, which is 10 times higher than that of pristine Fe2O3 nanorod arrays under the same conditions. Furthermore, an obvious cathodic shift in the onset potential of photocurrent was observed in the Fe2O3@TiO2 BNRs. More significantly, the Fe2O3@TiO2 BNRs are quite stable even after 3600 s continuous illumination, and the photocurrent density shows almost no decay. Finally, a tentative mechanism was proposed to explain the superior performance of Fe2O3@TiO2 BNRs for PEC water splitting and discussed in detail on the basis of our experimental results. PMID:27189633

  18. Hierarchical photocatalysts.

    PubMed

    Li, Xin; Yu, Jiaguo; Jaroniec, Mietek

    2016-05-01

    As a green and sustainable technology, semiconductor-based heterogeneous photocatalysis has received much attention in the last few decades because it has potential to solve both energy and environmental problems. To achieve efficient photocatalysts, various hierarchical semiconductors have been designed and fabricated at the micro/nanometer scale in recent years. This review presents a critical appraisal of fabrication methods, growth mechanisms and applications of advanced hierarchical photocatalysts. Especially, the different synthesis strategies such as two-step templating, in situ template-sacrificial dissolution, self-templating method, in situ template-free assembly, chemically induced self-transformation and post-synthesis treatment are highlighted. Finally, some important applications including photocatalytic degradation of pollutants, photocatalytic H2 production and photocatalytic CO2 reduction are reviewed. A thorough assessment of the progress made in photocatalysis may open new opportunities in designing highly effective hierarchical photocatalysts for advanced applications ranging from thermal catalysis, separation and purification processes to solar cells. PMID:26963902

  19. Low-temperature synthesis of high-ordered anatase TiO2 nanotube array films coated with exposed {001} nanofacets

    NASA Astrophysics Data System (ADS)

    Ding, Jie; Huang, Zhennan; Zhu, Jihao; Kou, Shengzhong; Zhang, Xiaobin; Yang, Hangsheng

    2015-12-01

    High-ordered anatase TiO2 nanotube array films coated with exposed high-reactive {001} nanofacets were fabricated by a modified hydrothermal method using amorphous anodic TiO2 nanotube arrays (ATONAs) as starting materials. It was found that the reaction between gas phase HF and solid ATONAs played a key role in the transformation process from amorphous to anatase TiO2, and the TiO2 tubular structure kept unchanged during the surface modification with an exposed {001} facets up to 76.5%, which could be attributed to the low reaction temperature of 130?C. Our study provided a novel route for the facile preparation of {001} facets exposed anatase TiO2.

  20. Low-temperature synthesis of high-ordered anatase TiO2 nanotube array films coated with exposed {001} nanofacets

    PubMed Central

    Ding, Jie; Huang, Zhennan; Zhu, Jihao; Kou, Shengzhong; Zhang, Xiaobin; Yang, Hangsheng

    2015-01-01

    High-ordered anatase TiO2 nanotube array films coated with exposed high-reactive {001} nanofacets were fabricated by a modified hydrothermal method using amorphous anodic TiO2 nanotube arrays (ATONAs) as starting materials. It was found that the reaction between gas phase HF and solid ATONAs played a key role in the transformation process from amorphous to anatase TiO2, and the TiO2 tubular structure kept unchanged during the surface modification with an exposed {001} facets up to 76.5%, which could be attributed to the low reaction temperature of 130 °C. Our study provided a novel route for the facile preparation of {001} facets exposed anatase TiO2. PMID:26634815

  1. Synthesis of Ag or Pt nanoparticle-deposited TiO2 nanorods for the highly efficient photoreduction of CO2 to CH4

    NASA Astrophysics Data System (ADS)

    Wang, Qingli; Dong, Peimei; Huang, Zhengfeng; Zhang, Xiwen

    2015-10-01

    Ag or Pt-deposited TiO2 nanocomposites were prepared by a simple method, in which oriented TiO2 nanorods were synthesized by a hydrothermal method and a noble metal (Ag or Pt) was deposited on TiO2 by photocatalytic reduction under UV irradiation. The oriented TiO2 nanorods with Ag or Pt nanoparticles (<20 nm) exhibited high CO2 photoreduction efficiency, with CH4 yield rates up to 16.0 ppm/g h and 10.8 ppm/g h, respectively, considerably higher than that of the pure TiO2 nanorods (4.2 ppm/g h). The improvement in the CH4 yield was attributed to the formation of a Schottky barrier and surface plasmon resonance.

  2. Adsorption properties and photocatalytic activity of TiO2/activated carbon fiber composite

    NASA Astrophysics Data System (ADS)

    Yao, Shuhua; Song, Shuangping; Shi, Zhongliang

    2014-06-01

    Photocatalysts of titanium dioxide (TiO2) and TiO2/activated carbon fiber (TiO2/ACF) composite were prepared by sol-gel method, followed by calcining the pure TiO2 sols and the TiO2/ACF sols at 500C for 2 h in a N2 atmosphere, respectively. These photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and N2 adsorption-desorption isotherms measurement. Batch experiments were conducted to study the adsorption property of TiO2/ACF composite using methylene blue as adsorbate. The adsorption data obtained from different batch experiments were analyzed using pseudo-second-order kinetic model, the experimental data can be adequately described by the pseudo-second-order equation. The photodecomposition behavior of TiO2/ACF was investigated in aqueous solution using methylene blue as target pollutant. It was found that methylene blue could be removed rapidly from water by TiO2/ACF, the photocatalytic decomposition was obviously improved when the photocatalyst was used. Kinetics analysis revealed that the photocatalytic decomposition reaction can be described well by a first-order rate equation.

  3. Synthesis and characterization of TiO2 on ZnO-nanorod layer for high-efficiency electrochemiluminescence cell application

    NASA Astrophysics Data System (ADS)

    Chansri, Pakpoom; Sung, Youl-Moon

    2016-02-01

    In this research paper, we present the fabrication of an electrochemiluminescence (ECL) cell with TiO2 on ZnO-nanorod electrodes via the dip-coating technique. The TiO2 nanoparticles coated on ZnO nanorods (TiO2-ZNRs) were grown on transparent conductive oxide (TCO) glass by the dip-coating technique. The electrode of TiO2-ZNRs for ECL cells has the structure F-doped SnO2 (FTO) glass/Ru(II) complex [Ru(bpy)32+]/TiO2-ZNRs/FTO glass. The TiO2-ZNRs were coated on FTO glass by spin-coating and dip-coating methods. The X-ray diffraction system, scanning electron microscope, and spectral brightness analyzer were used to confirm the successful formation of the structure and the morphological properties. The threshold voltage at the start of light emission was 2.25 V for TiO2-ZNRs and was lower than 3.25 V for bare FTO. The threshold voltage was l2.5 V for ZNRs. The electrical and optical properties of the TiO2-ZNRs ECL cell were 30.76 cd/m2 light intensity, 0.067 mA output current, 0.268 cd/A (at 9.67 mA/cm2) current efficiency, and 0.068 lm/W ECL efficiency at 5 V and 60 Hz. The peak intensity of the TiO2-ZNRs-based ECL cell at a wavelength of 621 nm exhibited a dark orange color and was independent of the type of electrode used. The use of TiO2-ZNRs could improve the ECL efficiency and long-lifetime stability.

  4. In situ synthesis and hydrothermal crystallization of nanoanatase TiO2 -SiO2 coating on aramid fabric (HTiSiAF) for UV protection.

    PubMed

    Deng, Hui; Zhang, Hongda

    2015-10-01

    TiO2 -SiO2 thin film was prepared by sol-gel method and coated on the aramid fabric to prepare functional textiles. The aramid fabric was dipped and withdrawn in TiO2 -SiO2 gel and hydrothermal crystallization at 80(°) C, then its UV protection functionality was evaluated. The crystalline phase and the surface morphology of TiO2 -SiO2 thin film were characterized using SEM, XRD, and AFM respectively. SEM showed hydrothermal crystallization led to a homogeneous dispersion of anatase nonocrystal in TiO2 -SiO2 film, and XRD suggested the mean particle size of the formed anatase TiO2 was less than 30 nm. AFM indicated that hydrothermal treatment enhanced the crystallization of TiO2 . UV protection analysis suggested that the hydrothermally treated coated textile had a better screening property in comparison with TiO2 -SiO2 gel and native aramid fabric. PMID:26303384

  5. Acid-assisted hydrothermal synthesis of nanocrystalline TiO2 from titanate nanotubes: influence of acids on the photodegradation of gaseous toluene.

    PubMed

    Chen, Kunyang; Zhu, Lizhong; Yang, Kun

    2015-01-01

    In order to efficiently remove volatile organic compounds (VOCs) from indoor air, one-dimensional titanate nanotubes (TiNTs) were hydrothermally treated to prepare TiO2 nanocrystals with different crystalline phases, shapes and sizes. The influences of various acids such as CH3COOH, HNO3, HCl, HF and H2SO4 used in the treatment were separately compared to optimize the performance of the TiO2 nanocrystals. Compared with the strong and corrosive inorganic acids, CH3COOH was not only safer and more environmentally friendly, but also more efficient in promoting the photocatalytic activity of the obtained TiO2. It was observed that the anatase TiO2 synthesized in 15 mol/L CH3COOH solution exhibited the highest photodegradation rate of gaseous toluene (94%), exceeding that of P25 (44%) by a factor of more than two. The improved photocatalytic activity was attributed to the small crystallite size and surface modification by CH3COOH. The influence of relative humidity (20%-80%) on the performance of TiO2 nanocrystals was also studied. The anatase TiO2 synthesized in 15 mol/L CH3COOH solution was more tolerant to moisture than the other TiO2 nanocrystals and P25. PMID:25597682

  6. Ultrathin TiO2 layer coated-CdS spheres core-shell nanocomposite with enhanced visible-light photoactivity.

    PubMed

    Chen, Zhang; Xu, Yi-Jun

    2013-12-26

    Development of various strategies for controllable fabrication of core-shell nanocomposites (CSNs) with highly active photocatalytic performance has been attracting ever-increasing research attention. In particular, control of the ultrathin layer TiO2 shell in constructing CSNs in an aqueous phase is a significant but technologically challenging issue. Here, this paper demonstrates the interface assembly synthesis of CdS nanospheres@TiO2 core-shell photocatalyst via the electrostatic interaction of negatively charged water-stable titania precursor with positively charged CdS nanospheres (CdS NSPs), followed by the formation of the ultrathin-layer TiO2 shell through a facile refluxing process in aqueous phase. The as-formed CdS NSPs@TiO2 core-shell nanohybrid exhibits a high visible-light-driven photoactivity for selective transformation and reduction of heavy metal ions. The ultrathin TiO2 layer coated on CdS NSPs results in excellent light transmission property, enhanced adsorption capacity, and improved transfer of charge carriers and lifespan of photoinduced electron-hole pairs, which would prominently contribute to the significant photoactivity enhancement. It is anticipated that this facile aqueous-phase synthesis strategy could be extended to design a variety of more efficient CSN photocatalysts with controllable morphology toward target applications in diverse photoredox processes. PMID:24245797

  7. Electrochemical characterization of TiO2/WOx nanotubes for photocatalytic application.

    PubMed

    Vedarajan, Raman; Ikeda, Shoto; Matsumi, Noriyoshi

    2014-01-01

    TiO2/WOx nanotubes have unique photo-energy retention properties that have gathered scientific interest. Herein, we report the synthesis, morphological characterization, and the electrochemical characterization of TiO2/WOx nanotubes compared with pure TiO2 nanotubes, prepared by anodization technique. Significant structural differences were not observed in TiO2/WOx nanotubes as observed by using scanning electron microscopy and transmission electron microscopy. The charge transfer resistance of TiO2/WOx before and after photo irradiation determined by using electrochemical impedance spectroscopy proves the inherent energy retention property which was not observed in pure TiO2 nanotubes. PMID:25346647

  8. Photocatalytic Water-Splitting Characteristic of Electric Reduced Black TiO2 Nanorods

    NASA Astrophysics Data System (ADS)

    Yun, Jong-Won; Ryu, Ki Yeon; Kim, Sunho; Jang, Se-Jung; Kim, Yong Soo

    In various reduction methods of TiO2, the electric reduction could apply to anodized TiO2 nanotube. However, it is not suitable to reduce TiO2 nanorods(NRs) grown on fluorine doped tin oxide (FTO) substrate using hydrothermal method, because those are easily peeled off due to lattice mismatching between FTO and TiO2 NRs. In this talk, we will demonstrate electric reduced-black TiO2 NRs with strong adhesion on FTO substrate for an effective visible photocatalyst. To fabricate the reduced-black TiO2 NRs, we firstly deposited TiO2 seed layer on FTO glass using RF-sputtering for mitigating the exfoliation, then grow TiO2 NRs with hydrothermal method. Finally, TiO2 NRs were reduced with electric bias. The final reduced-black TiO2 NRs exhibit a higher photocurrent density, 0.9 mA/cm2 in comparison with pure-TiO2 NRs. This result indicates that our reduced-black TiO2 NRs has lower bandgap with modified valance band position and enhance the surface reactivity with oxygen defect generation. This research was supported by Priority Research Centers Program (2009-0093818), the Basic Science Research Program (2015-019609) and Basic Research Lab Program (2014-071686) through National Research Foundation of Korea (NRF) funded by the Korean government.

  9. Hydrogen-bonding-mediated synthesis of atomically thin TiO2 films with exposed (001) facets and applications in fast lithium insertion/extraction.

    PubMed

    Zhang, Hongye; Yang, Zhenzhen; Gan, Wei; Zhao, Yanfei; Yu, Bo; Xu, Huanjun; Ma, Zhishuang; Hao, Leiduan; Chen, Dechao; Miao, Shiding; Liu, Zhimin

    2015-10-01

    Ultrathin two-dimensional (2D) crystalline materials show high specific surface area (SA) of high energy (HE) facets, imparting a significant improvement in their performances. Herein we report a novel route to synthesize TiO2 nanofilms (NFs) with atomic thickness (<2.0 nm) through a solvothermal reaction mediated by the hydrogen-bonding networks constructed by hydroquinone (HQ). The resultant TiO2 NFs have nearly 100 % exposed (001) facets and give an extremely high SA up to 487 m(2)  g(-1) . The synergistic effect of HQ and choline chloride plays a vital role in the formation of TiO2 NFs and in the exposure of HE (001) facets. Because of its ultrathin feature and exposed (001) facet, the N2 -annealled TiO2 NFs showed fast kinetics of lithium insertion/extraction, demonstrating foreseeable applications in the energy storage. PMID:26298688

  10. Synthesis of single-crystal-like TiO2 hierarchical spheres with exposed {1 0 1} and {1 1 1} facets via lysine-inspired method

    NASA Astrophysics Data System (ADS)

    Zheng, Zuyang; Wang, Zhenfeng; Xie, Liyan; Fang, Zhibin; Feng, Wenhui; Huang, Mianli; Liu, Ping

    2015-10-01

    Single-crystal-like TiO2 hierarchical spheres, which own the advantages of both high energy facets and big surface area, were successfully synthesized via a biomolecule-inspire method. Exposed facets of these TiO2 samples were custom-designed by controlling the additive amount of L-lysine. The formation mechanism was preliminary studied. Single-crystal-like TiO2 seems to grow through a facile oriented growth mechanism with the help of the capping synergetic effect of SO42- and lysine. Only appropriate ratios of lysine to SO42- can help the formation of single-crystal-like anatase TiO2 with exposed {1 0 1}, {1 1 1} planes. Both high surface area and the exposure of peculiar planes can enhance photocatalytic activity.

  11. Size- and density-controlled synthesis of TiO2 nanodots on a substrate by phase-separation-induced self-assembly

    NASA Astrophysics Data System (ADS)

    Luo, Ming; Cheng, Kui; Weng, Wenjian; Song, Chenlu; Du, Piyi; Shen, Ge; Xu, Gang; Han, Gaorong

    2009-05-01

    This work presents a facile way, i.e. phase-separation-induced self-assembly, to prepare TiO2 nanodots on a substrate. This method induces convective flow in a spin-coated titanium tetrabutoxide (TBOT)/polyvinyl pyrrolidone (PVP)/ethanol liquid film through the Marangoni effect and turns TBOT into crystalline TiO2 nanodots on a substrate after calcination. The size and density of the TiO2 nanodots can be finely tailored by controlling the concentrations of TBOT and PVP in the precursor sol. The TiO2 nanodot-deposited surface showed a hydrophilic characteristic and the wettability was obviously improved by increasing nanodot size.

  12. Synthesis of double-shelled sea urchin-like yolk-shell Fe3O4/TiO2/Au microspheres and their catalytic applications

    NASA Astrophysics Data System (ADS)

    Li, Jie; Tan, Li; Wang, Ge; Yang, Mu

    2015-03-01

    Double-shelled sea urchin-like yolk-shell Fe3O4/TiO2/Au microspheres were successfully synthesized through loading Au nanoparticles on the Fe3O4/TiO2 support by a in situ reduction of HAuCl4 with NaBH4 aqueous solution. These microspheres possess tunable cavity size, adjustable shell layers, high structural stability and large specific surface area. The Au nanoparticles of approximately 5 nm in diameter were loaded both on the TiO2 nanofibers and inside the cavities of sea urchin-like yolk-shell Fe3O4/TiO2 microspheres. The sea urchin-like structure composed of TiO2 nanofibers ensure the good distribution of the Au nanoparticles, while the novel double-shelled yolk-shell structure guarantees the high stability of the Au nanoparticles. Furthermore, the Fe3O4 magnetic core facilitates the convenient recovery of the catalyst by applying an external magnetic field. The Fe3O4/TiO2/Au microspheres display excellent activities and recycling properties in the catalytic reduction of 4-nitrophenol (4-NP): the rate constant is 1.84 min-1 and turnover frequency is 5457 h-1.

  13. Nanocrystalline TiO2 films containing sulfur and gold: Synthesis, characterization and application to immobilize and direct electrochemistry of cytochrome c

    NASA Astrophysics Data System (ADS)

    Rafiee-Pour, Hossain-Ali; Hamadanian, Masood; Koushali, Samaneh Katebi

    2016-02-01

    In this paper, nanoporous titanium dioxide (TiO2) film was used for cytochrome c (cyt c) immobilization as an electrode substrate for electrochemical redox activity of the adsorbed cyt c. The result of cyclic voltammetry exhibited a pair of well-defined and quasi-reversible peaks for direct electron transfer of cyt c (formal potential [E0‧ = (Epa + Epc)/2] of 53 mV versus Ag/AgCl). In addition the effect of metal and nonmetal ions (Au, S) co-doping on the efficiency of TiO2 nanoparticles (prepared by combining sol-gel and photo-deposition methods) on the cyt c immobilization process was investigated. The results exhibited that the Au, S-co-doped TiO2 (Au/S-TiO2) with a spheroidal shape demonstrates a smaller grain size than the pure TiO2. Meanwhile, the UV-vis DRS of Au/S-TiO2 showed a considerable red shift to the visible region. As a result, it was found that 4% Au/0.1% S-TiO2 had the highest efficiency for cytochrome c immobilization. The results showed that the peak currents were higher after the annealing of the TiO2 film. This observation suggests that the use of TiO2 films may be advantageous for the development of nanoporous biosensors employing reductive electrochemistry.

  14. Synthesis of double-shelled sea urchin-like yolk-shell Fe3O4/TiO2/Au microspheres and their catalytic applications.

    PubMed

    Li, Jie; Tan, Li; Wang, Ge; Yang, Mu

    2015-03-01

    Double-shelled sea urchin-like yolk-shell Fe3O4/TiO2/Au microspheres were successfully synthesized through loading Au nanoparticles on the Fe3O4/TiO2 support by a in situ reduction of HAuCl4 with NaBH4 aqueous solution. These microspheres possess tunable cavity size, adjustable shell layers, high structural stability and large specific surface area. The Au nanoparticles of approximately 5 nm in diameter were loaded both on the TiO2 nanofibers and inside the cavities of sea urchin-like yolk-shell Fe3O4/TiO2 microspheres. The sea urchin-like structure composed of TiO2 nanofibers ensure the good distribution of the Au nanoparticles, while the novel double-shelled yolk-shell structure guarantees the high stability of the Au nanoparticles. Furthermore, the Fe3O4 magnetic core facilitates the convenient recovery of the catalyst by applying an external magnetic field. The Fe3O4/TiO2/Au microspheres display excellent activities and recycling properties in the catalytic reduction of 4-nitrophenol (4-NP): the rate constant is 1.84 min(-1) and turnover frequency is 5457 h(-1). PMID:25665732

  15. Selective aerobic oxidation mediated by TiO(2) photocatalysis.

    PubMed

    Lang, Xianjun; Ma, Wanhong; Chen, Chuncheng; Ji, Hongwei; Zhao, Jincai

    2014-02-18

    TiO2 is one of the most studied metal oxide photocatalysts and has unparal-leled efficiency and stability. This cheap, abundant, and non-toxic material has the potential to address future environmental and energy concerns. Understanding about the photoinduced interfacial redox events on TiO2 could have profound effect on the degradation of organic pollutants, splitting of H2O into H2 and O2, and selective redox organic transformations. Scientists traditionally accept that for a semiconductor photocatalyst such as TiO2 under the illumination of light with energy larger than its band gap, two photocarriers will be created to carry out their independent reduction and oxidation processes. However, our recent discoveries indicate that it is the concerted rather than independent effect of both photocarriers of valence band hole (hvb(+)) and conduction band electron (ecb(-)) that dictate the product formation during interfacial oxidation event mediated by TiO2 photocatalysis. In this Account, we describe our recent findings on the selective oxidation of organic substrates with O2 mediated by TiO2 photocatalysis. The transfer of O-atoms from O2 to the corresponding products dominates the selective oxidation of alcohols, amines, and alkanes mediated by TiO2 photocatalysis. We ascribe this to the concerted effect of both hvb(+) and ecb(-) of TiO2 in contribution to the oxidation products. These findings imply that O2 plays a unique role in its transfer into the products rather than independent role of ecb(-) scavenger. More importantly, ecb(-) plays a crucial role to ensure the high selectivity for the oxygenation of organic substrates. We can also use the half reactions such as those of the conduction band electron of TiO2 for efficient oxidation reactions with O2. To this end, efficient selective oxidation of organic substrates such as alcohols, amines, and aromatic alkanes with O2 mediated by TiO2 photocatalysis under visible light irradiation has been achieved. In summary, the concerted effect of hvb(+) and ecb(-) to implement one oxidation event could pave the way for selective oxofunctionalization of organic substrates with O2 by metal oxide photocatalysis. Furthermore, it could also deepen our understanding on the role of O2 and the elusive nature of oxygen species at the interface of TiO2, which, in turn, could shed new light on avant-garde photocatalytic selective redox processes in addressing the energy and environmental challenges of the future. PMID:24164388

  16. Rapid flame synthesis of internal Mo6+ doped TiO2 nanocrystals in situ decorated with highly dispersed MoO3 clusters for lithium ion storage

    NASA Astrophysics Data System (ADS)

    Li, Yunfeng; Hu, Yanjie; Shen, Jianhua; Jiang, Haibo; Min, Guoquan; Qiu, Shengjie; Song, Zhitang; Sun, Zhuo; Li, Chunzhong

    2015-11-01

    The rational design of nanoheterostructured materials has attracted much attention because of its importance for developing highly efficient LIBs. Herein, we have demonstrated that internal Mo6+ doped TiO2 nanocrystals in situ decorated with highly dispersed MoO3 clusters have been realized by a facile and rapid flame spray pyrolysis route for electrochemical energy storage. In such intriguing nanostructures, internal Mo6+ doping can improve the conductivity of electrode materials and facilitate rapid Li+ intercalation and ion transport and the heteroassembly of highly dispersed ultrafine MoO3 clusters with excellent electrochemical activity endows the TiO2 with extra Li+ ion storage ability as well as incorporates Mo6+. Thus, the as-prepared nanohybrid electrodes exhibit a high specific capacity and superior rate capability due to the maximum synergetic effect of TiO2, Mo6+ and ultrafine MoO3 clusters. Moreover, the aerosol flame process with a unique temperature gradient opens a new strategy to design novel hybrid materials by the simultaneous doping and heteroassembly engineering for next-generation LIBs.The rational design of nanoheterostructured materials has attracted much attention because of its importance for developing highly efficient LIBs. Herein, we have demonstrated that internal Mo6+ doped TiO2 nanocrystals in situ decorated with highly dispersed MoO3 clusters have been realized by a facile and rapid flame spray pyrolysis route for electrochemical energy storage. In such intriguing nanostructures, internal Mo6+ doping can improve the conductivity of electrode materials and facilitate rapid Li+ intercalation and ion transport and the heteroassembly of highly dispersed ultrafine MoO3 clusters with excellent electrochemical activity endows the TiO2 with extra Li+ ion storage ability as well as incorporates Mo6+. Thus, the as-prepared nanohybrid electrodes exhibit a high specific capacity and superior rate capability due to the maximum synergetic effect of TiO2, Mo6+ and ultrafine MoO3 clusters. Moreover, the aerosol flame process with a unique temperature gradient opens a new strategy to design novel hybrid materials by the simultaneous doping and heteroassembly engineering for next-generation LIBs. Electronic supplementary information (ESI) available: SEM, TEM images, XRD patterns, EDX and the discharge-charge capacity of Mo6+-TiO2/MoO3 NHs, TiO2, and Mo6+-TiO2/MoO3 NHs after sulfuration, and nitrogen adsorption/desorption isotherms of Mo6+-TiO2/MoO3 NHs. See DOI: 10.1039/c5nr05586e

  17. Synthesis of Hierarchical (BiO)2CO3 Nanosheets Microspheres toward Efficient Photocatalystic Reduction of CO2 into CO

    NASA Astrophysics Data System (ADS)

    Yang, Huohai; Bai, Yang; Chen, Ting; Shi, Xian; Zhu, Yu-chuan

    2016-04-01

    In this paper, hierarchical (BiO)2CO3 nanosheets microspheres were synthesized with dry ice as carbon source, and characterized by X-ray diffraction (XRD) patterns, X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), high-resolution transmission electron microscopy (HRTEM) and UV-vis diffuse reflectance spectra (DRS). The photocatalytic results showed that (BiO)2CO3 display much higher photocatalytic activity than BiOCl and TiO2 for photocatalystic reduction of CO2 under UV-visible light. The photocatalytic mechanism study revealled that (BiO)2CO3 display better separation efficiency of photoinduced charge carriers due to the large interlayer spacing (1.3675 nm).

  18. Graphene oxide nanosheets as an effective template for the synthesis of porous TiO2 film in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Wang, Ping; He, Fenglong; Wang, Jin; Yu, Huogen; Zhao, Li

    2015-12-01

    Template method by using various organic components as the pore-forming agent is an effective strategy for the preparation of various porous inorganic materials. After high-temperature calcination in air, the organic components can be in situ decomposed into the gaseous CO2, resulting in the formation of porous structures in inorganic materials. In addition to the well-known organic components, it is highly required to develop new and simple carbon-containing template to prepare porous inorganic nanostructures. In this study, graphene oxide (GO) nanosheets were used as a new template for the preparation of porous TiO2 film photoelectrode, which can be applied in dye-sensitized solar cells (DSSCs). The porous TiO2 film was fabricated via a three-step method, including the initially homogeneous grafting of GO nanosheets on the TiO2 surface (TiO2-GO), the preparation of TiO2-GO film using blade method and final formation of porous structure after the in situ removal of GO by high-temperature calcination. The effect of GO content on photoelectric conversion performance of the as-fabricated DSSCs was investigated. It was found that the conversion efficiency of DSSC based on porous TiO2-GO (0.75%) film reached up to a maximum value (4.65%), which was much higher than that of DSSC based on nonporous TiO2 film (4.01%). The enhanced conversion efficiency can be attributed to the formation of more porous structures caused by the GO nanosheets after high-temperature calcination. This work may provide a new insight for preparing other porous structured materials.

  19. TiO2 nanoparticles induce DNA double strand breaks and cell cycle arrest in human alveolar cells.

    PubMed

    Kansara, Krupa; Patel, Pal; Shah, Darshini; Shukla, Ritesh K; Singh, Sanjay; Kumar, Ashutosh; Dhawan, Alok

    2015-03-01

    TiO2 nanoparticles (NPs) have the second highest global annual production (∼3000 tons) among the metal-containing NPs. These NPs are used as photocatalysts for bacterial disinfection, and in various other consumer products including sunscreen, food packaging, therapeutics, biosensors, surface cleaning agents, and others. Humans are exposed to these NPs during synthesis (laboratory), manufacture (industry), and use (consumer products, devices, medicines, etc.), as well as through environmental exposures (disposal). Hence, there is great concern regarding the health effects caused by exposure to NPs and, in particular, to TiO2 NPs. In the present study, the genotoxic potential of TiO2 NPs in A549 cells was examined, focusing on their potential to induce ROS, different types of DNA damage, and cell cycle arrest. We show that TiO2 NPs can induce DNA damage and a corresponding increase in micronucleus frequency, as evident from the comet and cytokinesis-block micronucleus assays. We demonstrate that DNA damage may be attributed to increased oxidative stress and ROS generation. Furthermore, genomic and proteomic analyses showed increased expression of ATM, P53, and CdC-2 and decreased expression of ATR, H2AX, and Cyclin B1 in A549 cells, suggesting induction of DNA double strand breaks. The occurrence of double strand breaks was correlated with cell cycle arrest in G2/M phase. Overall, the results indicate the potential for genotoxicity following exposure to these TiO2 NPs, suggesting that use should be carefully monitored. PMID:25524809

  20. Tuning Phase Composition of TiO2 by Sn(4+) Doping for Efficient Photocatalytic Hydrogen Generation.

    PubMed

    Wang, Fenglong; Ho, Jie Hui; Jiang, Yijiao; Amal, Rose

    2015-11-01

    The anatase-rutile mixed-phase photocatalysts have attracted extensive research interest because of the superior activity compared to their single phase counterparts. In this study, doping of Sn(4+) ions into the lattice of TiO2 facilitates the phase transformation from anatase to rutile at a lower temperature while maintaining the same crystal sizes compared to the conventional annealling approach. The mass ratios between anatase and rutile phases can be easily manipulated by varying the Sn-dopant content. Characterization results reveal that the Sn(4+) ions entered into the lattice of TiO2 by substituting some of the Ti(4+) ions and distributed evenly in the matrix of TiO2. The substitution induced the distortion of the lattice structure, which realized the phase transformation from anatase to rutile at a lower temperature and the close-contact phase junctions were consequently formed between anatase and rutile, accounting for the efficient charge separations. The mixed-phase catalysts prepared by doping Sn(4+) ions into the TiO2 exhibit superior activity for photocatalytic hydrogen generation in the presence of Au nanoparticles, relatively to their counterparts prepared by the conventional annealling at higher temperatures. The band allignment between anatase and rutile phases is established based on the valence band X-ray photoelectron spectra and diffuse reflectance spectra to understand the spatial charge separation process at the heterojunction between the two phases. The study provides a new route for the synthesis of mixed-phase TiO2 catalysts for photocatalytic applications and advances the understanding on the enhanced photocatalytic properties of anatase-rutile mixtures. PMID:26444102

  1. TiO2@C Core-Shell Nanoparticles Formed by Polymeric Nano-Encapsulation

    NASA Astrophysics Data System (ADS)

    Vasei, Mitra; Das, Paramita; Cherfouh, Hayet; Marsan, Benoit; Claverie, Jerome

    2014-07-01

    TiO2 semiconducting nanoparticles are known to be photocatalysts of moderate activity due to their high band-gap and high rate of electron-hole recombination. The formation of a shell of carbon around the core of TiO2, i.e. the formation of TiO2@C nanoparticles, is believed to partly alleviate these problems. It is usually achieved by a hydrothermal treatment in a presence of a sugar derivative. We present here a novel method for the formation of highly uniform C shell around TiO2 nanoparticles. For this purpose, TiO2 nanoparticles were dispersed in water using an oligomeric dispersant prepared by Reversible Addition-Fragmentation chain Transfer (RAFT) polymerization. Then the nanoparticles were engaged into an emulsion polymerization of acrylonitrile, resulting in the formation of a shell of polyacrylonitrile (PAN) around each TiO2 nanoparticles. Upon pyrolisis, the PAN was transformed into carbon, resulting in the formation of TiO2@C nanoparticles. The structure of the resulting particles was elucidated by X-Ray diffraction, FTIR, UV-VIS and Raman spectroscopy as well as TEM microscopy. Preliminary results about the use of the TiO2@C particles as photocatalysts for the splitting of water are presented. They indicate that the presence of the C shell is responsible for a significant enhancement of the photocurrent.

  2. TiO2@C core-shell nanoparticles formed by polymeric nano-encapsulation

    PubMed Central

    Vasei, Mitra; Das, Paramita; Cherfouth, Hayet; Marsan, Benoît; Claverie, Jerome P.

    2014-01-01

    TiO2 semiconducting nanoparticles are known to be photocatalysts of moderate activity due to their high band-gap and high rate of electron-hole recombination. The formation of a shell of carbon around the core of TiO2, i.e., the formation of TiO2@C nanoparticles, is believed to partly alleviate these problems. It is usually achieved by a hydrothermal treatment in a presence of a sugar derivative. We present here a novel method for the formation of highly uniform C shell around TiO2 nanoparticles. For this purpose, TiO2 nanoparticles were dispersed in water using an oligomeric dispersant prepared by Reversible Addition-Fragmentation chain Transfer (RAFT) polymerization. Then the nanoparticles were engaged into an emulsion polymerization of acrylonitrile, resulting in the formation of a shell of polyacrylonitrile (PAN) around each TiO2 nanoparticles. Upon pyrolysis, the PAN was transformed into carbon, resulting in the formation of TiO2@C nanoparticles. The structure of the resulting particles was elucidated by X-Ray diffraction, FTIR, UV-VIS and Raman spectroscopy as well as TEM microscopy. Preliminary results about the use of the TiO2@C particles as photocatalysts for the splitting of water are presented. They indicate that the presence of the C shell is responsible for a significant enhancement of the photocurrent. PMID:25072054

  3. Enhanced photocatalytic discoloration of acid fuchsine wastewater by TiO2/schorl composite catalyst.

    PubMed

    Xu, Huan-Yan; Zheng, Zhuo; Mao, Gui-Jie

    2010-03-15

    The existence of 'electrostatic poles' on the schorl surface encouraged us to apply schorl for a TiO(2) support. TiO(2)/schorl composite photocatalyst was prepared and characterized by XRD, SEM and UV/DRS, and their photocatalytic activity was evaluated by discoloration of acid fuchsine (AF). The results indicated that TiO(2) existed in the form of anatase and was well deposited and enwrapped on the schorl surface. The absorption edge of TiO(2)/schorl exhibited a slight red shift in the UV/DRS spectra, compared with that of pure TiO(2). The photocatalytic activity of TiO(2)/schorl for AF discoloration was higher than that of pure TiO(2). The AF discoloration ratio approached 100% after irradiation time of 12h. The optimum photocatalyst was found to be that containing 4.76 wt.% of schorl and sintered at 550 degrees C. The reaction followed pseudo-first-order kinetics, discussed by the Langmuir-Hinshelwood model. Hypotheses were proposed to interpret the mechanism for the enhanced photocatalytic activity of TiO(2)/schorl. PMID:19926396

  4. TiO2@C core-shell nanoparticles formed by polymeric nano-encapsulation.

    PubMed

    Vasei, Mitra; Das, Paramita; Cherfouth, Hayet; Marsan, Benoît; Claverie, Jerome P

    2014-01-01

    TiO2 semiconducting nanoparticles are known to be photocatalysts of moderate activity due to their high band-gap and high rate of electron-hole recombination. The formation of a shell of carbon around the core of TiO2, i.e., the formation of TiO2@C nanoparticles, is believed to partly alleviate these problems. It is usually achieved by a hydrothermal treatment in a presence of a sugar derivative. We present here a novel method for the formation of highly uniform C shell around TiO2 nanoparticles. For this purpose, TiO2 nanoparticles were dispersed in water using an oligomeric dispersant prepared by Reversible Addition-Fragmentation chain Transfer (RAFT) polymerization. Then the nanoparticles were engaged into an emulsion polymerization of acrylonitrile, resulting in the formation of a shell of polyacrylonitrile (PAN) around each TiO2 nanoparticles. Upon pyrolysis, the PAN was transformed into carbon, resulting in the formation of TiO2@C nanoparticles. The structure of the resulting particles was elucidated by X-Ray diffraction, FTIR, UV-VIS and Raman spectroscopy as well as TEM microscopy. Preliminary results about the use of the TiO2@C particles as photocatalysts for the splitting of water are presented. They indicate that the presence of the C shell is responsible for a significant enhancement of the photocurrent. PMID:25072054

  5. In situ synthesis of TiO2/SnO(x)-Au ternary heterostructures effectively promoting visible-light photocatalysis.

    PubMed

    Dong, Zhao; Wu, Minghua; Wu, Jiaying; Ma, Yuanyuan; Ma, Zhenzhen

    2015-07-14

    TiO2/SnOx-Au ternary heterostructures were successfully fabricated via a simple in situ reduction of AuCl4(-) on TiO2 surfaces pre-modified with Sn(2+). The samples were characterized by XRD, TEM, XPS, N2 physical absorption and UV-vis diffuse reflectance spectra. Photocatalytic activity toward degradation of methylene blue (MB) aqueous solution under visible light irradiation was investigated. The results suggested that the highly dispersive and ultrafine Au nanoparticles (NPs) covered with SnOx were deposited onto the surface of TiO2. The heterostructures significantly enhanced the photocatalytic activity compared with the traditional TiO2/Au sample prepared by the impregnation method and also enhanced the activity more than the binary TiO2/SnOx sample. Moreover, the size of the Au NPs could be well controlled by simply tuning the dosage of HAuCl4, and the optimized catalytic activity of the ternary heterostructures was obtained when the dosage of Au was 1% and the Au particle size was ∼2.65 nm. The enhancement of photocatalytic performance could be attributed to the surface plasmon resonance effect of the Au NPs and the electron-sink function of the SnOx, which improve the optical absorption properties as well as photoinduced charge carrier separation, synergistically facilitating the photocatalysis. PMID:26061220

  6. Synthesis and characterization of photochromic Ag-embedded TiO2 nanocomposite thin films by non-reactive RF-magnetron sputter deposition

    NASA Astrophysics Data System (ADS)

    Zuo, J.; Keil, P.; Grundmeier, G.

    2012-07-01

    Ag-embedded TiO2 nanocomposite thin film with reversible photochromic properties were prepared by layer-by-layer non-reactive RF-magnetron sputtering. Films were produced in Ar/O2 and pure Ar atmospheres. In the oxidizing regime, a diffusion of Ag from the film volume to the outer film surface was observed. Therefore, pure Ar plasma was applied in the deposition of TiO2. The electronic and optical properties of the TiO2 film were almost not affected by the presence of oxygen. Transmission electron microscopy (TEM) and reflection mode X-ray absorption spectroscopy (XAS) were performed to study the morphology, crystal structure and chemical state of the embedded Ag nanoparticles before and after the annealing step. Annealing of the film led to the crystallization of the TiO2 matrix. Moreover, the Ag nanoparticles in the film underwent Ostwald ripening leading to particle agglomerate. No oxidation of the embedded Ag during the sputter deposition and subsequent annealing process was found as confirmed by XAS measurements. The non-reactive RF-magnetron method is believed to avoid the energetic oxygen ions attack to Ag during the deposition of Ag-embedded TiO2 nanocomposite and thus the films are expected to have better optical properties and long-term stability.

  7. Synthesis and photoinduced charge-transfer properties of a ZnFe2O4-sensitized TiO2 nanotube array electrode.

    PubMed

    Li, Xinyong; Hou, Yang; Zhao, Qidong; Chen, Guohua

    2011-03-15

    TiO2 nanotube arrays sensitized with ZnFe2O4 nano-crystals were successfully fabricated by a two-step process of anodization and a vacuum-assistant impregnation method followed by annealing. The sample was studied by an environmental scanning electron microscope, a transmission electron microscope, energy-dispersive X-ray analysis, and X-ray diffraction to characterize its morphology and chemical composition. Ultraviolet-visible (UV-vis) absorption spectra and a photoelectrochemical measurement approved that the ZnFe2O4 sensitization enhanced the probability of photoinduced charge separation and extended the range of the photoresponse of TiO2 nanotube arrays from the UV to visible region. In addition, the behaviors of photoinduced charge transfer in a TiO2 nanotube array electrode before and after sensitization by ZnFe2O4 nanocrystals were comparatively studied. The photoluminescence of the TiO2 nanotube array electrode became suppressed, and the surface photovoltage responses on the spectrum were significantly enhanced after the introduction of ZnFe2O4 nanocrystals. The transfer dynamics of the photoinduced charges were observed directly by a transient photovoltage measurement, which revealed a fast charge separation at the interface between ZnFe2O4 nanocrystals and TiO2 nanotubes upon light excitation. PMID:21332125

  8. Modelling materials for solar fuel synthesis by artificial photosynthesis; predicting the optical, electronic and redox properties of photocatalysts.

    PubMed

    Guiglion, Pierre; Berardo, Enrico; Butchosa, Cristina; Wobbe, Milena C C; Zwijnenburg, Martijn A

    2016-02-24

    In this mini-review, we discuss what insight computational modelling can provide into the working of photocatalysts for solar fuel synthesis and how calculations can be used to screen for new promising materials for photocatalytic water splitting and carbon dioxide reduction. We will extensively discuss the different relevant (material) properties and the computational approaches (DFT, TD-DFT, GW/BSE) available to model them. We illustrate this with examples from the literature, focussing on polymeric and nanoparticle photocatalysts. We finish with a perspective on the outstanding conceptual and computational challenges. PMID:26808228

  9. Modelling materials for solar fuel synthesis by artificial photosynthesis; predicting the optical, electronic and redox properties of photocatalysts

    NASA Astrophysics Data System (ADS)

    Guiglion, Pierre; Berardo, Enrico; Butchosa, Cristina; Wobbe, Milena C. C.; Zwijnenburg, Martijn A.

    2016-02-01

    In this mini-review, we discuss what insight computational modelling can provide into the working of photocatalysts for solar fuel synthesis and how calculations can be used to screen for new promising materials for photocatalytic water splitting and carbon dioxide reduction. We will extensively discuss the different relevant (material) properties and the computational approaches (DFT, TD-DFT, GW/BSE) available to model them. We illustrate this with examples from the literature, focussing on polymeric and nanoparticle photocatalysts. We finish with a perspective on the outstanding conceptual and computational challenges.

  10. A new preparation of doped photocatalytic TiO2 anatase nanoparticles: a preliminary study for the removal of pollutants in confined museum areas

    NASA Astrophysics Data System (ADS)

    Greco, Enrico; Ciliberto, Enrico; Cirino, Antonio M. E.; Capitani, Donatella; Di Tullio, Valeria

    2016-05-01

    The use of nanotechnology in conservation is a relatively new concept. Usually, classical cleanup methods take into account the use of other chemicals: On the one hand they help the environment destroying pollutants, but on the other hand they often become new pollutants. Among the new oxidation methods called advanced oxidation processes, heterogeneous photocatalysis has appeared an emerging technology with several economic and environmental advantages. A new sol-gel method of synthesis of TiO2 anatase is reported in this work using lithium and cobalt (II) salts. The activation energy of the doped photocatalyst was analyzed by solid-state UV-Vis spectrophotometer. The mobility of Li ions on TiO2 NPs surface was studied by 7Li MAS NMR spectroscopy. Use of doped nanotitania is suggested from authors for the removal of pollutants in confined areas containing goods that must be preserved from decomposition and aging phenomena.

  11. Studies on effect of temperature on synthesis of hierarchical TiO2 nanostructures by surfactant free single step hydrothermal route and its photoelectrochemical characterizations.

    PubMed

    Burungale, V V; Satale, V V; More, A J; Sharma, K K K; Kamble, A S; Kim, J H; Patil, P S

    2016-05-15

    Exotic hierarchical rutile TiO2 nanostructures are synthesized by surfactant free single step hydrothermal route. The effect of reaction temperature, ranging from 140°C to 200°C on the properties of the synthesized rutile-TiO2 is investigated. The synthesized rutile-TiO2 nanostructures are characterized using X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy, UV-vis spectroscopy and scanning electron microscopy techniques. The deposited TiO2 samples are found to be photoelectrochemically active and the best photoelectrochemical performance (0.95±0.05%) is obtained for the sample deposited at 180°C. A possible temperature dependent growth mechanism resulting in photochemically active TiO2 nanostructure thin films is proposed. PMID:26939074

  12. A novel approach for the synthesis of visible-light-active nanocrystalline N-doped TiO2 photocatalytic hydrosol

    NASA Astrophysics Data System (ADS)

    Liu, Wen-Xiu; Jiang, Peng; Shao, Wei-Na; Zhang, Jun; Cao, Wen-Bin

    2014-07-01

    A visible-light-active nitrogen doped nanocrystalline titanium dioxide (N-TiO2) hydrosol was prepared by precipitation-peptization method and following with hydrothermal crystallization at 110 °C holding for 6 h. XPS results show that nitrogen ions have been doped into the TiO2 lattice successfully and the UV-Vis absorption spectra indicate that the light absorption edge of the N-doped TiO2 has been red-shifted into visible light region. The photocatalytic performance of the N-doped TiO2 thin film prepared from the synthesized hydrosol was evaluated by photodegrading the gaseous formaldehyde (HCHO) under visible light irradiation. The photodegradation ratio of HCHO reached up to 90% within 24 h and the degradation ratio was stable for ten degradation cycles, indicating the prepared hydrosol has good reusable performance in photodegrading gaseous pollutants.

  13. Electron transfers in a TiO2-containing MOR zeolite: synthesis of the nanoassemblies and application using a probe chromophore molecule.

    PubMed

    Legrand, A; Moissette, A; Hureau, M; Casale, S; Massiani, P; Vezin, H; Mamede, A S; Batonneau-Gener, I

    2014-07-14

    New assemblies constituted by a microporous matrix of mordenite (MOR) zeolite on which TiO2 nanoclusters are deposited were synthesized using ionic oxalate complexes and TiCl3 titanium precursors. The samples were used to investigate the transfer of electrons produced by spontaneous or photo-induced ionization of a guest molecule (t-stilbene, t-St) occluded in the porous volume towards the conduction band of a conductive material placed nearby, in the pores or at least close to their entrance. The reaction mechanisms were compared in these Ti-rich solids and in a Ti-free mordenite sample. The characterization by XRD, N2 physisorption, TEM, XPS and DRIFT spectroscopy of the supramolecular TiO2/MOR systems before t-St adsorption showed the preservation of the crystalline structure after Ti addition and thermal activation treatments. They also revealed that titanium is mainly located at the external surface of the zeolite grains, in the form of highly dispersed and/or aggregated anatase. After incorporation of the guest molecule in the new assemblies, diffuse reflectance UV-visible and EPR spectroscopies indicate that the electron transfer processes are similar with and without TiO2 but strongly stabilized t-St?(+) radicals are detected in the TiO2-MOR samples whereas such species were never detected earlier in TiO2-free mordenite using these techniques. The stabilization process is found to be more efficient in the sample prepared with TiCl3 as the precursor than with titanium oxalates. It is proposed that the proximity of TiO2 with the formed t-St?(+) radicals provokes the stabilization of the radical through capture of the ejected electron by the semi-conductor and that confinement effects can also play a role. PMID:24866869

  14. Remarkable Charge Separation and Photocatalytic Efficiency Enhancement through Interconnection of TiO2 Nanoparticles by Hydrothermal Treatment.

    PubMed

    Ide, Yusuke; Inami, Nozomu; Hattori, Hideya; Saito, Kanji; Sohmiya, Minoru; Tsunoji, Nao; Komaguchi, Kenji; Sano, Tsuneji; Bando, Yoshio; Golberg, Dmitri; Sugahara, Yoshiyuki

    2016-03-01

    Although tremendous effort has been directed to synthesizing advanced TiO2 , it remains difficult to obtain TiO2 exhibiting a photocatalytic efficiency higher than that of P25, a benchmark photocatalyst. P25 is composed of anatase, rutile, and amorphous TiO2 particles, and photoexcited electron transfer and subsequent charge separation at the anatase-rutile particle interfaces explain its high photocatalytic efficiency. Herein, we report on a facile and rational hydrothermal treatment of P25 to selectively convert the amorphous component into crystalline TiO2 , which is deposited between the original anatase and rutile particles to increase the particle interfaces and thus enhance charge separation. This process produces a new TiO2 exhibiting a considerably enhanced photocatalytic efficiency. This method of synthesizing this TiO2 , inspired by a recently burgeoning zeolite design, promises to make TiO2 applications more feasible and effective. PMID:26891152

  15. Photocatalytic decomposition of bisphenol A in water using composite TiO2-zeolite sheets prepared by a papermaking technique.

    PubMed

    Fukahori, Shuji; Ichiura, Hideaki; Kitaoka, Takuya; Tanaka, Hiroo

    2003-03-01

    Titanium dioxide (TiO2) photocatalyst and zeolite adsorbent were made into a paper-like composite by a papermaking technique using pulp and ceramic fibers as sheet matrix. The photocatalytic performance for the degradation of bisphenol A (BPA) dissolved in water was investigated under UV irradiation. The TiO2 sheet prepared was easier to handle than the original TiO2 powders in aqueous media. The TiO2 sheet could decompose the BPA under UV irradiation, although at a lower degradation efficiency than the TiO2 suspension. The TiO2-free zeolite sheet could not remove the BPA from water completely because of its adsorption equilibrium. Furthermore, the composite TiO2-zeolite sheets exhibited a higher efficiency for BPA removal than the zeolite-free TiO2 sheets, the efficiency of the former being equivalent to that of the TiO2 suspension. The enhancement in removal efficiency was not attributed to the simple adsorption of BPA on zeolite but rather to the synergistic effect obtained through the combined use of TiO2 photocatalyst and zeolite adsorbent in the paper-like composite sheet, which is believed to accelerate the BPA photodegradation in water. PMID:12666940

  16. Synthesis of surface plasmon resonance (SPR) triggered Ag/TiO2 photocatalyst for degradation of endocrine disturbing compounds

    NASA Astrophysics Data System (ADS)

    Leong, Kah Hon; Gan, Bee Ling; Ibrahim, Shaliza; Saravanan, Pichiah

    2014-11-01

    Surface deposition of silver nanoparticles (Ag NPs) onto the 100% anatase titania (Ag/TiO2) for evolution of surface plasmon resonance (SPR) was achieved sustainably with the assistance of solar energy. The preparation resulted in Ag/TiO2 photocatalyst with varied Ag depositions (0.5 wt%, 1.0 wt%, 3.0 wt% and 5.0 wt%). All obtained photocatalysts were characterized for the evolution of SPR via crystalline phase analysis, morphology, lattice fringes, surface area and pore size characteristics, chemical composition with chemical and electronic state, Raman scattering, optical and photoluminescence properties. The deposition of synthesized Ag NPs exhibited high uniformity and homogeneity and laid pathway for effective utilization of the visible region of electromagnetic spectrum through SPR. The depositions also lead for suppressing recombination rates of electron-hole. The photocatalytic evaluation was carried out by adopting two different class of endocrine disturbing compound (EDC) i.e., amoxicillin (pharmaceutical) and 2,4-dichlorophenol (pesticide) excited with artificial visible light source. Ag/TiO2 with Ag > 0.5 wt% exhibited significant degradation efficiency for both amoxicillin and 2,4-dichlorophenol. Thus synthesized Ag/TiO2 revealed the implication of plasmonics on TiO2 for the enhanced visible light photocatalytic activity.

  17. UV-vis light activated Ag decorated monodisperse TiO2 for treatment of pharmaceuticals in water

    EPA Science Inventory

    Recently, many researchers have made a lot of effort to utilize the visible light portion of the solar spectrum to activate TiO2 photocatalyst for environmental applications, such as water, air, and soil remediation. The deposition of noble metals on photocatalysts is of great in...

  18. Enhanced photocatalytic properties of nanoclustered P-doped TiO2 films deposited by advanced atmospheric plasma jet.

    PubMed

    Seo, Hyung-Kee; Elliott, C Michael; Ansari, S G

    2012-09-01

    A facile preparation of P-doped TiO2 nanoclusters onto fluorine-doped tin oxide (FTO) glass by an advanced atmospheric plasma jet (AAP jet) is reported here. Titanium tetrachloride (TiCl4) and phosphorus trichloride (PCl3) were used as precursors. Radio frequencies were used to generate plasma at fix powder with Argon as carrier gas. Films were deposited at 500 degrees C for 10 minutes. For comparison, as-prepared, annealed and deposited at 500 degrees C samples were studied for chemical/physical properties by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Optical properties were studied by using UV-Vis spectroscopy which indicated a reduction in optical band with P-doping. The rhodamine B (Rh-B) degradation by P-doped TiO2 deposited at 500 degrees C showed enhanced degradation efficiency than that of annealed TiO2. The suggested deposition method appears to be suitable for the synthesis of photocatalyst with proper control over dopants. PMID:23035425

  19. Efficient Photocatalytic Activities of TiO2 Hollow Fibers with Mixed Phases and Mesoporous Walls

    PubMed Central

    Hou, Huilin; Shang, Minghui; Wang, Lin; Li, Wenge; Tang, Bin; Yang, Weiyou

    2015-01-01

    Currently, Degussa P25, with the typical mixed phases of anatase and rutile TiO2, is widely applied as the commercial photocatalysts. However, there are still some of obstacles for the P25 nanoparticles with totally high photocatalytic activities, especially for the catalytic stability due to their inevitable aggregation of the nanoparticles when used as the photocatalysts. In the present work, we reported the exploration of a novel TiO2 photocatalyst, which could offer an ideal platform for synergetic combination of the mixed-phase composition, hollow architecture and mesoporous walls for the desired excellent photocatalytic efficiency and robust stability. The mesoporous TiO2 hollow nanofibers were fabricated via a facile single capillary electrospinning technique, in which the foaming agents were used for creating mesopores throughout the walls of the hollow fibers. The obtained hollow fibers exhibit a high purity and possess the mixed phases of 94.6% anatase and 5.4% rutile TiO2. As compared to P25, the as-fabricated mesoporous TiO2 hollow fibers exhibited much higher efficient photocatalytic activities and stabilities toward the hydrogen evolution with a rate of ~499.1 μmol g−1·h−1 and ~99.5% degradation Rhodamine B (RhB) in 60 min, suggesting their promising application in efficient photocatalysts. PMID:26470013

  20. Dependence of nitrogen doping on TiO 2 precursor annealed under NH 3 flow

    NASA Astrophysics Data System (ADS)

    Fang, Xiaoming; Zhang, Zhengguo; Chen, Qinglin; Ji, Hongbing; Gao, Xuenong

    2007-04-01

    N-doped TiO 2 photocatalysts were prepared by annealing two different precursors, P25 and a TiO 2 xerogel powder under NH 3/Ar flow at 500, 550, and 600 °C. The xerogel powder prepared by peptizing Ti(OH) 4 with HNO 3 was composed of nanoparticles and had large specific surface area. During the annealing process, the xerogel powder underwent increase in crystallinity, grain growth and phase transformation, whereas P25 did not show obvious changes. Compared with the N-doped TiO 2 photocatalysts from P25, the N-doped TiO 2 photocatalysts from the xerogel powder possessed higher concentrations of the substitutional nitrogen and exhibited more obvious absorption in the visible light region. The N-doped TiO 2 photocatalysts from the xerogel powder exhibited obvious visible-light activities for photodegrading methylene blue and the sample prepared at 500 °C achieved the best performance with a rate constant ( k) about 0.44 h -1, whereas those from P25 did not exhibit improved visible-light activities.

  1. Facile synthesis of hierarchical Ag3PO4/TiO2 nanofiber heterostructures with highly enhanced visible light photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Xie, Jinlei; Yang, Yefeng; He, Haiping; Cheng, Ding; Mao, Minmin; Jiang, Qinxu; Song, Lixin; Xiong, Jie

    2015-11-01

    Heterostructured semiconductor nanostructures have provoked great interest in the areas of energy, environment and catalysis. Herein, we report a novel hierarchical Ag3PO4/TiO2 heterostructure consisting of nearly spherical Ag3PO4 particles firmly coupled on the surface of TiO2 nanofibers (NFs). The construction of Ag3PO4/TiO2 heterostructure with tailored morphologies, compositions and optical properties was simply achieved via a facile and green synthetic strategy involving the electrospinning and solution-based processes. Owing to the synergetic effects of the components, the resulting hybrid heterostructures exhibited much improved visible light photocatalytic performance, which could degrade the RhB dye completely in 7.5 min. In addition, the coupling of Ag3PO4 particles with UV-light-sensitive TiO2 NFs enabled full utilization of solar energy and less consumption of noble metals, significantly appealing for their practical use in new energy sources and environmental issues. The developed synthetic strategy was considered to be applicable for the rational design and construction of other heterostructured catalysts.

  2. Template-free synthesis of hierarchical TiO2 hollow microspheres as scattering layer for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Rui, Yichuan; Wang, Linlin; Zhao, Jiachang; Wang, Hongzhi; Li, Yaogang; Zhang, Qinghong; Xu, Jingli

    2016-04-01

    Hierarchical TiO2 hollow microspheres were synthesized by a 2-step process consisting of thermal hydrolysis and subsequent solvothermal reaction. Quasi-monodispersed solid TiO2 microspheres aggregated by amorphous particles were firstly obtained by the controlled thermal hydrolysis of titanium sulfate, and then the solid structures transformed to hollow ones and crystallized during the subsequent solvothermal treatment. SEM and TEM images of the samples revealed that the morphological evolution was in perfect accordance with the inside-out Ostwald ripening mechanism. The rich porosity and unique hierarchical hollow structure endow the TiO2 microspheres with a large specific surface area of 108.0 m2 g-1. As an effective anode material for dye-sensitized solar cells, TiO2 hollow microspheres showed good capability of dye adsorption and strong light scattering, leading to a comparable energy conversion efficiency to the commercial 18NR-T transparent titania. Finally, a high efficiency of 7.84% was achieved for the bi-layer DSSC by coating the hollow microspheres on top of the 18NR-T titania as the light scattering layer.

  3. Laser synthesis of hierarchically organized nanostructured TiO2 films on microfibrous carbon paper substrate: Characterization and electrocatalyst supporting properties

    NASA Astrophysics Data System (ADS)

    Wang, Youling; Tabet-Aoul, Amel; Mohamedi, Mohamed

    2015-12-01

    Titanium dioxide is cheap, non-toxic, exhibits a high mechanical resistance, very stable in acidic and oxidative environments is being studied as alternative to carbon as catalyst support in low-temperature fuel cells. Herein, via pulsed laser deposition, various morphologies of TiO2 thin films are synthesized at room temperature onto conductive microfibrous carbon paper substrate, which is the type of substrate, employed in energy storage and conversion devices. TiO2 films deposited under vacuum and in the presence of mild pressure of oxygen are very smooth and dense. Instead, TiO2 films deposited in the presence of helium atmosphere are of porous structures and vertically aligned. An increase in the helium pressure leads to the formation of forest-like vertically aligned nanostructures. Micro-Raman spectroscopy reveals that the films are amorphous and of rutile phase. X-ray photoelectron spectroscopy shows that Ti is in fully oxidized state of Ti4+. The electrocatalytic supporting properties to Pt are investigated in H2SO4 and O2-saturated H2SO4 solution. It is found that regardless of the film morphology, all the synthesized TiO2 films dramatically increase the electroactive surface area of Pt and enhance its electroactivity towards oxygen reduction reaction as compared with bare Pt electrode.

  4. Visible Light-activated TiO2 photocatalytic Films; Synthesis, Characterization and Environmental Application for the Destruction of Microcystin-LR

    EPA Science Inventory

    Titanium dioxide (TiO2) photocatalysis has become one of the most effective advanced oxidation technologies (AOTs) for the treatment of persistent organic contaminants. To generate hydroxyl radicals, a non-selective, reactive oxidizing species and responsible for the oxidation of...

  5. Synthesis and photocatalytic activity of TiO2 nanowires in the degradation of p-aminobenzoic acid: A comparative study with a commercial catalyst.

    PubMed

    Soto-Vzquez, Loraine; Cotto, Mara; Ducong, Jos; Morant, Carmen; Mrquez, Francisco

    2016-02-01

    The photocatalytic degradation of p-aminobenzoic acid was studied using TiO2 nanowires as the catalyst synthesized through a hydrothermal procedure. The as-synthesized TiO2 nanowires were fully characterized by SEM, TEM, XRD and Raman with a very high surface area of 512m(2)g(-1). The photocatalytic degradation of p-aminobenzoic acid was carried out under 180min of constant radiation and the results were compared with P25 as commercial catalyst. Optimal experimental conditions were determined for TiO2 nanowires with a catalyst dosage of 1.0gL(-1) under acidic conditions with a 20?M p-aminobenzoic acid solution obtaining 95% of degradation. Under similar experimental conditions comparative studies were performed obtaining 98% of degradation when P25 is employed. In both systems, a pseudo first order reaction was found to provide the best correlations, with constant rates of 2.0נ10(-2)min(-1) and 2.4נ10(-2)min(-1) for TiO2 nanowires and P25, respectively. PMID:26610195

  6. Viable method for the synthesis of biphasic TiO2 nanocrystals with tunable phase composition and enabled visible-light photocatalytic performance.

    PubMed

    Boppella, Ramireddy; Basak, Pratyay; Manorama, Sunkara V

    2012-03-01

    Here we demonstrate a facile method to synthesize high-surface-area TiO(2) nanoparticles in aqueous-ethanol system with tunable brookite/rutile and brookite/anatase ratio possessing high surface area that exhibits enhanced photoactivity. Titanium tetrachloride (TiCl(4)) is used as the metal precursor of choice and the tuning of phase compositions are achieved by varying the water:ethanol ratio, used as mixed solvent system. The synthesized samples were characterized in detail using X-ray diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM), BET nitrogen sorption measurements, and UV-vis diffuse reflectance spectroscopy (UV-DRS). The photocatalytic activity of biphasic TiO(2) nanocrystals was evaluated by following the degradation kinetics of rhodamine-B dye in aqueous solution and under visible light. Mixed-phase TiO(2) nanostructures composing 83% brookite and 17% of rutile exhibited superior photoactivity when compared to Degussa P25 and phase-pure anatase nanocrystals. The exceptional photocatalytic activity of the synthesized nanostructures can be elucidated on the account of their large surface area and biphasic composition. On the basis of the detailed investigation reported herein, we conclude that tuning the ethanol volume in the mixed-solvent reaction system holds the key to tailor and control the final TiO(2) phase obtained. PMID:22339883

  7. Hydrothermal synthesis of TiO2 nanocrystals in different basic pHs and their applications in dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Anajafi, Z.; Marandi, M.; Taghavinia, N.

    2015-06-01

    In this research TiO2 nanocrystals with sizes about 11-70 nm were grown by hydrothermal method. The process was performed in basic autoclaving pH in the range of 8.0-12.0. The synthesized anatase phase TiO2 nanocrystals were then applied in the phtoanode of the dye sensitized solar cells. It was shown that the final average size of the nanocrystals was larger when the growth was carried out in higher autoclaving pHs. The photoanodes made of TiO2 nanocrystals prepared in the pHs of 8.0 and 9.0 represented low amounts of dye adsorption and light scattering. The performance of the corresponding dye sensitized solar cells was also not acceptable. Nevertheless, the energy conversion efficiency was better for the state of pH of 9.0. For the photoanodes made of TiO2 nanocrystals prepared at autoclaving pH of 10.0, the dye adsorption and light scattering were quite higher. The photovoltaic characteristics of the best cell in this state were 15.25 mA/cm2, 740 mV, 0.6 and 6.8% for the short-circuit current density, open-circuit voltage, fill factor and efficiency, respectively. The photoanodes composed of TiO2 nanocrystals prepared in autoclaving pHs of 11.0 and 12.0 demonstrated lower amount of dye adsorption and higher light scattering. This was quite considerable for the state of pH of 12.0. The energy conversion efficiencies were consequently decreased compared to that of the pH of 10.0. The optimum situation was finally discussed based on the nanocrystals size and its influence on the sensitization and light harvesting efficiency.

  8. Synthesis of Ag-doped TiO2 nanoparticles by combining laser decomposition of titanium isopropoxide and ablation of Ag for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Al-Kamal, Ahmed Kamal

    Nanostructured powders of TiO2 and Ag-doped TiO2 are synthesized by a novel pulsed-laser process that combines laser ablation of a silver (Ag) disc with laser decomposition of a titanium tetra-isopropoxide (TTIP) solution. Nanoparticles are formed by rapid condensation of vaporized species in the plasma plume generated by the high power laser, resulting in the formation of rapidly quenched Ag-doped TiO2 nanoparticles that have far-from-equilibrium or metastable structures. The uniqueness of the new ablation process is that it is a one-step process, in contrast to the two-step process developed by previous researchers in the field. Moreover, its ability to synthesize an extended-solid solution phase of Ag in TiO 2 may also be unique. The present work implies that other oxide phases, such as Al2O3, MgO and MgAl2O4, can be doped with normally insoluble metals, such as Pt and Ir, thus opening new opportunities for catalytic applications. Again, there is the prospect of being able to synthesize nanopowders of diamond, c-BN, and mixtures thereof, which are of interest for applications in machine tools, rock-drill bits, and lightweight armor. A wet-chemistry method is also investigated, which has much in common with that adopted by previous workers in the field. However, photo-voltaic properties do not measure up to expectations based on published data. A possible explanation is that the selected Ag concentrations are too high, so that recombination of holes and electrons occurs via a quantum-tunneling mechanism reduces photo-activity. Future work, therefore, will investigate lower concentrations of Ag dopant in TiO2, while also examining the effects of metastable states, including extended solid solution, amorphous, and semi-crystalline structures.

  9. The effect of TiO2 nanostructures on self-degrading polyurethane foams

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Charpentier, Paul A.

    2014-03-01

    Waste polyurethane foams are becoming a serious environmental problem due to their low degradation rates upon exposure to the environment. By adding TiO2 nanostructures as a photocatalyst, we can simultaneously enhance mechanical properties during use for higher performance applications, while enhancing degradation when exposed to light when placed in landfills. In this work, we integrated anatase TiO2 nanoparticles into polyurethane foams using a unique bifunctional monomer approach and studied the photodegradation ability and mechanism in a weathering chamber simulating natural environmental conditions. We found that the TiO2 nanoparticles increased the degradation rate in a significant manner showing the utility of this approach.

  10. Diatom-templated TiO2 with enhanced photocatalytic activity: biomimetics of photonic crystals

    NASA Astrophysics Data System (ADS)

    He, Jiao; Chen, Daomei; Li, Yongli; Shao, Junlong; Xie, Jiao; Sun, Yuejuan; Yan, Zhiying; Wang, Jiaqiang

    2013-11-01

    The siliceous frustules with sophisticated optical structure endow diatoms with superior solar light-harvesting abilities for effective photosynthesis. The preserved frustules of diatom ( Cocconeis placentula) cells, as biophotonic crystals, were thus employed as both hard templates and silicon resources to synthesize TiO2 photocatalyst. Characterizations by a combination of physicochemical techniques proved that the bio-inspired sample is TiO2-coated SiO2 with biogenic C self-doped in. It was found that the synthesized composites exhibited similar morphologies to the original diatom templates. In comparison with commercial Degussa P25 TiO2, the C-doped TiO2/SiO2 catalyst exhibited more light absorption in the visible region and higher photocatalytic efficiency for photodegradation of rhodamine B under visible light due to the biomorphic hierarchical structures, TiO2 coating and C-doping.

  11. Interface actions between TiO2 and porous diatomite on the structure and photocatalytic activity of TiO2-diatomite

    NASA Astrophysics Data System (ADS)

    Xia, Yue; Li, Fangfei; Jiang, Yinshan; Xia, Maosheng; Xue, Bing; Li, Yanjuan

    2014-06-01

    TiO2-diatomite photocatalysts were prepared by sol-gel process with various pre-modified diatomite. In order to obtain diatomite with different surface characteristics, two modification approaches including calcination and phosphoric acid treatment on the micro-structure of diatomite are introduced. The photocatalysts were characterized by XRD, XPS, nitrogen adsorption-desorption isotherms and micromorphology analysis. The results indicate that, compared with pure TiO2, the anatase-to-rutile phase transition temperature of TiO2 loaded on diatomite carrier is significantly increased to nearly 900 °C, depending on the different pretreatment method of diatomite. The photocatalytic activities of different samples were evaluated by their degradation rate of methyl orange (MO) dye under UV and visible-light irradiation. The samples prepared by phosphoric acid pretreatment method exhibit the highest photocatalytic activity. After 90 min of UV irradiation, about 90% of MO is decomposed by the best effective photocatalyst. And after 8 h visible-light irradiation, nearly 60% of MO is decomposed by the same sample. Further mechanism investigation reveals that the H3PO4 pretreatment process can obviously change the surface features of diatomite carrier, cause the formation of Si-O-Ti bond, increase the binding strength between TiO2 and diatomite, restrain crystal growth of loaded TiO2, and thus form thermal-stable mesoporous structure at the granular spaces. It helps to build micro-, meso- and macro-porous hierarchical porous structure in TiO2-diatomite, and improves the charge and mass transfer efficiency during catalyzing process, resulting in the significantly increased photocatalytic activity of TiO2-diatomite pretreated by phosphoric acid.

  12. Few-layered MoS2 nanosheets wrapped ultrafine TiO2 nanobelts with enhanced photocatalytic property

    NASA Astrophysics Data System (ADS)

    Li, Haidong; Wang, Yana; Chen, Guohui; Sang, Yuanhua; Jiang, Huaidong; He, Jiating; Li, Xu; Liu, Hong

    2016-03-01

    Photocatalytic materials comprised of semiconductor nanostructures have attracted tremendous scientific and technological interest over the last 30 years. This is due to the fact that these photocatalytic materials have unique properties that allow for an effective direct energy transfer from light to highly reactive chemical species which are applicable in the remediation of environmental pollutants and photocatalytic hydrogen generation. Heterostructured photocatalysts are a promising type of photocatalyst which can combine the properties of different components to generate a synergic effect, resulting in a high photocatalytic activity. In this work, a heterostructured photocatalyst comprised of few-layered MoS2 nanosheets coated on a TiO2 nanobelts surface was synthesized through a simple hydrothermal treatment. The hybrid heterostructures with enhanced broad spectrum photocatalytic properties can harness UV and visible light energy to decompose organic contaminants in aqueous solutions as well as split water to hydrogen and oxygen. The mechanism of the enhancement is that the MoS2/TiO2 nanobelts heterostructure can enhance the separation of the photo-induced carriers, which results in a higher photocurrent due to the special electronic characteristics of the graphene-like layered MoS2 nanosheets. This methodology is potentially applicable to the synthesis of a range of hybrid nanostructures with promising applications in photocatalysis and other relevant areas.Photocatalytic materials comprised of semiconductor nanostructures have attracted tremendous scientific and technological interest over the last 30 years. This is due to the fact that these photocatalytic materials have unique properties that allow for an effective direct energy transfer from light to highly reactive chemical species which are applicable in the remediation of environmental pollutants and photocatalytic hydrogen generation. Heterostructured photocatalysts are a promising type of photocatalyst which can combine the properties of different components to generate a synergic effect, resulting in a high photocatalytic activity. In this work, a heterostructured photocatalyst comprised of few-layered MoS2 nanosheets coated on a TiO2 nanobelts surface was synthesized through a simple hydrothermal treatment. The hybrid heterostructures with enhanced broad spectrum photocatalytic properties can harness UV and visible light energy to decompose organic contaminants in aqueous solutions as well as split water to hydrogen and oxygen. The mechanism of the enhancement is that the MoS2/TiO2 nanobelts heterostructure can enhance the separation of the photo-induced carriers, which results in a higher photocurrent due to the special electronic characteristics of the graphene-like layered MoS2 nanosheets. This methodology is potentially applicable to the synthesis of a range of hybrid nanostructures with promising applications in photocatalysis and other relevant areas. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08796a

  13. Synthesis of dandelion-like TiO2 microspheres as anode materials for lithium ion batteries with enhanced rate capacity and cyclic performances

    NASA Astrophysics Data System (ADS)

    Yi, Jin; Liu, Yan-lin; Wang, Yuan; Li, Xiao-ping; Hu, She-jun; Li, Wei-shan

    2012-11-01

    Dandelion-like TiO2 microspheres consisting of numerous rutile single-crystalline nanorods were synthesized for the first time by a hydrothermal method. Their crystal structure, morphology and electrochemical properties were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and galvanostatic charge and discharge tests. The results show that the synthesized TiO2 microspheres exhibit good rate and cycle performances as anode materials of lithium ion batteries. It can be found that the dandelion-like structure provides a larger specific surface area and the single-crystalline nanorod provides a stable structure and fast pathways for electron and lithium ion transport, which contribute to the rate and cycle performances of the battery.

  14. Graphene Oxide-Assisted Synthesis of Microsized Ultrathin Single-Crystalline Anatase TiO2 Nanosheets and Their Application in Dye-Sensitized Solar Cells.

    PubMed

    Chen, Biao; Sha, Junwei; Li, Wei; He, Fang; Liu, Enzuo; Shi, Chunsheng; He, Chunnian; Li, Jiajun; Zhao, Naiqin

    2016-02-01

    High-quality microsized ultrathin single-crystalline anatase TiO2 nanosheets (MS-TiO2) with exposed {001} facets were synthesized by a facile and low-cost two-step process that combines a graphene oxide (GO)-assisted hydrothermal method with calcination. Both GO and HF play an important role in the formation of well dispersed MS-TiO2. As a novel microsized (1-4 μm) ultrathin two-dimensional (2D) material, MS-TiO2 possesses much higher lateral size and aspect ratio compared to common 2D nanosized (30-60 nm) ultrathin TiO2 nanosheets (NS-TiO2), resulting in excellent electronic conductivity and superior electron transfer and diffusion properties. Here, we fabricated MS-TiO2 and NS-TiO2, both of which were incorporated with the TiO2 nanoparticles (P25) to constitute the hybrid photoanode of dye-sensitized solar cells (DSSCs), and explored the effect of the lateral size (nano- and micro-) of ultrathin TiO2 nanosheets on their electron transfer and diffusion properties. Benefiting from the faster electron transfer rate and short diffusion path of the MS-TiO2, the MS-TiO2/P25 gains the more superior performance compared to pure P25 and NS-TiO2/P25 in the application of DSSCs. Moreover, it is expected that the novel high aspect ratio MS-TiO2 may be applied in diverse fields including photocatalysis, photodetectors, lithium-ion batteries and others concerning the environment and energy. PMID:26745514

  15. Characterization and improved solar light activity of vanadium doped TiO2/diatomite hybrid catalysts.

    PubMed

    Wang, Bin; Zhang, Guangxin; Leng, Xue; Sun, Zhiming; Zheng, Shuilin

    2015-03-21

    V-doped TiO2/diatomite composite photocatalysts with different vanadium concentrations were synthesized by a modified sol-gel method. The diatomite was responsible for the well dispersion of TiO2 nanoparticles on the matrix and consequently inhibited the agglomeration. V-TiO2/diatomite hybrids showed red shift in TiO2 absorption edge with enhanced absorption intensity. Most importantly, the dopant energy levels were formed in the TiO2 bandgap due to V(4+) ions substituted to Ti(4+) sites. The 0.5% V-TiO2/diatomite photocatalyst displayed narrower bandgap (2.95 eV) compared to undoped sample (3.13 eV) and other doped samples (3.05 eV) with higher doping concentration. The photocatalytic activities of V doped TiO2/diatomite samples for the degradation of Rhodamine B under stimulated solar light illumination were significantly improved compared with the undoped sample. In our case, V(4+) ions incorporated in TiO2 lattice were responsible for increased visible-light absorption and electron transfer to oxygen molecules adsorbed on the surface of TiO2 to produce superoxide radicals ˙O2(-), while V(5+) species presented on the surface of TiO2 particles in the form of V2O5 contributed to e(-)-h(+) separation. In addition, due to the combination of diatomite as support, this hybrid photocatalyst could be separated from solution quickly by natural settlement and exhibited good reusability. PMID:25497036

  16. A maskless synthesis of TiO2-nanofiber-based hierarchical structures for solid-state dye-sensitized solar cells with improved performance.

    PubMed

    Sabba, Dharani; Agarwala, Shweta; Pramana, Stevin S; Mhaisalkar, Subodh

    2014-01-01

    TiO2 hierarchical nanostructures with secondary growth have been successfully synthesized on electrospun nanofibers via surfactant-free hydrothermal route. The effect of hydrothermal reaction time on the secondary nanostructures has been studied. The synthesized nanostructures comprise electrospun nanofibers which are polycrystalline with anatase phase and have single crystalline, rutile TiO2 nanorod-like structures growing on them. These secondary nanostructures have a preferential growth direction [110]. UV-vis spectroscopy measurements point to better dye loading capability and incident photon to current conversion efficiency spectra show enhanced light harvesting of the synthesized hierarchical structures. Concomitantly, the dye molecules act as spacers between the conduction band electrons of TiO2 and holes in the hole transporting medium, i.e., spiro-OMeTAD and thus enhance open circuit voltage. The charge transport and recombination effects are characterized by electrochemical impedance spectroscopy measurements. As a result of improved light harvesting, dye loading, and reduced recombination losses, the hierarchical nanofibers yield 2.14% electrochemical conversion efficiency which is 50% higher than the efficiency obtained by plain nanofibers. PMID:24410851

  17. A maskless synthesis of TiO2-nanofiber-based hierarchical structures for solid-state dye-sensitized solar cells with improved performance

    PubMed Central

    2014-01-01

    TiO2 hierarchical nanostructures with secondary growth have been successfully synthesized on electrospun nanofibers via surfactant-free hydrothermal route. The effect of hydrothermal reaction time on the secondary nanostructures has been studied. The synthesized nanostructures comprise electrospun nanofibers which are polycrystalline with anatase phase and have single crystalline, rutile TiO2 nanorod-like structures growing on them. These secondary nanostructures have a preferential growth direction [110]. UV–vis spectroscopy measurements point to better dye loading capability and incident photon to current conversion efficiency spectra show enhanced light harvesting of the synthesized hierarchical structures. Concomitantly, the dye molecules act as spacers between the conduction band electrons of TiO2 and holes in the hole transporting medium, i.e., spiro-OMeTAD and thus enhance open circuit voltage. The charge transport and recombination effects are characterized by electrochemical impedance spectroscopy measurements. As a result of improved light harvesting, dye loading, and reduced recombination losses, the hierarchical nanofibers yield 2.14% electrochemical conversion efficiency which is 50% higher than the efficiency obtained by plain nanofibers. PMID:24410851

  18. Rapid flame synthesis of internal Mo(6+) doped TiO2 nanocrystals in situ decorated with highly dispersed MoO3 clusters for lithium ion storage.

    PubMed

    Li, Yunfeng; Hu, Yanjie; Shen, Jianhua; Jiang, Haibo; Min, Guoquan; Qiu, Shengjie; Song, Zhitang; Sun, Zhuo; Li, Chunzhong

    2015-11-28

    The rational design of nanoheterostructured materials has attracted much attention because of its importance for developing highly efficient LIBs. Herein, we have demonstrated that internal Mo(6+) doped TiO2 nanocrystals in situ decorated with highly dispersed MoO3 clusters have been realized by a facile and rapid flame spray pyrolysis route for electrochemical energy storage. In such intriguing nanostructures, internal Mo(6+) doping can improve the conductivity of electrode materials and facilitate rapid Li(+) intercalation and ion transport and the heteroassembly of highly dispersed ultrafine MoO3 clusters with excellent electrochemical activity endows the TiO2 with extra Li(+) ion storage ability as well as incorporates Mo(6+). Thus, the as-prepared nanohybrid electrodes exhibit a high specific capacity and superior rate capability due to the maximum synergetic effect of TiO2, Mo(6+) and ultrafine MoO3 clusters. Moreover, the aerosol flame process with a unique temperature gradient opens a new strategy to design novel hybrid materials by the simultaneous doping and heteroassembly engineering for next-generation LIBs. PMID:26490363

  19. Wet chemical synthesis and self-assembly of SnS2 nanoparticles on TiO2 for quantum dot-sensitized solar cells.

    PubMed

    Tsukigase, Hiroki; Suzuki, Yoshikazu; Berger, Marie-Hélène; Sagawa, Takashi; Yoshikawa, Susumu

    2011-04-01

    SnS2 nanoparticles were synthesized through a simple wet chemical process at room temperature. The SnS2 nanoparticles were approximately spherical in shape and had diameter about 3-4 nm. SnS2-sensitized TiO2 electrodes were fabricated by the immersion of chemically modified TiO2 to well-dispersed SnS2 solution for 72 h (i.e., self-assembly method.) SnS2-sensitized TiO2 electrodes were applied in quantum dot-sensitized solar cells (QDSSCs). Under AM1.5 irradiation with 100 mW/cm2 light intensity (at 1 sun), the short-circuit current density (J(sc)), the open-circuit voltage (V(oc)), the fill factor (FF), and the energy conversion efficiency (eta) were 0.47 mA/cm2, 0.29 V, 0.58 and 0.081%, respectively. PMID:21776689

  20. Synthesis, characterization and photocatalytic activity of noble metal-modified TiO2 nanosheets with exposed {0 0 1} facets

    NASA Astrophysics Data System (ADS)

    Diak, Magdalena; Grabowska, Ewelina; Zaleska, Adriana

    2015-08-01

    Pt, Pd, Ag and Au nanoparticles were photodeposited on the {0 0 1} crystal facets of the TiO2 anatase nanosheets. Morphological and surface characterization of the samples as well as photocatalytic activity were studied. The influence of metal precursor concentration used during photodeposition (0.05-0.5%) on size of formed metal nanoparticles together with UV and vis-mediated activity of Pt, Pd, Ag or Au-TiO2 was investigated. Generally, samples obtained by photodeposition of noble metal nanoparticles using their 0.2% precursor solutions revealed highest activity in phenol degradation reaction under visible light (λ > 420 nm). The photoactivity of the as-prepared samples with respect to the modified metal species was ordered Ag≅Pd > Au > Pt. TEM analysis showed that photodeposited metal nanoparticles appeared only on {0 0 1} facets of TiO2. The average degradation rate of phenol in the presence of Pd and Ag-TiO2 was 0.5 μmol dm-3 min-1 after 60 min of irradiation under visible light, and was five times higher than that of pure TiO2 nanosheets.

  1. Hydrothermal Synthesis of TiO2 Porous Hollow Nanospheres for Coating on the Photoelectrode of Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Madhu Mohan, Varishetty; Murakami, Kenji

    2012-02-01

    Various sizes of TiO2 hollow nanosphers were synthesized by a hydrolysis followed by the hydrothermal treatment using different water content and titanium isopropoxide (TTIP) while the remaining components such as methylamine, ethanol and acetonitrile were kept as a constant. We synthesized the various sizes of spheres, 150, 250, 400, 450, and 600 nm in diameter; those are represented as SP150, SP250, SP400, SP450, and SP600. The prepared spheres diameters were confirmed by scanning electron microscopy (SEM). These spheres were coated by using a simple spray technique with the TiO2 colloidal solution as a scattering layer for the TiO2 photoelectrode of dye-sensitized solar cells. Optical absorption measurements did not find a difference in the dye adsorption amount with and without the scattering layer. The scattering effect was observed by incident photon to current conversion efficiency (IPCE) measurements especially in the wavelength region of 550-700 nm. The current-voltage (I-V) measurements show that the scattering layer with 450 nm spheres coated on the photoelectrode gave the improved photovoltaic performances compared to other diameters of the spheres. In the present study, the best energy conversion efficiency of 9.56% was obtained for the photoelectrode with the scattering layer, while the pure photoelectrode without the layer gave 8.4%.

  2. Synthesis, Characterization, and Tribological Evaluation of TiO2-Reinforced Boron and Nitrogen co-Doped Reduced Graphene Oxide Based Hybrid Nanomaterials as Efficient Antiwear Lubricant Additives.

    PubMed

    Jaiswal, Vinay; Kalyani; Umrao, Sima; Rastogi, Rashmi B; Kumar, Rajesh; Srivastava, Anchal

    2016-05-11

    The microwave-synthesized reduced graphene oxide (MRG), boron-doped reduced graphene oxide (B-MRG), nitrogen-doped reduced graphene oxide (N-MRG), boron-nitrogen-co-doped reduced graphene oxide (B-N-MRG), and TiO2-reinforced B-N-MRG (TiO2-B-N-MRG) nanomaterials have been synthesized and characterized by various state-of-the-art techniques, like Raman spectroscopy, powder X-ray diffraction, scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy, high-resolution transmission electron microscopy, and X-ray photoelectron spectroscopy. Furthermore, the tribological properties of prepared nanomaterials as antiwear additives in neutral paraffin oil have been evaluated using a four-ball machine at an optimized additive concentration (0.15% w/v). The tribological parameters, like mean wear scar diameter, coefficient of friction, and wear rates, revealed that these nanomaterials have potential to be developed as environmentally friendly sulfated-ash-, phosphorus-, and sulfur-free antiwear lubricant additives. The friction- and wear-reducing behavior of MRG increased upon successive doping of nitrogen, boron, and both nitrogen and boron. Among these additives, B-N-co-doped MRG shows superior tribological behavior in paraffin base oil. Besides this, the load-carrying properties of B-N-co-doped MRG have significantly improved after its reinforcement with TiO2 nanoparticles. A comparative study of the surface morphology of a lubricated track in the presence of various additives has been assessed by SEM and contact-mode atomic force microscopy. The X-ray photoelectron spectroscopy studies have proved that the excellent lubrication properties of TiO2-B-N-MRG are due to the in situ formation of a tribofilm composed of boron nitride, adsorbed graphene layers, and tribosintered TiO2 nanoparticles during the tribocontact. Being sulfur-, halogen-, and phosphorus-free, these graphene-based nanomaterials act as green antiwear additives, protecting interacting surfaces significantly from wear and tear. PMID:27097308

  3. Samarium-doped mesoporous TiO2 nanoparticles with improved photocatalytic performance for elimination of gaseous organic pollutants

    NASA Astrophysics Data System (ADS)

    Tang, Jianting; Chen, Xiaomiao; Liu, Yu; Gong, Wei; Peng, Zhenshan; Cai, Tiejun; Luo, Lianjing; Deng, Qian

    2013-01-01

    Mesoporous TiO2 doped with different amounts of Sm were prepared via a sol-gel route with Pluronic P123 as template. The materials were characterized by X-ray diffraction, transmission electron microscopy, and N2 sorption experiments, etc. The photocatalytic activity of the mesoporous TiO2 was tested in elimination of gaseous methanol and acetone. The Sm doped mesoporous TiO2 have higher activity than those of the commercial photocatalyst (Degussa, P25) and Sm doped TiO2 counterparts without mesopore structure under ultraviolet light irradiation. A possible mechanism was proposed to account for the high photocatalytic activity of the Sm doped mesoporous TiO2. The superior activity of the Sm doped mesoporous TiO2 may be attributed to the synergic effect of the high surface area, mesopore structure and doped Sm species.

  4. Improved photocatalytic activity of gold decorated differently doped TiO2 nanoparticles: A comparative study.

    PubMed

    Pal, Nabin Kumar; Kryschi, Carola

    2016-02-01

    In this paper, undoped and several differently doped (with Fe(3+), N(-), and γ-Al2O3) TiO2-nanoparticle-based photocatalysts and those covered with ultrasmall gold nanoparticles (AuNPs) were engineered. Their photocatalytic performance was studied by utilizing them for the liquid-phase decomposition of the model dye methylene blue (MB) under visible-light irradiation. The structural, morphological, physico-chemical, and optical properties of the photocatalysts were investigated using X-ray diffraction, X-ray photoelectron spectroscopy, diffuse-reflectance UV-Vis absorption spectroscopy, Raman spectroscopy and transmission electron microscopy. Photodegradation kinetics of MB was followed by measuring the absorbance of MB at 664 nm at different irradiation times, whereas the mineralization of MB was examined by determining the total organic carbon (TOC) content. The photocatalytic activity of TiO2 nanoparticles was shown to be significantly increased by introducing dopants into the crystal lattice and depositing AuNPs on the surface. Among those, γ-Al2O3 doped TiO2 nanoparticles covered with deposited AuNPs show the best photocatalytic performance. Altogether, the here engineered photocatalysts as consisting of doped TiO2 nanoparticles decorated with AuNPs establish novel three-component nanocomposite systems, where synergetic interactions between surface AuNPs, dopants and TiO2 were shown to significantly enhance the photocatalytic activity. PMID:26519796

  5. Photochemical activity of TiO2 nanotubes

    NASA Astrophysics Data System (ADS)

    Pfuch, A.; Güell, F.; Toelke, T.; Das, S. K.; Messaoudi, H.; McGlynn, E.; Seeber, W.; Fábrega, C.; Andreu, T.; Morante, J. R.; Grunwald, R.

    2013-03-01

    TiO2 is well known as a low-cost, highly active photocatalyst showing good environmental compatibility. Recently it was found that TiO2 nanotubes promise to enable for high photocatalytic activity (PCA). In our experiments, we studied the PCA and spectroscopic properties of TiO2 nanotube arrays formed by the anodization of Ti. The PCA efficiency related to the decomposition of methylene-blue was measured. To obtain reliable data, the results were calibrated by comparing with standard materials like Pilkington Activ™ which is a commercially available self cleaning glass. The studies included a search strategy for finding optimum conditions for the nanotube formation and the investigation of the relationship between PCA and annealing temperature. TiO2 nanotubes of different shapes and sizes were prepared by an anodization of Ti foil in different electrolytes, at variable applied voltages and concentrations. The photo-dissociation of methylene-blue was detected spectroscopically. For the optimized material, an enhancement factor of 2 in comparison to the standard reference material was found. Furthermore, femtosecond-laser induced photoluminescence and nonlinear absorption of the material were investigated. Possibilities for further enhancements of the PCA are discussed.

  6. TiO2 Photocatalytic Degradation of Phenylarsonic Acid

    PubMed Central

    Zheng, Shan; Cai, Yong; O’Shea, Kevin E.

    2010-01-01

    Phenyl substituted arsenic compounds are widely used as feed additives in the poultry industry and have become a serious environmental concern. We have demonstrated that phenylarsonic acid (PA) is readily degraded by TiO2 photocatalysis. Application of the Langmuir–Hinshelwood kinetic model for the initial stages of the TiO2 photocatalysis of PA yields an apparent rate constant (kr) of 2.8 µmol/L·min and the pseudo-equilibrium constant (K) for PA is 34 L/mmol. The pH of the solution influences the adsorption and photocatalytic degradation of PA due to the surface charge of TiO2 photocatalyst and speciation of PA. Phenol, catechol and hydroquinone are observed as the predominant products during the degradation. The roles of reactive oxygen species, •OH, 1O2, O2−• and hVB+ were probed by adding appropriate scavengers to the reaction medium and the results suggest that •OH plays a major role in the degradation of PA. By-products studies indicate the surface of the catalyst plays a key role in the formation of the primary products and the subsequent oxidation pathways leading to the mineralization to inorganic arsenic. TiO2 photocatalysis results in the rapid destruction of PA and may be attractive for the remediation of a variety of organoarsenic compounds. PMID:20473340

  7. Preparation of Thin Films of TiO2 Nanoparticles using Electrophoresis Deposition Method

    NASA Astrophysics Data System (ADS)

    Ito, Kazuatsu; Sato, Yuuki; Adachi, Motonari; Yoshikado, Shinzo

    TiO2-thin-films have remarkable properties as a photocatalyst to resolve organic pollutants and an electron transporter with high energy transformation efficiency for dye-sensitized solar cells. For these applications, it is required that thin film has no apparent cracks or has high optical transparency. In this study, TiO2-nanoparticles are synthesized and are deposited using the electrophoresis deposition method. TiO2-nanoparticles can transport electrons by oriented attachment mechanism. Many of nanoparticles were connected with each other and formed nanowires clusters. The lengths of observed TiO2-nanowires were not the same. All of nanowires were positively charged in colloidal aqueous solution and were attracted toward ITO glass as the negative electrode, and then thin film was deposited on it. The crystal structure of thin film was anatase-type. TiO2-nanowires thin film with high optical transparency was deposited. A number of cracks, however, were observed as the deposition time increased and thin film was flaked off from substrate. TiO2-thin films with no cracks could be deposited using mixture of TiO2-nanowires and TiO2-nanoparticles (P25). It was suggested that single nanowires were mainly deposited at ITO glass at the first stage of electrophoresis, nanowire-cluster at the second stage and then finally P25 were deposited.

  8. Photocatalytic Destruction of an Organic Dye Using TiO2 and Solar Energy.

    ERIC Educational Resources Information Center

    Giglio, Kimberly D.; And Others

    1995-01-01

    Describes a general chemistry experiment that is carried out in sunlight to illustrate the ability of TiO2 to act as a photocatalyst by mineralizing an organic dye into carbon dioxide. Details about the construction of the reactor system used to perform this experiment are included. (DDR)

  9. Core-shell structured TiO2@polydopamine for highly active visible-light photocatalysis.

    PubMed

    Mao, Wen-Xin; Lin, Xi-Jie; Zhang, Wei; Chi, Zi-Xiang; Lyu, Rong-Wen; Cao, An-Min; Wan, Li-Jun

    2016-06-01

    This communication reports that the TiO2@polydopamine nanocomposite with a core-shell structure could be a highly active photocatalyst working under visible light. A very thin layer of polydopamine at around 1 nm was found to be critical for the degradation of Rhodamine B. PMID:27165843

  10. Biochemical effects of six TiO2 and four CeO2 nanomaterials in HepG2 cells

    EPA Science Inventory

    Biochemical effects of six TiO2 and four CeO2 nanomaterials in HepG2 cellsBecause of their growing number of uses, nanoparticles composed of CeO2 (cosmetics, polishing materials and automotive fuel additives) and TiO2 (pigments, sunscreens and photocatalysts) are of particular to...

  11. Investigation on evaporation of Ti feedstock and formation of precursor TiO molecules during TiO2 nanopowder synthesis in induction thermal plasma with time-controlled feedstock injection

    NASA Astrophysics Data System (ADS)

    Kodama, Naoto; Kita, Kentaro; Ishisaka, Yosuke; Tanaka, Yasunori; Uesugi, Yoshihiko; Ishijima, Tatsuo; Sueyasu, Shiori; Nakamura, Keitaro; Kanazawa University Team; Nisshin Seifun Group Inc. Team

    2015-09-01

    The method using inductively coupled thermal plasma(ICTP) is very effective for nanopowder(NPs) synthesis. However, NPs formation process in the ICTP torch has not been clarified. In this study, the two-dimensional spectroscopic observation was carried out for ICTP torch during TiO2 NPs synthesis process with time-controlled feedstock injection. In order to investigate evaporation process of feedstock and formation process of precursor molecules, Ti feedstock was intermittently injected into the ICTP. Ti I(453.32 nm) and TiO(621 nm) were observed by using an imaging spectroscopic system. Observation results show that injected Ti feedstock was evaporated in the ICTP. Then, generated Ti atoms were transported to downstream of the torch by gas flow and were diffused to the radial direction by density gradient. High concentration of TiO molecular gas was formed only around central axis region in the torch.

  12. Hydrothermal Preparation and Characterization of TiO2 /BiVO4 Composite Catalyst and its Photolysis of Water to Produce Hydrogen.

    PubMed

    Jian, Zicong; Huang, Shaobin; Cao, Yaya; Zhang, Yongqing

    2016-05-01

    In the present work, bismuth vanadate composited photocatalysts were synthesized and characterized. X-ray diffractometry and Raman results showed that the particles were well crystallized, and formed by the complex of monoclinic BiVO4 and TiO2 . On electron microscopy, the photocatalyst exhibited high crystallization, agglutination and irregular shape, and was surrounded by numerous TiO2 particles. The study of surface areas showed that the specific surface area of 30-BiVO4 /TiO2 composited was 112 m(2) ·g(-1) , which was nearly 10 times that of pure BiVO4 . The ultraviolet-visible diffuse reflectance spectra indicated the composited photocatalyst were activated in visible light. The activity of photocatalytic water splitting was studied. The results showed that monomer BiVO4 photocatalyst was not able to produce hydrogen under any light source. BiVO4 /TiO2 composited photocatalysts, however, were capable of generating hydrogen. Under UV light irradiation for 120 min, 1 g catalyst dispersed in 50 mL deionized water produced almost 1 mL hydrogen, such that the productivity of hydrogen was higher than that of P25-TiO2 . Photocatalytic decomposition of water under visible light also confirmed that the BiVO4 /TiO2 composited photocatalyst had the ability of water splitting. PMID:26849995

  13. Facile synthesis of carbon doped TiO2 nanowires without an external carbon source and their opto-electronic properties

    NASA Astrophysics Data System (ADS)

    Kiran, Vankayala; Sampath, Srinivasan

    2013-10-01

    The present study demonstrates a simple protocol for the preparation of one dimensional (1D) oxidized titanium carbide nanowires and their opto-electronic properties. The oxidized titanium carbide nanowires (Ox-TiC-NW) are prepared from TiC nanowires (TiC-NW) that are in turn synthesized from micron sized TiC particles using the solvothermal technique. The Ox-TiC-NW is characterized by X-ray diffraction, UV-Vis spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and Raman spectroscopy. Thermal oxidation of TiC-NW yields carbon doped TiO2-NW (C-TiO2-NW), a simple methodology to obtain 1D C-TiO2-NW. Temperature dependent Raman spectra reveal characteristic bands for TiO2-NW. Electrical characterization of individual C-TiO2-NW is performed by fabricating a device structure using the focused ion beam deposition technique. The opto-electronic properties of individual C-TiO2-NW demonstrate visible light activity and the parameters obtained from photoconductivity measurements reveal very good sensitivity. This methodology opens up the possibility of using C-TiO2-NW in electronic and opto-electronic device applications.The present study demonstrates a simple protocol for the preparation of one dimensional (1D) oxidized titanium carbide nanowires and their opto-electronic properties. The oxidized titanium carbide nanowires (Ox-TiC-NW) are prepared from TiC nanowires (TiC-NW) that are in turn synthesized from micron sized TiC particles using the solvothermal technique. The Ox-TiC-NW is characterized by X-ray diffraction, UV-Vis spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and Raman spectroscopy. Thermal oxidation of TiC-NW yields carbon doped TiO2-NW (C-TiO2-NW), a simple methodology to obtain 1D C-TiO2-NW. Temperature dependent Raman spectra reveal characteristic bands for TiO2-NW. Electrical characterization of individual C-TiO2-NW is performed by fabricating a device structure using the focused ion beam deposition technique. The opto-electronic properties of individual C-TiO2-NW demonstrate visible light activity and the parameters obtained from photoconductivity measurements reveal very good sensitivity. This methodology opens up the possibility of using C-TiO2-NW in electronic and opto-electronic device applications. Electronic supplementary information (ESI) available: SEM image of a hydrothermally treated TiC sample (S1), spectral output of a commercial halogen lamp (S2), preparation and characterization of C-TiO2-NW (prepared at 800 °C) and pristine TiO2-NW, comparison of the optical response between various TiO2-NWs (S3-S6), procedure for measuring Potical, photocurrent growth and decay transients (S7). See DOI: 10.1039/c3nr03309k

  14. Synthesis of [111]- and {010}-faceted anatase TiO2 nanocrystals from tri-titanate nanosheets and their photocatalytic and DSSC performances

    NASA Astrophysics Data System (ADS)

    Chen, Changdong; Ikeuchi, Yasushi; Xu, Linfeng; Sewvandi, Galhenage A.; Kusunose, Takafumi; Tanaka, Yasuhiro; Nakanishi, Shunsuke; Wen, Puhong; Feng, Qi

    2015-04-01

    [111]- and {010}-faceted anatase nanocrystals with controllable crystal size and morphology were synthesized from tri-titanate H2Ti3O7 nanosheets by hydrothermal reaction. The nanostructures and the formation reaction mechanism of the obtained TiO2 nanocrystals were investigated using XRD, FE-SEM, and TEM. Furthermore, the photocatalytic and dye-sensitized solar cell (DSSC) performances of the synthesized anatase nanocrystals were also characterized. Two types of reactions occur in the formation process of the anatase nanocrystals. One is an in situ topochemical conversion reaction of the layered titanate structure to an anatase structure, and another is the dissolution-deposition reaction on the particle surface, which splits the formed nanosheet-like particles into small TiO2 nanocrystals. The surface photocatalytic activity and the DSSC performance of the anatase nanocrystals are dependent on the crystal facet exposed on the particle surface, which increases in the order of non-facet < [111]-facet < {010}-facet. The increasing order corresponds to the increasing order of the bandgap and energy level of the lowest valence band of the anatase nanocrystals. Furthermore, the facet of the anatase also affects the DSSC performance, which is enhanced in the order of non-facet < [111]-facet < {010}-facet.[111]- and {010}-faceted anatase nanocrystals with controllable crystal size and morphology were synthesized from tri-titanate H2Ti3O7 nanosheets by hydrothermal reaction. The nanostructures and the formation reaction mechanism of the obtained TiO2 nanocrystals were investigated using XRD, FE-SEM, and TEM. Furthermore, the photocatalytic and dye-sensitized solar cell (DSSC) performances of the synthesized anatase nanocrystals were also characterized. Two types of reactions occur in the formation process of the anatase nanocrystals. One is an in situ topochemical conversion reaction of the layered titanate structure to an anatase structure, and another is the dissolution-deposition reaction on the particle surface, which splits the formed nanosheet-like particles into small TiO2 nanocrystals. The surface photocatalytic activity and the DSSC performance of the anatase nanocrystals are dependent on the crystal facet exposed on the particle surface, which increases in the order of non-facet < [111]-facet < {010}-facet. The increasing order corresponds to the increasing order of the bandgap and energy level of the lowest valence band of the anatase nanocrystals. Furthermore, the facet of the anatase also affects the DSSC performance, which is enhanced in the order of non-facet < [111]-facet < {010}-facet. Electronic supplementary information (ESI) available: XRD patterns of the products obtained by hydrothermal treatment in the temperature range of 140-200 °C, the dependency of the (101) peak intensity of anatase on the pH values of nanosheet solution at different temperature, the EDS analysis results of the synthesized TiO2 samples, TEM images and the FFT diffraction pattern of the TMA-150-2.5 sample, I-V characteristics and FE-SEM images in the cross-section of the TiO2-film electrodes of the DSSC cells fabricated using TMA-200-3.6 and P25 samples, TEM images of TMA-200-3.6 anatase nanocrystal samples after the calcination at 480 °C for 1 h. See DOI: 10.1039/c5nr00069f

  15. Synthesis and characterization of C-doped TiO2 thin films for visible-light-induced photocatalytic degradation of methyl orange

    NASA Astrophysics Data System (ADS)

    Hassan, Mohamed Elfatih; Cong, Longchao; Liu, Guanglong; Zhu, Duanwei; Cai, Jianbo

    2014-03-01

    C-TiO2 thin films were synthesized by a modified sol-gel route based on the self-assembly technique exploiting Tween80 (T80) as a pore directing agent and carbon source. The effect of calcination time on the photocatalytic activity of C-doped TiO2 catalyst was studied. The samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transforms infrared (FTIR), UV-vis diffuse reflectance spectroscopy, and photoluminescence spectra (PL). The XRD results showed that C-TiO2 sample calcined at 400 °C for various times exhibited anatase phase and no other crystal phase was identified. C-TiO2 exhibited a shift in an absorption edge of samples in the visible region than that of conventional or reference TiO2. The XPS results showed an existence of C in the TiO2 catalysts and C might be existed as COTi group. Moreover, the C-TiO2 thin film calcined at 400 °C for 30 min showed the lowest PL intensity due to a decrease in the recombination rate of photogenerated electrons and holes under UV light irradiation. Also the photocatalytic activity of synthesized catalyst was evaluated by decomposition of methyl orange (MO) under visible light irradiation. The results showed that the optimum preparations of C-TiO2 thin films were found to be under calcination temperature of 400, calcination time of 30 min, and with preparation 9 layers film.

  16. Thermodynamically driven one-dimensional evolution of anatase TiO2 nanorods: one-step hydrothermal synthesis for emerging intrinsic superiority of dimensionality.

    PubMed

    Chen, Jiazang; Yang, Hong Bin; Miao, Jianwei; Wang, Hsin-Yi; Liu, Bin

    2014-10-29

    In photoelectrochemical cells, there exists a competition between transport of electrons through the porous semiconductor electrode toward the conducting substrate and back-reaction of electrons to recombine with oxidized species on the semiconductor-electrolyte interface, which determines the charge collection efficiency and is strongly influenced by the density and distribution of electronic states in band gap and architectures of the semiconductor electrodes. One-dimensional (1D) anatase TiO2 nanostructures are promising to improve charge transport in photoelectrochemical devices. However, the conventional preparation of 1D anatase nanostructures usually steps via a titanic acid intermediate (e.g., H2Ti3O7), which unavoidably introduces electronic defects into the host lattice, resulting in undesired shielding of the intrinsic role of dimensionality. Here, we manage to promote the 1D growth of anatase TiO2 nanostructures by adjusting the growth kinetics, which allows us to grow single-crystalline anatase TiO2 nanorods through a one-step hydrothermal reaction. The synthesized anatase nanorods possess a lower density of trap states and thus can simultaneously facilitate the diffusion-driven charge transport and suppress the electron recombination. Moreover, the electronically boundary free nanostructures significantly enhance the trap-free charge diffusion coefficient of the anatase nanorods, which enables the emergence of the intrinsic superiority of dimensionality. By virtue of these merits, the anatase nanorods synthesized in this work take obvious advantages over the conventional anatase counterparts in photoelectrochemical systems (e.g., dye-sensitized solar cells) by showing more efficient charge transport and collection and higher energy conversion efficiency. PMID:25290360

  17. Synthesis and characterization of maleimide-functionalized polystyrene-SiO2/TiO2 hybrid nanocomposites by sol–gel process

    PubMed Central

    2012-01-01

    Maleimide-functionalized polystyrene (PSMA-SiO2/TiO2) hybrid nanocomposites were prepared by sol–gel reaction starting from tratraethoxysilane (TEOS) and titanium isopropoxide in the solution of polystyrene maleimide in 1,4-dioxane. The hybrid films were obtained by the hydrolysis and polycondensation of TEOS and titanium isopropoxide in maleimide-functionalized polystyrene solution followed by the Michael addition reaction. The transparency of polymer (PSMA-SiO2/TiO2) hybrid was prepared from polystyrene titanium isopropoxide using the γ-aminopropyltriethoxy silane as crosslinking agent by in situ sol–gel process via covalent bonding between the organic–inorganic hybrid nanocomposites. The maleimide-functionalized polystyrene was synthesized by Friedel-Crafts reaction from N-choloromethyl maleimide. The FTIR spectroscopy data conformed the occurrence of Michael addition reaction between the pendant maleimide moieties of the styrene and γ-aminopropyltriethoxysilane. The chemical structure and morphology of PSMA-SiO2/TiO2 hybrid nanocomposites were characterized by FTIR, nuclear magnetic resonance (NMR), 13 C NMR, SEM, XRD, and TEM analyses. The results also indicate that the inorganic particles are much smaller in the ternary systems than in the binary systems; the shape of the inorganic particles and compatibility for maleimide-functionalized polystrene and inorganic moieties are varied with the ratio of the inorganic moieties in the hybrids. Furthermore, TGA and DSC results indicate that the thermal stability of maleimide-functionalized polystyrene was enhanced through the incorporation of the inorganic moieties in the hybrid materials. PMID:22738226

  18. Synthesis of Cu-Doped Mixed-Phase TiO2 with the Assistance of Ionic Liquid by Atmospheric-Pressure Cold Plasma

    NASA Astrophysics Data System (ADS)

    Zhan, Zhibin; Di, Lanbo; Zhang, Xiuling; Li, Yanchun

    2016-05-01

    An atmospheric-pressure dielectric barrier discharge (DBD) gas-liquid cold plasma was employed to synthesize Cu-doped TiO2 nanoparticles in an aqueous solution with the assistance of [C2MIM]BF4 ionic liquid (IL) and using air as the working gas. The influences of the discharge voltage, IL and the amount of copper nitrite were investigated. X-ray diffraction, N2 adsorption-desorption measurements and UV-Vis spectroscopy were adopted to characterize the samples. The results showed that the specific surface area of TiO2 was promoted with Cu-doping (from 57.6 m2·g‑1 to 106.2 m2·g‑1 with 3% Cu-doping), and the content of anatase was increased. Besides, the band gap energy of TiO2 with Cu-doping decreased according to the UV-Vis spectroscopy test. The 3%Cu-IL-TiO2 samples showed the highest efficiency in degrading methylene blue (MB) dye solutions under simulated sunlight with an apparent rate constant of 0.0223 min‑1, which was 1.2 times higher than that of non-doped samples. According to the characterization results, the reasons for the high photocatalytic activity were discussed. supported by National Natural Science Foundation of China (Nos. 21173028, 11505019), the Science and Technology Research Project of Liaoning Provincial Education Department (No. L2013464), the Scientific Research Foundation for the Doctor of Liaoning Province (No. 20131004), the Program for Liaoning Excellent Talents in University (No. LR2012042), and Dalian Jinzhou New District Science and Technology Plan Project (No. KJCX-ZTPY-2014-0001)

  19. Effect of void structure of photocatalyst paper on VOC decomposition.

    PubMed

    Fukahori, Shuji; Iguchi, Yumi; Ichiura, Hideaki; Kitaoka, Takuya; Tanaka, Hiroo; Wariishi, Hiroyuki

    2007-02-01

    TiO2 powder-containing paper composites, called TiO2 paper, were prepared by a papermaking technique, and their photocatalytic efficiency was investigated. The TiO2 paper has a porous structure originating from the layered pulp fiber network, with TiO2 powders scattered on the fiber matrix. Under UV irradiation, the TiO2 paper decomposed gaseous acetaldehyde more effectively than powdery TiO2 and a pulp/TiO2 mixture not in paper form. Scanning electron microscopy and mercury intrusion analysis revealed that the TiO2 paper had characteristic unique voids ca. 10 microm in diameter, which might have contributed to the improved photocatalytic performance. TiO2 paper composites having different void structures were prepared by using beaten pulp fibers with different degrees of freeness and/or ceramic fibers. The photodecomposition efficiency was affected by the void structure of the photocatalyst paper, and the initial degradation rate of acetaldehyde increased with an increase in the total pore volume of TiO2 paper. The paper voids presumably provided suitable conditions for TiO2 catalysis, resulting in higher photocatalytic performance by TiO2 paper than by TiO2 powder and a pulp/TiO2 mixture not in paper form. PMID:17166561

  20. Synthesis and photocatalytic activity of ytterbium-doped titania/diatomite composite photocatalysts

    NASA Astrophysics Data System (ADS)

    Tang, Wenjian; Qiu, Kehui; Zhang, Peicong; Yuan, Xiqiang

    2016-01-01

    Ytterbium-doped titanium dioxide (Yb-TiO2)/diatomite composite materials with different Yb concentrations were prepared by sol-gel method. The phase structure, morphology, and chemical composition of the as-prepared composites were well characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy, Raman spectroscopy, scanning electron microscopy (SEM), and ultraviolet-visible (UV-vis) diffuse reflection spectroscopy. The XRD and Raman spectroscopy analysis indicated that the TiO2 existed in the form of pure anatase in the composites. The SEM images exhibited the well deposition and dispersion of TiO2 nanoparticles with little agglomeration on the surfaces of diatoms. The UV-vis diffuse reflection spectra showed that the band gap of TiO2 could be narrowed by the introduction of Yb species, which was further affected by doping concentration of Yb. The photocatalytic activity of synthesized samples was investigated by the degradation of methylene blue (MB) under UV light irradiation. It was observed that the photocatalytic degradation followed a pseudo-first-order kinetics according to the Langmuir-Hinshelwood model. Compared to TiO2 and TiO2/diatomite, the Yb-TiO2/diatomite composites exhibited higher photocatalytic activity toward degradation of MB using UV light irradiation.

  1. Photocatalytic Activity of Immobilized Geometries of TiO2

    NASA Astrophysics Data System (ADS)

    Koohestani, Hassan; Sadrnezhaad, Sayed Khatiboleslam

    2015-07-01

    Photocatalysts that are used for waste water treatment are often suspended in the waste water during processing and then must be removed from the water after treatment. To reduce the post-degradation expenses and time, separation is facilitated by an immobilization process. The effect of immobilized TiO2 geometries on the photocatalytic behavior of the photocatalyst is investigated in this work. Powder, fiber, film, and network-shaped TiO2 nanocatalysts were produced by using different templates. The cellulose fiber and ceramic templates were used as substrates for fiber and film/network geometry production. The products were characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), and Brunauer-Emmett-Teller (BET) surface area measurement. The photocatalytic performance was determined by methyl orange degradation and cyanide photo-oxidation under ultraviolet irradiation. From the SEM images, the size range of the TiO2 particles in the film and in the network geometries were 20-60 nm. The nanoparticles had covered the surface of the substrate, uniformly. Removal of the cellulose substrate by heat treatment yielded hollow TiO2 fibers with diameters of 0.5-1 µm and lengths of 30 µm. The efficiencies of both photocatalytic reactions were obtained in the following order: powder > network > film > fiber geometry. The rate constant of the dye degradation reaction using powder catalyst was 0.0118 min-1. For network catalyst, it was 0.0083 min-1. Corresponding results for cyanide disinfection were 0.0055 and 0.0046 min-1. Although powder samples had higher rate constants, network geometry was preferred due to its higher immobility.

  2. Synthesis of magnetic mesoporous titania colloidal crystals through evaporation induced self-assembly in emulsion as effective and recyclable photocatalysts.

    PubMed

    Chen, Jeffrey E; Lian, Hong-Yuan; Dutta, Saikat; Alshehri, Saad M; Yamauchi, Yusuke; Nguyen, Mai Thanh; Yonezawa, Tetsu; Wu, Kevin C-W

    2015-11-01

    This study illustrates the directed self-assembly of mesoporous TiO2 with magnetic properties due to its colloidal crystal structure with Fe3O4. The Fe3O4 nanoparticles were synthesized using co-precipitation techniques to a size of 28.2 nm and a magnetic saturation of 66.9 emu g(-1). Meanwhile, mesoporous titania nanoparticles (MTNs) with a particle diameter of 373 nm, a specific surface area of 236.3 m(2) g(-1), and a pore size of 2.8 nm were prepared by controlling the rate of hydrolysis. Magnetic colloidal crystals (a diameter of 10.2 μm) were formed by the aggregation of Fe3O4 and MTNs caused by the interface phenomena during solvent evaporation in emulsion. Even the anatase octahedrite produced from the colloidal crystal after a hydrothermal reaction retained a magnetic saturation of 2.8 emu g(-1). This study also investigates the photodegradation activity of our synthesized material as a photocatalyst, while utilizing its capability for magnetic separation to prove its usefulness in catalyst recycling. PMID:26428279

  3. Purification of water by bipolar pulsed discharge plasma combined with TiO2 catalysis

    NASA Astrophysics Data System (ADS)

    Zhang, Yongrui; Zhang, Ruobing; Ma, Wenchang; Zhang, Xian; Wang, Liming; Guan, Zhicheng

    2013-03-01

    In the process of water treatment by bipolar pulsed discharge plasma, there are not only the chemical effects such as the cold plasma, but also the physical effects such as the optical radiation. The energy of the optical radiation can be used by photocatalyst. Therefore, the effect of the photocatalyst to the degradation of the organic pollutant was investigated using a packed bed reactor by bipolar pulsed discharge in the air-liquid-solid mixture. The nanoparticle TiO2 photocatalyst was obtained using the sol-gel method and the typical dye solution Indigo Carmine was chosen as the degradation target to test the catalytic effect of the nanoparticle TiO2 photocatalyst. Experiment results proved that the degradation efficiency of the Indigo Carmine solution was increased by a certain extent with the TiO2 photocatalyst. It was totally decolorized within 3 minutes by bipolar pulsed discharge in the condition that the peak voltage was 30 kV and the air flow was 1.0 m3 h-1.

  4. Facile synthesis of carbon doped TiO2 nanowires without an external carbon source and their opto-electronic properties.

    PubMed

    Kiran, Vankayala; Sampath, Srinivasan

    2013-11-01

    The present study demonstrates a simple protocol for the preparation of one dimensional (1D) oxidized titanium carbide nanowires and their opto-electronic properties. The oxidized titanium carbide nanowires (Ox-TiC-NW) are prepared from TiC nanowires (TiC-NW) that are in turn synthesized from micron sized TiC particles using the solvothermal technique. The Ox-TiC-NW is characterized by X-ray diffraction, UV-Vis spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and Raman spectroscopy. Thermal oxidation of TiC-NW yields carbon doped TiO2-NW (C-TiO2-NW), a simple methodology to obtain 1D C-TiO2-NW. Temperature dependent Raman spectra reveal characteristic bands for TiO2-NW. Electrical characterization of individual C-TiO2-NW is performed by fabricating a device structure using the focused ion beam deposition technique. The opto-electronic properties of individual C-TiO2-NW demonstrate visible light activity and the parameters obtained from photoconductivity measurements reveal very good sensitivity. This methodology opens up the possibility of using C-TiO2-NW in electronic and opto-electronic device applications. PMID:24057050

  5. Synthesis of [111]- and {010}-faceted anatase TiO2 nanocrystals from tri-titanate nanosheets and their photocatalytic and DSSC performances.

    PubMed

    Chen, Changdong; Ikeuchi, Yasushi; Xu, Linfeng; Sewvandi, Galhenage A; Kusunose, Takafumi; Tanaka, Yasuhiro; Nakanishi, Shunsuke; Wen, Puhong; Feng, Qi

    2015-05-01

    [111]- and {010}-faceted anatase nanocrystals with controllable crystal size and morphology were synthesized from tri-titanate H2Ti3O7 nanosheets by hydrothermal reaction. The nanostructures and the formation reaction mechanism of the obtained TiO2 nanocrystals were investigated using XRD, FE-SEM, and TEM. Furthermore, the photocatalytic and dye-sensitized solar cell (DSSC) performances of the synthesized anatase nanocrystals were also characterized. Two types of reactions occur in the formation process of the anatase nanocrystals. One is an in situ topochemical conversion reaction of the layered titanate structure to an anatase structure, and another is the dissolution-deposition reaction on the particle surface, which splits the formed nanosheet-like particles into small TiO2 nanocrystals. The surface photocatalytic activity and the DSSC performance of the anatase nanocrystals are dependent on the crystal facet exposed on the particle surface, which increases in the order of non-facet < [111]-facet < {010}-facet. The increasing order corresponds to the increasing order of the bandgap and energy level of the lowest valence band of the anatase nanocrystals. Furthermore, the facet of the anatase also affects the DSSC performance, which is enhanced in the order of non-facet < [111]-facet < {010}-facet. PMID:25866031

  6. Synthesis of hierarchical TiO2 flower-rod and application in CdSe/CdS co-sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Yu, Libo; Li, Zhen; Liu, Yingbo; Cheng, Fa; Sun, Shuqing

    2014-12-01

    A hierarchical double-layered TiO2 flower-rod structure composed of three-dimensional (3D) TiO2 flowers and one-dimensional (1D) nanorods on transparent fluorine-doped tin oxide (FTO) conducting glass has been synthesized by a facile hydrothermal method. The possible formation mechanism of the hierarchical architecture is also proposed. When used in CdSe/CdS quantum dots co-sensitized solar cells (QDSSCs), the 1D ordered rutile nanorods at bottom can accelerate the electron transfer rate by providing direct electrical pathway for photogenerated electrons, while the 3D flowers formed on the top of nanorods can increase the adsorption of QDs due to the enlarged areas, and can also be used as a scattering layer. The performance of the CdSe/CdS/TiO2 flower-rod solar cell can achieve a short-circuit current density (Jsc) of 13.46 mA cm-2, and a open-circuit voltage (Voc) of 0.42 V, with a maximum power conversion efficiency of 2.31% under one sun illumination (AM 1.5 G, 100 mW cm-2), which is greatly higher than that of CdSe/CdS/TiO2 nanorod solar cell (1.63%).

  7. A simple low pressure method for the synthesis of TiO2 nanotubes and nanofibers and their application in DSSCs

    NASA Astrophysics Data System (ADS)

    Karimipour, Masoud; Mashhoun, Sara; Mollaei, Mohsen; Molaei, Mehdi; Taghavinia, Nima

    2015-07-01

    TiO2 nanotubes were synthesized using a modified autoclave-free thermal method from as-prepared initial powders. The size of initial powders (IP) was found to be critical in determining the morphology and crystal structure of the final product. Oleylamine (OA) was used as the polymer agent in the preparation of initial powders with different mol ratios of OA/Ti: 1, 5, and 10. X-ray diffraction analysis depicted that the increase of mole ratio up to 10 resulted in smaller nanoparticles with the sizes of about 8 nm. It was also deliberated that low temperature thermally treated IP showed the characteristic diffraction pattern of titanate phase of nanotubes. Scanning electron microscope images showed nanorods, short nanotubes, and single-phase long and uniform nanofibers produced from initial powders. SEM cross-section of the anode cell of TiO2 nanofibers demonstrated the presence of uniformly closed net long fibers in the cell. Open circuit voltage measurements of the nanofiber cell demonstrated a several hundreds of seconds in the electron transport decay, which was significantly higher than that of the nanoparticles. IMPS/IMVS measurements of the nanofibers and nanotube solar cells showed electron transport enhancement and long life time compared to their nanoparticle counterparts. [Figure not available: see fulltext.

  8. Ionic liquid-assisted synthesis of large-scale TiO2 nanoparticles with controllable phase by hydrolysis of TiCl4.

    PubMed

    Zheng, Wenjun; Liu, Xiaodi; Yan, Zhiying; Zhu, Lianjie

    2009-01-27

    Pure rutile and rutile-anatase composite TiO(2) nanoparticles have been successfully synthesized via an ionic liquid-assisted method by hydrolysis of titanium tetrachloride in hydrochloric acid. It is found that the phase composition (ratio of rutile to anatase) of the products increases with increasing the content of ionic liquid [Emim]Br (1-ethyl-3-methyl-imidazolium bromide), therefore, TiO(2) nanoparticles with controlled phase compositions can be obtained in high yields. The structural and morphological characterizations of the resulting samples are investigated by means of X-ray powder diffraction (XRD), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), and Brunauer-Emmett-Teller (BET) analysis, and the results indicate that the diameters of the anatase nanoparticles are in the range of 4-6 nm and the well-defined rutile nanorods are about 3-6 nm in diameter and 20-60 nm in length. More importantly, we find that the [Emim](+) ions can serve as capping agents based on their strong interactions with the (110) facets of rutile, and the [Emim]Br favors the formation of the rutile structure with a rod-like shape due to the mutual pi-stacking interactions of imidazole rings. We believe that this method can be developed into a general way to synthesize other metal oxide nanoparticles on a large scale. PMID:19206257

  9. Controllable hydrothermal synthesis of rutile TiO2 hollow nanorod arrays on TiCl4 pretreated Ti foil for DSSC application

    NASA Astrophysics Data System (ADS)

    Xi, Min; Zhang, Yulan; Long, Lizhen; Li, Xinjun

    2014-11-01

    Rutile TiO2 nanorod arrays (TNRs) were achieved by hydrothermal process on TiCl4 pretreated Ti foil. Subsequently, TNRs were hydrothermally etched in HCl solution to form hollow TiO2 nanorod arrays (H-TNRs). The TiCl4 pretreatment plays key roles in enhancement of Ti foil corrosion resistance ability and crystal nucleation introduction for TNRs growth. TNRs with desired morphology can be obtained by controlling TiCl4 concentration and the amount of tetrabutyl titanate (TTB) accordingly. TNRs with the length of ~1.5 μm and diameter of ~200 nm, obtained on 0.15 M TiCl4 pretreated Ti foil with 0.6 mL TTB, exhibits relatively higher photocurrent. The increased pore volume of the H-TNRs has contributed to the increased surface area which is benefit for Dye-Sensitized Solar Cells (DSSC) application. And the 180 °C-H-TNRs photoanode obtained from the 0.15-TiCl4-TNRs sample demonstrated 128.9% enhancement of photoelectric efficiency of DSSC compared to that of the original TNR photoanode.

  10. In-situ synthesis of TiO2 network nanoporous structure on Ti wire substrate and its application in fiber dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Tao, Hong; Fang, Guo-jia; Ke, Wei-jun; Zeng, Wei; Wang, Jing

    2014-01-01

    In this paper, we explore a two-step treatment method to modify the Ti wires which are used as anode substrates of fiber dye sensitized solar cells (FDSSCs). A special kind of network nanoporous structure is formed on the surface of Ti wire substrates through sodium hydroxide hydrothermal reaction and titanium tetrachloride (TiCl4) assistant treatment. Nanoporous structures with different sizes are in-situ grown on the Ti wire substrates by changing the hydrothermal reaction condition. Then, TiO2 network nanoporous structures with branch-like nano-structure or 2D nanoflakes are obtained after TiCl4 treatment. The effects of these network nanoporous structures on the FDSSC performances are investigated intensively. It is found that these special network nanoporous structures between TiO2 nanoparticle active layer and Ti wire substrate are beneficial to the connection of the nanoparticle layer and fiber-shaped substrate, thus improving the electron transport rate and prolonging electron lifetime. As a result, the power conversion efficiency of this parallel assembled FDSSC increases to 4.64% from 2.56% after this two-step treatment.

  11. Investigation of photocatalytic degradation of phenol by Fe(III)-doped TiO2 and TiO2 nanoparticles

    PubMed Central

    2014-01-01

    In this study Fe (III)-doped TiO2 nanoparticles were synthesized by sol–gel method at two atomic ratio of Fe/Ti, 0.006 and 0.034 percent. Then the photoactivity of them was investigated on degradation of phenol under UV (<380 nm) irradiation and visible light (>380 nm). Results showed that at appropriate atomic ratio of Fe to Ti (% 0.034) photoactivity of Fe(III)–doped TiO2 nanoparticles increased. In addition, the effects of various operational parameters on photocatalytic degradation, such as pH, initial concentration of phenol and amount of photocatalyst were examined and optimized. At all different initial concentration, highest degradation efficiency occurred at pH = 3 and 0.5 g/L Fe(III)–doped TiO2 dosage. With increase in initial concentration of phenol, photocatalytic degradation efficiency decreased. Photoactivity of Fe (III)-doped TiO2 under UV irradiation and visible light at optimal condition (pH = 3 and catalyst dosage = and 0.5 g/L) was compared with P25 TiO2 nanoparticles. Results showed that photoactivity of Fe(III)-doped TiO2 under visible light was more than P25 TiO2 photoactivity, but it was less than P25 TiO2 photoactivity under UV irradiation. Also efficiency of UV irradiation alone and amount of phenol adsorption on Fe(III)-doped TiO2 at dark condition was investigated. PMID:25105016

  12. Photocatalytic Property of TiO2-Vermiculite Composite Nanofibers via Electrospinning

    NASA Astrophysics Data System (ADS)

    Tang, Chao; Hu, Meiling; Fang, Minghao; Liu, Yangai; Wu, Xiaowen; Liu, Wenjuan; Wang, Meng; Huang, Zhaohui

    2015-07-01

    Titanium dioxide (TiO2) is one of the most common photocatalysts. In this study, TiO2-vermiculite composite nanofibers with a mesh structure and a diameter of approximately 300 nm were prepared via sol-gel approach combined with electrospinning technique. The samples were characterized by X-ray diffraction, scanning electron microscopy, ultraviolet-visible spectroscopy, etc. The photocatalytic property was also evaluated. The TiO2-vermiculite composite nanofibers annealed at 550 °C for 3 h exhibited the best absorption and photo-degradation ability for the treatment of methylene blue. The results implied that the combination of mineral vermiculite powders with TiO2 enhanced the absorption-degradation performance of the as-prepared photocatalytic materials, consequently promoting the materials' ability to degrade methylene blue.

  13. Photocatalytic Property of TiO2-Vermiculite Composite Nanofibers via Electrospinning.

    PubMed

    Tang, Chao; Hu, Meiling; Fang, Minghao; Liu, Yangai; Wu, Xiaowen; Liu, Wenjuan; Wang, Meng; Huang, Zhaohui

    2015-12-01

    Titanium dioxide (TiO2) is one of the most common photocatalysts. In this study, TiO2-vermiculite composite nanofibers with a mesh structure and a diameter of approximately 300 nm were prepared via sol-gel approach combined with electrospinning technique. The samples were characterized by X-ray diffraction, scanning electron microscopy, ultraviolet-visible spectroscopy, etc. The photocatalytic property was also evaluated. The TiO2-vermiculite composite nanofibers annealed at 550 °C for 3 h exhibited the best absorption and photo-degradation ability for the treatment of methylene blue. The results implied that the combination of mineral vermiculite powders with TiO2 enhanced the absorption-degradation performance of the as-prepared photocatalytic materials, consequently promoting the materials' ability to degrade methylene blue. PMID:26130024

  14. Mesoporous Foam TiO2 Nanomaterials for Effective Hydrogen Production.

    PubMed

    Krishnappa, Manjunath; Souza, Virgínia S; Ganganagappa, Nagaraju; Scholten, Jackson D; Teixeira, Sérgio R; Dupont, Jairton; Thippeswamy, Ramakrishnappa

    2015-12-01

    Hydrolysis of TiCl4 in a diether-functionalized imidazolium ionic liquid (IL), namely 1-methyl-3-[2-(2-methoxy(ethoxy)ethyl]imidazolium methane sulfonate (M(MEE)I⋅CH3 SO3 ), results in a heterostructured organic/inorganic and sponge-like porous TiO2 material. The thermal treatment (300 °C) followed by calcination (500 °C) affords highly porous TiO2 . The characterization of the obtained samples (with and without IL, before and after calcination) by XRD, SEM, and TEM reveals TiO2 anatase crystalline phases and irregular-shaped particles with different porous structures. These hierarchical-structured mesoporous TiO2 nanomaterials were employed as efficient photocatalysts in the water-splitting process, yielding up to 1304 μmol g(-1) on hydrogen production. PMID:26492871

  15. Synthesis and characterization of Cu2O/TiO2 photocatalysts for H2 evolution from aqueous solution with different scavengers

    NASA Astrophysics Data System (ADS)

    Li, Yanping; Wang, Baowei; Liu, Sihan; Duan, Xiaofei; Hu, Zongyuan

    2015-01-01

    A series of Cu2O/TiO2 photocatalysts with different molar fraction of Cu2O were prepared by a facile modified ethanol-induced approach followed by a calcination process. The chemical state of copper compound was proved to be cuprous oxide by the characterization of X-ray photoelectron spectra (XPS). Furthermore, these composite oxides were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), N2 adsorption desorption and UV-vis techniques to study the morphologies, structures, and optical properties of the as-prepared samples. The results indicated that the photocatalytic activity of n-type TiO2 was significantly enhanced by combined with p-type Cu2O, due to the efficient p-n heterojunction. The p-n heterojunction between Cu2O and TiO2 can enhance visible-light adsorption, efficiently suppress charge recombination, improve interfacial charge transfer, and especially provide plentiful reaction active sites on the surface of photocatalyst. As a consequence, the prepared 2.5-Cu2O/TiO2 photocatalyst exhibited the highest photocatalytic activity for H2 evolution rate and reached 2048.25 μmol/(g h), which is 14.48 times larger than that of pure P25. The apparent quantum yield (AQY) of the 2.5-Cu2O/TiO2 sample at 365 nm was estimated to be 4.32%. In addition, the influence of different scavengers, namely methanol, anhydrous ethanol, ethylene glycol and glycerol, on the photocatalytic activity for H2 evolution rate was discussed.

  16. Microwave assisted hydrothermal synthesis of Ag/AgCl/WO{sub 3} photocatalyst and its photocatalytic activity under simulated solar light

    SciTech Connect

    Adhikari, Rajesh; Gyawali, Gobinda; Sekino, Tohru; Wohn Lee, Soo

    2013-01-15

    Simulated solar light responsive Ag/AgCl/WO{sub 3} composite photocatalyst was synthesized by microwave assisted hydrothermal process. The synthesized powders were characterized by X-Ray Diffraction (XRD) spectroscopy, X-Ray Photoelectron Spectroscopy (XPS), Transmission Electron Microscopy (TEM), Diffuse Reflectance Spectroscopy (UV-Vis DRS), and BET surface area analyzer to investigate the crystal structure, morphology, chemical composition, optical properties and surface area of the composite photocatalyst. This photocatalyst exhibited higher photocatalytic activity for the degradation of rhodamine B under simulated solar light irradiation. Dye degradation efficiency of composite photocatalyst was found to be increased significantly as compared to that of the commercial WO{sub 3} nanopowder. Increase in photocatalytic activity of the photocatalyst was explained on the basis of surface plasmon resonance (SPR) effect caused by the silver nanoparticles present in the composite photocatalyst. Highlights: Black-Right-Pointing-Pointer Successful synthesis of Ag/AgCl/WO{sub 3} nanocomposite. Black-Right-Pointing-Pointer Photocatalytic experiment was performed under simulated solar light. Black-Right-Pointing-Pointer Nanocomposite photocatalyst was very active as compared to WO{sub 3} commercial powder. Black-Right-Pointing-Pointer SPR effect due to Ag nanoparticles enhanced the photocatalytic activity.

  17. Designing Photocatalysts for Hydrogen Evolution: Are Complex Preparation Strategies Necessary to Produce Active Catalysts?

    PubMed

    Grewe, Tobias; Tüysüz, Harun

    2015-09-21

    A facile synthetic route for the preparation of highly active photocatalysts was developed. The protocol involves the preparation of a photocatalyst through the direct injection of metal alkoxide precursors into solutions in a photoreactor. As a proof of concept, a tantalum oxide based photocatalyst was chosen as a model system. Tantalum ethoxide [Ta(OEt)5 ] was injected rapidly into a photoreactor filled with a water/methanol mixture, and a TaOx (OH)y composite formed and was able to produce hydrogen under light illumination. Compared to commercial and mesostructured Ta2 O5 and NaTaO3 materials, TaOx (OH)y produced by direct injection shows superior hydrogen production activity. Notably, the samples prepared by direct injection are amorphous; however, their photocatalytic performance is much higher than those of their crystalline equivalents. If Ta(OEt)5 was dispersed in methanol before injection, an amorphous framework with higher surface area and larger pore volume was formed, and the hydrogen production rate increased further. The addition of a sodium precursor during the injection further boosted the photocatalytic activity. Furthermore, this concept has also been applied to a titanium-based photocatalyst, and a much better hydrogen production rate has been obtained in comparison with that of commercial TiO2 (P25-Degussa); therefore, the direct-injection synthesis is a flexible method that opens the door to the facile preparation of highly active nanostructured photocatalysts for hydrogen production. PMID:26261010

  18. Sono-chemical successive ionic layer adsorption and reaction for the synthesis of CdS quantum dots onto mesoporous TiO2 photoanodes

    NASA Astrophysics Data System (ADS)

    Kim, Jae Ho; Kim, Geon Yang; Sohn, Sang Ho

    2015-07-01

    Aiming at high efficiency of quantum dot-sensitized solar cells (QDSCs) with CdS quantum dots (QDs)/mesoporous TiO2 (mp-TiO2) photoanodes, physical properties of CdS QDs/mp-TiO2 grown by sono-chemical successive ionic layer adsorption and reaction (SC-SILAR) process were studied. It is found that SC-SILAR process has less growth time and larger absorbance of CdS QDs besides a uniform penetration into mp-TiO2 films, compared with the conventional SILAR process. Experimental results show that SC-SILAR is an effective method for growing CdS QDs with high efficiency due to an extra sono-chemical energy of acoustic cavitation.

  19. Direct Synthesis of Carbon-Doped TiO2-Bronze Nanowires as Anode Materials for High Performance Lithium-Ion Batteries.

    PubMed

    Goriparti, Subrahmanyam; Miele, Ermanno; Prato, Mirko; Scarpellini, Alice; Marras, Sergio; Monaco, Simone; Toma, Andrea; Messina, Gabriele C; Alabastri, Alessandro; De Angelis, Francesco; Manna, Liberato; Capiglia, Claudio; Zaccaria, Remo Proietti

    2015-11-18

    Carbon-doped TiO2-bronze nanowires were synthesized via a facile doping mechanism and were exploited as active material for Li-ion batteries. We demonstrate that both the wire geometry and the presence of carbon doping contribute to the high electrochemical performance of these materials. Direct carbon doping for example reduces the Li-ion diffusion length and improves the electrical conductivity of the wires, as demonstrated by cycling experiments, which evidenced remarkably higher capacities and superior rate capability over the undoped nanowires. The as-prepared carbon-doped nanowires, evaluated in lithium half-cells, exhibited lithium storage capacity of ∼306 mA h g(-1) (91% of the theoretical capacity) at the current rate of 0.1C as well as excellent discharge capacity of ∼160 mAh g(-1) even at the current rate of 10 C after 1000 charge/discharge cycles. PMID:26492841

  20. Thiourea-Modified TiO2 Nanorods with Enhanced Photocatalytic Activity.

    PubMed

    Wu, Xiaofeng; Fang, Shun; Zheng, Yang; Sun, Jie; Lv, Kangle

    2016-01-01

    Semiconductor TiO2 photocatalysis has attracted much attention due to its potential application in solving the problems of environmental pollution. In this paper, thiourea (CH4N2S) modified anatase TiO2 nanorods were fabricated by calcination of the mixture of TiO2 nanorods and thiourea at 600 °C for 2 h. It was found that only N element was doped into the lattice of TiO2 nanorods. With increasing the weight ratio of thiourea to TiO2 (R) from 0 to 8, the light-harvesting ability of the photocatalyst steady increases. Both the crystallization and photocatalytic activity of TiO2 nanorods increase first and then decrease with increase in R value, and R2 sample showed the highest crystallization and photocatalytic activity in degradation of Brilliant Red X3B (X3B) and Rhodamine B (RhB) dyes under visible light irradiation (λ > 420 nm). The increased visible-light photocatalytic activity of the prepared N-doped TiO2 nanorods is due to the synergistic effects of the enhanced crystallization, improved light-harvesting ability and reduced recombination rate of photo-generated electron-hole pairs. Note that the enhanced visible photocatalytic activity of N-doped nanorods is not based on the scarification of their UV photocatalytic activity. PMID:26840294

  1. Thermal evolution of structure and photocatalytic activity in polymer microsphere templated TiO2 microbowls

    NASA Astrophysics Data System (ADS)

    Erdogan, Deniz Altunoz; Polat, Meryem; Garifullin, Ruslan; Guler, Mustafa O.; Ozensoy, Emrah

    2014-07-01

    Polystyrene cross-linked divinyl benzene (PS-co-DVB) microspheres were used as an organic template in order to synthesize photocatalytic TiO2 microspheres and microbowls. Photocatalytic activity of the microbowl surfaces were demonstrated both in the gas phase via photocatalytic NO(g) oxidation by O2(g) as well as in the liquid phase via Rhodamine B degradation. Thermal degradation mechanism of the polymer template and its direct influence on the TiO2 crystal structure, surface morphology, composition, specific surface area and the gas/liquid phase photocatalytic activity data were discussed in detail. With increasing calcination temperatures, spherical polymer template first undergoes a glass transition, covering the TiO2 film, followed by the complete decomposition of the organic template to yield TiO2 exposed microbowl structures. TiO2 microbowl systems calcined at 600 °C yielded the highest per-site basis photocatalytic activity. Crystallographic and electronic properties of the TiO2 microsphere surfaces as well as their surface area play a crucial role in their ultimate photocatalytic activity. It was demonstrated that the polymer microsphere templated TiO2 photocatalysts presented in the current work offer a promising and a versatile synthetic platform for photocatalytic DeNOx applications for air purification technologies.

  2. N-doped TiO2 Prepared by RF DBD Plasma

    NASA Astrophysics Data System (ADS)

    Sun, Zhi-Guang; Liu, Jing-Lin; Li, Xiao-Song; Zhai, Zhao-Jun; Zhu, Ai-Min; Laboratory of Plasma Physical Chemistry Team

    2014-10-01

    TiO2 is the most promising photocatalyst because of its chemical stable, nontoxic, low cost, high photocatalytic activity and other attractive properties. Anatase has the highest photocatalytic activity among the three crystal form of TiO2. However, the 3.2 eV bandgap of anatase TiO2 makes it can only utilize the ultraviolet part of solar spectrum. Nitrogen doping is an effective method to extend the absorption range of anatase to visible light. N-doped TiO2 preparation methods, such as heat treatment under NH3 flow, the hydrolytic precipitation and the sol-gel process, have been reported. In this work, preparation of N-doped TiO2 was explored by radio-frequency (RF) dielectric barrier discharge (DBD) plasma using Ar as discharge gas. TiCl4, O2 and N2 were used as Ti, O and N precursors, respectively. In addition, H2 was added to the plasma. X-ray photoelectron spectra (XPS) showed nitrogen was successfully doped into the as-prepared TiO2. Further investigations on structure, composition and optical property of the as-prepared TiO2 samples were conducted by X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) and UV-Vis absorption spectra techniques.

  3. Facile synthesis of N-F codoped and molecularly imprinted TiO2 for enhancing photocatalytic degradation of target contaminants

    NASA Astrophysics Data System (ADS)

    Wu, Yanyan; Dong, Yuming; Xia, Xiaofeng; Liu, Xiang; Li, Hexing

    2016-02-01

    N-F codoped and molecularly imprinted TiO2 (MIP-NFTs) were successfully prepared by simple ethanol-water solvothermal method using 2-nitrophenol (2NP) and 4-nitrophenol (4NP) as template molecules (target contaminants), respectively. The surface structure and properties of the catalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), nitrogen adsorption/desorption measurements (BET), X-ray photoelectron spectroscopy (XPS) and UV-vis diffuse reflectance spectra (UV-vis DRS). In comparison with non-imprinted N-F codoped TiO2 nanocomposites (NIP-NFTs), MIP-NFTs show a higher adsorption, good selectivity and preferable degradation capacity toward the target contaminants. The adsorption amounts of 2NP and 4NP over the corresponding MIP-NFTs are about 1.78 and 2.21 times of that over NIP-NFTs, respectively. MIP-NFTs show a much higher adsorption capacity and selectivity for target contaminants in the mixed solution. Degradation selectivity experiments demonstrate that the selectivity coefficient (R) of degradation of 2NP relative to 4NP over 2NP/MIP-NFTs and 4NP relative to 2NP over 4NP/MIP-NFTs are 1.93 and 1.61, respectively. The enhancement about adsorption capacity and selectivity can be attributed to the chemical interaction and size matching between target contaminants and imprinted cavities. The apparent rate constants for the photodegradation of 2NP and 4NP over the corresponding MIP-NFTs are 0.05233 min-1 and 0.03734 min-1, being 267% and 198% of that over NIP-NFTs under simulated solar light. Moreover, MIP-NFTs exhibit excellent reusability due to their inorganic framework.

  4. Review of the progress in preparing nano TiO2: an important environmental engineering material.

    PubMed

    Wang, Yan; He, Yiming; Lai, Qinghua; Fan, Maohong

    2014-11-01

    TiO2 nanomaterial is promising with its high potential and outstanding performance in photocatalytic environmental applications, such as CO2 conversion, water treatment, and air quality control. For many of these applications, the particle size, crystal structure and phase, porosity, and surface area influence the activity of TiO2 dramatically. TiO2 nanomaterials with special structures and morphologies, such as nanospheres, nanowires, nanotubes, nanorods, and nanoflowers are thus synthesized due to their desired characteristics. With an emphasis on the different morphologies of TiO2 and the influence factors in the synthesis, this review summarizes fourteen TiO2 preparation methods, such as the sol-gel method, solvothermal method, and reverse micelle method. The TiO2 formation mechanisms, the advantages and disadvantages of the preparation methods, and the photocatalytic environmental application examples are proposed as well. PMID:25458670

  5. Visible light photocatalytic disinfection of E. coli with TiO2-graphene nanocomposite sensitized with tetrakis(4-carboxyphenyl)porphyrin

    NASA Astrophysics Data System (ADS)

    Rahimi, Rahmatollah; Zargari, Solmaz; Yousefi, Azam; Yaghoubi Berijani, Marzieh; Ghaffarinejad, Ali; Morsali, Ali

    2015-11-01

    The present research deals with the development of a new heterogeneous photocatalysis system for disinfection of bacteria from wastewater by using TiO2-graphene (TG) nanocomposite sensitized with tetrakis(4-carboxyphenyl)porphyrin (TCPP). The disinfection of wastewater using this photocatalyst is not reported in the literature yet. All the synthesized materials were thoroughly characterized by Raman, XRD, DRS, BET, and SEM analysis. The optimum content of graphene in the TiO2-graphene nanocomposite was determined by photocurrent responses of prepared photocatalysts. Subsequently, the photocurrent measurements demonstrate that the TiO2-graphene nanocomposite with 3% graphene content has higher photoactivity. Furthermore, sensitization of the TiO2-graphene nanocomposite with porphyrin (TGP) is successfully capable to develop a new type of photocatalyst system for disinfection of bacteria with moderate to high yields in visible light irradiation.

  6. Development of inorganic composite material based TiO2 for environmental application

    NASA Astrophysics Data System (ADS)

    Wahyuningsih, Sayekti; Handono Ramelan, Ari; Pramono, Edi; Purnawan, Candra; Anjani, Velina; Estianingsih, Puji; Rinawati, Ludfiaastu; Fadli, Khusnan

    2016-02-01

    Syntheses of various materials, for green energy nanotechnology applications have special attention to develop emerging areas, such as environmental as well as energy materials. Various approaches for preparing nanostructured photocatalysts, such as titanium dioxide, nickel oxide, lead oxide and their composites, was introduced. The use of nanomaterials as photocatalysts water detoxification by visible light photocatalyst of an inorganic composite as well as dye-sensitized photoreduction was also discussed. The enhancement of selective photocatalyst system was gain by the use of photocatalyst composite materials and applied potential bias on the system. The photoelectrocatalytic degradation of rhodamine B (RB) and Remazol Yellow FG (RY) as water contaminant using the thin film of modified TiO2 as the electrode was investigated via a series of potentials, and various pH. The result showed that the anodic potential bias influenced the degradation rate of water contaminant and exhibited better performance by the positive anodic bias was applied. The pH conditions influence the active dye structure whereas it will interact with inorganic semiconductor photocatalyst. Using dye- sensitized TiO2 system (DSTs), we have applied this system to build water decolorization as a novelty environmental remediation system.

  7. Enhancing selective decomposition of ibuprofen onto porous TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Zakersalehi, Abolfazl

    Advanced oxidation technologies have gained tremendous attention for water treatment purposes after demonstration of insufficient efficiency of conventional systems for removal of many emerging chemicals of concern. Among AOTs, a TiO2-UV system is one of the most promising approaches due to its green properties and its effectiveness in generation of extremely oxidizing species such as hydroxyl radicals. However it has been demonstrated that non-selectivity of HRs in decomposition of organic compounds results in parallel decomposing of naturally abundant organic matter (NOM) along with toxic target contaminant, which significantly decreases the decomposition rate of target contaminants. Despite a great amount of researches conducted on TiO2 photocatalysts, limited success has been achieved in enhancing selectivity of TiO2 photocatalytic oxidation. In this study, a novel approach for suppressing the adverse effect of co-existing organics such as NOM has been proposed. Physical access of competing compounds was restrained through manipulation of the porous structure of TiO2 photocatalysts. An advanced templating method was employed to create a porous structure across TiO2 nanoparticles. In this study Ibuprofen as a target contaminant was decomposed in the presence of humic acid as competing NOM. Porous particles demonstrated significant improvement in selective decomposition of ibuprofen in the presence of humic acid as competing species. In the second phase of the study, a comprehensive study was conducted through changing the porous structure and size of co-existing organics in competing and non-competing conditions. The photocatalytic results, in correlation with material characterization demonstrated beneficial role of the controlled porous structure on adsorption followed by decomposition of organic species onto TiO2 photocatalysts.

  8. Photocatalytic degradation of Chromium (VI) from wastewater using nanomaterials like TiO2, ZnO, and CdS

    NASA Astrophysics Data System (ADS)

    Joshi, K. M.; Shrivastava, V. S.

    2011-09-01

    The photocatalytic degradation of Cr(VI) from wastewater by using nanomaterials TiO2, ZnO, and CdS. All the experiments were carried out in the batch process. The wastewater obtained from various industries. The amount of chromium was removed using photocatalyst with UV light and in the dark at different pH range. The maximum removal of Cr(VI) was observed at pH 2; out of these photocatalyst TiO2 showed highest capacity for Cr(VI) removal than TiO2 thin film. The removal of chromium has been studied by considering influent concentration, loading of photocatalyst, pH, and contact time as operating variables. The degradation was characterized by FTIR, XRD, SEM, and EDX analysis before and after application of photocatalysts.

  9. Doping of TiO2 for sensitized solar cells.

    PubMed

    Roose, Bart; Pathak, Sandeep; Steiner, Ullrich

    2015-11-21

    This review gives a detailed summary and evaluation of the use of TiO2 doping to improve the performance of dye sensitized solar cells. Doping has a major effect on the band structure and trap states of TiO2, which in turn affect important properties such as the conduction band energy, charge transport, recombination and collection. The defect states of TiO2 are highly dependent on the synthesis method and thus the effect of doping may vary for different synthesis techniques, making it difficult to compare the suitability of different dopants. High-throughput methods may be employed to achieve a rough prediction on the suitability of dopants for a specific synthesis method. It was however found that nearly every employed dopant can be used to increase device performance, indicating that the improvement is not so much caused by the dopant itself, as by the defects it eliminates from TiO2. Furthermore, with the field shifting from dye sensitized solar cells to perovskite solar cells, the role doping can play to further advance this emerging field is also discussed. PMID:26314371

  10. On the preparation of TiO2-sepiolite hybrid materials for the photocatalytic degradation of TCE: influence of TiO2 distribution in the mineralization.

    PubMed

    Suárez, Silvia; Coronado, Juan M; Portela, Raquel; Martín, Juan Carlos; Yates, Malcolm; Avila, Pedro; Sánchez, Benigno

    2008-08-15

    Hybrid structured photocatalysts based on sepiolite, an adsorbent, and TiO2 were prepared by extrusion of ceramic dough and conformed as plates. The influence of the photocatalyst configuration was studied either by including TiO2 in the extrusion process (incorporated materials) or by coating the sepiolite plates with a TiO2 film (coated materials). The influence of the OH- surface concentration in the photocatalytic performance was studied by treating the ceramic plates at different temperatures. The samples were characterized by N2 adsorption-desorption, MIP, SEM, XRD, and UV-vis-NIR spectroscopy and tested in the photocatalytic degradation of trichloroethylene (TCE) as a target VOC molecule. Most of the catalysts presented high photoactivity, but considerable differences were observed when the CO2 selectivity was analyzed. The results demonstrate that there is a significant effect of the catalyst configuration on the selectivity of the process. An intimate contact between the sepiolite fibers and TiO2 particles for incorporated materials with a corncob-like structure favored the migration of nondesirable reaction products such as COCl2 and dichloroacetyl chloride (DCAC) to the adsorbent, reacting with OH- groups of the adsorbent and favoring the TCE mimeralization. PMID:18767641

  11. A Novel Method for Synthesis of TiO2 Nanoparticles-coated Plastic Fibers Using a Vibration Method and the Use of Coated Fibers as Photocatalitic Materials for Decomposing of Organic Pollutant in Water under Sunlight Illumination

    NASA Astrophysics Data System (ADS)

    Isnaini, Vandri Ahmad; Amalia, Irma Fitria; Aliah, Hasniah; Arutanti, Osi; Masturi, Nuryadin, Bebeh Wahid; Abdullah, Mikrajuddin; Khairurrijal

    2010-10-01

    Photocatalytic is a catalyst process that requires light energy in process of converting material in a chemical reaction. TiO2 is one of the most suitable materials in photocatalytic process. In this study, TiO2 nanoparticles-coated plastic fibers made by using vibrating method. TiO2 nanoparticles-coated plastic fibers products used for wastewater purification using photocatalytic process. Speed of water purification is influenced by TiO2 nanoparticles-coated plastic fibers position on container. TiO2 nanoparticles-coated plastic fibers with horizontal position on container has a faster photocatalytic process compared to TiO2 nanoparticles-coated plastic fibers with vertical position on container.

  12. One-pot synthesis of Mn-doped TiO2 grown on graphene and the mechanism for removal of Cr(VI) and Cr(III).

    PubMed

    Chen, Zengping; Li, Yaru; Guo, Meng; Xu, Fengyun; Wang, Peng; Du, Yu; Na, Ping

    2016-06-01

    Mn-doped TiO2 grown on reduced graphene oxide(rGO) was synthesized by one-pot hydrothermal method and the photocatalytic removal of Cr by the material was investigated under sunlight. The materials were characterized by a combination of scanning electron microscopy, transmission electron microscopy, X-ray diffraction, thermogravimetric analysis, Brunauer-Emmett-Teller method, UV-vis diffuse reflectance spectra, photoluminescence spectra, electrochemical impedance spectroscopy and X-ray photoelectron spectroscopy. Cr(total) removal efficiency of the material is 97.32% in 30min and 99.02% in 60min under sunlight irradiation, as the initial concentration of Cr(VI) is 20mg/L. The high photocatalytic activity under visible light is considered mainly due to the Mn-doping, and rGO plays an important role in the synergetic effect of adsorption and photocatalysis to sustain the high efficient removal of Cr(VI) and Cr(III). Cr(VI) adsorbed on the surface of rGO is reduced to Cr(III) by photo electrons which are transported through rGO, and the reaction product Cr(III) continues to be adsorbed. The process contributes to the release of abundant photocatalytic sites of Mn-TiO2 and improves photocatalytic efficiency. The excellent adsorption and photocatalytic effect with the explanation of the synergetic mechanism are very useful not only for fundamental research but also for the potential practical applications. PMID:26921512

  13. Synthesis and characterization of cube-like Ag@AgCl-doped TiO2/fly ash cenospheres with enhanced visible-light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Liu, Shaomin; Zhu, Jinglin; Yang, Qing; Xu, Pengpeng; Ge, Jianhua; Guo, Xuetao

    2016-03-01

    A cube-like Ag@AgCl-doped TiO2/fly ash cenosphere composite (denoted Ag@AgCl-TiO2/fly ash cenospheres) was successfully synthesized via a two-step approach. The as-prepared catalysts were characterized by scanning electron microscopy, X-ray diffraction, diffuse reflectance ultraviolet-visible spectroscopy, Brunauer-Emmett-Teller, and X-ray photoelectron spectroscopy. The photocatalytic experiment showed that the rhodamine B degradation rate with Ag@AgCl-TiO2/fly ash cenospheres was 1.56 and 1.33 times higher than that with AgCl-TiO2/fly ash cenospheres and Ag@AgCl, respectively. The degradation ratio of rhodamine B with Ag@AgCl-TiO2/fly ash cenospheres was nearly 100% within 120 min under visible light. Analysis of active species indicated that radO2- and h+ dominated the reaction, and radOH participated in the photocatalytic reactions as an active species. A mechanism for the photocatalytic degradation by the Ag@AgCl-TiO2/fly-ash cenospheres was also proposed based on the experimental results.

  14. In situ synthesis of carbon incorporated TiO2 with long-term performance as anode for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Ma, Xiaoqing; Cui, Xiaoli; Jiang, Zhiyu

    2016-01-01

    The carbon incorporated titanium dioxide (C-TiO2) has been in-situ synthesized via facile flame-assisted approach using tetrabutyl orthotitanate as a precursor. The as-prepared C-TiO2 samples are characterized by SEM, XRD, XPS, Raman spectroscopy, EDX, TGA and electrochemical measurements. It is found that carbon incorporated TiO2 microspheres can be directly obtained without any post annealing. Enhanced lithium storage performance is observed for the resultant sample after ball milling. The reversible capacity remains 159.8 mAh g-1 at a specific current of 335 mA g-1 even after 960 charge-discharge cycles. The high capacity reversibility and good long-term cycling capability are attributed to the inherently incorporated carbon species, which efficiently improve electronic conductivity. Meanwhile, the intrinsic crystal structure and enlarged contact area between electrode and electrolyte provide abundant channels for Li-ion transport. This work could not only make the prepared C-TiO2 a promising anode candidate, but also present an available strategy for developing other electrode materials.

  15. Photocatalysis and the origin of life: synthesis of nucleoside bases from formamide on TiO2(001) single surfaces.

    PubMed

    Senanayake, S D; Idriss, H

    2006-01-31

    We report the conversion of a large fraction of formamide (NH(2)CHO) to high-molecular-weight compounds attributed to nucleoside bases on the surface of a TiO(2) (001) single crystal in ultra-high vacuum conditions. If true, we present previously unreported evidence for making biologically relevant molecules from a C1 compound on any single crystal surface in high vacuum and in dry conditions. An UV light of 3.2 eV was necessary to make the reaction. This UV light excites the semiconductor surface but not directly the adsorbed formamide molecules or the reaction products. There thus is no need to use high energy in the form of photons or electrical discharge to make the carbon-carbon and carbon-nitrogen bonds necessary for life. Consequently, the reaction products may accumulate with time and may not be subject to decomposition by the excitation source. The formation of these molecules, by surface reaction of formamide, is proof that some minerals in the form of oxide semiconductors are active materials for making high-molecular-weight organic molecules that may have acted as precursors for biological compounds required for life in the universe. PMID:16423899

  16. Photocatalysis and the origin of life: Synthesis of nucleoside bases from formamide on TiO2(001) single surfaces

    PubMed Central

    Senanayake, S. D.; Idriss, H.

    2006-01-01

    We report the conversion of a large fraction of formamide (NH2CHO) to high-molecular-weight compounds attributed to nucleoside bases on the surface of a TiO2 (001) single crystal in ultra-high vacuum conditions. If true, we present previously unreported evidence for making biologically relevant molecules from a C1 compound on any single crystal surface in high vacuum and in dry conditions. An UV light of 3.2 eV was necessary to make the reaction. This UV light excites the semiconductor surface but not directly the adsorbed formamide molecules or the reaction products. There thus is no need to use high energy in the form of photons or electrical discharge to make the carbon–carbon and carbon–nitrogen bonds necessary for life. Consequently, the reaction products may accumulate with time and may not be subject to decomposition by the excitation source. The formation of these molecules, by surface reaction of formamide, is proof that some minerals in the form of oxide semiconductors are active materials for making high-molecular-weight organic molecules that may have acted as precursors for biological compounds required for life in the universe. PMID:16423899

  17. Synthesis, characterization and activity of an immobilized photocatalyst: natural porous diatomite supported titania nanoparticles.

    PubMed

    Wang, Bin; de Godoi, Fernanda Condi; Sun, Zhiming; Zeng, Qingcong; Zheng, Shuilin; Frost, Ray L

    2015-01-15

    Diatomite, a porous non-metal mineral, was used as support to prepare TiO2/diatomite composites by a modified sol-gel method. The as-prepared composites were calcined at temperatures ranging from 450 to 950 °C. The characterization tests included X-ray powder diffraction (XRD), scanning electron microscopy (SEM) with an energy-dispersive X-ray spectrometer (EDS), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption/desorption measurements. The XRD analysis indicated that the binary mixtures of anatase and rutile exist in the composites. The morphology analysis confirmed the TiO2 particles were uniformly immobilized on the surface of diatom with a strong interfacial anchoring strength, which leads to few drain of photocatalytic components during practical applications. In further XPS studies of hybrid catalyst, we found the evidence of the presence of Ti-O-Si bond and increased percentage of surface hydroxyl. In addition, the adsorption capacity and photocatalytic activity of synthesized TiO2/diatomite composites were evaluated by studying the degradation kinetics of aqueous Rhodamine B under UV-light irradiation. The photocatalytic degradation was found to follow pseudo-first order kinetics according to the Langmuir-Hinshelwood model. The preferable removal efficiency was observed in composites by 750 °C calcination, which is attributed to a relatively appropriate anatase/rutile mixing ratio of 90/10. PMID:25454443

  18. TiO2 embedded in carbon submicron-tablets: synthesis from a metal-organic framework precursor and application as a superior anode in lithium-ion batteries.

    PubMed

    Wang, Peiyu; Lang, Junwei; Liu, Dongxia; Yan, Xingbin

    2015-07-21

    Rutile TiO2 embedded in carbon submicron-tablets (TiO2/C) with a "blueberry muffin" morphology was fabricated via a two-step pyrolysis from a metal-organic framework precursor. Such a unique structure of the TiO2/C submicron-tablets provides the ideal anode characteristics (high reversible capacity, superior rate capability and excellent long-term cycling stability) for fast rechargeable lithium ion batteries. PMID:25813272

  19. One-step synthesis of vertically aligned anatase thornbush-like TiO2 nanowire arrays on transparent conducting oxides for solid-state dye-sensitized solar cells.

    PubMed

    Roh, Dong Kyu; Chi, Won Seok; Ahn, Sung Hoon; Jeon, Harim; Kim, Jong Hak

    2013-08-01

    Herein, we report a facile synthesis of high-density anatase-phase vertically aligned thornbush-like TiO2 nanowires (TBWs) on transparent conducting oxide glasses. Morphologically controllable TBW arrays of 9 μm in length are generated through a one-step hydrothermal reaction at 200 °C over 11 h using potassium titanium oxide oxalate dehydrate, diethylene glycol (DEG), and water. The TBWs consist of a large number of nanoplates or nanorods, as confirmed by SEM and TEM imaging. The morphologies of TBWs are controllable by adjusting DEG/water ratios. TBW diameters gradually decrease from 600 (TBW600) to 400 (TBW400) to 200 nm (TBW200) and morphologies change from nanoplates to nanorods with an increase in DEG content. TBWs are utilized as photoanodes for quasi-solid-state dye-sensitized solar cells (qssDSSCs) and solid-state DSSCs (ssDSSCs). The energy-conversion efficiency of qssDSSCs is in the order: TBW200 (5.2%)>TBW400 (4.5%)>TBW600 (3.4%). These results can be attributed to the different surface areas, light-scattering effects, and charge transport rates, as confirmed by dye-loading measurements, reflectance spectroscopy, and incident photon-to-electron conversion efficiency and intensity-modulated photovoltage spectroscopy/intensity-modulated photocurrent spectroscopy analyses. TBW200 is further treated with a graft-copolymer-directed organized mesoporous TiO2 to increase the surface area and interconnectivity of TBWs. As a result, the energy-conversion efficiency of the ssDSSC increases to 6.7% at 100 mW cm(-2) , which is among the highest values for N719-dye-based ssDSSCs. PMID:23893968

  20. Photodecomposition of volatile organic compounds using TiO2 nanoparticles.

    PubMed

    Jwo, Ching-Song; Chang, Ho; Kao, Mu-Jnug; Lin, Chi-Hsiang

    2007-06-01

    This study examined the photodecomposition of volatile organic compounds (VOCs) using TiO2 catalyst fabricated by the Submerged Arc Nanoparticle Synthesis System (SANSS). TiO2 catalyst was employed to decompose volatile organic compounds and compare with Degussa-P25 TiO2 in terms of decomposition efficiency. In the electric discharge manufacturing process, a Ti bar, applied as the electrode, was melted and vaporized under high temperature. The vaporized Ti powders were then rapidly quenched under low-temperature and low-pressure conditions in deionized water, thus nucleating and forming nanocrystalline powders uniformly dispersed in the base solvent. The average diameter of the TiO2 nanoparticles was 20 nm. X-ray diffraction analysis confirmed that the nanoparticles in the deionized water were Anatase type TiO2. It was found that gaseous toluene exposed to UV irradiation produced intermediates that were even harder to decompose. After 60-min photocomposition, Degussa-P25 TiO2 reduced the concentration of gaseous toluene to 8.18% while the concentration after decomposition by SANSS TiO2 catalyst dropped to 0.35%. Under UV irradiation at 253.7 +/- 184.9 nm, TiO2 prepared by SANSS can produce strong chemical debonding energy, thus showing great efficiency, superior to that of Degussa-P25 TiO2, in decomposing gaseous toluene and its intermediates. PMID:17654970